
HAL Id: tel-01257509
https://theses.hal.science/tel-01257509

Submitted on 23 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MODEL-BASED IMAGING APPROACH TO
QUANTIFY TISSUE STRUCTURAL PROPERTIES

IN OPTICAL COHERENCE TOMOGRAPHY
Cecilia Lantos

To cite this version:
Cecilia Lantos. MODEL-BASED IMAGING APPROACH TO QUANTIFY TISSUE STRUCTURAL
PROPERTIES IN OPTICAL COHERENCE TOMOGRAPHY. Life Sciences [q-bio]. Université Paris
Diderot, 2014. English. �NNT : �. �tel-01257509�

https://theses.hal.science/tel-01257509
https://hal.archives-ouvertes.fr


1 
 

                                  
                                   

UNIVERSITY PARIS DIDEROT - PARIS VII 
Laboratory of Matter and Complex Systems 

UNIVERSITY OF HOUSTON 
Department of Mechanical Engineering 

 
GRADUATE SCHOOL FRONTIERS IN LIFE SCIENCES, PARIS 

 
 

PhD THESIS 
 Biomedical Engineering 

 
 

Cecília LANTOS 
 

 

MODEL-BASED IMAGING APPROACH TO 
QUANTIFY TISSUE STRUCTURAL PROPERTIES 

IN OPTICAL COHERENCE TOMOGRAPHY 
 

 

Thesis directed by Stéphane DOUADY / Matthew A. FRANCHEK 
Defended the September 29, 2014. 

 

COMMITTEE 

Mr. A. Claude BOCCARA                   Reviewer 
Mr. Stephen WONG                    Reviewer  
Mr. Matthew A. FRANCHEK                        Thesis Director 
Mr. Stéphane DOUADY                             Thesis Director 
Mrs. Darine ABI-HAIDAR                  Examiner    
Mr. Laurent LIMAT                      Chairman 



2 
 

                                  
                                   

UNIVERSITÉ PARIS DIDEROT - PARIS VII 
Laboratoire Matière et Systèmes Complexes 

UNIVERSITÉ DE HOUSTON 
Département de l’Ingénierie Mécanique 

 
ÉCOLE DOCTORALE FRONTIÈRES DU VIVANT, PARIS 

 
 

THÈSE DE DOCTORAT 
Ingénierie Biomédicale 

 
 

Cecília LANTOS 
 

 

QUANTIFICATION DE STRUCTURES 
TISSULAIRES EN TOMOGRAPHIE PAR 

COHÉRENCE OPTIQUE  
 

 

Thèse dirigée par Stéphane DOUADY / Matthew A. FRANCHEK 
Soutenue le 29 septembre 2014. 

 

JURY 

M. A. Claude BOCCARA                          Rapporteur 
M. Stephen WONG         Rapporteur 
M. Matthew A. FRANCHEK          Directeur de thèse 

M. Stéphane DOUADY       Directeur de thèse  
Mme. Darine ABI-HAIDAR                       Examinatrice  
M. Laurent LIMAT                     Directeur de jury 

 



3 
 

 
 
 
 
 
 
 
“For an image, since the reality after which it is modeled does not 

belong to it, and it exists ever as the fleeting shadow of some other, 
must be inferred to be in another [that is, in space], grasping 
existence in some way or other, or it could not be at all.” 

(Plato) 
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Abstract 

 
The dissertation presents a revolutionary method to tissue characterization. 

The optical scattering property of the tissue measured with Optical Coherence 
Tomography (OCT) reveals the subsurface structure at histological level. Our 
work developed a model based approach to process OCT data for accurate tissue 
characterization. This way the qualitative images are represented in a quantitative 
model independently from the measurement settings. Since a tumor is 
differentiated from healthy tissue based on morphological analysis, our parametric 
model is able to diagnose healthy versus cancerous tissue. 
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Résumé 

 
Cette dissertation représente une méthode révolutionnaire pour la 

caractérisation du tissu.  La propriété de diffusion optique du tissue mesurée en 

Tomographie par Cohérence Optique (OCT) révèle la structure tissulaire sous la 
surface à l’échelle histologique. Notre œuvre a développé une approche basée sur 

modèle pour traiter les données OCT pour la précise caractérisation du tissue.  

Ainsi les images qualitatives sont représentées dans un modèle quantitatif 

indépendamment de réglages de mesure. Etant donné qu’une tumeur est 
différenciée du tissu sain basé sur une analyse morphologique, notre modèle 

paramétrique est capable de diagnostiquer le tissu sain vs cancéreux. 
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Introduction 
 
Revealing structural property of biological material, the normal, inflammatory, benign or 

malignant state of the tissue can be established. In clinical practice, diagnosis of cancer from 
structural features is validated by histological analysis. Applying imaging modalities is the first 
step to complete a diagnosis. It reveals the tissue topology and cellular components without 
excising the tissue, and it gives a good direction for micro-biopsy.  

Structural property of the tissue can be described by its optical scattering properties. The 
scattering property is measured using Optical Coherence Tomography (OCT). OCT is a 
noninvasive measurement technique based on the optical coherence theory of a broadband laser 
light or white light. It performs high resolution (1-15 μm) optical biopsy, scanning the internal 

microstructure under the surface. Optical Coherence Tomography has already been used for 
multiple types of cancer disease diagnostics in research and clinical applications. 

The main purpose of our project is to develop fast and non-invasive OCT (Optical 
Coherence Tomography) based techniques for tissue diagnostics and monitoring. Our goal is to 
identify computational models that quantify tissue properties using Imaging-based data. Since a 
tumor is differentiated from healthy tissue based on morphological analysis, model-based 
approach to cancer diagnosis is developed. 

Instead of subjective image analysis, we approach the diagnosis from mathematical point 
of view in order to quantify topological changes.  A statistical model-based imaging method is 
created based on the images analyzing the scattering properties distinguishing various tissue 
types using the example of human Normal Fat Tissue vs. Well-Differentiated- (WD-), and De-
Differentiated Liposarcoma (DDLS), but the idea can be broadened toward the analysis of other 
type of cancer since the diagnosis is based on morphology. 

A set of image-based measurements will form the model. The outcome from these 
computations is the assignment of parameterized models to tissue type, grade of cancer detected 
from the scattered light wave. These parameters are paramount in the determination of the tissue 
optical and structural properties. The aim would be quantitatively characterizing different tissue 
types based on their scattering properties. 

A new method is described here to quantify tissue properties in the structural features 
from OCT measurements distinguishing between tissue types. A model-based laser imaging 
technique is developed to enable prognosis. We use the adapted model coefficients to classify the 
tissue as healthy or cancerous. This model based imaging can become a clinical tool to provide a 
second opinion for physiologists. The results of this work would be the basis of a new cancer 
detector device. 
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I. Soft Tissue Diagnostics 

I/1. Soft Tissue Tumors and Diagnosis 

I/1/a. Soft Tissue Tumor (Sarcoma) 

The origin of tumor comes from the disease of genes, which disturbs the cell mechanism, 
resulting to uncontrolled cell-division and growth. Benign tumors do not spread to other parts of 
the body, unlike malignant tumors, called cancer. Highly dangerous cancer metastasizes having 
the ability to travel toward other parts of the body through the lymphatic or vascular system. 

Carcinoma is the most commonly diagnosed cancer (90%), it originates from the 
epithelium of the organs that covers the surface of the body and the internal organs. Sarcoma 
originates from the connective tissue (bone, muscle, fat, tendon, cartilage). Melanoma arises 
from the pigment cells of the skin, Lymphoma is the cancer of lymphocytes from bone marrow 
and lymph nodes (to fight infection), Leukemia is the white cells’ cancer, Myeloma is the cancer 

of plasma cells in bone marrow. The 3 latter types is the disease of immune system to fight 
against infection. Nerve cell cancer comes from brain or spinal cord, germ cell cancer comes 
from reproductive cells [1]. 

We can classify cancer depending on which body cells they start in. The body cells are 
grouped according to their embryonic origin, where the germ layer is divided into 3 parts: 
ectoderm (skin and nervous system), mesoderm (supporting tissue) and endoderm (internal 
organs). [2] 

Soft tissue is derived from the mesoderm layer of the embryonic stage. It is the 
supportive, connective or surrounding structure of the body (mesenchymal tissue) including 
muscle that supports bones, tendons and ligaments that connect muscles and bones, synovial 
tissue of joints (cartilage), fascia surrounding the musculoskeletal system, and supportive 
network providing systems of circulation, transport and defense, including nerves, blood vessels, 
lymphatics, bone marrow and fat [3]. 

Figure I.1.1 shows the development of the mesenchymal tissue types. 
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Figure I.1.1. Soft Tissue Development. MSC: Mesenchymal Stem Cell [2]. 
 
Soft tissue sarcomas are uncommon malignant tumours, 1% of all cancers, and the ratio 

of malignant (sarcoma) vs. benign (lipoma) soft tissue tumor is 1:100. Most occurs in adults, 
15% in children and adolescents. Although there are various types of soft tissue sarcoma, they 
generally share similar characteristics, produce similar symptoms and are treated in similar ways 
[4, 5, 6]. 

Sarcomas are age and site specific, they can occur in exteremities (skin, subcutis, trunk, 
head, neck) and deeply (beneath deep fascia, in skeletal muscle,abdomen/retroperitoneum, 
mesentry, omentum, mediastinum), some types are more common at certain age and site and 
gender. They can arise anywhere in body, including viscera, not only in specific organs. They 
can reach large sizes before symptoms [6]. 

 

I/1/b. Symptoms and Diagnosis 

 Most sarcomas present as painless, enlarging mass lesions without characteristic clinical 
symptoms. The findings are swelling, palpable mass, with possible tenderness or pain and loss of 
function in case there is compression of adjacent structures. [6] To detect the suspected lesion 
and establish a diagnosis and the staging of cancer, multidisciplinary analysis is required prior to 
biopsy including pathologist, surgeons, oncologists, radiologists [3]. Clinical features, the age of 
the patient, the size and location of the lesion, the tumor growth pattern are important factor in 
the diagnosis [7]. 
 Screening in non-symptom patients or imaging after detecting a palpable mass is an 
essential step of disease diagnosis. Imaging can confirm the existence and type of tumor (lesion 
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detection and staging), whether it is benign or malignant and able to metastasize. It identifies a 
specific or differential diagnosis and guides therapy decisions. It gives direction for micro-biopsy 
for histology to establish the final diagnosis and a sampling strategy, and assess tumor behavior 
in response to treatment. Imaging methods, as Computed Tomography, Ultrasound and Optical 
Coherence Tomography guide deep-seated lesion sampling [3, 8, 9-12] 
  Histological excision should always confirm the imaging diagnosis. Soft tissue tumor is 
sampled with fine needle aspirates (FNA) and core needle biopsies (CNBs). FNA is a first-line 
diagnostic procedure performed under local anesthesia using a long, thin needle (diameter = 0,4-
0,8mm) to draw out fluid and cells for analysis. CNB is used (diameter = 1,2-1,4mm) to draw a 
column of tissue out of a suspicious area [3]. 
 Accurate diagnosis can be stated on the basis of morphology (imaging + histology) and a 
combination of ancillary techniques: immunocytochemistry (antibodies targeted on peptides or 
protein antigens labeling within cells), immunohistochemistry (antibodies targeted on peptides or 
protein antigens labeling within excised tissue), genetic techniques (Omics technologies, 
Genomics, Proteomics, Metabolomics) [3]. 
   

I/1/c. Imaging Modalities for Soft Tissue Tumors 

Diagnoses of cancer in soft tissue tumors with the help of imaging modalities have two 
main branches depending on the type of information they produce. One group is the structural/ 
anatomical imaging (Ultrasound (US), X-ray, Computed Tomography (CT), Magnetic 
Resonance Imaging (MRI)), the other one is the metabolic/ functional/ chemical imaging (MRI 
with a spectroscopy option, single-photon emission CT, positron emission tomography (PET), 
fluorescence spectroscopy, diffuse imaging). [12, 13] 

Despite the advantages of chemical imaging, the structural identification remains the 
main factor in cancer diagnosis [8]. Analyzing structural features (imaging & histology) is the 
most important tool to diagnose normal and cancerous fat tissue [14, 15]. Functional imaging is 
an additional tool to detect physiology and molecular mechanisms [12]. 

 

1. Structural Imaging Methods for Soft Tissue Tumors 

 Conventional radiography (X-ray) without contrast agents (plain film) is the first 
diagnostic tool for soft tissue revealing skeletal deformity, calcification, which can be suggestive 
of tumor. CT, MRI and US are 3D methods with superior contrast resolution compared to 
conventional radiograph [3,8]. 

US and MRI are the most valuable techniques evaluating soft tissue masses. US is better 
for superficial lesions and MRI for deep, large or diffuse lesions. CT is a complementary tool in 
detecting calcification and joint or bone involvement, differentiating lipomatous tumors, 
detecting tumor recurrence, and response to therapy [7, 16, 17]. 
 MRI follows the radiographic analysis. It is the optimal imaging tool of soft tissue tumors 
regarding contrast resolution and multi-planar views acquisition. MRI and CT are able to detect 
tumor place, size and border and relationship to adjacent structure [3, 8, 10, 11, 18]. 

MR Imaging provides better tissue discrimination between normal and abnormal tissues 
than any other imaging modality, but MRI remains nonspecific to characterize benign or 
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malignant lesion, and having inability to detect calcification it should be evaluated in conjunction 
with radiograph or other imaging methods [8, 18]. 
 MRI with contrast agents is used in specific cases but usually without increasing the 
sensitivity to detect soft tissue mass. MR spectroscopy is not used routinely in diagnosis, but can 
be helpful in differentiating soft tissue tumors [3, 8]. 

Ultrasonography is a low-cost, real-time, readily available, relatively inexpensive method 
of detecting soft tissue tumors without contrast agent and ionizing radiation. US does not specify 
soft tissue masses and diagnosis. It confirms the presence, shape, size and internal 
characteristics/echoes of suspected lesion, calcification, compressibility and vascularity. US 
guides percutaneous biopsy and monitors therapy. US with plain film diagnose some 
pseudotumors, benign tumors or malformations in clinically and radiologically suggestive cases 
[7, 8, 11]. 
 US Doppler does not establish diagnosis, but confirms the vascular feature of a lesion, 
response to chemotherapy or radiotherapy, necrosis and decrease of lesion size. It is better for 
superficial lesion having a limited field of view, and less contrast [3, 8, 11]. 
 Ultrasonography can be used for identification of recurrent tumor, but very operator 
dependent and less valuable in case of complex osseous anatomy, so MRI is more preferable. 
Table I.1.1 shows a general strategy of diagnosis. An algorithm for the imagery evaluation of a 
patient with a soft tissue mass is presented in Table I.1.2 from imaging suspicious area, through 
staging of lesion till performing biopsy [3, 19]. 
 Angiography can reveal tumor size, extent, source, and degree of vascularity and 
malignancy. Histologic diagnosis cannot be based on angiographic imaging, but it guides 
surgical planning and therapy treatment [20-22]. 

Characteristics of tissue structural properties are studied non-invasively with these 
different imaging modalities [12, 13]. Each works at different scale based on different physical 
principles using specific frequency range of the electromagnetic spectrum. These techniques 
optimally are coupled for multidisciplinary analysis of soft tissue mass and for guidance of 
micro-biopsy [23]. 
 They are used in clinical practice to evaluate Soft Tissue Tumors, but do not provide 
sufficient resolution in detecting tumor margins having large instrument footprints, and require 
long imaging time and occasional contrast agents. Optical Coherence Tomography (OCT) is 
another optional real-time imaging technology with higher spatial resolution [23-26]. 
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Table I.1.1. General strategy of diagnosing Soft Tissue Tumors [3, 19]. 
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Table I.1.2. Algorithm for Imagery evaluation of Soft Tissue Tumors [8]. 
 

2. Functional Imaging Methods for Soft Tissue Mass 

Functional or molecular and cytogenetic imaging can provide additional information to 
structural analysis giving enhanced or earlier tumor detection or more biological information to 
precise histological subtypes, to improve treatment decisions and predict response to therapy. 
[12, 27, 28]. 

Positron Emission Tomography (PET) is a recent technique in evaluating soft tissue 
tumors and further analyses are needed for diagnosis and staging [3]. The technique is selectively 
used for distinguishing benign tumors from high grade sarcomas, pretreatment grading of 
sarcomas, and evaluation of local recurrence [18]. FDG-PET (fluorodeoxygluclose-PET) can 
improve the anatomic details with CT and distinguish benign from malignant tumors [11]. 
Furthermore biopsies can be guided by FDG-PET towards the most malignant sections of tumors 
[29]. Scintigraphy has role in case of metastasis [8, 11]. 
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I/2. Adipocytic Tumors and Diagnosis 

I/2/a. Adipocytic Tumor (Liposarcoma) 

Soft tissue tumors are relatively rare, and Liposarcomas (Cancerous Fat Tissue) are the 
most common soft tissue sarcomas (STS), they account 20% of all sarcomas in adults [14]. They 
are the most common primary retroperitoneal malignant tumors [30]. 

According to the WHO report on Soft tissue tumors, Liposarcoma is part of the 
Adipocytic Tumors (Tables I.2.1&2) [4, 18, 31]. Adipocytic tumor is the cancer of Fat Tissue. 

 
Adipocytic tumors 
Fibroblastic / Myofibroplastic tumors 
So-called fibrohistiocytic tumors 
Smooth muscle tumors 
Periccytic (Perivascular) Tumors 
Skeletal Muscle Tumors 
Vascular Tumors 
Chondro-osseus tumors 
Tumors of uncertain differentiation 

 
Table I.2.1. WHO Classification of Soft Tissue Tumors (2006) [18]. 

 
Benign Lipoma 

Lipomatosis 
Lipomatosis of nerve 
Lipoblastoma/ Lipoblasomatosis 
Angiolipoma 
Myolipoma 
Chondroid Lipoma 
Extrarenal angiomyolipoma 
Extra-adrenal myelolipoma 
Spindle cell lipoma 
Pleomorphic lipoma 
Hibernoma 

Intermediate (locally aggressive) Atypical lipomatous tumor/ 
Well differentiated liposarcoma 

Malignant Dedifferentiated liposarcoma 
Myxoid liposarcoma 
Round cell liposarcoma 
Pleomorphic liposarcoma 
Mixed-type liposarcoma 
Liposarcoma, not otherwise specified 

 
Table I.2.2. WHO Classification of Adipocytic Tumors (2006) [18]. 
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Diagnosis of Liposarcoma and classification into subtypes is based on morphological 

features and cytogenetic aberrations. Analyzing structural features (histology) is the most 
important tool to diagnose normal and cancerous fat tissue [14, 15, 18]. 

The morphology of the Normal Fat Tissue is built up from clusters of large adipose cells 
(70-130 μm) often with thin capillaries [32]. The adipocyte (fat cell) contains a plenteous 
cytoplasm filled with lipid droplets, and small, dark, regular nuclei (Figures I.2.1&2) [9]. 

 

a.)  b.)  
 

Figure I.2.1. a) Adipocyte b) Adipose tissue with fibrous septa (dividing wall) between clusters 
of adipocytes. CT- Connective Tissue [33, 34]. 

 

a.)   b.)  
 

Figure I.2.2. Normal fatty tissue with large fat cells. Histology (H&E – Hematoxylin & Eosin 
stain). Magnification: a) 4x, b) 10x. 

 
In reactive states, posttraumatic, inflammatory or in adipose tissue bordering various 

tumors, cellular changes can be seen in the adipose tissue: myxoid-like background [consisting 
of an amorphous mucoid material] (Figure I.2.3a), enhanced capillary network, adipocytes 
varying in size (Figure I.2.3a&b) and more cellularity due to the presence of fibroblasts and 
histiocytes (Figure I.2.3b) [9]. 
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a.)  b.)  
 

Figure I.2.3. Adipose tissue in reactive states. Medium magnification [9]. 
 
 Liposarcoma is the group of histologically and genetically distinct sarcomas with fatty 
differentiation. It is one of the most common soft tissue sarcomas with a ratio of 20 % in adults. 
The majority is deep-seated, intra- or intermuscular tumors, the most common sites are the 
extremities, trunk and retroperitoneum [9, 11, 35]. 

The histological classification of Lipoma (benign) and Liposarcoma (malignant or 
intermediate) with histological subtypes, age and site occurrence, genetic changes on 
chromosome is described in Appendix 1. 

In this study we differentiate Normal Fat Tissue from Intermediate (locally agressive) 
tumor, so called Well-Differentiated Liposarcoma (WDLS) and from one type of Malignant 
tumor, called De-Differentiated Liposarcoma (DDLS) [18]. 

Well-differentiated Liposarcoma is the most common variant of LS with 50 % ratio, it 
can occur mainly in late adult life in extremities and retroperitoneum. In this latter case there is 
more recurrence and hence higher mortality rate. It is a non-metastasizing low-grade tumor with 
the ability to dedifferentiate [4, 9, 35]. In this study the next WDLS subtypes will be analyzed: 
 Atypical lipoma/lipoma-like well-differentiated liposarcoma (Figure I.2.4) represents 
variation in adipocyte size, and focal nuclear atypia. Figure I.2.4a shows increased cellularity 
with histiocytic infiltration. Figure I.2.5 zooms to the atypical adipocytes in lipoma-like WDLS 
featuring enlarged nuclei, intranuclear vacuoles and hyperchromasia. Figure I.2.6 is lipoma-like 
WDLS with stromal sclerosis, with characteristics of expanded, hypercellular fibrous septa. 
Figure I.2.7 depicts WDLS with myxoid features mainly found in the retroperitoneum. On 
Figures I.2.7a&c multivacuolated lipoblasts are present focally, on Figures I.2.7c&d capillaries 
are enhanced [11]. 
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Figure I.2.4. Atypical lipoma/lipoma-like 
WDLS M: 4-10x [11]. 

 

 
 

Figure I.2.5. Atypical adipocytes in atypical 
lipoma/lipoma-like WDLS [11]. 

 

 
 

Figure I.2.6. Stromal sclerosis in Atypical 
lipoma/lipoma-like, WDLS [11]. 

 
 

Figure I.2.7. WDLS with myxoid features [11]. 

 
De-differentiation occurs in approximately 10% of well differentiated liposarcomas of 

any subtype, especially in deep-seated tumours, such as those located in the retroperitoneum. The 
dedifferentiated components may present in the primary tumor or in a recurrence. They are fully 
malignant tumours, and have high risk for recurrence, metastasis and mortality. Dedifferentiated 
liposarcoma tends to recur locally in around 40% of cases. Approximately 15–20% of cases 
show distant metastases [4, 30, 35]. In this study DDLS subtypes with fibrotic, myxofibrotic and 
pleomorphic changes will be analyzed (Figures I.2.8&9): 
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Figure I.2.8. DDLS subtypes: a. 
Myxofibrosarcoma b. Solitary fibrous tumor c. 
Fibrosarcoma d. Gastrointestinal stromal tumor 

[11]. 
 

 
 

Figure I.2.9. DDLS subtypes: a. Pleomorphic 
liposarcomatous component b. Mildly 
pleomorphic spindle cell sarcoma c. 

Pleomorphic component with large cells 
containing eosinophilic hyaline globules d. 

Osteosarcomatous differentiation [11]. 
 
WD and DD could stem from different cellular clones, but it is also possible that DD 

evolves progressively from WD. Since, as opposed to WD, DD is liable to metastasize and 
therefore has a much worse prognosis, the treatment strategy to eliminate it is much different 
from that against WD. It is therefore very important to carefully diagnose the type of affliction, 
DD or WD, before any operative intervention is attempted [25]. 

 

I/2/b. Objectives: Diagnosis of Liposarcoma 

Liposarcomas are the most radiosensitive soft-tissue tumors. Conventional plain 
radiography (X-ray) is nonspecific, not being able to differentiate malignant from benign and 
inflammatory states. It shows higher radiopacity in case of higher tumor grade, and reveals 
cancer in case of calcification. Figure I.2.10 shows an abdominal X-ray with soft tissue tumor in 
the retroperitoneum. The diagnosis is based on the colonic gas shadow and bowels displacement, 
effacing normal fat planes and focal calcifications in the left iliac fossa and lumbar region [7, 16, 
36]. 
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 Figure I.2.10. X-ray of the abdomen with soft tissue tumor 
findings [36]. 

CT can distinguish WDLS based on the large fatty elements, but differentiate between 
malignant from benign variant and diagnose poorly differentiated tumors is cumbersome [16, 
17]. 

 Imaging Findings to classify Liposarcoma into Histologic Subtypes are: Median tumor 
size, Average fat content, Irregular margins, Tumor infiltration to an organ, Involved Major 
vessels, Heterogenous tumor (nonadipose elements detected), Focal nodular/water density area, 
Ground-glass opacities, Hypervascularity, Cystic degeneration/Necrosis, Septations and 
Calcifications [25]. 

Amongst those parameters the radiologic evaluation with CT is the most sensitive to the 
presence or absence of focal nodular/water density area as a marker of dedifferentiation 
diagnosing well DD, however some WDLS can be over-diagnosed to be DDLS (Table I.2.3) 
[25]. 

 
 

Table I.2.3. Retroperitoneal Liposarcoma (RPLS) diagnosis and treatment with CT [25]. 
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Figure I.2.11a shows CT with large WDLS and smaller DDLS region. Figure I.2.11b is a 
different patient under biopsy taken from DDLS region. 
    

 
 

Figure I.2.11. CT of LPS in the Retroperitoneum. 
a. Large white arrow points to suggestive 

WDLS region (focal nodular/water density 
area), smaller white arrow points to DDLS 
region (focal nodular/water density area). 
Cancer findings in this LPS: 
calcification in a water density nodule 
anterior to displaced kidney, 
ctypical fatty tissues, 
thickened septa, 
ground-glass opacities. 

b. Biopsy from confirmed DDLS [25]. 

An additional modality (radiologic/histologic) is needed for accurate diagnosis. MR is the 
useful technique as it can detect the varying proportions of fatty and non-fatty tumor and 
accurately document the relationship of the tumor to the surrounding structures [7, 16, 25].  

On Figure I.2.12 fat suppression sequences confirm the presence of adipose tissue. It may 
look normal fat in case of WDLS also containing entirely adipose cells. Areas that disappear in 
the fat suppression sequences and show different enhancement levels on MR scan (e.g. thick 
fibrous septa) are consistent with a well-differentiate liposarcoma (white arrow).  [7, 30]. 

 

a.  b.  

 
Figure I.2.12. a) T1 weighted- b) T2 weighted fat saturated axial MRI of a liposarcoma [7]. 

 
Enhancement following intravenous contrast material is seen in all liposarcomas, but also 

in some benign lesions.  Both, CT and MRI identify adipose tissue, CT and MR images of well-
differentiated liposarcoma and normal fat are similar and difficult to diagnose [30, 37]. 
 The diagnosis of a dedifferentiated liposarcoma should be considered when an abdominal 
mass shows on CT and MR imaging intense enhancement, adjacent organs invasion, vascular 
infiltration, calcification or ossification, and areas of necrosis or haemorrhage [30, 37]. 
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MR characterizes better fat-containing mass, CT detects better calcification or 
ossification revealing tumor in soft tissue, and CT is used in certain cases where MRI is not 
applicable, such as at air/tissue interface and during motion artifact (chest wall and anterior 
abdominal wall) [3, 8, 18]. 

Ultrasonography can confirm the presence of a tumorous mass. Poorly differentiated 
tumors are less reflective, so less distinguishable. On Figure I.2.13a WDLS on US is hyperechoic 
relative to adjacent muscle. On Figure I.2.13b Color Doppler US shows DDLS as hypoechic 
tumor. In both cases vascularity is present within the lesion [7, 16, 38]. 
 

 
 

 
 
 
 
 
 
 
 
Figure I.2.13. Doppler ultrasound on LS [7, 38]. 
a) Doppler ultrasound of a WDLS [7]. 

 

 
 
 
 
 
 
 
Figure I.2.13.b) Color Doppler ultrasonography of a 
DDLS [38]. 

 
Bening and malignant tumors can be also avascular. Liposarcoma usually has higher 

vascularity then lipoma. (Doppler) US or Angiography can reveal this feature. They are not able 
to differentiate tissue types but are useful to establish the location of tumorous mass due to the 
displacement of organs and major vessels except in case of very small tumors [16, 39]. 
 Angiography is valuable for preoperative planning, intra-arterial infusion, and 
transcatheter embolization. Figure I.2.14 shows a moderately hypervascular liposarcoma with 
irregular, fine tumor vessels and tumor stain area [16]. 
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Figure I.2.14. Moderately hypervascular tumor in the right upper 
thigh [16]. 

 
Furthermore Optical Coherence Tomography can provide higher spatial resolution. It 

screens subsurface structure giving images at the cellular scale (Figure I.2.15), so it has major 
value for surgical application in guiding micro-biopsy and detect tumor boundary. Due to the 
limited penetration depth (1-3 mm), for deep-seated tumors application of needle/catheter is 
needed [24]. 
 

 

 
 
 
 
 
Figure I.2.15. Comparison of OCT image and 
Histology. 
Figure I.2.15.a) Normal Fat Tissue A. OCT B. 
H&E histology; arrow: adipocyte [24]. 
 

 

 
 
 
 
 
 
 
Figure I.2.15.b) WDLS A. OCT B. H&E 
histology; arrow: fibrous tissue. [24]. 
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Figure I.2.15.c) DDLS A. OCT B. H&E 
histology [24]. 

 
Besides structural analysis, functional imaging methods applied on LPS should be also 

mentioned. Nuclear Imaging provides information in 2D (Scintigraphy) and 3D (Positron 
Emission Tomography). Scintigraphy 67Ga scanning, thallium-201 (201Tl) chloride, technetium-
99m (99mTc) pertechnetate, 99mTc bleomycin and 99mTc pentavalent dimer-captosuccinic acid 
(99mTc[V]-DMSA) scanning have been proved in diagnosing liposarcoma [16]. 

The imaging with fluorine-18 fluorodeoxyglucose ([18F]FDG) positron emission 
tomography (PET) scanning (FDG-PET) depicts the increased metabolism in abnormal tissues, 
enabling visualization and quantification in vivo. FDG-PET can discriminate between sarcomas 
and benign tumors and low and high grade sarcomas based on the mean SUV (standardized 
uptake value). [16, 29, 40] 

PET/CT with FDG glucose is becoming the most important diagnostic imaging tool in 
oncology. Studies have shown the improved diagnosis of the incorporation of molecular PET and 
anatomical CT imaging over PET or CT solely [29] (Figure I.2.16). 
 

 

 
 
 
 
 
 
Figure I.2.16. FDG-PET/CT image of high grade soft 
tissue sarcoma in the right thigh with high FDG uptake 
(SUVmax, 18.4). [29]. 

 
In several cases the structural diagnosis is accompanied with molecular diagnosis having 

a particular importance in the classification of soft tissue tumors especially Liposarcomas [41]. 
Bioluminescence Imaging can detect tumor before gross examination (Figure I.2.17.) 
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Figure I.2.17. Luciferase-labeled human Liposarcoma cells 
injected subcutaneously in SCID mice. Left mouse with the non-
angiogenic dormant tumor undetectable by gross examination. 
Right mouse with developed angiogenic tumor after 133 days. 
The tumor is palpable ~23 days after well detectable 
bioluminescence signal [42]. 

 
Molecular analysis based on Fluorescence Images made on Normal Fat Tissue, WDLS 

and DDLS can be seen on Figure I.2.18.  
 

 
 

Figure I.2.18. Fluorescence images of Normal Fat Tissue, WDLS and DDLS. FISH analysis 
(Fluorescence in situ hybridization) Fluorophores: Centromeric probe (green), MDM2 probe 

(red), Dapi nuclear stain (blue). 
 
 Centromere is part of DNA in the middle of the chromosome. Amplification of MDM2 
gene shows tumor, Dapi nuclear staining reveals the atypical nuclei in the fibrous region of 
WDLS, and the high density of nuclei in DDLS. 
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 In significant cases, WDLS/DDLS show an amplification of chromosome 12q13–15, 
which holds the marker genes CDK4 (regulates cell cycle) and MDM2 (negatively regulates p53 
stability) [43]. 
 With the progress of molecular imaging methods, LPS classification into subtypes has 
been promoted and the differential diagnosis has been improved; moreover novel therapeutic 
targets can be screened, identified and healed [27]. 
 However functional methods can reveal cancer, structural visualization remains the gold 
standard diagnostic technique in oncology, furthermore anatomical information about a cancer 
patient is crucial for the precise tumor treatment [12]. 
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II. Fourier-Domain Optical Coherence Tomography 

II/1. Comparison with other optical imaging modalities 
 

Optical imaging modalities are those measurement techniques which use the wavelength 
range of the electromagnetic spectrum from the soft Ultraviolet (UV) (wavelength: λ = 200 – 400 
nm) through the Visible Light (wavelength: λ = 400 – 760 nm) till the Near Infrared (NIR) 
(wavelength: λ = 760 – 3000 nm) (Figure II.1.1). Compared to other conventional imaging 
methods, optical imaging provides higher resolution. The penetration depth is limited due to the 
strong scattering of optical radiation in tissues, but it can be set up as endoscopy for inner surface 
study beside the microscopic use on outer parts (Table II.1.1) [44, 45]. 
 

 
 

Figure II.1.1. Electromagnetic spectrum [46]. 
 
Optical imaging methods can provide either structural or molecular information real time 

in a non-invasive way, at low cost at different scale to study cells or whole organs. The 
distinction of these optical imaging modalities is based on which part of light they detect during 
light-matter interaction. The penetration depth and the resolution are enhanced improving optical 
instrumentation (implementing confocal settings or interferometry), applying mathematical 
modeling of light propagation in tissue (Monte Carlo simulation), and digital signal processing 
techniques (deconvolution) [44, 45, 47]. 

 

 
 

Table II.1.1. Comparison of biomedical imaging modalities regarding their penetration level, 
resolution and cost; Optical imaging modalities are marked with yellow [44]. 



40 
 

 
The light penetrating to the tissue is divided into multiple parts (Figure II.1.2). Most of 

the photons are randomly scattered, this phenomenon is the Diffuse Reflectance due to multiple 
scattering (Diffuse Reflectance Imaging) or they are absorbed (Termination) then reflected at 
different energy level shifting the incident wavelength–range (Fluorescence Microscopy). 
Photoacoustic Imaging uses some part of absorption which transforms to heat and internal 
pressure wave. Bioluminescence Imaging detects spontaneous internal light emission [44]. 

A small portion of photons are reflected from the layers perfectly, this phenomena is the 
specular reflection due to single scattering, these photons are called ballistic photons, or snake 
photons in case of  closely perfect scattering. Optical Coherence Tomography operates recording 
these photons’ behavior at different layers of the media. A few photons go through the tissue 
(Transmittance) (Transillumination Imaging). Besides the methods based on the linear optical 
scattering (Rayleigh scattering), a different approach, Raman Scattering detects optical inelastic 
scattering properties of the material. Contrast agents can be used to extract further molecular 
information [44]. 

The scattering properties of tissue are related to tissue morphology, and the absorption 
properties are related to the tissue biochemistry. The coefficients µ of the proportions of the light 
fractions depend on the incident wavelength λ, angle of incidence and the tissue material 
properties (anisotropy g, refractive index n) [44, 45, 48, 49]. 

 

 
 

Figure II.1.2. Simplified model of biological medium with three layers. Each layer is associated 
with an absorption coefficient μa, a scattering coefficient μs , an anisotropic factor g, and a 

refractive index n [44]. 
  

Imaging systems are based on the extraction of these different coefficients in a unique 
way. Conventional Microscopy detects light from the entire illuminated field usually operating 
with white light. Confocal Microscopy detects light reflected from a specific layer (  ) through 
changing focus position in axial direction and successively suppressing out-of-focus light using a 
pinhole (Figure II.1.3.) [44, 45, 49, 50]. 
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Figure II.1.3. Scheme of Confocal Microscopy [51]. 

 
Confocal Microscopy can operate in diffuse reflectance or fluorescence imaging mode 

using UV or visible light. Besides the wide-filed setting, Confocal Laser Scanning Microscopy 
(CLSM) scans pixel by pixel, plane by plane to give 3d volume. The procedure is time 
consuming, so it does not give possibility for dynamic changes but the morphology of confocal 
microscopic images are comparable to histology [44, 49]. 

In NIR range Multiphoton Microscopy gives sliced axial view similar to Confocal 
Microscopy. As far as one photon illumination reveals information from all the focal volume, 
smearing the exact focal plane, multiple-photon illumination gives information from the exact 
focus position due to nonlinear dependence of the illumination (Figure II.1.4). The axial 
sectioning is time consuming, but NIR light penetrates deeper into tissue, and less scattered. To 
provide the same excitation energy level, as light with shorter wavelength range, more photons 
are needed, most commonly two photons, so the technique is mainly called two-photon 
microscopy [44, 49]. 

 
 

Figure II.1.4. Single- and Multi-photon excitation [49]. 
 
Higher penetration depth can be achieved in two-photon compared to Confocal 

Microscopy, but it usually achieves worse resolution than that of confocal microscopes because 
the focal spots widen as the illumination wavelength increases [52]. 

Mulitphoton Microscopy operates in NIR fluorescence imaging mode, in addition to the 
UV or visible light fluorescence Confocal Microscopy. Fluorescence Imaging uses endogenous 
or exogenous molecules or materials (fluorophores) that emit light when activated by an external 
light source. The incident light is absorbed, and then scatters back at smaller energy state so as 
longer wavelength. Fluorescence microscopy can quantify molecular properties, gene expression, 
proteins and pathophysiology [44, 50, 52]. 
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Using various excitation wavelengths the whole excitation-emission matrix can be 
recorded. Three-dimensional Total Synchronous Luminescence Spectroscopy (3d-TSLS) scans 
simultaneously the excitation and emission wavelengths. However these improvements give 
significantly better results, they require more time which gives them incompatible to use in vivo 
[53]. 

Fluorescence can be combined with Bioluminescence Imaging to detect molecular 
information (Figure II.1.5). Bioluminescent Imaging (BLI) records light-emitting proteins, and 
can measure gene expression, tumor growth and therapeutic monitoring or drug response [50, 
54]. 

 
 

Figure II.1.5. Dual-function 
reporter genes. One single protein 
with two functional components/ 
or coding sequences can be 
combined to make a single 
mRNA that produces two 
proteins [49]. 

Diffuse Reflectance Images are formed by multiply backscattered diffused light. Diffuse 
Optical Tomography (DOT) reconstructs quantitative information about light absorption and 
scattering in 3D.The penetration depth is limited up to a few cm in tissue, in the NIR region, but 
the spatial resolution is in the millimeter range. The reconstruction of 3d absorption/scattering 
map is based on multispectral measurements and model-based reconstruction of light tissue 
interaction (backprojection methods based on diffusion theory, iterative image reconstruction, 
and forward models) [44, 55, 56]. 

DOT operates in Time-Domain mode using short laser pulses, Frequency-domain mode 
using sinusoidally intensity amplitude modulated light source and, continuous-wave mode. DOT 
is able to quantify blood oxygenation and hemoglobin content [50, 55, 56, 57]. 

Diffuse Optical Spectroscopy (DOS) uses multi-frequency intensity-modulated and 
continuous-wave NIR light to quantify tissue absorption and scattering properties. DOS 
quantifies tissue chromophore concentrations of oxyhemoglobin, deoxyhemoglobin, 
methemoglobin, water, and lipid [50]. 

Time-Domain and Frequency-Domain techniques measures dynamic changes in diffuse 
reflectance from chromophores, and fluorescence imaging from fluorophores (Fluorescence 
Lifetime Imaging) yielding  cancer diagnosis [45, 57]. Total Internal Reflection Fluorescence 
(TIRF) provides selective visualization, giving the fluorescence behavior of a single molecule 
[49]. 

Diffuse reflectance signals are several orders of magnitude higher than endogenous 
fluorescence signals, it requires simpler experiments, cost-effective, it has a large volume 
interaction in the tissue detecting smaller tumors, but the detected spectra is an overlapped 
information from different site and component. Contrarily fluorescence imaging classifies tissue 
types with higher accuracy. The combination of both techniques and in addition including 
scattering properties in Trimodal Spectroscopy yields statistically acceptable results [45, 49, 53]. 

Diffuse Optical Imaging Methods collect multiply scattered light from the illuminated 
volume, and a bundle of fibers detects the light around the tissue. Optical Microscopy 
techniques, Conventional or Confocal Microscopy detect backscattered or fluorescent light from 
the focal volume [58]. 
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Optical Coherence Tomography (OCT) also gives sliced axial view, instead of confocal 
solution, the operation is based on interference theory. The light source is usually continuous-
wave, wavelength-broadband in the white light or NIR region. Scanning or Wide-field 
illumination also applies. The image formation is based on single scattered ballistic photon 
detection whose property is to keep their coherence during light-matter interaction so 
interference can occur when these photons interact after going through different path-length [49 
58-60,]. 

The detected backscattered light from the tissue reveals subsurface morphology up to 1-3 
mm, with 10-15 µm resolution. Beside the structure measured from backscattered intensity 
amplitude, OCT measures phase information from which it can reveal functional information, 
e.g. velocity measurements in veins (Doppler-OCT).  Physiological variables can be extracted 
(total hemoglobin concentration, blood oxygen saturation…) from absorption spectra calculated 

from the attenuation of the backscattered intensity signal, and using spectroscopic methods 
(Spectroscopic-OCT). The development and application of ultrashort pulse (femtosecond) lasers 
in OCT provides higher speed and resolution [49, 59-65]. 

Optical Coherence Tomography is usually performed with back-scattered light. However, 
it can also be conducted with transmitted light using pulsed laser and time-gating imaging, which 
is based on the principle that ballistic photons go faster through the media, and then the light is 
detected after a certain picosecond, which is defined to get an optimal image quality [66]. 

Other transillumination methods use a toxic material for material clearing to reduce 
scattering effect and make it more transparent, so it can be used only on post-mortem samples. 
Optical Projection Tomography (OPT) is based on multiple projection illumination and 
backprojection calculation. The imaging depth is comparable to conventional microscopy. It can 
measure tissue fluorescence or absorption properties. Selective Plane Illumination Microscopy 
(SPIM) uses light sheets to illuminate slice by slice instead of the entire volume to remove more 
scattering effect. For larger scale, Mesoscopic Fluorescence Tomography (MFT) operates in a 
similar manner as OPT, instead of using backprojection scheme, it is based on the forward 
modeling of photon propagation in tissue [52]. Optical clearing in OCT has been also studied 
[67, 68]. 

Figure II.1.6 compares the resolution and penetration depth of different conventional 
imaging methods [69]. Their comparison to perform dynamic changes is not applied here. In 
addition to the above mentioned methods, Laser Speckle Imaging has a main contribution to 
functional imaging and in OCT-elastography to analyze mechanical properties of the tissue [70, 
71]. 
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Figure II.1.6. Comparison of conventional imaging methods for diagnosis [69]. Ultrahigh 
Resolution OCT can achieve a resolution up to 1 µm. 

 
The advantage of OCT compared to the other optical imaging methods is the accurate 3d 

structural information, which resolution is comparable to histological excision, to a higher 
penetration depth then spectroscopic/diffuse methods, and provides faster scanning operation 
yielding accurate dynamic changes over Confocal Microscopy. The most important application is 
detecting tumor boundaries for surgical resection, recording heterogenous tissue, small 
metastasis, and guide biopsy in case a small area is chosen in the tissue. OCT can also be used in 
a fine gauge needle to be able to diagnose with a fiber-optic component through the lumen [45, 
72]. 

On the contrary quantitative diagnosis from spetroscopic (fluorescence), diffuse 
reflectance and their combined methods has been developed, and provides information for 
objective diagnosis, while the structural information in OCT is based simply on grey-level 
images, and there is not a standardized description of these images. Currently one of the major 
research areas of OCT is to describe quantitatively the qualitative images it provides only for 
subjective analysis of the clinician’s and pathologist’s visual interpretation [44, 45, 72-75]. 
 The focus of this work is the quantitative classification of tissue subsurface morphology. 
The main contribution will be to get a universal comparable imaging method to be able to use in 
clinical practice independently from the measurement settings. 
 These well-known and broadly used imaging methods are based on the phenomenon of 
elastic scattering of light on particles which does not change the matter quantum state. 
Alternative optical imaging method reduces information from the inelastic properties of the 
scattered light. 

The inelastic scattered Raman signal is around 0.001 % of the incident light and it reveals 
chemical information. Spontaneous Raman scattering is very weak and requires complicated 
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process, measurement settings, and algorithms to discern from the Rayleigh scattering. There are 
ways to improve Raman signal (Stimulated Raman, Coherent Anti-Stokes Raman (CARS), 
Resonance Raman and Surface-Enhanced Raman/Resonance Spectroscopy). Other label-free 
optical imaging can also provide chemical information: Coherent Nonlinear Optical Microscopy, 
including Nonlinear Dissipation Microscopy and Pump-Probe Microscopy [45, 76, 77]. 
Compound application of label-free imaging modalities can differentiate cancerous lesion [78]. 
 The optical imaging method’s resolution theoretically is limited by the Abbe diffraction 
limit (d), calculated from the light wavelength (λ), refractive index of the matter (n) and the 
instrument numerical aperture (        ): 

       

   
 

        
 (II.1.1) 

 
Instead of photons, electrons are used in the Electronic Microscopy (EM) techniques 

yielding a much better resolution based on the same physical principle, electrons having ~100x 
smaller wavelength then photons. The gap between these two techniques is the nanoscopy or 
super-resolution microscopy, which breaks the diffraction barrier of the optical resolution up to 
(macro)molecular level. Axial resolution can be improved with 2 opposing lenses, new methods 
are developed in the near- and far-field region, and whether the subdiffraction resolution is based 
on a linear or nonlinear response of the sample to its locally illuminating ‘exciting or depleting’ 
irradiance [47, 49]. 

The energy transformation of light is studied in Photoacoustic Tomography. A short-
pulsed laser beam is directed to the area. Some part of the absorbed light is converted to heat 
which initiates acoustic waves to be detected by transducers. Due to smaller ultrasonic scattering, 
it gives higher spatial resolution and penetration depth. It reveals tumor, pigmented lesion or 
blood vesssels [44, 50]. 
 Multispectral Optoacoustic Tomography (MSOT) uses acoustic and photon propagation 
mathematical models in tissue for 3D reconstruction. A similar method is developed, called 
Spectral Photoacoustic Tomography (SPAT) to detect only superficial events. For larger 
microscopic scale the Mesoscopic Optoacoustic Imaging (MSOT) is applied using multi-
projection illumination and multi-projection acoustic detection [52]. 
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II/2. Theory Optical Coherence Tomography 

II/2/a. Wave-equation 

Light is the phenomenon of the electromagnetic (EM) radiation.  The wave equation for 
electromagnetic waves is reduced from the Maxwell’s equations. These 4 equations describe the 
varying electric and magnetic fields changing in time by four statements: Faraday Law for 
Induction, Ampere Law, Gauss Law for Electricity and Gauss Law for Magnetism. The wave 
equation will be reduced from these equations for charge- and current-free region, and in the 
absence of magnetic or polarizable media [60, 79, 80]. (Bold letters will represent vectors.) 

The Gauss Law for Electricity: E – electric field: 
 
       (II.2.1) 
 

The Gauss Law for Magnetism: B – magnetic field: 
 
       (II.2.2) 
 

The Ampère Law of the Electric Field in 3D for vectorial form can be described as: 
 

           

  

  
  

 

  

  

  
 (II.2.3) 

 
where ε0 = permittivity, μ0 = permeability, c = speed of light. 

Faraday Law of Induction describes: 
 

       
  

  
 (II.2.4) 

 
The EM wave is reduced according to the following steps: First the curl of the Faraday 

form is taken: 
 

             
        

  
 (II.2.5) 

   
                        (II.2.6) 
 
 

            
        

  
 (II.2.7) 

 
Then the Ampere Law is substituted to the curl of the Faraday Law: 

 
  

  
            

   

   
  

 

  

   

   
 (II.2.8) 

 
 
 

                            
   

   
   

 

  

   

   
 (II.2.9) 

http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elefie.html#c3
http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elefie.html#c3
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Based on Gauss Law        , the EM wave is obtained: 

 
 

        
   

   
  

 

  

   

   
 (II.2.10) 

 
And equivalently for the perpendicular magnetic field: 

  
 

    
 

  

   

   
 (II.2.11) 

 
The magnetic field   is perpendicular to the electric field   in the orientation where the 

vector product       is in the direction of the propagation of the wave. The representation of the 
electromagnetic wave propagation is shown in Figure II.2.1: 
 

 
 

Figure II.2.1. Electro-magnetic wave propagation [81]. 
 

The wave-equation is described as a linear second order hyperbolic partial differential 
equation (PDE):        
    

   
        (II.2.12) 

 
where u describes the alternating magnitude of an electromagnetic field, and the constant c is the 
phase velocity of the light wave. Substituting the Laplacien operator  (    in rectangular 
coordinates in 3D : 
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) (II.2.13) 

 
In 1D, plane wave traveling in x direction: 

 
 
 

   

   
    (

   

   
)       or                (II.2.14) 

The (quasi)linear, second-order PDEs can be classified as hyperbolic, parabolic or elliptic 
type. If PDE  is hyperbolic, the solution can be drawn in the space-time plane (Figure II.2.2). 
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This shows, when there is a  perturbation at point P, its effect propagates at a given region of the 
time-space plane defined by two characteristic curves (C+, C-). The tangent of these 
characteristic curves defines the velocity of the propagation. The energy of the initial disturbance 
is conserved, so the velocity remains constant (no attenuation). Examples are the Maxwell 
equations in vacuum [60, 79, 80]. 

 
Figure II.2.2. Solution of hyperbolic partial differential equation on space-time plane. 

 
On the contrary, in case of parabolic PDE, the perturbation at a certain point propagates 

infinitely fast, so it has effect immediately in all the half-space, not only at a given region, but it 
attenuates with distance exponentially from the perturbation point (e.g. diffusion, heat eq.). The 
characteristic direction is the boundary of the half-space. The elliptic PDE has no time-axis; it 
propagates uniformly in space x-y direction, there is no characteristic equation (e.g. Laplace, 
Poisson, Helmholtz eqs.). 

The general solution (D’Alembert) of the wave equation is based by transforming the x, t 
independent variables to new continuously differentiable variables ξ and η (on the space-time 
plane: rotation/displacement of x, t coordinate axes to ξ, η : characteristics C-, C+).  
 
                                              (II.2.15) 
 

The differential equation will have the general solution based on that the propagation of 
the disturbance along these characteristics is constant. 
 
                                           (II.2.16) 
 
                                      (II.2.17) 
 
where     is right-, and    is left traveling waves. 

Harmonic wave with constant amplitude (A) and phase (kx+ωt) with phase velocity (c): 
 
                                 (II.2.18) 
 

The optical frequency (1/k) is related to the temporal frequency (ω) by the equations: 
       



49 
 

    
  

 
 

   

 
 

 

 
      or       

  

 
  

   

 
 

 

 
 (II.2.19) 

 
where k-wavenumber, λ-wavelength. 

The signals propagate with velocity c in both directions. One wave varies sinusoidally in 
both space and time traveling through the characteristics in one direction can be described in a 
complex form: 
                                  (II.2.20) 
 
and in Euler form:          
                    (II.2.21) 
 

The electric field of the laser signal cannot be measured directly. Instead the intensity of 
the electric field is recorded. In this case, instead of the instantaneous intensity, the time-average 
values are recorded. 

The intensity is the time average of the Poynting vector (S [W/m2]) that represents the 
energy flux of an electromagnetic field, defined as the cross-product of the electric (E) and the 
magnetic field (B): 
 

           [
 

  
] (II.2.22) 

 
The time average of the Poynting vector is proportional to the time average of the 

squared electric field, as explained below. EM plane wave propagating in the z direction is 
described by the EM pair: 
                 (II.2.23) 
                 (II.2.24) 
where: 
                       (II.2.25) 
 
 

        
       

 
 

  

 
           (II.2.26) 

 
where c is the velocity of the propagating energy. The power density is: 
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The time averaged power density is substituting         
       

 
, and calculating the 

average by integrating: ∫
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Finally the intensity is defined from the time average of the Poynting vector or the 
squared electric field:  
 

 ̅   
 

 
 ∫ |       |  

 

 

  
 

 
  ∫        

 

 

 (II.2.29) 

 
In the equation the constants   and   are material properties. The intensity is defined 

from the time average of the squared electric field [60, 79, 80]. 
 

II/2/b. Broadband Signal 

The broadband signal is composed of waves at different wavelengths and forms a 
wavepacket (Figure II.2.3). 

 
Figure II.2.3. Left: Monochromatic light (coherence length is infinity). Right: Broadband signal: 
Sum of the different wavelengths yields a wavepacket (Short Coherence Length Light) [modified 

from 59]. 
 

The equation of the wavepacket: 
 
        ∑              

 

 (II.2.30) 

 
The distribution of the wavelengths should be continuous to get a localized wavepacket. 

It can be written in integral form: 
 

       ∫                 (II.2.31) 

 
Coherence length or Point Spread Function (PSF) is the auto-correlation of this 

broadband signal. The coherence length of the wavepacket defines the resolution of the system, 
and higher resolution requires wider broadband range, as explained below [60, 79, 80]. 

The auto-correlation (convolution) of a stationary, ergodic signal      is defined in time 
domain: 
 

       [           ]  ∫            
 

  

   (II.2.32) 

 
For bounded interval:  
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 (II.2.33) 

 
The Fourier Transform of the PSF function is the Power Spectral Density (PSD) (Wiener-

Khinchin Theorem Figure II.2.4): 
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                 |    |  (II.2.35) 
 

For bounded interval: 
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Or inversely: 

 
         [     ]  ∫       
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 (II.2.37) 

  

 
 

  
 

Figure II.2.4. Optical Spectrum and Coherence Function of the Laser source: S840-B-I-20: 20 
mW Benchtop Lightsource at 840 nm. Left: Power Spectral Density in the function of 

wavenumber or wavelength (      ), and Right: corresponding Point Spread Function of the 
generated Laser Signal; Up: High-Power Mode, Down: Low-Power Mode. 
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The FWHM – Full Width Half Maximum of the PSF gives the resolution of the 
broadband source laser beam. Broader spectrum provides better resolution. (Figure II.2.4a – high 
power mode of OCT, Figure II.2.4b – low power mode of OCT). 

There should be a requirement between broadband of the frequency components, and the 
coherence length. This is defined as Fourier Uncertainty Principle, similar in quantum 
mechanics, applied here to classical waves with conjugate variables of the signal in time- and 
frequency-domain. 
        or        (II.2.38) 
 

In Signal Processing this limit is called Heisenberg-Gabor limit. According to the 
principle the signal cannot be either bandlimited or timelimited. The function in time domain and 
its Fourier Transform in frequency domain cannot both have bounded [82, 83]. In addition the 
law of persistency for input signals requires continuously non-zero spectrum over some finite 
frequency range [84]. 

To summarize, the aim behind low-coherence source is to get a higher resolution due to 
the signal which is composed of multiple wavelengths. This low-coherence defined above from 
the limited large banwidth is temporal coherence. The phase shift is lost and does not affect the 
autocorrelation, only the signal shape. It is important to mention that OCT still keeps his spatial 
coherence when laser source is used, which does not contain multiple sources, and is not spread 
like in the case of the candle, sun or tungsten light-buls filament. In these cases different points 
of the source emit light independently, and erases the spatial coherence. Spatial coherence of 
laser beams appears in speckle patterns, and diffraction fringes at shadow edges [60, 79, 80]. 
 

II/2/c. Low-Coherence Interferometry 

Light wave will be represented as a scalar, stationary, ergodic, analytic signal. The 
analytic signal is the complex representation of the real valued signal, which imaginary part can 
be obtained from the real part with a Hilbert function     (Figure II.2.5). Simply the Hilbert 
transform makes a phase shift on the real value signal to get the imaginary part [85, 86]. The 
analytic representation of the signal featured with one-sided spectra facilitates digital processing 
and mathematical modifications. 
 
               (II.2.39) 

 
                    (II.2.40) 
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Figure II.2.5. Hilbert function of a single wavelength; Analytic signal represented in a 3D plot 

[87]. 
 

To digitally obtain the analytic signal, the next steps are required: Fourier transform of 
the Electric Field       reveals the frequency components of the time domain signal. The result 
for a Real-value signal is a both-sided spectra, negative and positive components are mirrored, so 
one part can be removed while keeping the information contained. 
 
 

 ̂             ∫     
 

  

          (II.2.41) 

 
The corresponding analytic signal of the Electric Field is obtained by inverse 

transforming the doubled one-sided spectra, since the complex signal has only positive frequency 
components: 
 

             ̂     
  ∫   ̂           

 

 

       [          ] (II.2.42) 

 

where            is the complex envelope of      .      |     |  √     
  is the real 

amplitude envelope, the instantaneous phase                 and    is the mean frequency 
of the power spectrum of       (Figure II.2.6). 

The amplitude of the analytic signal (A(t)) shows the slowly varying features of the 
signal, and the phase        contains the high frequency information [85]. 
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Figure II.2.6. Broadband signal. The real high 
frequency signal a(t) is shown in black with 
the real envelope of its analytic signal A(t) in 
red [88]. 

  
The instantaneous intensity is defined as: 

 
        

          (II.2.43) 
 
 Furthermore interference occurs upon interaction of two light waves containing the same 
frequency components. Let us call them reference-        and sample signal       . The 
interference signal is the cross-correlation of the two analytic signals defined as mutual 
coherence function [85]: 
        〈   

            〉 (II.2.44) 
 

Mutual coherence function is defined for two oscillatory signals at the same frequency 
components; and it expresses if they keep a constant phase difference in time. Interference signal 
is the sum of the reference signal and the sample signal with a time delay Δt. 
 
                           (II.2.45) 
 

The averaged intensity is the coherence function     , the auto-correlation of the analytic 
signal at τ = 0: 
  ̅  〈     〉  〈  

           〉|        |    (II.2.46) 
 

The averaged intensity in frequency domain is the product of the electric field and his 
complex conjugate or the Euclidian norm of a complex number. It will give the amplitude of the 
squared electric field: 
  ̅  ‖ ̂   ‖
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 (II.2.47) 

 
The averaged intensity of the interference signal will give: 

 
   ̅     〈        〉            〈  
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(II.2.48) 
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where         is called the interferogram, computed from twice the real part of the cross-
correlation of the two interacting analytic signals: 
 
            [〈   

             〉]     [       ] (II.2.49) 
 

The normalized correlation function is called complex degree of coherence (γ). This 
value (0…1) is a measure of the mutual coherence, (the degree of linear dependence) between 
two interacting analytic signals indicating that the electric fields interacting at two distinct points 
or at the same point but with a time delay τ, are still coherent with each other. Expressing in 
frequency domain: 
 

      
|   ̂      
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   ̂      
    ̂    ̂      

    ̂
 (II.2.50) 

 
or in time domain: 
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 (II.2.51) 

 
it gives: 
            [       ]   √〈     〉〈     〉  [       ] 

 

           [       ]   √〈     〉〈     〉|       |                 

(II.2.52) 

 
where |       | is the degree of coherence of the two signals,    is the constant phase between 
the wavepackets,    is the central frequency and        is the phase delay,         is the 
time delay,    is the path difference between the two signals, and   is the light speed. 

There is a corresponding spectral detection mode. The interferogram can be obtained 
from the power spectra applying the Wiener-Khinchin theorem. The light source auto-correlation 
function is obtained from its power spectra [85]: 
 
              [    ] (II.2.53) 
 

And similarly the cross-correlation of two waves is obtained from the cross-spectral 
density function of the sample and reference beam: 
 
          [      ] (II.2.54) 
 

The spectral interference detection with the interferometric time delay Δt: 
 
                        [      ]            (II.2.55) 
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II/3. Review of Optical Coherence Tomography  

II/3/a. Operation modes in OCT 

Optical Coherence Tomography performs axial scanning based on Low-Coherence 
Interferometry (LCI). The core of OCT is the Michelson Interferometer developed in the 19th 
century (Figure II.3.1). A monochromatic source split into two arms, and then travelling different 
pathlengths (2d) will have a phase-shift between each other, which is dependent on the 
wavelength (λ). Upon interacting again they will produce an interference pattern (wave 
superposition). Constructive interference occurs if the waves from the two arms arrive in phase 
(α = 0): 
                      (II.3.1) 
 
and destructive interference occurs in case of a phase-shift (α = +π): 
 
 
 (  

 

 
)                   (II.3.2) 

   

 
 

 
Figure II.3.1. Michelson Interferometer. 
Wave constructive/destructive interference 
appears on the detector due to path-length 
difference (          ) from the two 
mirrors (point source). Interference fringe 
pattern appears in case of divergent laser 
source: 
 

  

 
If the point source is expanded by a lens, the laser beam will diverge, and a 2D detection 

will occur instead of a single point, and the path-length difference will be dependent on the beam 
angle, and a circular interference pattern will be produced on the screen over the angular range 
from the source. At one point on the 2D image constructive interference will occur if: 
 
           (II.3.3) 
 

At different pathlength difference, the interference fringe pattern will change. In the 
equations above it is assumed that the light traverses the same medium in air (nair = 1). The 
optical pathlength changes in other medium by multiplying the geometrical pathlength by the 
refractive index of the medium (dopt = ndgeom) [79, 80]. 
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When a low-coherence light source is placed in the Michelson Interferometer, the 
technique is called Low-Coherence Interferometry (LCI), which is the basic mechanism of OCT 
realized with a broadband source, and placing the sample in one arm. 50/50 beam-splitter and 
point-like detection is assumed. 

Interference fringes occur where the (optical) path-length difference of the two arms (2d) 
is less than the coherence length of the light source (lc), called ‘coherence gate’. In other words, 
the cross-correlation function of the interacting signals at nearly zero time delay will create the 
interferometric signal (IE), which envelope (A) contains the scattering magnitude of the specific 
depth (z) of the sample [60]. 

Depth-scanning is solved by mechanically translating the reference mirror, so to position 
the coherence gate successively in depth at different position. This operation mode is called 
Time-Domain (TD) OCT (Figure II.3.2). 
 

 
 

Figure II.3.2. Schematic of TD-OCT, IE - IEm = LCI signal, A is the real envelope [modified 
from 59 & 85]. 

 
The interferogram detected at the detector in case of two perfectly reflecting mirrors is 

twice the real part of the light source coherence function Γsource(τ) [85]: 
 
           [      ]     [          ]             (II.3.4) 
 

When the sample is scanned, the interferogram is twice the real part of the convolution of 
the source coherence function Γsource(t) and the backscattered sample response function h(t): 
 
           [      ]     [               ] (II.3.5) 
 

Transforming to frequency domain the corresponding spectral interferogram is: 
 
                       (II.3.6) 
 

The intensity function in function of depth (I(z)) is called A-line. Besides the OCT depth-
scanning by the reference mirror, a lateral scanning is performed by moving the sample or the 
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sample beam to obtain a cross-sectional image (I(x,z)), called B-scan then a 3d structure 
(I(x,y,z)), called C-scan (Figure II.3.3). 

 
 

Figure II.3.3. Conventional OCT operation mode. Cross-sectional images (B-scan) are 
composed of adjacent A-lines [49]. 

 
The mechanical depth-scanning can be replaced by detecting separately the spectral 

components of the backscattered field amplitude AS(K), and to recover depth information by 
Fourier-transform based on the Wiener-Khinchin theorem [85]. 
 
         [     ] (II.3.7) 
  

By Fourier Transforming the detected cross-spectral intensity will result the 
interferogram detected in time domain. This operation mode is used in Fourier-Domain (FD) 
OCT, which has two detection processes, Spectral-Domain (SD) OCT and Swept-Source (SS) 
OCT. SD OCT detects the spectrum simultaneously through a spectrometer, and a photodiode 
array or CCD line scan camera (Figure II.3.4): 

 
 

Figure II.3.4. Schematic of SD OCT with interference fringes detected on the camera array 
(I(k)) from one and two layers, with the backreflection (F(z)) after Fourier Transform [59, 85]. 

 



59 
 

 The spectrometer exit detects a periodic spectrum in function of wavelength, which 
frequency depends on the path-length difference, and the amplitude depends on the scattering 
potential of the specific layer. The sum of the periodic functions from different layers is detected.  
In case of two perfectly reflecting mirrors at a path-length difference zS, the spectral 
interferogram is: 
         √                    (II.3.8) 
 

Placing the sample in the sample arm, the spectral intensity at the interferometer exit is: 
 
                     √            [      [           ]]  (II.3.9) 
 
where       |     |  is the sample beam power spectrum with                    
complex amplitude.       is the reference beam power spectrum, and      the spectral degree 
of coherence (=1, light lauched in single-mode fiber).       is the spectral phase of the sample 
wave and       the spectral phase of the reference beam. 

Fourier transforming the spectral interferometer exit will yield the scattering intensity of 
the tissue in depth (I(z)), the A-scan. Lateral scanning is performed similarly to TD-OCT to 
record B-scan, and C-scan [49, 59, 85]. 

SS-OCT records the spectral components        sequentially in time with a spectrally 
sweeping source and detecting with a single detector. The frequency sweeps from the sample and 
reference arm are delayed due to path-length difference, which generate the interference signal 
with a beat frequency proportional to the delay. The Fourier transform of the detected beat signal 
reflected from different layer of the sample will provide the depth scattering information [49, 59, 
85] (Figure II.3.5). 

SS-OCT replaces the line-scan camera array by frequency sweeping to be able to detect 
with one photodiode making possible to use longer wavelengths (1000-1300 nm), and 
surmounting the limitation of silicon-based detectors sensitive only at shorter wavelength-range. 
Similarly to FD-OCT, the depth-resolved scattering properties is extracted without scanning 
reference mirror, only the lateral scan is required to reconstruct structural information. 

   
Figure II.3.5. Schematic of SS OCT with interference fringes detected in time, and 

backreflection after Fourier Transform [59]. 



60 
 

 
The operation modes described above are the typical scanning mechanism in 

conventional OCT techniques. However, a lateral raster scanning (xy) can also be performed by 
moving the sample or probe beam  to create ‘en face’ image, and the reference mirror is adjusted 

mechanically similarly to TDOCT to scan a new depth position  and get 3d information (x,y,z). 
This method is preferred in Optical Coherence Microscopy (OCM) (Figure II.3.6). 
  

 
 

Figure II.3.6. Scan planes of conventional OCT yielding cross-sections, and OCM yielding ‘en 
face’ images scanning laterally [89]. 

 
‘En face’ scanning imaging is single-point detection technique. Higher performance can 

be obtained with parallel OCT operation modes and detecting with linear or 2D camera arrays to 
detect all the ‘en face’ image simultaneously. Figure II.3.7 is an example with a 2D CMOS 
detector with parallel pixel detection [59, 85, 90, 91]. 

 
 

Figure II.3.7. Parallel OCT detection [85]. 
 
 This parallel detection is performed in Full-Field (FF) OCT detection scheme 
implementing water-immersion microscope objectives into the two arms; this version is called 
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the Linnik interferometer. Full-field illumination is used with broadband white-light sources. In 
this setting phase-modulation is required to set in one arm of the interferometer by a dithered 
reference mirror or phase modulator [59, 85, 90, 91]. 
 The OCT techniques described above have been realized in free-space systems, and fiber-
optics implementation. The basic schemes are represented on Figures II.3.8&9 [85, 92]. 
 

 
Figure II.3.8. Standard fiber-optic 

Michelson interferometer with 2:2 fiber 
coupler [92]. 

 
Figure II.3.9. Free-space equivalent to the fiber-

optic Michelson interferometer with a beamsplitter 
cube [92]. 

 

II/3/b. Applications of OCT 

The power of OCT is to yield gray-scale image revealing subsurface structure based on 
the scattering intensity properties from the tissue layers at different depth position at micrometer 
resolution. OCT can provide an image penetration depth up to 1-3 mm depending on tissue type 
and wavelength-range. 

OCT was developed in the early 1990s for the noninvasive imaging of biological tissue, 
and has been translated from benchtop (research laboratories) to bedside (clinical practice) use 
[93]. The first application areas were in ophthalmology (Figure II.3.10). Furthermore 
applications are developed in dermatology, dentistry, gynecology, laryngology, pulmonary 
medicine and respiratory tract, in gastroenterology, urology, cardiology and vascular disease 
with the guidance of catheter, endoscope or laparoscope (Figure II.3.11). OCT beam adapted in 
optical fiber can reach lumen in the cardiovascular system or the gastrointestinal tract, and 
implementing the fiber in a needle can be inserted into tissue. Improved OCT techniques permit 
application in developmental biology resolving cellular structure and function [49, 59, 60, 85, 92, 
94]. 

In biomedical application of OCT there is a special focus in tumor diagnostics, and 
biopsy guidance to reduce sampling errors from conventional biopsy, and to guide surgical 
intervention. OCT is useful in early cancer diagnosis since most cancer originates within the 
limited imaging depth on the external surfaces, and internal organs. Morphological alteration in 
tissue is the principle sign to differentiate malignant from normal tissue. This can be detected 
with OCT comparable to histology, but not at sufficient sensitivity. One major research area of 
OCT is to obtain images which can give accurate information for diagnosis without other 
imaging tools or without cutting the tissue through biopsy [49, 59, 60, 85, 92, 94]. 

Non-biological applications of OCT have also been reported, and are increasing in 
industrial and manufacturing process, e.g. non-destructive evaluation, estimation of porosity, 
fiber architecture and structure; in metrology, measurements of material thickness, surface 
roughness and volume loss; and operating in hazardous environment [49, 59, 60, 85, 92, 94]. 
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 OCT represents a wide variety of improvements. The imaging depth can be increased by 
decreasing the scattering coefficient of the sample by so called optical clearing [95], the contrast 
can be improved with Spectroscopic OCT computing Short-Fourier Transform to better 
differentiate structure [96], and extract absorption coefficients. Doppler OCT provides functional 
imaging by velocity measurements. Further improvements are the polarization OCT through 
birefringence of the electric field, OCT elastography to measure elasticity, quantum OCT, and 
magnetic OCT implementing additional elements [59, 60, 92, 97, 98]. 
 

 
 

Figure II.3.10. a-b) UHR OCT of macular hole in vivo  c) Fundus photograph, white arrow 
shows central foveal region where OCT cross-section was recorded d) corresponding histology 

from similar postmortem eye [59]. 
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Figure II.3.11. a-c) Stained Histology of diseased human coronary arteries obtained autopsy and 
d-f) corresponding OCT images [59]. 

 

II/3/c. Light sources and Axial Resolution 

 Optical imaging methods use wavelength range from the ultraviolet through the visible 
light till the infrared wavelength range. UV (0-400 nm) under the wavelength of 200 nm destroys 
the biological function, and can be applied only to non-bio-materials. Optical Coherence 
Tomography is based on the backscattered proportion of the light. In biological materials 
scattering magnitude is higher in the near infrared region (700-1300 nm), and the absorption can 
be neglected, in contrary to visible (400-700) and UV light region (200-400 nm). In NIR more 
scattered light can be detected from the tissue, and having longer wavelengths it penetrates 
deeper into the tissue. Figure II.3.12 illustrates the optical/therapeutic window showing materials 
usually composing living tissue with the most sensitive absorbance (melanin, hemoglobin, water) 
[49]. 
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Figure II.3.12. Optical therapeutic window [99]. 
 
 Conventional OCT light sources operate in the NIR region in continuous mode, with a 
wavelength-range chosen around 850 or 1300 nm for highly scattering media (Figure II.3.13.)  
 

 
 

Figure II.3.13. OCT image penetration depth of human epiglottis ex vivo performed at 850-nm 
and 1300-nm central wavelengths penetrating deeper into the tissue, and corresponding 

histology; g – glandular structure, c – cartilage. Bar equals 500 µm [49]. 
 

Most biological tissues are highly scattering media, and so although longer wavelengths 
are advisable to enable deep imaging detection, longer central wavelength requires broader band 
to get the same axial resolution (Figure II.3.14). An optimal solution of wavelength range and 
light source should be found between the image penetration depth and axial resolution [59]. 
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Figure II.3.14. Free space OCT iso-
resolution lines; Axial resolution vs. 
bandwidth of OCT light sources [100-
102]. 

In low-coherence interferometry the axial resolution is dependent only on the light 
source, and independent from the geometrical settings of the system (beam focusing, spot size) in 
contrary to conventional or confocal microscopy. Broadband light source is described by the 
center wavelength   , (840 nm in our system) and broadband    defined as the full-width-at-
half-maximum (FWHM) of the power spectrum (50 nm using high Power mode in the same 
system) (Figure II.3.15a). 

The generated input signal Power Spectral Density is assumed to shape a Gaussian form 
with                                  position- and                                   
scale parameter of the distribution function [103, 104]: 
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Substituting the standard deviation parameter    by the FWHM of the power spectrum 

(  ) yields: 
     √       (II.3.11) 
 
 

          
 √   

  √ 
 

  √   (
    
  

)
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Applying the Wiener-Khinchin theorem: 
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            (II.3.13) 

 
From the definition of the Fourier Transform of a Gaussian function (  -position-, and   -

scale parameter) the integral is: 
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Substituting the scale parameter with the FWHM of the power spectrum we obtain the 

complex analytic signal envelope (first term), and the high frequency component (interference 
fringes): 
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with Euler coordinates: 
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(II.3.17) 

 
The detected intensity is twice the real part of the coherence function: 
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(II.3.18) 

 
Substituting the detected intensity on the LCI (Low-Coherence Interferometry) equation: 
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we obtain: 
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Then substituting time with length and velocity (      , the axial resolution (  ) is 

obtained at the FWHM of the coherence function envelope: 
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Finally we should distinguish the axial resolution or coherence length in wavelength 

range quantities substituting     ⁄      ⁄ , then       ⁄ : 
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The axial resolution Δz is defined at the full-width-at-half maximum of the 
autocorrelation function (12 µm in air) (Figure II.3.15b). 
 

a)  b)  
 

Figure II.3.15. Normalized Optical Power Spectrum and Coherence Function of our OCT 
system. Laser source: Supraluminescent Diode (SLD) S840-B-I-20: 20 mW Benchtop 

Lightsource at 840 nm; a) Power Spectral Density and b) corresponding Point Spread Function. 
 
 The coherence length was calculated assuming a Gaussian spectral spectrum which 
Fourier Transform is also a perfect Gaussian function without sidelobes. The shape of the 
broadband sources affects the axial resolution although possessing the same bandwidth and 
central wavelength. Approximating the PSD of our SLD which is an overlapped double-gaussian 
source, as a perfect Gaussian with the same bandwidth can result in an error in axial resolution. 
The spectral dip on the spectrum shape leads to sidelobes in the interferometric signal. In this 
case the level of the sidelobes in the coherence function does not affect the coherence length 
defined at the FWHM of the coherence function, but causes image artifacts and inaccurate layer 
detection [102, 105]. 

The Supraluminescent diode in Near Infrared region is the most commonly used laser 
source in Conventional OCT. SLDs are powerful and low-cost light sources with Gaussian 
power spectrum achieving 10-20 µm axial resolution operating between 800 and 1350 nm. Two 
or more spectrally shifted SLDs are joint to broaden the linewidth larger than 150 nm, and so to 
increase the coherence length till 3-5 µm, but leading to a Gaussian spectral shape with bumps 
degrading the depth-scanned information and at limited output power [102, 103]. 

Ultrahigh Resolution (UHR) OCT imaging has been developed in the NIR using ultra-
broad bandwidth light source technology [106, 107]. Kerr-lens-mode-locked (KLM) 
Femtosecond lasers can achieve 1-3 µm axial resolution, Titanium:sapphire laser operates 
between 700-1100 nm, Ti:Al2O3 around 800 nm, Chromium:forsterite around 1300 nm, and 
Nd:Glass and Yb around 1000 nm  center wavelength. Due to complex maintenance, bulkiness, 
especially around 1300 nm, and high price, they are limited in research applications [59, 60, 
103]. Figure II.3.16 compares the standard SLD and Femtosecond laser broadbandwidth: 
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Figure II.3.16. Optical spectrum using 
femtosecond Ti:Al2O3 laser with 260 nm 
linewidth and 1.5 µm axial resolution vs. a 
standard resolution SLD light source with 32 
nm linewidth and 11.5 µm axial resolution 
[59]. 
 

 High axial resolution in the higher wavelength ranges can be produced with the Multiple 
quantum well (MQW) semiconductor optical amplifiers and  Doped fiber based amplified 
spontaneous emission (ASE) sources, both operating between 1300-1600 nm. 
 A novel technique, the Supercontinumm (SC) laser with photonic crystal fibers (PCF) 
generates light source spanning the visible and NIR spectrum, with a broadband of 400-2000, 
460-2400, or 500-1700 nm. Usually mode-locked pulsed laser sources are used to produce (ns, 
ps, fs) pulses and high peak power which lead to a nonlinear effect in the material and generate 
new frequency component to create the broadband. Figure II.3.17 compares some existing 
techniques [103]: 
 

 
 

 
 
 
 
 
 
 
 
Figure II.3.17. Comparison of 
different laser light sources 
representing the advantages of 
supercontinuum (SC) over 
amplified spontaneous emission 
(ASE), and superluminescent 
LED (SLD) [103, 108]. 

In the visible spectrum, incandescent light sources including (xenon) halogen lamps are 
used. White-light interferometry was the first application in living tissue detection [109]. They 
are less powerful, but they feature a broad bandwidth, and furthermore no spatial coherence that 
suppress speckle noise. To visualize microscopic structure, and increase the power performance, 
the interferometer should be interfaced with microscope optics. The power limitation can be 
surmountable by multiple LCI channels/beams combined to one LCI beam. This was 
implemented with tungsten halogen lamp and xenon arc lamp [110]. The second method uses a 
Linnik-type interferometer. This is a Michelson-type interferometer with microscopes in the 
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sample arm to detect a 2D surface simultaneously with a CCD camera [85]. Interference in 
white-light interferometry at each pixel position occurs when the path-length difference between 
reference and sample arm closely matches. 
 

II/3/d. Lateral Resolution 

 The axial and lateral resolution in OCT is decoupled. While the axial resolution is 
determined from the light source characteristics, and independently from the focusing geometry, 
the lateral resolution is obtained similarly to conventional and confocal microscopy since it is 
determined in function of the Numerical Aperture (NA) of the system: 
 
          (II.3.25) 
 
where n is the refractive index of the medium where the light beam is set to focus, and θ is the 

divergence angle of the light beam. In classical optics θ is defined from the geometrical 
properties, the focal length f, the d diameter of the focusing lens. The ratio gives the f-number 
(Figure II.3.18). 
 

   
 

 
 (II.3.26) 

 

 
 

Figure II.3.18. Ideal optical geometry. Numerical Aperture defined by the half-angle θ of the 
light cone angle, focused to point source F, f – focal length, d – lens diameter, n – refractive 

index of the medium. 
 
 However the light beam has a finite spot size at the focus position, with diameter d, and 
so it spreads out as it propagates with the divergence angle θ, cone half-angle defined from the 
diffraction limit (Figure II.3.19) [111]: 
 

  
 

 
 (II.3.27) 
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Figure II.3.19. Diffraction of light through an aperture with D diameter [111]. 

 
 The angular proportionality depends on the light beam intensity distribution in the 
transverse direction, how sharp it will fall to zero, and how the cone edge is defined. In the case 
of white light microscopy, the light beam goes through a circular aperture then propagates in the 
z direction, and the light intensity decreases sharply in the transverse direction (x-y), and then 
undergoes oscillations yielding an Airy pattern, the result of Fraunhofer diffraction (Figure 
II.3.20). We assume a perfect optical system, the lens imperfection, and geometrical optics 
aberrations are not included here. The angular resolution is calculated from the Bessel function 
of the first kind [59]: 
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 (II.3.28) 

 
The cone edge is defined at the position of the first dark ring, the first zero of the Bessel 

function (Rayleigh criterion): 
 

      
 

 
 (II.3.29) 

 
with the corresponding lateral resolution (for small angles       ) is: 
 
 

       
  

 
     

 

   
     

 

  
 (II.3.30) 

 

 
 

Figure II.3.20. Image formation of light with circular numerical aperture [112]. 
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The Depth of Focus defines the limit where the image is considered sharp, and it is 
proposed to calculate from the square of the NA (Figure II.3.21): 
 
 

         
 

   
 (II.3.31) 

 
Figure II.3.21. The depth of field is an inverse function of the Numerical Aperture. 

 
Resolution in the microscope is directly related to the FWHM dimensions of the 

microscope's point spread function, and it is common to measure this value experimentally in 
order to avoid the difficulty in attempting to identify intensity maxima in the Airy disk. 
Measurements of resolution utilizing the FWHM values of the PSF (from the Airy pattern, first 
order Bessel function) are somewhat smaller than those calculated employing the Rayleigh 
criterion [113]: 
 

       
 

  
 (II.3.32) 

 
However, it is more correct to treat the sample arm of an OCT system as a reflection-

mode scanning confocal microscope. As in wide-field microscopy, resolution at the focal plane 
is determined by the diameter of the Airy disc, and therefore is said to be diffraction limited. 
Analytic expressions for intensity in the focal plane are defined from a first-order Bessel function 
of the first kind, and at the half-width of the intensities. We interpret the lateral point-spread 
function of an OCT system at the position of its focal plane (reduced in case of confocal function 
of lateral position) as: 
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 (II.3.33) 

 
and defining the lateral resolution Δx as its full width at half maximum power, which calculates 
to 
 

       
 

  
 (II.3.34) 

 
The lateral field of view for an OCT system depends greatly upon the details of the lateral 

scanning system employed (Θmax – angle of sample arm rotation). 
 
                   (II.3.35) 
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It is important to mention the axial resolution defined in confocal microscopy, and related 

Axial Field of View or Depth of Focus. The intensity calculated along the optic axis (u) 
calculated from the Bessel functions is [59, 113]: 
 

             (
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 (II.3.36) 

and in conventional microscopy: 
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 (II.3.37) 

 
OCT systems axial resolution is defined from the low-coherence interferometry 

(coherence gate), as explained earlier. OCT systems which axial resolution is comparable with 
the axial resolution defined from confocal sectioning (confocal gate), and both gates are 
aligned/overlapped, are called Optical Coherence Microscopy (OCM), operating at high NA as 
confocal and conventional microscopy. It can provide better image rejecting out-of-focus light 
due to the coherence and confocal gate compared to OCT, or confocal microscopy, but it 
operates at limited Depth of Focus (Figure II.3.22). 

Conventional OCT operates at low NA, yielding higher lateral resolution, and larger 
confocal length, (Axial Field of View, Depth of Focus) inversely proportional to the square of 
the NA. It is advisable that the coherence gate be scanned inside the focal depth defined at the 
FWHM of the confocal axial response function [59]: 
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 (II.3.38) 

 

 
 

Figure II.3.22. Comparison of OCT operating at low NA and OCM operating at high NA with 
overlapped coherence and confocal gate enhancing resolution and image quality, but at limited 

depth [modified from 114]. 
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OCM can achieve fine 1-2 μm lateral resolution, and scans laterally yielding “en face” 

images (x-y plane), then it repeats the scanning process at different depth.  Full-Field OCT (NA = 
0.3) provides en face images simultaneously without scanning mechanism using microscope 
objectives. It provides lateral resolution similar to OCM, and better axial resolution using low 
cost thermal light sources than can be provided from conventional OCT using ultrashort pulse 
laser source, but it can reach only a limited penetration depth (200 μm) in the sample [90, 91, 
115]. 

The alignment of the coherence and focal gate in OCM and FF-OCT should be solved 
carefully. The refractive index of the tissue can deflect the focal plane of the objective from the 
theoretical one (and the coherence plane due to dispersion). Objective with water immersion can 
be used which refractive index is close to tissue, and so also to keep the optical path-lengths 
difference of both arms nearly zero. In addition water or oil immersion objectives (e.g. 
nimmersion_oil (=1.52) > nwater (=1.33) > nair ≈ nvacuum = 1) can improve NA to obtain better image 
quality besides decreasing f-number with bigger lens [116, 117]. 

Conventional OCT with low NA provides larger depth of focus with less resolution, but 
the axial scanning range in OCT is still deeper than the confocal gate. In TD OCT the scanning 
range depth is defined from the mechanically translated mirror in the reference arm and system 
sensitivity, while in FD OCT the depth-scan Field of View is limited by the spectrometer 
resolution, the number of pixels, and the spectral bandwidth ΔK.  

Since the scanned depth is deeper than the confocal depth of focus, the image quality can 
degrade in the out of focus regime. To overcome the focus depth limitation, several techniques 
have been developed which apply dynamic focus tracking, adaptive optics, axicon lens or correct 
the distortion digitally (deconvolution, inverse scattering, retrieving phase information, image 
fusion techniques) [85, 118-120]. 
 

II/3/e. Lateral Resolution using Gaussian Laser Beam 

Conventional OCT systems operate in the Visible/Near Infrared region, and use radially 
symmetrical laser beams with transverse Gaussian intensity distribution. The electric field 
variation of a Gaussian beam defined radially and propagating in z direction is defined as [111, 
121]: 
 

         

  

    
 

  
  

      (II.3.39) 

 
where r is the radial distance from the center of the beam (z axis), w0 is the beam waist, the 
minimal radius at the focal plane, z = 0, where the electric field is E0, and z is the distance along 
the direction of propagation. The parameter w(z) is the radius of the beam at the position z. 

The intensity calculated from the complex conjugates of the electric field is also 
Gaussian. The intensity at given z position in lateral direction: 
 

              
  

   

      (II.3.40) 

 
The intensity at the beam-axis propagating in z direction is the total beam power per 

effective unit area of the beam at position z: 
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 (II.3.41) 

 
The beam radius w(z) of the Gaussian beam at any z position is defined from the 

Gaussian electric field or intensity distribution at the given z position. It is calculated from where 
the electric field or intensity is 1/e or 1/e2 of the peak value on the central axis (Figure II.3.23). 
 

 
 

Figure II.3.23. Gaussian beam intensity distribution [modified from: 122]. 
 

The advantage of the Gaussian intensity source is that it keeps its transverse Gaussian 
shape with distance along the propagation axis, independently from the optical system. The 
intensity distribution is less sharp, and the oscillations detected in case of the Airy pattern 
disappear, so the divergence angle and lateral resolution is defined differently, as explained 
below. The equations assume a perfect optical system, with spherical optical surfaces, not large 
f-number and a waist        ⁄ . 

 
Figure II.3.24. The propagation of a Gaussian beam [modified from 111 & 123]. 
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Two parameters, the beam radius (w(z)) and the radius of the curvature (R(z)) of the wave 
front describe the behavior of the beam (Figure II.3. 24). 
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] (II.3.42) 
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] (II.3.43) 

  
where w0 is the radius of the beam waist, at z =0, where the wave fronts are planar, R(0) =  , 
and the parameter zR is the Rayleigh length. The Rayleigh length is the position of the 
propagation axis, where the wave front function R(z) has its minimum value, R’(z) = 0, and is 
defined from the divergence angle of the asymptotic cone of the beam radius variation, and the 
beam waist radius (Figure II.3.25). 
    

  

 
 (II.3.44) 

   
The characteristic of Gaussian beams is the asymptotic cone, along which the laser beam 

increases linearly farther from the waist (    ), and its divergence angle is:  
 
 

  
 

   
 (II.3.45) 

 
The Rayleigh length is defined as: 

 
   

   
 

 
 (II.3.46) 

 
 We can state from the equations above, that at     the spot size has its minimum value 
  , and it increases to       √    at     , and so the area will be twice of the area at the 
focal plane: 
                       

   (II.3.47) 
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Figure II.3.25. Gaussian Laser beam profile, with parameters: beam waist (2w0), focal length, 
Depth of focus (b), Divergence angle (θ) [modified from 124]. 

 
The angular divergence can be also defined from the equation of      : If     , then 

 
        

 

  
 (II.3.48) 

 
 

       
    

 
 

  

  
 (II.3.49) 

 
The full angular width of the diverging beam is: Θ = 2θ: 

 
 

     
  

   
 (II.3.50) 

 
The divergence angle, approximating the initial beam spot size as a point source, is 

calculated from geometrical optics as the diameter of the Gaussian beam on the lens, d, divided 
by the focal length of the lens: 
 

     
 

 
 

 

  
 (II.3.51) 

 
From the two equations expressing θ, the beam waist and the lateral resolution Δx is 

determined from the geometrical parameters as: 
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) (II.3.52) 

 
where λ is the central wavelengths, f is the focal length, and d is the diameter of the Gaussian 
beam at the objective lens. For small angles (      ): 
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 (II.3.53) 

 
The NA is related to the initial beam radius, which expresses that small initial beam waist 

will spread out quickly (high NA), and bigger beam waist will increase slowly (low NA). 
 
 

   
 

   
 (II.3.54) 

 
Furthermore from the equation of       the depth of focus can be reduced, where the 

image is still considered sharp, and the lateral resolution is maintained. This is defined as two 
times the Rayleigh range. 
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 (II.3.55) 

 
These equations explained here conclude the same trade-off between the diffraction-

limited fine lateral resolution versus Depth of Focus set by the NA similarly to optical 
microscopy [49, 59]. 

The assumption stating these formulas can also affect the real resolution of the system. 
The beam waist is usually defocused in contrary to geometric optics, and can move toward the 
lens when increasing the focal length. Furthermore an incorrect sampling rate can also limit the 
transversal resolution [121]. 
 

II/3/f. Sensitivity 

 The power of the LCI/OCT signal is defined from the detection process. The light 
incident to the detector generates photocurrent, which is converted to voltage. The measured 
photoelectric signal        of the interferogram     is [85, 98, 103]: 
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 (II.3.56) 

 
where       is the photoelectric current, η is the quantum efficiency of the detector, qe is the 
electron charge, ω0=2πf is the source center angular frequency,         is the Planck’s 
constant and       is the sensitive detector area. The photocurrent signal of the interference 
from the sample (PS) and reference arm power PR is: 
 
 
 〈  〉  
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√      (II.3.57) 

  
The sensitivity is defined as the ratio of the mean signal power reflected from a mirror 

per the noise power of the system: 
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 (II.3.58) 

  
In case of an ideal Michelson interferometer splitting both arms power equally, and 

assuming perfectly reflecting sample, the detected photocurrent is proportional to the source 
power P: 
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  (II.3.59) 

 
 In terms of reflectivity, proportionally to the signal power, the sensitivity is the ratio of 
the perfect mirror reflection (Reflectivity = 1) per the minimum detectable signal reflection equal 
to the system noise: 
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 (II.3.60) 

 
 The all-in noise power of the system comes from the shot noise 〈   

 〉, the excess intensity 
noise 〈   

 〉, these two terms are the photocurrent noise of broadband light sources, and from the 
thermal noise of the receiver 〈   

 〉: 
 
 〈  

 〉  〈   
 〉  〈   

 〉  〈   
 〉 (II.3.61) 

 
 OCT operates at a power in the shot-noise limited range, and the excess intensity and 
receiver noise can be neglected.  The overall noise is expressed as: 
 
 〈  〉  〈   〉  √    〈   〉 (II.3.62) 
 
where B is the detection bandwidth (passband between the lowest and highest frequencies), and 
〈   〉 is the mean detector photo current determined from the reference arm power. In case of 
ideal 50:50 beam splitter it is equal half of the source power. Based on these assumptions, the 
noise power is:  
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 (II.3.63) 

 
Then substituting 〈  

 〉 and 〈  
 〉 into     gives: 

 
 

    
  

    
 (II.3.64) 

  
Usually expressing in dB scale: 
 

           (
  

    
) (II.3.65) 

 
 The signal-to-noise ratio in the shot-noise limited regime is proportional to the source 
power. This intermediate regime is the optimal for OCT. The limit regimes are when the thermal 
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or the excess noise would dominate. The thermal noise of the receiver is independent from the 
source power, and when OCT operates at lower power, this would be the dominating noise. At 
higher power, the excess noise would limit the sensitivity since it is proportional by the square of 
the source power [85, 98]. 
 The signal-to-noise ratio defined here is inversely proportional to the electrical detection 
bandwidth. Using a single detector (Time-Domain (TD) OCT), the measurement bandwidth B is 
inversely proportional to the detector acquisition time B = 1/τ. An optimal solution is required to 
set off the axial resolution vs. image acquisition speed while keeping the same source power and 
sensitivity [103]. 
 Replacing the single detector of TD OCT, where all spectral components contribute in 
gross to the detected interferogram, with a multiple-detection camera array will improve the SNR 
ratio, where separately detecting the spectral components will reduce the cross shot-noise [125]. 

FD OCT operates with a 1D detector-array detecting each spectral component separately 
simultaneously (Spectral-domain OCT), or with a single detector, but detecting each channel 
successively in time (Swept-Source OCT). With M separate channels the SNR at the same power 
is M/2-times higher due to M, the number of channels, but divided by two due to the Hermitian 
symmetry of Fourier-transform of real valued signals. This operation mode improves imaging 
speed, but the complex conjugate artifact and digital signal processing effects degrades the signal 
[59, 85, 125]. 
 Parallel OCT detection SNR is further improved with a 2D camera by the number of 
pixels, but the CCD has limitation detecting the time average instead of alternating current. The 
sensitivity can be improved with phase-modulation or smart CMOS detectors. Furthermore FF 
OCT using spatial incoherent light source suppress speckle noise formation to improve image 
quality, but the low power featuring this light source limits the sensitivity [85, 90]. 
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II/4. Spectral-Domain Optical Coherence Tomography 

II/4/a. Setup of the SD OCT system 

Fourier-Domain Optical Coherence Tomography, and the Spectral-Domain OCT version 
was used for the experiments. The measurement setup in the laboratory can be seen on Figure 
II.4.1 with the corresponding scheme on Figure II.4.2. 

 

 
 

Figure II.4.1. SD-OCT measurement setup in the laboratory on a table against vibration. 

 
 

Figure II.4.2. SD-OCT scheme [24]. 
 

The Laser Source used is a SUPERLUM Broad Lighter S840-B-I-20 (data sheet shown 
and explained above) operating in high power mode, at a center wavelength of  λ0 = 840 nm, and 
Δλ = 50nm Spectrum Width determined at the FWHM of the power spectra yielding an axial 
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resolution of ~10 µm coherence length (in air). The output full power mode of 20 mW is directed 

in a SM (single-mode) fiber output power. 
The light intensity is halved in a 2:2 fiber coupler, and carried to the reference and 

sample arm by an optical fiber. The collimated light is focused onto the sample through a galvo 
mirror for transversal scanning (Thorlabs Scanning Lens LSM03) over an area usually 3x3 mm, 
and the laser beam waist spot size is set for a lateral resolution of ~8 µm (in air). The axial 

sampling density was ~4.4 µm per pixel measured empirically, and the lateral sampling density 
was 6 µm per pixel set on 500 A-lines over a 3 mm line. 

The light reflected back from the reference mirror can be attenuated through a pinhole to 
get a visible interference signal. The backscattered light from both arms are recombined and 
spectrally decomposed through a spectrometer, which consists of an achromatic doublet lens that 
collimates the beam to a diffraction grating (Wasatch Photonics, 1200 grooves per mm), and 
another lens focuses the spectrum to the CCD Line Scan Camera (Basler L104K-2k, 2048 pixel 
resolution, 10x10 µm2 pixel size, 29.2 kHz line scan rate).  

The detected signal in function of wavelength is digitized by an analog-to-digital 
converter (National Instruments NI-IMAQ PCI-1428 frame grabber card), then processed in 
LabView environment. The Discrete Fourier Transform is calculated after spectral shaping using 
Hanning window, and resampling the interferogram from wavelength space to wavenumber 
space through phase correction. 
 After recording one A-scan, the OCT beam is positioned to the adjacent point through the 
galvo mirror in the sample arm, so scanning laterally to obtain 2D B-scan and 3D C-scan. The 
imaging depth is ~3.4 mm in air and ~2.2 mm in tissue. 
 

II/4/b. Interference in the SD OCT system 

 The laser source generates the broadband laser signal. The electric field of one 
wavelength (i) is [59, 60]: 
           (   

     )  (II.4.1) 
 

This signal is directed through a waveguide to the beam-splitter (fiber coupler), which 
halves the intensity of the signal. When the intensity is halved, the electric field is divided by 
square root of 2. One part goes to the Reference arm, another part goes to the Sample arm. 

The signal reflects perfectly from the reference mirror (assumed reflectance: rR =1, in 
reality rR =0.95-0.99 dependent upon wavelength) and goes back the same way to the beam-
splitter through a pinhole that attenuates the intensity amplitude by a factor υ, and halves again. 

The electric field of one wavelength (i) from the Reference arm is: 
 
      (

  

 
𝜈      )  (II.4.2) 

 
The attenuation in the reference arm is important to avoid saturation upon detection, and 

to get a visible interferogram, since the back-reflection from the sample arm is about 2-3 order 
magnitude smaller. The signal from the Sample arm reflected back from each layer (j) of the 
tissue goes back to the beam-splitter where the intensity halves again: 
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 𝛴       𝛴 (
   

 
            )  (II.4.3) 

 
where B is the amplitude of the back-reflected light per wavelength (i), reflected from a specific 
layer (j) of the tissue. Upon recombining the sample and reference arm at the beam-splitter, the 
two signals will arrive with a phase-shift (φ), which depends on the wavenumber (ki=2π/λi) and 
the pathlength-difference (zij) between the mirror and the specific layer: 

 
 𝜑         (II.4.4) 
 

The back-reflected electric signals coming from the reference mirror and the sample are 
summed up at the beam-splitter. 
         𝛴      (II.4.5) 
 

The intensity of this interference signal going through the spectrometer is detected at one 
pixel of the camera array I(λ), which has a detector factor (ρ): 
 
           ⟨|    𝛴     |

 
⟩  (II.4.6) 

 
The intensity at specific wavelength (λ) neglecting the factor of the pinhole (υ) and the 

detector (ρ), first considering a one-layer-tissue-sample is: 
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(II.4.7) 

 
For a sample composed of multiple layers (j,l): 
 

       |  |
  ∑ |   |

 
   |  | ∑ |   |    𝜑     ∑ |   ||   |     𝜑      (II.4.8) 

 
where the first two terms are the DC term, the sum of the intensity amplitudes reflected back 
from the mirror and each layer, the third term is the interference term between the reference 
mirror and each layer, and the last term is the interference between the sample layers, which can 
be neglected. 

The intensity variation of the interferogram on the pixel array of the line scan camera 
detected in function of wavelength (i) is a periodic signal for each layer (j): 
 
          |   | ∑ |    |               

  
(II.4.9) 

Resampling the intensity from wavelength λ to wavenumber space (ki=2π/λi) and Fourier 
Transforming will give the reflectivity (zij) of each layer (Figure II.4.3).  
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a) DC term, deduced from the input spectral 
shape. 

 
 

b) Light scattered back from multiple layers of 
the sample. 

 
c) The reflectivity per layer. Bigger path-
length difference means higher frequency. 

 
 

d) Intensity Output superposed from each layer 
on the DC term, and Fourier Transform shown 

without the DC term component. 
 

Figure II.4.3. Fourier Transform of the Interferometer Exit. 

II/4/c. Interpolation of the intensity range, light attenuation in tissue 

 Interference signal detected on the detector from a Human Normal Fat tissue is shown on 
Figure II.4.4. The wavelength range between 800-890 nm is spread over 2048 pixels. 
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Figure II.4.4. Interferometer Exit recorded on Normal Fat Tissue. 
 

These interference fringes contain the structural information of the tissue subsurface at 
one spatial position by yielding the back-scattering intensity in function of depth (A-line). Before 
Direct Fourier Transform, the data points should be evenly sampled in wavenumber k-space. An 
interpolation method is required to resample the interferogram from wavelength λ-space [126]. 

First N linearly spaced k values are defined between the minimum (     = 800 nm) and 
maximum       = 890 nm) recorded wavelength. 
 
 

   
   

  
   (

 

    
 

 

   
 (

 

    
  

 

    
))                  (II.4.10) 

 
 Each 2048 intensity points (     ) will be resampled from λ-space to k-space       
through a non-linearity parameter   . The new sampling positions are defined from: 
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The non-linearity array {  } gives the new interpolation sampling points defined from the 

wavelength range to resample the intensity points linearly in k-space. 
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 The more complex and more accurate Cubic B-spline interpolation is preferred than 
linear interpolation. The accuracy of any interpolation can be improved by up-sampling the data 
by Fast Fourier Transform, zero-padding and then performing Inverse FFT [127]. 
 The Discrete Fourier Transform of the interferogram sampled equally in k-space        
will give the both-side spectra of the real valued signal spread on 2048 intensity points. Only the 
one-side spectrum provides the useful structural information spread on 1024 intensity points 
(     ). 1024 pixels are equal to ~4.5 mm measured empirically (Figure II.4.5a). 

This digital conversion is applied to the adjacent A-lines recorded by scanning process. 
500 A-lines with ~6 µm shift will give the B-scan to cover a ~3 mm wide cross-section (Figure 
II.4.5b), and multiple cross-section will record the volume (C-scan). 
 

a)  b)  
 

Figure II.4.5. Normal Fat Tissue.a) OCT A-line (1mm = 228 px) b) B-scan composed of 100 A-
lines (white bar = 500 µm). 

 
 The dB representation of the OCT image is preferred to get a better visibility, and to 
recover the light attenuation (slope) in function of depth directly from the signal. The intensity 
decreases exponentially: 
          

     (II.4.13) 
 
where the attenuation coefficient is the sum of the scattering and absorption coefficient    
       , but the absorption coefficient can be neglected        in the near infrared range, 
where OCT usually operates. Taking the logarithm of the intensity variation will provide the 
slope of the intensity attenuation in linear scale, which can be measured now from the figure 
after averaging or filtering the A-lines: 
 
                       (II.4.14) 
 
 Due to the Digital Signal Processing effect, there are other factors explained later, which 
affect the Intensity signal attenuation in function of depth. The resampling process should also be 
corrected using phase correction due to the dispersion explained below [59]. 
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II/4/d. Dispersion compensation by phase correction 

Dispersion occurs because the velocity of the different frequency components of the light 
travels at different velocity in the dispersive medium (interferometer arms and tissue sample), 
and their speed is dependent of the refractive index of the medium, which slows down or speed 
up certain frequency components dispersing the light. The wavevelocity in a given media is: 
 
            (II.4.15) 
 
 The effect of dispersion on a light pulse going through the material will result a pulse 
output spread in time, called chirped signal. The consequence is a degraded signal, and blurred 
image quality. 

The interference signal for one sample layer is described generally: 
 
      |     |

 
 |     |

 
  |     ||     |    (            ) (II.4.16) 

 
Ideally the phase constant g(λ) can be neglected, but due to dispersion: 

 
      [      ⁄ ][      ] (II.4.17) 
 
where n(λ) is the wavelength dependent refractive index of the dispersive material (tissue 
sample) with a thickness of d, where light travels back and forth. The dispersion        ⁄  
broadens the envelope of the time domain signal [59]. 

The phase term           is the product of twice the path-length difference Δz between 
two arms, since light travels back and forth, and           ⁄ , as described earlier. This 
wavenumber - wavelength nonlinearity is affected by the dispersion of the waveguides, 
diffraction grating, and optical imaging errors, and should be corrected to get the correct 
resampling function. 

The OCT signal is based on the phase shift due to the path-length differences between 
two arms. For any given material the phase is the function of frequency, and can be expanded in 
a Taylor series around the central frequency of the light source: 
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(II.4.18) 

 
The zeroth order term is the phase shift of central frequency       

  

 
  . The 

constant phase velocity of the central wavelength in the spectral bandwidth (Figure II.4.6b): 
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 (II.4.19) 

 

The first order term 
  

  
   

     

  
 is the group delay, the inverse group velocity. 
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 (II.4.20) 

 
The group velocity is the envelope shift, the speed of the broadband light propagation 

(Figure 6c). In ideal case the refractive index of a material is independent of the 
wavelength     ⁄    ⁄ , the medium is no dispersive, and      . However this is not valid 
generally. 

The second order term 
     

     
 

 

 
  

   

   
 is the group velocity dispersion (GVD), which 

describes the variation in group velocity with frequency.  
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) (II.4.21) 

 
 This term is responsible for the broadening of the Point Spread Function, degrading the 
axial resolution of OCT images, changing the amplitude or phase (Figure 6d). [GVD] = s2/m = s/ 
Hz*m. GVD measures the delay per unit frequency bandwidth, or per unit length of propagation. 

The third order term 
    

      
 

 
  

   

    causes the asymmetric distortion of the PSF [104, 

128]. 

 
 

Figure II.4.6. a) Autocorrelation for a perfectly balanced detector b) Phase delay (zeroth order) 
c) Group delay (first order) d) GVD (second order) [128]. 
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 Figure II.4.7 shows the dispersion in Spectral Domain OCT system with the increase of 
the optical path-length distance between the sample and reference arm by moving a sample 
mirror in axial distance, and extract PSF at each position. 

 
 

Figure II.4.7. Degradation of PSF (point spread function), peak broadening and intensity loss at 
increasing path-length differences without dispersion compensation (linear & logarithmic scale). 
 

Dispersion in the sample is problematic since it is not known, and varies during axial 
scanning. For most OCT imaging applications, the axial depth of imaging is shallow, so this 
effect can be negligible. Around 10 µm resolution, as in our system, this becomes significant 
only at deeper positions, for a system of 1 µm resolution using broader bandwidth, this error 
should be corrected for each sample depth (e.g. placing the media in the reference arm also, 
using a frequency-domain delay line, by convolution or by post-processing, digitally with an 
iterative procedure by optimizing the sharpness of the image [129]). 

The unbalanced dispersion of the instrument does not vary per axial scanning, and it can 
be compensated. Dispersion correction from the system components can take place both in the 
hardware (frequency-domain delay line) and the software (post-detection from amplitude and 
phase information) [104]. 

In our OCT setup the dispersion compensation of the system is solved digitally by 
retrieving the spectral phase from the Fourier Transform of the interference spectrum from a 
calibration signal, method called Fourier-Transform Spectral Interferometry (FTSI). The 
calibration signal will be the interference signal recorded from two perfectly reflecting mirrors at 
a path-length-difference which gives a resolvable spectral period (Figure II.4.8). 
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Figure II.4.8. Interferometer Exit; Spectrum from two interfered signals, one is delayed by a 

path-length-difference l = 400 µm; and chirped due to dispersion. 
 

The path-length difference determines the interference spectrum oscillation. In addition 
the phase of the oscillation is nonlinear due to dispersion, which causes the chirped signal. The 
retrieved phase nonlinearity will be the functional relation to resample the interferogram from 
wavelength space to wavenumber space. The resampling method in the system is developed 
according to [130].  

The unwrapped phase of the interference fringes is retrieved from the complex analytic 
representation of the signal S(ω). The complex signal is recovered from the Real part detected on 
the Interferometer Exit. First Discrete Fourier Transforming the detected Real signal will provide 
both-side spectra, the position of the mirror at positive and negative path-length difference. The 
obtained Point Spread Function is broad due to the nonlinear sampling, and side-lobes can be 
present due to the Gaussian spectral shape of the light source (Figure II.4.7). Zero-filling 
interpolation could improve the calibration algorithm. 

Inverse Fourier Transforming the positive frequencies (one-side spectra) obtained by 
Heaviside window (unit step function) and keeping the same pixel range (2048), results in the 
complex signal (Figure II.4.9a): 
      |    |       (II.4.22) 
 

Eliminating the mirror-image caused by the Fourier Transformation of the Real valued 
signal will increase the ranging depth by a factor of two [130, 131, 132]. 
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a) b)  

 
Figure II.4.9. a) Complex representation of the fringe signal b) Unwrapped phase. 

 
The unwrapped phase from the complex fringe signal is nonlinear, and will be the 

resampling function (Figure II.4.9b). The function parameters are computed by a polynomial fit 
to the retrieved unwrapped phase after cutting the edges where the laser power can be neglected. 
Correcting the signal by this phase nonlinearity of S(ω) will compensate the dispersion: 
 
 𝜑             

          
  (II.4.23) 

 
The second-order coefficient a2 balances the GVD, and the third-order coefficient a3 

balances the asymmetric PSF distortion. Higher order terms can be neglected. The non-linearity 
array can then be expressed as [127]: 
 
         

      
                (II.4.24) 

 
This third-order polynomial will provide the fractional indexes of resampling intensity 

from λ- to linearly spaced k-space. The Fourier Transform of the corrected spectrum will provide 
the appropriate PSF and axial depth scan (Figure II.4.10). The remaining sensitivity roll-off is 
due to DSP errors because of the limitation of the electronic devices explained below. 
 

 
Figure II.4.10. Point Spread Functions in function of path-length difference with dispersion 

compensation (linear & logarithmic scale). 
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The calibration procedure is performed only once and then calibration coefficients are 

used for rescaling each A-scan. The long-term stability of this calibration method is dependent 
on the long-term stability of the light source, and can be applied also to SS-OCT systems.  

SS-OCT resampling method can be solved using additional device, e.g. oscilloscope for 
zero-crossing point detection or second interferometer for 2-channel detection (non-linear 
clocking scheme) [133-135]. Instead of phase information, the calibration parameter can be the 
positions of consecutive minima and maxima of the fringes to generate optical frequency comb 
[136]. 
 The signal post-processing can be improved by background subtraction present in all the 
A-lines by averaging the interferograms and subtracting the reference spectrum or measured only 
from the reference arm reflection [103]. Instead of the usual FFT procedure, filter-bank approach 
can be applied on the raw data [137]. 
 

II/4/e. Sensitivity roll-off 

Sensitivity fall off and reduced contrast is shown on Figure II.4.10. The reason is 
explained on Figure II.4.11 following [136]. 

 
 

Figure II.4.11. a) Simulated interferogram; Dotted line: light source spectrum G(ζ); Solid line: 
interferometric modulation; δζ: pixel width b) Fourier transform of the interferogram [136]. 
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Sensitivity roll-off and degraded resolution is due to the physical limitations of the 
elements of the OCT system, beside the light dispersion and scattering effects. The physical 
limitations in the measurement systems come from the non-linear characteristic of the OCT 
elements (beamsplitter, wave-guides...), from the light source spectral shape and the finite 
resolution of the spectrometer and array detector. Figure II.4.11a shows the simulated 
interferogram PSD with the signal envelope      and interference fringes detected on the 
detector pixels: 
           [              ] (II.4.25) 
 
where      is the intensity of the light source,      is the wavenumber at pixel position   on the 
camera array, multiplied by the doubled path-length difference Δz between the two mirrors. 
Figure II.4.11b shows the Fourier Transform of the interferometric signal yielding the PSF 
        at positions of + Δz and the DC term: 
 
 |        |     |    |          (II.4.26) 
 
 The camera array has a limited number of pixels ( ) and the pixels have a finite width 
(  ). The sampling cannot be described by Dirac delta function but with a box function with 
width equal to the pixel width: 
      ⁄     (II.4.27) 
 

This finite width causes loss of sensitivity with the depth measurement. The Fourier 
Transform of the box function is a sinus cardinal function: 
 
 |         ⁄  | (II.4.28) 
 

The array detector has finite width, which means it integrates the spectrum over a finite 
wavelength range. The finite spectral resolution of the interferometer gives errors on the DFT 
calculation              . The signal processing aliasing error in our system is corrected using 
Hanning window on the generated signal. The sampling rate at low frequencies is better than in 
high frequencies resulting to partial aliasing of the signal, furthermore reaching the Shannon-
sampling rate the higher frequencies cannot be detected. 

Inter-pixel crosstalk happens when the charge of a pixel is transmitted to the other pixels 
of the camera array deteriorating the signal (            ). Finally the finite spot size of the 
laser at each pixel on the detector gives errors in the signal acquisition procedure (           ). 

 The interferometric signal is convolved with all the degrading DSP effects, which 
deteriorates the signals from longer path-length differences, and the registered decay is usually 
approximated by a Gaussian function: 
 
         [                                         ]      (II.4.29) 
 
where         is the registered interference signal. The Fourier Transform of the interferogram is 
multiplied with the FT of all the errors. 

The spectrometer resolution limits the theoretically calculated axial resolution vs. 
imaging depth range in SD OCT systems. However broader spectral light sources provide better 
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axial resolution, they induce higher sensitivity roll-off, and so less imaging depth range as 
explained here [138]: 

SD-OCT pixel interval is defined from the detected full spectral source bandwidth (λfull) 
and central wavelength λ0. 
 

   
  
 

      
 (II.4.30) 

 
This equation comes from the depth range limitation (zmax) in the Fourier domain: 

  
      

 

   
 (II.4.31) 

 
where δk is the wavenumber spacing between pixels defined from the spectral source and the 
number of pixels (N): 
 

   
       

   
  (II.4.32) 

 
The pixel interval δz is the depth range (zmax) divided by half of the length of the 

spectrometer array (N/2). 
The spectral bandwidth detected by the camera should fulfill the Nyquist sampling 

theorem: 
      ⁄    (II.4.33) 
 

where    
    

 

  
 

  
 is the theoretical axial resolution. This results in: 

 
       

 

    
             (II.4.34) 

 
 Overall the sensitivity roll-off and the error analysis of the system should consider 
multiple factors. The physical limitation of the system affects the theoretical resolution of the 
system, due to e.g. the electronic device non-linear characteristics, camera heating, optical 
imperfections, and the spectrometer limitation with the DSP computations. Errors coming from 
the light source behavior include the spectral shape limitation, dispersion and scattering effects in 
turbid media [136]. 
 OCT signal is based on the detection of ballistic photons after single back-scattering, 
however photons which underwent multiple scattering can contribute to the OCT signal 
degrading the resolution. Speckle scattering, a secondary interference phenomena makes the 
images noisy. The polarization state of the electric field is not mentioned here (Figure II.4.12). 
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Figure II.4.12. Scattering process and wavefront dispersion affecting OCT images [104]. 
 
 To set up an experiment independently from the settings (focus position, exposure time, 
spectral shape and intensity input to the sample arm, pinhole attenuation from the reference 
mirror, path-length difference between sample surface and mirror) is an additional difficulty to 
be solved. Furthermore the setting up of the measurement is robust, controlled manually 
depending on the viewer. 
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III. Quantifying tissue structural properties from OCT to 
diagnose cancer 

III/1. Literature of quantifying imaging-based data 
 

Imaging in OCT based on intensity detection is qualitative, since it depends on the 
system setups. The main challenge today is to provide a quantitative description of the images, to 
overcome the limitations of the different measurement settings, so as to adopt OCT in clinical 
environment. In the literature, some approaches based on experiments or theoretical assumptions 
have been elaborated that could differentiate quantitatively between various tissue types and 
specifically between healthy and cancerous tissue recorded with Optical Coherence 
Tomography. 

To date it has already widely studied to characterize different tissue types or different 
layers in complex tissue based on the backscattering coefficient of the OCT signal. First method 
is based on the assumption of single-scattering assuming that only ballistic photons which 
backscatter once from deeper layers in the tissue remain coherent and contribute to the OCT 
signal. In this case the intensity of backscattered laser light in the biological material 
theoretically follows an exponential function in depth (z) given by the Lambert-Beer law [26, 97, 
139, 140]: 
 
          

      (III.1.1) 
 
defined by the attenuation coefficient    characterizing different tissue types, calculating from 
the slope of the intensity attenuation in dB scale (Figure III.1.1). 
 

 
 

 
 
 
 
 
 
Figure III.1.1. Attenuation of backscattered light 
(red line) in tissue after averaging 500 A-lines. 
Tissue surface begins at around 1000 μm (Intensity 
on logarithmic scale). 
 

This implies the abstraction of the tissue structure. For inhomogeneous material the slope 
is calculated by averaging or filtering/smoothing. Even for homogenous tissue digital processing 
on the raw OCT signal is required, since the A-scan profile is noisy due to electrical and speckle 
noise [141]. 

Laser speckle makes the images grainy due to random interference effect of coherent 
laser light illumination. This pattern is called texture. However OCT images are affected by the 
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speckle noise reducing structural resolution and contrast, some useful information can be 
detected from this phenomena [59, 142]. 

The attenuation coefficient of the tissue in Eq. (1) is the sum of scattering and absorption 
coefficient [26]:         
            (III.1.2) 
 
where    is the  scattering coefficient,    is the absorption coefficient. In the near infrared (NIR) 
spectral range:      , the absorption coefficients can be neglected, and the backscattering 
coefficient is closely equal at each wavelength. 

In a simple model of scattering spheres with approximation the scattering coefficient 
depends on the focusing beam and the heterogeneity of the tissue, and it is calculated as: 
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 (III.1.3) 

 
where g is the tissue anisotropy factor, r is the radius of the scattering centers,    is the volume 
density of scatterers, λ is the wavelength of the incident light and   ,      are the refractive 
indices of the scatterers and surrounding medium [26]. 

Based on this equation the backscattering coefficient     can quantify cancerous tissue 
assuming that cancer has higher cellular density    which linearly increases the scattering effect.  
This is validated on normal adipose tissue and Liposarcoma with dissimilar optical 
characteristics (Figure III.1.2) [26]. 
 

 

Figure III.1.2. OCT image of the boundary between healthy 
tissue and DDLS. The left part of the image is the denser 
tumor area; the right part is the normal fat tissue containing 
adipose cells [26]. 

 
Besides the structural properties of tissue, the backscattering coefficient has already been 

studied for measuring dynamic changes, e.g. quantifying molecular diffusion, in particular 
detecting blood glucose diffusion separately at each layer [26, 143-145] (Figure III.1.3).  
 

 

 
 
 
 
 
Figure III.1.3. Threes curves show the 
backscattered intensity in time at three different 
positions in the sclera reduced from OCT 
measurements. The arrows show the diffusion 
starting point [143]. 

 
 The single scattering assumption is valid at the superficial layers, and has been proved in 
weakly scattering media (        , e.g. human artery). For highly scattering media (e.g. 
human skin), and at larger depth, implementing of multiple-scattering model could provide better 
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accuracy. Multiple-scattering reduces the imaging contrast, resolution, and the steepness of the 
intensity slope [97, 139, 140]. 

Models including multiple-scattering effects are reduced from experiments [146], hybrid 
Monte Carlo theory [147], linear systems theory [148], and the extended Huygens–Fresnel 
principle without [149] or including the shower-curtain effect [140]. 
 In most cases, single-scattering is valid in the focal volume, because the focusing optics 
in the sample arm suppresses the multiple-scattering effect scattered from outside the focal 
volume [139]. 

In clinical practice dynamic focusing is not possible, and for fix focusing the signal loses 
sensitivity, the Point Spread Function (PSF) broadens with depth, and the intensity slope gets 
higher steepness due to divergence of the light beam. The confocal properties of the sample arm 
optics, thus the position of the focal plane in the tissue and the depth of focus affect the detected 
light and the OCT signal [97, 139, 150, 151]. 

Several theories have been developed to correct the modulation of the confocal aperture 
in the OCT system, e.g. beam-divergence function, a confocal function, or an axial point spread 
function (PSF) [152-154]. In these cases a Gaussian beam intensity profile is assumed valid in 
the paraxial approximation at low numerical aperture (NA), as usually applied in OCT. For high 
NA (Optical Coherence Microscopy), further study is needed [139, 154]. The probe beam is 
assumed not to be distorted by the tissue, measurements are compared to Mie theory, and the 
attenuation or backscattering coefficient depends on the beam focusing/collection optics, the 
heterogeneity of the tissue, and affected by speckle noise. The axial confocal PSF provides the 
simplest practical solution [139, 154, 155]: 
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 (III.1.4) 

 
where    is the position of the focal plane, and    is the “apparent” Rayleigh length of the PSF 
[97, 139, 151]. The Rayleigh length    of a Gaussian beam is given by: 

          
          ⁄  (III.1.5) 
 
where    is the center wavelength of the light source, ω is the beam waist at the focus (  
        , n is the refractive index of the media [139]. The apparent Rayleigh length is 
calculated from the Rayleigh length   :         
        (III.1.6) 
 
where     for specular reflection, and     in diffuse biological media. This distinction is 
based on measurements comparing reflections from mirrors as perfect reflectors for specular -, 
and epoxy for diffuse scattering.  In some literature the factor of specular or diffuse reflection is 
neglected. The Rayleigh length is almost constant in function of depth, however further 
investigation is needed [139, 154]. 

In conclusion, the coherence gating of the single-scattering model in conjunction with the 
confocal gating from the sample arm optics geometry using α = 2 can describe the OCT signal 
accurately [139, 154]: 
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 (III.1.7) 

  
Deviation from this theoretical function is due to optical properties of the tissue, 

including the large index of refraction mismatch at the tissue surface and inner boundaries in 
inhomogeneous media, speckle noise, multiple scattering and maybe the effect of temperature 
and bandwidth of the light source [151, 154]. 

The attenuation coefficient in the single scattering model with the proposed confocal 
optics correction calculated from averaged A-line profiles has been compared in normal and 
malignant ovarian tissue with good accuracy from a statistically significant number of samples. 
The surface of the tissue was in the focus of the sample arm optics. The structural change is the 
collagen content loss in cancerous ovarian tissue, which is revealed on histological changes, and 
on the lower attenuation coefficient measured with OCT (Figure III.1.4) [150]. 
 

 

Figure III.1.4. Ovarian Tissue. 
(left) Normal [(a)(b)(c)] and malignant 
[(d)(e)(f)] ovarian tissue. (a)(d) OCT 
images, (b)(e) H&E histology, (c)(f) SR 
stains. Inset on (a): slope on an OCT scan 
line; Blue arrows on (b): collagen.  
 (down) Histograms of μs obtained from 
normal (n = 833) and malignant (n = 264) 
ovarian tissue. Gaussian distribution fits 
the histogram. 

   [150] 
 
 The diagnostic ability of the method is evaluated by the Sensitivity/Specificity analysis 
calculating the percentage of correctly diagnosed cancerous or normal tissue: 
 
             

  

     
 and              

  

     
 (III.1.8) 

 
where TP = true positive – correctly diagnosed as cancer, TN = true negative – correctly 
diagnosed as normal tissue, FP = false positive – misdiagnosed as cancer, FN = false negative – 
misdiagnosed as normal tissue [49, 156]. 

ROC curve is also calculated from different Optical Scattering Coefficient thresholds. 
Receiver Operating Characteristics (ROC) curve plots the true positive ratio versus false positive 
ratio. By selecting different thresholds of    located in the overlapping part of the two 
distributions, the sensitivity and specificity show good results [150, 156]. 
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The area under the ROC curve is a measure of the power of the test. It is the probability 
that a randomly selected positive has a higher test value than a randomly selected negative [156]: 
  
 

    ∫        
 

 

    (III.1.9) 

 
The above described method is based on the assumption that the tissue is not complex, 

one A-line crosses only one layer properties. This issue was addressed first in the case of arterial 
layers and plaque components [141, 151]. One multiple section can be seen on Figure III.1.5: 
 

 

 
 
 
 
 
 
 
 
Figure III.1.5. Averaged OCT profile with 
numerical fit to three layers: Red-Intima, Blue-
Media, Green-Adventitia, logarithmic scale 
[141]. 

 
In [151] the confocal properties of the sample arm optics are also included and the results 

are statistically verified with t-test and ANOVA generalized t-test applied on multiple groups 
(Figure III.1.6). Student’s t-test approves if the different data sets differ significantly from each 
other. 

 

 
 
 
 
Figure III.1.6. Averaged OCT A-scan (thin 
grey line), and the fitted signal using equation 
(III.1.7) (thick dark line) with the calculated 
attenuation coefficient µt (± 95% confidence 
interval) reduced from two layers; logarithmic 
scale [151]. 

  
Related to tissue quantification from the attenuation coefficient, the slope analysis on 

healthy human lymph nodes vs. nodes containing malignant cells should be mentioned [155, 
157]. In these measurements the focal plane was set within the tissue contrary to the above 
described analysis where it usually positioned at the tissue surface. 

The lymphatic system marks metastatic spread in the body.  The slope (attenuation 
characteristics) is calculated separately from each logarithmic A-line using linear least-squares 
fitting. After obtaining the coefficients on the entire surface, it gives a 2D parametric image on 
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the xy-plane. The structure is comparable with histology and the contrast is enhanced comparing 
with the so called en face image, which is the cross-section (x-y) at optimal depth position 
(optical biopsy). The noncancerous cortical part of the tissue (circled areas on Figure III.1.7) is 
distinguished well from the diffuse malignant involvement [157]. 
  

 
 

Figure III.1.7. Involved (malignant) human axillary lymph node with diffuse involvement of the 
node tissue a) H&E histology b) parametric OCT image c) en face OCT image at a specific depth 

position; Scale bar = 1 mm [157]. 
 
 To get a correct quantification measurement in some cases a glass plate is put over the 
tissue as reference surface for the measurement of attenuation [152]. Furthermore it can be 
immerged in glycerol or phosphate-buffered saline (PBS) to reduce the specular reflection due to 
the refractive index mismatch between the glass slide and tissue sample [155, 157]. Anyway a 
digital processing method is implemented to find the tissue surface and the different sections in 
one A-line defined from the fitting algorithm [141]. 
 In [155] the absolute attenuation coefficient is corrected implementing not only the 
modulation of the confocal optics, but also the modulation of the OCT scan depth-dependence, 
called sensitivity drop-off in FD-OCT, or the intensity loss due to the tilted mirror at higher 
angle in the galvanometer at the scanning reference arm in TD-OCT system [158]. The 
correction was based on experiments on homogenous tissue phantom which optical properties 
were also calculated with Mie theory and Monte Carlo simulation, then a reference coefficient 
was reduced from the division of the theoretical and measured value, and it was applied to 
correct the lymph node A-scans. 
 Beside the analysis and correction of the attenuation coefficients to quantify tissue types, 
new quantification methods are proposed in the literature to extract the structural properties of 
the tissue types. They provide new insights for tissue characterization, but they are not 
comparable yet between different measurement settings. To get an absolute quantification 
method, further investigations are needed in all the below explained methods! 
 In [159] the logarithmic OCT A-scan signal is analyzed further after subtracting the slope 
(Figure III.1.8). The standard deviation of the intensity points around the slope is calculated on 
Healthy Fat Tissue vs. Well-Differentiated Liposarcoma and Healthy Smooth Muscle Tissue vs. 
Leiomyosarcoma. There is a tendency to differentiate healthy vs. cancerous tissue, however there 
is still an overlap (Figure III.1.9). The results were validated by the two-sample unequal-variance 
Student's t-test. 
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Figure III.1.8. OCT signal with slope, and after subtracting the slope from the raw A-scan, 
logarithmic scale [159]. 

 

 
 

Figure III.1.9. Slope and standard deviation of Fat Tissue, WDLS, Smooth Muscle Connective 
Tissue and its cancerous version: Leiomyosarcoma. 40000 sample points per sample, and 1 

sample per tissue type are represented with 95% confidence intervals [159]. 
  

The A-lines were truncated below the surface to avoid specular surface reflection. At a 
given measurement settings, the slope can be affected by the focus position, but the second 
parameter, the standard deviation obtained after slope subtraction is sensitive also to the input 
power, and so as it should be normalized, or the A-scans should be recorded at the same 
exposure time, with the same path-length difference between the reference mirror and the tissue 
surface to get an absolute value, since the measurements were done on a Fourier-Domain OCT 
version, the Swept-Source (SS-) OCT System. 

The analogy of the finite pixel width in SD-OCT is the finite linewidth of the swept-
source. The SS-OCT detector diode records the spectral information in time. If this spectral 
channel width δk(λ) is narrower than the source spectral linewidth, intensity fall-off will occur 
[160]. 



102 
 

The analysis of slope and standard deviation around slope was applied first to distinguish 
adipose tissue, fibroglandular tissue, and invasive ductal carcinoma in breast cancer [161]. The 
main motivation behind the study is to diagnose based on one A-line detected with a manually 
portable Low-Coherence Interferometry, and get sample with Fine Needle Aspiration for genetic 
analysis (Figure III.1.10). Looking at the A-lines on Figure III.1.11 the A-line basis diagnosis 
can be accomplished, however for higher accuracy the analysis of more adjacent A-scans should 
be analyzed or more parameters are needed [161]. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure III.1.10. (A) Photograph (B) 
Schematic of the Biopsy guidance 
probe [161]. 

 

 
 
Figure III.1.11. OCT A-scan profiles of breast tissue specimens: (A) adipose; (B) fibroglandular 

tissue; and (C) adenocarcinoma recorded with Low-Coherence Interferometry. Insets are the 
histological sections [161]. 

  
 The focusing problem is solved without using a focusing lens, so the location of the beam 
focus is fixed contrary to a lensed fiber probe. The limitation is to detect half the range of the 
data points, which is compensated with a high fixed exposure time/input power [161].  



103 
 

 In [162] a third parameter, the signal frequency content is also extracted with the portable 
low-coherence interferometer (LCI) in time-domain mode. Slope, standard deviation of depth 
profile around linear fit, and spatial frequency content is compared in breast cancer for adipose-, 
fibroglandular -, and cancerous tissue (Figure III.1.12). The classification method was developed 
on 2 tissue types excised from 58 patients, the adipose tissue and the fibroglandular tissue which 
contained benign fibrous parenchyma, and malignant adenocarcinoma, and ductal carcinoma in 
situ (DCIS). 
 

 

 
 
Figure III.1.12. OCT A-line 
from adipose (left) and 
fibroglandular (right) human 
breast tissue with first-order 
fit (red line); Logarithmic 
scale [162]. 

 
 The slope was linearly fitted beginning below the digitally defined surface position to 
avoid specular reflection (red line on Figure 12), then subtracted to analyze standard deviation 
around slope and the frequency content of the signal. The parameter analysis was applied per A-
line, and the mean from 10 A-line’s parameter was calculated per sample.  
 Focusing lens was not used, and the input power (Texp) was fixed to the sample arm. The 
tissue surface position and the ROI of the segment were digitally defined. The Discrete Fourier 
Transform was calculated after subtracting the mean (dc component) of the signal. The Fourier 
response was averaged from all the samples, and normalized by integrating over area at the given 
Region of Interest (ROI) where the two tissue types differ significantly (Figure III.1.13). 
 

 

 
 
 
 
 
 
Figure III.1.13. Averaged, area normalized 
power spectra on human adipose and 
fibroglandular tissue in breast, calculated from 
training set. Green window shows ROI [162]. 

  
The data analysis is developed on a training set (37 adipose + 35 fibroglandular =78 

tissue samples, 7 tumorous amongst fibroglandular type: 5 adenocarcinoma, 2 DCIS). The next 
scatter plot from the training set is representing relationship between parameters Slope/Standard 
deviation around Slope/Spatial frequency (Figure III.1.14). 
 



104 
 

 
 

Figure III.1.14. Adipose, fibroglandular and tumor tissue characteristics in breast. Parameters of 
Slope, Standard Deviation around slope and Spatial Frequency are calculated from a training set. 

The last two parameters show similar characteristics [162]. 
 
 The validity of the method is verified with a classification method applied to a validation 
set. The analysis assumes the parameters were fit to a multivariate normal density (multivariate 
Gaussian model, meaning that each parameter’s probability density function (PSD) follows a 

normal distribution, so the class can be characterized by the mean vector and the covariance 
matrix. Linear Discriminant Analysis (LDA) assumes the same covariance matrix for each class, 
using the pooled estimate of the covariance matrixes. Mean   ̅ for each parameter per tissue type 
and a pooled Covariance matrix    are calculated from the training set of 72 samples [162, 163]. 
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(III.1.10) 

 
To classify tissue type the model was applied on a validation set containing 34 adipose + 

52 fibroglandular = 86 tissue samples, 9 tumorous amongst fibroglandular type: 8 
adenocarcinoma, 1 DCIS. The classification was determined using likelihood ratio, which 
assigns the tissue under analysis to a given tissue class based on highest probability. Two-sided 
unpaired t-test showed that parameters’ mean has a significant p-value for each sample, and 
sensitivity (98.1%) / specificity (82.4%) analysis is calculated on the validation set. The overall 
accuracy was 91.9 % defined as the percentage of all the correctly diagnosed tissue samples. 
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An additional experiment was led to check intra-sample validity from a separate data set 
sampling at the same position several times in each case. Results on 14 samples from 6 patients 
show that adipose tissue can be easily misdiagnosed as fibroglandular type due to low signal 
content. Error analysis of slope fit and subtraction affecting the parameters was also verified. 
 In [164] the frequency content and the periodicity of the A-lines are investigated after 
removing the slope obtained with first-order linear fitting. Figure III.1.15 shows the axial scans 
on adipose, carcinoma tumor and stroma connective tissue in breast on logarithmic scale. One 
tissue sample was excised per patient. 
 

 
 

Figure III.1.15. OCT A-line a) Adipose tissue b) Inductive ductal carcinoma tumor tissue c) 
Stroma tissue; Logarithmic Scale [164]. 

 
 The data was truncated at the tissue surface then the attenuation effect was subtracted. 
The data were recorded in TD-OCT settings, with fixed input power to sample arm. The focus 
was positioned within the tissue, exactly not known. The attenuation effect has been removed 
subtracting the linear fit of each A-line. Two analyses were applied on the modified curves. First 
Fourier Transform was calculated from the A-lines which distinguish tissue types based on 
distinct cell size and density, periodic response and frequency oscillation. 

If the intensity function is described as           , the Fourier-domain response from each 
tissue type is calculated, as  
               [          ] (III.1.11) 
 
then normalized over area, and averaged (Figure III.1.16). 
 The second suggested method is based on peak-detection above a certain threshold -
defined as higher than half of the maximum of the A-line - to reduce noise effect. The mean 
distances between peaks are calculated, and the histogram is shown on Figure III.1.17. 
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Figure III.1.16. Fourier-Domain data 
normalized by area, and averaged from tumor 
(black), stroma (dark gray), and adipose (light 

gray) tissue A-lines [164]. 

 
 

Figure III.1.17. Histogram of the mean 
distance between high-intensity backreflections 

from 1 OCT A-line of human tumor (black), 
stroma (dark gray) and adipose (light gray) 

tissues [164]. 
 

In both and a combined cases the method is developed on a so called training set then to 
prove the diagnostic ability the tissue is digitally classified on new measurements, called 
validation set, excised from a 4th patient at the tumor boundaries [164]. 
 The classification method compares first the unique FD signature and periodic content of 
each unknown A-line,      with the formerly calculated averaged values, including a weighting 
function      emphasizing the most relevant regions of spatial frequencies. The classification is 
based on the lowest cumulative error. 
         ∑    |               |

 

 (III.1.12) 
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|                    |
} (III.1.13) 

 
Second the tissue was classified according to the mean-distances between peaks of each 

A-line comparing with the known histogram at each distance d:           . Finally these 
techniques were combined from the confidence ratings calculated from both method calculating 
the difference first between the cumulative errors, second between the histogram amplitude of 
the classified type and the next-best tissue type: 
   
      {|                                  | |                                  |} (III.1.14) 

 
 

         {
|                                        | 

|                                        |
} (III.1.15) 

 
Sensitivity (97%) / specificity (68%) analysis was calculated from adjacent A-lines 

yielding better accuracy then to diagnose cancer from only one A-line. The method can be 
applied to complex layered tissue structure with a windowing scheme [164]. 
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In [163] adipose, fibrose/adipose and tumorous tissue is sampled from the breast. After a 
constant background subtraction the A-lines are smoothed (Fig. III.1.18a, b, c) and cut into 
separate sections since one A-line can cross multiple tissue types (Fig. III.1.18d, e, f). The next 
parameters are calculated: slope from different sections (Fig. III.1.18d, e, f), standard deviation 
of the depth profile variations around the slope linear fit, mean distance between peaks, standard 
deviation of the peaks spreading over depth (Fig. III.1.18g, h, i), power spectrum parameters: 
normalized power spectra to its maximum for each tissue section in one A-line calculated from 
Fourier analysis (Figure III.1.18k, l, m), weighted mean frequency, standard deviation around 
this mean, number of frequency peaks above a certain threshold and total area under peaks above 
the threshold (Figure III.1.18). The digital signal processing steps are clearly described in the 
paper. 
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Figure III.1.18. Steps of A-line processing: first column – adipose tissue; second column – 
fibrous and adipose tissue; third column – tumor tissue; 8 parameters are extracted [163]. 

 
Assuming multivariate normal distribution, the mean values   ̅ and covariance matrix    

is calculated from all the 8 parameters for all the 3 tissue types, as a training set from 48 samples.  
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(III.1.16) 

 
For classification of the tissue type the quadratic discrimination score   

  is calculated 
from a validation set (89 samples), which is the logarithm of the probability to assign the tissue 
under analysis to a tissue type, correctly identifying 93% adipose, 75.5% fibrous, 88% tumor 
tissues, and yielding to a sensitivity and specificity of 88% of Normal (adipose, fibroadipose, 
fibroglandular) and Abnormal tissue (tumor, tumor admixed with normal). The diagnosis is 
based on multiple A-lines per tissue sample. 

  
 

  
   

 

 
  |       |  

 

 
     ̅ 

   
       ̅  
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(III.1.17) 

 
The parameters which are considered the best discriminating factor are the slope, 

standard deviation of the depth profile variation and the total area above the threshold under the 
peaks are represented in a 3D coordinate system (Figure III.1.19) [163]. 
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Figure III.1.19. Scatter plot illustrating the clustering of the three main tissue types (adipose – 
green, fibrous – blue, tumor - red) and their projections on the x, y, and z planes for three 

parameters: Slope, Std, and PeakArea [163]. 
 
 One can see a difference for each tissue types, but there is still a significant overlap on 
the projection planes, so the diagnosis is better including the other parameters. More efficient 
classification could be achieved by weighting the parameters or instead of assuming multivariate 
normal distribution of factors, deducing the correct PDF from an expansive training set. The 
measurements are recorded on Spectral Domain OCT, so the path-length difference between the 
reference mirror and the sample surface, the input power to the sample, and the focus position 
could be fixed. 

A different approach to quantify morphological pattern of cancer in OCT images has 
been studied by fractal analysis. Fractal dimension measures the complexity and self-similarity 
of a pattern. Normal adipose, normal fibroglandular stroma and cancerous breast tissue was 
analyzed [165]. 

Cancer can be diagnosed based on fractals due to its disordered feature and irregularity. 
Fractal dimension was calculated per each A-line using the 1D box-counting analysis The 
computation were based after background subtraction, measured from mean value within an 
empty top portion of the image and normalized by max Intensity value, then rescaled to 8-bit. 
One A-line section is divided to different intervals/boxes, and the number of boxes containing 
values above a certain threshold was counted. The A-line section was divided successively, and 
the number of boxes containing at least one pixel above threshold vs. the given interval/box-size 
at log-log scale gives a linear function which slope gives the fractal dimension between 0 (dot) 
and 1 (line) [165]. 

The distribution of the fractal dimensions of the A-lines per B-scan is shown for adipose, 
stroma, and cancer in Figure III.1.20. Their mean and standard deviation clearly characterize the 
tissue type. The adipose tissue is more ordered and has smaller mean fractal dimension, but 
larger distribution then the more homogenous stroma and cancer. This method gives better 
separation between cancer and stroma then other methods. 
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The diagnosis was verified by t-test with Bonferroni correction, sensitivity/specificity 
analysis, ROC-curve. The accuracy of the method should be verified with digitally defining the 
ROI, tissue surface position, and measurement settings. The images were recorded at SD-OCT at 
fixed input power to sample arm. 
 

 
 

Figure III.1.20. H&E images of adipose with stromal regions (a), cancer with adipose cells (d), 
and stroma (e), their corresponding OCT B-scans [(b)(e)(h)], and fractal dimension distribution 

calculated from the A-lines of the B-scan [(c)(f)(i)] [165]. 
 

Fractal analysis in OCT was applied first time on artery segments (intima, media, 
adventitia) using 2D box-counting fractal dimension covering the A-line with square boxes - one 
side is the depth, the other side is the Intensity - yielding a fractal dimension between 1 (line) and 
2 (plane) [141]. 

Fractal dimension was calculated for each layer. Since there is not visible structure by 
layer, the results reveal the texture characteristics in the medium due to the speckle phenomena. 
Figure III.1.21 shows the recorded B-scan and one A-scan profile [141]. The results how that the 
analysis of speckle can characterize tissue type in case the measurement settings does not have a 
sufficient resolution. 
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a)  

 

b)  
 

 
Figure III.1.21. a) A-scan profile selected from b) B-scan at porcine artery. Arrows show the 

approximative region of intima (image size: 1.5 x 3 mm2); Logarithmic scale [141]. 
 
 The A-scan profile reveals the 3 sections of the artery segments. The attenuation 
coefficient is reduced from the compounded profile shown in Figure III.1.5. Beside this the 
unique A-line section can provide further information. The noisy feature is due to electronic and 
speckle noise.  
 In distinguishing artery layers SS-OCT was used with a fixed power to the sample arm. 
The region under analysis was small neglecting the effect of the sensitivity roll-off. The mean 
and standard deviation of the fractal dimensions calculated per each B-scan characterizes artery 
segments, however the attenuation coefficients provide better classification in this case. 
 Texture analysis of OCT images first was applied on portions of normal lung, abnormal 
lung, testicular fat, and normal skin (Figure III.1.22) [166]. Similar method was applied 
comparing various endothelial cell concentrations in collagen, and tissue phantoms using various 
sizes and concentrations of microspheres [167].  
 Texture analysis is a secondary method, and it can provide additional information to 
characterize tissue type in case of invisible structural information. The disadvantage of the 
texture examination is the high dependence on the measuring settings and resolution. Speckle 
size is function of lens aperture diameter and Numerical Aperture, operating wavelength, 
position of imaging system: object-lens distance. During the measurements all system settings 
(gain, imaging depth in tissue close to surface, focal depth position) remained fixed during the 
entire imaging experiment [167]. 
 The analysis of texture is a relative quantification method, and needs further 
improvements to use in clinical practice [165].  
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Figure III.1.22. Example OCT images (after 
4x4 local average filtering – better result) of 
mouse (a) skin, (b) fat, (c) normal lung and (d) 
abnormal lung. Image size: 1x0.25 mm [166]. 

 
In [166, 167] two types of statistical properties of the texture or brightness variation are 

extracted after enhancing the image. The images were corrected with averaging and histogram 
equalization, rescaled to 0-255 intensity scale, and represented in logarithmic scale [166, 167]. 

First spatial gray-level dependence matrices (SGLDM), or co-occurrence matrix was 
calculated. SGLDM quantifies texture based on 5 parameters: energy, entropy, correlation, local 
homogeneity and inertia calculated from the grey pixel points in 4 directions on the plane. 
Second, spatial frequency was calculated using 2D Discrete Fourier Transform, the frequency 
content was divided to 4 regions and the parameters extracted show the percentage contribution 
of each region [166, 167].  
 The data analysis was developed on a training set, the 24 parameters were normalized 
subtracting the mean, and divided by the standard deviation. The features were ranked using 
unequal-variance student t-test. The classification method is based on the best 3 features 
calculating the Mahalanobis distance between the training and validation set, and the shortest 
distance classifies the given tissue type. The method was also applied on Brodatz texture [166, 
167]. 
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(III.1.18) 

 
Speckle noise in coherent imaging methods, in particular in laser techniques and OCT has 

been widely studied. The statistical property of fully developed static speckle pattern is described 
with an exponential function. However in OCT this characteristic theoretically follows Rayleigh 
distribution [59, 142]. 
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The statistical theory of texture distribution is based on central limiting theorem of 
statistics. The Exponential and Rayleigh distributions have one parameter. There are studies to 
validate the theory experimentally, comparing different distribution to model speckled image 
formation: distribution with one parameter: Exponential, Rayleigh and with two parameters: 
Lognormal, Gamma, K, Nakagami, Weibull. 

The special case of gamma is the exponential distribution; the special case of Nakagami 
is the Rayleigh distribution. The special case of Weibull is the Exponential, Rayleigh, Chi and 
closely the Normal distribution. K is the approximation of Rayleigh-lognormal distribution. 
Distributions with three parameters provide higher flexibility. An example is the Generalized 
Gamma (GG3), already proved as the best candidate to model speckle noise. It includes the 
gamma (+Exponential), Weibull (+Exponential, Rayleigh, Chi, Normal), Nakagami (+Rayleigh) 
and approaches the lognormal distribution. 

Figure III.1.23 illustrates dermatological texture characteristics of finger epidermis and 
stratum corneum with the corresponding speckle intensity distribution. This segmentation 
method by speckle analysis is validated using support vector machine classification method 
[168]. 
 

a)  

 
Figure III.1.23.  a. 
OCT B-scan of 
Stratum Corneum 
(up) and Epidermis 
(down) segmented 
manually. b. Different 
fitting distributions to 
the B-scan data of 
Stratum corneum and 
Epidermis [168]. 

b)  
 

Beside the distribution of the grey-level parameters, the contrast (standard deviation over 
mean at given region) distribution can be also analyzed for image segmentation (Figure III.1.24).  
The theretical computation yields log-normal distribution. This method is more valuable to 
differentiate background region from flow which reduces contrast at given integration or 
exposure time [169, 170]. 
 Since the quantitative parameters calculated from speckle distribution or contrast is 
extremely sensitive to the measurement settings affecting speckle size, and dependent on the 
neighboring region from which the distribution is calculated, a differential contrast within one 
image can give comparable information for image segmentation [169]. 
 Image segmentation techniques or edge detectors in OCT are not broadly studied, and 
mainly applied to retinal layer identification. Some examples are: Marr-Hildreth (Laplacian of a 
Gaussian) algorithm, manual boundary tracing and thresholding, Markov boundary model, edge 
detection followed by edge linking using graph searching [60]. 
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a)  
b)  

 
Figure III.1.24. a) OCT image of chick embryo b) Spatial contrast computed from a 7x7 

moving window [169]. 
 

The contrast calculated on Figure III.1.24 represents not only the texture due to speckle, 
but also the structure due to scattering from layer boundaries having different index of refraction. 
The real contrast value should be calculated at the image section without structural information 
[169]. 

The question is whether the structural information should be enhanced removing speckle 
with denoising methods (spatial averaging, linear filters, median filters, wavelet analysis, 
adaptive smoothing, frequency compounding, polarization, averaging), or the texture analysis in 
case the tissue structural characteristics are not revealed with the OCT signal at given resolution. 
We are interested to classify tissue types based on unique structural properties, however in case 
of ambiguity, texture analysis can refine the diagnosis. 

In this manuscript the main interest is to study tissue structural properties of OCT using 
Digital Signal Processing Techniques. Image processing methods (e.g. cell counting analysis 
applied on Liposarcoma in OCT [24]) and complex modeling techniques are out of scope of this 
study. These analyses can have a good diagnostic ability, but our approach is different by 
providing a parametric description of the images where the function parameters diagnose tissue 
types, instead of quantifying images in a non-parametric way. 
 Further study will be to get a quantification method comparable between different OCT 
measurement devices so as to use a standardized measuring technique in clinical environment. In 
[171] the signal quality on different devices is analyzed with intensity histogram decomposition 
model. A ratio between the histogram of the background and the foreground on SD-OCT images 
is calculated. The factor is independent from the device characteristics, and can be designated as 
the analogy of the signal-to-noise ratio. 

Recent attempts are based on the standardization of the unique A-line from the same 
sample recorded with different devices, light sources, acquisition speeds, settings, scan protocols, 
image processing, data formats. The method is developed on retinal OCT images and still 
requires a lot of signal processing steps, and remains a main challenge (Figure III.1.25) [172]. 
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Figure III.1.25. Original A-scan profile and similar A-scan at the end of the process recorded at 

two SD-OCT devices [172]. 
 
 Retinal OCT images can be normalized based on the brightest layer yielding a relative 
intensity map. However the attenuation coefficients calculated from relative reflectivity is more 
trustworthy to diagnose pathological changes, the assumptions cannot be neglected related to 
constant attenuation of the reference layer, and constant sub-layer backscattering properties. 
Furthermore different eyes have different retinal layers, and different OCT devices can measure 
different retina layer segment distances of the same eye [173, 174]. 
 Image registration methods can also provide solution for the comparative analysis of 
OCT images. This technique can align images of the same object recorded with different 
measuring device. It includes similarity measures like feature-based registration, e.g. points, 
surfaces, and intensity-based registration methods, e.g. correlation coefficient (CC), sum of 
squared intensity differences (SSD), sum of absolute differences (SAD), techniques based on 
probability theory (joint entropy, mutual information), correlation in frequency domain e.g. 
phase correlation measure (PC). Transformation models pertain to image registration method, 
e.g. similarity transform, affine transform, perspective or homographic model [175]. 
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III/2. Data analysis, Results 

III/2/a. Introduction 

 The methodology to quantify tissue properties was developed on healthy and cancerous 
tissue samples. The tissue example was the Healthy Fat Tissue vs. two types of Liposarcoma. 
The analysis was developed on all the three tissue types, one sample from each class, and then 
statistically verified on new measurements. 

The tissue samples were excised from human patients’ abdomen/retroperitoneum at the 

University of Texas M. D. Anderson Cancer Center (UTMDACC). Protocols for tissue 
processing were approved by the UTMDACC and University of Houston Biosafety Committees. 
Normal Fat tissue, Well-Differentiated Liposarcoma and De-Differentiated Liposarcoma were 
acquired. Histological diagnosis and classification of samples was performed by a UTMDACC 
sarcoma pathologist (Figure III.2.1). The tissue was preserved in sterile phosphate buffered 
saline then stored in refrigerator until imaged using OCT system. 
 

a)  b)  
 

c)  

 
 
 
 
 
Figure III.2.1. Histological images. 
a) Normal Fat Tissue 
b) Well-Differentiated Liposarcoma with 
extensive mitotic change 
c) Highly Fibrotic De-Differentiated 
Liposarcoma. 
(Magnification 10x).  

 
Each tissue sample was recorded on the above explained Spectral-Domain (SD) OCT 

measuring rig in the BioOptics Laboratory at the University of Houston, and processed in 
LabView environment (Figure III.2.2). 
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a)  b)  
 

c)  

 

 
 
 
 
 
 
Figure III.2.2. Tissue Cross-Sections. OCT 
Images (B-scans composed of 500 A-lines);  
a) Normal Fat Tissue 
b) WDLS with Extensive Myxoid Change 
c) Highly Fibrotic DDLS.  
White bar = 500 µm. 

The above images show the cross-section of Normal Fat tissue, WDLS and DDLS. This 
2D cross-section called B-scan is composed of 500 adjacent A-lines. One A-line (1D) shows the 
backscattered intensity variation in function of depth from a laser footprint of 8 μm in focal plane 
(in air). The region is ~3mm wide scanned with a galvanometer mirror, with backscattered light 
collected from a region of up to ~1 mm in depth. 

The internal structure is revealed, and the OCT images are comparable to the stained 
histology. The structure is detected from the scattering properties of the tissue types. The laser 
clearly reveals the adipose cells seen in Normal Fat Tissue. WDLS has extensive myxoid change 
including vasculature, but still has some adipose cells with varying size, which is a diagnostic of 
WDLS. The part of DDLS imaged here resembles fibrotic tissue.  

We can see the differences of the different tissue types on the gray-scale images. We 
intend to transform the qualitative information from the images to a quantitative statistical 
parametric description of the tissue. The statistical model is based on the variability of the A-
lines in the cross-section at a given region. One A-line example of the different tissue types is 
seen on Figures III.2.3&4&5 in arbitrary unit and dB scale: 
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a) b)  
 

Figure III.2.3. OCT A-line of Normal Fat Tissue a) arbitrary unit b) dB scale. 
 

a)  b)  
 

Figure III.2.4. OCT A-line of WDLS a) arbitrary unit b) dB scale. 
 

a) b)  
 

Figure III.2.5. OCT A-line of DDLS a) arbitrary unit b) dB scale. 
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Cancerous tissue is much denser than healthy tissue. Since light scattering occurs chiefly 

at interfaces, scattering is much stronger in cancerous tissue. The inhomogeneous Normal Fat 
Tissue is distinguished with periodic scattering at the cell boundaries. The attenuation of light is 
higher in the dense tissue, and the back reflection loses the periodicity as the adipose cells 
dedifferentiate in the cancerous tissue. The optical properties show the morphology of the 
tissues, the scattering effects reveal the cellular structure at a good resolution for our analysis. 
 However only one A-line is presented, they can distinguish tissue types by sight by the 
steepness of the slope and the periodicity or standard deviation around this slope. As stated also 
in the literature, the analysis of more adjacent A-lines provides statistical significant results. We 
will keep analyzing a bunch of A-lines instead of focusing on one A-line-based feature. The 
variability of the intensity pixel points in these A-lines per B-scan will be the basis of our 
modeling approach. The inhomogeneity of the various tissue types is described expressing this 
variability with parameters and so classifying tissue types. The data analysis is developed in 
arbitrary unit. After retrieving the raw data from LabView, the post-processing step of the 
quantification process is developed in MatLab environment.  
 

III/2/b. Steps of Data analysis 

Step 1: First Steps towards quantitative tissue analysis 

 5 A-lines from a B-scan will be plotted as an example to represent the variability (Figure 
III.2.6): 

a)  b)  



120 
 

c)  

 
 
 
 
Figure III.2.6. 5 A-line-plots x = pixel 
position of the A-line from the B-scans of 
Figure III.2.2, and the mean value of 400 A-
lines. A) Normal Fat Tissue b) WDLS (Well-
Differentiated Liposarcoma) c) DDLS (De-
Differentiated Liposarcoma) . 

 
In appearance the variation of the A-lines is characteristic to differentiate the material 

types. The first step to describe this variability is to compute the mean, standard deviation, and 
standard deviation over mean at each depth position (Figure III.2.7): 
 

a)  b)  

c)  

 
 
 
 
 
Figure III.2.7. Mean, standard deviation, and 
standard deviation over mean of 400 A-lines 
of the OCT images on Figure III.2.2. 
a) Normal Fat Tissue 
b) WDLS (Well-Differentiated Liposarcoma) 
c) DDLS (De-Differentiated Liposarcoma). 

 
 For each tissue type the standard deviation from the mean is extremely big, and this 
“noise” might contain useful information. The aim of the study is to extract information from the 
standard deviation which can characterize material properties. 
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First, different depth positions (zi) were chosen and the Intensity values of the 400 A-
lines were plotted at the given depth position I(zi) (Figure III.2.8). 
 

a)  b)  

c)  

 
 
 
 
 
 
Figure III.2.8. Intensity variation of 400 A-
lines in a B-scan at specific depth positions z 
[pixel]. (1mm = 228 pixels) 
a) Normal Fat Tissue 
b) WDLS 
c) DDLS. 

 
The Intensity values are reordered in descending order, and plotted on Figure III.2.9. The 

results show clearly different functions for healthy and cancerous tissue. The parametric function 
will be defined from these curves. 
 

a)  b)  
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c)  

 
 
 
 
 
Figure III.2.9. Reordered Intensity Values 
from Figure III.2.8 at specific depth positions z 
[pixel] (1mm = 228 pixels) 
a) Normal Fat Tissue 
b) WDLS 
c) DDLS. 

 
The curves change as we go deeper in the tissue. The intensity decreases due to the light 

attenuation effects, and the sensitivity roll off explained in former chapter. At the first try to 
compare the tissue types, these reordered intensity values at a given depth position were chosen 
close to the surface, and normalized according to maximum value (Figure III.2.10.a). 

 

a)  b)  
Figure III.2.10.  Reordered Intensity Values of Normal Fat Tissue, WDLS, DDLS, normalized 

to the maximum value at a depth position z [pixel] close to surface. 
 

The best fit of these curves (R > 0.985) is the exponential equation, whose parameters 
describe the material types: 
                  (III.2.1) 

 
 a b*10-2 c d 
Normal Fat 0.3429 0.7682 0.8073 0.2022 
WDLS 0.5616 0.5258 0.4512 0.1185 
DDLS 0.5226 0.5061 0.4643 0.1817 

 
Table III.2.1. Coefficients of the exponential equations discriminating Normal Fat Tissue vs. 

WDLS and DDLS. 
 

MatLab Curve Fitting Toolbox software uses the method of least squares when fitting 
data (Figure III.2.10.b). The intensity values reordered in ascending order are the same as the 
inverse of the Cumulative Distribution Function (CDF) called Quantile Function. 
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Step 2. Histograms characterize different tissue types 

Instead of CDF analysis, we will analyze the Probability Density Function (PDF) or 
Histogram of the pixel intensity values at a specific depth position (zi) or at a given region 
(∑   

 i). Histogram analysis of intensity values in OCT images have already been studied for 
speckle analysis, or for signal image quality distinguishing foreground from the background, but 
never applied to study the structural properties of tissue. 

The Histogram analysis provides multiple fitting distributions. We chose a universal 
model, the Generalized Extreme Value distribution, which includes the family of more 
distribution models: 
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 (III.2.2) 

 
where k is the shape- , μ is the location- and σ is the scale parameter. The Generalized Extreme 
Value Distribution with three parameters is the emergence of three distributions. One is the 
Weibull distribution as an example of central theorem statistics. Fréchet - and Gumbell 
distributions describe extreme value statistics. The special case of Fréchet is the Pareto-, Cauchy- 
or Student-t distribution, and the special case of Gumbell is the Normal, Exponential, Gamma or 
Lognormal distributions. 

The comparison of the intensity distribution fits at a given depth position close to surface 
can be seen on Figure III.2.11. The histograms are normalized by the area, and their mean is 
subtracted. MatLab Statistics Toolbox fits the distribution by Maximum-Likelihood Estimation 
(Table III.2.2). 

 

 
 
 
 
 
 
Figure III.2.11. Histogram fitted to the 
Intensity Values at a depth position z 
[pixel] close to surface, normalized by 
area, with subtracted mean; red-Normal 
Fat Tissue, blue-WDLS and brown-DDLS. 

 
 k σ*10

-2 
μ*10

-2 

Normal Fat Tissue 0.427325 0.15548 -0.180471 
WDLS 0.172213 0.213281 -0.162799 
DDLS 0.0895055 0.230444 -0.154994  

 
Table III.2.2. Coefficients of the Normalized Histograms at specific depth position 

discriminating Normal Fat Tissue vs. WDLS and DDLS. 
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This basic idea will be developed further below. The same problems arise as in the 
literature analysis: to find the tissue surface and Region of Interest where backscattering still 
occurs; to remove measurement settings, the effect of exposure time, focus position, path-length 
difference between mirror and tissue surface, camera sensitivity. 
 

Step 3: Removing Tissue Surface Irregularity 

For the computation in each quantification processes, the tissue surface topology first is 
numerically straightened to align each depth position. For each B-scan, we translate the A-line 
sections for different scanning positions so that the depth variable has a common reference in all 
cases. 

The tissue characterization is strongly affected by fixing the correct edge of the tissue. 
The identification of the surface position was analyzed in different way. The A-lines are aligned 
according to the highest intensity points (Figure III.2.12), shifting using cross-correlation 
functions between a fix and the adjacent lines (Figure III.2.13), and shifting according to an 
absolute intensity threshold (Figure III.2.14). The next figures show the different methods on two 
different biological materials cut from the meat (a) and fat (b) part of a piece of ham. 

 

a)  b)  

 
 
 
Figure III.2.12. 
Edge detection. 
Black lines mark the 
Highest scattering 
maximum a) meat b) 
fat. 

a)  b)  

 
 
Figure III.2.13. 
Edge detection. 
Black lines mark the 
best correlation 
between adjacent A-
lines a) meat b) fat. 

a)  b)  

 
 
 
 
Figure III.2.14. 
Edge detection. 
Absolute threshold at 
a given intensity 
value a) meat b) fat. 
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a) b)  

 
 
 
Figure III.2.15. 
Edge detection. 
Canny edge detector 
applied 3x a) meat b) 
fat. 

 
These methods are uncertain and do not follow the real border of the surface. Due to the 

inhomogeneity of the tissue, the A-lines cannot be correlated, and higher intensity points can be 
found deeper in the tissue. The edge defined at a given threshold can vary according to tissue 
types and can yield erroneous result. Matlab provides implemented edge detectors (Canny, 
Sobel, Log, Prewitt, Roberts, Zerocross). After investigating the utility of these methods, the 
canny edge detector algorithm is applied three times successively to find the border of the tissue 
and to straighten the image surface (Figure III.2.15). 

The canny edge algorithm implements more consecutive steps to find edges. First the raw 
image is filtered with a Gaussian filter to remove noises, and then the intensity gradient is 
calculated from the first derivatives in x/y direction. The non-maximum points are suppressed 
from this image so to obtain a binary image, finally the edges are drawn with hysteresis: based 
on the gradient there are weak and strong edges, and the final edge includes strong edges, and 
weak edges only if they are connected to strong edges (Figure III.2.16). 
 

   
 

Figure III.2.16. Canny edge binary images applied successively to obtain the surface of the 
tissue. White pixel value ‘1’ showing edges, black pixel value ‘0’ showing no edge. The border 

of the tissue becomes continuous only on the third image. 
    

The tissue surface is defined from the last binary image pointing to the first ‘1’ digit in 
each A-line. This method is sensitive to background noise as well so the images should be 
filtered first. For further improvement Matlab Image Processing Toolbox can provide other tools 
to find the surface digitally (edge detectors, histogram equalization, high or band pass filters, 
adaptive threshold). 
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  Finally we apply the canny edge detector implemented in Matlab Image Processing 
Toolbox three times on the B-scans after median filtering the images (Figure III.2.17-20). Before 
further analysis, we screen all the B-scans to verify that each one is straightened properly. The 
saturation points on the images and the background noise can give erroneous results without 
correction (Figure III.2.21-22). 
 

 
 

Figure III.2.17. Original image with the 
straightening line found after the algorithm. 

 
 

Figure III.2.18. Step 1. 2D median filter 
applied on the raw image. The median filter is 

calculated from a moving 10x10 pixel box. 
 

 
 

Figure III.2.19. Canny edge detector is 
applied 3x on the 2D filtered image, then the 

surface is straightened according to the first ‘1’ 

value at each line of the binary image (red 
line). The obtained edge is median filtered. The 

median intensity value is calculated from 20 
adjacent pixel points successively (green line). 

 
 

Figure III.2.20. The original image is properly 
straightened applying the filtered edge. 
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Figure III.2.21. Saturation points affecting the 

images. 

 
 

Figure III.2.22. Noise crossing the tissue. 

 
The problem of tissue surface straightening and edge detection is a common issue for 

each quantitative method described above, where the mean or variation of the adjacent A-lines is 
used to determine tissue scattering properties. 
 

Step 4: Compensate measurement settings and light attenuation effect 

 After straightening the OCT images the statistical analysis has to be able to compare the 
data measured at different experimental setup. The normalization process will be defined by 

reducing the effects of the measurement setup, the sensitivity roll off from farther path-length 
differences, and the light attenuation effect. 

At each depth position the mean and standard deviation of the A-lines are calculated 
(Figure III.2.23). As stated in the literature, the attenuation of the light can be obtained by 

filtering per A-line, or by averaging adjacent A-lines in the B-scan. The attenuation effect can be 
removed by dividing the intensity points by their mean at each depth position, and this way to 

normalize every scan line. This process will also compensate the different exposure times for 

different measurements without affecting the material scattering properties and structural 

characteristics. 
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Figure III.2.23. Straightened Tissue Surface, and mean+std at each depth position. 

 
 The control of the setup for the measuring rig is robust, the optimal recording position is 
set manually, which enhance the uncertainty to get a universal model. However the 
normalization process neglects the exposure time setting, and light attenuation effect, there is 
still the problem of the focus position, and the path-length difference between the tissue surface 
position and the reference mirror which are varying at each measurement. 

To overcome this problem, first we measured the curve of the sensitivity roll-off 
recording the same sample point at lower intensity from farther path-length differences as 
explained in former chapter. This reduces the errors of straightening coming from the intensity 
variations because of the oblique or irregular tissue surface. 

This sensitivity curve can be calculated from experiments with a second mirror in the 
sample arm by dynamic focusing. We shift the mirror toward depth and we place the mirror to 
the perfect focus position for recording, so as the camera sensitivity curve is obtained, and 
normalized by the maximum intensity value (black and blue dots on Figure III.2.24). 

This normalized curve is independent from the measurement settings, but it is affected by 
the focus position which varies at each measurement. To get a comparable measurement, the 
sensitivity roll-off curve distorted due to the intensity variation in the focal region should be 
corrected, independently from the measurement settings. 
 During tissue measurements the focus position should be always set at the beginning of 
each sample measurement, usually in the tissue volume. In conventional SD OCT system, the 
focus position does not change during recording, a fixed focusing system is set up. The 
coherence plane at zero path-length differences (position of the DC term) does not correspond 
with the focal plane. The coherence plane is outside of the tissue volume, and does not change 
during recording. However SD OCT system uses low NA with large depth of focus, the imaging 
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range is deeper than the focal region, and so the OCT image at a specific depth region will show 
backscattering from the out-of-focus region. 

The effect of the focus is measured and described below. New measurements were made 
with the same mirror shifting in depth in the sample arm, but the backscattering signal was 
recorded keeping the same focus position, which was set up from a former measurement with 
tissue in the sample arm (fixed focus). The normalized values of these measurements are shown 
with red dots on Figure III.2.24.  
 

 

 
 
 
 
 
 
 
 
Figure III.2.24. Normalized 
Sensitivity roll-off. 
Black and Blue dots mark 
measurements from a mirror in 
the sample arm shifted in 
depth at focus position, red 
dots mark measurement from 
the mirror shifted in depth in 
the sample arm at fixed focus. 

  
These curves show that the camera sensitivity curve is hardly affected by the intensity 

variation of the focal region. During measurements the exact focus position is not verified, and it 
is farther from our Region of Interest where the tissue backscattering is detected, and so this 
effect can be neglected. 

The measurement was made on mirror featuring specular reflection. In this case the 
apparent Rayleigh length (zR) is equal to the Rayleigh length (z0), because the factor α is equal to 

1 (      ). The Rayleigh length in diffuse media is doubled (α = 2), so the focal region is 
broadened, or it can be neglected. 
 We will not investigate further the focus depth limitation already analyzed in the 
literature, and will accept the correction computed from the curve coefficients fitted on the 
normalized intensity points at the shifted mirror in depth at fixed focus position. 
Matlab Curve Fitting Toolbox computes the parameters by Least Squared fitting procedure. The 
equation of the fitted curve is a Gaussian: 
 

           
 (

       
     

)
 

 (III.2.3) 

   
During analysis each A-line will be corrected according to this curve before calculating 

the histograms. The A-line plot of Figure III.2.7 after Gaussian correction can be seen on Figure 

III.2.25: 
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a)   
b)  

   

c)  

 
 
 
 
Figure III.2.25. Mean, standard deviation, and 
standard deviation over mean of 400 A-lines 
after sensitivity curve correction. 
a) Normal Fat Tissue 
b) WDLS 
c) DDLS 
(The curves are not truncated yet at the tissue 
surface position). 

 
 One can state from these figures that the standard deviation over mean (red on Figure 

III.2.25) can differentiate tissue types, and the first analysis will extract information from these 

curves. 
 

Step 5. Define Region of Interest (ROI) on the STD/MEAN curves 

After the surface is straightened numerically, the correct mean and STD can be obtained 

at each depth position. For each B-scan, we translate the A-line sections so the tissue surface will 
be positioned at common pixel position. 

The STD/MEAN ratio at each depth position of a B-scan from the three tissue types 
calculated on the raw image, and the sensitivity-corrected image is shown on Figure III.2.26. 
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a)  

b)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure III.2.26. STD/MEAN ratio 
at each depth position in a B-scan 
on Normal Fat (red), WDLS 
(cyan), DDLS (black).  
a) Original data  
b) Gaussian corrected data. 
(The curves are not truncated yet 
at the tissue surface position). 

 
The curves by sight represent different features regarding mean or standard deviation for 

healthy vs. cancerous tissue. The Probability Density Functions (PDF) of the STD/MEAN curves 
will be plotted, and the Generalized Extreme Value (GEV) Distribution will be fitted on the 
intensity values. 

To draw the correct distribution functions, the tissue surface and the Region of Interest 
(ROI) from the scattering region should be determined properly. The straightening process aligns 
the tissue border, but it does not yield the exact position separating from the background. To 
localize the tissue surface on the straightened images the mean of the A-lines in one B-scan, and 
the first derivatives of the mean are calculated from the uncorrected images (Figure III.2.27). 
The tissue surface is defined at the highest derivative point. 
 



132 
 

a)  b)  
 

c)  

 
 
 
 
 
 
 
Figure III.2.27. Mean intensity from each 
depth position (blue) and first derivative (red) 
of a B-scan 
a) Normal Fat Tissue 
b) WDLS 
c) DDLS. 

 
The tissue surface is identified. The next question is till which depth position the 

backscattering provides useful information revealing structural properties of the tissue and 
characterizing tissue types. 150 pixel = 0.659 mm depth is considered for analysis because the 
most dense tissue (DDLS) does not reflect light from deeper region at this wavelength range and 
camera settings. 

The Region of Interest (ROI) should be defined between the tissue surface and end before 
the 150th pixel depth. This analysis relies on the use of a windowing scheme, in which sections 
of the intensities as function of depth are evaluated separately (Figure III.2.28). 
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a)  
b)  

 
Figure III.2.28. a) Windowing scheme on the normalized mean intensity signals from Figure 

III.2.27 and b) Standard Deviation over Mean at each depth position in the same region. Normal 
Fat (red-), WDLS (cyan-), DDLS (black line). The region shows 150 pixel - depth from the 

tissue surface. 
 

The ROI was defined after moving a window at different size and position on the 150 
pixel points. Standard deviation over mean was calculated and the Generalized Extreme Value 
(GEV) Distribution parameters (k, σ, μ) were computed for each region in multiple B-scans. 

Window sizes from 50 to 150 pixels in 1 pixel increment were investigated first 
beginning at the tissue surface, and then shifted pixel by pixel deeper in the tissue. The optimal 
window size and position produces the largest separation of the Normal Adipose and Cancerous 
Tissue (WDLS, DDLS) parameters on the σ, μ plane (Figure III.2.29). 
 

 

 
 
 
 
 
 
 
 
 
 
Figure III.2.29. GEV 
Distribution parameters 
after windowing process, 
green dots show the optimal 
window size, the largest 
separation on the µ-σ plane. 
One B-scan is analyzed 
here. 
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At this specific B-scan each region differentiates well the tissue types. The optimal 
window position begins at 11th pixel, and the width is 50-pixel deep. Further window shifting 
procedure is applied on adjacent B-scans with a window size increasing from 20 pixels up to 150 
pixels beginning at the tissue surface (Figure III.2.30). 
 

a)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure III.2.30. 
Variation of a) µ and 
b) σ by incrementing 
window size beginning 
from the tissue 
surface, 200 B-scans 
on Normal Fat Tissue, 
160 B-scans on WDLS 
and DDLS. 

b)  
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However smaller region also gives characteristic parameters, the 40 pixel region gives the 
optimal separation between the different tissue types regarding the σ-μ parameters. This 40-
pixel-window was then shifted by 5 pixels successively deeper in the tissue (Figure III.2.31). 
 

a)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure III.2.31. 
Variation of a) µ and b) 
σ by shifting a 40-pixel 
size  window beginning 
from the tissue surface, 
200 B-scans on Normal 
Fat Tissue, 160 B-scans 
on WDLS and DDLS. 

b)  
  

After investigating the variation of σ and µ at different position from the 40-pixel (= 
0.1758 mm) window size, the tissue surface was chosen as optimal solution as the beginning of 
ROI. In this case, the surface scattering has no significant effect either whether the ROI begins at 
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the surface or some pixel deeper in the tissue. In deeper region, where the backscattering is 
weak, the statistical analysis becomes irrelevant. 

The 40 pixel deep window size beginning at the surface is applied on 200 B-scans of 
Normal Fat tissue and 160 B-scans of WDLS and DDLS, and the GEV parameters σ and µ were 
calculated (Figures III.2.32&33). 
 

a)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure III.2.32. GEV 
parameters, 200 B-scans for 
Normal Fat Tissue, 160 B-
scans for WDLS and DDLS 
a) σ –, b) μ – variation of B-
scans in a tissue volume. 

b)  
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Figure III.2.33. GEV 
parameters on the σ-μ 
plane. 200 B-scans for 
Healthy Fat 160 B-
scans for WDLS and 
DDLS. Green point 
marks the Center of 
Gravity. 

 
 The analysis applied for the three tissue types distinguishes well healthy vs. cancerous 
tissue, however the DDLS and WDLS parameters are overlapped. Further we will analyze tissue 
scattering properties at this Region of Interest. 
 

Step 6. Results of the STD/MEAN curves 

The final results were applied on the sensitivity roll off – corrected curves. The GEV 
Distribution parameters (k, σ, µ) were calculated on the above defined ROI of the std/mean 
intensity curves. The GEV Distribution parameters (k, σ, µ) were calculated from 200 Normal 
Fat Tissue, 160 WDLS and DDLS B-scans (GEV parameters per B-scan in Appendix 2). 

The mean and standard deviation of each parameter were calculated yielding this way to 
a theoretical universal GEV Distribution specific for each tissue type, deduced from the 
experiments. The PDFs are plotted on Figure III.2.34, and the coefficients are represented in 
Table III.2.3. 
 
 



138 
 

 

 
 
 
 
 
 
Figure III.2.34. 
Histogram, GEV 
Distribution 
parameters (k, σ, μ) 
fitted to the 
STD/mean ratio of 
the intensity values 
in ROI; 
Mean+standard 
deviation on 200 
B-scans of Normal 
Fat, and 160 B-
scans of WDLS 
and DDLS. 

 
 

STD/MEAN k σ µ 
Baseline 

(Normal Fat) 
0.0007 

+0.2347 
0.2151 

+0.0579 
1.2796 

+0.0659 
Deviation 1 

(WDLS) 
-0.0128 
+0.2443 

0.0529 
+0.0120 

0.7093 
+0.0359 

Deviation 2 
(DDLS) 

0.0857 
+0.1673 

0.0493 
+0.0128 

0.6502 
+0.0584 

 
Table III.2.3. GEV parameters calculated from the STD/MEAN ratio of the intensity in ROI, 

mean and standard deviation is calculated on 200 B-scans of Normal Fat Tissue, and 160 B-scans 
of WDLS and DDLS. 

 
The curve coefficients well differentiate between the healthy and cancerous tissues, but 

there is less distinction between the grades of the cancer. To draw the deviation from the healthy 
tissue as baseline, the next parameters are calculated, where b index is the Baseline tissue, d 
index is the Deviated tissue parameter (Table III.2.4). 
 

STD/MEAN 
   

     

  
    

     

  
    

     

  
 

Baseline 
(Normal Fat) 

0 
+335.2857 

0 
+0.2692 

0 
+0.0515 

Deviation 1 
(WDLS) 

-19.2857 
[-368.2857;329.7143] 

-0.7541 
[-0.8099;-0.6983] 

-0.4457 
[-0.4737;-0.4176] 
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Deviation 2 
(DDLS) 

121.4286 
[-117.5714;360.4286] 

-0.7708 
[-0.8303;-0.7113] 

-0.4919 
[-0.5375;-0.4462] 

 
Table III.2.4. Comparison of the GEV Distribution parameters calculated from the STD/mean 
ratio at each depth position in ROI; mean and standard deviation on 200 B-scans of Baseline 

Tissue and 160 B-scans of Deviation 1&2 is calculated. 
 

The coefficients shown in Table III.2.4 are illustrated on Figure III.2.35. The edges of the 
boxes represent the standard deviation with the mean values in the middle of the boxes. 
 

 

 
 
 
 
Figure III.2.35. 
Comparison of the 
GEV Distribution 
parameters (k, σ, µ) 
represented at each axe 
of the 3D coordinate 
system calculated from 
the STD/mean ratio of 
the intensity values; 
Mean and standard 
deviation on 200 B-
scans of Baseline 
Tissue and  160 B-
scans of Deviation 
1&2. 

 
It is clear, that there is a statistically significant separation between the healthy and 

cancerous tissue in each projection plane (Figure III.2.36). 
 

a)  b)  
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c)  

 
 
 
Figure III.2.36. Projection planes of the 3D 
coordinate system on Figure III.2.35. 
Comparison of the GEV Distribution 
parameters represented at each axe of the 3D 
coordinate system calculated from the 
STD/mean ratio of the intensity values; Mean 
and standard deviation on 200 B-scans of 
Baseline Tissue and  160 B-scans of Deviation 
1&2. 
 

 

Step 7. Define Region of Interest (ROI) on the mean normalized Intensity variations 

A second method is developed to analyze the same data set. Instead of calculating the 
standard deviation over mean curves, all the measured intensity values are now considered, and 
also normalized by the mean intensity at each depth position. The same windowing process was 
applied on the B-scans, and the optimal window size of 40 pixels beginning from the surface has 
been demonstrated as shown here below (Figure III.2.37). 
 

 

 
 
 
 
 
 
 
Figure III.2.37. Scheme of the 
windowing process on the mean 
normalized B-scans, from a minimum 
window size of 20 pixels, incremented 
successively with 1 pixel, and shifted 
pixel by pixel up to 150 pixel depth. 

  
The parameters (k, σ, µ) of the GEV Distribution were calculated first on 1 B-scan from 

each windowing region and plotted on the σ-µ plane (Figure III.2.38). 
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Figure III.2.38. GEV 
Distribution parameters 
(σ, µ) computed from 
windowing process; 
green dots show the 
Center of Gravity. 
Minimum window size 
of 20 pixels in a 1 pixel 
increment and shifted in 
depth. 

 
After 1 B-scan analysis, any size of window at any position differentiates healthy vs. 

cancerous tissue, and the grade of cancer. The same window shifting procedure is applied on 200 
B-scans of Normal Fat Tissue, and 160 B-scans of WDLS and DDLS (Figure III.2.39). 
 

a)  
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b)  

 
 
 
 
 
Figure III.2.39. 
Variation of a) µ and 
b) σ computed from a 
window size of 20 
beginning from the 
tissue surface, and 
incremented by 5-
pixel-shift till 150 
pixel depth. 200 B-
scans on Normal Fat 
Tissue, 160 B-scans on 
WDLS and DDLS. 

 
 We will accept the 40-pixel deep window size as an optimal solution. This 40-pixel-
window was then shifted by 5-pixel-shift successively deeper in the tissue up to 150 pixel depth 
(Figure III.2.40). 
 

a)  
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b)  

 
 
 
 
 
 
Figure III.2.40. 
Variation of a) µ and 
b) σ computed from a 
window size of 40 
beginning from the 
tissue surface, shifted 
in depth by 5-pixel-
shift till 150 pixel 
depth. 200 B-scans on 
Normal Fat Tissue, 
160 B-scans on WDLS 
and DDLS. 

 
After evaluation of the data in each window region at each B-scan via the parameters of 

the GEV distribution, a window size of 40 pixel = 0.1758 mm is chosen, beginning from the 
tissue surface. Our method turned out to be independent on the surface scattering effect. Smaller 
region can give large standard deviation on the parameters, while windowing deeper in the 
tissue, where backscattering hardly occurs can give erroneous results. 

The 40 pixel-deep window size beginning at the surface is applied on 200 B-scans of 
Normal Fat Tissue and 160 B-scans of WDLS and DDLS, and the GEV parameters σ and µ were 
calculated and plotted on Figures III.2.41&42. 
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a)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure III.2.41. GEV 
Distribution parameters 
computed from ROI on 
200 B-scans for Normal 
Fat Tissue, 160 B-scans for 
WDLS and DDLS a) σ –, 
b) μ – variation of B-scans. 

b)  
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Figure III.2.42. GEV 
Distribution parameters 
on the σ-μ plane 
computed from ROI on 
200 B-scans for Healthy 
Fat Tissue, 160 B-scans 
for WDLS and DDLS. 
Green point marks the 
Center of Gravity. 

 
 The results obtained at this Region of Interest are similar to the GEV Distribution 
parameters computed from the standard deviation per mean values regarding the capacity to 
distinguish healthy vs. cancerous tissue, and the overlapping of the Liposarcoma subtypes. 
 

Step 8. Results of the mean normalized Intensity variation 

The same procedure was applied on the mean normalized intensity values at this ROI, as 
to the std/mean analysis. Figure III.2.43 shows the PDFs drawn from the theoretical GEV 
parameters deduced from the sensitivity roll-off – corrected curves of 200 Normal Fat Tissue, 
160 WDLS, and 160 DDLS B-scans (GEV parameters per B-scan in Appendix 2). The 
coefficients (k, σ, µ) are represented in Table III.2.5. 
 
 
 
 



146 
 

 

 
 
 
Figure III.2.43. 
Histogram, GEV 
Distribution 
parameters (k, σ, μ) 
calculated from the 
mean normalized 
intensity values in 
ROI. Mean and  
standard deviation 
on 200 B-scans of 
Normal Fat Tissue 
and 160 B-scans of 
WDLS and DDLS 
are analyzed. 

 
I/MEAN k σ μ 
Baseline 

(Normal Fat) 
0.8209 

+0.0647 
0.3532 

+0.0181 
0.3191 

+0.0254 
Deviation 1 

(WDLS) 
0.1905 

+0.0358 
0.4561 

+0.0100 
0.6381 

+0.0229 
Deviation 2 

(DDLS) 
0.1447 

+0.0684 
0.4462 

+0.0044 
0.6700 

+0.0364 
 

Table III.2.5. GEV parameters (k, σ, μ) from the mean-normalized intensity values in ROI. 
Mean and standard deviation calculated from 200 B-scans of Normal Fat, and 160 B-scans of 

WDLS and DDLS. 
 

Similarly to the first method the PDF parameters characterize well healthy vs. cancerous 
tissue, furthermore the mean normalized intensity variation seems more accurate than the 
std/mean ratio. WDLS and DDLS coefficients are not sufficiently distinguished, and further 
analysis is needed. An additional parameter might provide a distinguishable feature. 
 We will follow the same analysis as above to represent cancer as a deviation from the 
healthy tissue. In Table III.2.6 b is the Baseline (Healthy) tissue parameter, d is the Deviated 
(cancerous) tissue parameter. 
 

ΣI /MEAN gc. 
   

     

  
    

     

  
    

     

  
 

Baseline 
(Normal Fat) 

0 
+0.0788 

0 
+0.0512 

0 
+0.0796 

Deviation 1 
(WDLS) 

-0.7679 
[-0.8115;-0.7243] 

0.2913 
[0.2630;0.3196] 

0.9997 
[0.9279;1.0715] 

Deviation 2 -0.8237 0.2633 1.0997 
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(DDLS) [-0.9071;-0.7404] [0.2508;0.2758] [0.9856;1.2137] 
 

Table III.2.6. Comparison of the GEV parameters calculated from the mean-normalized 
intensity values in ROI. Mean and standard deviation on 200 B-scans of Baseline Tissue and  

160 B-scans of Deviation 1&2. 
 

Figure III.2.44 shows similar results then the first method representing the coefficient 
differences in the 3D coordinate system separating well the healthy and cancerous tissue in each 
projection plane, with the overlapped WDLS and DDLS subtypes. 
 

 

 
 
 
Figure III.2.44. 
Comparison of the 
GEV Distribution 
parameters (k, σ, µ) 
represented at each axe 
of the 3D coordinate 
system calculated from 
the mean normalized 
intensity values in ROI. 
Mean and standard 
deviation of 200 B-
scans of Baseline 
Tissue and 160 B-scans 
of Deviation 1&2 are 
analyzed. 

 
The projection planes of the 3d coordinate system are shown on Figure III.2.45. 

 

a)  b)  
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c)  

 
 
 
Figure III.2.45. Projection planes of the 3D 
coordinate system on Figure III.2.44. 
Comparison of the GEV Distribution 
parameters represented at each axe of the 3D 
coordinate system calculated from the mean 
normalized intensity values at each depth 
position in ROI. Mean and standard deviation 
of 200 B-scans of Baseline Tissue and  160 B-
scans of Deviation 1&2. 

 

Step 9. Discussion of the data analysis 

We can deduce that both statistical analyses are a viable method to differentiate tissue 
types. The methods are independent of the measurement settings when the std/mean ratio is 
considered or when the intensity values are normalized by the mean at each depth position. The 
computation from the std/mean ratios yields larger uncertainty. This method can be more 
sensitive also to the way how we find the surface of the tissue since the data points from which 
the histogram is drawn is deduced calculating the std/mean from each depth position (40 pixels 
of ROI), compared to the second method where the histogram is drawn from the data points 
contained in all the Region of Interest (40x200 or 40x160 pixel points). 

In addition the data were also corrected by the sensitivity roll-off characteristics. The 
usefulness of this correction is studied below. For comparison the data analysis was also applied 
on the images without this correction in the ROI. The same B-scan examples were chosen shown 
on Figure III.2.2 for Normal Fat Tissue, WDLS and DDLS. We expect bigger effect of the 
sensitivity roll-off by straightening an oblique or irregular tissue surface (Normal Fat Tissue, 
DDLS on Figure III.2.2). 

The std/mean ratios are calculated on the original vs. corrected images, and compared for 
each tissue type on Figure III.2.46. 

 

 

 
 
 
Figure III.2.46. Std/mean curves 
with and without sensitivity roll-
off correction of Normal Fat 
Tissue, WDLS, DDLS on 1 B-
scan shown on Figure III.2.2. 
Solid lines show the computation 
from the original image, dashed 
lines show the corrected version. 
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 WDLS tissue surface is almost perpendicular to the light beam, so the sensitivity 
correction has no effect (cyan lines). DDLS tissue surface is steeper, and due to the dense tissue 
structure, the correction affects the curve characteristics (black lines). Although the Normal Fat 
Tissue surface also shows obliqueness, the correction effect is not significant (red lines). This 
can be explained with the fact that the structure is less dense and composed of big cells, where 
the scattering occurs only at the boundaries of the adipose cells. The effect of tissue surface 
obliqueness will be considered in the error analysis of the quantification method in the next 
chapter. 

The GEV coefficients are calculated on the std/mean curves of 1 B-scan per tissue type in 
both cases (Table III.2.7), and the PDFs are drawn on Figure III.2.47. 

 

 

 
 
 
 
Figure III.2.47. PDF drawn 
from the GEV parameters of 
the std/mean curves shown on 
Figure III.2.46 with and 
without sensitivity roll-off 
correction of Normal Fat 
Tissue, WDLS, DDLS on 1 
B-scan shown on Figure 
III.2.2. Solid lines show the 
computation from the original 
image, dashed lines show the 
corrected version. 

 
STD/MEAN k σ μ STD/MEANC k σ μ 

 Baseline 
(Normal Fat) 

0.1008 0.1971 1.2067 Baseline 
(Normal Fat) 

0.2422 0.1879 1.1845 

Deviation 1 
(WDLS) 

0.1605 0.0649 0.7027 Deviation 1 
(WDLS) 

0.1947 0.0647 0.6906 

Deviation 2 
(DDLS) 

0.2621 0.0425 0.6225 Deviation 2 
(DDLS) 

0.3463 0.0611 0.7198 

 
Table III.2.7. GEV Distribution parameters, computed on the std/mean ratio at 1 B-scan of 
Normal Fat Tissue, WDLS and DDLS; left: no correction is applied (Solid line on Figure 

III.2.47), right: sensitivity-correction is applied (Dashed line on Figure III.2.47) 
 

The comparison was also applied on each B-scan in the volume, and the mean, standard 
deviation of the parameters are shown on Figure III.2.48. and Table III.2.8. The percentage due 
to the differences between the original data set (o) (Table III.2.3) and the data corrected by the 
gaussian sensitivity roll-off (gc) (Table III.2.8) is calculated from the mean values and 
represented in Table III.2.9. 
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Figure III.2.48. PDF drawn 
from the GEV parameters of 
the std/mean ratio calculated 
from 200 Normal Fat Tissue, 
160 WDLS and DDLS B-
scans. Mean+std are shown in 
black+green for the sensitivity 
corrected images, and 
blue+cyan for the original data. 

 
STD/MEAN k σ μ 

Baseline 
(Normal Fat) 

0.0001 
+0.2532 

0.2114 
+0.0608 

1.2649 
+0.0799 

Deviation 1 
(WDLS) 

-0.0070 
+0.2255 

0.0530 
+0.0121 

0.7030 
+0.0370 

Deviation 2 
(DDLS) 

0.0634 
+0.1574 

0.0438 
+0.0095 

0.6261 
+0.0163 

 
Table III.2.8. GEV parameters calculated from the  std/mean ratio of the intensity values in 
ROI; mean and standard deviation on 200 B-scans of Normal Fat Tissue, and 160 B-scans of 

WDLS and DDLS are shown. 
 

STD/MEAN 
(o/gc)    

      

   
    

      

   
    

      

   
 

Baseline 
(Normal Fat) 

-0.8571 
 

-0.0172 -0.0115 

Deviation 1 
(WDLS) 

1.5469 0.0019 -0.0089 

Deviation 2 
(DDLS) 

-0.2602 -0.1116 -0.0371 

 
Table III.2.9. Comparison of the mean GEV parameters calculated from the std/mean ratio of 
the intensity values in ROI with and without correction on 200 B-scans of Normal Fat Tissue, 

and 160 B-scans of WDLS and DDLS. 
  

The table shows that the correction has significant effect on the k shape parameter, and 
also on the σ scale parameter in case of the dense DDLS with oblique surface. 
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 The mean normalized intensity variation was also compared for each tissue type between 
the sensitivity-corrected data and the original data set. This method is less sensitive compared to 
the std/mean analysis explained below. First the same B-scan was studied (Figure III.2.49, Table 
III.2.10). 
 

 

 
 
 
 
 
Figure III.2.49. PDF drawn 
from the GEV parameters of the 
mean normalized intensity 
curves with and without 
sensitivity roll-off correction of 
Normal Fat Tissue, WDLS, 
DDLS on 1 B-scan shown on 
Figure III.2.2. Solid lines show 
the computation from the 
original image, dashed lines 
show the corrected version. 

 
STD/MEAN k σ μ STD/MEAN k σ μ 

Baseline 
(Normal Fat) 

0.7253 0.3737 0.3529 Baseline 
(Normal Fat) 

0.7060 0.3789 0.3597 

Deviation 1 
(WDLS) 

0.2180 0.4434 0.6322 Deviation 1 
(WDLS) 

0.2068 0.4426 0.6390 

Deviation 2 
(DDLS) 

0.1081 0.4433 0.6926 Deviation 2 
(DDLS) 

0.2329 0.4418 0.6251 

 
Table III.2.10. GEV Distribution parameters computed on the mean normalized intensity values 

at 1 B-scan of Normal Fat Tissue, WDLS and DDLS; left: no correction is applied, right: 
sensitivity-correction is applied. 

 
 After 1 B-scan analysis, the results were compared on each B-scan in the same tissue 
samples. The mean and standard deviation of the PDFs in both cases are drawn on Figure 
III.2.50 and the coefficients are represented on Table III.2.11. 
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Figure III.2.50. PDF drawn from 
the GEV parameters of the 
normalized intensity values 
calculated from 200 Normal Fat 
Tissue, 160 WDLS and DDLS B-
scans. Mean+std are shown in 
black+green for the sensitivity 
corrected images, and blue+cyan 
for the original data. 

 
 

I/MEAN k σ μ 
Baseline 

(Normal Fat) 
0.8077 

+0.0742 
0.3580 

+0.0225 
0.3242 

+0.0303 
Deviation 1 

(WDLS) 
0.1840 

+0.0360 
0.4566 

+0.0094 
0.6415 

+0.0228 
Deviation 2 

(DDLS) 
0.1120 

+0.0215 
0.4492 

+0.0042 
0.6864 

+0.0104 
 

Table III.2.11. GEV parameters calculated from the  mean-normalized intensity values in ROI; 
mean and standard deviation from 200 B-scans of Normal Fat Tissue, and 160 B-scans of WDLS 

and DDLS. 
 

Table III.2.12. shows the parameter differences calculated from the mean normalized 
intensity values, in case the correction is concerned (gc) (Table III.2.11) or the original data set 
was analyzed (o) (Table III.2.5). The ratios are calculated from the mean values revealing that 
only the shape parameter (k) is affected in a non-negligible way on the dense DDLS with oblique 
surface. 
 

I/MEAN 
(o/gc)    

      

   
    

      

   
    

      

   
 

Baseline 
(Normal Fat) 

-0.0160 
 

0.0136 0.0160 

Deviation 1 
(WDLS) 

-0.0341 0.0011 0.0053 

Deviation 2 
(DDLS) 

-0.2260 0.0067 0.0245 
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Table III.2.12. Comparison of the mean GEV parameters calculated from the mean-normalized 
intensity values in ROI with and without correction on 200 B-scans of Normal Fat Tissue, and 

160 B-scans of WDLS and DDLS. 
 

The computation from the std/mean ratios is more sensitive not only to the edge detection 
algorithms, but also to the sensitivity-correction. In case we want to get absolute parameters, 
which describe tissue types, the sensitivity correction is needed. For further analysis we accepted 
the computation from the mean normalized intensity values. 

The method could be developed to distinguish better the different grade of cancer 
implementing with additional factors, e.g. the mean intensity values at each depth position. The 
weak point of the measurements is that setting the position of the tissue under the laser light to 
get a visible subsurface structure is set manually. Some saturated intensity points can also affect 
the statistics, which factor in the error analysis on the quantification process will be studied later. 
Here only the optimal ROI is considered, 40 pixel depths beginning from the surface, but 
applying different window size and window position also provides good differentiation. The only 
criterion to study is the minimum length of this window, from which region a reliable Probability 
Density Function can still characterize the tissue statistics. 

The aim of our study is to develop a simple and rigorous analysis technique based on a 
parametric model that captures the structural features from the strength of scattering. We use the 
potential of OCT in that it is sensitive to the structural (morphological) details of the tissue. Here 
only one histological subtype of WDLS and DDLS is described; however they can represent 
several patterns. The comparison of the different histological subtypes is described in the next 
chapter. To study other histological types of Liposarcoma (Pleomorphic, Mytotic…), and the 

ability to differentiate from Normal Fat Tissue and Lipoma, benign tissue is future study. 
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III/3. Data Analysis applied on new measurements 

III/3/a. Comparison of the Data 

 To verify the accuracy of the analysis, more tissue sample were analyzed to get 
statistically proven results.  The data analysis explained above is applied on 4 samples per each 
tissue type recorded different time and enumerated in chronological order. The dataset of the 4 
Normal Fat tissue samples cut from Abdomen/Retro-Peritoneum (A/RP) is shown on Figure 
III.3.1. 
 

K37 

 

K28 

K19 
K22 

 

Figure III.3.1. OCT images of Normal Fat Tissue excised from Abdomen/RetroPeritoneum, 
white bar = 500 µm 

 
 1 B-scan is composed of 500 A-lines and covers an area of 3 mm. 500 B-scans were also 
recorded to give a Surface of 3x3 mm, and the backscattered light is detected from around 1mm 
deep from the tissue. The typical A-line of a Normal Fat Tissue is represented on Figure III.3.2 
in arbitrary unit and in dB scale. 



155 
 

a) b)  
 

Figure II.3.2. OCT A-line of Normal Fat Tissue (K37) a) arbitrary unit b) dB scale 
 

The H&E (Hematoxylin & Eosin) histology of Normal Fat tissue shows the 
correspondence with the OCT images revealing clearly the adipose cells (60-120 μm). (Figure 
III.3.3). The exposure time, the focus position and visibility, the pathmength difference between 
tissue surface and mirror is set manually independently from each measurement. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure III.3.3. Histology of Normal Fat 
Tissue from A/RP. The corresponding 
OCT image is K28. 

 
 The Normal Fat Tissue examples represent the same histological types. For the cancerous 
tissue types, the same sample number from Well-Differentiated Liposarcoma and De-
Differentiated Liposarcoma were chosen. In these two cases the 4 samples were different 
histological subtypes of WDLS and of DDLS. The next figures show the structural OCT images 
with the corresponding histology at 4x Magnification. The OCT structure can be affected by 
artefacts. 
 The WDLS samples are named K36 (Figure III.3.4), K25 (Figure III.3.5), K47 (Figure 
III.3.6) and K58 (Figure III.3.7). K36 is WDLS with significant myxoid components analyzed 
above. Myxoid components are frequent in WDLS especially in A/RP, and so it resembles 
myxofibrosarcoma, though the scattered atypical adipocytes represent the diagnosis of Well-
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Differentiated LS. Today the classification between these two Sarcoma types is clear, myxoid 
fibrosarcoma usually does not appear in the A/RP, and contains fine capillaries and small oval 
cells which distinguish from WDLS. 
 K25 is fibrous atypical lipomatous tumor (WDLS), with moderate cellularity. In 
Lipomatous Tumor the adipose cells lose their original shape and size (atypical lipoma) and the 
septa is thickened. 
 K47 is atypical lipomatous tumor (WDLS) with small mitotic changes. In contrast to the 
other histological subtypes, the B-scans of this measurement in the 3mm x 3mm x1mm Volume 
show various morphology. Depending on the B-scan some large adipose cells are still present or 
disappear, which will affect the computation. 

K58 is Lipomatous tumor with mild cytological atypia. The tissue components are mature 
adipocytes with little size variation, and some slightly atypical cells scattered in the tissue. The 
diagnosis was not clear from the histological images. Fluorescence imaging was required to 
differentiate from Lipoma. The corresponding histology is made on another tissue sample (K49) 
with similar diagnosis to K58. 

Figures III.3.4-11. show: a) OCT images with a white scale bar of 500 µm, b) Histology 

at 4x Magnification, except on Fig. III.3.6. at 5x Magnification (exact scale is not known) c) A-
line example in arbitrary unit d) A-line example in dB scale. 
 

a)  b)  

c)  d)  

 
Figure III.3.4. K36 WDLS with mitotic change. 
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a)  b)  

c)  d)  

 
Figure III.3.5. K25 Fibrous Atypical Lipomatous Tumor. 

 

a)  b)  
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c)  d)  
 

Figure III.3.6. K47 Atypical Lipomatous Tumor/ WDLS with small mitotic change. 
 

a)  b)  

c)  d)  

 
Figure III.3.7. K58 Lipomatous Tumor with mild cytological atypia. 

 
 

The DDLS samples are named K35 (Figure III.3.8), K12 (Figure III.3.9), K33 (Figure 
III.3.10) and K26b (Figure III.3.11). 
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 K35 is DDLS with highly fibrotic changes already represented in the data analysis. K12 
is spindle cell sarcoma with osteoid and bone formation, consistent with DDLS [no bone 
formation is seen in this sample on the image]. K33 is DDLS with extensive myxoid change, 
arising in well-differentiated liposarcoma (atypical lipomatous tumor). Tumor involves 
mesentery adjacent to bowel wall (intestinal margins is negative). In K26b section reveals 
cellular pleomorphic fibromyxoid areas which contain mitotic figures focally. These findings are 
compatible with the diagnosis of DDLS. 

 

a)  b)  

c)  d)  

 
Figure III.3.8. K35 Highly fibrotic DDLS. 

 

a)  b)  
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c)  d)  

 
Figure III.3.9. K12 Spindle cell sarcoma (DDLS) with osteoid formation. 

 

a)  
b)  

c)  d)  
 

Figure III.3.10. K33 DDLS with extensive myxoid change. 
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a)  b)  

 c)  d)  

 
Figure III.3.11. K26b cellular pleomorphic fibromyxoid areas with mitotic figures. 

 
 60 B-scans per sample were chosen, and the mean normalized intensity values were 
calculated from 40 pixel deep ROI. The GEV Distribution parameters (k, σ, µ) were calculated 
for each B-scan, and plotted in a 3d scatterplot which axes represent the parameters (Figure 
III.3.12) (See Data Points in Appendix 2).  
 

The data points projected on each plane are represented on Figure III.3.13 distinguishing 
Normal Fat Tissue, WDLS and DDLS. 
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Figure III.3.12. 
Scatterplot 
classifying Normal 
Fat Tissue, WDLS 
and DDLS. 4 tissue 
samples per tissue 
type are analyzed, 60 
data points per 
sample are 
considered. 

 
 

a)  b)  
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c)  

 
 
 
 
Figure III.3.13. Scatterplot classifying 
Normal Fat Tissue, WDLS, DDLS on the 
projections planes of the 3d coordinate system 
shown on Figure III.3.12. 4 tissue samples per 
tissue type are analyzed, 60 data points per 
sample are considered; 
a) µ- σ plane 
b) σ-k plane 
c) µ-k plane. 

 
The classification of the three tissue types is furthermore separated to the 4 samples per 

tissue type, plotting the data points representing the 12 tissue samples on the k, σ, μ parameter 
axes in a 3d coordinate system (Figure III.3.14) and separately on the projection planes (Figure 
III.3.15).  

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure III.3.14. 
Scatterplot 
representing 12 
tissue samples; 4 
tissue samples per 
Normal Fat Tissue, 
WDLS and DDLS 
are analyzed, 60 data 
points per sample are 
considered. 
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a)  b)  

c)  

 
 
 
 
Figure III.3.15.  Scatterplot representing 12 
tissue samples; 4 tissue samples per Normal 
Fat Tissue, WDLS and DDLS are analyzed on 
the projection planes of the 3d coordinate 
system shown on Figure III.3.14. 60 data 
points per sample are considered; 
a) µ- σ plane 
b) σ-k plane 
c) µ-k plane. 

  
The quantification method will consider the mean and standard deviation of the 

parameters to distinguish tissue types (Table III.3.1). The Generalized Extreme Value Probability 
Density Function of the mean curves of each sample is drawn on Figures III.3.16&17. 

The mean and standard deviation of the parameters in a 3d Coordinate System is plotted 
on Figures III.3.18&19 with each projection plane classifying Normal Fat Tissue, WDLS and 
DDLS. Figures III.3.20&21 separate all the 12 tissue samples in the 3d coordinate system 
projected on each plane. 
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class I/MEAN k std/mean σ std/mean μ std/mean 

N 
O 
R 
M 
A 
L 
 

F 
A 
T 

K37 0.8209 
+0.0647 

7.88 % 0.3532 
+0.0181 

5.12 % 0.3191 
+0.0254 

7.96 % 

K28 0.3995 
+0.0313 

7.83 % 0.4092 
+0.0086 

2.10 % 0.5346 
+0.0183 

3.42 % 

K19 0.4915 
+0.1334 

27.14 % 0.3998 
+0.0245 

6.13 % 0.4768 
+0.0694 

14.56 % 

K22 0.5131 
+0.0432 

8.42 % 0.3817 
+0.0108 

2.83 % 0.4625 
+0.0250 

5.41 % 

 
W 
 

D 
 

L 
 

S 
 
 

K36 0.1905 
+0.0358 

18.79 % 0.4561 
+0.0100 

2.19 % 0.6381 
+0.0229 

3.59 % 

K25 0.3296 
+0.0818 

24.82 % 0.4295 
+0.0090 

2.10 % 0.5692 
+0.0450 

7.91 % 

K47 0.5256 
+0.1792 

34.09 % 0.4333 
+0.0405 

9.35 % 0.4550 
+0.0776 

17.05 % 

K58 0.4646 
+0.0330 

7.10 % 0.3971 
+0.0098 

2.47 % 0.4889 
+0.0182 

3.72 % 

 
D 
 

D 
 

L 
 

S 

K35 0.1447 
+0.0684 

47.27 % 0.4462 
+0.0044 

0.99 % 0.6700 
+0.0364 

5.43 % 

K12 0.1169 
+0.0441 

37.74 % 0.4452 
+0.0041 

0.92 % 0.6857 
+0.0220 

3.21 % 

K33 0.0792 
+0.0496 

62.66 % 0.4377 
+0.0050 

1.15 % 0.7064 
+0.0282 

4.00 % 

K26b 0.0857 
+0.0444 

51.58 % 0.4448 
+0.0079 

1.78 % 0.7006 
+0.0262 

3.74 % 

 
Table III.3.1. Mean, standard deviation, and standard deviation per mean of Generalized 
Extreme Value Distribution parameters (k, σ, µ) computed from 4 samples per Normal Fat 

Tissue, WDLS and DDLS. 
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Figure III.3.16. 
GEV Distribution 
separating Normal 
Fat Tissue (red), 
WDLS (cyan) and 
DDLS (black); 4 
samples per tissue 
type are presented. 

 
                                                                                                                        

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure III.3.17. 
GEV Distribution 
separating 12 
tissue samples; 4 
tissue samples per 
Normal Fat Tissue, 
WDLS and DDLS 
are presented. 
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Figure III.3.18. 
Classification of 
Normal Fat Tissue, 
WDLS and DDLS. 
4 tissue samples 
per tissue type are 
analyzed. Middle 
of the boxes 
represent the mean, 
the edges represent 
the standard 
deviation of the 
parameters k, σ, µ. 
 

a)  
 

b)  

c)  

 
 
 
 
Figure III.3.19. Classification of Normal Fat 
Tissue, WDLS, DDLS. 4 tissue samples per 
tissue type are analyzed. Mean is the center, 
standard deviation is the edges of the boxes; 
a) µ-σ plane 
b) σ-k plane 
c) µ-k plane. 
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Figure III.3.20. 
Classification of 
Normal Fat Tissue, 
WDLS and DDLS. 
4 tissue samples 
per tissue type are 
represented 
separately. Middle 
of the boxes 
represent the mean, 
the edges represent 
the standard 
deviation of the 
parameters k, σ, µ. 

 

a)  b)  
 

c)  

 
 
 
 
Figure III.3.21. Classification of Normal Fat 
Tissue, WDLS, DDLS. 4 tissue samples per 
tissue type are represented separately. Mean is 
the center, standard deviation is the edges of 
the boxes. 
a) µ- σ plane 
b) σ-k plane 
c) µ-k plane. 
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 A clear tendency of all the three parameters (k, σ, µ) can be seen on the figures of each 
projection plane distinguishing Normal Fat Tissue, WDLS and DDLS. 

There are more features to consider in the classification. Our aim was to differentiate 
Normal Fat Tissue, WDLS and DDLS. In addition the different subtypes show various pattern in 
case of WDLS and DDLS, and also the Normal Fat Tissue has a large scattered pattern for each 
parameter although the subtypes do not vary. 

The DDLS subtypes, fibrotic (K35), myxoid (K33), spindle cellular (K12) and 
pleomorphic fibromyxoid (K26b) DDLS have closely the same parameters. Not only the 
parameters of the different subtypes are overlapped, but for each tissue sample, there is a little 
variation of the B-scans, yielding small standard deviation of each parameter. The missing 
adipose cells is a common feature of these DDLS subtypes, the tissue is mainly composed of 
smaller cells making it denser. The scattering properties detected with OCT reveal these 
characteristics, and our quantification method is able to confine this malignant cancer. 

WDLS subtypes represent big variation in terms of all the 3 parameter range, and 
standard deviation per subtype. These results were expected from the histological findings and 
the OCT images, showing completely different morphology. 

The most dense WDLS, the myxoid type (K36), tend to have similar characteristics than 
DDLS regarding the absolute value, and the standard deviation of the parameters. 

The fibrous WDLS (K25) still contains adipose cells and is classified as Atypical 
Lipomatous Tumor with fibrotic changes. This feature is revealed in the parameter estimates. 
There is less scattering because adipose cells are present, so the parameters are shifted from the 
DDLS region, but it is still placed closely to the dense malignant tissue types due to the fibrous 
content. 

K47 is also classified as Atypical Lipomatous Tumor, but with small mitotic changes, 
which is more or less dominant depending on the B-scans. This variation yields big standard 
deviation of the parameters calculated from the B-scans. σ parameter places this tissue type in the 
group of cancerous tissue regarding the absolute mean value and large standard deviation, 
however k and μ parameters do not distinguish it from healthy tissue. This corresponds to the t-
test analysis explained below. 

The final diagnosis of K58 as WDLS Lipomatous Tumor with mild atypia is based on 
molecular analysis. The structural analysis from OCT image or even from the histological 
staining is not evident for a non-pathologist to differentiate from Lipoma, benign tumor, or 
Normal Fat Tissue. The quantitative results of the structural analysis show the same results 
placing it to the Normal Fat Tissue region in the 3d coordinate system. 

Normal Fat K28, K22 and K19 are placed in the same region; K28 and K22 with small 
standard deviation are well separated on each projection plane in the range of the K19 with larger 
standard deviation on each axe. The results on K37 are especially intriguing being farther from 
the Normal Fat Tissue group in each plane, and even more farther from the cancerous groups. 
The morphology of the tissues does not explain these differences. Each of them contains clusters 
of large adipose cells and fibrous connective tissue. 

One reason of the differences can be the inter-patient variability, measuring different 
intensity pattern from patient to patient, which cannot be detected on the histological staining 
and OCT images. The problem can be rather the higher sensitivity of Normal Fat Tissue to our 
measurement technique and data analysis. However for cancerous tissue the tissue subtypes are 
different, the morphology supports well the parameters’ mean and standard deviation values for 

each parameter, and there is not a scattered pattern, as in the case of Normal Fat Tissue, 
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especially regarding the mean parameter values of K37, and the bigger standard deviation of 
K19. The error analysis is explained in the next chapter. 

A t-test was applied to the measurements to prove a statistically significant separation of 
the parameters between the tissue types at a 5% of significance level. The results show the clear 
distinction between Normal Fat Tissue and DDLS considering all the three parameters. 
Probabilities of failing diagnosing are: P(k) = 0.29 %, P(σ) = 0.36 %, P(μ) = 0.2 %. The 
classification between WDLS and DDLS is proved according to k and μ parameters, and sigma 

parameter is approved to show differences between Normal Fat Tissue and WDLS or DDLS. 
Probabilities of failing diagnosis between WDLS and DDLS are: P(k) = 1.19 %, P(σ) = 28.41 %, 
P(μ) = 1.08 %,  and between WDLS and Normal Fat Tissue are: P(k) = 18.12 %, P(σ) = 4.73 %, 
P(μ) = 19.59 %. 
 

III/3/b. Error analysis 

The error analysis of the developed data analysis on the acquired OCT images includes 
the following factors: Error coming from not properly straightening the tissue surface (Figure 
III.3.22a), Saturation of the camera pixel-points (Figure III.3.22b), Obliqueness of the tissue 
surface during recording affects scattering measurements (Figure III.3.22c). 

 

a)  b)  

c)  

 
 
 
 
 
 
 
Figure III.3.22. Error analysis on the acquired 
images. a) Improperly straightened tissue 
surface b) Saturation points c) Tissue surface 
obliqueness. 

  



171 
 

The error analysis is applied on three B-scans per sample and shown in detail in 
Appendix 3. First the errors coming from not properly straightening the surface will be 
investigated. The digital straightening of the tissue surface is solved by using canny edge 
detector after removing the background noises with median filter. The computation was verified 
and corrected B-scan by B-scan, but errors can still be present. 
 To estimate a parameter error, the straightened surface was perturbed digitally. Each even 
A-line was shifted up by 10 pixel, and each odd line was shifted down, so each adjacent A-lines 
are shifted by 20 pixels. Three surface edge positions were applied on this perturbed image and 
the 40-pixel Region of Interest was considered (Figure III.3.23). First edge is at the original 
edge, so the tissue surface begins at the 11th pixel of each even A-line instead of the 1st one, and 
10 pixel background is included in ROI for each odd A-line, so the 11th pixel-raw will be the 1st 
pixel of the real tissue [p0]. Second edge is defined by the way that the original edge is shifted up 
by 10 pixel, so each even A-line begins at the correct surface edge, but each odd A-line includes 
first 20 pixel background, then the 21st pixel position will be the 1st pixel of the real surface 
[p+10]. At the third edge the original edge is shifted down by 10 pixel, so each odd A-line 
begins at the correct surface edge, but each even A-line begins at the 21st pixel of the real tissue, 
so 20-pixel deeper; the background is nowhere included in this case [p-10]. 
   

a)  b)  

 
Figure III.3.23. a) Straightened Tissue Surface with marked edge b) The tissue surface edge is 

applied on the perturbed image at three positions. 
 

The variation of the parameters k, σ and μ due to the wrong edges is summarized in Table 
III.3.2 (conclusion of Appendix 3). 
 
Error of Perturbation 
μ p-10 [pixel] = 1-11% 

p0 [pixel] =     6-20%    except Normal Fat without K37 = 3-8% 
p+10[pixel]  = 14-38%  except Normal Fat without K37 = 3-8% 

σ p-10 [pixel]: <10%  
p0 [pixel]:    <10% except DDLS K35  = 16%, NFat K37 = 13%,  
p+10[pixel]: <10% except DDLS K35 & WDLS K58 & WDLS K47 = 12-16 %  & Normal 
Fat K37 = 24%, 

k                          DDLS           WDLS & Normal Fat K37        Normal Fat (except K37) 
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 p-10 [pixel]:     >65%                  5-26%                                            8-9% 
p0 [pixel]:        >110%               10-80%                                           8-9% 
p+10[pixel]:     >355%               31-170%                                         8-9% 

 
Table III.3.2. Errors coming from not properly straightening the tissue surface. 

 
 The perturbation of the images gives an example how the parameters differ if the 
background is included in the ROI instead of the real tissue parts. Filling ROI with a ratio of 25 
% by the background pixels [p+10] or with a ratio of 12.5 % [p0] can affect the parameters with 
a higher error ratio. In case the background is not included, but at some positions the ROI begins 
deeper in the tissue [p-10] gives also different results. 
 The hypothesis that the same tissue types with similar morphology should follow the 
same sensitivity is not true in each case. K37 Normal Fat Tissue sample usually shows different 
behavior considering all of the three parameters. One reason can be a different morphology 
which is cannot be detected at this resolution by the naked eye, but the quantitative results reveal 
this characteristic this way, or simply because the tissue surface has higher obliqueness during 
recording which affects the scattering coefficients, so this factor has a big effect on the results, 
especially in the case of Normal Fat Tissue. These results support the hypothesis supposed above 
why the absolute mean parameters of this tissue type differ from the group of the Normal Fat 
Tissue. 
 Regarding the location parameter (μ) WDLS and DDLS show similar behavior, Normal 
Fat Tissue is less affected except K37. 

Regarding the scale parameter (σ) only the K37 shows higher sensitivity in the Normal 
Fat Tissue group.  The error variation represents high sensitivity for K58 and K47 WDLS, which 
mean parameters are close to the Normal Tissue Group, since they are still composed of some 
large adipose cells, in addition their surface is oblique.  In case of DDLS tissues, K35 is a little 
more affected. However it is a dense tissue, it represents a slightly steeper surface than the other 
DDLS subtypes, which can lead higher error sensitivity in the digital computation. To conclude 
the obliqueness of the tissue during recording affects the results, however it was corrected by the 
sensitivity roll-off curve. The reason can be the scattering process in the tissue which is 
dependent on the input angle of the light beam to which the sample is exposed. The error 
analysis of the surface obliqueness is computed below. 

The shape parameter (k) changes significantly due to digital errors in surface 
straightening. Since the data analysis and ROI is defined on the variation of parameters μ-σ, k 
factor does not affect the optimization algorithm. In case the tissue is denser, and the scattering is 
stronger, the error on parameter k has bigger effect. The reason can be that scattering occurs only 
at cell boundaries, and in case the tissue type contains more adipose cells, which inner part 
intensity is similar to the background, the digital straightening error yields less variation. This 
also explains the less sensitivity of σ and μ parameters in the Normal Fat Tissue group. 
 Errors coming from the saturation of the pixel-points and from the tissue obliqueness 
during recording are shown in Table III.3.3 (conclusion of Appendix 3). 

Pixel saturation occurs due to perpendicular light reflection. Recording certain A-lines 
the backreflected intensity is higher than the camera imaging range, and so all pixel-points 
become saturated, which can affect all the pixel-points in the A-line (Figure III.3.22b). 

During data analysis the most A-lines with saturation was cut out from the image. 
However there were still some remaining saturated points with around less than 4 % ratio per B-
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scan. The error analysis was analyzed in two ways. In the first case the saturation points were 
removed from the images, in the second case the same amount of saturation points was added. 

On the OCT images the light intensity scattered back from the tissue volume with 
perpendicular surface is higher than with oblique surface. According to the obliqueness of the 
surface a factor was applied to enhance the intensity values on the oblique side. The calculation 
then was based on a stronger and weaker factor. 
 
Error of: - Obliqueness - Saturation 
μ & σ 0-7%: 

DDLS 
WDLS 
Normal Fat (except K37) 
 
8-13%: 
Normal Fat K37 

0-5%: 
DDLS 
WDLS 
Normal Fat (except 37) 
 
8-13%: 
Normal Fat K37 

k 0-4%: 
WDLS K36  
Normal Fat except K37 
 
8-20%: 
WDLS except K36 
Normal Fat K37 
 
13-80%: 
DDLS 

0-4%: 
Normal Fat except K37 
 
 
4-24%: 
WDLS 
NormalFat K37 
 
17-190%: 
DDLS 

 
Table III.3.3. Errors coming from saturation and surface obliqueness. 

 
Each sample from tissue type shows similar characteristics considering both factors 

(obliqueness + saturation). We focus first on the parameters σ and µ as the significant factors in 
the quantification method. μ & σ follow similar behavior for obliqueness and saturation. 
Following our analysis by implementing some errors to the images and calculation, then to 
compute the outcome, neither the saturation, nor the obliqueness has significant effect in case of 
any tissue type. The only exception is the Normal Fat Tissue K37. 

However our perturbation in saturation and intensity enhancement on the oblique 
surfaces does not affect significantly the parameters, there should be an effect of obliqueness, 
which is revealed in the sensitivity of edge detection algorithm straightening the tissue surface as 
explained above.  

The parameter k is more sensitive to the error analysis. The densest tissue DDLS is the 
most sensitive, the next is WDLS, then the sensitivity of the Normal Fat Tissue is negligible. The 
only exception in these cases also is the K37 Normal Fat Tissue. The k factor of the obliqueness 
differs also in case of K36 WDLS type, probably because this tissue sample surface is almost 
completely perpendicular to the illuminating light. 
 In the case of these perturbations, the same conclusion can be deduced, that since the data 
analysis is based first on the variations of parameter µ-σ, the quantification method provides 
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accurate results. Although k factor shows high sensitivity, it was not used in the optimization 
algorithm to define ROI, and the results. 

The data analysis can be improved in the future to avoid manual correction. The surface 
straightening algorithm should be more refined by filtering background and speckle noise, and 
provide more accurate tissue surface position. An algorithm removing saturation lines could be 
implemented by estimating the real intensity value of the saturated pixel from the surrounding 
pixels-points, or cutting out those A-lines by a thresholding algorithm. A mathematical model of 
the scattering process in the media could explain the effect of tissue boundary irregularity and 
obliqueness.  

The data analysis can be broadened further to different Region of Interest, not only to the 
optimal one (40 pixels from tissue surface), by comparing them beginning at different position, 
and at different width. 

The developed data analysis quantifies well the qualitative OCT images. The differences 
of the Generalized Extreme Value Distribution parameters (k, σ, μ) are the real feature of the 
tissue topological characteristics, slightly affected by digital computational errors. The accuracy 
of the parameters of the quantitative morphological description is at similar goodness as the 
qualitative OCT images. The quantitative method provides results independently from the 
measurement settings yielding absolute parameters to the tissue types and structural properties 
based on the backscattered intensity signal. 
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Conclusion 
 
Presented is a model-based approach to the quantification of tissue with applications to 

health prognostics and diagnostics.  In this approach, the mathematical models are calibrated 
using measured tissue information. The resulting model coefficients are used to accurately 
quantify the structural properties of the tissue sample.  The importance of an adaptive model 
based approach is that the impact of measurement noise on tissue characterization is minimized 
during the least squares estimation process.  In addition, the use of common model structure 
enables a more rigorous approach to accurate tissue property quantification than the existing 
imaging approaches.  The method is independent of the sensing modality and improves the 
accuracy of cancer broad range of clinical and biomedical research applications. 

The proposed method was applied to a dataset containing Spectral Domain Optical 
Coherence Tomography information obtained from images recorded on human Normal Fat 
Tissue vs. Well-differentiated (WD) and De-differentiated Liposarcoma (DDLS). This optical 
data records the response of tissue to a near infrared laser excitation revealing the subsurface 
morphology. The goal is to develop a mathematical model consistently capable of grading the 
structure of differentiate tissue types.  The importance of this application centers on the accurate 
diagnosis at early stage of cancer, and most importantly the estimation of the tumor boundary. 
To date, the common image based OCT approach is incapable of consistently estimating the 
presences of the cancer based on tissue morphology.  Thus any reliable patient diagnosis from 
these images is subjective and not unequivocal. Demonstrated was the filling of this need for 
rigorous objective method of data analysis. The outcome was the successful quantitative 
diagnostic method differentiating between healthy and cancerous tissue.  The application of the 
model-based method focused images recorded on human Normal Fat Tissue vs. Well-
differentiated (WD) and De-differentiated Liposarcoma (DDLS). As a demonstration, an 
accurate detection was found to identify and estimate healthy verses cancerous tissue. 

Further applications of the method will allow detection tumor boundary, diagnose other 
type of cancer where structural analysis is required for diagnosis, or to monitor quantitatively 
tumor progression during cancer therapy.  The analysis can be applied in real-time for diagnosis, 
and it is much simpler comparing to other quantifying method. This practical advantage gives the 
possibility to use in surgical evaluation. The analysis can be defined also for dynamic 
measurements looking the variation of structural properties in time and in space. 
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APPENDIX 1 
 
Classification of Lipoma and Liposarcoma 
 
Lipoma (Benign Fat Tissue Tumor) 
 
Tumor Type Comment/ Additional Elements/ 

Difference from Ordinary Lipoma 
Regions of 
Chromosome with 
Genetic Changes 

Lipoma (ordinary lipoma) 
 
  Intra/intermuscular lipoma 
  Fibrolipoma 
  Myxoid lipoma/myxolipoma 

Composed of mature adipose tissue 
Lipomas with deep locations 
Prominent fibrous septa 
Myxoid matrix 

12q, 6p 

Lipomas with heterologous 
elements 
  Myolipoma 
  Chondrolipoma 
  Osteolipoma 

 
 
Foci of mature smooth muscle 
Islands of mature cartilage 
Foci of metaplastic bone 

 

Angiolipoma Capillaries with fibrin microthrombi, 
usually in young adults 

None found 

Angiomyolipoma Immature, HMB45+ smooth muscle 
cells, in kidney or retroperitoneum 

12q, 16p13 

Chondroid lipoma Epithelioid cartilage-like differentiation 11q13, 16p12-13 
Myelolipoma Fatty and hematopoietic marrow 

elements, in adrenal or retroperitoneum 
 

Spindle cell and pleomorphic 
lipoma 

Lipoma with spindle cells or giant cells, 
posterior neck of older men. CD34+ 

16q 

Hibernoma Benign tumor with features of brown fat 11q13 
Lipoblastoma A childhood fatty tumor. Lobulated, 

myxoid composed of immature fat 
8q 

Atypical lipoma (atypical 
lipomatous tumor) 

Lipoma with significant nuclear atypia 12q15 

 
Table 8-1. Classification and Key Features of Benign Fatty Tumors [35] 

 

 
Figure 8-2. [35] 

 
Figure 8-3. [35] 



Intramuscular Lipoma, 
Many of them grow between the muscle fibers 

in a check board pattern. 
 

Fibrolipoma, 
Lipomas with prominent fibrous septa 

 
Figure 8-4. [35] 

Myxoid lipoma shows abundant myxoid 
matrix and moderate vascularity. Only a single 

adipocyte is seen in this field. 
 

 
Figure 8-5. [35] 

Angiolipoma typically contains peripheral 
streaks of thick-walled capillaries filled with 
erythroctyes and often fibrin microthrombi. 

 
Figure 8-6. [35] 

Cellular angiolipoma shows a dominant 
vascular component, and prominent fibrin 

thrombosis is present. 

 
Figure 8-8. [35] 

Typical angiomyolipoma with thick-walled 
blood vessels, a clear cytoplasmic smooth 

muscle component, and a mature fatty 
component. 

 
Figure 8-9. [35] 

Histologic variants of angiomyolipoma include (A) tumors dominated by fat with small streaks 
of smooth muscle, and (B) rare variants primarily composed of epithelioid cells with eosinophilic 

cytoplasm. 



 
Figure 8-10. [35] 

Angiomyolipoma contains varying numbers of 
HMB45+ epithelioid muscle cells. 

 

 
Figure 8-13. [35] 

Myelolipoma simulates bone marrow with fatty 
and hematopoietic elements. 

 
Figure 8-12. [35] 

A, Typical chondroid lipoma contains epithelioid chondroid cells and a mature lipomatous 
component. B, Chondroid lipomas may have a trabecular or alveolar pattern resembling 

extraskeletal myxoid chondrosarcoma. 
 

 
Figure 8-14. [35] 

Spindle cell lipomas with different appearances. A, Spindle cell component in a coarse 
collagenous background. B, Cellular spindle cell pattern in a myxoid background. 

 



 
Figure 8-15. [35] 

Pleomorphic lipoma resembles spindle cell 
lipoma but has floret-like giant cells. 

 

 
Figure 8-16. [35] 

Spindle cell lipoma cells are strongly positive 
for CD34. 

 
Figure 8-18. [35] 

Histologically hibernoma cells vary from pale cytoplasmic, multivacuolated (A) to eosinophilic 
cells with granular cytoplasm (B). 

 

 
Figure 8-20. [35] 

Histologically lipoblastomas typically have microlobulation (A), and vary in maturation. B, 
immature lipoblastoma with myxoid features and high vascularity. C, Lipoblastoma with spindle 

cell features. D, Mature lipoma-like lipoblastoma lobulated by fibrous septa. 



Liposarcoma (Malignant fat tissue tumor) 
 
 
Type Estimated 

Frequency 
(%) 

Age at 
Presentation 

Typical Sites Behavior Regions of 
chromosome 
with 
Genetics 
changes 

Atypical 
Lipoma/ 
Well-
Differentiated 

>50 Middle-aged to 
old 

Retro-
peritoneum, 
extremities 

Local 
recurrence and 
risk of 
dedifferentiation 

12q13-15 
amplification 

De-
differentiated 
LS 

5 Middle-aged to 
old 

Retro-
peritoneum, 
extremities 

Risk for 
metastasis, 
especially with 
high-grade 
dedifferentiation 

12q13-15 
amplification 

Myxoid/ 
round cell LS 

30-40 Adult, often 
<40 years, rare 
in chldhood 

Thigh, very 
rare in retro- 
peritoneum 

Recurrence 
common. 
Metastatic rate 
30%-40% in 
long-term 
follow-up 

t(12;16) 

Pleomorphic 
LS 

<5 Old adults Extremities, 
retro- 
peritoneum 

High risk for 
recurrence and 
metastasis 

Complex, 
poorly 
understood 

 
Table 15.1: Overview of Liposarcoma Types and Their clinicopathologic Features [35, 11] 
 
 

1. Well-Differentiated Liposarcoma 
 

 
Figure 15.6. [11] 

 
Figure 15.7. [11] 



Atypical lipoma/lipoma-like well-differentiated 
liposarcoma shows significant variation in 
adipocyte size, and focal nuclear atypia is 

present. Note also increased cellularity in A, 
representing histiocytic infiltration. M: 4-10x 

 

Examples of atypical adipocytes in atypical 
lipoma/well-differentiated liposarcoma. Note 

enlarged nuclei, hyperchromasia, and 
intranuclear vacuoles in the atypical cells. 

 

 
Figure 15.8. [11] 

Atypical lipoma/lipoma-like, well-
differentiated liposarcoma with stromal 

sclerosis and expanded, hypercellular fibrous 
septa. 

 
Figure 15.9. [11] 

Sclerosing well-differentiated liposarcoma. 
Although adipocytes are scant or absent, this 

pattern with low cellularity and abundant 
collagenous matrix is not considered 

dedifferentiation 
 

 
Figure 15.10. [11] 

Inflammatory well-differentiated liposarcoma 
contains lymphoplasmacytic infiltration and 

fibrosclerosing stroma. Foci of atypical 
lipomatous component are present. 

 
Figure 15.12. [11] 

Spectrum of well-differentiated ilposarcoma of 
the retroperitoneum with myxoid features. Note 
the focal presence of multivacuolated lipoblasts 

(A,C), and prominent capillaries with some 
resemblance to myxoid liposarcoma (C,D). 



 
Figure 15.13. [11] 

(A-C) Spindle cell liposarcoma is composed of mildly atypical spindled cells admixed with 
atypical, mainly univacuolar adipocytes. Note a prominent capillary pattern. (D) Significant 

S100 protein positivity is present in both adipocytes and the nonlipogenic spindle cells. (E) The 
spindle cells are positive for CD34. 

 
 

2. De-Differentiated Liposarcoma 
 

 
Figure 15.17. [11] 

Example of dedifferentiated liposarcoma 
resembling inflammatory malignant fibrous 
histiocytoma. (A) Low magnification shows 
sharp demarcation between the components. 

(B) Scattered atypical cells are present among 
neutrophils. (C) Abundant xantoma cells and 

plasma cells obscure the tumor cells. (D) 
Spindle cell sarcomatous pattern resembling 

myofibroplastic sarcoma. 

 
Figure 15.18. [11] 

Four examples of dedifferentiated liposarcoma 
simulating different sarcoma types: (A) 

Myxofibrosarcoma. (B) Solitary fibrous tumor. 
(C) Fibrosarcoma. (D) Gastrointestinal stromal 

tumor. 
 



 
Figure 15.19. [11] (rare example) 

Dedifferentiated liposarcoma with concentric 
perivascular spindle cells resembling 

meningothelial whorls. (A) Such nodules are 
often associated with osseous differentiation. 
(B) Meningothelial nodule at 10 o’clock on 

side of an area woth bone formation. (C,D). 
The meningothelial nodule is intimately 

associated with bone formation. 

 
Figure 15.20. [11] (rare example) 
Dedifferentiated liposarcoma with 

menongothelial-like whorls. (A) Abrupt 
demarcation between the well-differentiated and 
dedifferentiated components. (B) In some cases, 

meningothelial whorls are composed of more 
highly cellular oval cells. (C) Delicate spindle 

cells forming a distinct whorl composed on 
concentric lamellae of spindle cells. (D) An 

atypical mitosis in a dedifferentiated 
liposarcoma with meningothelial whorls. 

 

 
Figure 15.21. [11] 

Different patterns in dedifferentiated 
liposarcoma. (A) A pleomorphic 

liposarcomatous component. (B) A mildly 
pleomorphic spindle cell sarcoma. (C) 

Pleomorphic component with large cells 
containing eosinophilic hyaline globules. (D) 

Osteosarcomatous differentiation. 

 
Figure 15.22. [11] 

Dedifferentiated liposarcoma with 
leiomyosarcomatous differentiation. (A) 

Pleomorphic liposarcoma component. (B) A 
pleomorphic MFH-like component without 

specific differentiation. (C) A 
leiomyosarcomatous component is 

distinguished by its eosinophilic tinctorial 
quality. (D) This component is strongly positive 

for heavy caldesmon. 



 
Figure 15.23. [11] 

Two examples of dedifferentiated liposarcoma with rhabdomyosarcomatous differentiation. 
(A,B) An example with well-differentiated rhabdomyoblasts admixed with a lipomatous 

component. (C) A histologically less obvious example with scattered large rhabdomyoblasts. (D) 
The number of desmin-positive cells is larger than expected based on HE stain. (E) Myogenin-

positive nuclei confirm skeletal muscle differentiation. 
 
 

3. Myxoid Liposarcoma (Including Round Cell Liposarcoma) 
 

 
Figure 15.27. [11] 

Low magnification of myxoid liposarcoma 
showing variable numbers of adipocytes and a 

prominent capillary pattern. 

 
Figure 15.28. [11] 

Myxoid liposarcoma with relatively low 
cellularity shows evenly dispersed, uniform 
oval tumor cells and a prominent, branching 
capillary pattern with variable numbers of 

nonatypical adipocytes. 



 
Figure 15.29. [11] 

Lymphangioma-like or pulmonary edema-like 
pattern in myxoid liposarcoma containing 

acellular spaces filled with mucoid material. 

 
Figure 15.30. [11] 

Hibernoma-like pattern in myxoid 
liposarcoma. Note multivacuolated hibernoma-
like cells. White fatlike cells and a prominent, 
branching capillary pattern are also present. 

 

 
Figure 15.31. [11] 

Myxoid liposarcoma with highly cellular round 
cell liposarcoma pattern containing few cells 

with adipocytic differentiation. This tumor had 
also areas typical of low-grade liposarcoma. 
(A) A trabecular pattern. (B-D) Dense round 

cell population and a scant adipocytic 
component can create an illusion of lymphoma. 

 
Figure 15.32. [11] 

Myxoid liposarcoma with round-cell 
liposarcoma pattern can show variable 

collagenous matrix (A,B), a 
hemangiopericytoma-like vascular pattern (C), 
and a solid cellular pattern resembling round 

cell sarcomas or lymphoma (D). 
 



 
Figure 15.33. [11] 

Myxoid liposarcoma following radiation therapy typically shows hyalinized vessels and low 
cellularity with scattered fat cells. These features are no longer diagnostic of myxoid 

liposarcoma, although the pretreatment biopsy showed typical features. 
 

4. Pleomorphic Liposarcoma 
 

 
Figure 15.37 [11] 

The most common variant of pleomorphic 
liposarcomas contains multivacuolated, highly 
atypical tumor cells and undifferentiated large 

cells similar to those seen in MFH. 

 
Figure 15.38 [11] 

Pleomorphic liposarcoma with markedly 
atypical nuclei and high cellularity. 

 



 
Figure 15.39 [11] 

Pleomorphic liposarcoma with epithelioid features. Note distinct cell borders creating a 
resemblance to adrenal cortical or renal cell carcinoma. Adipocytic differentiation is diagnostic. 
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APPENDIX 2

Generalized Extreme Value Parameters B-scan per B-scan STD/MEAN

k σ μ k σ μ k σ μ
1 0.2422 0.1879 1.1845 0.1947 0.0647 0.6906 0.0986 0.0575 0.7210
2 0.0445 0.2531 1.2103 0.3730 0.0763 0.6893 -0.3308 0.0662 0.7637
3 0.1095 0.2683 1.2927 0.4392 0.0591 0.7036 -0.0467 0.0501 0.7657
4 -0.0183 0.2225 1.3041 0.1277 0.0723 0.7689 -0.0591 0.0558 0.7817
5 0.4887 0.2941 1.2895 0.1970 0.0629 0.7545 0.0137 0.0547 0.7741
6 -0.1151 0.2720 1.2576 -0.1391 0.0620 0.7052 0.0462 0.0679 0.7803
7 -0.5264 0.2718 1.3457 -0.0413 0.0513 0.6776 -0.1201 0.0471 0.7523
8 -0.0781 0.2150 1.3386 0.2775 0.0393 0.6891 -0.0708 0.0683 0.7747
9 0.0337 0.2013 1.2446 0.0547 0.0511 0.6827 -0.1091 0.0633 0.7681

10 0.3170 0.2714 1.2956 -0.1871 0.0646 0.6945 0.1404 0.0448 0.7511
11 0.2128 0.2092 1.2210 -0.1326 0.0508 0.7147 -0.0274 0.0480 0.7435
12 -0.0217 0.1861 1.2195 0.0006 0.0719 0.7317 0.0001 0.0590 0.7394
13 -0.3535 0.2215 1.4275 0.1827 0.0716 0.7257 0.0854 0.0477 0.7361
14 -0.5094 0.2602 1.3872 0.2572 0.0508 0.7332 0.0610 0.0571 0.7455
15 -0.2536 0.1608 1.3018 -0.1113 0.0734 0.7473 0.1759 0.0477 0.7367
16 0.5093 0.1968 1.2074 0.5371 0.0594 0.7399 0.1480 0.0538 0.7445
17 -0.0927 0.2095 1.2847 -0.2657 0.0407 0.7683 0.0680 0.0384 0.7435
18 -0.1121 0.1959 1.2758 -0.1571 0.0414 0.7639 0.1266 0.0621 0.7613
19 -0.0329 0.2254 1.3530 -0.3641 0.0490 0.7800 0.0596 0.0494 0.7528
20 -0.1472 0.1950 1.3398 -0.1294 0.0544 0.7681 0.0027 0.0757 0.7358
21 -0.1728 0.2194 1.2982 0.6348 0.0454 0.7583 -0.0497 0.0674 0.7754
22 -0.1581 0.1653 1.2206 -0.2165 0.0615 0.7448 0.1843 0.0419 0.7659
23 -0.0148 0.1648 1.2243 0.1927 0.0796 0.7346 0.1435 0.0578 0.7911
24 0.3216 0.2270 1.2892 -0.0745 0.0582 0.7244 -0.0340 0.0680 0.7852
25 0.0908 0.1581 1.2203 0.1852 0.0816 0.7235 0.0239 0.0611 0.7660
26 0.0556 0.2061 1.2693 -0.0037 0.0720 0.6922 0.0504 0.0607 0.7695
27 0.0941 0.1997 1.2139 0.0238 0.0676 0.7321 0.1645 0.0550 0.7621
28 -0.4581 0.2737 1.4550 -0.2036 0.0467 0.7501 -0.0493 0.0660 0.7913
29 0.2258 0.3260 1.3469 0.1519 0.0467 0.7393 0.2601 0.0605 0.7469
30 0.1383 0.2407 1.2871 0.0977 0.0524 0.7330 0.1438 0.0684 0.7080
31 -0.1529 0.2263 1.3008 -0.3725 0.0595 0.7327 0.0300 0.0501 0.6973
32 -0.3621 0.2535 1.3568 0.5903 0.0607 0.6996 -0.0697 0.0713 0.6686
33 0.3052 0.2014 1.1797 0.4688 0.0425 0.6894 0.0846 0.0415 0.6763
34 0.0896 0.1660 1.1641 0.1631 0.0415 0.6822 0.0242 0.0416 0.6562
35 0.1775 0.1226 1.1261 -0.2060 0.0406 0.6969 0.1825 0.0381 0.6337
36 0.2432 0.1700 1.2062 0.4789 0.0331 0.6879 0.2667 0.0319 0.6141
37 -0.0302 0.1661 1.2829 -0.7166 0.0426 0.7145 0.4487 0.0387 0.6005
38 -0.1960 0.1609 1.2704 0.2525 0.0534 0.7098 0.0275 0.0547 0.6125
39 0.0284 0.1372 1.3305 -0.1771 0.0568 0.7289 0.2129 0.0344 0.6139

Normal Fat WDLS DDLS
K37 K36 K35



40 0.3744 0.1267 1.2403 0.0130 0.0553 0.7375 0.1727 0.0377 0.6299
41 -0.1263 0.1931 1.3530 -0.1822 0.0587 0.7760 -0.0652 0.0491 0.6507
42 0.0062 0.1753 1.2754 -0.2486 0.0555 0.7843 0.1396 0.0363 0.6322
43 0.2766 0.1675 1.3012 0.2822 0.0820 0.8383 -0.1211 0.0554 0.6309
44 -0.0891 0.1909 1.2588 0.2720 0.0573 0.8066 0.1687 0.0300 0.6607
45 0.3008 0.2587 1.3194 0.2409 0.0811 0.7689 0.1364 0.0519 0.6278
46 0.1079 0.1580 1.2600 -0.0992 0.0408 0.7422 0.1328 0.0481 0.6159
47 0.1352 0.2277 1.2885 -0.0990 0.0419 0.7040 0.1116 0.0591 0.6281
48 0.1032 0.2534 1.3387 0.0301 0.0503 0.6633 0.2941 0.0432 0.6342
49 -0.1246 0.2770 1.3869 -0.1588 0.0347 0.7127 0.4962 0.0404 0.6465
50 0.1690 0.2047 1.2280 -0.1818 0.0569 0.7218 0.0960 0.0639 0.6613
51 0.1800 0.2309 1.2478 -0.0675 0.0539 0.7329 -0.0967 0.0577 0.6739
52 -0.0288 0.1829 1.3211 0.0396 0.0600 0.7691 0.1799 0.0544 0.6524
53 -0.0016 0.1384 1.2021 -0.0238 0.0574 0.7527 -0.0299 0.0412 0.6480
54 0.1503 0.1731 1.2349 0.1961 0.0570 0.7474 -0.0961 0.0457 0.6535
55 -0.0289 0.1819 1.2083 0.1932 0.0500 0.7599 -0.0199 0.0598 0.6657
56 0.1984 0.2075 1.1786 0.0505 0.0633 0.7422 0.2146 0.0616 0.6534
57 -0.0815 0.2026 1.2126 -0.0952 0.0664 0.7503 0.1011 0.0651 0.6906
58 0.2872 0.2060 1.2631 -0.2584 0.0403 0.7868 0.1339 0.0792 0.7153
59 0.0433 0.1685 1.2884 -0.1133 0.0561 0.7387 0.1285 0.0762 0.6819
60 0.5214 0.1435 1.2137 -0.1946 0.0493 0.7462 0.1577 0.0645 0.6777
61 0.0834 0.2829 1.3696 -0.2413 0.0745 0.7667 -0.0018 0.0788 0.6860
62 0.4151 0.2145 1.2850 -0.4736 0.0495 0.7588 0.1892 0.0743 0.6883
63 -0.0264 0.1892 1.3251 0.1787 0.0518 0.7803 -0.0935 0.0847 0.7069
64 0.0476 0.2263 1.2884 -0.2433 0.0453 0.7189 0.2600 0.0538 0.6830
65 -0.1425 0.1878 1.2505 -0.0895 0.0391 0.7244 0.1974 0.0693 0.6731
66 0.2280 0.1878 1.2068 -0.0648 0.0549 0.6964 0.2158 0.0652 0.6794
67 -0.2148 0.1897 1.2201 -0.0341 0.0460 0.6773 -0.0022 0.0849 0.6519
68 -0.0354 0.1618 1.2396 -0.0338 0.0448 0.7336 0.1247 0.0583 0.6350
69 -0.0403 0.1894 1.2812 -0.0939 0.0582 0.7260 0.2979 0.0532 0.6412
70 0.0447 0.1653 1.2132 -0.0565 0.0421 0.7113 -0.0591 0.0514 0.6329
71 -0.0420 0.1929 1.2416 -0.0318 0.0493 0.7108 -0.1168 0.0365 0.6149
72 0.2237 0.2396 1.3230 -0.0495 0.0354 0.7030 0.3241 0.0258 0.5924
73 0.0792 0.1597 1.2363 -0.0570 0.0572 0.7161 -0.0339 0.0407 0.5818
74 0.5518 0.1346 1.2671 -0.0068 0.0462 0.7358 0.1742 0.0404 0.6101
75 0.1179 0.1817 1.2308 -0.2136 0.0593 0.7096 0.6404 0.0473 0.6044
76 -0.1640 0.1265 1.2038 0.1774 0.0424 0.6991 0.3181 0.0538 0.6016
77 0.1701 0.1418 1.1994 0.0086 0.0520 0.7149 0.9047 0.0694 0.6144
78 0.0203 0.1442 1.1384 0.0021 0.0451 0.7106 0.3404 0.0569 0.6214
79 -0.3157 0.1956 1.2357 0.1960 0.0437 0.6958 -0.0277 0.0470 0.5957
80 -0.2642 0.2119 1.2492 0.0896 0.0348 0.6795 0.0355 0.0537 0.5913
81 -0.2187 0.2270 1.2765 0.2199 0.0453 0.6846 0.0779 0.0477 0.5988
82 0.0230 0.1914 1.1384 -0.2857 0.0619 0.7067 0.2359 0.0369 0.5879
83 0.1163 0.2285 1.2291 -0.3910 0.0578 0.6945 0.1744 0.0347 0.5884
84 0.1917 0.2077 1.1702 -0.6554 0.0690 0.7249 0.1476 0.0378 0.5850
85 0.1238 0.2647 1.3261 -0.1033 0.0688 0.7295 0.1328 0.0414 0.6057
86 0.3670 0.1086 1.1569 0.2061 0.0655 0.7021 0.0754 0.0367 0.6061



87 -0.0118 0.1580 1.1766 0.1780 0.0791 0.7368 0.1148 0.0406 0.6397
88 0.2077 0.1715 1.1941 0.0477 0.0566 0.7251 0.1771 0.0491 0.6319
89 0.1371 0.2066 1.2378 0.3391 0.0442 0.7331 0.0870 0.0461 0.6282
90 0.0000 0.2457 1.2393 0.2920 0.0529 0.7296 0.0715 0.0434 0.6387
91 0.0193 0.1990 1.2596 0.1588 0.0523 0.7060 0.2485 0.0423 0.6283
92 -0.2822 0.1836 1.2230 -0.0072 0.0548 0.7416 0.0728 0.0396 0.6384
93 0.3768 0.2406 1.2886 -0.0673 0.0438 0.7216 -0.1191 0.0388 0.6306
94 -0.0650 0.4112 1.4717 -0.0656 0.0486 0.7153 0.2469 0.0361 0.6119
95 -0.0584 0.2977 1.2673 -0.2121 0.0385 0.7196 0.0963 0.0470 0.6098
96 0.0653 0.2569 1.2887 0.2377 0.0434 0.7039 -0.0090 0.0371 0.6208
97 -0.0192 0.2709 1.2355 -0.1604 0.0449 0.6794 0.3758 0.0247 0.6089
98 -0.1277 0.2937 1.3151 0.1387 0.0381 0.6682 0.0931 0.0423 0.6129
99 -0.2030 0.2478 1.2754 -0.2576 0.0406 0.6643 -0.2266 0.0347 0.6230

100 0.1114 0.3813 1.3556 -0.2518 0.0430 0.6882 0.1203 0.0461 0.6175
101 -0.1944 0.3807 1.4416 -0.0314 0.0342 0.6546 0.1521 0.0417 0.6210
102 -0.3464 0.2390 1.2839 -0.1193 0.0310 0.6510 0.2388 0.0301 0.6202
103 -0.2629 0.2135 1.2648 0.1193 0.0362 0.6648 0.0349 0.0300 0.5962
104 -0.5720 0.2108 1.2726 -0.1806 0.0450 0.6530 0.0590 0.0393 0.6103
105 -0.0287 0.1831 1.2159 -0.1585 0.0553 0.6315 -0.0545 0.0481 0.6192
106 -0.5690 0.2514 1.3323 -0.0967 0.0412 0.6679 0.0335 0.0352 0.5989
107 -0.3548 0.2479 1.3065 0.1020 0.0474 0.6779 0.1449 0.0370 0.5926
108 -0.0343 0.2599 1.2606 -0.1565 0.0650 0.6938 0.3162 0.0332 0.5835
109 0.0275 0.2835 1.2654 -0.1287 0.0671 0.6834 0.0020 0.0325 0.6122
110 -0.3541 0.1908 1.2047 -0.1448 0.0646 0.6768 0.0700 0.0290 0.5883
111 -0.1410 0.2009 1.1830 -0.2851 0.0542 0.6943 -0.0459 0.0342 0.5951
112 -0.0920 0.2218 1.2653 -0.0485 0.0592 0.7169 0.1687 0.0320 0.6079
113 0.2911 0.2897 1.2839 0.0220 0.0420 0.7015 0.0245 0.0287 0.6033
114 0.2872 0.1949 1.2315 -0.2024 0.0372 0.6675 -0.2642 0.0485 0.6197
115 0.4753 0.1368 1.2566 -0.0332 0.0393 0.6498 -0.1438 0.0601 0.6182
116 -0.0715 0.2251 1.2831 0.0402 0.0423 0.6882 0.1297 0.0424 0.6281
117 0.1042 0.2723 1.3165 0.1605 0.0475 0.7028 -0.0366 0.0593 0.6267
118 -0.1181 0.2422 1.3530 -0.7296 0.0554 0.6999 -0.0571 0.0460 0.6365
119 0.0540 0.1873 1.2731 -0.1048 0.0616 0.6965 0.3834 0.0475 0.6337
120 -0.2252 0.1144 1.2244 -0.1518 0.0593 0.6980 -0.1504 0.0711 0.6383
121 0.1188 0.2489 1.2355 0.0111 0.0329 0.6807 -0.0956 0.0703 0.6334
122 -0.0936 0.2410 1.3393 0.1242 0.0448 0.6797 -0.0272 0.0591 0.6277
123 0.1722 0.1910 1.3003 0.0604 0.0516 0.6629 0.3223 0.0553 0.5999
124 0.1351 0.1961 1.3322 -0.1603 0.0522 0.6806 0.2127 0.0525 0.6257
125 -0.0256 0.1903 1.2769 -0.1639 0.0445 0.6529 0.3684 0.0441 0.6284
126 -0.3156 0.1239 1.2612 -0.4902 0.0746 0.6757 0.2770 0.0374 0.6001
127 0.0991 0.1659 1.2818 0.0338 0.0538 0.6863 -0.2241 0.0374 0.6172
128 -0.2135 0.2211 1.3465 -0.1750 0.0452 0.6684 -0.1713 0.0404 0.6194
129 -0.2018 0.1308 1.2537 -0.1944 0.0482 0.6347 -0.1055 0.0453 0.6282
130 -0.2738 0.1317 1.1918 -0.2213 0.0663 0.6563 0.1597 0.0451 0.6038
131 0.0931 0.1869 1.3498 -0.1394 0.0550 0.6633 0.1783 0.0369 0.6230
132 -0.1391 0.1440 1.3260 0.0165 0.0464 0.6676 -0.0637 0.0451 0.6127
133 0.2049 0.1471 1.3241 -0.1644 0.0687 0.6754 -0.1259 0.0501 0.6088



134 -0.1290 0.1517 1.2664 -0.3567 0.0573 0.6851 -0.0641 0.0648 0.6089
135 -0.4373 0.1967 1.2783 -0.1150 0.0374 0.6784 0.2594 0.0595 0.5782
136 -0.2683 0.1333 1.3040 0.0670 0.0412 0.6875 0.0953 0.0599 0.6097
137 0.0765 0.1286 1.3270 0.1662 0.0596 0.7028 0.2021 0.0631 0.6140
138 0.1941 0.3029 1.4236 0.2399 0.0531 0.6772 0.0065 0.0593 0.6270
139 -0.0626 0.2241 1.3999 0.0950 0.0339 0.6853 -0.0643 0.0536 0.6157
140 -0.5387 0.1884 1.3278 0.0372 0.0511 0.6723 -0.0285 0.0373 0.6265
141 -0.3263 0.2130 1.2815 -0.0682 0.0425 0.6892 -0.1947 0.0492 0.6064
142 0.0076 0.1846 1.2701 0.3771 0.0455 0.6958 0.2058 0.0351 0.6138
143 -0.3112 0.2178 1.3953 0.9543 0.0553 0.7084 0.0059 0.0495 0.6030
144 -0.1892 0.1451 1.2420 0.6511 0.0530 0.6732 0.4027 0.0409 0.5971
145 0.1456 0.1788 1.2017 0.0461 0.0520 0.6790 0.0572 0.0352 0.6054
146 -0.0506 0.2765 1.3088 -0.0313 0.0516 0.6792 0.0884 0.0342 0.6058
147 -0.3078 0.2192 1.3471 0.0817 0.0573 0.6809 0.1577 0.0261 0.6034
148 -0.1653 0.1793 1.2187 -0.1707 0.0452 0.6788 -0.1567 0.0415 0.6115
149 -0.0454 0.1776 1.2056 -0.1400 0.0524 0.6672 -0.0490 0.0383 0.6338
150 -0.2506 0.1674 1.2121 0.1373 0.0451 0.6945 -0.1059 0.0410 0.6477
151 -0.3585 0.1443 1.2173 -0.3473 0.0432 0.6702 -0.1273 0.0556 0.6265
152 -0.3060 0.2117 1.2583 -0.0370 0.0398 0.6773 0.0391 0.0479 0.6094
153 -0.3051 0.2064 1.2956 0.1070 0.0264 0.6721 0.1669 0.0437 0.6219
154 0.1549 0.2980 1.3223 -0.0701 0.0417 0.6765 0.2936 0.0456 0.5740
155 -0.0067 0.2641 1.2951 0.0999 0.0651 0.6921 0.1886 0.0430 0.5964
156 -0.0597 0.2689 1.2601 -0.0220 0.0582 0.7135 0.0796 0.0433 0.5939
157 -0.2616 0.1898 1.2884 -0.1287 0.0521 0.7167 0.0473 0.0363 0.6067
158 -0.0504 0.1561 1.2024 0.0794 0.0699 0.7527 0.0886 0.0532 0.6034
159 0.0631 0.2352 1.2843 0.1193 0.0655 0.7449 0.0004 0.0378 0.6109
160 -0.2244 0.2958 1.3432 -0.5328 0.0976 0.7559 -0.0091 0.0488 0.6407
161 -0.0391 0.2554 1.3776
162 0.1133 0.1751 1.2261
163 -0.4437 0.2844 1.4032
164 0.0504 0.3223 1.3217
165 -0.1478 0.1351 1.2444
166 -0.1796 0.1901 1.2745
167 -0.2061 0.2314 1.2196
168 -0.0673 0.1768 1.2378
169 -0.3022 0.1784 1.2951
170 0.2491 0.2546 1.3583
171 -0.0461 0.1400 1.1891
172 0.1315 0.2322 1.2683
173 -0.0292 0.3083 1.2774
174 0.2960 0.2649 1.2925
175 0.1018 0.2947 1.3357
176 0.3759 0.3210 1.3099
177 0.0893 0.3065 1.3732
178 0.3068 0.2414 1.2773
179 0.1628 0.3953 1.4213



180 -0.1177 0.3283 1.3795
181 0.3368 0.3378 1.3602
182 0.0807 0.2322 1.2618
183 0.2885 0.1642 1.2701
184 0.3843 0.2769 1.2716
185 0.3876 0.3020 1.4265
186 0.1598 0.2518 1.2882
187 -0.2587 0.2884 1.4189
188 0.0895 0.3586 1.3773
189 -0.2272 0.2904 1.3767
190 0.1986 0.2203 1.4040
191 0.2126 0.1560 1.3208
192 0.2914 0.1504 1.1734
193 0.0877 0.1750 1.2449
194 -0.1060 0.2143 1.2565
195 -0.0682 0.2963 1.3450
196 -0.6322 0.2425 1.3793
197 0.2791 0.2690 1.3255
198 0.3570 0.1714 1.2918
199 0.3613 0.1098 1.1802
200 0.4194 0.1642 1.1774

mean 0.0007 0.2151 1.2796 -0.0128 0.0529 0.7093 0.0857 0.0493 0.6502
std +/- 0.2347 0.0579 0.0659 0.2443 0.0120 0.0359 0.1673 0.0128 0.0584
std/m. 319.0928 0.2690 0.0515 -19.0613 0.2274 0.0507 1.9510 0.2591 0.0898



Generalized Extreme Value Parameters B-scan per B-scan

Intensity values normalized by mean

k σ μ k σ μ k σ μ
1 0.7060 0.3789 0.3597 0.2068 0.4426 0.6390 0.2329 0.4418 0.6251
2 0.7114 0.3742 0.3600 0.2001 0.4435 0.6390 0.2739 0.4374 0.6053
3 0.7674 0.3565 0.3351 0.2239 0.4451 0.6262 0.2685 0.4435 0.6030
4 0.7720 0.3585 0.3355 0.2631 0.4397 0.6058 0.2800 0.4430 0.5957
5 0.7954 0.3449 0.3153 0.2640 0.4426 0.6048 0.2759 0.4382 0.6013
6 0.7399 0.3714 0.3468 0.1998 0.4464 0.6412 0.2744 0.4427 0.5977
7 0.8141 0.3549 0.3208 0.1577 0.4538 0.6591 0.2522 0.4480 0.6107
8 0.8103 0.3525 0.3193 0.1801 0.4512 0.6485 0.2764 0.4399 0.6003
9 0.7792 0.3636 0.3354 0.1765 0.4484 0.6524 0.2731 0.4462 0.5994

10 0.8697 0.3359 0.2950 0.1794 0.4461 0.6522 0.2671 0.4456 0.6038
11 0.8619 0.3477 0.3073 0.1800 0.4606 0.6413 0.2539 0.4477 0.6104
12 0.7935 0.3649 0.3336 0.1983 0.4655 0.6261 0.2378 0.4471 0.6182
13 0.8336 0.3402 0.3107 0.1986 0.4711 0.6216 0.2475 0.4471 0.6143
14 0.9007 0.3317 0.2900 0.2001 0.4699 0.6217 0.2575 0.4484 0.6065
15 0.8636 0.3436 0.3050 0.1953 0.4760 0.6198 0.2457 0.4422 0.6173
16 0.8309 0.3520 0.3126 0.2164 0.4700 0.6106 0.2475 0.4504 0.6091
17 0.8263 0.3540 0.3170 0.2211 0.4699 0.6107 0.2365 0.4435 0.6218
18 0.8570 0.3499 0.3077 0.2241 0.4652 0.6123 0.2675 0.4473 0.5992
19 0.8511 0.3407 0.3050 0.2450 0.4662 0.5998 0.2605 0.4392 0.6107
20 0.8720 0.3402 0.3032 0.2364 0.4677 0.6031 0.2564 0.4423 0.6110
21 0.8185 0.3546 0.3194 0.2519 0.4529 0.6010 0.2926 0.4375 0.5930
22 0.7964 0.3690 0.3342 0.2205 0.4510 0.6247 0.2919 0.4370 0.5953
23 0.7902 0.3641 0.3351 0.2392 0.4416 0.6189 0.3025 0.4355 0.5871
24 0.8151 0.3496 0.3176 0.2107 0.4496 0.6318 0.2985 0.4393 0.5876
25 0.8123 0.3637 0.3268 0.2201 0.4461 0.6270 0.2791 0.4430 0.5973
26 0.8509 0.3502 0.3080 0.1857 0.4524 0.6440 0.2870 0.4450 0.5912
27 0.7657 0.3684 0.3397 0.2325 0.4512 0.6182 0.2783 0.4413 0.5985
28 0.7926 0.3531 0.3222 0.2087 0.4661 0.6207 0.2890 0.4399 0.5916
29 0.8962 0.3311 0.2866 0.2027 0.4701 0.6207 0.2556 0.4400 0.6113
30 0.8442 0.3493 0.3082 0.2079 0.4668 0.6209 0.2291 0.4434 0.6263
31 0.8518 0.3461 0.3087 0.2025 0.4584 0.6307 0.2017 0.4536 0.6360
32 0.8517 0.3480 0.3084 0.2024 0.4489 0.6305 0.1616 0.4556 0.6558
33 0.7911 0.3669 0.3313 0.1917 0.4471 0.6436 0.1660 0.4538 0.6547
34 0.8146 0.3648 0.3283 0.1796 0.4527 0.6483 0.1495 0.4480 0.6679
35 0.7218 0.3920 0.3621 0.1768 0.4529 0.6497 0.1251 0.4491 0.6799
36 0.7209 0.3729 0.3571 0.1749 0.4563 0.6466 0.0957 0.4534 0.6920
37 0.8057 0.3562 0.3230 0.1682 0.4608 0.6484 0.1129 0.4495 0.6857
38 0.8172 0.3591 0.3221 0.1827 0.4614 0.6382 0.1053 0.4508 0.6890
39 0.8533 0.3457 0.3046 0.1896 0.4722 0.6276 0.0873 0.4561 0.6944

K35
Normal Fat WDLS DDLS

K37 K36



40 0.8142 0.3582 0.3231 0.2145 0.4736 0.6125 0.1179 0.4502 0.6828
41 0.8996 0.3318 0.2894 0.2317 0.4755 0.5996 0.1338 0.4483 0.6756
42 0.8204 0.3531 0.3199 0.2233 0.4850 0.5975 0.1118 0.4475 0.6876
43 0.8225 0.3486 0.3148 0.3055 0.4697 0.5535 0.1135 0.4480 0.6866
44 0.8528 0.3503 0.3111 0.2663 0.4711 0.5796 0.1404 0.4506 0.6706
45 0.8377 0.3452 0.3073 0.2362 0.4689 0.5987 0.1235 0.4514 0.6791
46 0.8253 0.3587 0.3206 0.2001 0.4739 0.6209 0.1084 0.4491 0.6884
47 0.8720 0.3446 0.2999 0.1896 0.4547 0.6416 0.1335 0.4433 0.6793
48 0.8744 0.3419 0.3006 0.1549 0.4547 0.6604 0.1404 0.4455 0.6739
49 0.8979 0.3344 0.2892 0.1880 0.4642 0.6358 0.1611 0.4449 0.6633
50 0.7757 0.3694 0.3343 0.1869 0.4678 0.6328 0.1547 0.4519 0.6613
51 0.7712 0.3671 0.3398 0.2082 0.4591 0.6261 0.1682 0.4375 0.6643
52 0.7485 0.3679 0.3432 0.2352 0.4629 0.6065 0.1556 0.4456 0.6656
53 0.7880 0.3678 0.3395 0.2442 0.4585 0.6066 0.1345 0.4456 0.6773
54 0.8054 0.3624 0.3284 0.2435 0.4580 0.6063 0.1431 0.4402 0.6764
55 0.7639 0.3717 0.3455 0.2440 0.4552 0.6074 0.1599 0.4411 0.6662
56 0.7136 0.3817 0.3616 0.2365 0.4565 0.6118 0.1609 0.4464 0.6619
57 0.7334 0.3811 0.3554 0.2478 0.4504 0.6100 0.2083 0.4417 0.6394
58 0.7447 0.3721 0.3442 0.2630 0.4605 0.5944 0.2204 0.4435 0.6288
59 0.7827 0.3623 0.3331 0.2453 0.4561 0.6099 0.2102 0.4481 0.6340
60 0.8106 0.3554 0.3234 0.2206 0.4635 0.6173 0.1999 0.4487 0.6397
61 0.8803 0.3282 0.2917 0.2333 0.4701 0.6033 0.2163 0.4505 0.6301
62 0.8856 0.3398 0.2962 0.2096 0.4771 0.6130 0.2260 0.4418 0.6296
63 0.8776 0.3411 0.2988 0.2451 0.4650 0.5984 0.2227 0.4428 0.6305
64 0.8239 0.3551 0.3173 0.1735 0.4658 0.6412 0.1976 0.4478 0.6412
65 0.7512 0.3690 0.3468 0.1893 0.4722 0.6288 0.1936 0.4443 0.6454
66 0.7392 0.3741 0.3513 0.1863 0.4591 0.6403 0.1924 0.4408 0.6477
67 0.7136 0.3844 0.3632 0.1550 0.4550 0.6597 0.1602 0.4468 0.6622
68 0.7518 0.3711 0.3474 0.2204 0.4490 0.6275 0.1453 0.4448 0.6722
69 0.7124 0.3764 0.3582 0.2041 0.4610 0.6277 0.1341 0.4459 0.6765
70 0.6895 0.3878 0.3713 0.1674 0.4724 0.6405 0.1257 0.4444 0.6830
71 0.8288 0.3589 0.3217 0.1651 0.4758 0.6389 0.0845 0.4480 0.7012
72 0.8730 0.3410 0.2992 0.1445 0.4782 0.6488 0.0784 0.4439 0.7070
73 0.8601 0.3542 0.3104 0.1611 0.4864 0.6336 0.0603 0.4438 0.7156
74 0.8863 0.3369 0.2954 0.1877 0.4794 0.6232 0.0990 0.4462 0.6952
75 0.7772 0.3662 0.3373 0.1667 0.4759 0.6383 0.1140 0.4448 0.6871
76 0.7168 0.3832 0.3642 0.1992 0.4569 0.6346 0.1028 0.4485 0.6913
77 0.7318 0.3762 0.3552 0.1971 0.4591 0.6332 0.1418 0.4411 0.6721
78 0.6862 0.3942 0.3758 0.2056 0.4541 0.6330 0.1274 0.4506 0.6764
79 0.6532 0.3931 0.3824 0.1861 0.4542 0.6431 0.0743 0.4468 0.7071
80 0.6318 0.3909 0.3911 0.1527 0.4578 0.6591 0.0756 0.4489 0.7051
81 0.6695 0.3870 0.3736 0.1878 0.4542 0.6429 0.0814 0.4532 0.6993
82 0.6593 0.3924 0.3840 0.1817 0.4506 0.6477 0.0661 0.4492 0.7096
83 0.6799 0.3838 0.3730 0.1745 0.4499 0.6529 0.0730 0.4437 0.7097
84 0.7791 0.3666 0.3380 0.1804 0.4594 0.6419 0.0473 0.4584 0.7126
85 0.8011 0.3466 0.3203 0.2107 0.4569 0.6261 0.0820 0.4558 0.6973
86 0.6900 0.3893 0.3715 0.1784 0.4604 0.6405 0.0812 0.4527 0.6997



87 0.7499 0.3805 0.3510 0.2231 0.4622 0.6127 0.1245 0.4455 0.6824
88 0.7139 0.3838 0.3589 0.1957 0.4650 0.6284 0.1331 0.4434 0.6795
89 0.8030 0.3606 0.3260 0.2200 0.4565 0.6203 0.1110 0.4508 0.6859
90 0.7582 0.3711 0.3409 0.2282 0.4522 0.6195 0.1291 0.4478 0.6787
91 0.7641 0.3656 0.3348 0.2072 0.4529 0.6323 0.1255 0.4462 0.6815
92 0.6745 0.3935 0.3734 0.2382 0.4558 0.6125 0.1233 0.4496 0.6805
93 0.8102 0.3542 0.3178 0.2102 0.4562 0.6289 0.1105 0.4458 0.6897
94 0.9022 0.3179 0.2780 0.2101 0.4534 0.6311 0.0964 0.4557 0.6901
95 0.8367 0.3526 0.3131 0.2011 0.4548 0.6350 0.1013 0.4466 0.6938
96 0.8261 0.3492 0.3158 0.1892 0.4497 0.6438 0.0929 0.4508 0.6952
97 0.8014 0.3556 0.3240 0.1481 0.4551 0.6634 0.0872 0.4560 0.6946
98 0.7692 0.3617 0.3326 0.1330 0.4629 0.6658 0.1008 0.4474 0.6936
99 0.8000 0.3674 0.3279 0.1182 0.4686 0.6702 0.0905 0.4471 0.6989

100 0.8680 0.3373 0.2933 0.1494 0.4655 0.6555 0.1013 0.4534 0.6892
101 0.8754 0.3328 0.2913 0.1357 0.4521 0.6726 0.0997 0.4574 0.6874
102 0.8315 0.3565 0.3161 0.1210 0.4551 0.6781 0.1009 0.4542 0.6888
103 0.8159 0.3595 0.3259 0.1409 0.4557 0.6668 0.0674 0.4482 0.7093
104 0.8142 0.3650 0.3251 0.1351 0.4513 0.6734 0.0894 0.4473 0.6993
105 0.7700 0.3728 0.3408 0.1149 0.4505 0.6843 0.0992 0.4481 0.6938
106 0.8444 0.3539 0.3131 0.1527 0.4514 0.6640 0.0702 0.4512 0.7060
107 0.8947 0.3425 0.2961 0.1489 0.4635 0.6567 0.0690 0.4527 0.7057
108 0.8840 0.3447 0.2998 0.1516 0.4636 0.6543 0.0611 0.4511 0.7106
109 0.8717 0.3434 0.3004 0.1548 0.4665 0.6514 0.0836 0.4502 0.7002
110 0.8134 0.3655 0.3285 0.1639 0.4568 0.6538 0.0507 0.4522 0.7147
111 0.7176 0.3882 0.3620 0.1741 0.4513 0.6520 0.0657 0.4485 0.7100
112 0.8285 0.3557 0.3180 0.1998 0.4520 0.6361 0.0916 0.4466 0.6987
113 0.9521 0.3246 0.2732 0.1848 0.4511 0.6459 0.0773 0.4462 0.7060
114 0.8346 0.3525 0.3145 0.1400 0.4559 0.6677 0.0956 0.4458 0.6972
115 0.8668 0.3416 0.3006 0.1358 0.4516 0.6731 0.1076 0.4438 0.6925
116 0.8244 0.3558 0.3167 0.1817 0.4500 0.6493 0.1165 0.4498 0.6839
117 0.8913 0.3345 0.2932 0.2132 0.4480 0.6331 0.1119 0.4440 0.6899
118 0.8557 0.3412 0.3033 0.1707 0.4452 0.6582 0.1233 0.4426 0.6851
119 0.8388 0.3505 0.3131 0.1942 0.4463 0.6446 0.1411 0.4441 0.6745
120 0.7545 0.3780 0.3465 0.1747 0.4478 0.6533 0.1331 0.4469 0.6770
121 0.7978 0.3616 0.3251 0.1548 0.4529 0.6612 0.1361 0.4430 0.6782
122 0.8727 0.3380 0.2959 0.1675 0.4499 0.6565 0.1309 0.4416 0.6821
123 0.9039 0.3346 0.2879 0.1457 0.4515 0.6669 0.1210 0.4415 0.6872
124 0.8265 0.3422 0.3102 0.1645 0.4494 0.6587 0.1287 0.4411 0.6831
125 0.7807 0.3591 0.3318 0.1317 0.4472 0.6777 0.1382 0.4396 0.6792
126 0.7573 0.3668 0.3432 0.1571 0.4492 0.6629 0.0944 0.4402 0.7015
127 0.8598 0.3487 0.3055 0.1647 0.4518 0.6558 0.0951 0.4449 0.6981
128 0.9092 0.3364 0.2901 0.1363 0.4551 0.6696 0.0942 0.4472 0.6970
129 0.7565 0.3653 0.3416 0.1050 0.4535 0.6873 0.1154 0.4380 0.6923
130 0.7607 0.3682 0.3468 0.1447 0.4478 0.6704 0.0999 0.4412 0.6982
131 0.9175 0.3195 0.2805 0.1511 0.4493 0.6662 0.1176 0.4439 0.6875
132 0.9529 0.3245 0.2760 0.1560 0.4482 0.6641 0.0888 0.4489 0.6985
133 0.8634 0.3339 0.2987 0.1548 0.4505 0.6625 0.0843 0.4459 0.7027



134 0.7690 0.3546 0.3375 0.1520 0.4508 0.6638 0.1027 0.4459 0.6935
135 0.8727 0.3508 0.3055 0.1535 0.4470 0.6659 0.0888 0.4464 0.7003
136 0.8196 0.3475 0.3208 0.1761 0.4520 0.6504 0.1079 0.4476 0.6897
137 0.8635 0.3326 0.3022 0.2123 0.4475 0.6331 0.1281 0.4441 0.6816
138 0.9442 0.3127 0.2695 0.1725 0.4500 0.6529 0.1225 0.4474 0.6823
139 0.9478 0.3117 0.2697 0.1737 0.4484 0.6544 0.1066 0.4451 0.6921
140 0.9285 0.3335 0.2835 0.1607 0.4516 0.6590 0.1095 0.4410 0.6933
141 0.8444 0.3417 0.3117 0.1767 0.4470 0.6538 0.0848 0.4441 0.7038
142 0.8640 0.3436 0.3041 0.1973 0.4466 0.6406 0.1050 0.4426 0.6946
143 0.9124 0.3254 0.2809 0.2430 0.4349 0.6056 0.0902 0.4450 0.7004
144 0.7920 0.3650 0.3328 0.1824 0.4438 0.6443 0.1035 0.4424 0.6955
145 0.7704 0.3672 0.3398 0.1659 0.4474 0.6587 0.0875 0.4465 0.7008
146 0.8990 0.3298 0.2870 0.1683 0.4465 0.6583 0.0876 0.4478 0.6999
147 0.9571 0.3196 0.2731 0.1807 0.4423 0.6541 0.0816 0.4469 0.7034
148 0.8397 0.3574 0.3170 0.1683 0.4415 0.6621 0.0903 0.4479 0.6985
149 0.7951 0.3680 0.3325 0.1559 0.4424 0.6680 0.1156 0.4496 0.6846
150 0.8012 0.3688 0.3333 0.1839 0.4410 0.6528 0.1330 0.4470 0.6775
151 0.7994 0.3657 0.3369 0.1539 0.4422 0.6696 0.1177 0.4428 0.6880
152 0.7934 0.3618 0.3337 0.1693 0.4496 0.6565 0.1014 0.4455 0.6946
153 0.8309 0.3472 0.3176 0.1567 0.4478 0.6642 0.1156 0.4436 0.6885
154 0.8736 0.3340 0.2953 0.1631 0.4498 0.6594 0.0719 0.4461 0.7087
155 0.8236 0.3519 0.3151 0.1984 0.4416 0.6447 0.0938 0.4457 0.6982
156 0.8451 0.3467 0.3112 0.2142 0.4473 0.6322 0.0751 0.4485 0.7056
157 0.8290 0.3544 0.3169 0.2146 0.4493 0.6313 0.0815 0.4475 0.7031
158 0.8523 0.3512 0.3143 0.2564 0.4436 0.6090 0.1030 0.4445 0.6944
159 0.8765 0.3377 0.3005 0.2456 0.4439 0.6149 0.0980 0.4419 0.6987
160 0.8322 0.3448 0.3103 0.2311 0.4478 0.6203 0.1257 0.4434 0.6832
161 0.8679 0.3399 0.2972
162 0.8794 0.3471 0.3021
163 0.8932 0.3300 0.2927
164 0.8816 0.3338 0.2959
165 0.8172 0.3627 0.3254
166 0.8368 0.3555 0.3158
167 0.8013 0.3606 0.3313
168 0.8165 0.3603 0.3267
169 0.8784 0.3434 0.3035
170 0.8639 0.3380 0.2941
171 0.7885 0.3735 0.3375
172 0.7974 0.3622 0.3288
173 0.7466 0.3668 0.3414
174 0.8102 0.3459 0.3159
175 0.8236 0.3448 0.3122
176 0.8908 0.3265 0.2874
177 0.8618 0.3298 0.2960
178 0.8267 0.3451 0.3134
179 0.9710 0.3028 0.2566



180 0.9162 0.3250 0.2799
181 0.9107 0.3183 0.2767
182 0.8254 0.3528 0.3201
183 0.8657 0.3404 0.3035
184 0.9046 0.3294 0.2811
185 0.9117 0.3164 0.2766
186 0.8509 0.3429 0.3070
187 0.8406 0.3435 0.3058
188 0.8942 0.3297 0.2839
189 0.9338 0.3229 0.2771
190 0.8654 0.3265 0.2907
191 0.8334 0.3400 0.3107
192 0.7918 0.3657 0.3353
193 0.8175 0.3593 0.3232
194 0.8452 0.3495 0.3109
195 0.8916 0.3348 0.2925
196 0.8996 0.3361 0.2909
197 0.8085 0.3499 0.3178
198 0.8429 0.3489 0.3092
199 0.7892 0.3664 0.3335
200 0.7343 0.3722 0.3532

mean 0.8209 0.3532 0.3191 0.1905 0.4561 0.6381 0.1447 0.4462 0.6700
std +/- 0.0647 0.0181 0.0254 0.0358 0.0100 0.0229 0.0684 0.0044 0.0364
std/m. 0.0789 0.0513 0.0796 0.1878 0.0220 0.0359 0.4728 0.0099 0.0543



k σ μ k σ μ k σ μ
1 0.4500 0.3917 0.5017 0.4746 0.3975 0.4836 0.5919 0.3574 0.4093
2 0.3999 0.4077 0.5358 0.4682 0.4042 0.4873 0.5515 0.3751 0.4355
3 0.4279 0.4022 0.5187 0.5171 0.3904 0.4604 0.5424 0.3796 0.4474
4 0.4432 0.3971 0.5073 0.4652 0.4023 0.4934 0.5071 0.3887 0.4675
5 0.4570 0.3939 0.5042 0.4959 0.3966 0.4715 0.5052 0.3942 0.4678
6 0.4537 0.3859 0.4933 0.4815 0.4000 0.4802 0.5493 0.3804 0.4447
7 0.3805 0.4187 0.5458 0.4742 0.4031 0.4872 0.5729 0.3684 0.4276
8 0.4152 0.4036 0.5273 0.4864 0.3967 0.4773 0.5637 0.3769 0.4410
9 0.3446 0.4236 0.5662 0.4432 0.4090 0.5078 0.5411 0.3810 0.4505

10 0.3707 0.4159 0.5511 0.4427 0.4086 0.5052 0.5080 0.3945 0.4691
11 0.3966 0.4118 0.5352 0.4957 0.3950 0.4719 0.5026 0.3852 0.4700
12 0.4397 0.4045 0.5139 0.4861 0.4018 0.4852 0.4943 0.3883 0.4705
13 0.4241 0.4038 0.5155 0.5012 0.3923 0.4740 0.5380 0.3619 0.4333
14 0.4326 0.4043 0.5171 0.4630 0.4016 0.4918 0.5379 0.3766 0.4472
15 0.4030 0.4109 0.5365 0.5259 0.3913 0.4603 0.5459 0.3727 0.4486
16 0.4050 0.4115 0.5318 0.5548 0.3844 0.4362 0.4764 0.3931 0.4850
17 0.4241 0.4090 0.5194 0.5720 0.3667 0.4203 0.5320 0.3819 0.4533
18 0.4410 0.4022 0.5139 0.6038 0.3666 0.4096 0.4846 0.3916 0.4822
19 0.4528 0.3982 0.5039 0.5484 0.3881 0.4428 0.5220 0.3781 0.4554
20 0.4283 0.4077 0.5234 0.5377 0.3872 0.4513 0.5365 0.3718 0.4430
21 0.4031 0.4142 0.5383 0.3403 0.4252 0.5539 0.4840 0.3839 0.4744
22 0.4086 0.4135 0.5319 0.3087 0.4315 0.5764 0.5162 0.3799 0.4537
23 0.4347 0.4063 0.5204 0.3103 0.4315 0.5763 0.5306 0.3687 0.4440
24 0.4260 0.4051 0.5221 0.2974 0.4299 0.5815 0.4768 0.4008 0.4884
25 0.4093 0.4062 0.5283 0.2913 0.4310 0.5816 0.4647 0.3945 0.4940
26 0.4315 0.3955 0.5133 0.3498 0.4287 0.5508 0.5077 0.3837 0.4650
27 0.3972 0.4040 0.5320 0.3138 0.4378 0.5711 0.5200 0.3828 0.4688
28 0.3708 0.4149 0.5547 0.3405 0.4265 0.5543 0.4949 0.3823 0.4764
29 0.3676 0.4148 0.5561 0.2346 0.4469 0.6149 0.5089 0.3873 0.4741
30 0.4004 0.4086 0.5360 0.2505 0.4450 0.6050 0.5079 0.3844 0.4670
31 0.3886 0.4054 0.5396 0.2938 0.4355 0.5780 0.5146 0.3852 0.4665
32 0.3708 0.4059 0.5481 0.3092 0.4367 0.5770 0.5391 0.3714 0.4491
33 0.3713 0.4082 0.5503 0.3397 0.4266 0.5573 0.5209 0.3794 0.4564
34 0.3903 0.4033 0.5428 0.3265 0.4279 0.5646 0.5070 0.3787 0.4660
35 0.3722 0.4107 0.5439 0.3796 0.4261 0.5367 0.5453 0.3733 0.4433
36 0.3465 0.4195 0.5635 0.3896 0.4284 0.5206 0.5498 0.3800 0.4443
37 0.3491 0.4182 0.5656 0.4152 0.4094 0.5078 0.5330 0.3839 0.4550
38 0.3777 0.4115 0.5488 0.4424 0.4131 0.4909 0.5546 0.3768 0.4447
39 0.3184 0.4255 0.5789 0.3867 0.4243 0.5247 0.5306 0.3822 0.4566
40 0.3932 0.4121 0.5373 0.3578 0.4251 0.5433 0.5173 0.3870 0.4641
41 0.3667 0.4165 0.5496 0.5899 0.3894 0.4243 0.5824 0.3625 0.4209

Normal Fat
K28 K19 K22



42 0.4160 0.4100 0.5224 0.6464 0.3624 0.3890 0.5503 0.3783 0.4443
43 0.4059 0.4086 0.5306 0.6296 0.3729 0.4051 0.5529 0.3676 0.4379
44 0.3703 0.4118 0.5521 0.5875 0.3917 0.4281 0.2918 0.4225 0.5859
45 0.4297 0.3943 0.5138 0.5564 0.3983 0.4467 0.4260 0.3937 0.4976
46 0.4089 0.4094 0.5307 0.5876 0.3867 0.4276 0.4982 0.3829 0.4683
47 0.3878 0.4099 0.5395 0.6588 0.3699 0.3927 0.4967 0.3880 0.4728
48 0.3685 0.4153 0.5511 0.6118 0.3819 0.4140 0.5297 0.3693 0.4453
49 0.4010 0.4063 0.5291 0.6009 0.3815 0.4145 0.5153 0.3802 0.4627
50 0.3624 0.4213 0.5569 0.6219 0.3707 0.4040 0.5052 0.3819 0.4645
51 0.3502 0.4233 0.5633 0.6247 0.3778 0.4090 0.5045 0.3770 0.4649
52 0.3479 0.4251 0.5657 0.6810 0.3684 0.3830 0.5453 0.3632 0.4408
53 0.3776 0.4189 0.5485 0.6840 0.3653 0.3830 0.4801 0.3918 0.4817
54 0.3939 0.4058 0.5355 0.6381 0.3760 0.4059 0.4876 0.3802 0.4729
55 0.4117 0.3991 0.5276 0.6702 0.3719 0.3896 0.4989 0.3731 0.4642
56 0.4213 0.4065 0.5226 0.6623 0.3730 0.3898 0.4861 0.3913 0.4825
57 0.4079 0.4069 0.5329 0.6465 0.3765 0.3967 0.5096 0.3782 0.4684
58 0.4022 0.4117 0.5380 0.6885 0.3646 0.3805 0.4781 0.3854 0.4844
59 0.4217 0.4168 0.5212 0.6979 0.3674 0.3768 0.4401 0.4026 0.5088
60 0.4039 0.4275 0.5285 0.6896 0.3689 0.3839 0.4827 0.3877 0.4827

mean 0.3995 0.4092 0.5346 0.4915 0.3998 0.4768 0.5131 0.3817 0.4625
std +/- 0.0313 0.0086 0.0183 0.1334 0.0245 0.0694 0.0432 0.0108 0.0250
std/m. 0.0784 0.0210 0.0342 0.2715 0.0614 0.1455 0.0842 0.0282 0.0540



k σ μ k σ μ k σ μ
1 0.2682 0.4318 0.6098 0.4915 0.4513 0.4656 0.4818 0.3777 0.4732
2 0.2567 0.4365 0.6111 0.4130 0.4158 0.4909 0.4852 0.3801 0.4707
3 0.3209 0.4289 0.5786 0.5333 0.4393 0.4469 0.4574 0.3968 0.4955
4 0.2746 0.4376 0.6013 0.5700 0.4314 0.4325 0.4472 0.3976 0.5003
5 0.2883 0.4331 0.5933 0.5290 0.4392 0.4511 0.4443 0.3916 0.4980
6 0.3089 0.4282 0.5815 0.5704 0.4325 0.4335 0.4611 0.3885 0.4898
7 0.2871 0.4404 0.5911 0.6382 0.4215 0.4088 0.4536 0.3915 0.4998
8 0.3080 0.4360 0.5789 0.6976 0.4072 0.3876 0.4712 0.3930 0.4895
9 0.3211 0.4365 0.5749 0.7043 0.4035 0.3843 0.4941 0.3911 0.4733

10 0.3200 0.4336 0.5743 0.7022 0.4023 0.3852 0.5009 0.3797 0.4614
11 0.3553 0.4253 0.5571 0.6300 0.4203 0.4116 0.4724 0.3843 0.4797
12 0.3178 0.4297 0.5800 0.5835 0.4318 0.4305 0.4704 0.3818 0.4808
13 0.3453 0.4246 0.5644 0.5716 0.4295 0.4307 0.4559 0.3874 0.4927
14 0.2946 0.4358 0.5911 0.6533 0.4143 0.4004 0.4289 0.3960 0.5101
15 0.3028 0.4381 0.5833 0.6381 0.4221 0.4071 0.4073 0.4037 0.5241
16 0.3451 0.4263 0.5648 0.6767 0.4115 0.3921 0.4207 0.4022 0.5174
17 0.3381 0.4251 0.5667 0.5186 0.4427 0.4526 0.4485 0.3939 0.4950
18 0.3677 0.4281 0.5509 0.4774 0.4523 0.4740 0.4612 0.3947 0.4890
19 0.3268 0.4298 0.5721 0.5195 0.4486 0.4553 0.4847 0.3898 0.4766
20 0.3193 0.4338 0.5741 0.4797 0.4544 0.4686 0.4645 0.3931 0.4890
21 0.3356 0.4345 0.5686 0.6609 0.3501 0.3698 0.4404 0.4009 0.4937
22 0.3672 0.4302 0.5501 0.6257 0.3697 0.3934 0.4254 0.3979 0.4938
23 0.3698 0.4291 0.5469 0.6158 0.3635 0.3976 0.4198 0.4013 0.4973
24 0.3671 0.4263 0.5475 0.7657 0.3761 0.3532 0.4162 0.4048 0.5071
25 0.3690 0.4298 0.5448 0.8253 0.3602 0.3336 0.3993 0.4128 0.5254
26 0.3623 0.4192 0.5438 0.7726 0.3796 0.3535 0.4320 0.4039 0.5078
27 0.3615 0.4253 0.5527 0.7583 0.3815 0.3587 0.4511 0.3968 0.4916
28 0.3368 0.4369 0.5638 0.8064 0.3652 0.3377 0.4749 0.3891 0.4804
29 0.3425 0.4380 0.5626 0.8266 0.3646 0.3329 0.4826 0.3860 0.4748
30 0.3858 0.4247 0.5383 0.7801 0.3823 0.3539 0.4822 0.3884 0.4783
31 0.3954 0.4126 0.5365 0.8306 0.3702 0.3346 0.4533 0.3974 0.4907
32 0.3466 0.4252 0.5599 0.7704 0.3840 0.3551 0.4333 0.3996 0.5001
33 0.3723 0.4236 0.5436 0.6794 0.4108 0.3909 0.4285 0.3993 0.5028
34 0.3813 0.4250 0.5385 0.6296 0.4215 0.4093 0.4495 0.3957 0.4976
35 0.3987 0.4200 0.5276 0.5945 0.4268 0.4231 0.4449 0.3974 0.5003
36 0.3030 0.4374 0.5845 0.5616 0.4349 0.4368 0.4602 0.3909 0.4948
37 0.3552 0.4258 0.5550 0.5431 0.4393 0.4453 0.4474 0.3953 0.5024
38 0.2997 0.4355 0.5867 0.5210 0.4478 0.4543 0.4217 0.4074 0.5178
39 0.3449 0.4310 0.5579 0.6496 0.4027 0.4009 0.4338 0.3992 0.5135
40 0.2780 0.4453 0.5940 0.5482 0.4415 0.4394 0.4517 0.3908 0.4962
41 0.4263 0.4175 0.5204 0.3757 0.4731 0.5137 0.4829 0.4013 0.4820

WDLS
K47 K58K25



42 0.4643 0.4120 0.4999 0.3128 0.4828 0.5446 0.4314 0.4203 0.5141
43 0.4535 0.4162 0.5041 0.3294 0.4856 0.5343 0.4364 0.4235 0.5103
44 0.4662 0.4104 0.4942 0.3177 0.4916 0.5369 0.4552 0.4108 0.4971
45 0.4487 0.4139 0.5060 0.2539 0.4830 0.5825 0.4681 0.4092 0.4860
46 0.4645 0.4150 0.4993 0.3180 0.4745 0.5453 0.4852 0.4008 0.4759
47 0.4470 0.4222 0.5023 0.3546 0.4777 0.5245 0.4703 0.4109 0.4885
48 0.4013 0.4328 0.5260 0.2887 0.4867 0.5591 0.4673 0.4130 0.4943
49 0.4149 0.4162 0.5136 0.2733 0.4798 0.5718 0.4887 0.4092 0.4833
50 0.4230 0.4228 0.5143 0.2549 0.4778 0.5843 0.5034 0.4033 0.4736
51 0.3150 0.4285 0.5742 0.3002 0.4643 0.5656 0.5219 0.4004 0.4605
52 0.3228 0.4187 0.5675 0.3083 0.4657 0.5599 0.5386 0.3905 0.4474
53 0.2678 0.4363 0.5976 0.3123 0.4640 0.5601 0.4938 0.4065 0.4784
54 0.2283 0.4405 0.6195 0.3015 0.4703 0.5620 0.4789 0.4068 0.4836
55 0.1689 0.4410 0.6603 0.2997 0.4820 0.5510 0.4879 0.3995 0.4870
56 0.1669 0.4332 0.6624 0.3216 0.4785 0.5387 0.4956 0.4016 0.4799
57 0.1623 0.4437 0.6602 0.3266 0.4768 0.5364 0.5028 0.3967 0.4745
58 0.1694 0.4447 0.6556 0.3205 0.4792 0.5413 0.5113 0.3894 0.4630
59 0.0972 0.4448 0.6968 0.2795 0.4848 0.5628 0.5477 0.3811 0.4430
60 0.1307 0.4451 0.6776 0.3269 0.4768 0.5404 0.5496 0.3815 0.4390

mean 0.3296 0.4295 0.5692 0.5256 0.4333 0.4550 0.4646 0.3971 0.4889
std +/- 0.0818 0.0090 0.0450 0.1792 0.0405 0.0776 0.0330 0.0098 0.0182
std/m. 0.2482 0.0209 0.0791 0.3410 0.0934 0.1705 0.0710 0.0248 0.0372



k σ μ k σ μ k σ μ
1 0.0677 0.4488 0.7088 0.0401 0.4385 0.7292 0.2002 0.4405 0.6294
2 0.0713 0.4487 0.7071 0.0441 0.4443 0.7236 0.1333 0.4472 0.6726
3 0.0838 0.4499 0.7003 0.0197 0.4417 0.7359 0.1346 0.4527 0.6718
4 0.0646 0.4431 0.7140 0.0482 0.4422 0.7229 0.1213 0.4475 0.6806
5 0.0604 0.4408 0.7175 0.0598 0.4418 0.7179 0.1339 0.4418 0.6777
6 0.0889 0.4493 0.6983 0.0511 0.4410 0.7226 0.1136 0.4449 0.6884
7 0.0769 0.4468 0.7058 0.0454 0.4430 0.7243 0.0701 0.4462 0.7095
8 0.0897 0.4459 0.7001 0.0562 0.4390 0.7213 0.0426 0.4516 0.7187
9 0.0662 0.4474 0.7105 0.0484 0.4357 0.7270 0.0564 0.4447 0.7170

10 0.0625 0.4531 0.7086 0.0537 0.4385 0.7229 0.0490 0.4481 0.7182
11 0.0808 0.4491 0.7023 0.0213 0.4422 0.7354 0.0396 0.4448 0.7250
12 0.0689 0.4495 0.7079 0.0193 0.4464 0.7326 0.0378 0.4524 0.7210
13 0.0659 0.4495 0.7091 0.0419 0.4400 0.7272 0.1074 0.4390 0.6923
14 0.0594 0.4474 0.7137 0.0715 0.4392 0.7137 0.0687 0.4454 0.7108
15 0.0480 0.4522 0.7159 0.0705 0.4382 0.7149 0.0543 0.4485 0.7156
16 0.0724 0.4503 0.7056 0.0636 0.4424 0.7154 0.0473 0.4477 0.7194
17 0.0617 0.4471 0.7128 0.0385 0.4463 0.7246 0.0380 0.4464 0.7244
18 0.0991 0.4412 0.6985 0.0373 0.4420 0.7279 0.0865 0.4425 0.7039
19 0.1026 0.4464 0.6933 0.0447 0.4425 0.7245 0.0263 0.4424 0.7324
20 0.0863 0.4471 0.7010 0.0730 0.4418 0.7113 0.0322 0.4405 0.7309
21 0.0638 0.4461 0.7125 0.0890 0.4370 0.7058 0.0388 0.4424 0.7266
22 0.0768 0.4482 0.7048 0.0583 0.4383 0.7208 0.0271 0.4400 0.7334
23 0.1175 0.4484 0.6847 0.0413 0.4409 0.7270 0.0507 0.4432 0.7211
24 0.1352 0.4440 0.6785 0.0358 0.4401 0.7306 0.0541 0.4385 0.7223
25 0.1436 0.4456 0.6731 0.0386 0.4405 0.7292 0.0624 0.4378 0.7189
26 0.1671 0.4419 0.6605 0.1112 0.4331 0.6944 0.0650 0.4384 0.7173
27 0.1586 0.4450 0.6646 0.1474 0.4272 0.6738 0.0543 0.4374 0.7233
28 0.1648 0.4413 0.6621 0.1136 0.4372 0.6896 0.1035 0.4308 0.6995
29 0.1514 0.4454 0.6686 0.1596 0.4281 0.6611 0.1111 0.4283 0.6962
30 0.2120 0.4404 0.6373 0.1385 0.4320 0.6750 0.0747 0.4302 0.7179
31 0.1722 0.4441 0.6564 0.1751 0.4284 0.6490 0.0277 0.4419 0.7329
32 0.1131 0.4519 0.6846 0.1366 0.4317 0.6785 0.0325 0.4372 0.7330
33 0.1245 0.4503 0.6798 0.1394 0.4363 0.6696 0.0062 0.4415 0.7425
34 0.1705 0.4444 0.6592 0.1693 0.4412 0.6412 0.0324 0.4385 0.7328
35 0.1483 0.4473 0.6690 0.1376 0.4379 0.6698 0.0444 0.4391 0.7273
36 0.1452 0.4427 0.6739 0.1347 0.4337 0.6740 0.0555 0.4391 0.7221
37 0.1449 0.4493 0.6699 0.1732 0.4320 0.6424 0.0854 0.4353 0.7084
38 0.1665 0.4472 0.6595 0.1625 0.4318 0.6510 0.1000 0.4361 0.6966
39 0.1480 0.4479 0.6683 0.1347 0.4380 0.6789 0.0706 0.4366 0.7157
40 0.1299 0.4518 0.6757 0.0732 0.4365 0.7140 0.1088 0.4364 0.6945
41 0.1730 0.4420 0.6545 0.0624 0.4370 0.7196 0.1029 0.4332 0.7006

DDLS
K12 K33 K26b



42 0.1410 0.4359 0.6799 0.0386 0.4355 0.7326 0.1254 0.4385 0.6840
43 0.1131 0.4470 0.6873 0.0252 0.4429 0.7333 0.0884 0.4434 0.7022
44 0.1638 0.4370 0.6656 0.0307 0.4404 0.7319 0.1066 0.4462 0.6898
45 0.1486 0.4401 0.6725 0.0010 0.4430 0.7431 0.1426 0.4417 0.6679
46 0.1748 0.4375 0.6592 -0.0077 0.4464 0.7449 0.0361 0.4550 0.7204
47 0.1508 0.4452 0.6680 0.0308 0.4366 0.7346 0.0672 0.4551 0.7054
48 0.1970 0.4410 0.6442 0.0412 0.4407 0.7279 0.0878 0.4553 0.6948
49 0.1861 0.4444 0.6480 0.0754 0.4321 0.7154 0.1437 0.4466 0.6681
50 0.1793 0.4389 0.6552 0.0936 0.4275 0.7074 0.1371 0.4464 0.6722
51 0.1718 0.4382 0.6599 0.0595 0.4353 0.7227 0.1224 0.4525 0.6772
52 0.1436 0.4397 0.6758 0.0656 0.4402 0.7163 0.1043 0.4565 0.6848
53 0.1121 0.4440 0.6888 0.1245 0.4326 0.6821 0.1215 0.4542 0.6768
54 0.1013 0.4468 0.6932 0.1543 0.4297 0.6604 0.0851 0.4614 0.6921
55 0.0684 0.4426 0.7126 0.1657 0.4293 0.6568 0.0998 0.4583 0.6865
56 0.0776 0.4435 0.7076 0.1513 0.4296 0.6693 0.1209 0.4594 0.6735
57 0.0580 0.4411 0.7184 0.1193 0.4318 0.6913 0.1456 0.4612 0.6579
58 0.0879 0.4468 0.7004 0.0794 0.4402 0.7091 0.1692 0.4539 0.6453
59 0.0991 0.4450 0.6957 0.0698 0.4393 0.7144 0.1621 0.4554 0.6485
60 0.1367 0.4395 0.6799 0.0521 0.4425 0.7210 0.1776 0.4493 0.6437

mean 0.1169 0.4452 0.6857 0.0792 0.4377 0.7064 0.0857 0.4448 0.7006
std +/- 0.0441 0.0041 0.0220 0.0496 0.0050 0.0282 0.0444 0.0079 0.0262
std/m. 0.3774 0.0092 0.0321 0.6266 0.0115 0.0400 0.5176 0.0177 0.0374



APPENDIX 3

Explanation of the data analysis

Error analysis of the parameters on one B-scan from each measurement.

The problems can arise from 
1 - Digital error from straightening the image -> the mean intensity value at each depth position and

distribution can be affected
2 - Saturation points on the images -> these pixel points give erroneous intensity values
3 - surface scattering effect - > the obliquness of the surface has effect on the intensity values

Explanation of the notes
normal  tissue PDF is calculated the way as represented on the images, 40 pixel depth

1 - perturbation : I shifted each second colomn up to 10 px and second+1 down to 10 px
p+10 tissue surface is considered 10 px down from the original tissue surface 
p0 tissue surface is considered at the original tissue surface 
p-10 tissue surface is considered 10 px up of the original tissue surface 

2 - saturation
ws tissue PDF is calculated without the saturation lines, in these cases it was 4%
ms tissue PDF is calculated adding more saturation lines,  4%

3 - surface obliquness : after fitting the surface (black line) derivative of the fit is calculated
deriv each colomn intensity values were enhanced according to the obliquness
deriv/2 I applied smaller factor on the surface obliquness



NF K37 sheet9 Vol2
k sigma mu

normal 0.8962 0.3311 0.2866
p+10 0.8735 0.3297 0.2892 -2.53% -0.41% 0.89%
p0 0.9660 0.3027 0.2585 7.79% -8.59% -9.83%
p-10 1.0824 0.2688 0.2181 20.78% -18.81% -23.92%

k sigma mu
normal 0.8962 0.3311 0.2866
ws
ms 0.9550 0.3087 0.2539 6.56% -6.76% -11.41%

saturation lines: only add
col 35, raw 7 over 367 cols
35/367 = 0.095368 9.5%

k sigma mu
normal 0.8962 0.3311 0.2866
deriv/2 0.9206 0.3211 0.2745 2.72% -3.01% -4.22%
deriv 0.9660 0.3017 0.2515 7.78% -8.88% -12.26%

Here each B-scan was corrected line by line

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  



NF K37 sheet14 Vol2
k sigma mu

normal 0.8146 0.3648 0.3283
p+10 0.8570 0.3469 0.3086 5.21% -4.90% -6.00%
p0 0.9623 0.3179 0.2702 18.13% -12.85% -17.69%
p-10 1.0667 0.2884 0.2335 30.94% -20.95% -28.88%

k sigma mu
normal 0.8146 0.3648 0.3283
ws
ms 0.8931 0.3361 0.2867 9.63% -7.86% -12.66%

saturation lines: only add
col 35, raw 7 over 367 cols
35/367 = 0.095368 9.5%

k sigma mu
normal 0.8146 0.3648 0.3283
deriv/2 0.8154 0.3628 0.3264 0.10% -0.56% -0.58%
deriv 0.8269 0.3559 0.3177 1.51% -2.43% -3.23%

Here each B-scan was corrected line by line

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  



NF K37 sheet15 Vol2
k sigma mu

normal 0.7218 0.3920 0.3621
p+10 0.7053 0.3888 0.3657 -2.28% -0.81% 1.01%
p0 0.8883 0.3408 0.2972 23.06% -13.06% -17.91%
p-10 1.0509 0.2984 0.2432 45.59% -23.86% -32.83%

k sigma mu
normal 0.7218 0.3920 0.3621
ws
ms 0.7892 0.3677 0.3237 9.34% -6.19% -10.59%

saturation lines: only add
col 35, raw 7 over 367 cols
35/367 = 0.095368 9.5%

k sigma mu
normal 0.7218 0.3920 0.3621
deriv/2 0.7341 0.3878 0.3565 1.70% -1.06% -1.54%
deriv 0.7640 0.3770 0.3416 5.85% -3.82% -5.66%

Here each B-scan was corrected line by line

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  



NF K28 sheet1 Vol1
k sigma mu

normal 0.4588 0.3891 0.4957
p+10 0.4823 0.3875 0.4757 5.12% -0.42% -4.05%
p0 0.4835 0.3863 0.4740 5.38% -0.73% -4.38%
p-10 0.4835 0.3863 0.4740 5.38% -0.73% -4.38%

k sigma mu
normal 0.4588 0.3891 0.4957
ws 0.4345 0.3977 0.5132 -5.31% 2.20% 3.52%
ms 0.4779 0.3866 0.4845 4.15% -0.64% -2.27%

saturation lines: remove or add
4+3+2+10+2 = 21 over 496
21/496 = 0.042339 4.2%

k sigma mu
normal 0.4588 0.3891 0.4957
deriv/2 0.4575 0.3897 0.4968 -0.29% 0.15% 0.21%
deriv 0.4567 0.3903 0.4975 -0.46% 0.29% 0.35%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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NF K28 sheet2 Vol1
k sigma mu

normal 0.4321 0.3993 0.5162
p+10 0.4547 0.3969 0.4944 5.21% -0.59% -4.21%
p0 0.4641 0.3933 0.4895 7.40% -1.49% -5.16%
p-10 0.4641 0.3933 0.4895 7.40% -1.49% -5.16%

k sigma mu
normal 0.4321 0.3993 0.5162
ws 0.4100 0.4037 0.5296 -5.12% 1.11% 2.60%
ms 0.4484 0.3995 0.5079 3.76% 0.05% -1.60%

saturation lines: remove or add
2+5+8+12+4= 31 over 496
31/496 = 0.0625 6.2%

k sigma mu
normal 0.4321 0.3993 0.5162
deriv/2 0.4295 0.4004 0.5179 -0.61% 0.28% 0.33%
deriv 0.4273 0.4016 0.5193 -1.12% 0.58% 0.61%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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NF K28 sheet3 Vol1
k sigma mu

normal 0.4478 0.3972 0.5073
p+10 0.4865 0.3935 0.4779 8.64% -0.93% -5.79%
p0 0.4840 0.3897 0.4762 8.08% -1.88% -6.13%
p-10 0.4840 0.3897 0.4762 8.08% -1.88% -6.13%

k sigma mu
normal 0.4478 0.3972 0.5073
ws 0.4264 0.4045 0.5220 -4.78% 1.85% 2.89%
ms 0.4663 0.3929 0.4960 4.12% -1.07% -2.22%

saturation lines: remove or add
2+3+7=12 over 496
12/496 = 0.024194 2.4%

k sigma mu
normal 0.4478 0.3972 0.5073
deriv/2 0.4467 0.3979 0.5083 -0.25% 0.18% 0.20%
deriv 0.4461 0.3986 0.5089 -0.39% 0.37% 0.32%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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NF K19 sheet1 vol3
k sigma mu

normal 0.5899 0.3894 0.4243
p+10 0.6166 0.3769 0.4101 4.52% -3.22% -3.36%
p0 0.6291 0.3677 0.4014 6.63% -5.56% -5.40%
p-10 0.6028 0.3760 0.4156 2.18% -3.44% -2.05%

k sigma mu
normal 0.5899 0.3894 0.4243
ws 0.5809 0.3948 0.4326 -1.54% 1.38% 1.94%
ms 0.5986 0.3855 0.4175 1.46% -1.00% -1.62%

saturation lines: remove or add
3+5 = 8 over 401
8/401 = 0.01995 2.0%

k sigma mu
normal 0.5899 0.3894 0.4243
deriv/2 0.5890 0.3897 0.4248 -0.15% 0.09% 0.11%
deriv 0.5883 0.3900 0.4251 -0.27% 0.17% 0.19%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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NF K19 sheet2 vol2
k sigma mu

normal 0.5853 0.3717 0.4223
p+10 0.5778 0.3704 0.4253 -1.28% -0.33% 0.72%
p0 0.6025 0.3580 0.4087 2.94% -3.69% -3.23%
p-10 0.6351 0.3527 0.3913 8.52% -5.12% -7.35%

k sigma mu
normal 0.5853 0.3717 0.4223
ws 0.5746 0.3813 0.4354 -1.83% 2.59% 3.09%
ms 0.5974 0.3641 0.4108 2.07% -2.03% -2.73%

saturation lines: remove or add
5+3= 8 over 401
8/401 = 0.01995 2.0%

k sigma mu
normal 0.5853 0.3717 0.4223
deriv/2 0.5871 0.3715 0.4213 0.31% -0.06% -0.23%
deriv 0.5893 0.3712 0.4201 0.69% -0.14% -0.51%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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NF K19 sheet3 vol3
k sigma mu

normal 0.6296 0.3729 0.4051
p+10 0.6374 0.3611 0.3966 1.24% -3.15% -2.09%
p0 0.6315 0.3614 0.4011 0.31% -3.07% -0.98%
p-10 0.6188 0.3638 0.4038 -1.71% -2.44% -0.32%

k sigma mu
normal 0.6296 0.3729 0.4051
ws 0.6296 0.3729 0.4051 0.00% 0.00% 0.00%
ms 0.6521 0.3581 0.3853 3.58% -3.98% -4.89%

saturation lines: no remove | only add
8+8 = 16 over 401
16/401 = 0.0399 4.0%

k sigma mu
normal 0.6296 0.3729 0.4051
deriv/2 0.6297 0.3729 0.4051 0.01% 0.00% -0.01%
deriv 0.6300 0.3728 0.4049 0.07% -0.01% -0.06%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

50 100 150 200 250 300 350 400

20

40

60

80

100

120

140

160

180

200



Normal Fat K22 sheet 10 vol1
k sigma mu

normal 0.5303 0.3875 0.4561
p+10 0.5415 0.3746 0.4456 2.10% -3.32% -2.31%
p0 0.5376 0.3763 0.4503 1.38% -2.90% -1.28%
p-10 0.5264 0.3767 0.4485 -0.74% -2.78% -1.68%

k sigma mu
normal 0.5303 0.3875 0.4561
ws 0.5316 0.3874 0.4556 0.24% -0.03% -0.11%
ms 0.5290 0.3876 0.4567 -0.25% 0.03% 0.12%

saturation lines: remove or add
4over 496
4/496 = 0.0081 1.0%

k sigma mu
normal 0.5303 0.3875 0.4561
deriv/2 0.5245 0.3891 0.4600 -1.11% 0.41% 0.84%
deriv 0.5195 0.3904 0.4632 -2.05% 0.76% 1.56%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  



Normal Fat K22 sheet 11 vol1
k sigma mu

normal 0.5066 0.3933 0.4721
p+10 0.5224 0.3803 0.4583 3.13% -3.30% -2.92%
p0 0.5145 0.3828 0.4636 1.56% -2.68% -1.80%
p-10 0.5240 0.3916 0.4672 3.44% -0.43% -1.04%

k sigma mu
normal 0.5066 0.3933 0.4721
ws 0.4955 0.3984 0.4810 -2.19% 1.28% 1.89%
ms 0.5174 0.3895 0.4644 2.13% -0.96% -1.64%

saturation lines: remove or add
4+3= 7 over 496
7/496 = 0.0141 1.4%

k sigma mu
normal 0.5066 0.3933 0.4721
deriv/2 0.4972 0.3947 0.4767 -1.84% 0.34% 0.98%
deriv 0.4888 0.3957 0.4807 -3.50% 0.60% 1.82%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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Normal Fat K22 sheet 20 vol1
k sigma mu

normal 0.5665 0.3612 0.4231
p+10 0.5581 0.3591 0.4259 -1.49% -0.59% 0.64%
p0 0.5580 0.3595 0.4273 -1.49% -0.47% 0.97%
p-10 0.6184 0.3669 0.4145 9.18% 1.59% -2.05%

k sigma mu
normal 0.5665 0.3612 0.4231
ws 0.5461 0.3781 0.4473 -3.60% 4.68% 5.70%
ms 0.5869 0.3494 0.4038 3.60% -3.28% -4.57%

saturation lines: remove or add
7+3+2 =  12 over 496
12/496 = 0.024194 2.4%

k sigma mu
normal 0.5665 0.3612 0.4231
deriv/2 0.5622 0.3628 0.4258 -0.75% 0.43% 0.62%
deriv 0.5586 0.3643 0.4279 -1.39% 0.85% 1.12%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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WDLS K36 sheet5 Vol1
k sigma mu

normal 0.2595 0.4437 0.6061
p+10 0.2494 0.4466 0.6100 -3.89% 0.65% 0.65%
p0 0.3638 0.4713 0.5173 40.19% 6.21% -14.64%
p-10 0.5922 0.4356 0.4120 128.20% -1.83% -32.02%

k sigma mu
normal 0.2595 0.4437 0.6061
ws 0.2409 0.4473 0.6158 -7.18% 0.80% 1.61%
ms 0.2768 0.4406 0.5970 6.65% -0.71% -1.50%

saturation lines: remove or add
5+3+2+3+3 = 16 over 500
16/500 = 0.032 3.2%

k sigma mu
normal 0.2595 0.4437 0.6061
deriv/2 0.2615 0.4433 0.6051 0.75% -0.10% -0.16%
deriv 0.2637 0.4428 0.6039 1.62% -0.20% -0.35%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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WDLS K36 sheet6 Vol1
k sigma mu

normal 0.2059 0.4470 0.6373
p+10 0.2116 0.4491 0.6316 2.76% 0.46% -0.89%
p0 0.3093 0.4826 0.5441 50.24% 7.95% -14.63%
p-10 0.5164 0.4570 0.4430 150.83% 2.24% -30.49%

k sigma mu
normal 0.2059 0.4470 0.6373
ws 0.2067 0.4478 0.6367 0.41% 0.18% -0.10%
ms 0.2049 0.4463 0.6380 -0.48% -0.17% 0.11%

saturation lines: remove or add
4+3+3 = 10 over 500
10/500 0.02 2.0%

k sigma mu
normal 0.2059 0.4470 0.6373
deriv/2 0.2069 0.4469 0.6368 0.52% -0.03% -0.08%
deriv 0.2083 0.4467 0.6361 1.17% -0.07% -0.19%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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WDLS K36 sheet7 Vol1
k sigma mu

normal 0.1797 0.4530 0.6477
p+10 0.1984 0.4556 0.6340 10.45% 0.57% -2.11%
p0 0.2953 0.4865 0.5512 64.37% 7.41% -14.91%
p-10 0.4855 0.4665 0.4565 170.19% 2.98% -29.52%

k sigma mu
normal 0.1797 0.4530 0.6477
ws 0.1761 0.4536 0.6495 -1.97% 0.13% 0.27%
ms 0.1827 0.4525 0.6461 1.68% -0.10% -0.24%

saturation lines: remove or add
5+2+2 = 9 over 500
9/500 = 0.018 1.8%

k sigma mu
normal 0.1797 0.4530 0.6477
deriv/2 0.1807 0.4530 0.6471 0.56% 0.02% -0.10%
deriv 0.1820 0.4531 0.6463 1.29% 0.04% -0.22%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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WDLS K25 sheet1 Vol1
k sigma mu

normal 0.2641 0.4331 0.6110
p+10 0.2818 0.4293 0.6012 6.72% -0.86% -1.60%
p0 0.3189 0.4236 0.5825 20.75% -2.18% -4.66%
p-10 0.3898 0.4166 0.5435 47.58% -3.81% -11.05%

k sigma mu
normal 0.2641 0.4331 0.6110
ws 0.2331 0.4397 0.6269 -11.74% 1.53% 2.60%
ms 0.2916 0.4271 0.5965 10.44% -1.37% -2.37%

saturation lines: remove or add
5+5+3+4=17 over 496
17/496 = 0.034274 3.4%

k sigma mu
normal 0.2641 0.4331 0.6110
deriv/2 0.2549 0.4349 0.6159 -3.46% 0.41% 0.79%
deriv 0.2689 0.4350 0.6075 1.82% 0.44% -0.58%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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WDLS K25 sheet5 Vol6
k sigma mu

normal 0.3095 0.4436 0.5772
p+10 0.3071 0.4370 0.5801 -0.77% -1.48% 0.50%
p0 0.3723 0.4237 0.5480 20.30% -4.49% -5.06%
p-10 0.4095 0.4205 0.5304 32.33% -5.20% -8.10%

k sigma mu
normal 0.3095 0.4436 0.5772
ws 0.2831 0.4505 0.5911 -8.51% 1.55% 2.41%
ms 0.3324 0.4378 0.5648 7.42% -1.32% -2.15%

saturation lines: remove or add
3+4+7 = 14 over 496
14/496 = 0.028226 2.8%

k sigma mu
normal 0.3095 0.4436 0.5772
deriv/2 0.3292 0.4386 0.5678 6.38% -1.13% -1.62%
deriv 0.3721 0.4296 0.5459 20.25% -3.16% -5.42%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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WDLS K25 sheet20 Vol7
k sigma mu

normal 0.1601 0.4494 0.6585
p+10 0.2014 0.4440 0.6404 25.82% -1.20% -2.75%
p0 0.2851 0.4487 0.5895 78.10% -0.16% -10.48%
p-10 0.4297 0.4283 0.5143 168.39% -4.69% -21.90%

k sigma mu
normal 0.1601 0.4494 0.6585
ws 0.1218 0.4561 0.6769 -23.90% 1.49% 2.79%
ms 0.1855 0.4459 0.6449 15.85% -0.76% -2.06%

saturation lines: remove or add
4+4+3 = 11 over 496
11/496 = 0.022177 2.2%

k sigma mu
normal 0.1601 0.4494 0.6585
deriv/2 0.1606 0.4492 0.6584 0.31% -0.04% -0.01%
deriv 0.1617 0.4490 0.6580 1.00% -0.09% -0.07%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

50 100 150 200 250 300 350 400 450 500

20

40

60

80

100

120

140

160

180

200

220



WDLS K47 sheet 3 Vol 16 ROI2/3
k sigma mu

normal 0.6453 0.4083 0.4006
p+10 0.7321 0.3828 0.3664 13.46% -6.25% -8.54%
p0 0.7696 0.3705 0.3504 19.26% -9.26% -12.54%
p-10 0.7985 0.3586 0.3391 23.73% -12.18% -15.36%

k sigma mu
normal 0.6453 0.4083 0.4006
ws 0.6480 0.4083 0.3993 0.41% -0.01% -0.32%
ms 0.6426 0.4083 0.4019 -0.42% 0.01% 0.33%

saturation lines: remove or add
6 over 496
6/496 = 0.012097 1.2%

k sigma mu
normal 0.6453 0.4083 0.4006
deriv/2 0.6466 0.4115 0.3989 0.20% 0.77% -0.42%
deriv 0.6780 0.4068 0.3838 5.07% -0.38% -4.19%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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WDLS K47 sheet 5 Vol 16 ROI2/5
k sigma mu

normal 0.7789 0.3755 0.3509
p+10 0.7886 0.3687 0.3468 1.24% -1.80% -1.17%
p0 0.8327 0.3521 0.3278 6.90% -6.23% -6.58%
p-10 0.8509 0.3371 0.3157 9.23% -10.23% -10.04%

k sigma mu
normal 0.7789 0.3755 0.3509
ws 0.7603 0.3802 0.3575 -2.39% 1.25% 1.89%
ms 0.7970 0.3708 0.3445 2.32% -1.24% -1.83%

saturation lines: remove or add
3+6 =9 over 496
9/496 = 0.0181 1.8%

k sigma mu
normal 0.7789 0.3755 0.3509
deriv/2 0.7872 0.3794 0.3490 1.06% 1.04% -0.54%
deriv 0.8257 0.3761 0.3355 6.01% 0.17% -4.40%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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WDLS K47 sheet 7 Vol 11 ROI3/7
k sigma mu

normal 0.4287 0.4577 0.4953
p+10 0.4842 0.4457 0.4685 12.94% -2.62% -5.41%
p0 0.6037 0.4185 0.4231 40.83% -8.56% -14.60%
p-10 0.7106 0.3864 0.3845 65.76% -15.56% -22.38%

k sigma mu
normal 0.4287 0.4577 0.4953
ws 0.4044 0.4642 0.5068 -5.67% 1.42% 2.32%
ms 0.4515 0.4517 0.4847 5.31% -1.31% -2.16%

saturation lines: remove or add
3+2+8+6=  19 over 496
19/496 = 0.038306 3.8%

k sigma mu
normal 0.4287 0.4577 0.4953
deriv/2 0.4567 0.4536 0.4826 6.54% -0.88% -2.58%
deriv 0.5016 0.4476 0.4616 17.02% -2.21% -6.81%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  



WDLS K58 sheet9 Vol1 or 25
k sigma mu

normal 0.5226 0.3808 0.4447
p+10 0.5968 0.3527 0.3990 14.18% -7.36% -10.27%
p0 0.5157 0.3731 0.4413 -1.33% -2.02% -0.75%
p-10 0.5484 0.3704 0.4045 4.92% -2.72% -9.03%

k sigma mu
normal 0.5226 0.3808 0.4447
ws 0.5116 0.3871 0.4586 -2.12% 1.66% 3.12%
ms 0.5341 0.3768 0.4336 2.19% -1.05% -2.50%

saturation lines: remove or add
7+3 = 10 over 496
10/496 = 0.020161 2.0%

k sigma mu
normal 0.5226 0.3808 0.4447
deriv/2 0.5209 0.3805 0.4500 -0.33% -0.07% 1.19%
deriv 0.5840 0.3730 0.4186 11.74% -2.05% -5.86%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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WDLS K58 sheet10 Vol2 or 24
k sigma mu

normal 0.5106 0.3881 0.4491
p+10 0.5497 0.3685 0.4235 7.66% -5.06% -5.69%
p0 0.5188 0.3744 0.4372 1.60% -3.53% -2.64%
p-10 0.5935 0.3598 0.3796 16.23% -7.29% -15.46%

k sigma mu
normal 0.5106 0.3881 0.4491
ws 0.4926 0.3940 0.4675 -3.52% 1.51% 4.11%
ms 0.5292 0.3843 0.4341 3.64% -0.99% -3.34%

saturation lines: remove or add
4+3+3+3 = 13 over 496
13/496 0.02621 2.6%

k sigma mu
normal 0.5106 0.3881 0.4491
deriv/2 0.4916 0.3916 0.4653 -3.73% 0.90% 3.61%
deriv 0.5286 0.3897 0.4497 3.52% 0.40% 0.14%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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WDLS K58 sheet3 Vol2 or 24
k sigma mu

normal 0.4519 0.4057 0.4747
p+10 0.5114 0.3837 0.4439 13.16% -5.40% -6.49%
p0 0.4985 0.3740 0.4402 10.29% -7.80% -7.26%
p-10 0.5929 0.3493 0.3695 31.19% -13.90% -22.15%

k sigma mu
normal 0.4519 0.4057 0.4747
ws 0.4450 0.4089 0.4838 -1.53% 0.79% 1.93%
ms 0.4596 0.4028 0.4662 1.70% -0.71% -1.78%

saturation lines: remove or add
3+2 =5 over 496
5/496 = 0.010081 1.0%

k sigma mu
normal 0.4519 0.4057 0.4747
deriv/2 0.4326 0.4104 0.4936 -4.29% 1.17% 3.99%
deriv 0.4794 0.4082 0.4781 6.08% 0.62% 0.72%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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DDLS K35 sheet1 Vol7
k sigma mu

normal 0.1303 0.4492 0.6768
p+10 0.2324 0.4521 0.6174 78.27% 0.64% -8.78%
p0 0.2572 0.5099 0.5563 97.29% 13.51% -17.81%
p-10 0.5178 0.4911 0.4192 297.26% 9.33% -38.07%

k sigma mu
normal 0.1303 0.4492 0.6768
ws 0.0786 0.4510 0.7021 -39.71% 0.39% 3.74%
ms 0.1517 0.4515 0.6640 16.37% 0.50% -1.89%

saturation lines: remove or add
25+8 = 33 over 395
33/395 = 0.083544 8.4%

k sigma mu
normal 0.1303 0.4492 0.6768
deriv/2 0.1206 0.4499 0.6815 -7.45% 0.16% 0.68%
deriv 0.1230 0.4520 0.6790 -5.65% 0.61% 0.31%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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DDLS K35 sheet2 Vol7
k sigma mu

normal 0.1272 0.4484 0.6790
p+10 0.2252 0.4518 0.6224 76.98% 0.76% -8.33%
p0 0.2441 0.5111 0.5635 91.82% 13.99% -17.01%
p-10 0.5147 0.4919 0.4190 304.55% 9.70% -38.28%

k sigma mu
normal 0.1272 0.4484 0.6790
ws 0.0752 0.4515 0.7034 -40.92% 0.69% 3.60%
ms 0.1513 0.4491 0.6657 18.94% 0.15% -1.95%

saturation lines: remove or add
25+16 = 41 over 395
41/395 0.103797 10.4%

k sigma mu
normal 0.1272 0.4484 0.6790
deriv/2 0.1151 0.4478 0.6858 -9.56% -0.13% 1.00%
deriv 0.1154 0.4480 0.6855 -9.28% -0.09% 0.96%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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DDLS K35 sheet3 Vol7
k sigma mu

normal 0.1079 0.4492 0.6886
p+10 0.2095 0.4532 0.6312 94.11% 0.88% -8.33%
p0 0.2252 0.5195 0.5697 108.70% 15.65% -17.26%
p-10 0.4914 0.5020 0.4270 355.38% 11.75% -37.99%

k sigma mu
normal 0.1079 0.4492 0.6886
ws 0.0562 0.4515 0.7126 -47.88% 0.50% 3.49%
ms 0.1302 0.4507 0.6761 20.65% 0.34% -1.81%

saturation lines: remove or add
25+12 = 37over 395
37/395 = 0.093671 9.4%

k sigma mu
normal 0.1079 0.4492 0.6886
deriv/2 0.0942 0.4504 0.6948 -12.69% 0.26% 0.90%
deriv 0.0959 0.4525 0.6925 -11.13% 0.73% 0.57%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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DDLS K12 sheet20 Vol1
k sigma mu

normal 0.0863 0.4471 0.7010
p+10 0.1421 0.4399 0.6771 64.78% -1.60% -3.41%
p0 0.2483 0.4502 0.6108 187.88% 0.69% -12.86%
p-10 0.4372 0.4414 0.5056 406.84% -1.29% -27.87%

k sigma mu
normal 0.0863 0.4471 0.7010
ws 0.0742 0.4482 0.7061 -14.00% 0.24% 0.73%
ms 0.0953 0.4465 0.6969 10.54% -0.13% -0.59%

saturation lines: remove or add
8 over 401
8/401 = 0.01995 2.0%

k sigma mu
normal 0.0863 0.4471 0.7010
deriv/2 0.0784 0.4470 0.7049 -9.10% -0.03% 0.56%
deriv 0.0708 0.4469 0.7087 -17.91% -0.06% 1.10%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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DDLS K12 sheet19 Vol1
k sigma mu

normal 0.1026 0.4464 0.6933
p+10 0.1531 0.4399 0.6709 49.14% -1.46% -3.24%
p0 0.2483 0.4527 0.6079 141.97% 1.42% -12.32%
p-10 0.4451 0.4414 0.4996 333.73% -1.10% -27.94%

k sigma mu
normal 0.1026 0.4464 0.6933
ws 0.0904 0.4460 0.6997 -11.93% -0.08% 0.91%
ms 0.1109 0.4473 0.6885 8.09% 0.21% -0.69%

saturation lines: remove or add
7+3+4 = 14 over 401
14/401 = 0.034913 3.5%

k sigma mu
normal 0.1026 0.4464 0.6933
deriv/2 0.0951 0.4462 0.6972 -7.38% -0.03% 0.56%
deriv 0.0876 0.4461 0.7010 -14.61% -0.05% 1.10%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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DDLS K12 sheet18 Vol1
k sigma mu

normal 0.0991 0.4412 0.6985
p+10 0.1455 0.4397 0.6751 46.85% -0.34% -3.34%
p0 0.2443 0.4496 0.6120 146.62% 1.91% -12.38%
p-10 0.4283 0.4418 0.5082 332.33% 0.14% -27.24%

k sigma mu
normal 0.0991 0.4412 0.6985
ws 0.0819 0.4430 0.7058 -17.35% 0.40% 1.05%
ms 0.1136 0.4398 0.6919 14.72% -0.31% -0.94%

saturation lines: remove or add
8 over 401
8/401 = 0.01995 2.0%

k sigma mu
normal 0.0991 0.4412 0.6985
deriv/2 0.0922 0.4412 0.7019 -6.93% 0.01% 0.49%
deriv 0.0855 0.4413 0.7051 -13.67% 0.02% 0.95%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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DDLS K33 sheet1 vol1
k sigma mu

normal 0.0277 0.4435 0.7314
p+10 0.0133 0.4427 0.7383 -52.00% -0.19% 0.94%
p0 0.0956 0.4505 0.6941 244.78% 1.58% -5.10%
p-10 0.2028 0.4554 0.6335 631.57% 2.68% -13.39%

k sigma mu
normal 0.0277 0.4435 0.7314
ws -0.0020 0.4469 0.7415 -107.24% 0.77% 1.38%
ms 0.0470 0.4416 0.7240 69.69% -0.44% -1.02%

saturation lines: remove or add
3+3+2+2 = 10 over 496
10/496 = 0.020161 2.0%

k sigma mu
normal 0.0277 0.4435 0.7314
deriv/2 0.0130 0.4425 0.7387 -53.08% -0.22% 0.99%
deriv 0.0055 0.4426 0.7417 -80.31% -0.20% 1.41%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  



DDLS K33 sheet2 vol1
k sigma mu

normal 0.0330 0.4442 0.7286
p+10 0.0125 0.4462 0.7363 -62.19% 0.45% 1.06%
p0 0.1034 0.4513 0.6896 213.76% 1.61% -5.35%
p-10 0.2048 0.4514 0.6349 521.22% 1.62% -12.85%

k sigma mu
normal 0.0330 0.4442 0.7286
ws 0.0133 0.4466 0.7353 -59.64% 0.53% 0.92%
ms 0.0462 0.4428 0.7236 40.22% -0.32% -0.69%

saturation lines: remove or add
4 over 496
4/496 = 0.0081 1.0%

k sigma mu
normal 0.0330 0.4442 0.7286
deriv/2 0.0186 0.4432 0.7358 -43.71% -0.21% 0.98%
deriv 0.0121 0.4432 0.7385 -63.39% -0.21% 1.36%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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DDLS K33 sheet3 vol1
k sigma mu

normal 0.0160 0.4450 0.7354
p+10 0.0011 0.4442 0.7422 -93.28% -0.20% 0.92%
p0 0.0910 0.4526 0.6951 468.92% 1.69% -5.49%
p-10 0.2044 0.4538 0.6339 1178.62% 1.96% -13.80%

k sigma mu
normal 0.0160 0.4450 0.7354
ws 0.0160 0.4450 0.7354 0.00% 0.00% 0.00%
ms 0.0464 0.4420 0.7242 190.39% -0.68% -1.53%

saturation lines: only added
3+3+2+2 = 10 over 496
10/496 = 0.020161 2.0%

k sigma mu
normal 0.0160 0.4450 0.7354
deriv/2 0.0070 0.4438 0.7402 -56.47% -0.27% 0.65%
deriv 0.0086 0.4434 0.7397 -46.46% -0.36% 0.58%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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DDLS K26 sheet3 Vol1 originally 2
k sigma mu

normal 0.1346 0.4527 0.6718
p+10 0.2098 0.4449 0.6349 55.90% -1.73% -5.49%
p0 0.3052 0.4520 0.5762 126.84% -0.17% -14.23%
p-10 0.3909 0.4641 0.5205 190.50% 2.51% -22.52%

k sigma mu
normal 0.1346 0.4527 0.6718
ws -100.00% -100.00% -100.00%
ms 0.1632 0.4477 0.6575 21.31% -1.12% -2.13%

saturation lines: only add
5 raws + 2 cols over 496 cols
2/496 = 0.004032 0.4%

k sigma mu
normal 0.1346 0.4527 0.6718
deriv/2 0.1223 0.4545 0.6773 -9.10% 0.39% 0.81%
deriv 0.1106 0.4563 0.6823 -17.79% 0.80% 1.56%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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DDLS K26 sheet7 Vol1 originally 2
k sigma mu

normal 0.0701 0.4462 0.7095
p+10 0.1653 0.4456 0.6614 135.84% -0.14% -6.77%
p0 0.2678 0.4598 0.5941 282.01% 3.06% -16.26%
p-10 0.3934 0.4636 0.5205 461.24% 3.90% -26.64%

k sigma mu
normal 0.0701 0.4462 0.7095
ws -100.00% -100.00% -100.00%
ms 0.1082 0.4409 0.6935 54.33% -1.18% -2.25%

saturation lines: only add
5 raws + 2 cols over 496 cols
2/496 = 0.004032 0.4%

k sigma mu
normal 0.0701 0.4462 0.7095
deriv/2 0.0608 0.4465 0.7137 -13.29% 0.07% 0.60%
deriv 0.0523 0.4469 0.7174 -25.40% 0.16% 1.12%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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DDLS K26 sheet19 Vol1 originally 2
k sigma mu

normal 0.0263 0.4424 0.7324
p+10 0.1540 0.4479 0.6660 485.41% 1.23% -9.07%
p0 0.2524 0.4744 0.5922 859.50% 7.23% -19.15%
p-10 0.4270 0.4670 0.5012 1522.96% 5.55% -31.56%

k sigma mu
normal 0.0263 0.4424 0.7324
ws -100.00% -100.00% -100.00%
ms 0.0722 0.4374 0.7146 174.47% -1.14% -2.42%

saturation lines: only add
5 raws + 2 cols over 496 cols
2/496 = 0.004032 0.4%

k sigma mu
normal 0.0263 0.4424 0.7324
deriv/2 0.0171 0.4423 0.7365 -35.17% -0.02% 0.57%
deriv 0.0094 0.4423 0.7399 -64.41% -0.03% 1.03%

(𝑘𝑘𝑝𝑝−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑝𝑝−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑝𝑝−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑠𝑠−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑠𝑠−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑠𝑠−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  

(𝑘𝑘𝑑𝑑−𝑘𝑘𝑛𝑛) 𝑘𝑘𝑛𝑛⁄  (𝑠𝑠𝑑𝑑−𝑠𝑠𝑛𝑛) 𝑠𝑠𝑛𝑛⁄  (𝑚𝑚𝑑𝑑−𝑚𝑚𝑛𝑛) 𝑚𝑚𝑛𝑛⁄  
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