
HAL Id: tel-01257910
https://theses.hal.science/tel-01257910

Submitted on 18 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Impact of innovative sphere-pac fuels on safety
performances of sodium cooled fast reactors

Lena Andriolo

To cite this version:
Lena Andriolo. Impact of innovative sphere-pac fuels on safety performances of sodium cooled fast
reactors. Fluids mechanics [physics.class-ph]. Université Grenoble Alpes, 2015. English. �NNT :
2015GREAI067�. �tel-01257910�

https://theses.hal.science/tel-01257910
https://hal.archives-ouvertes.fr


 

 

THÈSE 

Pour obtenir le grade de 

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES 

Spécialité : Mécanique des fluides, Énergétique, Procédés 

Arrêté ministériel : 7 août 2006 

 
Présentée par 

Lena  ANDRIOLO  
 
Thèse dirigée par Elsa MERLE-LUCOTTE et  
codirigée par Andrei RINEISKI 
 
préparée au sein du Laboratoire KIT/IKET/TRANS  
dans l'École Doctorale IMEP-2 : Ingénierie – Matériaux, Mécanique, 
Énergétique, Environnement, Procédés, Production 

 

Impact des combustibles 
sphere-pac innovants sur les 
performances de sûreté des 
réacteurs à neutrons rapides 
refroidis au sodium 
 
Thèse soutenue publiquement le  19 août 2015, 
devant le jury composé de :  

M. Piero RAVETTO 
Professeur, Polytechnic University of Turin, Rapporteur 

M. Rudy KONINGS 
Professeur, Delft University of Technology, Rapporteur 

Mme Elsa MERLE-LUCOTTE 
Professeur, Grenoble-INP PHELMA, Directrice de thèse 

M. Andrei RINEISKI 
Professeur, Karlsruhe Institute of Technology, Co-directeur de thèse 

Mme Fabienne DELAGE 
Ingénieur-chercheur, CEA de Cadarache, Co-encadrante de thèse 

Mme Sandra POUMEROULY 
Ingénieur-chercheur, Electricité de France, Examinatrice 

M. Janne WALLENIUS 
Professeur, KTH Royal Institute of Technology, Examinateur  

M. Werner MASCHEK 
Professeur, Karlsruhe Institute of Technology, Examinateur 



 

 

 



ACKNOWLEDGMENTS 

 

Acknowledgments 
 

This work would not have been possible without the support and motivation of many people and I 

would like to take the opportunity to thank them.  

First of all, I would like to thank Prof. Schulenberg for giving me the opportunity to perform my 

doctoral research at the Institute of Nuclear and Energy Technologies.  

I thank Prof. Janne Wallenius for having agreed to be the chair of my doctoral committee as well as 

Prof. Piero Ravetto and Prof. Rudy Konings for having carefully read my manuscript and for their 

advice on my PhD. I thank also Dr. Sandra Poumerouly and Dr. Werner Maschek for having kindly 

accepted to be part of my PhD committee.  

Je tiens à remercier tout particulièrement ma directrice de thèse Prof. Elsa Merle-Lucotte pour son 

soutien et sa sollicitude tout au long de ces trois années, ce qui n'était pas chose facile avec la 

distance géographique. 

I would like to thank my co-professor and group leader Dr. Andrei Rineiski for the trust he placed in 

me to fulfill this work and for the guidance and support he continuously provided me and which 

made this work a success. De même, je souhaite remercier vivement ma co-encadrante Dr. Fabienne 

Delage pour toute l'aide, l'enthousiasme et les discussions que nous avons pu avoir au long de ces 

trois années. 

Mein besonderer Dank gilt Herrn Dr. Werner Maschek für die stets professionelle Betreuung und 

wertvolle Unterstützung und die anregenden Diskussionen. Mit seinen zahlreichen konstruktiven 

Ideen/Gedanken hat er maßgeblich zum Gelingen der Arbeit beigetrag. Es war und ist ein Privileg für 

mich, mit ihm arbeiten zu dürfen. 

Weiterhin möchte ich mich bei Frau Claudia Matzerath Boccaccini herzlich für ihre engagierte und 

warmherzige Begleitung bedanken. Es hat mich immer wieder gefreut mit dir und Werner auf 

PELGRIMM Dienstreise zu fahren, wo uns immer die unwahrscheinlichsten Geschichten passierten. 

Diese Arbeit wäre in dieser Form nicht ohne Dr. Edgar Kiefhaber und seine glücksbringenden „4-

blättrigen Kleeblätter“ möglich gewesen: Herzlichen Dank Edgar für deine unermüdliche 

Unterstützung deine große Fachkunde und äußerst hilfreichen Ratschläge zum wissenschaftlichen 

Arbeiten. Ein großes Dankeschön auch für deine akribische Korrektur der Doktorarbeit. 

I also would like to thank my friends and colleagues Dr. Barbara Vezzoni and Dr. Fabrizio Gabrielli, for 

their unlimited support, their invaluable technical advices and the numerous laughters we had. 

Whenever I felt the need to discuss some issues, you took the time to discuss them with me and gave 

me precious support to go on with my work. I am very greatful for this (and for the nice coffee 

breaks!). 



AKCNOWLEDGMENTS 

Page | iv  
 

I would like to thank as well all my present and former colleagues, Xue-Nong, Rui, Michael, Mattia, 

Vladimir, Simone, Marco, Dalin, Donella, Shisheng, Max, Liancheng, Eva and Aleksandra for creating 

such a positive work environment and for their valuable teaching on the SIMMER code 

comprehension or problem solving, let it be about step 1 or step 3 failures... 

I also would like to thank my dearest friends, Simon, Lucie, Lila, Nacho, Alberto, Hiroshi, Luca, 

Fidelma and all others, should they be in Karlsruhe or somewhere else around the globe, for 

surrounding me during this special time. There were of course some difficult moments but I was 

lucky enough to have you by my side. 

Enfin, je souhaite remercier de tout coeur mes parents Stéphane et Inge ainsi que ma soeur Lisa, 

pour m'avoir toujours soutenue et pour avoir pris soin de moi durant ces trois années: c'est grâce à 

vous si j'ai pu aller si loin.  



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CITATION 

Page | vii  
 

 

 

 

 

 

 

 

 

 

 

 

 

 The future belongs to those  

who believe in the beauty of their dreams 

- E. Roosevelt 

 

 

 

 

 

 

 

 

 

 

 

 

 



CITATION 

Page | viii  
 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

Page | ix  
 

Abstract 
 

Future sodium cooled fast reactors (SFRs) have to fulfill the GEN-IV requirements of enhanced safety, 

minimal waste production, increased proliferation resistance and high economical potential. This 

PhD project is dedicated to the evaluation of the impact of innovative fuels (especially minor 

actinides bearing oxide sphere-pac fuels) on the safety performance of advanced SFRs with 

transmutation option. 

The SIMMER-III code, originally tailored to mechanistically analyze later phases of core disruptive 

accidents, is employed for accident simulations. During the PhD project, the code has been extended 

for a better simulation of the early accident phase introducing the treatment of thermal expansion 

reactivity effects and for taking into account the specifics of sphere-pac fuels (thermal conductivity 

and gap conditions). The entire transients (from the initiating event to later accident phases) have 

been modeled with this extended SIMMER version.  

Within this PhD work, first the thermo-physical properties of sphere-pac fuel have been modeled and 

casted into SIMMER-III. Then, a new computational method to account for thermal expansion 

feedbacks has been developed to improve the initiation phase modeling of the code. The technique 

has the potential to evaluate these reactivity feedbacks for a fixed Eulerian mesh and in a spatial 

kinetics framework. At each time step, cell-wise expanded dimensions and densities are calculated 

based on temperature variations. Density factors are applied to the expanded densities to get an 

equivalent configuration (in reactivity) with original dimensions and modified densities. New cross 

sections are calculated with these densities and the reactivity of the equivalent configuration is 

computed. The developed methods show promising results for uniform and non-uniform expansions. 

For non-uniform expansions, model improvement needs have been identified and neutronics 

simulations have been carried out to support future SIMMER extensions. Preliminary results are 

encouraging.  

In the third part of the PhD, two core designs with conventional and sphere pac fuels are compared 

with respect to their transient behavior. These designs were established in the former CP-ESFR 

project: the working horse core and the optimized CONF2 core (with a large sodium plenum above 

the core for coolant void worth reduction). The two fuel design options are compared for steady 

state and transient conditions (unprotected loss of flow accident, ULOF) either at beginning of life 

(BOL) or under irradiated conditions. Analyses for sphere-pac fuel reveal two main phases to 

consider at BOL. At start-up, the non-restructured sphere-pac fuel shows a low thermal conductivity 

compared to pellet fuel of same density. However, the fuel restructures quickly (in a few hours) due 

to the high thermal gradients and its thermal conductivity recovers. The fuel then shows a behavior 

close to the pellet one. The study also shows that the CONF2 core leads to a very mild transient for a 

ULOF accident at BOL. The large upper sodium plenum seems to effectively prevent large positive 

reactivity insertions. However, stronger reactivity and power peaks are observed under irradiated 

conditions or when americium is loaded in the core and lower axial blanket.  

This PhD work demonstrates, under current simulation conditions, that sphere-pac fuels do not seem 

to cause specific safety issues compared to standard pellet fuels, when loaded in SFRs. The accurate 

simulation of core thermal expansion reactivity feedbacks by means of the extended SIMMER version 
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plays an important role in the accident timing (simulations confirm the expected delay in the first 

power peak) and on the energetic potential compared to the case where these feedbacks are 

omitted. The analyses also confirm the mitigating impact of a large sodium plenum on transients with 

voiding potential. The behavior of sphere-pac fuel in these conditions opens a perspective to its 

practical application in SFRs. 

 

Key-Words: Sodium cooled Fast Reactors, severe accidents, safety, innovative sphere-pac fuels, 

SIMMER. 
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Résumé 
 

Les futurs réacteurs à neutrons rapides refroidis au sodium (RNR-Na) doivent remplir les critères 

GEN-IV à savoir présenter des qualités d’économie, de sûreté améliorée, de résistance à la 

prolifération et de minimisation des déchets. Ce projet de thèse est dédié à l’étude de l’impact des 

combustibles innovants (spécialement le combustible oxyde sphere-pac chargé en actinides mineurs) 

sur les performances de sûreté des RNR-Na dédiés à la transmutation. 

Le code de calcul SIMMER-III, développé à l’origine pour les phases avancées d’un accident grave, est 

utilisé pour les simulations. Ce code a été étendu dans le cadre de cette thèse afin d’améliorer la 

simulation de la phase primaire de l’accident, en introduisant le traitement des effets en réactivité 

liés à la dilatation du cœur et les spécificités du combustible sphere-pac (conductivité thermique, 

gap). Les transitoires complets (de la phase d’initiation aux phases avancées) sont simulés avec cette 

version étendue du code.  

Dans le cadre de cette thèse, les propriétés thermiques du combustible sphere-pac ont été 

modélisées et adaptées à SIMMER. Une méthodologie innovante tenant compte des effets en 

réactivité liés à la dilation thermique du cœur dans un maillage Eulérien et dans le cadre de la 

cinétique spatiale a ensuite été développée. A chaque pas de temps, les dimensions et densités 

dilatées sont calculées pour chaque cellule suite aux variations de températures. Des facteurs 

correctifs sont appliqués aux densités dilatées pour obtenir une configuration équivalente (en 

réactivité) ayant les dimensions non-dilatées et des densités modifiées. De nouvelles sections 

efficaces sont calculées à partir de ces densités et l’effet en réactivité lié à la dilatation est calculé. 

Les résultats sont prometteurs pour des dilatations uniformes et non-uniformes. Des limitations dans 

le cas de dilatations non-uniformes ont été identifiées et des calculs neutroniques ont été effectués 

en vue de futurs développements SIMMER. Les résultats préliminaires sont encourageants.  

Enfin, deux cœurs RNR-Na, issus du précédent projet CP-ESFR, ont été modélisés avec des 

combustibles sphere-pac : le Working Horse et le CONF2 (présentant un plénum sodium élargi pour 

une diminution de l’effet de vide sodium). Des analyses de sûreté ont été effectuées afin de fournir 

une première évaluation du comportement du combustible sphere-pac comparé au combustible 

pastille. Les deux options sont analysées en situation nominale et accidentelle (accident de perte de 

débit primaire) en début de vie du cœur et après irradiation. Les analyses révèlent deux phases à 

considérer en début de vie pour le combustible sphere-pac. Au démarrage du réacteur, ce 

combustible n’est pas restructuré et sa conductivité thermique est très inférieure à celle du 

combustible pastille. Après quelques heures sous irradiation, il se restructure suite aux importants 

gradients de température, ce qui améliore sa conductivité. Il se comporte alors de façon similaire au 

combustible pastille. Ce travail a également permis d’évaluer le comportement accidentel du cœur 

CONF2 qui subit un transitoire doux, prouvant que le large plénum sodium prévient efficacement de 

larges insertions de réactivité positive. Cependant, avec l’ajout d’américium ou suite à l’irradiation, 

des excursions de puissance et de réactivité plus prononcées sont observées.  

Ce travail a permis de démontrer que le combustible sphere-pac ne semble pas causer de problèmes 

de sûreté spécifiques comparé au combustible pastille, dans les conditions de simulations actuelles. 
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La prise en compte des effets en réactivité liés à la dilatation du cœur avec cette version étendue de 

SIMMER retarde et réduit le potentiel énergétique lors d’un accident. Les analyses confirment 

également l’action atténuante du plénum sodium sur les transitoires conduisant à la vidange du 

sodium du cœur. Le comportement du combustible sphere-pac dans ces conditions ouvre une 

perspective à son utilisation en RNR-Na. 

 

Mots clés : Sûreté, Combustible sphere-pac innovant, Réacteurs à neutrons rapides refroidis au 

sodium, SIMMER, Accidents graves 
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Chapter 1 

1. Introduction 

INTRODUCTION 
 

1.1.  General context of the PhD 
 

The world energy demand has been constantly increasing over the last decades and drives the need 

for a reliable and affordable energy supply. The International Energy Agency predicts a growth of 

0.9% per year in the world population over the period 2012-2040 bringing it from 7 billion to 9 billion 

[1]. 

Accordingly, and with the increasing digitalization of the world economy, the world electricity 

demand will rise by 2.1% per year in average over the same time period, leading to an increase of 

80% in the installed capacity (going from 5 952 GW in 2013 to slightly more than 10 700 GW in 2040 

in the new policy scenario). According to the World Energy Outlook (WEO) “broad policy 

commitments and plans have been announced by countries, including national pledges to reduce 

greenhouse-gas emissions and plans to phase out fossil-energy subsidies, even if the measures to 

implement these commitments have yet to be identified or announced” [1]. 

To cope with this trend, a new energy mix between oil, gas, coal and low-carbon sources has to be 

found (Figure 1-1), while being in accordance with the concerns on climate change. Thus, in the new 

energy scenarios, the share of fossil fuels – whose resources are abundant (Figure 1-2) – as coal and 

oil, producing large amounts of greenhouse gases (GHG) as CO2 main responsible for the earth 

warming, is dropping. On the contrary, the share of nuclear and gas is increasing, the share of 

renewables seeing the largest growth [1]. 

Not only the supply but as well the sustainability of electricity are a matter of increasing concern. 

Indeed, the effects of different conflicts on oil prices and availability and the potential threats to oil 

and gas supplies have stressed the importance of being energetically independent [1]. 

Nuclear energy provides a safe, almost CO2 free energy source and can be used for electricity base 

load.  

 

 

Figure 1-1. Current and future energy mix in the world according to the new policies scenario: fuel shares [1]. 
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Figure 1-2. Lifetime of fuel resources [1]. 

However, strong public concern is perceived with regard to safety, especially after the 2011 

Fukushima Daiichi accident in Japan, as well as waste management and proliferation issues. 

Nowadays, 434 nuclear reactors are operating worldwide and represent 332 GW installed capacity 

providing more than 11% of the world electricity. 76 new reactors are currently under construction in 

the world. Nearly all these reactors are thermal reactors, mainly from 2nd and 3rd generation (Figure 

1-3). They mostly use uranium fuel 238U enriched to about 5% 235U. However, as 238U is a fertile 

isotope and considering that only 0.7% of the natural uranium ore is 235U, a significant amount of 238U 

is not efficiently used with these concepts. Even if the global uranium resources are currently 

estimated to last for the next 150 years [2] when utilizing the currently operating type of Light Water 

cooled Reactors (LWRs), a better use of resources is sought to ensure the sustainability of nuclear 

power for the next generations. Worldwide, new reactors are investigated, the so-called Generation 

IV (GEN-IV) reactors, promising concepts for a better fuel efficiency and able to reduce the amount of 

nuclear waste.  
 

 

Figure 1-3. Generations of nuclear reactors over time [3]. 

 

This research is performed within the Generation IV forum [3], where 6 reactor concepts are 

currently investigated: the sodium cooled Fast Reactor (SFR), the gas cooled fast reactor (GFR), the 

lead cooled fast reactor (LFR), the supercritical water cooled reactor (SCWR), the very high 

temperature reactor (VHTR) and the molten salt reactor (MSR) [3]. 

These reactors have to prove their sustainability, their improved safety and reliability, their 

proliferation resistance and physical protection in addition to their economic competitiveness [3].  

Among these 6 concepts, the reactors with fast spectrum fulfill the sustainability requirement, where 

the SFR concept is the most advanced and mature one. For this concept, key objectives for the next 

ten years have been defined, two of which are: 

https://www.gen-4.org/gif/jcms/c_40790/sodium-cooled-fast-reactor-sfr
https://www.gen-4.org/gif/jcms/c_40761/gas-cooled-fast-reactor-gfr
https://www.gen-4.org/gif/jcms/c_40783/lead-cooled-fast-reactor-lfr
https://www.gen-4.org/gif/jcms/c_40679/technology-system-scwr
https://www.gen-4.org/gif/jcms/c_40801/very-high-temperature-reactor-vhtr
https://www.gen-4.org/gif/jcms/c_40801/very-high-temperature-reactor-vhtr
https://www.gen-4.org/gif/jcms/c_40782/molten-salt-reactor-msr


INTRODUCTION 

Page | 3  
 

- improved safety and operation, especially core inherent safety, inspection and control, 

prevention and mitigation of severe accidents with high energetic potential 

- advanced fuel developments especially innovative fuels containing minor actinides 

Especially in France, the SFR concept is given strong attention. This is due to experience feedback 

from former reactors. Indeed, France has a long experience with SFR construction and operation. The 

first one was the RAPSODIE reactor [4], a 20 MWth experimental reactor built in 1957, which is 

currently under decommissioning. In 1974, the PHENIX reactor was started [4]. It was a 250 MWth 

reactor, connected to the electrical grid and used for transmutation purposes of high level waste. It 

has been shut down in 2009. In 1985 the SUPERPHENIX reactor was operated for the first time, 

producing 3000 MWth. It stopped in 1997 due to political reasons [4]. The following European Fast 

Reactor (EFR) was extensively analyzed and ready to be built. However the project was abandoned 

[5]. Recently, the CP-ESFR project was conducted [6] and gave rise to the ESNII+ project [7], with the 

objective of the construction of the Advanced Sodium Technological Reactor (ASTRID) in France [8].  

Within the CP-ESFR project, an optimization of a 3600 MWth sodium cooled reactor was carried out. 

Optimization and safety studies particularly aimed at a low sodium void effect for this core. 

Additional studies on the introduction of minor actinides into the core and blankets were carried out 

[9]. 

The use of minor actinide bearing fuels gets more and more attention from the scientific community 

and specific fuel forms and materials are investigated worldwide [10]. Additional technological 

conditions, as the high dose due to neutron emissions both at fabrication and reprocessing steps led 

to the development of innovative processes. Here the specific sol-gel methods can be cited in which 

all fabrications are done in a wet route, thus avoiding the handling of powders and a possible 

contamination of facilities.  

The current PhD work is embedded within this framework of improved safety and waste reduction. 

 

1.2.  Objectives of the PhD 
 

The objective of the PhD is to contribute to the safety studies on SFRs loaded with innovative minor 

actinide bearing fuels. It targets the analyses of the impact of innovative sphere-pac fuels on the 

safety behavior of SFRs both in nominal and accidental transient conditions.  

Sphere-pac pins are composed of small fuel microspheres vibrationally compacted into a cladding 

tube. The pins are usually helium filled. The specific macrostructure of these fuels is assumed to 

enhance the fission gas accommodation, thus reducing the pressure load on the cladding, which 

makes them interesting candidates to add minor actinides to the fuel. In addition, their fabrication 

can be performed immediately after the spent fuel reprocessing step as a wet route is used. 

However, the fresh sphere-pac fuels possess a very low thermal conductivity due to the narrow and 

few contact points among the spheres. This issue is alleviated some hours after the reactor start-up. 

Indeed, the high temperature gradients in the fuel lead to extensive restructuring: the fuel shows 

rapidly a pellet-like structure, possessing the same properties as a pellet fuel of same density, 

surrounded by a layer of spheres.  

The PhD work is embedded in the European FP-7 project PELGRIMM (2012-2016) [11] standing for 

Pellets versus Granulates, Irradiation, Manufacturing and Modeling which addresses the 

development of minor-actinide bearing oxide fuel for SFRs. As options, minor actinide homogeneous 
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recycling, where minor actinides are put into the driver fuel, and heterogeneous recycling of minor 

actinides, where UO2 blankets are loaded with minor actinides, are investigated. A first safety 

assessment is performed within this PhD thesis for the homogeneous recycling route, which is in 

continuity with the former FP-7 CP-ESFR project [6] , aimed at designing and analyzing a 3600 MWth 

sodium cooled fast reactor, assessing its safety behavior and its transmutation capabilities. Thanks to 

a large pin diameter and a high smear density, the so-called Working Horse (WH) core [12; 6] allowed 

to strongly reduce the burnup reactivity swing. Despite a reduced sodium fraction, the sodium void 

worth remained relatively high ( 1500 pcm at beginning of life) being a major cause for significant 

reactivity insertion during an unprotected loss of flow accident (ULOF) leading to void reactivity 

driven core disruption and a whole core melt [13]. An optimized core with reduced sodium void 

worth was hence designed. This core is the so-called CONF2 core design. It presents a large sodium 

plenum which provides a reduced positive void worth [14; 9] and was therefore chosen for the safety 

analyses within the PELGRIMM project. Within the CP-ESFR project no extended safety analyses have 

been performed for this core design and they have hence been assessed during this PhD work. 

Core designs with a low void effect like the CONF2 core are expected to undergo much milder 

transients than core designs with high void effect. However these cores show a delicate balance of 

their reactivity effects. It becomes hence of high importance to enhance the modeling of the 

initiation phase of the accident. In order to address this point, a new methodology for taking into 

account core thermal expansion feedbacks has therefore been developed within this PhD project for 

space-time kinetic codes with a Eulerian mesh. 

In order to perform a safety assessment and an evaluation of the CONF2 core loaded with sphere-pac 

driver fuel, the SIMMER-III code had to be adapted to the specifics of the sphere-pac fuel, as much as 

possible within its framework; in particular to take into account the thermal conductivity of this 

innovative fuel. Important differences to the standard pellet fuel are as well the existence of spheres 

(particles), the non-existence of a gap and the fuel “one column” structure. The specifics of the 

sphere-pac fuel reveal additional phenomena to the ones observed with pellet fuel under pin failure 

conditions, as one could experience the release of particles at the column rim in a dispersive fashion. 

Other important issues are the release of fission gases and helium, which is expected to be different 

in case of sphere-pac fuel in quantity and timing, especially during transient conditions. These issues 

have not been investigated in detail during the PhD project because of the lack of suitable 

experimental transient data.  

For accidental transients and especially for high temperature conditions, typical for severe accident 

conditions, a limited experimental knowledge base is available for sphere-pac fuels. Understanding 

the behavior of fuel pins under transient operating and accidental conditions is important to evaluate 

the overpower margins of fuel and to assess the influence of temporary abnormal conditions. It has 

to be mentioned at this point that the goal of this PhD work has been to provide a preliminary safety 

assessment of sphere-pac fuels i.e. to determine if sphere-pac fuels could be loaded in a sodium 

cooled fast reactor without major design modifications and whether or not these fuels would lead to 

an unacceptable safety behavior. Hence, no uncertainty analysis is performed at this stage of 

research and within this PhD thesis. To remember is that hypothetical core disruptive scenarios and 

phenomena have a very small occurrence probability and full scale simulations represent 

extrapolations. A full assessment of epistemic uncertainties (due to gaps in knowledge), which are 

the dominant uncertainties in severe accident safety analyses, are usually addressed in the 
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framework of licensing procedures since it requires an extensive and complex work which is out of 

the scope of this thesis (and of the FP-7 PELGRIMM project) 

To understand the context of the PhD project, an introductory explanation on GEN-IV systems and 

their benefits in waste reduction and fuel utilization is given in Chapter 2. 

The safety approach, its main principles as well as the main families of accidents, are detailed in 

Chapter 3. 

The specific core designs used for the study are described in Chapter 4. Two core designs, main 

outcome of the former CP-ESFR project, are investigated: the so called Working Horse (WH) core as 

well as its optimized version, the so-called CONF2 core. 

Since the current PhD work investigates the safety behavior of innovative sphere-pac fuels, the main 

fuel families are detailed in Chapter 5. Main focus is put on the oxide fuels in two specific fuel forms: 

the pellet and the sphere-pac form. Fabrication, operational behavior as well as reprocessing are 

considered. 

Chapter 6 deals with a new neutronic feature for SIMMER-III: the ability to take into account core 

thermal expansion feedbacks. These feedbacks are particularly important in the initiation phase of 

the transient. Since the SIMMER codes were originally developed for already disrupted cores i.e. for 

investigating so-called core disruptive accidents (CDAs), these feedbacks had no or less importance at 

this stage of the accident. For consistency reasons SIMMER should be used from the very start of the 

accident. This new route needs model developments such as the consideration of core thermal 

expansion feedbacks. The first part of the chapter describes the neutron transport equation and the 

different numerical methods employed to solve it. Special focus is concentrated on the improved 

quasi-static method since SIMMER is based on this method. In a second part, the theory and 

methodology of the different expansion models is presented. The particularity here is that the 

methodologies should fit into the space-time kinetic framework of SIMMER and cope with its 

Eulerian mesh. Two main methods based on first order perturbation theory and a third one based on 

the direct method are presented. The last part of the chapter aims at validating the hypothesis as 

well as the overall procedure through simple test cases. Finally, benefits of the core expansion 

feedbacks on the transient calculation are presented.  

In Chapter 7 sphere-pac fuels properties are adapted to the SIMMER framework. In this chapter, 

especially the specific thermal conductivity is investigated since it undergoes large variations during 

the first hours of irradiation due to extensive restructuring processes. A literature review of the 

different theoretical models available for modeling their thermal conductivity is given. These models 

are too detailed for the SIMMER framework, where a more simple fuel model is used and where 

thermal conductivity is calculated through temperature based correlations. Correlations are thus 

developed both for beginning of life and three cycle irradiated sphere-pac fuels. Comparison to pellet 

fuel conductivity is also performed in this chapter as well as a study on thermal penetration lengths. 

In Chapter 8 the results of the modifications described in Chapters 6 and 7 are analyzed. Simulations 

for a ULOF are performed for the CP-ESFR WH MOX fueled core as well as for the CONF2 MOX fueled 

core, both at beginning of life and at equilibrium configurations, with and without core thermal 

expansion feedbacks. The analyses at beginning of life are performed to highlight the strong 

difference in thermal conductivity between pellet and sphere-pac fuels. However, a representative 

core would be a core in equilibrium conditions, and in this case the sphere-pac fuels would have had 

time to restructure. Additional analyses are performed for americium contents of 2wt% and 4wt%. 

Finally, Chapter 9 summarizes the conclusions and presents future outlooks of the work. 
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Chapter 2 

2. Fast reactor designs and missions 

FAST REACTOR DESIGNS AND MISSIONS 

 

In the world energy outlook 2014 [15], the OECD International Energy Agency [16] predicts a growth 

of the world electricity demand by almost 80% over the period 2012-2040. To cope with this 

increasing demand, an energy mix between fossil fuels, renewables and nuclear energies has to be 

found. Several studies are carried out by international organizations to investigate the impact of the 

future energy mix. Among the different sources, nuclear power provides reliable base load electricity 

and enhances energy security of supply. In addition, it is one of the few options with almost no CO2 

emissions. However, the long-term durability and sustainability of nuclear energy mainly depends on 

an adequate uranium resource and waste management. In the Generation-IV (GEN-IV) framework 

[17], the objectives for future reactor systems have been defined and target sustainability, cost-

effectiveness, safety and reliability. To meet these objectives, six reactor designs are currently 

investigated with either thermal ( 1 eV) or fast energy neutron spectra. Among the thermal systems 

the thermal supercritical water cooled reactors (SCWRs) and the very high temperature reactors 

(VHTRs) are investigated. The fast molten salt, sodium cooled, gas cooled, and lead cooled reactors 

(MSRs, SFRs, GFRs, and LFRs respectively) are ranged in the category of fast systems. Subcritical fast 

systems can also be used to transmute minor actinides (i.e. americium, curium and neptunium 

isotopes). Subcritical LFRs and GFRs ensure an enhanced safety and allow a high content of minor 

actinides to be loaded in the core. In addition, they can use uranium free fuels, thus avoiding the 

buildup of higher transuranic (TRUs) elements. However, they are usually not thought to produce 

electricity and their development is still at a very early stage. Critical systems are thus generally 

preferred for electricity production and could also contribute to the waste management. 

 

2.1.  Uranium resources and waste stocks 
 

Only a very small amount of natural uranium is fissile (235U, 0.7%); the rest is essentially non fissile 
238U. Current pressurized water reactors (PWRs) are using uranium oxide fuels enriched up to 5% 

with fissile 235U.  

Spent nuclear fuel (SNF) coming from current PWRs consists of 95% uranium, 1% plutonium, 4% 

fission products and 0.1% minor actinides (americium, curium, neptunium) for a burnup of ca. 40 

GWd/t [18; 10]. Hence only a few percent of the natural uranium is actually used in current light 

water reactors (LWRs). A better use of uranium is therefore essential to cope with increasing 

uranium resources consumption. Fast reactors (FRs) are one of the suitable solutions. In addition, 
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since FR fuel is mainly composed of plutonium recovered from SNF and of depleted or recycled 

uranium, their fuel cost would be less sensitive to the natural uranium ore price than for PWRs.  

 

The IAEA evaluated the worldwide production of nuclear waste to 10,500 MTHM/year (metric tons of 

heavy metal) [19]. In the open cycle strategy (as it is the case in the USA) no SNF reprocessing and 

plutonium recycling are foreseen. In France the open cycle is slightly modified considering the SNF 

reprocessing and plutonium loading in LWRs.  

Nuclear waste is classified according to half-life, energy and decay type in addition to physical and 

chemical properties including migration in the environment. Six categories of nuclear waste can be 

distinguished according to the IAEA [20]: 

 

1. Exempt waste (EW) - waste with a very low radioactivity. No control by the regulatory authority is 

required. 

2. Very short-lived waste (VSLW) - waste that can be stored for a limited time period of up to some 

years in order to decrease by radioactive decay.  It includes radionuclides with very short half-lives 

often used for research and medical purposes. 

3. Very low level waste (VLLW) - waste with a radioactivity content higher than EW which, however, 

does not require high level containment and isolation. Near-surface facilities with limited regulatory 

control are considered for VLLW. This waste includes soil and rubble with low levels of radioactivity 

from sites formerly contaminated by radioactivity.  Quantities of longer-lived isotopes are usually 

very limited. 

4. Low level waste (LLW) - high radioactivity content waste with a limited amount of long-lived 

radionuclides. High level isolation and containment is compulsory over periods of up to a few 

hundred years. Disposal is done in engineered near surface facilities. This waste includes short-lived 

radionuclides with higher levels of activity and long-lived radionuclides with relatively low levels of 

activity. 

5. Intermediate level waste (ILW) - waste that necessitates a higher degree of containment and 

isolation than that provided by near surface disposal. However, for ILW no or limited provision for 

heat dissipation during storage and disposal is required.  ILW may contain long-lived radionuclides 

whose decay will not bring the activity level below the one required for near-surface storage during 

the time for which institutional controls can be relied upon. ILW thus requires disposal at greater 

depths (tens of meters to a few hundred meters). 

6. High level waste (HLW) - waste with high levels of activity concentration producing significant heat 

through radioactive decay processes. It also includes waste with large quantities of long-lived 

radioisotopes that needs to be considered in the design of a disposal facility for such waste. Disposal 

is done in deep stable geological formations (several hundred meters below the surface). 

Three options are considered for HLW management: deep-storage, long-term interim storage and 

separation/transmutation. Separation (partitioning) refers to special processing adapted to each 

specific case and transmutation is defined as any transformation of a long half-life radionuclide to 

stable or short half-life ones, through nuclear reactions [21]. Partitioning and transmutation (P&T) 

strategies are largely investigated by the international community. 
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Figure 2-1 depicts the impact of transmutation on long-term SNF radiotoxicity. Radiotoxicity is 

defined as the noxiousness of a radionuclide taking into account the characteristics of radiation and 

metabolism in case of ingestion or inhalation by a person [21]. It can be seen that if no recycling is 

performed, it would take about 400.000 years for the nuclear waste radiotoxicity to decrease to the 

level of radiotoxicity comparable to that of natural uranium. If, however, multiple plutonium and 

minor actinide recycling is performed in FRs, the time could be decreased to less than a thousand 

years. [10] 

 

 

Figure 2-1. Relative radiotoxicity versus time for different recycling options [22]. 

 

Table 2-1 shows the annual inventory balance of a 900 MWe PWR (uranium and mixed-oxide fuel 

(MOX) options are compared). About 200 kg of plutonium are produced per year in a PWR reactor. 

Even if plutonium represents about 1% of the SNF, it is responsible for 90% of the radiotoxicity of the 

SNF. Hence, transmuting plutonium will not only provide a better fuel efficiency but also decrease 

the radiotoxic inventory of the SNF [21]. 
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Table 2-1. Isotopic inventory in kg/year for fresh and spent nuclear fuel of a 900 MWe pressurized water reactor [21]. 

Nuclide 
Period 
(years) 

Uranium fuel  MOX fuel 

Inlet 
mass (kg) 

Outlet 
mass (kg) 

Inlet 
mass (kg) 

Outlet 
mass (kg) 

235U 7.08E+08 751 221 11.1 5.8 
236U 2.34E+07  / 88 / 1.2 
238U 4.47E+09 20734 20204 4478 4261 

238Pu 8.80E+01  / 3.3 11.3 12.4 
239Pu 2.41E+04  / 123.1 209 105.2 
240Pu 6.57E+03  / 47.5 98.5 87.4 
241Pu 1.40E+01  / 25.4 44.5 40.7 
242Pu 3.70E+04  / 10.5 31 35.8 
237Np 2.14E+06  / 8.8  / 0.8 
241Am 4.32E+02  / 4.4  / 14.4 
243Am 7.38E+03  / 2.2  / 9.0 
244Cm 1.80E+01  / 0.5  / 4.0 
245Cm 8.50E+03  / 0.1  / 0.5 

93Zr 1.50E+06  / 15.5  / 3.0 
99Tc 2.10E+05  / 17.7  / 4.8 

107Pd 6.50E+06  / 4.4  / 3.2 
126Sn 1.00E+05  / 0.4  / 0.2 

129I 1.57E+07  / 3.9  / 1.3 
135Cs 2.00E+06  / 7.7  / 4.8 

 

Uranium and plutonium constitute the major part of SNF and are hence called major actinides. 

Neptunium, americium and curium are called minor actinides (MAs). They are mainly alpha emitters. 

In order to determine which isotopes should be transmuted, radiotoxicity, heat load and neutron 

emissions are compared.  

Figure 2-2 compares the radiotoxicity of the different elements. It can be noticed that the SNF 

radiotoxicity level is dominated by 137Cs, 90Sr and plutonium for about 200 years after discharge; 

plutonium and MAs for one hundred thousand of years; and uranium, plutonium and MAs in the very 

long term. The heat load follows the same trend. In the short term it is dominated by fission products 

mainly 137Cs and 90Sr (about 2000 W/TWhe) while for medium and long term, plutonium (about 100 

W/TWhe), americium and curium are the dominating elements. The main contributor to the neutron 

source for the first 200 years in storage is 244Cm with a neutron source of about 107 n s-1 g-1 [10]. 
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Figure 2-2. Radiotoxic inventory of UOx nuclear fuel [10]. 

Recycling TRUs allows a decrease in the TRU mass as well as in the radiotoxicity and heat load of the 

nuclear waste. However, not only the fuel cycle back-end but also its front-end (i.e. fabrication) and 

the core performance characteristics are impacted by a possible recycling of TRUs. 

When transmuting TRUs, two main consequences are observed. First, the neutron balance in a FR 

contributes to a surplus of neutrons, which is balanced by the higher neutron leakage. This is due to 

the higher fission over capture ratios of the actinides. From the core neutronics point of view, the 

reactivity coefficients and kinetic parameters are also impacted: a worsening of all feedback 

coefficients as well as a decrease in the delayed neutron fraction is observed [23].  

Second, the fuel cycle is impacted. In fact, even though the transmutation of actinides through 

capture is less probable in a FR than in a thermal reactor and thus the buildup of higher isotopes is 

limited, buildup of curium isotopes like 246Cm and 248Cm (after multiple recycling) through successive 

captures on americium isotopes, as well as higher elements like berkelium and californium (252Cf) 

produced through successive captures in 244Cm, may have an impact on the fuel cycle as these 

isotopes are strong neutron emitters through spontaneous fissions [10].  

 

2.2.  Breeders and iso-generators 

 

As mentioned earlier, an interesting feature of FRs is their efficient use of fuel. The primary target of 

FRs was to breed fissile material through fertile material (mainly 238U in the U/Pu cycle) in order to 

save, at that time underestimated, available and reasonably assured uranium resources [24; 25]. 

In order to breed, a fertile isotope (e.g. 232Th, 238U) should be converted into a fissile isotope (233U, 
239Pu) through neutron capture. The conversion chain for uranium is shown in Figure 2-3 (the one of 

thorium being omitted for our current purposes). 
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Figure 2-3. Uranium conversion chain (several α-decay processes have been omitted for simplification). 

The degree of conversion in a nuclear reactor reflects the breeding potential of a core and is defined 

as the conversion ratio. It is the ratio of fissile material produced to fissile material destroyed (both 

through capture and fission) – Eq. 2-1 [21]. 

 
number of fissile nuclei produced P

CR
number of fissile nuclei destroyed A

                                    2-1 

If CR>1, the reactor is called a breeder i.e. it produces more fissile material than it consumes. In 

practice, fast neutron reactors with MOX fuel can become breeders only if a fertile blanket is placed 

at the periphery of the core. Neutrons escaping from the fissile core are then absorbed in the 

blanket. Blankets are efficient in FRs as neutrons have a higher probability to leak (compared to 

thermal reactors) from the fissile core due to the high neutron energies (and their long neutron 

mean free path).  

If CR=1, the reactor is an iso-generator which means that it consumes as much fissile material as it 

produces. 

 

In order to be actually able to breed, enough surplus neutrons have to be available. This is usually 

measured through the reproduction factor η defined as the number of neutrons produced through 

fission per absorption, see Eq. 2-2 (where fuel

f and fuel

a are the macroscopic fission and absorption 

cross-sections in the fuel, respectively, and  is the number of neutrons emitted per fission) 



FAST REACTOR DESIGNS AND MISSIONS 

 

Page | 13  
 

fuel
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fuel
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 





                2-2 

One neutron has to be saved for the reaction chain. In order to breed, at least one additional neutron 

has to be used for replacing the destroyed fissile isotope by a neutron capture reaction in a fertile 

isotope. Considering that some neutrons might be lost through leakage from the reactor or through 

parasitic absorption e.g. in the structures (denoted L) Eq. 2-3 has to be satisfied in order to achieve 

breeding.  

2 L              2-3 

The loss term is always greater than zero, but lower than one. Hence Eq. 2-3 can be simplified to Eq. 

2-4.  

 

2              2-4 

Looking at the main fissile isotope in a FR i.e. the 239Pu, η increases (although not monotonously) 

from 2.04 in a thermal spectrum ( 25 meV) to 2.45 in a fast spectrum [25].  

 

In addition, the better fuel efficiency in FRs is related to the energy spectra of neutrons. In a thermal 

reactor interactions are mainly taking place at neutron energies of around 0.1 eV as can be deduced 

from Figure 2-4 [26]. This is due to the fact that a moderator (water and/or graphite) is present in the 

reactor, thus slowing down the neutrons from their emission energy ( 2 MeV in average for 

neutrons coming from prompt fissions) to the thermal energy below 1 eV. In a fast spectrum, 

however, only a small amount of moderation occurs (mainly due to inelastic scattering in heavy 

metal, iron and sodium isotopes as well elastic scattering in oxygen and sodium isotopes) and the 

neutrons remain rather fast. Interactions hence occur at neutron energies of about 100 keV. Figure 

2-4 displays the neutron energy spectra of several reactor concepts.  

 

 

Figure 2-4. Normalized neutron spectra for different reactor systems [26]. 
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The physics of the major actinides (i.e. uranium and plutonium isotopes) is very different in the 

thermal (<1 eV) and fast energy ranges. The fissile isotopes 233U, 235U, 239Pu, 241Pu are fissioning both 

when hit with neutrons in the low and intermediate to fast energy ranges. Fertile isotopes, however, 

as 238U are essentially fissioning when bombarded with neutrons of higher energies i.e. of about 1 

MeV or more.  

 

2.3.  Actinide transmutation 
 

As mentioned earlier, plutonium can either be seen as fuel, as a material that has to be transmuted 

in order to reduce the long-term radiotoxicity of the SNF or as nuclear waste that will be sent to the 

geological repository. In addition to plutonium, MAs also have to be transmuted if reduction of 

radiotoxicity and mass of SNF is intended.  

When looking at the fission over absorption ratios of all considered isotopes - Figure 2-5 - an increase 

in the fast energy range is observed:  from 60-80% in thermal reactors to 80% in fast reactors for the 

fissile isotopes (essentially 235U, 239Pu, 241Pu) while the fertile isotopes increase from <5% in thermal 

reactors to almost 50% in fast reactors. This implies that FRs are efficiently destroying MAs through 

fission hence avoiding or at least reducing the production of heavier actinides (through capture). 

 

 

Figure 2-5. Fission over absorption ratios in thermal and fast spectra of the main actinides [26]. 

In order to reach high transmutation rates, usually multi-recycling has to be envisaged. The 

transmutation performances and the transmutation rate are usually the adequate quantities to 

compare the transmutation capabilities and capacities of different types of reactors. The 

transmutation performance, TR, is defined in Eq. 2-5 (where m is the mass) and is expressed in 

kg/TWhe. The transmutation rate, Y, is defined in Eq. 2-6 (efpd stands for equivalent full power days, 

N for the minor actinide inventory) and is expressed in percent. 

 

heavy atoms of MA in fresh fuel heavy atoms of MA at end of irradiation

irradiation lifetime

m m
TR

E


             2-5 

With 
 

* *24irradiation lifetimeE efpd ElectricPower  



FAST REACTOR DESIGNS AND MISSIONS 

 

Page | 15  
 

 

MA

MA

N
Y

N


               2-6 

Two transmutation modes are envisaged for burning minor actinides in solid fueled reactors: the 

homogeneous and the heterogeneous modes. In the former one, minor actinides are mixed to the 

standard FR MOX fuel. In the latter one, MAs are transmuted in dedicated targets (blankets) usually 

placed at the periphery of the core. It is worth mentioning that in this case the MAs can be inserted 

in an inert matrix [27; 28] or in a depleted uranium matrix. 

Depending on the chosen option for transmutation, the fuel cycle will be more or less impacted and 

the efficiency of the transmutation will be more or less high. Figure 2-6 recalls the different cycles 

when considering one option or the other.  

 

Figure 2-6. Fuel cycle in the heterogeneous and homogeneous recycling options [10]. 

 

2.4.  Sodium cooled fast reactors 

 

As mentioned earlier, several concepts of GEN-IV reactors are developed throughout the world. 

However, the sodium cooled fast reactor is the most advanced technology of the GEN-IV concepts 

since several reactors were already built and operated worldwide. To be cited are the PHENIX [4] and 

SUPERPHENIX [4] reactors in France, JOYO [4] and MONJU [4] in Japan, BN-600 [4] in Russia or EBR-I 

and EBR-II in the USA [4; 29].  

Sodium cooled fast reactors usually display a near cylindrical arrangement of hexagonal fuel 

elements. Two to three enrichment zones are considered in SFRs in order to obtain a flat radial 

power profile. As mentioned in the previous section, the neutron energy spectrum is peaked at 

around 100 keV.  
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2.4.1. Sodium as a coolant 

 

From the neutronics point of view sodium is almost transparent for neutrons [30; 31]. Its capture 

cross section is low, thus allowing a better neutron economy – more neutrons are available to the 

reaction chain - though 23Na has a rather high resonance at about 2.8 keV. The capture resonance 

integral is, however, fairly low compared for example to its scattering one and is comparable to the 

one of structure material components as iron (56Fe) [32; 33]. Furthermore, the small ratio of capture 

to scattering processes in this resonance is illustrated by the ratio of the associated radiative width to 

neutron width for that resonance [33]. In addition, moderation in sodium is rather low (compared to 

hydrogen or helium for example) which keeps the neutrons at higher energy [34].  

 

Sodium is characterized by a very high thermal conductivity in comparison with other coolants – 

Table 2-2. The heat transfer will thus be very efficient. However its heat capacity is moderate. As its 

density and viscosity are quite low, the mass flow rate can, however, be increased to limit the 

increase in sodium temperature at nominal conditions with a limited increase in the pump power. In 

addition, due to its high thermal conductivity and other good thermal properties, sodium supports a 

good natural convection. This is of high advantage in case of an unexpected pump coast down since 

the cooling of the core will be assured naturally [34]. 

Sodium has a large thermal inertia, and a large temperature difference between its melting and 

boiling temperature at atmospheric pressure (delta of 785 K – see Table 2-2) thus inducing some 

flexibility in choosing the operating temperatures at atmospheric pressure (no pressurization has to 

be applied). As a consequence, the thermal efficiency of the whole plant can reach 40% [34]. In the 

European Sodium Fast Reactor (ESFR) core [35] (chapter 3) sodium enters the core at 668 K and exits 

it at 818 K leaving a margin to boiling of 338 K. This increases the grace time in case of an accident. 

Table 2-2. Main properties of liquid metal coolants [36]. 
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From the chemical point of view, sodium is not corrosive as long as the impurity concentration of 

oxygen and carbon is kept low. As example, O2 has to be limited to 5-10 ppm while C has to be kept 

below 50 ppm [34]. A high corrosion implies that radioactive products will be eroded from the clad 

and wrapper and transported all the way to the intermediate heat exchangers thus making 

maintenance and repair activities more difficult. In existing FRs, a continuous purification avoiding 

corrosion is hence performed. 

 

The main issue related to the use of sodium is its exothermic reaction with air and water. Sodium 

fires due to oxidation of sodium through contact with air were already experienced in the MONJU 

reactor for example [37]. They can be avoided in the radioactive primary system by enclosing it in 

cells or double walled piping filled with nitrogen or argon. Leak tightness of the cooling system is 

ensured through detection systems. Fire extinction systems are also present [34]. 

Non-radioactive sodium from the secondary system can interact with water in the steam-generators 

in case of a tube failure. A high pressure water steam jet would be injected into the sodium inducing 

a violent reaction with temperatures around 1300 ˚C. An exothermic reaction (Eq. 2-7) would occur 

producing sodium hydroxide and hydrogen with pressures of 9-13 MPa in the reaction zone [34]. 

 

2 2 22Na H O Na O H               2-7 

In order to avoid a pressure buildup, steam generators are equipped with a pressure relief system: a 

rupture disk breaks on the sodium side, pushing the sodium, hydrogen, and sodium hydroxide into a 

reaction tank. Hydrogen is then separated from the other components and vented to the air where it 

burns. Detectors closely monitor such type of accident, immediately shutting down the steam 

generator.  

 

Another drawback of sodium compared to e.g. water is its opacity. In fact, inspection maintenance 

and supervision of e.g. refueling or repairs have to be performed with ultrasonic devices.  

 

2.4.2. Kinetic parameters and feedback effects  

 

The control of the power of a nuclear reactor is a key parameter for operational reactor safety. The 

power is closely linked to the neutron population. The variation in the neutron population can be 

expressed as Eq. 2-81 (time-dependent). In this equation, β is the delayed neutron fraction i.e. the 

ratio of the amount of delayed neutrons to the total amount of neutrons, l is the neutron lifetime, 

 is the reactivity, k k

k

c is the amount of delayed neutrons (produced by radioactive decay of all 

precursors, kc  being the neutron precursor concentration) and S is an external source. In case there 

is no external neutron source, as long as the positive reactivity insertion   is lower than the delayed 

neutron fraction β the neutron population increase can be controlled. However, if   is higher than 

the delayed neutron fraction, the neutron population will increase exponentially. Thus, the higher 

the value of the delayed neutron fraction β, the easier it will be to control the reactor [21].  

                                                            
1 This equation will be detailed in chapter 6. 
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Depending on the fuel type, the amount of delayed neutrons in the reactor varies. The delayed 

neutron fraction of 238U for example is of 1580 pcm while the one of 235U and 239Pu are of 680 pcm 

and 215 pcm, respectively [38]. In a typical PWR, the delayed neutron fraction will hence be of 730 

pcm considering that 93% of the fission comes from 235U and 7% come from 238U. In a FR however, 

where MOX fuel is used as standard fuel, the average delayed neutron fraction is of only 350 pcm. 

This already indicates that fast reactors will tolerate lower reactivity insertions as a PWR. However, 

the reactivity insertions during an excursion in a LWR are larger than in a FR [39].  

 

Any reactivity variation brings along associated reactivity effects. These feedbacks play an important 

role in the control of the reactor [40]. Three categories of feedback effects can be distinguished: the 

Doppler effect due to the temperature driven broadening of fission and capture resonance cross-

sections, the effect of material densities (coolant in nominal conditions and e.g. fuel or steel in a 

molten configuration) and the effect of thermal expansion of materials.  

 

The Doppler effect 

 

The Doppler effect is related to the thermal motion of nuclei. In fact, if this motion of the nuclei of 

the various reactor components becomes more intense (due to temperature increase) it modifies the 

relative velocity of an incident neutron in relation to the nucleus thus inducing a broadening of the 

capture and fission cross-sections. The effect is mainly for 238U, as for fissile isotopes the influences of 

fission and capture resonances practically compensate. In a reactor the resonance escape probability 

which is the fraction of fission neutrons that manage to slow down from fission to lower energies 

without being absorbed in the resonances decreases with increasing temperature and the Doppler 

effect is negative. This effect varies with the spectrum of the reactor since it occurs at resonances 

[34].  

The Doppler effect is quasi-instantaneous2, unlike e.g. coolant density effects. In order to correlate 

the reactivity change due to the Doppler effect with the fuel temperature change, the Doppler 

constant approximation is used (Eq. 2-9). Eq. 2-9 should not be considered as a rigorous law but it 

can be applied to most FRs as a reasonably good approximation [34; 25]. The Doppler constant dK is 

defined in Eq. 2-10 where T0 and T are two different fuel temperatures. Even for the same type of FRs 

it depends on the coolant volume fraction and density. 

 

d

dT
d K

T
              2-9 

                                                            
2 Experiments specifically dedicated to the Doppler effect were carried out at the Southwest Experimental Fast 

Oxide Reactor (SEFOR) [34; 41]. 
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Material density effects 

 

- Sodium density effect 

The expansion effect of sodium induces a decrease in the sodium density. This affects the neutron 

reactions in three ways: it simultaneously decreases the amount of scattering collisions and of 

absorptions between neutrons and the coolant, and increases the neutron leakage. The reduced 

scattering induces a positive reactivity insertion due to the hardening of the neutron spectrum (i.e. 

the average energy of neutrons is increased compared to before). Similarly the decrease of 

absorptions on sodium leaves more neutrons available to the reaction chain hence provoking a 

positive although small reactivity increase. The lower collision scattering probability additionally 

increases the neutron mean free path, defined as the average distance a neutron travels after a 

collision with a nucleus before interacting with another nucleus, thus increasing the neutron leakage 

(more neutrons will escape from the core, especially in the outer core zones) and introducing a 

negative reactivity effect. The overall effect of sodium expansion is usually positive, especially in 

large sodium cores. When during an accident the reactor is voided, the coolant void effect is, thus, in 

general positive unless special designs are considered [42]. Most accidents to be considered in 

sodium fast reactor safety analyses are impacted by the sodium void reactivity effect. In small cores 

the sodium expansion effect for the whole core can be negative if the core is designed to enhance 

the neutron leakage [34]. 

 

When accidental conditions are analyzed, it also becomes important to consider the density effect of 

moving fuel and steel.  

 

Thermal expansion reactivity effects 

 

The thermal expansion effects concern the fuel, the structures, the diagrid, the control rod drivelines 

and the vessel.  

 

- Fuel expansion effect 

The thermally driven expansion of fuel is split into an axial and a radial component.  

The axial fuel expansion has a threefold effect. It locally reduces the fuel density thus causing the 

reactivity to decrease, it increases the total fissile height causing the reactivity to increase and finally 

it increases the sodium mass in the core due to the increase in the fissile core height (this effect 

corresponds to an increase in the sodium density). The axial fuel expansion effect is globally negative.  

The radial fuel expansion (within the pins) has no effect on the reactivity as it does not decrease the 

sodium density in the core (unless there is a sodium gap as in metal fuel pins; the minor relocation of 

sodium in such pins has nonetheless a minor impact on reactivity). In fact, the radial fuel expansion is 

restrained by the cladding expansion. However, cladding expansion will have an effect on reactivity.  
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- Thermal expansion effect of structures 

The thermal effect of structures includes the dilatation of cladding and hexagonal wrappers. It occurs 

both in axial and radial direction. An axial dilatation of structures induces a local decrease of steel 

density, thus decreasing the absorption probability in steel. The reactivity is consequently increased. 

Furthermore, a radial dilatation of the pins (or the hexagonal wrapper tubes) causes the sodium 

fraction to decrease in the unit cell. The amount of sodium in the core is hence reduced and the 

neutron spectra hardens, leading both to an increase of fissions and neutron leakage. The overall 

reactivity effect of this structure dilatation is positive in a not “flowering” core design. 

 

- Fuel bowing 

Fuel bowing depends on the temperature distribution and its time-dependent variation across the 

core. It is induced by temperature gradients, swelling gradients or temperature creep through the 

fuel pin or fuel assembly [43]. The related strain causes a pin or assembly displacement (leading the 

pin or assembly to bow), thus moving the fuel into an area with lower or higher neutron importance, 

causing a reactivity change [44]. This reactivity feedback is highly complex and depends on the core 

design and, in particular on the core clamping system. Modern FR fuel pins are assembled in such a 

way that no fuel bowing occurs in the pins themselves, making the non-uniform temperatures across 

the fuel assemblies the main driver for fuel bowing [44; 43]. The way the assemblies are supported 

by the diagrid and within the core barrel highly contributes to this reactivity effect. For example, the 

core restraint system – if present – can consist of one or several restraint points at the assembly 

nozzle and several load pads on the wrapper tubes [45]. Depending on the core clamping system, the 

displacement of assemblies may differ appreciably as will the related reactivity effect (it can be 

positive or negative). 

 

- Diagrid expansion effect 

The diagrid expansion is caused by fluctuations in the temperature of the incoming sodium. This 

might happen e.g. when the electricity demand decreases and the tertiary system consequently 

imposes a smaller power production from the core. The diagrid onto which the assemblies are 

plugged will then expand, pushing the assemblies further from one another. More sodium will flow 

into the core and the relative volume of sodium to fuel will increase. However, the core radius will 

also increase while the fuel mass remains constant: neutron leakage will thus be enhanced. The 

overall effect of diagrid expansion remains negative. During fast transients, the diagrid expansion will 

however not play an important role due to the thermal inertia of the diagrid (tens of seconds).  

 

- Control rod driveline and vessel differential expansion  

Another expansion feedback effect is coming from the differential expansion of core, vessel and 

control rods - Figure 2-7. This feedback effect is composed of three different effects: an increase in 

fuel temperature, an increase in the coolant outlet temperature, and an increase of sodium 

temperature in the cold pool3. The first effect will cause the fuel to expand axially, thus making the 

                                                            
3 Cold sodium from the primary pumps enters the core at its bottom and heats up. The hot sodium then flows 
upwards into a large sodium pool (hot pool). It then passes usually through the intermediate heat exchangers 
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control rods to be inserted in the core if they are hanged from the top. This will lead to a decrease in 

the reactivity. The second effect will induce an axial expansion of the control rod causing again an 

insertion of the controls rods into the core. This second effect has a negative effect on the reactivity. 

The third effect will cause an axial expansion of the vessel towards the lower part of the core. The 

control rods will thus have a lower relative removal/insertion. All three effects depend on different 

time constants. 

The total differential effect relies on the changes of sodium inlet and outlet temperature and on the 

expansion coefficients of fuel, vessel and control rods.  

 

 

Figure 2-7. Schematics of the control rod driveline and vessel differential expansion [46]. 

Typical values of reactivity feedbacks [47] are presented in Table 2-3 for the 3000 MWth sodium 

cooled fast reactor SUPERPHENIX [4]. 

Table 2-3. Typical values of reactivity feedbacks in the SUPERPHENIX reactor [47]. 

Type of effect Effect Related To Value pcm/˚C 

Intrinsic Doppler T fuel -0.08 

Local 

Sodium density T sodium +0.33 

Cladding radial T cladding +0.08 

Cladding axial T cladding +0.07 

Wrapper tube radial T wrapper tube +0.01 

Wrapper tube axial T wrapper tube +0.04 

Fuel axial (linked) T cladding -0.31 

Fuel axial (free) T fuel -0.22 

Global 

Diagrid radial T diagrid -1.01 

Relative expansion core/ vessel 

/control rods 
T core, T control rods, T vessel Dz = 12 mm/˚C 

 

                                                                                                                                                                                          
(from top to bottom) where it is cooled down. The sodium then flows into a large sodium pool (cold pool) 
where it is taken from the pumps and forced back into the core [34].  



FAST REACTOR DESIGNS AND MISSIONS 

 

Page | 22  
 

The diagrid, clad axial, and fuel axial expansion feedback modeling under transient conditions is 

closely investigated in this PhD thesis. They are referred to core thermal expansion feedbacks 

throughout the thesis. 

 

2.5.  Impact of minor actinide transmutation on SFR core performances 

and fuel cycle 
 

As described earlier, two main transmutation modes are considered for reducing the nuclear waste 

mass and radiotoxicity: the homogeneous and heterogeneous modes.  

The homogeneous mode is based on reprocessing of the spent nuclear fuel to recover actinides (Pu, 

Am, Cm, Np). The actinides are then mixed homogeneously with 238U for fabrication of fresh fuel, and 

loaded in the core. In the heterogeneous recycling option, minor actinides (Am, Cm, Np) are put into 

dedicated assemblies that are placed at the periphery of the core (radially and/or axially). The fuel is 

a binary mixture of uranium and minor actinides (in some designs the addition of moderating 

material such as ZrHx is considered for increasing the capture reaction probability). 

 

Both options present advantages and drawbacks. The homogeneous mode does not allow a high 

content of MAs in the fresh fuel. This is mainly related to safety, since feedback coefficients are 

worsened with the introduction of MAs in the driver fuel [10; 48]. In addition, the whole fuel cycle is 

impacted by the homogeneous mode as there is no separation of the standard driver fuel (MOX) and 

MAs. The existing fabrication and reprocessing facilities as well as the transportation and handling 

have hence to be adapted (e.g. considering remote operations). In addition, the very high content of 

MAs in the fuel leads to an increase of the helium production under irradiation thus impacting the 

sub-assembly design. The heterogeneous mode on the other hand allows charging a higher content 

of MAs (up to 20%) than in the driver fuel since this option has a very small impact on safety 

feedbacks. A considerable advantage of this option is that the management of the dedicated 

assemblies is decoupled from the standard fuel, hence leaving the existing facilities of the LWR MOX 

fuel cycle unperturbed [10]. However, dedicated facilities have to be built.  

 

In the next sections, the main impacts of one and the other modes on core performance and fuel 

cycle are displayed for a 3550 MWth sodium cooled fast reactor [49]. 

 

2.5.1.  Transmutation performance 

 

For an initial mass of minor actinides of 2.4 tons, the heterogeneous option with radial blankets and 

the homogeneous option are compared. This mass corresponds to a 3.2% volume content of MAs in 

the homogeneous mode and 20% in volume in the heterogeneous mode. For the homogeneous 

mode, only the transmutation of americium was considered, while for the heterogeneous one a case 

with americium only and a case with all minor actinides (i.e. Am, Cm and Np) were considered [49]. 

The heterogeneous options show transmutation performances close to the homogeneous mode. This 

is due to the fact that the residence time of sub-assemblies in the radial blankets is twice as long as 

the one of driver fuels since the neutron flux and the corresponding displacement per atom (dpa) 
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values of structure materials at the periphery of the core are lower than in the core. The same trend 

could be obtained by adding some moderator material to soften the spectrum and reach a better 

transmutation rate in the blankets. 

Transmutation rates as high as -28% are observed. As concerns the transmutation performance 

(kg/TWhe), the homogeneous mode shows the highest value (Table 2-4) [49]. 

Table 2-4. Characteristic transmutation rates and transmutation performances in a 3550 MWth sodium cooled fast 

reactor for different transmutation strategies [49]. 

 Homogeneous Heterogeneous 

 3.2% Am 20%Am 20%MA 

Charged mass (kg) 

Np 0 0 411 

Am 2429 2438 1866 

Cm 0 0 160 

MA 2429 2438 2437 

Discharged mass (kg) 

Np 43 20 265 

Am 1435 1493 1101 

Cm 390 242 223 

MA 1867 1589 1755 

Transmutation rate at end of life (2050 efpds) (%) 

Np - - -35.5 

Am -40.9 -38.7 -41 

Cm -  +39 

MA -23.1 -28 -34.8 

Mass balance at end of life (2050 efpds) (kg/TWhe) 

Np +0.60 +0.14 -1.02 

Am -13.93 -6.62 -5.36 

Cm +5.46 +1.7 +0.44 

MA -7.87 -4.79 -5.94 

 

2.5.2. Impact on core performances 

 

Although high transmutation rates are desired, the introduction of MAs in the reactor should, 

however, not deteriorate too much the neutronics parameters and reactivity feedbacks. Adding MAs 

into a critical core has the following effects: 

- Hardening of the spectrum 

- Decrease in the fuel temperature coefficients i.e. the Doppler effect. This is related to the 

substitution of 238U (main contributor to Doppler effect) by minor actinides. 

- Increase in the coolant void reactivity effect. This is due to the increased fissile nature of 

minor actinides in a fast spectrum. 

- Decrease of the delayed neutron fraction;  

- Decrease of the prompt neutron lifetime; 

- Less pronounced reactivity swing (MAs acting as burnable poisons);  

- Decrease in the axial expansion coefficient;  

- Decrease in the radial expansion coefficient;  
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- Decrease in the fuel density coefficient;  

- Decrease in the structure density coefficient 

 

In [10] analyses of a large 1500 MWe sodium cooled fast reactor are presented. The MA content in 

the homogeneous recycling fuel was increased from 0 to 10%. In this case, the coolant void reactivity 

effect increased by almost 20%, the Doppler constant decreased by almost 50%, the effective 

delayed neutron fraction decreased by about 15%, and the burnup reactivity swing by about 40%.  

As mentioned previously, the delayed neutron fraction allows controlling the power of a reactor and 

a lower value is associated to a more “nervous” reactor, since the power control is more sensitive to 

reactivity changes.  

It has already been mentioned that the deterioration of the reactivity feedbacks is much less 

pronounced if MAs are transmuted in specific assemblies surrounding the fissile core (heterogeneous 

transmutation strategy). This is confirmed as well in [49] for lower amounts of MAs (Table 2-5). This 

is due to the fact that at the periphery of the core, the neutron flux and especially the neutron 

importance are already rather low.  

Table 2-5. Main neutronic parameters and reactivity feedbacks in homogeneous and heterogeneous recycling [49]. 

 Reference core Homogeneous Heterogeneous 

 0.1%Am 3.2% Am 20%Am 20%MA 

Δρ cycle (pcm) -450 300 -250 -270 

βeff 369 346 365 365 

Void effect ($) 4.9 5.4 4.9 4.9 

KD (pcm) -888 -723 -886 -885 

 

However, not only the core performances but also the front-end and back-end of the nuclear fuel 

cycle are impacted by the introduction of MAs.  

 

2.5.3. Impact on fuel cycle 

 

Front-end of the fuel cycle 

The MAs present in the fresh fuel challenge the fabrication, storage and handling steps.  

In the heterogeneous mode, the very high amount of minor actinides in the fresh fuel causes the 

thermal power, the neutron source and the dose rate to be significantly higher than in standard MOX 

driver fuel. The homogeneous mode where minor actinides are put within the standard driver fuel is 

advantageous from the handling point. In fact, at the fabrication stage only few percent of MAs are 

added to the driver fuels (due to safety reasons as mentioned previously) hence limiting the neutron 

emissions and the thermal power of fresh fuels – Table 2-6 [49].  

It can be noticed from Table 2-6 that as soon as other minor actinides are added in the core in 

addition to americium, the heat release is increased by a factor 3 and the neutron source is increased 

by more than one order of magnitude compared to the reference. 
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Table 2-6. Thermal power and neutron source per fuel assembly for fresh fuel with and without considering 

transmutation [49]. 

 Reference Homogeneous Heterogeneous 

 0.1% Am 3.2%Am 20%Am 20%MA 

Thermal power (kW) 0.75 1.17 2.35 7.19 

Neutron source (107n/s) 3.8 4.8 6.8 190 

 

Back-end of the fuel cycle 

The same tendency as in the pre-irradiation phase is seen in the post-irradiation phase [10]. 

The heat level is mainly driven by curium. Curium is produced under irradiation through captures in 
241Am. In the heterogeneous modes, the current limit of 40 kW to handle assemblies is reached after 

10 days – during this time, the fission products drive the decay heat. The limit value of 7.5 kW to 

clean the assemblies is reached after 1000 days in comparison to 2 and 100 days for the standard 

MOX fuel – Figure 2-8. For the homogeneous mode, the decay heat of the homogeneous recycling 

fuel follows the same tendency as the standard MOX fuel. In comparison with the heterogeneous 

recycling option, the fuel can be handled and cleaned much earlier (3 and 200 days respectively) – 

Figure 2-8. 

The neutron emissions are increased by more than one order of magnitude in all recycling options 

compared to the reference case (1.109 n/s). 

 

Figure 2-8. Decay heat temporal evolution for irradiated fuel in the heterogeneous, homogeneous and reference (no 

transmutation) strategies [10]. 

In conclusion, both the heterogeneous and the homogeneous transmutation mode are feasible, each 

of them presenting some advantages and drawbacks, the main ones being recalled hereafter.  

With the homogeneous mode, fuel fabrication is easier compared to the heterogeneous mode but 

impacts the whole fuel fabrication chain. The fuel behavior under irradiation is close to the standard 

Heterogeneous 20% MA 

Homogeneous 3.2%Am 

Reference  
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one. The homogeneous mode impacts the core reactivity coefficients, limiting the MAs content to 

about a few percent of the total heavy isotopes within the fuel. A higher content would require a 

redefinition and optimization of the core design (compared to the standard one) [10]. 

With the heterogeneous mode, the fuel fabrication is more complex than in the homogeneous route 

but it is concentrated on a limited number of sub-assemblies and does not impact the standard fuel 

cycle since dedicated facilities have to be built. The fuel behavior under irradiation differs from the 

standard one due to a large production of curium and a large helium release, thus requiring validated 

target designs. The heterogeneous mode shows no impact on the main reactor core parameters. 

However, a higher thermal load of SNF compared to the standard one limits the minor actinide 

content within targets and requires a new handling process at reactor stage [10].  

 

2.6.  Conclusion 
 

In this chapter, the nuclear waste issue has been addressed. The new generation of reactors and 

especially the fast reactors are a suitable solution to cope with this issue. Several options to reduce 

the radiotoxicity of nuclear waste are currently investigated. Each of them implies advantages and 

drawbacks in the core performances and in the fuel cycle. A compromise between high 

transmutation rates and acceptable impacts on the fuel cycle and its economics has to be found. For 

the present PhD work, focus is put on the homogeneous recycling strategy. In the previously 

mentioned PELGRIMM project (Chapter 1), the safety behavior of two different fuel forms (pellet and 

sphere-pac), with and without minor actinides is analyzed. Especially the sphere-pac fuels are of high 

interest when it comes to recycling of minor actinides since the helium production from minor 

actinide decay can be accommodated more easily in those pins. Analyses are performed under 

nominal and accidental conditions and consequently an overview of the safety approach of sodium 

cooled-fast reactors is proposed in the next chapter. 
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Chapter 3  

3. Safety approach for sodium cooled fast reactors 

SAFETY APPROACH FOR SODIUM COOLED 

FAST REACTORS 

 

Fast reactors (FRs) constitute an unprecedented technology towards a sustainable energy source. 

Among all FR systems, the Sodium cooled Fast Reactors (SFRs) present currently the most 

comprehensive technological knowhow due to a large experience gained with several operating 

systems. However, SFRs, as FRs in general, are not in their most reactive neutronic configuration (i.e. 

they can become more reactive in case of a perturbation) thus requiring the investigation of 

particular transients (e.g. seismic ones) and Hypothetical Core Disruptive Accidents (HCDAs).  

Indeed in case of an accident, where e.g. the coolant is lost or fuel compacts, SFRs become 

neutronically more reactive quite to the contrary of thermal reactors. This is mainly caused by their 

high enrichment of 15 – 30 % fissile material to compensate for the higher leakage.  

In thermal reactors currently in operation, where the average neutron energy is about 25 meV, if the 

coolant boils neutrons are no longer moderated and the chain reaction ceases itself4. On the 

contrary, in SFRs, where the average neutron energy is about 0.1 MeV, if the coolant boils or its 

density is significantly reduced in central regions of the core, the already modest moderation coming 

from sodium is reduced, neutrons become faster and the spectrum hardens. Due to the fuel 

composition used in SFRs and to the energy dependence of the reproduction factor η of e.g. 

plutonium – increasing with energy – the reaction chain is enhanced. The neutrons become thus 

more important to the reaction chain when the energy increases. This can be seen by the adjoint flux 

i.e. the neutron importance. However, the coolant void is not the only feedback causing a reactivity 

change. Any material (fuel, steel, absorber) mobilized by melting or pin disruption causes reactivity 

changes. Other feedback effects as Doppler might partially counterbalance the positive coolant void. 

Nevertheless, a sequence of events – called scenario – might induce a degradation of the core which 

might lead to some reactivity increases due to e.g. material relocation or in-pool material motions.  

Consequently, the study of sequences of severe accidents in SFRs becomes essential and possible 

recriticalities should be limited at any stage of the accidental scenario. The objectives of the study of 

HCDAs are thus twofold: it aims for prevention and mitigation of the accident. The former one is 

aiming at the conception of the reactor design such that the likelihood of an accident becomes low. 

The latter one focuses on the minimization of the consequences of an accident [50]. 

 

                                                            
4 However, even when the chain reaction has been terminated the fuel may melt due to the still prevailing 
decay heat and the interruption of coolant circulation (as was experienced e.g. in the Fukushima Daiichi 
accident in Japan in 2011). 
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3.1. The safety approach 
 

The safety approach provides a methodology whose application allows to construct the safety 

architecture and to demonstrate that a nuclear power plant presents tolerable risks [51]. 

A risk can be defined as the product of the occurrence probability of a considered accident/incident 

with its associated consequences. The Farmer diagram - Figure 3-1 - describes a method to 

categorize accidents depending on their frequency5 and their related consequences on the 

environment [52]. 

The key issue of the “Farmer diagram” is to assure extremely low consequences for frequent events 

and extremely low frequencies for highly destructive plant conditions. With the system architecture 

defined, it has to be proven that for all the conditions which the plant may experience the 

corresponding risk can be kept within the tolerable domain. 

 

 

Figure 3-1. The Farmer diagram: categorization of incidental/accidental conditions according to their likelihood and their 

consequences [53]. 

For guaranteeing safety, fundamental safety objectives have been formulated by the International 

Atomic Energy Agency (IAEA) as follows [54]: 

 

- General safety objective: “protect the public health by limiting the risk of radiological 

releases to tolerable levels”. 

- Radiation protection objective: “To ensure that in all operational states, radiation exposure 

within the installation or due to any planned release of radioactive material from the 

installation is kept below prescribed limits and as low as reasonably achievable (ALARA 

principle), and to ensure mitigation of the radiological consequences of any accident.” 

- Technical safety objective: “To take all reasonably practicable measures to prevent accidents 

in nuclear installations and to mitigate their consequences should they occur; to ensure with 

a high level of confidence that, for all possible accidents taken into account in the design of 

the installation, including those with a very low probability, any radiological consequences 

would be minor and below prescribed limits; and to ensure that the likelihood of accidents 

with serious radiological consequences is very low.” 

                                                            
5 Frequency is defined as events/(reactor year) 
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A set of more practical safety targets completes the general safety objectives and leads to the 

following main guidelines for SFRs:  

 

- The safety objectives defined in the European safety framework for new nuclear plants and 

in particular the technical guidelines of the French EPR [55; 56] constitute the basis for SFR 

guidelines. 

- The fulfillment of the objectives is cumbersome and must be demonstrated in a robust way. 

 

The safety objectives are achieved through fundamental safety functions: 

 

- Reactivity control at any time from every state and condition 

- Removal of heat and decay heat  

- Confinement of radioactive material 

The safety objectives and safety functions should be guaranteed via  

- The Multi-barrier principle 

- The Defence-in-Depth principle 

 

3.1.1. The Multi-barrier principle 

 

The multi-barrier principle provides the prevention and limitation of contamination outside the 

power plant in case an accident occurs. Several physical barriers are present between the fuel and 

the environment – Figure 3-2. Their number varies with the risk and aims at the implementation of 

progressive defence architecture [25]. One can cite four main barriers: 

 

1. The fuel matrix. The fuel matrix retains most of the fission products.  

2. The cladding tube. It prevents both fuel and fission gas release to the coolant. 

3. The primary circuit. Depending on the reactor design it includes both the intermediate 

containment (e.g. main vessel) and the primary containment (e.g. security containment). 

4. The secondary containment i.e. the reactor building. 
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Figure 3-2. The multi-barrier approach [25]. 

 

3.1.2. Defence-in-Depth safety strategy 

 

The Defence-in-Depth strategy helps to structure and implement the safety architecture, thus 

guaranteeing the efficiency of the barriers while keeping the risk of an accident acceptable. This 

principle consists “in the implementation of an appropriate set of successive provisions to ensure the 

protection against harms and in particular radiological ones in case of human error or equipment 

failure” [51]. Several strategies with respect to SFR risks aiming at the protection of the previously 

mentioned barriers are developed. They aim at controlling the reactivity level, removing the decay 

heat and confining the radioactive products [51] and target both the prevention and the limitation of 

potential consequences of an accident. The interrelation between the multi-barrier approach and the 

levels of Defence-in-Depth can be seen in Figure 3-3. 

 

 

Figure 3-3. Interrelation between the multi-barrier approach and the levels of Defence-in-Depth [57] 
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According to the definition of IAEA safety standards, five levels of Defence-in-Depth have to be 

considered [54]: 

1st level: Prevention of abnormal operation and failure: quality in design and achievement, 

prevention of nonconformity are mandatory. 

2nd level: Surveillance, detection and control of operation and failure, quality of operation. The state 

of the facility must be kept within authorized limits. 

3rd level: Control the accident to limit radiological release and prevent a development to core 

damage and whole core accidents. Thus safety systems and protection systems are designed for all 

plausible postulated incidents and accidents to limit their consequences within tolerable levels.  

4th level: Control of whole core accident: accident management and containment protection to limit 

its consequences. 

5th level: Limitation of significant radiological release and its consequences outside the site. 

 

The different levels of Defence-in-Depth, objectives and associated plant conditions are displayed in 

detail in Table 3-1. 

Table 3-1. Defence-in-Depth principle [58]. 

Levels of 
Defence-in-

Depth 
Objective Essential means 

Radiological 
consequences  

Associated 
plant 

conditions 

Level 1 
Prevention of abnormal 
operation and failures 

Conservative design and high 
quality in construction and 
operation, control of main 

plant parameters inside 
defined limits 

No off-site 
radiological impact 

(bounded by 
regulatory operating 
limits for discharge) 

Normal 
operation 

Level 2 
Control of abnormal 

operation and failures 

Control and limiting systems 
and other surveillance 

features 

Anticipated 
operational 
occurences 

Level 
3 

3a Control of accident to 
limit radiological 

releases and prevent 
escalation to core melt 

conditions  

Reactor protection system, 
safety systems, accident 

procedures 
No off-site 

radiological impact 
or only minor 

radiological impact 

Postulated 
single initiating 

event 

3b 
Additional safety features, 

accident procedures 

Postulated 
multiple failure 

events 

Level 4 
Control of accident with 

core melt to limit off-
site releases 

Complementary safety 
features to mitigate core 

melt, management of 
accidents with core melt 

(severe accidents) 

Off-site radiological 
impact may imply 
limited protective 
measures in area 

and time 

Postulated core 
melt accidents 
(short and long 

term) 

Level 5 

Mitigation of 
radiological 

consequences of 
significant releases of 
radioactive material 

Off-site emergency response. 
Intervention levels. 

Off-site radiological 
impact necessitating 
protective measure 
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The Defence-in-Depth Safety Strategy is elaborated in the following way: 

 

- Initiating events of internal incidents and/or accidents are allocated to different categories 

which are associated to a range of occurrence frequencies.  

- Higher radiological consequences must be connected with lower estimated frequencies. 

- The occurrence frequency is generally assessed by safety analyses, engineering judgment and 

probabilistic studies. Normal and abnormal core/plant states evolving during anticipated 

transients are grouped into four categories which represent Design Basis Conditions (DBCs). 

- Accidents belonging to Design Extension Conditions (DECs) are low frequency events 

considered in the design with respect to the application of the Defence-in-Depth principle 

and normally correspond to multiple failures of safety barriers. 

 

The IAEA [59] defines the Design Basis Condition (DBC) as a sequence of events “causing accident 

conditions for which a facility is designed in accordance with established design criteria and 

conservative methodology, and for which releases of radioactive material are kept within acceptable 

limits“. The DBC – formerly called Design Basis Accident (DBA) – is analyzed with a deterministic 

approach which will be presented in section 3.1.4. The accident starts with a postulated initiating 

event which leads the reactor to deviate from its initial state. All initial states of the plant have to be 

defined by the plant designers (steady state and operational transients). For each DBC the plant 

response has to be analyzed to verify that the acceptance criteria associated to each DBC are 

respected. The safety assessment of the plant is performed by analysis of these DBCs.  

In the Defence-in-Depth concept, as described before, not only the DBCs but also the DECs up to 

severe accidents have to be prevented, controlled and their consequences to be mitigated and 

limited. The IAEA definition of a DEC is “accident conditions that are not considered for design basis 

accidents, but that are considered in the design process of the facility in accordance with best 

estimate methodology, and for which releases of radioactive material are kept within acceptable 

limits. Design extension conditions could include severe accident conditions” [59]. DECs have a very 

low occurrence frequency and usually correspond to multiple failures.  

 

In detail the DBC and DEC conditions are grouped as follows:  

 

Design Basis Conditions: 

Category 1 (DBC 1):  Normal operating conditions as steady state power operation, start-up and 

shut-down, load following operation etc.  

Category 2 (DBC 2): Incidents and anticipated occurrences which might happen several times during 

plant life time. 

Category 3 (DBC 3): Accidents considered in this category are not expected to occur during the life of 

the plant. Nevertheless, consequences are analyzed to demonstrate that these remain tolerable and 

radiological consequences stay below limits. The plant should be able to return to normal operation 

after inspection and repair. 

Category 4 (DBC 4):  Low probability events evaluated to demonstrate that safety systems are 

sufficient to prevent large radioactivity releases and protect the environment. 
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Design Extension Conditions (DEC) 

Complex sequences: Accident sequences with failures of mitigating systems or components beyond 

those considered for DBC analysis. Consequences of these sequences are evaluated to demonstrate 

the efficiency of preventive measures against core damage. 

Limiting events: Bounding accidents evaluated for investigating generic core and/or plant behavior. 

These postulated sequences should bound consequences related to specific technology issues and to 

common mode failure sequences. Demonstration that there are no cliff-edge effects especially 

concerning severe core damage has to be provided. 

Severe accidents: Postulated accidents leading to severe core degradation. Simulations of these 

accidents should demonstrate that there are no cliff-edge effects to be expected and serve as 

support on possible mitigation measures to guarantee integrity of the primary system enclosure and 

the confinement/containment structures. 

 

3.1.3. Events and initiators  

 

The demonstration of the suitability of a nuclear plant design with regard to the safety objectives is 

performed by considering two types of events: the “dealt-with events” and “the practically 

eliminated” events. The first category of accident corresponds to transients whose consequences are 

taken into account in the design of the plant. The second category of accident comprises a limited 

number of initiators, for which a robust demonstration is given and through the implementation of 

specific provisions it is shown that the corresponding risk is made acceptable and event initiators can 

be rejected within the Residual Risk (RR) [51]. 

 

Possible initiators: 

Two approaches might be employed for identifying the possible initiating events of an accident. 

These events can either challenge confinement barriers themselves or initiate transients likely to 

challenge them. A first way to proceed with the identifications is to list pertinent initiating events 

based on engineering judgment using information from previous risk assessments, operating 

experience and plant specific design data. A second way is to employ top-down or bottom-up 

analysis techniques looking for risks that could challenge confinement barriers [51; 60].  

All situations leading to core melting must be considered. A phase of identification of those situations 

for which the consequences cannot be minimized has to take place and provisions should be taken to 

practically eliminate their occurrence. The remaining situations must be examined and 

representative cases are selected for each family of accidents as not all accidents can be treated in 

full detail. The representative case has to be the most conservative one in the respective group. 

While in the past a best estimate calculation was satisfactory enough for the safety demonstration, 

nowadays all hypotheses and uncertainties have to be carefully examined and/or proven to be 

representative of the worst situation in order for all situations to be within this envelope case [53]. 
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The “Dealt-with events”: 

The previously mentioned Design Basis Conditions (DBCs) and Design Extension Conditions (DECs) are 

the two main considered categories of “Dealt-with events”. Each category has its own frequency of 

occurrence [51]. 

 

The “Practically-eliminated events”: 

These situations are either of extremely low probability (beyond technical imagination) or have 

otherwise to be practically eliminated by design and prevention systems so that their occurrence is 

regarded as negligible. As a consequence, they do not need to be taken into account in the design of 

the plant. The choice whether or not these situations are excluded has to be firmly justified.  

 

The initiating “Dealt-with events” of internal incidents and/or accidents which appear likely to occur 

and challenge the plants’ safety are allocated to different categories which are associated to a range 

of occurrence frequencies (Table 3-2). Evaluation of the adequacy of a detailed design is made 

through consideration of these events. In addition, temperature criteria for e.g. clad and fuel have to 

be fulfilled: clad (respectively fuel) temperatures should not exceed 550 ˚C (respectively 2000 ˚C) in 

normal operation conditions and 650 ˚C (respectively 2250 ˚C) in incidental conditions [61]. 

Table 3-2. Categorization of initiating faults and related design targets [61]. 

Category Safety target Fuel limits Fuel pin clad limit 

1 
Radiological release                 

ALARA < 10 μSv/year 
No fuel melting. No open clad failure. 

2 Radiological release                 
< 10 μSv/event 

No fuel melting. 
No open clad failure except 

random effects. f>10-2/year 

3 
Radiological release                 

< 1 mSv/event 
No fuel melting. 

No systematic (i.e. large number 
of) pin failures. f>10-4/year 

4 Maintaining core 
coolability. Radiological 
release < 50 mSv/event 

Any predicted localized 
melting to be shown to 

be acceptable. 

No systematic clad melting. No 
simultaneous and coincident clad 

failure and fuel melting. f>10-6/year 

Complex 
sequences 

and limiting 
events 

Maintaining core 
coolability. Radiological 

release < 150 mSv/event 

No extended core 
melting. 

No systematic clad melting.  

Severe 
accidents 

Radiological release                 
< 150 mSv/event 

Coolability of the 
damaged core. No 
recriticality of the 

damaged core.   
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3.1.4. Deterministic and probabilistic safety analyses 

 

With the basic safety approach structured and defined, the effectiveness of the different principles 

has to be proven. This is performed with the help of detailed safety analyses.  

Safety analyses involve deterministic and probabilistic analyses in support of the siting, design, 

licensing, operation and finally decommissioning of a nuclear facility. The analyses are performed to 

confirm that fundamental safety criteria and goals are met and to demonstrate the effectiveness of 

measures for preventing accidents, and mitigating potential radiological consequences under 

accidental conditions.  

Traditionally the safety of nuclear power plants is based on the classical deterministic and 

phenomenological analyses. These safety analyses are used to understand and classify the range of 

safety issues and their consequences. They provide guidance for the reactor design and safety 

systems evaluation and represent the principal means for demonstrating that safety goals are met 

with a high degree of confidence for all accidents within the design basis. The deterministic analyses 

also provide input for probabilistic analyses that complement the safety assessment.  

Probabilistic safety analyses (PSAs) integrate the concept of probability into the safety assessment 

and they are the principal means of demonstrating that the safety goals are met for potential 

accidents both within and beyond the design basis. It identifies vulnerabilities not necessarily 

accessible through deterministic safety analysis alone. The analyses focus on evaluating the risk 

arising from various events providing an assessment whether safety goals are met or not. They serve 

as means to identify weak points in the design and prove an assessment of the effectiveness of the 

safety provisions. To be mentioned are e.g. the event-tree and fault-tree methods [34]. For 

performing a PSA, the design of a plant must have reached a sufficient level of maturity and detail. 

In the last years besides the “Defence-in-Depth” concept, the “Risk-Informed Design” concept is 

proposed which merges risk-methodologies with Defence-in-Depth methodologies and tries to 

combine deterministic and probabilistic success criteria. As elaborated in [62] DBAs and the general 

design criteria, which were established before probabilistic safety assessments were developed, are 

still central to current regulations. These regulations implement a structuralized approach to safety 

through traditional Defence-in-Depth and large safety margins. In a rationalistic approach to safety, 

accident frequencies are quantified and protective measures are introduced to make these 

frequencies acceptably low. Both approaches have advantages and disadvantages and future reactor 

design and licensing processes will probably have to implement a hybrid approach [62]. 

 

3.1.5. The Integrated Safety Assessment Methodology (ISAM) 

 
Several guidelines exist for the safety assessment (e.g. from the International Project on Innovative 

Nuclear Reactors and Fuel Cycles INPRO [63] or from the Western European Nuclear Regulators 

association WENRA [58]). For GEN-IV systems in particular the Generation IV International Forum 

(GIF) Risk and Safety Working Group (RSWG) proposed a new methodology, called the Integrated 

Safety Assessment Methodology (ISAM).  

The ISAM consists of five distinct analytical tools [64] which are intended to promote an improved 

safety from the earliest design stages on. A key issue of the concept are “built-in” rather than “added 

on” safety provisions (for former reactor designs, the safety analyses were performed once the 
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design of the reactor was fixed while nowadays the safety analyses have to be performed as a part of 

the design process). This reflects the ideas of integrating into the design increased inherent and 

passive safety systems. 

 

The ISAM tools are the following ones: 

 

 Qualitative Safety features Review (QSR) 

 Phenomena Identification and Ranking Table (PIRT) 

 Objective Provision Tree (OPT) 

 Deterministic and Phenomenological Analyses (DPAs) 

 Probabilistic Safety Analysis (PSA) 

Figure 3-4 shows the overall task flow of the ISAM and indicates which tools are intended for use in 

each phase of Generation IV system technology development. 

 

 

Figure 3-4. Schematics of the Integrated Safety Assessment Methodology (SSCs stands for Systems, Structures and 

Components while PRA stands for Probabilistic Risk Assessment) [64].  

The Qualitative Safety Review (QSR) is a new tool that provides a systematic means of ensuring and 

documenting that the evolving Generation IV system concept of design incorporates the desirable 

safety-related attributes and characteristics that are identified and discussed in the RSWG’s 

documents. 

The Phenomena Identification and Ranking Technique (PIRT) is used to identify the spectrum of 

safety-related phenomena or scenarios that could affect systems, and to rank the phenomena or 
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scenarios on the basis of their importance and consequences and the state of knowledge related to 

associated phenomena. It relies on expert opinion and engineering judgment. It provides input for 

PSA and guides needed research.  

The Objective Provision Tree (OPT) is applied from late pre-conceptual design stage through 

conceptual design and focuses on ensuring and documenting “lines of protection” in response to 

safety-significant phenomena identified in PIRT. While PIRT identifies phenomena, OPT identifies 

provisions intended to prevent, control, or mitigate the consequences of those phenomena. 

The Probabilistic Safety Assessment (PSA) is a tool for identifying potential accident scenarios, and 

to quantitatively estimate their probabilities of occurrence and to estimate the consequences 

associated with these postulated accidents. It was usually used for already existing designs. 

Nowadays PSA is used as an important contributor for the design process. 

Deterministic and Phenomenological Analyses (DPA) are classical deterministic and 

phenomenological analyses used from the pre-conceptual design phase through ultimate licensing 

and regulation of the Generation IV systems 

 

3.1.6. The IAEA INES scale 

 

In order to communicate and standardize the report of nuclear incidents/accidents the International 

Nuclear and Radiological Event Scale (INES) was developed [65]. INES allows a characterization of the 

severity of events associated with sources of ionizing radiation. Seven levels exist in the INES scale 

(Figure 3-5) and consider 3 areas of impact: people and environment, radiological barriers as well as 

control. Levels 1–3 are referred as “incidents” and levels 4–7 as “accidents” (among the most known 

ones are the Chernobyl and Fukushima Daiichi accidents both classified level 7 and the Three Mile 

Island accident classified level 5 [66]). In this scale an accident is defined as “Deviations from normal 

operation that are less frequent and more severe than anticipated operational occurrences, and 

which include design basis accidents and design extension conditions” [59]. With each new level in 

the scale, the severity of an event is about 10 times greater than the previous level. Only events with 

a safety relevance to radiation or nuclear safety are rated in the scale. Levels with no safety 

significance are classified level 0. 

  

Figure 3-5. The INES scale [65]. 
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3.2. SFR related accidents and hypothetical core disruptive accidents 
 

For the next generation of nuclear plants, the prevention of an accident progression has to be 

considered systematically in the wide range of preventive strategies for accident management. 

Means to control accidents resulting in severe core damage have to be included in the design [67]. As 

the focus of this PhD thesis lies on severe accidents, it is important to give an overview of such 

accidents and their initiators. 

For an SFR in normal operation conditions the key perturbing events can be related to the following 

initiators [38]: 

 

- A variation in the coolant flow rate. This initiating event leads to a protected or unprotected 

loss of flow accident (P/ULOF). In the unprotected accident, both the reactor coolant pumps 

and the primary and backup shutdown systems are assumed to fail. The transient represents 

a global initiator, as it has an impact on the whole core. 

- A variation in the inlet temperature of coolant is initiated by a protected or unprotected loss 

of heat sink (P/ULOHS) accident. In the unprotected accident, the heat removal capability is 

not assured anymore and the primary and backup shutdown systems are assumed to fail. 

The transient represents a global initiator. 

- A change in reactivity. This leads to the protected or unprotected transient over power 

(P/UTOP). In this accident a positive reactivity amount is inserted e.g. due to a removal of 

one or several control rods and in the unprotected case it is accompanied by the failure of 

the primary and backup systems. The transient represents a global initiator. 

- A local blockage of the flow in a sub-assembly caused either by an internal or external 

blockage, protected or unprotected leading to an accident (P/UBA). A specific accident is the 

Total Instantaneous Blockage (TIB). The transient represents a local initiator and the key 

issue is the time of reactor-shut down and further accident propagation. 

From these perturbing events, HCDAs are those accidents where a general melting and disruption of 

the core occur. The analysis of HCDAs is intrinsic to SFRs since the core is not in its most reactive 

configuration. Therefore, a core melting might occur, inducing large changes in the core material 

distribution, possibly triggering large reactivity insertions. HCDA provides a deep insight into the 

generic behavior of a certain type of reactor based on a particular design concept and supports 

design considerations for improved inherent and passive safety (feedback effects, natural 

circulation).  

 

The safety demonstration has to ensure that the accident consequences are tolerable from the point 

of view of radiological release to the environment. The study of the consequences of the HCDAs thus 

addresses several items: 

 

1. The quantification of the importance of the occurring phenomena following the PIRT. This 

helps to identify and optimize the key impacting parameters. In addition, it allows inferring 

means to introduce systems attenuating the consequences of the phenomena and its 
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uncertainties. Last, an estimation of the value of mechanical energy release and the 

determination of its consequences on confinement structures and heat removal systems can 

be given.  

2. The stability of corium6 and core structures in the long-term. 

3. The estimation of the accident consequences. This is based on radiological release to the 

environment as well as on consequences inside the reactor (e.g. sodium fire) or problems of 

confinement. 

As mentioned earlier, representative cases are chosen for the safety assessment (UTOP, ULOF, UBA, 

ULOHS), and studies are performed for these cases solely. However, only the unprotected loss of 

flow (ULOF) accident will be detailed in this thesis as it is representative of the worst situation. 

 

The unprotected loss of flow accident 

 

This accident is usually investigated for the SFR safety assessment since it represents a global 

transient affecting the whole core and covers the most important phenomena which might occur in 

case of core disruption. It usually shows the highest energetic potential. In addition it is an accident 

on short time scale: core disruption is a matter of seconds or minutes. 

It can be divided in the following phases for the analyses: 

 

- the initiation phase; 

- the transition phase; 

- the last part either is a post-accident heat removal phase if a non-energetic route is followed 

or the disassembly, core expansion and mechanical load phase in case of an energetic 

development (Figure 3-6 (a)). 

When the accident starts, the sodium flow rate is drastically reduced. The core temperatures 

increase and induce positive or negative effects on the reactivity, depending on the type of the 

feedbacks. Among the positive reactivity effects, the sodium expansion and the core structure 

materials expansion (cladding and hexcan) can be cited. On the contrary, fuel and diagrid expansion 

(i.e. core expansion) provide a negative effect on reactivity as does the Doppler effect and the 

control rod driveline and vessel differential expansion. If the negative feedbacks sufficiently 

counterbalance the positive effects, sodium boiling will be avoided. However, sodium boiling onset is 

usually reached in reactor designs of the past.  

 

The sodium boiling might stabilize in some particular case (e.g. if a large sodium plenum is present at 

the top of the fissile core). If this is not the case, sodium boiling will extend to the whole core and 

general sodium boiling will be observed. This sodium voiding induces a high positive reactivity 

insertion and a related power increase - Figure 3-6 (b) - since neutrons become faster, thus making 

fission processes more probable. In addition, the cladding temperature increases eventually reaching 

its melting temperature as heat cannot be sufficiently removed anymore (the cladding loses its 

                                                            
6 Corium is the molten mixture of core materials (fuel, steels etc.) formed during the core meltdown. 
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mechanical properties even earlier). Cladding relocation inserts additional positive reactivity. Fuel is 

then predicted to disrupt and fills all voided zones (sodium channels). The fuel is then driven away 

from the disrupted area by fission gas and sodium vapor pressures inducing a negative reactivity 

insertion [25].  

The subsequent phases of the scenario largely depend on the magnitude of the primary excursion: 

 

- If the primary excursion is low energetic, the fuel expansion might make the core sub-critical, and 

no secondary power excursion will be observed in the short term. This possible behavior is shown 

later in the thesis (see chapter 8) for the specific CONF2 core design [35]. 

- If the primary excursion is moderately energetic, part of the fuel is ejected in the upper parts of the 

core, outside of the fissile core zone. The core configuration is thermal-hydraulically and 

neutronically unstable and the amount of ejected fuel is too small to avoid a secondary power 

excursion by the mobilized fuel. The secondary excursion could load the vessel structures in case of a 

severe recriticality. 

- If the primary excursion is highly energetic, enough fuel is ejected from the fissile core zone out of 

the core region and any further recriticality is avoided. However the integrity of the vessel structures 

is endangered since they are mechanically loaded. 
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Figure 3-6. Potential paths of a severe accident (a) Relative power versus time in case of a ULOF in the ESFR WH core (b) 

[13; 68].  

The later accident development is strongly influenced by blockages in and at the exits of the sub-

assemblies, and the following two situations might occur: 

 

- No complete blockage forms. This allows the discharge of molten and particulate fuel leading 

to a fuel dispersion and termination of the accident.  

- A significant blockage forms. The accident enters a transition phase where hexcans are 

progressively melting, allowing large scale material motions with fuel sloshing possibly 

Time [s] 
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leading to recriticalities and excursions. The accident usually finishes with a high pressure 

buildup in the core and core disassembly dispersing the fuel into the upper sodium plenum.  

For recent core designs the goal is to eliminate the route into severe accident development, thus 

avoiding mechanical loading on the reactor structures. Hence, preventive and mitigating measures 

are introduced. The initiation phase can be prevented or at least mitigated if the impact of sodium 

voiding on reactivity is decreased, and if the void/Doppler ratio and structural feedbacks are 

optimized. The transition phase can be mitigated by implementing systems which help the fuel to be 

ejected out of the core region. The FAIDUS sub-assembly is one important example of such systems 

[69]. In past FR designs the introduction and fall-down of blanket material (including absorber) 

helped to reduce the reactivity levels in the fuel pools. 

Thus, the transition phase can be mitigated by sufficient and definite fuel ejection from the core for 

recriticality prevention.  

 

3.3. Simulation needs, tools and methods 

 

Studies of severe accidents constitute a major part of the safety analyses for SFRs. HCDAs studies 

have been carried out in the past for almost all reactors in Europe and in the US [38].  

In the early stages of the safety analysis, the question of core compaction was of high concern as it 

potentially triggers the power excursions. The focus was mainly directed to the quantification of the 

maximum work. The original analyses were based on the Bethe-Tait model [70]. A simple geometry 

as well as simplifying approximations to allow a hand calculation solution were chosen for the studies 

[25]. It was assumed that the reactor could be modeled in R-Z geometry, and that the starting phase 

of the accident was represented by a molten core having lost all its coolant (sodium). Core collapse 

due to the force of gravity was then assumed and the reactivity ramp rate induced by fuel 

compaction leading to prompt critically induced an energetic disassembly of the core. Bethe and Tait 

assumed a totally coherent collapse, a spherical geometry for the core disassembly phase as well as 

an absence of delayed neutrons and Doppler feedback. The neglect of delayed neutrons was justified 

due to the fact that the core dynamic response was analyzed during the prompt critical domain only 

in the original model. In addition, the use of metal fuels in the early cores in the United States 

justifies the neglect of the Doppler effect [25]. The analysis predicted increasing values for maximum 

HCDA work with increasing core size. However, when considering fuel vapor buildup as a disassembly 

force, the mitigating role of Doppler feedback and a more mechanistic approach, the maximum work 

significantly decreases. 

The Bethe-Tait analysis was the impetus of significant improvements in severe accident analysis [25] 

and several codes have been developed since the 1970’s to analyze the different phases of a severe 

accident. The initiation phase analysis is performed with codes like SAS4A [71]. These codes allow 

calculating the accident up to the loss of assembly geometry. In SAS4A, assemblies of same power, 

mass flow and irradiation history are grouped into channels each of which contains one 

representative fuel pin, its cladding, the associated coolant, and a fraction of the sub-assembly duct 

wall. The coolant flow is assumed to be axially one-dimensional and the axial height of a channel 

covers the whole sub-assembly length. The code contains mechanics and neutronics modules. 

Coolant boiling, clad failure, fuel melting and relocation can be modeled in one dimension until the 

sub-assembly geometry is lost. Further modeling of the accident evolution is no longer valid and 
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meaningful as only representative channels in 1D, independent from each other, are considered (no 

radial propagation of the accident can be simulated).  

The code evaluates the reactivity insertion, the related power excursion as well as the energy release 

during the initiation phase of an accident. As neutronic model, SAS4A employs point kinetics i.e. 

neutron flux and power shape have to be specified as input data and do not vary during the 

transient, only the amplitude of the flux changes. A reactivity variation is evaluated via feedback 

coefficients given by input and temperature variations. This approach is valid as long as only little 

dimensional changes occur and integrity of the core and its components remains almost intact [72]. 

From the point in time on where the assembly geometry is lost the SIMMER codes take over [13; 73; 

74]. SIMMER-III is a two-dimensional (2D), SIMMER-IV a three-dimensional (3D), multi-velocity-field, 

multi-phase, multi-component, Eulerian, fluid-dynamics code system coupled with a structure model 

for fuel-pins, hexcans and general structures, and a space-, time- and energy-dependent transport 

theory neutron dynamics model (Figure 3-7). An elaborate analytical equation-of-state (EOS) closes 

the fluid-dynamics conservation equations [75]. The fluid-dynamics portion is interfaced with the 

structure model through heat and mass transfer at structure surfaces. The neutronics part provides 

nuclear heat sources based on time-dependent neutron flux distributions consistent with the mass 

and energy distributions (Figure 3-8). 

The code models the five basic SFR core materials: fuel, steel, sodium, control and fission gas. A 

material can exist in different physical states, e.g. fuel can exist as fabricated solid fuel pellet column, 

liquid fuel, a crust refrozen on structure, solid particles, broken fuel pellets (called chunks) and fuel 

vapor. The structure field components, which consist of fuel/control pins and can walls, are 

immobile. For the mobile components the number of velocity fields is usually eight plus a gas field. 

Phenomena as the relative motion of the fuel-liquid/particle mixture and chunk fuel in the 

penetration of molten core materials into pin bundle or fall-down of fuel chunk into molten pools can 

be modeled [75].  

From the neutronics point of view, SIMMER is a deterministic code with separated cell and flux 

calculations [76]. In each cell the self-shielded macroscopic cross-sections are calculated inside the 

code from a set of infinite diluted cross sections and self-shielding factors tabulated in temperature 

and so-called background cross-sections, and updated at every time step of reactivity calculation 

because of the changes in material number densities and temperatures [77]. Since SIMMER is 

primarily tailored for fast reactors, usually homogeneous cell calculations are performed. With the 

set of self-shielded macroscopic cross sections, the core calculation is carried out. Neutron flux 

calculations are performed by an SN transport code using a synthetic diffusion acceleration scheme 

[76]. 
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Figure 3-7. SIMMER-III, multi-phase, multi-component fluid-dynamics model [78]. 
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Figure 3-8. SIMMER overall code structure [73] 

 

Given the differences between the SAS4A (a channel-wise reactor model and a neutron point kinetics 

model are employed) and SIMMER codes (system code with space-time kinetics model) certain 

approximations may have to be done in connection to the data transfer between the two codes. 

Hence, focus is currently put on the extension of the application range of the SIMMER family codes 

to the initial phase of core disruptive accidents. Having this in mind, the SIMMER code has to be 

extended in particular to take into account the core thermal expansion feedbacks (more details on 

this extension will be provided in chapter 6). In the next chapter the different reactor designs under 

study in this PhD thesis are described. 
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Chapter 4 

4. Specific sodium cooled fast reactor designs under study 

SPECIFIC SODIUM COOLED FAST REACTOR 

DESIGNS UNDER STUDY 

 

The design of sodium cooled fast reactors has continuously evolved during the last decades. A 

primary target of design studies is an improved prevention/mitigation of a possible accident. This is 

mainly achieved through a decrease in the positive sodium void worth, since the reactivity induced 

by sodium voiding drives the initiation phase of a severe accident. This chapter aims at providing a 

short overview of former European concepts7 and examines in some detail two core designs with 

improved mitigation capabilities developed within the former Collaborative Project on a European 

Sodium Fast Reactor (CP-ESFR). 

 

4.1.  Previous sodium cooled fast reactor designs: PHENIX, SUPERPHENIX 

and the European Fast Reactor 

 

The PHENIX and SUPERPHENIX reactors, built in France on the basis of the experience gained from 

the experimental fast reactor RAPSODIE, both used mixed oxide (MOX) fuel [4]. The former one 

operated from 1973 to 2009. Extensive feedback experience is available from this reactor [81] which 

allowed demonstrating the feasibility of in-service inspection, maintenance, reparability and 

transmutation in addition to electricity production. Based on this experience, the SUPERPHENIX 

reactor was built and operated from 1985 to 1998. It was shut down mainly due to political reasons.  

With the European Fast Reactor (EFR) project [5], a 3600 MWth reactor design was extensively 

studied and reached a degree of optimization considered to be the reference for the pool type 

sodium cooled fast reactors (SFRs) using MOX fuel. This study supported the conclusions of the 

PHENIX and SUPERPHENIX projects that SFRs present a strong potential both for the creation of 

fissile material and for actinide transmutation apart from their main purpose of producing electricity.  

The reactor is a breeder, thanks to axial and radial fertile blankets. From the safety standpoint, the 

EFR demonstrates a very strong reduction in the severe accident probability as well as a strong 

mitigating capacity and is considered as a reference for new SFR designs. However, its economic 

competitiveness was not confirmed since an additional cost (compared to light water reactors 

                                                            
7 SFRs have been built worldwide: to mention are e.g. the Experimental Breeder Reactor No. 2 (EBR-II) in the 
USA [29], the JOYO reactor in Japan [4] or the Fast Breeder Test Reactor (FBTR) in India [79]. These reactors are, 
however, not addressed in this chapter, the focus being on European ones, but details can be found in [80].  
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(LWRs)) of about 20% on the capital cost and about 10% on the cost per kWh was expected and the 

reactor was, hence, never built [82]. In Table 4-1 the characteristics of these three reactor designs 

are presented.  

Table 4-1. Characteristics of the PHENIX, SUPERPHENIX and EFR reactors [47]. 

Reactor PHENIX SUPERPHENIX EFR

Thermal power (MW) 563 2990 3600

Pellet diameter (mm) 5.50 7.14 (central hole 2mm) 6.94 (central hole 2 mm)

Cladding diameter (mm) 5.65 8.50 8.20

Pins per subassembly (SA) 217 271 331

Fissile height (cm) 85 100 100

Blanket zone height (radial/upper/lower) (cm) 52/22/30 60/30/30 40/15/25

SA width across flats (cm) 12.37 17.3 18.3

SA pitch (cm) 12.72 17.9 18.8

Equivalent core fissile radius (cm) 68 179 194

Core fissile volume (m3) 1.2 10 12

Number of fuel Sas 104 364 387

Zone Enrichment 1 50 193 207

Zone Enrichment 2 54 191 108

Zone Enrichment 3 - - 72

Number of control rods 6 21 24

Number of safety control rods 1 6 9

Number of blanket SAs 78 (2 rings) 237 (3 rings) 78 (1 ring)  
 

The former fast reactors as PHENIX, SUPERPHENIX and the EFR were analyzed with regard to safety 

once the design was fixed. The new reactor designs, however, have to take into account the safety 

from the conception on. In this context, the CP-ESFR project (2009-2012) was launched [35]. 

 

4.2.  New reactor designs: the CP-ESFR project 

 

The CP-ESFR project (2009-2012) is part of the EURATOM 7th Framework Program [35]. Its aim was to 

investigate and optimize concepts for large innovative sodium cooled fast reactors, addressing key 

viability and performance issues to support the development of a European sodium cooled fast 

reactor (ESFR). At the beginning, two core designs were analyzed (one oxide and one carbide core). 

These cores were referred to as “Working Horse” cores (WH).  

Once analyses were performed on the WH cores, necessary modifications were identified in order to 

improve the safety behavior of these cores in nominal and accidental conditions (focus is hereafter 

on the oxide version only). Especially the reduction of the sodium void worth was addressed to 

decrease the energetic potential in case of a severe accident. In fact, the sodium void reactivity effect 

governs the initiation phase of hypothetical transients e.g. unprotected loss of coolant flow (ULOF) or 

Total Instantaneous Blockage (TIB) potentially leading to a core disruption. Special assembly designs 

were also analyzed within the project to enhance melt relocation. In addition, transmutation 

capabilities of the optimized configurations of the oxide WH core (called CONF2) were investigated 

[14]. 
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4.2.1. The oxide fueled Working Horse core (WH) 

 

The oxide WH is a core proposed by CEA. Its design is based on optimization studies for a low sodium 

void effect and on the previously mentioned PHENIX, SUPERPHENIX and EFR projects [6]. This core is 

an iso-generator (no fertile blanket) which limits the reactivity loss during the irradiation cycles: 

enough fissile material is constantly produced in the core to counterbalance the disappearance of 

fissile material [6]. 

The WH core is a 3600 MWth core containing 453 sub-assemblies. These sub-assemblies are divided 

into two fuel zones i.e. an inner and an outer one differing in plutonium enrichment: 14.5 wt% and 

16.9 wt%, respectively, in average. The provision of two core enrichment zones allows a flattening of 

the radial power profile at equilibrium – Figure 4-1. The design is similar to another SFR design 

developed by CEA, EdF and AREVA [83]. 

The average core burnup at end of life (5 cycles of 410 days i.e. 2050 equivalent full power days or 

efpds) is of 100 GWd/tHM. The core contains 24 control and shutdown devices (CSDs) containing 

natural B4C and 9 diverse shutdown devices (DSDs) composed of B4C with 90% 10B [14]. 

To obtain a low sodium void effect compared to previous designs, the WH core uses “fat pins” –

Figure 4-2 – this means the fuel pellet diameter is larger in the WH core than in previous core 

designs. The fuel volume fraction is hence maximized while the sodium volume fraction is reduced. 

This can be envisaged if Oxide Dispersion Strengthened (ODS) steels are used for the pin cladding 

[83] as they are known to have a considerable resistance to neutron-irradiation induced swelling as 

well as to high-temperature creep [84; 85]. Another effect of these “fat pins” is a reduction of the 

power density (206 W/cm3 average) and of the maximum fuel temperature. The WH oxide core sub-

assembly characteristics are presented in Table 4-2.  

 

 

Figure 4-1. Normalized power in the beginning of life (BOL) and end of equilibrium cycle (EOEC) Working Horse core [13]. 

 

 

 

Figure 4-2. Pin dimensions in the PHENIX, SUPERPHENIX (SPX1) and ESFR cores [14] 



SPECIFIC SODIUM COOLED FAST REACTOR DESIGNS UNDER STUDY 

 

Page | 48  
 

Table 4-2. Characteristics of the ESFR sub-assembly [6]. 

 

 

The WH core is considered as the reference core in the CP-ESFR project. Axially, it presents the 

following structure from bottom to top: a sub-assembly foot of steel, a 91.3 cm lower gas plenum 

(LGP), a lower steel axial blanket of 30 cm (LAB), a fissile zone of 100 cm, an upper steel axial blanket 

of 7.6 cm (UAB), an upper gas plenum of 15 cm (UGP), plugs, a 15 cm sodium plenum, an Upper Steel 

Structure (USS) and sub-assembly head of steel [35]. Its axial and radial layouts are presented in 

Figure 4-3.  
 

Outer core subassembly

Radial reflector

Inner core subassembly

DSD

CSD

 

Figure 4-3. Radial (a) and axial (b) layout of the CP-ESFR Working Horse oxide core [6]. 

The sodium void effect due to fissile core voiding is of +1532 pcm at beginning of life (BOL). If 

additionally the upper gas plenum, the upper axial blanket, plugs and sodium plenum regions are 

voided, the effect (called extended sodium void reactivity effect) reduces to +1211 pcm at BOL. 

Voiding is assumed only inside the wrapper tubes since it constitutes the primary effect8 (sodium 

                                                            
8 This has been demonstrated in the CP-ESFR project [6]. 

(a) (b) 
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between sub-assemblies is not removed). These positive values drive the reactivity excursion at the 

beginning of a transient, as shown later on by the SIMMER study, even if partially compensated by 

other negative feedbacks like the Doppler effect (Doppler constant ca. −1239 pcm) and axial and 

radial thermal expansion (ca. −200 pcm) [9]. 

 

4.2.2. The CONF2 core 

 

As mentioned earlier, the rationale of the CP-ESFR project (2009-2012) was to reduce the sodium 

void reactivity effect as a part of the prevention and mitigating safety strategy. Hence the focus lies 

on a geometry optimization even if other options like special devices for fuel relocation (e.g. the 

FAIDUS devices [86]) can help to achieve the same goal (they were however not investigated).  

Based on previous studies [87–89], possible options for reducing the extended sodium void reactivity 

effect, i.e. when core and sodium plenum are voided, were identified. However, these optimizations 

might lead to a worsening of other core characteristics like the reactivity variation per cycle [14]. 

Therefore a parametric study has been performed in the CP-ESFR project to identify the most 

promising options. Two routes can be followed to reduce the sodium void effect [87; 89]. The first 

one relies on an enhanced neutron leakage in voided conditions by the introduction of a large 

sodium plenum [87]. This route is usually the most effective one. The second one relies on a 

softening of the neutron spectra through e.g. the addition of moderating material. 

After an extensive study of the geometrical changes [35] the most effective ones were identified and 

applied to the WH core leading to the so-called CONF2 design. Consequently, the sodium plenum 

height was increased from 15 cm to 60 cm (close to the asymptotic value) and an absorber layer of 

30 cm composed of natural B4C was placed above it. In addition the upper axial blanket present in 

the WH core was removed and the upper gas plenum was decreased (to 5 cm). The sodium plenum is 

thus much closer to the fissile core in the CONF2 design. Below the core, a fertile material (depleted 

uranium) was introduced into the lower blanket to enhance the neutron capture there under voided 

conditions (neutron reflection back to the core is reduced) - Figure 4-4. Furthermore, this fertile 

blanket reduces the reactivity swing per cycle as additional plutonium is bred (from BOL to the end of 

the 3rd irradiation cycle, i.e. 1230 efpds, the WH has a reactivity swing of 0.68 pcm/efpd while CONF2 

yields 0.59 pcm/efpd i.e. 13% relative discrepancy). In addition, by introducing minor actinides (MAs) 

into this fertile blanket, a beneficial impact on proliferation resistance can be obtained [9]. Other 

measures (special sub-assemblies, internal fertile layer, modifications of the Height over Diameter 

ratio) were investigated as well, as mentioned in [14].  
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Figure 4-4. Axial layout of the CONF2 core [9]. 

To keep the criticality level of the BOL WH configuration, the plutonium content has been 

homogeneously increased in the inner and outer core zones of the CONF2 core (14.76 wt% in the 

inner and 17.15 wt% in the outer core). 

The improvements performed on the Working Horse design lead to a reduced sodium void effect of 

ca. +1432 pcm and a reduced “extended void reactivity effect” of +496 pcm thanks to the increased 

sodium plenum and the axial fertile blanket. The values can be found in Table 4-3. It can also be 

noticed from Table 4-3 that the void worth and Doppler constant are worsened with burnup: after 

1230 efpd i.e. at End of Cycle 3 (EOC39) the sodium void reactivity effect is increased by 600 pcm and 

the extended sodium void reactivity effect by 750 pcm, becoming very close to the sodium void 

reactivity effect of the BOL Working Horse core.  

Table 4-3. Values of void and Doppler reactivity effects in the CP-ESFR Working Horse and CONF2 cores [9]. 

 

 

Working Horse CONF2 

BOL BOL EOC3 

Sodium void reactivity effect (pcm) +1532 +1423 +1952 

Extended Sodium void reactivity effect (pcm) +1211 +496 +1170 

Doppler constant, KD (pcm) -1239 -1158 -843 

βeff (pcm) 392 393  

 

It has to be mentioned that the considered measures do not affect the power distribution. Figure 4-5 

displays the radial power distributions of the CONF2 core both at BOL and EOC3. They do not differ 

appreciably from the corresponding ones of the WH core (which were imposed by the project). 

                                                            
9 EOC3 compositions are considered in order to quantify the deterioration of safety coefficients for the 

equilibrium composition. Indeed, EOC3 is a representative composition for a beginning of equilibrium cycle 

condition [9]. 
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As mentioned previously, the lower fertile blanket in the CONF2 design leads to a less pronounced 

reactivity swing than in the WH core (0.59 pcm/efpd versus 0.68 pcm/efpd from BOL to EOC3 as 

mentioned previously) - Figure 4-6. 

 

 

Figure 4-5. Radial power profile in the CP-ESFR Working Horse core (REF) and the CONF2 core both at beginning of life (a) 

and end of cycle 3 (b) [9]. 

 

Figure 4-6. Reactivity swing in the CP-ESFR Working Horse (REF) and CONF2 cores versus burnup [9]. 

Since the modifications that lead to the CONF2 configuration were primarily intended at achieving a 

better behavior of the core under transient and accidental conditions, preliminary analyses of an 

unprotected loss of flow (ULOF) transient both for the WH and for the CONF2 configurations have 

been performed with the SIMMER-III code [73]. The ULOF transient coolant mass flow is gradually 

reduced with a halving time constant of 10 seconds. The results show that the reactivity drops when 

the sodium starts to boil in the CONF2 core (ca. 31 s after pump failure) while a reactivity excursion is 

observed in the WH design10 – Figure 4-7. The oscillations observed in case of the CONF2 core are 

related to the consecutive voiding of plenum (negative effect) and fissile core region (positive effect) 

in the different rings (starting in the hottest one) leading to a competition between positive and 

negative effects.  

 

                                                            
10 The thermal expansion contribution has not been simulated in SIMMER for these calculations in the CP-ESFR 

project. 

(a) (b) 
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However, no extended safety analyses of this core have been performed within the CP-ESFR project 

and additional investigations are necessary to demonstrate and confirm the effectiveness of the 

applied modifications (detailed in Chapter 8). 

 

Figure 4-7. Reactivity evolution in the CP-ESFR Working Horse (REF) and CONF2 cores under ULOF conditions [9]. 

It can be taken advantage of the fact that the extended sodium void reactivity effect in the CONF2 

core at BOL is low in order to introduce and burn MAs in the system. Several cases were studied in 

the CP-ESFR project, but only two are considered here [9]: 

 

- 2 wt% Am (241Am:243Am, 76%:24%) are put in the lower axial blanket and ~1.9 wt% Am are 

inserted homogeneously in the fissile core. This configuration allows transmuting the minor 

actinides produced by the core.  

- 4 wt% Am (241Am:243Am, 76%:24%) are put in the lower axial blanket and ~3.8 wt% Am are 

inserted homogeneously in the fissile core. This configuration is capable of burning not only 

the americium coming from the CP-ESFR core itself but as well additional americium coming 

from thermal reactors. 

As detailed in Chapter 2, the insertion of MAs into a core worsens the reactivity feedbacks and the 

neutronic parameters. For comparison, the CONF2 with and without MAs is considered. The 

reference CONF2 core presents an effective neutron fraction (i.e. weighted by the importance 

function of the flux, see Chapter 6 for more details) of 393 pcm which decreases to 377 pcm when 

introducing the 2 wt% Am and to 361 pcm when introducing 4 wt% Am. Indeed the 241Am and 243Am 

isotopes have delayed neutron fractions of 122 pcm and 224 pcm, respectively [90]. 

In Table 4-4 the sodium void reactivity effect, the extended sodium void reactivity effect and the 

Doppler constant are displayed. It can be noticed that at BOL, all reactivity effects are worsened 

upon addition of MAs to the fuel. The same tendency is observed when comparing the BOL core with 

the EOC3 core where MAs have built up during irradiation and the uranium content has been 

reduced.  
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Table 4-4. Values of the sodium void worth and the Doppler effect in the CONF2 core with different contents of 

americium [9]. 

 

 

CONF2 CONF2 with 2%Am CONF2 with 4%Am 

BOL EOC3 BOL EOC3 BOL EOC3 

Sodium void reactivity effect 

(pcm) 
+1423 +1951 +1636 +2029 +1821 +2104 

Extended Sodium void reactivity 

effect (pcm) 
+496 +1170 +781 +1290 +1031 +1407 

Doppler constant, KD (pcm) -1158 -843 -904 -785 −712 −600 

βeff (pcm) 393  377  361  

 
On the other hand, loading americium in the core reduces the reactivity swing as indicated in Figure 

4-8. The CONF2 with 2 wt% Am shows an almost constant reactivity during the irradiation due to the 
241Am transmutation. For the CONF2 (4%) configuration, an increase in reactivity versus burnup is 

observed due to the fact that 241Am is burnt (strong capture cross-section leading to a negative 

contribution to the reactivity). In addition, fissile material is generated. 

 

 

Figure 4-8. Reactivity swing versus burnup in the CONF2 core with different contents of americium [9]. 

 

4.3.  Conclusions 

 

SFR designs have steadily evolved since the PHENIX design. One pursued objective of reactor 

designers is the decrease of positive reactivity feedbacks related to a temperature increase. 

Especially the reduction of the sodium expansion feedback is sought. Within this framework of 

prevention and mitigation of severe accidents, the Working Horse core was developed in the CP-ESFR 

project (2009-2012). An increased sodium plenum, shifted close to the core, as well as the addition of 

an absorber layer above the sodium plenum, and of a lower fertile blanket further decreases the 

positive void worth (about 2$ to 3$ decrease) and leads to the optimized CONF2 design.  

To guarantee the sustainability of nuclear power in the long term, the option of a closed fuel cycle 

with minor actinide transmutation is envisaged. The low value of the extended sodium void reactivity 

effect at beginning of life allows the introduction and burning of MAs in the CONF2 core. However, 
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when minor actinide transmutation is intended, other fuel types might result in an improved safety 

behavior of the core. Thus, the Working Horse and CONF2 cores are loaded with so-called sphere-pac 

fuels and associated safety analyses are performed within the framework of this PhD project. 
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Chapter 5  

5. Nuclear Fuels  

NUCLEAR FUELS 

 

Fast Reactors (FRs) are suitable nuclear reactors for managing the existing plutonium and minor 

actinide (MA) stocks as they can serve as breeders, iso-generators and burners. Breeding is the key 

issue of sustainability of these GEN-IV systems to cope with future declining uranium resources. To 

ensure a maximum saving of the uranium resources, spent nuclear fuel is recycled. A recycling in 

thermal reactors would however not be sustainable as these reactors do not make efficient use of 

the fuel and multirecycling becomes impossible due to a worsening of the safety coefficients caused 

by the influence of “dirty” plutonium with high contents of even isotopes like 238Pu [91]. On the 

contrary, fast breeder reactors based on fast neutrons have the ability to efficiently transform fertile 

in fissile isotopes, therefore exploiting well the energy potential of the fuel [92]. 

As detailed in Chapter 2, the other key feature of fast reactors is their ability to burn MAs. Reducing 

the MA masses and radiotoxicity of spent fuel would help considerably to alleviate the loads on final 

repositories.  

Using fast neutrons requires specific constraints on reactor and fuel designs. At high neutron 

energies, cross sections are rather low compared to the ones at lower energies. This ought to be 

counterbalanced by a high concentration in fissile isotopes in the fuel. Fast reactor cores have 

therefore to be designed to be compact and irradiation damage have to be anticipated in core 

structures due to the high neutron flux and fluence [93]. 

From a technological and economical point of view, fuel fabrication and reprocessing costs have to 

be recovered. This leads to aiming at high burnups: high specific powers and high fuel utilization as 

well as an optimized fuel cycle with a reduced out-of-pile time are required. 

 

Any solid fuel development has to ensure improvements not only with respect to nominal but also 

transient and accidental conditions. In particular no fuel melting should occur in nominal and off-

nominal events. This first requirement is the main limiting factor for the linear heat generation rate. 

Secondly, the cladding integrity and pin tightness have to be ensured, as the cladding is the first 

containment barrier after the fuel matrix. Since the principal cause of failure has been identified to 

be cladding deformation due to swelling, the in-core lifetime and burnup of fuel has to be limited. A 

third safety requirement concerns the ability of cooling the fuel pin bundle in all operating 

conditions. In addition to the previous requirements, the capability of loading and unloading of 

assemblies has to be ensured, one of the limiting phenomena being the deformation of the 

hexagonal wrapper tubes [94]. 
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A deep understanding of physical and chemical processes taking place in the fuel during its life-time 

is necessary to design fuels meeting all previously mentioned criteria. Numerous experiments are 

performed and experimentally validated fuel performance and safety codes are hence developed 

based on this knowledge to help in the designing process. 

Within the GEN-IV framework, reactor systems able to recycle part of their own waste or even waste 

coming from previous reactor generations are investigated. For the solid reactors a large variety of 

fuels for transmutation is under development worldwide. Depending on the chosen recycling 

strategy (mixing of small quantities of MAs in standard driver fuels of critical cores or introducing 

large MA loads in dedicated areas of critical cores or in fuels of transmutation machines as ADS) one 

can distinguish uranium based or uranium free fuels. Europe has a large experience with oxide fuels. 

However, for GEN-IV reactors with different missions and coolants other advanced fuel types are 

considered too. While oxide fuels are still investigated due to their robustness and the large 

experience gained with LWRs and some FRs [95], other fuel types are of interest. This also includes 

the investigation of special accident resistant fuels. For GEN-IV reactors, besides oxide, denser 

materials exhibiting also a higher thermal conductivity as e.g. the carbide, nitride or metal fuels are 

under consideration. The operating temperatures of these “cold” fuels are lower and in general the 

power to melt ratio is high. However, these fuels reveal specifics in their safety behavior which have 

to be taken care of in the reactor design. In the case of uranium free fuels for ADS, ceramic-ceramic 

(CERCER) or ceramic-metal (CERMET) fuels are studied. These fuels are developed for ADS systems 

but still need major developments. In conclusion, these fuels present some advantages compared to 

oxide fuels, but they also involve drawbacks. Likewise, structural materials have to be developed to 

cope with the requirements but are out of the scope of this chapter. Moreover, molten salt reactors 

(MSRs) will not be discussed here. 

Besides the fuel type itself, the mechanical fuel form is of high interest. Thus, alternatively to pellets, 

particle fuels are investigated. The FP7-PELGRIMM [11] project dedicated to fuels for MA 

transmutation considers two particular fuel forms: the standard pellet and the sphere-pac fuel.  

In this chapter, specificities of driver fuels for FRs are briefly described. The focus at the end of the 

chapter is devoted to oxide fuels in their pellet and sphere-pac forms, related to the above 

mentioned PELGRIMM project. 

 

5.1. Metal fuels 

 

The first FRs developed in the 1950’s in the US and the UK used metal fuels. This choice was based on 

the ease of fabrication of these fuels, their high thermal conductivity and their high heavy metal 

density allowing a high breeding ratio [96]. Nonetheless, these fuels were found to present a 

dimensional instability ascribed to swelling and growth during irradiation and the desired high 

burnup could not be achieved [94]. 

Metal fuels are easy to manufacture remotely and can be produced in two ways. The most common 

fabrication process consists of an injection casting of alloy. The alloy is heated in a furnace up to its 

melting temperature and then poured into a quartz mold where it quickly solidifies. This method is 
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compatible with remote handling and automation which is crucial when minor actinides are present 

in the fuel. When adding americium to the alloy, problems might appear due to the volatility of Am 

and therefore a trapping system has to be used. Once the fuel slugs are produced, they are inserted 

into the cladding tube. An appropriate amount of sodium is then added to enhance the heat transfer 

(to stay below the very low melting temperature of the metal fuel). The pins are then heated to 

liquefy the sodium and an end cap is welded on the cladding. A second option for fabricating metal 

fuels is via powder metallurgy. The alloy can be obtained either by pyrochemical processing or by co-

melting of components. It is then converted into powder of small particles size [97]. 

Metallic fuel in association with injection casting and pyro-electric reprocessing is a promising fuel for 

FRs. (U,Pu) fuel was extensively irradiated in the US fast breeder program [4] and the Integral Fast 

Reactor (IFR) of Argonne [98]. Metal fuels show good compatibility with Na coolant and a good 

performance under nominal conditions, reaching high breeding ratios. However, during off-normal 

conditions the fuel expands considerably and a reaction between fuel and cladding occurs [97]. 

Nevertheless, metal fuel has excellent transient capabilities. The eutectic formation temperature 

between fuel and cladding is an important parameter for the metal fuel pin design. Depending on the 

fuel alloy and cladding type, fuel-cladding eutectic formation starts at 700 °C. Eutectic penetration 

into cladding becomes rapid and massive around 1000 °C. The inherent passive safety characteristics 

under anticipated transients without scram, such as ULOF, UTOP or ULOHS are especially mentioned 

as advantages of metal fuels [99]. The reason is a combination of the temperature margin to sodium 

boiling, the fuel expansion effect and the small stored Doppler reactivity. Significant experience of 

transient behavior has been gained during the Experimental Breeder Reactor No. 2 (EBR-II) shut-

down [29]. 

In conclusion, metallic fuel has proven to have a very high thermal conductivity but its low melting 

temperature leads to a pin design with a sodium bond. This bond enhances the heat transfer to the 

coolant and allows a higher margin to melt. Swelling of the fuel occurs already at very low burnup, 

therefore limiting the allowable fissile density. Using Zr alloy (as used e.g. in EBR-II metal fuel) can 

alleviate this problem. At higher burnups, fission gases produced during irradiation enhance the 

swelling [97]. 

 

5.2. Nitride fuels 

 

Nitride fuels were initially investigated for space power applications. They are considered attractive 

for use in FRs due to their high heavy metal atom density (interesting for core neutronics, especially 

when it comes to breeding) and their high thermal conductivity [94]. Since only one moderating atom 

(i.e. nitride atom) is present per heavy atom instead of two (i.e. oxygen atoms) the spectrum of 

nitride fuels is harder than in oxide fuels (though softer than in metal fuels) leading to better 

breeding ratios. An additional advantage of nitride fuels is their compatibility with sodium. As 

concerns the safety coefficients, nitride fueled sodium cooled fast reactor cores have a more 

negative Doppler coefficient than metal fueled cores due to the softer spectra and higher uranium 

density [100].  
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Nitride fuels can be fabricated directly after the PUREX (Plutonium-Uranium-Reduction-EXtraction) 

reprocessing process [101; 102] as they do not interact with water, used during washing or storage 

steps of the reprocessing process [97]. While in the past nitride fuels were fabricated by nitriding the 

metal with N2 or NH3 gas or by nitriding the actinide hydride, nowadays carbo-thermic reduction is 

used (Eq. 5-1 [101]). In this process oxide powders are mixed with carbon, compacted and heated in 

a stream of nitrogen. The product is then milled to produce a fine powder, pressed into pellets and 

sintered. Pressing can as well be applied directly, thus avoiding the milling step.  

Alternatively, the sol-gel method can be used for fabricating nitride fuels. This method is detailed in 

section 5.5.2. The nitride fuel pins are usually helium- or sodium-bonded [97]. 

A major drawback of nitride fuels is the formation of 14C by (n,p) reactions with 14N. This is 

problematic with regard to the limitations for radiological impact on the environment. This problem 

can be avoided by using 15N instead (in [103] a scenario based on 820 MWth ADS reactors fueled with 

nitride fuel has been considered, and a production of 6.7 grams of 14C /yr/ADS could be reached, 

making it comparable to the release coming from the oxide reprocessing), increasing however fuel 

fabrication costs [97]. 15N recovery during reprocessing is considered as a possible means for cost 

reduction. 

2 2

1
( , ) 2 ( , ) 2

2
U Pu O C N U Pu N CO               5-1 

Irradiation programs for nitride fuels were mainly conducted in Russia, Europe and Japan. 

Experiments showed that these fuels are chemically compatible with stainless steel clad. Their 

thermal conductivity is higher than the oxide one while their melting temperatures are similar. This 

leads to a lower central fuel temperature and allows increasing the initial MA content in the fuel. A 

major drawback of nitride fuels is their behavior in case of core disruptive accidents. Nitrides 

thermally decompose in metal, producing nitrogen. Depending on the fissile enrichment of the fuel 

this leads to a recriticality concern [104] and pressure buildup could challenge the reactor vessel. 

Different to metal fuels with their low eutectic formation temperature, nitride fuels could be heated 

up under hypothetical severe accident conditions. Reaction of the decomposed metal with sodium 

might then lead to FCI (Fuel Coolant Interaction) events. Different to carbide fuels this issue has not 

been considered. In general, however, the good thermal conductivity leads to reduced average fuel 

temperatures and high power to melt ratios.  

Furthermore, a violent reaction of mixed nitrides with sodium has been observed in some 

experiments. In fact, the high thermal conductivity of these fuels induces an explosive heat exchange 

between fuel and coolant in its gaseous state [97]. 

The sodium bond present in nitride fuels reacts with aqueous solutions and a pyrochemical 

reprocessing is needed. Therefore the helium bond design is usually chosen. This choice impacts the 

thermal exchange between fuel and cladding, leading to higher temperatures and therefore a higher 

swelling rate. Fuel Clad Mechanical Interaction (FCMI) will occur and could limit the burnup (BU). A 

limit on smear density has therefore to be set (up to 85% theoretical density - TD) and the cladding 

material has to be optimized [97]. 
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5.3. Carbide fuels 

 

Research on carbide fuels has been performed since the 1960’s. These fuels are of special interest as 

they display a high thermal conductivity, less restructuring than metal or oxide fuels at same 

operating conditions and allow a higher fissile density [105]. In addition, the presence of only one 

moderating atom instead of two (contrary to oxide fuels) leads to harder neutron spectrum and 

better breeding ratios [38]. This induces as well a more negative Doppler [106]. A major drawback of 

carbide fuels is that they cannot be reprocessed directly by aqueous reprocessing. Moreover, they 

are pyrophoric at room temperature and react with nitrogen [94]. 

Carbide fuels are produced in the same way as nitride fuels via carbo-thermic reduction of oxides. 

Pre-compacted mixtures of oxides and carbon are heated in vacuum above 1300 ˚C. The mixture is 

crushed, milled, pressed into pellets and sintered. Carbide fuels are pyrophoric, which implies they 

have to be fabricated under an inert gas atmosphere – specifically argon – and in a low oxygen 

containing environment (less than 10 ppm). 

Carbide fuels benefit from an extensive irradiation history, especially in the EBR-II reactor [29] in the 

US, at Los Alamos, as well as in India (BARC) and in Europe. Experiments have shown that a low fuel 

smear density i.e. a high amount of porosity is needed to avoid FCMI due to swelling (increasing with 

burnup) [97]. 

Concerning safety for carbide fuels the FCI potential is a concern under severe accident conditions 

with higher fuel temperatures. Melting temperatures are in the range of ca. 2570 °C. At SANDIA 

national laboratories in the USA specifically the so-called PBE (Prompt Burst Experiments) have been 

performed to investigate the FCI issue. They revealed the expected behavior of an increased FCI 

energetics compared to the UO2/Na system [107]. Again, the good thermal conductivity leads to 

reduced average fuel temperatures and high power to melt ratios. 

 

5.4. Inert matrix fuels  

 

In the 1990’s focus was dedicated on the reduction of the actinide stockpile through transmutation. 

To enhance the actinides transmutation rates, the 238U matrix was replaced by an inert one (with 

regards to neutronics). These kinds of new fuels which avoid production of new transuranic (TRU) 

elements are therefore named Inert Matrix Fuels (IMF).  

The actinide oxides are usually diluted in the matrix leading generally to solid-solution Ceramic-

Ceramic (CERCER) in case of a ceramic or Ceramic-Metal (CERMET) configurations. MA oxides in 

general have lower thermal conductivities requiring a matrix which compensates for it. This allows 

reaching acceptable power levels and temperatures in the fuel during operation and irradiation. 

Several materials were considered for the matrix, among them oxides, zirconium and titanium 

nitrides, SiC and metals. In addition to be neutronically inert, the thermal conductivity of the matrix 

should be as high as the one of the UO2. If possible, mechanical properties should not be degraded 

compared to the UO2. Compatibility of the matrix with coolant and cladding has to be ensured as well 
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as good compatibility with fissile isotopes (formation of eutectic with low melting temperature 

should be avoided) [108]. 

For transmutation of MAs, CERCER or CERMET fuels have especially been investigated for accelerator 

driven-systems as the EFIT reactor [109]. 

Assessing the fuels against a number of criteria, ranging from fabrication, reprocessing via economics 

to safety, the composite CERMET fuel (Pu0.5,Am0.5)O2-x – 92Mo (93% enriched) and the composite 

CERCER fuel (Pu0.4,Am0.6)O2-x – MgO has been recommended. The specific characteristic of the 

composite fuels is that the individual component has to be viewed in its contribution to phase 

change processes. The matrix is the “continuous phase” and is a mechanically stabilizing structure 

whose disintegration point is a key safety criterion. Both the CERCER MgO and CERMET Mo based 

fuels have low disintegration points. Especially for MgO a fuel matrix destabilization has been 

identified around 1950 °C. In addition, these fuels present almost no Doppler effect and a low 

delayed neutron fraction [110].  

 

5.5. Oxide fuels 

 

In the 1960’s oxide fuels became important because of their high tolerance to radiation. Mixed oxide 

(MOX) fuel was first used in a thermal reactor in early 1960, but did not come into commercial use 

until the 1980’s mostly in pressurized water reactors (PWRs) in Europe. Oxide fuels present a high 

melting point and a good chemical stability. Experimental reactors like KNK-II [111], JOYO [25], 

BOR60 [112] or RAPSODIE [4] successfully employed mixed-oxide (U,Pu)O2 fuels and led to prototype 

and commercial reactors based on oxide fuels. A large experience is available for these fuels 

providing a reliable background of knowledge of their behavior in normal and accidental conditions 

[94]. The most common mechanical form of oxide fuels is the standard pellet one. More exotic forms 

are investigated like the particle one. Both forms are treated in this section.  

 

5.5.1. Pellet type fuels  

5.5.1.1. Fabrication  

 

As concerns MOX pellet fabrication, a large variety of fabrication processes is known worldwide. Only 

the French fabrication route will be detailed in this section. 

MOX fabrication is usually performed by powder metallurgy techniques [25]. A description of the 

process is seen in Figure 5-1. At first plutonium and uranium oxides are mixed in the desired 

proportions through blending and milling steps. The homogeneous distribution of plutonium 

throughout the powder is crucial to avoid hot spots in the fuel during irradiation. The powder mix is 

finally pressed into a pellet and sintered at temperatures around 1600˚C. This step is required to 

densify the pellets up to the desired value – usually in the range of 85 to 95% TD [101]. The pellet is 

then grinded to achieve a uniform pellet size (dust is produced during this process). The pellet can be 

either full or annular (Figure 5-2). 
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Figure 5-1. MOX pellet production scheme for FR fuel [101]. 

 

Figure 5-2. Pellet design [113] in PHENIX [4], SUPERPHENIX [4] and SFRV2B [42]. 

Once the pellets have been fabricated they are stacked into a cladding tube of fuel pins and He-

bonded. The fuel pins are then assembled to a fuel assembly (Figure 5-3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-3. Pin and pin bundle assembly [114; 93; 115]. 

 

5.5.1.2. Standard pellet MOX fuel performance 

 

Mixed oxide fuel is the most used fuel in fast reactors (FRs) in Europe and worldwide. This choice is 

based on the large experience obtained with light water reactor (LWR) fuels and the well-established 

fabrication and reprocessing processes. Even though the thermal conductivity of oxide fuel is poor 
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compared to carbide, metal or nitride fuel, its density of heavy atoms is quite low and it is 

incompatible with sodium, its advantages prevail. MOX fuel shows a high melting point, an excellent 

chemical stability, a good behavior under irradiation, a low swelling rate (0.6% per at% BU compared 

to 1.1-1.6% per at% BU in nitride fuels, [101]) and allows an aqueous reprocessing. The main 

properties of MOX pellet fuels at beginning of life (BOL) and under irradiation are discussed in this 

section. 

Behavior at beginning of life 

Heat transfer properties of the fuel are crucial to cope with safety requirements. Thermal 

conductivity is one of the most important fuel properties since it determines the heat transfer to the 

coolant and therefore the temperature in the nuclear fuel. It is a property rather difficult to 

determine from experiments as it depends on several other parameters like porosity, oxygen over 

metal ratio (O/M), burnup (BU), plutonium content etc. [94]. 

In practice, the thermal conductivity is deduced from thermal diffusivity measurements. The 

diffusivity value is multiplied by the material heat capacity and its density (Eq. 5-2). 

pk a C            5-2 

Where a is the thermal diffusivity in m2  s-1, ρ is the material density in kg m-3 and Cp is the specific 

heat capacity in J  kg-1  K 

From a theoretical point of view, the thermal conductivity can be decomposed into 3 main 

contributions: the conductivity from phonons phk , from charge carriers elk and from radiation rk  - 

Eq. 5-3. Up to 1800 K, conduction is mainly performed by phonons. At higher temperatures, the 

conduction through the kinetic energy of electrons and the one from radiation become more 

important.  

ph elk k k  + rk           5-3 

Where: 

- 
1

phk
A BT




, A corresponds to the scattering of phonons by imperfections and B to the 

scattering by phonon-phonon interactions. A is a function of burnup, plutonium content, oxygen over 

metal ratio. T is the temperature. 

- 
2

( )el

C W
k exp

T kT
   , where C is in W m-1  K 

- rk = D T3, where D is in W m-1  K-4 

The thermal conductivity of oxide fuels is rather poor and in the range of 2-3 W m-1  K-1 for an as 

fabricated 100% dense fuel. The temperatures in the fuel are hence relatively high and several 

thermally activated processes take place in the fuel. 
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The pellet macrostructure undergoes various changes during irradiation. Due to the radial 

temperature gradients inside the fuel, the pellet center tends to expand more than its outer 

periphery and internal stresses cause pellet cracks. Very soon after the reactor start-up the grains 

start to grow rapidly due to the high temperatures in the fuel and form the equi-axed grains. Close to 

the center of the pellet, where the temperature is the highest, the as-fabricated pores tend to collect 

and to migrate towards the center (up the temperature gradient) through vaporization/condensation 

processes where they form a central hole. They leave behind them very long grains called columnar 

grains, forming a very dense matrix. This occurs in the first hours of reactor operation [25]. The fuel 

material at the very edge of the pellet remains non-restructured (see Figure 5-4). 

Closely linked to this restructuring process, a redistribution of constituents is systematically observed 

in the fuel. Indeed, through vapor transport i.e. through the vaporization/condensation process, and 

through thermal diffusion processes, plutonium and americium isotopes tend to migrate up the 

temperature gradients. Neptunium has appeared to be uniformly distributed throughout the fuel, 

but these conclusions are still very preliminary [94].  

  

Figure 5-4. Schematics (left) and real (right) restructured FR MOX fuel with 2.7 at% BU [116]. 

In addition to restructuring, the gap between pellet and cladding tends to close due to fuel 

expansion, swelling and cracking. The axial temperature distribution in fast reactor pins leads the fuel 

macrostructure to vary along the axial axis. Most of these phenomena tend to decrease the 

centerline temperature of the fuel - Figure 5-5. 
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Figure 5-5. Radial temperature profile in a PHENIX oxide pellet [94]. 

 

Consequences of irradiation 

During irradiation, fission gases are produced from fission or from the decay of fission products. The 

gas bubbles nucleate, grow, diffuse and eventually collect and condense at grain boundaries. They 

will then form “tunnels” and eventually be released by the fuel matrix. Tracks left by pore migration 

within the columnar grain zone as well as cracks caused by shutdown and restarting operation events 

allow the fission gases to be vented to the central void region and to eventually be collected in the 

fission gas plenum. Figure 5-6 depicts these details of the processes leading to fission gas release. 

The axial variation of fuel macrostructure leads to a different fission gas release at different axial 

heights.  

 

Figure 5-6. Schematics of steps leading to fission gas release [117]. 1) Fission products diffuse in the lattice and along 

grain boundaries 2) Capture of the fission gases in intragranular (within a grain) and intergranular (between grains) 

bubbles e.g. fabrication pores or newly formed bubbles 3) Bubbles migrate to grain boundaries 4) Re-solution of gas from 

the bubbles into the matrix, due to radiation 5) Coalescence of closed gas pores into pores along the grain boundaries 6) 

Release via open porosity tunnels formed by porosity aggregation [117]. 
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A consequence of fission gas release is that they might accumulate at the fuel-cladding interface 

where they induce cladding oxidation. The main species responsible for corrosion are Cs, Te and I 

[94]. In addition to this fuel cladding chemical interaction (FCCI), fuel cladding mechanical interaction 

occurs as well (FCMI). FCMI results from two phenomena: a differential thermal expansion between 

fuel and cladding on one hand and fuel volume changes due to production and retention of fission 

products on the other hand [118]. Thanks to the low swelling rate of oxide fuels compared to carbide 

or nitride fuels, and to the high thermal and irradiation fuel creep rate, FCMI is of low importance in 

oxide pellet fuel. Nevertheless, the fuel burnup and the smear density have to be limited to avoid 

FCMI [94]. 

 

5.5.1.3. Recycling and high level waste management 

 

Recycling of spent nuclear fuel (SNF) is performed in Europe essentially in France and the United 

Kingdom (UK) to chemically separate and recover fissionable plutonium from irradiated nuclear fuel 

in order to use it for the fabrication of fresh fuels. 

After irradiation, the SNF is cooled down for some years before recycling. Even though several 

reprocessing techniques are known, focus is concentrated on the hydro-chemical PUREX process 

already used at an industrial level. Uranium, plutonium and waste – fission products (FPs) and MAs – 

are separated during this process. The process is divided into 4 steps: SNF dissolution, off-gas 

treatment, chemical separation and conversion of FPs and MAs waste into vitrified products. 

Schematics of the process can be seen in Figure 5-7. 

At first, the fuel pins are cut into segments of some centimeters to ensure fuel dissolution. The slices 

fall into a basket containing hot nitric acid thus forming a nitrate solution of uranium, plutonium, 

minor actinides and fission products. Whereas elements as iodine, krypton or xenon volatilize during 

this dissolution step and are removed by the off-gas treatment, a percentage of more noble fission 

elements remain undissolved after this process. The cladding hulls are collected during this step. In 

the next step, separation of the different elements is obtained via solvent extraction, depending on 

affinities with the nitric acid and organic phases. Fission products and MAs are separated from 

uranium and plutonium. In a further step, uranium and plutonium are separated by adjusting the 

valence of plutonium to make it unextractable by the organic phase. The uranium is finally recovered. 

The separate solutions of uranium and plutonium are converted to solids through denitration in case 

of uranium and oxalate precipitation followed by calcination in case of plutonium. The waste solution 

is evaporated, calcinated and vitrified thanks to the addition of glass components [119; 120]. 
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Figure 5-7. Flow sheet of the PUREX process (simplified) [120]. 

Instead of separating plutonium and uranium to form two distinct solids, the COEX process (CO-

EXtraction process of Uranium and Plutonium) can be used as well. It has been developed by CEA 

France in order to co-extract simultaneously both components therefore increasing proliferation 

resistance [121]. 

 

When it comes to transmutation of MAs, the considered isotopes have to be recovered from the 

SNF. To that end, additional steps to the PUREX process are applied (these steps have been proven at 

a laboratory scale). First, the DIAMEX process (DIAMide EXtraction) separates actinides and 

lanthanides from non-lanthanide fission products and corrosion products. The SANEX (Selective 

ActiNide EXtraction) process finally separates actinides from lanthanides [122]. The recovered 

actinides are then used for fresh fuel fabrication. The overall flow sheet of the oxide fuel 

reprocessing is depicted in Figure 5-8. The current fabrication of oxide fuel pellets is based on a dry 

route and handling of powders. As the recycling step includes an aqueous route, it is of interest to 

develop wet fabrication routes as e.g. the sol-gel route which is detailed in a later section.  

 

 

Figure 5-8. Flow sheet of oxide fuel full reprocessing [122; 120]. 

5.5.1.4. Conclusion on oxide pellet fuels 

 

Oxide pellet fuels have been investigated since the 1960’s. The oxide fuel and especially the MOX 

fuel present a large database provided by many irradiation experiments in both LWRs and FRs. Large 

experience for SFR fuels also exist in the transient and accidental domain of reactor operation. 
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Especially to mention are the TREAT [123] and FD experiments [124] in the US and the large French 

experimental program CABRI [125] which formed an unprecedented knowledge basis covering the 

whole range of phenomena up to fuel vaporization under severe accidental conditions. These 

experiments also lead to the development of today’s sophisticated safety codes for pellet fuels (e.g. 

TRANSURANUS [126] or GERMINAL [127]). Referring to the above fore-mentioned problems of 

dissociation and FCI potentials (see nitride and carbide fuels) the oxide fuels show a remarkable 

stability (no separation of Pu from U under melting) and due to the low thermal conductivity the FCI 

potential is also low. In addition, oxide fuels are the most commonly used fuel type in industrial 

reactors. They are suitable for MA transmutation [95] but present nonetheless a concern ascribed to 

their production process (powder handling inclined to produce dust) and their tendency to swell 

under irradiation (mainly due to helium production from the decay of MAs). Other mechanical forms 

of oxide fuel are therefore envisaged as e.g. particle fuels. In the following section, focus lies on these 

specific fuel forms. 

 

5.5.2. Sphere pac fuels  

 

Particle fuel forms are of high interest for MA-bearing fuels. Several forms of particle fuels are known 

the major ones being the TRISO, vipac and sphere-pac fuels. 

TRISO particles were primarily developed for the high temperature gas cooled reactors (HTGRs). 

These particles are composed of a fuel kernel of UO2 or MOX, surrounded by several coating layers to 

make the particle gas-tight [128] (Figure 5-9). The reprocessing of this fuel, feasible though difficult, 

has been discarded for non-proliferation considerations and direct disposal is preferred nowadays 

[129].  

 

 

Figure 5-9. A TRISO coated particle [117]. 

Vipac fuels are randomly shaped particles poured into a cladding tube under vibration. Large 
experience was gained in Russia for this fuel [130]. Their simple handling is easily adaptable to 
remote handling of MA-bearing fuel [131].  
 
Sphere-pac fuels are similar to vipac fuels. This time the particles are regularly shaped spheres 

poured into a cladding tube [131]. This concept is under investigation in the FP-7 PELGRIMM project 

[11] and is therefore detailed hereafter. 
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5.5.2.1. The sphere-pac concept: history, advantages, drawbacks 

 

Sphere-pac fuels are investigated worldwide since the 1960’s. The motivation lies in the 

development of an alternative production route to the standard pellet process. It is justified by the 

simplicity and cleanness (dust free process) of the fabrication process deriving from a wet 

reprocessing route and making it suitable to remote handling, a requisite due to the high radiation of 

the dissolved spent nuclear fuel [132]. Sphere-pac fuels are fabricated by sol-gel methods. This “wet” 

route limits the contamination risk of operators in case of an accident and facilities as it is a dustless 

process and milling and grinding steps required in the standard pellet fabrication are hence avoided. 

In addition, the sphere-pac fabrication process allows to control the particle size and no sieving is 

needed, the particles being directly separated. Furthermore, the spherical size of the particles 

reduces the friction resistance during the filling process. Moreover, these fuels are expected to 

present several advantages when it comes to the use of MAs in nuclear fuels. Since sphere-pac pins 

are composed of fuel microspheres of several particle size ranges poured into a cladding tube and 

surrounded by helium gas - Figure 5-10 - they are expected to behave well under irradiation. In fact, 

their specific macrostructure would provide enough space for fission gases and He released by MA 

decay to be accommodated and to relieve pressure on the cladding [133].  

One major drawback of sphere-pac fuel stacks compared to pellets is their lower thermal 

conductivity at BOL, especially as “green fuel” (i.e. non-irradiated fuel). Indeed, due to the few and 

narrow contact points between the spheres, the heat transfer is reduced and leads to higher fuel 

temperatures. This drawback is compensated during the early lifetime of sphere-pac fuels as they 

rapidly restructure in the core - on a timescale of hours - due to the strong temperature gradients in 

the fuel. The thermal conductivity of sphere-pac fuels is therefore already enhanced during the start-

up phase, due to sintering mechanisms as demonstrated, e.g., in the FUJI experiment [133]. 

 

 

Figure 5-10. Pellet and sphere-pac fuel schematics [134]. 

 

5.5.2.2. Fabrication 

 

As mentioned previously, the sphere-pac particles are produced by sol-gel methods. This process 

implies the gelation of droplets through hydrolysis resulting in a condensation and polymerization of 

the fissile material in gel spheres. These spheres are then converted into high density spheres via 

sintering. 
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One of the major advantages of using sol-gel methods is that they can be applied directly after the 

spent nuclear fuel recycling process step as they are fully aqueous methods. The distribution of fissile 

material is excellent, avoiding possible hotspots. In addition, the fabrication of sphere-pac fuel does 

not need any grinding or milling steps, considerably reducing the dust production and therefore 

preventing some possible contamination of operators and facilities. Reducing the number of steps for 

fuel fabrication makes the process cost-effective. 

Nevertheless, this fabrication process includes the production of low level liquid waste streams if use 

of the internal gelation option (detailed later in this chapter) is made and induces additional 

reprocessing and storage steps [131]. 

 

Particle production 

In case of a closed cycle option, the spent nuclear fuel is recycled and is therefore in an aqueous 

state, more specifically in form of a nitrate solution. The sphere-pac fabrication starts from this 

aqueous state. Even if the sol-gel process can be used for the standard pellet fuel, focus is put in this 

section to the application of the process to sphere-pac fabrication. Several methods for gelation are 

developed but only the three main ones are described hereafter: the internal gelation, the external 

gelation and the internal microwave gelation. For more details the reader is referred to [131]. 

The internal and external gelation processes are both based on an acidity shift driven precipitation of 

a metal nitrate solution by ammonia into ammonium metal hydroxide. For the internal gelation 

process this shift relies on a temperature driven decomposition of an ammonia precursor (added into 

the nitrate solution where it thermally decomposes to release ammonia internally within the 

droplet). The temperature shift is induced by a heat carrier (hot silicon oil or a microwave cavity). For 

the external gelation process only an external ammonium hydroxide solution in which the droplets 

(sol) fall is needed - Figure 5-11 [131]. No heat carrier is therefore needed. 
 

 

Figure 5-11. Internal and external gelation processes [131; 135]. SNAM (Societa Nazionale Metanodoti) and KFA 

(Kernforschungsanlage Jülich des Landes Nordrhein-Westfalen) processes have been developed in Italy and Germany, 

respectively. 

The internal gelation process initially developed in the Netherlands allows the co-processing of 

various metals in a nitrate solution [131]. All chemical ingredients necessary to gelation are already in 
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the feed solution and temperature will drive the reaction. To start the gelation process, a nitrate 

solution of U, Pu and MA is needed. This solution is brought to a temperature close to 0 °C and mixed 

with gel agents as CO(NH2)2 urea and HMTA [136] (HexaMethyleneTetraAmine). The precipitation of 

the internal gelation is driven by formation of ammonia coming from the decomposition of HMTA, 

itself catalyzed by the acidity of the solution (coming from the adding of NO3
-). The feed solution is 

then given to a drip unit which will produce particles of different sizes depending on the employed 

nozzle e.g. 6 droplets per second can be produced for the coarse fraction and up to 15000 droplets 

per second for the fine fraction. The coarse droplets fall into a silicon oil bath while the finer ones are 

carried via a jet of silicon oil to avoid aggregates. The silicon oil also serves as a heat carrier and its 

temperature determines the solidification of the droplets. In the next step, the solidified spheres are 

passed on a belt-filter where the silicon oil is removed with vacuum and the introduction of organic 

solvent. The spheres are then passed on a second belt where they undergo again cleaning under 

vacuum with a new solvent in order to remove the organic solvent. The rinsed spheres are then 

collected and washed with diluted ammonia to remove the residual reaction products and excess of 

nitrates [131]. Once the washing has been performed, the spheres are dried in hot air (at 150 °C 

[136]), calcinated (up to 500 ˚C [136]) and sintered to obtain spheres of high density. They are then 

poured into the cladding tube. The complete process can be seen in Figure 5-12. 

 

          

Drip unit
Production of spheres

1st belt filter 
Removal of silicon oil

2nd belt filter
Removal of organic phase

Washing

Drying

Feed solution

Calcination

Sintering

Pin filling
 

Figure 5-12. Internal gelation process [135].  

The internal gelation process is an almost dust-free process. In addition few mechanical components 

are needed and the process has been proven to be reliable and reproducible [131]. The silicon oil is 

used as heating, droplet reception and transportation medium at the same time [108]. 

Nevertheless, this process involves some undeniable drawbacks. The employment of silicon oil and 

solvents for washing the spheres introduces additional recycling and disposal steps, and the liquid 

waste volume increases. Furthermore, the process would require a larger space than the standard 

pellet fabrication one and might increase the production costs if used at an industrial scale. In order 

to simplify the process, other heat sources than silicon oil are therefore considered. To that end, a 

technique based on microwave heating has been developed [132; 131]. 
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As the internal gelation process is mainly driven by temperature and does not need any additional 

external chemical agent, the silicon oil can be replaced in its function of heat carrier by a microwave 

cavity - Figure 5-13. This is the so-called microwave technique [131]. After the drops are formed they 

freely fall into a microwave cavity where they will be heated up. The cavity operates in the X-band 

and is composed of a quartz tube to avoid contamination. The gel drops fall then into the ammonia 

wash column. Neither recycling of oil nor the two belt filters are then needed [132]. 

 

Figure 5-13. Internal gelation microwave process [131]. 

Alternatively to the internal gelation process, the external gelation process can be employed. This 

process was first developed in Italy and has been widely used for the production of TRISO particles 

[128]. To the contrary of the internal gelation process, the external gelation does not require the use 

of a heat carrier (no silicon oil is needed) [131]. This is attributed to the fact that the required acidity 

shift is induced by an external ammonium hydroxide solution.  

The external gelation process is composed of a uranyl nitrate feed based solution, an organic 

polymer (Polyvinyl alcohol i.e. PVA) and a modifying agent (Tetrahydrofolic acid i.e. THFA).The feed 

solution is dispersed into droplets through a nozzle under vibration. The droplets fall through an 

ammonia gas layer inducing their surface to harden. During this fall, the particles get their final 

spherical shape. They are then collected in an ammonium hydroxide bath which will precipitate the 

uranyl nitrates into ammonium diuranate and induce the gelation process. The droplets are then 

aged to complete the reaction process, washed in two steps (first with water or diluted ammonium 

hydroxide to remove the excess of ammonium nitrate and then with isopropanol to dehydrate the 

gel particles), dried, calcinated at 400-600 ˚C in air, reduced and sintered. Schematics of the external 

gelation process can be seen in Figure 5-14 [135]. 

Since actinides are present in the feed solution, radiolysis can take place, therefore modifying the 

chemistry of the solution. In addition, the decay of e.g. Cm, if present, will heat up the solution, 

presenting an issue for the thermally driven gelation process. All these factors still have to be 

investigated. 
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Figure 5-14. External gelation process [135]. 

Once the particles have been produced, they are filled into a cladding tube under vibration while 

using either a parallel or an infiltration filling technique. 

 

Pin filling 

The fuel pins can be produced either by parallel or by infiltration filling. Several size fractions are 

used to obtain the desired density. In practice two to three size fractions are used to fill the pins: a 

coarse one, a fine one and potentially an intermediate one. The size ratio between spheres of 

different diameters plays an important role in the achievable packing density - Figure 5-15 - and 

densities as high as 95% TD have been observed [137]. The original filling density has an important 

impact both on the fuel performance itself but also, if inserted in a reactor, on the basic reactor 

design and layout.  

  

Figure 5-15. Impact of coarse to fine ratio for sphere-pac packing density [131]. 
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With the parallel filling option, two sphere fractions (coarse and fine) are filled at the same time into 

the fuel pin. Vibration is employed during or after the filling process to avoid segregation. For this 

filling technique the ratio between coarse and fine sphere fractions can be lower than for the 

infiltration one (Figure 5-16 (a)) [131]. 

With the infiltration filling, the coarse fraction is filled first into the cladding tube. It is then fixed in 

order to keep the arrangement and the fine fraction is “infiltrated” through a sieve-like holder. The 

small spheres occupy the free space between the coarse spheres. Vibration is applied during the 

whole process in order to reach the highest possible packing density. This technique allows a very 

homogeneous distribution of spheres inside the cladding tube (Figure 5-16 (b)) [131]. 

 

 

Figure 5-16. (a) Parallel filling (b) Infiltration filling [131]. 

Different filling techniques imply different behavior of fuels during irradiation (related e.g. to the 

different thermal conductivity). Nevertheless, the major difference to pellet fuel comes from the 

specific fuel form of sphere-pac fuel. 

 

5.5.2.3. Physical properties and behavior under irradiation 

 

Heat transfer properties 

One of the major drawbacks of sphere-pac fuel stacks is their low thermal conductivity at BOL. Due 

to the macroscopic arrangement of spheres, the few and narrow contact points between them 

makes the heat transfer quite low if compared to the standard pellet fuel. This results in higher 

central temperatures than in pellet fuel and might cause an issue with regard to safety margins [131]. 

Due to the globally higher temperatures in sphere-pac than in pellet fuel (when operating at same 

linear power), a more extended restructuring process takes place at the beginning of irradiation in 

(a) (b) 
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the former one, largely impacting the thermal conductivity. Four zones can be distinguished when 

starting from the center and moving radially towards the cladding - Figure 5-17. 

Zone II: Strongly sintered area

- Intermediate or final stage of sintering

- Original sphere structure not visible (similar to

porous pellet)

- After 1 h temperatures typically >1400 ˚C 

(sphere diameter 70 μm and pressure 1bar)

- The zone proceeds toward the rim and lower

temperatures with longer irradiation time, higher 

external load or smaller sphere size 

Zone I: Center hole

- Emerges later in the life

Zone III: Transition zone

- Between fast and slow sintering areasing

- Moves outward and lower temperatures as irradiation proceeds

- On temperature scale, only 150-200 ˚C wide

Zone IV: Slow sintering

- Initial stage of sintering

- Original sphere structure visible

- Pores interconnected

- Temperature < 800 ˚C

- Irradiation creep dominates

 

Figure 5-17. Restructured sphere-pac fuel, schematics [138]. 

Pores in the central fuel zone, where the temperatures are the highest, are migrating towards the 

center and form a central hole. The temperatures are then the highest in the zone in the vicinity of 

the hole, leading to sintering. A dense matrix closely resembling the pellet structure forms. In fact, 

due to the softness of the fuel, the initial plastic deformation and thermal creep induce fast sintering. 

A third zone can be distinguished by a higher porosity compared to the pellet-like structure but a 

sintered matrix is still present. It is a transition zone between the fast and slow sintering regions. 

The fourth and last zone close to the cladding displays the initial macrostructure. In this zone the 

temperatures are much lower than in the center and no sintering occurs. The initial sphere structure 

remains with some necking between the spheres. This non restructured annulus provides two 

benefits: a lower stress on the cladding (as the spheres can move vertically) and a reduced fission 

product transport towards the cladding since the cracks in the pellet-like zone do not extend to the 

cladding (leading to a different distribution of gas in the pin) [118]. The macrostructural variation 

observed during the first hours of irradiation is shown in Figure 5-18. 

Due to this restructuring process (however depending on the axial position of the considered fuel 

slice), the thermal conductivity is enhanced very quickly, especially in the first hours or few days.  
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Figure 5-18. (a) Non irradiated sphere-pac pin (b) Irradiated sphere-pac pin [131]. 

In addition, caused by the higher temperatures and higher specific surfaces, more fission gases are 

released by the sphere-pac fuels than by the pellet fuels. Due to a reduced transport of FP towards 

the cladding, no FCCI has been observed.  

 

Mechanical properties 

As sphere-pac fuel is mechanically softer than the standard pellet fuel, the spheres deform and 

interstices between the spheres provide sufficient spaces to accommodate fuel swelling, thus 

relieving the mechanical constraint on the cladding [138].  

 

5.5.2.4. Irradiation programs 

 

Many irradiation programs were conducted worldwide for sphere-pac fuels in oxide or carbide form. 

In this section, attention will be devoted only to MOX oxide sphere-pac fuels irradiations.  

The Oak Ridge National Laboratory (ORNL) in the US conducted an extensive irradiation program for 

sphere-pac fuels including thermal flux tests, transient tests and fast flux tests in the 1960’s and 

1970’s. The aim of these experimental programs concerned the thermal performance of sphere-pac 

fuels, their restructuring process, the actinide and fission product redistribution, the FCMI and FCCI. 

The tests were performed in the Engineering Test Reactor (ETR) at Idaho [139], the EBR-II [29] and 

the TREAT [123] reactors. Comparison of sphere-pac and pellet fuels was performed in terms of e.g. 

fabrication and behavior under irradiation, giving insights into the specifics of sphere-pac fuels [140; 

141]. 

Programs were conducted not only in the US but also in Italy, the Netherlands and Japan [131]. The 

most recent ones are the FUJI experiments (1996-2005) and the SPHERE irradiation (on-going) 

conducted in the frame of FAIRFUELS [142] and for which the post irradiation examinations (PIEs) are 

scheduled (2016-2017) in PELGRIMM [11].  

In the FUJI experiment, jointly performed by PSI, JAEA (former JNC) and NRG, 4 tests were conducted 

for different periods of time. It addresses the question of fabrication of MOX fuel with high Pu 

content (20%) and its irradiation behavior during the start-up phase of the reactor. The tests aimed 

at comparing sphere-pac, vipac and pellet fuels [133]. The Initial Sintering Test (IST) simulates the 

behavior of sphere-pac fuel within the first 36 hours when the reactor goes from zero to full power.  

The Restructuring Test 1 (RT1) simulates fuel behavior from zero to full power within 36 hours of 

(a) (b) 
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operation followed by 48 hours at full power. The Restructuring Test 2 (RT2) resembles RT1 with a 

holding time of 96 hours at full power and the Power To Melt (PTM) follows RT1 and experiences 

later on a constant power increase until fuel melting is observed. In all tests, no rod failure was 

found, giving a promising basis for sphere-pac applications [133]. 

Moreover, the FP-7 European project PELGRIMM focuses on sphere-pac fuels as mentioned 

previously. Post-Irradiation Examinations of SPHERE irradiated pins within the European project 

FAIRFUELS should provide first results on the helium behavior in (Am,U)O2 fuels and a comparison 

between sphere-packed and pelletized (U,Pu,Am)O2 fuel performances. In addition, (Am,U)O2 fuel 

qualification is performed in the MARINE fuel test (within PELGRIMM) in the High Flux Reactor [143] 

and the knowledge base of fuel fabrication processes of MA bearing fuels should be extended in 

order to limit secondary waste streams. 

 

5.5.2.5. Conclusions on sphere-pac fuels 

 

Sphere-pac fuels present a large advantage to pellet fuels if MAs are used. In fact, their fabrication 

process being based on an aqueous route reduces the dust production and therefore the risk of 

possible contamination of operators and facilities. In addition, their macrostructure enables to 

accommodate fission gases during irradiation, therefore reducing the FCCI and FCMI compared to 

pellet fuels.  One major drawback of sphere-pac fuel is their low thermal conductivity at BOL. Quick 

restructuring nevertheless alleviates this issue and restricts its detrimental impact to the very first 

hours or days of irradiation.  

 

5.6. Conclusions 

 

The fuel types considered for GEN-IV reactors comprise a rather large variety: oxide, carbide, nitride, 

metallic and dispersion (CERCER and CERMET) fuels. All of them present advantages and drawbacks 

in the fabrication, irradiation or reprocessing steps. Their choice mainly depends on the reactor type 

and planned field of application. Special mechanical forms (e.g. particle fuels, vipac and sphere-pac 

fuels) are considered as well.  

Currently the oxide fuels remain, in Europe, nevertheless the preferable choice as they benefit from a 

large fabrication, irradiation and reprocessing experience from commercial thermal reactors. Within 

the FP7-PELGRIMM project, two oxide fuel forms are considered for the transmutation of MAs: the 

standard pellet and the sphere-pac fuels. Fabrication processes and irradiation performance of these 

fuel types along with the available fundamental properties still have to be investigated in detail. 

Thus, within the project framework, capabilities of simulation codes for fuel behavior under 

irradiation should be extended, which is important for increasing the basic knowledge and providing 

confidence on transient and accidental behavior. Another target of PELGRIMM is the investigation of 

the possibility to insert (U,Pu,Am)O2 sphere-pac fuel to a large sodium cooled fast reactor and 

perform a preliminary safety assessment. In this manner, information should also be obtained on 

necessary experimental information, including transient conditions and on needs for code 

development for transient and accidental conditions.  
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Results of this investigation are presented in chapter 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



NUCLEAR FUELS 
 

Page | 78  
 

 



A NEW METHODOLOGY FOR SIMULATING CORE EXPANSION EFFECTS IN SPATIAL KINETICS 
CODES 
 

Page | 79  
 

Chapter 6  

6. A new methodology for simulating core expansion effects in spatial kinetics codes  

A NEW METHODOLOGY FOR SIMULATING 

CORE EXPANSION EFFECTS IN SPATIAL 

KINETICS CODES  

 

For recent fast reactor designs the probability of the occurrence of a severe accident is considered to 

be extremely low. Nevertheless as fast reactors loaded with mixed oxide (MOX) fuel are not in their 

most reactive configuration, Hypothetical Core Disruptive Accidents (HCDAs) due to recriticalities are 

investigated. In particular, the SIMMER-III and IV codes [73; 74] dedicated to severe accident 

analyses are under development and application. These codes are particularly tailored to 

mechanistically analyze accident sequences in already disrupted cores. Significant efforts are 

invested at KIT in improving the performance of the SIMMER codes for simulating the initiation 

phase of accidents. A special focus is on the impact of core thermal expansion phenomena on the 

reactivity. In fact, in the simulation of core disruptive accidents, the related reactivity effects might 

play an important role in particular in the early phase of the transient when the pin structure is still 

intact: the thermal expansion effect of fuel and/or structure e.g. mitigates the primary excursion in 

case of a loss of flow in a sodium cooled fast reactor [144]. 

In the present chapter options for the implementation of core thermal expansion feedbacks in 

SIMMER are described. First, fundamental quantities and equations as the time-dependent neutron 

transport equation used in reactor physics are introduced. This equation governs the variations in 

both amplitude and shape of the neutron flux in the reactor. Its numerical solution in the general 

case is only possible by numerical discretization and approximations. Different methods aiming at 

this purpose are thus detailed. The neutronics part of SIMMER uses a spatial kinetic neutron 

transport approach. Within this framework and the constraint of the Eulerian mesh of SIMMER, new 

methodologies for taking into account core thermal expansions are developed. The methodologies 

are based on the fact that density variations reflect dimensional variations and hence the original 

mesh can be used while taking into account dimensional variations. Applications of these 

methodologies to static and dynamic cases are presented and analyzed. As a result the technique can 

be used to compute the reactivity feedbacks induced by both uniform and non-uniform thermal 

expansions of the core.  
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6.1.  Neutron transport theory 

 

The neutron transport equation is used to determine the neutron distribution in a nuclear reactor. 

This general integro-differential equation is inherently complex and difficult to solve analytically 

except for very simplified cases. Discretization and approximations are thus needed to find a 

numerical solution. The approximation of using diffusion theory might often be sufficient for design 

purposes. However, due to the fairly complex geometrical arrangements usually encountered during 

HCDAs its application is not appropriate for analyzing such configurations.  

 

6.1.1. Time-dependent neutron transport equation 

 

In order to describe the evolution of the spatial distribution of the neutron population, the time-

dependent neutron transport equation is usually analyzed. A neutron at a certain instant t is 

characterized by its position in space r , its velocity v (or equivalently, its energy E = ½ mv2 if 

relativistic effects are neglected, m being the neutron mass), and its direction represented by the 

unit vector .  

The neutron population is represented by a function ( , , , )n r E t so that 3( , , , )n r E t d r dE d   

represents the number of neutrons in the volume element dr  around r  in the range dE  around E  

and in the solid element d around  - Figure 6-1. 
 

 

Figure 6-1. Spatial variables describing the neutron position at an instant t [145]. 

The variation of the neutron population results from an off-balance of production and losses of 

neutrons – Eq. 6-1.  

( , , , ) production - losses
n

r E t
t


 


                6-1 

The neutron flux is usually introduced and defined to be ( , , , )r E t  = v( ) ( , , , )E n r E t where 

v( )E  is the neutron velocity. The neutron transport equation [146] - Eq. 6-2 - can then be derived as  
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 
1 ( , , , )

( , , , ) ( , , , ) ( , , , ) ( , , ) ( , , , )
v( )

t

r E t
Q r E t S r E t r E t r E t r E t

E t


 

 
        


         6-2 

 

Where  

- ( , , , )r E t  is the neutron flux in the volume element 
3d r  around r  in the energy range dE 

around E and in the solid element d  around the angular direction   at time t. 

- 
( , , , )r E t

t

 


 is the neutron flux variation. 

- ( , , , )r E t  represents the leakage term. 

- ( , , ) ( , , , )t r E t r E t  is the total interaction term (absorption + scattering).  

- ( , , , )Q r E t is the neutron production term. 

- ( , , , )S r E t represents a possible external neutron source. 

The neutron production term ( , , , )Q r E t  includes both scattering and fission terms, see Eq. 6-3.  

The scattering term is expressed via the scattering cross-section s  and includes contributions from 

elastic scattering, inelastic scattering and (n,xn) reactions. Scattering is usually anisotropic in the 

laboratory system and s  therefore depends on the scattering angle '  of the incident neutron in 

addition to the incident neutron energy and space variable. 

The fission term is expressed via the fission cross-section f . Each fission leads to the formation of 

lighter nuclei called fission products and the emission of ( )E  neutrons per fission in average 

emitted in a certain direction and with a certain energy. 

It is assumed that the fission neutrons (both prompt and delayed ones) are emitted isotropically 

when produced by fission. Their energy distribution is often referred as fission spectrum and an 

example is given in Figure 6-2. The fission spectrum varies if prompt or delayed neutrons are 

considered.  
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Figure 6-2. Prompt neutron fission spectra of 239Pu and 235U based on JEFF3.1 data (in lin-log and in log-log scale). 

production losses 
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 

 
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    6-3 

 

 

In Eq. 6-3 the simplifying notation 
, ,( ) ( , , ) ( , , )p p

i f i i f iE r E t r E t    has been introduced. 

Eq. 6-3 can be rewritten as Eq. 6-5 by introducing the scalar flux (representing the number of 

neutrons per unit of area per unit of time) which is expressed as Eq. 6-4.  

4

( , , ) ( , , , )r E t r E t d


   
            6-4 
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 
   

 

 

 

            6-5 

- s  ( , ' , ' , )r E E t    represents the probability of an incident neutron of energy E’ 

and direction '  to scatter into the energy E and the direction   within (dE, d ). By 

integration over all possible energies and angles, one obtains the total scattering 

contribution. 

- NF is the number of fissile isotopes 

- K is the number of delayed neutron families. Usually 6 or 8 families are considered. 

Sometimes instead of families the term groups is used; in this thesis families is preferred in 

order to avoid any confusion with energy groups. 

- 
p

i ( )E  is the prompt neutron spectrum of fission of the isotope i  

- 
, ( , ', ) ( , ', )f i r E t r E t is the fission rate of an isotope i for an incoming neutron of energy E’ 

- ( ')p

i E  is the number of prompt neutrons produced by the fission of an isotope i for an 

incoming neutron of energy E’ 

- d

k,i ( )E is the neutron spectrum for delayed neutrons emitted in the energy E (around dE) by 

the precursor family k due to the fission of isotope i. 

- k is the radioactive decay constant of the precursor family k, assumed to be independent of 

i. 

- 
, ( , )k iC r t  is the precursor concentration of the precursor family k for a fission of isotope i 

It can be mentioned that for steady state problems, the neutron spectrum for delayed and prompt 

neutrons are grouped into an effective neutron spectrum is considered (the same simplification is 

used for the number of neutrons ).  

Scattering term 

Fission term 
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It can be seen in Eq. 6-5 that the precursor concentration 
, ( , )k iC r t  is necessary to determine the 

solution of the transport equation. An additional equation to determine the precursor concentration 

and its evolution in time is hence necessary, as presented in the next section. 

 

6.1.2. Time-dependent precursor concentrations  

 

The precursor concentrations can be obtained by solving Eq. 6-6 for all isotopes and for all delayed 

neutron precursor families. Eq. 6-6 is obtained by considering that the delayed neutrons resulting 

from radioactive decay are emitted at the same location as the prompt ones resulting from fission 

i.e. at the spot of the fission event. This is a good approximation for a reactor using solid fuel but has 

to be modified e.g. for molten salt reactors due to fuel motion. Therefore, the precursor 

concentration only depends on the position and time variables. 

,

, , ,

0

( , )
( , ) ( , ) ( , , ) ( , , )

k i

k k i k i i f i

C r t
C r t r t r E t r E t dE

t
   


   

           6-6 

Where 

-  
, ( , )k k iC r t  represents the disappearance of precursors due to radioactive decay 

- , ,

0

( , ) ( , , ) ( , , )k i i f ir t r E t r E t dE  


   represents the production of precursors due to the 

fission of isotope i. 

- 
, ( , )k i r t represents the delayed neutron fraction of isotope i.  

, ,

0
,

,

0

( , ) ( , , ) ( , , )

( , )

( , ) ( , , ) ( , , )

d

k i f idef

k i

i f i

r E r E t r E t dE

r t

r E r E t r E t dE

 



 














  

- 
, ( )d

k i E is the average number of delayed neutrons emitted by the decay of an isotope i in 

the decay family k and ( )i E  is the total number of neutrons emitted (both prompt and 

delayed) by isotope i in the energy range dE defined as 

,

1

( ) ( ) ( )
K

p d

i i k i

k

E E E  


   

 

The delayed neutron fraction of 238U for example is of 0.0158 while the one of 239Pu is of 0.00215 [38] 

and indicates already that fast reactors with MOX fuel are more “nervous” than uranium fueled 

thermal reactors. 

Indeed, the time between a fission event and the emission of a delayed neutron from a fission 

product goes from a fraction of seconds to a few tens of seconds. Delayed neutrons are essential for 

the control of the nuclear reactor as their existence increases the response time to a reactor 
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perturbation. This gives to the system and the operator some time to react to certain variations in 

reactivity and reactor power. A smaller amount of delayed neutrons leads to a shorter reaction time. 

 

Eqs. 6-2 and 6-6 are coupled equations since the neutron precursor concentrations depend on the 

neutron flux which itself depends on the precursor concentration through the delayed neutron 

source term and both, the neutron flux and the precursor concentrations, are time-dependent 

quantities. Usually another formulation of the transport equation based on a unique average fissile 

isotope is chosen for convenience. 

 

6.1.3. Average isotope equations 

 

The previously described neutron transport equation and the precursor concentration equations 

have to be solved for all isotopes and all decay families. Therefore, for notation simplification, a 

unique averaged fissile isotope notation can be introduced to express these equations. Averaged 

prompt and delayed fission spectra as well as averaged delayed neutron fractions are hence defined 

– Eqs. 6-7, 6-8, 6-9. 

, ,

1 0

,

1 0

( , ) ( , , ) ( , , )

( , )

( , , ) ( , , )

NF

k i i f idef
i

k NF

i f i

i

r t r E t r E t dE

r t

r E t r E t dE

  



 















 

 

            6-7 

 

, ,

1 1 0

,

1 1 0

1 ( , ) ( ) ( , ', ) ( , ', ) '

( , , )

1 ( , ) ( , ', ) ( , ', ) '

NF K
p

k i i i f idef
i kp

K NF

k i f i

k i

r t E r E t r E t dE

r E t

r t r E t r E t dE

   



  



 



 

 
  

 


 
  

 

  

  

                 6-8
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The total fission production term is defined as Eq. 6-10. 

 
,

1

( , , ) ( , , )
NF

f i f i

i

r E t r E t 


                6-10 

 

In addition to the average isotope notation, an operator notation is usually considered in order to 

further simplify the notation of the neutron transport equation, Eqs. 6-11 and 6-12 [147]. 
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Where  

- ( , , ) ( , , , )
def

t r E t r E t    
 

H represents the neutron disappearance through 

leakage and interaction with the medium 
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appearing after a scattering collision 
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S r E t r E t C r t 
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   is the delayed neutron source 

- ( , , , )S S r E t   

The set of equation 6-11 and 6-12 is a more compact way to write Eqs. 6-2 and 6-6. 

 

6.1.4. Steady state transport equation 

 

If the reactor is at steady state, the time-dependent terms in Eq. 6-11 and 6-12 vanish and Eq. 6-12 

yields k k kC   F  so that the transport and precursor equations are resumed by Eq. 6-13 and 

Eq. 6-14. 
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p d S      H S F F           6-13 

k
k

k

C





 F                    6-14 

If S=0 and the reactor is at steady state and if in addition >0 then the reactor is called a critical 

reactor. This means that the number of neutrons produced is equal to the number of neutrons which 

are consumed. Eq. 6-13 then reduces to Eq. 6-15. 

p d     H S F F                6-15 

 

Or 

  0  H S F            6-16 

 

In reality or e.g. due to cross-section uncertainties or modeling approximations the reactor may 

slightly deviate from being critical, but it is still convenient to use a steady state equation. It has been 

proven that any reactor can be described with the “associated critical reactor” [146]. This means that 

by keeping the same geometry, the same materials etc. as in the off-critical reactor while modifying 

the fission term, one can solve the equation for a critical reactor to determine the flux representative 

for the off-critical reactor. Thus, the effective multiplication factor, keff, is introduced. The value of keff 

reflects the criticality situation of the reactor: if keff >1 the reactor is supercritical, if keff=1 the reactor 

is critical and if keff<1 the reactor is subcritical. Eq. 6-16 transforms into Eq. 6-17. 

  0
effk

  
 

       
 

F
H S H S F                         6-17 

Eq. 6-17 is usually referred to the eigenvalue problem where 
1

 
effk

  is the eigenvalue and  is the 

associated eigenfunction. If the number of neutrons per fission ν of a reactor which is off-critical is 

divided by keff, the reactor becomes critical. Eq. 6-16 and Eq. 6-17 are homogeneous equations. Thus, 

the amplitude of  is arbitrary. Usually this amplitude is normalized by considering the thermal 

power of the reactor. 

 

When treating time-dependent problems, solving Eq. 6-17 provides an initial state and the time-

dependent equations 6-11 and 6-12 are solved during the transient assuming that the reactor was 

initially in a steady-state condition. 

 

6.2. Numerical solutions of the time-dependent neutron transport 

equation 

 

Usually the neutron transport equation is solved numerically, except for very simple cases for which 

it might be solved analytically [148]. Each variable (angle, energy, space and time) has therefore to 

be discretized. Different methods can be considered for their discretization [149]. In SIMMER-III the 
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solution method is a finite difference scheme for space, a SN method for angle, a multi-group method 

for energy and an improved quasistatic method for the time discretization. The different 

methodologies are described hereafter with special emphasis on the time discretization methods. 

 

6.2.1. Angular and spatial discretization 

 

Angular discretization 

In SIMMER, the angular variable is discretized following a discrete ordinates method also called SN 

method [150]. This method uses a set of discrete directions 
n and associated weights nw . The 

transport equation for these discrete angular domains can be written as Eq. 6-18: 

n n p n d n nS      H S F F           6-18 

- ( , , ) ( , , , )
def
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 
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0
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
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       S  

In order to evaluate the integral over the angle a quadrature formula of the following type – Eq. 6-19 

- is used to choose the N directions 
n  and the N weights nw : 

14

( ) ( )
N

n n

n

f d w f
 

               6-19 

 

The previously written Eq. 6-18 can then be written N times. A system of N equations, coupled by the 

sources, and to be solved for n = ( , , , )nr E t   is then obtained. A spatial discretization is then 

applied to these equations.  

 

Spatial discretization 

In SIMMER, the spatial variable is discretized through a finite difference method. This means that the 

spatial domain is divided into M intervals (axially and radially) and that the transport flux, solution of 

the transport equation, is found at the cell center. Boundary conditions are necessary [151].  

 

6.2.2. Energy discretization 

 

To further facilitate the solution of the transport equation a multi-group energy discretization is 

applied. The energy continuum of neutrons is divided into G groups, of width ∆Eg. All neutrons of 

one group are assumed to be represented by the same energy i.e. to travel at the same velocity. The 
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representative quantities for each energy interval are obtained by integration over the energy 

interval - Eq. 6-20 to 6-22. Usually, at least for fast neutron systems, group 1 is attributed to neutrons 

with the highest energy. 
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The cross-sections for a certain group are obtained by keeping the reaction rate constant and are 

determined as Eq. 6-23. 
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where i stands for any interaction type. For the double differential scattering cross-section, Eq. 6-24 

is applied. 
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where h and g are the energy groups for incident and scattered neutrons, respectively. 

 

The multi-group transport equation can then be written for each energy group g within [1, G] as Eq. 

6-25. 

,

g

( , , )1
( , , ) ( , , ) ( , , ) ( , , ) ( , , )

v

g

g t g g g g

r t
r t r t r t Q r t S r t

t


 

 
        


   6-25 

In practice, ,t g  does not depend on angle and in Eq. 6-23 the scalar flux is used. In Eq. 6-25 the 

multi-group cross-sections are formally defined. However, as it can be seen from e.g. Eq. 6-23, for 
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determining energy averaged group constants one actually needs to already know the energy 

dependence of the neutron flux, i.e. the solution of the posed problem. Usually, the multi-group 

cross-sections are provided by a cross-section processing code for which the user has already 

determined the energy intervals and some suitably chosen problem-adapted weighting function [76]. 

 

A further simplification of the multi-group transport equation is the multi-group diffusion equation 

which involves the scalar flux. We will consider the case of time independent problems in the 

following. Going from the multi-group transport equation to its simplified diffusion form can be 

performed under certain approximations, the usual one being the decomposition of the group flux 

( , )g r   into the group scalar flux  g r  and the group current ( )gJ r  considering that the source 

terms are isotropic in the laboratory system - Eq. 6-26 [152]. 

 ( , ) ( )g g gr r J r                      6-26 

It is as well considered that the current can be expressed following Fick’s law for diffusion: 
 

   ( )g g gJ r D r r   
              6-27

 

Introducing Eq. 6-26 in Eq. 6-25 in its time independent form (i.e. 
( , , )

0
g r t

t

 



) yields Eq. 6-28 

after rearrangement: 
 

,( ) ( ) ( ) ( ) ( ) ( )g g r g g g gD r r r r Q r S r      
                   6-28

 

Where  

- ( )gD r is the diffusion coefficient in energy group g and is given as  

,

1
( )

3 ( )
g

tr g

D r
r




 with , ( )tr g r the neutron transport cross-section in the energy group g. 

, , ,( ) ( ) ( ) ( )tr g t g g s gr r r r      

 

( )g r  represents the mean cosine of the scattering angle in energy group g. If isotropic 

scattering is considered, ( )g r  equals 0 and the transport cross-section in group g equals the total 

cross-section in group g. Even if scattering is isotropic in the center of mass system, it is always 
anisotropic in the laboratory system. For heavy nuclei however, the mean cosine equals almost zero 
in the lower energy ranges. 
 

, ( )s g r is the scattering cross-section in energy group g. 

 

- , ( )r g r is the removal cross-section in group g and is defined 

as , , ,( ) ( ) ( )r g t g s g gr r r    . ,s g g  is often called “self-scatter cross-section” or 

“within group scattering cross-section”. 

- ( )gQ r  and ( )gS r  are the source terms in energy group g. 

 

Similar to multi-dimensional multi-group neutron diffusion codes, discrete-ordinates multi-group 

neutron transport codes employ a two-level nested procedure to solve the neutron transport 
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equation. The two iteration levels are called outer and inner iterations. The outer iteration is used to 

determine the fission and upscattering source, while the inner one uses these sources to determine 

the angular and space dependent neutron flux within each energy group [76].  

Accelerating the convergence of these iterations is necessary to reduce computational (CPU) time 

and for this purpose the diffusion synthetic acceleration (DSA) method is frequently employed (e.g. 

in DANTSYS [76] or PARTISN [153]). In this method a diffusion equation with adjusted space 

dependent coefficients is used. An alternative method applies so-called coarse mesh rebalancing. 

Consider first the inner iteration number l for the equation of energy group g. The inner iteration 

equation is given as Eq. 6-29 where the fission and the scattering sources to the group have been 

combined with an external source into ( )gQQ r . For simplicity of presentation it is assumed here 

that ( )gQQ r and scattering is isotropic. This term remains unchanged throughout the iteration in 

the energy group. In Eq. 6-29 ( , )
l

g r  is the angular flux in iteration l  and it is determined from 

the scalar flux at iteration 1l  , 
1l

g


. ( )gQQ r is computed using the fluxes from the preceding 

iterations. 

 
1

, ,( , ) ( ) ( , ) ( ) ( ) ( )
l l l

g t g g g s g g gr r r QQ r r r  


     
        6-29

 

 

To compute the scalar flux in iteration l , ( )
l

g r , needed for the next iteration 1l   on the angular 

flux a corrected diffusion equation is used which employs
l

g  [76]. Different schemes are possible 

[76] but their description is omitted here.  
 

6.2.3. Time discretization 

 

Usually, unless the reactor is at steady state, the analysis of the dynamic behavior of nuclear reactors 

needs the solution of the time-dependent neutron transport equation. The most straightforward 

solution scheme to treat the time-dependence is based on an implicit time discretization. This 

approach requires a high CPU time and, if transport theory is applied instead of diffusion theory, a 

fairly large storage capacity of computer memory for storing angular dependent neutron fluxes, even 

nowadays. Thus, this method is only used to check more complex or approximate methods. In the 

following, some alternative methods will be discussed, as to know the Improved Quasistatic Method 

(IQM), the adiabatic approach and the point kinetics approach. An overview of differences between 

these methods can be seen from Table 6-1. 
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Term 

Methods 

Direct 
Improved 
quasistatic 

Adiabatic 
Point 

kinetics 

t




 yes yes no no 

1 1

v

d

dt




   yes yes no no 

 dS   yes yes no no 

Implicit coupling 
via feedback 

yes yes yes no 

Decoupled shape 
distortion 

yes yes yes no 

Initial shape yes yes yes yes 
 

 

Table 6-1. Different time discretization schemes and their hypothesis [149]. 

Most of the methods in Table 6-1 are based on the perturbation theory. Hence, before going to the 

specificities of each individual method, an associated introduction to perturbation theory is 

presented here. 

Perturbation theory (PT) 
 

Strictly speaking, Eq. 6-17 should be solved for every change in the reactor state. Consider a reactor 

system near critical steady state conditions for which a calculation has already been performed. The 

system is fully described neutronically although in a somewhat approximate manner i.e. the flux is 

known, keff is known. Now let the system undergo a small change by e.g. a small variation in the 

material density or temperature distributions referred later as perturbation. The system will respond 

to this perturbation by a variation in the multiplication factor keff. It is not always necessary to solve 

again the neutron transport equation for this perturbed state to obtain a reasonably accurate 

response of the system if perturbation theory (PT) is used [149]. 

 

In the PT approach a weighting function is employed in order to better take into account “weights” of 

different neutrons in sustaining the reaction chain. In principle the weighting function is arbitrary but 

it is usually chosen to be the adjoint flux * ( , ,r E  ) for improving the accuracy of perturbation 

calculations with approximate flux distributions11 – details are provided in Appendix B. The static 

adjoint flux reflects the importance of a neutron to sustain the chain reaction including all 

subsequent neutron generations. For example, a neutron in the center position of the reactor has a 

high probability to cause a fission while a neutron placed at the surface of the reactor would have a 

high escape probability. Thus, the neutron placed in the center is more important to the chain 

reaction than the one placed at the periphery. Similarly, a neutron whose energy lies in the energy 

domain which has a higher reproduction factor is more important to the chain reaction than one in 

the resonance energy domain (where the capture probability may be extremely high) [146]. The 

mathematical definition of the adjoint flux is the solution of the adjoint equation of the flux (Eq. 6-

30).  

*
* * *

*
0

effk


 
    

 

F
H S            6-30 

                                                            
11 In this section perturbation theory is described for the continuous energy, angle and space domain. 
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In Eq. 6-31 the adjoint operators are introduced. An adjoint operator *
H of an operator H  is 

defined by Eq. 6-31. This equation holds for all possible adjoint functions  and real functions   of 

 , ,r E  . 

* *, , ,      H H H 12

         6-31
 

In Eq. 6-30, the fundamental eigenvalue in the adjoint flux equation is actually the same as in the 

direct flux equation in its analytical form (only approximate agreement in discretized form) i.e. 

1

effk
  . The derivation is given in Appendix A. 

Now that the adjoint flux has been defined, a brief overview of a PT approach is given in the 

following. 

Consider an unperturbed state and a perturbed state, indexed 0 and 1 respectively. The two states 

are described by steady state equations Eq. 6-32 and 6-33, respectively. 

0

0 0 0

,0

0
effk


 

    
 

F
H S            6-32 

 

1

1 1 1

,1

0
effk


 

    
 

F
H S            6-33 

 

By expressing the perturbed flux as a combination of the unperturbed flux and its first order variation 

i.e. 1 = 0 0   and by introducing this into Eq. 6-33 one obtains Eq. 6-34. 

  1 1

1 1 0 0 1 1 01
,1 ,1eff effk k

  
 

       
 

F F
H S H S        6-34 

A similar approach might be applied to the fission operator and the inverse of the multiplication 

constant – Eq. 6-35 and 6-36.  

1 0  F F F            6-35 

and 

   1 0

,1 ,0

1 1 1

eff eff effk k k
   

 
          

 

        6-36 

 

                                                            
12 ... refers to an integration over the phase space domain. 
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In Eq. 6-36,  is the static reactivity which is defined as 
1

1
effk

   . The first term on the right hand 

side of Eq. 6-34 might be rewritten as Eq.6-37 if Eqs. 6-35 and 6-36 are applied. 

01

0 0 0 0

,1 ,1 ,0

1

eff eff eff effk k k k
   

 
     

 

FF F
F        6-37 

 

Eq. 6-37 can be introduced into Eq. 6-34 and the resulting equation can be multiplied by the adjoint 

function for weighting prior to integration. The second order terms are dropped, Eq. 6-38 is obtained 

[149].  

 
* * * * 1

0 1 1 0 0 0 0 0 0 0 1 1 0

,1 ,0 ,1

1 1
, , , ,

eff eff effk k k
       

 
         

 

F
H S F F H S           6-38 

 

By subtracting the unperturbed equation Eq. 6-32, multiplied prior to integration by the adjoint 

function, to Eq. 6-38, Eq. 6-39 is obtained. 

   
1

* * *

0 0 0 0 0 0 1 1 0

,0 ,1

1 1 1
, , ,

eff eff effk k k
     

     
                   
     

H S F F H S F       6-39 

 

The second term on the right hand side of Eq. 6-39 is then decomposed in its first and higher order 

contributions – Eq. 6-40. 

   

 

1

* *

0 1 1 0 0 0 0 0 0

,1 ,0

*

0 0 0 0

,0

*

0 0 0

1 1
, ,

1 1
,

1
,

eff eff

eff eff

eff

k k

k k

k

   

 

 

   
            

   

 
         

 

 
     

 

H S F H S F

H S F F

F

         6-40 

 

In first order perturbation theory (FOP) the higher order terms are neglected since the first order 

term is assumed to represent a small perturbation. Furthermore, the first order term i.e. the first 

term on the right hand side of Eq. 6-40 might be rewritten as Eq. 6-41 (due to Eq. 6-30). 

   * * * **
00 0 0 0 0 0 0 0 0

,0 ,0

1 1
, , 0

eff effk k
   

   
             

   

H S F H S F          6-41 

 

Therefore Eq. 6-39 results in Eq. 6-42. 
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 
* *

0 0 0 0 0

,0

1 1
, ,

eff effk k
   

   
           
   

H S F F          6-42

  

By noticing that 
1

effk


 
    
 

 one yields the FOP reactivity increment – Eq. 6-43. 

 *

0 0

,0

*

0 0 0

1
,

,

effk
 


 

 
    

 
 

F H S

F
  

       6-43 

Any small reactivity variation induced by a perturbation of the reactor can thus be approximately 

calculated by applying Eq. 6-43 without needing to determine the perturbed flux. No additional 

solution of the transport equation is thus necessary which allows saving CPU time, in particular if the 

system undergoes several perturbations. 

 

In order to improve the accuracy of the FOP results, exact PT is sometimes employed. In this method 

the perturbed flux, solution of the perturbed problem, needs to be known.  

Eqs. 6-30 and 6-33 are multiplied by 1 and 
*

0 respectively prior to integration.  

*
* * *0

1 0 0 0

,0

, 0
effk

 
 

    
 

F
H S

         6-44

 

* 1

0 1 1 1

,1

, 0
effk

 
 

    
 

F
H S

          6-45

 

Revolving Eq. 6-44 results in Eq. 6-46. 

* 0
0 0 0 1

,0

, 0
effk

 
 

    
 

F
H S             6-46 

 

Applying Eq. 6-35 to Eq. 6-46 one can rewrite Eq. 6-46 as Eq. 6-47. 

* 1
0 0 0 1

,0 ,0

, 0
eff effk k

 
 

     
 

F F
H S              6-47 

 

 

Subtracting Eq. 6-47 and Eq. 6-45 results in Eq. 6-48. 
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*

0 1 1

,0 ,1 ,0

1 1
, 0

eff eff effk k k
 

  
       
    

F
H S F         6-48 

 

Noticing that 
,1 ,0

1 1

eff effk k
    and rewriting Eq. 6-48 gives Eq. 6-49.  

*

0 1

,0

*

0 1 1

,

,

effk
 


 

 
    
 

 

F
H S

F
            6-49 

Eq. 6-49 gives the exact formula of the reactivity increment following a perturbation. Contrary to 

FOP, in Eq. 6-49 the perturbed flux should be considered. 

 

The rest of this section deals with the time dependence treatment of the neutron transport 

equation. The direct method, the improved quasistatic method as well as the adiabatic and point 

kinetic methods, employed for its solution, are detailed. Note that other methods do exist but they 

are less relevant for the considered area of safety studies. 

The direct method 

 

The direct method [149] is based on a straightforward time discretization. Considering some discrete 

time points (t0,….,tN) and employing the implicit approach, the time derivatives can be written as Eq. 

6-50 [149]. 

1( ) ( ) ( )n n n

n

X t X t X t

t t

 


 
           6-50 

where nt = 1n nt t   

 

Solving the time-dependent multi-group equations with the direct method will admittedly yield the 

correct solution if the time steps nt are sufficiently small. This requires, however, a cumbersome 

computational effort due to the large number of steps and other methods allowing longer time steps 

are thus preferred for transient analyses. The direct calculations usually serve as checks for these 

more complex methods. 

 

The improved quasistatic method 

 

As described previously the direct method requires a high CPU time and additional provisions are 

usually made to accelerate the treatment of the time dependence of the flux. Most of them rely on 

the fact that the spatial, angle and energy distribution of the flux – called flux shape – varies more 

slowly with time than its amplitude. The idea of the improved quasistatic approach hence lies in the 

factorization of the flux into two functions (separation ansatz): the amplitude function p(t) which 
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contains most of the time dependence and the shape function ( , , , )r E t  depending on space, 

energy, angle and to a lower extent on time Eq. 6-51 [149]. 

( , , , ) ( ) ( , , , )r E t p t r E t              6-51 

 

The splitting of Eq. 6-51 is arbitrary since p(t) can be multiplied by a given factor and 

( , , , )r E t  can be divided by the same factor. In order to make the splitting unique, the shape 

function is normalized. The normalization constant   also called gamma constant is therefore 

imposed, that facilitates shape calculations as explained in the following. 

 

*

0

1
, constant
v

               6-52 

 

No approximation is made at this stage. Eq. 6-51 is put into Eq. 6-11 and Eq. 6-12. One then obtains 

Eqs. 6-53 and 6-54. 

 

1

v

p

d

dp
p p p p S S

dt t


    

 
      

 
H S F         6-53 

 

k
k k k

C
C p

t
  


  


F             6-54 

 

Eq. 6-53 and 6-54 are referred to the shape equations as they are used to calculate the flux shape 

and the corresponding precursor concentrations. 

The next step is now to determine the amplitude function. For this purpose Eq. 6-53 is integrated 

over angle, space and energy. Prior to integration, Eq. 6-53 is multiplied by a weighting function 

usually chosen to be the static adjoint flux 
*

0 . 

Application of the normalization constraint, Eq. 6-52, to the weighted Eq. 6-53 results in Eq. 6-55 due 

to the fact that 

*

0

1
,
v

0
t

 




 .  

By taking the product of the precursor equation with the delayed neutron spectrum and the source-

free adjoint flux, solution of a homogeneous problem, Eq. 6-56 is obtained. Eq. 6-55 and Eq. 6-56 are 

referred to the amplitude equations or point kinetic equations.  

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
k k

k

dp t t S t
t p t c t

dt t t

 



  

 
         6-55 
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( )
( ) ( ) ( )

( )

k k
k k

dc t
t c t p t

dt t


  


         6-56 

 

The kinetic parameters appearing in Eq. 6-55 and 6-56 are defined as follows. 

*

0

1
( ) , ( )t    F H S
F

          6-57 

*

0

1 1
( ) ,

v
t   
F

           6-58 

*

0 ,

1
( ) ,k d kt   F
F

            6-59 

( ) ( )k

k

t t              6-60 

Eq. 6-57 gives the definition of the reactivity in the improved quasistatic method. It is defined as a 

neutron balance per weighted neutron generation. Eq. 6-58 gives the neutron generation time and 

Eq. 6-60 gives the effective delayed neutron fraction i.e. the delayed neutron fraction is weighted by 

the adjoint function. This reflects the effectiveness of delayed neutrons with regard to fissions 

according to their energy and space distribution. 

In addition, the following quantities are defined: 

*

0( ) ,t  F F             6-61 

*

0

1
( ) ,S t S
F

           6-62 

*

0

*

0

( , , )
,

4
( )

1
,
v

d

k
k

k

r E t
C

c t






 

            6-63 

The shape derivative 
t




in Eq. 6-53 might be replaced by a backward difference as shown in Eq. 6-

64, similarly to the scheme explained for the direct method. The shape equation (Eq. 6.53) thus 

transforms into Eq. 6-65. 

  

1( , , , ) ( , , , )
( , , , ) n n

n

n

r E t r E t
r E t

t t

    
 

 
                 6-64 
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1

1 1 1 1

v v v

p d
n n n n

n n

Sdp S

p dt t p p t
     

 
       

  
H S F        6-65 

 

Eq. 6-65 can be solved if the shape at the previous time step is considered as an external neutron 

source. In addition, it is seen from Eq. 6-65 that the amplitude function has to be known prior to 

solving the shape equation. The shape and amplitude equations hence form a set of non-linear 

equations: solving the shape equation requires knowledge of the amplitude which itself implicitly 

depends on the flux shape through the point kinetic parameters.  

 

A first approximation has then to be introduced to solve this set of equations. Two different time 

levels are considered to solve the shape and amplitude equations. Taking advantage of the fact that 

usually the flux shape varies rather slowly with time, the shape equations are solved for a coarse 

time scale [ts
0 , …ts

n,ts
n-1… t

s
N]. The amplitude equations are solved for a much finer time scale {ts

n,i  

=tn,i,0 … tn,i,j , tn,i,j+1 …… tn,i,J = t
s
n,i+1 }. It is important to mention that an improved quasistatic method 

solution is close to the “exact” one if all time steps are close to zero, similarly to the direct method. If 

the same shape steps are used for the IQM as for the times steps of the direct method the accuracy 

is usually higher. 

From the point of view of the numerical solution it is worthwhile to mention that according to Eq. 6-

64, an angular-dependent “source-term” appears on the right hand side of Eq. 6-65. 

 

In addition to the IQM, several other methods have been developed [149]. In the subsequent 

sections the adiabatic method and the point kinetics method are detailed.  

 

Adiabatic method  

 

In the adiabatic method, the space-time factorization (Eq. 6-51) is employed but the shape function is 

recomputed during the transient for “coarse” time steps, solving an eigenvalue problem (Eq. 6-66). 

0
effk


 

    
 

F
H S          6-66 

 

The point kinetic parameters are computed in the same manner as in the IQM.  

 

Point kinetic (PK) method 

 

In the point kinetic (PK) method the flux shape is considered to remain unchanged during the whole 

transient i.e. is assumed to be equal to the initial flux shape. 

As concerns the kinetic parameters, neutron generation time and delayed neutron fraction, they 

remain unchanged during the transient. The time dependence of the reactivity is usually treated with 

a so-called feedback model. For this purpose pre-computed reactivity coefficients are used to 

compute reactivity changes due to variations in temperatures or composition. The PK equations are 

written as Eq. 6-67 and 6-68. 
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The PK method is usually quite accurate if no strong material relocation occurs. It is often employed 

in safety codes dedicated to initiation phase analyses like the SAS4A code [71]. Even though this 

method is quite approximate, it usually helps in providing trends in the accident evolution and 

facilitates the understanding of basic phenomena. 

 

6.2.4. Conclusions 

 

The neutron transport equation governing the neutron population variation in a nuclear reactor is 

highly complicated in the general case and usually requires approximations and numerical solutions. 

To that end, discretization of all variables i.e. space, angle, energy and time is performed. Several 

methods have been mentioned especially for treating the time dependence. The accuracy of the 

solution of the neutron transport equation depends on the applied numerical schemes.  

 

6.3. Implementation of core thermal expansions in the SIMMER 

framework 

 

As mentioned earlier, SIMMER uses an improved quasistatic scheme to discretize in time the neutron 

transport equation. SIMMER is a coupled fluid-dynamic neutronics code; the neutron flux depends 

on cross-sections themselves depending on material density and temperature distributions 

depending on the power distribution which is function of the neutron flux. Therefore neutronic and 

fluid-dynamic equations should be solved simultaneously. For that, approximations have to be used. 

The fluid-dynamic part of SIMMER depends on the flux amplitude, calculated with PK parameters. 

Periodical interruptions in the fluid-dynamic calculations are foreseen in order to perform 

calculations in the neutronic part. 3 time levels for discretization are therefore considered in the 

neutronic part, the smallest one being the amplitude time step where the amplitude equation is 

solved. The intermediate time step is the reactivity time step where the amplitude equation coupling 

terms (e.g. reactivity) are updated and the largest time step is the flux shape step where the flux 

shape equation is solved.  

 

In Figure 6-3 the different neutronic time steps of SIMMER are depicted. The shape equation is 

solved over a macro time step i.e. [ts
0 , …ts

n,ts
n-1… t

s
N]. Within one macro time step, the PK parameters 

are calculated over reactivity time steps {ts
n-1  =tn-1, 0 … tn-1,i,tn-1, i+1 …… tn-1, I= t

s n} ϵ [ts
n-1 , t

s
n]. Within one 

reactivity time step, the amplitude equations are solved over fine steps {ts
n,i  =tn,i,0 … tn,i,j , tn,i,j+1 …… tn,i,J 

= t
s
n,i+1 } ϵ [ts

n, i , t
s
n,i+1]. Within one amplitude step, several fluid-dynamic steps are performed. 
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Consider a macro time step [ts
n-1 , t

s
n]. To perform fluid-dynamic calculations, the fluid dynamic-part 

of SIMMER needs as input the power distribution and the power amplitude. The power shape 

distribution is kept constant during the fluid-dynamic steps as it depends on the flux shape, which is 

held constant over several fluid-dynamic steps. The power or the flux amplitude is parabolically 

extrapolated. At the end of a reactivity step, thanks to updated densities and temperatures coming 

from the fluid-dynamic calculation, the cross-sections are recalculated. The flux shape can then be 

linearly extrapolated based on the beginning and the end of shape step values i.e. values calculated 

at ts
n-1 and ts

n respectively. Based on this updated flux shape, the PK parameters are recalculated. The 

specific power distribution (i.e. W/kg) is updated as well based on the extrapolated shape. The 

amplitude equation is then solved again based on the updated PK parameters. The amplitude is then 

calculated for the end of the reactivity step (prediction). An amplitude fit is then performed based on 

the current and the two previously calculated amplitudes. This function is then used for the next 

series of fluid dynamic steps. If the end of a reactivity step also happens to be the end of a shape 

step (or very close to it), the shape is not extrapolated based on new cross-sections but is calculated. 

The PK parameters are then calculated based on the new calculated flux shape and compared to the 

ones that were calculated based on the extrapolated flux shape. It is assumed that any discrepancy 

between the extrapolated and the calculated PK parameters is due to a linear accumulation of 

deviations during the shape step. The PK parameters are then corrected for each reactivity steps 

within the shape steps and the amplitude equations are solved again at each reactivity step. If the 

convergence criteria is fulfilled the algorithm goes to the next macro time step, otherwise all steps 

are repeated until full convergence is reached. The whole procedure is detailed in Figure 6-4. 

It has to be mentioned that since the analyses become more and more refined and a three-

dimensional representation of the reactor core enables realistic distribution of the materials 

constituting the core, including control rods, the development of the 3D version SIMMER-IV has been 

pushed. The parallelization of SIMMER-IV allows reactor simulations within available computational 

resources. 

 

1
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s
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nt  2
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nt 
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Figure 6-3. Neutronic time steps in SIMMER. Shape step: Δts=ts
n+1 - t

s
n. Reactivity step: Δtr=tn, i+1 - tn,i. Amplitude step: 

Δta=tn,i,j+1 - tn,i,j. 

At this point, it has to be mentioned that in SIMMER, the PT calculation is not performed for 

reactivity variations due to variation of cross-sections as it is usually performed in many other codes. 
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Instead of reactivity variations, the reactivity values are computed directly as a weighted neutron 

balance per neutron generation. Hence, it is defined as Eq. 6-69. 
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In this equation, all operators denoted with a tilde are operators of the perturbed system,  is the 

unperturbed shape i.e. the shape at the beginning of a shape step. ,0effk and 
*

0 are the 

multiplication constant and the scalar adjoint flux at time zero, respectively. 

s

nt 1

s

nt 

,1nt ,n it , 1n it 

( ), ( ), ( )

n

n n n

np



    

1

1 1 1

1 1 1

( ), ( ), ( )

( ), ( ), ( )

?

n

n n n

n n n

compared with

Discrepancies



    

    



  

  





,1 ,1 ,1( ), ( ), ( )n n n    

, , ,( ), ( ), ( )n i n i n i    

, 1 , 1 , 1( ), ( ), ( )n i n i n i      

,1,1 1, 1, 1,( , , )n c c cp  

, ,1 , , ,( , , )n i i c i c i cp  

, 1,1 1, 1, 1,( , , )n i i c i c i cp     

, ,1 , , ,

1

( , , )

?

n I I c I c I c

n

p

Convergence

 

 



, ,1( , , )n i i i ip  

, ,1( , , )n i i i ip  

 

 

, ,1n it
,n it

, 1n it 

, ,n i jt , , 1n i jt 

, , ,( ), ( ), ( )n i n i n i    

, 1 , 1 , 1( ), ( ), ( )n i n i n i      

, ,1 ,1 ,1 ,1( , , )n i i i ip  

, ,1 , , ,( , , )n i i j i j i jp  

, ,1 , 1 , 1 , 1( , , )n i i j i j i jp    

, ,1 1 1 1( , , )n i i i ip    

 

Figure 6-4. SIMMER neutronic scheme. Red values parameters are corrected ones. A tilde stands for extrapolation. 
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Within this framework, implementation of a core thermal expansion model is aimed at. As 

mentioned previously, the family of SIMMER codes was primarily developed to analyze later phases 

of a severe accident like the transition and expansion phases, therefore investigating the behavior of 

already disrupted cores [73]. The traditional route for calculating the evolution of a severe accident is 

usually a coupled SAS4A – SIMMER analysis: SAS4A is applied for modeling the initiation phase of the 

accident (the degradation of pins inside the can wall is simulated, usually, until the latter fails and 

radial motion of material is possible) and SIMMER is applied to later phases when also radial motion 

of melted materials occurs. Different models are used in SAS4A and in SIMMER. Indeed, in SAS4A, a 

channel-wise reactor model is used i.e. each SAS4A channel represents one or more sub-assemblies 

with either a single pin model or a multiple pin model and many individual channels without any 

mutual neutronic interaction are employed for a whole-core representation while SIMMER 

represents the whole core13. In addition SAS4A employs a neutron point kinetics model while 

SIMMER uses a spatial kinetics one. The axial flux and power shapes assumed in SAS4A will deviate in 

the general case from those determined in the SIMMER calculation after data transfer from SAS4A to 

SIMMER. Moreover, different approaches for describing material properties are used in SAS4A and 

SIMMER. Hence, certain approximations and adaptations may have to be applied with regard to the 

data transfer between the two codes [13]. As an alternative route, an extension of the application 

range of the SIMMER family codes to the initial phase of core disruptive accidents (CDAs) is therefore 

desirable and currently under implementation at KIT.  

One of the most important feedbacks to take into account in the simulation of the initiation phase of 

a CDA is the core thermal expansion feedback. This feedback is of less or no importance in the later 

phases of the accident, when the core is partly or fully molten and important time scales are usually 

much shorter than the time scale of expansion feedbacks. 

Safety codes for initiation phase analyses usually employ neutronic models based on the PK 

approximation detailed earlier. During the transient, the reactivity feedbacks for the full core or 

channel are evaluated by interpolating pre-computed reactivity coefficients for taking into account 

e.g. the Doppler effect or material density variations. These coefficients often remain the same 

during the whole transient. In the general case the axial and radial expansion coefficients are location 

dependent. The simplest approach applied in almost all codes for initiation phase simulations, except 

SAS4A, is to replace the location dependent coefficients by global ones for the axial and radial 

expansion. The SAS4A code employs an input file in which in particular, fuel reactivity profiles are 

provided. These profiles are reactivity worth values per kg for axial segments of SAS4A channels 

[154]. During transient simulations, the positions and dimensions of axial segments vary with time 

due to temperature variations and the related axial expansion reactivity feedbacks are computed on 

the basis of the fuel reactivity profiles.  

Similar approaches can also be introduced into SIMMER. However, in view of the spatial kinetics 

approach used in SIMMER, more advanced models for taking into account expansion feedbacks can 

be considered and the approximation of using location-independent expansion coefficients may no 

longer be needed. 

                                                            
13 Usually, a SAS4A channel is representative for several sub-assemblies. There exists a strategy for attributing 
members of a SAS4A channel to a particular ring of an RZ SIMMER-III model or to a particular sub-assembly of a 
SIMMER-IV 3D model. However, the attributing criteria are usually not unambiguous because various aspects 
have to be taken into account, among them fuel burnup and power-to-flow ratio. 
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SIMMER has already the capacity to take into account so-called external reactivity tables, which are 

provided by the user and contain time and reactivity values adjusting the reactivity in the subroutine 

used for reactivity calculations. These adjustment values are taken into account also in the spatial 

kinetics part i.e. during the shape calculation by normalization of the fission source term. Hence, one 

way to include the thermal expansion feedback could be to proceed along this line by extending the 

source code at places where the adjustment values are taken into account. However, this approach 

would make the adjustment algorithm less transparent for the code developer. Therefore, another 

option has been chosen namely to intervene at a lower level by modifying the cross-sections before 

they are used for reactivity and shape calculations, in particular by: 

- modifying the neutron generation cross-section for taking “effectively” into account the 

thermal expansion effect while assuming that relative density variations for all materials 

(fuel, structure, coolant) are similar due to expansion 

- modifying the coolant density and related coolant macroscopic cross-sections to compensate 

the assumption on similarity of relative density variations for the coolant and for other 

materials.  

This approach is explained in detail later.  

 

6.4. Core thermal expansion 

6.4.1. Physics and modeling 

 

Before addressing modeling details, an overview of the physics of the considered phenomena is 

proposed. During nominal and accidental conditions, the temperatures in the core will vary and 

induce variations in the core dimensions and material densities. This is referred to “thermal 

expansion”. 

This thermal expansion of the core may be subdivided into two components: the radial and the axial 

core thermal expansion14.  

In the following, “radial expansion” wording will be used also for compaction cases when at some 

radial locations the core diameter may decrease. Radial core expansion is caused primarily by the 

sub-assembly support diagrid which expands due to an increment of coolant inlet temperature. 

Additionally, the core constraint system present on top of some cores affects the core expansion as 

well since temperature variations at different canwall and other structure locations are influenced by 

the temperature of the coolant. The thermal expansion of these elements determines the sub-

assembly grid pitch variation at different axial locations playing a crucial role on the reactivity state of 

the reactor. If the core structures (diagrid, constraint plate) heat up, the core undergoes an increase 

of its radius, the average fissile material density therefore decreases and leakage in the axial 

direction is enhanced. This leads to a negative reactivity feedback. Moreover, more sodium will flow 

into the core, leading to an additional negative or positive, depending on the fuel type and location, 

feedback as mentioned in Chapter 2. On the contrary, if the sub-assemblies come closer to each 

other, i.e. if the core is undergoing a compaction, the leakage is decreased and a positive reactivity 

increment will be observed. Examples of radial core expansion are given in Figure 6-5. 

                                                            
14 It has to be mentioned that fuel bowing might occurs as well in a reactor, and is dependent on the core 
clamping system,  as detailed in Chapter 2, section 2.4.2. It is however out of the scope of this thesis. 
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Figure 6-5. Radial core compaction or expansion [155]. 

In addition to the radial core expansion, axial expansion occurs as well in a reactor. Axial core 

expansion is related to the pellet-to-fuel gap state, itself depending on the fuel burnup (and on the 

influence of a possibly existing bonding material between the pellet and the inner clad wall). In a 

standard MOX pin there exists normally a small a gap between the fuel and the cladding at 

fabrication. Due to previously described phenomena – see Chapter 5 - the gap tends to close during 

irradiation. Depending on the gap state, the fuel can either freely expand in axial direction, or be 

restrained by the cladding due to friction forces, which slows down the expansion process.  

Axial expansion increases the core height, therefore reducing the effective density of fissile core 

material. This leads to an increased leakage in radial direction, therefore introducing a negative 

reactivity feedback. In addition, more sodium will be present between the pins, thus introducing an 

additional feedback due to the neutron spectral variations and the leakage effects. The sign of this 

feedback will depend on the fuel type and the location of the expansion (core center or periphery).  
 

The previously described phenomena are potentially of high importance under transient and 

accidental conditions as they might delay or hamper a possible power excursion or mitigate its 

consequences. For example, in the first seconds of an unprotected loss of flow (ULOF) the axial 

expansion is rather limited and is of the order of 4 mm in sodium cooled fast reactor cores using 

MOX fuels. During the fuel heat-up it may amount to a fuel height increase of e.g. 2-3 cm [94]. Small 

dimensional variations may lead to considerable reactivity variations and it becomes important to 

accurately model these effects.  

Traditionally, to take into account core thermal expansions feedbacks the reactivity effect is 

calculated in most PK-based codes by employing a radial and axial expansion coefficients, applied to 

averaged variations in the core diameter and height. However, in order to simulate the expansion 

phenomena more accurately in order to take into account the previously described bowing 

phenomena (Chapter 2), non-uniform expansions (or to formulate it in another way region-wise 

expansions) may have to be considered. In this sense, the SIMMER codes can offer a more detailed 

expansion treatment compared to other codes, since they use a spatial kinetics scheme instead of a 

point kinetic one. 
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In SIMMER, dimensional variations in both directions and the related material density variations are 

computed by means of the linear expansion coefficient of either steel or fuel in the different mesh 

cells15. 

 

Radial core expansion 

According to the previously described physical phenomena, two simplified expansion modes can be 

considered in SIMMER for the radial thermal expansion of the core: the cylindrical and the conic 

modes.  

In case of the cylindrical mode, it is considered that only the diagrid at the core bottom drives the 

radial core expansion. The core parts above the diagrid follow the expansion of the diagrid - Figure 

6-6. This means that the radial expansion of each cell of the diagrid is calculated based on its own 

temperature and the radial dimensions of all cells above the diagrid are set equal to the ones of the 

diagrid.  

In case of the conic mode, both the diagrid at the bottom and the constraint plate at the top of the 

core are assumed to influence the radial core expansion. Both plates expand differently, reflecting 

the axial temperature distribution of the coolant. Radial mesh expansions are thus calculated for the 

cells of the core diagrid and of the constraint plate based on temperature. The cells in-between the 

two plates are assumed to experience variations of their radial dimension which can be obtained by 

linearly interpolating between the bottom (diagrid) and top (constraint plate) expansion - Figure 6-7. 

The cells above the constraint plate are assumed to have the same radial dimensions as the one of 

the constraint plate.  

 

         

ijr

Grid plate

Constraint plate

j

1j 

1j 

i  

Figure 6-6. Cylindrical expansion mode: (a) whole core (b) one ring (orange = where expansion is calculated. Dotted line = 
original size). 

 

 

 

 

                                                            
15 It has to be mentioned that in SIMMER no module is available for dealing with particular aspects of whole 
core structural mechanics. 

Grid plate Grid plate

Constraint plate

(a) (b) 
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ijr

Grid plate

Constraint plate

j

1j 

1j 

i  

Figure 6-7. Conical expansion mode: (a)    whole core      (b) one ring (orange = where expansion is calculated, in-between: 
linear expansion. Dotted line = original size). 

In both modes, the linear expansion coefficient of steel βsteel – Eq. 6-70 – is considered to calculate 

the new radial dimensions (denoted with index 1) of each cell of the diagrid and possibly of the 

constraint plate (
1, ,i jR ) depending on the chosen option (conic or cylindrical expansion) – Eq. 6-71. 

2

1 2 0 3 0( ) ( )steel s s sT T T T                             6-70 

where, T is the temperature of structure in the cell and T0 a reference temperature (e.g. 20˚C). 

 1, , 0, ,i j i jR R                                 6-71 

where  obtained by integration is given by      
2 3

1 0 2 0 3 0

1 1
1

2 3
s s sT T T T T T           

  

and 
0, ,i jR  is the radial mesh size at the reference temperature T0 and 0, , 1 1

0, , 0, ,
2 2

i j
i j i j

R R R
 

   see 

Figure 6-8. 

 

Figure 6-8. Description of an original cell at radial location i and axial location j. XS stands for cross-section. 

 

Axial core expansion 

To calculate the axial expansion of the core, the linear expansion coefficient of either fuel αfuel or of 

cladding steel αsteel is considered, depending on the burnup state. In fact at low burnup, the 

traditional pellet-cladding gap present at fabrication and after initial loading in the reactor is still 

open and the considered coefficient for the pin axial expansion is the fuel one. At high burnup the 

gap is usually closed and the cladding coefficient is thus used for calculating the pin expansion. In 

reality however a stress/strain equation should be solved, but as a first approximation only the 

temperatures of either fuel or clad are considered to calculate the axial expansion – Eq. 6-72 or 6-73. 
 

Grid plate Grid plate

Constraint plate

(a) (b) 
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2

1 2 0 3 0( ) ( )fuel f f fT T T T       
     

  if the gap is open      6-72 

 

2

1 2 0 3 0( ) ( )steel s s sT T T T                if the gap is closed      6-73 

 

where T is the fuel bulk or the clad temperature, depending on the chosen option and T0 a reference 

temperature.  

Axial mesh sizes are calculated with Eq. 6-74. 

1, , 0, ,i j i jZ Z               6-74 

With      
2 3

1 0 2 0 3 0

1 1
1

2 3
f f fT T T T T T           (open gap condition) 

    or       
2 3

1 0 2 0 3 0

1 1
1

2 3
s s sT T T T T T           (closed gap condition) 

and where 
0, ,i jZ  is the axial mesh size at the reference temperature T0, see Figure 6-8. 

 

Material density variations due to expansion 

Once the expanded radial and expanded axial dimensions are theoretically calculated in each cell, the 

material densities for this expanded geometry are computed - cf. Figure 6-9. For non-coolant 

components, material densities are obtained for the new dimensions by means of the mass 

conservation principle – Eq. 6-75. It has to be mentioned that in case of fuel driven expansion, also 

the cladding density is modified for simplification16.  

Because of the diagrid expansion, the sub-assemblies are pushed away from each other and more 

coolant is supposed to flow into the core. Thus, in first approximation, the coolant density is kept 

equal to the original one to reflect this mass increase – Eq. 6-76.  
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  for non-coolant materials      6-75 

1 0d d                                      for coolant                                    
  6-76 

                                                            
16 This can be easily justified when comparing the mass coefficient of reactivities for the main steel components 
(Cr, Fe, Ni) quoted in barns effective absorption cross-section normalized to the 3.65 barns for 239Pu: -0.014, -
0.013, -0.020 (barns) respectively [156]. 
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Thermal 
expansion

=

Original 
configuration (0)

Expanded
configuration (1)

 

Figure 6-9. Schematics of the expansion of a cell. 0 stands for original, 1 for the expanded configuration. XS for cross-
section. 

By employing the FOP, reactivity effects induced by the thermal expansion of each cell can be treated 

independently i.e. they are summed up over the whole core. Consequently, one major assumption 

that has to be proven here is that the expansion effect is additive i.e. the superposition of mesh-wise 

contributions is valid. In addition, the expansion effect is assumed to be linear in the later described 

methodology and therefore both assumptions are verified hereafter.  

 

6.4.2. Properties 

 

At first the linearity and additivity of the expansion effect in case of uniform expansions in one 

dimension (i.e. the expansion is the same within one direction) is to be proven.  

To prove linearity and additivity of the expansion effect in case of uniform expansions for sub-regions 

of the neutronic mesh, the European Reactor ANalysis Optimized calculation System ERANOS [157] is 

used and only direct calculations are performed. The reason for using ERANOS is that unlike SIMMER, 

for which tests of new calculation routes require code developments, the user determines the 

sequence of neutronics calculation steps in the ERANOS input. ERANOS has been developed over the 

past 20 years within the European Collaboration on Fast Reactors. It is a deterministic neutronics 

code system able to solve the Boltzmann transport equation and employs the SN method. It allows 

performing reference and design calculations for fast reactors and provides the flux shape and 

amplitude (normalized e.g. to the thermal power), as well as the reactivity. In addition, ERANOS can 

perform perturbation or sensitivity calculations. The ERANOS code calculations are composed of two 

parts: the cell calculation and the core calculations. The cell calculations are performed with the 

European Cell COde (ECCO) [158], which provides cross-sections and matrices. Those are then used in 

the full core calculations. 

For the following calculations a simplified CP-ESFR core model is set up as shown in Figure 6-10(a). 

The ESFR fissile core part has been kept while all other materials surrounding it have been replaced 

by sodium. The axial height of the fissile core (100 cm) has been subdivided into 5 layers of equal 

height, and symmetric to the core midplane as shown in Figure 6-10 (b). Several test cases have been 

analyzed to prove linearity and additivity of the expansion effect. They are listed in Table 6-2 (Case 2 

will be treated separately later). 
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Mesh height 

4 * 2.5 cm layer 5

4 * 2.5 cm layer 4

4 * 2.5 cm layer 3

4 * 2.5 cm layer 2

4 * 2.5 cm layer 1

4 * 2.5 cm layer 1

4 * 2.5 cm layer 2

4 * 2.5 cm layer 3

4 * 2.5 cm layer 4

4 * 2.5 cm layer 5  

 

Figure 6-10. (a) Schematics of the simplified CP-ESFR model. Red: fissile core zone of the CP-ESFR core. Blue: liquid 
Sodium. (b) Axial layout of the fissile zone with symmetric layers. 

Table 6-2. Considered test cases for proving the linearity and additivity of the expansion effect. 

 

Enrichment zones Na treatment Energy groups 
 

Information 

 
1 Zone 

2 

 Zones 

Na mass 

conserved 

Na density 

conserved 
1 group 

33 

groups 

Case 1 X  X  X  Reference 

Case 2 X   X X  
Effect of Na treatment if 

compared to reference 

Case 3  X X  X  
Effect of enrichment zones 

if compared to reference 

Case 4  X X   X 
Effect of energy groups if 

compared to case 3 

 

The first case to be considered (Case 1) is the simplest one i.e. 1 enrichment zone, 1 energy group 

and sodium mass is conserved during expansion. To validate the linearity of the expansion effect, 

several expansion percentages (named x in the following) have been assumed. Heights and densities 

of the expanded layer are modified according to Eq. 6-77 and Eq. 6-78 respectively.  

exp

.(1 )layer layer

original
anded by x

z z x                      6-77 

,

,

exp (1 )

M layer

originalM layer

anded by x

d
d

x



, M being fuel, steel, or sodium          6-78 

The central layer (layer 1, see Figure 6-10(b)) is expanded by 1%, 2% or 4%. A direct calculation is 

performed with the BISTRO solver [159] of ERANOS in each case with a precision on keff of 0.5 pcm. 

2.44m 

1m 1m 

(a) (b) 
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Results are given in Table 6-3 and Figure 6-11. They show that the expansion effect is linear as could 

also be expected from literature [25]. 

Table 6-3. Values of the expansion effect of layer 1 for different axial expansion percentages, 1 enrichment zone, 
1E group, sodium mass has been kept constant. 

 keff Δk/k1k2 (pcm) 

Reference 1.04278  

1% (layer 1) 1.04268 -9 

2% (layer 1) 1.04258 -18 

4% (layer 1) 1.04238 -37 

 

 

Figure 6-11. Linearity of the expansion effect of layer 1; 1 enrichment zone, 1 E group, sodium mass has been kept 
constant. 

Successive layers have then been expanded by 1%: the 1st layer is expanded by 1%, then the 1st and 

2nd layer, and so on. By subtraction, the contribution coming from each individual layer can be 

determined - Table 6-4. 

Table 6-4. Calculated expansion effects of each layer for 1% axial expansion, 1 enrichment zone, 1E group, sodium mass 
has been kept constant. 

 
keff Δk/k1k2 (pcm) 

Effect of layer n 

(Δk/k1k2)layer n - (Δk/k1k2)layer n-1 

Reference 1.04278 / / 

1% (layer 1) 1.04268 -9 -9 

1% (layer 1+2) 1.04259 -18 -8 

1% (layer 1+2+3) 1.04251 -25 -7 

1% (layer 1+2+3+4) 1.04246 -30 -5 

1% (layer 1+2+3+4+5) 1.04242 -33 -3 

Sum / / -32 
 

Of course the individual effect per layer decreases with increasing distance of the layer from the core 

midplane. Furthermore, one should have in mind that each keff value has an uncertainty of 0.5 pcm. 

An additional test has been performed, expanding only layer 2 (which is the one having the largest 
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effect after layer 1) in order to prove the independence of the expansion effect of the different 

layers. This yields the same effect as the one calculated in Table 6-4 (i.e. -8 pcm) and therefore, 

confirms the independence of the expansion effect of the different layers. 

The effect of two distinct enrichment zones on the additivity and linearity properties of the 

expansion effect is also considered – Case 3. In this case, 1 energy group is considered and the 

sodium mass is conserved during expansion. The inner and the outer core enrichment of the CP-ESFR 

Working Horse (WH) core at beginning of life (BOL) have been considered for the calculations i.e. 

14.05% and 16.35% respectively. Linearity is also proven in this case as shown in Table 6-5 and Figure 

6-12. The same approach as in case 1 is also applied here and the effect of 1% expansion of each 

individual layer is thus calculated - Table 6-6. 

Table 6-5. Values of the expansion effect of layer 1 for different axial expansion percentages, 2 enrichment zones, 1 E 
group, sodium mass has been kept constant. 

 keff Δk/k1k2 (pcm) 

Reference 1.07410  

1% (layer 1) 1.07395 -13 

2% (layer 1) 1.07380 -27 

4% (layer 1) 1.07349 -53 
 

Table 6-6. Calculated expansion effects of each layer for 1% axial expansion, 2 enrichment zone, 1E group, sodium mass 
has been kept constant. 

 
keff Δk/k1k2 (pcm) 

Effect of layer n 

(Δk/k1k2)layer n - (Δk/k1k2)layer n-1 

Reference 1.07410 / / 

1% (layer 1) 1.07395 -15 -15 

1% (layer 1+2) 1.07381 -29 -14 

1% (layer 1+2+3) 1.07370 -40 -11 

1% (layer 1+2+3+4) 1.07362 -49 -8 

1% (layer 1+2+3+4+5) 1.07358 -55 -6 

Sum / / -54 
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Figure 6-12. Linearity of the axial expansion effect of layer 1 for different axial expansion percentages, 2 enrichment 
zones, 1 E group, sodium mass has been kept constant. 
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The same test has been performed considering this time the inner core expansion only, the outer 

core expansion only or both expansions at the same time. Tests have been performed for 1% and 5% 

expansion. Additivity is shown in these cases - Table 6-7. 

Table 6-7. Expansion effects of 1% or 5% axial expansion of all layers in the inner core only, the outer core only or both. 2 
enrichment zones, 1 E group, sodium mass has been kept constant. 

 1% axial expansion 

of all layers 

5% axial expansion  

of all layers 

keff 
Δk/krefk2 

(pcm) 
keff 

Δk/krefk2 

(pcm) 

Assessed (based on 1% 

axial expansion results) 

Reference 1.07410 / 1.07410   

Inner Core 1.07396 -13 1.07334 -66 -65 

Outer Core 1.07362 -42 1.07171 -208 -210 

Inner and Outer Core 1.07348 -54 1.07100 -270 -270 

Sum Inner + Outer Core / -55 / -274 -275 
 

Evaluation of the effect of energy groups on the expansion effect properties (linearity and additivity) 

is performed hereafter – Case 4. Results in Table 6-8 should be compared to Case 3 (Table 6-7).  

Table 6-8. Expansion effects of 1% axial expansion of all layers in the inner core only, the outer core only or both, 2 
enrichment zones, 33 E groups, sodium mass has been kept constant. 

 1% axial expansion of all layers 

keff Δk/krefk2 (pcm) 

Reference 1.04322 / 

Inner Core 1.04313 -8 

Outer Core 1.04283 -36 

Inner and Outer Core 1.04275 -43 

Sum Inner + Outer Core / -44 
 

Linearity and additivity are proven also for this case. Now that the linear and additive properties of 

the expansion effect have been demonstrated in uniform expansion cases, the same tests are 

repeated in case of non-uniform expansions (i.e. different expansions are possible within one 

direction). 

 

Linearity and additivity of the expansion effect in case of non-uniform expansions 

Only cases 1 and 3 in Table 6-2 are considered in this subsection. Based on values for 1% axial 

expansion of each layer - cf. Table 6-4 - an assessment can be performed to obtain values related to 

non-uniform axial expansion in the reference case (Case 1) as shown in Table 6-9. These values are 

then compared to the values obtained via direct calculation for the built up case - Table 6-10. Results 

have a very good agreement and additivity of the expansion effect is thus proven for the non-

uniform axial expansion case within 6% relative discrepancy (representing 2 pcm difference at 

maximum having in mind the uncertainty of 0.5 pcm for each case). 
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Table 6-9. Assessed values based on 1% axial expansion values of each layer. 1 enrichment zone, 1E group, sodium mass 
has been kept constant. 

 Assessment based on 1% values 

∆ρ (pcm) 

5% (layer 1) 5*(-9) -45 

4% (layer 2) 4*(-8) -32 

3% (layer 3) 3*(-7) -21 

2% (layer 4) 2*(-5) -10 

1% (layer 5) 1*(-3) -3 

Total  -111 

Table 6-10. Values for a non-uniform axial expansion, 1 enrichment zone, 1E group, sodium mass has been kept constant. 
L stands for layer 

 

keff Δk/k1k2 (pcm) 

Effect of layer n 

(Δk/k1k2)layer n - 

(Δk/k1k2)layer n-1 

Reference 1.04278 / / 

5% L1 1.04228 -46 -46 

5% L1 + 4% L2 1.04191 -80 -34 

5% L1 + 4% L2 + 3% L3 1.04168 -101 -21 

5% L1 + 4% L2 + 3% L3 +2% L2 1.04157 -111 -10 

5% L1 + 4% L2 + 3% L3 +2% L2 +1% L1 1.04154 -114 -3 

Sum / / -114 
 

Besides, the effect of two distinct enrichment zones on the additivity and linearity properties of the 

expansion effect is considered in case of non-uniform expansions (Case 3). The inner and outer core 

enrichment of the CP-ESFR WH core at BOL is considered also in this case. Based on values for 1% 

axial expansion of each layer, values related to non-uniform axial expansions are assessed as shown 

in Table 6-11. These values are summed up and compared to direct calculation results of this 

expanded case listed in Table 6-12. Linearity and additivity of the expansion effect is proven for the 

non-uniform axial expansion case within 1% relative discrepancy (representing 1 pcm difference at 

maximum) – Figure 6-13. 

Table 6-11. Assessed values based on 1% axial expansion values of each layer. 2 enrichment zones, 1E group, sodium 
mass has been kept constant. 

 ∆ρ (pcm) assessment based on 1% values 

5% (layer 1) 5*(-13) -65 

4% (layer 2) 4*(-12) -48 

3% (layer 3) 3*(-10) -30 

2% (layer 4) 2*(-7) -14 

1% (layer 5) 1*(-3) -3 

Total  -160 
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Table 6-12. Values for a non-uniform axial expansion, 2 enrichment zones, 1E group, sodium mass has been kept 
constant. L stands for layer. 

 keff Δk/k1k2 (pcm) 

Reference 1.07410 / 

5% L1 + 4% L2 + 3% L3 +2% L2 +1% L1 1.07227 -159 
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Figure 6-13. Additivity and linearity of the expansion effect: values for a non-uniform axial expansion, 2 enrichment 
zones, 1E group, sodium mass has been kept constant. 

In all cases uniform and non-uniform expansions cause reactivity effects that show a linear and 

additive behavior. The assumption of summing up the expansion effect of each individual cell to 

obtain the overall reactivity effect can thus be safely accepted. 

 

6.4.3. Particularity of the sodium treatment 

 
This section explains why in Section 6.3, the expansion effects of a particular spatial sub-region 
subdivide into the effect of similar expansion of all materials for this sub-region and the effect of 
sodium density variations to compensate the assumption on similarity. The idea of the new 
methodology developed in SIMMER for taking into account the core thermal expansion feedbacks, 
similar for all materials, is to use density variations to reflect dimensional variations and hence be 
able to use the original mesh while taking into account dimensional variations.  
 
We will now consider a perturbation of amount x in the densities. In the following equations, indices 

1 and 0 refer to the perturbed and unperturbed case, respectively. All terms are adjoint-weighted 

reaction rates. 

Consider the diffusion approximation. In this case, the leakage term is proportional to the diffusion 

coefficient which is itself proportional to the inverse of the transport cross-section (see previous 

section). The generation and absorption terms are proportional to the cross-sections. Hence, in case 

of a perturbation of x in the densities, the FOP reactivity is computed according to Eq. 6-80. When 

calculating the reactivity variation due to this perturbation, based on the original reactivity Eq. 6-79, 
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one obtains Eq. 6-81 if written in one group approximation (for the purpose of demonstration only) 

and assuming that no spectral or spatial flux shifts have to be taken into account [160]. 

0 0 0
0

0

Leakage Absorption Generation

Generation


 
        6-79 

With *

0
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,
f
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Generation
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
  


  ; *

0 , tAbsorption     ; *

0 ,Leakage D    and  

φ*0 = φ*(t=0) 
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1
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

   6-80 

2

1 0 0 (1 ) 1Leakage x                 6-81 

In SIMMER however, the (approximately) FOP reactivity in the perturbed case is defined as Eq. 6-82. 

When calculating the reactivity variation, one gets Eq. 6-83. 

    

0 0 0

1,

0

0 0 0

0

1 1

(1 ) (1 )

1

(1 )

(1 )
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         6-82 

 1, 0 0 (1 ) 1simmer simmer Leakage x                6-83 

One may first notice that a reactivity variation due to density variation can be simulated under the 

previously mentioned assumption by a leakage variation only. In addition, one may see by comparing 

Eq. 6-81 and Eq. 6-83, that in SIMMER FOP calculations the variation of the leakage term is 

underestimated by a factor of 
2(1 ) 1

2
(1 ) 1

x
x

x

 
 

 
 if the “diffusion” approach is reasonable. 

Therefore the original SIMMER extrapolates the leakage between the shape steps instead of using 

first-order values.  

When considering a density change, the leakage term cannot be easily modified in the existing 

SIMMER scheme since this would need a redetermination of the partial currents and thus practically 

a new calculation of the angular flux. Thus, in order to extend the code for taking into account core 

thermal expansion feedbacks, the leakage term in the new methodology is approximately 

recomputed (by introducing a factor 2, assuming that x is small). 
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This approach however cannot be applied when different materials undergo different expansions 

within one cell as is typically the case with sodium. Indeed, the sodium mass is, in general, not 

conserved during a core expansion since radial core expansion allows more sodium to flow into the 

core. A special treatment for sodium will hence be applied. The idea behind the treatment is to 

modify the original sodium densities in such a way that the distribution of sodium variation 

throughout the reactor is considered in the shape calculations. This approach is detailed in section 

6.5.2. 

To get an idea of the effect of sodium mass variation, the simplified core model described earlier is 

analyzed. Several expansion percentages are considered for layer 1 and results can be found in Table 

6-13. 

Table 6-13. Values of the expansion effect of layer 1 for different axial expansion percentages, 1 enrichment zone, 
 1 E group, sodium density has been kept constant. 

 keff Δk/k1k2 (pcm) 

Reference 1.04278  

1% (layer 1) 1.04259 -17 

2% (layer 1) 1.04241 -34 

4% (layer 1) 1.04204 -68 
 

It can be noticed from Table 6-13 and Table 6-3 that a mass variation of 35 kg in total has an effect of 

84% (
68

1.84
37





) on the expansion effect value, indicating that this influence is not at all negligible. 

In addition Table 6-13 confirms that the expansion effect remains linear. Additional tests have been 

performed for 33 energy groups - Table 6-14. 

Table 6-14. Values of the expansion effect of layer 1 for different axial expansion percentages, 1 enrichment zone,  
33 E group sodium density has been kept constant. 

 keff Δk/k1k2 (pcm) 

Reference 1.04322  

1% (layer 1) 1.04309 -12 

2% (layer 1) 1.04296 -24 

4% (layer 1) 1.04270 -48 
 

Table 6-15. Values of the expansion effect for different layer expansions, 1 enrichment zone, 1 E group, sodium density 
has been kept constant or sodium mass has been kept. L stands for layer. 

  Δk/k1k2 (pcm) Relative 

difference 

(%) 
keff 

Na mass 

conserved 

Na mass not 

conserved 

Reference 1.04278 /   

5% L1 1.04185 -85 -46 45.8 

5% L1 + 4% L2 1.04118 -147 -80 45.7 

5% L1 + 4% L2 + 3% L3 1.04077 -185 -101 45.4 

5% L1 + 4% L2 + 3% L3 +2% L2 1.04059 -202 -111 45.1 

5% L1 + 4% L2 + 3% L3 +2% L2 +1% L1 1.04053 -207 -114 44.8 
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The previous approach has been applied to the other layers, in case of 1 energy group calculations - 

Table 6-15. From Table 6-15 it can be seen that modeling the sodium in a correct way has a large 

impact on the expansion results. It is therefore crucial to accurately model the effect of the variation 

of the sodium mass within the core in the core expansion reactivity feedback. 

 

6.5. A new methodology to take into account core expansion feedbacks in 

spatial kinetic codes 

6.5.1. The equivalence principle 

 

As previously described, SIMMER employs a spatial kinetic neutronic method and a Eulerian grid. 

Since the mesh is fixed, an alternative to changing the mesh has to be found and leads to the 

expansion models detailed hereafter [144]. The developed approaches rely on the fact that 

dimensional changes can be effectively simulated by cross-section variations for isotropic expansions 

by employing the so-called equivalence principle. 

The equivalence principle was first published in 1959 [160] (according to the information available to 

the author) and attracted additional attention more recently [161]. It stipulates that if all dimensions 

of a given configuration 1 are multiplied by a certain factor  and all neutron cross-sections are 

multiplied by 
1


, the reactivity and other neutronic properties are the same in the new configuration 

2 as in configuration 1. In other words, the equivalence is ensured as long as the products of cross-

sections and dimensions are kept constant in each direction during the transformation – Eq. 6-84. Of 

course, masses are not conserved in this approach. 

    
1 1 2 2

1 1 2 2

2 2

1 1

 =  

Z  = Z  

R R

R Z

R Z


 

 

 

           6-84 

To visualize this principle, an explanation based on [161] is given hereafter. 

Consider a uniform isotropic core perturbation i.e. the perturbation is the same within one direction 

(uniform) and is applied to all directions (isotropic). For simplification, dimension and density related 

quantities in the reactor are submitted to the same perturbation.  

The perturbation can for example be defined as a change in dimensions and densities.  

The atomic density N is per definition proportional to the inverse of the core volume. A change in the 

atomic density induces a change in the macroscopic cross-sections defined as Eq. 6-85, where σ is the 

microscopic cross-section. 

N              6-85 
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A change in the macroscopic cross-sections induces a change in the neutron mean free path , 

defined as the average distance a neutron can travel before colliding with an atom and expressed as 

Eq. 6-86. 

1
 


            6-86 

Physically, a uniform isotropic perturbation as defined earlier causing the original volume V1 to 

increase by a factor 
3 reaching a new volume V2 (i.e. 

3

2 1 =  V V ) also increases the neutron mean 

free path by
3 . On the other hand, each individual dimension is increased by the factor , which 

means that dimensions increase less than the neutron mean free path does. This causes the neutron 

leakage to globally increase and the reactivity to decrease.  

If the aim is now to keep the original reactivity value in the perturbed configuration, the change in 

neutron mean free path has to be identical to the change in linear core dimensions. The neutron 

mean free path should thus be proportional to  . The macroscopic cross-section and therefore the 

densities should hence be proportional to 
1


. Therefore to keep the same reactivity state as in the 

original non perturbed configuration, densities and dimensions should vary by an inverse factor.  

In conclusion, as long as the product of cross-sections and dimensions is kept constant between one 

configuration and its perturbed configuration, the reactivity and all other parameters are kept 

constant. An additional expansion of the equivalence principle is given in Appendix J. 

An example of the application of the equivalence principle in uniform isotropic and anisotropic cases 

is detailed hereafter. For simplification, the perturbation is considered to be the same for all 

materials, including the coolant. In addition, we will consider that instead of modifying cross-sections 

one might modify densities instead17. In Figure 6-14 the original core with original radial dimension 

R0, original axial dimension Z0, original set of densities d0 and therefore cross-sections 0 and an 

original reactivity state k0 is expanded isotropically by a factor α. The new dimensions and densities 

are expressed in Eq. 6-87. 

1 0.R R              6-87 

1 0.Z Z   

0
1 0 0 3

1

1V
d d d

V 
   (and therefore 1 0 3

1


    ) 

The core presents then a new reactivity state k1. The equivalence principle is now applied to this 

expanded configuration and allows keeping the same reactivity state k1 while using the configuration 

with original dimensions R0 and Z0 and modified densities d2 (or cross-sections 2 ) – Eq. 6-88. 

                                                            
17 This is due to the fact that all number densities are changed by the same factor. Therefore, the so-called 
resonance self-shielding factors remain unchanged since they depend only on ratios of number densities. 
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Figure 6-14. Uniform isotropic expansion. XS stands for cross-section. 

The equivalence principle is now applied to an anisotropic expansion case. In Figure 6-15 the original 

core with original radial dimension R0, original axial dimension Z0, original set of densities d0 and 

therefore  0 and an original reactivity state k0 is expanded anisotropically by a factor   in the radial 

direction and   in the axial direction. The new dimensions and densities are the ones in Eq. 6-89. If 

α=β, a uniform expansion is considered and the previously mentioned results are obtained. 

1 0.R R                6-89 

1 0.Z Z   

           0
1 0 0 2

1

1V
d d d

V 
   (and therefore 1 0 2

1


    ) 

After expansion, the core presents another reactivity state k1. The equivalence principle is applied to 

this expanded configuration to get the same reactivity state k1 in the core with original radial 

dimensions R0 and modified axial dimensions Z2 and densities (or cross-sections) d2 – Eq. 6-90. Note 

that the choice of having original radial dimensions instead of original axial dimensions is arbitrary 

(one could choose to have original axial dimensions instead of original radial ones and the following 

steps should then be adapted). 

1 1 0 2

1 1 2 2

.  = .  

Z .  = Z .  

R R 

 
         6-90 

This yields, after calculation, a new set of cross-sections and axial dimensions – Eq. 6-91 - in general 

different from the original dimensions unless α=β. 

2 0R R           6-91 

2 1

1
.Z Z


  

2 1.    
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Figure 6-15. Uniform anisotropic expansion. XS stands for cross-section. 

It might be worth mentioning that in case of an anisotropic expansion, it is not possible to obtain the 

same reactivity state k1 with a core having both original radial and axial dimensions. It is therefore 

necessary to consider 2 steps: the first one considering an isotropic uniform expansion and the 

second one considering a non-isotropic uniform expansion in order to reflect the considered 

expansion effect in a core with original axial and radial dimensions. The equivalence principal is not 

valid in the general case for non-isotropic, non-uniform expansions, but one would like to investigate 

whether an equivalence-based approach, sometimes also referred as equivalence principle in the 

following, would be a reasonably accurate approximation for relevant cases. 

The equivalence principle has been checked for uniform expansions and the particular example of 

isotropic uniform expansions is shown in Figure 6-16. The tests are performed with SIMMER and the 

overall neutronic mesh is considered for the expansion. 1%, 2% and 5% isotropic expansions are 

considered in the CP-ESFR WH at BOL. Since the sodium relative density variation is treated 

separately, the sodium has been expanded as all other materials. Comparisons between a really 

expanded model and a model for which the input densities are modified accordingly to the 

equivalence principle are given in Figure 6-16. Results match within 5% relative error.  

 

Figure 6-16. Comparison of the equivalence model and a real expansion for several isotropic expansion cases.  

Additional calculations for non-isotropic expansions are performed with ERANOS due to the flexibility 

of this tool compared to SIMMER. Several cases are considered for a simple core based on the CP-
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ESFR WH core. For these analyses however the average fuel mass in the outer core is half the one of 

the inner core, for convenience.  

Only 3 cases are considered in this section. Case 1 consists in the expansion of the upper fissile core 

part (above midplane) by 10% radially and only 1 enrichment zone is considered. Case 2 is the same 

as Case 1 but this time 2 enrichment zones are considered (same as in the CP-ESFR WH at BOL). Case 

3 is similar to case 2 but 1% radial expansion is considered instead of 10%. Direct calculations are 

performed, with 1 or 33 energy groups but only the results for 33 groups are discussed here. For 

each case, a calculation for a real expanded configuration as well as for the equivalent configuration 

(based on the equivalence principle) is considered. The sodium has been expanded as all other 

materials. Results are presented in Table 6-16, Table 6-17 and Table 6-18.  

It can be noticed from Table 6-16 that in case the core has a homogeneous enrichment, the 

equivalence principle provides good results with a relative discrepancy of less than 2%. As soon as 

different enrichment zones are considered, the equivalence principle is less accurate due to the 

spectral and spatial flux shift that is not properly taken into account. This is especially seen when only 

the inner or only the outer core is expanded (27.7% and 18.3% relative discrepancy in absolute value, 

respectively). When both cores are expanded in the same way, the discrepancy between the results 

provided by the equivalence principle and the ones given by a real expansion reduces to 5.4% in 

absolute value (Table 6-17). This effect is even more reduced if only a small expansion percentage is 

considered (which is usually the case in the radial expansion of the core diagrid) as can be seen in 

Table 6-18. This means that as the expansions tend to be uniform within one direction, the 

equivalence principle based procedure becomes more accurate. 

In other codes (e.g. CATHARE [162]) only one expansion coefficient is considered for the radial 

expansion thus assuming a homogeneous expansion in the diagrid. The developed method is 

therefore applicable within the same limits, and additionally recalculates the expansion at several 

time steps during the transient. For more complex cores, however, the equivalence procedure 

application for non-uniform expansions seems more difficult to prove. 

Table 6-16. Comparison of direct and equivalent results for case 1. 

 
k-eff 

Reactivity 
effect (pcm) 

Unperturbed 1.01739   

Real expanded 1.00541 -1171 

Equivalence principle 1.00559 -1154 

Difference (pcm)   17 

Relative discrepancy (%)   -1.51 
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Table 6-17. Comparison of direct and equivalent results for case 2 

 
 

Reactivity 
effect 
(pcm) 

Difference to real 
expansion (%) 

 Real expanded (inner and outer core) -1204   

Real expanded (inner core only ) -1040   

Real expanded (outer core only ) -193   

Equivalence principle (inner and outer core) -1140 -5.4 

Equivalence principle (inner core only) -813 -21.7 

Equivalence principle (outer core only) -228 18.3 
 

Table 6-18. Comparison of direct and equivalent results for case 3 

 
Reactivity 

effect (pcm) 
Difference to real 

expansion (%) 

 Real expanded (inner and outer core) -124   

Real expanded (inner core only ) -104   

Real expanded (outer core only ) -22   

Equivalence principle (inner and outer core) -118 -4.7 

Equivalence principle (inner core only) -86 -17.2 

Equivalence principle (outer core only) -24 8.2 
 

 

6.5.2. Uniform expansions in 1D: the Global DENSF Method 

 

Based on the previously described equivalence principle, a first model has been developed and 

further improved to account for uniform core thermal expansions in SIMMER but having in mind that 

non-uniform expansions have to be treated: it is the so-called DENSF (density factor) method. It aims 

at evaluating core expansion feedbacks in an Eulerian mesh with the introduction, in addition to the 

equivalence model, of a globally calculated correction factor. 

The expansion model procedure is a two-phased approach. At first, the DENSF value is computed at 

steady state (1st phase). Based on this factor, the transient calculation can be performed (2nd phase). 

The whole methodology is based on 4 steps which are indicated in Table 6-19. All steps are detailed 

in the following. 
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Table 6-19 – Overall methodology of the DENSF expansion model 

Steps Task Methodology Goal 

Step 1 : 

Theoretical 

expansion of 

the cell 

Calculate 

expanded axial 

dimensions 

Based on: 

Fuel temperature if gap is open 

Clad temperature if gap is closed 

Describe the expanded cell 

and the associated 

reactivity state 

Calculate 

expanded 

radial 

dimensions 

Two modes can be considered: 

Conic mode: 

based on temperatures of 

diagrid and constraint plate 

Cylindrical mode: 

Based on temperatures of 

diagrid 

Calculate 

related 

macroscopic 

densities 

Non-coolant materials: Mass 

conservation 

Coolant: 

Density conservation 

Step 2 : 

Apply the 

equivalence 

model 

Obtain original 

radial 

dimensions, 

modified axial 

dimensions, 

equivalent 

densities 

X 

 

Keep the reactivity state of 

the expanded cell while 

using original radial and 

modified axial dimensions 

 

Step 3: 

Density 

correction 

factor 

Obtain effect 

of axial 

dimensional 

change 

Based on overall mesh variation 

Account for the 

discrepancy between 

original axial dimensions 

and modified axial 

dimensions and determine 

effective densities. 

Step 4: 

compute 

expansion 

effect 

Use effective 

densities and 

original 

densities in 

original mesh 

X 

Obtain the expansion 

effect while using original 

mesh 
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At first, axial and radial core expansion factors are calculated mesh-wise meaning that expanded 

dimensions and related material densities are computed for each cell as has been explained in 

section 6.4.1 (Step 1 in Table 6-19). The core expansion is decomposed into a radial and an axial one 

as described earlier. The corresponding dimensional variations in both directions and the related 

material density variations are computed by means of the linear expansion coefficient of either steel 

or fuel for each fluid-dynamic cell in the neutronic mesh domain. Once the virtually expanded cell 

dimensions and related densities are known, the equivalence principle is applied to come back to a 

regular radial mesh.  

If the relative dimension variations are the same in the radial and axial direction for this cell i.e. the 

expansion is isotropic, the equivalence principle simplifies the expansion treatment in SIMMER. In 

fact, instead of considering the effect of dimension variations experienced with thermal expansion 

one can consider the sole effect of cross-section variations. As previously demonstrated, in case of an 

isotropic expansion, the equivalent cell obtained through application of the equivalence principle has 

the original radial ΔR2= ΔR0 and axial dimensions ΔZ2= ΔZ0, but different macroscopic neutron cross-

sections corresponding to a different material density. 

However, the expansion is usually anisotropic i.e. the axial and radial expansion factors are different 

and the choice is made to treat an equivalent cell with original radial dimensions. The equivalent 

configuration is hence represented by a pseudo axial expansion i.e. a cell with original radial 

dimensions but with axial dimensions ΔZ2 and cross-sections  2 defined by Eq. 6-92 (where η is the 

radial expansion factor). 

ΔR2=ΔR1.
1


  

ΔZ2=ΔZ1.
1


                            6-92  

 2= 1.   

This pseudo axially expanded cell is equivalent to the radially and axially expanded cell in terms of 

reactivity per definition of the equivalence principle. Nevertheless, this cell does not have the original 

axial dimension and a further step is necessary to be able to use the original SIMMER neutronic mesh 

to keep the reactivity effect of the expanded cell.  

Assume first that all modifications in axial dimension for a particular radial mesh in the RZ model of 

SIMMER are similar (i.e. the initial ones are multiplied by the same factor leading to a uniform 

expansion in axial direction). This can be considered as a combination of two perturbations: uniform 

axial dimensional variation and density variation. The effect of uniform axial dimensional variation 

can be pre-computed for a given radial mesh for a particular case (e.g. variation by 1%) and used 

during the transient. The effect of density variations can be taken into account in SIMMER either 

“directly” or by employing a PT approach. This approach does not require any correction factor and is 

accurate since Doppler and void effects do not interfere with the expansion as demonstrated later 

on. 

However, when non-uniformities are considered, a density factor has to be applied. We have seen 

that reactivity effects due to variations in dimensions and cross-sections are correlated. A simple 
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assumption would be that reactivity variations due to expansion can be computed by adding the 

missing effect due to the dimensional axial discrepancy to the effect obtained by employing the 

equivalent densities in the original mesh. To obtain this effect the DENSF factor is introduced. 

In case of a uniform isotropic expansion, DENSF is equal to unity as explained earlier. In the general 

axial expansion case, the assumption is that reasonably accurate results could be obtained if DENSF is 

computed before the transient as the ratio of: (a) the reactivity effect due to an axial dimensional 

change of the whole neutronics domain of SIMMER by 1%, computed by direct calculation and (b) 

the reactivity effect due the same dimensional change but computed with SIMMER via FOP. 

To obtain the DENSF correction factor, SIMMER performs two direct calculations. In the first one, the 

keff for a core with original mesh Z0 and equivalent d2 densities is calculated. For the second 

calculation the whole axial mesh is artificially increased by 1% (independently of temperature). The 

keff for a core with an axially expanded mesh Z’ and the same equivalent densities d2 is then 

calculated - Figure 6-17.  

2k

0R

0Z
2d

2( )XS

0R

'

1k

0' 1.01*Z Z2d

1% axial 
dimension
change  

 

Figure 6-17. Axial dimensional increase of a cell. XS stands for cross-section. 

The reactivity effect due to 1% axial dimensional increase obtained via the direct calculation is 

therefore known. 

The previously calculated reactivity effect due to 1% axial dimensional increase obtained via the 

direct calculation effect is then compared to the one obtained with the FOP approach in SIMMER. 

This gives the DENSF factor – Eq. 6-93.  

                          

       6-93 

 

An additional explanation of the DENSF factor is given in Apendix K. The omitted effect is then added 

through the densities to the effect given by using d2 densities in the original configuration by applying 

Eq. 6-94.  

3 2

1

1
d d

DENSF x
 

 
                                          6-94 

where x=
2, , 0, ,

0, ,

i j i j

i j

Z Z

Z

 


 is the axial expansion percentage of the equivalent cell compared to the 

original one.  

1%axial dimension variation

1%density variation

direct

FOP
DENSF









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Equation 6-94 can be easily understood if one considers that the whole equivalent core has an 

expansion of x. The reactivity effect due to core thermal expansion effect is obtained by subtracting 

two reactivities: the reactivity obtained with d3 densities in original mesh dimensions (i.e. 

configuration (3) in Figure 6-18, for the whole core) and the reactivity obtained with d0 densities in 

original mesh (i.e. configuration (0) in Figure 6-18) as given in Eq. 6-95 (where all terms are adjoint 

weighted reaction rates). It has to be kept in mind that a reactivity variation due to density variation 

is reflected by a variation in the leakage term only (see section 6.4.3.). 

 

0 3 3 0 0 0

3 0
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1 1
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1
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
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  

 
   

 
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0

0
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Generation
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 



    
  

   

    6-95 

The reactivity variation due to expansion is then multiplied by a factor 2 for each cell, the reason 

being previously explained. For SIMMER Eq. 6-94 becomes Eq. 6-96 since the reactivity component 

given by the DENSF part is already given by the direct calculation.  

3 2

1

1
2

d d
DENSF

x

 

 

             6-96 

In order to take into account the reactivity effect due to expansion in the spatial kinetics part of 

SIMMER, the effective fission source is modified by the ratio of reactivity variations. 

Compared to the approach employed in simple point kinetics models which are based on using a 

global value of the expansion coefficient, this approach tries to take into account different expansion 

factors at different spatial locations. In addition, this FOP approach gives information on the actual 

contribution of a core expansion on the total reactivity since it can be explicitly calculated as a 

reactivity difference in the new SIMMER development. 

 

Validation of the development 

An important assumption that has been made through the use of the DENSF factor is that the 

expansion effect has no impact on void and Doppler Effect and vice versa.  Indeed, the DENSF factor 

is calculated at the beginning of a simulation which means that one part of the reactivity effect due 

to expansion is computed at nominal conditions and used during the transient. It becomes therefore 

important to show that this approach is valid. This is proven in Table 6-20 for the CP-ESFR WH core in 

case of a cladding driven type expansion (additional tests have been performed for a simplified CP-

ESFR model and led to similar conclusions which are omitted here). The calculation has been 

performed with the ERANOS tool. Core calculations are done with 33 energy groups by employing 

the BISTRO transport code [159].  
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Table 6-20. Independence of void, Doppler and expansion effect in a cladding driven type expansion in the CP-ESFR WH 
core. 

 Original non-expanded 

configuration 

Cladding driven 

expansion 

Relative 

discrepancy (%) 

Doppler Constant (pcm) -1175 -1179 +0.3 

Core Void (pcm) +1351 +1347 -0.3 
 

From Table 6-20 it can be seen that void and Doppler effects practically do not depend on the 

expansion effect. Therefore the hypothesis of computing DENSF at time zero and using it during the 

transient is confirmed. 

To further validate the DENSF approach, 3 cases are investigated for the CP-ESFR WH core at BOL. 

The sodium mass is conserved during the first step in the expansion process in Table 6-19 since the 

distribution of sodium density variation due to expansion is put in the shape calculations. This means 

that all materials are subjected to the same expansion.  

Case 1 consists in setting up the expanded configuration in input which means that increased 

dimensions and related densities are provided in the SIMMER input and a direct calculation is 

performed. Case 2 consists in modifying the original SIMMER input by modifying only the densities 

according to the DENSF method while keeping the original mesh dimensions and performing a direct 

calculation. Case 3 simply consists in running a SIMMER calculation with the expansion model and 

obtaining the FOP results.  

The results for direct and FOP calculations match very well as is demonstrated in Table 6-21. The 

highest relative discrepancy is seen for the 1% axial expansion effect calculated with FOP (6 pcm 

difference corresponding to 11% relative discrepancy). 

Table 6-21. Reactivity effects due to axial and/or radial core expansions in the CP-ESFR WH core at BOL – DENSF method.  

 Δρ (pcm) Relative 

discrepancy 

Case 1 to  

Case 2 (%) 

Relative 

discrepancy 

Case 1 to  

Case 3 (%) 

Radial 

expansion\axial 

expansion 

Case 1 – direct 

calculation  

Case 2 – direct 

calculation 
Case 3 – FOP 

1.00\1.01 -65 -69 -72 7.05 11.08 

1.00\1.02 -128 -135 -140 4.99 8.90 

1.00\1.05 -315 -310 -322 -1.60 2.07 

1.01\1.00 -321 -313 -325 -2.36 1.28 

1.02\1.00 -645 -627 -650 -2.80 0.85 

1.05\1.00 -1644 -1576 -1635 -4.13 -0.55 

1.01\1.01 -385 -385 / -0.19 / 

1.02\1.02 -774 -774 / 0.00 / 

1.05\1.05 -1965 -1965 / 0.00 / 

1.01\1.02 -449 -454 -471 1.03 4.80 

1.02\1.01 -710 -703 -729 -1.05 2.64 
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It can be noted as well from Table 6-21 that the expansion effect adheres to the linearity and 

additivity properties as already demonstrated in the simple core model in section 6.4.2. 

The same tests are performed in case the sodium mass is not conserved which is usually the case 

during core thermal expansions as is mentioned in 6.4.1. 

Since the coolant does not undergo the same expansion as the solid materials in the core, a new 

calculation is performed assuming, as a first approximation, a constant density of coolant instead of a 

constant mass. In fact, as already mentioned, a thermal expansion of core structures generally leads 

to more sodium flowing into the core (temperatures are kept). Results are depicted in the 2nd column 

of Table 6-22 and compared to the direct calculation ones. This large discrepancy can be explained by 

the fact that sodium behaves differently from the other materials (fuel, steel) in the cell. This leads to 

an uncertainty as concerns the reactivity contribution due to scattering in addition to the one due to 

leakage. The factor 2 previously added is hence not accurate anymore if the sodium is expanded in a 

different way as the other materials as was already indicated in section 6.4.1. 

To overcome this issue, the differential expansion effect coming from sodium is put in the spatial 

kinetics part of SIMMER. This means that the distribution of sodium variation due to expansion is 

taken care of in the spatial kinetics instead of the “point kinetics” part of SIMMER. This idea is based 

on the fact that for expansions where all materials including sodium are subjected to the same 

expansion, the methodology provides good results. 

The cross-sections of sodium in the original core are therefore modified in order to shift the spatial 

distribution of the sodium contribution to the expansion reactivity into the cross-section and shape 

calculation of SIMMER. Results for the new sodium treatment are shown in the 3rd column of Table 

6-22. A significant improvement of the results is noted.  

For a better understanding, the effect of expanding all materials by the same factor and the effect of 

the sodium distribution are both presented in Table 6-23. It can be seen that they add up to the total 

expansion effect where sodium is not subjected to the same expansion as the other materials. 

It is hence concluded from Table 6-22 that the sodium has to undergo the previously described 

special treatment if FOP is used for thermal expansion feedback considerations in order to obtain 

similar results as in the direct calculations. The previously described verifications prove that the 

DENSF method provides accurate results in case of an overall and uniform expansion of the whole 

neutronic mesh.  

To consider as well non-uniformities along one dimension in the core expansion, a regional approach 

is applied, based on the previously described model. 
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Table 6-22. Reactivity effects due to axial and/or radial core expansions in the CP-ESFR WH core at BOL if the sodium 
mass is increased – with and without special treatment for the sodium cross-section. 

Radial 

expansion\axial 

expansion 

Δρ direct 

(pcm) 

Δρ FOP (pcm), 

original 

method 

Δρ FOP 

(pcm) 

Relative 

discrepancy Δρ 

FOP original 

method to Δρ 

direct (%) 

Relative 

discrepancy 

Δρ FOP to Δρ 

direct (%) 

1.00\1.00  /  /  /  /  / 

1.00\1.01 -84 -124 -72 48 -14 

1.00\1.02 -164 -245 -140 49 -15 

1.00\1.05 -385 -586 -322 52 -16 

1.01\1.00 -342 -429 -324 26 -5 

1.02\1.00 -684 -860 -649 26 -5 

1.05\1.00 -1712 -2164 -1623 26 -5 

1.01\1.01 -429 -558 -399 30 -7 

1.02\1.02 -861 -1123 -801 30 -7 

1.05\1.05 -2180 -2861 -2020 31 -7 

1.01\1.02 -513 -683 -470 33 -8 

1.02\1.01 -774 -993 -726 28 -6 

Table 6-23. Decomposition of the reactivity effects due to axial and/or radial core expansions in the CP-ESFR WH core at 
BOL into its uniform and non-uniform components. 

 Δρ direct (pcm) 

Radial expansion\axial 
expansion 

Effect due to the 
uniform expansion 

of all materials 
(pcm)  

Effect due to the non-
uniform sodium 
expansion (pcm) 

Total 
(pcm) 

1.00\1.00 / / / 

1.00\1.01 -69 -14 -83 

1.00\1.02 -135 -29 -164 

1.00\1.05 -311 -72 -383 

1.01\1.00 -313 -29 -342 

1.02\1.00 -626 -59 -685 

1.05\1.00 -1567 -148 -1715 

1.01\1.01 -386 -43 -429 

1.02\1.02 -772 -89 -861 

1.05\1.05 -1952 -228 -2180 

1.01\1.02 -454 -59 -513 

1.02\1.01 -701 -74 -775 
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Figure 6-18 – Schematics of the DENSF method for expansion feedback considerations [144]. 

 

6.5.3. Non-Uniform expansions in 1D: the DENSFR Method 

 

The previously described method serves as a basis for further improvements. Relying on the fact that 

cores present a radial power (and neutron importance) distribution and thus attribute a different 

weight to the expansion reactivity from each ring, the methodology described earlier was improved 

to consider radially dependent computed DENSF factors to take approximately into account the non-

uniformity.  

This treatment differs from the previous one due to the use of radially dependent (ringwise) DENSFR 

coefficients instead of a radially independent one (DENSF). The overview of the method called 

DENSFR method is given in Table 6-24 and the modified steps are highlighted in red.  

Step 1 in Table 6-24 i.e. computing expanded dimensions and densities remains the same as in the 

previous method. The second step in Table 6-19 has been modified: instead of obtaining an 

equivalent system with original radial dimensions – as it is the case in the DENSF method – a system 

with original axial dimensions but transformed radial dimensions (usually smaller than the original 

ones) is sought for convenience due to SIMMER constraints. The third step in Table 6-19 is 

consequently modified and the contribution of each ring to the overall expansion reactivity is 

evaluated. For each ring, the reactivity effect due to the radial dimensional change of that ring is 

computed by direct calculation. This is performed by reducing all rings’ radial size by 1% and by 

performing a direct calculation. This gives the effect of an overall reduction of the radial core mesh. A 

similar case is then considered: all rings but the first one are reduced in their radial size by 1%. Again 

a direct calculation is performed. The effect of the first ring can then be determined by comparing 

the two cases. The same approach is used to obtain the effect of the second ring. First all rings see 

their radial dimensions changed. Then the effect of radial dimensional decrease of all rings but the 

first two rings is calculated. The effect of the first ring is then subtracted. In the end, the effect of a 

radial dimensional reduction of any ring can be obtained for each ring by using Eq. 6-97, assuming as 

usual linearity and additivity. 
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- 
n is the reactivity effect of 1% radial dimensional decrease of ring n 

- 
1...N  is the reactivity effect of 1% radial dimensional decrease of all rings, N being the total 

number of rings 

-  1...n N n      is the reactivity effect of 1% radial dimensional decrease of all rings 

except ring n 

-  
1

1...

1

n

n n i

i

  




      is the reactivity effect of 1% radial dimensional decrease of all rings 

except rings 1 to n. 

It has to be mentioned that 
n  does not represent the expansion effect of ring n solely but 

considers the influence of all other rings on ring n as well. 

Once the effect of the individual dimensional change of each ring is known, the DENSF factor for each 

ring (called DENSFR) is calculated using Eq. 6-98.  

 

      6-98 

 

The final densities to be used in the original mesh – i.e. configuration (3) in Figure 6-18 are then 

obtained by Eq. 6-99. 
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


represents the radial expansion percentage of the equivalent cell. 

The calculation is then performed with the original meshing but with modified densities d3 and the 

procedure continues as in case of the previous model. It is interesting to note that in case of a purely 

axial expansion, d2=d0 and therefore the effect of expansion is exactly the effect of a dimensional 

change, calculated by the direct approach. 
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Table 6-24. Overall methodology of the DENSFR expansion model. Modified steps are highlighted in red.  

 

Validation of the methodology 

To validate the methodology, the simple core model detailed earlier has been considered for the 

tests. The sodium mass has been conserved during the expansion.  

Several cases have been calculated with SIMMER and ERANOS for comparison. As the expansion 

effect is composed of a dimensional and a density effect, and, as the dimensional effect is computed 

through the direct calculation at the start of the calculation and is therefore assumed to be correct, 

the density effect (computed via FOP calculations) has been checked. Several configurations have 

been tested as can be seen in Table 6-25. 

Steps Task Methodology Goal 

Step 1 : 

Theoretical 

expansion of the 

cell 

Calculate expanded 

axial dimensions 

Based on: 

Fuel temperature if gap 

is open 

Clad temperature if gap 

is closed 

Describe the expanded cell 

and the associated 

reactivity state 

Calculate expanded 

radial dimensions 

Two modes can be 

considered: 

Conic mode:  

based on temperatures 

of diagrid and constraint 

plate 

Cylindrical mode:  

Based on temperatures 

of diagrid 

Calculate related 

macroscopic 

densities 

Non-coolant materials: 

Mass conservation 

Coolant: 

Density conservation 

Step 2 :  

Apply the 

equivalence 

model 

Obtain original axial 

dimensions, 

modified radial 

dimensions, 

equivalent densities 

X 

Keep the reactivity state of 

the expanded cell while 

using original axial and 

modified radial dimensions 

Step 3:  

Density 

correction factor 

Obtain effect of 

radial dimensional 

changes 

Based on each 

individual ring variation  

Account for the discrepancy 

between original radial 

dimensions and modified 

radial dimensions and find 

effective densities. 

Step 4: 

 compute 

expansion effect 

Use effective 

densities and original 

densities in original 

mesh 

X 
Obtain the expansion effect 

while using original mesh 
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Table 6-25. Considered test cases for checking the density effect with direct and FOP methods. 

 Density change Zones for the density change 

Central 

fuel ring 

Outermost 

fuel  ring 

All fuel 

rings 

Na around 

fissile core 

Fissile core 

height 

Whole neutronic mesh 

height 

Case 1 X    X  

Case 1b X     X 

Case 2  X   X  

Case 2b  X    X 

Case 3   X  X  

Case 3b   X   X 

Case 4    X / / 
 

In this section, only cases 3, 3b and 4 will be discussed. For more details on the other cases see 

Appendix C. 

ERANOS calculations are performed with the BISTRO solver and integrals of angular fluxes are used 

for the PT based calculations. Both FOP and exact PT are used. A direct calculation is performed as 

well for reference. Cases with 1, 11 (to cross-check the SIMMER results) and 33 energy groups are 

used. The model is an RZ one. SIMMER calculations are performed with the standard 11 energy 

groups or with 1 energy group using the cross-section collapsing method developed at KIT [163]. 

Absolute values of BISTRO and SIMMER results are not directly comparable. 

In all cases, the densities in the considered zones are modified by a factor 
2

1

1.01
 to simulate a 

density variation obtained by a 1% radial expansion. At first, the fissile core zone densities are 

modified as shown in Figure 6-19 (a). Results are shown in Table 6-26. 

Table 6-26. Density effect for a density variation in the fissile core zone of 
2

1

1.01
. Comparison of SIMMER and ERANOS 

for direct and FOP calculations. 

Energy 
groups 

Tool 
Calculation 

type 
Reactivity 

effect (pcm) 

Relative discrepancy 
to direct calculation 

(%) 

1 

BISTRO 

FOP -314 -2 

Exact PT -321 0 

Direct -321 / 

SIMMER 
FOP -241 -31 

Direct -349 / 

33 BISTRO 

FOP -296 -2 

Exact PT -302 0 

Direct -302 / 

11 SIMMER 
FOP -209 -29 

Direct -294 / 
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Figure 6-19. (a) Fissile zone considered for the expansion (b) Surrounding sodium is expanded. 

If the BISTRO solver is used, results for direct, FOP and exact PT agree within 2% whether 1 energy 

group or 33 energy groups are considered. One can notice as well that SIMMER and BISTRO give 

similar results for the direct calculation. In case of SIMMER, even with the factor 2 already included, 

discrepancies as large as 31% can be observed between direct and FOP calculations, both if 

considering 1 or 11 energy groups. This can be ascribed to the way the FOP reactivities are computed 

in SIMMER. In fact, integrals of angular flux shapes and adjoint fluxes – i.e. scalar fluxes - are used for 

reactivity calculation [151]. To confirm this tendency, the same test has been performed for 1 energy 

group for the case of sodium surrounding the fissile core part as seen in Figure 6-19(b). Results of the 

calculation can be seen in Table 6-27. 

Table 6-27. Density effect for a density variation in the sodium surrounding the fissile core zone of 
2

1

1.01
. Comparison of 

SIMMER and ERANOS for direct and FOP calculations. 

Energy 
groups 

Tool 
Calculation 

type 
Reactivity 

effect (pcm) 
Relative discrepancy to 
direct calculation (%) 

1 

BISTRO 

FOP -102 -1 

Exact PT -103 0 

Direct -103 / 

SIMMER 
FOP +26 -129 

Direct -90 / 
 

 

Also in this case BISTRO gives precise results both with FOP and exact PT when compared to direct 

calculations. This was expected as small perturbations are considered. SIMMER results show the 

same tendency as before, confirming that the way SIMMER performs FOP reactivity calculations 

leads to results which do not match the direct calculation even with the application of the factor 2. 

The reason for this discrepancy comes from the fact that the scalar adjoint flux and scalar direct flux 

for the unperturbed configuration are used to obtain the reactivity effect due to expansion. 

Case 3b is then considered i.e. all the neutronic meshes see their density changed except the 

followers (Table 6-28). 

 

0              R 0              R 

Z Z z

0 R

z

0 R
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Table 6-28. Density effect for a density variation in the overall neutronic mesh of 
2

1

1.01
. Comparison of SIMMER and 

ERANOS for direct and FOP calculations. 

Energy 
groups 

Tool 
Calculation 

type 
Reactivity 

effect (pcm) 

Relative discrepancy 
to direct calculation 

(%) 

1 

BISTRO 

FOP -416 -3 

Exact PT -428 0 

Direct -428 / 

SIMMER 
FOP -455 +3 

Direct -442 / 

 

It can be concluded that in this case, the factor 2 is sufficient to compensate the underestimation of 

FOP results compared to direct ones, showing only 3% relative discrepancy. This is due to the fact 

that the angular and spectral flux distribution shift occurs in the same way over the whole domain. If 

the sodium density in the followers is modified as well, the relative discrepancy reduces to 1.3% in 

case of SIMMER using 1 energy group for the calculation.  

In conclusion, if the whole system is expanded in the same way, the factor 2 is applicable. In all other 

cases, because of the way SIMMER computes the reactivity component due to leakage the 

methodology seems to predict approximate results. The regional approach is a trial approach and 

possible uncertainties with this methodology have been described earlier. However, this 

methodology is of interest if one wants to exploit the full potential of SIMMER. 

Another option, as mentioned earlier, is to consider the expansion effect in the spatial kinetics part 

instead of the point kinetic one – the treatment is then similar to the one already described for the 

sodium component. A new method is thus developed to take into account the reactivity effect due to 

expansion in the direct calculation instead of the FOP calculation. Nevertheless, this methodology 

does not allow the user to have knowledge of the value of reactivity due to expansion. Indeed, the 

effect is hidden in the overall reactivity variation (due to Doppler, sodium density variation, etc.). 

Recent improvements should allow to acquire knowledge of the value of the effect [164]. 

 

6.5.4. Further modeling development 

 

The two previously developed methodologies provide accurate results in case of uniform expansions 

within one direction. However, when considering non-uniform expansions (even for only one 

direction), the accuracy and reliability of the methods becomes less satisfying. Hence the 

development of a third methodology has been started [165].  

Once the configuration of a pseudo axial expansion is reached i.e. step 1 and step 2 in Table 6-19 are 

performed as in the DENSF method, the reactivity effect contributions for each ring due to its 

uniform axial expansion is computed on the basis of pre-computed values (for 1% axial expansion 

using the fact that the effect of an expansion has been proven to be linear). The effect of a uniform 

axial expansion of each radial mesh is then known. 
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To take into account the effect of non-uniform axial expansions inside one radial mesh a factor ℇ is 

applied. The way to calculate ℇ is the following: let δ be the axial expansion factor corresponding to 

the total increase of the neutronic domain height within one radial mesh and μ be the factor applied 

to the original densities to obtain the densities of the pseudo axially expanded cell configuration (i.e. 

configuration (2) in Figure 6-18). 

The effect of a non-uniform axial expansion within one radial mesh is then taken into account by 

modifying the densities of the non-expanded configuration (configuration (0) in Figure 6-18) by the 

factor ℇ (Eq. 6-100), each axial zone having its own factor. 

1 1


 
                                                6-100 

Note that SIMMER conventionally re-computes material densities and thus cross-sections and 

reactivity (less frequently the neutron flux) during the transient. For the DENSF and DENSFR 

expansion treatment described earlier, the conventional procedure for re-computing the mentioned 

parameters has not been modified except for the coolant. The reactivity effect due to expansion is 

used for correcting the “conventional” SIMMER reactivity and for rescaling neutron generation cross-

sections employed in neutron transport calculations. The value used for reactivity correction was 

printed and analyzed, which facilitated the development of the method. According to the new 

treatment, the difference in reactivity effects due to the non-uniform and corresponding uniform 

expansions is taken into account by modifying the densities used for conventional cross-section and 

reactivity calculations, while the reactivity effect due to the uniform expansion is used for the 

reactivity correction and cross-section rescaling. The value used for the reactivity correction no 

longer represents the “full” expansion effect. An effort should be devoted during post-processing to 

evaluate the full “non-uniform” effect, which is now assumed to be computed accurately. Results for 

proving this assumption are detailed in [165] and are recalled hereafter. 

Preliminary checks of the improved methodology are performed with the CP-ESFR WH core. A 2D 

(RZ) model at BOL is considered. The effects are calculated while considering basically 2 radial zones 

i.e. the inner and the outer core and 4 axial zones for expansion (Figure 6-20). The followers are not 

expanded. 

 

 

 

 

 

 

   

Figure 6-20. Schematics of the axial layout of the CP-ESFR WH core. Red frames represent the 4 axial zones considered for 
expansion. LAB = Lower Axial Blanket, UAB = Upper Axial Blanket, LGP = Lower Gas Plenum, UGP = Upper Gas Plenum, 

USS = Upper Steel Structure. 
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The ERANOS code is used to set up the model for checking the methodology and driving the 

development of SIMMER. Core calculations are performed for 33 energy groups by employing the 

BISTRO transport code. Effective neutron cross-sections are computed by the ECCO code [158], while 

employing the JEFF3.1 reference nuclear data library [166]. 

The methodology is applied after Step 1 and Step 2 in Table 6-19. First, reference cases are calculated 

(i.e. real expanded cases in input). Based on the temperature distribution given by SIMMER, the two 

earlier mentioned simplified expansion modes – clad driven and fuel driven expansion - are 

considered for the CP-ESFR WH core. The clad driven expansion has been stressed to ensure a large 

perturbation. The fuel driven expansion values have been used to simulate a small perturbation. All 

materials, coolant included, are expanded in the same way. The two considered core models are 

shown in Figure 6-21. The effect of these expansions, calculated by ERANOS is -292.6 pcm for the 

clad driven and -97.6 pcm for the fuel driven expansion.   
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           (a)                                                                 (b) 

Figure 6-21. Axial layout of axially expanded configurations, dimensions are given in mm. (a) Fuel driven expansion, step 
core with 12.6 mm overall axial expansion for the inner core and 10.9 mm overall axial expansion for the outer core. (b) 

Clad driven expansion (large perturbation) 40 mm overall expansion for both inner and outer core [165]. 

The previously calculated values serve as a reference for comparison with the results obtained with 

the new technique. As mentioned earlier, the technique evaluates the expansion effect first by 

calculating the effect of a uniform axial expansion within one radial mesh and second by taking into 

account the effect of non-uniformity. 

At first the uniform expansion effect is calculated. To that end, a layer of 1 cm (mesh) is added above 

all materials zones (fissile height, UAB, UGP etc.) to take into account a 1% axial expansion of the 

fissile height of the core. This means that the total height of fissile material is 1.01 m. 

The calculations are performed for the expansion of the inner core only, the outer core only or both 

the inner and the outer core simultaneously (Table 6-29). It can be noticed that the expansion effects 
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of both cores are additive. As in SIMMER the overall neutronic mesh is fixed (Eulerian grid), some 

material is lost at the top zone (e.g. the upper core structure) when an expansion is performed by 

shifting the parts above the expanded zone. Nevertheless, the effect of losing this material from the 

neutronic mesh is negligible as seen in Table 6-29. 

Table 6-29. Reactivity effects of 1% axial uniform expansion in the CP-ESFR WH core, BOL. 

1% uniform axial expansion of the 

fissile height 

Δρ (pcm) 

Reduced upper steel 

structure 

Additional node 

of void 

Inner core expanded -14.4 -14.4 

Outer core expanded -68.4 -68.4 

Sum -82.8 -82.8 

Both inner and outer core expanded -82.9 -82.9 

 

In case of the fuel driven expansion, the inner core expands by 1.26 cm corresponding to a 1.26% 

uniform axial expansion and the outer one by 1.09 cm corresponding to a 1.09% uniform expansion. 

By applying the proven assumption that the effect is linear and additive, the effect of the inner core 

uniform expansion is then -18.1 pcm (i.e. -14.4 * 1.26) and the one of the outer core is -74.5 pcm (i.e. 

-68.4 * 1.09), the sum of both being -92.6 pcm. 

In case of the clad driven expansion, both the inner and the outer core expand by 4%. The overall 

effect is then of -331.6 pcm (i.e. 4*-82.9). It is worth mentioning that the uniform expansion effect 

constitutes the main part of the expansion effect (comparison with reference values). 

In order to take into account the non-uniform expansion along the Z axis of each radial zone a 

pseudo distribution of densities is calculated by applying factors determined with Eq. 6-85 and shown 

in Table 6-30. 

Table 6-30. Coefficients to apply to original densities in the fissile zone to take into account non-uniform expansions, 

determined with Eq. 6-85. 

 

Factor to apply to original densities to put non-

uniform expansion component into the densities 

Small perturbation Large perturbation 

 inner core outer core inner and outer core 

Zone 

1 
0.9973 0.9975 0.9712 

Zone 

2 
1.0011 1.0007 0.9808 

Zone 

3 
1.0017 1.0014 1.0000 

Zone 

4 
0.9984 0.9991 1.0577 

 

These coefficients are applied to the original densities and therefore for each mesh for cross-sections 

calculations in ERANOS. 
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In case of a small perturbation, one obtains an effect of +2.9 pcm due to the axial distribution of 

expansions. In case of a large perturbation one obtains -37.3 pcm.  

By subtracting the non-uniform expansion values from the uniform expansion ones calculated earlier, 

one obtains values close to the real expanded ones with a discrepancy of less than 3% – a summary is 

given in Table 6-31.  

This new treatment takes into account correctly non-uniform expansions, as checked with the 

ERANOS code. Preliminary results for the fissile core expansion showed good agreement with 

reference calculations (within 3% relative discrepancy). The same procedure is intended to be 

employed for other parts of the reactor (e.g. sodium plenum, axial fertile blanket) but additional 

analyses are necessary for these aspects in the future. The methodology should be implemented into 

SIMMER and validated for different reactor designs as e.g. the CONF2 core design or cores with an 

internal axial fertile blanket.  

Table 6-31. Summary of reactivity effects of fuel driven (small perturbation) or clad driven (large perturbation) 
expansions 

 

Δρ (pcm) 

Fuel driven  

expansion 

Clad driven 

expansion 

inner 

core 

outer 

core 

Sum inner and outer 

core 

Uniform expansion (scaling) -18.1 -74.5 -92.6 -331.4 

Effect of axial distribution of 

expansion (direct calculation) 
/ / +2.9 -37.3 

Total / / -95.5 -294.1 

Real expansion (direct 

calculation) 
/ / -97.6 -292.6 

 

6.5.5. Application of the methodology to transient simulations 

 

The expansion methods based on FOP (DENSF and DENSFR) have been tested in the SIMMER 

framework. While their application to a uniform and overall expansion of the neutronic mesh gives 

accurate results if compared to reference calculations, their application to non-uniform expansions 

of sub-domains of the neutronic mesh seems less accurate. Thus a new methodology avoiding the 

computation of expansion reactivities with FOP has been set up and preliminary tests have been 

performed with the ERANOS code. First results are considered to be reasonably accurate and an 

implementation of this method in SIMMER and further testing is planned in the near future but is out 

of the scope of this thesis.  
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The DENSF methodology has been applied to transient cases in addition to the static cases. The CP-

ESFR WH core at equilibrium is loaded with pellet fuel and an axial expansion case is considered. An 

unprotected loss of flow with a flow halving time of 10 s is considered. Both the clad driven and the 

fuel driven axial expansion are considered. When applying the expansion model a delay in the power 

excursion can be observed – Figure 6-22. The largest delay is seen for the fuel-driven case as fuel 

temperatures are very high and the related expansion is thus increased compared to the cladding 

expansion; as expected. In addition, the expansion reactivity driven by the fuel expansion has been 

calculated to be -330 pcm which is in agreement with results provided by the SAS4A code in the CP-

ESFR project [35]. 
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Figure 6-22. ULOF evolution in the CP-ESFR WH core at equilibrium, with and without expansion treatment. 

An additional application of the method has been performed for the CONF2 core loaded with sphere-

pac fuels and is detailed in Chapter 8. Recently, the methodology has been successfully applied to an 

ANL benchmark on EBR-II (details can be found in Appendix I). 

 

6.6. Conclusions 

 

Several innovative methodologies have been developed to take into account the core expansion 

reactivity effects in space-time kinetic codes like the SIMMER codes. The methodologies are all based 

on the equivalence principle and implementation of one or more density correction factors. Two out 

of the three methodologies are based on FOP. While the results in case of a uniform and overall 

mesh expansion agree well with the reference calculations, limitations of the FOP methodologies 

have been pointed out in case of non-uniform expansions of sub-domains of the neutronic mesh. 

This shortcoming has led to the development of a third method, avoiding the employment of FOP for 

expansion reactivity calculations. This last methodology shows promising results in the ERANOS 

framework and has still to be implemented in SIMMER. Preliminary results for the CP-ESFR WH core 

showed that the described methodologies based on the equivalence principle and FOP agree 

nevertheless well with other codes like the SAS4A code.  
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Chapter 7  

7. A new feature for SIMMER-III: considerations for innovative sphere-pac fuels 

A NEW FEATURE FOR SIMMER-III: 

CONSIDERATIONS FOR INNOVATIVE SPHERE-

PAC FUELS 

 

As mentioned in Chapter 1, an important aspect of the present PhD work is the adaptation of 

SIMMER to sphere-pac fuel specificities. The FP7-PELGRIMM project deals inter alia with the safety 

assessment of sphere-pac fuels loaded in SFRs. Calculations in the project are performed with several 

codes. Some pay mainly attention on the initiation phase of the accident, as e.g. SAS4A [71], BELLA 

[167] and the MAT5DYN code [168], others like the SIMMER-III code [73] could deal with the 

initiation phase but also deal with later accident phases and a potential whole core melting. All codes 

have to be adapted within their framework to the specificities of sphere-pac fuels. Important 

differences to the standard pellet fuel are e.g. the thermal conductivity, the fuel macrostructure i.e. 

the microspheres instead of pellets, the non-existence of an initial fuel-cladding gap and the fuel one 

column structure.  

A first step toward the feasibility and safety performance assessment of sphere-pac fuels is to 

quantify the heat transfer in these pins. A key parameter here is the maximum achievable packing 

fraction of spheres and the related porosity as they finally define the fuel thermal conductivity. It was 

demonstrated in [137] that smear densities as high as 95% of the theoretical density (TD) could be 

obtained by packing spheres of different sizes. First, investigations have been started to assess the 

needed fuel density if one does not want to drastically change the CP-ESFR core design. With the 

high achievable packing density the fuel mass is kept equal using sphere-pac fuels instead of pellet 

fuels which is important for the core neutronics. Once this had been set, an adequate model for the 

thermal conductivity of sphere-pac fuels had to be incorporated. This chapter provides an overview 

of heat transfer models in SIMMER as well as of the existing correlations in literature for both pellet 

and sphere-pac fuels conductivity. Finally their adaptation and implementation into the SIMMER 

framework is described. 

 

7.1. SIMMER-III structure model 
 

In the SIMMER-III and SIMMER-IV severe accident codes two pin models - the simple SPIN and the 

more elaborate DPIN model - are available. As already mentioned previously, SIMMER-III was 
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2δf 

primarily developed to evaluate the behavior of already disrupted reactor cores where most pins 

already failed. Therefore the simplified fuel-pin model (SPIN) was originally implemented [169].  

The detailed pin model (DPIN) was added later to simulate more accurately the radial heat transfer in 

the fuel e.g. in a less degraded situation as well as potential molten cavity generation and within-pin 

fuel motion of still existing pin structures [73]. Both models are described in this section. These 

models have been validated to a certain extent on the basis of CABRI and SCARABEE-N experiments 

[78; 170] but are still of simple nature compared to fuel performance codes as GERMINAL [127]. As 

the SIMMER codes are transient codes, mostly covering the accident phases where the pins are 

already destroyed, the existing models are essentially sufficient. In addition, as the whole core is 

described in these transient codes and thousands of time-steps are calculated, the implemented fuel 

pin model must also be time efficient.  

 

7.1.1. Simplified PIN model: SPIN  

 

The SIMMER-III code can be run with the standard Simplified PIN model (SPIN). In this model, two 

nodes are used to calculate temperatures in the fuel. These nodes are defined as inner (bulk) and 

surface fuel zones and are calculated as in Figure 7-1 [169]. 
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Figure 7-1. Radii calculation for the SIMMER-III pin modeling with SPIN [169]. 

 

In Figure 7-1 all variables with the index i are initial values, int  and 1s refer to volume fraction of 

fuel interior and fuel surface, respectively, 4s is the cladding volume fraction, ,nf pin  is the non-flow 

volume fraction of the pin i.e. of the gap.  

The thickness of the pin fuel surface node is defined with the thermal penetration length, considering 

the transient thermal response of the surface nodes. Therefore the boundary between inner and 

surface fuel zones ( 1pr ) depends on 2 f  – Figure 7-1. Once 1pr  is known, it is used to define the 
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position of the fuel temperature nodes 0pr  and 2pr . These radii are then used to calculate the heat 

transfer coefficients between the two fuel zones (Eq. 7-1) and from the surface fuel zone to the 

cladding – represented by one node (Eq. 7-2): 
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where the subscript S1 stands for the fuel surface, S4 for cladding, int for fuel interior, k for thermal 

conductivity and gaph  for the gap heat transfer coefficient.  

These heat transfer coefficients are then used to calculate the fuel pin heat transfer. By adding the 

nuclear heat, average temperatures can be deduced through an implicit scheme by solving the 

energy conservation equation (Eq. 7-3):  

    , 1 , 1 1 1, 1, 1
m m

m m m m m m m m m m m m Hm Nm

e
h a T T h a T T Q Q

t


     


         


        7-3 

where the subscript m denotes one of the three temperature nodes i.e. inner fuel, surface fuel or 

cladding temperature node. m  and me  are the macroscopic density and specific energy of fuel 

node m  respectively, h stands for the heat transfer coefficient, a  is an area per unit volume and 

HmQ  and NmQ  denote the energy transfer rates due to heat transfer from fluid and nuclear heating, 

respectively. 

The energy conservation equations of gas in the gas plenum and of control material are solved 

through an explicit scheme due to the inertia of the heat response [169].  

- General aspects of the SPIN model 

 The SPIN model does not allow simulating a detailed temperature profile. Thus, no maximum fuel 

temperature can be determined as observed at or close to the pin centerline. In addition, neither a 

cavity of molten material nor its motion inside the pin after failure can be modeled. Nonetheless the 

fuel pin failure is modeled based on a thermal criterion depending on melting fractions of fuel and 

cladding. A parametric model is available for simulating mechanical pin failure. Once the limit values 

of the melt fractions are exceeded, the molten part of the pellets is transferred into the liquid fuel 

field while the still solid fuel part is transferred into the chunks (representing large fuel pieces going 

up to pellet size) and particle field (molten fuel that has solidified again). The cladding can even fail 

earlier than the fuel in some cases. The region thus becomes available for material movement. 

Fission gas is released from liquid fuel instantaneously and from chunk fuel with a time-constant. 

Progressive release of gas from the fuel chunks can be simulated as well. Pin breakup modeling 

includes the downfall or collapse of unsupported pellets [169]. Both the SPIN model and the DPIN 

model allow the blow-down of fission gas from the gas plena after pin failure. This is an important 
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effect impacting the voiding of the core and the cooling of pins. In SPIN the inner node represents 

most of the fuel mass and describes the average fuel temperature. The fission gas pressure as well as 

the fuel ejection driving force are therefore underestimated. 

SPIN provides correct information for core disruptive accident (CDA) sequences less sensitive to a 

precise fuel modeling as e.g. transients where clad melting occurs in advance of fuel melting. This is 

the case in the blockage accident and to a certain extent also in loss of flow accidents. It can be 

attributed to the thermal inertia of the pellet interior in a voided channel condition. TOP (transient 

over power) accident simulations, especially for mild overpower transients, need however a more 

refined description – the DPIN model. This model is detailed in section 7.1.2. 

- Hole treatment with SPIN 

The SPIN model of SIMMER is incapable of explicitly simulating the central hole usually present in the 

new fast reactor (FR) pellet designs. A methodology was therefore developed for SIMMER, during the 

CP-ESFR project, to take implicitly into account the central hole for the heat transfer [35] and is 

detailed hereafter.  

The methodology is based on adjusting the thermal conductivity coefficients to obtain correct fuel 

temperatures. At first a mass equivalence equation is written – Eq. 7-4 and 7-5. 

fuel fuel

real simmerm m               7-4 

 

    2 2 21 1 ,real f i sim fp R R p R               7-5 

where fR  is the outer radius of fuel, iR  the inner radius of the fuel i.e. the radius of the hole, realp  

the real fuel porosity and simp  the modified porosity given to SIMMER as input and m  is the mass. 

By applying this Eq. 7-5, an annular pellet can be treated as a full one by modification of the fuel 

porosity Eq. 7-6. 
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The fuel thermal conductivity dependence on porosity can be expressed either by the Maxwell-

Eucken [171–173] or by the Harding et al. [174] correction – Eq. 7-7 and 7-8, respectively. 
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    
2.5

1p o realk k p                     7-8  

Where ko is the thermal conductivity of a fully dense fuel and kp the one which takes into account the 

porosity of the material. 

In SIMMER, according to the chosen option, porosity can be evaluated as Eq. 7-9. 



A NEW FEATURE FOR SIMMER-III: CONSIDERATIONS FOR INNOVATIVE SPHERE-PAC FUELS 
 

Page | 145  
 

 
2.5

1 .
simp o simsim

k k p              7-9  

In order to reflect the real thermal conductivity, pk , the input value of fuel thermal conductivity for 

fully dense fuel has to be modified in order to take into account the modification associated to 

porosity – Eq. 7.10,  

   
2.5 2.5

1 1 ,
simo o real simk k p p            7-10  

so that  .psimp kk         

In addition, the solution of the fuel thermal conduction equation is considered. The details are 

omitted here and the solution is given in Eq. 7-11: 
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where sT  and iT  are the fuel surface and center temperatures, )(Tk p  the fuel thermal conductivity 

that is a function of temperature and   the linear power rating. If we define a variable K  as in Eq. 

7-12: 
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To take into account the hole with the SPIN model, the original thermal conductivity has to be 

modified according to Eq. 7-13. 

( , )

p

sim

i f

k
k

K R R
 ,                           7-13  
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where simk is the modified value of fuel thermal conductivity used in SIMMER.  

 

7.1.2. Detailed PIN model: DPIN 

 

The Detailed PIN model, DPIN, provides an alternative to the SPIN model and enables a more precise 

description of the temperature distribution in the fuel rod through an increased number of radial 

nodes (so that e.g. the fuel central temperature can be determined). It allows for example the 

modeling of the central hole and the application of various pin failure criteria (Figure 7-2). 
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The methodology is similar to the one used in SPIN: the energy conservation equation is used to 

evaluate energies and temperatures in the fuel and the cladding but this time they are evaluated at 

each radial node considering the heat flux between two adjacent cells and the nuclear heating.  

The treatment of gas in the plenum and the control material has however not been changed as the 

explicit scheme provides accurate results. The pin breakup criteria as well as the transfer from the 

solid fuel field to particles and chunks or liquid fuel fields is kept equal to the procedure used in the 

SPIN model. Unlike the SPIN model, the local formation of molten fuel in the pin as well as the 

related gas transfer from dissolved to free gas can be simulated with DPIN. However, for heat 

transfer calculations the molten fuel cavity is not distinguished from the solid region. Cavity pressure, 

temperature and volume are calculated at each heat transfer time step. As the temperature 

gradients are very steep in oxide fuels due to the poor thermal conductivity, the cavity modeling is a 

significant improvement as fuel melting in the center of the pellet can thoroughly occur. 

DPIN correctly evaluates the temperature profile in the fuel as well as the temperature of fission 

gases in the pin. The fission gases are at a high temperature in the center of the pin thus the fission 

gas pressure and the ejection pressure are influenced by this modeling [53]. 

 

 

Figure 7-2. Pin modeling with SPIN (left) and DPIN (right) [53]. 

Being mainly interested in the ULOF (with clad failure preceding fuel failure) and given the lack of 

transient experiments with sphere-pac fuels, the SPIN model was assessed to be adequate as a first 

approach for the simulations of this type of fuel. 

 

7.2. Literature overview of thermal conductivity models  

 

Besides the well-known concept of pellet fuels sphere-pac fuels are investigated in the FP-7 

PELGRIMM project. These fuels were already investigated in the 1970’s and 1980’s [140; 141; 118] 

and several heat transfer models were developed. As mentioned in Chapter 5, sphere-pac fuels have 

a low thermal conductivity especially at beginning of life where the fresh fuel is not yet restructured. 

Due to high fuel temperatures and thermal gradients at the beginning of irradiations in the reactor, 

the fuel restructures within some hours, thus enhancing the heat transfer. Therefore, thermal 

conductivity of sphere-pac fuels is a key parameter to be investigated if one wants to model properly 

the thermal performance of these fuels. 
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An overview of available models for sphere-pac fuel conductivity is presented in the following 

section. In section 7.3. their adjustment to the SIMMER framework is presented. 

 

7.2.1. Philipponneau’s equation of MOX fuels 

 

An evident option for simulating sphere-pac fuels would be to use the thermal conductivity for MOX 

fuel with increased porosity. Philipponneau [173] and his team suggested a correlation for MOX fuels 

based on an extensive study of diffusivity measurements with varying parameters (burnup (BU), 

oxygen over metal ratio (O/M), Pu content). For their calculations, all available diffusivity 

measurement results in literature were multiplied by the same density and heat capacity values 

(according to Eq. 5-2 in chapter 5), providing consistent results for MOX thermal conductivity. In their 

derivation they considered the electronic and the radiation conductivity, both becoming important at 

high temperatures, as grouped in one single term 
3

HTk CT . Therefore the conductivity formula 

can be written theoretically as Eq. 7-15. : 

     
31

k C T
A B T


 

    
  

            7-15 

where δ is the porosity correction of Maxwell-Eucken 
1

1 2

p

p






, with p the porosity. 

Again one can notice the decomposition in low and high temperature contributions: 
1

phk
A BT




 

and 
3

HTk CT , respectively. 

Based on diffusivity measurements, Philipponneau et al. deduced the following values for the 

parameters A, B, C and δ of Eq. 7-15. 

( , ) 1.528 0.00931 0.1055 0.44A f x BU x BU    
1m W K   where x is the deviation from 

stoichiometry i.e. 2-O/M, BU is the fractional burnup and 0.44 BU gives the effect of solid fission 

products on conductivity.  

42.885 10B   1m W   

1276.38 10C   1 4W m K    

1 1
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p
f p

p



 


 

This correlation [173] is recommended in case of standard MOX pellet fuels. If one assumes the gas 

content in sphere-pac fuels to contribute to the δ term, this conductivity correlation might be one 

candidate for sphere-pac fuels. 
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7.2.2. Schulz’s equation for porous media 

 

In [175] B. Schulz analyses the reliability of general relationships for the thermal conductivity of two-

phase materials. Materials with porosities as high as 96% are investigated. All equations are derived 

from the general equation for dispersion type structures. The case of “open porosity” is a particular 

case of dispersion type structure i.e. materials with porosities above 10% are considered. In this case 

[175] stipulates that the thermal conductivity relation is Eq. 7-16. 

     
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Where 0k  is the thermal conductivity of the dense material,  0k p  is the thermal conductivity of 

the porous material and p  is the porosity. 

Nevertheless Eq. 7-16 seems to predict inaccurate results when considering fully dense materials 

since for zero porosity one does not obtain the thermal conductivity of a fully dense material.  

 

7.2.3. Hall and Martin’s equation for powder beds 

 

Hall and Martin [176] investigated the thermal conductivity of powder beds, especially for UO2 vibro-

compacted spheres already in the early 1980’s. They developed a model based on two simplified 

geometrical arrangements: a cubic packed sphere array and a square packed infinite cylinder array – 

Figure 7-3. The first one consists in an infinite layer of regularly piled up spheres parallel to the heat 

flow. The geometrically evaluated porosity of this arrangement is (1- /6) = 0.476 – Eq. 7-17 and 7-

19. The latter one consists of infinitely long cylindrical columns piling up parallel to the heat flow. In 

this case the porosity is (1- /4)=0.215 (Eq. 7-18 and 7-20). 
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- cp is the geometrical porosity of the cubic packed array 
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- 
sqp  is the geometrical porosity of the square packed array 

- cellV is the volume of the elementary cell  

- spheresV is the volume of the spheres in the elementary cell 

- cylindersV  is the volume of the cylinders in the elementary cell 

 

Figure 7-3. Heat flow in an elementary cell for the square packed or cubic packed array [176]. 

Hall and Martin [176] evaluate the thermal conductivity of packed granules as a combination of a 

cubic packed and a square packed array. 

The thermal conductivity of the cubic packed array was found to be Eq. 7-21 while the one for the 

square packed array was found to be Eq. 7-22. Both equations do not take into account the influence 

of fuel radiation. They were nevertheless applied in UO2 compacts with uranium particles [177]. 
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- gk  is the thermal conductivity of the gaseous phase 

-  is the ratio 
g

s

k

k
 where sk is the thermal conductivity of the solid phase 

- g is the temperature jump distance in meters evaluated with  

2

1

C

g

g

k T
g C

P
 . 1C and 2C being adjustable parameters and gP (atm) and T (K) are the gas 

pressure and temperature, respectively. 

- D is the average diameter of the granules (m) and is defined as 
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
 with iw and id  

being the mass fraction and diameter of the i-th size of the granule. 
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- m is the ratio 
g

D
  

The thermal conductivity k of any compact is then given by applying a Lagrangian interpolation 

method [177] (Eq. 7-23). 
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Where 0.476 cp  , 0.215 sqp  , 1 gp  is the porosity of the gas phase, 0 sp  is the porosity 

of the solid phase and p is the porosity of the powder bed. 
9

1 6.888 10C   and 2 1.065C  were 

found in the numerical analysis of [177]. This correlation seems to provide accurate results for 

sphere-pac fuels [177]. 

 

7.2.4. Other models 

 

Other models have been investigated in addition to the previous ones as to know: the model for 

composite fuels detailed in [178] and originally proposed by Maxwell and the model for powders 

proposed by Godbee [179].  

 

- Maxwell’s equation for composite fuels 

Since sphere-pac fuels can be considered as composite fuel pellets in the sense that a dispersed 

phase i.e. the gas is present in a continuous phase namely the particles, another option could be to 

consider the conductivity of a composite medium. Therefore Maxwell’s equation for composite fuels 

might be used (Eq. 7-24). This equation nevertheless is valid only for a “particle” concentration of the 

dispersed phase less than 10 to 15 % in volume, implicitly assuming no mutual influence of the 

particles on one another [180]. Therefore, for higher concentrations (up to 76%) Eq. 7-25 should be 

used instead.  
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Where the index D stands for “Dispersed phase”, M for “Matrix” i.e. continuous phase, Dk and 

Mk are the thermal conductivities of the dispersed phase and the continuous phase, respectively, 

and rV is the volume fraction of the dispersed phase and can be defined as: 

D
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V
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V V
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
                   7-26  

Eq. 7. 25 could be applied in case of sphere-pac fuels if the dispersed phase is assumed to be the gas 

and the matrix is assumed to be the fuel. 

 

- Godbee’s equation for powders 

Godbee and Ziegler [179] proposed a thermal conductivity model for powders in a semi-empirical 

manner.  

They considered a well-mixed heterogeneous powder with isotherms as planes perpendicular to the 

x axis (Figure 7-4 (a)). This material is then sliced into thin layers parallel to the (x,y) plane. One slice 

has a depth such that the slice is full solid i.e. as in the case shown in Figure 7-4(c). 

 

Figure 7-4. Sliced representation of the gas-powder system. [179] 

The particles in each slice are then moved without rotation along the x axis. This does not change the 

conductivity of the medium as it is only a change in the resistances added in the series (the heat flow 

is perpendicular to the y-z plane i.e. parallel to the x axis). Once this has been performed, the system 

is sliced into thin layers parallel to the y-z plane, again considering only “full” slices in the x direction.  
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Again the particles in each slice are moved along the other axes. Therefore all particles are put 

together in one rectangle, forming a fully dense body. This body is shown in Figure 7-5. 

 

Figure 7-5. Representation of a simplified gas-powder system. [179] 

The details are omitted here but can be found in [179]. The thermal conductivity of powders is 

expressed as in Eq. 7-27. 
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- gk is the thermal conductivity of the bulk gas 

- 
sk is the thermal conductivity of solid particles 

- nr is the refractive index of media between surfaces 

-   is the Stefan-Boltzmann constant 
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-   is the emissivity of the system 

- Vd is the volume of the dispersed phase 

- a  is the thermal accommodation coefficient for gas-solid surface (TAC) 

- 

g

p

g

v

C

C
  , g

pC and g

vC being the heat capacity of the gas at constant pressure and constant 

volume, respectively 

- d = X-Ds is the distance between adjacent parallel plates  

- X and Ds are lengths, defined as in Figure 7-5. 

- T and P are the absolute temperatures and pressures, respectively 

-   is the molecular diameter of the gas as determined from viscosity 

- prN is the Prandtl number and is defined as 

g

p

pr

g

C
N

k


  with  the viscosity 

- Z is a conversion factor and is equal to 1.26 10-19. 

- The ratio sD

X
can be determined by  

3
s dD V

X 

 
  

 
with  a shape factor 

Eq. 7-27 might be applied to sphere-pac fuels instead of powders. 

 

7.2.5. Concrete applications  

 

All previously developed models are based on macroscopic equations. In parallel to these models, 

several fuel codes devoted to the particular behavior of sphere-pac fuels were developed. In 

particular, two codes developed at the Paul Scherrer Institute in Switzerland (PSI) can be cited: 

SPACON [181] dedicated to the calculation of thermal conductivities for sphere-pac fuels - and 

SPHERE [182] - devoted to the irradiation behavior of sphere-pac fuels.  

In reference [181] thermal conductivities covering a temperature range of about 400-1200 K for a 

two size fractions packed UO2 sphere-pac fuel with a smear density of 82.37 % TD are presented for 

different necking ratios and pressures, Figure 7-6. The characteristics of the fuel and parameters 

used for the SPACON calculations in [181] can be found in Table 7-1. The binary fraction sphere-pac 

fuels at 1 bar and 0% necking (marked in red) is considered as the reference thermal conductivity to 

which the previously mentioned models will be compared (in order to identify the most suitable 

model for sphere-pac fuels). This fuel is in fact representative of the fuel state at start of a fast 

breeder reactor. 

All previously described models are applied to this UO2 sphere-pac particle case and compared to the 

data provided in [181] - Figure 7-7. In addition the conductivity for UO2 with a porosity of 17.63% is 

plotted as well in Figure 7-7 based on the equation provided in Table 7-1. 
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Table 7-1. Characteristics and parameters used in the SPACON calculations of Figure 7-6. [181] 

  

 

Figure 7-6. Thermal conductivities for two one-fraction packages of UO2 spheres (1200 µm and 35 µm in diameter) and 
their binary package in the sintered and unsintered state, for different He pressures. [181] 
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Figure 7-7. Thermal conductivity of UO2 sphere-pac fuels of Figure 7-6 with various correlations. SP stands for sphere-pac. 
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According to Figure 7-7 the thermal conductivity correlations of Hall and Martin or of Schulz 

(adapted) reflect rather well the SP fuel data for UO2 particles. Therefore those two correlations will 

be considered for adaptation of MOX SP fuels into SIMMER. 

 

7.3. The SIMMER Framework 

 

The previously mentioned models cannot be directly applied in SIMMER. Indeed, the thermal 

conductivity model implemented in SIMMER is based on a correlation constituted of 5 factors. In 

addition, in case a hole has to be taken into account for the fuel pellet design, the hole correction 

detailed in section 7.1.1. has to be applied since the SPIN model is used. In the following, the 

methodology applied for each fuel type – pellet and sphere-pac - and for different irradiation stages 

is detailed. 

 

7.3.1. Beginning of life thermal conductivities 

 

The thermal conductivities of pellet and sphere-pac fuels are very different at beginning of life (BOL). 

This is especially due to the specific macrostructure of sphere-pac fuels. Indeed, the few and narrow 

contact points between the spheres deteriorate the heat transfer properties of the fuel.  

The reference BOL CP-ESFR core contains fresh pellet fuel with 5.00% porosity and a smear density of 

88.8%TD or 83.41%TD – if smeared up to the fuel outer radius or the inner cladding radius, 

respectively. In case of sphere-pac fuels this implies that the microspheres’ porosity and the helium 

surrounding them add up to a volume faction of 16.59% (no gap is present). 

No data has been found in literature for sphere-pac pins with exactly 16.59% helium content. In [181] 

data for UO2 sphere-pac pins with a helium content of 17.63% was provided. The assumption was 

therefore made that this small discrepancy in the helium content (16.59% vs. 17.63%) would not 

impact much the thermal conductivity and this data was used for BOL sphere-pac fuels.  

Three cases are considered in the BOL CP-ESFR WH core for which one needs thermal conductivities. 

The different cases are depicted in Figure 7-8. 

- The reference case consists in the CP-ESFR loaded with pins composed of annular pellet fuel 

presenting a gap (Figure 7-8(a)). 

- The second case consists in loading the CP-ESFR with non-restructured sphere-pac fuel i.e. no 

necking of the spheres. For thermal conductivity calculations, 17.63% content of Helium was 

considered in the pin (because data was available only for this gas content), 1 bar of gas 

pressure. The fuel mass is kept as in the reference CP-ESFR pins (Figure 7-8 (b)). 

- The third case consists in loading the CP-ESFR with full pellet fuel (no hole, no gap). For 

thermal conductivity calculations 17.63% of porosity is considered. The mass is kept as in the 

reference CP-ESFR (Figure 7-8 (c)). 
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fid 

fod 

cod 

wired 

thc 

Hole + gap 
Fuel porosity 5%

Smear porosity 11.20%

No hole + no gap 
Smear porosity 16.59%

Porosity for conductivity 
calculation 17.63%

(a) (b)

No hole + no gap 
Smear porosity 16.59%

Porosity for conductivity 
calculation 17.63%

(c)

 

Figure 7-8. Cases considered for the CP-ESFR cores at BOL: (a) standard pin design (b) non-restructured sphere-pac pin (c) 
full pellet. 

Analyzing case (a) and (b) provides information on the impact of the pin inner structure and fuel 

thermal conductivity on the pin behavior. Analyzing case (b) and (c) gives information on the impact 

of thermal conductivity solely on the pin behavior.  

In order to perform calculations with these fuels, the first step is to obtain the conductivity 

correlation for both pellet and sphere-pac U0.8Pu0.2O2 fuel. 

 

- Pellet fuel  

A 100% dense pellet (no porosity) composed of MOX fuel and no central hole is considered. To get 

the conductivity correlation to be used in SIMMER, the Philipponneau equation [173] (see section 

7.2.1.) is applied – Eq. 7-28. 

3

0

1
k C T

A B T

 
   

  
       [W m-1  K-1]         7-28 

Where 

( , ) 1.528 0.00931 0.1055 0.44A f x BU x BU      m W-1  K, x is the deviation from 

stoichiometry i.e. 2-O/M, BU is the fractional burnup in at%  

42.885 10B   m W-1 

1276.38 10C   W m-1  K-4 

T is the temperature in K, BU is the burnup in at%. 

The data obtained by this formula is fitted and gives the following SIMMER correlation for non-

irradiated dense U0.8Pu0.2O2 pellet fuel – Eq. 7-29. 

, 5 3 7 2

0 2

1 1
4.8260 239.199 6.00062 10 2.90409 10 8.23153 10MOX pelletk T T

T T

                    7-29 

Based on the previously written correlation, the conductivity for case (a) and case (c) are determined. 
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Case (a) 

Eq. 7-29 is modified using the hole correction treatment – section 7.1.1. -  i.e. by applying Eq. 7-8 and  

Eq. 7-13 considering the BOL hole dimensions (i.e. 2.40904 mm in diameter) and the fuel initial 

porosity. The standard CP-ESFR pellet fuel therefore has the following thermal conductivity 

correlation – Eq. 7-30 - to be used in SIMMER together with the Harding correction (Eq. 7-8): 

, 5 3 6 2

, 2

1 1
5.9452 162.134 1.93070 10 3.50597 10 1.06394 10MOX pellet

CP ESFR refk T T
T T

 

              7-30  

Case (c) 

Eq. 7-29 is used directly in the SIMMER input. The porosity correction is nevertheless modified in the 

SIMMER subroutines to take into account a porosity of 17.63% for conductivity calculations. This is 

accounted to the fact that the data for sphere-pac fuels [181] is given for 17.63% of Helium and the 

same porosity is hence applied to the pellet fuel.  

The data available for sphere-pac fuels concerns UO2 fuel [181]. It is assumed that the impact of 

additional plutonium in the uranium matrix on the conductivity of sphere-pac fuel is the same as the 

impact we get in pelletized fuel of the same density [183]. It is therefore possible to deduce from the 

sphere-pac UO2 conductivity, the sphere-pac MOX conductivity by applying coefficients calculated on 

the basis of UO2 and MOX pellet conductivity. 

The non-irradiated dense UO2 pellet fuel conductivity in SIMMER [184] is given in the following Eq. 7-

31: 

2 , 3 6 3 7 2

0 2

1 1
2.0207 4.68440 10 1.04430 10 2.60310 10 8.93780 10

UO pellet
k T T

T T

               7-31  

A plot of conductivities for U0.8Pu0.2O2 and UO2 pellet fuels with a density of 82.37%TD obtained from 

the previous correlations is given in Figure 7-9. 
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Figure 7-9. Conductivity for U0.8Pu0.2O2 and UO2 pellet fuels, density of 82.37%TD. 
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Based on Figure 7-9 the coefficients to apply to the pellet conductivity of UO2 to obtain the one for 

MOX pellet are deduced. The same coefficients are then applied to sphere-pac fuels of the same 

density. The coefficients to be applied can be seen in Appendix D. 

 

- Sphere-pac fuels  

Conductivity data for UO2 sphere-pac fuel with a smear density of 82.37%TD – i.e. sum of gas content 

and porosity of spheres - no necking and 1 bar of pressure is taken from [181]. The data covers the 

temperature range from 400 K to 1200 K and needs further extrapolation even though non-

restructured sphere-pac fuels at temperatures as high as 3000 K will not exist in reality. An envelope 

case for BOL with completely non-restructured SP fuel is thus considered. 

To extrapolate the data, sphere-pac fuels will be assumed to be close to a penetration type material 

i.e. a structure containing interconnected bodies of each phase: fuel and gas. 

Eq. 7-16 [175] for penetration type materials with open porosity is then used to fit the sphere-pac 

data [181] with 0.165p  ,  
1.7

0 1fuel spheresk k p    [181] and 0.0144spheresp   is the porosity of 

the spheres. This yields a smear porosity of 0.1763. 

By using Eq. 7-16 and adapting it to the sphere-pac data [181], one obtains the following 

extrapolation for the conductivity of non-restructured UO2 sphere-pac fuels with 82.37%TD, 1 bar of 

He – Eq. 7-32: 

2 , 5 3 7 2

0.1763 2

1 1
3.4148 926.694 2.11397 10 1.58093 10 3.41369 10

UO sphere pac

pk T T
T T

  

                7-32  

Figure 7-10 gives an overview of the conductivity extrapolation for non-restructured sphere-pac fuels 

with 82.37%TD and 1 bar of He: 
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Figure 7-10. Thermal conductivity extrapolation for non-restructured UO2 sphere-pac fuels based on data in [181]. 
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By applying the coefficients of Appendix D to the conductivity of UO2 sphere-pac fuel, one obtains Eq. 

7-33 for the conductivity of U0.8Pu0.2O2 sphere-pac fuel: 

, 5 4 7 2

0.1763 2

1 1
1.6680 283.800 1.95890 10 3.6102 10 1.00260 10MOX sphere pac

pk T T
T T

  

              7-33 

Eq. 7-33 already contains the porosity correction and the porosity correction in SIMMER is thus 

omitted. 

It has to be mentioned that Eq. 7-16 from [175] does not yield accurate results in case of fully dense 

material. Nevertheless, comparing this equation with the one of Hall and Martin provides similar 

results in the considered temperature range for the considered material (within 5% relative 

discrepancy) – Figure 7-11. 
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Figure 7-11. Comparison of the Ishii (Hall and Martin) and the Schulz equation for MOX sphere-pac (SP) fuels. 

Once the BOL conductivities are known, the same procedure has to be applied to obtain end of cycle 

3 (EOC3) conductivities. 

 

7.3.2. End of cycle 3 conductivities 

 

After 3 irradiation cycles, when the fuel represents the average fuel in the core at 

equilibrium, the WH pellet fuel is assumed to have a porosity of 7.50% and an oxygen over metal 

ratio of 2 [185]. At this stage of irradiation, a pin filled with sphere-pac fuel exhibits, in first 

approximation, two zones: one outer non-restructured zone displaying the BOL structure and 

another restructured zone with properties similar to a pellet fuel of the same density – Figure 7-12. 
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Characteristics of EOC3 fuels are listed in Table 7-2. Conductivities for both fuel types are determined 

in the following. 

 

Figure 7-12. EOC3 pellet (left) and sphere-pac fuel (right). 

Table 7-2. Characteristics of EOC3 fuel in the CP-ESFR core. 

 Standard MOX 
pellet pin 

Restructured MOX sphere-pac pin 

Fuel smear porosity (%) 16.59 16.59 

Fuel porosity and other 
characteristics 

Fuel porosity 7.5% 2 fuel zones: restructured and non-
restructured 

2 sphere diameters: 1200 µm and 35 µm 

Restructured zone porosity 7.5% 

Central hole diameter (mm) 3.05 2.92 (30% of cladding inner diameter) 

Burnup (at%) 6 6 

Oxygen over metal ratio 2 2 

Gap state Closed gap No gap 

 

- Pellet fuel  

The thermal conductivity of pellet fuel is obtained with Eq. 7-15 considering the 

characteristics listed in Table 7-2. Eq. 7-13 and Eq. 7-7 are then applied in order to compensate for 

the presence of the hole.  

Eq. 7-34 is then used for conductivity in SIMMER with the Maxwell-Eucken porosity 

correction.

, , 3 5 6 2

0.1659 2

1 1
8.5987 136.946 9.01439 10 0.005079 1.42400 10MOX pellet EOC

pk T T
T T



           7-34 

- Sphere-pac fuel 

To assess the thermal conductivity of the restructured sphere-pac fuel, conductivity 

correlations in each of the two zones are determined. In the non-restructured zone, Hall and Martin’s 

approach is used while in the restructured zone Philipponneau’s equation for MOX fuels is applied 

[173].Both conductivities are then combined into one single equation based on the linear power of 

each zone. This gives the effective fuel thermal conductivity Eq. 7-35 (same porosity in both regions 

for SIMMER) 

,

,

1
ln

lnln

fuel outer

effective

Hole fuel outerPellet like structure

Pellet like structureHole

Pellet like structure Sphere pac fuel

R
k

R RR

RR

k k





 

 
  

    
    

   

        7-35 
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with
Pellet like structureR 

the outer radius of the pellet-like structure, 
,fuel outerR the outer radius of the 

fuel, holeR the inner radius of the pellet-like structure defined as: 

 

,30%

1

hole fuel outer

Pellet like structure

Pellet like structure hole

Non restructured sphere pac fuel Pellet like structure

R R

p
R R

p p





  








 

where p stands for porosity. 

Applying Eq. 7-13 and Eq. 7-7 to Eq. 7-35 yields the conductivity correlation for sphere-pac fuels to be 

applied in SIMMER (Eq. 7-36) together with the Harding correction (Eq. 7-8). 

, , 3 5 6 2

0.1659 2

1 1
7.01016 855.730 4.35492 10 0.004203 1.23300 10MOX sphere pac EOC

pk T T
T T

 

           7-36 

 

7.3.3. Summary concerning the determination of conductivities  

 

A graphical summary of conductivities for both fuel types (sphere-pac and pellet) at BOL and EOC3 

without any hole or porosity correction for SIMMER is shown in Figure 7-13. As can be seen from this 

figure, the conductivity of sphere-pac fuel at BOL is very low compared to the one of pellet fuel. 

However, after 3 cycles of irradiation, it recovers and is close to the pellet one (of same density), as 

expected. 
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Figure 7-13. Summary of thermal conductivities for both pellet and sphere-pac fuel in the CP-ESFR at BOL and EOC3. 
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With the previously mentioned equation and options, several SIMMER runs were performed. 

Corresponding description and analysis will be presented in Chapter 8. One additional parameter to 

be investigated in case of sphere-pac fuels is the thermal penetration length of the fuel.  

 

7.4. Studies on thermal penetration length 

 

In a standard SIMMER-III calculation, no porosity is included in the calculation of 2 f . This parameter 

is determined by using material properties of dense fuel at solidus temperature. This reflects the 

case of a molten inner fuel zone touching the surface fuel zone, which is still in its solid state. The 

corresponding thermal penetration length would reflect the width (and therefore the delay time) of 

the heat transfer to the coolant. 

Since the sphere-pac fuel used in the CP-ESFR WH core has a “porosity” of 16.59% – instead of 5% in 

case of standard pellet fuel - it has to be made sure that omitting the porosity in the thermal 

penetration length calculation has an acceptably small influence on the core behavior under 

transient conditions. For the intended investigation of a ULOF the SPIN model is sufficient and was 

therefore chosen [169]. The thermal penetration length 2 f has an impact on the heat transfer 

calculation and hence on fuel temperatures as it determines the size of the surface node. It is 

evaluated as follows [169], assuming a parabolic temperature profile and a perfect contact between 

both zones Eq. 7-37: 

 
 

   
 ,

,2 2 3 2 3
str f f

f str f f

f f

k T
a T

T c T


 


   7-37 

Where ,str f  is called the structure time constant, fk , f and fc are the fuel thermal conductivity, 

density and heat capacity of the fuel, respectively, and fa  is the thermal diffusivity of fuel.  

To determine the impact of porosity inclusion in 2 f  calculations on the core behavior under 

transient conditions, a fast unprotected transient over power (UTOP) has been chosen18. For a fast 

UTOP under reactor beginning of life (BOL) conditions, SPIN can be applied since the power increase 

leads to a melting of the complete pellet. In addition the fast UTOP has been chosen for minimizing 

computation time. A non-mechanistic arbitrary reactivity ramp rate of 50$/s is imposed to the CP-

ESFR WH core [186] after it reaches its steady state. The following assumptions are made: 

- calculations are performed at beginning of life  

- for pellet fuel and sphere-pac fuel, in its non-restructured state 

- for thermal penetration lengths calculated with fully dense properties – referred to as 

“reference PENTR” – and porous properties  

- gagging scheme for CP-ESFR WH core at BOL with its reference fuel (pellet with hole). 

                                                            
18 For these analyses, only the fuel has been replaced (pellet by sphere-pac) and the core design (and e.g. the 
power distribution or gagging scheme) has been kept; the aim being to determine if introducing sphere-pac 
fuel into a sodium cooled fast reactor is possible in principle. 



A NEW FEATURE FOR SIMMER-III: CONSIDERATIONS FOR INNOVATIVE SPHERE-PAC FUELS 
 

Page | 163  
 

Four cases are studied. For each fuel type, two sub-cases are considered – Table 7-3. 

Table 7-3. Overview of the studied cases. 

Cases 
Sphere-pac fuel 

(16.59% porosity) 

Pellet fuel 

(5% porosity) 
Reference PENTR PENTR with porosity 

1a  x x  

1b  x  x 

2a x  x  

2b x   x 

 

No expansion model is applied for reactivity feedback. Steady state is calculated for all 4 cases and 

the UTOP launched, once the steady state is reached. Geometric characteristics of pellet and sphere-

pac fuels used for the calculations can be found in Chapter 4. The pin design in all four cases is the 

same as the CP-ESFR WH one. Only fuel porosity is adapted since sphere-pac fuel pins do not present 

a gap between fuel and cladding.  

In all calculations, ,str f  is set to the default value of 1 ms – the characteristic time scale of a power 

peak induced by a UTOP. The temperature is set to the solidus temperature of MOX fuel (3002 K 

[169]). 

Porosity might be included in the calculation i.e.  ,f solidusk p T and  ,f solidusp T   are used. ,p fc   is 

assumed to be independent of porosity (see Appendix E). 

Values of thermal penetration lengths for the four studied cases are listed in Table 7-4. 

Table 7-4. Thermal penetration length values for the studied cases (1 stands for pellet fuel, 2 for sphere-pac fuel, a for 
the reference calculation, b for the calculation taking into account the porosity). 

Cases Hand calculation (µm) Check with SIMMER-III (µm) 

1a 89.43 89.43 

1b 79.10 79.10 

2a 89.43 89.43 

2b 52.22 52.22 

 

The studies are devoted first to the differences due to the porosity inclusion for the same fuel type 

which means first cases 1a and 1b are compared, followed by cases 2a and 2b. Only cases 2a and 2b 

dealing with sphere-pac fuels are presented in this section. Cases 1a and 1b can be found in 

Appendix F. 

Sphere-pac fuels contain a higher gas amount, referred to as porosity, than standard pellet fuels. 

Therefore its effect on the thermal penetration length and core response to a transient is expected 

to be larger than for pellet fuels. There is no significant difference in the steady state of cases 2a and 

2b.  

A reactivity ramp of 50$/s is assumed for initiating the transient. The reactivity evolution due to this 

reactivity ramp is shown in Figure 7-14. With the fuel temperature raise, the Doppler effect brings 

the reactivity back to a lower value. This corresponds to the first reactivity peak. However, the fuel 

temperature raise is not yet sufficient to trigger core melting – Figure 7-16. 
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Since reactivity is continuously added by the external power ramp of 50$/s, a second reactivity and 

power peak is generated. This peak is sufficient to trigger the fuel melting at 26~27 ms after the 

accident starts. The fuel melting and dispersion leads the power to decrease again.  

The calculations stop 29.3 ms and 37.8 ms after the accident initiation in case 2a and 2b respectively. 

Even though both cases show almost the same core response to the imposed transient, very slight 

discrepancies can be identified (less than 0.2%).  

After the first power peak, the fuel temperature in case 2a is lower than in case 2b. Therefore the 

temperature increase in case 2b is higher than in case 2a which leads to a larger Doppler feedback 

(cf. the steepness of the blue reactivity slope between 24.3 ms and 25.5 ms), Figure 7-15. 
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Figure 7-14. Reactivity evolution in case of sphere-pac fuel, during a UTOP of 50$/s. 
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Figure 7-15. Zoom on reactivity peaks. 
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The front slope of the second reactivity peak is steeper in case 2b than in case 2a. The rapid fuel 

melting and higher molten fuel mass in case 2b - see zoom on the fissile core at 29 ms after the UTOP 

starts - Figure 7-17 - leads then the second power peak to be slightly higher in case 2b than in case 

2a, Figure 7-16. 

 

Figure 7-16. Average fuel temperature in the hottest cell, in case of sphere-pac fuels. Total power evolution in case of 
sphere-pac fuel, 50$/s UTOP starts at 0 s. 

            

Figure 7-17. Snapshots 29 ms after the UTOP starts. Left: case 2a, right: case 2b.  

The preceding discussion shows that the porosity inclusion in the thermal penetration length 

calculation has only a small impact on the core response to a reactivity transient since the transient 

evolution is almost the same in both cases. Therefore, the initial assumption of SIMMER-III to 

consider the properties of fully dense fuel for the thermal penetration length calculation is still a 

reasonably valid approximation and can be applied to sphere-pac fuels too. 
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7.5. Conclusions 

 

As SIMMER has been mainly developed to describe already disrupted pin and core configurations, 

the SIMMER-III transient pin models are simpler than the ones found in advanced fuel performance 

codes. The models should describe the phenomenological range from steady state to pin break-up 

and failure and should not put an undue load on computing time. Two models can be applied i.e. the 

SPIN and DPIN models, both having their strengths and limitations. For the purposes targeted in the 

FP7-PELGRIMM project and due to the lack of experimental data for sphere-pac fuel behavior, the 

SPIN model was chosen for simulations. Using this model implies however some constraints like 

considering a special treatment for the central hole.  

The conductivity of sphere-pac fuels is very different from the one of standard pellet fuels especially 

at BOL and needs special attention. A literature overview revealed that the Hall and Martin model for 

powder beds might be the most suitable candidate for modeling the thermal conductivity of these 

fuels. Equations adapted to the SIMMER framework have then been obtained for both pellet and 

sphere-pac fuel at BOL and EOC3 conditions. The low thermal conductivity of sphere-pac fuels at BOL 

raises some concerns related to the safety behavior of this fuel for the first hours of operation. 

Specific reactor start-up procedures are required to cope with this phase. Nevertheless the fairly 

quick fuel restructuring enhances the thermal conductivity rather soon, within a few hours or days 

after the start-up with fresh fuel. In the next chapter, these fuels, with their specific thermal 

conductivities, are analyzed both at steady and under transient conditions, when filled in the CP-ESFR 

cores
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Chapter 8  

8. SIMMER-III Code simulations 

SIMMER-III CODE SIMULATIONS  

 

This chapter addresses the behavior of a core loaded with sphere-pac fuels. Comparison is made with 

the standard pellet case. The aim of the analyses is to investigate whether introducing sphere-pac 

fuels into a sodium cooled fast reactor (SFR) is possible in principle (i.e. no optimization is performed 

at this stage). As detailed in Chapter 4, the Working Horse (WH) and the CONF2 cores are under 

study: steady state conditions are analyzed based on which an unprotected loss of flow (ULOF) 

accident is considered.  

The cores are assumed to be either in beginning of life (BOL) or in equilibrium conditions. For each 

case, the considered fuel state is considered i.e. either non-restructured or restructured in case of 

sphere-pac fuels and with or without gap closure in case of the pellet pins. To start the analysis, 

traditional MOX fuel is used. As sphere-pac fuels are assumed to present a better safety behavior 

when containing minor actinides (MAs) than pellet fuels, americium is additionally loaded into the 

cores in order to evaluate its impact on the core safety performances. Finally, the developed 

expansion model is applied to get an insight on its effect on the core behavior under transient 

conditions.  

 

8.1. Modeling 

 

The two core designs under study presented in detail in Chapter 4 have to be modeled with SIMMER-

III. This section therefore recalls the main core and pin characteristics of each of the two cores and 

describes the performed modeling. 

 

8.1.1. CP-ESFR WH 

 

The CP-ESFR WH core is a 3600 MWth pool-type sodium cooled fast reactor core - Figure 8-1 (a). The 

Working Horse core consists of two core zones – an inner and an outer one – with different 

enrichments, specifically chosen to flatten the power profile at equilibrium. The inner core is 

composed of 225 sub-assemblies (SAs) with a plutonium enrichment of 14.43 at% at BOL while the 

outer core comprises 228 SAs enriched in plutonium with 16.78 at%. Each sub-assembly is a 

hexagonal wrapper tube of EM10 steel containing 271 pins in a triangular arrangement spaced by 
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helical wires. The original core uses pelletized fuels and has been fueled with sphere-pac pins later on 

for the purposes of this study. The average and maximum core burnups are of about 100 GWd/tHM 

and 145 GWd/tHM respectively, and the average power density is 206 W cm-3 [187; 9]. The core is 

surrounded by altogether 3 rows of EM10 steel SAs, which serve as radial reflector – see Figure 8-1 

(b). 

 

 

(a)               (b) 

Figure 8-1. CP-ESFR Working Horse reactor vessel design (a) and core radial layout (b) [6; 14]. 

The core control is ensured by means of 24 control and shutdown devices (CSDs) and 9 diverse 

shutdown devices (DSDs). All safety rods are assumed to be withdrawn from the core. 

Both steady state and transient analyses are performed for the CP-ESFR WH (steady state conditions 

are detailed in Table 8-1) with two different loading configurations: with the standard pellet-filled 

pins and with the sphere-pac pins. Core dimensions and main geometrical parameters are reported 

in Table 8-1 for both arrangements. It is considered that the core can be loaded with sphere-pac 

instead of pellet fuels assuming pins with a smear density as high as 83.41% can be fabricated based 

on [137]. However, if the required smear density cannot be reached, the fuel enrichment should be 

increased in order to compensate the mass discrepancy to reach criticality. As there is a strong 

correlation between the attainable sphere packing density and the thermal conductivity the core 

design will have to be changed.  

Table 8-1 which summarizes the geometric characteristics of pellet and sphere-pac fuel pins also 

depicted in Figure 8-2, highlights the differences between the two configurations, which mainly 

reduces to a change in the fuel smear porosity, due to the absence of fuel-cladding gap in the sphere-

pac configuration as well as the presence or absence of the ‘central hole’. It has to be stressed that 

no design modification has been made when substituting the pellet fuel with sphere-pac fuel: 

expressed in other words, the pin design for sphere-pac fuel is exactly the same as the one defined 

for pellet fuel in the CP-ESFR WH [6]. 
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Table 8-1. Main core parameters of the CP-ESFR Working Horse core [6; 187]. 

Parameter Value 

Reactor power (MWth) 3600 

Core inlet temperature (˚C) 395 

Core outlet temperature (˚C) 545 

Average core structure temperature (˚C) 470 

Average fuel temperature (˚C) 1227 

Fuel assemblies pitch (mm) 210.8 

Internal flat-to-flat distance of wrapper tube (mm) 197.3 

External flat-to-flat distance of wrapper tube (mm) 206.3 

Wrapper thickness (mm) 1.5 

Fuel pins per sub-assembly (#) 271 

CSD (#) 24 

DSD (#) 9 

Inner fuel sub-assembly (#) 225 

Outer fuel sub-assembly (#) 228 

Inner and Outer reflector (#) 84+186 

Overall sub-assembly length (mm) 4739 

Table 8-2. Basic fuel parameters for the sphere-pac and pellet pins in inner and outer core zones [6; 187]. 

Parameter Value 

 Pellet Sphere-pac 

Overall pin length (mm) 2539 

Cladding outer diameter, cod (mm) 10.73 

Cladding thickness, thc (mm) 0.5 

Wire diameter (mm) 1.0 

Fuel outer diameter, fod (mm)  9.43 9.73 

Central hole diameter (mm)  2.41 0.00 

Fuel-clad radial gap (mm)  0.15 

Fuel porosity (%TD)  5.00 1.44 

Smear porosity 11.2019 16.5920 

Active height (mm) 1000 

Upper reflector height (mm) 150 

Lower reflector height (mm) 300 

Upper gas plenum height (mm) 76 

Lower gas plenum height (mm) 913 

                                                            
19 Smear porosity in case of pellet fuel, for SIMMER-III calculations, is given by the fuel porosity and the gas 
amount in the pellet inner hole. It is calculated as the void section normalized to the pellet outer section. 
20 Smear porosity in case of sphere-pac fuels is given by the porosity of the fuel microspheres and the pin gas 
content. It is calculated as the void section normalized to the inner clad section. 
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Figure 8-2. Layout of fuel SAs and fuel pins in case of sphere-pac (upper part) and pellet fuel (lower part) [6] 
(thw=wrapper thickness, xwin= Internal flat-to-flat distance of wrapper tube, xwout= external flat-to-flat distance of 

wrapper tube, wtptch= Fuel assemblies pitch, fid = fuel inner diameter). 

The three-dimensional HEX-Z core has been modeled with SIMMER-III in a two-dimensional RZ 

geometry preserving the volumes – Figure 8-3. In particular, in the radial direction, this means that 

the core has been transformed into concentric rings, whose radii are defined such that the cross-

sectional areas of the original layout are kept in the new one. During the CP-ESFR project [6; 187], 

the core has been modeled of 25 rings, as described in Table 8-3. The fuel sub-assemblies have been 

grouped into 12 fuel rings (8 in the inner core and 3 in the outer core). The inner fuel SAs are located 

at the radial mesh numbers 2, 3, 4, 6, 7, 9, 10 and 11 while the outer ones are found at ring numbers 

13, 14 and 15. The first radial mesh is used to model the inner dummy SA composed of steel. CSDs are 

located at rings 5 and 12 while DSDs are in ring 8. The reflector is modeled by three rings located at 

the radial mesh number 16, 17 and 18. 

 

Figure 8-3. SIMMER-III radial layout of the CP-ESFR Working Horse core [13]. 
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Table 8-3. SIMMER-III radial modeling of the CP-ESFR Working Horse core [6]. 

Radial Ring SAs/Ring Radius (m) ΔR (m) Comments 

1 1 0.11067792 0.11067792 Central Dummy 

2 6 0.29282625 0.18214833 Inner Core 

3 12 0.48243387 0.18960762 Inner Core 

4 12 0.61622858 0.13379471 Inner Core 

5 6 0.67322751 0.05699893 CSD 

6 24 0.86442219 0.19119468 Inner Core 

7 42 1.12325821 0.25883602 Inner Core 

8 9 1.17130501 0.04804680 DSD 

9 57 1.43881296 0.26750795 Inner Core 

10 48 1.63038757 0.19157461 Inner Core 

11 24 1.71818337 0.08779580 Inner Core 

12 18 1.78119256 0.06300919 CSD 

13 72 2.01360827 0.23241571 Outer Core 

14 66 2.20524194 0.19163367 Outer Core 

15 90 2.44244881 0.23720687 Outer Core 

16 84 2.64471601 0.20226720 Radial Reflector 

17 90 2.84552050 0.20080450 Radial Shield 

18 96 3.04515168 0.19963117 Radial Shield 

19 300 3.59830923 0.55315756 Bypass 

20 468 4.32211095 0.72380172 Bypas+Barrel 

21   5.14561095 0.8235 Hot/Cold Pool 

22   5.96911095 0.8235 Hot/Cold Pool 

23   6.40651095 0.4374 HX/Pump 

24   6.84391095 0.4374 HX/Pump 

25   8.50651095 1.6626 Cold Pool 
 

Axially, as depicted in detail in Figure 8-4, the core includes: the sodium below the core; the assembly 

lower part; the lower gas plenum; the lower axial blanket made of steel, the fissile height; the upper 

gas plenum; the upper steel blanket, the assembly upper part; the sodium plenum; the steel 

reflector. The total axial height of the core is divided into 50 axial meshes. The whole core geometry 

and mesh distribution as modeled in SIMMER-III are displayed in Figure 8-4.  

 

Figure 8-4. CP-ESFR WH core axial geometry and mesh distribution (a) and related SIMMER-III modeling (b) [13]. 



SIMMER-III CODE SIMULATIONS 
 

Page | 172  
 

Figure 8-5 displays the CP-ESFR WH core enclosed in the vessel, as modeled with SIMMER-III. 

Additionally, heat exchangers and 3 pumps present in the CP-ESFR reactor have been modeled [13]. 

 

Figure 8-5. Overall SIMMER-III modeling of the CP-ESFR Working Horse core enclosed in the reactor vessel [13]. 

 

8.1.2. CONF2 Core 

 

The CONF2 core is an optimized version of the CP-ESFR WH core aiming at decreasing the positive 

sodium void worth. The radial structure of the WH core is preserved, while the enrichment is slightly 

modified (14.67 at% and 17.07 at% in inner and outer core, respectively). The two cores differ mainly 

axially, as can be seen from Figure 8-6, with the replacement of the lower axial steel blanket with a 

fertile blanket (as already mentioned in Chapter 4), the suppression of the upper axial blanket and 

the enlargement of the sodium plenum (which has been put closer to the fissile part). The extensive 

changes to the upper part of the SAs also include the introduction of an absorber layer above the 

sodium plenum. Apart from axial material rearrangements, the pin design has been preserved and is 

equal to the WH core one. The SIMMER modeling has been accordingly modified [9].  
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Figure 8-6. Axial layouts of the CP-ESFR Working Horse and CONF2 cores. Differences are highlighted in the red and blue 
boxes. 

 

8.2.  Steady state 

 

Within the CP-ESFR project, the WH core has been extensively analyzed with pellet pins [9]. On the 

other hand no complete safety analyses have been performed for the CONF2 core within the CP-ESFR 

project. Hence in this thesis a first safety assessment has to be performed for the latter one loaded 

with pellet fuel as well as with sphere-pac fuel. 

As already described in the previous section, one essential difference between pellet and sphere-pac 

pins used in the considered cores is that the pellets are annular whereas the non-restructured 

sphere-pac pins do not have a central hole, at least at BOL. In addition, the thermal conductivity of 

non-restructured sphere-pac fuels (i.e. at BOL) is very low compared to pellet fuels, as extensively 

expressed in Chapter 7. As a consequence, the central temperature of the sphere-pac pins at BOL is 

expected to be higher than the pellet one. This case is therefore the most conservative one. On the 

contrary, the heat transfer between the fuel surface and the cladding is enhanced in sphere-pac pins 

at BOL, due to the absence of the gap between the fuel and cladding tube, i.e. the gap is fully filled 

with particles. This advantage, however, vanishes when the gap in the standard pellet fueled pins 

closes.  

These considerations are evident considering the cases described in Chapter 7 for BOL fuel, which are 

recalled hereafter for the sake of clarity – Figure 8-7. 
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Figure 8-7. Cases considered for the CP-ESFR cores at BOL: (a) standard pin design (b) non-restructured sphere-pac pin (c) 
full pellet. 

 

8.2.1. Working Horse Core 

8.2.1.1. Beginning of life conditions 

 

The radial coolant temperature profile at inlet and outlet in all three cases can be seen in Figure 8-8 

while the radial profile of coolant mass flow per SA is provided in Figure 8-9. The radial coolant outlet 

temperature profile is rather flat in all three cases and the mass flow is appropriate to each SA power 

in order to meet the safety margins of 823 K on the clad. It has to be mentioned that the gagging 

scheme is optimized for the pellet loaded reference core and has been used for the sphere-pac fuel 

cases as well. 
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Figure 8-8. Outlet and inlet coolant temperature distribution in the BOL Working Horse core. 
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Figure 8-9. Mass flow per sub-assembly in the BOL Working Horse core for the three considered cases. 

 

In all three cases the radial cladding temperature profile at core midplane is rather flat and stabilizes 

at about 775 K after 50 s of calculations, the maximum clad temperature limit being of 823 K. 

Therefore, the safety limits of the cladding are met. 

As expected, the fuel surface temperature is globally higher by 45 K in the reference pellet (case (a)) 

than in the sphere-pac fuel case (case (b)). This trend is not followed in the hottest SIMMER ring, 

where a gap closure in the pellet fuel occurs due to its high power and hence reduces the fuel surface 

temperature. The fuel average temperature reaches a maximum difference of 831 K between 

sphere-pac and pellet fuel (case (b) and (a), respectively) in the hottest channel, leaving a lower 

margin to melting of 240 K in case of the sphere-pac pin than in case of the pellet pin, see Figure 

8-10. One can notice from the comparison of case (b) and (c) that roughly half of the temperature 

difference is attributed to the thermal conductivity difference only. 

Even though the fuel average temperature stays below its melting point of 3002 K, the center 

temperature of sphere-pac fuel pins – determined by using bulk and surface node temperatures – 

exceeds the melting point in at least 3 rings (SIMMER RZ modeling) and leads to fuel melting at 

steady state. This is also caused by the WH BOL power profile which is very peaked in the outer core 

part. Additionally, full nominal power has been assumed for BOL: decreasing this power is necessary 

to prevent pin failures. 
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Figure 8-10. Bulk (called inner) and surface temperature distributions at core midplane in the CP-ESFR Working Horse 
core at BOL for different fuel loadings. 

Attention is now devoted to the hottest ring (ring 13 see Figure 8-4), for which axial temperature 

profiles are shown in Figure 8-11. There, the cladding temperature at steady state reaches 836 K in 

case of pellet and 856 K in case of sphere-pac pins, and the nominal conditions limit on cladding 

temperature, set at 823 K, is thus exceeded.  

It has to be stressed, that the reference pellet fuel (case (a)) axial temperature distribution reflects 

the large thermal expansion of the pellet especially at core midplane. As the core is at nominal 

power, fuel-cladding contact is made over the central part of the pin, which experiences an enhanced 

gap conductance. As a consequence, while on the bottom and top of the fuel column, the fuel 

surface temperature of the sphere-pac pin is significantly lower than the one in the pellet pin, in the 

central part the tendency is reversed. Indeed, where both configurations present no gap, i.e. in the 

central region, the heat transfer is mainly governed by the thermal conductivity, which is higher for 

the pellet than for the sphere-pac pin. On the contrary, at the bottom and top of the column, the fuel 

temperature is not high enough to lead to a gap closure in the pellet pins (while it is still not-existing 

for the sphere-pac configuration), therefore hindering the heat exchange, which results to be 

enhanced for sphere-pac pins despite their lower thermal conductivity [188]. 

As concerns the fuel bulk temperature at nominal power at BOL, the sphere-pac pin presents 

considerably higher temperatures than the pellet pin, as expected from the large thermal 

conductivity difference (Figure 8-11(b)). Comparing case (b) and case (c) confirms that the fuel 

thermal conductivity mainly impacts the fuel bulk temperature, having only a very small effect on the 

fuel surface temperature, the main one being the gap condition (open or closed). 
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Figure 8-11. Axial temperature distributions of coolant, cladding, fuel in the hottest ring of the CP-ESFR Working Horse 
core at BOL. 

 

8.2.1.2. End of cycle 3 conditions 

 

In order to obtain information on a representative core, it is important to analyze the core at 

equilibrium, i.e. with EOC3 compositions. The two cases detailed in Chapter 7 are considered (Figure 

8-12): a pellet fuel case, with closed gap and a sphere-pac fuel case, with no gap and restructured 

fuel as these configurations are representative for a fuel at this stage of irradiation. 

 

 

Figure 8-12. EOC3 pellet (a) and sphere-pac fuel (b). 

 

Because of the similar thermal conductivities of the two fuels at this stage of irradiation (Figure 8-13) 

no significant difference is observed between the two configurations. The maximum fuel bulk 

temperature reaches 1620 K and remains appreciably below the melting temperature of 3002 K 

(Figure 8-14). Even if the hottest ring is now considered, no significant difference between sphere-

pac and pellet fuel can be observed (Figure 8-15). In addition to the better fuel conductivity at this 

stage of irradiation, the Working Horse core radial power profile and related gagging scheme are 

(a) (b) 
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optimized to obtain a flat outlet coolant temperature distribution and stay below a clad temperature 

safety limit of 823 K.  
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Figure 8-13. Thermal conductivities for sphere-pac and pellet fuels at BOL and EOC3 [188]. 
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Figure 8-14. Bulk and surface temperature distributions at core midplane in the CP-ESFR Working Horse core at 
equilibrium with EOC3 compositions for different fuel loadings. 
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Figure 8-15. Axial temperature distributions of coolant, cladding, fuel in the hottest ring of the CP-ESFR Working Horse 
core at equilibrium. 

 

8.2.2. CONF2 Core 

8.2.2.1. Beginning of life conditions 

 

The transition from the WH core to the CONF2 core is extremely efficient in the optimization of the 

sodium void worth, which changes, at BOL, from ~1400 pcm (see Chapter 4) to ~500 pcm (extended 

sodium void reactivity effect). 

As already mentioned, no complete safety analysis of this core loaded with pellet fuel has been 

performed within the CP-ESFR project. Therefore, calculations for a pellet loaded CONF2 core are 

first performed to obtain a reference state. 

Figure 8-16 depicts the radial temperature distribution of fuel at core midplane both in the WH and 

CONF2 cores loaded with either pellet or non-restructured sphere-pac fuels. The conclusions are the 

same as in case of the WH core: locally, in the outer high power core zone, centerline temperatures 

above the melting point are reached at steady state caused by the non-optimized CONF2 BOL power 

profile which is very peaked in the outer core part (as shown in Chapter 4). It confirms that a starting 

procedure of the reactor is necessary (i.e. a lower power is required) to achieve a restructured fuel 

condition, whose thermal properties are similar to those of the pellet fuel of same density. 

It can be noticed from Figure 8-16 that the fuel average temperature reaches a maximum difference 

of 898 K between non-restructured sphere-pac and pellet fuel in the hottest channel, further 

reducing the margin to melt to 111 K in case of the sphere-pac pin.  
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In order to evaluate the benefit of such a starting procedure with respect to safety margins, an 

additional case with the thermal conductivity of the restructured EOC3 fuel is considered in the BOL 

core. Even though this is not the accurate formulation, it gives a hint on the benefits of reaching a 

restructured fuel state before reaching the full core power.  

As expected, the restructured fuel in BOL core conditions significantly increases the margin to melt 

when considering the bulk fuel temperature (by about a factor 10 in comparison with the non-

restructured sphere-pac case where it was of 111 K). Moreover, as already known from the similar 

radial temperature distribution in the CONF2 and in the WH core, the axial temperature distributions 

of fuel, cladding and coolant in the hottest ring are similar to the ones of the CP-ESFR WH core, and 

details are therefore omitted here but can be found in Appendix G.  
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Figure 8-16. Bulk (called inner) and surface temperature distributions at core midplane in the CP-ESFR CONF2 core and 
the WH core at BOL for different fuel loadings. 

 

8.2.2.2. End of cycle 3 conditions 

 

In addition to the BOL core conditions, the equilibrium condition of the CONF2 core is analyzed. The 

radial temperature profile in the core for both fuel types is depicted in Figure 8-17 in addition to 

those of the WH core. No significant difference between the two cores can be noticed, as expected 

from the similar thermal conductivities of sphere-pac and pellet fuel at this stage of irradiation. The 

maximum fuel bulk temperature reaches 1656 K and remains appreciably below the melting 

temperature of 3002 K. The hottest ring shows the same tendency as in the WH case and similar 

conclusions can be drawn (details can be found in Appendix H). 
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Figure 8-17. Bulk (called inner) and surface temperature distributions at core midplane in the CP-ESFR CONF2 core at 
equilibrium with EOC3 compositions for different fuel loadings. 

 

8.3.  Simulation of an unprotected loss of flow accident 

 

Starting from the different steady states, an unprotected loss of flow (ULOF) simulation is performed 

with SIMMER to get a first insight into the accidental transient behavior of a sphere-pac fuel loaded 

core and to investigate model development needs for this innovative fuel. At first the WH core is 

analyzed [188], followed by the CONF2 core [189]. 

Since the ULOF simulation is started from steady state it requires the simulation of effects like axial 

fuel and clad expansion: the need for experimental support is evident. For a first calculation, the 

transient is simulated without any core expansion feedbacks, its main purpose being the 

identification of modeling needs. Starting from steady state, the loss of flow is modeled through a 

pump coast down with a flow halving time of 10 s, according to the following law (Figure 8-18): 
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Figure 8-18. Assumed pump coast down for the unprotected loss of flow. 

 

8.3.1. Working Horse Core  

 

For the subsequent analyses the WH core at equilibrium is considered. Due to the lack of coolant 

circulation, heat is no more adequately removed from the fuel pins and the coolant temperature 

rises. The reactivity increases smoothly (Figure 8-19), as the rise in fuel temperature makes the 

Doppler effect counterbalance the sodium density effect. In case of the pellet fuel loaded core, 

sodium boiling starts at 21.5 s in the 13th channel, followed 2.8 s later by channels 9 and 10, and 

quickly after by channels 7, 11, 3 and 6 (Figure 8-20). During this voiding propagation, the reactivity is 

oscillating. 4.13 s after boiling onset all fuel channels, except the outermost one, experience voiding. 

At this time, reactivity reaches 1 $ in the calculation putting the reactor in a prompt supercritical 

state and triggering the first power peak. Simultaneously, fuel melting and pin disruption occurs in 

channel 13. Around 25.63 s, overall fuel melting has taken place. Due to fuel discharge out of the 

core region, the reactivity becomes negative and power rapidly decreases. It can be observed that 

under the previously described simulation conditions the accident evolution is similar for both fuel 

types (Figure 8-19 and Figure 8-21). Both first power peak values, and consequently both thermal 

energy releases, are close, leading to the conclusion that the accident behavior is independent of the 

fuel type in the current simulation (as already expected from the very similar thermal conductivities 

for both fuels at this stage of irradiation).  
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Figure 8-19. Normalized power and reactivity evolution during a ULOF in the CP-ESFR Working Horse at equilibrium with 
EOC3 conditions, either pellet or sphere-pac loaded [188]. 20 s here correspond to 70 s in Figure 8-20 and 8-21. 

 

  

  
 

Figure 8-20. Material distributions during the ULOF of the WH pellet core at equilibrium.  
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Figure 8-21. Material distributions during the ULOF of the WH sphere-pac loaded core 

 

8.3.2. CONF2 Core  

 

The WH core loaded with sphere-pac fuels has been analyzed at the beginning of the PELGRIMM 

project in order to obtain first information about the behavior of sphere-pac loaded cores. Once the 

analyses have been completed, focus turned on the CONF2 core, which is at present under study. 

Starting from the different steady states, the same ULOF as in the WH core is run with SIMMER-III in 

the CONF2 core.  

 

Beginning of life conditions  

 

The transient behavior of the CONF2 core with pellet fuel under ULOF conditions can be observed in 

Figure 8-22, where both nuclear power (normalized to the nominal value) and reactivity, calculated 

by SIMMER spatial kinetics, are displayed. Prompt criticality, represented by the blue dotted line, is 

never reached and consequently no extreme power values are observed. Hence, the sodium plenum 

seems to effectively prevent positive reactivity surges caused by voiding and consequent power 

excursions. This is a large difference compared to the WH core [13]. 
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Figure 8-22. Normalized power and reactivity trace during the ULOF of the CP-ESFR CONF2 pellet core at BOL (time scale 
starts at the beginning of the ULOF transient which has been initiated after 50 s of steady state calculation, 20 s therefore 

correspond to 70 s in the time scale of Figure 8-23) [189]. 

 

It is also of interest to look for the material redistribution during the transient. The mitigating effect 

of the large upper plenum can clearly be identified in the performed simulations. Coolant boiling 

starts in the plenum of the outer core rings, mainly due to the BOL power profile, which is strongly 

peaked in these rings - Figure 8-23. The power shape is approximately the same as the one in the WH 

core, since the radial core design has not been changed from the WH to the CONF2 core. The 

progressive plenum voiding introduces first negative reactivity and balances positive reactivity effects 

such as the sodium voiding in the core region. The low power level reached during the ULOF 

transient allows a rewetting of the structures and the disruption process, after ejecting a limited 

amount of fuel from the core through entrainment by vapor and gas. The long-term development 

will be driven by decay heat. This late accident phase is currently not modelled.  

During this long-term melt phase, recriticalities may occur, as most of the fuel inventory is still within 

the core region. Remelting processes are however slow and rapid fuel compactions with high 

reactivity ramp rates are not expected. 
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Figure 8-23. Material distributions during the ULOF of the CONF2 pellet core at BOL. 

Now that the reference has been set, the case of the CONF2 loaded with non-restructured sphere-

pac fuel is compared to the reference CONF2 loaded with pellet fuel. Figure 8-24 shows the power 

and reactivity evolution during the ULOF in the CONF2 core for both fuel types.  
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Figure 8-24. Reactivity and power evolution during in a ULOF in the CONF2 core at BOL loaded either with pellet or with 
non-restructured sphere-pac fuel. 



SIMMER-III CODE SIMULATIONS 
 

Page | 187  
 

In Figure 8-25 the material redistributions and the break-up of the pins in case of the non-

restructured sphere-pac fueled core can be observed. Also in this case, the power transient is mild 

and shows a behavior similar to that of the pellet fuel. As locally “melt-conditions” in the pins have 

already been reached at steady state, the pins break-up 9 s earlier than for the pellet fuel. The power 

evolution reflects this situation as well (see Figure 8-24). The locally molten fuel is rapidly cooled and 

transferred into the particle field of SIMMER. Fuel dispersal is enhanced leading to early shutdown 

and limitation of further failure propagation. The mobilized particles are swept out of the core 

downward and a reactivity level of -18 $ is reached. 
 

  

  

 
 

Figure 8-25. Material distributions during the ULOF of the CONF2 BOL core with non-restructured sphere-pac fuel. 90 s 
here correspond to 10 s in Figure 8-24. 

After having assessed the effect of a non-restructured sphere-pac fuel on the core safety 

performance, the case of a restructured fuel after some hours of irradiation is analyzed. 

In Figure 8-26 the normalized power and reactivity traces of the CONF2 BOL core with already 

restructured sphere-pac fuel is given and compared to the non-restructured sphere-pac fuel case. 
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The ULOF is started after 50 s achieving steady state. A very mild power transient with a power peak 

of roughly 1.3 times nominal (1.7 in case of non-restructured sphere-pac fuel) is shown in Figure 8-26 

with reactivity levels staying way below prompt critical. A delay of 8 s in the power excursion can be 

noticed when the fuel is restructured. 
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Figure 8-26. Power and reactivity trace during the ULOF of the CONF2 core with BOL restructured or non-restructured 
sphere-pac fuel [189]. 

In the CONF2 core with BOL restructured fuel (Figure 8-27) one experiences even a total re-wetting 

of the core in the last phase of the ULOF. Due to the initially restructured fuel conditions the ULOF 

leads to the smallest power peak as the temperatures at nominal conditions in this case are at lowest 

due to the higher thermal conductivity and the fuel’s central hole at start of the simulation. Broken 

up fuel, mainly from the outer sphere rim is largely relocated downwards through the hexcan gap 

system and control rod guide tubes and lost from the core region. Compared to the “green fuel” less 

particles are swept out of the core causing a lower power reduction, as reflected by the reactivity 

level of -8 $. No fuel melting conditions are reached during the transient. This finally allows the 

achievement of a very mild transient letting the core in a subcritical state. The further accident 

evolution depends on the ability of cooling down the reactor i.e. of the capacity of sufficiently 

evacuating the residual heat. 
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Figure 8-27. Material distributions during the ULOF of the CONF2 BOL core with restructured fuel. 60 s here correspond 
to 10 s in Figure 8-26. 

All simulations in the BOL CONF2 core show very mild transients, mainly attributed to the action of 

the large upper plenum, which introduces upon its voiding sufficient negative reactivity to balance 

the positive voiding contributions within the core and reactivity additions from fuel compaction or 

steel loss. The first results clearly demonstrate that a core could be equipped with sphere-pac fuel 

without unduly compromising safety conditions. 

 

Equilibrium core conditions 

The same ULOF is then considered in the CP-ESFR CONF2 core in equilibrium conditions. As already 

seen in Chapter 4 the reduced void worth for the CONF2 core only holds for the BOL core without 

additional Am in the fuel; thus one expects a more energetic behavior of the core at this stage of 

irradiation (see Table 8-4). Therefore more severe transients than in the BOL core are expected, 

resembling the ones of the WH at equilibrium. 
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Figure 8-28. Reactivity and power evolution during in a ULOF in the CONF2 core at equilibrium loaded either with pellet 
or with restructured sphere-pac fuel. 

In Figure 8-28 the nuclear power trace and reactivity development of the CONF2 core at equilibrium 

conditions is displayed both for pellet and sphere-pac fuel. Compared to the BOL case a slight 

increase of the nuclear power peak can be observed, but the negative reactivity effects can still 

balance the positive contributions from core voiding. As expected from the similar thermal 

conductivity and macrostructure of both fuel types at this stage of irradiation, the sphere-pac and 

pellet core show a very similar behavior under these accidental conditions. The unprotected 

transients end without any significant power excursion and gross core melting has to be prevented 

by a reactor scram to achieve permanent nuclear shut-down. The decay heat has to be evacuated to 

prevent further core degradation. 

 

8.4. Impact of minor actinide introduction in the fuel 

 

Sphere-pac fuels are primarily thought to be able to better handle minor actinide transmutation as 

they are expected to be less subjected to swelling than the standard pellet fuels due to their specific 

macrostructure. Hence, additional americium is introduced into the core (as well as in the lower axial 

blanket), leading to a further deterioration of the safety parameters (Table 8-1). 
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Table 8-4. Deterioration of the main safety parameters in the CONF2 core with burnup and additional minor actinide 
loading [9]. 

 

 

CONF2 CONF2 with 2%Am CONF2 with 4%Am 

BOL EOC3 BOL EOC3 BOL EOC3 

Sodium void reactivity effect 

(pcm) 
+1423 +1951 +1636 +2029 +1821 +2104 

Extended Sodium void reactivity 

effect (pcm) 
+496 +1170 +781 +1290 +1031 +1407 

Doppler constant, KD (pcm) -1158 -843 -904 -785 −712 −600 

 

The Doppler constant is decreasing (in absolute value) while the sodium void coefficient is increasing. 

Key void worth parameters are the core void and extended void (i.e. with both core and plenum 

region voided). The safety relevant ratio of void versus Doppler (in absolute values) at EOC3 

conditions increases from 1.4 (0 wt% Am) to 1.6 (2 wt% Am) up to 2.3 (4 wt% Am) for the extended 

void worth and from 2.3 (0%Am) to 2.6 (2 wt% Am) up to 3.5 (4 wt% Am) for the core void [9]. This 

ratio gives an indication of the imbalance of augmenting versus mitigating reactivity effects. βeff for 

BOL is 390 pcm, while for the burned-up core with an original 4 wt% Am load it is 352 pcm, meaning 

that from this point of view the values do not change significantly for the transient simulations shown 

later.  

The core power distribution has been calculated by partners within the PELGRIMM project, at BOL a 

strong flux depression at the core centre is observed (see Chapter 4), with a power peaking toward 

core periphery. Maximum assembly power at BOL is about 11.3 MW while the minimum is 4.9 MW 

[189]. In Figure 8-29 the burnup behavior of the CONF2 core for different Am loadings in the core is 

displayed [189]. In the MA loaded cores the transmutation of Am to Pu leads to an increase of keff. 

The breeding of Pu in case of Am (~2 %) content leads to a rather constant keff curve.  

 

 

Figure 8-29. Results of burnup calculations for the CONF2 core with different Am content [189]. 
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Figure 8-30. Normalized power and reactivity trace during the ULOF of the CONF2 core at equilibrium, with restructured 
sphere-pac fuel with 0 wt%, 2 wt% or 4 wt% additional Am loading in the lower axial blanket and the fissile zone. 

Starting from the steady state conditions, an unprotected loss of flow accident with a flow halving 

time of 10 s is performed for the sphere-pac fuel loaded core in a restructured state. In Figure 8-30 

the nuclear power trace and reactivity evolution in the equilibrium core with EOC3 compositions, 

initially loaded with 0 wt%, 2 wt% and 4 wt% Am both in the fissile core zone and lower axial blanket, 

can be observed. 

From Figure 8-30 it can be seen that the higher the americium amount, the earlier the power 

excursion and the higher its extent, thus reflecting the impact of the deterioration of the safety 

parameters. 

For the 4 wt% Am case one expects a release of both fission gases and He accumulated in the lower 

and upper fission gas plenum, whose pressure levels are assumed to be 60 bar in the calculation [80]. 

After clad failure both fission gas and He can escape through the cladding breach and can contribute 

to the voiding process in the core.  

Analyzing the 2 wt% Am case, the transient starts after reaching the steady state after 60 s of 

calculations and presents a mild power increase. However, the positive reactivity contributions 

prevail and drive the core into a prompt critical excursion with a maximum value of 500 times 

nominal which can be explained by the larger positive void worth than in the CONF2 core without 

americium. In Figure 8-31 the core material redistribution is displayed. It is of interest to note that 

due to the limited fuel temperatures, the fuel breaks up into chunks and particles, without reaching 

the melting point. The solid disrupted fuel is then mixed into molten steel. 

In comparison, the nuclear power trace and reactivity development of the equilibrium core with 4 

wt% Am show a much sharper increase, due to the core void worth – Table 8-4 – which is of course 

larger than for the 2% Am case. 

Also in this 4% Am case the ULOF is started after 60 s achieving steady state, but the core 

experiences a prompt critical power excursion leading to a core disruption. Due to the significant 

nuclear power increase, fuel melting is achieved, reaching a state of whole molten core pool – cf. 

Figure 8-32. The transient simulation stops due to a numerical problem, but the trend of the accident 
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evolution can be clearly identified: with the increased positive void worth and reduced Doppler 

values the beneficial impact of the upper plenum is reduced and the release of solid particles from 

the sphere-pac fuel is insufficient to stop the excursion.  

The very promising safety behavior of the CONF2 core thus only holds for the BOL configuration with 

strong negative reactivity contributions. With increasing burnup and MAs addition into the core, the 

safety advantage of the upper plenum is insufficient and additional core design optimizations are 

necessary to reduce the void worth. A possible option might be to limit the addition of MAs to the 

blanket only. 
 

  

  

Figure 8-31. Material distributions during the ULOF of the CONF2 equilibrium core with restructured sphere-pac fuel and 
2 wt% Am. 
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Figure 8-32. Material distributions during the ULOF of the CONF2 core at equilibrium with restructured sphere-pac fuel 
and 4 wt% Am. 

 

8.5.  Impact of the expansion model 

 

To identify the impact of the expansion model developed during the PhD (and detailed in Chapter 6) 

on the safety calculations, the global density factor method (DENSF method) is applied to a sphere-

pac fueled core. It is considered that the axial expansion is clad driven as no gap is present between 

the fuel and the cladding tube. For the radial expansion the cylindrical expansion is chosen i.e. the 

diagrid drives the radial core expansion.  

The BOL CONF2 core with restructured sphere-pac fuel is analyzed. The power and reactivity trace 

during the ULOF accident is given in Figure 8-33. When the core expansion feedbacks are taken into 

account, delays on the onset of sodium boing by 1 s, on the fuel melting by 2 s, and on the initial 

power peak of 2.6 s are observed. In addition the power peak is reduced by 15%. It has to be 
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mentioned that in case of a fuel driven expansion, the effect would be much more pronounced. 

Indeed, the significantly higher fuel temperatures (compared to the cladding ones) lead to a larger 

thermal expansion even if the expansion coefficient of the fuel is lower than that of the cladding. 
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Figure 8-33. Normalized power and reactivity evolution during a ULOF in the CP-ESFR CONF2 core at BOL with 
restructured sphere-pac fuel with and without taking into account the core thermal expansion feedbacks. 

 

8.6.  Conclusions 

 

The previous safety analyses have demonstrated that no specific safety issue is raised when inserting 

sphere-pac fuels in a sodium cooled fast reactor as the Working Horse or CONF2 core. However, a 

specific starting procedure would have to be defined for sphere-pac fuels in order to give the fuel 

enough time to restructure before reaching the nominal power conditions.  

In addition it has been demonstrated that the claimed safety improvement of the CONF2 core with 

regard to safety in comparison with the Working Horse core actually is verified. The BOL CONF2 core 

indeed does not reach a whole core melt situation when subjected to a ULOF and the accident 

undergoes a very mild transient, leaving the core in a subcritical state. The further accident evolution 

then strongly depends on the ability of cooling down the reactor i.e. removing decay heat. The 

unprotected transients end without any significant power excursion and gross core melting. The 

decay heat has to be evacuated to prevent further core disruption. In case of restructured sphere-

pac fuels the core even experiences a total rewetting of the assemblies. However, the very promising 

safety behavior of the CONF2 core only holds for the BOL MOX configuration with strong negative 

reactivity contributions. With burnup and addition of MAs into the core and lower axial blanket, the 

safety advantage of the upper plenum is decreased. Additional measures on core design basis level 

are necessary to achieve a low void worth both for equilibrium conditions and the possible 

homogeneous loading of MAs into the core. 
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Chapter 9 

9. Conclusions and outlook 

CONCLUSION AND OUTLOOK 
 

Nuclear energy demonstrates all prerequisites to play an important role in the world energy and, in 

particular, electricity supply for the next decades, under the conditions that a sustainable use of this 

energy source is made and long-lived radioactive waste is managed. Fast reactor concepts, especially 

the sodium cooled ones, are considered to be among the most promising options viable to meet 

these requirements. Fast reactors, when loaded with minor actinides, do however show a 

deterioration of their safety feedbacks and therefore require a detailed analysis of their safety 

behavior under normal and accidental conditions.  

 

Embedded in this topic, the present PhD work aims at investigating the impact of innovative sphere-

pac fuels for minor actinide transmutation on the safety performances of sodium cooled fast 

reactors, both in nominal and accidental conditions. The study, which followed the accident 

evolution from its very beginning, has been performed with the SIMMER-III code for two low-void 

sodium cooled fast reactor designs developed in the framework of the CP-ESFR project: the working 

horse (WH) core and the optimized CONF2 core, equipped either with the traditional pellet or with 

the special sphere-packed fuel form. The safety analyses for the WH core revealed that the sodium 

reactivity worth was still too high and in case of an unprotected Loss of Flow (ULOF) accident a large 

scale core disruption could not be prevented. Therefore, within the CP-ESFR project the CONF2 core 

was developed with a further decreased void worth due to a large upper sodium plenum. For the 

CONF2 core no deep safety analyses had been performed within the CP-ESFR project. 

 

Traditionally, only the later phases of an accident transient are studied when using the SIMMER 

codes, specifically developed for core disruptive accidents, while for the initial phase a point kinetics 

code (e.g. SAS4A) is employed. The tendency in recent years is however to perform the overall 

accident sequence simulation with the SIMMER-III code, extending its field of application to the 

initiation phase of the accident. When simulating this phase, additional phenomena have to be 

simulated. In this framework, the PhD work also targeted the development of a model to take into 

account the core thermal expansion feedbacks since they impact the accident evolution.  

 

Usually the reactivity feedback of axial and radial expansion of reactor components i.e. fuel and 

structural materials is taken into account via point kinetics reactivity models with specifically chosen 

parameters. The reactivity worth of the materials is pre-calculated by static neutronics codes and is 

fed into the safety codes and processed there. In addition, most safety codes use a so-called channel 

approach, where one representative pin for a couple of sub-assemblies is expanded in a Lagrangian 

manner. The safety analyses for the CP-ESFR revealed that point kinetics was not sufficient to 

describe correctly the initiation phase neutronic effects. The delicate balances of reactivity for low 

void cores require more advanced methods than point kinetics. 
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In the current work the development related to the thermal expansion feedbacks is put into a more 

general framework, taking into account the needs of spatial kinetics codes in an Eulerian fluid-

dynamics context with fixed neutronic mesh. Though developed within SIMMER, the model is a 

general one and can be easily exported to other space-time kinetics codes. A first model was 

functional and has been further improved. The present PhD work has resulted in an improved 

methodology which has the potential to take into account core thermal expansion feedbacks in a 

spatial kinetics framework with Eulerian mesh. An important point is the time-efficiency of the 

method, which does not require a significant increase in additional shape function recalculations. 

 

In the developed methodology, neutronic effects of core expansions both in radial and axial 

dimensions are modeled via equivalent density changes, which allows keeping fixed the Eulerian 

fluid-dynamics mesh. Two models have been established based on a first order perturbation theory 

(FOP) approach to cope with the SIMMER framework. The first model is based on a global density 

factor whose aim is to accurately predict uniform core expansion effects and serves as a basis for the 

second model. This second model takes full advantage of the SIMMER-III spatial kinetics capabilities 

as it is based in RZ-geometry on a ring-wise density factor in order to model accurately non-uniform 

expansions within the core. 

Both models give satisfying results in case of uniform expansions, both isotropic or anisotropic, if 

applied to the whole neutronic mesh using FOP and comparing the outcome with direct calculations 

(within 11% relative discrepancy). A special treatment for sodium has been developed: the fairly 

important effect of sodium distribution in case of core expansion is put in the direct calculation 

instead of the FOP. Results between FOP and direct calculations are in good agreement. The 

validation phase of these models has however highlighted some limitations related to density 

variation calculations in individual sub-domains of the neutronic mesh.  

A third innovative method relying on the fact that the contribution of non-uniform expansions is 

taken into account in the direct calculations has hence been developed. The tests performed with 

the ERANOS code, chosen instead of SIMMER for its flexibility, clearly show that this new solution 

scheme is able to take correctly into account non-uniform expansions. Preliminary results for the 

fissile core expansion show an agreement within 3% discrepancy with reference calculations when 

applying the method to traditional core designs, such as the Working Worse core design. The same 

procedure is expected to be suitable for other parts of the reactor e.g. sodium plenum, axial fertile 

blanket but further analyses are essential. This methodology will be fully implemented in SIMMER 

and new validation studies have to prove its efficiency for advanced non-conventional reactor 

designs as cores with a variable core height and an internal axial fertile blanket.  

The second part of the work has consisted in the model development for sphere-pac fuel pins with 

the focus on the thermal conductivity of sphere-pac fuel under beginning of life and irradiation 

conditions. Indeed, the conductivity of sphere-pac fuels is very different from the one of standard 

pellet fuels especially at beginning of life due to the fuel specific macrostructure and needs special 

attention. A literature review has revealed that the Hall and Martin model for powder beds is the 

most suitable candidate for modeling the thermal conductivity of these fuels. Formulas have been 

adapted to the SIMMER framework for both pellet and sphere-pac fuel (further developed or newly 

implemented) at beginning of life and end of cycle 3 conditions and casted into the specifics of the 

SIMMER framework so that the models can describe all phenomena in the range from steady state to 

pin break-up and failure, without putting an undue load on computational time.  
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For the subsequent simulations, the CP-ESFR Working Horse pellet fuel has then been substituted 

with sphere-pac fuel. The basic structure of the core has been kept since, according to literature, 

sphere-pac fuel with an optimal theoretical density can be inserted in a standard core without 

significant changes. A first preliminary safety assessment has been performed for non-restructured 

fuel conditions at core beginning of life. The interest in investigating this “green fuel” case is because 

of its low thermal conductivity and consequently possible high fuel centerline temperatures, which 

raises some concerns related to the safety behavior of this fuel in the first hours of operation. 

Analysis show that indeed specific reactor start-up procedures are required to cope with thisrather 

short  phase, giving the fuel time to restructure, hence enhancing its thermal conductivity. 

A ULOF accident has been chosen as a representative transient since the impact of the void reactivity 

reduction for the CONF2 core could be investigated. The ULOF covers most of the important 

phenomena in a core melt accident, especially the behavior of the fuel pins, and revealed for the CP-

ESFR to be the most severe accident. 

The ULOF simulations for the equilibrium cycle conditions in the Working Horse core show a very 

similar behavior of the core whether fueled with standard pellet fuel or with sphere-pac fuel. For this 

core the ULOF transient leads to core melting and core disruption conditions. 

The safety behavior of the optimized CONF2 core has then been studied because no extended safety 

analyses for that core had been performed in the past. First, the analyses for the CONF2 core loaded 

with pellet fuel had to be carried out. As within the CP-ESFR project only the safety behavior of the 

Working Horse core had been analyzed, this work was additionally necessary to implement a basis 

for comparison. The CONF2 core has as a main feature a large upper sodium plenum for void 

reduction and is hence expected to have increased safety features. The beginning of life core with 

MOX fuel has been selected to start the analyses especially for assessing the claimed improvement 

by introducing this large upper sodium plenum. Indeed under these conditions the positive extended 

void (including the upper plenum) is reduced by a factor of 2.4 compared to the working horse core. 

Results confirm that the sodium plenum seems to effectively prevent positive reactivity surges by 

voiding and subsequent power excursions: the plenum voiding introduces enough negative reactivity 

to counterbalance positive reactivity effects. The low transient power allows the rewetting of 

structures and the disruption process remains limited. Indeed after a first mild power excursion no 

recriticality appears and the possible outcome would be a slow melting under decay heat conditions. 

In the second step, analyses have been performed for the CONF2 core equipped with sphere-pac 

fuel. The analyses start with the beginning of life core and investigate the conditions of both a green 

fuel with pure sphere-filling (representing the situation before any restructuring) and a restructured 

fuel after some hours in the operating reactor. SIMMER analyses confirm that under these non-

restructured conditions the centerline temperatures locally exceed the melting point in the high 

power core zone at steady state. Therefore, also for the CONF2 core a starting procedure of the 

reactor is required to allow the fuel achieving a restructured state, which is closer to the pellet fuel 

from the thermal point of view. For both fuel conditions the plenum effect prevents a scenario with 

multiple recriticalities, even leading to a total rewetting of the structures in the last phase of the 

ULOF in case of the CONF2 core with beginning of life restructured fuel.  

The equilibrium core with already irradiated fuel, especially when initially loaded with additional 

americium for transmutation purposes, shows a significant deterioration in its safety behavior due to 
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the worsening of void values and of the other safety parameters (e.g. Doppler). Additional voiding 

effects caused by the fission gas and helium blow-out of the pins after their failure might further 

complicate and possibly deteriorate the accident situation. Consequently the safety advantages 

observed in the beginning of life core vanish and one experiences severe transients with total core 

disruption and melting.  

The developed thermal expansion model based on the global density factor has been applied later on 

for improving the safety analysis and results confirm an improvement in the accident timing and a 

lowering of its energetic potential.  

 

The key findings of the safety assessment of the CONF2 core loaded with sphere-pac fuel can be 

summarized as follows: 

 

 Sphere-pac fuel can be inserted in a sodium cooled fast reactor core without significantly 

changing the design and having a major impact on the core behavior or safety coefficients. 

 The start-up of a sphere-pac fueled core with “green fuel” requires a special start-up 

procedure to avoid fuel melting. In practice the start-up should be performed at lower power 

until restructuring has been achieved. 

 The transient ULOF analyses with SIMMER do not show a significant change in the accident 

scenario when using sphere-pac fuel compared to the behavior with conventional pellet fuel. 

The possibility of spalling of the sphere-pac particles and their release in the core might 

generally lead to an even milder accident behavior and achievement of lower reactivity 

levels. 

 For beginning of life conditions and in a core without additional americium the introduction 

of the large sodium plenum gives a strong safety advantage as no fuel melting conditions are 

reached during the transient. This advantage decreases or even vanishes both with 

increasing burnup and Am insertion for transmutation.  

 

Within the PELGRIMM project, experiments have been initiated to provide information on sphere-

pac fuel behavior under irradiation. For transient conditions the currently existing experimental data 

base is even scarcer. 

The preliminary safety analyses also served the purpose to identify open issues which need better 

modeling and experimental information. Further investigations should e.g. take into account the 

detailed kinetic behavior of fission gas and of He release during operation as well as the gas release 

during accident situations. Experimental data or expert-agreed evaluations of data would also be 

needed for the behavior of sphere-pac fuel under high thermal loads and transient conditions. An 

additional issue is to model in more detail the rim behavior of the restructured fuel in case of clad 

breaching and melting.  
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Appendix A:  
The fundamental eigenvalue of the adjoint neutron transport equation [149] 

 

A.  

In a steady state reactor without external neutron source, the neutron balance equation is given as 

Eq. A-1. 

  M F             A-1 

where  -  + M F H S  

The adjoint problem of Eq. A-1 is written as Eq. A-2 

* * * * *    M F             A-2 

Multiplying Eq. A-1 by * and Eq. A-2 by   and integrating over space, angle and energy yields Eq. A-

3 and Eq. A-4 respectively. 

* *, ,      M F            A-3 

 

* * * * *, ,      M F             A-4 

 

Revolving Eq. A-4 yields Eq. A-5 

* * *, ,    M F             A-5 

 

Substracting Eq. A-3 and Eq. A-5 results in Eq. A-6 

 * * * *, , 0 ,          M M F          A-6 

 

 

Since 
*, F  only equals zero if   respectively 

*  equals zero, if follows that 
*   
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Appendix B:  

Selection of the weighting function [149] 

B.  

Consider a simple eigenvalue problem containing a single operatorB . Eq. B-1 describes the 

unperturbed and Eq. B-2 the perturbed problem.  and 0  represent functions of the phase space 

and energy domain,   and 0 are numbers. 

0 0 0 0  B              B-1 

 

 B               B -2 

Introducing that 0     in Eq. B-2 yields Eq. B-3 

 0 0        B B           B -3 

Eq. B-1 and Eq. B-3 are then multiplied by an arbitrary weighting function w of the phase space and 

energy domain and integrated over this domain. This results in Eq. B-4 and Eq. B-5, respectively 

 

0 0 0 0, ,w w  B              B -4 

 

 0 0, , , ,w w w w         B B           B -5 

 

By subtracting Eq. B-4 to Eq. B-5 one obtains Eq. B-6 where 0  B B B and 0      

 

 0 0, , ,w w w         B B           B -6 

 

The right hand side term of Eq. B-6 can now be rewritten as Eq. B-7 

 

     0 0, , ,w w w             B B B             B -7 

 

The second term on the right hand side of Eq. B-7 is composed of a product of two differenced 

quantities, this second order term is hence small compared to the first order term if the perturbation 

is small. Hence this term can be neglected.  
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The first term on the right hand side of Eq. B-7 can be rewritten as Eq. B-8 

 

   *

0 0 0 0, ,w w       B B            B -8 

 

Where 
*

0B is the adjoint operator of 0B . If the weighting function w is chosen to be *

0 , the right 

hand side of Eq. B-8 becomes zero as *

0  is the eigenfunction of the adjoint eigenvalue problem Eq. 

B-9 

 

* * *

0 0 0 0  B               B -9 

 

Eq. B-6 hence reduces to Eq. B-10 

 

* *

0 0 0 0, ,      B                           B -10 

 

The first order perturbation formulation for this eigenvalue perturbation is hence given by Eq. B-11   

 

*

0 0

*

0 0

,

,

 


 


 

B
                  B -11 

 

From Eq. B-11 is follows that only the known parameters *

0 , 0 and B are required to calculate 

the eigenvalue perturbation. To obtain this result, the introduction of the adjoint function *

0  has 

been necessary to eliminate the dependence on the flux perturbation. 

The previously described approach is also applied to reactor eigenvalue value problems, though it 

involves additional terms due to additional operators. 
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Appendix C:  

Comparison of FOP, exact PT and direct calculations with SIMMER and ECCO/ERANOS (BISTRO) 

C.  

Several cases for a density change of 
2

1

1.01
 have been considered and partly detailed in chapter 6. 

This appendix aims at giving additional information on cases 1, 1b, 2 and 2b – see Table C-1. 

Table C-1. Considered test cases for checking the density effect with direct, FOP and exact PT calculations. 

 Density changes Density changes  
(axial height) 

 
Inner 
fuel 
ring 

Outer 
fuel 
ring 

All 
fuel 
rings 

Na 
around 
fissile 
core 

Fissile 
height 

Whole 
neutronic 

mesh 
height 

CASE 1 x    x  

CASE 1b x     x 

CASE 2  x   x  

CASE 2b  x    x 

CASE 3   x  x  

CASE 3b   x   x 

CASE 4    x / / 
 

In the different cases, masses of fuel and steel are always kept constant. Sodium mass depends on 

the considered case. The calculations presented hereafter are performed considering a simplified 

core with a single enrichment zone. Calculations have been run assuming 1 energy group. In a later 

section results for a 2 enrichment zones core and Na treated differently are presented as well. 

Case 1 and case 1b: Density modification in the innermost fuel ring. 

The density has been reduced in the innermost fuel ring by a factor 
not expanded

expanded 21.01

d
d   either in 

the fissile part only (Case 1) or in the whole ring, including the sodium above and below the fissile 

core (Case 1b). 

ERANOS calculations [157] have been performed with the BISTRO solver [159] (RZ geometry). In the 

perturbation calculations scalar fluxes i.e. integrals of angular fluxes are used (recommended option). 

Nevertheless, integral of scalar fluxes were used as well and results for both options are presented 

hereafter.  

Case 1 a 

The density is changed in the first fuel ring, in the fissile part only as can be seen in Figure C-1. 

 

 



APPENDIX C 

Page | 218  
 

 

 

 

 

 

 

 

Figure C-1. Zone considered for the density change 

The reactivity effect due to density change in the first ring calculated by means of FOP, exact PT and 

direct calculations is shown in Table C-2. 

Table C-2. Density effect for a density variation of 
2

1

1.01

 in the fuel zone of the innermost fuel ring. Comparison of 

ERANOS (BISTRO) results for direct, FOP and exact PT calculations. 

 
Calculation 

type 
Reactivity 

effect (pcm) 
Difference 

(pcm) 
Direct/PT 

 BISTRO 
(angular 
fluxes) 

FOP -2.0 0.0 1.0 

Exact  -2.0 0.0 1.0 

Direct -2.0 
  

 

The results for direct method and exact PT agree very well. Similarly, the FOP agrees well with the 

direct method and the exact PT results, confirming that the perturbation is small enough to consider 

the use of FOP valid. 

The same case is now calculated with SIMMER-III and with BISTRO (assuming the integral of scalar 

fluxes instead of the recommended integral of angular fluxes). The results are shown in Table C-3. In 

all the SIMMER calculations here reported the factor 2 (introduced in the methodology, see Chapter 

6) has not been applied. 

Table C-3. Density effect for a density variation of 
2

1

1.01
 in the fuel zone of the innermost fuel ring. Comparison of 

SIMMER and ERANOS for direct and FOP calculations. 

 
Calculation 

type 
Reactivity 

effect (pcm) 
Difference 

(pcm) 
Direct/PT 

 BISTRO 
(scalar 
fluxes) 

FOP -1.6 0.4 1.27 

Exact  -1.6 0.4 1.28 

Direct -2.0     

SIMMER 
FOP -1.7 0.6 1.37 

Direct -2.3 
   

0 R 

Z 
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From Table C-3 it can be seen that both in case of BISTRO and of SIMMER, the direct and the FOP 

results differ by roughly 30%. BISTRO (integral scalar fluxes) and SIMMER results agree quite well. It 

therefore appears that using scalar fluxes instead of angular ones does not allow accurately reflect 

the effect of a density modification calculated by the direct scheme. However, for this specific case 

the perturbation is very small and the direct calculation may not be so accurate. The other cases 

have been considered as extra tests. 

Case 1b 

The density is changed in the first fuel ring but this time the change is made on the whole axial height 

as can be seen in Figure C-2. 

 

Figure C-2. Zone considered for the density change (in yellow). 

An ERANOS calculation with the BISTRO solver using angular fluxes is performed. Direct, exact and 

FOP results agree very well as shown in Table C-4. 

Table C-4. Density effect for a density variation of 
2

1

1.01
 in the innermost fuel ring. Comparison of ERANOS (BISTRO) 

results for direct, FOP and exact PT calculations. 

 
Calculation 

type 
Reactivity 

effect (pcm) 
Difference 

(pcm) 
Direct/PT 

 BISTRO 
(angular 
fluxes) 

FOP -2.4 0.0 1.0 

Exact  -2.4 0.0 1.0 

Direct -2.4 
   

The same case is then calculated with SIMMER-III and with BISTRO (scalar fluxes are used instead of 

angular ones). The results can be seen in Table C-5. 

 

 

 

 

0 R 

Z 
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Table C-5. Density effect for a density variation of 
2

1

1.01

in the innermost fuel ring. Comparison of SIMMER and ERANOS 

for direct and FOP calculations. 

 
Calculation 

type 
Reactivity 

effect (pcm) 
Difference 

(pcm) 
Direct/PT 

 BISTRO 
(angular 
fluxes) 

FOP -1.5 0.9 1.6 

Exact  -1.5 0.9 1.6 

Direct -2.4     

SIMMER 
FOP -1.6 1.1 1.7 

Direct -2.7 
  

 

From Table C-5 it can be seen that in case of BISTRO and of SIMMER, the direct and the FOP still 

differ, confirming the tendency observed in case 1. The factor between direct and FOP results has 

even increased compared to case 1. BISTRO and SIMMER results agree quite well. 

Since the effect of a density change in ring 1 is rather small (only one SA is present in this ring) the 

same approach is considered for the outermost fuel ring containing several SAs. The results are 

shown in the following section. However, also for this specific case the perturbation is very small and 

the direct calculation may not be so accurate.  

 

Case 2 and case 2b: Density modification in the outermost fuel ring. 

The density has been reduced in the outermost fuel ring by a factor
not expanded

expanded 21.01

d
d    either in 

the fissile part only (Case 2) or in the whole axial height of the outermost ring, including the sodium 

above and below the fissile core (Case 2b). 

Calculations have been performed with SIMMER, ERANOS-BISTRO and ERANOS-BISTRO modified 

(scalar fluxes integral). The calculations are performed with 1 and 11 energy groups in case of 

SIMMER and 1, 11 and 33 energy groups in case of ERANOS in order to analyze the impact of the 

energy structure. 

Case 2 a 

As mentioned previously, in Case2, the density is changed in the outermost fuel ring, in the fissile 

part only as can be seen in Figure C-3. 
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Figure C-3. Zone considered for the density change (yellow) 

The reactivity effect due to a density change in the fissile part of the outermost ring can be seen in 

Table C-6, where a comparison between direct, exact and first order PT calculations is presented. 

Table C-6. Density effect for a density variation of 
2

1

1.01

in the fissile zone of the outermost fuel ring. Comparison of 

ERANOS (BISTRO) results for direct, FOP and exact calculations for different energy groups using angular fluxes. 

 
Calculation 

type 
Reactivity 

effect (pcm) 
Difference 

(pcm) 
Direct/PT 

 BISTRO 
1 E group 
(angular 
fluxes) 

FOP -16.6 -0.0 1.0 

Exact  -16.6 -0.0 1.0 

Direct -16.6 
  BISTRO 

11 E groups 
(angular 
fluxes) 

FOP -14.0 -0.0 1.0 

Exact  -14.0 0.0 1.0 

Direct -14.0   

BISTRO 
33 E groups 

(angular 
fluxes) 

FOP -13.7 0.2 1.0 

Exact  -13.6 0.2 1.0 

Direct -13.9   
 

From Table C-6 it can be concluded that the calculation with 11 or 33 energy groups does not 

significantly impact the results. Therefore, the standard 33 groups ERANOS calculation might be used 

as a reference for comparison with the standard 11 E groups calculation of SIMMER. Moreover the 

results for direct and exact PT agree very well in all cases (within 2%, the discrepancy increasing with 

number of energy groups). Similarly, the FOP agrees well with the direct and the exact PT, confirming 

that the use of FOP is valid. 

The same cases are now calculated with SIMMER-III and with BISTRO (scalar fluxes are used instead 

of angular ones). The results can be seen in Table C-7. 

 

 

0 R 

Z 

  



APPENDIX C 

Page | 222  
 

Table C-7. Density effect for a density variation of 
2

1

1.01

in the fissile zone of the outermost fuel ring. Comparison of 

ERANOS (BISTRO) results for direct, FOP and exact calculations for different energy groups, using scalar fluxes. 

 

 
Calculation 

type 
Reactivity 

effect (pcm) 
Difference 

(pcm) 
Direct/PT 

 

 

1E group 

BISTRO 
(scalar 
fluxes) 

FOP -7.3 9.3 2.27 

Exact  -7.2 9.4 2.29 

Direct -16.6     

SIMMER 
FOP -6.3 10.0 2.60 

Direct -16.3   

11E 
groups 

BISTRO 
(scalar 
fluxes) 

FOP -5.9 8.0 2.36 

Exact  -5.9 8.0 2.38 

Direct -13.9   

SIMMER 
FOP -5.5 8.1 2.45 

Direct -13.6   

33E 
groups 

BISTRO 
(scalar 
fluxes) 

FOP -5.8 8.1 2.39 

Exact  -5.8 8.1 2.41 

Direct -13.9   

 

From Table C-7 it can be seen that the results for direct and the FOP do not agree anymore (they 

differ roughly by a factor 2.3 to 2.6 in all cases). Nevertheless, if one compares BISTRO and SIMMER 

results– both in case of FOP or direct calculations – they agree quite well. 

To confirm the previously mentioned conclusions, the density modification is now extended to the 

complete outermost fuel ring, including therefore the sodium above and below the fissile zone. 

 

Case 2b 

In case 2b, the density is changed in the overall height of the outermost fuel ring, as can be seen in 

Figure C-4 

 

Figure C-4. Zone considered for the density change (in yellow). 

0 R 

Z 
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Again, an ERANOS calculation with the BISTRO solver using angular fluxes is performed. Direct, exact 

and FOP results agree very well (within 2%) as shown in Table C-8. The good agreement is confirmed 

for different energy group structures. The 11 energy groups applied are consistent with the 11 

energy groups of SIMMER. 

Table C-8. Density effect for a density variation of 
2

1

1.01

in the outermost fuel ring. Comparison of ERANOS (BISTRO) 

results for direct, FOP and exact calculations for different energy groups using angular fluxes. 

 
Calculation 

type 
Reactivity 

effect (pcm) 
Difference 

(pcm) 
Direct/PT 

 BISTRO 
1 E group 
(angular 
fluxes) 

FOP -22.2 -0.0 1.0 

Exact -22.2 -0.0 1.0 

Direct -22.2 
  BISTRO 

11 E groups 
(angular 
fluxes) 

FOP -17.8 -0.0 1.0 

Exact -17.8 0.0 1.0 

Direct -17.8   

BISTRO 
33 E groups 

(angular 
fluxes) 

FOP -16.1 0.2 1.0 

Exact -16.1 0.2 1.0 

Direct -16.3   

 

The same cases are then calculated with SIMMER-III and with BISTRO, using scalar fluxes instead of 

angular ones. The results can be seen in Table C-9. 

Table C-9. Density effect for a density variation of 
2

1

1.01

 in the outermost fuel ring. Comparison of ERANOS (BISTRO) 

results for direct, FOP and exact calculations for different energy groups using scalar fluxes. 

 

 
Calculation 

type 
Reactivity 

effect (pcm) 
Difference 

(pcm) 
Direct/PT 

 

 

1E group 

BISTRO  
(scalar 
fluxes) 

FOP -6.9 15.3 3.22 

Exact -6.8 15.4 3.25 

Direct -22.2     

SIMMER 
FOP -5.8 14.9  

Direct -20.7 
  

11E 
groups 

BISTRO 
 (scalar 
fluxes) 

FOP -6.0 11.8 2.99 

Exact -5.9 11.9 3.02 

Direct -17.8   

SIMMER 
FOP -5.0 11.6 3.31 

Direct -16.6   

33E 
groups 

BISTRO 
(scalar 
fluxes) 

FOP -4.9 11.5 3.35 

Exact -4.8 11.6 3.39 

Direct -16.4   
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From Table C-9 it can be seen that in case of BISTRO and of SIMMER, the direct and the FOP results 

still do not agree and the factor between direct and FOP results has even increased compared to case 

2. BISTRO and SIMMER results agree quite well also for this case. 

The results confirm the conclusions drawn in Chapter 6, section 6.5.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX D 

Page | 225  
 

Appendix D:  

Coefficients to apply to UO2 pellet conductivity to obtain the U0.8Pu0.2O2 pellet conductivity 

D.  

The following coefficients have been determined and have to be applied to the UO2 pellet 

conductivity to obtain the one for U0.8Pu0.2O2 pellet fuel: 

T (K) 
Factor 

k(UPuO2)/k(UO2) 

573 0.975030909 

673 0.923204371 

773 0.902446085 

873 0.898085888 

973 0.903224863 

1073 0.914158159 

1173 0.928648995 

1273 0.945180122 

1373 0.962600077 

1473 0.979953000 

1573 0.996405698 

1673 1.011231342 

1773 1.023825695 

1873 1.033737257 

1973 1.040695204 

2073 1.044622548 

2173 1.045627769 

2273 1.043975201 

2373 1.040040454 

2473 1.034260196 

2573 1.027085329 

2673 1.018943767 

2773 1.010215509 

2873 1.001219585 

2973 0.992210622 

3073 0.983382074 

3120 0.979336441 
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Appendix E:  

Impact of porosity on heat capacity 

E.  

From [190; 190] it is known that the heat capacity in porous media is written as Eq. E-1. 

       1f f s se
c c c                  E-1 

Where f  stands for fluid i.e. helium in our case, s  stands for solid, ρ and c are the density and heat 

capacity respectively,   stands for the porosity. 

In a fast reactor, e.g. CP-ESFR, at BOL and at nominal conditions, the fuel temperature is assumed to 

be about 1500 K, and the pin pressure is at around 1 bar. He and MOX inside the fuel pin are 

considered to be in thermal equilibrium, therefore He MOXT T . 

Let’s consider the case of sphere-pac fuels with 16.59% Helium content at 1 bar of pressure 

(therefore   is 0.1659). If the system is considered to be at MOX melting temperature, the 

corresponding pin pressure is of about 2 bars if no additional gas release is considered. Therefore: 

 3002 , 2He T K P bar    = 0.032053 kg/m3  

5 1000

2
He

He

c R
A

 = 5192.875 J/(kg  K) 

Concerning MOX properties at 3002 K, data from [191; 192] is used: 

 3002MOX T K   = 9977.053 kg/m3  

MOXc  = 594.6 J/(kg  K) 

By applying Eq. E-1, one obtains that  
sphere pac

c


 is equal to 4948205 J/(m3  K). 

Considering Eq. E-2, one obtains sphere pacc   = 594.6 J/(kg  K) = MOXc  

 1tot f s                  E-2 

It can be concluded that porosity has no impact on the fuel heat capacity. It has to be noted that the 

influence of the remperature distribution within the pin is not taken into account here since the 

average temperature is used as fuel temperature. 
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Appendix F:  

Impact of porosity in the thermal penetration length calculations for the CP-ESFR WH core loaded 

with pellet fuel. 

F. . 

The entire appendix F is devoted to steady state and UTOP analyses for cases 1a and 1b of chapter 7. 

The thermal penetration lengths with and without porosity consideration are recalled in Table F-1. 

Table F-1. Considered pellet cases. Case 1a: thermal penetration length calculated without porosity consideration. Case 
1b: thermal penetration length calculated with porosity consideration. 

Cases By hand calculation (µm) Check with SIMMER-III (µm) 

1a 89.43 89.43 

1b 79.10 79.10 

 

Steady state analyses 

Steady state analyses with SIMMER-III showed no difference between case 1a and 1b in terms of 

core wide power distribution, mass flow distribution, inlet and outlet coolant temperatures, as well 

as in the temperature distributions at core mid-plane and in the hottest channel see Figure F-1 

through Figure F-5. 

 

Figure F-1. Normalized fission power per SA radial distribution, pellet type fuel. 
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Figure F-2. Mass flow per SA radial distribution, pellet type fuel. 

 

 

Figure F-3. Outlet and inlet coolant temperature distribution, pellet type fuel. 
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Figure F-4. Radial temperature distribution at core midplane, pellet type fuel. Dotted lines: Case 1b, full lines: Case 1a. 

 

Figure F-5. Axial temperature distribution in the hottest channel, pellet type fuel. Dotted lines: Case 1b, full lines: Case 
1a. 
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UTOP 

For testing the model, a UTOP has been chosen, as in an over-power transient the impact of the 

porosity and thermal conductivity can be more directly observed with a ramp rate just representing 

an arbitrary parameter. The chosen ramp rate is artificial and has no mechanistic background. 

A 50$ reactivity insertion in 1s is imposed to the core in both cases. The core behavior for this 

unprotected transient over power is analyzed for cases 1a and 1b. Figure F-6 shows the reactivity 

evolution in both cases during the imposed transient. 
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Figure F-6. Reactivity evolution in case of pellet fuel, during a UTOP of 50$/s. 

From Figure F-6 it can be noted that a reactivity insertion of 1$ is performed in 20ms which confirms 

the UTOP of 50$/s. In the beginning of the accident, the reactivity follows the steep external 

reactivity ramp of 50$/s.  

In the current case the reactivity reaches 1$ which means the reactor becomes prompt supercritical 

later on. The first power peak is then limited by the Doppler feedback and the power is reduced. In 

the following typical Doppler oscillations take place. 

Since reactivity is permanently added to the core by the external power ramp of 50$/s, a second 

power peak is generated. Again the rise in fuel temperature causes the Doppler effect to 

counterbalance this power increase and leads the reactivity to drop. This time the reactivity decrease 

is not as steep as for the previous peak because of the Doppler feedback non-linearity. Fuel 

temperatures tend to stabilize to a value close to the melting point. 

The continuing reactivity insertion leads the fuel to finally reach its melting temperature of 3002K. 

Cladding breaks up at the same time because the criterion is defined in this way by default in 

SIMMER-III. The coolant begins to vaporize in contact with the molten fuel and steel mixture. The 

positive sodium void coefficient leads then to a higher reactivity increase and triggers the last and 

Fuel starts to 

melt 
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highest reactivity peak –Figure F-6. Fuel is discharged from the core region and leads to a steep 

reactivity decrease, eventually leading to reactor shutdown.   

 

Figure F-7. Fuel inner temperature evolution in the hottest cell 

NB: in SIMMER-III the solid temperature is set equal to a default value of 300.2 K in a cell and this 

values is shown in case the fuel is molten and has left the solid field. This explains the sudden 

temperature drop seen in Figure F-7. 

 

Figure F-8. Power evolution vs. time 

The three power peaks observed in Figure F-8 correspond to the three reactivity peaks in Figure F-6. 

Even though the general core behavior is the same for both cases, a small discrepancy can be 

observed. For instance, the last reactivity swing in case 1a is smaller and delayed compared to case 

1b –Figure F-9. This is due to the fact that the Doppler effect is larger in case 1a which delays a bit the 

fuel melting.  
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The last power peak in case 1a is delayed by 0.2ms, which is consistent with the phenomenon 

observed for reactivity. Snapshots of the accident evolution confirm this tendency as depicted in 

Figure F-10. In fact, the fuel melts to a higher extend in case 1b than in case 1a: 89% and 65% of the 

total fuel mass respectively 40ms after the accident starts. By the end of both calculations, all fuel is 

either molten or turned into particles. 

 

Figure F-9. Zoom on total reactivity evolution. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure F-10. Snapshots at 39 ms and 40 ms after the UTOP starts. Left column: case 1a, right column: case 1b. Legend: L1: 
liquid fuel, L2: liquid steel, L3 liquid sodium, L4: fuel particles, L5 steel particles, L6: control particles, L7: fuel chunks. 
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Conclusions 

In case of pellet fuels, the small fuel porosity amount leads to similar thermal penetration length 

values. As the core behavior is the same in both cases, with and without taking into account the 

effect of porosity, and only 1.20% discrepancy can be noted for the thermal energy release during 

the accident, the initial SIMMER-III assumption to calculate thermal penetration lengths with fully 

dense material properties is validated. 
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Appendix G:  

Temperature distributions in the hottest ring of the CP-ESFR CONF2 core at beginning of life 

G.  

Temperature distributions in the hottest ring of the CP-ESFR CONF2 core at beginning of life can be 

seen in Figure G-1 through Figure G-4.  

Fresh sphere-pac and pellet fuel are considered. Distinction is made between non-restructured 

sphere-pac fuel and restructured sphere-pac fuel, representative of almost fresh fuel after some 

hours of irradiation.  

 

Figure G-1. Axial coolant temperature distribution in the hottest ring of the CP-ESFR CONF2 core at BOL. 
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Figure G-2. Axial cladding temperature distribution in the hottest ring of the CP-ESFR CONF2 core at BOL. 

 

Figure G-3. Axial distribution of the average fuel temperature in the hottest ring of the CP-ESFR CONF2 core at BOL. 
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Figure G-4. Axial distribution of the surface fuel temperature in the hottest ring of the CP-ESFR CONF2 core at BOL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX G 

Page | 240  
 

 

 



APPENDIX H 

Page | 241  
 

Appendix H:  

Temperature distributions in the hottest ring of the CP-ESFR CONF2 core at equilibrium 

H.  

Temperature distributions in the hottest ring of the CP-ESFR CONF2 core at equilibrium can be seen 

in Figure H-1 through Figure H-4. End of cycle 3 sphere-pac and pellet MOX fuel are considered. 

 

Figure H-1. Axial distribution of the coolant temperature in the hottest ring of the CP-ESFR CONF2 core at equilibrium 
cycle. 

 

Figure H-2. Axial distribution of the cladding temperature in the hottest ring of the CP-ESFR CONF2 core at equilibrium 
cycle. 
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Figure H-3. Axial distribution of the average fuel temperature in the hottest ring of the CP-ESFR CONF2 core at 
equilibrium cycle. 

 

Figure H-4. Axial distribution of the fuel surface temperature in the hottest ring of the CP-ESFR CONF2 core at equilibrium 
cycle. 
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Appendix I: 

Application of the DENSF method for core thermal expansion feedbacks in the EBR-II reactor 

I.  

The Extended SIMMER version (S-III-v.E) developed at KIT [144; 165] for taking into account thermal 

expansion feedbacks has been applied to the analysis of the EBR-II SHRT-45R benchmark proposed by 

ANL. SHRT-45R is one of the transients carried out at the EBR-II facility that are considered within the 

Collaborative Research Project (CRP) launched by IAEA in 2012 about a Benchmark study on EBR-II 

Shutdown Heat Removal Tests [193–195]. 

The SHRT-45R represents an unprotected loss of flow transient (ULOF case). The 2D RZ SHRT-45R 

SIMMER model has been assessed at KIT following the benchmark specifications [164]. 

The SIMMER model has been neutronically characterized with respect to the ECCO-ERANOS model 

established for the neutronics benchmark part. Good results in terms of k-eff and reactivity 

feedbacks have been obtained [196]. 

The SIMMER beta effective value for metal 235U enriched uranium fuel, specific of EBR-II, has been 

set up in agreement with a calculation performed with the 3D HEX-Z ECCO-ERANOS model using an 

extended version of the ERANOS code [197]. 

The EBR-II SIMMER model (see Figure I-1 and Figure I-2) has been adopted for testing the extended 

SIMMER version taking into account core thermal expansion feedbacks (DENSF method). 

Results have been compared with the partner results, presented at the 3rd Research Coordination 

Meeting (RCM) on EBR-II in Bologna in 2015. For the analyses, the clad driven option has been 

considered. Irradiated compositions have been provided within the benchmark specifications where 

it has been assumed to have clad-fuel interaction conditions.  

The evolution of the thermal power during the ULOF transient is shown in Figure I-3. This case 

corresponds to a SIMMER simulation in which the thermal expansion feedbacks (axial and radial) are 

treated assuming the conic expansion model (called in the following as CONIC), see chapter 6 section 

6.4.1. In this case, the power evolution obtained by the SIMMER simulation is in reasonable 

agreement with the one of the project partners [196]. 

A case without thermal expansion feedbacks (named REF) and a case with cylindrical expansion 

model (called CYL) have also been considered. The thermal power evolution during the transient is 

shown in Figure I-4.  

For this reactor, the case with cylindrical expansion allows to study the contribution of the axial 

expansion since the steel temperature of the lower grid does not change significantly during the 

transient and is fairly homogeneous in the diagrid. Therefore, for this specific case the radial 

expansion contribution (applying the cylindrical model) is practically negligible and only the axial 

expansion contribution is taken into account. In addition, due to the fact that the variation of the 

lower grid steel temperature during the transient is the same for the three cases (see Figure I-5), the 

separation of radial and axial reactivity contributions may be done in a first approximation by 

comparing the CYL and REF cases (providing the axial contribution – called as AX) and the CYL and 

CONIC cases (providing the radial contribution – called as RAD). 
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Figure I-1. EBR-II model: reactor vessel and components (core, inlet plena, upper plenum, Z-pipe, inlet pipes) 

 

Figure I-2. EBR-II model: core zone 
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Figure I-3. EBR-II SIMMER results: thermal power versus time (CASE: CONIC) 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0 100 200 300 400 500 600 700 800 900

M
W

th

time, s

Thermal Power

REF

CYL

CONIC

 

Figure I-4. EBR-II SIMMER results: thermal power versus time comparison three cases: REF, CYL and CONIC 
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Figure I-5. EBR-II SIMMER results: steel temperature in lower grid: comparison of the three cases 

The net reactivity determined by SIMMER for the three cases is shown in Figure I-6. In the REF case it 

includes Na density variation, Doppler and other material density variation feedback effects. In the 

CYL case it additionally includes the axial reactivity effect (as previously explained, Figure I-6) and in 

the CONIC case, in addition to the axial contribution it includes the radial expansion reactivity effect 

(approximation of flowering behavior). No detailed information about the EBR-II clamping system has 

been provided within the benchmark. Some approximation on the basis of the geometry description 

has been considered. The SIMMER results (CONIC and CYL model) are within the spread of data 

provided by the other partners of the project [196]. 

 

Figure I-6: EBR-II SIMMER results: net reactivity comparison of the three cases 
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The net reactivity of the REF case (Figure I-7) is in the range of values of the other participants [196].  

 

Figure I-7: EBR-II SIMMER results: net reactivity for REF case: namely corresponding to the contribution of Na density 
variation 

The contribution of the axial thermal expansion reactivity feedback is calculated in a first 

approximation by the difference between the net reactivity for CYL model and the net reactivity for 

REF model. The behavior is shown in Figure I-8. The SIMMER results are in the range of the other 

participants [196].  

 

Figure I-8. EBR-II SIMMER results: axial reactivity effect (assumed in a first approximation as difference between CYL and 
REF cases) 
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The contribution of the radial thermal expansion reactivity feedback is calculated in a first 

approximation by the difference between the net reactivity for CONIC model and the net reactivity 

for CYL model. The behavior is shown in Figure I-9. SIMMER results are in good agreement with the 

results of other partners [196].  

 

Figure I-9. EBR-II SIMMER results: radial reactivity effect (assuming in a first approximation as difference between CONIC 
and CYL cases) 

Impact of the initial condition for the steel temperature  

At the beginning of SIMMER calculations, the neutronics and thermodynamic part of SIMMER are out 

of balance because e.g. temperature distributions and coolant flow conditions are not specified in 

the input. Therefore, a so-called fixed power calculation is performed in order to reach a steady 

state. The steady state will depend on this input. However, as the DENSF factor is calculated at the 

start of the calculation, it depends on the input parameters. In order to test this effect, 4 cases have 

been compared: 

Case 1: cylindrical expansion where the initial temperature of steel was set everywhere to 666.15 K 

(value larger than the steady state value of ca. 620K)  

Case 2: identical to case 1 but setting the initial temperature of steel everywhere to 600 K (value 

lower than the steady state value ca. 620K) 

Case 3: conic expansion setting the initial steel temperature everywhere to 666.15 K (value larger 

than the steady state value in the lower grid, ca. 620K, but lower than the steady state value at the 

upper constraint plate, ca. 750K)  

Case 4: conic expansion setting the initial temperature of steel equal to 600 K in the lower part of the 

core, namely below the position of the upper constraints and equal to 720 K in the upper part of the 

core, namely above the upper constraint. The value is lower than steady state values of the lower 

grid, ca. 620K, and it is lower than the steady state value at the upper constraint plate, ca. 750K). 
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These cases have been compared both for fixed power calculations and during ULOF conditions. The 

ULOF results are slightly different (in terms of nominal values) with respect to the figures shown 

previously because the calculations were run with a different beta effective (almost half of the 

correct one). The beta effective taken in this case by default by SIMMER is typical of a MOX fuel and 

not of a U-metal fuel as appropriate for EBR-II. 

CASE 1 and 2 are compared in Figure I-10 for the fixed power calculations. The two cases have a very 

different behavior which can be explained by the different temperature distribution. In case 1 a 

reactivity increase is observed due to a core shrinking (steel temperature in input is larger than the 

steady state value) while in case 2 the reactivity decreases due to an expansion of the core (steel 

temperature in input is lower than the steady state value). In terms of K-eff the two models are 

identical. 

In order to check that there is not a large effect on the ULOF behavior, the net reactivity is shown in 

Figure I-11. The two different inputs led to an almost congruent behavior (small differences may be 

due to locally different distributions). 

The fixed power calculations differ also for CASE 3 and 4 (Figure I-12). These differences disappear 

during the ULOF case (case 4 stopped but the initial behavior is the same). See Figure I-13 for the 

ULOF case. 

The comparison has provided a first indication that the procedure implemented in SIMMER for taking 

into account core thermal expansion reactivity feedbacks [1,2] is independent of the input steel 

temperature specifications. 
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Figure I-10. EBR-II SIMMER results: Cylindrical model, comparison of different steel temperature in input specification 
(fixed power calculation) 
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Figure I-11. EBR-II SIMMER results: Cylindrical model, comparison of different steel temperature in input specification 

(ULOF) 

 

Figure I-12. EBR-II SIMMER results: Conic model, comparison of different steel temperatures in input specification (fixed 
power calculation) 
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Figure I-13. EBR-II SIMMER results: Conic model, comparison of different steel temperature in input specification (ULOF) 
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Appendix J: 

The equivalence principle 

J. K.sdad 

This appendix J aims at giving an additional explanation to the equivalence principle detailed in 

Chapter 6, section 6.5.1. 

The equivalence principle stipulates that “increasing all linear dimensions of any given reactor by a 

certain factor while simultaneously reducing all material densities by that same factor will result in 

exactly zero change to reactivity and flux distributions” [161]. 

Consider an infinite medium and one energy group. The (infinite) multiplication constant k is 

expressed as Eq. J-1.: 

f

a

k








             J-1 

Where  is the number of neutrons produced per fission, f  is the macroscopic fission cross-section 

in m-1, a the macroscopic absorption cross-section in m-1. 

Consider a homogeneous expansion (i.e. same expansion for all materials) of   (i.e. a variation in 

the cross-sections of  ). In this case the (infinite) multiplication constant can be expressed as Eq. J-

2: 
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            J-2 

Eq. K-2 demonstrates that there is no change in the infinite multiplication constant in case of an 

homogeneous expansion of  . 

Now let’s consider a finite medium and 1 energy group. The multiplication constant effk is expressed 

as Eq. J-3: 
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                  J-3 

Where NLP  is the non-leakage probability, 2M  is the migration area in m2,
2

gB  is the geometrical 

buckling in m-2, L  is a representative dimension in m. 

If one wants to get the same multiplication constant for two configurations, e.g. one configuration 

and initially the same configuration but subjected then to a uniform isotropic expansion of  ,  it can 

be seen from Eq. J-3 that the neutron leakage probability has to be kept (since the infinite 

multiplication constant does not change during a uniform isotropic expansion as demonstrated in Eq. 

J-2). Hence, one can deduce that the product L  has to be kept constant. This is exactly stipulated 

by the equivalence principle. 



APPENDIX J 

Page | 254  
 

To illustrate this principle, consider the Working Horse core (details on this core can be found in 

Chapter 4) which has been submitted to a 2% homogeneous uniform isotropic expansion (i.e. the 

same expansion for all materials and in all directions, here radial and axial). The multiplication 

constant of this case is of 1.004174, see Figure J-1 (a). If the equivalence principle is now applied, one 

can consider the WH core in its initial dimensional configuration but with reduced cross-sections (by 

4%) for all materials. Also in this case a multiplication factor of 1.004174 is obtained (Figure J-1 (b)), 

which illustrates well the equivalence principle. 

 

 

 

 

 

Figure J-1 Illustration of the equivalence principle in the Working Horse for a 2% homogeneous isotropic expansion of 2% 
(a) and ist equivalent configuration with original dimensions and modified (i.e. equivalent) cross-sections(b). Precision on 

keff is of 0.1 pcm. 

(a) 
keff= 1.004174 

(b) 
keff= 1.004174 
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Appendix K: 

The DENSF approach 

K. K.sdad 

Appendix K aims at giving an additional explanation of the idea behind the DENSF factor detailed in 

Chapter 6. In this chapter, it has been demonstrated that one can treat any expansion as an axial 

expansion. The density effect related to this expansion can be treated by SIMMER based on the 

equivalence principle. The question is now how to treat the related axial dimensional (i.e. due to a 

dimension variation) effect.  

Assume the global dimensional effect calculations have been performed for a 5% variation (the word 

global refers to the fact that in the whole reactor, all materials are subjected to the same variation). 

How to take into account the variations at different locations? The contributions of different nodes 

to the global effect are assumed to be proportional to their reactivity worth values. This is in line with 

the equivalence principle. 

Table K-1. Cases considered for global or local variations of densities or dimensions. In red: original densities, in yellow: 
reduced densities. 

Case 

Number 
Reference core (a) 

Core with a global 

density variation (b) 

Core with a global axial 

dimensional variation (c) 

1 

   

2 

   

3 
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For the next examples, the Working Horse core is considered (details on this core can be found in 

Chapter 4). In first approximation, the core has been subdivided into two zones for considering the 

expansion, as to know the inner and outer core zone. 

At first, global density and dimensional effects are determined. Consider a global density variation of 

5% in the two core zones (Case 1(b) in Table K-1). The related reactivity effect compared to the 

reference case (Case 1(a) in Table K-1) is of -873 pcm. Consider now a sole global axial dimensional 

variation of 5% (Case 1(c)) i.e. densities are unchanged compared to the reference core. The related 

reactivity effect compared to case 1(a) is of +625 pcm. 

The next step consists in taking into account local variations. If we consider a local density variation 

of 5% in the first core zone only, the second core zone being unchanged as seen in Table K-1 (Case 

2(b)), the related reactivity effect, compared to the reference case, is of -683 pcm. If one now wants 

to find out what the local dimensional variation effect in the first core zone would be, and if the 

assumption is made that the local dimensional variation is proportional to the local density variation 

in the first core zone, to the global density variation as well as to the global axial dimensional 

variation, one would obtain a reactivity variation of 
625

683 489
873

pcm


   


. If now the actual case 

2(c) is considered, where the axial dimensions of the first zone have been submitted to this variation 

of 5%, an effect of +509 pcm is obtained; hence a difference of – 3.9% compared to the value 

obtained through the assumption of proportionality. 

In the same way, one could consider a local density variation of 5% in the second core zone (case 3(b) 

in Table K-1), the related reactivity effect compared to the reference case is of -159 pcm. By 

assuming, as previously, the proportionality between a local dimensional variation effect and a local 

density variation effect, a global density variation effect and a global axial dimensional variation 

effect, the axial dimensional variation effect of 5% in the second core zone can be evaluated as 

625
159 114

873
pcm


   


. If one considers the actual case 3(c) where the axial dimension of the 

second core zone has been modified via a variation of 5%, the reactivity effect is of 122 pcm, i.e. a 

relative difference of -6.6% compared to the evaluated effect. This relative difference is however 

within the uncertainty range of 10-15% for the current evaluation of reactivity feedbacks [198; 199]. 

In conclusion, the applicability of the proportionality assumption is demonstrated. This approach is 

exactly the one used in the DENSF coefficient approach (Chapter 6). 
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Appendix L: 

Résumé détaillé de la thèse 

L.  

L.1. Introduction 

Mondialement, la demande en énergie n’a cessé de croitre les dernières décennies et génère le 

besoin d’un approvisionnement en énergie fiable et abordable. Avec la digitalisation du monde 

actuel, l’agence internationale pour l’énergie prévoit une croissance de 2.1% par an de la demande 

en électricité mondiale sur la période 2012-2040 [1]. Afin de répondre à cette demande tout en 

préservant le climat, un mix énergétique entre énergies fossiles, renouvelables et nucléaire doit être 

trouvé. Parmi les différentes sources d’énergie, le nucléaire fournit une électricité de base et compte 

parmi l’une des seules options à ne quasiment pas produire de CO2. Cette énergie ne reçoit 

cependant pas toujours l’acceptation du public, notamment suite à l’accident de Fukushima Daiichi 

au Japon. Actuellement, 434 réacteurs nucléaires sont en opération et 76 nouveaux réacteurs sont 

en construction au niveau mondial. Ils représentent 332 GW de la capacité installée, produisant plus 

de 11% de l’électricité mondiale. Ces réacteurs sont tous des réacteurs à spectre thermique de 

génération 2 ou 3. Afin d’assurer une meilleure utilisation des ressources d’uranium et une gestion 

des déchets nucléaires, de nouveaux réacteurs dits de génération 4 sont actuellement à l’étude. Au 

sein du Forum International de Génération 4 [3], la recherche se focalise sur 6 principaux concepts de 

réacteurs nucléaires à savoir les réacteurs refroidis au plomb, au sodium, au gaz, à eau supercritique, 

à très haute température et à sels fondus. Tous ces réacteurs doivent démontrer leur durabilité, leur 

sûreté améliorée et leur résistance à la prolifération en plus d’être économiquement compétitifs [3]. 

Parmi ces six concepts, seuls les réacteurs à spectre rapide remplissent les critères de durabilité, l’un 

des concepts le plus avancé étant le réacteur à caloporteur sodium. Pour ce réacteur, des objectifs 

clés ont été définis parmi lesquels une amélioration de la sûreté intrinsèque ainsi que la prévention 

et la limitation des conséquences d’accidents graves à haut potentiel énergétique - et le 

développement de combustibles avancés - spécialement des combustibles contenant des actinides 

mineurs. Cette thèse s’insère dans cette problématique de sûreté améliorée et de réduction des 

déchets.  

Ce travail contribue aux analyses de sûreté des réacteurs refroidis au sodium contenant des 

combustibles chargés en actinides mineurs. Le but de cette thèse est l’analyse de l’impact des 

combustibles sphere-pac innovants sur les performances de sûreté de ces réacteurs à la fois en 

conditions nominales et accidentelles. La thèse est effectuée dans le cadre du projet européen 

PELGRIMM (2012-2016) [11] qui vise à comparer les combustibles oxydes sous forme pastille ou sous 

forme sphere-pac en matière de fabrication, de comportement sous irradiation, et de modélisation 

lors d’accidents graves. Le cœur CONF2 [14; 9] issu du projet CP-ESFR (2009-2012) [6] a été choisi afin 

d’effectuer les analyses de sûreté. Ce cœur présente un effet de vidange sodium faiblement positif, 

et les différentes contre-réactions en jeu forment un équilibre délicat. Ce type de cœur est supposé 

présenter un meilleur comportement en transitoire. Par conséquent une modélisation améliorée de 

la phase d’initiation s’impose (spécifiquement pour le code SIMMER [73] développé à l’origine pour 

les cœurs largement dégradés). 

Afin de répondre à cette problématique, deux voies de développement ont dû être suivies : la 

première vise à l’amélioration de la modélisation de la phase d’initiation avec le code SIMMER - le 
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point le plus urgent étant la prise en compte des effets de dilatation du cœur – la deuxième à 

prendre en compte les spécificités des combustibles sphere-pac. 

Afin de comprendre le contexte dans lequel s’insère cette thèse, une explication introductive sur les 

systèmes de génération IV et sur leurs avantages en termes de réduction des déchets nucléaires et 

d’amélioration de l’utilisation du combustible est fournie au chapitre 2. 

Lorsque l’on s’intéresse aux systèmes à spectre rapide, il convient de faire une analyse étendue de 

leur comportement de sûreté tant en conditions nominales qu’en conditions accidentelles, ces cœurs 

étant en effet dans une configuration qui n’est pas la plus réactive. L’approche de sûreté, les 

principes fondamentaux ainsi que les grandes familles d’accidents sont développés au chapitre 3. 

Les cœurs à l’étude dans cette thèse sont détaillés au chapitre 4. Deux cœurs issus du précédent 

projet CP-ESFR [6; 187] sont analysés à savoir le cœur Working Horse (WH) et sa version optimisée le 

cœur CONF2.  

Cette thèse étant axée sur les combustibles sphere-pac, une explication des différentes familles de 

combustibles s’est imposée. L’attention est ici portée principalement sur les combustibles oxydes 

sous deux formes spécifiques : la forme pastille traditionnelle et la forme sphere-pac. Le cycle 

combustible de ces deux combustibles est considéré dans le chapitre 5.  

Le chapitre 6 traite d’une nouvelle extension de SIMMER pour la prise en compte des effets de 

dilatation du cœur. Ces effets sont particulièrement importants dans les cœurs à faible effet de 

vidange sodium, notamment en phase d’initiation de l’accident. Les codes SIMMER ne prennent pas 

en compte, à l’origine, les contre-réactions liées à la dilatation du cœur puisqu’ils ont été développés 

pour des cœurs largement dégradés, où ces effets étaient négligeables ou inexistants. Après avoir 

détaillé l’équation du transport et les différentes méthodes de résolution, avec une attention 

particulière pour la méthode quasi-statique sur laquelle repose le module neutronique de SIMMER, 

la physique de la dilatation du cœur ainsi que les différents modèles pour la prise en compte des 

effets neutroniques liés à cette dilatation sont détaillés. Deux modèles basés sur la théorie des 

perturbations du premier ordre et une troisième méthodologie basée sur la méthode directe y sont 

expliqués. Ce chapitre présente ensuite la validation des différentes hypothèses ainsi que de la 

procédure générale via l’analyse de cas tests. Enfin, l’amélioration des simulations de transitoires 

suite à cette nouvelle extension est démontrée dans le cas d’un accident de perte de débit primaire.  

Le chapitre 7 traite de la modélisation des spécificités des combustibles sphere-pac pour le code 

SIMMER. Ces combustibles présentent en effet une conductivité thermique faible en début de vie, 

due à leur microstructure spécifique, comparé au combustible pastille de même densité. La 

conductivité thermique de ces combustibles s’améliore cependant rapidement sous irradiation sous 

l’effet de la restructuration liée aux gradients de température. De plus, le jeu pastille-gaine présent 

dans les aiguilles de combustibles pastille est inexistant dans les aiguilles de combustibles sphere-

pac. Ce chapitre traite essentiellement de l’adaptation de la conductivité thermique des 

combustibles sphere-pac pour le code SIMMER. Une recherche bibliographique sur les différents 

modèles adaptables à la conductivité des combustibles sphere-pac y est proposée. Ces modèles 

étant trop détaillés pour le code SIMMER, qui utilise des corrélations fonctions de la température du 

combustible, il a fallu adapter les modèles les plus appropriés. Des corrélations pour un combustible 

neuf et pour un combustible irradié durant trois cycles sont développées pour les combustibles 

sphere-pac et pastilles.  
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Le chapitre 8 met l’accent sur l’analyse des résultats obtenus avec les extensions détaillées aux 

chapitres 6 et 7. Des analyses d’accidents de perte de débit primaire y sont proposées pour les cœurs 

WH et CONF2, contenant soit des aiguilles pastilles soit sphere-pac, en début de vie et après trois 

cycles d’irradiation, avec ou sans prise en compte des contre-réactions dues à la dilatation thermique 

du cœur. Les analyses des cœurs en début de vie mettent l’accent sur la différence fondamentale des 

conductivités thermiques des deux combustibles. Un cœur représentatif serait cependant un cœur à 

l’équilibre, où les combustibles sphere-pac auraient eu suffisamment de temps pour se restructurer. 

L’impact d’un ajout d’américium de 2% et 4% en masse sur les conclusions générales y est analysé.  

Enfin, le chapitre 9 contient les conclusions principales et les perspectives de ce travail.  

 

L.2. Les réacteurs à neutrons rapides : designs et missions 

 

Les réacteurs à neutrons rapides présentent un avantage considérable non seulement pour une 

meilleure utilisation du combustible mais également pour le recyclage des combustibles irradiés. En 

effet, aujourd’hui, le combustible nucléaire irradié provenant des réacteurs à eau pressurisée (REP) 

contient, en sortie du réacteur, 95% d’uranium, ~1% de plutonium, ~4% de produits de fissions et 

~0.1% d’actinides mineurs (américium, curium et neptunium) pour un taux d’irradiation d’environ 40 

GWj/t [18; 10]. Ceci signifie que seuls quelques pourcents d’uranium sont effectivement utilisés dans 

les REP actuels.  

En utilisant un mélange d’oxyde d’uranium et de plutonium (provenant des REPs) dans des réacteurs 

à spectre rapide, il est à la fois possible de recycler le plutonium, responsable de 90% de la 

radiotoxicité du combustible irradié, et d’atteindre une meilleure utilisation du combustible. La 

fission d’un atome de plutonium produit en effet suffisamment de neutrons pour à la fois maintenir 

la réaction en chaine et produire de nouveaux noyaux fissiles par capture sur l’uranium 238 [21]. 

Ainsi, la régénération devient possible en réacteur rapide.  

Un spectre rapide entraine également une amélioration considérable du ratio fission sur absorption 

des actinides mineurs [26]. Il est par conséquent possible de réduire le volume et la radiotoxicité des 

déchets à entreposer en stockage géologique profond. Les réacteurs à neutrons rapides refroidis au 

sodium comptent parmi les concepts les plus avancés proposés dans le cadre du forum international 

de génération IV. Le caloporteur sodium est quasiment transparent aux neutrons et sa conductivité 

thermique élevée en fait un bon élément pour extraire la chaleur produite par fission nucléaire [36]. 

De par la composition de leur combustible, les réacteurs à neutrons rapides présentent des 

coefficients de sûreté différents de ceux des réacteurs thermiques ainsi qu’une fraction de neutrons 

retardés plus faibles. Parmi ces coefficients de sûreté on peut nommer l’effet Doppler, les 

coefficients liés aux effets de variations de concentration des différents matériaux (uniquement le 

sodium en cas nominal), et ceux liés aux effets de dilatation thermique. Il est à noter que, dans le cas 

général, une perte du caloporteur sodium induit un durcissement du spectre qui a pour effet une 

augmentation de la réaction en chaine. Durant la thèse, les accidents de pertes de caloporteur sont à 

l’étude. 
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L’ajout d’actinides mineurs dans le combustible des réacteur à neutrons rapides a un impact à la fois 

sur l’aval et l’amont du cycle combustible ainsi que sur les performances du cœur [49; 10]. Différents 

types de recyclages peuvent être effectués, notamment le recyclage homogène où les actinides 

mineurs sont insérés dans la zone nourricière ou le recyclage hétérogène où les actinides mineurs 

sont insérés dans des assemblages dédiées placés en périphérie du cœur (par exemple dans des 

couvertures centrales d’actinides mineurs CCAM).  

En fonction du mode de recyclage choisi, les performances de transmutations, l’impact sur le cœur 

ainsi que les émissions de neutrons ou encore de chaleur résiduelle varient.  

 

L.3. L’approche de sûreté pour les réacteurs à neutrons rapides refroidis au sodium 

 

L’approche de sûreté repose sur trois objectifs fondamentaux i.e. un objectif de sûreté général, un 

objectif de protection contre les radiations et un objectif de sûreté technique [54]. Ainsi peuvent être 

définies deux principales lignes directrices pour les réacteurs à neutrons rapides refroidis au sodium : 

premièrement, les objectifs de sûreté définis dans le cadre européen pour la sûreté des nouvelles 

centrales nucléaires (et en particulier ceux pour l’EPR) constituent la base des lignes directrices pour 

les réacteurs à neutrons rapides refroidis au sodium, et deuxièmement, les objectifs doivent être 

atteints et leur réalisation doit être démontrée de manière robuste. Afin d’atteindre ces objectifs de 

sûreté, trois fonctions de sûreté doivent être remplies à savoir : le contrôle de la réactivité à tout 

moment et pour tout état du réacteur, le refroidissement du combustible en toute situation et 

temps, et le confinement de la matière radioactive.  

Afin de garantir ces objectifs et fonctions de sûreté, deux grands principes doivent être suivis : 

l’approche multi-barrière et le principe de défense en profondeur. L’approche multi-barrière prévient 

et limite les rejets radioactifs hors de la centrale nucléaire. Elle dresse entre la matière radioactive et 

l’environnement quatre barrières qui sont la matrice combustible elle-même, la gaine, le circuit 

primaire et le bâtiment de confinement [181]. La défense en profondeur permet quant à elle de 

structurer et d’implémenter l’architecture de sûreté [51; 54]. Cette stratégie consiste tout d’abord à 

grouper les initiateurs d’incidents ou d’accidents en différentes catégories selon leur probabilité 

d’occurrence. Les conséquences radiologiques les plus élevées doivent être associées aux 

probabilités les plus basses. Elles sont évaluées via des analyses de sûreté, jugement technique et 

études probabilistes. Les conditions normales et anormales de la centrale dues à des transitoires 

anticipés sont groupées en quatre catégories et représentent les conditions d’accidents de 

dimensionnement [59]. Les accidents hors dimensionnement quant à eux sont des accidents de 

faible probabilité et correspondent à des accident dus à des ruptures multiples des barrières de 

sûreté [59]. Dans ces accidents hors-dimensionnement, on peut notamment citer les accidents 

graves qui sont des accidents postulés entrainant des dégradations sévères du cœur. L’un d’entre 

eux, à l’étude dans cette thèse, est l’accident de perte de débit primaire. Cet accident est en effet un 

accident global affectant la totalité du cœur couvrant les phénomènes les plus importants 

observables durant une dégradation sévère du cœur.  
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L.4. Designs spécifiques de réacteurs à neutrons rapides refroidis au sodium à 

l’étude 

 

Plusieurs réacteurs à neutrons rapides refroidis au sodium ont été construits et exploités lors du 

siècle dernier. En France spécialement on peut mentionner les réacteurs Phénix et Superphénix dont 

on tient un vaste retour d’expérience [81]. Le design des RNR-Na a constamment évolué depuis leurs 

débuts, le but premier étant d’améliorer la prévention ainsi que la limitation des conséquences d’un 

accident grave. Dans le cadre du 7ème programme de recherche européen EURATOM, le projet CP-

ESFR (2009-2012) [6; 187] a par exemple eu pour but d’optimiser les concepts de larges réacteurs à 

neutrons rapides refroidis au sodium, dans le but de démontrer la viabilité et d’évaluer les 

performances de ce type de réacteur en soutien au développement d’un réacteur européen à 

caloporteur sodium. Au début du projet, un cœur oxyde a notamment été étudié : le CP-ESFR 

Working Horse. Les analyses ont permis d’identifier les modifications nécessaires à l’amélioration du 

comportement de sûreté de ce réacteur à la fois en condition nominale et en condition accidentelle. 

L’un des axes de recherche était notamment la réduction de l’effet de vidange sodium, qui gouverne 

la phase d’initiation des accidents graves comme l’accident de perte de débit primaire (ULOF). Les 

conclusions tirées de cette étude ont donné naissance à un design de cœur à combustible oxyde 

optimisé: le cœur CONF2 [14]. Pour ce cœur, l’effet de vidange sodium a été considérablement réduit 

(par un facteur ~2.5, i.e. de +1211 pcm à +496 pcm en début de vie) notamment grâce à 

l’élargissement de la hauteur du plénum sodium ainsi que d’un ajout d’absorbant au-dessus de ce 

dernier pour empêcher la réflexion des neutrons vers le cœur [9]. Cet effet de vidange réduit permet 

de considérer l’introduction d’actinides mineurs dans le cœur. Ainsi des études de performances de 

transmutation ont été effectuées pour le cœur CONF2 et ses versions optimisées. L’introduction 

d’actinides mineurs dans le cœur CONF2 détériore les coefficients de sûreté (notamment l’effet de 

vidange et l’effet Doppler) ainsi que la fraction effective de neutrons retardés comme attendu. Le 

cœur CONF2 contenant 4% en masse d’américium dans le combustible en début de vie présente 

même des coefficients de sûreté similaires au cœur WH, annulant ainsi l’effet de l’élargissement du 

plénum sodium [9]. 

Ces deux cœurs, développés durant le projet CP-ESFR, servent de designs de référence pour les 

analyses de sûreté des combustibles sphere-pac présentés dans cette thèse. 

 

L.5. Les combustibles nucléaires 

 

Différents types de combustibles ont été développés depuis le début de la filière nucléaire. Les 

premiers combustibles étaient des combustibles métal. Dû à leur densité élevée de métaux lourds, 

leur processus de fabrication relativement simple ainsi que leur bonne conductivité thermique, ces 

combustibles présentaient tous les prérequis pour un gain de régénération élevé [96]. Ils ont 

cependant révélé une instabilité dimensionnelle sous irradiation due au gonflement et à la croissance 

sous l’effet du flux neutronique [94]. 
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Les combustibles nitrures et carbures sont également des combustibles potentiels pour les réacteurs 

rapides. Le combustible privilégié reste cependant le combustible oxyde. Il profite en effet d’un large 

retour d’expérience de la filière thermique et a démontré sa résistance à l’irradiation [94]. La forme 

la plus répandue pour le combustible oxyde est la forme pastille mais des formes alternatives comme 

les combustibles sphere-pac sont étudiées. Dans les sections suivantes, ces deux combustibles sont 

détaillés.  

 

L.5.1. Le combustible oxyde pastille 

 

Le combustible pastille MOX peut être fabriqué via différents procédés. Traditionnellement il est 

fabriqué par voie métallurgique [25]. Les oxydes de plutonium et d’uranium sont mélangés dans les 

proportions requises via des étapes d’homogénéisation et de broyage, puis ce mélange est compacté 

sous forme de pastilles qui sont ensuite frittées. Cette étape est essentielle pour obtenir la densité 

souhaitée, habituellement de l’ordre de 85% à 95% de la densité théorique [101]. Une fois frittées, 

elles sont placées dans une gaine métallique pour former ce qu’on appelle les aiguilles qui sont 

ensuite remplies avec de l’hélium.  

Les combustibles oxydes sont connus pour leur grande résistance sous irradiation. En effet, ce 

combustible ne présente que peu de gonflement par rapport aux combustibles nitrures par exemple 

(0.6% par at% de burnup contre 1.1-1.6%, [101]). De plus, le combustible oxyde peut être retraité 

sous forme aqueuse et ne nécessite donc pas de procédés électrométallurgiques comme la pyrolyse.  

L’un des plus grands inconvénients du combustible oxyde est cependant sa conductivité thermique 

relativement faible, de l’ordre de 2-3 W·m-1.K-1 [94]. Cette propriété du matériau constitue un point 

essentiel pour la sûreté du combustible. Au vue de la faible conductivité thermique des oxydes, ces 

combustibles présentent généralement des températures élevées, donnant naissance à des 

processus thermiquement activés. L’un d’entre eux est la restructuration du combustible. Les 

températures et les gradients élevés provoquent un grossissement des grains et la formation de 

grains colonnaires par migration des porosités pour enfin former un trou central. La zone en 

périphérie de la pastille quant à elle reste quasiment inaffectée par ces changements. En parallèle à 

la restructuration, la composition locale de l’oxyde est sujette à des variations : les différents 

constituants du combustible migrent en effet le long des gradients de température [94]. Le jeu 

pastille gaine présent dès la fabrication tend lui aussi à se fermer sous irradiation suite à la dilatation 

et au gonflement de la pastille. Ces évolutions participent à une diminution de la température 

centrale de l’aiguille.  

Les effets thermiques ne sont pas les seuls effets en jeu. La fission des atomes d’uranium et de 

plutonium engendre la formation de produits de fission, dont certains sont sous forme gazeuse. Ils 

engendrent un gonflement de la pastille. Les gaz de fission peuvent être relâchés et collectés dans les 

vases d’expansion [117]. Une conséquence du relâchement des produits de fission gazeux est leur 

éventuelle accumulation dans le jeu pastille gaine, ce qui peut entrainer une oxydation de la gaine. 

Le gonflement et la dilatation de la pastille peuvent quant à eux induire des contraintes mécaniques 

sur cette dernière. Celles-ci restent cependant relativement faibles pour les combustibles oxydes [94; 

118]. 
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Une fois le combustible oxyde irradié, il peut être retraité par voie aqueuse afin de récupérer le 

plutonium. Ce procédé nommé PUREX est notamment employé en France et en Grande Bretagne. 

Pour cela, le combustible irradié est refroidi quelques années pour atteindre une dose suffisamment 

faible afin de procéder au recyclage.  

 

L.5.2. Le combustible oxyde sphere-pac 

 

Lorsqu’il s’agit d’insérer des actinides mineurs dans le combustible oxyde, les formes TRISO, sphere-

pac, ou vipac peuvent être préférables à la forme pastille. Seule la forme sphere-pac est considérée 

dans cette thèse. Les combustibles sphere-pac sont composés de sphères d’oxyde compactées par 

vibration dans le tube gaine21 – Figure L-1. Ce concept est étudié dans le projet FP-7 PELGRIMM.  

La motivation première pour l’utilisation du concept sphere-pac pour des combustibles contenant 

des actinides mineurs est la simplicité du processus de fabrication: il se déroule entièrement sous 

forme liquide ce qui évite la manipulation de poudres. Les risques de contamination ou d’ingestion 

en cas d’accident lors du processus de fabrication peuvent ainsi être réduits. Le processus de 

fabrication permet de produire des particules parfaitement sphériques. Leur taille peut être 

facilement contrôlée par adaptation de la taille de l’injecteur et aucun tamisage n’est requis. Une 

raison supplémentaire à l’utilisation du combustible sphere-pac pour la transmutation est son 

comportement sous irradiation : le volume de gaz entre les particules permet en effet une meilleure 

accommodation des gaz de fission et ainsi de réduire la pression sur la gaine [133]. 

 

        (a)              (b) 

Figure L-1. Combustible pastille (a) et sphere-pac (b) [134]. 

Les combustibles sphere-pac présentent cependant une mauvaise conductivité thermique en début 

d’irradiation liée à leur microstructure spécifique : les points de contact entre les sphères sont étroits 

et peu nombreux, ne permettant pas un bon transfert de chaleur vers le caloporteur. La conductivité 

thermique se voit cependant améliorée durant l’irradiation puisque les combustibles sphere-pac se 

restructurent très rapidement sous l’effet des gradients de température élevés (la durée du 

processus est de l’ordre de quelques heures à quelques jours en fonction de la puissance du 

réacteur) [133]. 

                                                            
21 Plusieurs programmes d’irradiation de combustibles sphere-pac ont été conduits sous forme oxydes (et 
carbures). On peut notamment citer l’irradiation FUJI [133] ou encore l’irradiation SPHERE [134] actuellement 
en place dans le réacteur à haut flux aux Pays-Bas [143]. 
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Les sphères qui composent les combustibles sphere-pac sont produites par un procédé sol-gel qui 

peut être interne ou externe. Ces deux procédés chimiques permettent de précipiter une solution de 

nitrate de métaux en un hydroxyde d’ammonium métal par ajout d’ammoniac. Pour le processus de 

gel interne, l’ammoniac est produit par décomposition chimique d’un précurseur, qui a été ajouté 

préalablement au mélange. Pour le processus de gel externe, l’hydroxyde d’ammonium est ajouté 

directement à la solution.  

Une fois les microsphères de combustible produites, elles sont versées dans le tube gaine et 

compactées par vibration [131]. Deux techniques peuvent être utilisées pour cela : le remplissage 

parallèle (les sphères de différentes tailles sont versées simultanément dans le tube gaine) et le 

remplissage par infiltration (les sphères sont versées séparément, par ordre de taille décroissant). 

Cette dernière technique donne une distribution plus homogène de microsphères dans l’aiguille et 

permet d’obtenir des densités de tassement plus élevées, pouvant aller jusqu’à 95% de la densité 

théorique si plusieurs tailles de sphères sont utilisées lors du remplissage [131; 137]. 

La conductivité thermique relativement faible des combustibles sphere-pac induit une température 

centrale de l’aiguille plus élevée que dans le cas du combustible pastille de même densité et peut 

poser problème au niveau des marges de sûreté [131]. Cet effet est cependant rapidement réduit 

après le début de l’irradiation grâce à la large restructuration des combustibles sphere-pac : les pores 

dans la zone la plus chaude de l’aiguille migrent vers le centre et y forment un trou. La zone à 

proximité du trou ainsi formé est ensuite frittée sous l’effet des températures élevées et une zone de 

combustible très dense se forme. Une troisième zone peut être distinguée où le frittage est moins 

prononcé mais la microstructure initiale a disparue. Enfin, la zone périphérique du combustible garde 

la microstructure initiale (Figure L-2). 

Suite aux températures et surfaces spécifiques globalement plus élevées, une proportion de produits 

de fission gazeux plus importante est relâchée dans le cas du combustible sphere-pac que dans le cas 

pastille. Les sphères composant le combustible sphere-pac peuvent néanmoins se déformer 

facilement et les volumes entre les sphères permettent d’accommoder les gaz de fission [138]. 
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Zone II: Strongly sintered area

- Intermediate or final stage of sintering

- Original sphere structure not visible (similar to

porous pellet)

- After 1 h temperatures typically >1400 ˚C 

(sphere diameter 70 μm and pressure 1bar)

- The zone proceeds toward the rim and lower

temperatures with longer irradiation time, higher 

external load or smaller sphere size 

Zone I: Center hole

- Emerges later in the life

Zone III: Transition zone

- Between fast and slow sintering areasing

- Moves outward and lower temperatures as irradiation proceeds

- On temperature scale, only 150-200 ˚C wide

Zone IV: Slow sintering

- Initial stage of sintering

- Original sphere structure visible

- Pores interconnected

- Temperature < 800 ˚C

- Irradiation creep dominates

 

Figure L-2.  Schéma d’un combustible sphere-pac restructuré [138]. 

 

L.5.3. Conclusions 

 

Une  large variété de combustibles peut être utilisée pour les réacteurs à neutrons rapides. Tous 

présentent des avantages et des inconvénients en termes de fabrication, de comportement sous 

irradiation ou encore lors du recyclage du combustible usé. En Europe, le combustible oxyde reste le 

choix préférentiel dû au large retour d’expérience sur les réacteurs thermiques. Au sein du projet 

FP7-PELGRIMM, deux formes mécaniques sont étudiées : le combustible sphere-pac et le 

combustible pastille. Les procédés de fabrication, les performances sous irradiation ainsi que les 

propriétés fondamentales des combustibles sphere-pac doivent encore être étudiés en détail, de 

même que leur comportement en cas de transitoires accidentels. Dans ce cadre, les différents codes 

employés dans le projet FP7-PELGRIMM doivent être modifiés afin de prendre en compte les 

spécificités de ces combustibles.  
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L.6. Une méthodologie innovante pour simuler les effets de dilatation thermique du 

cœur dans les codes à cinétique spatiale 

 

Ce chapitre détaille les modèles développés durant la thèse pour la prise en compte de la contre-

réaction induite par la dilatation axiale et radiale du cœur pour des codes employant une cinétique 

spatiale et un maillage eulérien comme le code SIMMER. Cette contre-réaction n’était pas prise en 

compte dans SIMMER jusqu’à présent puisque ce code était développé pour des cœurs dans une 

configuration largement dégradée, où cette contre-réaction jouait un rôle négligeable. Cependant, si 

l’accident est simulé dès l’évènement initiateur avec le code SIMMER, il devient important de 

prendre en compte cette contre-réaction, spécialement pour les nouveaux design de cœurs de 

réacteurs présentant un effet de vidange sodium très faible, et un équilibre délicat entre les 

différentes contre-réactions. 

 

L.6.1. La théorie du transport de neutrons 

 

Cette partie détaille l’équation du transport de neutrons dépendante du temps et donne une 

explication aux différents termes composant l’équation. De même, l’équation régissant l’évolution 

temporelle des précurseurs de neutrons retardés y est décrite. 

Le cas particulier de l’équation stationnaire est ensuite analysé et le concept de réacteur critique 

associé est introduit.  

 

L.6.2. Méthodes de résolution de l’équation du transport de neutrons dépendante du 

temps 

 

L’équation du transport dépendante du temps ne peut être résolue analytiquement sauf pour des 

cas très simplifiés. De manière générale, on résout l’équation numériquement en introduisant une 

discrétisation angulaire, spatiale, énergétique et temporelle.  

Dans le code SIMMER, la variable angulaire est discrétisée via la méthode des ordonnées discrètes SN 

qui utilise un set de directions discrètes associées à des poids. La composante spatiale est quant à 

elle discrétisée par une méthode de différences finies. 

La variable énergie est ensuite discrétisée en groupes d’énergie. Pour chaque groupe d’énergie, les 

grandeurs représentatives, comme le flux et les sources, sont obtenues par intégration sur 

l’intervalle énergétique. Les sections efficaces multi-groupes sont quant à elles obtenues en gardant 

constants les taux de réactions. Ainsi, l’équation du transport peut être réécrite pour chaque groupe 

d’énergie.  
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Enfin, la variable temps est également discrétisée. Pour cela, différentes méthodes peuvent être 

appliquées.  

On peut tout d’abord citer la méthode directe qui discrétise le temps par une méthode implicite. 

Cette méthode requiert cependant un temps de calcul important et pour des analyses de 

transitoires, des méthodes permettant l’utilisation d’un pas de temps plus grand lui sont 

généralement préférées, comme par exemple la méthode quasi-statique améliorée. 

Celle-ci se base sur un principe de factorisation en espace et en temps avec une fonction de forme 

dépendante de l’espace et du temps et une fonction d’amplitude dépendant du temps seulement. 

Elle repose sur une séparation des fluctuations rapides et lentes du flux (par rapport au temps) : la 

fonction amplitude reflète le comportement rapide en temps alors que la fonction de forme varie 

lentement en fonction du temps. Deux échelles de temps sont alors considérées : une échelle de 

temps grossière sur laquelle on évalue la forme et une échelle de temps très fine sur laquelle on 

évalue l’amplitude. On considère donc un système couplé d’équations qui peut être résolu par 

méthode itérative.  

La méthode adiabatique repose sur le même principe que la méthode quasi statique améliorée mais 

la fonction de forme est mise-à-jour durant le transitoire pour des pas de temps plus larges en 

résolvant une équation aux valeurs propres. 

Enfin, la méthode de la cinétique point néglige toute dépendance temporelle du flux de forme (i.e. 

également dans l’équation du flux de forme) et le flux de forme initial est utilisé sur toute la durée du 

calcul. Cette dernière méthode est généralement appliquée dans les codes de calculs dédiés à 

l’analyse de la phase d’initiation de l’accident et permet de donner une idée de l’évolution de ce 

dernier. 

La précision de la solution de l’équation du transport dépend des différentes méthodes et de la 

largeur des pas de temps utilisés. 

 

L.6.3. La dilatation thermique du cœur de réacteur 

 

Durant une situation accidentelle aussi bien que durant le fonctionnement nominal du réacteur, la 

température du cœur de réacteur est soumise à des variations qui impacteront ses dimensions et les 

densités des matériaux qui le composent. C’est ce qu’on appelle la dilatation thermique du cœur que 

l’on pourra sous-diviser en deux contributions : la dilatation radiale et la dilatation axiale.  

La dilatation radiale du cœur est causée principalement par la dilatation du sommier qui a lieu 

lorsque la température en entrée du cœur varie. En plus du sommier, la dilatation de la grille 

supérieure peut également contribuer à la dilatation radiale du cœur. En effet, la dilatation 

thermique de ces deux éléments détermine la variation du pas entre les assemblages à différentes 

positions axiales, ce qui joue un rôle crucial sur la réactivité du cœur.  

Lorsque ces structures voient leurs températures augmentées, le rayon du cœur est augmenté et la 

concentration du matériau fissile qui le compose est diminuée ce qui induit une augmentation des 
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fuites axiales. La contre-réaction est donc négative dans ce cas. Le fait d’avoir plus de caloporteur 

entre les assemblages combustibles ajoute de l’anti-réactivité.  

Si, au contraire, les assemblages combustibles sont plus proches les uns des autres, i.e. on observe 

une compaction du cœur, les fuites axiales sont réduites et la contre-réaction sera positive.  

La dilatation axiale du combustible quant à elle dépend de l’état du jeu combustible-gaine 

traditionnellement présent dans les aiguilles oxydes neuves et donc du taux d’irradiation. Si le jeu est 

ouvert, le combustible pourra se dilater librement. Si au contraire le jeu est fermé, la gaine retiendra 

le combustible et ralentira le processus de dilatation. La dilatation axiale de l’aiguille augmente la 

hauteur du cœur et par conséquent les fuites radiales. La contre-réaction sera donc négative. 

Ces effets de dilatations de cœur sont d’autant plus importants sur les cœurs actuels présentant un 

équilibre délicat entre les différentes contre-réactions. 

Pour modéliser ces effets de dilatations dans SIMMER, les coefficients d’expansion linéaires sont 

appliqués. Radialement, deux options ont été implémentées dans le code à savoir cylindrique ou 

conique. Dans le cas cylindrique, seule la dilatation radiale des cellules du sommier est considérée et 

calculée à partir des températures respectives. Toutes les cellules se trouvant au-dessus du sommier 

sont soumises à la même dilatation que celle du sommier. Dans le cas conique, la dilatation radiale 

des cellules de la grille supérieure est également considérée et les cellules se trouvant entre sommier 

et grille supérieure voient leurs dimensions radiales dilatées linéairement entre les deux.  

Afin de calculer la dilatation axiale, la température du combustible ou de la gaine (selon que le jeu 

soit fermé ou ouvert) est considérée pour chaque cellule, en première approximation.  

Une fois les dimensions radiales et axiales après dilatation de chaque cellule connues, les 

concentrations de chaque matériau sont calculées par conservation de la masse, sauf pour le 

caloporteur où la masse est augmentée (i.e. la densité macroscopique reste inchangée).  

Les dimensions et les concentrations de chaque cellule après dilatation du cœur sont maintenant 

connues. SIMMER ne peut pas prendre directement en compte ces changements de dimensions 

puisqu’il emploie un maillage eulérien. Le modèle développé permet de garder ce maillage et de 

prendre en compte les effets dus à la dilatation via les concentrations seulement.  

Les contre-réactions dues à la dilatation thermique du cœur sont calculées via la méthode des 

perturbations au premier ordre qui permet de traiter de façon indépendante les effets venant de 

chaque cellule et de superposer ces effets pour obtenir l’effet global. Cette hypothèse a donc dû être 

validée. 

Les propriétés de linéarité et d’additivité des effets en réactivité liés à la dilatation thermique du 

cœur ont été testées pour une dilatation uniforme (i.e. même dilatation selon une direction) et non-

uniforme. Pour cela, le code ERANOS a été utilisé [157]. Ce code est un code neutronique 

déterministe qui emploie la méthode des ordonnées discrètes en 2D et nodale en 3D. Un modèle 

simplifié du cœur ESFR a été utilisé pour cela. Les effets de linéarité et d’additivité ont été démontrés 

dans les cas uniformes et non-uniformes, en considérant une seule ou deux zones d’enrichissement, 

une dilatation du sodium différente ou encore 1, 11 ou 33 groupes d’énergies.  
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La méthodologie implémentée dans SIMMER durant la thèse repose sur une séparation de l’effet de 

dilatation en deux effets : un effet venant d’une dilatation homogène i.e. tous les matériaux, y 

compris le sodium, sont sujets à la même dilatation et un effet venant de la variation relative entre la 

dilatation des matériaux solides et du sodium. Afin de démontrer l’importance de simuler avec 

précision l’effet venant du sodium, le cœur simplifié a été analysé pour des dilatations uniformes et 

non-uniformes.  

 

L.6.4. Une méthodologie innovante pour prendre en compte les contre-réactions dues à la 

dilatation du cœur pour les codes employant la cinétique spatiale. 

 

La méthodologie développée pour tenir compte des effets en réactivité de dilatation du cœur repose 

sur le « principe d’équivalence ». Ce principe a été publié en 1959 [160] et a suscité un regain 

d’intérêt récemment [161]. Le principe permet de prendre en compte neutroniquement des effets de 

dimensions via des variations de sections efficaces (i.e. de concentrations).  

Ce principe stipule que si l’on multiplie toutes les dimensions d’une configuration de cœur par un 

même facteur et que l’on divise simultanément toutes les sections efficaces par ce même facteur, la 

nouvelle configuration ainsi obtenue aura exactement le même état de réactivité que la 

configuration initiale i.e. aucun effet en réactivité n’est observé suite à cette manipulation.  

Dans le cas d’une dilatation thermique uniforme et isotrope (i.e. même dilatation pour les toutes les 

dimensions dans toutes les directions), la nouvelle configuration pourra avoir les dimensions initiales 

avec des concentrations modifiées et refléter l’effet de la dilatation. 

Dans le cas d’une dilatation uniforme non-isotrope (i.e. dilatations différentes pour les dimensions 

axiales que pour les dimensions radiales par exemple), il ne sera pas possible de revenir aux 

dimensions initiales tout en gardant l’effet en réactivité. Il faudra faire le choix de revenir sur la 

dimension axiale ou radiale et utiliser une étape supplémentaire pour prendre en compte la totalité 

de l’effet de dilatation.  
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Figure L-3.  Méthodologie DENSF pour la prise en compte des contre-réactions dues à la dilatation thermique du cœur. 

Une comparaison entre les cas réellement dilatés et la configuration équivalente (i.e. obtenue en 

appliquant le principe d’équivalence) est proposée. Les calculs montrent que, dans les deux cas, 

l’effet en réactivité dû à la dilatation thermique du cœur diffère de seulement 5% pour différentes 

dilatations homogènes uniformes isotropes. Dans le cas de dilatations non-uniformes, par exemple 

dans différentes zones du cœur d’enrichissement homogène, un écart de 2% est observé.  

Il est démontré dans cette thèse que la méthodologie basée sur le principe d’équivalence est 

applicable pour des cas proches de dilatations uniformes, i.e. dans les mêmes conditions que celles 

des codes comme CATHARE. Pour des configurations plus complexes, la méthode nécessite d’être 

améliorée. 

En se basant sur le principe d’équivalence, une première méthode a été améliorée. Elle consiste à 

appliquer le principe d’équivalence dans un premier temps et un coefficient global de concentration 

(DENSF) pour traiter l’effet de dilatations non-uniformes dans un second temps Figure L-3. Ce 

coefficient est calculé initialement et appliqué durant le calcul de transitoire.  

La méthodologie consiste à traiter les dilatations thermiques via des variations de sections efficaces 

(i.e. de concentrations) uniquement. Elle permet ainsi d’employer le maillage eulérien de SIMMER 

tout en ayant la capacité de refléter les effets de la dilatation du cœur. 

La première étape consiste à calculer théoriquement les variations de dimensions et de 

concentrations liées à la dilatation thermique. Puis, le principe d’équivalence est appliqué et l’on 

retrouve, dans le cas général, une dilatation uniforme axiale uniquement (le choix de revenir sur une 

dilatation axiale seulement est arbitraire) avec des concentrations que l’on appellera concentrations 

équivalentes. Une troisième étape est ensuite introduite afin de pouvoir revenir axialement sur les 

dimensions initiales. Pour cela, un facteur de concentration est calculé et défini comme étant le ratio 

entre a) l’effet en réactivité dû à une variation de x% de la dimension axiale de tout le réseau obtenu 



APPENDIX L 

Page | 271  
 

par calcul direct et b) l’effet en réactivité dû à la variation de concentration de x% obtenue par un 

calcul en théorie des perturbations du premier ordre. Les concentrations équivalentes sont alors 

modifiées par un facteur tenant compte du facteur de concentration [144].  

Cette méthodologie a été validée pour le cœur CP-ESFR WH dans le cas de dilatations homogènes 

uniformes isotropes et non-isotropes, après avoir confirmé l’indépendance de l’effet Doppler et de 

vidange de l’effet en dilatation et vice versa. Les résultats montrent un accord entre le cas réellement 

dilaté et le cas où la méthodologie a été appliquée avec une erreur relative de l’ordre de 11%, ce qui 

reste dans l’intervalle d’incertitudes pour les effets en réactivité [198; 199]. La composante non-

homogène de l’effet de la dilatation (i.e. due au caloporteur qui n’est en général pas soumis à la 

même dilatation que les matériaux solides) est prise en compte directement dans le calcul du flux de 

forme. Les résultats pour les cas de dilatations non-homogènes avec ce traitement du sodium 

correspondent aux cas réellement dilatés avec une incertitude relative de l’ordre de ~15%.  

La méthode précédente a à nouveau été améliorée via l’introduction de facteurs de concentration 

fonctions de la composante radiale. En effet, dans un cœur de réacteur, on observe une distribution 

radiale de puissance et par conséquent un poids différent pour les contributions provenant des 

différents anneaux de combustible à l’effet de dilatation total. Les résultats dans le cas de de 

dilatations uniformes sont concluants. 

Dans le cas de dilatations non-uniformes, l’écart relatif entre les cas utilisant le modèle développé et 

les calculs de référence augmente et une troisième méthodologie basée sur la méthode directe a été 

testée avec le code de calcul ERANOS. Les résultats sont prometteurs [165].  

Enfin, la méthodologie DENSF a été testée pour les calculs transitoires. Le cœur CP-ESFR WH a été 

simulé pour un accident de perte de débit primaire. Deux cas de dilatation axiale ont été considérés à 

savoir une dilatation due à la dilatation de la gaine ou du combustible. Les calculs démontrent un 

délai dans la progression de l’accident et une réduction du pic de puissance comparé aux cas ne 

prenant pas en compte cette contre-réaction. Le modèle a également été testé et validé avec succès 

dans le cadre d’un benchmark international (IAEA-CRP) sur le cœur EBR-II [200] . 

 

L.6.5. Conclusions 

 

Suite aux développements effectués durant cette thèse, le code SIMMER a la capacité de simuler la 

phase d’initiation d’un accident avec plus de précision. Le code peut maintenant tenir compte des 

contre-réactions provenant de la dilatation du cœur qui sont de haute importance en début 

d’accident dans les cœurs à faible effet de vidange comme le cœur CONF2. 
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L.7. Une nouvelle caractéristique du code SIMMER-III : les combustibles sphere-pac 

innovants. 

 

L’une des différences les plus prononcées entre les combustibles oxyde pastilles et sphere-pac est 

leur conductivité thermique respective. Cette propriété influence directement le transfert thermique 

vers le caloporteur. Une recherche bibliographique sur les différents modèles de conductivité 

possiblement adaptables au combustible sphere-pac s’est imposée. On peut citer le modèle de 

conductivité de Philipponneau pour les combustibles pastilles MOX [173], le modèle de Schulz pour 

les matériaux poreux [175], le modèle de Hall et Martin pour les lits de poudres [176], le modèle de 

Maxwell pour les matériaux composites [180] ou encore celui de Godbee pour les poudres [179]. Une 

comparaison de ces différents modèles a révélé que ceux de Schulz [175] et de Hall et Martin [176] 

sont les plus adaptés à la simulation de la conductivité thermique des combustibles sphere-pac 

(Figure L-4). 
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Figure L-4. Conductivité thermique de combustible sphere-pac (SP) UO2 (2 fractions de sphères de 1200 μm et 35 μm en 
diamètre, 0% de striction, 1 bar de pression d’Hélium) pour différentes corrélations et comparaison avec les données 

tirées de [181]. 

Une fois les modèles les plus adéquats déterminés, les corrélations à implémenter dans SIMMER ont 

été établies. Pour cela, on a différencié l’état du combustible en début de vie, et son état après trois 

cycles d’irradiation. Ces états diffèrent d’autant plus que le combustible sphere-pac est soumis à une 

large restructuration durant les premières heures ou jours en réacteur.  

Pour le combustible neuf, trois cas ont été considérés (Figure L-5) : l’aiguille de combustible pastille 

du CP-ESFR, l’aiguille de combustible sphere-pac et un troisième cas avec une aiguille composée de 

pastilles, de même densité de remplissage de la gaine que le combustible sphere-pac, ne présentant 

ni jeu pastille-gaine ni trou central. La comparaison des deux premiers cas nous informe sur l’impact 
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à la fois de la géométrie interne de l’aiguille et de la conductivité thermique. La comparaison des 

deux derniers cas révèle l’impact de la différence entre les conductivités thermiques uniquement.  
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Figure L-5. Cas considérés pour le CP-ESFR en début de vie : (a) design d’aiguille standard (b) aiguille de combustible 

sphere-pac non-restructuré (c) aiguille de combustible pastille pleine. 

Pour le combustible irradié durant trois cycles, deux cas ont été considérés (Figure L-6). Leurs 

propriétés sont décrites dans le Tableau 1. 

 

 

           (a)           (b) 

Figure L-6. Aiguille de combustible pastille après trois cycles d’irradiation (a) Aiguille de combustible sphere-pac après 

trois cycles d’irradiation (b) 

 

Tableau 1. Propriétés des combustibles pastilles et sphere-pac MOX du CP-ESFR après trois cycles d’irradiation. 

 Standard MOX 
pellet pin 

Restructured MOX sphere-pac pin 

Fuel smear porosity (%) 16.59 16.59 

Fuel porosity and other 
characteristics 

Fuel porosity 7.5% 2 fuel zones: restructured and non-
restructured 

2 sphere diameters: 1200 µm or 35 µm 

Restructured zone porosity 7.5% 

Central hole diameter (mm) 3.05 2.92 (30% of cladding inner diameter) 

Burnup (at%) 6 6 

Oxygen over metal ratio 2 2 

Gap state Closed gap No gap 
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Les corrélations de conductivité thermique en début de vie et après trois cycles d’irradiation pour les 

deux types de combustibles ont été établies et sont représentées en Figure L-7. 

Une étude sur l’importance de l’inclusion de la porosité dans la détermination de la longueur de 

pénétration thermique a également était conduite. Les résultats ne sont que peu impactés même 

dans le cas des combustibles sphere-pac, présentant une porosité élevée en comparaison au 

combustible pastille (16.59% au lieu de 5%). 
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Figure L-7. Conductivités thermiques utilisées pour les combustibles sphere-pac (SP) et pastille MOX dans le cas du CP-

ESFR, en début de vie (BOL) et après trois cycles d’irradiation (EOC3).  

 

L.8. Analyses de sûreté avec le code SIMMER-III 

 

Durant le projet CP-ESFR, le cœur WH a été dûment analysé avec des aiguilles pastilles [9]. Le cœur 

CONF2 quant à lui n’a pas profité d’une analyse de sûreté étendue. Une première étape a donc été 

l’analyse de ce dernier chargé avec des aiguilles pastilles afin de démontrer l’effet de l’élargissement 

du plénum sodium sur l'évolution de l’accident. Une deuxième étape a consisté à analyser les cœurs 

chargés avec des combustibles sphere-pac afin de les comparer aux cœurs chargés avec du 

combustible pastille. Pour cela, des études à l’état nominal ont été effectuées dans un premier 

temps, suivies dans un deuxième temps d’analyses d’accidents de débit primaire. 
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L.8.1. Modélisation 

 

La modélisation des cœurs CP-ESFR WH et CONF2 avec le code SIMMER-III est rappelée dans cette 

section ainsi que les principales différences entre les deux cœurs. La modélisation 2D considérée est 

RZ. 

 

L.8.2. Conditions nominales 

 

Le cœur WH a été analysé pour les cas décrits en Figure L-5 et en Figure L-6. En début de vie, comme 

attendu, les températures moyennes dans les aiguilles sphere-pac sont plus élevées que dans les 

aiguilles pastilles du fait de leur conductivité thermique plus faible (Figure L-8). On observera une 

fonte du combustible dans au moins trois anneaux de combustibles dans le cas des aiguilles sphere-

pac à l’état nominal.  

Après trois cycles d’irradiation, le combustible a eu suffisamment de temps pour se restructurer et 

les distributions de températures sont très similaires dans le cœur pastille et le cœur sphere-pac. 

Ceci était attendu de par les conductivités thermiques très similaires à ce stade de l’irradiation. Les 

températures maximales restent largement en deçà des limites à la fonte (marge de 1380 K). 
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Figure L-8. Distribution radiale de température dans le cœur CP-ESFR WH en début de vie pour différents combustibles. 

Le cœur CONF2 montre une distribution de température semblable au cœur WH et amène à des 

conclusions similaires.  

A partir de ces états nominaux, une étude sur les accidents de perte de débit primaire a été conduite. 
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L.8.3. Simulation d’un accident de perte de débit primaire 

 

Le but de cette étude est de démontrer des éventuelles différences dans le comportement des 

combustibles sphere-pac et pastilles en situation accidentelle afin de déterminer les besoins en 

modélisation pour ces combustibles. Ainsi, dans un premier temps, les calculs sont effectués sans 

prendre en compte la contre-réaction venant de la dilatation thermique du cœur (approche 

conservative). 

Le cœur WH montre une fonte totale du cœur, que ce soit avec des aiguilles sphere-pac ou pastilles 

(Figure L-9). L’analyse du cœur WH chargé en combustible sphere-pac sert de base pour la 

compréhension des différences comportementales avec le combustible pastille. Le cœur CONF2 i.e. 

la version améliorée du cœur WH étant le cœur à l’étude dans le projet FP-7 PELGRIMM, le même 

accident de perte de débit primaire est analysé pour ce cœur. 

 

 
 

  
 

Figure L-9. Distributions des différents matériaux durant un accident de perte de débit primaire dans le cœur WH à 
l’équilibre (après trois cycles d’irradiation).  

En premier lieu, le cœur CONF2 chargé en combustible pastille est analysé afin de démontrer 

l’amélioration du comportement de sûreté du cœur dû à l’élargissement du plénum sodium. En 

début de vie, l’effet de vidange sodium étendu est en effet de +496 pcm pour le cœur CONF2 au lieu 

de +1211 pcm pour le cœur WH. La Figure L-11 décrit l’évolution de la puissance nominale 

normalisée et de la réactivité durant cet accident de perte de débit primaire. La criticité prompte 

n’est jamais atteinte pour ce cœur. 

La distribution de matériaux durant l’accident peut être observée en Figure L-10. Le caloporteur 

commence à vaporiser dans les anneaux les plus chauds en zone externe du cœur (le profil de 
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puissance du cœur est très piqué dans la zone de cœur externe). Le vide sodium dans le plénum 

induit alors une première baisse de réactivité qui contre l’effet de vide sodium du cœur fissile. L’effet 

de vidange étant globalement positif, un pic de réactivité et de puissance est observé et les aiguilles 

se rompent (la rupture de la gaine en étant la cause). Une quantité limitée mais suffisante de 

combustible est alors éjectée de la zone fissile du cœur par entrainement vapeur et amène le cœur à 

un état largement sous-critique (-16 $). On observe même un remplissage de certaines zones. 

L’évolution à long terme de l’accident dépend de l’évacuation de la puissance résiduelle. Etant donné 

que le combustible reste en grande partie dans la zone fissile, des re-criticités ne sont pas à exclure 

en cas de fonte progressive du cœur sous l’effet de la puissance résiduelle. Ces effets de fonte sont 

cependant longs et des compactions rapides induisant des rampes de réactivité importantes sont 

moins probables.  

L’analyse du cœur CONF2 chargé avec du combustible sphere-pac non–restructuré montre une 

évolution similaire. Les aiguilles se rompent cependant 9 s plus tôt que dans le cas pastille car 

localement le combustible est déjà fondu à l’état nominal. 

  

  

Figure L-10. Distributions de matériaux durant un accident de perte de débit primaire dans le cœur CONF2 pastille en 
début de vie. 
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Figure L-11. Evolution de la réactivité et de la puissance normalisée durant un accident de perte de débit primaire dans le 
cœur CONF2 en début de vie, contenant soit des aiguilles pastilles (pointillés) soit des aiguilles sphere-pac (traits pleins). 

Une comparaison du cœur CONF2 chargé avec du combustible sphere-pac restructuré est montrée 

en Figure L-12. Le pic de puissance dans le cas du cœur CONF2 avec un combustible restructuré est 

au plus bas à cause de la conductivité thermique élevée et de l’existence du trou central. La rupture 

de la gaine entraine une redistribution du combustible – à l’état de particules – vers la partie basse 

du cœur. Une quantité plus faible de combustible est éjectée du cœur comparé au cas du 

combustible non-restructuré et par conséquent l’état final du cœur est moins sous-critique (-8 $ au 

lieu de -16$).  
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Figure L-12. Evolution de puissance et de réactivité durant un accident de perte de débit primaire dans le cas du cœur 
CONF2 en début de vie contenant du combustible sphere-pac restructuré (traits pleins) ou non restructuré (pointillés). 
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En conclusion, toutes les simulations convergent vers un transitoire très doux en comparaison au 

transitoire observé dans le cœur WH, démontrant ainsi l’efficacité du plénum sodium pour limiter la 

propagation de l’accident. De même, les simulations démontrent que l’utilisation du combustible 

sphere-pac à la place du combustible pastille ne présente pas de problème d’un point de vue de la 

sûreté.  

Dans le cas du cœur CONF2 à l’équilibre, contenant du combustible irradié durant trois cycles, les 

analyses démontrent un comportement similaire pour les deux combustibles, dû à la conductivité 

thermique très similaire - Figure L-13. 
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Figure L-13. Evolution de puissance et de réactivité durant un accident de perte de débit primaire dans le cœur CONF2 à 
l’équilibre chargé avec du combustible pastille (pointillés) ou sphere-pac restructuré (traits pleins) irradié durant trois 

cycles.  

 

L.8.4. Impact d’un ajout d’actinides mineurs dans le combustible sur l’évolution de 

l’accident. 

 

Les combustibles sphere-pac sont une bonne alternative au combustible pastille lorsqu’il s’agit 

d’insérer des actinides mineurs – notamment l’américium - dans le combustible, en grande partie 

grâce à la simplicité de leur processus de fabrication (entièrement sous forme liquide ce qui évite la 

manipulation de poudres) et de leur comportement sous irradiation (le volume de gaz entre les 

sphères permet en effet une meilleure accommodation des gaz de fission et ainsi une réduction de la 

pression sur la gaine). Il est donc naturel, une fois les analyses sur le combustible sphere-pac MOX 

terminées, d’analyser un cœur contenant du combustible MOX dans lequel on a ajouté de façon 

homogène de l’américium. 

Cet ajout détériore davantage les coefficients de sûreté et l’effet de vidange sodium étendu du 

plénum est à nouveau augmenté, atteignant des valeurs proches de celles du cœur WH (en début de 

vie) avec 4% en masse. De même, l’effet Doppler est réduit en valeur absolue.  
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La Figure L-14 montre l’évolution de la puissance et de la réactivité lors d’un accident de perte de 

débit primaire dans le cœur CONF2 chargé avec du combustible sphere-pac irradié durant trois 

cycles, contenant initialement 0%, 2% ou 4% en masse d’américium dans la zone nourricière.  

On peut y observer que, plus la teneur en américium est élevée, plus l’excursion de puissance a lieu 

tôt et est prononcée, ce qui est en lien avec la détérioration des coefficients de sûreté.  

Dans le cas d’une teneur en américium de 2% en masse initialement, le transitoire est relativement 

moins énergétique. Cependant, les contre-réactions positives prévalent et le cœur atteint un état 

critique prompt avec un pic de puissance 3000 fois supérieur à la puissance nominale. Ceci peut 

notamment être expliqué par l’effet de vidange sodium largement positif (+1290 pcm). Il est 

intéressant de noter qu’à aucun moment le combustible fond. 

Dans le cas d’une teneur de 4% en masse d’américium en début de vie, le cœur subit une excursion 

de puissance critique prompte, entrainant la dégradation du cœur et une fusion complète du 

combustible – Figure L-15. On peut conclure que l’effet de vidange sodium accru et la réduction de 

l’effet Doppler contrebalancent largement l’effet du plénum sodium et la quantité de combustible 

éjectée de la zone fissile est insuffisante pour mettre fin à l’accident.  

Il a par conséquent était démontré que le comportement de sûreté prometteur du cœur CONF2 est 

uniquement valable en début de vie. Sous l’effet de l’irradiation et sous l’effet d’un ajout d’actinides 

mineurs, un accident de fusion du cœur n’est pas à exclure et des optimisations supplémentaires du 

design du cœur sont nécessaires. 
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Figure L-14. Evolution de puissance et de réactivité durant un accident de perte de débit primaire dans le cœur CONF2 à 
l’équilibre. Combustible sphere-pac restructuré, avec une teneur en américium de 0%, 2% ou 4% en masse en début de 

vie. 
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Figure L-15. Distribution de matériaux durant un accident de perte de débit primaire dans le cœur CONF2 à l’équilibre, 
contenant du combustible sphere-pac restructuré d’une teneur initiale en américium de 4% en masse.  

 

L.8.5. Impact du modèle d’expansion thermique sur les simulations 

 

Afin d’identifier l’effet du modèle d’expansion développé durant la thèse, le cœur CONF2 contenant 

du combustible sphere-pac est analysé en début de vie en considérant ou non le modèle 

d’expansion. Axialement, l’hypothèse a été faite que la gaine est responsable de la dilatation étant 

donné qu’il n’existe pas de jeu pastille-gaine pour ce type de combustible. Radialement, le mode 

cylindrique a été choisi i.e. le sommier est responsable de la dilatation radiale du cœur. Comme 

attendu, le suivi de la puissance et de la réactivité démontre un délai de 1 s pour la vaporisation du 

sodium, de 2 s sur la fonte du combustible et enfin de 2.6 s sur l’excursion de puissance (Figure L-16).  

Il est à mentionner que la contre-réaction due à la dilatation thermique du cœur serait encore plus 

prononcée dans le cas d’une expansion purement combustible.  
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Figure L-16. Evolution de puissance et de réactivité durant un accident de perte de débit primaire dans le cœur CONF2 en 
début de vie, contenant du combustible restructuré avec ou sans la prise en compte des contre-réactions provenant de la 

dilatation thermique du cœur. 

 

L.9. Conclusions générales 

 

L’énergie nucléaire réunit tous les prérequis pour jouer un rôle substantiel dans l’approvisionnement 

énergétique mondial pour les prochaines décennies, sous conditions d’une utilisation durable des 

ressources et d’une gestion des déchets nucléaires. Les concepts de réacteurs rapides, spécialement 

les réacteurs à neutrons rapides refroidis au sodium, comptent parmi les options les plus 

prometteuses pour répondre à ces exigences. Ces cœurs n’étant pas dans leur configuration la plus 

réactive à l’état nominal, une analyse détaillée de sûreté tant en condition nominale qu’en condition 

accidentelle s’impose. 

Ce travail de thèse s’insère dans ce contexte et a pour but d’évaluer l’impact des combustibles 

sphere-pac innovants sur les performances de sûreté des réacteurs à neutrons rapides refroidis au 

sodium. Afin de répondre à cette problématique, deux voies de développement ont été suivies, à 

savoir une amélioration de la modélisation de la phase primaire d’un transitoire accidentel d’une part 

et une prise en compte des spécificités des combustibles sphere-pac d’autre part.  

Pour des cœurs à faible effet de vidange, les contre-réactions dues à la dilatation thermique du cœur 

jouent un rôle essentiel dans l’équilibre neutronique. Ces contre-réactions n’étaient jusqu’à présent 

pas incluses dans le code de calcul SIMMER, développé à l’origine pour des cœurs en configuration 

largement dégradée où leurs effets étaient négligeables.  

Afin de prendre en compte ces effets pour des codes de calculs employant une méthode de cinétique 

spatiale et un maillage eulérien comme le code SIMMER, une méthodologie a été développée au 



APPENDIX L 

Page | 283  
 

cours de cette thèse. Cette dernière permet de prendre en compte des effets de dilatation du cœur 

via des variations de concentrations uniquement. Tout d’abord, les dimensions dilatées sont 

calculées. Puis, les concentrations après dilatation sont calculées pour chaque cellule du maillage de 

dynamique des fluides sur la base du principe de conservation de la masse, excepté pour le 

caloporteur pour lequel la concentration est conservée. L’effet en réactivité lié à la dilatation axiale 

et radiale du cœur est ensuite sous-divisé en deux effets : 

(1) L’effet lié à une variation de concentrations et de dimensions identique pour tous les 
matériaux à un endroit donné (i.e. dilatation homogène) 

(2) L’effet de la variation relative de la concentration du sodium par rapport aux concentrations 
des autres matériaux.  

 

Le premier effet est calculé en employant un principe d’équivalence étendu qui se base sur le 

principe d’équivalence (qui est exact) avec une hypothèse supplémentaire qui considère que l’effet 

total lié à la dilatation du cœur est la somme des effets des différentes sous-régions (considérés 

indépendants). 

Le deuxième effet est pris en compte dans SIMMER directement lors du calcul des sections efficaces. 

La méthodologie a conduit au développement de trois modèles. Le premier se base sur la théorie des 

perturbations du premier ordre et sur un coefficient de concentration global. Il permet de prédire 

avec précision les effets de dilatations uniformes, isotropes ou anisotropes et sert de base pour le 

second modèle. Ce dernier utilise des coefficients de concentrations dépendant de la position radiale 

de la cellule à considérer. Ces deux modèles prédisent l’effet en réactivité lié à une dilatation 

uniforme avec une erreur relative de 11% par rapport aux calculs de référence. Certaines limitations 

dans le cas de dilatations non-uniformes ont été mises en lumière et le développement d’un 

troisième modèle a été entrepris. Ce dernier a été testé avec le code de calcul ERANOS et donne des 

résultats concluants par rapport aux calculs de référence (erreur relative de l’ordre de 3%). 

La deuxième partie de ce travail a consisté à prendre en compte les spécificités des combustibles 

sphere-pac dans le code de calcul SIMMER, notamment la conductivité thermique. En effet, celle-ci 

est soumise à de larges variations sous irradiation, dues notamment à la microstructure de ces 

combustibles. Une recherche bibliographique étendue a permis de déterminer les modèles de 

conductivités thermiques les plus appropriés pour modéliser celle des combustibles sphere-pac. Des 

corrélations ont été établies pour des combustibles sphere-pac en début de vie et après 

restructuration (après trois cycles d’irradiation) ainsi que pour des combustibles pastilles.  

Des analyses de sûreté ont ensuite étaient conduites pour les cœurs CP-ESFR WH et CONF2 chargés 

avec du combustible pastille ou du combustible sphere-pac. La structure du cœur WH a été 

conservée puisque des combustibles sphere-pac avec la densité requise peuvent être fabriqués, 

selon la littérature. Les études ont d’abord été effectuées pour des combustibles sphere-pac neufs. 

Ce choix est dû au fait que la conductivité thermique à ce stade est faible et peut conduire à des 

températures centrales de l’aiguille élevées. Les analyses démontrent en effet qu’une procédure 

spécifique au démarrage du réacteur est requise pour les combustibles sphere-pac afin de leur 

donner suffisamment de temps pour se restructurer et améliorer leur conductivité thermique. Un 

accident de perte de débit primaire dans ce cœur à l’équilibre entraine une dégradation sévère du 

cœur avec une fusion totale du combustible, tant dans le cas pastille que dans le cas sphere-pac. 
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Le cœur CONF2 a ensuite été analysé. Ce cœur n’a pas bénéficié d’une analyse de sûreté poussée 

dans le projet CP-ESFR. Une première étape a donc été l’analyse de ce cœur chargé avec du 

combustible pastille afin de démontrer l’effet de l’élargissement du plénum sodium sur l’évolution de 

l’accident de perte de débit primaire, notamment en début de vie (l’effet de vidange sodium étendu 

est en effet réduit d’un facteur 2.4 par rapport au cœur WH). Les résultats confirment l’action 

atténuante du plénum sodium élargi : la vidange du plénum insère suffisamment d’anti-réactivité 

pour pouvoir contrebalancer les effets en réactivité positifs. La puissance reste relativement faible 

durant le transitoire permettant un retour de sodium liquide dans les assemblages combustibles et le 

processus de dégradation reste limité. Après un premier pic de puissance relativement faible, aucune 

recriticité n’est observée et la suite de l’accident dépend uniquement de la capacité à évacuer la 

chaleur produite par puissance résiduelle.  

Le cœur CONF2 a ensuite été étudié lorsque le combustible pastille est remplacé par du combustible 

sphere-pac. Les analyses ont d’abord été effectuées pour un cœur chargé avec du combustible neuf, 

en considérant un cas de combustible non-restructuré et un autre de combustible restructuré. Les 

résultats confirment que dans le cas du combustible sphere-pac neuf non-restructuré, les 

températures excèdent localement la température de fusion du combustible, dans les zones à haute 

puissance. Dans les deux cas, le plénum sodium prévient un scénario dans lequel des recriticités 

multiples seraient observées.  

Pour le cœur CONF2 à l’équilibre contenant du combustible irradié, le comportement de sûreté est 

significativement détérioré du fait de la détérioration des coefficients de sûreté, notamment l’effet 

de vidange et spécialement lorsque de l’américium est ajouté au combustible. Des effets de vidange 

supplémentaires sont causés par un blow-out des produits de fission et de l’hélium. Les 

améliorations observées en début de vie ne sont plus d’actualité dans le cœur à l’équilibre et ce 

dernier subit un transitoire sévère avec une dégradation et une fusion complète du cœur. 

Le modèle neutronique développé durant la thèse a été utilisé par la suite afin d’améliorer les 

analyses de sûreté et démontre un délai et une atténuation du potentiel énergétique de l’accident. 

Les découvertes clés suite à l’évaluation du comportement de sûreté du cœur CONF2 chargé avec du 

combustible sphere-pac sont donc les suivantes :  

- Les combustibles sphere-pac peuvent être insérés dans un réacteur à neutrons rapides 
refroidi au sodium sans impacter significativement le design du cœur ou son comportement 
de sûreté 

- Une procédure spécifique de démarrage d’un réacteur chargé avec du combustible sphere-
pac est nécessaire pour éviter une fusion du combustible à l’état nominal. Concrètement, 
cette phase de démarrage devrait se dérouler à une puissance inférieure à la puissance 
nominale afin d’observer une restructuration du combustible (durée de quelques 
heures/jours). 

- Les analyses du transitoire accidentel de perte de débit primaire ne démontrent aucun 
changement significatif dans le scénario accidentel lorsqu’un réacteur est chargé avec du 
combustible sphere-pac.  

- L’élargissement du plénum sodium améliore significativement le comportement accidentel 
du cœur. Cet avantage est cependant perdu avec l’irradiation ou avec un ajout 
supplémentaire d’américium dans le cœur. 
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Ces analyses de sûreté ont permis d’identifier les points nécessitants une modélisation améliorée et 

des informations expérimentales supplémentaires. Des travaux futurs devront prendre en compte le 

comportement cinétique détaillé dû au relâchement des produits de fission et de l’Hélium en 

opération et lors de scénarios accidentels. Des données expérimentales ou encore des évaluations 

techniques de données seront nécessaires pour comprendre le comportement du combustible 

sphere-pac en conditions transitoires et sous haute contrainte thermique. De même, une 

modélisation précise du comportement de l’anneau non-restructuré du combustible sphere-pac en 

cas de rupture de gaine sera nécessaire.  
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