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Abstract

This dissertation examines pavement-watering as a cooling strategy for cities seek-
ing to reduce the intensity of their urban heat island (UHI) and/or as an adaptation
tool against increasing heat wave frequency and intensity resulting from climate
change. This research is based on measurements obtained from a field experiment
of pavement-watering conducted at two sites in Paris, France over the summers
of 2013 and 2014.

First, an analysis method was developed to determine the method’s micro-
climatic effects in the field. Air temperature, relative humidity and mean radiant
temperature effects were investigated as well as pedestrian thermal comfort using
the Universal Thermal Climate Index and UHI-mitigation. Second, the thermal
effects of pavement-watering were determined, including surface temperature as
well as pavement heat flux and temperature 5 cm deep. Finally, the water footprint
of pavement-watering was determined based on a linear relationship found between
pavement heat flux and solar irradiance. In addition, possible improvements for
the watering method were determined and discussed.

The research provides useful information for decision-makers considering pavement-
watering as part of their heat-wave adaptation and/or UHI-mitigation strategy.
Future work should focus on the effects of different materials and street config-
urations on pavement-watering cooling as well as cumulative effects arising from
watering large areas rather than a single street portion. Certain methodological
aspects also require further investigation and may be improved.

Keywords: Pavement-watering; urban heat island; urban cooling; climate change
adaptation; urban field measurements; evaporative cooling



Résumé

Ce manuscrit s'intéresse a I'arrosage urbain en tant que stratégie de rafraichisse-
ment pour les villes souhaitant réduire I'intensité de leur ilot de chaleur urbain
(ICU) et/ou en tant qu'outil d’adaptation aux canicules, amenées a devenir plus
fréquentes et intenses en raison du changement climatique. Cette recherche
s'appuie sur une expérimentation d’arrosage réalisée a Paris (France) sur deux
sites pendant les étés 2013 et 2014.

D'abord, une méthode d'analyse a été mise au point afin de déterminer les
effets micro-climatiques de I'arrosage sur le terrain. La température de [air,
I"humidité relative et la température moyenne de rayonnement ont été examinées
ainsi que le confort thermique du piéton grace au Universal Thermal Climate
Index et le pouvoir d'atténuation de I'lCU. Ensuite, les effets thermiques ont été
quantifiés, comprenant les effets sur la température de surface ainsi que le flux de
chaleur et la température a 5 cm de profondeur. Enfin, la consommation d'eau
de I'arrosage a été estimée a partir d'une relation linéaire trouvée entre le flux de
chaleur a 5 cm de profondeur et le rayonnement solaire incident pendant la période
d’'ensoleillement direct. Par ailleurs, des améliorations de la méthode d'arrosage
ont été déterminées et discutées.

Les analyses conduites ici fournissent des informations essentielles pour les
décideurs intéressés par I'arrosage urbain comme volet de leur stratégie de réduc-
tion des ICUs et/ou d'adaptation aux canicules. Les recherches a venir devraient
s'orienter sur I'impact d’autres matériaux et configurations urbaines sur I'arrosage
ainsi que les effets cumulés atteints lorsqu'un quartier entier est arrosé plutot
qu'une portion de rue. Certaines modifications de la méthode méritent également
d’étre étudiées.

Mots-clés : Arrosage urbain; flot de chaleur urbain; rafraichissement urbain;
adaptation; changement climatique; mesures de terrain; rafraichissement évapo-
ratif



Remerciements

Je commencerai ces remerciements par quelques mots sur le long parcours de
geneése de cette thése. Je me suis efforcé de le résumer tout en veillant a remercier
tous ceux qui m'auront accompagné et demande pardon a ceux que j'aurais oublié.

Au commencement, il a fallu imaginer qu’une thése était un choix de carriere
possible. Je dois cette idée a Olivier Mirgaux que je remercie pour ses conseils
donnés un vendredi matin fin 2008 pendant un cour d’introduction a I'analyse de
cycle de vie aux Mines de Nancy. Malgré ses trés bons conseils, il aura fallu atten-
dre mon retour a Paris début 2011 pour que j'envoie mes premieres candidatures.

En attendant d’étre retenu par une équipe, j'ai été recruté a La Caféothéque en
tant que barista-sommelier en café, période rebaptisée plus tard "Pause Café" par
Gloria Montenegro Chirouze. Je tiens a remercier ici Bernard, Gloria et Christina
Chirouze pour leur accueil chaleureux et le temps passé ensemble a la Caféothéque
ainsi qu'a mes collegues devenus trés bons amis Gérald, Laura et Pierre-Jacques.

En paralléle, je candidatais a des offres de thése et c'est ainsi que j'ai pris
contact avec Morgane Colombert pour la premiére fois. Ma premiére candidature
n'ayant pas été retenue (merci Etienne !), elle m'a invité a répondre a une deux-
ieme offre, une thése CIFRE avec la Ville de Paris sur le r6le de I'eau en ville. Tres
sceptique initialement, j'ai suivi son conseil. En sortant de |'entretien quelques
jours plus tard, j'étais entierement convaincu par ce sujet qui était non seulement
passionnant, mais correspondait parfaitement a mes attentes.

Je remercie ici Morgane de m'avoir suggéré cet autre sujet qui s’est révélé
infiniment plus intéressant que ce j'ai pu imaginer au départ. Je la remercie a
nouveau ainsi que Laurent Royon, Youssef Diab et Dominique Coutart de m’avoir
suivi et surtout soutenu pendant la longue période d'incertitude qui a suivi.

En effet, il aura fallu 18 mois de plus pour que toutes les conditions soient
réunies pour démarrer mon contrat CIFRE : candidature ANRT, validation par
celle-ci puis vote final par le Conseil de Paris. Pendant ce temps, j'ai prolongé
mon séjour a La Caféotheque, rejoint les rangs de I'EIVP en tant qu'ingénieur
d'études puis ceux de la Ville de Paris en tant que saisonnier. Début janvier 2013,
ma these a enfin pu démarrer.

Je souhaite faire part de ma reconnaissance profonde envers |'équipe qui m'a
encadré pendant ce travail. Merci a mon directeur, Laurent Royon, pour ces
trois années de collaboration et de réflexion communes trés riches. Merci de tes
conseils et commentaires qui m'ont aidé a améliorer la qualité de mes travaux
et merci pour ton soutien au-deld de la thése (vacations d'enseignement, poste
d'ATER, etc.). J'adresse également mes remerciements a Dominique Coutart pour
son soutien aussi bien logistique et administratif que managérial qui s’est révélé
extrémement précieux dans le cadre des nombreuses négociations et discussions
nécessaires pour préparer les expérimentations in situ décrites dans ces pages.
Merci aussi a Youssef et Morgane pour leur confiance et leur accompagnement
tout au long de ce projet.

Je souhaite remercier mes rapporteurs Mat Santamouris et Valéry Masson ainsi



que mes examinateurs Hervé Andrieu et Hassan Peerhossaini pour leur travail de
lecture et de critique constructive. Merci d’avoir accepté de faire partie de mon
jury de these et pour les échanges trés intéressants que nous avons pu avoir.

J'adresse également mes remerciements aux nombreuses équipes de la Mairie
de Paris qui se sont mobilisées pour m’aider a mener ce projet a bien : SPE qui m'a
accueilli tout d’abord, mais aussi la SAP, notamment les circonscriptions Ouest
et Est ainsi que I'atelier Deleusseux, DSR, DEI, DII, STPP, SCGIQ, AEU, DVD...
Je tiens aussi a saluer les participants du groupe de travail "Expérimentation de
rafraichissement de |'espace public par arrosage” que j'ai piloté a la Ville pendant
mes trois années de thése. Un tres grand merci 3 Jérdme et a3 Damien du LEM
pour notre étroite collaboration qui se poursuit, ainsi qu'a Anne, Jean-Marc et
Claude sans qui mes essais au LEM n'auraient pas pu se dérouler dans d’aussi
bonnes conditions. Merci a Julien de I'APUR pour notre collaboration qui se
poursuit au-dela de la these.

Je tiens a remercier mes anciens et nouveaux collegues de I'EIVP pour le temps
passé ensemble, pour les nombreuses et longues discussions scientifiques ou non,
les diners, godets, craquages, fous rires et dégustations en tout genre : Char-
lotte, Etienne, Marie T, Angel, Fatiha, Alberto, Claire, Brice, Jeanne, Samuel,
Marie B, Joffrey, Serge et Antoine. Je souhaite bon courage a ceux qui pour-
suivent ou démarrent a peine leur these. Merci encore a Etienne pour sa mise en
page amplement exploitée dans ce mémoire, dommage qu’elle ne t'ait finalement
pas servi. Merci également aux collegues de la Ville de Paris pour leur accueil
chaleureux et les bons moments passés ensemble au 5, 4¢ et 1*" étages. Merci a
Maxime, Arnaud et Mathieu du laboratoire MSC pour nos discussions et échanges
également.

Je salue également Carolina, Noushig, Abood, Karina et Florine pour nos
collaborations et échanges, ainsi que Brice Tréméac et Mathieu Guilhot pour leur
accueil chaleureux au CNAM et a I'lUT de Marne-la-Vallée en tant que vacataire.

Je souhaite également remercier tous mes amis, tout particulierement ceux
qui ont participé de prés ou de loin a certains projets ou discussions : soirée
thermographique avec Marie et Julien, analyses statistiques avec Guti, déjeuners
Chez Prune avec Simon(s), Alex, JB, Jérém’, Guti et Manon. Je remercie Char-
lotte, Olivier et Thomas pour leur aide précieuse pendant la préparation de la
soutenance. Merci a celles et a ceux qui ont participé au buffet.

Merci a I'ensemble de ma famille pour leur soutien et nos discussions, a Isa,
Fifi et Zab pour leurs relectures tres utiles et & Antoine pour sa participation a une
des balades thermographiques. Merci a Marc V de m’avoir soutenu et encouragé
pendant le montage, long et stressant, de ce projet. Je suis bien triste de ne pas
pouvoir partagé son aboutissement avec toi. Je pense que tu en serais fier.

Enfin, je dédie ce mémoire a Sophie que je remercie du fond du cceur pour son
soutien sans faille depuis plus de 10 ans. Ensemble, nous aurons réussi a mener
3 bien plusieurs projets en paralléle : voyages, achat et travaux d'appartement,
theése de doctorat, etc. J'espére que nous continuerons encore longtemps a réaliser
nos projets ensemble. Je t'aime.



Contents

Contents

List of Figures

List of Tables

Acronyms and Abbreviations
List of Symbols

1 Introduction

2 Scientific Background
2.1 Urban Climate and the urban heat island (UHI) Effect . . . . ..
2.2 UHI Countermeasures . . . . . . . . . .. ... ...
Reflective Materials . . . . . . . . . . . . ...
Urban Greening . . . . . . . . . .
Other Materials . . . . . . . . . ...
2.3 Expected Cooling Effects . . . . . . ... ... ...
24 Conclusion . . . . . . ..

3 Literature Review of Pavement-watering
3.1 Brief Description and Methodology . . . . . ... ... ... ...
Brief Description . . . . . . . . ...
Watering Method . . . . . . . . . ...
Analysis Method . . . . . . . . ... L
3.2 Cooling Effects of Pavement-Watering . . . . . . . . .. .. ...
Micro-climatic Indicators . . . . . . . . . .. ...
Thermal Indicators . . . . . . . . . ...
3.3 Conclusion . . . . . ..

4 Knowledge Gaps and Remaining Research Questions

xii

XV

XVii

13
14
14
15
18
19
19
24
26

29



Vi

1 Micro-climatic Effects of Pavement-Watering
5 Introduction to Part 1

6 Methodology

6.1 Location . . . . . . .. .. ...
6.2 Watering Method . . . . . . ... ... ... ... ..

Weather conditions . . . . . . . . ... ... ...

Water Sprinkling Technique . . . . . . . . . . ... ...
6.3 lInstruments . . . ... .. .. ... ... ... ...
6.4 UHI Mitigation Potential . . . . . .. ... ... ...
6.5 Thermal Comfort Evaluation . . . ... ... ... ..

6.6 Heat Transfer Analysis
6.7 Data Series

6.8 Interpretation of Micro-climatic Effects . . . . . . . ..

7 Direct Case-Control Comparison

71 Results . . .. .. ...
7.2 Interstation Profile on Reference Days . . . . ... ..
7.3 24-hour Average Differences. . . . . . . . .. ... ..
74 Conclusion . . . . ... ...

8 Interstation Behavior on Reference and Watered Days

8.1 Statistical Analysis Method . . . . . . ... ... ...
82 Results . . . ... ... ...
8.3 Discussion . . . . ...
8.4 Conclusion . . . . .. ... ... L.

9 Conclusion of Part 1

2 Thermal Effects of Pavement-Watering
10 Introduction to Part 2

11 Methodology

11.1 Instruments . . . . . . . . ... ...
11.2 Pavement Zones . . . . . . . . . ... ... ... ...
11.3 Pavement Heat Balance . . . . . . . . ... ... ...
11.4 Data Analysis . . . . . . . . ..o
Pavement Heat Flux . . . . . . . . . . ... ... ...
Surface Temperature . . . . . . . . . . ... ... ...
Pavement Temperature . . . . . . . . . . .. ... ...
11.5 Deriving Pavement Solar Irradiance . . . . . . . . . ..

CONTENTS

31

33

45

...... 45
...... 48
...... 49
...... 50

51

...... 51
...... 52
...... 56
...... 61

63

67



CONTENTS

12 Pavement Heat Flux Effects
12.1 Results . . . . . . . .
Referencedays . . . . . . . . . . .
Watered days . . . . . . . . .
12.2 Discussion . . . . . . ...
12.3 Conclusion . . . . . . . ..

13 Surface Temperature Effects
13.1 Results . . . . . . . .
13.2 Discussion . . . . . . ...
13.3 Conclusion . . . . . . . ..

14 Pavement Temperature Effects
141 Results . . . . . . .
14.2 Discussion . . . . . . . ..
14.3 Conclusion . . . . . . . ..

15 Conclusion of Part 2

3 Improving the Water Use of Pavement-Watering
16 Introduction to Part 3

17 Methodology
17.1 Heat Transfer Analysis . . . . . . . . .. ... ... ... ....
17.2 Optimization Goals . . . . . . . .. . ... ... ... ... ...

18 Cooling Flux ®: Determining the Evaporation Rate
18.1 Results . . . . . . . . .
18.2 Confrontation with Mass Convection Transport Problem . . . . .
18.3 Discussion . . . . . . ..
18.4 Conclusion . . . . . . . . ..

19 Watering Frequency Optimization
19.1 Results . . . . . . . . .
Pavement Heat Flux . . . . . . . . . . .. ... ... ... ....
Surface Temperatures . . . . . . . . . ... ...
5 cm Pavement Temperatures . . . . . . . . . . ... ... ..
19.2 Discussion . . . . . . ...
Pavement Heat Flux . . . . . . . . . . .. ... ... ... ....
Surface Temperatures . . . . . . . . . . ...
5 cm Pavement Temperatures . . . . . . . . . . .. .. ... ...
19.3 Conclusion . . . . . . . ..

vii

79
79
79
80
82
83

85
85
88
88

89
89
91
92

93

95
97

101
101
104

107
107
111
112
113



viii CONTENTS

20 Watering Rate Optimization
20.1 Pavement Cooling Flux ® . . . . . ... ... ... ... .....

20.2 Pavement Surface Temperatures . . . . . . . . . ... ... ...
20.3 Conclusion . . . . . . .

21 Conclusion of Part 3

22 Conclusion
22.1 Results . . . . . . .
22.2 Future Research . . . . . . . . . . . . ... ..

Bibliography

A Congres Francais de Thermique 2015 : Thermique de I’Habitat
et de la Ville

B XII®™e Colloque Interuniversitaire Franco-Québécois sur la Ther-
mique des Systémes

C 9" International Conference on Urban Climate jointly with 12t
Symposium on the Urban Environment

Résumé détaillé en francais

123
123
125
125

127

131
131
133

137

145

155

163

171



List of Figures

2.1

31

6.1
6.2
6.3
6.4
6.5

6.6
6.7

6.8

7.1

7.2

8.1

Heat budget of a pavement surface (Hendel et al., 2015). . . . . . . . 7
Diagram of the watering methods used in the surveyed articles. . . . . 16
Position of Experimental Sites in Paris . . . . . .. ... ... .... 36
Station Positions at the Louvre (left) and Belleville (right) Sites . . . 37
Solar irradiance at Louvre (left) and Belleville (right) on July 14* 2013 38
Diagram describing the applied watering method at both sites. . . . . 39
Watering on rue du Louvre (left, from Hendel et al. (2014)) and rue

Lesage (right) . . . . . . . . . . ... 39
Weather station design and instrumentation (rue du Louvre). . . . . . 40

Photographs of watered and control weather stations in situ. From
left to right: watered and control Louvre stations, watered and control
Belleville stations (Hendel et al., 2015). . . . . ... .. .. ..... 41

Diagram of pavement heat budget at surface (Hendel et al., 2015). . 42

Differences between Louvre case and control stations from July 2" to
19", 2013 (top to bottom) for T}, and relative humidity (RH) at 1.5
m (left) and 4 m (right) height and mean radiant temperature (MRT)
(bottom left) and Universal Thermal Climate Index (UTCI) (bottom
right). Watered days are in blue, reference days are in red. Days with
uncomparable weather conditions are in grey (Hendel et al., 2015). . . 46
Differences between Belleville case and control stations from July 2"
to 19*", 2013 (top to bottom) for T, and RH at 1.5 m (left) and 4
m (right) height and MRT (bottom left) and UTCI (bottom right).
Watered days are in blue, reference days are in red. Days with un-
comparable weather conditions are ingrey. . . . . . ... ... ... 47

Average watering effect at Louvre over the summers of 2013 and 2014
(top to bottom) for T, and RH at 1.5 m (left) and 4 m (right) above
ground level (a.g.l.) and MRT (bottom left) and UTCI (bottom right).
Average effects are solid blue, confidence intervals are dashed red
(Hendel et al.,, 2015). . . . . . . . .. .. . ... 53



8.2 Average watering effect at Belleville over the summers of 2013 and
2014 (top to bottom) for T, and RH at 1.5 m (left) and 4 m (right)
a.gl. and MRT (bottom left) and UTCI (bottom right). Average
effects are solid blue, confidence intervals are dashed red (Hendel et al.,
2015). ..o

8.3 Average watering effect at Louvre detected using the Belleville control
stations over the summers of 2013 and 2014 (top to bottom) for 7,
and RH at 1.5 m (left) and 4 m (right) height and MRT (bottom left)
and UTCI (bottom right). Average effects are solid blue, confidence
intervals are dashed red (Hendel et al., 2015). . . . . . ... ... ..

11.1 Top view of pavement sensor (Hendel et al., 2015a). . . . .. .. ..

11.2 Cross-section detail of pavement sensor filling materials (Hendel et al.,
2015a). ..

11.3 Surface temperature measurement zones (left) and corresponding night-

time corrected infrared photograph on July 22" at 3:20 am (right).

Temperature scale is in degrees Celsius. Sp2: pavement zone 1; Spl:

pavement zone 2; Sp3: sidewalk zone (Hendel et al., 2014). . . . ..
11.4 Diagram of pavement heat budget at surface (Hendel et al., 2015a). .
11.5 Solar irradiance measured on July 8t" and 22" (Hendel et al., 2014).
11.6 G (left) and S’ (right) measured on July 11*" (Hendel et al., 2014)

12.1 Pavement heat flux G (left) and shortwave (0.3-3 pm) (SW) radiation
S (right) on control days (Hendel et al., 2014). . . . ... ... ...

12.2 Pavement heat flux G and SW radiation S on watered days: a) and
d) July 8% b) and e) July 22"; c) and f) July 10" (Hendel et al.,
20152). .ttt

LIST OF FIGURES

74
76
76
78

13.1 Pavement directional radiometric temperature on reference days: a) July 20"

and b) July 21%; and on watered days: c) July 8" and d) July 22
(Hendel et al., 2014). . . . . . . . ... ...

14.1 Pavement temperature on reference days: a) July 7t b) July 20"
and c) July 11t"; and on watered days : d) July 8", e) July 22" and
f) July 10t (Hendel and Royon, 2015). . . . . ... ... ......

17.1 Diagram of pavement heat budget at surface (Hendel et al., 2015a). .

18.1 G as a function of S on control and watered days. a) July 11*", b)
July 14t ¢) July 20", d) July 8", ) July 22", f) July 10th, 2013
(Hendel et al., 2015a). . . . . . . ... ... . ...

19.1 Watering cycles and pavement heat flux on a) July 8", b) July 10t"
and c) July 22", 2013. . . .. ...

86

116



LIST OF FIGURES Xi

19.2 Surface temperature and watering cycles on watered days: a) July 8t"

20.1

and b) July 22™. 117

Pavement cooling @ (left) and watering rate to pavement cooling ratio

1%

ﬁ (right) according to the applied watering rate (Hendel et al., 2015a).124

0

Diagram of the watering methods used in the surveyed articles. . . . . 176
Plan des stations des sites de Louvre (gauche) et de Belleville (droite). 177
Schéma et instrumentation des stations météorologiques (rue du Lou-

VIE). o v i 178
Méthode d'arrosage pour Louvre et Belleville. . . . . . . .. ... .. 178



List of Tables

3.1
3.2
3.3
3.4
35
3.6
3.7
3.8
3.9
3.10

6.1

6.2

7.1

7.2

8.1

8.2

8.3

8.4

8.5

Reported air temperature effects. . . . . . . . .. .. ... ... ... 19
Reported air humidity effects. . . . . . .. .. ... ... ... ..., 20
Reported effects on the radiative environment. . . . . . . . . . .. .. 21
UHI-mitigation effects. . . . . . . . . .. .. ... L. 22
Reported thermal comfort effects. . . . . . . ... ... ... .... 23
Reported pavement surface temperature effects. . . . . . . .. .. .. 24
Reported pavement temperature effects. . . . . . . . .. ... .. .. 25
Reported latent heat flows. . . . . . . .. .. ... ... ... ..., 25
Reported pavement heat flux effects. . . . . . .. .. ... ... ... 26
Literature review summary. . . . . . . .. ... 28

Weather conditions required for pavement-watering and heat-wave

warnings (Hendel et al., 2015a) . . . . . . . ... ... ... .. ... 38
Type, height and uncertainty of meteorological instruments. Adapted
from Hendel et al. (2015). . . . . . . . . .. ... .. ... ... .. 41

Average case-control difference on reference days over the summers
of 2013 and 2014 (Hendel et al., 2015). . . . . . .. . ... ... .. 48
Daily interstation difference on watered days and variation from refer-
ence days over the summers of 2013 and 2014. Adapted from Hendel
etal. (2015). . . . . .. 49

Duration, mean and maximum values of statistically significant (stat.
sign.) effects for Louvre over the summers of 2013 and 2014 (Hendel

etal.,2015). . . . . .. 55
Duration, mean and maximum values of stat. sign. effects for Belleville
over the summers of 2013 and 2014 (Hendel et al., 2015). . . . . . . 55

p-value and average stat. sign. (Cl: 0.95) effect at Louvre and
Belleville over the summers of 2013 and 2014 (Hendel et al., 2015). . 57
p-value and average stat. sign. (Cl: 0.95) effect at Louvre using the
Belleville control station over the summers of 2013 and 2014 (Hendel

etal,2015). . . . . .. 60
Duration, mean and maximum values of stat. sign. effects for Louvre,
using the Belleville control station (Hendel et al., 2015). . . . .. .. 60

Xii



LIST OF TABLES Xiii

11.1

11.2

11.3

12.1

12.2

13.1

14.1

18.1
18.2

18.3

18.4

Type, height and uncertainty of thermal instruments. Adapted from

Hendel et al. (2014, 2015a,b). . . . . . . . . . ... ... . ... .. 71
Parameters used to correct apparent surface temperature (Hendel

etal.,2014) . . . .. 73
Pavement structure in each zone (Hendel et al., 2014). . . . . . . .. 75

Actual watering method on considered watered days (Hendel et al.,

2015a). ... 80
Average heat flux density reduction in W/m? on watered days (Hendel
etal,2015a). . . . .. ... 82

Average temperature reductions observed on July 22" (watered) com-
pared to average control day temperatures (July 20™" and 21%%) (Hen-

deletal, 2014). . . . . . . . . 87
Daily low, high, and temperature amplitude on July 7th, 8th 10th,
11t 20t and 2274, 2013 (Hendel and Royon, 2015). . . . . . . . .. 91
§ and R? on reference days (Hendel et al., 2015a). . . . ... .. .. 109
B, R? and Gy (W/m?) on watered days. The value of G was input
by the user (Hendel et al., 2015a). . . . . . .. .. ... ... .... 109

Average value of meteorological parameters on July 22" and 10th,
2013 between 3 pm and 6:30 pm and corresponding solutions to equa-

tion 17.18 (Hendel et al., 2015a). . . . . . . .. ... .. ... ... 111
Solutions to equation 17.18 obtained with A = 3.5 W/m?2.K (Hendel

etal,2015a). . . . ... 112
Résumé de I'état de l'art. . . . . . . . .. . ... oL 175

Conditions météorologiques nécessaires pour le déclenchement de |I'arrosage
urbain et conditions caniculaires pour Paris. . . . . . ... ... ... 179






Acronyms and Abbreviations

a.g.l. above ground level.

exp. experimental.

HIP heat island potential.

IR infrared.

LW longwave (3-100 pm).

MRT mean radiant temperature.

NA not available.

NiR near infrared (1-3 pm).
NR not relevant.

num. numeric.

PCM phase change material.

PET Physiological Equivalent Temperature.
PM particulate matter.

PT Perceived Temperature.

RH relative humidity.

stat. sign. statistically significant.
SW shortwave (0.3-3 pm).

TEB Town Energy Balance.

UHI urban heat island.
UHII urban heat island intensity.
UTCI Universal Thermal Climate Index.

WBGT Wet-Bulb Globe Temperature.

XV






List of Symbols

a Albedo and/or shortwave reflectivity, [—].

[ Conversion coefficient of solar irradiance to 5 cm pavement heat flux density,
-1

BM Iy, Three-day averaged maximum daily air temperature, [°C].

BM I, Three-day averaged minimum daily air temperature, [°C].

cp Specific heat of water, 1,000 [J.g~ L. K~1].
AQ Sensible heat absorption flux, [W.m™2].

E Evaporation rate, [g.s71].
€ Material emissivity, [—].

G Pavement heat flux 5 cm deep, [W.m 2.

H Upwards convective heat flux, [W.m™2].
h Convective heat transfer coefficient, [W.m=2. K 1.
H/W Canyon aspect ratio, [—].

L Longwave radiation, [W.m 2.
I Water latent heat of vaporization, 2,260 [J.kg~!].

po Total air pressure, [Pal.

® Pavement-watering cooling flux, [W.m~2].

®,4, Pavement-watering advective cooling flux, [W.m™2].
®,,; Pavement-watering latent cooling flux, [W.m™2].

ps Saturation vapor pressure at water film temperature, [Pal.
py Partial vapor pressure at water film temperature, [Pa].

p Volumetric mass, [kg.m™=3].
R, Net radiation, [W.m™2].

S Shortwave radiation, [W.m~2].
S’ Shortwave radiation, measured by station pyranometer 4 m a.g.l., [W.m™2].
o Stefan-Boltzman constant, 5.67 10~8[W.m2. K ~4].

XVii



xviii LIST OF SYMBOLS

T Temperature, [°C].

T., Air temperature, [°C].

to Time between two watering cycles, [s].
T, Globe temperature, [°C].

Timrt Mean radiant temperature, [°C].
T,, Minimum daily air temperature, [°C].
T, Maximum daily air temperature, [°C].

V' Downwards conductive heat flux, [W.m™2].
v Wind speed, [m.s™1].
Vs Dispersed water volume per watering cycle, [L.m™2].



CHAPTER

Introduction

The maharajas of the Thar Desert in Rajasthan ruled over one of the driest and
hottest areas in the Indian sub-continent. In the sweltering hot summer, no means
were spared to improve thermal comfort, including sprinkling rose-perfumed water
on the palace walls. Many other areas across the globe have developed similar
practices such as "Uchimizu” in Japan. Indeed, watering ground surfaces during
the hot and humid Japanese summers has been a local tradition for centuries and
continues up to this day (Japan Water Forum, 2015).

Paris’ strong hygienist movement during the 19t" Century led to the develop-
ment of its dual water supply. Originally designed to supply Paris with potable
water, the Ourcq Canal quickly became the main source for the city's non-potable
water network, the Seine currently providing approximately 20% of its water.
Street cleaning has since relied on the use of non-potable water. Until the mid-
20" Century, streets could be watered up to five times on hot summer days to
prevent dust clouds from forming, as described by Girard (1923). According to the
author's reports, many inhabitants at the time also believed the watering provided
cooling to the city. As mechanized cleaning was generalized and dust clouds were
no longer a problem, these practices were lost and nearly forgotten over time.

Today, pavement-watering is seen as a potential tool to improve thermal com-
fort in cities during periods of intense heat. Scientific work in Japan began in the
1990’s with the use of preexisting pavement-watering installations in Nagaoka
City (Kinouchi and Kanda, 1997, 1998; Takahashi et al., 2010) or block-scale
demonstrators in Tokyo (Yamagata et al., 2008) as well as simulations applied
to Kawasaki City (Nakayama and Fujita, 2010; Nakayama et al., 2012). More
recently, the city services of Paris or Lyon have conducted their own field stud-
ies with the use of cleaning trucks or watering infrastructure prototypes (Bouvier
et al., 2013; Maillard et al., 2014) (see Chapter 3 for details). In France and
especially in Paris, the predicted increases in heat-wave intensity and frequency
due to climate change (Lemonsu et al., 2013), combined with the high sensitiv-

1




Introduction

ity of dense cities to such episodes (Robine et al., 2008; Li and Bou-Zeid, 2013),
have focused efforts on the development of appropriate adaptation tools, including
urban greening, reflective materials and pavement-watering.

Paris’ interest in pavement-watering was marked with the unanimous passing
of its Blue Paper in 2012 by the City Council (Paris City Council, 2012a). The Pa-
per defined the city's strategy for the development and improvement of its water
and sanitation utilities. After more than two decades of semi-abandonment, the
Blue Paper officially recognized the potential of the non-potable water network for
sustainable urban water use. To initiate its redevelopment, three tasks were as-
signed to the relevant city services. The first consisted of replacing municipal uses
of potable water with non-potable water where feasible, e.g. for park irrigation.
A study of solutions to diversify the network’s water supply with other sustainable
sources was also requested to reduce the network’s environmental footprint fur-
ther. Finally, the services were tasked with studying the potential of the network
to be used as the backbone of a pavement-watering infrastructure to cool the city
in the event of heat-waves and to tackle its worsening UHI.

The Water and Sanitation Department of Paris therefore set out to determine
what the feasability of a city-wide pavement-watering strategy might be in a city
such as Paris, by first identifying the method's costs and benefits.

This dissertation aims to provide answers to this question, however the words
"cost” and "benefit” are not very specific and can refer to a large number of
different aspects.

To help downsize the number of possibilities, we turn to the language associ-
ated with pavement-watering in the city's Blue Paper. The Paper lists several aims
for pavement-watering such as to: "reduce air temperatures during intense heat
events”, "fight urban heat islands”, "[improve] urban thermoregulation” and "pro-
vide cooling [...] during heat events” (Paris City Council, 2012a). The benefits
therefore clearly refer to the method’'s measurable cooling effects, with a spe-
cial focus on air temperature and UHI-mitigation, particularly during heat-wave
events. The special importance given to heat-wave events echoes the impact that
the 2003 heat-wave has had on public awareness in France. This facet should
therefore not be overlooked.

The Blue Paper identifies only one cost associated with pavement-watering:
its water footprint. Indeed, "to limit the impact on the Seine and Ourcq Canal
which supply the non-potable water network, alternative water sources could be
used [...]" While efforts are being made to diversify the non-potable networks
supply, the water consumption of pavement-watering is of special importance.

This brings a close to the costs and benefits identified by the Blue Paper, how-
ever many other ones are overlooked by this list. Other positive effects include
improved air quality or street cleanliness as a side-effect of pavement-watering
(Amato et al., 2010), reduced sewer obstruction as a consequence of pavement-
watering runoff or, as mentioned by Girard (1923), the positive social effects of
perceived cooling by pedestrians. Other potential costs are economic or environ-
mental in nature, including the financial cost of a pavement-watering infrastruc-
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ture or environmental impacts other than the water footprint, such as greenhouse
gas emissions or energy use. While these aspects are all important, we choose to
limit ourselves to those identified in the Blue Paper.

Our research problem can therefore be summarized with the following question:
what cooling effects, including air temperature and UHI-mitigation effects, can
be expected of pavement-watering during heat-wave events and in exchange for
what water footprint in dense urban areas?

Before attempting to answer the question on our own, we first conduct a
literature review on the topic of pavement-watering. Beforehand, a brief scientific
background of urban climate, the UHI effect and its countermeasures will be
provided.






CHAPTER

Scientific Background

Having provided some historical and political perspective on the motivations be-
hind our research topic, we now present the scientific background and context
that pavement-watering falls into as a potential UHI and heat-wave mitigation
tool. We begin by describing the urban climate and the UHI effect.

2.1 Urban Climate and the UHI Effect

Urban areas, through a combination of radiative trapping, increased heat storage,
wind obstruction, low vegetation presence, low surface permeability, as well as
high concentrations of human activity, create a localized warming effect known
as the UHI effect (Oke, 1982; Grimmond, 2007). The UHI effect takes the form
of increased urban air and surface temperatures with regards to surrounding rural
areas, in the order of 1°-3°C on average (Akbari et al., 2001). The resulting air
temperature difference, measured as that of the urban area minus that of the rural
area, is known as the urban heat island intensity (UHII).

For millennia, urban climatology has been taken into account in urban design,
but published scientific work remained scarce until the 1950's (Yoshino, 1990).
The mid-20t" Century marks a turning point with a significant increase in the
number of publications over the following decades and studies gradually more
dedicated to the UHI effect and its possible countermeasures.

Since then, knowledge and understanding of the UHI phenomenon has grad-
ually shifted from empirical descriptions and predictions (Oke, 1973), towards a
finer understanding of the physical processes involved (Oke, 1982). In short, sky
and wind obstruction by urban morphology reduce radiative and convective ex-
changes and the absence of vegetation reduces latent exchanges at the city-scale,
while strong heat gains occur within cities due to anthropogenic heat release.

During this period, the positive relation between city size and UHII was ob-
served by Oke (1973). In addition, several studies identified links between radia-
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tive trapping and street geometry, synthesized by the canyon aspect ratio H/W
(building height-to-street width), with the help of scale models and computer
simulations (Oke, 1973, 1981; Arnfield, 1990; Spronken-Smith and Oke, 1999).
Indeed, a decreasing linear relationship was found by Oke (1981) between max-
imum UHII and sky view factor, in other words open urban designs experience
lower UHII. Oke (1988) confirmed this by identifying an empirical relationship
linking high aspect ratios (H/W) with higher maximum UHII from observations
in European, North American and Australasian cities. More recently, investiga-
tions have helped better quantify the importance of anthropogenic heat releases
(Pigeon et al., 2007), or the creation of climate-vulnerability maps of cities

By the end of the 20t" and beginning of the 215t Centuries, several urban
canopy models had been developed such as the Noah land surface model developed
by Kusaka et al. (2001), the Town Energy Balance (TEB) model by Masson
(2000), or the University of Athens (NKUA) model by Dandou et al. (2005). Over
the years, some of these were refined to be able to include low-level vegetation
(Lemonsu et al., 2012), green roofs (De Munck et al., 2013) and trees (Redon
et al., 2014).

In 2011, the results of an international urban energy balance model comparison
study (PILPS-urban) benchmarking 32 of these models against one another were
published (Grimmond et al., 2011). Some of these models have since been used for
sensitivity analyses of urban climate to the different urban parameters (Colombert
et al.,, 2011), thus helping urban planners and designers target their anti-UHI
measures more efficiently, depending on the urban configuration. In the past
few years, urban canopy models have even been combined with other social or
economic models capable for example of simulating future urban development
(Masson et al., 2014).

In parallel to this work on the fundamentals of the UHI effect and its modelling
and simulation, studies have also been carried out on ways of reducing UHII. UHII
varies with time and local weather conditions. Typically, high wind speeds and
cloud cover tend to lower it, while clear skies and low winds amplify it (Cantat,
2004). On nights with clear skies and calm winds, UHII can reach as much as
12°C (Oke, 1973). These conditions are typically reached during heat-waves.
For example, during the 2003 heat-wave in Paris, UHII reached 8°C (Paris City
Council, 2007).

While UHI may reduce building energy consumption during winter, the op-
posite is true in the summer during which cooling demand is increased (Hassid
et al., 2000). For Athens, Greece for example, building cooling energy has been
found to double when UHII reaches 10°C, while peak cooling electricity demand
is tripled (Santamouris et al., 2001).

In addition to negative effects on energy use, UHIs also tend to exacerbate
ozone and smog pollution (Rosenfeld et al., 1998) as well as the intensity of heat-
waves (Li and Bou-Zeid, 2013). As a result, their health impacts are increased,
making heat-waves of particular concern for dense urban areas with intense UHls.
This helps explain that the Tle-de-France region was one of the worst hit in Europe
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during the 2003 heat-wave which caused a two-fold increase in mortality over the
first two weeks of August 2003 (Robine et al., 2008). This event created strong
heat-wave awareness in France. As a result, predicted increases in heat-wave
frequency and intensity (Lemonsu et al., 2013) are at the heart of climate change
adaptation efforts for Paris under its 2007 Climate Plan (Paris City Council, 2007).
In 2012, the Plan was updated and now includes measures addressing the UHI
effect (Paris City Council, 2012b).

We now present some of the UHI countermeasures that have been studied to
this day.

2.2 UHI Countermeasures

UHI countermeasures aim to reduce or compensate for the phenomena responsible
for urban warming. Among these radiative trapping and low vegetation presence
are often addressed.

The role of radiative trapping on UHII is based on the higher absorption of
solar energy by urban surfaces. Indeed, the generally low SW reflectivity (a.k.a.
albedo) of roofs, walls and pavements combined with the multiple intra-canyon
reflections and emissions which occur result in increased solar absorption by urban
canyons. As solar energy is absorbed in the form of sensible heat, material tem-
peratures increase, consequently increasing convection, thus raising the ambient
air temperature. Figure 2.1 illustrates the heat budget of a pavement surface but
can be generalized to building walls and roofs.
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Figure 2.1 — Heat budget of a pavement surface (Hendel et al., 2015).

S and Lgown respectfully designate incident SW and longwave (3-100 pm)
(LW) radiation, while S, and L,,, represent upwards SW (reflected only) and LW
(reflected and emitted) radiation. H and [E respectfully represent the convective
and latent heat fluxes towards the atmosphere, while V' is the conductive heat
flux into the pavement.

Therefore, two approaches can be proposed to reduce radiative trapping. The
first consists of favoring open urban designs with low H /. By increasing the sky
view factor of canyon surfaces, intra-canyon reflection and emission is reduced,
resulting in more energy being radiated out of the street canyon (Oke, 1988).
However, this approach is only applicable to new developments and is incompatible
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with dense urban designs which help limit transportation energy and urban sprawl
(Newman and Kenworthy, 1989).

The second approach consists of so-called "cool materials”, which can be used
in new buildings and developments or to retrofit existing ones.

Reflective Materials

Cool materials have modified properties compared to standard ones in order to
lower their surface temperature. As the convective flux at an urban surface de-
pends on the surface-air temperature difference, reduced surface temperatures
result in lower atmospheric warming.

Depending on the technology used, more or less feedback is available on the
application of these materials. Several recent literature reviews on their use are
available in the literature (Santamouris et al., 2011; Santamouris, 2013).

Originally, cool materials mostly consisted of white-coatings or materials.
Their goal is to reflect SW solar radiation out of the urban canyon and back
into space. As SW reflectivity is referred to as albedo, such materials are also
called high-albedo. The potential for high-albedo roofing materials to reduce
UHII has been studied for decades (Akbari and Taha, 1992; Taha, 1997; Akbari
et al., 2001). More recently, cool-colored materials have been developed which
are highly reflective in the near infrared (1-3 pm) (NiR) band. This allows for a
wide variety of colors while still providing cooling performance (Santamouris et al.,
2011). In addition to reducing urban temperatures, SW reflective materials create
a negative radiative forcing that effectively counters the effects of increasing green
house gas concentrations (Akbari and Matthews, 2012).

In the case where materials have low emissivity (e.g. Paris’ zinc roofs) high
emissivity coatings can be used to increase LW radiant cooling (Météo France and
CSTB, 2012).

Some of the limits to the use of these materials include material aging and as-
sociated performance degradation (Bretz and Akbari, 1997). This is particularly
true for pavement materials which are exposed to very intense urban pollution
and to high levels of abrasive wear associated with road traffic (Rosado et al.,
2014). Thus, recent work has focused on developing accelerated aging methods
to determine the evolution of cool material performance over time (Takebayashi
et al., 2014; Sleiman et al., 2014). Another limit to the use of these cool mate-
rials is their impact on winter conditions. Indeed, although it is only to a lesser
extent, cooling observed in the summer also occurs in the winter, thus potentially
increasing building heating demand. Recent work seems to indicate that the ben-
efits in summer are not offset by winter penalties for cold climates (Akbari, 2014).
Finally, in certain situations the increase in reflected radiation caused by high-
albedo materials can have negative net impacts on pedestrian thermal comfort,
thus defeating their purpose (Erell et al., 2013).

More recently, thermochromic coatings, which change color with increasing
temperatures, are being developed and studied in the lab. These can be designed
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to increase their albedo above a certain temperature and remain dark below it.
These coating offer a chance to enjoy the cooling properties of high albedo in
the summer without affecting energy demand in the winter (Santamouris et al.,
2011).

To date, cool materials have mainly been studied in the lab, while large scale
effects have been studied numerically, with little or no large-scale field testing of
micro-climatic effects.

Urban Greening

Unlike cool materials, urban greening seeks to reintroduce evapotranspiration into
the urban scene. Evapotranspiration consists of the combination of evaporation
from the soil and plant transpiration through the process of photosynthesis. If
vegetation is tall enough, pedestrians and buildings may also enjoy the added
benefits of shading. Modern urban greening solutions exist and can be applied
to roof, wall or street surfaces and rely on the use of trees, parks, lawns as
well as green walls and roofs (Akbari et al., 2001; Ng et al., 2012; Wong et al.,
2009). Indeed, while the benefits of lawns, parks and trees have been studied and
promoted for several decades (Jauregui, 1990; Taha, 1997), the more recent green
facades and roofs make it possible to green both horizontal and vertical building
surfaces (Jaffal et al., 2012; Djedjig et al., 2013; Musy et al., 2014).

In addition to atmospheric cooling and shading, urban vegetation has other
benefits such as promoting urban biodiversity. Furthermore, green facades and
roofs can provide added thermal and in some cases acoustic insulation to their
host buildings (Musy et al., 2014; Morille et al., 2014).

One of the main limits to urban greening is that evapotranspiration requires
irrigation to create cooling (Météo France and CSTB, 2012; Musy et al., 2014).
In addition, green facades and roofs may be costly and difficult to implement in
retrofit projects for structural reasons.

Other Materials

Even in the absence of vegetation, bare soil still provides a relatively constant
amount of evaporative cooling over the course of the day as long as it contains
sufficient moisture to do so (Camuffo and Bernardi, 1982). For surfaces which
cannot be vegetated for practical reasons such as high traffic, permeable paving
materials have been developed (Kubo et al., 2006; Haselbach et al., 2011; Li
et al., 2013). These mainly consist of concrete or asphalt concrete with high void
content which allows water to drain into the sublayers of the pavement (Li et al.,
2013).

While these materials may offset rainwater runoff flows into sewer systems,
they are not very efficient at providing evaporative cooling. Indeed, only water
stored close enough to the surface is warm enough to evaporate rapidly. Water-
retaining materials make up for this by relying on capillary action to keep moisture
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present at or near the pavement surface where evaporation can occur. This is
clearly demonstrated by Kubo et al. (2006) who compare water-retaining pave-
ments with porous ones.

Another way to decrease the surface temperature of urban materials is to
combine the latent heat storage properties of a phase change material (PCM)
with the radiative properties of cool colored materials. By incorporating PCM
into existing cool colored materials, their thermal inertia is effectively increased
(Santamouris et al., 2011).

2.3 Expected Cooling Effects

To date, cool and green materials have been thoroughly studied in the lab or on
small-scale prototypes (Kubo et al., 2006; Levinson et al., 2007; Takebayashi and
Moriyama, 2007, 2009; Karlessi et al., 2011; Li et al., 2013). Results indicate that
surface temperatures are significantly reduced compared to standard materials.
This is expected to result in lower atmospheric heating as sensible heat flows
are reduced with urban surface temperatures. Equivalent work on green spaces
has mostly focused on existing parks (Jauregui, 1990; Ca et al., 1998), though
smaller scale testing has also been conducted (Spronken-Smith and Oke, 1999).
Parks have been found to be up to a few degrees cooler than their surroundings
through the combined effects of evapotranspiration and shading. However, field
evaluations and monitoring of large-scale applications of cool materials or new
urban green spaces are scarce (Santamouris, 2013; Bowler et al., 2010). Indeed,
large-scale micro-climatic effects have been almost exclusively studied with the
help of computer simulations (Akbari et al., 2001; Nakayama et al., 2012; Météo
France and CSTB, 2012; Wei and He, 2013; Musy et al., 2014).

Pavement-watering stands out as an exception and has been studied in the
field via several independent studies (Kinouchi and Kanda, 1997, 1998; Yamagata
et al., 2008; Takahashi et al., 2010; Bouvier et al., 2013; Maillard et al., 2014).
This technique, consisting of spraying water onto an impervious or a permeable
pavement surface, is viewed as an efficient means of reducing UHI intensity.

In contrast with high albedo pavements, this is accomplished without compro-
mising pedestrian comfort as the radiant heat fluxes are not increased by watering.
Indeed, surface wetting tends to decrease pavement albedo, thus lowering reflected
SW radiation (Lekner and Dorf, 1988). On the other hand, the expected increase
in air humidity caused by watering could negatively affect pedestrian comfort.

The effects of different adaptation strategies for Paris were studied in the
framework of the EPICEA Project (Etude Pluridiscplinaire des Impacts du Change-
ment climatique a I'Echelle de I'Agglomération parisienne) conducted from 2008
to 2012 (Météo France and CSTB, 2012). This study was conducted using the
TEB model developed by Masson (2000) and provides useful information on the
micro-climatic effects that can be expected for Paris for each of these strategies.
The study had three main goals, the last of which consisted of determining the
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impact of four different adaptation scenarios on 2 m a.g.l. air temperatures dur-
ing the August 2003 heat-wave. These four scenarios are city-wide and include:
1) reflective and emissive building materials, 2) urban greening with and without
irrigation, 3) pavement-watering and 4) the combination of scenarios 1), 2) and
3).

Météo France and CSTB (2012) found that scenario 1) created 2 m a.g.l.
temperature reductions in the order of 1°C both day and night, reaching up to
4°C during the day. Scenario 2) with irrigation showed up to 5°C of cooling during
the day with average effects in the order of 1°C. Without irrigation, scenario 2) had
a negligible impact in the city center. Scenario 3) demonstrated average cooling
of approximately 0.5°C and maximum effects of 1°-2°C during the day. UHII
mitigation was measured as the change in 2 m a.g.l. air temperature between
3 am and 6 am local daylight savings time (UTC+2). In this regard, scenario
1) created a spatially-uniform 1°C reduction in UHII. In areas with substantial
urban greening, scenario 2) with irrigation was found responsible for a 0.5° to
1°C reduction in UHII. Finally, scenario 3) caused reductions of 0.25° to 0.5°C of
UHII in the most central urban areas. Finally, the combination of these scenarios
yielded the highest results with average cooling of 2.3°C and maximum cooling
of 6°C 2 m a.g.l.. UHI mitigation effects reached 1.25°C.

Overall, these results agree well with the studies previously cited and thus
provide an order of magnitude for the cooling effects that can be expected from
reflective and green materials as well as pavement-watering.

2.4 Conclusion

In this chapter, we have described the fundamentals behind the UHI effect. Char-
acterized by the temperature difference between urban and rural areas (UHII),
UHIs form as a result of radiative trapping, reduced evapotranspiration, wind
obstruction and high concentrations of anthropogenic heat sources. These phe-
nomena are linked to urban morphology, urban materials, lack of natural soils and
green spaces and energy inefficiency.

To reduce UHII, UHI countermeasures may address one or several of these
aspects. Significant work has been carried out to date on the design of cool ur-
ban materials which aim to maintain low surface temperatures. This is generally
achieved by increasing material albedo. In turn, urban greening seeks to compen-
sate for the lack of evapotranspiration by either increasing the share of green areas
within cities with new parks or by adding greenery to building and street surfaces.
Given their long lifespans of several years, these measures can be considered as
permanent.

In principle, pavement-watering achieves the same goal as cool materials
of lowering urban surface temperatures by creating additional latent and non-
atmospheric sensible heat flows. These flows are obtained by the evaporation of
the sprinkled water film and its sensible heat absorption. If sprinkling is sufficient
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to create runoff, the sensible heat flux is an advective transfer. In addition, surface
wetting also reduces its SW reflectivity (Lekner and Dorf, 1988). As the pavement
surface is cooled, its convective (H), emitted (Stefan-Boltzmann's ﬁanmf) and
reflected radiation flows decline, resulting in a cooler atmosphere and reduced
radiosity.

In order to identify preexisting answers to our research problem, we will now
proceed with a description of the state of the art of pavement-watering. In the
process, the literature review will identify knowledge gaps and/or needs for further
evidence. Information on the method's cooling effects, particularly in terms of air
temperature and UHI mitigation during heat-waves, and the water footprint of the
applied watering methods are the focus points of the review. A brief description
of the selected studies and their analysis method will also be provided.
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Literature Review of
Pavement-watering

The following literature review will focus on identifying answers to our problem
which may already exist in the literature. Certain aspects may have been insuffi-
ciently studied and require further research. We consequently turn our attention
to findings on the cooling effects of pavement-watering, in particular air tempera-
ture and UHI-mitigation effects during heat-waves, and its water footprint in the
hope of finding information relevant for dense cities such as Paris, France.

The articles selected for our review describe experiments or computer simula-
tions of watering pavement surfaces at laboratory, street or greater scales. Find-
ings on the benefits of permeable pavements, with or without water-retention,
are included when wet and dry performance is compared. Studies of building sur-
face watering are not included unless pavement-watering is part of the watering
scheme. Analyses of building-only watering may however provide a useful basis
for comparison of certain aspects of our analyses conducted later on.

Several studies answering these criteria have been found and can be split into
two major groups: numerical studies (Nakayama and Fujita, 2010; Nakayama
et al., 2012; Météo France and CSTB, 2012; Wei and He, 2013) and field studies
(Kinouchi and Kanda, 1997, 1998; Yamagata et al., 2008; Takahashi et al., 2010;
Li et al., 2013; Bouvier et al., 2013; Maillard et al., 2014), with Kubo et al. (2006)
and Nakayama and Fujita (2010) combining both approaches.

These articles were published between 1997 and 2014, reporting results from
experiments conducted from 1993 to 2012 (Kinouchi and Kanda, 1997, 1998;
Kubo et al., 2006; Yamagata et al., 2008; Nakayama and Fujita, 2010; Takahashi
et al., 2010; Bouvier et al., 2013; Maillard et al., 2014), as well as from simulations
conducted at the laboratory-, street-, district- or city-scale (Kubo et al., 2006;
Nakayama and Fujita, 2010; Nakayama et al., 2012; Météo France and CSTB,
2012; Wei and He, 2013).
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Literature Review of Pavement-watering

It should be noted that the articles by Bouvier et al. (2013) and Maillard et al.
(2014) are published in the French professional journal Techniques, Sciences et
Méthodes (TSM). Although its peer-review process is not as rigourous as most
scientific journals cited in this manuscript, these articles provide recent examples
of pavement-watering field trials conducted in two French cities. In addition,
certain articles are conference papers (Kinouchi and Kanda, 1998).

In order to make the diversity and differences between the considered studies
clearly apparent, we will compare each study by thematic. We will first describe
the selected articles and their methodologies. We will then focus on reported
cooling effects and the indicators used to quantify them, including micro-climatic,
thermal and outdoor comfort parameters.

Tables will be used to facilitate the comparisons, though some information
may be not available (NA) or not relevant (NR).

3.1 Brief Description and Methodology

We first provide a brief description of the selected studies as well as of the watering
and analysis methods used.

Brief Description

A brief description of each study will now be presented and grouped according to
the scale at which cooling effects are investigated.

It should be noted that the articles by Kinouchi and Kanda (1998) and Kubo
et al. (2006) can be divided into two parts. First, Kinouchi and Kanda (1998)
begin by presenting results published in a previous paper also included in this
review (Kinouchi and Kanda, 1997). The second part of the article presents
findings on watering a permeable pavement slab which will be discussed in this
review. In their article, Kubo et al. (2006) first focus on laboratory findings on
different kinds of pavement, while their second approach is a numerical simulation.

Firstly, three studies investigate small scale cooling effects in the lab. This
is the case of Kinouchi and Kanda (1998), Kubo et al. (2006), Nakayama and
Fujita (2010) and of Li et al. (2013). These studies focus on the effects of
watering permeable pavements, though Kubo et al. (2006) also compares pervious
pavements with water retaining ones. Both are set in wide open areas with
little or no masks. Kubo et al. (2006) use their findings in the lab to conduct
a simplified simulation at the street scale in the second part of their article.
Nakayama and Fujita (2010) develop and validate a numerical model of the water-
retaining pavement material against their observations.

Next, several authors study the effects of street scale cooling. This is namely
the case of the simulation conducted by Kubo et al. (2006) as well as the field
work conducted by Kinouchi and Kanda (1997, 1998), Yamagata et al. (2008),
Takahashi et al. (2010), Bouvier et al. (2013), and Maillard et al. (2014). Kinouchi
and Kanda (1997, 1998) and Takahashi et al. (2010) are set in Nagaoka City in
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Niigata Prefecture on the West coast of Japan, while the second part of Kubo
et al. (2006) and Yamagata et al. (2008) describe watering in Tokyo. Bouvier
et al. (2013) and Maillard et al. (2014) respectively take place in Paris and Lyon,
France. Both present pavement-watering as a countermeasure for heat-waves.
All studies conduct watering on standard impervious pavement surfaces except
for Kinouchi and Kanda (1998) and Yamagata et al. (2008) which respectively
water permeable and water-retaining pavements. Where solar irradiance data is
provided or can be derived, it is apparent that solar masks are low, except for
Yamagata et al. (2008) and Maillard et al. (2014).

Finally, three studies analyze cooling effects at the district or city scale (Nakayama
et al., 2012; Météo France and CSTB, 2012; Wei and He, 2013). Nakayama
et al. (2012) use an urban canopy model of Kawasaki City to simulate the ef-
fects of water-retaining pavements combined with urban greening. Météo France
and CSTB (2012) study pavement-watering of all of Paris’ 2,550 ha of streets and
sidewalks using the TEB model, while Wei and He (2013) conduct pavement- and
building-watering of a Tokyo district, simulated with their own 3D-CAD model.
No changes in material properties are considered in the former, while the latter
considers building walls and slanted roofs with a reflective and hydrophilic TiO,
coating and water-retaining pavement blocks.

As can be seen, most studies found focus on street-scale effects.

Watering Method

Pavement-watering implies the choice of a watering method. The first step in-
volves the choice of a target area. Once it has been defined, every watering method
can be characterized by three parameters: the watering period, the watering rate
and the watering frequency.

The first outlines the period(s) of each day during which pavement-watering is
conducted in order to keep the pavement wet. The second is the average amount
of water delivered per unit area and per unit time (expressed in mm/h, equivalent
to L/m2.h), averaged over the watering period. Finally, the last indicates the
frequency of the watering cycles in the case of discontinuous watering. Of these
parameters, the watering rate and period are the ones that define the method'’s
water consumption. Different watering methods are used in the numerical and
experimental studies described here.

The different watering methods are summarized graphically in Figure 3.1 based
on the information provided by the authors in their articles. We first describe
watering conducted in experimental studies.

Kinouchi and Kanda (1997) and Takahashi et al. (2010) use the same snowmelt-
ing infrastructure to water an impervious pavement surface. This snowmelting
infrastructure consists of watering pipes already present in the streets of Nagaoka
City. They are used in winter to melt away accumulated snow and rely on un-
derground water whose temperature is approximately 15°C all year. Kinouchi and
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Figure 3.1 — Diagram of the watering methods used in the surveyed articles.
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Kanda (1997) run the system continuously at an average rate of 11.9 mm/h,
while Takahashi et al. (2010) run it intermittently at an average rate of 2 mm/h.

For the second half of their study, Kinouchi and Kanda (1998) water a porous
pavement once a day. Judging from their graphical indications, watering occurs
approximately at 9 am. Watered volumes are not known.

For their experimental data, Kubo et al. (2006) and Nakayama and Fujita
(2010) rely on rainfall to water their pavement slabs.

Yamagata et al. (2008) install temporary watering pipes in a central road
planter to water a water-retaining pavement. The system is run continuously
from 10-20 minutes at a time up to three times a day between 6:30 am and
4:10 pm. Total water consumption is provided, but the watered surface area is
unknown.

Li et al. (2013) consider impervious and pervious pavement slabs measuring
4 x 4 m. Over an investigation period of 15 days, the pervious pavements are
watered once with 0.2 mm after six days.

Bouvier et al. (2013) relies on a cleaning truck and manual operator to wa-
ter impervious pavement and sidewalk surfaces once at approximately 10 pm.
The watering cycle deposits 1 mm of water and is activated if certain weather
conditions are met, similar to but less strict than heat-wave conditions for Paris.

Maillard et al. (2014) describe a watering infrastructure integrated into the
sidewalk edge. Nozzles connected to the city's potable water network are used to
sprinkle the pavement only. The system is operated intermittently following three
watering scenarios at different frequencies which vary from every 15 minutes to
every 60 minutes. The watering period also varies according to the scenario and
occurs between 6 am and 6 pm. The watering rate ranges from 5 mm/d to 12
mm/d.

For their numerical simulation, Kubo et al. (2006) conduct no watering but use
the results from their experimental data. More details on their analysis method
will be given in the next Subsection.

Nakayama et al. (2012) rely on rainfall and groundwater sprinkling to saturate
the water-retaining pavements. No information on the amount of water involved
or the watering mechanism is given.

Météo France and CSTB (2012) use a hypothetical infrastructure relying on
the Paris’ non potable water network to sprinkle 0.2 mm/h every hour from 5 am
to 7 pm on pavement and sidewalk.

Wei and He (2013) conduct continuous watering of building walls and roofs
between 9 am and 6 pm at a rate of 12 kg/m2.h. Pavement-watering of the
sidewalk is conducted once until saturation at midnight the day before, but applied
water volumes are unknown.

As can be seen, varying levels of information are provided. Kinouchi and
Kanda (1997), Takahashi et al. (2010) and Météo France and CSTB (2012) for
example provide sufficient information to be able to determine all of the watering
parameters, while Yamagata et al. (2008), Nakayama et al. (2012) and Maillard
et al. (2014) only provide partial data. Finally, Kubo et al. (2006) and Nakayama
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and Fujita (2010) use rain events to determine the surface temperature effects
of water-retaining permeable pavements in the lab. Only two studies water the
sidewalk in addition to the pavement surface (Bouvier et al., 2013; Météo France
and CSTB, 2012), while Wei and He (2013) also waters building walls and slanted
roofs. Although Yamagata et al. (2008) and Maillard et al. (2014) consider several
watering methods, they do not compare the obtained results in these articles.

Of these papers, only Takahashi et al. (2010) and Météo France and CSTB
(2012) describe attempts to optimize the watering method. Takahashi et al.
(2010) optimize both watering rate and frequency based on surface and 90 cm air
temperature observations over a period of one hour after watering. On this basis,
it was found that each watering cycle should deliver 1 mm. Their analysis then
led them to conclude that watering during the day, between 11 am and 3 pm, was
ineffective as no temperature difference could be detected. Finally, the watering
frequency was designed to water the pavement as soon as it became completely
dry. This resulted in watering roughly every 30 minutes. Météo France and CSTB
(2012) base their own optimization on findings from Takahashi et al. (2010) with
the hypothesis of a pavement water-holding capacity of 1 mm. They optimize
the watering rate based on 2 m a.g.l. air temperature simulations with a one-
hour time step. Watering rates are deemed optimal if increasing them further
only marginally increases cooling. It should be noted that these analyses are only
briefly described in both papers and make no mention of explicit optimization
targets or goals.

Analysis Method

We now describe the different methods used to determine the effects of pavement-
watering in the selected literature.

Numerical Studies First, it should be noted that Kubo et al. (2006) only in-
directly simulate watering effects. Indeed, water evaporation or advection are
not integrated into their model, which only includes air flows and sensible heat
exchanges. The effects of watering are accounted for in the form of surface tem-
perature reductions, as they were observed in the experimental portion of their
study. They therefore simulate the atmospheric effects of a 10°C reduction in
pavement and sidewalk temperatures. On the contrary, Nakayama et al. (2012),
Météo France and CSTB (2012) and Wei and He (2013) simulate water evapo-
ration in their studies.

All of the numerical studies considered compare a single area in two states:
with and without watering. As a result, any difference in the considered indicators
can be unquestionably attributed to their watering strategy.

Experimental Studies Laboratory-scale studies directly compare the same pave-
ment area in dry and wet conditions, accounting for significant changes in solar
irradiance from one day to the next (Kinouchi and Kanda, 1998; Nakayama and
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Fujita, 2010; Kubo et al., 2006; Li et al., 2013). No studies basing their analyses
on comparisons of a control slab with a watered one were found.

In all of the considered field trials at the street scale, the methodology ap-
plied to determine micro-climatic effects is a direct comparison between case and
control site measurements. Indeed, Kinouchi and Kanda (1997), Yamagata et al.
(2008), Bouvier et al. (2013) and Maillard et al. (2014) base their analyses on
the differences observed between a watered area and an unwatered one. Taka-
hashi et al. (2010), though they use average observations from several watered
and unwatered weather stations, proceed in the same manner. In all cases, the
observed difference between watered and control sites is interpreted as the ef-
fect of pavement-watering. Since this method does not account for preexisting
differences between sites, site pairs must be chosen carefully.

3.2 Cooling Effects of Pavement-Watering

We now proceed to present the cooling effects reported in the selected litera-
ture. The cooling effects of pavement-watering are measured using a variety of
indicators to quantify micro-climatic and thermal effects.

Micro-climatic Indicators

Micro-climatic parameters used to study the effects of pavement-watering include
air temperature, relative humidity, globe temperature and MRT. In addition, ther-
mal comfort and UHI-mitigation indicators are also used.

In terms of frequency, air temperature is used most often, while globe tem-
perature and MRT are least represented, though they are often included in the
calculation of thermal comfort indexes.

Air Temperature Air temperature is widely used in the articles we have selected.
Table 3.1 provides a summary of the air temperature effects provided as well as
the instrument type and measurement height used, when indicated.

Table 3.1 — Reported air temperature effects.

Author Instrument  Height Max
Kinouchi and Kanda (1997) Pt resistance 1 m -1°C
Yamagata et al. (2008) NA 05m -2.5°C
Takahashi et al. (2010) NA 09 m -4°C
Bouvier et al. (2013) NA 2m  -0.4°C
Kubo et al. (2006) numeric 1.5m -0.73°C
Kubo et al. (2006) numeric 0.5m -2.13°C
Nakayama et al. (2012) numeric 15m  -5°C

Météo France and CSTB (2012) numeric 2m -2°C
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As can be seen, reported maximum effects span from -0.4°C to -5°C. Only
Bouvier et al. (2013) indicate that cooling lasts up to one hour after watering.
No other papers provide information on the duration of the effects or on their
average intensity.

Among experimental studies, only Kinouchi and Kanda (1997) describe the
instrument used to measure air temperature and its properties. Information on its
uncertainty, height and measurement frequency as well as manufacturer and model
is provided. When relevant information is available (description, photograph, ...),
it is clear that the instruments used in the selected papers are sheltered.

In addition to a wide variety of reported air temperature effects, very few
studies have comparable measurement heights, making it difficult to compare
findings from one study to the next. It is therefore not possible for us to determine
a general trend for the air temperature effects of pavement-watering.

Air Humidity Air humidity is not as widely represented in the literature as
air temperature. It is considered by Kinouchi and Kanda (1997), Bouvier et al.
(2013) and Météo France and CSTB (2012) who investigate changes in RH. Their
findings are presented in Table 3.2.

Table 3.2 — Reported air humidity effects.

Author Instrument Height Max
Kinouchi and Kanda (1997) capacitive hygrometer 1 m +4%
Bouvier et al. (2013) NA 2m +4%
Météo France and CSTB (2012) numeric 2m  afew %

As was the case for air temperature, only Kinouchi and Kanda (1997) provide
details on the instrument used. Similarly, available information indicates that
instruments are sheltered.

The two experimental studies report identical results despite significant differ-
ences in measurement height. This may be attributable to differences in watering
method (see Section 3.1).

All three papers indicate that pavement-watering results in an increase in RH
in the order of a few percentage points.

Radiative Environment Apart from air temperature and humidity, indicators
representative of the radiative environment have also been used to quantify the
effects of pavement-watering, such as MRT and globe temperature. Only two
studies include these parameters (Kinouchi and Kanda, 1997; Wei and He, 2013).
Their results are presented in Table 3.3.

Unlike the cases of air temperature and humidity measurements, Kinouchi and
Kanda (1997) do not specify what kind of globe thermometer is used.
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Table 3.3 — Reported effects on the radiative environment.

Author Parameter Height Max

Kinouchi and Kanda (1997) globe temperature 1 m  -4°C
Wei and He (2013) MRT 15m -6°C

As globe temperature (7,) is determined by the balance between radiative
heat gains and radiative and convective heat losses, the latter depending on air
temperature (7},) and wind speed (v). Therefore, air temperature and wind speed
measurements at the same height as the globe thermometer permit the calculation
of MRT from globe temperature. The standard formula is given by ASHRAE
(2001), as described by Thorsson et al. (2007), with D being the diameter (in
mm) of the globe:

1.1 x 108¢9-6

0.25
S0 x(Tg—Ta)> —273.15 (3.1
Do

Tt = ((Tg +273.15)* +

Following this method, globe temperature is measured by a globe thermometer
made of a matte black-painted copper globe 150 mm in diameter, 0.4 mm in
thickness and instrumented with a Pt100 resistance thermometer in its center.
This sensor has a 20 minute response time after which isothermal conditions
inside the globe are obtained.

Alternative designs with shorter response times involve replacing the copper
globe with a ping pong ball which are 40 mm in diameter (formerly 38 mm) and
made of acrylic. In addition, the ratio of convective-to-radiative exchanges is
deemed more representative of a human and therefore more appropriate (Wang
and Li, 2015). The reliability of ping pong balls as globe thermometers have been
investigated by de Dear (1987), as cited by Thorsson et al. (2007) and Wang and
Li (2015). In principle, the equation 3.1 remains valid accounting for the change
in diameter.

Another alternative design is the so-called grey globe developed by Thors-
son et al. (2007) which also uses a ping pong ball and whose albedo is deemed
more representative of that of a clothed pedestrian. To achieve this, the ping
pong ball is simply painted flat grey. An accompanying modified formula is pro-
posed by Thorsson et al. (2007) to calculate MRT from the grey ping pong globe
thermometer:

1.335 x 10840-71
D04

0.25
Tt = ((Tg +273.15) + x (T, — Ta)> —273.15 (3.2)
This design has caught the attention of many researchers interested in quan-
tifying outdoor thermal comfort. Indeed, one can note more than 90 references
to their article by other authors according to Scopus as of June 6, 2015.
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However, the choice of plastic or other low conductivity materials as a globe
material has been called into question recently in regards to their poor perfor-
mance under asymmetric radiation (Fontana, 2010; Wang and Li, 2015). Wang
and Li (2015) compare two 40 mm black globe thermometers, one copper and the
other acrylic in identical conditions which include asymmetrical radiation. Their
findings reveal the serious shortcomings of acrylic globes in comparison to cop-
per ones. These are mainly associated with acrylic's poor thermal conductivity
and its poor opacity, even when painted. These issues undermine the hypoth-
esis of isothermal conditions inside the globe and expose the Pt100 resistance
thermometer to transmitted radiation.

Indicators of UHI-Mitigation Effects Another micro-climatic indicator used
in the selected articles is that of UHI-mitigation effects. These were investigated
by Météo France and CSTB (2012) and Wei and He (2013). Météo France and
CSTB (2012) define their UHI-mitigation index as the comparison of average air
temperature measured 2 m and 30 m a.g.l. between 3 and 6 am (local daylight
savings time: UTC+2) from August 8t to 13", 2003 with and without water-
ing. Wei and He (2013) use an indicator called heat island potential (HIP) which
reflects the average temperature difference between urban surfaces and the atmo-
sphere. Therefore, a positive HIP indicates that urban surface temperatures are
warmer on average than that of the ambient air. Wei and He (2013) compare
HIP with and without watering. Reported results are presented in Table 3.4.

Table 3.4 — UHI-mitigation effects.

Author Parameter Height  Max

Météo France and CSTB (2012) UHI-mitigation 2 m  -0.5°C
Météo France and CSTB (2012) UHI-mitigation 30 m NA
Wei and He (2013) HIP NR -25°C

In addition to the differences in watering strategies, these two indicators are
too different for findings from these articles to be compared. It should be noted
that pavement-watering following Météo France and CSTB (2012)'s scenario re-
duces UHII by -0.5°C 2 m a.g.l. while no effect is detectable 30 m a.g.l.. In short,
the vertical permeation of pavement-watering cooling is limited.

Thermal Comfort Indicators Several of the considered studies take thermal
comfort effects into account as well. Among them, Wet-Bulb Globe Temperature
(WBGT) is the most represented thermal comfort index, and is calculated on the
basis of dry- (T,) and wet-bulb (Tyet—puip air temperatures as well as black globe
temperature as defined by Azer and Hsu (1977) for outdoor (equation 3.4) and
indoor conditions or in the absence of solar radiation (equation 3.4):
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WBGT = 0.7Tyet—pup +0.275 + 0.17,, (3.3)
WBGT = 0.7Tyet—buip + 0.3T, (3.4)

Kinouchi and Kanda (1997, 1998) use three different comfort indexes: the
Discomfort Index, Thermal Load and Thermal Sensation. Few details are given
on these indexes and their supporting papers are in Japanese preventing us from
us from obtaining further details. The only information available is that the
Discomfort Index is calculated from air temperature and RH, while the Thermal
Load estimates the energy budget of a human being on the basis of the heat gains
from received radiation and metabolic rate and the heat losses from LW radiation
emission and convective and latent heat fluxes.

The reported thermal comfort effects of pavement-watering are summarized
in Table 3.5.

Table 3.5 — Reported thermal comfort effects.

Author Parameter Height Max
Kinouchi and Kanda (1997)  Discomfort Index 1m -
Kinouchi and Kanda (1997) Thermal Load NR  -10 W/m?
Kinouchi and Kanda (1998) Thermal Sensation ~ NR -3°C
Yamagata et al. (2008) WBGT 0.5m -2°C
Maillard et al. (2014) WBGT 15m -0.5°C

All findings indicate that pavement-watering positively affects pedestrian ther-
mal comfort. Due to differences in indexes and measuring heights, it is not possible
to compare findings in further detail.

A recent indicator used more and more frequently in articles investigating
outdoor thermal comfort is the UTCI (Musy et al., 2014; Fréhlich and Matzarakis,
2014). UTCI was developed by international experts from Commission 6 of the
International Society of Biometeorology and European COST Action 730 from the
year 2000 to 2009. Its purpose is to offer a universal thermal comfort index that
can be used for both cold and warm conditions for a wide variety of applications
and that takes advantage of the most recent developments in biometeorology
(Blazejczyk et al., 2010).

Air temperature, humidity, wind speed and MRT are used in conjunction
with certain assumptions on the metabolic activity and clothing of pedestrians
to calculate an equivalent air temperature for reference conditions which would
create an identical physiological response to the real case (Blazejczyk et al., 2010).
The equivalent temperature scale is divided into bands corresponding to thermal
stress levels.

The source code for UTCl is freely available as well as a fast-calculation script
written by Peter Brode in 2009 (Brode, 2009).
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Other outdoor indexes such as Perceived Temperature (PT) or Physiological
Equivalent Temperature (PET) and also function on the basis of an equivalent
temperature in reference conditions on the basis of an energy budget model of
the human body (Mayer and Hoppe, 1987; Staiger et al., 2012; Frohlich and
Matzarakis, 2014).

Thermal Indicators

The thermal effects of pavement-watering have been a recurrent focus point of the
reviewed studies. These include pavement temperatures and heat fluxes at differ-
ent depths. Data is generally gathered from infrared (IR) camera or thermocouple
and flowmeter measurements.

Surface Temperature Surface temperature reductions are often reported and
have been found to range from 8°C to 30°C (Kinouchi and Kanda, 1997, 1998;
Yamagata et al., 2008). Table 3.6 summarizes the effects reported in the selected
literature.

Table 3.6 — Reported pavement surface temperature effects.

Author Instrument Height Max

Kinouchi and Kanda (1997) IR thermometer 1 m  -10° to -30°C
Kinouchi and Kanda (1998)  Net radiometer 65 cm -14° to -18°C

Kubo et al. (2006) Thermocouple 0 cm -16.4°C
Yamagata et al. (2008) IR camera NA -3° to -8°C
Nakayama and Fujita (2010) NA Ocm  -5°to -20°C
Bouvier et al. (2013) IR camera NA -6°C
Maillard et al. (2014) NA -1cm -5°C
Wei and He (2013) numeric NR -5°C

Kinouchi and Kanda (1997) report the highest maximum temperature reduc-
tions, however four measurement points were used. Results from these points
range from -10° to -30°C. This broad range reflects their watering method. In-
deed, the snow-melting pipes are laid in the center of the road and deliver water
at a constant 15°C. Surface temperature reductions are therefore highest at the
center of the road where surface temperatures reached 17°C, while the lowest
reductions are observed near the sidewalk with surface temperatures of 35°C.
Nakayama and Fujita (2010) report results ranging from -5° to -20°C depend-
ing on the reference material (grass, concrete, ...). No comparison of the same
material in dry and wet conditions is made.

Taking this into account, we conclude that the selected studies agree on a
surface temperature reduction of approximately 10°C under insolation. Nighttime
reductions are reported by a few authors and range from -3°C to -6°C (Yamagata
et al., 2008; Bouvier et al., 2013; Wei and He, 2013).
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Pavement Temperature No papers focusing solely on the watering of imper-
vious street surfaces were found that report pavement temperature observations.
Kinouchi and Kanda (1998) report temperature effects 5 cm below the pavement
surface and Li et al. (2013) investigate effects 1.3 cm, 3.8 cm, 6.4 cm and 25.4 cm
deep for two different permeable pavements compared to a standard impervious
pavement. Reported findings are summarized in Table 3.7.

Table 3.7 — Reported pavement temperature effects.

Author Instrument Depth Max
Kinouchi and Kanda (1998) Thermocouple 5 cm -7°C
Li et al. (2013) Type-T thermocouple 1.3 cm  -7°C
Li et al. (2013) Type-T thermocouple 3.8 cm -12°C
Li et al. (2013) Type-T thermocouple 6.4 cm  -14°C
Li et al. (2013) Type-T thermocouple 25.4 cm -15°C

Maximum effects described by Li et al. (2013) are higher than those reported
by Kinouchi and Kanda (1998) and are greater the deeper they are measured.
This may be caused by differences in measurement frequency and initial water
temperature. Indeed, average effects reported by Li et al. (2013) are much lower
than those which are apparent from Kinouchi and Kanda (1998)'s data. Unfor-
tunately, insufficient information is provided in either study to investigate this
further.

Latent Heat Flux Four studies estimate or measure the latent heat flux cre-
ated by pavement-watering (Kinouchi and Kanda, 1997; Yamagata et al., 2008;
Nakayama et al., 2012; Météo France and CSTB, 2012). Their findings are sum-
marized in Table 3.8. It should be noted that the latent flux is estimated both
experimentally and numerically by Nakayama et al. (2012). The method used for
the former estimation is not provided.

Table 3.8 — Reported latent heat flows.

Author Instrument Max
Kinouchi and Kanda (1997) Energy balance 1,300 W/m?
Kinouchi and Kanda (1997) Gradient method 400 W/m?
Kinouchi and Kanda (1998) estimated 600 W/m?
Yamagata et al. (2008) Evaporation gauge 1,850 kJ/m2.d
Nakayama et al. (2012) NA 337 W/m?2
Nakayama et al. (2012) numeric 345 W/m?

Météo France and CSTB (2012) numeric 180 W/m?
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Kinouchi and Kanda (1997) use two methods to determine the latent flux on
the basis of their measurements: from the energy balance and from the gradient
method. The former uses measurements of the heat flow into the pavement at
its surface. As they encountered difficulties with this measurement, their second
estimation is deemed more reliable and agrees better with other authors. On
average during watering, the latent heat flux determined by the gradient method
is in the order of 200-300 W/m?, with a localized peak of 400 W/m?2.

Kinouchi and Kanda (1997), Nakayama et al. (2012) and Météo France and
CSTB (2012) report similar results. Because Yamagata et al. (2008) presents
daily latent energy transfers, it is difficult to compare their findings with those of
the other authors.

Pavement Heat Flux Kinouchi and Kanda (1997, 1998) are alone in report-
ing the pavement heat flux effects of pavement-watering. Kinouchi and Kanda
(1997) attempt to measure the downwards heat flux at the surface with a heat-
flowmeter but encounter difficulties, while Kinouchi and Kanda (1998) place their
heatflowmeter 5 cm below the surface of a pervious pavement slab. Their findings
are summarized in Table 3.9.

Table 3.9 — Reported pavement heat flux effects.

Author Instrument Depth Max

Kinouchi and Kanda (1997) Heatflowmeter 0 cm -1,300 W/m?
Kinouchi and Kanda (1998) Heatflowmeter -5cm  -50 W/m?

As watering begins, Kinouchi and Kanda (1997) report a "nose-dive” in pave-
ment heat flux in the order of 1,300 W/m? followed by smaller effects thereafter,
even negative at times. Judging by their graph, Kinouchi and Kanda (1998) ob-
serve a halving of pavement heat flux 5 cm below the pavement surface, i.e. a
reduction in the order of 50 W/m?2.

In addition, Kinouchi and Kanda (1998) analyze a linear relation found be-
tween pavement heat flux 5 cm deep and net radiation.

3.3 Conclusion

As can be seen, twelve articles investigating the effects of pavement-watering
have been found. Among them, a wide variety of cooling indicators are used,
including micro-climatic and thermal indicators. Several watering methods were
described in varying detail, however few efforts to optimize them and their water
consumption were reported. Finally, only Bouvier et al. (2013) focus on the
method’s effectiveness during heat-waves.

Overall, surface temperature reductions under insolation showed good agree-
ment and comparability between studies, with reported reductions of approxi-
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mately -10°C. In addition, RH 1-2 m a.g.l. is reported to increase by a few
percentage points.

Unfortunately, the other reported micro-climatic effects are not comparable
due to significant differences in measurement heights, instruments and analysis
methods. This issue was previously identified by Johansson et al. (2014) and may
hide other ones potentially caused by site- or climate-specificities. Also, the limited
number of studies investigating these effects makes more evidence necessary to
confirm them.

Furthermore, the reliability of the analysis method used to determine micro-
climatic effects in the field is unclear. Indeed, the analyses are based on the direct
comparison of micro-climatic measurements made at case and control areas. This
method tacitly assumes that inter-area differences are equal to zero in the absence
of watering. Given the complexity of urban environments, this hypothesis may not
be valid in cities where pavement-watering is most likely to be implemented and
raises questions as to the reliability of findings from field experiments. Because
other UHI-countermeasures have only rarely been studied in the field, no other
method in the literature is known to us.

Another limitation is the applicability of reported micro-climatic effects to
dense cities and in European climates. Indeed, studies have chiefly been conducted
in low density cities in Japan, under its humid and hot summers. Nagaoka City,
which has a population density of approximately 300 persons/km? (www.city.
nagaoka.niigata.jp), is much less dense than Paris’ 21,000 persons/km? (www.
insee.fr) meaning that results may not be valid for dense cities. This also the
case of thermal effects which have mainly been studied in unmasked conditions,
as can be derived from solar irradiance data in the considered articles (Kinouchi
and Kanda, 1997, 1998; Kubo et al., 2006; Nakayama and Fujita, 2010; Li et al.,
2013).

Finally, existing efforts to optimize the applied watering methods are insuf-
ficient. Indeed, an optimization method should be formally described with the
definition of clear targets and goals.

Table 3.10 summarizes the type, i.e. experimental (exp.) or numeric (num.),
and the micro-climatic and thermal indicators used by the different articles re-
viewed.

Having conducted our review of the existing literature and identified remaining
knowledge gaps, we now propose corresponding research questions.


www.city.nagaoka.niigata.jp
www.city.nagaoka.niigata.jp
www.insee.fr
www.insee.fr

Table 3.10 — Literature review summary.

Micro-climatic Indicators

Thermal Indicators

Author Type T, RH MRT/T, UHI Thermal Comfort Tt Tpavement E V
Kinouchi and Kanda (1997) exp. X X X X X X X
Kinouchi and Kanda (1998) exp. X X X X
Yamagata et al. (2008) exp. X X X X
Takahashi et al. (2010) exp. X

Nakayama and Fujita (2010) exp. X

Li et al. (2013) exp. X

Bouvier et al. (2013) exp. X X X

Maillard et al. (2014) exp. X X

Kubo et al. (2006) num. X

Nakayama et al. (2012) num. X X
Météo France and CSTB (2012) num. x X X

Wei and He (2013) num. X X
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CHAPTER

Knowledge Gaps and Remaining
Research Questions

Several aspects related to the study of cool pavements used to improve thermal
comfort or to counter UHI have been covered in Chapter 2. While thermal effects,
generally pertaining to surface temperature, pavement temperature or pavement
heat flux effects, have been vastly analyzed both in the lab and in the field,
micro-climatic effects have seldom been studied experimentally.

In this last regard, pavement-watering stands out among UHI countermea-
sures. Indeed, its micro-climatic effects have been studied in the field on a number
of occasions (Kinouchi and Kanda, 1997; Yamagata et al., 2008; Takahashi et al.,
2010; Bouvier et al., 2013; Maillard et al., 2014), in addition to work on its ther-
mal effects (Kinouchi and Kanda, 1997, 1998; Kubo et al., 2006; Nakayama and
Fujita, 2010; Li et al., 2013; Bouvier et al., 2013; Maillard et al., 2014). However,
several limitations of varying gravity have been identified. These are related to
how representative their experimental conditions are of dense urban areas, to their
relatively small number and difficult comparability. This leaves much uncertainty
as to the validity of reported pavement-watering effects and its water footprint.

To address this, we propose to pursue the following research questions for
dense urban environments in heat-wave conditions, using Paris as a case study:

= Can the direct comparison method be reliably used to evaluate the real-world
effects of anti-UHI techniques?

= What micro-climatic effects can be expected of pavement-watering?
» What are the UHI-mitigation effects of pavement-watering?

= What can be said of the thermal effects of pavement-watering?
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Knowledge Gaps and Remaining Research Questions

= Finally, how much water is required for pavement-watering and how can its
watering efficiency be improved?

The answers to these questions will help complete the identified knowledge
gaps and reinforce previous findings.

Our results will inform decision-makers on the costs and benefits of pavement-
watering when it is applied to dense urban areas during heat-waves. This informa-
tion is crucial for cities interested in including the method in their UHI-mitigation
and/or climate change adaptation strategy.

To answer these questions, measurements obtained by a pavement-watering
experiment conducted at two sites in Paris, France over the summers of 2013 and
2014 will be analyzed. Part 1 will focus on the microclimatic effects of pavement-
watering. Part 2 will study the thermal effects of pavement-watering. Finally, Part
3 will analyze how sprinkled water contributes to observed cooling and propose
ways to improve the watering efficiency of pavement-watering.

The chapters included in Parts 1, 2 and 3 are based on the peer-reviewed
work published in Applied Thermal Engineering, Urban Climate and the Journal
of Sustainable Development of Energy, Water and Environment Systems in 2014
and 2015 (Hendel et al., 2014, 2015a,b), and work currently being reviewed by
Urban Climate (Hendel et al., 2015).



Part 1

MICRO-CLIMATIC EFFECTS OF
PAVEMENT-WATERING
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CHAPTER

Introduction to Part 1

Countermeasures to the UHI effect are of growing interest to decision makers.
Certain measures have been encouraged or made mandatory for new buildings
through local legislation or regulation, such as California’s Title 24 in the case of
cool roofs (California Energy Commission, 2010). Such policies are supported by
the growing scientific literature on the topic of UHI countermeasures previously
discussed, yet proper evaluation tools are required in order to analyze their effec-
tiveness in the field. Indeed, actual measurements of the atmospheric effects of
UHI countermeasures are of great importance to the scientific community, to help
validate simulation models for instance, but also for decision-makers who wish to
evaluate the effectiveness of anti-UHI policies.

To date, cool materials, which can be reflective, permeable or covered with
low vegetation such as grass, have been thoroughly studied in the lab or on small-
scale prototypes (Li et al., 2013; Karlessi et al., 2011; Kubo et al., 2006; Levinson
et al., 2007; Takebayashi and Moriyama, 2007, 2009). Results indicate that sur-
face temperatures are significantly reduced compared to standard materials. This
in turn is expected to result in lower contributions to urban heating as sensible heat
flows are reduced following lower urban surface temperatures. Equivalent work
on green spaces has mostly focused on existing parks (Jauregui, 1990; Ca et al.,
1998), though smaller scale testing has also been conducted (Spronken-Smith
and Oke, 1999). Parks have been found to be up to a few degrees cooler than
their surroundings through the combined effects of evapotranspiration and shad-
ing. However, field evaluations and monitoring of large-scale applications of cool
materials or new urban green spaces are scarce (Santamouris, 2013; Bowler et al.,
2010). Indeed, large-scale micro-climatic effects have been almost exclusively
studied with the help of computer simulations (Akbari et al., 2001; Nakayama
et al., 2012; Météo France and CSTB, 2012; Wei and He, 2013).

Pavement-watering stands out as an exception and has been studied in the field
via several independent studies (Kinouchi and Kanda, 1997, 1998; Yamagata et al.,
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2008; Takahashi et al., 2010; Bouvier et al., 2013; Maillard et al., 2014). This
technique, consisting of spraying water onto an impervious or a permeable pave-
ment surface, is viewed as an efficient means of reducing UHI intensity. Known
locally as "Uchimizu”, Japan has traditionally practiced pavement-watering for
centuries up to this day (Japan Water Forum, 2015). Scientific work began in
the 1990's with the use of preexisting pavement-watering installations in Nagaoka
City (Kinouchi and Kanda, 1997, 1998) or block-scale demonstrators in Tokyo
(Yamagata et al., 2008). More recently, the city services of Paris or Lyon have
conducted their own field studies with the use of cleaning trucks or watering in-
frastructure prototypes (Bouvier et al., 2013; Maillard et al., 2014). In France and
especially Paris, the predicted increases in heat wave intensity and frequency due
to climate change (Lemonsu et al., 2013), combined with the high sensitivity of
dense cities to such episodes (Robine et al., 2008; Li and Bou-Zeid, 2013), have
focused efforts on the development of appropriate adaptation tools.

In all of these cases, the methodology applied is a direct comparison between
case and control measurements. The observed interstation difference is thus in-
terpreted as the effect of pavement-watering. This analysis method implies that
interstation differences in the absence of watering are equal to zero for the studied
micro-climatic parameters. However, given the complexity of urban environments
this hypothesis may not be applicable in cities where UHI countermeasures will
be implemented.

This Part uses a pavement-watering experiment conducted in Paris, France
during the summers of 2013 and 2014 to determine the suitability of the direct
comparison method to measure the field effects of UHI countermeasures in cities.
In the process, further light will be shed on the effects of pavement-watering on
micro-climatic parameters and pedestrian thermal comfort in the field. Through
this case study, we will demonstrate that the frequently-seen direct case-control
comparison is not suited to dense urban environments and we will propose an
alternative interpretation method. Focus will be set on the methodological diffi-
culties encountered during the analysis of collected data and the alternatives that
we developed to overcome them. The resulting methodology can be generalized to
all UHI countermeasures if sufficient time is available to study the micro-climatic
conditions present before the countermeasure is put into place. The work pre-
sented in this Part is based on the work submitted to Urban Climate currently
being peer-reviewed (Hendel et al., 2015).

The initial methodology will first be described in Chapter 6. Chapter 7 will
then present the results of the analysis and reveal the shortcomings of the direct
comparison method. An alternative analysis method will be proposed and tested
in Chapter 8.



CHAPTER

Methodology

The following chapter will describe the method adopted for the analysis conducted
in this Part. Certain aspects of the field experiment useful for Parts 2 and 3 will
also be presented.

As noted previously in the literature review (see Chapter 3), most previous work
has studied the effects of watering only pavement surfaces, leaving the sidewalks
untreated (Kinouchi and Kanda, 1997, 1998; Yamagata et al., 2008; Takahashi
et al., 2010; Maillard et al., 2014). Yet, pedestrians mostly use sidewalks and
should therefore benefit significantly from sidewalk watering in addition to pave-
ment watering. We therefore set out to test both methods at the two different
sites.

6.1 Location

Local micro-climatic data was recorded during the summers of 2013 and 2014
on the rue du Louvre, located near Les Halles at the edge of the 15t and 2"¢ Ar-
rondissements, and on two streets, rue Lesage and rue Ramponeau, near Belleville
in the 20t" Arrondissement. Both sites will be respectively referred to as the Lou-
vre and Belleville sites hereafter. Site positions within Paris are illustrated in
Figure 6.1.

These test sites were selected within Paris’ municipal borders in order to max-
imize UHI intensity. Other factors were also taken into account in order to filter
out other influences and facilitate the detection of the pavement-watering effect.
Each pair was therefore selected following strict criteria, including a minimum
distance between case (watered) and control (dry) stations (10 times street width
at least), minimal immediate presence of vegetation, identical street orientations,
canyon aspect ratios and street widths. Pairs were also chosen so that the ur-
ban materials around them, e.g. roads or building facades, were as similar as
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In

‘Belleville Stations
} e

Louvre Stations-_—

Figure 6.1 — Position of Experimental Sites in Paris

possible. Road traffic, surrounding parks and vegetation, station shading and to-
pography were also controlled for. These criteria narrowed down the areas where
the experiment could take place.

Following the Blue Paper’'s recommendations (Paris City Council, 2012a), a
selection criterion was included for watering to be conducted autonomously and
directly from the existing non-potable water network with minimal modification,
e.g. a temporary watering pipe installed a few days prior to watering. This condi-
tion excluded candidate sites where network water pressure was low. Furthermore,
the temporary watering pipe required a site with limited pedestrian and road traf-
fic to avoid disturbance or damage and proximity with a facility where it could be
stored between watering campaigns. Field investigations revealed that these crite-
ria were met at the Belleville site, located near the Engineering School of the City
of Paris (EIVP). Because watering at Belleville would be continuous and largely
unsupervised, only the pavement was watered to avoid watering pedestrians as
well as flooding and damage to adjacent buildings.

Since the sidewalk at the Belleville site was not watered, the Louvre site was
selected where pavement and sidewalk were watered with a cleaning truck and
manual operator (see Section 6.2).

Watered and control weather station positions are illustrated in Figure 6.2.
Two twin weather stations were positioned for each site, each pair measuring
identical parameters. Thermal effects were only observed at the rue du Louvre
site.

Louvre stations were positioned approximately 200 meters apart in the same
street, while the Belleville stations were positioned in two parallel streets, rue
Lesage and rue Ramponeau. In terms of road materials, impervious asphalt con-
crete approximately 16 cm deep is laid on a 16 cm cement-treated base at the
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Figure 6.2 — Station Positions at the Louvre (left) and Belleville (right) Sites

Louvre stations. At the Belleville stations, different cobblestones are used at the
watered and control sites, with sandstone pavers at the case and granite pavers
at the control. While the Louvre site is representative of Paris’ more recent large
avenues and streets, the Belleville site is an example of Paris’ older narrow streets.

Rue du Louvre, rue Lesage and rue Ramponeau have an aspect ratio approxi-
mately equal to one (H/W=1). Rue du Louvre has a N-NE—S-SW orientation,
while at Belleville both streets have an E-NE—W-SW orientation.

In order to evaluate the quality of the resulting match between stations, Figure
6.3 compares solar irradiance measurements 4 m a.g.l. at the case and control
stations for Louvre and Belleville on a cloudless day, July 14th, 2013.

While solar irradiance measurements at the Louvre stations are highly consis-
tent with each other, significant differences are visible between the Belleville sta-
tions, occurring from 9 am to 2 pm and from 5 pm to 6 pm. Imperfectly matched
building heights and slight differences in street orientation between paired stations
are thought to explain them. In addition, another contributor to differences at
Belleville not visible with solar irradiance measurements is a street sign directly
South of the control station which shaded the globe thermometer a few hours a
day at midday over the summer period. This sign should have been removed after
station installation by the city services but in reality never was.

Overall, the match between stations is much better for Louvre than for Belleville.

6.2 Watering Method

The adopted pavement-watering method was designed on the basis of previous

work by Kinouchi and Kanda (1997, 1998); Yamagata et al. (2008); Takahashi
et al. (2010); and Bouvier et al. (2013).
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Figure 6.3 — Solar irradiance at Louvre (left) and Belleville (right) on July 14th
2013

Weather conditions

Ideally, since the goal is to study the effects of pavement-watering in heat wave
conditions, watering trials should be undertaken during a heat wave. However,
only two heat-wave warning days occur during the average Parisian summer
(Lemonsu et al., 2013). Requiring strict heat-wave warning days would there-
fore mean running the risk of severely reducing the number of watered days. The
weather conditions used to begin pavement-watering were thus loosened, including
air temperature, wind speed and sky conditions. They are presented in Table 6.1
and are calculated on the basis of Météo-France's three-day forecast. The condi-
tions for heat-wave warnings in Paris are also presented. BM Iy, and BM Iy,
refer to the 3-day mean of daily maximum 7}, and minimum 7,, air temperatures.

Table 6.1 — Weather conditions required for pavement-watering and heat-wave
warnings (Hendel et al., 2015a)

Parameter Pavement-watering Heat-wave warning level
T, BM Iy, > 16°C > 21°C
T, BMIyqe > 25°C > 31°C
v < 10 km/h -

Sky conditions Sunny (less than 3 oktas i
cloud cover)
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Water Sprinkling Technique

Figure 6.4 indicates the watering method applied at both sites. Watering fre-
quency, period and rate are provided as well as the targeted surface areas and the
ratio of watered-to-total width between parentheses.

Louvre YV VY Yy YYY YV Y VY Yy Pavement and sidewalk (100%)
06:30 11:30  14:00 18:30

Continuous (25 mm/h)
Belleville v v
07:00 19:00

Pavement only (33%)

Y

06:00 12:00 18:00 00:00 06:00

Figure 6.4 — Diagram describing the applied watering method at both sites.

On rue du Louvre, cleaning trucks were used to sprinkle approximately 1 mm
(equivalent to 1 L/m?) every hour from 6:30 am to 11:30 am and every 30 minutes
from 2 pm until 6:30 pm on the sidewalk and pavement. Both watered and dry
portions of the street are approximately 180 m long and 20 m wide. Watering cycle
times were recorded by drivers on a timetable and were compared with time-lapse
visible images taken from a rooftop above the watered station.

At Belleville, a removable 40 m watering pipe was laid along the gutter to water
the cobblestone pavement on rue Lesage continuously from 7 am to 7 pm across
its 4 meter width. Water use at the Belleville site was approximately 25 mm/h
(i.e. 25 L/m2.h). In terms of the watered-to-total area ratio, rue du Louvre was
100% watered, while rue Lesage was approximately 33% watered. The watering
process is illustrated for both sites in Figure 6.5.

Watering
—sHose="

\VETUE] I
Watering |-
Cleaning
Truck

Figure 6.5 — Watering on rue du Louvre (left, from Hendel et al. (2014)) and rue
Lesage (right)

Water used for this experiment was supplied by the city's 1,600 km non-potable
water network, principally sourced from the Ourcq Canal. Water temperature was
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not measured in 2013, but its typical summertime range is 20°-25°C. This range
was confirmed in 2014 with a spot Pt-100 thermometer measuring water at the
outlets of the watering devices.

6.3 Instruments

Weather stations were designed to record weather data relevant to pedestrian
thermal comfort such as air temperature, RH, MRT and wind speed.

Only air temperature, relative humidity and mean radiant temperature should
be affected by pavement-watering. In addition, pavement heat flux and tem-
perature 5 cm below the pavement surface as well as surface temperature were
recorded at rue du Louvre to determine the thermal effects of pavement-watering.
Station design is presented in Figure 6.6 for rue du Louvre.

Wind, Temperature, Humidity,

Street sign post
\ Presence of rain, Solar Irradiance

Rooftop infrared camera

Measurement cage

4m Q
A Temperature, Humidity,
om A : Globe Temperature (1,5 m height)
A [ Temperature, Heat Flux (5 cm depth)
0,30 m /
0,40 m

1,60 m minimum Tm 1,60 m

Figure 6.6 — Weather station design and instrumentation (rue du Louvre).

Instruments within pedestrian reach were protected behind a cylindrical white-
painted steel cage. Air temperature and relative humidity were measured with
a sheltered DMA 672.1 sensor supplied by LSI LASTEM combining a Pt100
and a capacitive hygrometer. Black globe temperature was measured with LSI
LASTEM's EST 131 globe thermometer. Finally wind speed and direction were
measured with a 2-axis Wind Sonic ultrasonic anemometer supplied by Gill Instru-
ments. Table 6.2 summarizes the properties of the meteorological instruments
installed at the fixed weather stations, including measurement height and instru-
ment uncertainty.

Black globe temperature (7}), air temperature (75) and wind speed (v)
measurements from the weather station were used to estimate MRT following
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Table 6.2 — Type, height and uncertainty of meteorological instruments. Adapted
from Hendel et al. (2015).

Parameter Instrument Height Symbol Uncertainty
. 15m o

Air temperature  Sheltered Pt100 4m T, 0.1°C

Relative humidity >1¢'tered capacitive L5m  pp 15%RH

hygrometer 4 m

Globe tempera- o

ture Black globe thermometer 1.5 m Ty 0.15°C

Wind speed 2D ultrasonic anemometer 4 m v 2%

ASHRAE (2001).

Louvre and Belleville stations are identical except for the height of the instru-
ment cage and the presence of a pavement sensor. Indeed, the instrument cage
is 2 m high at Louvre vs. 3 m at Belleville. This results from differing safety
precautions requested by the city services to authorize station installation. No
pavement sensor was installed at Belleville.

A photograph of each station is provided in Figure 6.7.

Figure 6.7 — Photographs of watered and control weather stations in situ. From
left to right: watered and control Louvre stations, watered and control Belleville
stations (Hendel et al., 2015).
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6.4 UHI Mitigation Potential

The principal aim of UHI countermeasures is to reduce their intensity.

To evaluate this impact, we adopt a similar criterion to that used by Météo
France and CSTB (2012). They used 2 m air temperatures averaged between
3 am and 6 am local time, when UHI intensity is greatest.

For our purposes, we use 1.5 m and 4 m air temperature averaged over the
same period.

6.5 Thermal Comfort Evaluation

UTCI was calculated from these measurements for each station to estimate pedes-
trian thermal comfort (Blazejczyk et al., 2010).

As seen in the literature review, UTCI is more and more popular and should
therefore ensure good comparability with existing or future studies. Air tem-
perature, humidity, wind speed and MRT are used as well as assumptions on
the metabolic activity and clothing of pedestrians to calculate an equivalent air
temperature for reference conditions.

For the purpose of our analyses, UTCI equivalent temperature was fast-
calculated with the FORTRAN code written by Peter Brode in 2009 which we
adapted for use with the R software environment. The source code is freely
available (Brode, 2009).

Inaccuracies are introduced into both MRT and UTCI by the use of 4 m wind
speed rather than 1.5 m and 10 m wind speeds, respectively, as well as by globe
temperature measured inside the cylindrical cage. The latter causes shading of
the instrument leading to the underestimation of daytime MRT.

6.6 Heat Transfer Analysis

Figure 6.8, adapted from Hendel et al. (2015a), shows a diagram of the surface
heat exchanges at the pavement surface.

Atmosphere

Pavement

Figure 6.8 — Diagram of pavement heat budget at surface (Hendel et al., 2015).

Pavement heat flux density at the surface is noted V. Solar irradiance received
by the pavement is referred to as S. S,.y is the reflected SW radiation, while
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Lyp and Lgoyy represent LW upwards and downwards radiation, respectively. H
represents the sensible heat transfer from the pavement towards the atmosphere,
while [E is the latent heat flux density. In addition to the latent heat flux, the
sprinkled water film absorbs sensible heat from the pavement, though this heat
transfer mechanism is not shown in Figure 6.8.

The pavement heat balance will be analyzed in more detail in Part 2, however
it will help us understand the physical phenomena behind possible micro-climatic
effects.

The cooling flux created by pavement-watering is expected to affect micro-
climatic conditions, including air and mean radiant temperature reductions and
relative humidity increases. Firstly, lower pavement surface temperatures will
result in lower convective heat flux, which in turn should cause air temperature
reductions. Secondly, relative humidity is expected to increase as a result of water
evaporation. Finally, increased SW absorptivity as a result of surface wetting
(Lekner and Dorf, 1988) and lower surface temperatures are expected to reduce
upward SW and LW radiation from the pavement, resulting in a reduction of
mean radiant temperature. These effects will be commensurate to the size of the
watered zone.

In terms of thermal comfort, the increase in relative humidity has the opposite
effect of the reductions in air and mean radiant temperature. Therefore watering
may in fact result in greater thermal discomfort for pedestrians if the humidity
increase is too great in comparison to the other expected cooling effects. It
is therefore uncertain whether the combination of these effects will improve or
degrade pedestrian thermal comfort.

6.7 Data Series

All measurements were recorded continuously by the station dataloggers every
minute and are presented in local daylight savings time (UTC +2).

As previously stated, pavement-watering has the advantage over other UHI
countermeasures of being fully reversible, i.e. watering can be conveniently turned
on or off without modifying the preexisting conditions. Indeed, most UHI coun-
termeasures are meant to be permanent and it is very difficult if not impossible to
revert back to the preexisting state. Days with watering, referred to as watered
days, can therefore easily be compared with days without watering, referred to as
reference days.

For better comparability between reference and watered days, temperature
data is presented over 24 hour periods extending from 6 am until 5:59 am on the
next day, i.e. July 20" refers to data from 6 am on July 20" until 5:59 am on
July 215, This helps better outline the effect of pavement-watering, which begins
between 6:30 and 7 am and ends between 6:30 and 7 pm. In addition, only days
of Pasquill stability class A or A-B will be considered in the upcoming analyses
(Pasquill, 1961). This condition implies nearly clear skies (less than 3 oktas cloud
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cover) and low wind speeds (< 3 m/s). All watered days are of Pasquill stability
class A or A-B.

Over the summer of 2013, 10 days met the weather conditions required for
pavement-watering and 23 additional ones could be used as reference days. Of
the 10 watered days, July 8tM-10th and 16" were the coolest (T, ~ 30°C, 31%
< RH < 81%), with July 22", 234 and August 1%t and 2"¢ being the warmest
(T, > 35°C, T;, > 20°C, 22% < RH < 73%). August 23™ and September 5"
were also watered and had intermediate temperatures (35°C> T, > 30°C, 25%
< RH < 64%). Over this period, the control station on rue du Louvre was van-
dalized and thus nonoperational from July 19t" to August 19t" and from Septem-
ber 4" until the end of the summer. Over the same period, the Belleville control
station was unpowered from 4 pm on July 22" until 5 pm on July 25"

Although 2014 is France's warmest year since the 1900’s as of this writing
(Météo France, 2015), only two days met the required weather conditions for
pavement-watering over the summer of 2014 and five could be used as reference
days. July 17" and 18t are the two watered days. August 2014 was particularly
cool with a monthly temperature approximately 1.5°C colder than average (Météo
France, 2014). Although no events caused any of the stations to fail during the
summer of 2014, road work occurred at the Louvre watered station from July 29t
until the end of the summer.

6.8 Interpretation of Micro-climatic Effects

For the upcoming analyses, the one-minute data series are smoothed with a ten-
minute moving average.

As described earlier, the standard method used in previous work on pavement-
watering is to interpret its effect on each considered micro-climatic parameter
as the difference between measurements from two stations or areas: one experi-
mental (watered) and one control (unwatered) (Kinouchi and Kanda, 1997, 1998;
Yamagata et al., 2008; Takahashi et al., 2010; Bouvier et al., 2013; Maillard et al.,
2014). In doing so, the hypothesis is implicitly made that under normal conditions
without pavement-watering, the difference between station measurements should
be constant and equal to zero.

We adopt the same approach for our own micro-climatic measurements, in
addition to the condition that considered days be of Pasquill atmospheric stability
class A or A-B (Pasquill, 1961).

Unless specified otherwise, the following analyses focus on the difference be-
tween case and control stations, calculated in the following fashion:

Ydiff = Ycase — Ycontrol

Negative values therefore indicate that the watered station parameter is lower
than that of the control station, and vice versa. The difference between case and
control measurements will be referred to as the interstation difference.
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Direct Case-Control Comparison

This chapter presents the interstation difference profiles for measured parameters
at Louvre and Belleville from July 2" to July 19t" 2013, period during which all
stations were operational without interruption.

7.1 Results

Figure 7.1 presents the interstation difference between the case and control sta-
tions for T, and RH at 1.5 m and 4 m, and MRT and UTCI, for rue du Louvre
between July 2"4 and July 19t". Figure 7.2 shows the same curves for Belleville.
Reference days are in red, watered days in blue, while days that were not of
Pasquill stability class A or A-B are in grey.

Judging solely by the reference days (red), it is immediately apparent that the
assumption that measurements at twin stations are constant or equal is unfounded.
The differences in insolation at the Belleville site revealed that those stations were
imperfectly matched. It is therefore not surprising for significant differences to
exist between the Belleville stations. However, insolation at the Louvre stations
was close to identical and thus differences of the amplitude seen in Figure 7.1 are
unexpected.

Even after smoothing the data, filtering meteorological conditions and se-
lecting station positions as similar as possible, measurements at paired stations
cannot be considered to be equal, even up to a constant, no matter which param-
eter is considered at 1.5 or 4 m a.g.l. Moreover, the data exhibits variation from
one reference day to the next, complicating the interpretation of the watering
effect further. Only RH at the Louvre site shows clear changes on watered days
compared to reference ones, but they are difficult to quantify.

Although this possibility is not considered in the reviewed pavement-watering
literature, it should be noted that Kinouchi and Kanda (1997) do point out that
micro-climatic conditions were either equal on average or were warmer and dryer at
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Figure 7.1 — Differences between Louvre case and control stations from July 2"
to 19th, 2013 (top to bottom) for 7, and RH at 1.5 m (left) and 4 m (right)
height and MRT (bottom left) and UTCI (bottom right). Watered days are in
blue, reference days are in red. Days with uncomparable weather conditions are
in grey (Hendel et al., 2015).
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the watered site a few hours before and after pavement-watering. This assessment
was not investigated further in their analysis of pavement-watering effects.

7.2 Interstation Profile on Reference Days

Studying these curves does however provide insight into the relative behavior
of the paired stations. Table 7.1 summarizes the mean differences observed on
reference days for each parameter, height and site over the summers of 2013 and
2014, when data is available.

Table 7.1 — Average case-control difference on reference days over the summers
of 2013 and 2014 (Hendel et al., 2015).

Parameter Height Louvre  Belleville

1.5m +40.26°C +0.21°C
4m  +0.40°C +40.31°C

1.5m -099%  -0.40%
4 m -0.81%  -0.56%

MRT 15m -0.13°C +1.35°C
UTCI 1.5m +40.52°C +0.72°C

1,

RH

On reference days air temperatures at 1.5 m and 4 m for both Louvre and
Belleville are generally higher at the case station than at the control station, while
RH is generally lower. The average air temperature differences, in the order of
a few tenths of a degree Celsius, are increased at both sites at 4 m relatively to
1.5 m.

MRT difference curves exhibit high amplitudes during periods of direct inso-
lation (see Figure 6.3 for details), reaching up to 15°C at Belleville and 10°C at
Louvre. This is due to the high influence of insolation on MRT. Even short-lasting
differences in insolation between stations due to a passing cloud for example can
cause high amplitude differences in MRT. Finally, UTCI is warmer at the case
station for both sites.

On average, the case station is therefore warmer and drier than the control
station at both sites and paired station measurements are not equal on reference
days. The low average difference in MRT between the Louvre stations vouches
for the good match in shading conditions between them. This is not the case for
the Belleville site where insolation is much stronger at the case station than at
the control, as seen in Figure 6.3.

As can be seen by comparing the MRT and UTCI curves for Belleville, the
difference in MRT is the main driver for the UTCI difference during insolation.
This is consistent with the sensitivity analyses conducted by Brode et al. (2012),



7.3. 24-hour Average Differences

49

i.e. that for air temperatures higher than 20°C, UTCI equivalent temperature
increases by about 3°C for every 10°C increase in MRT.

7.3 24-hour Average Differences

As a first approach, we compare the daily interstation differences on watered and
reference days.

If pavement-watering effects do exist, a variation in the average interstation
difference should occur on watered days compared to reference days. The daily-
averaged interstation differences on watered days and their variation compared to
reference days are reported in Table 7.2.

Table 7.2 — Daily interstation difference on watered days and variation from ref-
erence days over the summers of 2013 and 2014. Adapted from Hendel et al.
(2015).

Watered days Variation
Louvre  Belleville  Louvre Belleville

1.5m 0.01°C  +0.15°C -0.25°C  -0.06°C

Parameter Height

Ta 4m  +026°C +031°C  -0.14°C  +0.00°C

RH 15m +047% -010% +1.46% +0.29%

4m +0.11% -0.47% +0.93% +0.09%

MRT 15m -027°C  +1.67°C -0.40°C  +0.32°C
UTCl 15m 4022°C +0.68°C -0.29°C  -0.04°C
Ubbmitioation 15 ™ ] -0.14°C  -0.08°C
& 4m 20.00°C  -0.09°C

Results show that the average case-control differences are lower for each pa-
rameter on watered days compared to reference days at Louvre, except for RH
which is increased. T, and UTCI are reduced in the order of 0.1°C, MRT is re-
duced by a few tenths of a degree Celsius, while RH is increased by about one
percentage point at Louvre. Similar changes occur at Belleville except that 4
m air temperature is unchanged and MRT is increased by 0.32°C. Furthermore,
UHI-mitigation effects are also detected, in the order of one tenth of a degree
Celsius.

The changes in case-control differences are indicative of pavement-watering
effects. It does seem at first glance that pavement-watering reduces air and UTCI
temperatures and increases RH over 24 hours, while MRT effects at Louvre and
Belleville are contradictory. However, it is unclear how stat. sign. they may be.

In order to account for data variability, a statistical analysis of the data is
necessary and will be applied in Chapter 8.
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7.4 Conclusion

The measurements recorded in July 2013 at the Louvre and Belleville sites clearly
demonstrate that the assumption that meteorological parameters are equal up
to a constant between case and control stations on reference days is incorrect.
Interstation difference profiles on reference days exhibit high hourly and daily
variability. In the absence of these reference day measurements, the inadequacy
of the methodology may not have been detected and the effects of pavement-
watering may well have been overlooked or found to worsen pedestrian thermal
stress.

Although direct comparisons between case and control weather stations may
be valid in certain situations, and could be sufficient for RH at the Louvre site,
it is unlikely that this is the general case, especially in dense urban environments
which are quite complex. We therefore argue that direct case-control comparison
is not a valid method to determine the field effects of UHI countermeasures in
cities.

As a first attempt to compensate for this, the daily interstation differences on
watered and reference days were also compared. Unfortunately, though certain
effects may be apparent, it is unclear how stat. sign. they are.

These conclusions are not specific to pavement-watering and can be gener-
alized to other UHI countermeasures. This leads to our first recommendation
for field assessments of UHI countermeasures: test sites should be characterized
before the studied countermeasure is implemented. By detecting preexisting in-
terstation behavior, normal differences between sites will not be misinterpreted
as UHI mitigation effects or the absence thereof. While none of the field exper-
iments of pavement-watering we found in the literature proceed in this fashion,
it is noteworthy that numerical simulation studies naturally use this method. In-
deed, they typically compare the same site in identical conditions, apart from the
implementation of the UHI countermeasure. This recommendation is also made
by Bowler et al. (2010) as they conclude their meta-analysis of the cooling effects
of urban greening.

The original approach must therefore be modified. An alternative, statistical
approach is proposed and tested in Chapter 8.



CHAPTER

Interstation Behavior on
Reference and Watered Days

In the previous Chapter, we demonstrated that the micro-climatic effects of UHI
countermeasures such as pavement-watering cannot be detected by direct com-
parisons between case and control stations in cities. We now propose a method
based on comparisons of the average interstation difference profile on days with
and without watering.

8.1 Statistical Analysis Method

The two-sample t-test is used to compare watered and reference day interstation
profiles for each considered parameter.

First, the average interstation profile is established for reference and watered
days. Respectively, all reference and watered day observations are grouped by
time of day for each minute. For example, all observations made at 2:07 pm
on reference days over the summers of 2013 and 2014 are grouped together,
thus forming the "2:07 pm reference day observations” sample. 1,440 one-minute
samples are obtained for both reference and watered days, i.e. a total of 2,880

wet/dry

samples. From each of these, a sample mean (,u-

i ) and sample variance can

be calculated. A time series is obtained by ordering the respective sample means
in chronological order, representing the average interstation difference profile for
reference or watered days:

Vi € [1;1440], ycl;ijct}dw(ti) _ 'u;vet/dry

Having obtained the sample mean interstation difference profiles, the values
obtained on watered and reference days are compared minute-by-minute, i.e. sam-
ple pair by sample pair.
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A two-sample t-test is conducted for each minute-by-minute difference, i.e.
the difference between ¢ and ™ for i € [1;1440]. The null hypothesis (H{)
chosen states that u; is greater on watered days than on reference days. The
alternative hypothesis (Hfl) states that p; is strictly lower on watered days than
on reference days. These hypotheses constitute a one-tailed test. For this analysis,
the opposite of RH and RHgs,, will be used in order to avoid reformulating the
hypotheses for these two parameters. Both hypotheses can be summarized as
follows:

i.  wet dry
Vi € [1;1440], HO S =Y
a I A 0

Using the field data, a two-sample t-test of the null hypothesis is conducted
with a significance level of 0.05. If the obtained p-value is lower than the signifi-
cance level, the null hypothesis is rejected.

8.2 Results

Figure 8.1 and Figure 8.2 plot the average change detected on watered days
compared to reference days (solid blue line) for the Louvre and Belleville sites,
respectively.

Values above the x-axis represent increases while values below the x-axis rep-
resent decreases on watered days compared to reference days. In other words:

v = Vi — viify

The confidence interval is illustrated by the two red dashed curves. If the solid
curve is in between the dashed curves, then the average effect at that time of day
is not stat. sign..

Watered days exhibit mostly negative changes in Ty, Ty4m, MRT and UTCI
and mostly positive ones for RH and RH4m. In other words, the environment
around the case stations is cooler and more humid, yet overall more comfortable,
on watered days than on reference days. In short, watering is more effective at
Louvre than at Belleville.

Taking a closer look, it appears that the greatest effects occur in the afternoon
between 2 pm and 7 pm for all parameters, i.e. during pavement insolation. Of all
considered parameters, RH is the one that best reflects watering events. Indeed,
changes in RH at Louvre are simultaneous to watering which occurs from 6:30 am
and 6:30 pm with an interruption between 11:30 am and 2 pm. This is not as
clear at Belleville which had continuous watering from 7 am to 7 pm.

Although effects are greater at Louvre than at Belleville, maximum effects
are comparable and occur in the afternoon for all parameters. While differences
in street orientation may play a role, the higher average effects at Louvre are
attributed to the difference in watering strategies between sites. In other words,
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Figure 8.1 — Average watering effect at Louvre over the summers of 2013 and
2014 (top to bottom) for T, and RH at 1.5 m (left) and 4 m (right) a.g.l. and
MRT (bottom left) and UTCI (bottom right). Average effects are solid blue,
confidence intervals are dashed red (Hendel et al., 2015).
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Figure 8.2 — Average watering effect at Belleville over the summers of 2013 and
2014 (top to bottom) for T, and RH at 1.5 m (left) and 4 m (right) a.g.l. and
MRT (bottom left) and UTCI (bottom right). Average effects are solid blue,
confidence intervals are dashed red (Hendel et al., 2015).



8.2. Results

55

we confirm that watering 100% of the street surface is more effective than watering
33% of its surface.

While average effects positively affect weather conditions, they are not always
stat. sign.. Table 8.1 and Table 8.2 summarize the duration of stat. sign. effects
as well as the mean and maximum values reached during that time for 7,,, RH,
MRT and UTCI for both sites.

Overall, watering effects are more often stat. sign. at Louvre, in addition
to greater average effects. Looking at the temporal distribution of stat. sign.
effects, it appears that for both Louvre and Belleville they occur most often at
night (after 6 pm) for T, Tyam, MRT and UTCI and most often during the day
for RH and RH4m,.

Table 8.1 — Duration, mean and maximum values of stat. sign. effects for Louvre
over the summers of 2013 and 2014 (Hendel et al., 2015).

Parameter Height Duration (hours/day) Mean effect Maximum effect

T 15m 16.7 -0.31°C -0.79°C
“ 4m 12.2 -0.22°C -0.57°C
RH 15m 22.0 +1.5%RH +4.1%RH

4m 20.3 +1.1%RH +2.8%RH
Tonrt 15m 195 -0.43°C -1.67°C
UTCl 15m 12.2 -0.42°C -1.03°C

Table 8.2 — Duration, mean and maximum values of stat. sign. effects for Belleville
over the summers of 2013 and 2014 (Hendel et al., 2015).

Parameter Height Duration (hours/day) Mean effect Maximum effect

T 15m 7.0 -0.21°C -0.60°C
¢ 4 m 7.0 -0.19°C -0.49°C
RH 15m 7.6 +0.7%RH +1.6%RH

4m 5.2 +0.6%RH +1.1%RH
Tonrt 15m 10.5 -0.29°C -2.39°C
uUTCl 1.5 m 6.3 -0.39°C -0.92°C

At Louvre, T, effects start to become stat. sign. after 8 am and mostly remain
so until 2 am the following day. For RH, stat. sign. effects occur practically as
soon as watering starts at 6:30 am and remain so until 4 am on the next day with
a few minor interruptions, particularly during the watering interruption at midday.
MRT effects are stat. sign. as early as 7:30 am until 2 pm and from 6:30 pm until
6 am the next morning. Statistically significant effects do occur in the afternoon
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but are more sporadic than in the morning or at night. UTCI stat. sign. effects
are more sporadic and mainly occur between 9:30 am and 3 am the next day.

Effects at Belleville are stat. sign. much less frequently than at Louvre. For
T, and RH, they mainly occur between 3 pm and 5 pm and between 2 am and
3 am. For MRT they can be mostly found between 5:30 pm and 2 am. Finally,
UTCI stat. sign. effects are sporadically spread out between 11 am and 9 pm.

Pavement-watering therefore has stat. sign. cooling effects up to several hours
after watering has ended, although maximum effects occur in the afternoon when
conditions are warmest and driest. Watering was also found to have stat. sign.
up to 4 m a.g.l. on air temperature and humidity. Furthermore, the comparison
between Louvre and Belleville shows that pavement-watering should target the
largest possible portion of street width in order to best improve pedestrian thermal
comfort.

8.3 Discussion

Our findings support that pavement-watering is an effective method for limit-
ing maximum daily heat stress, while having stat. sign., although limited, UHI-
reducing potential.

Maximum effects include reductions of up to 0.79°C and 0.57°C for 1.5 and
4 m a.g.l. air temperature, increases of up to 4.1%RH and 2.8%RH for 1.5 and
4 m RH, and decreases of up to 2.39°C and 1.0°C for MRT and UTCI, respectively.
Apart for RH, effects are chiefly stat. sign. at night, although maximum effects
occur in the afternoon. Furthermore, effects at Louvre are greater than those
observed at Belleville.

Numerical studies automatically account for natural background trends by
comparing the same site in identical conditions apart from the implementation of
the UHI countermeasure. Our findings compare well with those from such studies.
Overall, good agreement with the findings reported in numerical studies is found.
This is namely the case with Météo France and CSTB (2012) if the difference in
scale is taken into account, i.e. city-wide watering vs. watering a single street
portion. Indeed, they report maximum 2 m cooling of up to 2°C 7, and UHI
mitigation of between 0.25°C and 0.5°C averaged from 3 am to 6 am local time.
Other simulation work at the district-scale conducted by Wei and He (2013) also
agrees well with our findings with maximum reductions in MRT reaching 2.7°C
in similar situations to our own (see their passage i-j). Air temperature, RH or
thermal comfort effects were not investigated in their analysis. Kubo et al. (2006)
also conduct a district-scale simulation and find maximum reductions of 0.73°C
for 1.5 m air temperature, very similar to our own, and 2.13°C at a height of
0.5 m.

Despite the difference in interpretation method, we now present the findings of
previous field trials of pavement-watering. In Paris in 2012, Bouvier et al. (2013)
report up to 0.4°C cooling of 2 m air temperature and 4% increase in RH for
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a single nighttime watering event. In Lyon, Maillard et al. (2014) find a 0.5°C
reduction in 1.5 m WBGT in the afternoon. In Nagaoka, Japan, Kinouchi and
Kanda (1997) report reductions of up to 1°C in Tj, and 4°C in T}, as well as a 4%
increase in RH at 1 m a.g.l.. Average effects are in the order of 0.5°C for T}, 2°C
for T, and 3% for RH. Also in Nagaoka, Takahashi et al. (2010) discuss cooling
of up to 2°C in the morning and 4°C in the afternoon for 0.9 m air temperature.
Finally in Tokyo, Yamagata et al. (2008) find up to 3°C and 2°C reductions in
0.5 m air temperature and WBGT, respectively.

Given the methodological shortcomings of these analyses underlined in Chap-
ter 7, it is difficult to compare them with our own. Among these papers, Taka-
hashi et al. (2010)’s findings exhibit the greatest difference with our own. Part
of the difference is attributable to their lower measurement height, as proxim-
ity to the watered surface is expected to increase the detected effect. However,
the difference in findings is substantial nevertheless. It may be the case that
their watered area is naturally cooler than their control area even without water-
ing. As no information on this possibility is provided, it cannot be investigated
further. This goes for the other field works as well where natural background
differences between chosen case and control sites may cause over- or underesti-
mation of reported cooling effects. Most of the differences in reported cooling
effects are attributable to differing measurement heights, generally lower than
our own. Generally-speaking, differences in meteorological conditions may play a
significant role, such as summertime temperatures or RH.

The developed method can also be applied to the 24-hour differences initially
reported in Table 7.1 and Table 7.2. Using the daily-averaged field data, two-
sample t-tests of the null hypothesis are conducted with a significance level of
0.05. The p-values and average effects are summarized in Tables 8.3 for Louvre
and Belleville, over the summers of 2013 and 2014. No value is given for average
effects which are not stat. sign..

Table 8.3 — p-value and average stat. sign. (Cl: 0.95) effect at Louvre and
Belleville over the summers of 2013 and 2014 (Hendel et al., 2015).

P t Height Louvre Belleville

arameter ©18 p-value  Average effect  p-value  Average effect
T 1.5 m 0.000324 -0.25°C 0.134383 not stat. sign.
¢ 4m 0.00131 -0.14°C 0.482932 not stat. sign.

RH 15m 6.18E-11 +1.46% 0.037265  40.29%RH
4m  9.26E-09 +0.93%RH  0.298622 not stat. sign.
Tonrt 1.5 m 0.000127 -0.40°C 0.779618 not stat. sign.
uTcCl 1.5m 0.000346 -0.29°C 0.368533 not stat. sign.

1.5 m 0.034415 -0.14°C 0.131961 not stat. sign.

UHl-mitigation )" " 0015035 -0.00°C  0.050258 not stat. sign.
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At the Louvre site, the p-value is much lower than 0.05 and even 0.01 for
all parameters, i.e. the daily effects observed are highly stat. sign.. On the
other hand, this is not the case at the Belleville site. With a significance level of
0.05, only 1.5-m RH shows a stat. sign. daily effect of +0.29%RH. When UHI-
mitigation effects are considered, they are found to be stat. sign. for Louvre only,
with -0.14°C and -0.09°C at 1.5 and 4 m a.g.l., respectively. 4 m UHI-mitigation
effects at Belleville are nearly significant with an average value of -0.09°C.

This confirms that pavement-watering at Louvre is far more effective than at
Belleville where daily effects cannot be clearly separated from preexisting back-
ground noise.

More generally-speaking, the observed results agree well with expectations
based on the physical phenomena behind pavement-watering and the observa-
tions of thermal effects made later on. Details of this agreement can be found in
Part 2. In short, micro-climatic effects are highest during insolation, as are pave-
ment surface temperature and heat flux reductions. This is especially true for RH,
providing very good correspondence with watering cycles and the estimated evap-
oration rates. This good agreement significantly strengthens our microclimatic
findings which can thus be backed by thermal observations and predicted physical
phenomena.

The difference between Louvre and Belleville effects is likely best explained by
the difference in watering strategies between both sites. Indeed, the greater the
watered surface, the more total sensible heat flow and total upwards radiation are
reduced. Since 100 % of the street surface is watered at Louvre compared to 33%
watering at Belleville, the difference between sites is unsurprising. In addition,
watering at Belleville only targeted the pavement, but not the sidewalk where the
weather stations were placed and where pedestrians are likely to be. Belleville
stations are therefore further away from the watered area than they are at Louvre.
Finally, the differences in street orientation also play a role, since pavement cooling
was found to be greatest during insolation. Differences in insolation patterns and
durations will therefore alter the effects of pavement-watering. The combination
of these effects is expected to amplify the differences between sites. We therefore
conclude that watering one third of the street is much less effective than watering
all of it, and should at the very least target the area to which pedestrians are most
exposed, i.e. the sidewalk.

One limitation of the analysis of Louvre effects is the absence of the warmest
days observed over both summers, i.e. August 15 and 2nd 2013. In addition,
the influence of the watered area on the control area cannot be excluded due to
their proximity. These limitations can be overcome by evaluating Louvre effects
against the Belleville control station. Table 8.4 provides the p-value and average
daily effects determined in this manner. Figure 8.3 and Table 8.5 summarize the
effects found with the 10-minute smoothed data.

Detected maximum effects are increased for all parameters, but only marginally
for 1.5 m T, and RH. This supports the hypothesis that the watered area influ-
ences dry area measurements. However, the significance of the detected effects
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Relative Humidity Effect (%) Air Temperature Effect (°C)

Temperature Effect (°C)

Figure 8.3 — Average watering effect at Louvre detected using the Belleville control
stations over the summers of 2013 and 2014 (top to bottom) for 7, and RH at
1.5 m (left) and 4 m (right) height and MRT (bottom left) and UTCI (bottom
right). Average effects are solid blue, confidence intervals are dashed red (Hendel

0.0 0.5 1.0

-0.5

-1.0

h=1.5m

h=4m

h=4m

. Tot h=1.5m

1.0 15

0.5

; Turc h=1.5m

-1.0 -0.5 0.0

-1.5

06:00 10:00 14:00 18:00 22:00 02:00 06:00

Time

et al., 2015).

06:00 10:00 14:00 18:00 22:00 02:00 06:00

Time



60 Interstation Behavior on Reference and Watered Days

Table 8.4 — p-value and average stat. sign. (Cl: 0.95) effect at Louvre using
the Belleville control station over the summers of 2013 and 2014 (Hendel et al.,
2015).

) Louvre with Belleville control
Parameter Height

p-value Average effect
T 1.5 m 0.001035 -0.24°C
“ 4m  0.020352 -0.17°C
RH 1.5 m 6.92E-07 +1.87%RH
4m  1.45E-07 +1.33%RH
Tt 1.5 m 0.000813 -0.70°C
UTCl 1.5m 0.150749 not stat. sign.
UHI-mitieation b m 0.104996 not stat. sign.
TMIHEANON 4 M 0.042564 -0.22°C

Table 8.5 — Duration, mean and maximum values of stat. sign. effects for Louvre,
using the Belleville control station (Hendel et al., 2015).

Parameter Height Duration (hours/day) Mean effect Maximum effect

T 15m 6.2 -0.45°C -0.82°C
“ 4m 7.9 -0.35°C -0.71°C
RH 15m 18.0 +2.0%RH +4.6%RH

4m 18.2 +1.5%RH +3.4%RH
Tort 15m 11.1 -0.60°C -3.73°C
uTCl 1.5m 1.3 -0.95°C -1.46°C

deteriorates, particularly for air temperature and UTCI. This can be attributed to
increased differences in insolation patterns within the new site pair as compared
to the initial pairs. In terms of UHI-mitigation, only effects 4 m a.g.l. are stat.
sign. and reach -0.22°C.

The range of obtained UHI mitigation effects, i.e. -0.09°C to -0.22°C, is
consistent with those reported by Météo France and CSTB (2012).

This example provides interesting feedback on the potential and the limits of
the proposed method. While strictly paired stations benefit from reduced data
variance and therefore have higher accuracy, strict site selection criteria filter out
large numbers of candidate sites for experimentation. This example demonstrates
that the analysis can be successfully conducted in much less favorable conditions if
need be. Indeed, despite significantly different street orientations, several kilome-
ters between paired stations and different environments, the method successfully
provides comparable values of daily and maximum watering effects. The tradeoff
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for this added flexibility however is the widened confidence intervals, resulting
from increased signal noise, which reduces the statistical significance of the de-
tected effects. In our example, UTCI and UHI-mitigation 1.5 m a.g.l. effects are
not stat. sign. for this reason.

Confidence intervals are greatest during periods of instrument insolation. Us-
ing aspirated instrument shields should help address this issue for air temperature
and humidity measurements by eliminating the influence of insolation differences
between stations on these parameters. Unfortunately, no equivalent solution exists
for the globe thermometer.

Additional limits more specific to our experimental setup can be identified.
Among these, the influence of the cage used to protect the datalogger and instru-
ments installed 1.5 m a.g.l. should be noted, though instruments installed outside
of the cage are not expected to be affected.

The cage is designed to limit its influence on the meteorological parameters
measured within it as much as possible. Indeed, the cage mesh is 4 cm by 4 cm,
resulting in a highly permeable design. In addition, it is entirely painted white to
reduce atmospheric heating which may result from its exposure to direct insolation.
Therefore, the influence of the cage on air temperature and humidity is expected
to be negligible.

Nonetheless, the cage inevitably causes partial shading of the globe thermome-
ter during insolation and shields the instrument from environmental radiation.
MRT is therefore likely underestimated in the day. At night, competing effects
are at work. On the one hand, the cage partially obstructs the low temperature
sky radiation, which will tend to cause an overestimation of MRT. On the other
hand, the higher temperature ground and wall radiation is also inhibited by the
cage, which will tend to cause an underestimation of MRT. It is uncertain which
of these tendencies is dominant at night.

While a dedicated study of the influence of the cage on the measured param-
eters is necessary to confirm this preliminary analysis, cage effects are expected
to mainly affect the estimation of MRT from globe temperature.

8.4 Conclusion

As a result of the analysis conducted in Chapter 7, a statistical analysis method
was developed to determine the micro-climatic effects of pavement-watering.

The alternative method consists of a two-sample t-test of the difference be-
tween mean interstation differences on watered and reference days. Pre-existing
differences between experimental and control stations are thus taken into account,
previously ignored by the dominant method of directly comparing measurements
between them.

The method was successfully tested with data collected at well-paired stations,
but also with stations paired between sites, despite their large differences. Results
show that pavement-watering is an effective means of reducing maximum heat
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stress, while also having UHI-mitigation effects. Indeed, we found that conditions
at the case stations on watered days were cooler and more humid than reference
days in varying intensity over the course of the day. However, these effects weren’t
always statistically significant.

Results demonstrate that pavement-watering is an effective means of reducing
maximum heat stress, with up to 1°C cooling in UTCI equivalent temperature in
the late afternoon when conditions were warmest. In addition, stat. sign. effects
were also detected at night between 3 am and 6 am, thus demonstrating UHI-
reducing potential. Indeed, the analysis demonstrated that watered days were
cooler and more humid than reference days in varying intensity over the course of
the day and that these effects weren't always stat. sign.. RH, followed by MRT,
air temperature and UTCI, were most often affected in a stat. sign. manner by
pavement-watering. Furthermore, significant effects occurred most often at night
for air, mean radiant and UTCl-equivalent temperatures, while they occurred most
often during the watering for RH. However, maximum significant effects occurred
during the day, when conditions are hottest and driest. Maximum reductions of
0.79°C and 0.57°C occurred for 1.5 and 4 m air temperatures, 1.67°C for MRT
and 1.03°C for UTCl-equivalent temperature. Maximum increases of 4.1%RH and
2.8%RH were found for 1.5 and 4 m RH.

Best results were obtained in the case of 100% watering at Louvre, with effects
being much less stat. sign. at Belleville where only 33% of the street portion was
watered, as demonstrated by daily-averaged effects. Indeed, no daily stat. sign.
effects were found at Belleville, while all effects at Louvre were. These effects
reached -0.25°C and -0.14°C for 1.5 and 4 m air temperature, +1.5%RH and
+0.9%RH for 1.5 and 4 m relative humidity, -0.40°C for MRT and -0.29°C for
UTCI equivalent temperature. Finally, UHI-migitation effects of between -0.09°
and -0.22°C were detected.
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Conclusion of Part 1

In this Part, we investigated the micro-climatic effects of pavement-watering, used
as a case study of UHI countermeasures.

Field measurements were obtained from an experiment conducted over the
summers of 2013 and 2014 at two sites in Paris, France. Both sites have an aspect
ratio H/W =1, the Louvre site having an approximate N-S street orientation and
Belleville an approximate E-W orientation. The full width of the Louvre site was
watered from 6:30 am to 11:30 am and from 2 pm to 6:30 pm, while only a third
of the Belleville site was watered from 7 am to 7 pm without interruption.

First and foremost, we revealed in Chapter 7 that the dominant method of
directly comparing measurements between experimental and control stations is
flawed and cannot reliably detect the real-world micro-climatic effects of UHI
countermeasures in cities. The assumption behind this method is that the inter-
station case-control difference is zero under preexisting conditions. Based on this
hypothesis, the interstation difference is directly interpreted as the effect of the
implemented UHI countermeasure.

However, our continuous measurements showed that interstation differences
are neither constant nor equal to zero. Furthermore, they exhibit high natural
variability from one day to the next, even among days of Pasquill Stability Class A
or A-B. Interstation differences observed after implementation can therefore not
be attributed to the studied countermeasure, at least in dense urban environments.

In response to this difficulty, we proposed and tested an alternative method-
ology in Chapter 8. It consists of a two-sample t-test of the difference between
mean interstation differences on watered and reference days. The method was
successfully tested with data collected at well-paired stations, but also with sta-
tions paired between sites distant by several kilometers and with different urban
environments and street orientations.

Relative humidity, followed by MRT, air temperature and UTCI, was most
often affected in a stat. sign. manner by pavement-watering. Furthermore,
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significant effects occurred most often at night for air, mean radiant and UTCI-
equivalent temperatures, while they occurred most often during the day for RH.
However, maximum significant effects occurred during the day for all parameters,
when conditions are hottest and driest. Maximum reductions reported reached
0.79°C and 0.57°C for air temperature 1.5- and 4-m a.g.l., 1.67°C for MRT and
1.03°C for UTCl-equivalent temperature. Maximum increases in relative humidity
reached 4.1%RH 1.5 m a.g.l. and 2.8%RH 4-m a.g.|..

Daily-averaged data was also considered and revealed that daily watering ef-
fects were stat. sign. in the case of 100% watering at Louvre, but not so with
one-third watering at Belleville. Average effects at Louvre reached -0.25°C and
-0.14°C for 1.5- and 4-m air temperature, +1.5%RH and 4+0.9%RH for 1.5- and
4-m relative humidity, -0.40°C for MRT and -0.29°C for UTCl-equivalent tem-
perature. UHI-mitigation effects were investigated using air temperatures 1.5 and
4 m a.g.l. averaged between 3 am and 6 am. These effects ranged respectively
reached -0.09°C to -0.22°C.

These results show that pavement-watering is an effective means of reducing
heat stress, with maximum effects occurring when weather conditions are hottest
during the day. In addition, stat. sign. average cooling effects were detected
between 3 am and 6 pm, therefore demonstrating UHI reducing effects. Best
results were obtained at the Louvre site, which was 100% watered at regular
intervals, while poor results were obtained at Belleville, where only 33% of its
surface was continuously watered.

The developed methodology was applied to the case of pavement-watering.
This countermeasure has the advantage over other more permanent ones of being
immediately reversible. Indeed, when watering is not taking place, the study
sites revert to their preexisting (dry) state. Firstly, this greatly facilitated the
assessment that interstation differences are not equal to zero in the absence of
watering. Had measurements begun only after a permanent UHI countermeasure
had been put in place, this may have been overlooked entirely. Secondly, it allowed
us to record data that could be used to build an average interstation difference
profile for both watered and reference days which could then be compared with
the two-sample t-test.

In the case of long-lasting countermeasures, it is not possible to record refer-
ence data once the measure has been implemented. It is therefore necessary to
start monitoring the test site sufficiently ahead of countermeasure implementa-
tion to allow for enough reference data to be recorded. This data is crucial to our
method and must provide a representative image of the preexisting interstation
differences. Since weather conditions are highly variable, there is no telling how
long this reference period must last and it will depend on the weather conditions
of interest. We estimate that it may range from several weeks up to a few years.
In our case, heat wave conditions were the focus point. While we were fortunate
that the summer of 2013 exhibited such a large number of relevant days and
was sufficient for our analysis, the summer of 2014, with only two watered and
five reference days, would not have provided sufficient data to conduct a reliable
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analysis.

The length of the investigation period is one of the limits of the method.
Requiring data series spanning over several months or years implies that the only
change expected is the implementation of the UHI countermeasure. However,
urban environments are ever changing and preexisting conditions determined over
a certain period may become rapidly obsolete in certain areas. This adds additional
burden to the site selection criteria which must not be significantly modified over
the full investigation period apart for the studied countermeasure.

Fortunately, it was found that these criteria can be made more flexible by using
station pairs whose urban configurations are not as identical as the ones selected
here. This added flexibility is obtained at the cost of reduced precision, i.e. larger
confidence intervals. In order to put the odds in the favor of the investigator, the
distance between stations and the differences in their insolation patterns should
be as limited as possible.

The strength of our findings on the effects of pavement-watering will in-
crease as data collection continues. Paths for improvement include the use of
high precision instruments calibrated against each other on a regular basis in a
laboratory-controlled chamber and the use of aspirated solar shelters to eliminate
the influence of insolation on air temperature and humidity measurements. Fur-
thermore, the influence of the instrument cage on weather instruments must be
better quantified.

In addition, the application of our methodology to other sites with different
UHI countermeasures will provide additional feedback as to its relevance and
applicability in the field. Unfortunately, since the investigation period must be
long, so will the time before significant feedback has been gathered.

Finally, other approaches and tools may also prove useful or even better suited
to the task at hand. These include the use of a network of control stations spread
across a given area to compensate for poorly matched stations, the use of financial
analysis tools for data deseasonalization or data mining and machine learning (e.g.
neural networks) techniques.

Having determined the micro-climatic effects of pavement-watering, we now
turn our attention to its thermal effects in Part 2.
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CHAPTER

Introduction to Part 2

Part 1 focused on determining the micro-climatic effects of pavement-watering.
Maximum effects reached up to 1°C UTCI equivalent temperature at 1.5 m a.g.l.
and UHI mitigation effects of up to -0.22°C were found 4 m a.g.l..

These results compare well with previous work and provide additional evidence
to support the claim that pavement-watering has beneficial effects on pedestrian
thermal comfort and on the urban micro-climate. However, the thermal effects of
pavement-watering have still not been determined.

The thermal effects of pavement-watering have been a recurrent focus point of
previous studies. Surface temperature reductions are often reported and have been
found to range from 8°C to 30°C (Kinouchi and Kanda, 1997, 1998; Yamagata
et al., 2008). The effects on pavement heat flux and temperature 5 cm below
the surface have been studied by Kinouchi and Kanda (1998), though precise
results were not reported. In addition, judging by the authors’ own accounts or
by their solar irradiance measurements, many of these studies took place in nearly
unmasked conditions (Asaeda et al., 1996; Kinouchi and Kanda, 1997, 1998). It
is therefore difficult to determine how representative the findings reported actually
are of dense urban areas, though they do provide a basis for comparison.

Understanding the effects of pavement-watering on the pavement heat budget
is important as they are the direct consequence of watering. The modified pave-
ment heat budget causes changes in the exchanges towards the atmosphere and
environment. Indeed, lowered upward sensible and radiative heat flows and an in-
creased latent flow are the primary suspects for the micro-climatic effects described
in Part 1. Changes in surface temperature, radiative budget and heat storage are
expected to be the main contributors to the observed cooling effects. The thermal
effects therefore provide fundamental knowledge on pavement-watering which can
may be used to improve its micro-climatic effects. In addition, this information
can be used to validate numeric or experimental studies at different scales.
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This Part will determine the thermal effects of pavement-watering. As dis-
cussed, a field experiment of pavement-watering was conducted over the summers
of 2013 and 2014 in Paris, France following a computer simulation and prototype
field study (Météo France and CSTB, 2012; Bouvier et al., 2013). Pavement
temperature and heat flux observations made at the Louvre site over the summer
of 2013 will be analyzed with this goal.

While the general methodology (site description, watering method, weather
station design, ...) has been described in Chapter 6, methodological aspects
specific to the study of the thermal effects of pavement-watering will be presented
in Chapter 11. Chapter 12 will focus on the effects of pavement-watering on
pavement heat flux 5 cm below the pavement surface, Chapter 13 on surface
temperature effects and Chapter 14 will look into pavement temperature effects
5 cm deep.

This Part is based on the peer-reviewed work published in Applied Thermal
Engineering, Urban Climate and the Journal of Sustainable Development of En-
ergy, Water and Environment Systems (Hendel et al., 2015a, 2014, 2015b; Hendel
and Royon, 2015).



CHAPTER

Methodology

The following Chapter will describe the methodology specific to this Part. More
general methodological information is provided in Chapter 6.

11.1 Instruments

In addition to meteorological instruments, the Louvre site was equipped with a
pavement sensor measuring temperature and heat flux density 5 cm below the
surface. Solar irradiance was measured by the weather station 4 m a.g.l. and
surface temperature was monitored by an IR camera. Table 11.1 summarizes
the characteristics of the instruments used in this chapter. The pavement sensor
was taylor-made by a the French manufacturer Captec while the pyranometer was
supplied by LSI Lastem.

Table 11.1 — Type, height and uncertainty of thermal instruments. Adapted from
Hendel et al. (2014, 2015a,b).

Parameter Instrument Height/Depth  Symbol Uncertainty
Pavement heat Taylor-made flowme- 5 em a 5%
flux ter

Pavement tem- Type T Thermocou- 5 em T 1°C
perature ple

Surface tem- FLIR BA400 infrared o
perature camera (7.5 —-13 ym) 0cm Ts 2°¢
Solar irradiance Second (Class Pyra- 4m S’ 10% daily

nometer - 1ISO 9060

Figure 11.1 provides a top view of the pavement sensor installed on rue du
Louvre. A picture of the site taken from above is also shown in Figure 11.3.
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Measured data was recorded by the weather station positioned at the Eastern end
of the cable.

Heat Flux Sensor
& Sensor Cable
Thermocouple

Pavement Sidewalk borderstone  Sidewalk
/N | |
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Figure 11.1 — Top view of pavement sensor (Hendel et al., 2015a).

The sensor was placed in the middle of the North-bound bus lane, causing
no traffic disturbances once installed. Unauthorized parking and a 100 m distant
traffic light ensured that only very limited shading or localized heat exhaust was
caused by vehicles. Figure 11.2 shows a detailed cross-section of how the pavement
sensor was set in place before filling.

As indicated in Table 11.1, pavement surface temperature was monitored with
a FLIR B400 IR camera with a spectral range of 7.5-13 pm. The camera was
placed on the roof terrace of the building located directly in front of the watered
station, located at 46 rue du Louvre, approximately 20 meters a.g.l.. The camera
recorded false-color IR thermal and visible images simultaneously every hour on
non-watered days and every 10 or 15 minutes on watered days. These images
were used to estimate pavement surface temperature.

Apparent (measured) surface temperatures, also known as brightness temper-
atures, were corrected with the parameters indicated in Table 11.2, as measured
by the weather station below, in order to obtain directional radiometric tempera-
tures. The emissivity of the studied surfaces was obtained by the reference black
body method, using an adhesive with a known emissivity of 0.95. MRT, calculated
from the weather station measurements, was used as the reflected temperature
for IR camera measurement corrections. Although this causes an underestimation
of directional infrared temperatures since MRT is greater than the actual sky ir-
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Figure 11.2 — Cross-section detail of pavement sensor filling materials (Hendel
et al., 2015a).

radiance temperature, the error remains limited due to the high emissivity of the
studied surfaces.

Table 11.2 — Parameters used to correct apparent surface temperature (Hendel
et al., 2014)

Parameter Correction value
Emissivity 0.97
Distance to target (height) 20 m
Reflected temperature MRT measured by weather station
RH As measured at 1.5 m by weather station
T, As measured at 1.5 m by weather station

The camera operated continuously from 8 am on July 8™ until 8 am on
September 6. Interruptions occurred between 7:20 pm on July 8" until 6 pm
on July 11" and from 6 pm on July 12t until 2:30 pm on July 15™". These are
due to failures of the camera’s time-lapse computer.

11.2 Pavement Zones

The surface temperatures of three street areas were surveyed as illustrated in Fig-
ure 11.3 (left): pavement zone 1, located above the pavement sensor, pavement
zone 2, located further towards the street’'s center and a sidewalk zone.

All three had an emissivity of 0.97 despite different surface composition and
texture. No change in emissivity was applied for the wet pavement. It is assumed
that the wet pavement has the emissivity of a water film, i.e. 0.98.
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The studied zones were selected according to the presence of thermal dis-
turbance sources, detected via a nighttime IR photograph of the area provided
in Figure 11.3 (right) taken at 3:20 am. The use of a nighttime thermal image
taken several hours after sunset prevents interpretation errors due to differences in
insolation or shading. Thermally disturbed areas are either significantly warmer or
colder than their surroundings, once differences in emissivity have been accounted
for.

N

—

Pavement zone 2

il

sl

Pavement zone 1

O
Pavement
s ave
3 sensor

Sidewalk zone

Weather station

Figure 11.3 — Surface temperature measurement zones (left) and corresponding
nighttime corrected infrared photograph on July 22" at 3:20 am (right). Tem-
perature scale is in degrees Celsius. Sp2: pavement zone 1; Spl: pavement zone
2; Sp3: sidewalk zone (Hendel et al., 2014).

The principal disturbance is caused by a district heating main, which runs
below the sidewalk along the edge of the building and crosses the street below the
weather station. It is most easily recognized in its sidewalk portion in the form
of a distinct red band running from left to right from the awning to the bottom
edge of the false-color IR image. It then runs perpendicularly, from bottom to
top, underneath the weather station where it is not as visible, and continues to
the other side of the street, reappearing with rough contours just after pavement
zone 1 (Sp2).

The presence of this main was confirmed by winter observations and the dis-
trict heating operator. In the summertime, the heating network supplies minimal
heat solely for domestic hot water production, as confirmed by heat flux observa-
tions which balance out over 24 hours (see Chapter 12). This heat source and the
difference in overlying materials (see Table 11.3) are responsible for the tempera-
tures of pavement zone 1 being up to 2°C warmer than the surrounding pavement
at night. Pavement zone 2 was therefore added to complement the data collected
in zone 1, above the pavement sensor.

Another identified heat source is an air conditioning exhaust vent emitting hot
air underneath the awning of the nearby grocery shop on the left side of the image
in front of the pedestrian crosswalk. This exhaust vent explains the red hot spot
visible at the center of the awning itself and on the sidewalk directly below it.
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This heat source does not significantly affect the weather station measurements
due to its position and height, however the sidewalk zone was selected to avoid
its area of influence as well as that of the district heating main and areas shaded
by other obstacles.

Table 11.3 describes the underlying materials and their respective thicknesses
for each zone. Only the composition of pavement zone 1 is known with certainty
thanks to the construction work undertaken to place the pavement sensor 5 cm
below the surface. The other pavement structures are described based on data
provided by the Roads and Traffic Division of Paris City Hall. It should be noted
that the sidewalk’s asphalt surface course does not include medium or coarse
aggregates such as those used in asphalt concrete and is therefore much smoother
than the road pavement surfaces. Furthermore, the differing road composition
below pavement zone 1 is most likely attributable to the presence of the district
heating main.

Table 11.3 — Pavement structure in each zone (Hendel et al., 2014).

Zone Course Composition Thickness
Surface Cold-mixed asphalt concrete 6 cm

Pavement

Jone 1 Base Concrete 34 cm
Subgrade Compacted ground -
Surface and Binder Hot-mixed asphalt concrete 16 cm

Pavement .

Jone 2 Base Cement-treated base material 20 cm
Subgrade Compacted ground -

. Surface Asphalt 2 cm

il)(ieewalk Base Concrete 10 cm

Subgrade Compacted ground -

11.3 Pavement Heat Balance

Figure 11.4, based on Kinouchi and Kanda (1998), shows a diagram of the heat
flux densities relevant to this experiment.

Pavement heat flux density at the surface is noted V and as GG at a depth of
5 cm. The difference between V' and G is noted AQ and represents the heat flux
density absorbed by the top 5 cm layer of pavement. Solar irradiance measured
by the pyranometer at a height of 4 m is referred to as S’ and that received by
the pavement as S. S,.; is the reflected SW radiation, while L., and Lgoun
represent LW upwards and downwards radiation, respectively. H represents the
sensible heat transfer from the pavement towards the atmosphere, while [E is the
latent heat flux density.
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Figure 11.4 — Diagram of pavement heat budget at surface (Hendel et al., 2015a).

11.4 Data Analysis

The data analysis method for pavement heat flux and temperature measurements
will now be described. Pavement heat flux density, surface and pavement tem-
peratures will be considered in a similar manner, consisting of a direct comparison
between reference and watered day observations.

Although sun trajectories can change very rapidly during certain periods of the
year, these changes are relatively small during the month of July. The daylight
period on July 20" is approximately 25 minutes shorter than on July 8", while
solar zenith is reduced by less than 2°. The magnitude of these changes can be seen
in Figure 11.5 which illustrates solar irradiance as measured by the weather station
on July 8t and 229 for comparison. Daily shading conditions were checked with
time-lapse visible images and were found to be unmodified for the studied surfaces
between July 8t" and July 21%t. For the purpose of this discussion, we therefore
consider the changes in sun trajectory to be negligible.

o July 8th
+ July 22nd

400 600 800 1000
1 1 1 1

Solar irradiance S (W/m?)

200
1

LN O D O
06:00 09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00

Time

Figure 11.5 — Solar irradiance measured on July 8" and 22" (Hendel et al., 2014).

Due to the different positions, pavement zone 1 and 2 and the sidewalk zone
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are not insolated simultaneously. Pavement zone 2 becomes insolated first at
approximately 1:15 pm, followed by pavement zone 1 at 1:35 pm and finally the
sidewalk zone at 1:55 pm.

Pavement Heat Flux

For the analysis of pavement heat flux GG, measurements from July 11", 14" and
20t (reference days) will be compared with observations from July 8th, 22" and
10t (watered days).

Surface Temperature

For surface temperature, IR camera measurements from July gth ppnd (watered),
20t and 21t (control) will be considered. Unfortunately, it is not possible to
compare wet pavement surface temperatures from July 8t" with dry pavement
surface temperatures made a few days before or later in comparable weather
conditions, the nearest days being July 7t" or 11", during which the IR camera
was offline. July 20t is the closest control day with available data which meets
these weather criteria (see Chapter 6), however atmospheric temperatures were
warmer than on July 8th with a respective BM Iy, and BM Iy, of 19° and
30.3°C on July 20" versus 18° and 29°C on July 8.

Pavement Temperature

For pavement temperature, reference day measurements from July 7th 11th and
20" will be compared to watered day measurements from July 8", 10th and 22",
respectively.

11.5 Deriving Pavement Solar Irradiance

Solar irradiance S/, measured 4 m a.g.l. by a pyranometer, was continuously
recorded by the weather station’s datalogger starting on July 2"¢, 2013. Because
of the difference in positioning of the pyranometer and pavement sensor (below
pavement zone 1), S’ is not equal to S and can therefore not be used in its
place for the upcoming heat transfer analyses in Chapter 18. .S must therefore be
derived from S’

Apart from possible insolation interruptions due to road traffic not visible in
S’, the only difference is the insolation period. The visible images taken by an IR
rooftop camera reveal a 20 minute time lag between the beginning of pavement
sensor and pyranometer insolation during the month of July. The time lag is
immediately identifiable when comparing the graphs of G and S’ for July 11t in
Figure 11.6.

The beginning and end of pavement and pyranometer insolation are illustrated
by the two dashed and long-dashed vertical lines, respectively. These coincide with
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Figure 11.6 — G (left) and S’ (right) measured on July 11*" (Hendel et al., 2014)

the sudden increases and declines seen in each signal. The insolation period of the
pavement is approximately 1:35 pm to 6:30 pm, while that of the pyranometer is
1:55 pm to 6:50 pm. No signal distortion other than the time lag is expected nor
taken into account.

With these hypotheses, a modification of S’ during the two 20-minute-long
exclusive disjunctions of pyranometer and pavement insolation is undertaken to
obtain S. The rest of the signal is unchanged, apart for distortions due to vehicles.
Finally, to ensure signal continuity, the 5 minutes following and/or preceding these
20-minute periods are also modified.



CHAPTER

Pavement Heat Flux Effects

This chapter will focus on the analysis of the effects of pavement-watering on
pavement heat flux G, measured 5 cm deep below the pavement surface. To
accomplish this, reference day observations from July 11", 14th and 20t will be
compared with watered day observations from July 8t", 22" and 10", as was
described in Chapter 11.

12.1 Results

Reference days

G and S on July 11", 14t and 20" are presented in Figure 12.1. S ranges from
0 W/m?2 to 200 W/m? during shading and from 200 W/m?2 to 900 W/m? during
direct insolation. G ranges from -75 W/m? to 215 W/m2.

In terms of heat flux, each day can be divided into three periods: two of net
heat release (G < 0) in the morning and evening and one of net heat storage
(G > 0) during the day. The net release of heat by the pavement lasts about
18 hours, while heat is stored during the remaining 6 hours, approximately between
1:30 pm and 7 pm.

When the pavement becomes directly insolated, G enters a transient period
during which the top 5 cm layer of pavement begins to store heat, i.e. during
which AQ # 0. The transient period unfolds between the first dotted vertical
line and the daily peak in heat flux, as seen in Figure 12.1. After the transient
period, G and S follow a similar trend. The last dashed vertical line indicates the
instant when the pavement is shaded, at 6:30 pm.

It should be noted that an illegally-parked vehicle covered the pavement sensor
for 30 minutes on July 20t". S was corrected in order to take this into account.
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Figure 12.1 — Pavement heat flux G (left) and SW radiation S (right) on control
days (Hendel et al., 2014).

Over 24 hours, pavement heat flux more or less balances out to zero, indicating
that the heat supplied by the district heating main is minimal (Hendel et al.,
2015b).

Watered days

Watered days will now be considered in the following order: July 8t", 22" and
10", Figure 12.2 illustrates G and S on those dates. S is in the same range as
found on control days, while G ranges from -75 W/m? to 130 W/m2.

The watering methods applied in the afternoon on watered days and the daily
maximum value of G are summarized in Table 12.1. Watering cycles occurred
at the specified frequencies except for a 50 minute interruption on July 22" at
approximately 3 pm.

Table 12.1 — Actual watering method on considered watered days (Hendel et al.,
2015a).

Watering method parameter July 8t July 227 July 10t
Watering rate (mm/h) 1.33 2 2
Watering cycle period (min) 45 30 30
Delay of watering vs. insolation start (min) 35 65 <5
Daily maximum value of G (W/m?) 115 130 70

The maximum value of G is about half that reached on control days, ranging
from 70 W/m?2 to 130 W/m?, approximately half that observed on control days.
Between 3 pm and 6:30 pm, the average reduction in pavement heat flux compared
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to different reference days is found to be between 100 and 150 W/m?2. Table 12.2
summarizes these reductions. In the morning, G is reduced by approximately
15 W/m? after the first watering cycle and by up to 50 W/m? around 11 am.
Morning heat flux is stabilized by watering compared to reference days, which
explains why effects increase as the morning goes by.

Table 12.2 — Average heat flux density reduction in W /m? on watered days (Hendel
et al., 2015a).

Date July 8th July 22nd July 10th
Reference July 11t July 14t July 14®*  July 20t July 11t July 14th
Average -120 -130 -150 “110 ~130
change

In addition, several spikes in heat flux are apparent, the first and largest occur-
ring as insolation begins. The first one seems proportional to the delay between
watering and pavement insolation, while the ones thereafter are inversely propor-
tional to the watering frequency as reported in Table 12.1. A last, significantly
smoother spike also occurs 2 to 2.5 hours after the end of pavement insolation.

Indeed, they are most numerous on July 8t" and nearly nonexistent on July 10,
Only two large spikes are visible on July 22" and are linked to a passing cloud,
as is visible with Figure 12.2 €). The amplitude of these spikes is in the order
of 50 W/m?2 on July 8. On July 22"¢ and 10", their amplitude is significantly
reduced, while insolation conditions are comparable. In the morning, no heat flux
spikes are clearly visible.

These aspects will be analyzed in more detail in Part 3.

12.2 Discussion

The comparison of G on watered days with control days therefore reveals strong
effects due to pavement-watering. On the one hand, heat flux density reductions
were found to be highest in the afternoon during pavement insolation with G
being more than halved. The average reduction is between 100 and 150 W/m?
during this period. Morning heat flux density, when the pavement is shaded, was
also reduced by pavement-watering in the order of 15 W/m? just after the first
watering cycle and by up to 50 W/m? around 11 am. On the other hand, spikes
in GG were observed.

These effects demonstrate that pavement-watering effectively reduces heat
storage on behalf of the pavement. As heat storage is one of the mechanisms
involved in the formation of UHIs, pavement-watering can be expected to reduce
their intensity. Indeed, lower heat storage during the day should mean lower
heat release at night. This trend is clearly visible when comparing GG at night on
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watered and reference days after pavement drying (see Figures 12.1 and 12.2).
Indeed, G's amplitude is about half that observed on reference days.

Overall, these observations are consistent with previous work. On control days,
the trend in heat flux is comparable to measurements made without pavement-
watering by Kinouchi and Kanda (1998), also 5 cm deep, although inside a porous
pavement. The heat flux values are about twice as large as what Asaeda et al.
(1996) observed 20 cm below the asphalt pavement surface. Given the differ-
ence in depth, this discrepancy is not considered surprising. On watered days,
observations are similar to those of Kinouchi and Kanda (1997, 1998) as well:
the first watering cycle on all watered days coincides with a small "nose-dive” in
G in the order of 15 W/m2. Moreover, the net storage period observed in this
experiment is shorter than in reports from Kinouchi and Kanda (1998) or Asaeda
et al. (1996), but they were working in nearly unmasked conditions.

Finally, no heat flux spikes were observed in previous work. This is interpreted
as a consequence of the watering method, continuous in the case of Kinouchi
and Kanda (1998) and discrete in our own. Cross-examination of pavement heat
flux spikes and visible images of pavement zone 1 (above the pavement sensor)
reveal that these spikes coincide with surface drying. These spikes will be analyzed
further in Part 3.

12.3 Conclusion

The effects of pavement-watering on pavement heat flux density 5 cm deep (G)
were determined in this Chapter.

G was found to be more than halved by pavement-watering during insolation,
with morning and afternoon reductions reaching up to 50 and 150 W/m?, respec-
tively. Subsequent heat release by the pavement is also reduced in the evening
following watering. In addition, heat flux spikes were detected and coincide with
pavement drying.

We now turn to the effects of pavement-watering on surface temperatures.






CHAPTER

Surface Temperature Effects

The effects of pavement-watering on pavement heat flux density (G) were studied
in Chapter 12. The daily peak was found to be more than halved by pavement-
watering during insolation, with morning and afternoon reductions reaching up to
50 and 150 W/m?2, respectively. Subsequent heat release by the pavement is also
reduced in the evening following watering.

This chapter will focus on the analysis of the effects of pavement-watering
on pavement surface for three street zones. Once again, reference (July 20t" and
21%%) and watered day (July 8" and 22"Y) observations will be compared. As
stated previously, due to IR camera malfunctions, no reference day measurements
a few days before or after July 8™ could be used.

13.1 Results

Figure 13.1 presents directional radiometric temperature for the three defined
areas of the street: the (o) series represents pavement zone 1; the (+) series
represents pavement zone 2; the (x) series represents the sidewalk. Some data
points are missing due to passing or parked vehicles over the measurement areas.
Vertical dot-dashed lines indicate watering cycles for July 8t and 22" As pre-
viously noted in Table 12.1, afternoon watering on July 8t" occurred about every
45 minutes, while it was every 30 minutes on July 22",

On July 20t and 21%t, surface temperatures reach a low of 24°C between 6 am
and 7 am and a high of 50-54°C at 4 pm. All three surfaces follow a very similar
approximately bell-shaped curve. Morning temperatures increase slowly until they
spike when the pavement becomes insolated around 1:30 pm. Pavement shading
causes an exponential decrease in temperatures starting between 6 pm and 7 pm.
Pavement zone 1 is generally the warmest, followed by pavement zone 2 and the
sidewalk, with nocturnal temperatures being the most similar between zones, with
differences smaller than 2°C. Temperature differences are more pronounced during
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Figure 13.1 — Pavement directional radiometric temperature on reference days:
a) July 20" and b) July 21°%; and on watered days: c) July 8t and d) July 22"
(Hendel et al., 2014).

the day, particularly during insolation. It should be noted that the temperature
fluctuations which occur on July 215 are due to the passing of isolated clouds.

On July 22nd the daily low was about 25°C, but this temperature was main-
tained from 7:30 am until 12 pm and was approximately 3°C lower than the single
temperature measurement prior to watering. A maximum temperature of about
47°C was reached just before afternoon pavement-watering began. The bell shape
of the temperature curves is greatly affected by watering. Morning increases are
slower, insolated surface temperatures are several degrees lower and nighttime
temperatures follow a more linear decrease, except for the sidewalk zone. After
watering begins, the temperature of all surfaces remains below 45°C. Furthermore,
unlike on control days, the sidewalk becomes the warmest area after afternoon
watering begins and remains so until late in the night. Similar temperatures and
trends are observed in available data from July 8t".

A dip in the temperature of pavement zone 2 and that of the sidewalk should
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be noted around 5-6 pm on July 22" It occurs due to shade caused by the
buildings across the street. This shade event did not occur before this date and
did not concern pavement zone 1.

In addition to these changes, several temperature spikes are present in the
afternoon on both July 8t and 22"9. For pavement zones 1 and 2, these are
mainly found on July 8t with nearly all occurring during afternoon watering.
On July 8th, the detected spikes are up to two 15-minute measurements wide.
On July 22", when watering occurs more frequently, only two spikes are visible,
excluding the temperature dip due to building shading. For the sidewalk zone,
spikes are visible on both days. The amplitude of these local maxima is in the
order of 5°C on July 8t for all three zones. On July 22" the amplitude of the
sidewalk maxima is reduced to about 2-3°C while temperatures are comparable.
In the morning of July 22" small temperature spikes may occur for the sidewalk
zone, but these are of low amplitude and are hard to distinguish. Also, as was
seen with pavement heat flux, a last, smoother spike is visible on July 22" about
2 hours after the end of insolation for pavement zones 1 and 2.

Table 13.1 summarizes the average changes in surface temperatures between
6:30 am and 1 pm and between 3 pm and 6:30 pm on July 22" (watered)
compared to the average observations from July 20t" and 21 (control).

Average temperature reductions on July 22" are most important in the af-
ternoon and most pronounced for pavement zone 1 followed by pavement zone
2. The sidewalk has the lowest average cooling of the three zones. In fact, the
sidewalk is actually found to be 1.1°C warmer on the morning of July 22"4 than on
July 20th or 21%t, despite pavement-watering. This is attributed to temperatures
being about 5°C warmer in the hours preceding 6 am on July 22" compared to
July 20th and 215t (see Figure 13.1). While radiometric temperatures were about
25°C at 6 am on July 20t" and between 3 am and 6 am on July 21, reduced
nighttime cooling, due to warmer meteorological conditions, on July 21%* caused
these temperatures to increase to roughly 30°C. Therefore, the calculation of the
morning cooling effect on July 22" should take this aspect into account. When
this is the case, pavement-watering is found to reduce morning temperatures by
about 4°C for the pavement surfaces and 2°C for the sidewalk.

Table 13.1 — Average temperature reductions observed on July 22" (watered)
compared to average control day temperatures (July 20" and 21%t) (Hendel et al.,
2014).

Time span Pavement 1 (o) Pavement 2 (+) Sidewalk (x)

6:30 am — 1 pm 1.6°C 0.73°C -1.1°C
3 pm —6:30 pm 13°C 11°C 6.2°C
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13.2 Discussion

Pavement-watering was found to reduce morning surface temperatures between 2°
and 4°C and afternoon surface temperatures by between 6° and 13°C, depending
on the surveyed area. In addition, the daily minimum temperature on watered days
was the same as on control days despite warmer temperatures the night before.
Also, pavement-watering maintained this minimum temperature for several hours
instead of it being reached only briefly on control days. The maximum temperature
reached was also reduced by several degrees. Finally, temperature spikes were
observed on watered days, both before and during afternoon pavement-watering,
which were not present on control days. No clear unquestionable spikes were
observed in the morning.

As was seen with pavement heat flux, these effects demonstrate that pavement-
watering limits the conditions favorable to the formation of UHIs. Indeed, reduced
surface temperatures entail lower sensible atmospheric heating by convection. In
contrast to high albedo pavements, this is accomplished without compromising
pedestrian comfort as the radiant heat fluxes are not increased by watering. In-
deed, while high albedo pavements also have lower surface temperatures and
therefore reduce sensible heat flows to the atmosphere, they have been shown
to increase daytime pedestrian radiant loads via increased SW reflection (Erell
et al., 2013). In the case of pavement-watering, surface wetting tends to de-
crease pavement albedo, thus lowering reflected SW radiation (for further details
on albedo change due to surface wetting, see Lekner and Dorf (1988)). However,
the expected increase in air humidity caused by watering may negatively affect
pedestrian comfort and should be accounted for.

Differences in surface temperatures in zones 1 and 2 may be explained by differ-
ences in pavement materials (hot- versus cold-mixed asphalt concrete), pavement
geometry (different surface slopes) and the presence of the district heating main.

These pavement temperature observations are consistent with those made by
Kinouchi and Kanda (1997, 1998) and Yamagata et al. (2008) who also conducted
pavement-watering experiments in urban environments in Japan with regular or
pervious asphalt pavements in similar conditions.

Furthermore, the temperature spikes observed are consistent with the heat
flux spikes reported in Chapter 12 and coincide with pavement drying.

13.3 Conclusion

Pavement surface temperatures were found to be reduced by several degrees by
pavement-watering, both during watering and several hours afterwards. Morning
temperatures were reduced up to 4°C, while they were reduced on average by
13°C in the afternoon. Effects were greater for the pavement than the sidewalk.

Furthermore, temperature spikes similar to heat flux spikes described in Chap-
ter 12 were also detected and are indicative of pavement drying.
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Pavement Temperature Effects

Having studied pavement-watering effects on pavement heat flux and surface
temperature, we will now consider the temperature inside the pavement, 5 cm
below its surface. Temperature data from July 7th, 8th, 10th, 11th, 20th and 22nd
will be considered.

14.1 Results

Figure 14.1 illustrates pavement temperature measurements 5 cm below the sur-
face on July 7th, 8th, 10t 11th, 20th and 22", corresponding to paired reference
and watered days.

On reference days, pavement temperatures range from a low of 23°-29°C to a
high of 38°-43°C, with an average temperature amplitude of approximately 14.6°C.
Temperatures decrease on average by 0.5°C from 6 am until approximately 8 am
when they reach their daily low value. They then slowly increase until pavement
insolation begins at 1:35 pm. At that time, temperatures rise sharply and level
off at their daily maximum about one hour before insolation ends at 6:30 pm.
Pavement temperatures then decrease until the next day when the cycle starts
over.

On watered days, this range is reduced to between 23°-30°C and 31°-37°C, and
the daily temperature amplitude is nearly halved, averaging approximately 7.7°C.
Compared to reference days, morning pavement-watering significantly increases
and prolongs the temperature decrease phase from 8 am to 1:35 pm. The morning
temperature drop is increased to 2.8°C on average. As a result, daily minimum
temperatures are practically unchanged compared to control days despite higher
temperatures at 6 am, before morning watering. In the afternoon, the temperature
increase is significantly shortened, leveling off much sooner as watering resumes.
The time at which the daily high temperature is reached is unchanged by watering.
As pavement insolation ends, temperatures decrease until the end of the day. In all
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Figure 14.1 — Pavement temperature on reference days: a) July 7t b) July 20th

and ¢) July 11*"; and on watered days : d) July 8t", e) July 22" and f) July 10%"
(Hendel and Royon, 2015).
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the watered days considered here, an interruption in this decrease occurs about
2.5h after sunset, as the remaining water film completely evaporates from the
pavement surface.

Unlike in the case of pavement heat flux or surface temperatures, no spikes
are detected for 5 cm temperatures.

Average temperatures between 3 pm and 6:30 pm are reduced by 6°C on July
8th compared to July 7t", by 5°C on July 22" compared to July 20", and by
6.5°C on July 10t compared to July 11th,

Table 14.1 summarizes daily low and high pavement temperatures as well as
the daily temperature amplitude. Reference and watered days are paired to im-
prove comparability and presented by intensifying watering strategy (see Chapter
12).

Table 14.1 — Daily low, high, and temperature amplitude on July 7th, 8th, 10th,
11, 20th and 229, 2013 (Hendel and Royon, 2015).

Date Low (°C) High (°C) Amplitude (°C)

July 7t 26.0 39.9 14.0
July gth 25.3 33.7 8.4
July 20t 28.8 43.3 14.5
July 22nd 29.7 36.6 6.8
July 11th 22.7 37.9 15.2
July 10t 22.9 30.7 7.7

14.2 Discussion

The effect of pavement-watering on 5 cm pavement temperatures is clear: com-
pared to control days, temperatures drop by an average 5.9°C in the afternoon
and the morning temperature decrease is increased by 2.3°C and is prolonged
until the beginning of pavement insolation. Furthermore, the daily temperature
amplitude is nearly halved. Sensible heat storage by the pavement 5 cm below its
surface is therefore offset by about five hours.

These effects indicate reduced heat storage on behalf of the pavement and
therefore agree well with pavement heat flux observations made earlier (see Chap-
ter 12). This adds evidence to the claim that pavement-watering limits the for-
mation of UHlIs.

These findings compare well with previous work by Asaeda et al. (1996),
Kinouchi and Kanda (1998) and Li et al. (2013). Indeed, Asaeda et al. (1996)
studied a 30 cm thick slab of asphalt concrete in Japan in nearly unmasked
conditions instrumented with thermocouples at different depths including 5 cm.
In their paper, the authors report 5 cm temperatures ranging from 26° to 48°C,
thus an amplitude of 22°C, for air temperatures ranging from approximately 23°
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to 35°C. No watering of the pavement slabs was conducted. Also in Japan,
Kinouchi and Kanda (1998) studied a watered permeable pavement, also in nearly
unmasked conditions, equipped with a pavement sensor at a depth of 5 cm. Air
temperatures on the reported days ranged from 20°-23°C to 30°-35°C. The authors
found daily low and high pavement temperatures in the order of 25°C and 40°-
45°C, similar to Asaeda et al. (1996), in dry conditions, respectively. On watered
days, these temperature extremes were reduced to 23°C and 35-38°C. Finally,
Li et al. (2013) also study standard and pervious asphalt pavements in Davis,
California. Impervious and pervious pavement temperatures 6.5 cm deep are
nearly identical in dry conditions and range from roughly 25°C to 51°C for air
temperatures between 16°C and 37°C. Watering the pervious pavements causes
a 5°-7°C drop in temperatures compared to the dry impervious asphalt concrete.

The temperatures described in these papers are higher than our own, though
they are comparable. This is likely due to the absence of insolation masks and to
generally warmer summertime weather conditions in Japan and California com-
pared to Paris. In addition, the temperature trends reported by Kinouchi and
Kanda (1998) after watering are very similar to ours, including the reduction in
low and high daily temperatures as well as that of their amplitude from 15°-20°C
to 12°-15°C on watered days compared to control days. While watering reported
by Li et al. (2013) causes similar temperature drops to our own during insolation,
no significant change in pavement temperature amplitude is visible. These lower
changes in daily temperature amplitude may be caused by reduced evaporation
due to sprinkled water seeping deep into the pavement, where temperatures are
too low for significant evaporation to occur. Overall, our results are comparable
with those of these authors.

14.3 Conclusion

Pavement temperature 5 cm deep was shown to be reduced by 5.9°C by watering
in the afternoon. Morning low temperatures, reached at 8 am on reference days,
were maintained until the beginning of pavement insolation at 1:35 pm on watered
days and were decreased by 2.3°C considering temperatures recorded at 6 am. In
addition, the daily low-high temperature amplitude was nearly halved.

Finally, unlike the case of pavement heat flux and surface temperatures, no
spikes in pavement temperature 5 cm deep were detected.
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Conclusion of Part 2

The field study conducted on rue du Louvre in Paris over the summer of 2013
has allowed us to assess the thermal effects of pavement-watering on a pavement
area located 1.6 m away from the eastern sidewalk in a street with an aspect ratio
H/W=1 and of approximate N-S orientation.

First, pavement heat flux density 5 cm deep (G) was found to be more than
halved by pavement-watering during insolation, with morning and afternoon re-
ductions reaching up to 50 and 150 W/m?, respectively. Subsequent heat release
by the pavement is also reduced in the evening following watering.

Second, pavement surface temperatures were found to be reduced by several
degrees, both during watering and several hours after it had ended. Morning
temperatures were reduced up to 4°C, while they were reduced by 13°C on average
in the afternoon. Effects on the pavement were greater than for the sidewalk.

Third, pavement temperature 5 cm deep in the afternoon was shown to be
reduced by 5.9°C by watering. Morning low temperatures, reached at 8 am on
reference days, were maintained until the beginning of pavement insolation on
watered days and were decreased by 2.3°C considering temperatures recorded at
6 am. Also, the daily low-high temperature amplitude was nearly halved.

Both heat flux and surface temperature spikes were observed on watered days
and are indicative of pavement drying. None were found for 5 cm pavement
temperature.

These trends are in good agreement with each other and the existing literature.
Our results confirm that several of the fundamental mechanisms responsible for
UHI formation and pedestrian thermal stress are affected by pavement-watering.
Indeed, pavement heat absorption and storage are significantly reduced as evap-
otranspiration is artificially reintroduced into the urban environment. This was
shown with pavement heat flux and temperature measurements. This results in a
reduction of heat release at night, long after watering has ended, as was confirmed
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by our observations. In addition, reduced heat absorption causes reduced surface
temperatures both day and night, which have two positive consequences.

The first is the reduction of atmospheric sensible heating. Since the convective
heat transfer is directly dependent on surface temperatures, atmospheric heating
by the pavement is reduced or even reversed in watered areas. Consequently,
the greater watered areas are, the greater atmospheric cooling will be. Wider-
area watering should therefore result in greater cooling, as is confirmed when
comparing Louvre and Belleville micro-climatic measurements.

The second consequence of lowered surface temperatures is reduced LW emis-
sion from the pavement, thus alleviating the radiative burden of pedestrians. Un-
like in the case of reflective materials, this effect is not compensated for by in-
creased SW reflection during periods of insolation due to increased reflection (Erell
et al., 2013). On the contrary, the effects of the reduced LW radiation are re-
inforced by the effect of surface wetting as it reduces surface reflectivity (Lekner
and Dorf, 1988). Combined with reduced emission, pavement-watering therefore
reduces pavement radiosity as a whole. The pedestrian radiative load is thus
improved both during insolation and during shading. This is confirmed with our
observations of the effects of pavement-watering on MRT in Part 1.

On the other hand, increases in humidity will tend to adversely affect pedes-
trian comfort if they are high enough, but given that watering should occur when
conditions are already quite dry (less than 50% RH), the humidity increase may
be negligible from a thermal comfort standpoint. This is confirmed by the analysis
conducted in Part 1 which found that relative humidity increases did not com-
pensate for the other cooling effects of pavement-watering in the field conditions
encountered.

We now have a better understanding of the fundamental mechanisms behind
pavement-watering that help explain the micro-climatic effects determined in Part
1. The data and trends gathered here may be useful for the validation of numeric
or experimental studies at different scales (see Chapter 22 and Appendices A, B
and C). In an effort to propose improvements to the watering method, we now
attempt to evaluate the costs of pavement-watering. Ways of reducing them while
maximizing positive effects will be pursued.

With this goal in mind, pavement heat flux and temperature spikes will be ana-
lyzed and used to improve the watering frequency and period in Part 3. Moreover,
the water intensity of the method will be determined and proposals to significantly
reduce it while only marginally affecting pavement cooling will be made.
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IMPROVING THE WATER USE OF
PAVEMENT-WATERING
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Introduction to Part 3

The micro-climatic effects of pavement-watering have been discussed in Part 1.
Air temperature, mean radiant and UTCl-equivalent temperature reductions re-
spectively reaching up to 0.8°C, 1.7°C and 1°C were found, while relative humidity
was increased by less than 4.1%RH. These effects find their cause in the direct
and indirect consequences of pavement-watering on the fundamental mechanisms
which determine the urban micro-climate. These consequences include a 13°C
reduction in surface temperature, a 5.9°C reduction in 5 cm pavement tempera-
ture and the halving of the daily pavement heat flux peak value during pavement
insolation, as was determined in Part 2. Useful information on the benefits of
pavement-watering in micro-climatic and physical terms has been obtained for
dense urban environments.

However, we have not yet discussed the negative impacts of pavement-watering.
Specifically, as climate change is expected to change the region’s seasonal precipi-
tation distribution (Burton et al., 2010; Jouzel et al., 2014), water use optimization
of the technique will be crucial.

Pavement-watering implies the choice of a watering method and a correspond-
ing urban infrastructure. For any given target-area, every watering method can
be characterized by three parameters: the watering period, the watering rate and
the watering frequency. The first outlines the period(s) of each day during which
pavement-watering is active, the second is the average amount of water delivered
per unit area and per unit time (expressed in mm/h, equivalent to L/m2.h) and
the last is the frequency of the watering cycles in the case of discontinuous water-
ing. Of these parameters, the watering rate and period are the ones that define
the method’s water consumption. Their knowledge is therefore highly important
for decision-makers who face growing public pressure to reduce urban water use
and yet are considering pavement-watering as a UHI-countermeasure.

Several watering methods have been proposed or studied in the existing lit-
erature. For methods including vertical surface watering, a closed-loop watering
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system is usually designed. He and Hoyano (2008) describe such a system with a
water supply of 12 L/m?2.h for watered building walls. Wei and He (2013) conduct
a similar simulation but include watering of the surrounding pavements which are
water-retaining. The simulated permeable pavement is saturated at midnight,
but no detail is given as to the amount of water required. In 2008, the City of
Paris funded a numerical study aimed at testing different climate change adap-
tation strategies for heat wave events (Météo France and CSTB, 2012). This
work analyzed a daytime pavement-watering method based on a hypothetical in-
frastructure using the city’s non-potable water network. Pavements and sidewalks
were watered at a rate of 0.2 mm/h for a duration of 3 minutes and a frequency of
every hour. In parallel, a nighttime watering experiment was conducted over the
summer of 2012 (Bouvier et al., 2013). A single watering event of the pavement
and sidewalk was conducted by a cleaning truck around 10 pm, sprinkling 1 L/m?
which is estimated by city officials as the maximum retention capacity of standard
Parisian pavements.

Field studies conducted in Nagoaka City, Japan used an existing snow-melting
infrastructure which consists of a ground-water network used to water the road
surface. Kinouchi and Kanda (1997) ran this system continuously at a rate of
11 mm/h, while Takahashi et al. (2010) ran it intermittently to deliver an average
2 mm/h with 3-minute sprinkles activated as soon as the pavement dried, every
30 minutes on average. Yamagata et al. (2008) used reclaimed waste water
sprinkled onto a water-retentive pavement by temporary pipes placed on a central
road planter. The watering method parameters used are not specified in this study
nor are they in any of the other cited studies previously mentioned.

Of these, only Takahashi et al. (2010) and Météo France and CSTB (2012)
describe attempts to optimize the watering method with atmospheric cooling
parameters. Takahashi et al. (2010) optimize both watering rate and frequency
based on surface and 90 cm air temperature observations over a period of one
hour after watering. Météo France and CSTB (2012) base their own optimization
on findings from Takahashi et al. (2010) with the hypothesis of a pavement water-
holding capacity of 1 mm. They optimize the watering rate based on 2 m a.g.l. air
temperature simulations with a one-hour time step. Watering rates are deemed
optimal as soon as marginal cooling gains are minimal. However, these analyses
are only briefly described, with no mention of explicit targets or goals in either
study.

This Part looks into the optimization of an adapted version of the pavement-
watering method used by Bouvier et al. (2013). The pavement's thermal behavior,
analyzed in Part 2 will be used to accomplish this.

We will demonstrate how pavement heat flux and surface temperatures mea-
surements can be used to fine-tune the watering frequency, and how a surface
heat transfer analysis combined with a linear relation found between heat flux
and solar irradiance during pavement insolation can provide information on the
watering rate. On this basis, we will propose significant reduction of the watering
rate without significantly affecting obtained cooling.
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First, Chapter 17 will present the methodology specific to this Part. Chap-
ter 18 will then estimate the cooling flux created by pavement-watering in the
afternoon on the basis of a linear relation between pavement heat flux and solar
irradiance. Therefrom the evaporation rate will be determined. Chapter 19 will
focus on improving the watering period and frequency on the basis of the ther-
mal effects reported in Part 2. Finally, Chapter 20 will attempt to optimize the
watering rate.

This Part is based on the peer-reviewed work published in Applied Thermal
Engineering and in Urban Climate (Hendel et al., 2015a, 2014).






CHAPTER

Methodology

The methodology specific to this Part will now be presented.

17.1 Heat Transfer Analysis

Figure 17.1, already provided in Chapter 11, shows a diagram of the heat fluxes
relevant to this experiment.

S . I-d«awn i Lup Sref

Atmosphere

Q
............................ Pavement

Figure 17.1 — Diagram of pavement heat budget at surface (Hendel et al., 2015a).

Heat absorption by the water film is not illustrated in Figure 17.1 but is
taken into account in the last item of the heat budget in equation 17.3, defined in
equation 17.6. Indeed, in the case of excessive watering, significant runoff towards
the sewer system may occur, thus transfering heat by advection into the sewers.

Asaeda et al. (1996) and Kinouchi and Kanda (1998) characterize the energy
balance of the pavement surface with the following equations:

Ry =S + Laown — Lup — Sref (17.1)
Riry = gy y ydry (17.2)
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R;Luet — Hwet + Vwet + P (173)
V=G+AQ (17.4)
D =D + Puan (175)
%
O = 1B+ pey-> (T§ — Ty (17.6)
to

R, is the net downward radiation received by the pavement surface and is
the sum of solar irradiance (downward SW radiation) S, downward LW radiation
Lgown, reflected SW radiation S,y and upward LW radiation L,,,; H is the upward
atmospheric sensible heat flux, due to convection; V is the downward pavement
heat flux at the surface; [ is the latent heat of vaporization of water (2,260 kJ/kg);
E is the evaporation rate; ¢, is the specific heat of water (4.18 kJ/kg.K); p is
the density of water (1,000 kg/m3); Vs is the water volume dispersed per unit
surface area (1 L/m?); ¢¢ is the water cycle period in seconds; Ty is the water
temperature; AQ) is the heat flux absorbed by the first 5 cm layer of pavement.
® designates the pavement-watering cooling flux.

The pavement-watering cooling flux ® has two components, a latent flux
component ®;,; and an advective flux component ®,4,. Both components are
positive and are dependent on the watering rate (Vs /%o).

By subtracting equation 17.3 by equation 17.2, we obtain:

d = Hdry _ fwet + Vdry _ Vwet + Lz;y _ sz;t + S:Zj{ _ ;L:;?f (177)

According to Jiirges (1924), convective heat flux can be written as:
H="h(Ts—Tg,) (17.8)

T's is the surface temperature of the pavement and 7, is that of the air above
it. A is the convective heat transfer coefficient.
Furthermore, following the Stefan-Boltzmann law and infrared reflection, L,
can be expressed as:
Lup = €0T§ + (1 — €) Laouwn (17.9)

€ is the emissivity of the emitting surface, while o is the Stefan-Boltzmann
constant.
By definition, S,y can be expressed as:

Spes = a8 (17.10)

Where « is the surface albedo, i.e. its SW reflectance.
Hence:

4 4
Lg;y - quf;t =0 (edryTgTy - E'wetT‘,;‘U@t ) + (ewet - Edr‘y) Ldown (1711)

And :
S;"ig]l‘/ - rl‘iz? - (adry - awet) S (17.12)
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From these equations, the following can be derived:

d — h (Tgry _ nget + T;uet _ Tglry) + Vdry — Vwet + (adry — Ozwet) S

4 4
+o <6dryT5dry - 6wetiré'ua‘/ ) + (Ewet - 6dry) Ldown (1713)

The resulting heat budget is analogous to that used by He and Hoyano (2008)
and Wei and He (2013) for a vertical surface with a water film.

Therefore, knowledge of G, AQ, Liown, S, h, air, water and pavement sur-
face temperatures as well as pavement emissivity and albedo under dry and wet
conditions allows an estimation of the latent heat flux and thus the evaporation
rate.

Unfortunately, Lgo,n Was not measured. In dry conditions, the asphalt sur-
face's emissivity (e4r,) was measured to be 0.97, while in wet conditions the
surface’s emissivity (€yet) is that of water, equal to 0.98. Because the difference
in emissivity between the wet and dry pavements is minor, it is neglected in the
second term of equation 17.11. Thus:

Lﬁ;y —Liyt=o (EdryTgry4 — EwetTé'U@t4) (17.14)

Furthermore, pavement albedo was not measured either. According to San-
tamouris et al. (2001), the typical albedo range for asphalt is 0.05 to 0.20, the
former value referring to new asphalt pavements, the latter to older ones. Because
of the road work necessary to lay the pavement sensor, the pavement above it
was practically new. We therefore assume an albedo of 0.05 in dry conditions.
According to Lekner and Dorf (1988), since ay << 1, both dry and wet asphalt
have approximately equal albedos: a,, ~ ay. Therefore: S’fg — Syt = 0. This
holds true for the rest of the pavement surface as well if an albedo of 0.10 is
assumed.

Finally, several empirical formulae exist to calculate i based on wind speed
(v). These include equation 17.15 used by Kusaka et al. (2001) and equation
17.16 by Duffie and Beckman (1991).

h=6.15+4.18v (17.15)
h=57+3.80 (17.16)

Under the field conditions described (hourly wind speed approximately equal
to 1 m/s), h is approximately equal to 10 W/m2.K.
With these approximations, the following expression of @ is obtained:

d=h (Tsdry _ Téuet + T;uet N Tgry) +o (edryTgry4 _ ewetTg}et‘l) + ydry _ yywet

(17.17)

Thus, knowledge of G, AQ, air, water and pavement surface temperatures
under dry and wet conditions is sufficient to estimate the latent heat flux.
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The analysis of the mass convection transport problem can also be used to
estimate the evaporation rate, although it is inadequate at optimizing the watering
frequency. This method assumes that evaporation is uninterrupted, i.e. that the
watered surface does not dry out. Pagliarini and Rainieri (2011) use such a method
to determine the evaporation rate on a continuously-watered glass roof. Adapted
to our problem by assuming that the water film and the road surface have the
same temperature, their equation becomes:

Lh P P
IE = 0.622 Twet 50 17.18
Cpairpo ° <T§Ud T(;uet ( )

Po, Ps and p, represent total air pressure, saturation vapor pressure at the
water film temperature T'g; and partial air vapor pressure at T, e in Pa,
respectively. cpqir is air specific heat (1.005 J/g.K).

The meteorological data used to solve this equation later on was recorded by
Météo-France's Montsouris weather station and consists of hourly measurements.
This approach will be used to confront the results obtained from the heat transfer
analysis in Chapter 18.

17.2 Optimization Goals

Optimizing the watering parameters (watering period, rate and frequency) requires
that we define a set of optimization goals. The goal of pavement-watering is to
improve micro-climatic conditions as much as possible while creating minimal
negative impacts.

As was previously discussed, micro-climatic effects are the result of pavement
cooling caused by watering. Therefore, the goal of maximizing improvements to
micro-climatic conditions will be replaced by the goal of maximizing pavement
cooling .

The first negative impact which comes to mind when considering pavement-
watering is water consumption. Daily water consumption is determined by the
combination of the watering rate and the watering period. Pavement-watering
effects only last as long as the pavement remains wet. Since reducing the watering
period will directly affect the duration of the sought-after effects, we will focus
on minimizing the watering rate. As a last resort after other optimization efforts
have been made, the watering period can be reduced if daily water consumption
remains too high for feasibility.

In addition to using water, pavement-watering as it was conducted in our
experiment implies the use of cleaning trucks. These create disturbances for
traffic and pedestrians, noise- and air-pollution as well as energy consumption and
green house gas emissions. Considering each cleaning truck pass as a negative
impact that must be minimized, we include minimizing the pavement-watering
frequency in our optimization goals, in addition to maximizing pavement cooling
and minimizing the watering rate and period.
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Our optimization goals are thus the following, by order of importance:

4.

. Minimize the watering frequency, i.e. maximize tg
. Maximize obtained pavement cooling, ®

. Minimize the watering rate, Vg/to

Minimize the watering period

Goals # 2 and # 3 can be recombined as :

Minimize the watering rate to pavement cooling ratio, (té) /®.
0

These goals are tailored to our watering method, i.e. short sprinkling events
occurring at regular intervals over a given period of the day. However, they can
easily be adapted to the case of a watering infrastructure that runs continuously
or causes no negative impacts. In that case, goal # 1 can be dropped, while goals

# 2, # 3 and # 4 remain valid.






CHAPTER

Cooling Flux ¢: Determining
the Evaporation Rate

We now proceed to determine the surface cooling flux ® attributable to pavement-
watering in order to determine the evaporation rate.

Kinouchi and Kanda (1998) put into perspective a correlation between R,
and G. They proceeded by plotting GG as a function of R,,. Camuffo and Bernardi
(1982) explore the hysteris cycles found between surface heat fluxes and net radia-
tion for soil, including V' as a function of R,,. Other authors such as Asaeda et al.
(1996), studying the effect of pavement heat storage on the lower atmosphere,
also look into this hysteris cycle for asphalt and concrete pavements.

Because net radiation was not measured, we shall proceed in an analogous
fashion with S instead. This will permit the estimation of the surface cooling
effect of pavement-watering based on a relation between S and GG during pavement
insolation. From this an estimate of the evaporation rate is obtained.

18.1 Results

Figure 18.1 shows G as a function of S on reference days: a) July 11t", b) July
14t ¢) July 20*" ; and on watered days: d) July 8, e) July 22" and f) July
10th. The chronological order of the data points is counterclockwise. The least
square regression line of G according to S between 3 pm and 6:30 pm, when the
pavement has been both insolated and watered for at least 30 minutes, is plotted
for each date.

The parameters from the linear regression can be formalized as:
G =BS5S+ Gy (18.1)
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Figure 18.1 — G as a function of S on control and watered days. a) July 11t",
b) July 14, ¢) July 20t", d) July 8, e) July 22", f) July 10th, 2013 (Hendel
et al., 2015a).
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[ is the conversion coefficient of solar irradiance to pavement heat flux 5 cm
below the pavement surface, while Gq is the intercept heat flux under these
conditions.

The regressions were conducted for reference and watered days. On reference
days, an intercept of 0 W/m? was used. Table 18.1 summarizes the regression
parameters for reference days.

Table 18.1 — 8 and R? on reference days (Hendel et al., 2015a).

July 11t July 14t July 20t

B 0.222 0.271 0.247
R2 0.999 0.998 0.986

Each fit is stat. sign., with coefficients of determination in excess of 0.98.
Overall, the conversion coefficients derived on reference days range from 22% to
27%.

On watered days, different intercepts, corresponding to the average reduction
of G found in Table 12.2, were tested. Using these intercepts, similar slopes to
those found on control days were obtained. Table 18.2 summarizes the regression
parameters using the different intercepts for watered days.

Table 18.2 — 3, R? and Gy (W/m?) on watered days. The value of Gy was input
by the user (Hendel et al., 2015a).

July 8th July 22nd July 10th
Control  July 11t July 14t July 14t July 20t July 11t July 14t
Go -100 -120 -130 -150 -110 -130
3 0.216 0.244 0.237 0.269 0.232 0.262
R2 0.997 0.995 0.986 0.985 0.996 0.996

Regardless of the intercept value used, the conversion coefficients deviate
only slightly from those derived on reference days, remaining in the same 22-27%
range. Considering the statistical significance of these regression parameters, it
is concluded that pavement-watering does not significantly affect the conversion
coefficient, but adds a constant heat flux, Gy.

Solar energy is thus transmitted in the same manner 5 cm below the pavement
surface when wet or dry up to a constant. It can therefore be assumed that AQ
is unchanged by watering during insolation, i.e. AQuer = AQgry. In other
words, V' is also unchanged up to the same constant as G when dry or watered
in insolated conditions. This hypothesis is in agreement with experimental data
presented by Kinouchi and Kanda (1998), which illustrate that AQ is unaffected
by pavement-watering.
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This information allows the estimation of the cooling created by the sprinkled
water. The contribution from water advection is found to be between 23 and
35 W/m?2, while that of evaporation is 269-341 W/m?2.

This is derived by using the regression parameters from equation 18.1 in equa-
tion 17.13, resulting in the following equation:

O = h(TIY — Twet 1 Twet — Ty 4 (e TP — e, TE — Gy (18.2)

As stated in Chapter 6, previous studies of pavement-watering report air tem-
perature reductions of up to 4°C (Kinouchi and Kanda, 1997, 1998; Takahashi
et al., 2010; Yamagata et al., 2008; He and Hoyano, 2008; Wei and He, 2013;
Météo France and CSTB, 2012; Bouvier et al., 2013; Maillard et al., 2014). It
is assumed that —2°C < Twel — T9ry < ( for the purpose of this analysis. Un-
certainty propagation due to estimated parameters such as this one is integrated
following Kline and McClintock (1953).

In addition, collected surface temperature data (see Chapter 13) reveal an
average reduction during insolation of 13°C, from 50°C (323 K) to 37°C (310 K).
These findings agree well with observations made by (Kinouchi and Kanda, 1997)
and (Wei and He, 2013). Having found that h = 10 W/m?.K, and considering
that 110 W/m? < —Go < 150 W/m? on days with 30-minute watering:

304 W/m?* < & < 364 W/m?

As stated in Chapter 6, past non-potable water analyses conducted by the city
services have shown that its temperature is in the 20-25°C range on hot summer
days. Assuming that the runoff temperature increases to 35°C by contact with
the pavement, we obtain:

23 W/m? < ®.4, < 35 W/m?
269 W/m? < IE < 341 W/m?

These assumptions on non-potable water temperature were confirmed by field
measurements conducted during the summer of 2014 using a spot Pt-100 tem-
perature sensor. Water temperature was measured at the cleaning truck hose and
at the sewer inlet after watering.

Considering a latent heat of vaporization of 2,260 kJ/kg, it can be asserted
that the evaporation rate is between 0.119 and 0.151 g/m?2s, i.e. between 0.43
and 0.54 mm/h. This means that for each 30-minute watering cycle, 0.21 to
0.27 mm evaporate. Since the preliminary pavement heat flux analysis has shown
that the pavement dries off after 30 minutes, it can be asserted that the rest of
the water runs off into the sewer system.
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18.2 Confrontation with Mass Convection Transport
Problem

This solution will now be compared to the solutions obtained with the mass
convection transport problem. Table 18.3 provides the relevant meteorological
parameters and the solutions obtained by solving equation 17.18 for days with
30-minute watering, i.e. July 22"¢ and 10", 2013. The values indicated are the
averages of each parameter recorded by Météo-France at their Montsouris station
between 3 pm and 6:30 pm.

Table 18.3 — Average value of meteorological parameters on July 22", and 10",
2013 between 3 pm and 6:30 pm and corresponding solutions to equation 17.18
(Hendel et al., 2015a).

July 22" July 10t

po (Pa) 100,500 100,900
Tswer (K) 310 310
T, (K) 306 299
RH 33% 45%
ps (Pa) 6,295 6,295
o (Pa) 1,665 1,516
IE (W/m?) 641 655

E (g/m?3) 0.284 0.290

As can be seen from Table 18.3, the evaporation rates thus obtained are about
three times higher than those obtained by solving the heat transfer problem. Since
both methods were taken from the existing literature and are rigorous, they should
agree if the shared parameters and assumptions are correct.

One implicitly shared assumption is that evaporation at the pavement surface
is continuous between 3 pm and 6:30 pm. Since the pavement remained wet in
between watering cycles (e.g. absence of heat flux spikes), this assumption is
correct and is therefore not the cause of the observed discrepancy.

The only remaining shared parameter that must have been incorrectly esti-
mated is the convective heat transfer coefficient h. Good agreement between
both methods is found if & is assumed equal to 3.5 W/m2.K.

Previous overestimation of h is attributed to the use of 4 m wind speed
measurements. These may not be representative of wind conditions closer to
the pavement responsible for the convective transfers taking place. Although
3.5 W/m2.K may seem rather low based on equations 17.15 and 17.16 used in
Chapter 17, it should be noted that the weather conditions under which pavement-
watering was conducted are chosen to be representative of heat waves, with high
temperatures, strong insolation and low wind speeds. They are therefore not
representative of typical weather conditions for Paris. This also explains the low
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RH observed on these two days.
Table 18.4 presents the results from the mass convection transport problem
with the corrected convective transfer coefficient.

Table 18.4 — Solutions to equation 17.18 obtained with h = 3.5 W/m?2. K (Hendel
et al., 2015a).

July 227 Jyly 10t

IE (W/m?) 224 229
E (g/m%s)  0.099 0.101

With h = 3.5 W/m?2.K, total pavement cooling found using equation 18.2
amounts to between 232 and 279 W/m?, divided between water advection and
evaporation as follows:

35 W/m?

23 W/m? < @44,
256 W/m?

<

198 W/m? < IE <

This corresponds to an evaporation rate of between 0.087 and 0.113 g/m?.s,

i.e. between 0.31 and 0.41 mm/h. This means that for each 30-minute watering
cycle 0.16 to 0.20 mm of water evaporate.

18.3 Discussion

The analysis of G as a function of S during insolation after the initial transient
period has allowed us to estimate ® to between 232 to 279 W/m? of pavement
surface cooling attributable to pavement-watering.

This cooling flux corroborates our previous claims that pavement-watering
may reduce UHI intensity as it creates a cooling flux, mainly based on latent heat
exchange by water evaporation. Pavement-watering can be considered as a form
of evapotranspiration on behalf of the pavement, helping it better regulate its
temperature and thus reduce atmospheric heating.

Our estimations of latent heat flux are consistent with those reported by Météo
France and CSTB (2012) who find that latent heat flux can reach up to 180 W/m?2.
They also agree well with findings by He and Hoyano (2008) who report an
advective heat flux of 23-47 W/m?2 and a latent heat flux of 250-320 W/m? for a
westward-facing building wall cooled by a circulating water film.

Another consequence of these results is information on the water-holding ca-
pacity of the pavement. Since the pavement dries 30 minutes after watering
during insolation (see Chapter 13 for further details), the water-holding capacity
of the pavement is therefore equal to the amount of water evaporated in between
watering cycles, i.e. between 0.16 and 0.20 mm. This is significantly less than that
assumed by Météo France and CSTB (2012), but is only valid for the portion of
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pavement surveyed by the heat flux sensor. This portion has a specific geometric
configuration and surface composition (cold- versus hot-mix asphalt concrete).

Sources of uncertainty in these estimations lie in the use of S rather than
R,,, assumptions regarding water temperature changes and those regarding AQ.
Concerning the latter, observations over several days by Kinouchi and Kanda
(1998) substantiate our assumption as does the presented analysis of G which is
unchanged up to a constant in dry and wet conditions over the considered time
span.

18.4 Conclusion

A linear relation was found between pavement heat flux G' and solar irradiance S
during insolation (equation 18.1), unchanged up to a constant on watered days
compared to reference days. Inputting this information into the heat transfer anal-
ysis described in Chapter 17 then allowed us to estimate the pavement-watering
cooling flux @ to 232-279 W/m? and thus the evaporation rate to between 0.31
and 0.41 mm/h. In the process, the water-holding capacity of pavement zone 1
was estimated to between 0.16 and 0.20 mm. The estimation of the evaporation
rate was confirmed by an independent evaluation obtained by solving the mass
convection problem.

In the study conditions, evaporation was found to represent at least 85% of
total cooling, while representing a mere 20% at most of water use. This will be
analyzed further in Chapter 20 to optimize the watering method. First, we now
attempt to optimize the watering frequency in Chapter 19.






CHAPTER

Watering Frequency
Optimization

Following the goals set in Chapter 17, we now attempt to minimize the watering
frequency while maximizing pavement watering cooling. We proceed by comparing
the spikes detected in the series analyzed in Part 2 with the occurrence of watering
cycles. Watering cycle times were reported by the cleaning truck drivers and
crosschecked with visible images from the rooftop IR camera (see Chapter 6).

19.1 Results

The measurement data for G, pavement surface and 5 cm temperatures will now
be analyzed with this goal.

Pavement Heat Flux

Figure 19.1 illustrates G (solid line) on watered days and watering cycles (dot-
dashed vertical lines).

As can be seen, spikes in GG coincide nearly perfectly with watering cycles,
allowing for the imprecision of watering time reporting. As is confirmed by visible
images taken by the rooftop IR camera, these spikes are indicative of pavement
drying.

The daily peak of pavement heat flux is thus found to coincide with the
beginning of afternoon watering on all considered days except on July 10t when
afternoon watering began at the same time as pavement insolation. Furthermore,
spikes in the afternoon coincide with watering cycles that are 45 minutes apart or
more, apart for the secondary spike on July 22" which is linked to a 50 minute
interruption in watering. Finally, the last peak, much smoother than the others,
occurs 2-2.5 hours after the end of insolation.
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Figure 19.1 — Watering cycles and pavement heat flux on a) July 8", b) July 10th
and c) July 22", 2013.

This provides insight on two aspects of the watering method: its watering
period and its frequency. First, the value of the daily maximum of G depends
on the start of afternoon watering relatively to pavement insolation. Second, if
the pavement watering frequency is too low, the pavement surface has enough
time to dry and G rises towards its normal reference value until the next watering
cycle.

As was noted in Chapter 12, the observed reduction is inversely proportional
to the delay between the start of afternoon watering and the start of pavement
insolation. In order to minimize the daily heat flux peak, watering should therefore
begin just a few minutes prior to pavement insolation. This will ensure that the
pavement is wet when the sun begins to shine on it, limiting its heat absorption
and the daily heat flux peak.

Furthermore, the watering frequency must be adjusted to prevent the pave-
ment surface from drying between cycles. Our observations suggest that a period
of 45 minutes is too long, while 30 minutes is nearly optimal during insolation.
In the morning in shaded conditions, the data suggests that watering every hour
is sufficient, but a lower frequency may be achievable without causing surface
drying. Evidence to support this is found in the last peak which occurs 2-2.5
hours after the end of insolation, which indicates that the time required for the
pavement to dry in the shade is in the order of two hours. It may therefore be
possible to halve the morning watering frequency, especially considering that air
temperatures are cooler than in the evening.

Surface Temperatures

Surface temperature spikes both before and during pavement-watering were de-
tected on watered days, as seen in Chapter 13. Figure 19.2 illustrates surface tem-
perature measurements alongside watering cycles, marked by vertical dot-dashed
lines.
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Figure 19.2 — Surface temperature and watering cycles on watered days: a) July
8™ and b) July 22

As was seen with pavement heat flux (G, surface temperature spikes coincide
very well with watering cycles. Spikes just before afternoon watering begins occur
for the pavement zones only. This is because the studied areas are not insolated
simultaneously and pavement-watering began before the sidewalk was insolated,
but not before the pavement zones were.

Similarly to pavement heat flux, the daily surface temperature peaks are found
to coincide with the first afternoon watering cycle for both pavement zones, apart
for the sidewalk zone which is insolated only after watering resumes. Also, their
intensity is proportional to the delay in afternoon watering vs. surface insolation.

Spikes ensue in the afternoon if watering is applied every 45 minutes, except
for the sidewalk for which 30-minute watering does not prevent their appearance.
Indeed, for pavement zones 1 and 2 the second spike on July 22" occurs after a
50-minute long interruption in watering. Although sidewalk spikes occur on both
days, they are smaller on July 22"9.

These local temperature spikes allow us to make recommendations to improve
the effect of pavement-watering: as was seen with pavement heat flux spikes,
afternoon watering should begin just before surface insolation to limit the initial
temperature increase, while a watering cycle period of 30 minutes for the pavement
seems sufficient to erase spikes which occur during afternoon pavement-watering.
However, 30-minute watering remains too long for the sidewalk which requires a
higher frequency. One-hour watering is sufficient for morning shaded conditions
for all surfaces, but a lower frequency may be achievable without deteriorating
the obtained results. As was found for heat flux, a last peak occurs 2-2.5 hours
after the end of insolation. This also indicates that it may be possible to halve
the morning watering frequency without affecting cooling.

The trends seen here are similar to those found for pavement heat flux. The
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first spikes in surface temperatures are reached because the first afternoon water-
ing cycle occurs too late compared to the last morning watering cycle. The spikes
observed once afternoon watering is underway indicate an insufficient watering fre-
quency. Watering earlier should reduce the daily temperature maximum by slow-
ing the temperature increase, while increasing the watering frequency should erase
these temperature spikes. The former recommendation was applied on July 10t",
but the IR camera was nonoperational on that date. However, similar changes to
those seen for G are expected. The second recommendation is confirmed by com-
paring temperatures from July 8t with 22", when the watering cycles occurred
every 45 and 30 minutes, respectively.

Since spikes are still visible for the sidewalk zone even with 30-minute wa-
tering, a higher watering frequency is necessary to reach maximum cooling for
that surface. This is due to the sidewalk’s asphalt surface course whose texture
is significantly smoother than that of the pavement zones. It therefore retains
less water than the pavement, resulting in shorter-lasting cooling and increased
runoff. The difference in watering method, with the manual hose rather than the
vehicle's sprinkler, may also explain part of this difference as it was more diffi-
cult to uniformly water the sidewalk due to the presence of pedestrians and other
obstacles.

Judging by the behavior of sidewalk temperatures between watering cycles,
the optimal watering frequency seems to be between every 10 and 20 minutes.

5 cm Pavement Temperatures

In comparison to the 5 cm pavement heat flux and surface temperature observa-
tions, no significant 5 cm temperature spikes are visible before or during afternoon
watering.

No conclusions can therefore be drawn from these observations to improve the
watering method.

19.2 Discussion

Heat flux and surface temperature spikes coincide well with watering cycles and
as such are indicative of pavement drying, as was confirmed with visible images.
They were thus used to adjust the watering period and frequency to keep the
pavement surface wet as long as possible, particularly during pavement insolation.
Watering just before the beginning of insolation and every 30 minutes thereafter
for pavement zones 1 and 2 were recommended as a result, but was found to
be insufficient for the sidewalk zone. One-hour watering in the morning was
found to be acceptable for all surfaces but it is likely that this frequency can be
halved without affecting obtained cooling. No spikes were detected for pavement
temperature 5 cm deep, which could therefore not be used for this analysis.

Our recommended watering frequency is the same as that used by Takahashi
et al. (2010) who also use a watering rate of 2 mm/h. However, it is twice as fast as



19.2. Discussion

119

that found by Météo France and CSTB (2012), despite cooler weather conditions.
Reasons for this discrepancy are likely linked to their hypothesis on the pavement
water-holding capacity, assumed to be 1 mm. Indeed, we found in Chapter 18
that the pavement water-retaining capacity of our studied area was between 0.16
and 0.20 mm, i.e. at least five times lower than their assumption. However, if
the water-retaining capacity of our pavement was 1 mm, given our evaporation
rate of 0.31-0.41 mm/h, watering every 2.5-3 hours would have been sufficient.
Differences in pavement water-holding capacities are therefore unable to explain
the observed discrepancy. Other factors may include dissemblance between the
average Parisian urban canyon computed by Météo France and CSTB (2012) and
the rue du Louvre canyon, the decrease in insolation intensity between the months
of July and August or the one-hour time step of their simulation. It is difficult to
favor one of these over the others.

We now turn to the potential limits of our analysis for each parameter, the
explanations thereof and potential solutions.

Pavement Heat Flux

As pavement heat flux measurements are conducted continuously every minute,
no heat flux spike omissions are expected. Still, the heat flux signal 5 cm below
the pavement surface is necessarily dampened by the overlying materials. This
reduces the sensitivity of G as an indicator of pavement drying, possibly leaving
spikes occurring in the last minutes before watering or seemingly insignificant ones
undetected. For example, the small variations in G on July 10t" may indicate
surface drying but were disregarded in light of their limited amplitude.

Fortunately, watering recommendations made on the basis of heat flux spikes
and surface temperature spikes are in good agreement. Since surface tempera-
tures are not dampened by any overlying materials, the good agreement found
indicates that GG is only marginally affected by the inertia of surface course ma-
terials. However, surface temperature measurements were only made every 10
minutes at best, leaving room for undetectable spikes to appear.

From the point of view of optimizing the watering frequency, heat flux mea-
surements have the advantage of being nearly continuous. Since signal spikes
can be detected immediately with little or no risk of omitting any, the optimal
watering frequency can be determined from watering the target area a single time
and measuring the time it takes for it to dry. Indeed, the best watering frequency
is the lowest one which prevents the target area from drying between cycles, i.e.
the time it takes for the surface to dry. Two to three such measurements on
the hot days are likely sufficient to determine the best pavement-watering in our
case: one in the morning and one at the beginning of pavement insolation. If
need be, another such measurement can be conducted a couple of hours before
the end of insolation, representative of the lower insolation intensity. The optimal
frequency for the morning and the afternoon would therefore be known. In the
case of periods of extreme heat, a correction factor may need to be applied.
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On the other hand, pavement heat flux measurements require very costly
and invasive road work to install relevant sensors. Furthermore, they are unable
to survey several areas at a time. This is not the case of surface temperature
measurements conducted with IR instruments.

Surface Temperatures

Because the surface temperature measurement frequency is 10 minutes at best,
surface temperature spikes may have been omitted in the last minutes prior to
watering cycles, in between two consecutive IR camera measurements. Closer
analysis of the temporal distribution of the data shows that measurements occur
as little as four minutes before watering cycles on July 22" without the detection
of spikes. However, this does not exclude the possibility of undectected spikes
during these last four minutes.

To remedy this, measurements can either be more frequent or they can be
synchronized with watering cycles so as to occur a few seconds before watering.
In the case of a manual watering method such as ours, it is not possible to re-
liably synchronize measurements with watering cycles. Watering cycles are not
distributed as regularly as planned due to operator error or to traffic or to the
presence of pedestrians. In this situation, the sampling frequency should be in-
creased. In order to be sure that the error window is limited and no worse than
what is described here, a 5-minute frequency is recommended at least.

In the case of an automated pavement-watering system, synchronization should
be more feasible and the sampling rate could even be reduced to the watering fre-
quency: as long as the measurement is made right before watering, no spikes
should be missed. Nonetheless, if the watering frequency is deemed insufficient
following the data analysis, this sampling rate provides no indication on what
the correct frequency might be, thus requiring multiple follow-up field trials. A
frequency at least two or three times as high as the watering frequency will help
narrow down the optimal watering frequency band significantly, saving time and
effort.

As mentioned earlier, the recommendations formulated on the basis of surface
temperature and pavement heat flux data show good agreement. This is due to
good correspondence between heat flux and surface temperature spike observa-
tions. It should be noted however that temperature spikes have a relatively greater
amplitude than heat flux spikes. This is unsurprising as heat flux 5 cm below the
surface is naturally less sensitive to surface conditions than surface temperatures
are.

However, this greater sensitivity means that minor heat flux spikes which may
have been disregarded, such as those apparent in the afternoon of July 10th,
may correspond to significant surface temperature spikes. The absence of surface
temperature data on that date prevents us from exploring this possibility further,
but these considerations emphasize the need for measurements within the last few
minutes preceding watering cycles.
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As a result, it is tempting to increase the measurement frequency further.
One-minute measurements would be ideal and would ensure that no significant
spikes are missed. The amount of time required to empirically determine the
optimal watering frequency would be significantly reduced as well since only one
trial would be needed if no field-of-view obstructions occur, similarly to what was
discussed earlier for pavement heat flux measurements.

Such a high frequency creates large numbers of data files. Apart from requiring
a higher storage capacity, the treatment load will also increase significantly if
corrections cannot be integrated automatically and must be applied manually. For
this reason, automatic corrections are necessary for one-minute measurements to
be simple to analyze and interpret.

Given that the information sought after is the detection of temperature spikes,
the corrections may be unnecessary in certain situations. Indeed, if the IR imaging
device is only a few meters away from its target and the surface material has high
emissivity, i.e. both atmospheric and reflected temperature influence are low,
uncorrected brightness temperature should suffice to detect surface drying in the
form of temperature spikes. In this case, it is recommended to proceed with
one-minute measurements if storage capacity is sufficient.

To summarize, if the instrument data is readily usable for analysis, either be-
cause brightness temperature is sufficient or corrections are automatically applied,
one-minute measurements are recommended. Otherwise, if it is found that manual
data correction and analysis are too resource-intensive, five-minute measurements
should be enough, especially if these can be synchronized with the watering cycles.

5 cm Pavement Temperatures

Pavement heat flux and surface temperature spikes were shown to be reliable
indicators of surface drying, relevant to the improvement or optimization of the
pavement-watering method. In the absence of such spikes, a similar analysis of 5
cm pavement temperatures could not be conducted.

The absence of spikes is caused by strong dampening of the temperature
signal by the thermal inertia of the pavement’s surface course. We therefore
conclude that pavement temperature measurements below high-inertia surface
courses cannot be used to improve the watering frequency. However, they may
still be useful in the case of surface courses with low thermal inertia, although
they are expected to remain less accurate than pavement heat flux or surface
temperature measurements.

19.3 Conclusion

Spikes observed in pavement heat flux and surface temperature measurements
were used to optimize the watering frequency. As none were detected for 5 cm
temperatures, this parameter was unhelpful for this purpose. Spikes occurring
before pavement-watering resumes in the afternoon indicate that watering should
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begin before surface insolation, while those found in between watering cycles
indicate that the watering frequency should be increased. These adjustments
ensure that the pavement is wet when insolation begins and between watering
cycles.

For asphalt concrete pavement surfaces in a N-S street in Paris in the month
of July, watering every 30 minutes during insolation is optimal and every two
hours during shading is probably sufficient. This does not hold true for asphalt
sidewalks, for which 30 minutes was found to be too long during insolation. The
best frequency for the sidewalk was estimated to be between every 10 and 20
minutes. The conclusions reached independently with pavement heat flux and
surface temperatures agree well with each other for pavement zone 1.

The pavement-watering frequency and period can therefore be successfully
optimized on the basis of the detection of surface drying, manifested in the form
of rapid heat flux or surface temperature changes. The pavement sensor used and
time-lapse IR camera temperature surveys are able to meet this requirement if
they are frequent enough to detect the temperature spikes which may occur in the
last moments preceding watering cycles. Pavement heat flux measurements were
conducted every minute and were deemed sufficient. For surface temperatures, a
measurement rate of 5 minutes or less ensures that minimal temperature spikes
are omitted, while 1-minute measurements are ideal where possible.

In retrospect, the watering period could be extended further to be 24 hours
long, thus fulfilling goal # 2. However, judging by the micro-climatic and thermal
effects determined in Parts 1 and 2 and their temporal distribution, pavement-
watering effects are greatest during pavement insolation.

On this basis, the watering period could also be shortened to only include the
insolation period, eliminating morning watering altogether apart for one watering
cycle a few minutes before pavement insolation. This would help fulfill goal # 4.
However, while initial morning effects may be limited, they gradually increase as
hours pass. Indeed, while initial effects are about 2°C and 15 W/m?2, maximum
morning effects reach up to 4°C and 50 W/m? at the last morning watering cycle.
We therefore recommend that morning watering be maintained although it may be
delayed by a few hours, until 9:30 am for example. A similar analysis of watering
effects in the evening reveals that watering just after the end of insolation seems
worthwhile for the same reasons.

Having proposed optimal watering frequencies for the Louvre site, we now
focus on optimizing the watering rate in Chapter 20.



CHAPTER

Watering Rate Optimization

Optimal watering frequencies were proposed in Chapter 19. This chapter will
now focus on optimizing the watering rate, crucial to limiting the total water
consumption of pavement-watering.

20.1 Pavement Cooling Flux ¢

The analysis of G as a function of S conducted in Chapter 18 allowed us to
demonstrate that pavement-watering is responsible for 232 to 279 W/m? of surface
cooling. Pavement cooling has an evaporative and an advective component, which
were found to be:

23 W/m? < ®uq, < 35 W/m?
198 W/m? < IE < 256 W/m?

The latent flux is equivalent to an evaporation rate E of between 0.087 and
0.113 g/m2s, i.e. between 0.31 and 0.41 mm/h. This means that for each
30-minute watering cycle 0.16 to 0.20 mm of water evaporate.

Judging by these results, at least 85% of total cooling attributable to pavement-
watering is produced by evaporation and 15% at most by water advection.

The relative contributions of advection and evaporation contrast strongly with
the amount of water used by each of these phenomena which is respectively
2mm/h and 0.31 to 0.41 mm/h. Pavement cooling by water advection is therefore
much less water efficient than that from evaporation: 12 to 18 W/m?2 of cooling
per 1 mm/h of sprinkled water, compared to 628 W/m? per 1 mm /h of evaporated
water. However, evaporation cannot increase past a certain value, dependent on
the local meteorological conditions.

Figure 20.1 illustrates pavement cooling ® (left) and the watering rate to cool-
ing ratio (right) as a function of the watering rate, assuming a constant water
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and pavement surface temperature differential and a maximum evaporation rate
of 0.41 mm/h. The 0.41 mm/h mark is emphasized by the long-dashed vertical
lines in Figure 20.1. It is clear that once evaporation has been maximized, pave-
ment cooling is only marginally increased by additional watering as the advective
contribution increases.
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Figure 20.1 — Pavement cooling ® (left) and watering rate to pavement cooling
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ratio ﬁ (right) according to the applied watering rate (Hendel et al., 2015a).
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In regards to the optimization goals, the watering rate to pavement cooling
ratio is minimized for a watering rate anywhere below the maximum evaporation
rate. Therefore, any of the values below that rate are optimal. However, in order
to maximize pavement-watering's cooling effect, the best watering rate is that of
the maximum evaporation rate.

We therefore recommend adjusting the watering rate to match the maximum
evaporation rate exactly. In the described experimental conditions, this would
lower advective cooling to between 4 and 7 W/m?, bringing total pavement cooling
down to between 201 and 263 W/m?, i.e. a 6-13% reduction for a 80-84% water
saving.

Météo France and CSTB (2012) found an optimal watering rate of 0.2 mm/h
for all of Paris’ road surfaces. This value was obtained by testing different watering
rates with a frequency of every hour and a water-holding capacity of 1 mm.
However, it is a daily and city average for watering every hour between 5 am
and 7 pm and is not more accurately defined for individual street configurations.
Furthermore, the authors were limited in the choice of the watering frequency
since the model's time step was one hour and was found sufficient considering a
water-holding capacity of 1 mm. The findings reported here are therefore deemed
to be consistent with theirs.

Sources of uncertainty in these estimations lie in the use of S rather than



20.2. Pavement Surface Temperatures

125

R,, and assumptions regarding A(Q). Concerning the latter, observations over
several days by Kinouchi and Kanda (1998) substantiate our assumption as does
the presented analysis of G which is unchanged up to a constant in dry and wet
conditions over the considered time span.

Net radiation measurements would help address the sources of uncertainty in
this analysis. In addition, these measurements would help verify the conjecture on
optimal watering during pavement shading in the morning via a similar approach
to that used for the afternoon. The 2014 campaign hoped to address this issue,
but as previously mentioned, the nonoperational pavement sensor prevented us
from doing so. If all goes well, the 2015 campaign will provide data suitable to
optimize the watering method in the morning.

In the mean time, if it is assumed that the watering frequency used in the
morning is optimal, morning evaporation can be estimated to between 0.16 and
0.20 mm/h.

20.2 Pavement Surface Temperatures

Based on the previous findings and on the analysis conducted on pavement tem-
peratures, only the water-retaining capacities of the studied surfaces are needed
to optimize the method’'s water consumption on the sole basis of surface temper-
ature measurements. Temperature 5 cm below the pavement surface cannot be
used to optimize the watering method.

Indeed, the optimal watering rate was determined from the pavement cooling
flux ® as consisting of sprinkling the exact water-holding capacity of the targeted
area, at the frequency required for that volume to evaporate. Therefore, once the
water-holding capacity of the pavement is known, only the frequency needs to
be determined, which can be done on the basis of pavement surface temperature
observations.

20.3 Conclusion

Only pavement heat flux measurements could be used to adjust the watering
rate, except if the pavement water-holding capacity is determined independently
in which case surface temperatures are also suitable.

In order to improve the watering method to meet our optimization goals, it
is advised to match the watering rate with the evaporation rate. In the case
of the asphalt concrete in pavement zone 1, this amounts to 0.31-0.41 mm/h
during insolation. Given the water-holding capacity of pavement zone 1, this
translates to watering cycles of 0.16-0.20 mm every 30 minutes. In the morning,
the evaporation rate could not be determined, though 60-minute watering cycles
and a watering rate of 0.16 to 0.20 mm/h are acceptable. There may however
still be significant room for improvement.
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In the experimental conditions described here, the proposed watering rate
would use at least 80% less water while still providing at least 87% of observed
pavement cooling. The watering method has therefore been significantly improved
without significantly modifying the watering period.



CHAPTER

Conclusion of Part 3

The thermal effects of pavement-watering determined in Part 2 were used to
improve the watering method and its water consumption for a N-S oriented street
in Paris, France during the month of July.

Watering of the asphalt concrete pavement should deliver 0.16-0.20 mm /cycle
at the lowest frequency which prevents surface drying. In the afternoon, watering
every 30 minutes is recommended until the end of pavement insolation, but is
inadequate for the asphalt sidewalk which requires watering every 10-20 minutes.
In the morning, 60-minute watering at a rate of 0.16-0.20 mm/cycle is sufficient,
but can likely be improved by 50% as indicated by spikes detected in heat flux
and surface temperature 2-2.5 hours after watering in the evening. Finally, the
watering period should be extended to include the minutes preceding the beginning
of insolation, but the start of morning watering can presumably be delayed until
approximately 9:30 am.

Generally speaking, the most efficient method of pavement-watering is to
match the watering rate with the evaporation rate at the watered surface. Having
defined the watering rate, the water-holding capacity of the targeted area deter-
mines the suitable watering frequency. Of course, the evaporation rate will depend
on the surface temperature reached by the target area when wet and therefore
depends on the sprinkled material’s properties.

Field trials were conducted over the summer of 2014 in order to confirm these
recommendations, although the watering rate applied by the cleaning trucks could
only be halved at best, i.e. 0.5 mm per watering cycle. Unfortunately, pavement
sensor measurements were significantly different compared to the summer of 2013
in similar conditions. The instrument was therefore considered faulty. The cause
of this change is suspected to be pavement material creeping. Besides, only two
watered days occurred over that summer, during which the IR camera experi-
enced power supply failures. It was therefore not possible to determine whether
or not the reduced watering rate applied at Louvre was successful in reducing
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water use without significantly affecting pavement cooling. Another campaign
will take place during the summer of 2015, but unfortunately it will occur after
this manuscript is completed.

In order to reduce the watering frequency further and thus cause less distur-
bance associated with watering cycles and to simplify the watering method, the
pavement water-holding capacity would need to be increased. Indeed, were the
water-holding capacity equal to 1 mm, afternoon watering of 1 mm/cycle would
only need to occur every 2.5-3 hours during insolation.

As Parisian streets are currently designed to evacuate surface water as fast
as possible, a change in street design is necessary to meet this objective. One
alternative that can be considered is to use water-retaining pavement materials.
The new street material would have to store water at or near its surface in order not
to hinder evaporation, relying on capillarity for example (Akagawa and Komiya,
2005). This option would also prevent puddling and thus avoid related traffic
safety hazards and pedestrian discomfort.

Such a material would permit the delivery of larger amounts of water per
watering cycle without runoff thanks to higher water storage and thus reduce the
watering frequency. Moreover, the new road structure may be able to store rainfall
from summer storms or water already being used today for street cleaning long
enough for evaporation on hot days. This would lead to additional water savings
all while having positive impacts on rainwater runoff management. Reducing
runoff discharge to the Seine and other local rivers is already pursued by Paris’
city services to reach local Water Framework Directive goals (EU2, 2000).

Regardless of the outcome of the 2015 trials, this analysis gives a first esti-
mate of the water intensity of pavement-watering for Paris in the month of July.
Conducted continuously from 9:30 am until 6:30 pm, i.e. no more than 0.20 mm
per cycle every two hours in the morning until 1:30 pm and every 30 minutes
thereafter until 6:30 pm, this strategy would result in the daily use of less than
2.2 mm/d.

Generalized to all of Paris’ 2,550 ha of street surfaces (Météo France and
CSTB, 2012), this would amount to approximately 56,100 m3/d or 25 L per day
per capita, i.e. equivalent to less than half a shower. This volume amounts
to less than 30% of current non-potable water production in Paris and is well
within installed capacity (in the order of 500,000 m3/d). This can be compared
with potential evapotranspiration in Paris during summer, i.e. the approximate
water consumption of green spaces. Typical values in July reach 7-8 mm/d and
up to 9 mm/d during heat-waves, i.e. more than three times more than for
pavement-watering. Given the relevance credited to urban greening as a UHI-
countermeasure, the water footprint of pavement-watering is deemed reasonable
enough for consideration as a viable UHI-mitigation technique for Paris. This is
reinforced by the opportunities offered by the use of the city's non-potable water
network and the sustainable sourcing potential of its water supply, but will also
depend on how resource availability evolves over the coming decades in the region.

Since streets within the same city often have different configurations or use
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different materials, the conclusions drawn from our two sites cannot be generalized
to the entire city. Indeed, among other things the evaporation rate of the watered
surface will depend on the surface’s properties. It is therefore recommended to
study several characteristic streets before a city-wide pavement-watering strategy
can be developed. However, installing a heat flux sensor in combination with solar
instruments over long periods of time is an expensive and invasive procedure and
requires close cooperation with the relevant city services. It is therefore difficult
to install large numbers of these sensors in a dense urban environment for this
purpose. Fortunately, we demonstrated that surface temperature measurements
with IR cameras are a viable alternative. Combined with an independent mea-
surement of the water-holding capacity of the pavement, the method's total water
consumption and watering frequency can be optimized simultaneously.

Pyrometers, which measure spot surface temperatures and are significantly
cheaper, could also be used, but unlike IR cameras they do not allow the simulta-
neous survey of different areas. Given their lower cost, it may still be more feasible
to install several of these in order to compensate for this weakness. Installation of
either instrument in the street is simple and non-invasive compared to pavement
sensors, making them well suited to dense urban environments. Street lamps make
suitable candidates for power supply requirements, but many Parisian streets have
lamps mounted directly onto building facades where adding additional weight may
not be permitted. Furthermore, since vehicles, pedestrians and other objects may
enter the line-of-site of radiometric instruments, it is recommended to include a
synchronized webcam. As was seen in the case of our site, many thermal distur-
bance sources exist in urban environments and need to be clearly identified before
instrument targets are selected in order to avoid misinterpretation. Thermal im-
ages can be of valuable assistance in this task.

In addition to that of street configurations, the role of materials should not
be overlooked. Indeed, dark pavements are not expected to react the same way
as light-colored ones to pavement-watering, nor are materials of differing surface
texture, which may affect their water-retaining capacity. Paris currently employs
a wide variety of standard materials used to pave public spaces, including granite
pavers, granite or sandstone cobblestones, asphalt concrete paving, or asphalt
sidewalks. The diversity of urban street materials makes devising a city-wide
pavement-watering strategy difficult and costly if it must be based on field inves-
tigations.

One solution to this problem consists of studying the thermal behavior of
pavement materials in the lab. The required setup must be able to expose different
road material samples to identical weather/insolation cycles, allowing the user
to compare their behavior more accurately than in the field. Furthermore, lab
conditions make it possible to easily include several instruments at different depths
within the road samples, providing a wider variety of information than is feasible
in the urban environment.

Such an experiment was constructed and five different kinds of materials used
in Parisian public spaces were compared in dry conditions. These samples include
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standard asphalt concrete pavement, asphalt and granite-paved sidewalk samples
seen in streets, as well as stabilized sand and lawn samples found in Parisian parks.
While further testing is required, some preliminary results have been presented at
three conferences. The corresponding conference articles (two of them in French)
can be found in Appendices A, B and C.
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Conclusion

We have now completed the analysis of the data collected from the field exper-
iment conducted in Paris, France over the summers of 2013 and 2014. This
experiment considered two sites, Louvre and Belleville, where watering was ap-
plied discontinuously and continuously on all and on one third of the street width,
respectively. We now look back at the research questions we defined in Chapter
4 for dense cities under heat-wave conditions. As a reminder, these were:

= Can the direct comparison method be reliably used to evaluate the real-world
effects of anti-UHI techniques?

» What micro-climatic effects can be expected of pavement-watering?
» What are the UHI-mitigation effects of pavement-watering?
= What can be said of the thermal effects of pavement-watering?

= Finally, how much water is required for pavement-watering and how can its
watering efficiency be improved?

22.1 Results

The research discussed here has provided answers to each of these questions.
The direct comparison method was shown to be ill-suited to our experiment, the
micro-climatic effects of pavement-watering were quantified as well as its UHI-
mitigation potential. The thermal effects of pavement-watering were also analyzed
for a dense urban environment, and finally the method’s water consumption was
determined and optimized.
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Analysis Method The direct comparison method, which interprets the differ-
ence measured between case and control sites as the effect of pavement-watering,
was called into question. This followed the identification of a risk of mistaking
preexisting differences for the effects of pavement-watering.

In Chapter 7, we found that the direct comparison method was unreliable to
detect the real-world effects of anti-UHI techniques in dense cities such as Paris.
Our data showed that in general the effects of pavement-watering could not be
reliably differentiated from pre-existing differences between case and control sites.
This assessment is not specific to pavement-watering and holds true for other UHI
countermeasures.

In Chapter 8, an alternative analysis method was developed and applied to
our case study. The method was tested both with strictly paired sites and with
sites distant by several kilometers. Both approaches were successful, the latter
being much more flexible in the field than the former. Its statistical significance
was lower due to higher background noise , caused by the poorer match between
sites due to differences in insolation resulting from the distance between them as
well as their differing street configurations.

Micro-climatic Effects The micro-climatic effects of pavement-watering were
successfully determined. No stat. sign. daily effects were found at the Belleville
site, where only the road surface was watered (approx. 33% of total width),
except for relative humidity 1.5 m a.g.l.. At Louvre, which was entirely watered,
stat. sign. daily effects were detected for all parameters, i.e. air temperature,
relative humidity, mean radiant temperature and UTCI.

Maximum effects were found to be stat. sign. for both sites and were in
the same order of magnitude. These occurred around 6 pm, when meteorological
conditions were warmest. Maximum effects reached -0.79°C for air temperature,
+4.1% for relative humidity, -2.39°C for mean radiant temperature and -1.03°C
for UTCl-equivalent temperature.

UHI-Mitigation Potential UHI-mitigation effects were also investigated. As
was the case for daily effects, no stat. sign. mitigation effects were detected at
the Belleville site. At the Louvre site, UHI reduction reached up to -0.22°C.

Thermal Effects The thermal effects of pavement-watering were analyzed in
Part 2 for the Louvre site. Effects on pavement heat flux 5 cm deep as well as
both surface and 5 cm deep temperatures were investigated. Sidewalk surface
temperatures were also analyzed.

In Chapter 12, the pavement heat flux was found to be more than halved by
watering during insolation, with morning and afternoon reductions reaching up to
50 and 150 W/m?, respectively. In addition, heat release by the pavement was
reduced in the evening following watering.
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Surface temperatures were studied in Chapter 13. Reductions of up to 4°C in
the morning and 13°C on average in the afternoon were found, and were greater
for the pavement than for the sidewalk.

Finally in Chapter 14, watering was found to reduce temperatures 5 cm deep
by 5.9°C in the afternoon, and by 2.3°C in the morning.

Signal spikes were found for heat flux and surface temperature, but not for
temperatures 5 cm deep.

Watering Method and Water Consumption Using the results obtained in
Part 2, the water consumption of the method and ways of improving it were
determined and discussed in Part 3.

In Chapter 18, the surface cooling flux created by watering was determined on
the basis of a linear relation found between pavement heat flux and solar irradiance
in the afternoon. This cooling flux was partitioned into its latent and advective
components. It was found that evaporation accounted for at least 85% of total
cooling, while representing less than 20% of total water consumption (0.31-0.41
mm/h in the afternoon). The water-holding capacity of the pavement was also
estimated to 0.16-0.20 mm.

The optimal watering frequency was assessed in Chapter 19, using the signal
spikes detected in Part 2. It was found that for the Louvre pavement, the optimal
watering frequency is every 30 minutes. Due to its smoother texture and different
design, this frequency is increased to every 10-20 minutes for the sidewalk. The
optimal frequency in the morning was estimated to be every hour, but may be
reduced to every 2.5 hours.

Finally, it was found that the optimal watering rate should match the evapora-
tion rate, i.e. 0.31-0.41 mm/h in the afternoon. It was estimated to be 0.16-0.20
mm/h in the morning, but may also be reduced by 50%.

Ways of simplifying the watering optimization process with the use of auto-
mated surface temperature sensors were also discussed in Chapter 21.

Although pavement-watering's cooling effects are lower than cooling expected
from green spaces, its water consumption is also estimated to be much lower.
Furthermore, pavement-watering could used to cool highly built and mineral areas
where greening may not be possible. Thanks to Paris’ high population density
and the presence of its dual water network, pavement-watering is well suited and
merits further consideration as a potential adaptation and anti-UHI tool.

The research questions listed in Chapter 4 have therefore been successfully
answered. However, other areas where more light needs to be shed were also
identified.

22.2 Future Research

The development of our statistical analysis method in Part 1 comes with a variety
of questions regarding its limits and reliability. Other questions also arose in
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regards to the experimental method used to determine micro-climatic effects.
The new questions are as follows:

= What is the benefit of using aspirated solar shields on air temperature and
humidity signal noise, particularly for use with distant case and control sites?

= What is the influence of the measurement cage?

= How feasible is the use of the statistical analysis method developed here to
other, longer-lasting UHI countermeasures?

= What improvements can tools such as time series analysis bring to our
method?

The expected benefit of using aspirated solar shields for the thermohygrometer
is the reduction of signal noise during periods of direct insolation. Indeed, dif-
ferences in solar irradiance between sites may have an impact on air temperature
and humidity measurements which will blur the cooling signal from pavement-
watering. The potential for improvement with the use of aspirated instruments
should therefore be investigated.

As described in Part 1, a measurement cage was used to protect instruments
positioned 1.5 m a.g.l., i.e. within pedestrian reach. For weather stations im-
plemented for several weeks or months at a time, such a device is essential for
urban areas. While the cages were designed in order to minimize their impact on
the measurements, some level of shading is unavoidable. The significance of this
impact and possible ways of accounting for it should be explored if measurement
cages are to be used in future long-term studies. This should consider wind speed
measurements inside the cage as well as opposed to above it as conducted during
our trials.

In Chapter 9, we emphasized the complexity of the proposed analysis method
when applied to other longer-lasting UHI countermeasures. Because a reference
period must be studied long enough to be reliably compared with a case pe-
riod (after countermeasure implementation), field campaigns using our analysis
method may last up to several years. The feasibility of the method must therefore
be determined, especially considering that urban environments are ever-changing.
Future studies relying on the method should provide relevant feedback, but will
be slow to gather relevant information.

In the meantime, other methods should be considered as well. Given the
periodicity of meteorological observations, time series analysis may be relevant,
namely to decompose the studied series into their trend, seasonal and residual
components. The study of these components may shed further light on studied
cooling effects. Other tools from the field of data mining or machine learning may
also prove useful.

Also, although the micro-climatic effects of pavement-watering have been
better quantified for two particular configurations in Paris, several other questions
need to be answered before a city-wide pavement-watering strategy can be devised:



22.2. Future Research 135

= What cumulative effects can be expected when larger areas are watered?

= How does street orientation affect pavement-watering effects?

= What about canyon-aspect ratio?

= How does the method perform on other street materials?

= What material properties are responsible for differences in watering effects?

The first question reflects the fact that the effects determined here were ob-
tained by watering a single site surrounded by vast areas left untreated. It is
reasonable to expect that watering larger areas would lead to cumulative effects
resulting in greater cooling. None of the work we are aware of has quantified the
cumulative effects that may be expected.

The following two questions address a gap in our research in regards to the
influence of urban morphology. While sites with different orientations were tested,
the watering methods applied differed too greatly for the influence of street ori-
entation to be determined. This is true of the influence of canyon aspect ratio
as well. Given the diversity of street orientations and shapes within cities, the
influence of these parameters on pavement-watering efficiency should be deter-
mined. Given the importance of insolation on pavement-watering thermal effects,
the influence of these morphological parameters may be limited to their impact
on insolation conditions at the pavement-level.

Similarly, our experiment did not permit us to quantify the influence of the
materials being watered, despite the significant difference between the Louvre
and Belleville sites. Among material properties, the water-holding capacity of the
watered material was identified as having an important influence on the watering
frequency and was discussed in Part 3. Considering the wide variety of materials
used in Paris and other cities, this aspect is of particular importance. Understand-
ing this influence and which material properties are responsible for it would help
better target watering strategies and help design street structures more efficient
from a climatic standpoint. This latter point has synergies with the rainwater
runoff management goals of the City if the water-holding capacity is increased
(Paris City Council, 2012a).

As mentioned in Chapter 21, we began developing a laboratory experiment
to investigate the role of materials. To date, initial testing has been completed
and results are deemed satisfactory compared to our field observations previously
described. Preliminary results provide a first impression of the relative thermo-
climatic performance of five Parisian street structures and are described in three
conference papers (two of them French) included in Appendices A, B and C.
Further testing with watering cycles should allow us to determine the performance
of pavement-watering on these different materials and propose new improvements
and urban structures better suited to urban climate improvement goals. Such
materials may also help reach substantial water savings by storing rainfall or water
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already used for street cleaning which currently run off into the sewers. This work
is conducted in partnership with the Roads and Traffic Division of Paris City Hall.

Finally, on a more general note, our research has omitted the impacts of
pavement-watering other than its cooling effects and water footprint.

Among these, air quality improvement was mentioned in the Introduction. In
Paris, particulate matter (PM) pollution is usually the main concern for air quality
deterioration. Street cleaning is suspected to reduce PM resuspension and has be-
gun to be investigated by other authors (Amato et al., 2010). Pavement-watering
may reduce PM resuspension as well and thus improve PM air pollution. Ozone
pollution has been increasing in the Paris region as well as in other cities and may
also be reduced by pavement-watering. Indeed, ozone formation is highly tem-
perature sensitive and may therefore be hindered by pavement-watering's cooling
effects. These potential pavement-watering benefits have yet to be explored.

Furthermore, the financial and environmental costs of pavement-watering
should also be estimated before cities can consider pavement-watering as part
of their adaptation and UHI reduction strategies. These estimations should take
both positive and negative impacts into account, such as benefits from possible
cooling energy savings vs. energy spent for watering and associated costs. The
study of these parameters however implies that a city-wide watering method and
infrastructure have already been proposed or selected. Given the work remaining,
it is too early to begin studying these impacts at present.
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Résumé - Les matériaux utilisés en milieu urbain ont un fort impact sur le climat urbain et par
conséquent sur le confort thermique du piéton. Selon leurs propriétés thermiques, ils peuvent
contribuer au développement d’ilots de chaleur urbains. Pour diminuer leur effet, différentes stratégies
sont étudiées, comme la végétalisation ou I’arrosage de I’espace urbain.

Notre étude s’inscrit dans ce cadre et propose d’analyser le comportement thermo-climatique de
revétements urbains dans des conditions similaires a une canicule. La sollicitation climatique est
découpée en une période diurne de 8h, avec une température de ’air de 35°C, 35% d’humidité et un
ensoleillement artificiel, et une période nocturne de 16h a 25°C, 70% d’humidité et sans
ensoleillement.

Les échantillons se présentent sous la forme d’éprouvettes cylindriques de 16 cm de diametre pour
32 cm de hauteur, entourées d’une couche isolante de 5 cm (Figure 1). La température de surface de
chaque échantillon est suivie par un thermocouple de type K. Un indicateur de 1’échauffement
atmosphérique par les échantillons est proposé pour les caractériser.

Des essais menés sur trois cycles consécutifs de 24h ont permis de classer les structures par leur
contribution a 1’échauffement atmosphérique. Les structures noires sont les plus chaudes, suivies des
structures claires et du gazon, largement plus frais que les autres revétements. Enfin, la succession des
cycles expérimentaux sur trois jours ont permis d’identifier le gazon et les trottoirs comme les
structures qui manifestent le plus d’effets cumulatifs. Le trottoir asphalte devient ainsi la structure la
plus chaude au troisiéme jour.

Chaussée classique Trottoir asphalte Stabilisé Trottoir granit Gazon
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Figure 1 : Structure des échantillons étudiés




Nomenclature

BBM béton bitumineux mince GLO grande longueur d’onde (3-100 pm)
CLO courte longueur d’onde (0,3-3 um) GLO grande longueur d’onde (3-100 pum)
EME  enrobé a module élevé MTLHR matériaux traités au liant hydraulique

1. Introduction

Les matériaux utilisés en milieu urbain ont un fort impact sur le climat urbain et par
consequent sur le confort thermique du piéton [1]. Selon leurs propriétés thermiques, ils
peuvent contribuer plus ou moins fortement au développement d’ilots de chaleur urbains [2].
Pour diminuer leur effet, différentes stratégies sont étudiées, comme I’arrosage ou la
veégetalisation de I’espace urbain [3], [4]. Ces moyens d’adaptation sont particuliérement
importants pour limiter I’impact sanitaire des canicules en ville [5].

Pour autant, les travaux existants sur le comportement des revétements se focalisent sur les
couches de surface, sans tenir compte de la superposition de plusieurs couches de matériaux
différents [6]-[8]. Afin d’éclairer leurs choix de revétements, les décideurs ont donc besoin de
s’appuyer sur 1’analyse du comportement des structures réellement mises en ceuvre.

Notre étude s’inscrit dans ce cadre et propose de caractériser le comportement thermo-
climatique de revétements urbains dans des conditions similaires a une canicule. Pour cela,
cing structures de la voirie parisienne sont soumises a une méme sollicitation climatique.

2. Matériels et méthodes

2.1. Structures étudiées

Cing structures ont été retenues pour 1’analyse, a savoir une chaussée classique, un trottoir
asphalte, un sable stabilisé, un trottoir granit et un gazon. Ces structures sont couramment
employées a Paris dans les rues, parcs et jardins de la capitale. La chaussée classique et le
trottoir asphalte sont des revétements minéraux noirs, le stabilisé et le trottoir granit sont des
revétements minéraux clairs tandis que le gazon est le seul revétement végétal.

Le Tableau 1 présente les valeurs d’albédo et d’émissivité de chacune de ces structures.
Seules les valeurs d’émissivité ont été mesurées, celles d’albédo étant tirées de la littérature.

Chaussée classique Trottoir asphalte Stabilisé Trottoir granit Gazon
Albédo 0,05-0,12 0,05-0,12 0,3-05 0,3-04 0,25
Emissivité 0,98 0,98 0,92 0,99 0,98

Tableau 1 : Propriétés radiatives des échantillons

Les échantillons se présentent sous la forme d’éprouvettes cylindriques de 16 cm de
diamétre pour 32 cm de hauteur, entourées d’une couche isolante de 5 cm composée de
mousse polyuréthane expansée. La température de surface de chacun des échantillons est
suivie a I’aide d’un thermocouple de type K. Leur composition est illustrée a la Figure 1.

2.2. Protocole expérimental

Placé dans une enceinte climatique sous température et humidité contrdlées, I’échantillon
est soumis a une sollicitation climatique cyclique d’une période de 24h pendant 72h. La
sollicitation est découpée en une période diurne de 8h, avec une température de I’air de 35°C,
35% d’humidité, et une période nocturne de 16h a 25°C, 70% d’humidité.



Entre les essais, chaque échantillon est entreposé a une tempeérature de 20°C. Afin de
s’assurer de son équilibre avant le lancement de 1’essai, celui-ci est installé au moins 24h
avant dans I’enceinte réglée en mode nuit. Le gazon est prélevé dans un parc dans les 10 jours
précédents 1’essai et est abondamment arrosé en attendant son installation dans 1’enceinte
climatique.

L’ensoleillement artificiel est assuré par 7 ampoules halogénes dichroiques de température
de couleur 5 600 K. Bien que ne reproduisant pas parfaitement le spectre solaire, ce dispositif
est adapté pour des matériaux a réponse radiative uniforme entre 0,3 et 3 um. En revanche, ce
dispositif ne permettrait pas de reproduire fiablement le comportement de revétements
réfléchissants dans le proche infrarouge comme il en existe pour les toitures [9].

Le Tableau 2 résume les caractéristiques du cycle climatique et la Figure 2 illustre la
fiabilité réelle de I’enceinte mesurée par un thermo-hygrometre placé dans 1’enceinte.

Jour Nuit

Durée 8h 16h
Température de 1’air 35°C 25°C
Humidité relative 35% 70%

Rayonnement CLO (0,3-3 um) 1320 W/m2 0
Rayonnement GLO (3-100 um) 230 W/m2 430 W/m?

Tableau 2 : Découpage et parametres de la sollicitation climatique
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Figure 2 : Profil de la température (gauche) et de I'numidité relative (droite) dans I'enceinte
climatique. Les droites rouge et bleue indiquent les consignes jour et nuit, respectivement.

2.3. Indicateur de I’échauffement atmosphérique provoqué par les structures étudiées

Les revétements urbains sont susceptibles d’aggraver les effets des canicules lorsque ceux-
ci contribuent a augmenter la température atmosphérique, c’est-a-dire lorsqu’ils sont plus
chauds que I’air ambiant. Pour comparer les contributions diurnes et nocturnes des structures,
on suppose un coefficient de convection identique pour tous les échantillons et on s’intéresse
a l’aire entre la courbe de température de surface et la température de consigne pendant
chaque phase. Par analogie avec le domaine du batiment et I’unité « degré-jour », utilisee
pour quantifier un besoin de chauffage ou de rafraichissement, on utilisera ’unité « degré-
heure » pour quantifier la contribution atmosphérique des structures étudiées. Ainsi construit,
1°C.h correspond a une heure pendant laquelle la surface est un degré plus chaude que I’air.



Ayant supposé que le coefficient de convection est le méme pour toute les structures, cet
indicateur est homogéne a une énergie transférée a I’air par unité de surface de revétement.

3. Reésultats et discussion

Dans I’analyse des données observées, on se focalisera dans un premier temps sur les
données obtenues a J, puis dans un second temps aux observations de J a J+2.
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Figure 3 : Evolution des tempeératures de surface sur 72h

La Figure 3 représente 1’évolution des températures de surface de tous les échantillons
étudiés pendant trois journees consecutives. Les lignes horizontales bleue (pointillés-tiretés)
et rouge (tirets) indiquent les températures de consigne nocturne et diurne, respectivement.

3.1. Observations au bout du premier jour de sollicitation (J)

On remarque tout d’abord qu’en debut d’expérimentation les températures de surfaces sont
en dessous de la consigne nocturne, c¢’est-a-dire que les échantillons sont plus froids que 1’air
ambiant. Cela se répéte pour certains échantillons en fin de cycle également. Ceci est expliqué
par le faible rayonnement ambiant présent au sein de I’enceinte climatique, di a ses parois
métalliques lisses a basse émissivité. La température de surface stabilisée pendant la période
nocturne est de 23,5°C environ pour tous les échantillons.

Quelle que soit la structure envisagée, les températures croissent tres fortement dés que
I’ensoleillement est enclenché et dépassent la consigne de 35°C deés les premiéres minutes
d’ensoleillement, sauf pour le gazon qui met deux heures a franchir ce seuil.

Aprés une premiere phase de croissance exponentielle qui dure entre deux et trois heures
selon la structure, la température croit de maniere quasi-linéaire jusqu’a l’arrét de
I’ensoleillement.

Pendant la phase diurne, deux catégories de structures se distinguent selon 1’évolution de
leur température de surface : les matériaux « chauds », dont la température dépasse 60°C, et
les matériaux « frais » qui restent en deca de ce seuil. Les structures « noires », c’est-a-dire la
chaussée et le trottoir asphalte appartiennent a la premiere catégorie, tandis que le stabilisé, le



trottoir granit et le gazon appartiennent a la deuxieme. Le gazon, plus de 10°C plus frais que
les deux autres structures, pourrait constituer sa propre catégorie de matériaux « tres frais ».

Intervenant au bout de 8h d’ensoleillement, 1’arrét de la lampe provoque une chute
exponentielle des températures qui tendent ensuite vers la température initiale. On remarque
qu’aucune des structures ne retrouve 1’état d’équilibre initial, le différentiel le plus élevé étant
de 2,5°C environ pour le trottoir asphalte. Ainsi, toutes les structures terminent le cycle avec
un surplus d’énergie par rapport a la situation de départ.

Dés la premiére heure aprés extinction de la lampe, les structures se regroupent en deux
groupes, avec d’une part le stabilisé et le gazon qui sont les plus fraiches, et d’autre part les
structures restantes, significativement plus chaudes. Le granit, pourtant classé en tant que
matériau frais en journée, rejoint le niveau de température des structures noires pendant la
nuit.

Par ailleurs, on remarque que la chaussée, qui était pourtant la structure la plus chaude en
journée, est plus fraiche que le trottoir asphalte au bout de quelques minutes suivant I’arrét de
I’ensoleillement.

La Figure 4 exprime la contribution a 1’échauffement atmosphérique pendant le premier
jour de chacune des structures étudiées en « degré-heure ». Les contributions diurnes sont
indiquées en rouge tandis que les contributions nocturnes sont en bleu.
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Figure 4 : Contribution a I’échauffement atmosphérique a J

Pour tous les échantillons, 1’échauffement diurne est le plus important, sauf pour le gazon.
Pour autant, les contributions nocturnes ne sont pas négligeables et sont déterminantes pour
classer les échantillons par leur contribution atmosphérique. Les regroupements effectués a
partir des températures de surface se retrouvent, avec les structures noires étant les plus
chaudes, le gazon étant la structure la plus fraiche et les structures claires se situant a un
niveau intermédiaire. C’est donc le gazon qui contribue le moins a échauffer 1’air ambiant,
alors que les matériaux noirs ont la contribution la plus importante, suivis par les matériaux
clairs.



3.2. Effets cumulatifs de J a J+2

Au bout de trois journées consécutives, les structures manifestent des signes
d’accumulation de chaleur. Si le comportement de la chaussée classique et du stabilisé n’est
que tres peu modifié a J+1 et J+2 par rapport a J, ce n’est pas le cas du trottoir asphalte, du
trottoir granit ou du gazon. Ces trois structures voient effectivement leur température de
surface augmenter avec 1’enchainement des cycles climatiques, comme le montre I’évolution
des températures maximales résumée au Tableau 3.

Structure Tmax aJ TmaxaJ+l  TmaxaJ+2
°C °C °C
Chaussée classique 63,3 63,2 62,7
Stabilisé 55,2 54,6 55,1
Trottoir asphalte 61,2 62,3 62,9
Trottoir granit 53,6 54,6 54,3
Gazon 40,9 42,3 43,4

Tableau 3 : Température de surface maximale atteinte a J, J+1 et J+2.

Les observations nocturnes réalisées a J ne sont pas significativement modifiees a J+2. La
température du gazon est celle qui augmente le plus, se distinguant nettement de la
température du stabilisé par rapport a ce qui était observé a J.

La Figure 5 résume la contribution atmosphérique diurne et nocturne des structures a J+2.
Toutes les contributions observées a J+2 sont augmentées par rapport a J. Conformément a ce
qui avait été indiqué a partir des courbes de température de surface, la chaussée classique et le
stabilisé sont les structures les moins affectées avec moins de 5% d’augmentation, tandis que
la contribution du gazon est presque doublée, méme si elle reste faible. Les contributions des
trottoirs asphalte et granit augmentent de 10% environ. Ceci vaut au trottoir asphalte de
détroner la chaussée classique comme revétement échauffant le plus I’atmosphére.
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Figure 5 : Contribution a I’échauffement atmosphérique a J+2



Le gazon est donc le plus concerné par les effets cumulatifs provoqués par 1’enchainement
de plusieurs « journées caniculaires », suivi du trottoir granit et du trottoir asphalte.

3.3. Discussion

Le classement des revétements sur la base des températures obtenues a J correspond bien a
ce qui est attendu a partir de leur albédo. En effet, les matériaux noirs, a faible albédo, sont les
plus chauds, tandis que les matériaux plus clairs sont plus frais.

Pour autant, ’albédo ne suffit pas pour expliquer toutes les observations. En effet, le
gazon, pourtant plus sombre que les matériaux clairs, est de loin le plus frais des revétements.
Cela est attribuable au rafraichissement fourni par I’évapotranspiration de I’eau qu’il contient.
Le role rafraichissant des végétaux est signalé dans de nombreux travaux, mais ils soulignent
souvent la condition de I’approvisionnement en eau [10]. Lors de nos essais, le gazon est resté
largement alimenté en eau, lui permettant de rester tres frais tout au long de I’expérience.

Par ailleurs, I’albédo ne permet pas d’expliquer 1’évolution des températures d’un cycle
climatique a un autre. En effet, alors que pour un état initial donné, le trottoir asphalte est plus
frais que la chaussée, il devient la structure la plus chaude le 3° jour. Ceci est dii aux
matériaux sous-jacents, notamment a ses 10 cm de béton qui accumulent de la chaleur au fil
des jours, avec un impact observable sur sa température de surface. Le méme phénomeéne est
a I’ceuvre pour le trottoir granit. Le gazon voit sa température augmenter de 2°C entre le
premier et le dernier jour. Cela est attribué¢ a I’inertie de la terre mouillée.

Enfin, les températures de surface maximales atteintes a J sont cohérentes avec celles
observées a I’occasion des travaux similaires [6], [7]. En effet, des températures maximales
comprises entre 40°C pour le gazon et 65°C pour I’enrobé bitumineux y sont observées. Ces
températures sont atteintes en extérieur sur des sites sans masque pour des conditions
météorologiques semblables a celles de 1’enceinte climatique. Les températures observées par
Ueno et Tamaoki [8], bien plus faibles que les nétres, ne sont pas comparables étant donné
que leurs sollicitations climatiques ont une durée de quelques minutes seulement. On en
déduit que le protocole expérimental utilisé ici permet de reproduire les températures
maximales atteintes en extérieur pour un site sans obstruction en journée chaude d’été.

4. Conclusion

Cinq échantillons de structures couramment employés sur 1’espace public parisien ont été
soumis a des conditions caniculaires pendant trois journées consécutives. Nos observations
ont permis de classer ces structures les unes par rapport aux autres en fonction de leur
contribution a I’échauffement atmosphérique. Ainsi, les structures noires, a savoir la chaussée
classique et le trottoir asphalte, y contribuent le plus, suivies des structures claires, a savoir le
trottoir granit et le stabilise, tandis que la structure gazon a la contribution la plus faible.

Si ’albédo des matériaux de surface joue un role déterminant dans les comportements
observés, on a pu constater I’importance des couches sous-jacentes, notamment pour les effets
cumulatifs. En effet, les matériaux sous-jacents stockent également une grande partie de
I’énergie solaire accumulée et influence la température de surface des jours suivants. Les
phénoménes cumulatifs affectent principalement les structures contenant une couche de béton
ou de granit, faiblement poreuses. Le gazon montre également des phénomeénes
d’accumulation importants relativement & son faible échauffement de 1’atmosphére. On
retiendra également le r6le primordial de I’eau pour assurer les bonnes performances des
surfaces végétalisées comme le gazon.



L’étude des températures et des flux de chaleur a differentes profondeurs permettra
d’étudier plus précisément le réle des différentes couches constitutives des structures étudiées
ainsi que d’identifier le role de certaines de leurs propriétés thermiques.
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RESUME

Un protocole expérimental a été mis au point pour étudier le comportement thermo-climatique de revétements
urbains en période caniculaire. Le protocole permet de reproduire de maniére satisfaisante le comportement observé sur
le terrain a Paris. Par ailleurs, ’albédo de la couche de surface et la conductivité thermique apparente des différentes
couches des revétements ont pu étre déterminés. Un indicateur qualifiant la propension d’une structure a absorber et
transmettre un rayonnement incident en profondeur a également été élaboré, calculé a partir des propriétés thermiques
précédemment déterminées. Ce protocole peut donc étre utilisé pour caractériser d’autres revétements ou déterminer
I’effet de I’arrosage urbain si un dispositif d’arrosage lui est intégre.

Mots Clés : Revétements urbains, adaptation au changement climatique, ilots de chaleur urbain, canicule, matériaux

NOMENCLATURE

Symboles :

a absorptivité solaire

BBM béton bitumineux mince

CLO courte longueur d’onde (0,3-3 pm)
e épaisseur de couche, m

EME enrobé & module élevé

GLO grande longueur d’onde (3-100 pm)

H densité de flux convectif, W/m?2

k coefficient d’absorption-transmission, -
L rayonnement GLO, W/m?

MTLHR matériaux traités au liant hydraulique
Rn rayonnement net, W/m?2

S rayonnement CLO, W/m?2

T température, °C

\ densité de flux conductif, W/m?

z profondeur, m

Lettres grecques :

a albédo (réflectivité CLO), -

€ émissivité, -

A conductivité thermique, W/m.K

0] densité de flux mesurée, W/m2.K

Indices / Exposants :

0 référence

ég.c.n.  équivalent a un corps noir a la méme température
down rayonnement incident

n indice de couche (entier strictement positif)
up rayonnement émis et/ou réfléchi

g global

1. INTRODUCTION

Les matériaux utilisés en milieu urbain ont un fort
impact sur le climat urbain et par conséquent sur le
confort thermique du piéton [1]. Selon leurs propriétés
thermiques, ils peuvent contribuer plus ou moins
fortement au développement d’ilots de chaleur urbains
[2]. Pour diminuer leur effet, différentes stratégies sont
étudiées, comme I’arrosage ou la végetalisation de

* auteur correspondant
Adresse électronique : martin.hendel@paris.fr

I’espace urbain [3], [4]. Ces moyens d’adaptation sont
particuliérement importants pour limiter [’impact
sanitaire des canicules en ville [5].

Pour autant, les travaux existants sur le
comportement des revétements se focalisent sur les
températures a différentes profondeurs des couches de
surface, sans tenir compte de la superposition de
couches de matériaux différents ou des flux thermiques
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en leur sein [6]-[8]. Afin d’éclairer leurs choix de
revétements, les décideurs ont donc besoin de s’appuyer
sur I’analyse du comportement des structures réellement
mises en ceuvre.

Notre étude s’inscrit dans ce cadre et propose de
caractériser le comportement thermo-climatique de
revétements urbains dans des conditions caniculaires.
Pour cela, cing structures de la voirie parisienne sont
soumises a une méme sollicitation climatique.

2. MATERIELS ET METHODES

2.1. Structures étudiées

Cing structures ont été retenues pour l’analyse, a
savoir une chaussée classique, un trottoir asphalte, un
sable stabilisé et un trottoir granit. Ces structures sont
couramment employées & Paris dans les rues, parcs et
jardins de la capitale. La chaussée classique et le trottoir
asphalte sont des revétements minéraux noirs, tandis
que le stabilisé et le trottoir granit sont clairs.

Le Tableau 1 présente les valeurs d’albédo et
d’émissivité de chacune de ces structures. Seule
I’émissivité a été mesurée expérimentalement, les
valeurs d’albédo sont tirées de la littérature [9].

Tableau 1 : Propriétés radiatives des échantillons

Chaussée  Trottoir .. . Trottoir
) Stabilisé .
classique  asphalte granit
a 0,05-0,12 0,05-0,12 0,3-0,5 0,3-0,4
€ 0,99 0,93 0,91 0,99

Les échantillons sont des éprouvettes cylindriques
de 16 cm de diamétre et 32 cm de hauteur, isolées par
une couche de 5 cm de mousse polyuréthane expansée.
Leur composition est illustrée a la Figure 1.

Chaussée classique Trottoir asphalte Stabilisé Trottoir granit

cm
12cm

I s Bl ~sehatte | staviiss  BEEEER Granit
I v [ Bston EEFsol compacté [ / / /| Mortier
MTLHR Sol compacté [ Beton

Sol compacté

Figure 1 : Structure des échantillons étudiés

2.2. Protocole expérimental

Chaque structure est placée dans une enceinte
climatique et soumise a une sollicitation cyclique d’une
période de 24 heures sur trois journées consécutives.
Chaque journée est découpée en une phase diurne d’une
durée de 8 heures (9h-17h), et d’une phase nocturne
d’une durée de 16 heures (17h-9h).

Pendant la phase jour, I’échantillon est ensoleillé par
7 ampoules halogenes dichroiques de température de
couleur de 5 600 K, dans une atmospheére réglée a 35°C
et 35% d’humidité relative. Pendant la nuit, la lampe est
éteinte et Iair est a 25°C et 70% d’humidité relative.

Le Tableau 2 résume les caractéristiques de la
sollicitation climatique que subissent les échantillons.

Tableau 2 : Caractéristiques du cycle climatique

Jour Nuit
Durée 8h 16h
Température de I’air 35°C 25°C
Humidité relative 35% 70%
Rayonnement CLO 1320 W/m? 0
Rayonnement GLO 230 W/m2 430 W/m?

2.3. Bilan de surface

La Figure 2 est une modélisation des échanges
thermiques & la surface des échantillons, adaptée de
Kinouchi et Kanda [10].

: A
%own i Ldown 3 Lup Sjp
\J :

Hﬁ Atmospher¢

VV Echantillon

Figure 2 : Modélisation des échanges thermiques

Siown €t Lgown représentent respectivement les
rayonnements CLO et GLO incidents, tandis que S, et
Lyp sont les rayonnements CLO et GLO réfléchis et/ou
émis. H représente la densité de flux convectif vers
I’atmosphere, V la densité de flux conductif descendant.
On notera R, le rayonnement net.

Par définition de 1’albédo et de 1’émissivité, on a :
Sup =a- Sdown 1)

Lup = (1 - g)Ldown + ‘C’D_Tjrf (2)

En conséquence, ainsi qu’en vertu de la conservation
de I’énergie, ona :

R,=H+V =(1—a)Sypun+ vown— T+ (3

surf

2.4. Instrumentation

La surface des échantillons est équipée de deux
capteurs de flux, I’un de flux global, peint en noir,
et autre de flux radiatif. Le capteur de flux
radiatif mesure le rayonnement net équivalent a
celui d’un corps noir a la méme température de
surface que 1’échantillon réel, ci-aprés désigné
« équivalent corps noir ». Pour sa part, le capteur
de flux global mesure la convection et le
rayonnement net équivalent corps noir. Cela est
résumé par les deux équations suivantes :

@y =RE"—H =V, Q)

éq.c.n.
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q)rad = Rnéq.c.n. =3 +L - O-Tsﬁrf ©)

Aux différentes profondeurs indiquées a gauche
dans la Figure 1, les échantillons sont équipés de
thermo-fluxmeétres, sauf pour les couches de matériaux
meubles (sol compacté ou MTLHR) qui sont équipées
uniquement d’un thermocouple de type T. Les thermo-
fluxmeétres integrent un thermocouple de type T.

down down

En supposant que I’isolation latérale empéche toute
déperdition de chaleur, en régime permanent, le flux
traversant la couche n-1 et la couche n sont égaux :

A
V. ="0(T  -T
e(n—l

\ )=V, (6)

n
n

Ainsi, la connaissance des températures aux
interfaces n-1 et n permet d’estimer la conductivité
apparente de la couche intercalaire a partir de la
connaissance du flux a n-1 (amont) ou a n (aval).

3. RESULTATS

3.1. Flux conductif

La Figure 3 présente la densité de flux conductif
mesuré a 6 cm de profondeur dans les 4 échantillons.

—— Chaussée classique
—— Trottoir asphalte
—— Stabilisé

Trottoir granit

300
1

Flux (W/m?3)
200
|

100
1

-100
|

LR AR RN R ERRE R R ARRERRY
09:00 20:00 07:00 18:00 05:00 16:00 03:00

Heure

Figure 3 : Flux conductif mesuré a 6 cm de profondeur

La chaussée classique connait la variation de flux la
plus importante. Au maximum, celui-ci atteint
250 W/m2 en début de phase diurne et -65W/m2 au
minimum en début de phase nocturne. Pour leur part, les
trottoirs asphalte et granit ont un comportement
comparable, avec un flux conductif compris entre
185 W/m?2 et -50 W/m2. Enfin, le stabilisé présente les
variations de flux les plus faibles, entre 100 W/m2 et -
25 Wimz,

C’est donc le stabilisé qui transmet le moins de
chaleur a 6 cm de profondeur, alors que la chaussée
classique en transmet le plus. Les structures de trottoir
se situent & un niveau intermédiaire. La transmission de
chaleur a cette profondeur dépend principalement des
caractéristiques radiatives de la couche superficielle.

La Figure 4 présente le flux conductif mesuré a
14 cm de profondeur pour la chaussée et le trottoir
granit, les seuls a étre équipés d’un deuxiéme fluxmetre.

o
& 7 —— Chaussée classique
Trottoir granit
(=
e —]
o~ 9
1 [= B
E -
5
T | “ ‘\
\ } \ [ \
° |
W w‘ M
o
8

|
09:00 20:00 07:00 18:00 05:.00 16:00 03:00

Heure

Figure 4 : Flux conductif a 14 cm de profondeur

Le flux a cette profondeur est moins intense,
oscillant entre -30 et 160 W/m2 pour le trottoir granit et
-10 et 100 W/mz2 pour la chaussee classique. Le trottoir
granit transmet le plus de chaleur a 14cm de
profondeur, avec une amplitude environ 50% plus
importante que la chaussée classique.

Les mesures & 6 cm de profondeur peuvent étre
comparées a celles de Hendel et al. réalisées a Paris
pendant 1’été 2013 [11]. Pour une structure de chaussée
similaire, située dans une rue Nord-Sud et pour un
ensoleillement moins intense et d’une durée de 5h
environ, un flux compris entre 215 W/m? et -75 W/m?
est observé a 5 cm de profondeur.

L’expérimentation menée en laboratoire ne permet
pas de faire varier la température de facon progressive.
Il n’est donc pas étonnant que I’évolution du flux
observé sur le terrain en période ombragée (matin puis
soir) ne soit pas reproduite. Par ailleurs, en tenant
compte de la différence de profondeur entre les essais in
situ de Hendel et al. et celle décrite ici, il apparait que
les flux obtenus en laboratoire sont surestimés de
quelques dizaines de W/m2 par rapport aux observations
de terrain. Pour autant, lallure générale des
observations de terrain est reproduite de fagon
satisfaisante par le protocole utilisé ici.
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3.2. Estimation de I’albédo des échantillons

Une fois que la couche superficielle de 6 cm de
profondeur a atteint le régime permanent, la différence
entre le flux global mesuré en surface et le flux & 6 cm
correspond a la part réfléchie du rayonnement incident.

En effet, en vertu de 1’équation (4), ona:

D, —Voum = R —H =V, (7)
Or, (6) nous donne :

Veem = Voem =R, —H 8
D’ou:

Dy —Voo, = RO —R| ©)
En remplacant grace aux équations (3) et (5) :

Dy —Voem = Bgown + (- ‘9)(Ldown — T s ) (10)
On obtient alors :

Dy Vet (18— £XoT = Luown) "

down

L’équation (11) est appliquée aux données mesurées
pendant les deux derniéres heures de chacune des trois
phases diurnes, qui correspondent au régime permanent
de la couche superficielle. Les valeurs moyennes ainsi
obtenues sont reportées au Tableau 3 et sont en bon
accord avec celle du Tableau 1, tirées de la littérature.
Cette méthode donne donc des résultats satisfaisants
pour la détermination de I’albédo des échantillons.

Tableau 3 : Albédo des revétements étudiés

Chaussée Trottoir S Trottoir
) Stabilisé .
classique asphalte granit
0,098 0,155 0,369 0,313

La chaussée et le trottoir asphalte absorbent donc le
plus le rayonnement CLO, tandis que le trottoir granit et
le stabilisé sont les plus réfléchissants. On considére que
les matériaux des couches de surface sont des corps gris.

3.3. Détermination du rayonnement net

Ayant déterminé 1’albédo des échantillons et
connaissant leur émissivité ainsi que le flux incident, on
peut déduire R, et Vo.m. Ce dernier est présenté Figure 5.

Globalement, Vg, est assez similaire d’un
échantillon & un autre. Il est compris entre -382 W/m? et
511 W/m2. Ces extrema de flux sont similaires a ceux
rapportés par Kinouchi et Kanda lors d’un essai mené
au Japon sur une chaussée imperméable [10].

Pour autant, les observations du flux conductif a
6cm ne peuvent s’expliquer entierement par les
propriétés radiatives, comme en témoigne le faible écart

observé Figure 5 entre le stabilisé et le trottoir granit.
On s’intéresse donc a la conductivité des matériaux.

o
& —— Chaussée classique
—— Trottoir asphalte
° — Stabilisé
8 Trottoir granit
(=]
o -
S
-
E
S 8 -
x
=]
o
o
(=]
o
o
o
o
Y

|
09:00 20:00 07:00 18:00 05:.00 16:00 03:00

Heure
Figure 5 : Flux conductif V,

3.4. Conductivité apparente des premiéres
couches
On s’intéresse & présent aux conductivités obtenues
en appliquant directement 1’équation (6). Cette équation
n’est valable qu’en régime permanent, c’est-a-dire en
fin de période diurne ou de période nocturne.
Graphiquement, cela correspond a un palier.

La Figure 6 illustre 1’évolution de la conductivité
calculée pour la premiére couche de 6 cm d’épaisseur.

g 1 O Chaussée classique
+ Trottoir asphalte

o x  Stabilisé

N ] Trottoir granit

2.0

Conductivité (W/m.K)
15

1.0

v |
o

[ SR S A RO e —
Qo 4 - y R ’
o 1 /[ 7 N

T T I// T T I// T T T

15:00 17:00 16:00 15:00 17:00
J J+1 J+2
Heure

Figure 6 : Cond. app. entre 0 et 6 cm (aval)

Parce que la résolution des mesures de température
est faible, les paliers obtenus en phase nocturne, lorsque
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les écarts de température sont réduits, ne sont pas
exploitables. On reléve donc les valeurs moyennes des
paliers atteints pendant la derniére heure de la phase
diurne, résumées au Tableau 4. Les conductivités de la
couche située entre 14 et 25 cm ne sont pas estimées car
cette couche n’atteint pas le régime permanent.

Tableau 4 : Conductivités apparentes (en W/m.K)

Chaussée  Trottoir o Trottoir
Couche . Stabilisé .

classique  asphalte granit
0-6 cm 0,89 0,69 0,35 1,16
6-14cm 0,97-2,03 1,52 0,64 1,49-1,56

La Figure 7 et la Figure 8 présentent ces mémes
conductivités pour la couche suivante, située entre 6 et
14 cm, par la méthode aval et amont respectivement,
calculées de la méme facon. Faute de fluxmetre a 14 cm
de profondeur pour le trottoir asphalte et le stabilisé,
seule la méthode amont peut étre appliquée.

o
2] O Chaussée classique

Trottoir granit

©
o

Conductivité (W/m.K)
1.5 2.0

1.0

o |

o

o . a3

S 7 TR T

T T 7/ 7T T 7/ 71 T T
15:00 17:00 16:00 15:00 17:00
J J+1 J+2
Heure

Figure 7 : Cond. app. entre 6 et 14 cm (aval)

On remarque tout d’abord que les paliers calculés
par la méthode aval pour la couche 6-14cm ne sont pas
parfaitement horizontaux. Toutefois, en croisant ces
résultats avec les conductivités obtenues par la méthode
amont, on peut se rendre comptes des écarts trop
importants et rejeter les valeurs discordantes.

Les valeurs estimées pour la couche 6-14 cm par la
méthode aval et amont sont en bon accord pour le
trottoir granit, mais pas pour la chaussée. En effet, les
valeurs obtenues vont du simple au double. On en
déduit que I’hypothése de régime permanent n’est pas
vérifiée a cette profondeur pour cette structure.

Pour la couche superficielle, les valeurs sont en bon
accord avec les valeurs trouvées dans la bibliographie
[12]. La chaussée classique, composée de 6cm
d’enrobé, a bien une conductivité comparable a celle

d’un enrobé bitumineux. Le trottoir asphalte, composé
de 2 cm d’asphalte et 4 cm de béton, a une conductivité
correspondant a un asphalte ou a un béton moyen. Le
stabilisé, composé de 6 cm de stabilisé, a la conductivité
la plus faible, similaire a un sable ou un ciment. Enfin,
le trottoir granit, composé de 6 cm de granit, a la
conductivité la plus élevée, mais celle-ci est faible vis-a-
vis des 3,5 W/m.K attendus [12].

o
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Figure 8 : Cond. app. entre 6 et 14 cm (amont)

Pour la couche située entre 6 et 14cm de
profondeur, les conductivités qui ont pu étre obtenues
sont en bon accord avec la bibliographie également. En
effet, cette couche est principalement composée de
béton pour le trottoir asphalte, d’une conductivité de
Pordre de 1,4-1,8 W/m.K [12]. Pour sa part, le stabilisé
est principalement composé de sol compacté, d’une
conductivité attendue de I’ordre de 0,5 W/m.K. Enfin, le
trottoir granit est principalement composé de mortier,
d’une conductivité attendue de 1,7 W/m.K.

Les conductivités obtenues expérimentalement sont
donc cohérentes avec les valeurs issues de la littérature.

3.5. Coefficient d’absorption-transmission

On propose d’étudier la corrélation entre I’amplitude
de la densité de flux conductif mesurée aux différentes
profondeurs & un coefficient d’absorption-transmission
du rayonnement incident, calculé a partir des propriétés
thermo-radiatives des échantillons.

On définit ce coefficient d’absorption-transmission
par I’équation (12), qui dépend de la profondeur z :

e0
k(z)=a- AO (12)

Copyright © 2015 CIFQ



La conductance de référence ey/A, est égale a
1 W/m2K et permet d’homogénéiser 1’équation. Pour
z=0, k est égal a I’absorptivit¢ du revétement. Ce
coefficient traduit a la fois I’absorption du rayonnement
incident en surface et la propension des couches sous-
jacentes a transmettre la chaleur ainsi absorbée.

La Figure 9 illustre le ratio entre I’amplitude du flux
transmis (Vmax - Vimin) @ 6 et 14 cm et le rayonnement
incident pour chaque échantillon en fonction de k.
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Figure 9 : Ratio entre [’amplitude du flux transmis sur
le rayonnement total incident a la profondeur z en
fonction du coefficient k

La droite d’interpolation linéaire des données est
également illustrée, ainsi que son équation et son
coefficient de détermination.

Les flux observés a 6 et 14 cm, rapportés au
rayonnement incident, semblent donc proportionnels au
coefficient k que nous avons défini a 1’équation (12).
Ainsi pour un méme rayonnement incident, le flux
transmis en profondeur sera d’autant plus important que
les couches superficielles seront plus conductives et que
la surface sera plus absorbante. C’est ainsi que le granit,
plutét réfléchissant mais trés conducteur, transmet
autant de chaleur a 6 cm que le trottoir asphalte ou plus
de chaleur a 14 cm de profondeur que la chaussée.

Ce coefficient d’absorption-transmission peut servir
de critere pour sélectionner des structures qui
transmettent peu le rayonnement solaire en profondeur.

4. CONCLUSION

Un protocole expérimental permettant 1’étude de
revétements de voirie a été mis au point. Celui-ci permet
de reproduire le flux conductif et la température a
différentes profondeurs de maniere satisfaisante vis-a-
vis d’observations réalisées sur le terrain.

D’une part, ’analyse des données permet de
caractériser les matériaux constitutifs des revétements
étudiés. La conductivité et 1’albédo ont notamment pu
étre déterminés de maniére satisfaisante. Fort de ces
conclusions, le protocole pourra étre utilisé pour
analyser I’effet de ’arrosage de ces revétements [11].

D’autre part, un coefficient k d’absorption-
transmission a été défini et est corrélé a I’amplitude du
flux conductif observée au sein des revétements a
différentes profondeurs et rapporté au rayonnement
incident. Ce coefficient pourrait servir de critere de
sélection des matériaux constitutifs des revétements de
I’espace public afin de limiter leur stockage de chaleur
et ainsi influer sur leur impact micro-climatique,
notamment la formation des lots de chaleur urbains.

D’autres  essais permettront de  déterminer
I’importance de ce critére et de préciser les limites du
protocole expérimental proposé.
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1. Introduction

Materials used in urban environments have strong impacts on urban climates and consequently on pedestrian
thermal comfort. Depending on their thermal properties, they contribute more or less to the urban heat island
(UHI) effect (Asaeda, Ca, & Wake, 1996; Santamouris, 2013). Several UHI countermeasures involving cool
materials, urban greening or urban watering have been studied (Akbari, Pomerantz, & Taha, 2001; Bowler,
Buyung-Ali, Knight, & Pullin, 2010).

Previous work by the authors has focused on the field study of pavement-watering as a climate change
adaptation measure for Paris against increasing and intensifying heat waves (Hendel, Colombert, Diab, & Royon,
2014, 2015a, 2015b). Testing over the summers of 2013 and 2014 has shown that the method reduces surface
temperatures an average 13°C during pavement insolation in a N-S street paved with asphalt concrete. Air
temperature reductions of up to 0.8°C as well as 2.4°C mean radiant and 1°C UTCI equivalent temperature
reductions were found, while relative humidity was increased by 4%RH at most. Finally, the optimal watering rate
was determined to be 0.16-0.21 mm/h during shading and 0.31-0.41 mm/h during pavement insolation.

These analyses also underlined the important role played by the materials being watered. Indeed, while a given
watering frequency may be valid for asphalt road surfaces, they are unlikely to be valid for other materials with
different water-holding capacities, albedo or other relevant properties. Given the wide variety of materials used in
cities, it is important for decision-makers to be able to account for this when designing a city-wide pavement-
watering strategy. Field trials however are expensive and impractical for this purpose.

This paper proposes a lab experiment that may be used to characterize the behavior of street materials with or
without watering in heat-wave conditions. As a first step, this paper will focus on temperature observations made
without watering for five pavement structures commonly used in Paris, France: asphalt concrete road surfaces,
stabilized sand, asphalt and modular granite sidewalks and grass. Temperatures measured 6 cm, 14 cm, 25 cm
and 32 cm deep will be discussed in particular. Previous work by the authors describes surface temperature and
heat flux observations (Hendel, Grados, Colombert, Diab, & Royon, 2015a, 2015b).

2. Materials and methods

Five different street structures were compared, consisting of standard asphalt road and sidewalk structures as
well as samples of cement-stabilized sand, granite-paver sidewalk and lawn structures. Each cylindrical sample is
32 cm tall and 16 cm in diameter. Fig. 1 describes the composition of the street structures constructed in the lab.
Each sample was equipped with thermocouples and or flowmeters O cm, 6 cm, 14 cm and 25 cm deep. In
addition, a thermocouple was positioned on the underside of the samples, 32 cm below the sample surface. The
surface albedo was determined experimentally in previous work with the exception of the grass sample (Hendel,
Grados, et al., 2015a). These albedo values are summarized in Table 1.

Once insulated with a polyurethane foam casing, each sample was submitted to identical a 24-hour climate
cycle three days in a row. Air temperature and relative humidity were controlled by a climate chamber and
insolation with a seven-bulb dichroic halogen lamp with a color temperature of 5,600 K. The characteristics of the
climate cycles are described in Table 2, while Fig. 2 presents a diagram and photograph of the experimental
setup.

Prior to the beginning of the three-day trials, each sample was stabilized for at least 24 hours in the climate
chamber under nighttime conditions. In addition, the grass sample was sufficiently watered before the trials to
ensure that evapotranspiration would not be interrupted over the course of the three day trial.
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Fig. 1: Studied structure samples

Table 1: Albedo of the samples determined experimentally, except for the grass sample.

Asphaltroad Asphalt sidewalk Stabilized sand Granite sidewalk Grass
0,098 0,155 0,369 0,313 0,25-0,30

Table 2: Daytime and nighttime conditions

Day Night
Duration 8h 16h
Air temperature 35°C 25°C
Relative Humidity 35% 70%
SW Radiation 1 320 W/m2 0
LW Radiation 230 W/m?2 440 W/mz2

—— —

/\ Dichroic halogen

/' lamp 5600 K
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Climate chamber
Fig. 2: Diagram (left) and photograph (right) of experimental setup.

3. Results and discussion
We begin by describing the temperature observations at the studied depths.

3.1.Results

Fig. 3 illustrates temperature measured 6 cm deep inside each sample. As can be seen, temperatures range
from 23.3° to 50°C over the course of the three days, except for the grass sample whose initial temperature is
22.3°C. This is likely due to the additional latent cooling that the sample benefits from as a result of
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evapotranspiration.
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Fig. 3: Temperature measured 6 cm deep over 72 hours. The dotted red and blue lines respectively indicate the
day and night setpoint temperatures inside the climate chamber.

The asphalt road and sidewalk structures are the warmest over the trial period, closely followed by the granite
sidewalk structure, while the stabilized sand and grass samples are significantly cooler. The stabilized sand is
warmer than the grass sample during the day, but at night it becomes cooler after the first two hours. After 24
hours, temperatures remain a few degrees warmer than the initial state.

Additionnally, inertial effects are manifested by the gradual increase in temperatures over the course of the
three-day trial. While, the daily maximum temperature of the asphalt road and the stabilized sand samples
increases by less than 1°C, it increases by 1.3°C for the granite sidewalk sample and by 2.2°C for the asphalt
sidewalk and grass samples.

Fig. 4 illustrates temperatures measured 14 cm deep, which range from 23°C (22.3°C for the grass sample) to
42.9°C.
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Fig. 4: Temperature measured 14 cm deep. The dotted red and blue lines respectively indicate the day and
night setpoint temperatures inside the climate chamber

As was the case for temperatures measured 6 cm deep, the asphalt road and sidewalk samples are the
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warmest, closely followed by the granite sidewalk structure, with the stabilized sand and grass samples being the
coolest. Once more, the stabilized sand sample is warmer than the grass during the day, but becomes cooler six
hours into the night phase. Compared to the temperature shifts observed 6 cm deep, those 14 cm deep occur
approximately one hour later. The thermal inertia of the samples is visible at this depth as well, the grass sample
exhibiting a nearly 3°C increase in daily maximum temperature over the course of the trial, followed by the asphalt
and granite sidewalk structures with approximately 2°C.

Fig. 5 illustrates temperature measurements 25 cm deep.
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Fig. 5: Temperature measured 25 cm deep. The dotted red and blue lines respectively indicate the day and
night setpoint temperatures inside the climate chamber.

Temperatures 25 cm deep range from 23° (22.1° for grass) to 35.4°C and no additional lag is visible compared
to the 14 cm observations. For the first time, the granite sidewalk is warmer or nearly as warm as the asphalt road
and sidewalk structures. All samples exhibit visible inertial effects, greatest for the asphalte sidewalk and grass
structures (+2.2°C and +2.7°C daily maximum temperature increase resp.).

Fig. 6 illustrates temperatures measured 32 cm deep.
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Fig. 6: Temperature measured 32 cm deep. The dotted red and blue lines respectively indicate the day and
night setpoint temperatures inside the climate chamber.
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Unlike at other depths, temperature spikes are visible. These coincide with the beginning of the night phase and
are due to a faulty seal which allowed an air leak inside the insulating casing. This seal has since been corrected.
At this depth, the grass sample is the coolest structure on the first day, but is warmer on average than the
stabilized sand structure on the last day. Otherwise, temperature trends are similar to those 25 cm deep. Once
again, intertial trends are clearly visible and greatest for the grass and asphalt sidewalk structures ( +2;7°C  and
+3°C, resp.).

3.2.Discussion

While temperature observations 6 cm deep may not be identical, they agree well with field observations 5 cm
deep made in a similar asphalt road in Paris, France over the summer of 2013 (Hendel & Royon, 2015).
Differences between observations can be explained by the climate signal created in the la, which has longer and
stronger insolation. Despite this, the overall trend obtained is deemed satisfactory.

Generally-speaking, these temperature observations agree well with the behavior expected of each sample
given their surface albedo, with the notable exception of the granite sidewalk structure. Indeed, temperatures
similar to those of the stabilized sand would be expected for this structure given its similar albedo. As previous
work has revealed (Hendel, Grados, et al., 2015a), this is linked to the granite’s high thermal conductivity. Heat is
not only reflected away, it is also transmitted into the deeper layers of the structure, thus explaining the higher-
than-expected temperatures 6 cm deep.

Overall, the data set provides a global view of how these structures react to a given climate signal. Indeed, the
grass and stabilized sand structures are clearly the coolest, while the road and sidewalk structures have similar
behavior at the considered depths.

In addition, inertial phenomena are clearly visible in varying intensity at the different depths considered. Table 3
summarizes the average increase in daily maximum temperature for each structure between the first and third
day. By this metric, the grass and asphalt sidewalk structures have the highest inertia among the considered
structures, while the stabilized sand has the lowest.

Table 3: Average daily maximum temperature increase from D to D+2.

Asphaltroad Asphalt sidewalk Stabilized sand Granite sidewalk  Grass
+1.3°C +2.4°C +0.88°C +1.5°C +2.6°C

While cooler material temperatures will have positive consequences such as lower atmospheric heating in
cities, higher inertia will slow temperature increases when a heat spike arises. Ideally, urban materials should
therefore combine both properties via high albedo for example. The urban materials used in Paris that have been
considered here present either one property or the other, except for the grass structure.

4. Conclusion

A lab experiment was used to characterize the relative behavior of five Parisian street structures. 32 cm tall
cylindrical samples were constructed and instrumented in the lab. Temperature measured 6 cm, 14 cm, 25 cm
and 32 cm deep was used for this purpose. It was found that the stabilized sand and grass structures were the
coolest, while the road and sidewalk structures were significantly warmer. Via these observations, it was found
that the underlying layers of the asphalt sidewalk and grass structures have the highest inertia.

While low temperatures will result in lower atmospheric cooling in cities, high thermal inertia helps slow
temperature rises in the case of heat spikes. Among the five structures considered, only the grass structure
combines low temperatures with high thermal inertia. The second best option is either the stabilized sand
structure which presents the second lowest temperatures, or the asphalt sidewalk which has the second highest
temperature increase.

Further research efforts are needed to determine the full extent of the benefits of increasing the inertia of
existing urban materials for pavements, but this may be achievable by including thicker layers of concrete or even
phase change materials as has been studied previously for roofing materials (Santamouris, Synnefa, & Karlessi,
2011).

In the coming months, another set of tests will focus on the effects of pavement-watering of the considered
samples in order to clarify the technique’s effectiveness on other structures than asphalt roads.
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Résumé détaillé en francais

Introduction

Le désert du Thar au Rajasthan est une des régions les plus chaudes et arides
du sous-continent indien sur laquelle ont longtemps régné les maharajahs. Pour
autant, ils n'épargnaient aucun moyen pour le rafraichissement au pic de I'été,
en faisant couler de I'eau parfumée sur les murs de leur palais par exemple.
Plusieurs autres régions du globe ont développé des méthodes similaires. Au
Japon, I'arrosage du sol pour rafraichir les étés chauds et humides est appelé
“Uchimizu” et est une tradition vieille de plusieurs siécles qui se pratique encore
de nos jours.

Le fort courant hygiéniste a Paris du XIX¢ siecle a mené au développement d'un
double réseau d'adduction d'eau. Initialement concu pour fournir I'eau potable
de la capitale, le réseau d’eau non potable est aujourd’hui principalement appro-
visionné par le canal de I'Ourcq, la Seine ne représentant que 20% des apports.
Depuis, le nettoyage de I'espace public s'effectue a I'eau non potable. Jusqu'a
la moitié du XX¢ siecle, les rues pouvaient étre arrosées jusqu'a cing fois par
jour pour limiter la formation de nuages de poussiere. D’aprés les témoignages
des ingénieurs de I'époque, de nombreux habitants croyaient que ces arrosages
rafraichissaient également la ville. Avec I'avénement du nettoyage mécanisé et la
fin des nuages de poussiére, ces pratiques furent progressivement abandonnées.

L'arrosage de |'espace public est percu aujourd'hui comme un outil permet-
tant d’améliorer le confort thermique dans les villes en cas de chaleur intense. Les
recherches scientifiques ont débuté au Japon dans les années 1990 et s'appuient
soit sur des infrastructures d'arrosage préexistantes, pour le déneigement des
routes par exemple, ou bien sur des dispositifs d'arrosage expérimentaux, ou en-
core sur des simulations numériques. Plus récemment, les services municipaux de
Paris et Lyon ont réalisé leurs propres essais d'arrosage a l'aide d'engins mécan-
isés ou de prototype d'infrastructure d'arrosage. En France, et particulierement a
Paris, I'augmentation prévue en intensité et en fréquence des canicules ainsi que
la forte vulnérabilité des villes a ces épisodes ont mobilisé les parties prenantes
pour trouver des solutions d'adaptation telles que la végétalisation, les matériaux
réfléchissants ou I'arrosage urbain.

L'intérét de la Ville de Paris pour I'arrosage urbain s'est concrétisé par le vote
unanime de son Livre Bleu par le Conseil de Paris en 2012. Celui-ci définit les
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priorités stratégiques pour le développement et I'amélioration du service de |'eau et
d’assainissement de la ville. Notamment, aprés deux décennies de semi-abandon,
le Livre Bleu reconnait officiellement le potentiel offert par le réseau d'eau non
potable pour un usage durable de I'eau en ville. Trois missions sont confiées aux
services de la Ville pour permettre au réseau de répondre aux enjeux de demain.
La premiere consiste a substituer I'eau non potable aux usages d’eau potable,
pour I'arrosage des espaces verts par exemple. Afin de limiter I'impact des usages
de I'eau non potable sur les milieux aquatiques, I'étude de la diversification de
I'alimentation du réseau par d'autres sources est également demandée. Enfin, les
services sont chargées d'étudier la place de I'eau non potable pour rafraichir la
ville par fortes chaleurs.

Le Service Technique de I'Eau et de I'Assainissement s'est ainsi penché sur
I'étude des colits et des bénéfices de la méthode, afin de quantifier la faisabilité
d'une stratégie d'arrosage généralisée a toute la capitale.

Le présent manuscrit vise a apporter des éléments de réponse a cette question.
Toutefois, les termes “colits” et “bénéfices” sont plutot vagues et peuvent porter
sur plusieurs thémes différents.

Afin de réduire le nombre de possibilités, nous analysons le lexique associé a
I'arrosage urbain dans le Livre Bleu. Le Livre décrit plusieurs buts pour I'arrosage,
a savoir : “favoriser la baisse des températures lors de fortes chaleurs”, “lutter
contre les ilots de chaleur”, “[favoriser] la thermorégulation urbaine”, “[utiliser]
I'eau a des fins de rafraichissement [...] pendant les épisodes de chaleur”. Ainsi, il
est clairement fait référence aux effets rafraichissants de I'arrosage, avec un intérét
particulier pour ses effets sur la température de I'air et sur les flots de chaleur
urbains (ICU), notamment lors d'épisodes caniculaires. L'importance accordée
aux pics de chaleur fait écho a I'impact de la canicule de 2003 sur la sensibilité du
public a ce risque naturel en France. Cet aspect est donc a prendre en compte.

Le seul coiit identifié par le Livre Bleu est “I'impact sur la Seine et le canal de
I'Ourcq” de I'arrosage urbain. Ainsi, la consommation d’eau de la méthode devra
étre étudiée.

Aucun autre bénéfice ou colit ne sont identifiés dans le Livre Bleu, cepen-
dant cette liste est loin d'étre exhaustive. D'autres impacts positifs concernent
par exemple I'amélioration de la qualité de |'air et de la propreté des rues, un
meilleur écoulement des égouts, ou encore les impacts psychologiques et sociaux
de l'arrosage sur les passants. Les colits économiques et environnementaux de
I'arrosage n'ont pas non plus été abordés par le Livre Bleu, comme par exemple le
colit financier de I'infrastructure d'arrosage ou encore les émissions de gaz a effet
de serre ou la consommation d'énergie associées a |'arrosage urbain. Bien que ces
aspects soient importants, nous nous limitons ici a I'étude des colits et bénéfices
identifiés par le Livre Bleu.

Notre problématique de recherche peut donc étre résumée par la question
suivante : quels sont les effets rafraichissants, notamment sur la température de
I'air et la lutte contre les flots de chaleur urbains, qui peuvent étre attendus de
I'arrosage urbain par temps caniculaire en milieu urbain dense et en échange de
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quelle consommation d’eau ?

Avant de chercher a répondre a cette question, nous effectuerons un état de
I'art de I'arrosage urbain afin d'y trouver d'éventuels éléments de réponse qui
existeraient déja. Cet état de I'art est précédé d'un bref descriptif scientifique du
climat urbain et de la lutte contre les ICU.

Climat urbain et lutte contre les ilots de chaleur

L'ICU se manifeste par un réchauffement local de I'air en ville par rapport a sa
campagne environnante. Cet échauffement est de |'ordre de quelques degrés en
moyenne et peut atteindre jusque 10°C par temps anti-cyclonique. Les ICU sont
le résultat du piégeage radiatif, de la faible évapotranspiration, de |'obstruction du
vent et des fortes concentrations d'activités humaines trouvés en milieu urbain.
Ces phénomenes sont liés a la morphologie urbaine, aux propriétés des matéri-
aux urbains, au déficit de sols perméables et d'espaces verts et a l'inefficacité
énergétique des systemes urbains.

Pour réduire son intensité, les mesures anti-ICU peuvent s'attaquer a un ou
plusieurs de ces phénomenes. De nombreux travaux existent a ce jour sur la
conception de matériaux urbains frais qui parviennent a limiter I'élévation de leur
température de surface grace a un albédo important. Pour sa part, la végétali-
sation urbaine vise a compenser la faible évapotranspiration des villes en créant
de nouveaux espaces verts ou en ajoutant des végétaux a la surface des rues et
batiments. Ces solutions ont de longues durées de vie et peuvent étre considérées
comme permanentes.

Sur le principe, I'arrosage urbain vise aussi a réduire les températures de sur-
face en créant des flux latent et sensible non atmosphérique. Ces flux sont créés
par |'évaporation d'un film d'eau et par son absorption de chaleur sensible. Si
I'arrosage est suffisant pour créer du ruissellement, le flux sensible est un échange
advectif de chaleur. Par ailleurs, le mouillage des matériaux réduit leur réflec-
tivité courte longueur d'onde (CLO). Tandis que la surface du sol est rafraichie,
ses échanges convectifs, sa puissance rayonnée émise et son rayonnement réfléchi
diminuent, résultant en une atmosphere rafraichie et une radiosité réduite.

Nous nous tournons a présent vers |'état de I'art sur I'arrosage urbain afin
de trouver des éléments de réponse a notre problématique déja présents dans la
littérature. Nous nous focaliserons sur les effets rafraichissants de la méthode, en
particulier sur la température de |'air et contre les ICU, par temps caniculaire et
sur la consommation d'eau des méthodes d'arrosage utilisées.

Etat de l'art

Douze articles traitant des effets de I'arrosage urbain ont été identifiés. Ceux-
ci décrivent des expérimentations ou des simulations numériques d'arrosage de
surfaces de |'espace public a I'échelle du laboratoire, de la rue ou du quartier.
Certains travaux sur les revétements perméables ont été inclus lorsque des com-
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paraisons de performance a I'état sec et humide ont été effectuées, y compris en
I'absence d'arrosage contrdlé. Les analyses d'arrosage de facade d'immeuble ne
sont pas incluses dans cet état de |'art.

La Table 1 résume le type d'étude menée (expérimentale ou numérique) et les
indicateurs pris en compte par les différents auteurs. On y reléve un grand nombre
d'indicateurs de rafraichissement, y compris climatique et thermique. Plusieurs
techniques d'arrosage ont été mises en oeuvre, mais peu d'efforts pour les opti-
miser ne sont décrits. Enfin, seul (Bouvier et al., 2013) ne s'intéresse a |'arrosage
par temps caniculaire. Les paramétres des techniques d’arrosage (horaires, durée,
débit, ...) sont résumées a la Figure 1.

Globalement, les effets sur la température de surface pendant I'ensoleillement
direct sont comparables et s'accordent bien d'une étude a une autre sur une
réduction de I'ordre de -10°C. C'est également le cas de I'humidité relative a
1-2 m de hauteur qui est augmentée de quelques points de pourcentage.

Malheureusement, les autres effets microclimatiques décrits ne sont pas com-
parables en raison de différences importantes de hauteur de mesure, d'instruments
et de méthode d'analyse. Cette limite avait déja été identifiée par (Johansson
et al., 2014) et pourrait en cacher d'autres liées aux spécificités de site ou de
climat. Par ailleurs, le nombre réduit d'études quantifiant ces effets affaibli leur
robustesse. D'autres travaux seraient nécessaires pour la renforcer davantage.

Ensuite, la méthode d'analyse utilisée pour estimer les effets microclimatiques
ne parait pas entierement fiable. En effet, les analyses reposent sur la comparaison
deux-a-deux des mesures d'une zone arrosée et d'une zone témoin. La méthode
suppose donc tacitement que la différence inter-zone serait égale a zéro sans
arrosage. Etant donnée la complexité des zones urbaines, cette hypothése a peu
de chance d’étre valable dans les milieux urbains denses ol |'arrosage est le plus
susceptible d’'étre mis ceuvre. Cela remet ainsi en cause la validité des résultats
obtenus par cette méthode. Etant donné le faible nombre d'études de mesures
anti-ICU, aucune autre méthode d'analyse ne nous est connue.

Une autre limite importante a la portée des effets rapportés concernent leur
validité pour les villes denses européennes. En effet, la plupart des travaux ont
été réalisés dans des villes peu denses au Japon, dans des régions aux étés chauds
et humides. Nagaoka City par exemple a une densité de 300 personnes/km?,
soit nettement moins que les 21 000 personnes/km? de Paris. Par ailleurs, si
I'on s'intéresse a |'ensoleillement lorsqu'il est mesuré Kinouchi and Kanda (1997,
1998); Kubo et al. (2006); Nakayama and Fujita (2010); Li et al. (2013), on se
rend compte que cela vaut aussi pour les effets thermiques, principalement étudiés
dans des zones tres faiblement masquées.

Enfin, les efforts d'optimisation des méthodes d'arrosage mises en ceuvre sont
insuffisants. Une démarche d’optimisation doit étre décrite formellement avec une
définition claire de ses objectifs, ce qui n'est pas le cas dans les rares études qui
s'intéressent a ce probléme.



Table 1 — Résumé de |'état de |'art.

Indicateurs microclimatiques Indicateurs thermiques
Auteur Type T, HR Tyi/Ty; 1CU  Confort thermique Toyrf  Tpavement BV
Kinouchi and Kanda (1997) exp. X X X X X X X
Kinouchi and Kanda (1998) exp. X X X X
Yamagata et al. (2008) exp. X X X X
Takahashi et al. (2010) exp. X
Nakayama and Fujita (2010) exp. X
Li et al. (2013) exp. X
Bouvier et al. (2013) exp. X X X
Maillard et al. (2014) exp. X X
Kubo et al. (2006) num. X
Nakayama et al. (2012) num. X X
Météo France and CSTB (2012) num. x  x X X
Wei and He (2013) num. X X X
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Kinouchi & Kanda 1997

Kinouchi & Kanda 1998

Kubo et al. 2006

Cas1
Yamagata et al. 2008 Cas2

Cas 3

Takahashi et al. 2010

Nakayama and Fujita 2010

Nakayama et al. 2012

Météo France and CSTB 2012

Bouvier et al. 2013

Wei and He 2013
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Figure 1 — Diagram of the watering methods used in the surveyed articles.

Connaissances manquantes et questions de recherche

Les connaissances manquantes identifiées au cours de notre état de I'art nous
menent a formuler les questions de recherche suivantes appliquées aux villes denses
telles que Paris par temps caniculaire :
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= La méthode de comparaison deux-a-deux peut-elle fiablement évaluer les
effets des mesures anti-ICU sur le terrain ?

= Quels sont les effets microclimatiques de |'arosage urbain 7
= Quels sont ses effets dans la lutte contre les ICU ?
= Qu'en est-il des effets thermiques de I'arrosage 7

» Enfin, quelle est la consommation d'eau de |'arrosage urbain et comment
peut-on I'améliorer ?

Nous chercherons par la suite a y répondre. Les résultats obtenus devraient
permettre d'informer les décideurs sur les colits et bénéfices de I'arrosage urbain
pour les villes denses en période caniculaire. Ces informations sont essentielles
pour les villes qui envisagent d'inclure |'arrosage urbain dans leur stratégie de
réduction des ICU et/ou d'adaptation au changement climatique.

Méthode expérimentale

Une expérimentation de terrain a été effectuée a Paris pendant les étés 2013 et
2014 sur deux sites : Belleville et Louvre. Un plan de chaque site est fourni a
la Figure 2. Les deux rue ont un ratio d'aspect H/W= 1, Louvre ayant une
orientation approximativement N-S et Belleville une orientation E-W.
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Figure 2 — Plan des stations des sites de Louvre (gauche) et de Belleville (droite).

Chaque site est équipé de deux stations, I'une arrosée et |'autre servant de
témoin. La conception et I'instrumentation des stations utilisées sont identiques
pour tous les sites. Seules les stations rue du Louvre sont équipées d'un capteur de
chaussée mesurant température et flux de chaleur a3 5 cm de profondeur et d'une
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caméra thermique mesurant la température de surface, placée en toiture-terrasse
au-dessus de la station arrosée.

Les instruments positionnés a hauteur d'homme sont protégés par une cage
de mesure cylindrique d'un métre de diametre. Leur hauteur est de 2 m rue du
Louvre et de 3 m a Belleville. La Figure 3 présente un schéma des stations utilisées
rue du Louvre.

Poteau support de signalisation

Vent, température,
< humidité, présence de pluie,

Caméra infrarouge ensoleillement

Cage de mesure

\ Température, humidité,

température de globe noir
(haut. 1,5 m)

=
)

\
\W\\

Température, flux de chaleur
(prof. 5 cm)

L
A WA W W ¥

0,40 m

1,60 m minimum 1m 1,60 m

Figure 3 — Schéma et instrumentation des stations météorologiques (rue du Lou-
vre).

Toute la largeur de la rue du Louvre a été arrosée de 6h30 a 11h30 puis de 14h
a 18h30, tandis que seul un tiers du site arrosé a Belleville était arrosé en continu
de 7h a 19h. La Figure 4 détaille graphiquement la méthode d'arrosage utilisée
pour chaque site. L'arrosage est déclenché si certaines conditions météorologiques
sont réunies, décrites dans la Table 2.

Louvre YV VY Yy YV VY Y VY Y Y Chaussée et trottoir (100%)
06:30 11:30  14:00 18:30

Continu (25 mm/h)

Belleville ! ' Chaussée uniquement (33%)
07:00 19:00
| | | | | | | | | | | | | | | | | | | | | | | | |~y
I I I I I I I I I I I I I I I I I I I I I I I I |
06:00 12:00 18:00 00:00 06:00

Figure 4 — Méthode d'arrosage pour Louvre et Belleville.
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Table 2 — Conditions météorologiques nécessaires pour le déclenchement de
I'arrosage urbain et conditions caniculaires pour Paris.

Paramétre Déclenchement d'arrosage  Niveau d'alerte canicule
Température minimale BM Iy, > 16°C > 21°C
Température maximale BM I > 25°C > 31°C

Vitesse du vent < 10 km/h -
. Clair (couverture inférieure
Ciel . -
a 3 octas)

Les mesures collectées par ces stations sont utilisées par la suite pour déter-
miner les effets microclimatiques et thermiques de |'arrosage. Ces derniers sont
ensuite analysés pour améliorer la méthode d'arrosage employée.

Effets microclimatiques

Comme indiqué dans I'état de I'art, la littérature scientifique s'appuie sur des
comparaisons directes entre stations expérimentales et témoins pour quantifier
les effets de mesures anti-ICU en milieu urbain. Cette approche s'appuie sur
I’hypothese que les deux sites ont un comportement identique a I'état initial, les
différences observées étant donc le fait de la mesure anti-ICU étudiée.

Pourtant, les mesures microclimatiques effectuées en continu montrent aussi
bien pour Louvre que pour Belleville que cette hypothése n'est pas valable. Non
seulement la différence entre les sites n'est ni nulle ni constante, mais elle fait
preuve d'une forte variabilité d'un jour a I'autre, méme parmi des journées de
Classe de Stabilité¢ A ou A-B selon I'échelle de Pasquill (vent faible, ciel clair
ou faiblement ennuagé), appelés jours de référence par la suite. Les différences
observées entre stations observées apres mise en ceuvre ne peuvent donc pas étre
attribuées aux effets de la mesure anti-ICU étudiée, du moins dans les milieux
urbains denses.

En réponse a cette difficulté, une méthode alternative a été développée et
testée avec |'exemple de I'arrosage urbain. Elle consiste en un test de Student sur
deux échantillons, a savoir les différences entre stations mesurées les jours arrosés
et les jours de référence. Ce test permet de déterminer si la différence entre ces
deux échantillons est signficative ou non d'un point de vue statistique. Cette
méthode a été appliquée avec succés aux données issues des stations minutieuse-
ment appariées d'un méme site, mais elle a également fonctionné en croisant les
stations arrosées et témoins entre sites différents, pourtant distantes de plusieurs
kilometres et présentant des environnements urbains et orientations de rue dif-
férents.

L'humidité relative, suivie des températures moyenne de rayonnement, de |"air
et équivalente-UTCI ont été les parameétres les plus affectés par I'arrosage de
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maniére statistiquement significative. Par ailleurs, les effets significatifs ont prin-
cipalement eu lieu la nuit pour les températures moyenne de rayonnement, de
I'air et équivalente-UTCI, mais principalement en journée pour I'humidité rela-
tive. Cependant, les effets maximaux de tous les paramétres ont été atteints en
journée vers 18h lorsque les conditions sont les plus chaudes et les plus seches. La
température a ainsi été réduite jusqu'a 0,79°C et 0,57°C pour 'aira 1,5 et 4 m de
hauteur respectivement, de 1,67°C pour la température moyenne de rayonnement
et de 1,03°C pour la température équivalente-UTCI. L'augmentation maximale
d’humidité relative s'est élevée a 4,1 % et 2,8 % a 1,5 et 4 m de hauteur.

Les effets moyennés sur 24 heures ont également été considérés et se sont
montrés &tre statistiquement significatifs pour la rue du Louvre arrosée a 100 %,
mais pas pour Belleville oli seulement un tiers de la rue était arrosée. Les effets
moyens a Louvre ont atteint -0,25°C et -0,14°C pour la température de I'air a
1,5 et 4 m de hauteur, +1,5 % et +0,9 % d'humidité relative a 1,5 et 4 m de
hauteur, -0,40°C pour la température moyenne de rayonnement et -0,29°C pour
la température équivalente-UTCI. Des effets anti-ICU ont également été observés
avec une réduction moyenne des températures de 'air a 1,5 et 4 m de hauteur
entre 3h et 6h du matin. Ces effets sont compris entre -0,09°C et -0,22°C.

Ces résultats montrent ainsi que I'arrosage urbain permet de réduire efficace-
ment le stress thermique des piétons, avec des effets maximaux atteints au mo-
ment le plus chaud de la journée. Par ailleurs, des effets moyens significatifs ont
été observés entre 3h et 6h du matin, témoignant d’effets anti-ICU. Les meilleurs
résultats ont été atteints pour Louvre ou 100 % de la largeur était arrosée a in-
tervalles réguliers, tandis que les résultats étaient moins bons pour Belleville ol
33 % de la rue étaient arrosés en continu.

La méthode d'analyse développée a été utilisée pour quantifier les effets de
I'arrosage urbain. Cette mesure anti-ICU a I'avantage sur d’autres d'étre im-
médiatement réversible. En effet, dés que I'arrosage s'arréte, les sites d'étude
retournent a leur état initial (sec). D'une part, cela a grandement facilité le con-
stat que la différence entre les stations appariées n'était pas nulle en |'absence
d'arrosage. Si les mesures avaient démarrées qu'aprés la mise en place d'une
mesure anti-ICU permanente, cette information aurait pu étre entierement nég-
ligée par notre analyse. D'autre part, cela nous a permis de construire une série de
référence sans arrosage et une série expérimentale avec arrosage que nous avons
comparées avec le test de Student a deux échantillons.

Dans le cas de mesures anti-ICU plus permanentes, il n'est plus possible
d'enregistrer des données de référence apres leur mise en ceuvre. |l est donc néces-
saire de caractériser les sites expérimentaux suffisamment en avance pour constru-
ire la série de référence. Ces données sont essentielles pour effectuer I'analyse avec
la méthode développée et doivent fournir une image suffisamment représentative
des conditions initiales des sites. Etant donnée la forte variabilité des conditions
météorologiques, il est difficile d'estimer la durée de cette période de référence
qui dépendra des conditions ciblées. Nous estimons que celle-ci peut durer de
plusieurs semaines a quelques années. Dans notre cas, notre intérét portait sur
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les canicules. Alors que I'été 2013 suffisait pour effectuer notre analyse avec une
certaine robustesse, ce n'était pas le cas de I'été 2014 avec ses deux journées
arrosées et cing journées de référence seulement.

La durée d'étude constitue une des limites de notre méthode d'analyse. L'exploitation
de longues séries de données s'étalant sur plusieurs mois ou années implique que
la seule modification pendant cette période est la mise en ceuvre de la mesure
anti-ICU étudiée. Pourtant, les zones urbaines sont en perpétuel changement et
les conditions “initiales” déterminées 3 un moment donné peuvent rapidement
devenir obsolétes. Cela rajoute une contrainte supplémentaire lors du choix du
site qui ne doit pas étre profondément modifié pendant la durée totale de I'étude.

Heureusement, notre analyse a montré que les criteres de sélection de site
pouvaient étre assouplis pour inclure des paires de stations dont la configuration
urbaine n’'est pas aussi semblable que celles retenues ici. Cette flexibilité supplé-
mentaire est obtenue au prix d'une perte en précision, c'est-a-dire d'intervalles de
confiance plus importants. Pour limiter ce phénomeéne, il est conseillé de limiter le
plus possible la distance ainsi que les différences d’ensoleillement entre les stations
témoins et expérimentales.

La robustesse de nos résultats sur les effets de |'arrosage urbain s’accroitra
au fur et a mesure que de nouvelles données seront enregistrées. Des pistes
d'amélioration possibles concernent I'usage d'instrument de haute précision cal-
ibrés les uns a par rapport aux autres régulierement en chambre climatique de
laboratoire ainsi que I'utilisation d'abri météorologique a convection forcée pour
limiter I'influence de I'ensoleillement direct sur les mesures de température et
d'humidité de I'air. Par ailleurs, I'impact sur la qualité des mesures de la cage de
protection contre le vandalisme devrait étre quantifier plus précisément.

L'application de notre méthode a d’autres sites et a d'autres mesures anti-ICU
donneront également lieu a des retours d'expérience intéressants sur sa pertinence
et sa faisabilité sur le terrain. Malheureusement, étant donnée la durée d'étude
nécessaire, ces retours seront longs a obtenir.

Enfin, il se peut que d'autres outils et approches soient pertinents voire plus
adaptés pour I'étude de mesures anti-ICU. |l s'agit par exemple d'utiliser un réseau
de stations témoins réparties sur un certain espace pour compenser |'utilisation de
stations mal appariées, des outils d"analyse financiers pour désaisonaliser les don-
nées ou encore des outils d'extraction de données et d'apprentissage automatique
(réseaux neuronaux par exemple).

Ayant étudié les effets microclimatiques de I'arrosage urbain, nous nous in-
téressons a présent a ses effets thermiques.

Effets thermiques
Pour déterminer les effets thermiques de I'arrosage les mesures de température de

surface ainsi que de flux et de température dans la chaussée a 5 cm de profondeur
enregistrées rue du Louvre pendant I'été 2013 ont été étudiées.
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Premiérement, il a été trouvé que le flux de chaleur 3 5 cm de profondeur
dans la chaussée était divisé par deux par I'arrosage urbain, réduit de jusqu'a 50
et 150 W/m? le matin et I'aprés-midi, respectivement. La restitution de chaleur
pendant la nuit suivant |'arrosage est également réduite.

Deuxiemement, il a été montré que les températures de surface sont réduites
de plusieurs degrés, a la fois pendant I'arrosage et jusqu’'a plusieurs heures aprés
sa fin. Le matin, les températures sont réduites de jusqu'a 4°C et I'aprés-midi
de 13°C en moyenne. |l a été constaté que les effets sur la chaussée sont plus
importants que sur le trottoir.

Troisiemement, la température 3 5 cm de profondeur est réduite de 5,9°C
I"aprés-midi. Les températures minimales du matin, atteintes vers 8h les journées
de référence, sont maintenues pendant plusieurs heures jusqu'a I'ensoleillement
direct de la chaussée les jours arrosés et sont réduites de 2,3°C compte tenu des
températures observées a 6h. Par ailleurs, I'amplitude min-max de la température
est divisée par deux par |'arrosage.

Des pics de flux de chaleur et de température de surface sont visibles les jours
arrosés et témoignent du séchage de la chaussée. Aucun pic n'a été observé pour
les températures mesurées a 5 cm de profondeur.

Ces observations sont en accord entre elles et avec la littérature. Nos résultats
confirment que |'arrosage atténue les phénomeénes physiques responsables du stress
thermique des piétons et de la formation des ICU. En effet, I'absorption et le
stockage de chaleur par la chaussée sont sensiblement réduits par I'arrosage qui
réintroduit artificiellement de |'évapotranspiration dans le milieu urbain. Cela a
été montré par les mesures de flux et de température dans la chaussée. Cela
entraine une réduction de la chaleur restituée la nuit longtemps aprés la fin de
I'arrosage. Par ailleurs, I'absorption plus faible de chaleur entraine une réduction
de la température de surface jour et nuit ce qui a deux conséquences positives.

La premiére est la réduction de I'échauffement par convection de I'atmosphére
par la chaussée. Puisque ce transfert de chaleur sensible dépend directement de
la température de surface, celui-ci est réduit voire inversé dans les zones arrosées.
Ainsi, plus les zones arrosées sont étendues, plus le rafraichissement obtenu sera
important. Cela est confirmé par la comparaison du rafraichissement observé pour
Louvre par rapport a celui de Belleville.

La deuxiéme conséquence de températures de surface plus faibles est la réduc-
tion du rayonnement grande longueur d'onde (GLO) issu de la chaussée, allégeant
ainsi le bilan radiatif des piétons. Par ailleurs, alors que I'utilisation de matériaux
réfléchissants entraine une augmentation du flux CLO réfléchi vers les piétons,
I'arrosage urbain le réduit. En effet, le mouillage de la chaussée en réduit la
réflectivité, venant renforcé I'effet positif de la réduction du rayonnement GLO.
Ces effets combinés réduisent ainsi la radiosité totale des surfaces arrosées. Le
bilan radiatif des piétons est donc amélioré a la fois au soleil et a I'ombre. Les ob-
servations précédentes de la température moyenne de rayonnement en témoignent.

En revanche, I'augmentation de I'"humidité entrainée par |'évaporation du film
d’'eau arrosé a tendance a accentuer le stress thermique des piétons. Cependant,
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vu que |'arrosage a vocation a étre mis en ceuvre par temps particulierement sec
(humidité relative inférieure a 50 %), cette augmentation pourrait étre négligeable
du point de vue du confort thermique, ce qui est confirmé par nos observations mi-
croclimatiques précédentes. Cet effet négatif n'est donc pas d'ampleur suffisante
pour compenser les autres effets positifs de I'arrosage.

Ces résultats et analyses nous conférent une meilleure compréhension des mé-
canismes mis en jeu par |'arrosage urbain et qui expliquent les observations micro-
climatiques effectuées a la partie précédente. Les données et tendances discutées
ici peuvent étre utiles pour la validation d'études numériques ou expérimentales
a différentes échelles (cf. Annexes A, B, C). Afin de pouvoir proposer des amélio-
rations pour la méthode d'arrosage, nous nous intéressons a présent aux colits de
I'arrosage urbain. Nous chercherons a les minimiser tout en maximisant ses effets
positifs.

Avec ce but en téte, on s'intéresse a présent aux pics de flux et de température
de surface observés afin d’affiner la durée et la fréquence d'arrosage. Par ailleurs,
le devenir des volumes arrosés sera également étudié et des propositions seront for-
mulées pour réduire la consommation d'eau sans trop impacter le rafraichissement
final.

Amélioration de la consommation d’eau de I'arrosage
urbain

Les effets thermiques de |'arrosage identifiés précédemment sont utilisés pour
améliorer la méthode d'arrosage et sa consommation d’eau. On s'appuie donc sur
les mesures réalisées rue du Louvre.

L'analyse montre que le protocole d'arrosage de la chaussée devrait chercher
a déposer 0,16-0,20 mm/cycle (soit la capacité de rétention du revétement) a
la fréquence la plus faible possible pour empécher le séchage de la surface.
L'aprés-midi, un arrosage toutes les 30 minutes est recommandé jusqu'a la fin
de I'ensoleillement, mais n'est pas suffisant pour le trottoir asphalte qui nécessite
une fréquence d'un arrosage toutes les 10-20 minutes. Le matin, I'arrosage de
0,16-0,20 mm d’'eau toutes les heures est suffisant, mais cette fréquence pour-
rait étre réduite de 50 % comme l'indiquent les pics de flux et de température
de surface observés 2h-2h30 aprés la fin de I'arrosage le soir. Enfin, la période
d'arrosage devrait étre prolongée pour inclure les quelques minutes précédants le
début de I'ensoleillement de la rue, alors que I'arrosage du matin pourrait étre
décalé jusqu'a 9h30 environ.

De maniére générale, la méthode d’'arrosage la plus rentable vise a aligner
son débit moyen d'arrosage sur le débit évaporé. Ayant ainsi fixé le débit arrosé,
c'est la capacité de rétention d'eau de la surface ciblée qui détermine la fréquence
d'arrosage adéquate. Bien entendu, la vitesse d'évaporation d'eau dépendra de la
surface ciblée et dépend donc de certaines de ses propriétés.
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Des essais ont été réalisés pendant I'été 2014 afin de confirmer ces recom-
mandations, bien que le volume déposé par les laveuses n'ait pas pu étre réduit a
moins de 0,5 mm/cycle. Malheureusement, les mesures du capteur de chaussée
se sont révélées étre tres différentes de celles de I'été 2013 pour des conditions
météorologiques trés similaires. Le capteur a donc été considéré comme étant
tombé en panne. La cause soupconnée de cette panne est le fluage de I'enrobé
a froid utilisé lors de sa pose. Par ailleurs, seuls deux journées ont été arrosées
pendant I'été 2014, pendant lesquels la caméra thermique posée en toiture a elle
aussi connu une panne d’'alimentation électrique. |l n'a donc pas été possible de
déterminer I'impact de la réduction du débit arrosé rue du Louvre pendant cette
campagne. Une nouvelle campagne est prévue pendant I'été 2015, malheureuse-
ment elle ne s'achévera pas avant la fin de la rédaction du présent manuscrit.

Afin de réduire la fréquence d’arrosage et donc limiter les désagréments as-
sociés a la méthode d'arrosage et la simplifier, il faudrait augmenter la capacité
de rétention d'eau de la chaussée. En effet, si celle-ci atteignait seulement 1 mm
d'eau, l'arrosage de 1 mm/cycle serait nécessaire seulement une fois toutes les
2h30-3h pendant I'ensoleillement.

Toutefois, les rues parisiennes sont actuellement concues pour retenir le moins
d'eau possible. Une nouvelle conception serait donc nécessaire afin d'atteindre
cet objectif. Une alternative envisageable consisterait a utiliser des matériaux
perméables a rétention d'eau. Ces derniers devraient retenir I'eau a leur surface
ou a trés faible profondeur afin de ne pas géner I'évaporation de |'eau retenue,
grace a des matériaux a forte capillarité par exemple. Cette solution limiterait la
formation de flaques d’eau et éviterait donc les problémes que cela pose pour la
circulation et les piétons.

Ce type de matériau permettrait de déposer de plus grandes quantités d'eau
par arrosage sans ruissellement grace a sa capacité de rétention accrue et limiterait
donc la fréquence d'arrosage nécessaire. Cette nouvelle conception de rue pourrait
également permettre des économies d'eau supplémentaires si elle est en mesure
de retenir I'eau apportée par les orages estivaux ou encore I'eau déja mobilisée
pour le nettoyage des rues. De plus, elle participerait a limiter le ruissellement par
temps pluvieux, permettant ainsi de limiter les déversements au milieu naturel,
objectif mis en avant par le Zonage Pluvial de la Ville de Paris et la Loi Cadre sur
I'Eau de I'Union Européenne.

Quels que soient les résultats de la campagne 2015, notre analyse nous per-
met de faire une premiere estimation de la consommation d’'eau nécessaire pour
arroser une rue parisienne au mois de juillet. Effectué de 9h30 a 18h30, I'arrosage
optimisé, c’est-a-dire moins de 0,20 mm/cycle toutes les deux heures avant 13h30
et toutes les 30 minutes aprés, consommerait moins de 2,2 mm/j.

Généralisé 3 I'ensemble des 2 550 ha de rues parisiennes, cela reviendrait a
56 100 m3/j ou 25 L par jour et par habitant, soit un peu mois d'une demi-douche.
Ce volume représente moins de 30 % de la production actuelle d’eau non potable
a Paris et est largement compatible avec les capacités de production existantes
(de I'ordre de 500 000 m3/j). On peut comparer cet ordre de grandeur a celui
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de I'évapotranspiration potentielle observée a Paris en été, représentative de la
consommation d'eau d'un gazon. En juillet, celle-ci atteint souvent 7-8 mm/j
et jusqu'a 9 mm/j par temps caniculaire, soit plus de trois plus d'eau que pour
I'arrosage urbain. Etant donné la crédibilité attribuée a la végétalisation pour
lutter contre les ICU, la consommation d’eau de I'arrosage urbain est jugée suff-
isamment raisonnable pour que |'arrosage soit considéré comme une technique
viable pour Paris. Ceci est renforcé par les opportunités offertes par le réseau
d'eau non potable et la diversification de son approvisionnement, mais dépen-
dra également de I'évolution des ressources hydriques de la région au cours des
prochaines décennies.

Etant donné que les rues dans une méme ville ont généralement des config-
urations ou utilisent des matériaux différents, les conclusions tirées de nos deux
sites ne peuvent pas étre généralisées a la ville entiere. En effet, le débit évaporé
sur une surface arrosée dépendra notamment des propriétés de ses matériaux de
surface. Il est donc recommandé d’étudier plusieurs sites caractéristiques avant
de mettre au point une stratégie d'arrosage étendue a une ville entiére. Cepen-
dant, |'utilisation d'un capteur de chaussée couplé a des mesures du rayonnement
solaire sur de longues périodes est coliteuse et compliquée et nécessite une bonne
coordination avec les services municipaux concernés. Il est donc difficile d'installer
un grand nombre de ces capteurs en milieu urbain dense. Heureusement, il a été
montré que des mesures de la température de surface a I'aide d'une caméra ther-
mique est une alternative intéressante. Combinée avec une mesure indépendante
de la capacité de rétention des surfaces arrosées, la consommation d'eau et la
fréquence d'arrosage optimales peuvent étre déterminées simultanément.

Les pyromeétres, qui mesurent la température en un point fixe et sont bien
moins coliteux, pourraient également étre utilisés, mais contrairement aux caméras
infrarouges ils ne peuvent pas faire de mesure sur plusieurs zones en méme temps.
Etant donné leur prix plus faible, il pourrait quand méme étre plus intéressant d'en
utiliser plusieurs pour compenser ce désavantage. Les caméras thermiques et les
pyrometres sont particulierement adaptés au milieu urbain vu la simplicité de leur
pose comparée a celle des capteurs de chaussée. Les lampadaires urbains sont
de bons candidats pour leur alimentation électrique, mais de nombreux points
lumineux parisiens sont posés en console sur facade d'immeuble et ne peuvent
généralement pas accueillir de poids supplémentaire. Par ailleurs, afin de tenir
compte des piétons et véhicules qui peuvent entrée dans la ligne de mesure de ces
appareils, il est recommandé d’inclure une webcam synchronisée. Enfin, comme
c'était le cas pour notre site d'étude, de nombreuses pollutions thermiques sont
présentes en milieu urbain et doivent étre clairement identifiées avant de choisir
les zones a surveiller afin d'éviter de fausses interprétations. L'imagerie thermique
peut étre d’une grande aide a cet égard.

Au-deld de la configuration des rues, |I'impact des matériaux ne devrait pas
étre négligé. En effet, les surfaces sombres ne réagiront pas de la méme facon
qu'une surface claire a |'arrosage, ni des matériaux de texture différentes qui
pourraient avoir des capacités de rétention différentes. De nombreux matériaux
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sont actuellement mis en ceuvre dans I'espace public parisien, dont des dalles de
granite, des pavés de granite ou de gres, des chaussées en enrobé bitumineux ou
des trottoirs en asphalte. La diversité des revétements urbains rend tres difficile
la conception d'une stratégie d'arrosage de la ville si elle doit s'appuyer sur des
études de terrain.

Une solution possible consiste a étudier le comportement thermique de ces
revétements en laboratoire. Le dispositif nécessaire doit pouvoir soumettre les
échantillons a un méme cycle climatique, permettant des comparaisons de com-
portement plus précises que sur le terrain. Par ailleurs, les conditions de labora-
toire permettent d'instrumenter les échantillons a plusieurs profondeur facilement,
donnant accés a des informations plus vastes que sur le terrain.

Une expérimentation de ce type a été mise en place et a permis de comparer
le comportement thermique de cing revétements parisiens sans arrosage. Des
échantillons de chaussée et trottoir classiques, de stabilisé, de trottoir dalle granite
et de gazon ont ainsi été comparés. Bien que d'autres essais complémentaires
soient nécessaires, des résultats préliminaires ont été communiqués dans le cadre
de trois conférences. Les articles correspondant (un en anglais) se trouvent aux
Annexes A, B et C.

Conclusions et perspectives

Des éléments de réponses ont donc été apportés aux questions de recherches
définies. En effet notre recherche apporte une meilleure connaissance de ses effets
rafraichissants, a la fois microclimatiques et thermiques, de I'arrosage. De plus, sa
consommation d'eau a été étudiée et des propositions pour I'améliorer davantage
ont été formulées. Ces informations permettront d'éclairer le choix des villes qui
envisagent de faire appel a |'arrosage urbain pour leur stratégie de rafraichissement
et d’adaptation au changement climatique, notamment pour les quartiers les plus
denses et minéraux. Cependant, d'autres aspects qui mériteraient investigation a
leur tour ont également pu étre identifiés au cours de ce travail.

La méthode d'analyse statistique développée a la Partie 1 souleve un certain
nombre de questions concernant ses limites et sa fiabilité. D'autres interrogations
concernent la méthode expérimentale utilisée pour estimer les effets microclima-
tiques de I'arrosage. Ces nouvelles questions sont les suivantes :

= Quel serait le bénéfice d'abris a convection forcée pour réduire le bruit de
fond des mesures de la température et de I'humidité de I'air, notamment
pour des sites témoin et expérimental éloignés 7

= Quel est I'impact de la cage de mesure ?

= Quelle est la faisabilité de notre méthode d'analyse statistique lorsqu’elle

est utilisée avec d’autres techniques plus permanentes de lutte contre les
ICU ?



Résumé détaillé en francais

187

» Quelles améliorations pourraient apporter d'autres outils d'analyse statis-
tiques, issus de |'analyse des séries temporelles par exemple ?

L'usage d'un abri a convection forcée pour les thermo-hygrométres vise a
réduire le bruit observé pendant les périodes d’ensoleillement direct. En effet,
les différences d'ensoleillement d'un site a un autre peuvent avoir un impact sur
les mesures qui brouilleraient le signal de rafraichissement créé par |'arrosage.
Le potentiel pour les abris ventilés d'améliorer cette situation devrait donc étre
étudié.

Par ailleurs, une cage de mesure a été utilisée pour protéger les instruments
de mesure positionnés a hauteur d’homme. Ce dispositif est essentiel pour des
stations de mesure installées en milieu urbain pendant de longues périodes. Cepen-
dant, bien qu’elle ait été concue pour minimiser leur impact sur les mesures ef-
fectuées en leur sein, elle crée inévitablement de I'ombrage. L'importance de cet
impact et d'éventuelles corrections permettant d’en tenir compte devraient étre
étudiées afin que ces cages puissent étre utilisées pour d'autres études de long
terme en milieu urbain. L'impact des cages sur des mesures de vent effectuées
en leur sein devrait notamment étre inclus dans cette analyse et comparé avec les
mémes mesures réalisées hors de la cage, a 4 m de hauteur.

Les difficultés potentielles liées a I'application de la méthode d’analyse dévelop-
pée a d'autres méthodes d'atténuation des ICU ont été décrites. Etant donné que
la période de référence doit étre étudiée suffisamment longtemps pour étre com-
parée avec la période expérimentale, les campagnes de mesure peuvent durer
quelques années. La faisabilité de la méthode doit donc étre évaluée, surtout
compte tenu des remodelages permanents que connaissent les villes. D’autres
études utilisant notre méthode devraient apporter des retours d'expérience in-
téressants mais qui seront longs a obtenir.

En attendant, d'autres méthodes devraient étre envisagées. Etant donné la
périodicité quotidienne des paramétres météorologiques, I'analyse des séries tem-
porelles pourrait apporter des outils pertinents, notamment pour décomposer
les séries étudiées en leurs composantes de tendance, saisonniere et résiduelle.
L'étude de ces composantes pourrait apporter d'autres informations sur les ef-
fets rafraichissants des méthodes étudiées. D’autres outils issus des domaines de
I'extraction de données ou de |'apprentissage automatique pourraient également
s'avérer utiles.

Par ailleurs, bien que les effets microclimatiques de I'arrosage urbain ont pu
&tre quantifiés pour deux sites parisiens, plusieurs autres éléments doivent étre
déterminés avant qu'une stratégie d'arrosage municipale puisse étre définie :

» Quels effets cumulés peuvent étre obtenus grace a un arrosage de plus
grande échelle (quartier, ville, ...) ?

» Quel est I'impact de I'orientation de la rue sur les performances de |'arrosage ?

= Qu’'en est-il du ratio d'aspect de la rue ?
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= Comment réagissent d'autres matériaux a |'arrosage 7

= Quelles propriétés des matériaux influencent I'efficacité de I'arrosage ?

La premiére question rend compte du fait que les effets déterminés ici ont
été obtenu pour des sites arrosés isolés. A priori, un arrosage plus étendu devrait
avoir un impact plus important. Aucune étude qui nous est connue n'a cherché a
quantifier les effets cumulés qui peuvent ainsi étre obtenus.

Les deux questions suivantes correspondent a un manque de connaissance
identifié dans notre recherche sur I'impact de la morphologie urbaine. Bien que
des sites d'orientation différente aient été étudiés, les différences de méthode
d'arrosage étaient trop importantes pour isoler leur impact. Cela vaut également
pour le ratio d'aspect. Etant donnée la diversité des orientations et formes de rue
dans une ville donnée, il est essentiel de quantifier I'influence de ces paramétres sur
I'efficacité de I'arrosage urbain. Vu le r6le important de I'ensoleillement sur les ef-
fets thermiques observés rue du Louvre, il se peut que I'influence de ces parameétres
morphologiques se limite a leur impact sur les conditions d'ensoleillement du sol.

Pareillement, notre expérimentation n'a pas permis d'étudier I'influence des
matériaux malgré les différences entre les sites de Louvre et de Belleville. Parmi les
propriétés des matériaux, I'impact de la capacité de rétention d'eau de la surface
arrosée a déja été identifié. Vue la grande diversité des matériaux utilisés a Paris
et ailleurs, cet aspect a une grande importance. Comprendre leur influence et
quelles propriétés en sont responsables permettrait de mieux cibler les stratégies
d'arrosage ainsi que de concevoir des rues plus performantes d'un point de vue
climatique. Ce dernier aspect présente des synergies intéressantes avec les objectifs
de gestion alternative des eaux pluviales a Paris si la capacité de rétention d'eau
est augmentée.

Comme indiqué, nous avons commencé la conception d'une expérimentation
de laboratoire pour étudié le réle des matériaux. A I'heure actuelle, des essais
préliminaires ont été réalisés et les résultats sont satisfaisants au regard des ob-
servations de terrain décrites auparavant. Ces résultats initiaux donnent une
premiere impression des performances thermo-climatiques de cing revétements
parisiens. D’'autres essais avec arrosage devraient nous permettre de déterminer
son efficacité sur ces structures de revétement et de proposer des modifications
et des compositions nouvelles plus adaptées a I'amélioration du climat urbain.
Les nouvelles structures pourraient permettre des économies d’eau importantes
en stockant I'eau de pluie ou de nettoyage déja utilisée et qui ruisselle actuelle-
ment a I'égout. Ce travail est réalisé en partenariat avec la Direction de la Voirie
et des Déplacements (DVD) de la Ville de Paris et I'Atelier Parisien d'Urbanisme
(APUR).

Enfin, notre recherche n'a pas pris en compte les impacts de I'arrosage autres
que ses effets rafraichissants ou sa consommation d’eau.

Parmi ceux-ci, nous avons parlé des améliorations de la qualité de I'air en intro-
duction. Les particules fines sont une des principales causes de la pollution de I'air



Résumé détaillé en francais

189

a Paris. Le nettoyage de rues est soupconné réduire la remise en suspension des
particules fines par lessivage et a déja été étudié par certains auteurs. L'arrosage
urbain pourrait également lessiver les particules déposées au sol et donc participer
a une amélioration de la qualité de I'air. Par ailleurs, la pollution a I'ozone est
en augmentation a Paris et dans d'autres villes et pourrait également étre réduite
par |'arrosage urbain. En effet, cette pollution est fortement thermosensible et
pourrait donc bénéficier du rafraichissement provoqué par I'arrosage urbain. Ces
effets potentiels de I'arrosage urbain n'ont pas encore été étudiés par la littérature
scientifique.

Par ailleurs, les colits financiers et environnementaux de |'arrosage devraient
également étre quantifiés avant que les villes ne puissent I'inclure dans leur stratégie
d’atténuation des ICU et d'adaptation au changement climatique. Ces analyses
doivent tenir compte des retombées négatives et positives de |'arrosage, par ex-
emple les bénéfices tirés d’économies d'énergie de climatisation sont a comparer
a I'énergie nécessaire a I'arrosage et son prix. L'estimation de ces parametres im-
plique toutefois qu’une méthode d’'arrosage et une infrastructure a I'échelle de la
ville soient déja connues ou proposées. Etant donné le niveau de développement
de I'arrosage urbain et des autres méthodes d'atténuation, il serait prématuré
d’'étudier ces parametres dés a présent.
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