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Abstract

The first part of this thesis is an introduction to the different energy

conversion and desalination methods that will be invoked in this work.

In a second part, we show that the ionic conductance of a nanopore

array is sub-additive with the number of pores. Individal contributions

of each pore to the global conductance tend to a null value, if the

network is big enough. We note that this phenomenon only involves

length ratios, and that working at a nanometric scale does not have any

influence.

Then, in a third part, we measure the permeability of a pore array at a

macroscopic scale. There too, the effect of the array does not depend on

the scale of the system. Permeability evolves inversely to conductance:

permeability is enhanced by the presence of neighboring pores, but in

a smaller proportion than the ionic conductance falls under the same

cause.

The fourth part uses the results of the two preceding ones, to determine

a scaling law for the electric power produced by streaming current and

diffusio-osmosis, two methods of osmotic energy conversion. We show

that entrance effects have a negative impact on such conversion, more

efforts are needed to understand them better and circumvent them.

The fifth and last part of this thesis is a numerical work on a new

desalination device. It relies on osmosis through a gas phase which is

trapped within a hydrophobic nanotube. Its main interest is to use

nanotubes bigger than the pores of currently used materials, thus less

prone to fouling. We use molecular dynamics methods to study the

permeability and selectivity of this device.
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Résumé

Une approche nanofluidique de la conversion d’énergie et du

dessalement

La première partie de cette thèse constitue une introduction aux différentes

méthodes de conversion d’énergie et de dessalement qui seront évoquées

dans cet ouvrage.

Dans une deuxième partie, nous montrons que la conductance ionique

d’un réseau de nanopores est sous-additive avec le nombre de pores.

La contribution individuelle de chaque pore à la conductance globale

tend vers une valeur nulle, pour un réseau suffisamment grand. On note

que seuls des rapports de longueurs interviennent, et que le choix d’une

échelle nanométrique n’a pas d’influence dans l’effet observé.

Ensuite, dans une troisième partie, nous mesurons la perméabilité d’un

réseau de pores à une échelle macroscopique. Là aussi, l’influence du

réseau ne dépend pas de l’échelle du système. La perméabilité évolue

en sens inverse de la conductance : elle est augmentée par la présence

de pores voisins, mais dans une faible proportion.

La quatrième partie se sert des résultats des deux parties précédentes,

dans le but de déterminer une loi d’échelle pour la puissance électrique

produite par courant d’écoulement et diffusio-osmose, deux méthodes

de conversion d’énergie osmotique. On montre que les effets d’entrée

ont un effet délétère sur cette conversion ; ils nécessitent des études plus

approfondies.

La dernière partie est un travail numérique sur un nouveau procédé de

dessalement par osmose via une phase gaz, piégée dans des nanotubes

hydrophobes. Son intérêt principal est l’utilisation de nanotubes plus
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gros que les pores des matériaux actuellement utilisés, donc moins sus-

ceptibles de s’encrasser. Par dynamique moléculaire, nous étudions la

perméabilité et la sélectivité du dispositif.

Mots-clés : nanofluidique, effets d’entrée, réseaux de pores, transport

ionique et fluidique, phénomènes de transport couplés, énergie osmotique,

conversion d’énergie, dessalement
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Résumé substantiel

La nanofluidique est, chronologiquement, la petite sœur de la microflu-

idique, mais aujourd’hui elle représente un domaine en pleine expension

avec des persepctives industrielles et économiques peut-être même plus

vastes. En effet, des applications d’une grande importance sociétale font

intervenir des objets nanofluidiques, à commencer par les techniques de

séparation dans les liquides. Le dessalement et la purification de l’eau se

font généralement à travers des membranes de pores sub-nanométriques,

s’inspirant de processus biologiques d’efficacité encore non égalée. La

nanofluidique porte également de grands espoirs dans la production

d’énergie d’origine osmotique. Grâce à des membranes poreuses, là aussi

de dimension typique subnanométrique, de l’énergie chimique stockées

dans les gradient salins est convertie en énergie électrique. L’entreprise

norvégienne Statkraft a fait fonctionner une usine pilote sur ce principe

de 2009 à 2013.

Un des comportements les plus intéressants découverts par les recherches

en nanofluidique est celui du glissement quasi parfait de l’eau dans des

nanotubes de carbone (CNT). Cette structure, constituée d’un feuillet

de graphène enroulé, est devenue un objet d’étude commun depuis les

résultats de Sumio Iijima en 1991. Depuis, d’autres types de nanotubes

ont suscité de l’intérêt, comme les nanotubes de nitrure de bore (BNNT),

dont on a récemment mis en évidence la charge surfacique exceptionnelle

(jusqu’à 1C/m2, ce qui représente 1 électron pour 2 atomes du nanotube).

Ces propriétés font que les CNT portent des espoirs plutôt en filtration

et dessalement, où ils permettraient d’augmenter le flux d’eau tout en

gardant une bonne sélectivité vis-à-vis des ions et des impuretés. Quant

aux BNNT, ils sont envisagés plutôt comme convertisseurs d’énergie via

la diffusio-osmose, qui tire partie de leur forte charge de surface.
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Toutefois, les bonnes propriétés du transport au sein des nanotubes ne

doit pas faire oublier les effets d’entrée, c’est-à-dire ce qu’il se passe

aux accès des nanotubes. Même si la friction est négligeable dans

un CNT, et même si la charge de surface est très grande dans un

BNNT, le transport fluidique et ionique sera toujours limité par le fait

que les molécules d’eau et les ions doivent converger depuis le bulk

jusqu’à la nanostructure. Depuis les travaux fondateurs de Sampson

en hydrodynamique, et de Hille et Hall en physiologie, la valeur de la

résistance d’accès est bien connue lorsqu’on considère un nanopore ou

un nanotube unique, de section circulaire. En revanche, les effets de

géométrie et les effets collectifs entre pores ont été peu étudiés. Cette

thèse propose de pallier ce manque, et, dans les deux premières parties,

nous présentons des travaux expérimentaux dont le but est de mieux

comprendre la dépendance de la résistance d’entrée, ionique ou fluidique,

avec le nombre de pores présents et la géométrie du réseau.

La première partie de cette thèse constitue une introduction aux différentes

méthodes de conversion d’énergie et de dessalement qui seront évoquées

dans cet ouvrage.

Dans une deuxième partie, nous montrons que la conductance ionique

d’un réseau de nanopores est sous-additive avec le nombre de pores.

En effet, la présence de pores voisins entrâıne une augmentation de la

résistance ionique d’entrée à travers un pore. Ce travail expérimental

permet de vérifier des lois d’échelles prédisant une contribution indi-

viduelle de chaque pore à la conductance globale tendant vers une

valeur nulle, pour un réseau suffisamment grand. Un point intéressant

ici est que seul des rapports de longueurs interviennent. Le rapport

entre l’épaisseur du pore et son rayon détermine la sensibilité aux effets

d’entrée, et le rapport entre le rayon et la distance interpore donne

la mesure des intéractions interpores. Finalement, le fait d’être à une

échelle nanométrique n’a pas d’influence dans l’effet observé (car on se
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place dans un régime où la charge de surface n’a pas d’influence sur la

conductance).

Dans une troisième partie, nous mesurons la perméabilité d’un réseau

de pores à une échelle macroscopique. Là aussi, l’influence du réseau ne

dépend pas de l’échelle du système, mais seulement du rapport entre

rayon et distance interpore. La perméabilité évolue en sens inverse de

la conductance : elle est augmentée par la présence de pores voisins,

mais dans des proportions plus faibles que la conductance ionique ne

diminue par la même cause. Surtout, la contribution individuelle des

pores à la perméabilité totale sature rapidement lorsqu’on augmente le

nombre de pores.

La quatrième partie se concentre sur des phénomènes de transport dits

couplés ou croisés, typiquement nanofluidique, où le type de transport

diffère du type l’excitation. Par exemple, dans la diffusio-osmose, on

observe un écoulement et un courant ionique, en réponse à un gradient

salin. En se servant des résultats des deux parties précédentes, nous

déterminons une loi d’échelle pour la puissance électrique produite par

courant d’écoulement et diffusio-osmose, deux méthodes de conversion

d’énergie osmotique. On montre que les effets d’entrée ont un effet

délétère sur cette conversion ; ils nécessitent des études plus approfondies.

La cinquième partie est un travail numérique sur un nouveau procédé

de dessalement par osmose via une phase gaz. Son intérêt principal

est l’utilisation de nanotubes ”plus gros” que les pores des matériaux

actuellement utilisés, donc moins susceptibles de s’encrasser. Dans cette

méthode, les nanotubes sont hydrophobes et comportent une bulle de

vapeur qui joue le rôle de membrane sélective, imperméable aux ions.

Le rayon maximal du nanotube n’est alors limité que par la stabilité

de l’interface liquide-vapeur. L’emploi de la dynamique moléculaire

nous permet de tester la dépendance de la perméabilité du dispositif
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en fonction des paramètres géométriques. Nous mettons également

en évidence le fait que le nanotube doit avoir une longueur minimale,

égale à son rayon, afin que la bulle perdure. Ceci représente une borne

supérieure à la valeur du gradient de concentration dans un nanotube,

ce qui en fait une limite de la présente méthode. Nous présentons enfin

le calcul de la barrière d’énergie libre qui s’oppose à un ion traversant

la bulle de vapeur, entouré d’une couche de molécules d’eau.
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Merci à Christophe Dujardin, directeur de l’école doctorale PhAST :

t’avoir comme interlocuteur dans un moment de doute a été une grande
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tous mes amis de l’ENS de Lyon, ceux du campus de la Doua Martin,
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Pauline : pour la discrétion, pour l’accueil en temps de chaudière cassée,

pour tous les bons moments, et à Fosca : nous avons traversé tellement

de choses ! Et aujourd’hui nous sommes toujours contentes de nous

voir, c’est une grande joie pour moi.
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Chapter 1

Nanofluidics, energy harvesting

and desalination

Nanofluidics was born from a great ambition: to undertake the technical

and intellectual challenges of handling flows at an always smaller scale.

Its realm begins where microfluidics ends, below 1 micron. Apart from

the inherent interest this challenge holds, the aim to mimick biological

behaviors, and try to reach their efficiency, is one of the main engines

of the nanofluidic-community creativity. For example, researchers have

long had their eyes on the high selectivity of ion channels and pumps on

cell membranes. From urea filtration within the Henle loop in kidneys,

to energy generation from saline gradients between both sides of cell

membranes, the human body is an incredibly rich source of inspiration.

Moreover, the numerous applications arising from nanofluidics reinforce

the global impact of this discipline. The fields of genomics, filtration,

desalination and energy harvesting are the most likely to be deeply

affected by this relatively new science [1], of which the theoretical

1
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foundations date back to the 1960s but the numerical and experimental

tools were only ready at the turn of the century.

The phenomena studied in this thesis lay deeply in the field of nanoflu-

idics and are closely linked to applications. Firstly, we focused on a

typical nanoscopic phenomenon known as entrance effects, consisting

in a (hydrodynamic or ionic) resistance at nanochannel entrances [2–4].

In membranes containing several nanochannels, collective behaviors

at pore mouths strongly influence entrance effects. We will discuss

how these behaviors are crucial to address, in particular in the field of

energy harvesting. They demonstrate that although nanoscale transport

properties are very promising, the coupling between a nanochannel

and the outside world can undermine the global efficiency of a macro-

scopic device built from nanofluidic basic units. Special care is therefore

needed for the prototypes expected in a very near future, as scaling-up

toward a marketable device requires more than a simple parallelization

of nanochannels.

The other facet of this thesis deals with a new nanofluidic device,

designed to provide osmotic transport through two different phases,

liquid and gas [5–7]. It bears some similarities with existing desalina-

tion processes, but shows unprecedented advantages which we studied

numerically.

To contextualize our work, we propose now to introduce a few existing

energy conversion and desalination processes using nanoporous mem-

branes. Whether it be for energy harvesting or desalination, all the

methods presented here rely on ion separation from water (except for

streaming currents). The aim is either, just to clean the water, or to

convert the chemical energy stored in salinity gradients – the Gibbs

free energy of mixing – into electrical energy. Thus, we choose not to

categorize the processes according to their finality, but to the physics

at stake.
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In a first time, we will present the electrokinetic phenomena known as

electro-osmosis and streaming currents. We then turn to the very impor-

tant class of osmosis-related phenomena, among which diffusio-osmosis

is of particular interest for future applications in energy harvesting.

Distillation processes, much employed for desalination, will follow, and

last we will evoke electrostatic-interaction-based techniques.

Our purpose here is not to be exhaustive, but to give the reader an

overview of the processes relating to this thesis. This will offer the

opportunity to shed light upon some of the new behaviors unveiled by

nanofluidics.

1.1 Electrokinetic phenomena

As one goes down toward the nanoscale, the classical laws describing

fluid behavior remain valid, at least until 1 nm [8, 9]. Yet, the relative

importance of surface over bulk increases, leading to new phenomena.

At this scale, the physics of the flow cannot be decoupled from the

electrostatics arising from the electric charge at the fluid/solid interface.

These effects combine to lead to new behaviors, known as interfacial

phenomena. Cross-coupling electrokinetic phenomena, such as electro-

osmosis, streaming currents and diffusio-osmosis, are the prime example

of it. They originate in a net surface charge in the diffuse layer close

to a surface, which we describe now. Electro-osmosis and streaming

currents, which convert mechanical power into electrical power, will be

presented next. Diffusio-osmosis will be part of the subsequent section

related to osmosis.
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1.1.1 Building up of the electrical double layer

Because of dissociation and adsorption occurring at the interface between

a solid surface and an electrolytic solution, the fluid exhibits a non-zero

local electric charge on a few nanometers from the wall [10]. Starting

from the wall, we first encounter non-hydrated specifically adsorbed

co-ions (and a few similar counterions), followed by hydrated counterions

which are also bounded to the surface. Together, they define the Stern

layer (see Fig. 1.1). After this comes the slip plane, from which starts

the diffuse layer with mobile co-ions and counterions. The surface

electric charge is not totally screened by the Stern layer, which causes

the diffuse layer to carry more counterions than co-ions, and thus, to

carry a net ionic current when in motion.

The local electric charge in the vicinity of a surface translates in an

electrostatic potential ψ, which, if the surface potential is sufficiently

small, obeys the linearized Poisson-Boltzmann equation

d2ψ

dx2
=

1

λ2D
ψ, (1.1)

where x is a direction perpendicular to the wall, and λD =

(
εkBT

e2
∑

i ρiz
2
i

)1/2

with ε the permittivity, ρi the ionic concentration, zi the valence of the

specie i, e the elementary charge, kB the Boltzmann constant and T the

temperature. The electrostatic potential and the local electric charge

thus decay exponentially over a distance given by the Debye length λD,

see Fig. 1.1. λD is the characteristic size of the electrical debye layer

(EDL), defined as the union of the Stern layer and the diffuse layer. The

Debye lenght is typically of the order of a few nanometers, for moderate

electrolyte concentration. For nanometric channels of radius a, filled

with an ionic solution under a certain concentration, a < λD and one

speaks about EDL overlap. Exotic effects appear in this regime, such
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Figure 1.1: Layer diagram at the solid-electrolyte interface, with
the corresponding electrostatic potential evolution ψ(x). Here the
surface potential ψ0 is assumed to be negative, which corresponds
to a negative surface charge. Reproduced from [10].
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Figure 1.2: Schematic of an electrochemical cell, with a nanochan-
nel drilled in a membrane, linking two reservoirs. Reproduced from
[12].

as permselectivity [8], which will not be addressed in this thesis.

In case of higher surface potentials, non-linearities in the Poisson-

Boltzmann equation have to be taken into account [11], which will

not be considered here.

1.1.2 Electro-osmosis

Let us now consider a nanochannel linking two macroscopic reservoirs,

as in Fig. 1.2. A voltage drop is imposed between the reservoirs, via

two electrodes, which results in an ionic current inside the nanochannels.

Cations are transported toward one electrode, anions toward the other

one. This ionic current will be the subject of the chapter 2, in which

the impact of interactions between nanochannels will be considered.

Within the diffuse layer, the excess of counterions results in a net ion

momentum. By viscosity, this momentum is communicated to the

water molecules surrounding them, then to the whole fluid. A net

solvant flow can therefore be recorded (see for example [13] or [14]).
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Figure 1.3: Principle of electro-osmotic flow generation: under an
applied potential drop, prevailing cations (in case of a negatively
charged interface) in the diffuse layer lead the fluid by viscosity,
resulting in a net liquid flow. ρ+ and ρ− denote the cation and
anion concentration respectively. Adapted from [13].

This phenomenon, depicted in Fig. 1.3, is known as electro-osmosis.

Apart from nanofluidic laboratories, it is used as a wall-dehumidification

technique.

1.1.3 Streaming current

Conversely, under an applied pressure drop between the two reservoirs,

a flow sets in. The ratio between the flow and the pressure drop is

the hydrodynamic permeability, which we will study in chapter 3 for a

cluster of pores. We will see that as ionic conductance, permeability is

affected by interactions at nanochannel entrances.

The liquid flow leads the electrically diffuse layers with it, which results

in a measurable ionic current in the channel, provided the electrical

circuit is a closed loop. This ionic current is a cross phenomena known

as streaming current, see Fig. 1.4. As electro-osmosis, this effect does
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Figure 1.4: Principle of streaming-current generation: under an
applied pressure drop, liquid flows in the nanochannel. The moving
diffuse layer involves a net ionic current. Reproduced from [15].

not need EDL overlap to be perceptible. In the case where a� λD, the

streaming current reads [14]

IST = −πa
2

�

εζ

η
ΔP, (1.2)

with a and � the channel radius and length, ε the fluid permittivity, ζ

the value of the electrostatic potential at the slip plane and η the fluid

viscosity.

This method is envisioned to produce electrical power from a mechanical

source [16], with possible enhancement coming from the addition of

polymer in water [17]. However, pressure-driven streaming currents

reach lower values than diffusio-osmotic currents [15]. To the best of

our knowledge, energy conversion by streaming currents has not been

tested on a large scale.

In chapter 4, we provide scalings for the streaming current output power

and efficiency. We show that interactions at pore entrance have a huge

impact on the scaling when nanochannels are massively parallelized.

We now come to osmosis related phenomena, which display water

transport under a concentration gradient.
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1.2 Osmosis related phenomena

Osmosis is the spontaneous flow of water (or solvent) molecules through

a semi-permeable membrane into a region of higher solute concentration.

Its discovery is the fact the cleric Abbé Nollet back in 1748, who observed

water passing through an animal bladder and diluting alcohol, but never

the contrary [18]. Osmosis is crucial in living systems, as most biological

membranes are semipermeable. Osmosis is the first mean by which

water is transported in and out of the cells.

Semi-permeable membranes exclude ions thanks to very short-range

interactions, such as steric effects. Water molecules being smaller than

hydrated ions, water alone can pass through the nanometric or sub-

nanometric pores of the membrane.

In this thesis, we will deal with unconventional osmosis phenomena,

which, strictly speaking, involve no semi-permeable membranes. Rather,

the semi-permeable role will be undertaken by the diffuse layer (in

diffusio-osmosis) of by a vapor bubble (in phase-change osmosis). Now,

we first present the basic concepts under osmosis before turning to its

applications in desalination and energy conversion.

1.2.1 Osmotic pressure

The osmotic pressure ΔΠ is the mechanical pressure drop required to

prevent the spontaneous water flow through a semi-permeable membrane

separating two reservoirs of different solute concentrations. For ideal

dilute solutions, the mechanical pressure to be applied on the more

concentrated side, to prevent spontaneous water flow, can be calculated

as [19]

ΔΠ ≈ −ΔρkBT (1.3)
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where Δρ = Δρ+ + Δρ− is the concentration difference taking all

solvated species into account (in m−3) between the two sides of the

membrane. Δρ+ and Δρ− respectively refer to the cation and anion

centration difference.

In a more general way, the osmotic pressure corresponds to a solvent

chemical potential difference. Solvent chemical potential is higher on the

less concentrated side (the feed solution) than in the more concentrated

side (the draw solution), hence if no mechanical pressure counterbalances

this chemical potential drop, solvent flows from the feed to the draw

solution as in Fig. 1.5 (top situation). In this case, water dilutes the

draw solution until concentrations on both sides of the membrane are

in balance (or, if an hydraulic pressure builds up, until it balances the

osmotic pressure).

To understand how mechanical and chemical energies can be converted

into each other through osmotic processes, we consider the situation

depicted in Fig. 1.5. Suppose the high- and low-concentration liquids

are in 2 boxes closed by 2 pistons, and separated by a semi-permeable

membrane. The pistons can move if the pressures on their inner and

outer sides do not equilibrate. As water is an incompressible liquid, it

is intuitive that while the osmotic dilution takes place, both pistons

are displaced by the solvent flow. The chemical energy stored in the

concentration gradient is therefore converted into mechanical energy,

which produces work to move the pistons. In this sense, semi-permeable

membranes can be seen as a transducer.

Note that if an excess pressure ΔP < ΔΠ is applied on the concentrated

side, its dilution sill occurs until a concentration drop Δρ′ = ΔP/kBT .
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Figure 1.5: Principle of osmosis methods to purify water or gen-
erate mechanical power. ΔΠ0 is the osmotic pressure computed
in the initial state. The forward osmosis (FO), pressure-related
osmosis (PRO) and reverse osmosis (RO) are illustrated. They only
depend on the pressure drop ΔP applied between the reservoirs. If
ΔP = ΔΠ0 (third situation), no net flow is observed. Note that
in FO, PRO and RO, equilibrium is reached when ΔP = ΔΠf the
osmotic pressure in the final state.

1.2.2 Forward osmosis

Osmotic pressure has a direct application, known as forward-osmosis,

used in water treatment and desalination [20, 21]. For now it is referred

to as an emerging technology [22], whose main advantage is a low energy

input, as no (or low) hydraulic pressure is applied on the draw solution.

There are two ways to use this technique. Either brackish or sea water is

diluted by fresh water, thereby decreasing its impurity level and mineral

content. The second possibility is is that fresh water be extracted from

sea water using a draw solution of lower water chemical potential. In

the second case, ammonia-carbon dioxide solutions were used with some
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success [23]. Of course, the electrolyte in the draw solution must be

easily separable from water in a subsequent treatment.

As all the membrane-based methods, forward osmosis is hindered by

a phenomenon known as concentration polarization. Because of the

difference in ion mobility in the membrane phase and in the solution,

in the steady state the ion concentration close to the membrane differs

from that in the bulk [24]. This is referred to as external concentration

polarization. It can be reduced by increasing flow velocity (parallel

to the membrane) and turbulence at the membrane [20]. In forward-

osmosis, asymmetric membranes are used, which comprise an active

layer and a porous supporting layer. Again, the ion mobility between the

bulk and the supporting layer differs, which results in a concentration

gradient inside the supporting layer. Consequently, the concentration

gradient across the active layer, is reduced compared to the concentration

difference between the two bulk solutions. The water flow through

the membrane is thus reduced. This phenomenon, known as internal

concentration polarization (ICP) cannot be handled through physical

means like mixing [20]. It has to be solved in membrane design. One of

the main challenge faced by forward osmosis is thus the production of

high-performance membranes.

1.2.3 Pressure-retarded osmosis

A second application of osmosis is pressure-retarded osmosis, used

to generate energy from a salinity gradient [25, 26]. The principle

is the same than in forward osmosis, but sea-water is pressurized at

65 to 85% of ΔΠ which “retards” the water permeation from the

low-concentration to the high-concentration side. Yet this water flow

expands the draw solution volume, from which a turbine extracts work

to generate electrical energy. A simplistic schematization of this process
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is given in Fig. 1.5 (second case). This method was considered very

seriously by the Norwegian company Statkraft. A pilot power-plant

conducted real-scale tests during 3 years, but they were halted in 2013

as competitiveness with existing renewable energies was not judged

attainable in a foreseeable future. In fact, pressure-retarded osmosis

faces similar challenges as forward osmosis: ICP and fouling. The

design of low-cost, robust, highly selective yet enabling a high water

flow, and reducing-ICP membranes is still a bottleneck. Moreover, it

has be shown that this technique does not allow high power density

together with high efficiency [27]. As pre-treatment of sea-water and

river-water consumes a major part of the produced power, closed-loop

pressure-retarded osmosis has been proposed [28]. Yet, clever ideas are

still needed to make pressure-retarded osmosis an industrially relevant

method.

1.2.4 Reverse osmosis

We now come to reverse osmosis, a famous application where mechanical

pressure compresses the high-concentration solution above the osmotic

pressure. This process is nowadays the leader one in desalination, as

it has the lowest energy cost [29, 30]. It accounts for 41% of the total

desalinated water volume.

Reverse osmosis consists in extracting water from sea-water or a brine to

feed the fresh water side, see Fig. 1.5 (bottom situation). Additionally,

it was proposed that the very concentrated residual from reverse osmosis

be used as the draw solution in pressure-retarded osmosis, leading to

promising power densities [28].

Once more, the development of more suitable membranes, preventing

scale and fouling, is the main challenge. Moreover, as in all the already
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mentioned membrane-based methods for desalination or energy harvest-

ing, the use of sub-nanometric pores is required to prevent ions from

crossing the semi-permeable membrane. This selectivity imperative

has a direct cost, as fabricating such membranes on a large scale is

complex and expensive, and a hydrodynamic cost as it considerably

hiders water permeation [7]. Indeed, in a Poiseuille flow, permeability

scales like the radius to the fourth and is thus very sensitive to the pore

size. Carbon nanotubes are considered as very serious candidates to

replace the current polymeric or inorganic membranes, as they exhibit

greatly enhanced flow [29, 31]. Zeolites and porous graphene are other

possible alternatives [32].

The phase-change based osmosis method studied in Chapter 5 ressem-

bles reverse osmosis, but it enables the use of bigger pores, of typical

radius a ∼ 10 − 100 nm. As transport through a vapor phase is less

efficient than in a liquid phase, water permeability may not be enhanced

compared to reverse osmosis, but such membranes could be financially

more attractive. Moreover, bigger pores are less prone to fouling than

sub-nanometric ones.

1.2.5 Diffusio-osmosis

We end this paragraph by diffusio-osmosis, an unconventional osmosis

method as it does not rely on a semi-permeable membrane.

In bulk solution in presence of a concentration gradient, solutes diffuse

according to Fick’s law, but of course there is not net flux of solvent

toward the more concentrated part. This is because the solvent pressure

always adapts, in order to keep the total pressure constant everywhere

in the bulk [33]. In other words, the solvent pressure compensates the

osmotic pressure.
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Figure 1.6: Principle of diffusio-osmotic current generation: under
an applied salt concentration drop between the reservoirs, a salt
concentration gradient builds up. Inside the nanochannel, the
concentration gradient within the diffuse layer differs from that
far from the interface. In the diffuse layer, an unbalanced osmotic
pressure sets in and drives a liquid flow from the less concentrated
to the more concentrated side. The moving diffuse layer involves a
net ionic diffusio-osmotic current. Reproduced from [15].

Inside a nanochannel linking two reservoirs with different salt concentra-

tions, this picture only holds far from the solid-liquid interface. In the

diffuse layer close to the interface, ion concentration differs from the bulk

because of the electrostatic potential ψ that builds transversally, over a

distance given by the Debye length (see Fig. 1.1). It can be shown that

a non-compensated osmosis pressure kBT [ρ
+(x, z) + ρ−(x, z)− ρ0(z)]

builds in the diffuse layer, denoting ρ0(z) the bulk concentration and ρ+

and ρ− the local cation and anion concentrations. The pressure varia-

tion along the nanochannel axis z generates a viscous flow according to

Stokes equation, called the diffusio-osmotic flow, see fig 1.6. For more

details about the calculations, see [13, 15].

Like in streaming current, the moving charged diffuse layer leads a net

ionic current, given by [15]

IDO ≈ 2πaΣ

�

kBT

ηλB
Δ log ρ0 (1.4)

with Σ the excess surface charge remaining after the Stern layer has

established and λB the Bjerrum length, a typical nanometric lengthscale
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[8]. For a monovalent salt it is defined as

λB =
e2

4πεkBT
(1.5)

and at ambient temperature, λB = 0.7 nm.

As semi-permeable membranes in traditional osmosis processes, the dif-

fuse layer at a solid-liquid interface can play the role of a transducer. It

converts mechanical or chemical energy into electrical energy, depending

on the considered mechanism: streaming or diffusio-osmotic current.

Diffusio-osmotic currents share common features with streaming cur-

rents, as they both belong to cross-coupling phenomena, which originate

in electrokinetic effects at a solid-liquid interface. However, several

aspects point in favor of diffusio-osmotic currents. First, it is possi-

ble to achieve a high osmotic pressure drop within the diffuse layer,

whereas nanochannel fragility does not sustain as high a mechanical

pressure drop. In consequence, diffusio-osmotic currents reach higher

values than their streaming counterparts. Moreover, diffusio-osmotic

currents take more advantage of a high excess surface charge Σ than

streaming currents [15]. In this sense, boron-nitride nanotubes were

recently identified as a good candidate for energy harvesting [15, 34].

Contrary to pressure-retarded osmosis and reverse osmosis, diffusio-

omotic currents have not been tested on a real scale yet. In this thesis,

we furnish first-order elements for the scaling up of diffusio-osmotic

currents in chapter 4. Thanks to the results of chapter 2 on ionic

conductance, which will be shown to be transferable to salt diffusive flux,

and also of the results of chapter 3 on hydrodynamic permeability, we

will calculate the cross coefficient linking the concentration difference to

the diffusio-osmotic current. Its scaling with the number of nanochannels

is not self-evident, in view of interaction-modified entrance effects.
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1.3 Distillation methods

Phase-change based processes have been extensively used for desalina-

tion, even though they now tend to be outdone by reverse osmosis. All

current methods rely on evaporation. Already, around 400 BC, Hip-

pocrates taught his students that vapor produced from seawater when

condensed is no longer salty. In fact, because of the high dehydration

energy required to strip its solvation shell to an ion, salt stays in the

liquid phase while pure water evaporates. However, distillation methods

have a high energetic cost because of the large water specific heat.

The phase-change osmosis device presented in chapter 5 bears some

similarities with membrane distillation, which will be presented in the

following. We first mention the two main distillation methods used in

desalination, multi-stage flash and multi-effect distillations, even though

they do not present nanoporous materials.

1.3.1 Multi-stage flash distillation and multi-effect

distillation

Still the most in use, multi-stage flash distillation (MSF) accounts for

44% of the worldwide installed desalination capacity [29]. Sea-water

transits in several chambers of decreasing pressure, where it undergoes

flash evaporation (i.e. evaporation because of a pressure reduction), see

Fig. 1.7.

In multi-effect distillation (MED), water evaporates on the surfaces of

hot vapor supply pipes at several stages. The steam is collected into

the tubes of the next stage, heating and evaporating more water, see

Fig. 1.8. Economically speaking, MED is competitive with MSF [29].
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Figure 1.7: Schematic diagram of the MSF technology. From
left to right, the three chambers have a decreasing pressure and
temperature. Seawater is first heated through the three chambers
(from right to left) and the brime heater (to the left), before flowing
back in the chambers where it undergoes flashing. At each of the 6
steps, a distillate is extracted. The blue color intensity represents the
water salinity, from light (distillate) to intense (brine). Reproduced
from [29].

Figure 1.8: Schematic diagram of the MED technology. Water
undergoes three stages. Sprayed from above, part of it evaporates
on the steam tube and is re-used in the next chambers to generate
more vaporization. The blue color intensity represents the water
salinity, from light (distillate) to intense (brine). Reproduced from
[29].
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MSF and MED plants have a large capacity. These techniques benefit

from a high purity permeate and an energy cost nearly independent of

water salt concentration.

1.3.2 Membrane distillation

For smaller scale applications, other techniques are used. One of them

is membrane distillation, where elevated (50-90◦C) temperature salted

water and low temperature fresh water are introduced on either sides

of a hydrophobic porous membrane [29, 35]. Water evaporates from

the concentrated side and condensates into the fresh water side. This

method suffers from lower permeate flux compared to other separation

techniques such as reverse osmosis, and concentration and temperature

polarization effects which reduce the flow. It has not been implemented

on a wide scale and need further development.

The desalination method we will present in chapter 5 stems from osmosis

processes and membrane distillation. As in membrane distillation, water

evaporates at the brine side and condensates at the fresh water side.

However the process is not thermally driven, but mechanically driven

as in reverse osmosis, or osmotically driven as in forward osmosis.

1.4 Electrostatic separation

Charge-based separation methods are well-suited for treating low-salinity

water, in which case they require lower energy input than reverse osmosis

or distillation. They are currently used for small-scale production of

drinking and pure water [29]. These methods are given for information

purposes only, and will not be exploited in the remaining of this thesis.
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1.4.1 Electrodialysis

In electrodialysis, ions are transported by an applied electric field,

which drives ions according to their charge. Moreover, cation and anion

selective membranes allow or prevent ion flow. These membranes are

made of polymers exhibiting charged groups, to which a counterion is

attached. Under an applied electric field, the counterion has a high

mobility and can be replaced by any ion of the same charge, allowing

the passage of only anions or cations through the membrane. [36]. This

phenomenon is known as ion exchange. The alternate arrangement

of ion selective membranes results in alternate brine and partially

demineralized water, see Fig. 1.9.

1.4.2 Capacitive deionization

Other electrostatic-interaction based desalination techniques include

capacitive deionization. It involves a different mechanism, as ions are

not transported toward an electrode like in electrodialysis, but adsorb

on a imposed-potential surface [37, 38]. The purified solution is then

flushed.

Capacitive deionization is an active research domain, much efforts being

devoted to the achievement of the right material to build the electrodes

from.

1.4.3 Reverse electrodialysis

Reverse electrodialysis setup is very similar to electrodialysis one, but the

purpose is right inverted. To generate an ionic current, draw solutions
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Figure 1.9: Schematic diagram of electrodialysis desalination
system, with cation (blue) and anion (red) selective membranes.
Reproduced from [29].

(salted water) and feed solutions (fresh water) are introduced in alternate

cells, separated by cation and anion specific membranes. Under the

chemical potential difference, ion exchange between the electrolyte and

the membranes takes place. It results in a salt enrichment on the

feed side and salt impoverishment on the draw side, and in an ionic

current. At both ends of the stack, electrodes convert the ion flux into

an electrical current, provided to an external circuit [27, 28].

Unlike pressure-retarded osmosis, chemical energy is directly converted

into electrical energy. Several companies are testing this method and

a power plant relying on reverse electrodialysis is to be built in the

Netherlands.
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1.5 Summary

To summarize, we recall here the salinity-gradient based energy-conversion

methods we have superficially covered in the previous paragraphs:

• Pressure-retarded osmosis, which was tested on a wide scale but aban-

doned two years ago

• Reverse electrodialysis, about to be tested on a wide-scale

• Diffusio-osmosis, in development

• Streaming currents (electricity from hydraulic pressure), under con-

sideration.

As for desalination, we reviewed

• Reverse osmosis, the most advanced and most widely used technique

• Multi-stage flash distillation, older than reverse osmosis and still in

use especially for highly saline brines to be desalinated

• Multi-effect distillation, competitive with MSF

• Electrodialysis, a niche technology used in small device

• Forward osmosis, membrane distillation, and capacitive deionization,

still in a development stage.

The remaining of this thesis consists in 4 chapters, the last one being

totally independent from the 3 others.

In chapter 2, we focus on the ionic conductance of an array of inter-

acting nanopores. We experimentally show that conductance scales

sub-linearly with the number of pores, because of long-range electro-

static interactions between pore entrances. This result is supported by

a scaling analysis and numerical finite-element calculationss.

Then, in chapter 3, interacting pores are studied for their global hy-

drodynamic permeability. Unlike ionic conductance, hydrodynamic
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permeability keeps a linear behavior while interactions only add cor-

rections to entrance effects. The experimental results presented in this

chapter are in very good agreement with an existing model.

These two chapters contain preliminary results which will be used in

chapter 4 to predict the behavior of streaming current and diffusio-

osmotic currents in large-scale membranes. Output electrical power

and efficiency show a priori unfavorable scalings, not taking into con-

sideration any experimental sophistication. These results highlight the

non trivial aspect of scaling up “good properties” encountered at the

nanoscale.

Chapter 5 is devoted to molecular dynamics simulations originating in

a recent proposition of a new desalination device by Karnik and his

co-workers. The separation method is similar to reverse osmosis, but

the semi-permeable membrane is replaced by a gas bubble trapped in

a hydrophobic nanochannel. The dynamics of the process is studied,

along with its dependency against geometrical parameters, showing

good agreement with a Knudsen-diffusion based model. Then, by com-

puting the free energy barrier encountered by an ion approaching and

penetrating the gas phase, we show that ion impermeability is ensured

for channel length above a minimal value, of the order of the channel

radius.
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2.1 Ionic currents in nanopores

Solid-state nanopore membranes are well-known for their powerful

applications in multiple domains, in particular in biology, as low-cost

biosensors [39], but also in engineering as devices for filtering or for the

generation of energy [15, 29, 40]. A biosensor is made of a nanopore

connected to two fluid reservoirs, between which a potential or pressure

drop is imposed. The particles in solution are driven through the

nanopore, where their passage temporarily blocks the flow of ionic

current. It is thus possible to detect biological components, such as

proteins, by measuring the ionic current crossing the nanopore [41–45].

This is expected to achieve fast and low-cost sequencing of DNA [39].

Furthermore, in the context of desalination or energy conversion, multi-

pore membranes also raise great hopes to increase the efficiency of the

process [46, 47]. The passage through the ultrathin nanopores is a key

to their unique properties: it provides high sensitivity to molecular

passage, as well as enabling the building up of huge potential and

chemical gradients across the thin membranes which facilitates the
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passage [48]. In this context, pierced graphene constitutes the ultimate

membrane, yielding great expectations for applications [32, 49–51].

In this thesis, we use the terms “nanopore” and “nanochannel” assigning

them different meanings. Nanochannel is considered as a generic term,

whereas nanopore refers to a nanochannel with a small aspect ratio (i.e.

a channel length comparable to or smaller than the nanochannel lateral

dimensions). This terminology is convenient here, but differs from the

common use of “nanopore” in any situation.

Success in using nanopores lies in a proper understanding of transport

properties of molecules, but also of ionic current signals through the

nanopores, which is commonly used as a probe of macromolecule trans-

port [52]. In the first two chapters of the present thesis, we have a

special interest in electrokinetic transport in nanochannels, with the

prospect of energy harvesting at a macroscopic level. This requires a

deep understanding of ionic current signals at nanochannel (or nanopore)

entrances where interactions take place. To scale up good properties

at the nanometer scale, towards marketable membranes, the effects of

electrostatic interactions between pores on the global conductance must

be understood and mastered.

In this chapter, we report a non-extensive, sub-linear scaling of the

conductance of N pores, due to long-range mutual interaction across an

array of nanopores. We present theoretical, numerical and experimental

results aiming at measuring and predicting this behavior. The results

presented here were published in [53].

In this first section, we review state of the art concerning ionic trans-

port in nanopores. We define the access resistance, which is of major

importance in nanopores (by contrast to long nanochannels) and which

will turn to be modified by the presence of neighboring pores. Then,

we precise how surface conduction intervenes at low salt concentration.
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2.1.1 Inner and access resistances

The ionic resistance of a nanopore containing an ionic solution has two

distinct origines. The first one is the resistance of the solution inside the

channel. In mks units, the inner resistance of a cylindrical pore reads

Rchannel =
1

κb

�

πa2
, (2.1)

with κb the bulk conductivity of the solution, � the pore length and a its

radius. This expression stems directly from the mesoscopic Ohm’s law

�j = κb
−→
E with �j the ionic current and

−→
E the electric field, considering the

solution inside the pore as a uniform conductor. Under this assumption,

Ohm’s law becomes
I

πa2
= κb

ΔV

�
from which Eq.(2.1) is recovered.

Here ΔV is the potential drop in passive sign convention. When several

pores are present in a membrane, each pore presents an inner resistance

expressed as in Eq.(2.1). On the other hand, the second contribution

to the pore resistance is modified by electrostatic interactions between

pore.

The second and main contribution to the nanopore resistance comes from

entrance effects, i.e. the convergence of field lines toward and outward

the pore. As reservoirs on both sides of the pore are usually much bigger

than the pore itself, one can consider that field lines converge from

an hemispheric electrode at infinity toward a disk of radius a located

at the pore entrance (and respectively field lines diverge from a disk

of radius a toward infinity). This situation is depicted on Fig. 2.1-a.

Following Vodyanoy and Bezrukov [54], the so-called access resistance

is counted twice to account to both pore entrance and exit, and added

to the channel inner resistance like resistances in series, see Fig. 2.1-a.

We now turn to the computation of the access resistance for a single

isolated pore.
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Figure 2.1: Electric field lines converging toward a single pore
(a) or 2 pores (b) and the modeling in terms of electric resistance.
Access resistances and channel resistance add up in series, but
access resistance depends on the presence of other pores. Indeed,
electrostatic interactions modify a pore access resistance by deform-
ing converging and diverging field lines. Top images are courtesy of
S. Gravelle.

Hille in 1968 [2], followed by Hall [3], first calculated the access resistance

through a small circular pore in a membrane, by using an analogy

between ion transport and an electrostatic capacitance problem. The

key remark made by Hille and Hall is that the obeyed equations are

identical in both cases: for ion transport, current conservation
−→∇ · �j = 0

and the mesoscopic Ohm’s law result in a Laplace equation for the

electrostatic potential:

−→∇2V = − 1

κb

−→∇ · �j = 0. (2.2)
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In a capacitance problem, the absence of electric charges between the

electrodes also yields
−→∇2V = 0. Boundary conditions are in both

case a given potential on the disk and at infinity. Consequently, the

access electrical resistance for a single pore entrance is related to the

capacitance C between a conducting disk of vanishing thickness, standing

for the nanopore entrance, and a half-spherical electrode at infinity.

This is expressed as

Raccess = ερ/C (2.3)

with ρ = κ−1
b the resistivity of the medium. For a charged conducting

disk of radius a in a half space, we have C = 4εa [55], leading to

Raccess =
1

4κba
(2.4)

(for one side of the pore). Adding this access resistance for the two sides

of the pore to the bulk resistance of a cylindrical conductor, one can

write the total conductance of an isolated pore as

G0
1 = (Rchannel + 2Raccess)

−1 = κb

[
�

πa2
+

1

2a

]−1

(2.5)

where the subscript stands for the number of pores, and the superscript
0 denotes that the pore is isolated. For pores of aspect ratio �/a = 1/2

such as the ones we use in this work, entrance effects are of the same order

of magnitude as channel resistance, yet dominant as Rchannel/2Raccess =

1/π. The shorter and wider the pores, the more access resistance prevails

over channel resistance.

Formula (2.5) works for moderate to highly concentrated solutions of

KCl; at low concentrations, surface conduction effects become dominant

over the bulk conduction, leading to an anomalous saturation of the

conductance [12]. This effect will be briefly exposed in the next section.
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More sophisticated approaches also take into account the concentra-

tion gradients in pore entrances [56], and require solving explicitly the

Poisson-Nernst-Planck equations. However they do not predict apprecia-

ble deviations from Hall’s formula, at least in neutral or weakly charged

membranes [57]. We will see in the next section that this is actually the

case in our work. Finally, geometrical effects could also be accounted

for, in particular by taking into account the hourglass-like shape of some

solid-state nanopores, as shown by Kowalczyk and coworkers [58]. Yet,

as we will describe later in section 2.4.1, we ensured that the 200-nm

radius pores we used had an accurate cylindrical shape.

2.1.2 Surface conduction effects in nanopores

At low salt concentration, solid-state nanopores show an unexpectedly

large ionic conduction. This effect originates in the presence of a non-

neutral diffuse layer close to the membrane surface, which couples

to three-dimensional entrance effects at pore mouths. Note that the

large ionic conduction at low salt concentration is a well known effect

in nanochannels [8, 10, 59], but paradoxically its interpretation for

nanopores is much more delicate as nanopores cannot be reduced to a

one-dimensional view contrary to nanochannels. Here, we present the

main results obtained by C. Lee and coworkers in [12].

Due to adsorption and dissociation of chemical species on the surface,

the membrane surface is electrically charged and surrounded by partially-

hydrated and hydrated counterions which are bound to the surface [60].

This defines the Stern layer, and following Schoch et al. [10] we call

effective surface charge Σ that which remains after the Stern layer

has established. Beyond the Stern layer, in the solution, an excess of

mobile counterions builds up in the so-called diffuse layer, to maintain
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electroneutrality. The surface conductivity κs relationship with effective

surface charge can be estimated as

κs ≈ eμ|Σ|, (2.6)

with e the elementary charge and μ the ions mobility expressed in

m2.C−1.V−1.s−1 (we consider here K+ and Cl− which are supposed to

have the same mobility), see [12] for details. This approximation does

not take into account any electro-osmotic contribution, the importance

of which is under debate for nanopores [61, 62]. On the other hand, the

bulk conductivity of a KCl solution is given by κb = 2e2μρs with ρs the

ionic density in m−3.

The electrical conductance of the diffuse layer is negligible compared to

the bulk conductance for high salt concentration cs, typically

cs > 10−2 mol/L in our work. To describe accurately the prevalence

of bulk or surface conduction over the other, one has to refer to the

Dukhin length lDu,

lDu =
κs
κb

≈ |Σ|/e
2ρs

. (2.7)

At low concentration, lDu overtakes the pore radius a and surface

conduction is predominant. To feed this type of conduction, ions

from outside the pore are driven toward the entrances which results

in anomalous entrance effects. Indeed, surface conduction modifies

electric field lines and current stream lines deep outside the nanopore,

over an extension given by the Dukhin length, see Fig. 2.2-c. As

a consequence, entrance effects are modified by the predominance of

surface over bulk conduction inside the nanopore. Experimentally

speaking, this translates in a plateau in pore conductance at low salt

concentration, in place of a linear decrease proportional to κb, see Fig.

2.2-a.
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Figure 2.2: (a) Conductance of solid-state nanopores of diameterD
and surface charge Σ = 20 mC/m2, from finite-element simulations.
Dashed and solid lines are predictions using Eq.(2.5) and Eq.(2.10)
respectively. (b) Contour lines of the electric potential across a
typical pore (L = D = 100 nm) without surface charge and (c) with
surface charge (Dukhin length lDu ∼ 3D). Images from [12].

The theoretical model proposed by Lee et al. [12] (from which we only

recall the results) to account for this plateau adds a surface component

not only to the inner pore conductance, but also to the access term:

Rchannel =

(
κb
πa2

�
+ κs

2πa

�

)−1

(2.8)

Raccess = (4κba+ 2κs)
−1
. (2.9)

After some straightforward manipulations, this results in

G0
1 = κb

[
�

πa2
1

1 + 2 lDu

a

+
1

2a+ lDu

]−1

. (2.10)

The second term in Eq.(2.10) means that from the outside, the pore has

an effective size aeff = a+ lDu/2. For low salt concentration, lDu > a

and the effective size can be much bigger than the pore radius. This is

clearly seen in Fig. 2.2-c. Moreover, in the infinitely low concentration
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limit, the saturation of the conductance is given by

G0
1(lDu → ∞) = κs

(
2�

πa
+ 1

)−1

(2.11)

which only depends on the aspect ratio �/a, and not explicitly on

the pore diameter. Counterintuitively, small pores and large ones can

conduct as efficiently at low salt concentration.

In this work, we stick to the high-concentration regime where the Dukhin

length is small compared to the pore size. Surface conduction effects

can be neglected, which simplifies the study of electrostatic interactions

that we undertake.

2.1.3 Electrostatic interactions between nanopores

In the following of this chapter, we raise the question of ionic transport

through an array of multiple nanopores. While näıve expectations would

suggest that the total ion conductance GN should scale as the number

N of pores, we report experimental results for arrays with N = 1 . . . 50

pores showing that the conductance per pore GN/N strongly decreases

with the number of pores N , with GN/N → 0 as N → ∞.

This anomalous sublinear scaling of the conductance originates in elec-

trostatic interactions at pore entrances which affect entrance effects.

The modified access resistance translates visually in the modification

of the curvature of streamlines at pore entrances, when a neighboring

pore is present, see Fig. 2.1-b page 29. The purpose of this chapter is

to predict and measure such modified access resistance, and to discuss

its consequences.

The sublinear scaling of the conductance is supported by a scaling

analysis of ion transport, presented in the next section. Then, this
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analysis is successfully compared to numerical and experimental results

in the third and fourth sections. Consequences of this counter-intuitive

result are discussed for ionic - but also diffusive and thermal - transport

across membranes in the final discussion 2.5.

2.2 From 1 to 2, to many pores: a scaling

analysis

We build our approach in the spirit of Hall’s work [3] and generalize

Eq.(2.5) to the case of multiple pores. Following the reasoning exposed

in 2.1.1, the overall access resistance RN,access of one side of the pore

array can be obtained directly from the corresponding capacitance of

N conducting (and electrostatically connected) disks, as

Raccess,N =
1

κb
× ε

CNpores
. (2.12)

In the following sections, we derive the expression of CNpores.

2.2.1 Two pores

Before exploring the general N -pore case, we first consider the 2-pore

geometry. In this case the calculations proceed easily by a simple

electrostatic analogy. The calculation of the 2-disk capacitance separated

by a distance L can be estimated recursively. We fix the potential V0

on the disks and compute their charge. For L → ∞, the charge held

by each pore entrance tends to that of isolated pores, i.e. q = 4εaV0.

For finite L, their charge will depend on the interspacing L in order

to maintain two neighboring conducting disks at the same potential,

due to mutual electrostatic interaction. Corrections will add to the
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charge q, which we write δq(i) for the i-th order correction. We make

the standard simplifying assumption that the effect of a given disk can

be approximated by the effect of a point charge located at its center.

This assumption is expected to hold when L � a (as may be indeed

verified numerically).

In this case, the image charge δq(1) held by a disk at V facing a point

charge q is simply δq(1) = −q a
L [55]. Symmetrically, both disks now

hold q+ δq(1). As δq(1) was the correction accounting for a charge q, we

now need a correction δq(2) to account for an extra charge δq(1), and so

on. Next orders can be calculated along the same method and within

the above approximation, this leads to δq(n) = q × (−a/L)n, so that

the total charge on a single disk is accordingly estimated by summing

up all contributions as Q =
∑

n δq
(n) = q/(1 + a/L). The global access

ionic resistance of the two pores is deduced accordingly

R2,access � 1

4κb a

(
1 +

a

L

)
(2.13)

and the two pores conductance is

G2 = 2κb

[
�

πa2
+

1

2aeff

]−1

(2.14)

where aeff � a/(1 + a/L) has the meaning of an effective electric size of

the pores, modified under their mutual influence.

2.2.2 N pores: general framework

Let’s generalize this result to N pores. In that case, the charge correction

factor may be different for each pore, but we consider only (averaged)

global properties in the present estimates. As above the conductance
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may be written as

GN = Nκb

[
�

πa2
+

1

2aeff

]−1

(2.15)

where the effective electric size of the pore now takes the general ex-

pression

aeff ≡ a× CN pores

NCsingle pore
. (2.16)

Following the capacitance analogy, the effective electric size aeff is de-

fined in terms of the capacitance CN pores of the N pore system.

We are not aware of a general analytical estimate for CN pores and we

therefore proceed along the same lines as for the two pore case above,

with an estimate of the charge carried by each conducting disk (the

pore entrances) in order to keep their potential fixed.

Using the recursive reasoning, the charge perturbations on each pore

{δq1, . . . , δqN} are linearly linked to the bare charge of the pores

{q1, . . . , qN}
δ�q =

(
− a

L

)
×A · �q. (2.17)

The matrix is a function of the geometry of the pore network. For

example for N pores in a line separated by a distance L, the matrix has

the structure

Aij =

⎧⎨
⎩ 0 i = j,

|i− j|−1
i 
= j = 1 . . . N.

(2.18)

The transformation matrix is always centrosymmetric in any geometry,

because Aij = Aji, and in a linear geometry is also a Toeplitz matrix,

which can be diagonalized numerically using fast recursive algorithms.

Now the capacitance CN pores follows. To first order in a/L, each

pore entrance carries a total charge Qi � qi + δqi = qi + (−a/L)Aijqj .

At the zeroth order, the charges qi are fixed by the potential V0, as
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qi = q0 = 4εaV0 ∀i, and the total charge in a N-pores array is

QN pores �
∑
i

qi − a

L
×
∑
i

∑
j

Aijqj

= 4NεaV0

⎛
⎝1− a

L
× 1

N

∑
i,j

Aij

⎞
⎠. (2.19)

Thus we get

CN pores � NCsingle pore ×
(
1− γNa

L

)
(2.20)

with γN ≡ N−1
∑

i

∑
j Aij a global factor accounting for the geometry

of the network.

We finally obtain for the effective electric size of the pores: aeff �
a
(
1− γN

a
L

)
. The previous expression for aeff can be viewed as the first

order expansion of the (physically more relevant) formula

aeff � a

1 + γN
a
L

. (2.21)

While this form involves a number of approximations, we anticipate

from the numerical results below that this is found to agree very well

with the numerical solution. Together with Eq.(2.15), this expression

gives the conductance of the N-pores network.

2.2.3 Scaling relationships

While exact values for the geometric factor γN can be explicitly calcu-

lated for specific geometries, it is possible to obtain scaling relationships

in the limit of a large pore array, N → ∞. We consider specifically two

geometries: a line of pores and 2D compact arrays, for example made

of square or hexagonal lattice of N pores.
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The case of lines is certainly the simplest one. The corresponding

transformation matrix A is given in Eq.(2.18) and γN = 1
N

∑
i

∑
j �=i |i−

j|−1. For large N a continuum approximation can be made and

γN =
1

N

∑
i

∑
j �=i

1

|i− j| �
1

N

∫ ∫ N

|x−y|>1

dx dy
1

|x− y| (2.22)

yielding

γN ≈ logN (2.23)

for the 1D line of pores.

In the case of a 2D compact lattice of N pores, the transformation

matrix A takes the generic form

Aij =

⎧⎨
⎩ 0 i = j,

|ri − rj |−1
i 
= j = 1 . . . N.

(2.24)

with ri the (dimensionless) positions of the pores in units of L, and

γN =
1

N

∑
i

∑
j �=i

1

|ri − rj | (2.25)

To estimate the sum in Eq.(2.25), we proceed using an analogy to

a further electrostatic problem. The sum corresponds indeed to the

electrostatic energy EN of a conductor made of the N pores with unit

charge. In the largeN limit, a continuum approximation can be made, so

that EN =
Q2

N

2CN
, with QN = N the total charge, and CN the capacitance

of the global object (here the N pores). Using standard results [55], CN

scales linearly with the lateral size RN of the compact N pores system,

so that CN ∼ RN ∼ √
N .



40 Chapter 2.

Gathering results, one gets finally

γN ∼ N1/2 (2.26)

for 2D arrays of pores. The scaling is therefore stronger in 2D as

compared to the logarithmic scaling for the 1D line. This is due to the

higher coordination number in 2D.

2.2.4 N-pore conductance

Altogether one therefore predicts for the conductance the following

expression

GN � Nκb

[
l

πa2
+

1

2a

(
1 + γN

a

L

)]−1

(2.27)

with γN ∼ logN for lines of pores, while γN ∼ N1/2 for 2D arrays of

pores. A counter-intuitive outcome of this prediction is that – whatever

the bulk contribution to the conductance, as described by the first term

in the brackets in the right hand side of the previous equation –, the

contribution of entrance effects dominates for sufficiently large N and

GN

N
∝ 1

γN
−−−−→
N→∞

0 (2.28)

Entrance effects lead to a sublinear scaling of the conductance as a

function of the number of pores and the conductance per unit pore

vanishes for an infinite number of pores.

We shall come back on the astonishing consequences of this prediction

in section 2.5.



Ionic conductance of solid-state nanopore networks 41

Figure 2.3: Axisymetric geometry of 3 pores in a membrane used
for the resolution of the Laplace equation. Courtesy of S. Gravelle.

2.3 Numerical validation of the scaling re-

lationships

Before turning to the experimental investigation of this unexpected effect,

we first validate our predictions on the basis of a numerical resolution

of the transport equations using a finite-element method (COMSOL

software). This allows merely to apprehend the approximations behind

the above calculation.

We built up an axisymetric system formed by two reservoirs separated

by a thin non-conducting membrane with one or N pores drilled through

the membrane. We ensured that the size of reservoirs was much larger

than the pore radius and the global pore network to avoid finite-size

effects, see Fig. 2.3. We imposed an electrical potential difference

ΔV between the two sides of the membrane. Then we solved the

Laplace equation for the potential V ,
−→∇2V = 0, using a finite-element

calculation.
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Figure 2.4: Numerical results: inverse conductance for N pores,
GN , normalized by N ×G1, with G1 the conductance of a single
pore, versus the inverse distance L between the pores for various
numbers N of pores: (Left) N pores in a line; (Right) N pores in a
square array. The linear dependence does confirm the prediction in
Eq.(2.27). The slope of the linear dependence allows to extract the
geometric factor γN .

The boundary condition at the interface between the membrane and

the solution is that of a vanishing flux, leading to �n · −→∇V = 0 on the

surfaces. Finally we measured the total ionic current I through the

pores, defined according to the mesoscopic Ohm’s law as

I = κb

∫
S

(−−→∇V ) · −→dS (2.29)

being κb the bulk conductivity and S a cross-section of the system.

Within this numerical setup, we explored both the linear and 2D net-

works (square and hexagonal lattice) for a number of pores varying from

N = 2 up to N = 151 (for the hexagonal arrangement). In Fig.2.4, we

show the conductance across the nanopore network, calculated numeri-

cally for a varying distance L between pores. For the various geometries,

we found that the inverse conductance scales linearly with the inverse

length L−1, in full agreement with our main prediction in Eq.(2.27).



Ionic conductance of solid-state nanopore networks 43

Figure 2.5: Numerical results: Plot of the geometrical factor γN
versus the number of pores N . (Left) N pores in a line: the linear
fit shows that γN ∼ logN in this geometry. (Right) N pores in a
square array (square symbols) and in an hexagonal array (circle
symbols). The dashed line is a powerlaw fit with a 0.6 exponent.

Indeed, from Eq.(2.5) and Eq.(2.27), one expects
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The linear dependencies of the inverse conductance with a/L thereby

confirms our predictions. From the reservoir, the effective electrostatic

diameter of the pore, given in Eq.(2.21), is the size that matters.

From the slope of the lines in the previous plot, one can accordingly

extract the geometric factor γN . This is plotted in Fig. 2.5 for the line

of pores, as well as for the square and hexagonal network of pores.

Altogether these numerical calculations fully confirm the predictions

of the scaling analysis. The geometric factor is found to scale loga-

rithmically in N for the linear network, γN ∼ logN , while it scales

algebraically with the number of pores in the 2D system, γN ∼ Nα,

with a measured exponent α � 0.6 very close to the predicted one (0.5).
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We attribute the slight difference in exponent in edge effects which

should disappear in the very high N regime (which we could not reach

numerically).

We now turn to the experimental counterpart with the aim to explore

the electric conductance across an array of nanopores.

2.4 Experimental results on linear and square

arrays of pores

Experimental measurements were conducted on nanopores. We first

describe the fabrication process of the nanopores, and the preparation

protocol. Then, we relate how the operations are done before presenting

the results for linear and square arrangements of pores.

2.4.1 Fabrication process and setting up of the mea-

surement device

We fabricated multipore membranes from commercial 7.5 mm x 7.5 mm

x 380 μm silicon chips, covered with a 50-nm silicon-nitride (Si3N4)

layer (Silson). A 50 μm square is etched at the center of the chip, to

leave access to the 50-nm thick Si3N4 layer.

The nanometric silicon nitride membrane was drilled by gallium Focused

Ion Beam (FIB) milling. The resulting nanopores were cylindrical, of

radius a ≈ 100 nm. Various FIB scan protocols were tested by R.

Fulcrand in order to obtain straight cylinders [63]. Cross-section images,

obtained with a scanning electron microscope (SEM), are displayed on

Fig. 2.6. These five cylinders were milled using the four available scan
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Figure 2.6: Effect of various FIB scan protocols on pore milling
in SiN thick membrane (1 μm) at 1 pA by using the same ion
dose (1 nC/μm2). Below, different protocols are illustrated: (i)
standard raster scan, (ii) serpentine scan, (iii) line scan and (iv)
double serpentine scan. The beam follows the black and blue lines
first, then the red lines on its way back. Courtesy of R. Fulcrand.

methods of the ion beam on the FIB/SEM used for this work. The figure

demonstrates how the scan method can alter the shape of the cylinder,

even if the same dwell time, probe current and ion dose were used. The

standard scan results in a non-planar floor as the beam always scans in

the same direction (left to right in Fig.(4)-a). The serpentine scan gives

a level floor but results in an increased redeposition on the sidewalls,

resulting in a more conical shape. This effect is further enhanced for

the line scan method whereas the double serpentine scan gives the

best results for this particular material system leading to no significant

“hourglass” shaping of the pores.
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Figure 2.7: (a) Sketch of the system. (b) SEM images of FIB-
milled multipores: pore lines and square arrays.

Using this technique, we fabricated membranes with 1 to 90 drilled

nanopores on a line or in square array, with various distances L between

the pores. The actual distances and diameters were measured post-

fabrication by SEM imaging, with errors of a few nanometers . Figure

2.7-b shows the SEM image of a sample with various nanopore arrays.

Each chip was then inserted in a custom-made electrochemical cell

in polyether ether ketone (PEEK). This polymer is renowned for its

robustness, either under mechanical stress or chemical attacks from both

organic and aqueous environments. The risk of pollution and clogging

of the nanopores was thus reduced.

The cell consists in two reservoirs between which the chip is sandwiched,

the sealing being insured by O-rings. The set up is represented in

Fig. 2.8. The plugs which close the reservoirs have little holes where a

0.8 mm silver wire is inserted. These wires become Ag/AgCl electrodes

after plunging them in bleach (NaClO solution) for 30 minutes. Such

activation was performed about once a week.

Before any chip insertion, both reservoirs as well as the O-rings were

ultrasonically cleaned with deionized water (18.2MΩ.cm, Millipore)
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Figure 2.8: Schematic of the electrochemical cell, from [12]. The
parts in PEEK are represented in orange. The tension generator is
a data acquisition system (DAQ) in output mode. The ammeter
symbol stands for the I/V converter, of which the voltage is recorded
through the DAQ.

and soap (MicroSon, Fisher Scientific) for 15 minutes at 60◦C. Several

rinses were then completed. The purpose of the procedure is to remove

any trace of salt or dust in the cell. The O-rings and the chip had to

be carefully manipulated with Teflon nip, to avoid any scratch which

could entail a leakage.

After the insertion of the chip in the cell, both reservoirs were filled with

a previously degassed KCl solution of concentration cs ranging from

10−4 mol/L to 1 mol/L, made by diluting solid KCl (Acros Organics,

99% purity) into deionized water. The conductivity of the solution was

checked before each experiment with a conductimeter (HI 2550, Hanna

Instruments). Salt concentration was computed from the measured

conductivity considering an average temperature of 22◦C in the room

[64].

At this point, the measurement device is ready to fulfill its role. We

now expose the electric measurement procedure.
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Figure 2.9: Typical current-voltage curves in N nanopores, ob-
tained in KCl solutions at cS = 0.1 mol/L.

2.4.2 Electric measurements

Figure 2.8 contains a schematic of the electrical circuit. Voltage is

imposed on the electrodes via a National Instruments data acquisition

system board. Note that the silver chloride electrodes used here al-

low fast electrode kinetics: the chemical reactions taking place at the

electrodes

AgCl(s) + e− � Ag(s) +Cl−

have a 100% efficiency up to at least several mA of current in our

device. As one of the electrodes is connected in series to a custom-made

I/V converter, the current was also recorded thanks to the acquisition

card, see Fig. 2.8. The conductance of the nanopores is then extracted

from I-V characteristic curves such as the ones displayed on Fig. 2.9.

The whole procedure is monitored through a LabVIEW program. The

resolution with this setup is ± 1 pA.
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The first KCl solution used was a 1 mol/L, then we carefully emptied,

rinsed, and refilled the cell reservoirs with solutions progressively less

concentrated. From the lower salt concentration, we followed a regular

increase of concentration until 1 mol/L. Figure 2.10-a is a plot of the

measured conductance as a function of the salt concentration for a

single nanopore. Below cS ∼ 10−2 mol/L, a slight deviation from the

linear behavior can be noted, in agreement with previously reported

observations (see section 2.1.2).

This saturation is the signature of surface conduction, which takes

precedence over bulk conduction for the Dukhin length overpassing the

pore size. From Fig. 2.10-a, we can estimate the surface conductivity

of a nanopore as κS = 0.4 nS, corresponding to a surface charge Σ =

6 mC/m2. These values are in agreement with previous measurements

in [12] on similar nanopores. For a salt concentration cS = 10−3 mol/L,

the Dukhin length is worth lDu = κs/κb ∼ 40 nm which compares to

the nanopore radius a = 100 nm. This indicates that the typically

nanometric behavior of surface conduction predominance is at stake

indeed.

In the study of electrostatic interactions between pores that we want

to fulfill, we chose to stay in the classic regime of bulk conduction

dominating over surface conduction. In this purpose, we used solutions

from 1 to 10−2 mol/L. In this range of concentration, the simple formula

(2.5) is sufficient to account for the measured conductance of a single

pore. We now turn the experimental results on lines of 3 nanopores,

with various spacings.

2.4.3 3 pores in a line: scope of the interaction

In this section, we explore the case of three pores in a line, which we

compare to the measurements obtained for a single-pore membrane.
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Figure 2.10: (a) Experimental conductance of a single nanopore,
as a function of salt concentration (purple circles). The dotted
line is Eq.(2.5) prediction, from which experimental measurements
depart at low concentration. The green curve is the prediction of
Eq.(2.10) using κs = 0.4 nS. (b) normalized conductance of 1 pore
(purple circles) and 3 pores in line (green squares), spaced with
L = 4a. The naively expected values of 1 and 3 are evidenced with
dotted lines.

The 3-pore conductance was normalized by the single pore value, G3/G
0
1,

using Eq.(2.5) and the measured conductivity of the solution. On Fig.

2.10-b, the normalized conductance of 3 pores spaced with L = 4a

is clearly lower than the naively expected value of 3. This gives an

indicator of the strength and scope of long-range interaction between

pores. Note that there is no dependence of the normalized conductance

with salt concentration in this regime, as expected.

To confirm this trend and rationalize the role of pore spacing, we

report in Fig. 2.11 the conductance of five different 3-pore systems

G3, as a function of the distance L between the pores. This time,

the conductance was normalized by three times its single pore value,

G3/3G
0
1. As the normalized conductance approaches unity when L� a,
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Figure 2.11: Experimental values of the normalized conductance
G3/3G

0
1 of 3-nanopore linear arrays, with G3 measured conductance

of the sample and G0
1 the predicted conductance of a single nanopore,

as a function of the normalized distance L/a. The pore radius is
a = 100 nm. Error bars are obtained from measurements over 5 salt
concentrations in the range 10−2 − 1 mol/L (standard deviation of
G3/κb) and an uncertainty of 10 nm on the distances L and radii a.
The dashed line is the prediction using Eq.(2.27) (with γ3 = 1.07
as obtained from the numerical calculation).

a strong decrease of the multipore conductance, with respect to the sum

of the contributions of individual pores, is observed at small interpore

distance L ≈ a, so that G3 < 3×G0
1.

Furthermore the theoretical prediction in Eq.(2.27) is found the repro-

duce fairly well the experimental results (with γ3 = 1.07 as obtained

from the numerical calculation). We now turn to experiments on mem-

branes where the interpore spacing is fixed: L/a = 4.
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2.4.4 Multipore networks: linear and square geome-

tries

While the above experiment confirms the strong mutual influence of

the nanopores, we now come to our main focus: the dependency of

the conductance with the number of pores N . To this end we have

measured the conductance in linear and square arrays of nanopores,

with a number of pores varying between N = 1 to N ≈ 50 for a given

interpore distance L (L ≈ 4 a). The results are displayed on Fig. 2.12.

The conductance of the multipore system GN , normalized by N times

the expected contribution of an individual pore, is plotted versus the

number of pores N . The panels (a)–(b) of this figure clearly demonstrate

that the normalized conductance decreases by a large factor with the

number of pores N .

As suggested by our prediction in Eq.(2.27), these data are presented

in the panels (a′)–(b′) as NG1/GN versus N to highlight the scaling

behavior of the entrance effects. The results for the line of nanopores,

panel (a′), do exhibit a logN scaling, in full agreement with our predic-

tions above. The 2D square array exhibits a slow algebraic increase of

the entrance effects, as highlighted by the comparison to a N1/2 scaling

in panel (b′), again in agreement with our predictions. Altogether the

experiments fully confirm the sublinear scaling of the conductance due

to entrance effects. They highlight the mutual interaction of electric

transport between the pores, as shown in the deformation of the electric

streamlines, see Fig. 2.1-b.
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Figure 2.12: Experimental results: conductance across N
nanopores f(a) and in a square array (b), as a function of the
number of nanopores N . The conductance is normalized by N
times the value expected for a single isolated nanopore. The dis-
tance between nanopores is fixed L ≈ 4 a (with a ≈ 100 nm the
pore radius). In panels (a′) and (b′), the inverse conductance is
plotted versus the number of pores in order to highlight the scaling
with N . The dashed line highlights the predicted logN behavior
for the linear geometry (panel a′), while it shows a N1/2 scaling for
the square geometry (panel b′). This plot gathers measurements
for salt concentration cs between 10−2 − 100M, as the normalized
conductance is independent of concentration in this regime.
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2.5 Discussion

In conclusion, we experimentally demonstrated and theoretically jus-

tified that the conductance through arrays of nanopores exhibits an

anomalous subadditive dependence of the conductance on the number of

pores. The total ion conductance normalized by the sum of individual

contributions strongly decreases with the number of pores N . A theoret-

ical framework shows that this counter-intuitive behavior originates in

the mutual interactions between the nanopores. The long range nature

of the transport leads to a bending of the field lines at pore entrances,

thereby modifying the apparent cross-section of each pore.

We furthermore proposed a scaling approach showing that the global

entrance effects diverge as N goes to infinity. This leads to a sublinear

dependence of the total conductance versus the number of pores, scaling

as GN ∼ N/ log(N) for an array of N pores in a line, and GN ∼ N1/2 for

a 2D array of pores. An astonishing consequence is that the normalized

conductance GN/N vanishes for an infinite number of pores, GN/N → 0

as N → ∞. We checked this result by finite-element simulation, finding

a good agreement with experimental results.

We quote that our results are valid in the regime where surface conduc-

tion can be neglected compared to bulk conduction inside the pore. This

implicitly assumes moderate to high salt concentration. It corresponds

to a regime where the so-called Dukhin length lDu, defined as the ratio

between surface and bulk conductivity, is smaller than the interpore

distance. It would be highly desirable to extend our predictions to

include the effects of surface conduction.

The consequences of the sublinearity of the conductance with the number

of pores are highly non-trivial. Its effects will be particularly dominant
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for ultrathin membranes, such as graphene pierced by many pores. While

one would naively expect that, for the molecularly thin graphene layer,

a huge electric potential gradient should build up across the membrane.

However, two phenomena reduce the effective potential gradient inside

the molecular pore. First, even for a single pore, entrance effects imply

a strong potential drop outside the pore. Indeed, the shorter the pore,

the more entrance effects dominate over Poiseuille dissipation. Second,

as we just showed, electrostatic interactions increase access resistance,

which means that the potential drop outside the pore is even higher.

Therefore, an imposed potential drop between two electrodes does not

report itself between a pore’s extremities, and the gradient inside a

graphene pore is not as high as we wish. To circumvent access-related

potential drop, one could imagine to graft electrodes on both sides of a

graphene layer itself, but this remains an unexplored situation.

We saw that the anomalous scaling of the conductance originates from

entrance effects. It is thus easily understandable that it will have conse-

quences in transport through pores with small aspect ratio �/a, where

entrance effects are the main source of dissipation. Yet, this anoma-

lous scaling can affect even longer channels, provided the number of

channels is significant. Indeed, as it can be seen from our main predic-

tion in Eq.(2.27), entrance effects always prevail over bulk conductance

through the membrane for sufficiently large N . Typically this occurs

– using Eq.(2.27) – when γN � L · �/a2, with � and a the length and

radius of the pores, and L their interdistance. This condition occurs

above a threshold number of pores, N�. For a 1D line of nanopores,

N� ≈ exp[L · �/a2], while N� ≈ (
L · �/a2)2 for a 2D array. Above N�,

entrance effects start to play a dominant role and the anomalous scaling

for the conductance is in effect, decreasing the conductance with the

number of channels N . For membranes made of channels with large

aspect ratio �/a � 1, N� is accordingly very large and the effect is
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weak. However, for macroscopic membranes, even if the aspect ratio is

large, we can foresee that this phenomenon will take place, considering

the very large number of channels and the very short distance between

them.

Furthermore it is also interesting to note that the theoretical framework

proposed here can be generalized to other transport phenomena involving

a Laplacian type of equation. This is due to the conservation equation

which leads to long-range interaction between the pores. While this

should deserve further systematic investigations, the present results

are expected to generalize to diffusive or heat transport (provided the

membrane is assumed to be thermally insulating). In the context of

reverse osmosis and desalination process, an anomalous scaling with the

number of channels could have a major impact on the efficiency.

As far as hydrodynamic transport is concerned, the Stokes equation

also exhibits a similar Laplacian form (for the velocity potential). An

analogy can be made between the pressure drop and the potential drop

(the driving forces) as well as between the fluid velocity and the current

(the fluxes). The concept of hydrodynamic resistance is thus familiar in

students textbook. Nevertheless, Ohm’s law (so as Fick’s and Fourier’s

laws) provides a relationship of proportionality between the driving

force and the flux which has no equivalent in hydrodynamic transport.

Therefore the approach we developed in this chapter cannot be applied

directly to hydrodynamic interactions, although they do exist and have

appreciable (but weaker) effects. This will be the purpose of the second

chapter of this thesis.

The case of cross-transport phenomena is also of interest and may well

be affected by a similar anomalous scaling. For example, electro-osmosis,

which is a solvent flow driven by the charged diffuse layer motion under

an electric field, originates in the potential gradient inside the channel.

If this potential gradient is reduced because of the anomalous scaling
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of entrance effects, electro-osmosis is likely to be affected. Due to

Onsager symmetry, the same holds for the streaming current, which

is the electric current induced by hydrodynamic flow under a pressure

drop. This will be tackled in the discussion of the next chapter. Note

that electro-osmosis and streaming currents are generally neglected in

nanopores (as in our case), but come into play for longer channels. Yet

we saw that for N channels with N > N�, the anomalous scaling of

entrance effects has indeed an influence, and can thus possibly lead to

modifications for cross-transport phenomena.

In the context of energy harvesting, streaming currents were considered

as an interesting new route to produce electric current Istream from

pressure gradients [65]. In the discussion of the next chapter, we will

give the scalings concerning the maximum power produced and the

efficiency of the energetic conversion.

Altogether, electrical entrance effects across membranes exhibit subtle

and counter-intuitive features, which could have significant repercussion

in various fields.
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3.1 Flows in nanochannels

The development of new nanofabrication tools has allowed the design

of controlled nanostructured materials [39], and has lead to a greater

understanding of such systems. The living world features many nano-

metric systems, for example aquaporins and ionic pumps, which have

recently benefited from thorough nanofluidic investigation [66]. The

nanotechnological breakthrough also permitted to unveil previously

undetected behaviors, such as the great slippage experienced by water

in carbon nanotubes [67–69]. Numerous applications taking advantage

of nanometric good properties have been imagined, especially in the

fields of water-filtration, desalination or energy conversion [29, 70, 71].

For example, in desalination by reverse osmosis, a flow of pure water is

driven through subnanometric pores by an imposed pressure drop [30].

Also, streaming currents have been considered as an alternative route

to produce electric energy from hydraulic energy [16]. This process uses

the fact that ionic currents can be produced by an applied pressure

drop, which set into motion the charged diffuse layer in the fluid, close
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to a surface. Such conversion can be efficient only at the nano scale,

where surface effects become of the same order of magnitude as bulk

effects.

The passage from one nanochannel to a macroscopic marketable mem-

brane is not trivial, as parallelizing thousands of nanochannels does not

necessary lead to a proportional increase in the quantity desired. Thus

there is a strong need for predicting tools, to achieve the scaling up

towards efficient devices. In this sense, we saw in the previous chapter

that long-range interactions at pore entrances lead to a sub-additive

conductance of an array of nanopore. Yet energy conversion processes

involve electric and fluidic transport, which may not behave alike. In

this chapter, we tackle the scaling of fluidic transport, investigating the

stream-flow response of parallel pores to an applied pressure drop. Re-

cently, Stone and coworkers proposed a theoretical first order approach

to account for permeability corrections arising in multipore membranes,

compared to a single pore situation [72]. We follow the same aim of

predictability for an efficient scaling-up of nanofluidic properties, and

present here an experimental approach leading to more complete rules

concerning pore size and arrangement.

To avoid energetic loss and maximize pressure or potential gradients,

the thickness of nanoporous membranes is reduced at its maximum. The

use of graphen is even envisioned [32]. The hydrodynamic permeability

of such systems is therefore mainly governed by entrance effects [4],

which will be presented in the present section after a brief history of

physics of fluid flows. One objective of this study is to understand how

hydrodynamic entrance effects – and thus the global permeability – are

affected by hydrodynamic interactions at pore entrances. We will present

existing results on this subject, before turning to our choice to perform

macroscopic experiments of water drainage which will be justified. This

first section will end by the remark that macroscopic drainings can
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reach regimes where the flow departs from a purely creeping behavior.

Such small inertial effects could take place in the first stages of water

filtration, with pore sizes of the order of 0.1 mm. We pursue the study

of hydrodynamic interactions in this regime.

3.1.1 A bit of History

Fluid mechanics is built on many contributions from different ages. The

oldest ones date from Greek Antiquity, when Archimedes (c. 287 BC

– c. 212 BC) established that the upward buoyant force exerted on

an immersed body is equal to the weight of the displaced fluid [73].

After many centuries of interruption (at least, in Christian Europe),

the study of fluids resumes at the Renaissance with Leonardo da Vinci

(1452-1519). He described various types of flows (jets, swirls, surface

waves) and established the principle of mass conservation, following

Empedocles and Epicurus ideas.

The mathematisation of hydrodynamics follows closely the development

of mechanics initiated by Galileo and Newton. Bernouilli studied on

perfect (i.e. non viscous) fluids, preceding d’Alembert and Euler who set

the basis of fluid dynamics. D’Alembert notably introduced the notions

of velocity field and partial derivative [74]. Having read d’Alembert’s

work, in 1755 Euler established the partial derivative equations describ-

ing incompressible perfect fluids [75]. However, a body immersed in

such a perfect fluid would be affected by no resistance, which clearly is

not the case in usual fluids. This is known as the d’Alembert paradox,

and was solved by the addition of a viscous term in Euler equations, by

Navier in 1820 [76] followed by Stokes in 1845 [77]. The Navier-Stokes

equations, describing newtonian fluids in incompressible flow, read

μ

(
∂�v

∂t
+ (�v · −→∇)�v

)
= −�∇p+ η� �v,

−→∇ · �v = 0. (3.1)
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with μ the fluid density, p the pressure field and η the fluid dynamic

viscosity. The first equation expresses the conservation of momentum,

while the second one (also called continuity equation) characterizes an

incompressible flow, which means that its density stays constant during

the movement. The viscous term η� �v is a macroscopic formulation of

the molecular level friction between fluid particles, and between particles

and the fluid boundaries.

We consider here stationary flow, hence
∂�v

∂t
= 0. In nanofluidics, inertial

effects are overwhelmed by viscous forces. This is quantified by the

Reynolds number Re, which we define as

Re =
μLv

η
∼ ||(�v · �∇)�v||

||η� �v|| � 1 (3.2)

where L is a characteristic length scale of the flow, usually the channel

radius a. This scaling comes from the low values of the system size

and flow velocity. In this case, the first Navier-Stokes equation can be

simplified to the Stokes equation

−→
0 = −−→∇P + η� �v. (3.3)

The most famous use of the Stokes equation is the Hagen-Poiseuille

flow, describing a pressure-driven uniaxial flow in a cylindrical pipe.

With the assumption of no slip boundary conditions (i.e. at the flu-

id/solid interface v(r = a) = 0), the velocity profile for such a flow

can be easily inferred from the Stokes equation: v(r) =
−ΔP
4η�

(a2 − r2).

ΔP = P (z = �)− P (z = 0) is the pressure drop between the pipe ends,

� the pipe length, a the pipe radius and r the radial coordinate (see

Fig. 3.1-a). We now come to the concept of hydrodynamic resistance

R (same notation than the electric resistance), which is central in this

thesis. The hydrodynamic resistance R is defined as the absolute value
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Figure 3.1: (a) Velocity profile of a Hagen-Poiseuille flow with no-
slip boundary conditions. (b) Idem with slippage at the fluid-wall

interface. b is the slip length, defined as b = vt/

∣∣∣∣
(
∂v

∂r

)
r=a

∣∣∣∣ .

of the ratio of the pressure drop ΔP to the flow Q =
∫∫

�v · −→dS. In the

case of a Hagen-Poiseuille flow, R can be expressed as

R =

∣∣∣∣ΔPQ
∣∣∣∣ = 8η�

πa4
. (3.4)

Poiseuille flows are used to model flows inside nanochannels or nanopores,

but it is in fact valid for a wide range of Reynolds numbers. The hydro-

dynamic resistance of a cylindrical flow can be described by Poiseuille

resistance for Re � 103, which will be true in all this chapter.

In the systems we consider, Poiseuille resistance is not the only cause of

dissipation in the fluid. Another cause of contribution comes from the

convergence of the flow towards pores entrances, and its divergence after

its passage inside the pores. These contributions are called entrance

effects and are presented in the next section.
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Figure 3.2: Snapshots of finite-element simulations of a bidimen-
sional viscous flows converging toward two slits. The boundary
condition is a perfect slip at the walls, which insures no Poiseuille
dissipation. Streamlines are represented by black lines. The dissi-
pated power density field is mapped with colors, ranging from low
dissipation (blue) to high dissipation (red). The dissipated power
density was computed with formula from [78]. (a) The inter-slit
distance L is close to the slit width 2a. (b) The slits are spaced
with several times their width. Image courtesy of S. Gravelle.

3.1.2 Hydrodynamic entrance effects

As can be seen in Fig. 3.2, viscous flows dissipate energy when stream-

lines change in direction. This is the case when a fluid flows from a

wide reservoir into a narrower one, as streamlines converge to enter the

narrow part, and then diverge when returning in a larger reservoir. To

these so-called entrance effects is associated an access resistance

accounting for the energy dissipation. The sharper this change in direc-

tion is, the more energy dissipation occurs. This acknowledgment led

Gravelle et al. to the conclusion that the hourglass shape of nanopores

allowed a minimized access resistance compared to cylindrical pores

[79]. This is true even down to single file transport, where continuum

hydrodynamics is expected to fail [8, 79].
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The first study of the resistance associated with the presence of an

aperture dates back to 1890, conducted by Couette [80]. One year later,

Sampson established the exact solution of a viscous flow through an

infinitely thin circular aperture in an infinite plane [4]. The access

resistance R0
acc (the superscript

0 means that this value is for an isolated

pore) is expressed as

R0
acc = 2× 3η

2a3
=

3η

a3
, (3.5)

where the factor 2 accounts for both accesses: the entrance and exit

of the pore. In 1962, Weissberg proved the superposition of access

and Poiseuille resistances to be a very good estimate of the total hy-

drodynamic resistance exerted on a fluid, flowing through an aperture

in a membrane of finite width [81]. Confirmed by Dagan et al., the

Weissberg-Sampson-Poiseuille approximation departs by less than 1%

from the exact resistance [82]. In the following, Poiseuille resistance will

be written Rin, the subscript in referring to the inner part of the cylinder

causing the dissipation. The global hydrodynamic resistance will be

written R. Its inverse, called the permeability, will be K: K = 1/R.

According to the Weissberg-Sampson-Poiseuille approximation, the hy-

drodynamic resistance R0
1 (the subscript denotes the number of pores)

of one circular pore thus writes

R0
1 =

3η

a3
+

8η�

πa4
, (3.6)

as if Sampson resistance and Poiseuille resistance were in series.

Entrance effects are very important in nanofluidics, especially in filtra-

tion or energy-conversion devices where the length of fluidic channels

tends to be reduced. For example, in forward-osmosis, consisting in

diluting a brine, the osmotic pressure that drives the flow is proportional

to the concentration gradient of chemical species to be diluted. The
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narrower the channels in the semi-permeable membrane, the higher the

concentration gradients, which optimizes the dilution process. When

the lateral dimension a of the channel is equivalent to or smaller than

its length �, the nanopore limit is reached. In that case, Racc/Rin ∼ a

�
(even in a non-cylindrical geometry), which implies that transport prop-

erties are governed by entrance effects.

In fact, entrance effects can be the main source of dissipation even

in long channels, if the slippage between a fluid and its boundary is

important. Indeed, in case of slippery boundary conditions, Poiseuille

resistance can be greatly reduced. The boundary condition no longer

writes v(r = a) = 0 but v(r = a) = vt, which has a finite value. It was

an idea of Navier to introduce the slip length b, geometrically defined

in Fig. 3.1-b by

vt = b

∣∣∣∣
(
∂v

∂r

)
r=a

∣∣∣∣ . (3.7)

The slip length can also be interpreted in terms of liquid-solid friction

at the interface [8]. The friction force Ff at the liquid-solid interface is

linked to the slip velocity vt according to

Ff = −Afvt (3.8)

with A the lateral area and f the solid-liquid friction coefficient. By

definition, the slip length is b = η/f , with η the bulk viscosity. Large

slip lengths are associated with low liquid–solid friction. Slip length of

the order of 10-100 nm are typically measured on hydrophobic surfaces

[1, 83]. The Poiseuille resistance becomes, in the presence of fluid-wall

slippage,

Rin =
8η�

πa4

(
1 +

8b

a

)−1

. (3.9)

The second term of this expression denotes a major diminution of the

resistance, when the channel size a compares to the slip length. For
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perfect slip, b would be infinite and Poiseuille resistance Rin −→ 0. One

of the most striking example of the reduction of Poiseuille resistance

thanks to slippage, is flows in carbon nanotubes. Majumder et al. [67]

and Holt et al. [68] were the first to publish experimental results of

flows through carbon nanotube membranes. They reported greatly

enhanced flows compared to classical predictions. In terms of slippage,

it would correspond to slip length close to 1 micron. These results are

not well understood, as molecular dynamics simulations predict 1 to

2 orders of magnitude lower permeabilities in similar systems [84–86].

Moreover, Sisan and Lichter showed that some of the experimental

permeabilities reported by Holt et al. and Majumder et al. were even

higher than what entrance effects allows, thus unphysical [87]. Indeed,

even in case of infinitely long channels with great fluid/wall slippage,

Poiseuille resistance may be vanishing but flow rates are still limited by

entrance effects [88].

We now focus on corrections to entrance effects, due to hydrodynamic

interactions at pore entrances. In the next paragraphs, we present a

quick review of previous work on hydrodynamic interactions.

3.1.3 Influence of hydrodynamic interactions

Industrial applications such as water-filtration, desalination or energy

conversion always involve membranes with a great number of pores

or channels. We now address the prediction of the flow through such

membranes, as the extrapolation from a single pore to a macroscopic

membrane is not trivial. Naively, one would expect that the total

hydrodynamic permeability of N pores KN increases linearly with N .

Yet we saw in the previous chapter that the electrical conductance

exhibited a complex scaling with N , from which the hydrodynamic

permeability cannot be deduced. For now, we present the physical
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phenomenon occurring when pores are brought closer, and theoretical

calculations from the literature.

We first note that Poiseuille flows inside of parallel pores are independent.

If there were no entrance effects, Poiseuille resistances of neighboring

pores could be simply added in parallel. But as can be seen in Fig.

3.2 page 65, when 2 parallel 2D slits are very close from each other,

the access dissipation is reduced compared to when they are far apart.

This would also hold for 3D cylindrical pores. “Very close” means that

the interslit (or interpore) distance L is short compared to the typical

length scale of the problem, which is the slit width here (or the pore

radius for cylindrical pores), as in Fig. 3.2-a. On the contrary, “far

apart” means that the interslit distance is large compared to the slit

width, as in Fig. 3.2-b.

Another way to express the reduction of dissipation is to say that for

an applied pressure drop between two reservoirs ΔP , the flux driven

through the pores will surpass the expectations based on Sampson’s

classical results. The flux is enhanced because the effective pressure drop

between pore entrances is higher than ΔP , which can be understood

with only two pores and simple arguments, inspired by Jensen et al. [72].

We use a point source flow as a first-order approximation of Sampson

flow through a pore of zero thickness and radius a. This approximation

holds far from the pore. We consider a point source flow in a half

space z > 0, the source O being located in z = 0, see Fig. 3.3-a.

We use spherical coordinates, with r the distance to the point source,

θ ∈ [0;π/2] the polar angle (also called colatitude), and ϕ ∈ [0; 2π]

the azimutal angle. The velocity field is purely radial and is given by

the flux conservation, Q(r) =
∫∫

�v · −→dS(r) = Q whatever the integration
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Figure 3.3: (a) System of coordinates used to compute the velocity
and pressure fields from a point source located in O. (b) x = 0
plane with two examples of integration surface S(r1) and S(r2).

hemisphere S(r) centered in O, see Fig. 3.3-b. One gets

vr(r, θ) =
3Q

2π

cos2θ

r2
. (3.10)

The Stokes equation then yields

P (r, θ) =
ηQ

πr3
(
3 cos2θ − 1

)
+ P∞ (3.11)

As this expression is a first-order approximation of the Sampson’s pres-

sure field, we can use the result from Sampson’s work: P∞ = ΔP/2 = −3ηQ

2a3
.

Note that ΔP is negative, to drive the flux toward positive z. Now, we

consider a point N located in z = 0+ (i.e. θ = π/2−) at a distance L
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from the source. The pressure field in N writes

P (N) = P (r = L, θ = π/2−) = − ηQ

πL3
− 3ηQ

2a3
(3.12)

= −3ηQ

a3

(
1

2
+

1

3π

( a
L

)3)
(3.13)

which is more negative that ΔP/2. There is an extra depression in

z = 0+, caused by the presence of a pore in 0. A similar reasoning on

the half-space z < 0 (θ ∈ [π/2;π] ) with a point sink in O and a point

N ′ located in z = 0− (i.e. θ = π/2+) at the same distance L from O

would lead to

P (N ′) = P (r = L, θ = π/2+) = +
3ηQ

a3

(
1

2
+

1

3π

( a
L

)3)
, (3.14)

showing an extra pressure of the same magnitude than the depression

calculated in z = 0+. Finally, the pressure drop between N and N ′ is

P (N)− P (N ′) = −3ηQ

a3

(
1 +

2

3π

( a
L

)3)
= ΔP

(
1 +

2

3π

( a
L

)3)
(3.15)

where ΔP is the required pressure drop to let a flow Q pass through an

isolated pore. Thus, if an aperture were to be drilled in N , the pressure

drop would be higher than ΔP , and consequently the flux would be

enhanced compared to a single pore situation.

Now, suppose we want to transport the flux Q through one pore. The

required pressure drop in the presence of 2 pores ΔP ′ is reduced from

the classical ΔP = 3ηQ/a3 to

ΔP ′ = ΔP/

(
1 +

2

3π

( a
L

)3)
≈ ΔP

(
1− 2

3π

( a
L

)3)
. (3.16)
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Accordingly, the access resistance of a pore within the 2-pore case Racc,2

decreases compared to the single pore case:

Racc,2 = R0
acc

(
1− 2

3π

( a
L

)3)
. (3.17)

The influence of hydrodynamic interactions on fluid flow was first re-

ported in 1958 by Hasimoto, who studied flows through an array of

parallel slits [89]. His work was extended by Tio and Sadhal [90] and

Wang [91] who considered interactions in infinite regular arrays of cir-

cular and rectangular pores. In this thesis, we rely on the theoretical

results of Tio and Sadhal. They analytically solved the Stokes and

continuity equations in a half-space z > 0, with boundary conditions

reflecting the presence of apertures in the z = 0 plane (see Fig. 3.3 for

the notations). Then, they explicitely expressed the flux rate through

one aperture of zero thickness, as a power series of the ratio a/L, with a

the pore radius and L the interpore distance. Each term of the series is

a sum over all the other pores, as they all contribute to the enhancement

of the flux. According to Tio and Sadhal’s results, one can write the

access resistance of a pore of radius a, labeled i, among other pores

labeled j, as

Ri
acc =

3η

a3
×
⎧⎨
⎩1−

∑
j,j �=i

[
2

3π

(
a

Lj

)3

+
6

5π

(
a

Lj

)5

+

18

7π

(
a

Lj

)7

+
56

9π

(
a

Lj

)9

+ h.o.t.

]}
(3.18)

where Lj is the distance between the center of the pore considered i, and

the center of the pore j, and h.o.t. stands for higher order terms. Note

that our simplistic approach above gave the right first order correction,

in the two-pore case.
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We suppose that the pore i is at the origin O of the coordinate system.

We get

Ri
acc = R0

acc

(
1− λi

)
(3.19)

with

λi =
2

3π

( a
L

)3 ∑
j,j �=0

(
1

|rj |
)3

+O(
( a
L

)5
) (3.20)

with rj the dimensionless positions of the pores in units of L.∑
j,j �=0

(
1

|rj |
)3

always converges to a finite value, ≈ 11 for a number

of pores N tending to infinity on an hexagonal array. The same applies

for the higher order terms within λi. This is in strong constrast with

electrostatic interactions, which are characterized by (on average for

one pore)

Racc = R0
acc(1− γN

a

L
) (3.21)

with

γN =
1

N

∑
i

∑
j,j �=0

(
1

|rj − ri|
)

(3.22)

which diverges with increasing N , scaling like N1/2 for a 2D array of

pores. Three consequences can be drawn from these scalings.

• First, contrary to the electrostatic interactions which reduce the

ionic current, hydrodynamic interactions enhance the flow through

nanopores, for a same pressure drop.

• Second, the hydrodynamic permeability of an array of pores is ex-

tensive with the number of pores, with only a positive correction.

This is in strong contrast with the ionic conductance which scales

sublinearly with N . Thus, while we focused on the scaling of the

ionic conductance, we follow here a different approach and aim at

testing the quantitative agreement between experiments and theory

for the hydrodynamic permeability.
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• Last, the scope and the strength of hydrodynamic interactions are

much lower than those of electrostatic interactions. The (a/L)3 term

in λi is worth 0.3 for an infinite number of pores brought in contact,

whereas for electrostatic interactions γN diverges with increasing N .

The normalized permeability of an array of pores is thus expected to

increase, yet slightly, when pores are brought closer, or when pores are

added.

We now come to two final remarks. First, we emphasize that using

Eq. (3.18) requires to differentiate each pore access resistance Ri
acc. On

the contrary, in Chapter 1, we bypassed such individual counting by

considering global quantities on the whole array of pores (global charge

and capacitance). This resulted in an access resistance averaged over all

the pores. We are not aware of such a trick to compute hydrodynamic

interactions, and, what is more, hydrodynamic interaction strength is

much weaker than electrostatic one so hydrodynamic permeabilities are

expected to vary only slightly with the different parameters. Thus, to

have a chance to get quantitative agreement between experiments and

theory, access resistances have to be computed precisely. We thus chose

to differentiate each pore contribution and stuck to Tio and Sadhal’s

revisited formula (3.18).

Second, contrary to Stone and co-workers [72] who only kept the (a/L)3

term in Eq. (3.18), we consider all the 4 terms calculated by Tio and

Sadhal. The first alone term would have been satisfactory if it had lead

to a significant variation of the access resistance, by say an order of

magnitude. Such is not the case, as all terms represent corrections to

the single pore case. To get a good quantitative agreement between

experiments and theory, we must operate with the best precision, that

is why we use the – relatively lengthy – formula (3.18).
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To our knowledge, the experimental study of laminar flow in interacting

pores has never been fulfilled. As we just mentioned, the increase in

permeability with the number of pores is quite slight, which requires

to operate with good precision. We experimentally verified formula

3.18 on gravity drainings through macroscopic perforated membranes.

In the next section, we shall see why this verification also accounts

for nanosystems, as the effects or hydrodynamic interactions are not

size-dependent.

3.1.4 Why choosing a macroscopic scale is valid

To have a flow dominated by entrance effects, a sufficient condition

is that the ratio of the pore radius to the pore width exceeds unity:

a/� > 1. As for the modification of access resistance caused by hydro-

dynamic interactions, it is significant as soon as a/L ∼ 1, where L is

the next-neighbor distance. Thus, nothing requires nanometric pores

to study hydrodynamic interactions, one should focus on the ratios

above mentioned. As performing experiments at the nanoscale is still

challenging, especially the measure of flux rates [1], we built a corner

table experiment with millimetric pore membranes. The only thing one

must beware of is the validity of Stokes equation, which depends on the

value of the Reynolds number defined in Eq. (3.2). Considering the

pore radius a as the characteristic length, the Reynolds number Re is

given by

Re =
av

ν
, (3.23)

with v the average flow velocity inside the pores and ν the kinematic

viscosity of the oil. In the experiments we present in section 3.3,

Reynolds number is below 0.03, thanks to the use of highly viscous

silicon oil. We used the oils M5.000 ( ν = η/μ ∼ 5.000 mm2/s which is

5.000 times more viscous than water) and M10.000 (10.000 times more
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viscous) from Carl Roth. Thus inertial effects are negligible compared

to viscous effects, and the Stokes equation is valid indeed.

3.1.5 Bonus for non-nano pores: influence of inertia

In nanosytems, the flow is laminar by nature thanks to the dimensions

of the systems. With millimetric pores, it is possible to access to higher

Reynolds number. By decreasing the viscosity of the silicon oil, we

reached Reynolds number as high as 60. Such values of Re can be

encountered in many industrial situations, for example in agribusiness

for fluid filtration (milk, juice...). While we were working on our first

experiments, Jensen et al. [72] proposed a rationalization of the hydro-

dynamic resistance dependence with the Reynolds number, accounting

for small inertial effects. They analysed the only experimental data

available, dating back to 1921 (by Bond [92]) and 1930 (by Johansen

[93]) and proposed from dimensional analysis that the access resistance

follows

R0
acc =

η

a3

(
3 +

Re

π

)
, (3.24)

which reflects the experimentally noticed rise of access resistance withRe.

However, experimental data show a slight deviation from Eq. 3.24, as

the access resistance only departs from Sampson formula R0
acc = 3η/a3

from a threshold, called Rt
e. Rather, the access resistance seems to

follow the empirical formula

R0
acc =

η

a3
(3 + f(Re)) , (3.25)

with

f(Re) =

⎧⎨
⎩

0 if Re < Rt
e

Re −Rt
e

π
if Re > Rt

e.
(3.26)
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The value of Rt
e is found to be 4 in Johansen work, and around 6 in

Bond work. We led experimental investigations to check formulas 3.25

and 3.26, and see how they are affected by the presence of hydrodynamic

interactions, which, to our knowledge, has never been studied.

In the next section, we will present the experimental setup used to

measure the hydrodynamic resistance of regular arrays of pores. Then,

we will present our results for creeping flows (experiments where Re <

0.03) and laminar flows with correction inertial effects (Re < 60) in

sections 3.3 and 3.4 respectively.

3.2 Experimental setup

3.2.1 Design of multipore network membranes

For this study, we used 19 different membranes with 3 to 127 circular

pores, most often disposed in a regular hexagonal arrangement, see Fig.

3.4. Two membranes presented a different geometry: 7 pores in line or

37 pores on a circle (supposed to approximate closely the behavior of

37 pores in line). These membranes were 3D printed with the rigid and

opaque photopolymer VeroWhitePlus. Their radius is about 5 cm and

their thickness is � =500 μm, enough to ensure their indeformability

under a flow, even though membranes could be slightly bent by hand.

The pore radii were varied from 1.25 mm to 4 mm so that a/� > 1 and

the flow is indeed governed by entrance effects. The smallest interpore

distance accessible is 2a+500 μm, so the maximal value of a/L is 0.47,

close enough to the higher limit of 0.50 where pores are brought in

contact.

The experiments we perform require a thorough control of the pore

size, because hydrodynamic resistance strongly depends on the pore
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Figure 3.4: Picture of one of the 3D-printed membranes, with an
hexagonal array of 127 pores of radius a = 2 mm

radius, as 1/a3 for flows governed by entrance effects. Moreover, hy-

drodynamic interactions depend mainly on (a/L)3 (with L the next

neighbor distance). Pore size is thus the most important parameter in

this study. To control the pore shape, we scanned the membranes with

a high resolution (typically 5.000 pixels per inch). We found a good

circularity and reproducibility of the pores. We noticed that the two

sides of the pores were not exactly equivalent, see Fig. 3.5. This is due

to the process of fabrication, during which liquid polymer is deposited

layer by layer. The first layer goes on a substrate that prevents the

polymer from creeping and imparts its roughness to the polymer, once

dried. As for the last layer, only the previous layers hold it during the

few seconds it takes to dry. This last layer thus forms a smooth side, and

the material around the pores tends to retract a bit, forming a flared

aperture with a small bump on top, see Fig. 3.5-b. The slightly conical

shape of the pores was further confirmed by mechanical profilometry,

see Fig. 3.6.
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Figure 3.5: Scans of the central pore in a 7-pore membrane, of
radius 3 mm. Black lines are spaced with 1 mm. (a) Rough side
and (b) smooth side of the membrane. The white circle visible
above the pore is the little bump of polypropylene (see text).

From images similar as Fig. 3.5, we extracted the “rough side” radius

values which were always roughly 130 μm less than the nominal radius.

On the contrary the bump radius was about 150 μm more than the

nominal radius. We have a precision of 30 to 50 μm on these values

depending on the membranes, which is better than the profilometry

resolution. We started by analysing the data taking into account three

different local radii: the rough side one and the smooth side one for the

access resistance, and an average between them for Poiseuille resistance.

But we saw no difference compared to the analysis with only an average

value, equal to or very close to the nominal value. We thus kept the

simpliest analysis with only one radius value, with an uncertainty of 30

or 50 μm.

We now turn to the measurement of the oil viscosity.
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Figure 3.6: Mechanical profilometry of a nominally 2-mm radius
pore. z is the pore axis and x a transverse axis, along which the
needle has a constant transverse velocity. Initially the needle is
brought in contact with the smooth side of the membrane. For
0 < x < 2 mm the needle is slowly approaching the pore. Then it
feels the bump and the flared pore aperture. It enters the pore and
bounces off the support in z = −500 μm. Then it exits the pore
and jumps again the bump. The local radii given here are mere
indications.

3.2.2 Measure of the oil viscosity

Silicon oil viscosity sharply depends on temperature. As the data

furnished by the producer were not satisfactory, we measured the oil

viscosities with a Ubbelhode capillary viscosimeter [94]. As capillary

viscosimeters should be used in the laminar regime, the choice of the

capillary radius has to be adapted to the fluid viscosity. We thus used

one viscosimeter for kinematic velocities between 1000 and 10000 mm2/s,

and a different one for ν =100 mm2/s.

These viscosities were measured at two different temperatures, at the two
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extremes of the temperature range of the experimental campaigns. The

highest temperature was around 28◦C by a hot day in the experiment

room, and the lowest around 20◦C in an air conditioned room. We

then used a linear adjustment between the 2 measured values. The

fluid temperature was recorded during each experiment, which will be

precised below along with the whole experimental procedure.

3.2.3 Experimental protocol

To study the influence of hydrodynamic interactions on flow, we recorded

the gravity drainage of a 4 cm radius cylinder, under which we had

glued one of the membranes described in 3.2.1. At the beginning, we fill

a wide reservoir with 5 cm of silicon oil. We then place the cylinder with

the glued membrane above the reservoir, such as the membrane is just

immersed in the oil (see Fig. 3.7). The cylinder is in turn filled with

silicon oil and we record its emptying with either a low-speed camera

(Marlin, Allied Vision) or a high-speed camera (Phantom), depending

on the flow rate. We also recorded the rise of the oil level in the reservoir.

We used frame rates between 0.1 and 120 frames per second. A ruler

served as a referral for pixels-meters conversions. The temperature was

monitored during the experiment with a digital thermometer (Roth),

glued on the side of the cylinder such as the probe is at the pores level.

A sketch of the setup can be found in Fig. 3.8-a, and a example of

image recording is on Fig. 3.8-b.

In the following, zB and zA refer to the vertical position of the bottom

of the meniscus in the cylinder, and of the top of the meniscus in the

reservoir respectively (see Fig. 3.8-a). For low-speed flow, the interface

at zA could reasonably be considered as flat so we used the zA(t) data.

In the majority of cases, the oil surface in the reservoir was not flat,

so we discarded the reservoir filling and focused on the cylinder draining.
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Figure 3.7: Photograph of the setup
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Figure 3.8: (a) Sketch of the setup with the position of the front
in the cylinder zB and in the reservoir zA. At the air-oil interface,
PB = PA = Patmo. Q is the flux rate through the pores. (b)
Example of a recorded image, focused on the upper part of the
cylinder.

• Computation of R, first method

From the recording of the position of the meniscus zB(t) (and also zA(t)

for low-speed flow), the hydrodynamic resistance R can be computed as

R =
ΔP

Q
(3.27)

with ΔP the hydrostatic pressure ΔP = μg(zB − zA) and Q the flux

rate given by

Q = SAżA = −SB żB , (3.28)
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where żA/B =
dzA/B

dt
, SB is the cylinder section and SA the reservoir

section minus the cylinder section. From the flux rate conservation in

Eq. 3.28 one gets

zA(t) = −SB

SA
zB(t) , zB(t) = −SA

SB
zA(t) (3.29)

with the integration constant z∞B = z∞A = 0. We thus have

R = μg

(
1

SB
+

1

SA

)
zB
−żB = μg

(
1

SB
+

1

SA

) −zA
żA

. (3.30)

zB was extracted with ImageJ software from the recordings. To com-

pute żB, we linearized portions of 60 points of the zB(t) curve (each

curve zB(t) had around 500 points), and attributed their slope to żB

(see Fig. 3.9).

• Computation of R, second method

There is another way to compute R for low Reynolds numbers. As we

mentioned in Eq. 3.25 and 3.26, for Re < Rt
e ∼ 4, the hydrodynamic

resistance is constant during the flow. In that case, integrating Eq. 3.30

yields

zA/B(t) = z0A/B exp

(
−μg
R

(
1

SB
+

1

SA

)
t

)
. (3.31)

Eq. 3.31 provides the easiest way to determine R. Using Matlab, we

fitted the curves zB(t) (and zA(t) when usable) by an exponential with

3 free parameters α, β and γ:

zA/B = α+ (β − α) exp

(
−μg
γ

(
1

SB
+

1

SA

)
t

)
, (3.32)

see Fig. 3.10. We took γ as the hydrodynamic resistance value. To fit

ln z as function of time would have given a linear fit, but rather, we

chose to fit z as a function of time because it allowed us not to convert
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Figure 3.9: Evolution of the meniscus position zB(t) (purple) and
of the computed meniscus velocity żB(t) as a function of time, for
a drainage of silicon oil M100 through 7 pores of radius a = 4 mm,
L = 8.5 mm (10 < Re < 60).

from pixels to meters, and also not to shift zA/B to have z∞B = z∞A = 0.

Indeed, we previously checked that the fit parameter γ was unchanged

when shifting and/or converting from pixels to meters.

• Consistency of the two methods for low Re

We compared the values of the resistance given by the two methods,

in a case where they are both valid. We computed the hydrodynamic

resistance R7 of 7 non-interacting pores of radius a = 1.5 mm. We

used an oil of viscosity ν = 5000 mm2/s−1 which ensured a Reynolds

number Re < 0.01. As can be seen on Fig. 3.11, the two methods are

in excellent agreement during the first part of the draining. Then, as zB

and żB tend to 0, their ratio and subsequently hydrodynamic resistance

are subjected to strong fluctuations. Thus, to extract hydrodynamic

resistance with method 1, one should keep only the data corresponding
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Figure 3.10: Evolution of the meniscii positions as a function
of time, for a drainage of silicon oil M10.000 through 7 pores
with a = 2 mm and L = 4.5 mm (Re < 0.03). Points represent
experimental data. For the sake of clarity we kept only 1/20th of
the available data. Orange and turquoise lines are fits using Eq.
3.32. Inset : idem with a semi-log scale. The data were previously
shifted to have z∞B = z∞A = 0.

to the begining of the experiment. As the second method was easier to

implement, we sticked to it for all the experiments with Re < 4.

• Computation of the Reynolds number

As presented in section 3.1.4, we define the Reynolds number asRe =
av

ν
with v the average velocity inside the pore. v is computed using the

flux conservation :

N(πa2)v = SB |żB | (3.33)
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Figure 3.11: Normalized resistance of 7 non-interacting pores of
radius a = 1.5 mm, as a function of time. The green curve is the
result of method 1, while the brown dashed line is the result of
the fit using method 2. The agreement between the 2 methods is
excellent during the first half of the draining. Then, zB and żB
tend to 0 which causes their ratio to undergo strong fluctuations.

which yields v = |żB | SB

Nπa2
. Thus

Re =
|żB |SB

νNπa
. (3.34)

We now turn to the results given by experiments with low Reynolds

number flows.
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3.3 Hydrodynamic interactions at low Reynolds

number

The center of this chapter is the experimental study of hydrodynamic

interactions in creeping flows. As a way to calibrate the experiment, we

started by studying membranes with non interacting pores.

3.3.1 Preliminary verification with independent pores

We knew for theoretical formula such as 3.18 that hydrodynamic in-

teractions can be detected only for pores spaced with less than four

radii, i.e. L < 4a (this will be verified in Section 3.3.2). The membranes

we present now contain 7 pores on an hexagonal pattern. with pore

spacing L such that L/a ≥ 6. We verify that we recover the Weissberg-

Sampson-Poiseuille approximation for flows through independent pores

of varying radii from 1.25 mm to 4 mm, see Fig. 3.12. For 7 independent

pores, Poiseuille resistances and non-modified Sampson resistances can

be used. The total hydrodynamic resistance R7 writes

R7 = K−1
7 (3.35)

=
(
7K0

1

)−1
as permeabilities add up in parallel (3.36)

=
1

7

(
R0

acc +Rin

)
(3.37)

=
1

7

(
3η

a3
+

8η�

πa4

)
. (3.38)

We use the superscript O in K0
1 and R0

acc to stress the non-interaction

between pores. The subscript refers to the number of pores. K0
1

thus represents the permeability of one isolated pore, while R7 is the

resistance of 7 possibly interacting pores.
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Figure 3.12: Scans of 2 membranes with non interacting pores.
(a) a=1.25 mm, L = 19a (b) a=4 mm, L = 6a.

Following Eq. 3.38, one expects

R7a
4

η
=

1

7

(
3a+

8�

π

)
. (3.39)

In Fig. 3.13 we reported the experimental values of
R7a

4

η
obtained

from four independent drainings. Here η is the dynamic viscosity

calculated at the temperature of the experiment. The error bars have two

contributions: first the uncertainty on the experimental measurement

of R7/η. Δ
R7

η
is the standard deviation of this parameter. The second

and main contribution comes from the uncertainty on the pores radii,

Δa = 30 μm. To compute the height of the error bars we used the

formula

Δf(x1, x2) =

√(
∂f

∂x1
Δx1

)2

+

(
∂f

∂x2
Δx2

)2

(3.40)
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Figure 3.13: Hydrodynamic resistance of seven non-interacting
pores, times a4/η. Purple points represent experimental data, see
text for details on the points and error bars. The green line is a
theoretical prediction from Eq. 3.39, accounting perfectly for the
experimental data

.

which in our case reads

Δ

(
R7a

4

η

)
=

√(
a4Δ

R7

η

)2

+

(
4R7a

3

η
Δa

)2

. (3.41)

The error bars in Fig. 3.13 thus stand for ±Δ
(
R7a

4

η

)
. The theo-

retical curve y =
1

7

(
3x+

8�

π

)
matches exactly the experimental data,

so we can conclude that the Weissberg-Sampson-Poiseuille approxima-

tion is well captured by our experiments. We can thus safely analyze

hydrodynamic interactions with this experimental set-up.
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Figure 3.14: Scans of 2 membranes with 4 mm-radii interacting
pores. (a) L = 8.5 mm= 2.125 a, (b) L = 24 mm= 6 a.

3.3.2 Dependency of the permeability with pore dis-

tance

We now turn to the study of flows through interacting pores. We

used membranes with 7 pores of radii a = 4 mm (�/a = 0.125) on an

hexagonal pattern. The interpore distance is varied from L = 2.125 a

to L = 6 a, see Fig. 3.14. For interacting pores, formula 3.38 does not

hold anymore. It is easier to consider here hydrodynamic permeabilities,

which add up as

K7 =

7∑
j=1

Kj
1 (3.42)

=

7∑
i=1

(
Ri

acc +Rin

)−1
. (3.43)
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Note that pores are not equivalent here. The central pore has more

interactions with its neighbors than the exterior ones. According to Tio

and Sadhal, the access resistance of a given pore i writes (see Eq. 3.18)

Ri
acc = R0

acc ×
(
1− λi

)
(3.44)

with R0
acc = 3η/a3 and

λi =
∑
j,j �=i

[
2

3π

(
a

Lj

)3

+
6

5π

(
a

Lj

)5

+
18

7π

(
a

Lj

)7

+
56

9π

(
a

Lj

)9
]

(3.45)

where the summation is on all other pores, labeled i. Lj is the distance

between the center of the pore considered i, and the center of the pore

j. We left out the higher order terms. For regular arrays a/Lj is always

a fraction of a/L, with L the next-neighbor distance. Thus, λi depends

on a/L, on the number of pores N and on the geometry of the array.

Here we consider only the dependency in a/L. Normalizing Eq. 3.43,

we get

K7

7K0
1

=
1

7

∑
i

(
R0

acc(1− λi(
a

L
)) +Rin

)−1

× (
R0

acc +Rin

)
(3.46)

=
1

7

∑
i

⎛
⎝1−

λi(
a

L
)

1 +Rin/R0
acc

⎞
⎠

−1

(3.47)

=
1

7

∑
i

⎛
⎜⎝1−

λi(
a

L
)

1 +
8�

3πa

⎞
⎟⎠

−1

. (3.48)

We confront Eq. 3.48 to the experiments in Fig. 3.15. Each value

of the experimental permeability K7 is normalized by the calculated

permeability of an isolated pore K0
1 at the same temperature. As in

Section 3.3.1, the dots in Fig. 3.15 stand for the mean of K7/7K
0
1 on 4
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Figure 3.15: Permeability of 7-pore clusters, with radii a = 4 mm,
normalized by seven times the permeability of an isolated pore,
as a function of the next-neighbor distance L normalized by the
pore radius. Experiments (purple dots) were performed with an oil
viscosity of 1000 mm2/s. See text for details. The green curve is
the theoretical prediction of Eq. 3.48.

drainings. Similarly, vertical error bars take into account the standard

deviation on K7η and the uncertainty of 30 μm on a. The horizontal

error bars are smaller than the points width. The adequation between

experiments and theory is very good. The increase in permeability

almost reaches 20% for pores in contact. Hydrodynamic interactions

can be neglected when pores are spaced with 6a or more.

To complete this study, Simon Gravelle performed finite-element sim-

ulations with the Comsol software. He created a 3D structure with

two reservoirs on both sides of a membrane with pores disposed on a

regular hexagonal array. Pore aspect ratio is �/a = 0.25, similar to

experimental membranes of radius 2 mm. The first two systems present

3 and 7 pores. A third system consists in two quarters of pores and
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symmetrical boundary conditions, to simulate an infinite membrane,

see Fig. 3.16. For these three systems, the next-neighbor distance L is

varied from L = 2a to L = 6a. A no-slip condition is imposed on the

walls. A pressure drop of 1 Pa is imposed between the ends of the two

reservoirs, and the Stokes equation is solved. The flux rate is recorded

as a function of the interpore distance.

• 3- and 7-pore systems

We expect the normalized permeability of the cluster of pores, K3/3K
0
1

or K7/7K
0
1 , to be described by Eq. 3.48. As pores spaced with roughly

six times their radius can be considered as independent (see Fig. 3.15),

the normalized permeability was computed as the ratio of the flux rate

at L/a over the flux rate for most distant pores, i.e. L/a = 6.

• Infinite membrane

For the simulations of the infinite membrane, we plot in Fig. 3.17 the

normalized permeability of 1 pore, K1/K
0
1 , as all pores are equivalent

in this case. It means that the correction to access resistance λi is

independent on the pore: λi = λ(
a

L
) and

K1

K0
1

=
(
R0

acc(1− λ(
a

L
)) +Rin

)−1

× (R0
acc +Rin) (3.49)

=

⎛
⎜⎝1−

λ(
a

L
)

1 +
8�

3πa

⎞
⎟⎠

−1

. (3.50)

λ is an infinite sum which can be calculated thanks to

∑
i �=j

(
a

Li

)k

=
( a
L

)k
×Hk (3.51)
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Figure 3.16: Draw of the system used to simulate an infinite
membrane. Dashed lines represent the boundary of the system, on
which we applied symmetric conditions.

with

Hk = lim
N→∞

[
6

N∑
n=1

1

nk
+ 6

N−1∑
n=1

N∑
m=n+1

1

(m2 −mn+ n2)k/2

]
. (3.52)

Tio and Sadhal give the numerical values of H3, H5, H7 and H9 [90]. As

for 3- and 7-pore systems, the normalized permeability was computed

as the ratio of fluxes at L/a and L = 6a.

Fig. 3.17 evidences a clear increase of the permeability when pores are

brought closer, as we already noticed in experimental data in Fig. 3.15.

The agreement between the theory of modified entrance effects (Eq. 3.44

and 3.45) and simulations is very good. Two experimental data from

experiments on 3 and 7 pores also are fully compatible with the model

and simulations. However, we note that numerical results slightly exceed

theoretical ones at short interpore distances. This may be explained by

the higher order terms in Eq. 3.45 which we discarded.

What is more, as pore interactions are additive, we can see in Fig. 3.17
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Figure 3.17: Permeability of N -pore clusters, with radii a = 2 mm,
normalized by N times the permeability of an isolated pore, as a
function of the next-neighbor distance L normalized by the pore
radius. N = 3 (orange), N = 7 (purple) and N = ∞ (green)
(in the latter case the ordinate is K1/K

0
1 , see text). Filled circles

represent numerical simulation results, solid lines are theoretical
predictions from Eq. 3.48 and 3.50, and squares with error bars are
experimental results.

that this increase of the permeability depends on the size of the array

of pores. The more pores, the stronger the hydrodynamic interactions

between pores until they converge for an infinite array. For an infinite

hexagonal array of pores with �/a = 0.25, the normalized hydrodynamic

permeability converges to 1.6 for pores in contact (see Fig. 3.17). This

means that the hydrodynamic permeability is always extensive, even if

corrections have to be added.

The last part of our study at low Reynolds number consists in analyzing

more precisely the influence of the geometry and the number of pores

on the cluster permeability.
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3.3.3 Dependency of the permeability with the ar-

ray geometry

To study the dependency of the permeability with the number of pores,

we used membranes with 3 to 127 pores on an hexagonal array. Not

only the pattern under the pore arrangement was hexagonal, but also

the shape of the cluster of pores itself (aside from the triangular 3-pore

cluster), see Fig. 3.4. All pores have a nominal radius of 2 mm and the

next neighbor-distance is fixed at 4.5 mm. We also used 1 membrane

with 7 independent pores (L = 12 a) to account for the N = 1 case.

In order to compare the effect of a linear geometry to an hexagonal one,

we also used a membrane with 7 pores in line, and a membrane with 37

pores on a circle. The interpore distance was also L = 4.5 mm = 2.28 a

in these last two cases.

For all these membranes, the scans revealed a radius slightly smaller

than the nominal. We used a value of a = 1.97 mm.

As in the previous section 3.3.2, we normalized the experimental perme-

ability by N times the permeability of a single isolated pore at the same

temperature. In Fig. 3.18, we plot the mean on 4 drainings of these

normalized permeabilities. As in the previous chapters, error bars come

from the standard deviation of KNη, plus an uncertainty of 30 μm on

the pore radius.

The clear increase of the normalized permeability with the number of

pores we saw in Fig. 3.17 is confirmed in Fig. 3.18. From 1 to 37 pores

on an hexagonal array, the normalized permeability increases by 15%.

7 pores in line or 37 pores on a circle show a less marked increase of

the normalized permeability, which is explained by a lower coordination

number than in an hexagonal geometry. Hydrodynamic interactions are

thus less intense.

The theoretical normalized permeability writes similarly to the 7-pore
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Figure 3.18: Normalized permeability N -pore of clusters, from
N = 1 to N = 127 for hexagonal arrays of pore (purple circles
and green crosses), and from N = 1 to N = 37 for pores in line
(orange squares and red crosses). The normalization takes into
account a radius of 1.97 mm and nearest pores are spaced with
4.5 mm. Circles and squares with error bars are experimental results.
Green and red crosses are theoretical data taking into account
an additional resistance Rres = 1.5 Pa.s.m−3, see text. Solid lines
are only guides for the eye. Dashed lines show the evolution of
theoretical normalized permeability with no additional resistance.

case,

KN

NK0
1

=
1

N

N∑
i=1

⎛
⎜⎝1− λi(N, geometry)

1 +
8�

3πa

⎞
⎟⎠

−1

, (3.53)

which we calculated for an hexagonal and a linear geometry. We can see

in Fig. 3.18 that this expression (green and red dashed lines) accounts

for the sharp increase of normalized permeability at N < 37.

If the number of pores is increased beyond N = 37, the experimental

normalized permeability remains stagnant. Theoretical predictions of
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Figure 3.19: Sketch of the Poiseuille flow between the membrane
(in z = h) and the bottom of the reservoir (in z = 0). The vertical
red arrows represent flows through the pores, which are located
between r = 0 and r = R.

the permeability show an attenuated increase beyond N = 37 (and

converge toward KN/(NK
0
1 ) = 1.27 for N → ∞), however they exceed

experimental values. This can be explained by the presence of an

additional resistance on the flow, most probably from the bottom

of the reservoir. The order of magnitude of this resistance can be

evaluated considering an horizontal Poiseuille flow below the membrane,

see Fig. 3.19. Neglecting any vertical pressure gradient, the fluid velocity

between the membrane and the bottom of the reservoir is purely radial:

�v = v(z)−→er . r and z are here cylindrical coordinates and −→er is a unit

vector. We note h the distance between the membrane and the bottom

reservoir. Given the Stokes equation, the velocity field is

�v = −∂rP
η
z(z − h)−→er (3.54)

with ∂r∇P the pressure gradient along the radial direction. As the pore

array is localized between r = 0 and r = R (see Fig. 3.19), the flux

crossing a cylinder of radius r increases as r increases from 0 to R. The
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total flux Q reads

Q× r2

R2
= 2πr

∫ h

0

v(z) dz. (3.55)

After a few manipulations, one gets the pressure field between r = 0

and r = R:

P (r) = Q
3η

2πh3

( r
R

)2
+ P (r = 0). (3.56)

For r > R, the pressure field increases more slowly, in ln r. An order of

magnitude of the additional resistance due to the bottom reservoir is

thus given by Rres ∼ 3η/(2πh3). In these experiments h ∼ 2 cm, which

gives Rres ∼ 106 Pa.m−3 (η ∼ 10 Pa.s). If one adds this new resistance

in series with the parallel resistances of the pores, we get

R0
1 = R0

acc +Rin +Rres (3.57)

RN =

[
N∑
i=1

(
Ri

acc +Rin

)−1

]−1

+Rres (3.58)

and thus

KN

NK1
0

=

⎛
⎝( 1

N

N∑
i=1

(
1− λi(N, geometry)

1 +Rin/R0
acc

)−1
)−1

+
NRres

R0
acc +Rin

⎞
⎠

−1

.

(3.59)

With Rres = 1.5× 106 Pa.s.m−3, we get a good agreement with the

experimental data. Note that the supposed dependency of Rres in 1/h3

makes Rres negligible compared to Poiseuille resistances inside the pores

and access resistance, when h = 5 cm which is the case in all the other

experiments.

In sections 3.3.2 and 3.3.3, we investigated the influence of the nor-

malized interpore distance L/a, the number of pores and the array

geometry on hydrodynamic interactions. In full agreement with the
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model proposed by Tio and Sadhal (Eq. 3.18), hydrodynamic inter-

actions enhance the flow through pores compared to an isolated pore

situation. Their scope is quite small (an increase of 5% in normalized

permeability is noted for 7 pores with L ≈ 3a), and so is their strength

(a maximal 20% increase for 7 pores brought in contact). An important

fact is that the permeability keeps an extensive behavior: the normal-

ized permeability of an infinite array converges, even when pores are

brought in contact. Finally, the addition of pores increases the strength

of interactions, which is clearly seen for small number of pores (typically

N < 40). Above this value, the addition of pores have much less impact

and interactions saturate.

We now turn to hydrodynamic interactions in laminar flows where

inertial effects begin to have an impact. The Reynolds number in these

cases is between 10 and 60.

3.4 Hydrodynamic interactions at Re >10

To access to higher Reynolds numbers, we used a silicon oil of kinematic

viscosity 100 mm2/s (silicon oil M100). We could reach Re = 60. The

membranes we used were already presented in section 3.3.2: 7 pores of

radius a = 4 mm, with interpore spacing between 8.5 mm (L/a = 2.125)

and 12 mm (L/a = 3). Because of the flow speed, we had to plug the

pores during the cylinder filling, and then to remove the plug quickly

when starting the recording.

In a first time, we show that the hydrodynamic resistance is not constant

during one experiment. To determine R we thus stick to the first method

described in section 3.2.3. Then we show that hydrodynamic interactions

and inertial effects independently modify entrance effects.



102 Chapter 3.

3.4.1 Non-constancy of the permeability

Contrary to flows of more viscous oils, the hydrodynamic resistance

is not constant during an experiment with the M100 oil. As can be

seen in Fig. 3.20-a, the resistance strongly decreases while the cylinder

empties. Thus the position of the front could not be fitted properly by

an exponential, and we computed the resistance from measurements

of positions and velocities (see section 3.2.3). The decrease of R7 as a

function of time corresponds to an increase of R7 with the Reynolds

number. Both are clearly seen in Fig. 3.20. Figure 3.20-b also reveals

that inertial effects overwhelm hydrodynamic interaction effects. Indeed,

the resistance rises by more than 300%, while interactions have an effect

of 15% at most, for the membranes used here. Thus, this increase is the

fact of inertial effects only. Moreover, the different curves corresponding

to different interaction strengths are not ordered, which means that

interaction effects cannot be detected in this plot. However, it is

possible to disentangle these two effects, which we propose to do in the

next subsection. In particular, we want to know if inertial effects and

hydrodynamic interactions merely juxtapose, or if they combine in a

mixed interaction-inertia coefficient.

3.4.2 Dependency of the access resistance with Re

As we mentioned in section 3.1.5, Jensen et al. rationalized the depen-

dency with the Reynolds number of the access resistance of one single

isolated pore. They stress that, for moderate Reynolds numbers exceed-

ing a threshold Rt
e � 10, an applied pressure drop not only counteracts

the fluid viscosity but also accelerates the flow. The term (�v · −→∇)�v in

Navier-Stokes equation begins to play a role. They proposed that the
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Figure 3.20: (a) Normalized hydrodynamic resistance of 7 pores
(a = 4 mm, L = 3 a) on the flow of M100 oil, during one drain-
ing. (b) Normalized resistance of different membranes with various
interpore distances, as a function of the Reynolds number.

access resistance of a pore be

R0
acc =

η

a3

(
3 +

Re −Rt
e

π

)
=

η

a3
φ(Re), (3.60)

which is successfully compared to old experimental data. Yet they

stuck to the single pore case. Using the same notations, with φ a linear

function of Re and λi the interaction coefficient for the pore i, we aim

at determining if the new correction factor for interacting pores with

small inertial effects involves the sum of φ and λi (juxtaposition of both

effects) or their product. We propose two alternative formulations of

the access resistance of the pore i:

Ri
acc =

η

a3

(
3(1− λi) +

Re −Rt
e

C

)
=

η

a3
(
φ− 3λi

)
, (3.61)
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which corresponds to the juxtaposition of inertial and interaction effects,

or

Ri′
acc =

η

a3

(
3 +

Re −Rt
e

C

)
× (1− λi) =

η

a3
φ
(
1− λi

)
(3.62)

where inertial and interaction effects couple. Following Jensen et al.,

we extracted the values of φ from the measured positions and velocities

of the meniscus in the cylinder, under both hypothesis. We expect the

values of φ not to depend on the interaction strength, as φ is defined to

account for inertial effects only. We proceeded as follows. We saw that,

when no parasitic resistance was perceptible, the global permeability of

7 pores on an hexagonal arrangement reads

K7 =

7∑
i=1

Ki
1 (3.63)

= Kc
1 + 6Ked

1 (3.64)

with Kc
1 the permeability of the central pore, and Ked

1 the permeability

of a pore from the edge of the cluster. In the following, λc and λed refer

respectively to the central or a peripheral pore. We get

K7 =
1

η

a3
(φ− 3λc) +

8η�

πa4

+
6

η

a3
(φ− 3λed) +

8η�

πa4

(3.65)

according to the first hypothesis, and

K ′
7 =

1

η

a3
φ (1− λed) +

8η�

πa4

+
6

η

a3
φ (1− λed) +

8η�

πa4

(3.66)

according to the second one. Note that λc and λed were proved to

be accurate formulations of hydrodynamic interactions, in the case of

creeping flow. We showed in the previous section that their theoretical
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expression (3.45) accounts for experimental results. Furthermore, we

saw in section 3.2.3 that the total hydrodynamic resistance of the cluster

could be written as

R7 = μg

(
1

SA
+

1

SB

)
zB
|żB | . (3.67)

Using Eq. (3.65) and (3.67) for the first hypothesis, or Eq. (3.66) and

(3.67) for the second one, we get a second-order equation in φ which is

easily solved, as all the coefficients can be calculated.

The values we obtain for φ are plotted in Fig. 3.21-a and b. The

hypothesis of a coupling of inertial and interaction effects give values of

φ which clearly depend on the interpore distance, i.e. on the intensity

of hydrodynamic interactions, which is not relevant. On the other hand,

we can see in Fig. 3.21-b that φ calculated under the hypothesis of a

juxtaposition of these effects (3.61) does not depend on the interaction

strength, whatever the Reynolds number. Thus, the correct definition

of φ is the one given by Eq. (3.61), where hydrodynamic interactions

and inertial effects simply add up. This evidences the absence of inertial

interaction.

The linear fitting of the curves in Fig. 3.21-b results in φ = 3 +
Re − α

β
with α = 4.2 ± 1.3 and β = 3.22 ± 0.09. This is in full agreement

with Johansen experimental results: φ = 3 +
Re −Rt

e

π
with Rt

e = 4 [72,

93]. In their article, Jensen et al. mentioned Bond work on cylindrical

tubes of radius 1 mm and lenghts between 6 mm and 13 cm [92].

A thorough examination of their results suggests that the transition

Reynolds number in this work is 6 ± 1, and not 10 as suggested by

Jensen et al.. It seems that the 3 experimental results available to us are

compatible. Contrary to Jensen et al., we don’t think that Rt
e should

depend on the pore thickness. However, boundary conditions are likely
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Figure 3.21: Parameter φ as a function of the Reynolds number.
(a) φ under the hypothesis of a coupling between inertial and
interaction effects (Eq. 3.62), (b) φ under the hypothesis of a
simple juxtaposition of both effects (Eq. 3.61). From red to green,
blue, cyan and maroon, the pores are spaced with an increasing
distance L, from L = 2.125 a to L = 3 a, i.e. interaction strength
decreases.

to modify entrance effects, and thus the value of Rt
e and the slope of

φ(Re). In this sense, Gravelle et al. recently showed that perfect slip

enhanced access resistance at low Re [66].

We summarize in Fig. 3.22 all the φ − Re curves from the same

membranes, with a = 4 mm and various distances between pores L. For

Re < 3, they all collapse on the constant curve φ = 3, as expected for

Re < Rt
e. Data around Re = 1 were obtained with an intermediate

viscosity, ν = 1000 mm2/s. For Re > 10, the adequacy with the model

φ = 3 +
Re − 4

π
is excellent. It would be desirable to perform new

experiments with a viscosity of 2000 mm2/s, to access to Reynolds

numbers between 0.1 and 12. Both regimes of high-viscosity and small

inertial effects could be analyzed in a single drainage experiment, and

the determination of the transition Reynolds number could maybe be

more precise.
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Figure 3.22: φ computed using Eq. 3.61, as a function of the
Reynolds number in semi-log scale. The distinction between a
regime of purely viscous flow (φ = 3) and of viscous flow modified
by small inertial effects (φ linear in Re) is clear.

To summarize briefly this section, we showed that hydrodynamic in-

teractions and small inertial effects at moderate Reynolds numbers

(Re < 60) simply juxtapose and do not couple. We stressed that even

though the latter are “small” inertial effects, they surpass hydrodynamic

interactions as soon as Re > Rt
e. Finally, the access resistance of a pore

i can be written as

Ri
acc =

η

a3

(
3(1− λi) +

Re −Rt
e

C

)
(3.68)

with Rt
e = 4.2 and C = 3.22. This is coherent with previous results on

single pores.
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3.5 Partial conclusion

In this chapter, we experimentally analyzed hydrodynamic interactions

between pores, and found that they enhance the flow through a cluster of

pores. Yet this enhancement remains a correction, the maximum increase

in normalized permeability being ≈ 60% for an infinite hexagonal

array of pores brought in contact. This implies that hydrodynamic

permeability keeps an extensive behavior when adding pores. For flows

departing from a purely laminar behavior, we showed that hydrodynamic

interactions and inertial effects do not influence each other but simply

add up. Quantitatively, we found a transition Reynolds number of 4.2

between a purely laminar flow and inertial corrections. Our results

thereby confirm and extend a recent proposition by Stone and co-

workers [72]. We performed more complete calculation as a first-order

description is not enough to describe quantitatively and accurately the

interaction-driven permeability enhancement, and we explored different

situations, such as the addition of pores.

Hydrodynamic interactions at low Reynolds numbers are in strong

contrast with electrostatic interactions, which we studied in the first

chapter. Indeed, electrostatic interactions decrease the intensity of ionic

current. But their most dramatic characteristic is that they cause a

sub-linear scaling of the conductance of an array of pores: for a growing

number of pores N → ∞, the contribution of one pore to the ionic

conductance falls down to 0. Therefore, electrostatic interactions could

modify the orders of magnitude of transport phenomena through pores,

whereas hydrodynamic interactions are merely a correction factor. We

also note that the scope of hydrodynamic interactions is much smaller

than for electrostatic interactions, as hydrodynamic interactions scale

mainly like (a/L)3 whereas electrostatic ones scale like (a/L).
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In the first two chapters of this thesis, we showed that there is no evidence

that a massive parallelization of nanochannels could be an efficient way

to scale up nanofluidic devices. Interactions at pore entrance can have

dramatic effects on the scalings of transport properties, as it is the case

for ionic transport. For fluidic transport, interactions have a rather

positive impact, while not modifying the extensivity of the permeability.

Beyond the question of the scaling of hydrodynamic permeability, which

is of first importance in filtration devices, we are interested in energy

conversion which originates in electrokinetic effects. This is somewhat

subtle, as electrokinetic conversion implies ionic transport, fluid trans-

port, but also cross-coupling transports such as electro-osmosis and

streaming current. There is no trivial way to predict the behavior of

cross-coupling phenomena with respect to interactions at pore entrances.

The aim of the next chapter will be to relate the global electrokinetic

transport coefficients (such as ionic conductance and permeability but

also streaming conductance) to their inner and access counterparts, in a

general case. We will also tackle the case of particle diffusion, by analogy

with ionic currents. Thanks to these theoretical formulations, we will

be able to predict the scalings of electrokinetic energy conversions such

as streaming current and diffusio-osmosis, for an assembly of interacting

pores.
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In the two previous chapters, we studied the ionic and fluidic transport

in nanopore arrays. Ionic conductance and hydrodynamic permeability

have completely different scalings, the former scaling sub-linearly with

the number of pores, while the latter keeps an extensive behavior

with positive corrections. Apart from an extended knowledge and

applications in filtration, these results constitute necessary building

blocks to manage scaling-ups of energy conversion devices, based on

electrokinetic transport phenomena. Yet, for now, we have no predicting

tool for the energy conversion scaling, because we lack information on

cross-coupling phenomena. In particular, we are interested in the ionic

current stemming from an applied pressure drop (streaming current),

and the ionic current stemming from a difference in ionic concentration

between 2 reservoirs (diffusio-osmotic current). To access the scaling of

these phenomena, we need a general matrix approach, which we develop

in this chapter.

The main goal of this chapter is to determine the efficiency of energy

conversion from electrokinetic transport phenomena, under the assump-

tion of interacting pores. The formalism we develop to reach it will

allow to tackle another question: how do cross-coupling phenomena

affect the global ionic conductance and hydrodynamic permeability of

the experimental systems previously studied ?

In this chapter, we will first carefully present the analogies between Fick

diffusion and ionic conduction in nanopores. We present arguments in

favor of a similar scaling of entrance effects for both phenomena. Such

analogies must be handled with care, as fluidic transport does not obey

the same rules. We next establish a general formulation of electrokinetic

transport coefficients, from inner and access resistances. We will then
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come back to the determination of ionic conductance and hydrodynamic

permeability in the last 2 chapters, where we did not take cross-coupling

phenomena into account. In fact, the results of the previous chapters

are valid because of the dimensions of the pores, but they would not be

for smaller nanopores. Finally, knowing the scaling of inner and access

resistances with the size of the pore array, we will deduce the scaling of

the global transport coefficients, in- and off-diagonal. We will be able to

conclude on the produced power and the efficiency of energy conversion

through streaming currents and diffusio-osmotic currents.

4.1 Analogies between transport phenom-

ena

It is well-known since Adolf Fick’s work that particle diffusion and

electric conduction exhibit strong similarities. This is especially true

for ion conduction and ion diffusion, as ions vector the transport in

both cases. Yet, the driving forces differ: an electric potential drop ΔV

in the first case, or a concentration difference Δρ in the second case.

To conclude on the extent of the analogy, we investigate precisely the

physical rules behind these two transport phenomena. We also compare

them to fluidic transport which obeys different equations.

Our results are summed up in Table 4.1. Usually, the analogy between

transport phenomena is built on the existence of driving force expressed

as gradients of an intensive quantity, and a flowing quantity. This allows

the definition of a resistance to the (electric, diffusive or fluid) flow.

A deeper insight into the physics at stake shows that the existence of

a linear relation between the driving force and the flowing quantity

is a cornerstone for analogous behaviors. Ohm’s law and Fick’s law
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transport type conductive diffusive fluidic

Physical quantity rep-
resenting the flow

�j �jd �v

Driving force V1 − V2 ρ1 − ρ2 P1 − P2

Link between the driv-
ing force and the flow

�j = −κb −→∇V
Ohm’s law

�jd = −D−→∇ρ
Fick’s law

η � �v =
−→∇P

Stokes equation

Conservation equation
−→∇ · �j = 0

−→∇ · �jd = 0
−→∇ · �v = 0

Laplacian equation �V = 0 �ρ = 0 �Ω = 0

Boundary conditions
−→
t · �j = 0,

−→
t · �jd = 0,

−→
t · �v = 0,

�n · �j = 0 �n · �j = 0 �n · �v = 0

Table 4.1: Analogies and differencies (in grey) between ionic
conduction, particle diffusion and fluid advection.

represent such linear link, which does not exist for fluidic transport as

evidenced in Table 4.1.

Under relevant hypothesis (quasi-stationary regimes for electric trans-

port, incompressibility for fluidic transport), all transport phenomena

under study exhibit similar conservation equations: the divergence of

the flowing quantity is zero.

Coupled with Ohm’s law and Fick’s law, the conservation equation

results in a Laplacian equation for the driving force quantity. For fluid

flow, it is possible to define a harmonic function Ω, ressembling to a

velocity potential, obeying a Laplacian equation, see [90]. Yet, this

Laplacian equation does not have the same physical meaning as in ion

conduction and diffusion, as Ω is not a driving force quantity.

Ion conduction and ion diffusion therefore exhibit similar governing

equations. As for boundary conditions at the membrane surface, they

are shared by all these three transport phenomena. The perpendicular

component of the flowing quantity is zero, because there is no net flux



Electrokinetic transport and energy conversion 115

of ions toward the membrane, otherwise it would progressively charge

or discharge like a condenser, which is not the case here. For fluidic

transport, this result stems from the impermeability of the membrane.

Moreover, there is no net lateral flow of ions or liquid at the membrane.

These considerations show that entrance effects behave alike for ionic

conduction and ionic diffusion. On the contrary, fluidic transport does

not obey the same equations. Hence it is no surprise that we found

different behaviors for ionic entrance effects and hydrodynamic ones in

chapters 2 and 3. Such assertion may be contradicted experimentally,

if the above modelization is unsuitable. But if it is valid, then ionic

conductive and diffusive transport have exactly the same bevior. Thus

the access resistance to diffusive ion transport scales sub-extensively

with the number of channels, as in conductive ion transport.

We now turn to a matrix rationalization of electrokinetic transport

phenomena. We will build the global coefficients for direct phenomena

(permeability, conductance) and cross-coupling phenomena (streaming

current, electro-osmotic flow) from their inner and access counterparts

which are our elementary bricks. To simplify the calculation, we exclude

diffusive transport for now, assuming no gradient concentration between

the reservoirs. We will come back to such situation in the last section,

when dealing with diffusio-osmotic energy conversion.

4.2 General expression of electrokinetic trans-

port coefficients

The aim of this section is to relate the global fluid flow, and ionic

current, to these inner and access quantities. The novelty compared
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to the previous chapters is that we will take cross-coupling phenomena

into account, namely electro-osmosis velocity and streaming current.

We note quantities referring to the inner part of the channel (e.g.

Poiseuille permeability) with a i superscript, the outer access region

with a a superscript and no superscript for the total far field quantities.

For clarity we use the notations Kh and Ke to refer to the hydrodynamic

permeability and ionic conductance, instead of K and G used before.

For the total transport we have

[
Q

I

]
=

[
Kh μEO

μEO Ke

][
ΔP

ΔV

]
(4.1)

where the symmetry results from Onsager reciprocity [95]. Our aim is

to determine this 2x2 matrix coefficients, knowing the properties of the

inner and access transport.

For the inner fields, the same symmetry is imposed:

[
Qi

Ii

]
=

[
Ki

h μi
EO

μi
EO Ki

e

][
ΔP i

ΔV i

]
. (4.2)

As for the access region, we suppose that the transport matrix is diagonal,

neglecting cross-over phenomena that could originate in the diffuse layer

of the membrane itself (perpendicular to the channel) [96]. In this case

we have, for one pore side,

[
Qa

Ia

]
=

[
Ka

h 0

0 Ka
e

][
ΔP a

ΔV a

]
. (4.3)

We now consider the global conductance and electro-osmotic mobility

that we obtain imposing ΔP = 0. The conservation of flow rate and
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ionic current write

Q = μEOΔV (4.4)

= Ki
hΔP

i + μi
EOΔV

i (4.5)

= Ka
hΔP

a (4.6)

and

I = KeΔV (4.7)

= μi
EOΔP

i +Ki
eΔV

i (4.8)

= Ka
eΔV

a. (4.9)

The total pressure drop and potential drop write as

ΔP = ΔP i + 2ΔP a (4.10)

ΔV = ΔV i + 2ΔV a, (4.11)

the factor 2 coming from the two channel ends. Using Eq. (4.4),(4.6)

and (4.10) on the one hand, and Eq. (4.7),(4.9) and (4.11) on the other

hand, we obtain

ΔP i = −2
μEO

Ka
h

ΔV (4.12)

ΔV i =

(
1− 2

Ke

Ka
e

)
ΔV. (4.13)

Inserting Eq. (4.5) and (4.8) yields an equation system which can be

easily solved as

Ke =
1 + 2qh(1− αi)

1 + 2(qe + qh) + 4qeqh(1− αi)
Ki

e (4.14)

μEO =
1

1 + 2(qe + qh) + 4qeqh(1− αi)
μi
EO (4.15)
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where we have used the reduced quantities qe = Ki
e/K

a
e , qh = Ki

h/K
a
h

and αi = μi 2
EO/(K

i
hK

i
e). A similar reasoning, imposing ΔV = 0 leads to

Kh =
1 + 2qe(1− αi)

1 + 2(qe + qh) + 4qeqh(1− αi)
Ki

h (4.16)

and to the same expression for μEO. Eq. (4.16) and (4.14) have exactly

the same shape, with a switch in the role of qe and qh.

4.3 Influence of cross-coupling phenomena

on ionic conductance and hydrodynamic

permeability

4.3.1 Back to chapter 2: is a more accurate defini-

tion of Ke necessary ?

In chapter 2, we supposed that for an isolated pore the conductance

was merely the result of the access resistance and the inner resistance

in series. For one isolated pore, we wrote K ′
e = (Rchannel + 2Raccess)

−1

which can be rewritten as K ′
e =

Ki
eK

a
e

Ka
e + 2Ki

e

=
1

1 + 2qe
Ki

e. K ′
e visibly

differs from what Eq. (4.14) predicts for Ke, taking into account electro-

osmosis effect on the conductance via the coefficient αi.

An applied voltage results in an ionic conductance and an electro-

osmotic velocity, the latter being a first-order cross-coupling phenomena.

The electro-osmotic solvent motion subsequently influences ion veloci-

ties, which could modify the ionic conductance compared to previous

estimations.
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We now give orders of magnitude showing that K ′
e is a very good

estimate of Ke, in the nanopores we used. We can write

Ke = K ′
e

(1 + 2qe)(1 + 2qh(1− αi))

1 + 2(qe + qh) + 4qeqh(1− αi)
(4.17)

= K ′
e ×

(
1− 2qhα

i

1 + 2(qe + qh) + 4qeqh(1− αi)

)
. (4.18)

To carry on the calculation, we need to evaluate qe, qh and αi.

We saw in the two previous chapters that

Ki
e = κb

πa2

�
, Ka

e = 4κba (4.19)

Ki
h =

πa4

8η�
, Ka

h =
2a3

3η
(4.20)

which yields

qe =
πa

4�
= 1.6, qh =

3πa

16�
= 1.2 (4.21)

using a = 100 nm = 2� as in chapter 2. We compute μi
EO in the case

where a� λD the Debye length, which is valid throughout all this work

as at most λD = 3 nm for c = 10−2 mol/L. Thus λD � a = 100 nm

in the nanopore experiments in chapter 2, and in the macroscopic

experiments of chapter 3 this condition is obviously fulfilled. Classical

formula (see e.g. [14]) give

μi
EO =

−εζ
η

πa2

�
, αi =

8(εζ)2

ηκba2
� 6.7× 10−3 (4.22)

with ε � 80 ε0 the permittivity of water (ε0 = 8.85× 10−12 F/m is the

vacuum permittivity) and ζ the zeta potential of the interface (potential

at the slip plane). Typically for SiN surfaces ζ = −50 mV. We have used

the values η � 10−3 Pa.s, κb = 2e2μ(c×NA10
3) with c � 10−2 mol/L

and μ = D/(kBT ) with D � 2× 10−9 m2/s.
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Figure 4.1: Ratio of the real ionic conductance over the estimated
conductance, which we used in chapter 2, as a function of pore
radius. We took a pore length � = 50 nm as in the experimental
work of 2.

Numerically, Eq. (4.18) yields Ke = K ′
e(1− 1× 10−3) for a = 100 nm.

The formulation we used in chapter 2 is therefore valid. However, it

would not be for smaller pores as can be seen in Fig. 4.1 where we

computed Ke as a function of the pore radius. We used the expressions

of qe, qh and αi given in Eq. (4.21) and (4.22) and a salt concentration

c = 10−2 mol/L. For a pore size of 10 nm, we find a reduction of the

ionic conductance of 10%.

Remember that our definition of μi
EO is valid for a� λD. The sharp

fall of Ke below a = 10 nm may not be accurate.

Note that in these calculation we leave out electro-osmosis originating

on the membrane surface, but it is likely to be negligible [62].
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4.3.2 Back to chapter 3: is a more accurate defini-

tion of Kh necessary ?

A rigorous calculation of the hydrodynamic permeability would also

show that, in the case of macroscopic pores, the effect of streaming

current of the flow is negligible. Indeed the coefficient αi varies as

1/a2. αi falls down to 10−11 when using 2 mm pores, while qe and qh

keep the same order of magnitude. For fluid more viscous than water,

as the silicon oil we used, αi plunges even more. All in all, we are

confident that cross-coupling phenomena have a negligible influence on

the hydrodynamic permeability computed in chapter 3.

We now turn to the energy conversion question. We apply the above

formalism to calculate the scaling of the output electrical power and

efficiency of two different conversion processes. First, we investigate

energy conversion through streaming currents, i.e. the ionic current in

response to an applied pressure drop, due to the fact that the diffuse

layer close to the surface has a global non-zero charge. We only consider

2D arrays of pores.

4.4 Energy conversion by streaming cur-

rents

We already saw in chapters 2 and 3 that, considering a number N of

parallel channels, the inner conductance and permeability are additive.

For an array of N pores, we have

Ki
e ∝ N and Ki

h ∝ N, (4.23)
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as Poiseuille and inner electrical resistances are independent, parallel

resistances. The same holds for the streaming conductance μi
EO, like

for all inner transport forms:

μi
EO ∝ N. (4.24)

For the access quantities, we have

Ka
e ∝

√
N and Ka

h ∝ N, (4.25)

according to our previous findings, for 2D arrays of N pores. For reduced

quantities, this results in

qe ∝
√
N and qh ∝ 1 and αi ∝ 1. (4.26)

Using Eq. (4.14) and (4.16), we get for the global coefficients

Ke(= GN ) ∝
√
N and Kh(= KN ) ∝ N, (4.27)

as we determined previously, in chapters 2 and 3, when we neglected

cross-coupling phenomena. It is good news that these scalings are valid

in any case. As for the global streaming conductance μEO, using Eq.

(4.15) we get

μEO ∝
√
N. (4.28)

It is worth noting that the electric response to an applied pressure field,

and the flow caused by an applied electric field, behave like the electric

conductance and not like the permeability.

We now turn to the energy conversion and consider a streaming current

produced by an applied pressure drop. As pointed out by van der

Heyden and coworkers [65], the nanochannel can be modelized by a

current source in parallel with a resistance, see Fig. 4.2. Following the
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Figure 4.2: Equivalent electrical circuit for the energy conversion
through streaming current. Adapted from [65].

work of the above cited authors, we connect this generator to a load

resistance RL. It is useful to express the potential drop as

ΔV = V2 − V1 = − μEOΔP

Ke + 1/RL
. (4.29)

We use the reduced quantities

α =
μ2
EO

KeKh
and Θ = KeRL. (4.30)

Using Eq. (4.29), the output power ΔV 2/RL and the input mechanical

power QΔP can be expressed as

ΔV 2

RL
= KhΔP

2 αΘ

(1 +Θ)2
and QΔP = KhΔP

2

(
1− α

1 + 1/Θ

)
.

(4.31)

Note that the input power depends on the load resistance, because of

cross-coupling phenomena.

The output power exhibits a maximum for a given ΔP for Θ = 1

(impedance matching situation). In that case,

ΔV 2

RL max

=
KhΔP

2α

4

(
=

(μEOΔP )
2

4Ke
=
I2streaming

4Ke

)
. (4.32)



124 Chapter 4.

The scalings of the global transport coefficients give α ∝ 1/
√
N and

thus
ΔV 2

RL Pmax

∝
√
N. (4.33)

The electrical power produced thus increases with the number of inter-

acting channels. However, the required input power QΔP , increases

even faster than the output power, according to

QΔPPmax = KhΔP
2
(
1− α

2

)
∝ N. (4.34)

Globally, the conversion efficiency E , defined as the ratio of the output

power to the input power, decreases as 1/
√
N .

The same computation can be done for the maximum efficiency, which

does not occur for Θ = 1 but for a bigger load: Θ = 1/
√
1− α. It can

be shown that

Emax =
α

α+ 2(
√
1− α+ 1− α)

∼
N→∞

α

2
∝ 1/

√
N. (4.35)

Interactions at pore entrances have therefore a major and potentially

detrimental effects on single nanochannel performance when scaling

up. Experimental ways have to be found to bypass these interactions.

In other words, cut-offs are needed to limit the range of electrostatic

interactions at pore entrances. A way to do so could be to bring the

electrodes closer to the membrane, or even to spray deposite them

directly on the membrane (see for example [97]). This is expected

to affect strongly the field lines at pore entrances. Finite-element

simulations could help to predict the behavior of transport phenomena

in this situation.

The above result requires pushing the analysis further, to determine
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which experimental refinements could preserve as much of single channel

qualities.

4.5 Energy conversion by diffusio-osmosis

Diffusio-osmosis refers to the flow of solvent in a channel linking two

reservoirs with different salt concentrations. This effect takes place

in the Debye layer, which drags the whole fluid by viscosity. As the

Debye layer has a net electric charge, such flows lead an electric current

(see section ?? page ??). Diffusio-osmosis can thus be envisioned as an

alternative path for energy harvesting under salt concentration gradients

[15]. As for streaming currents, the output power is an electric one, but

the input power is of chemical nature.

As diffusio-osmosis involves diffusion, flows and ionic currents altogether,

the matrixes we have to consider are now 3x3:⎡
⎢⎢⎣
Q

I

J

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Kh μEO B

μEO Ke μDO

B μDO Kd

⎤
⎥⎥⎦
⎡
⎢⎢⎣
ΔP

ΔV

Δρ

⎤
⎥⎥⎦ (4.36)

with

J = J tot − ρ0Q =

∫∫
�jd · −→dS (4.37)

the diffusive part of the flux of salt. J tot is the total salt flux stemming

from both diffusion (J) and convection (ρ0Q). ρ0 is the average salt

concentration.

The cross coefficients are now written μEO, B and μDO. The coefficients

of interest in energy conversion under salt concentration gradients are

μDO and Ke. Note that Onsager symmetry still applies. For inner and

access transport, the matrixes are similar to (4.2) and (4.3) but 3x3. It
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can be shown that the global transport coefficients are given by

⎡
⎢⎢⎣

B

μDO

Kd

⎤
⎥⎥⎦ =M−1

⎡
⎢⎢⎣

Bi

μi
DO

Ki
d

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
μEO

Ke

μDO

⎤
⎥⎥⎦ =M−1

⎡
⎢⎢⎣
μi
EO

Ki
e

μi
DO

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

Kh

μEO

B

⎤
⎥⎥⎦ =M−1

⎡
⎢⎢⎣

Ki
h

μi
EO
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where M−1 is the inverse of

M =

⎡
⎢⎢⎣
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Ki

h
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2 Bi

Ka
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2
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h
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e
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Ki

d
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⎥⎥⎦ . (4.39)

M−1 is given byM−1 =
1

detM
adjM , with adjM the adjugate matrix.

We get, after a few simplifications

μDO =
−2μi

EOB
i + μi

DO(K
a
h + 2Ki

h)

Ka
h × detM

. (4.40)

This results has to be analyzed within a given experimental condition

of mixing.

4.5.1 Absence of mixing

As we said in section 4.1, diffusive ion transport is expected to obey

similar laws as conductive ion transport. Therefore the access coefficient

for diffusive transport Ka
d is expected to follow Ka

d ∝ √
N like Ka

e .

After a few lines of calculation, it can be shown that in this case

detM ∝ N . We get, for the transport coefficients,Ke ∝
√
N as expected,
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and μDO ∝ 1 which is worse than Ke and Kd, and very unexpected.

The maximum output power is given by [15]

Pout
DO,max =

I2DO

4Ke
=

(CΔρ)2

4Ke
, (4.41)

which scales very unfavourably like 1/
√
N .

Yet, it is possible to circumvent part of this adverse scaling by using

convective mixing in the reservoirs. The aim of mixing is to bypass

interactions in diffusive entrance effects, to reach an extensive diffusive

flux.

It is also possible to compute scalings for the input chemical power and

the efficiency of the process. However, there is no real economic cost in

filling two reservoirs with different salt concentrations. These scalings

can be used for comparison with different energy conversion methods,

such as pressure-retarded osmosis or reverse electrodialysis which were

presented in chapter 1.

The input chemical power can be approximated by

P in
DO ≈ kBTΔρQ = kBT ×B(Δρ)2. (4.42)

A more proper expression of the input power could be drawn from Gibbs

free energy of mixing, following Kim and co-workers [98].

The same type of calculation as above leads to B ∝ √
N , and the global

efficiency of the energy conversion thus scales like

E ∝ C2

BKe
∝ 1/N. (4.43)
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4.5.2 Case of convective mixing in the reservoirs

The effect of mixing on diffusive entrance effects is not certain yet. Two

cases can be envisioned: either mixing remove interactions in which

case Ka
d ∝ N , or mixing totally cancels access diffusive resistance and

Ka
d → ∞. Still, Ka

e ∝ √
N .

In fact, the two cases mentioned above lead to the same result: detM ∝ √
N

which yields

μDO ∝
√
N and PDO,max ∝

√
N. (4.44)

Moreover, in this case B ∝ N so that

Emix ∝ 1/
√
N. (4.45)

We summarize our results in Table 4.2. None of the two studied processes

process
streaming
current

diffusio-
osmosis

diffusio-
osmosis with

mixing

Pout
√
N 1/

√
N

√
N

E 1/
√
N (1/N) (1/

√
N)

Table 4.2: Summary of the results for energy conversion through
streaming currents and diffusio-osmosis, N being the number of
pores. The efficiency of the diffusio-osmosis process is given in
brackets as it has no economic influence.

benefit from interactions at pores entrance, neither streaming current,

nor diffusio-osmosis. Seemingly, interactions have to be avoided to reach

a better efficiency.
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4.6 Partial conclusion

We proposed in this chapter a general formalism to describe electroki-

netic transport phenomena, taking into account entrance effects and

cross-coupling coefficients. Using the scaling for hydrodynamic and elec-

tric entrance effects determined in the previous chapters, we predicted

that the efficiency of energy conversion using electrokinetic phenom-

ena scales at best like 1/
√
N , N being the number of channels in the

membrane.

This scaling is highly unfavorable, but several elements must temper

our conclusion. First, the hypothesis that diffusive entrance effects scale

as electrical ones must be checked. Moreover, we also have to consider

the real scope of electrostatic interactions at channel entrances. The

finite size of electrodes and the finite distance at which they are from

the membrane could possibly limit the interaction range. It would be of

interest to test numerically the case where electrodes are at a distance

from the membrane which compares to the pore radius. The ultimate

situation would be to graft electrodes directly on the membrane.

Altogether, entrance effects across membranes exhibit subtle and counter-

intuitive features, which should be handled with care when tackling

nanofluidic properties scaling-up. Calculations led in the case of infinite

hemispherical electrodes indicate that interactions at channel entrances

strongly decrease the efficiency of energy conversion processes. Yet,

tuning of the electrode size and position could help reducing the strength

and scope of interactions.
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5.1 Osmosis membranes in desalination

5.1.1 Requirements for desalination osmosis mem-

branes

In 1960, Loeb and Sourirajan exhibited the first desalination membrane,

paving the way for reverse osmosis to develop [99]. Much progress has

been accomplished since then, and reverse osmosis is now the leading

desalination technology. Its main advantage is to have the lowest energy

consumption among all the current industrial processes [29].

Designed to let only water molecules flow, but not ions, perfect desalina-

tion membranes should exhibit both an excellent selectivity and a high

water permeability. Yet, these are conflicting requirements, because

selectivity and permeability are mainly controlled by a same parame-

ter, pore size, which influences them in an opposite way. Because of
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their hydration shell, ions have a larger effective diameter than water

molecules and are prevented from flowing to the membrane by steric

repulsion. Hence, selectivity requires small-pore membranes. On the

contrary, water flow increases rapidly along with pore radius a, as a4

for a Poiseuille flow.

As selectivity is a necessary condition for desalinating, it was fulfilled

from the first dedicated membranes. In the 1970s, salt rejection attained

95% and exceeded 99% by 1987 [100]. So far, reverse osmosis membrane

pore size should be less than 0.6 nm to reach a 99% rejection rate [30,

101]. Wider pores of 1-2 nm can achieve decent ion rejection if they are

functionalized with ionic groups, thanks to an electrostatic Donnan-type

rejection mechanism [102, 103]. However, this mechanism only proves

efficient at low ionic concentration and is very sensitive to ion valence

effects, not providing universal ion rejection.

Permeability has regularly increased since the beginning of reverse

osmosis, reaching now 0.3 m3/(m−2·MPa·day) for seawater [29]. Yet,

there is space to improve water flow which is the limiting factor of

desalination efficiency. Carbon-nanotube (CNT) membranes are a

potential alternative to current polymeric membranes. These structures

foster hope because water was shown to experience great slippage inside

of them [68, 69, 104]. Early experimental results were rationalized

by numerical investigations, showing that the super fast water flows

in CNTs originate in a curvature-dependent friction coefficient [31].

However, even if flow rates inside of CNTs outreach flows in traditionnal

materials, they are still limitated by entrance effects (described in

chapter 3). Access resistance scales like 1/a3, thereby the smaller the

pores, the more stringent the limitation to fluid flows [87, 88]. Moreover,

CNT membranes are very difficult to produce with good control. There

is a need for technological breakthrough to manage to produce these at

a large scale and reasonable cost.
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We now present a new method susceptible to provide an alternative

solution to the low permeate flow and high CNT-membrane cost.

5.1.2 A gas bubble as an osmosis semi-permeable

membrane

The presently studied method releases the nanometric size constraint

by forcing water into a gas phase inside the membrane [5–7]. Ions

are retained in the liquid phase because of the very high energetic

cost necessary to strip them from their solvation shell. The physical

mechanism preventing ions from flowing into the membrane is thus very

different from traditional osmotic membranes. It is actually shared

by distillation methods, such as multi-stage flash distillation (MSF),

multi-effect distillations (MED) and membrane distillation which we

presented in chapter 1. In these methods, thermal energy and lowering

pressures allow water to vaporize. Whereas MSF and MED work

with large volumes of fluid at a time, membrane distillation is another

nanoporous-membrane-based method, where water vapor from the brine

reservoir reaches and passes through a hydrophobic porous membrane,

before condensing in the pure water reservoir. Even though membrane

distillation has a lower energetic cost than MSF and MED, it suffers

from low permeate flow rates [35] and thermal losses [5]. Nowadays,

membrane distillation is in a state of relative indifference, both from

the industry and the academia.

Designed and experimentally studied in Karnik’s team at Massachusetts

Institute of Technology, liquid osmosis through a gas phase borrows

from forward and reverse osmosis, and membrane distillation. The

former methods were presented in chapter 1 too. As in membrane

distillation, brine and pure water are separated by a porous hydrophobic
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membrane, where water vaporizes while transiting from one side to the

other. However the process is not thermally driven (although rising

the temperature could enhance the flow), but osmotically driven if

forward osmosis is considered, or mechanically driven as in reverse

osmosis. Under a salt-concentration difference between the two sides of

the membrane, water spontaneously transits through the gas phase from

the low- to the high-concentration side. Instead, if an applied mechanical

pressure compensates and overcomes the osmotic pressure, water flows

from the high- to the low-concentration side. Experimentally, such

membranes comprising nanobubbles with typical diameters of 70 nm and

lengths of a few microns have been shown to be successful under forward

osmosis [6]. Even if the level of hydrophobicity required necessitates

some chemical technicality, these nanotube dimensions allow an easy

scaling-up.

The present chapter will be organized as follows. First, we present

the physics governing the osmotic process through a gas phase. The

established equations will allow for a direct comparison with reverse

osmosis performance. The limits of the method will also be considered.

Then, we will characterize the transport mechanism under forward

osmosis, with molecular dynamics simulations of a simple Lennard-

Jones fluid. We then investigate the conditions under which the gas

bubble is impermeable to salt by measuring the energy-barrier an ion

has to overcome to pass through the hydrophobic tube.
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5.2 Physical mechanism of osmotic perme-

ation through a gas phase

5.2.1 Driving force

Gas flow within the membrane is driven by a partial pressure drop

between the two interfaces, originating from the (mechanical or osmotic)

pressure drop between the two liquid phases [5, 7]. This will be evidenced

by the following calculation.

We consider the situation depicted in Fig. 5.1. The left reservoir,

referred to as the A side, contains salty water, while the right reservoir

(B side) contains pure water. Like in reverse osmosis, a piston adds

a mechanical pressure on the A side aimed at counterbalancing the

osmotic pressure between the two sides. Thus, the A-interface meniscus

is more curved than the B one. At each interface, the chemical potential

of water in the liquid and gas phases equilibrates. Using subscripts for

the reservoir A or B , and superscripts � or v for the liquid or gas phase,

we get for the B interface

μ�B = μv
B (5.1)

μsat + Vm(PB − P v
sat) = μsat +RT ln (P v

B/P
v
sat) (5.2)

where μsat and P
v
sat are the equilibrium chemical potential and equilib-

rium vapor pressure, defined when pure liquid water is in equilibrium

with pure vapor water. Vm is the liquid water molar volume, PB the

pressure in the B liquid reservoir, R the gas constant, T the temperature

and P v
B the water partial pressure at the B interface.

Moreover, Young-Laplace equation describes the mechanical equilibrium

of the interface, linking the pressure in the liquid PB to the pressure in
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Figure 5.1: Schematic diagram of a hydrophobic nanochannel
with liquid-vapor interfaces on either sides. The applied pressure
on the A side is greater than the osmotic pressure, resulting in gas
transport through the bubble. Ppore is the total pressure of the
gas phase, while Pvap,A/B are the water partial pressures at both
interfaces. Reproduced from [5].

the gas Ppore according to

PB = Ppore +
2γlv
rB

. (5.3)

We stress that Ppore is the total pressure of the gas phase, which

contains not only water vapor but also air. γlv is the water surface

tension, assumed to be identical for salted and pure water, and rB is

the curvature radius of the B interface. Eq. (5.2) and (5.3) yield

ln

(
P v
B

P v
sat

)
=
Vm
RT

(
Ppore − P v

sat +
2γlv
rB

)
. (5.4)
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As Ppore − P v
sat �

2γlv
rB

, we get

ln

(
P v
B

P v
sat

)
=
Vm
RT

(
2γlv
rB

)
(5.5)

=
Vm
RT

(PB − Ppore) . (5.6)

The partial pressure at the B interface follows as

P v
B = P v

sat exp

(
ΔPB Vm
RT

)
≈ P v

sat

(
1 +

ΔPB Vm
RT

)
. (5.7)

whereΔPB = PB−Ppore is the pressure difference across the B meniscus.

The same procedure at the A interface gives

μ�A = μv
A (5.8)

μsat + Vm(PA − P v
sat) +RT lnxw = μsat +RT ln (P v

A/P
v
sat) (5.9)

where xw is the water mole fraction in the liquid phase. Considering

PA = Ppore +
2γlv
rA

(5.10)

and Ppore − P v
sat �

2γlv
rA

, Eq. (5.9) results in

P v
A = P v

sat exp

(
ΔPA Vm
RT

)
xw ≈ P v

sat xw

(
1 +

ΔPA Vm
RT

)
. (5.11)

with ΔPA = PA − Ppore.
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We now follow Lee & Karnik [5] to establish the transport driving force

across the pore:

P v
A − P v

B = P v
sat

[(
1 +

ΔPA Vm
RT

)
(xw − 1) +

ΔPA Vm
RT

− ΔPB Vm
RT

]
.

(5.12)

Introducing the osmotic pressure as

ΔΠ = kBTρsalt =
RT

Vm
xsalt =

RT

Vm
(1− xw), (5.13)

Eq. (5.12) can be rewritten according to

P v
A − P v

B = P v
sat

[
(ΔP −ΔΠ)Vm

RT
− ΔPA Vm

RT

ΔΠVm
RT

]
(5.14)

with ΔP = ΔPA−ΔPB = PA−PB . The second term in the parenthesis

being much smaller than the first one, we finally obtain

P v
A − P v

B =
P v
satVm
RT

(ΔP −ΔΠ) =
ρvsat
ρl

(ΔP −ΔΠ) (5.15)

where ρvsat and ρ
l are the number densities of the equilibrium vapor and

of the liquid phase respectively.

5.2.2 Transport through a gas phase

Denoting φA,B/B,A the probability that a molecule emitted by evapora-

tion in A (resp. B) condenses on the other meniscus B (resp. A), and

Ṅe,A/B the evaporation rate at the A (resp. B) interface, the net flux

rate (in s−1) across the nanochannel is

Ṅ = φA,BṄe,A − φB,AṄe,B. (5.16)
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For each meniscus to be at equilibrium, the evaporation rate Ṅe is equal

to the condensation rate Ṅc, given by [5, 105]

Ṅc,A/B = σ × 1

4
v̄ ρvA/B × πa2 (5.17)

where σ is the condensation coefficient, i.e. the probability that an

incident gas molecule condenses at the meniscus, v̄ the mean of the

magnitude of the water-molecule thermal velocity and ρvA/B the water

number density in the gas phase, at meniscus A or B respectively. Using

v̄ =

√
8kBT

πmw
(with mw the mass of a water molecule) and ρv =

P v

kBT
,

we obtain

Ṅc,A/B = σ ×
√

kBT

2πmw

P v
A/B

kBT
× πa2. (5.18)

The net flux through the bubble becomes

Ṅ = σ (πa2)

√
1

2πmwkBT
(φA,B P

v
A − φB,A P

v
B). (5.19)

To compute φA,B, it is necessary to rely on a diffusion model. For

nanometer pores, Knudsen diffusion is relevant, as the mean free path

for water vapor at ambiant temperature is about 1 μm, thus exceeding

the pore radius. However, Knudsen diffusion coefficient is defined in

the limit of an infinite pore length. Lee & Karnik thus established a

general model by considering all possible ways for a molecule emitted

in A to condense at either A of B meniscus [5]. They found that

φA,B = φB,A =
η

2η(1− σ) + σ
(5.20)

where η is the transmission coefficient, accounting for the probability

that a molecule evaporated at one side reaches the other side. Whereas

σ is expected to be constant but unknown, as the values reported

in the literature vary from 0.01 to 1 (see [5]), η was calculated as a



Liquid osmosis through a gas phase: a numerical study 141

Figure 5.2: Transmission coefficient of a molecule across a cylindri-
cal nanochannel of length � and radius a, using the expression given
by Berman [106]. In this work we use aspect ratio �/a between 1
and 12.

function of the pore aspect ratio AR = �/a, under the diffusive scattering

assumption [106]. It is given by

η = 1 +
AR2

4
− AR

4
(AR2 + 4)1/2

−
[
(8−AR2)(AR2 + 4) +AR3 − 16

]2
72AR(AR2 + 4)1/2 − 288 ln

(
AR

2
+

(
AR2

4
+ 1

)1/2
) (5.21)

which is plotted in Fig. 5.2. Formula (5.21) is derived under the

hypothesis that only water molecules are present in the gas phase. It

is possible to account for the effects of air molecules using a dusty-gas

model [6], which yields a modified transmission probability. Although

such effects can be substantial in experimental systems, we do not

consider them in the following; numerical systems will not exhibit air

molecules.
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All in all, the water flux across the nanochannel, from the draw side to

the permeate side, is expected to obey

Ṅ =
ση

2η(1− σ) + σ
× πa2 ×

√
1

2πmwkBT

ρvsat
ρl

(ΔP −ΔΠ) (5.22)

It is of interest to check the validity of Eq. (5.22) with numerical meth-

ods, which allow an easy tuning of the various physical quantities. This

study will be undertaken in section 5.3. If one considers a nanoporous

membrane with many nanobubbles in parallel, it is useful to consider

the mass rate through the membrane, in g/(m2· s), which we define as

ṁ = Φmw
Ṅ

πa2
(5.23)

where Φ is the membrane porosity (void fraction), and Ṅ the flux rate

in s−1 through one single nanochannel, derived in Eq. (5.22). ṁ writes

ṁ = Φ× ση

2η(1− σ) + σ
×
√

mw

2πkBT

ρvsat
ρl

(ΔP −ΔΠ). (5.24)

Now, we turn to the inherent limitations of osmosis through a gas phase,

namely a maximal pore radius and minimal aspect ratio.

5.2.3 Limits of the method

To maximize concentration gradients and hence optimize permeate flow,

the length of nanochannels tends to be reduced. What is more, as the

present method waives the subnanometric imperative, it is tempting

to increase the pore radius. However, the stability of the gas bubble

restricts both pore radius and length. Both criteria affect the mass

flux derived in 5.24, because they translate in an upper bound for the
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Figure 5.3: Detailed configuration of liquid-vapor interface. θeq
denotes equilibrium contact angle satisfying Young’s relation and θ
denotes the angle between a line tangential to interface and pore
axis, which satisfies mechanical force equilibrium. Reproduced from
[5].

transmission coefficient η. Note that
ση

2η(1− σ) + σ
is an increasing

function of η, whatever σ.

• Maximum pore radius

The condition on the pore radius originates in the mechanical pressure

drop a liquid-gas interface can sustain. In the proposed configuration,

depicted in Fig. 5.3, it is given by the Laplace-Washburn equation [5,

107]

ΔPAmax = PA − Ppore = −2γlv cos θeq
a

, (5.25)

where θeq is the static contact angle, satisfying Young’s relation

γsl − γsv + γlv cos θeq = 0. (5.26)

Eq. (5.25) can alternatively be seen as the maximum radius allowing

the pore to resist wetting,

amax = −2γlv cos θeq
ΔPA

. (5.27)
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Under forward osmosis, the channel radius could be as high as 1.4 μm

for a perfectly non-wetting surface (θeq = 180◦), using γlv = 72 mN/m

at 25◦C. However, the highest equilibrium contact angles experimentally

observed on smooth surfaces are much lower. Silanization is one of the

most efficient chemical process to make a surface hydrophobic, yielding

contact angles of 120◦ at most [108, 109]. Lee et al. used this method to

make hydrophobic one side of the nanoporous alumina membranes they

trap water vapor bubbles into [6]. Micro- and nanopatterned surfaces,

which can exhibit higher contact angles (up to 160◦ in [109]), are not

relevant in the present situation [110–112].

Considering θeq = 120◦, amax is reduced to 0.7 μm under forward

osmosis. Under reverse osmosis, 60 bar are typically applied on the

salted-water side for seawater desalination [29]. Such mechanical pres-

sure leads to amax ∼ 12 nm. To alleviate this condition on the radius,

it is possible to work at lower mechanical pressure, either accepting a

water flux reduction, or using less saline water such as brackish water

from estuaries, for example.

• Minimum pore aspect ratio

Even if the criterion (5.27) is fulfilled, it is not enough to ensure the

bubble stability. Indeed, because of the finite pore length, pore filling

becomes energetically favorable below a critical aspect ratio �/amin.

We now derive the energetic balance describing pore filling, considering

that it occurs from the A side which is under mechanical pressure. Work

by pressure forces will compensate the energetic cost of new liquid-solid

and liquid-liquid interfaces, which writes [5]

−
∫ 0

V0

ΔPA dV +ΔE = (γsl − γsv)Awall − γlv(Am,A +Am,B) (5.28)
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with V0 the pore volume initially occupied by air, Awall the area of

the pore wall, Am,A and Am,B the areas of the A and B menisci. The

first term corresponds to the work of pressure forces and ΔE is the

additional energy required to induce the filling. On the right hand-side

of Eq. (5.28), the Awall term accounts for the air-solid interface being

replaced by a liquid-solid interface, and the last term corresponds to the

merging of the two liquid-gas menisci. The geometric parameters read

V0 = πa2�+O(a3) (5.29)

Awall = 2πa� (5.30)

Am,A = 2πrAh =
2πa2

1 + sin θ
(5.31)

Am,B = πa2, (5.32)

where θ is the contact angle, generally different from the equilibrium

contact angle used in Young-Laplace equation. It is related to the

pressure drop across the A interface according to

ΔPA =
2γlv
rA

= −2γlv cos θ

a
. (5.33)

The pore resists wetting if ΔE > 0, which yields the criterion [5]

�

a
>

1

cos θ − cos θeq

(
1

2
+

1

1 + sin θ

)
. (5.34)

Hence, �/a is always more than 1, even for a perfectly non-wetting pore

(θeq = 180◦). Considering moreover θeq = 120◦, ΔPA = 60 bar as in

reverse osmosis, and a = 10 nm, we get �/a > 13. Decreasing the pore

size to a = 5 nm yields a more favorable �/a > 3.5.

Under forward osmosis, ΔPA/B = 1 bar and θ = 91◦ ≈ 90◦. Both

menisci can be considered as flat, and we get �/a > 1.0 with θeq = 180◦,



146 Chapter 5.

or �/a > 2.0 with θeq = 120◦ (a = 10 nm). Therefore, even in forward

osmosis, the bubble stability imposes that the pore length equals or

exceeds the pore radius: �/a > 1.

At that stage, one could be tempted to conclude that osmosis through

a gas phase is therefore more suited to forward osmosis, than to reverse

osmosis. However, the points to be considered are, what flux is targeted,

and how much mechanical energy is available, then a compromise must

be seeked. This non-trivial compromise should put in balance the effects

of the radius, of the aspect ratio and of the mechanical pressure on the

total water flux.

We note also that a negative line tension could alleviate the criterion

of stability on the aspect ratio. To account for the merging of the two

contact lines during the filling, the term (−4πaλ) is added to the right

side of Eq. (5.28), yielding

�

a
>

1

cos θ − cos θeq

(
1

2
+

1

1 + sin θ
+

2λ

γlva

)
. (5.35)

Taking a = 10 nm or a = 8 Å (typical radius in the simulations, see

section 5.3), γlv = 72 mN/m and λ = −2.10−11 N/m2 [107], we find
2λ

γlva
= −0.06 or −0.7 respectively. Thus, in experimental systems the

line tension is expected to have no detectable influence, but it could be

evidenced with molecular dynamics simulations.

In our numerical studies where θeq is thought to be close to 180◦, we

clearly observe spontaneous pore filling for pore lengths smaller than

a. However, we did not try to determine more precisely the threshold

above which all vapor bubbles are stable. Accounting for the precise

influence of the line tension requires dedicated studies, which could be

an interesting continuation of the present work.
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As a remark to end this paragraph, we note that pore filling occurs for

ΔE = 0. From Eq. (5.28), we get

ΔPA = −2γlv cos θeq
a

− 4γlv
�

(
1

2
+

1

1 + sin θ

)
− 4λ

a�
. (5.36)

In the limit of an infinite pore length, we recover the Laplace-Washburn

law of Eq. (5.25).

To sum up this paragraph, we have shown that the maximum pore

radius is given by

amax = −2γlv cos θeq
ΔPA

. (5.37)

withΔPA the pressure drop across the Ameniscus, and that the minimal

pore aspect ratio is �/a = 1 at best, but possibly higher depending on

the equilibrium contact angle and the pressure across the meniscii.

We now come to the order of magnitude of the permeate flow rate

through the membrane.

5.2.4 Order of magnitude of the permeate flow rate

The aim of this paragraph is to compare the presently studied osmosis

through a gas phase with traditional reverse osmosis.

We recall the water-vapor mass flux through a hydrophobic nanoporous

membrane, in g/(m2·s),

ṁ = Φ× ση

2η(1− σ) + σ
×
√

mw

2πkBT

ρvsat
ρl

(ΔP −ΔΠ),

which is plotted as a function of both pore radius a and applied pressure

(ΔP −ΔΠ) on Fig. 5.4, assuming a membrane porosity of 40%. The

mass flux in this figure is computed for the minimal aspect ratio ensuring

the nanobubble stability.
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Figure 5.4: Predicted mass flux through a nanoporous membrane
with different pore sizes and driving pressures. The minimal aspect
ratio �/a ensuring an unfavorable channel filling was used, together
with a static contact angle θeq = 120◦ and a porosity Φ = 40%.
The red region with zero flux indicates that the pore radius is too
large to sustain the applied mechanical pressure drop. Reproduced
from [5].

We can see that actually, smaller nanochannels provide higher mass

fluxes, because they allow shorter channels to be used. Indeed, the

minimal aspect ratio for thermodynamic stability depends on a, through

cos θ (see Eq. 5.34). Reducing a at constant � reduces indeed the

transmission coefficient η, but the gain in reducing � overcomes this

trend. All in all, reducing a and � so as to keep at the limit of the

bubble thermodynamic stability enhances η, and thus the water flux.

A NaCl concentration of 0.62 mol/L (typical seawater concentration)

yields an osmotic pressure of roughly 30 bar. For ΔP = 60 bar, com-

monly used in reverse osmosis, pore sizes of 5-10 nm seem well suited.

Such pore sizes are convenient to produce on a large scale, which is

the main advantage of this method. With a condensation probability σ

of 0.5, and at T = 50◦C, the mass flux is aroung 10 g/(m2·s). This is
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comparable to or higher than the actual flux rate achieved in reverse

osmosis, between 3 and 10 g/(m2·s) for seawater [29].

It is worth noting that high water fluxes are reach, although transport

occurs through a vapor phase with a very low density. Indeed, mass

fluw is proportional to ρvsat/ρ
l which is about 10−4 for water. One could

thus express surprise that transport through a gas phase could compare

with liquid reverse-osmosis fluxes [7]. This is because reverse osmosis

requires sub-nanometric pores, which hinders considerably liquid flow.

Indeed, mass flux per unit membrane area under a Poiseuille flow reads

ṁPoiseuille = Φ× mwa
2

8η�
(ΔP −ΔΠ), (5.38)

where the
a2

�
factor is the limiting one.

However, recent experimental data show that the condensation coeffi-

cient σ is likely to be smaller than 0.5, around 0.2 [6]. What is more, air

molecules trapped inside of the bubble result in a smaller transmission

coefficient η. The above-mentioned orders of magnitude therefore may

be slightly overestimated, but yet the present method is likely to be

competitive with reverse osmosis as far as water flux is concerned. An-

other requirement is that osmosis through a gas phase proves selective

enough. This will be shown to be true in section 5.4.2.

In the next part, we focus on the transport properties of an osmotic gaz

flow under forward osmosis, and show that Eq. (5.22) giving the water

flux through a single nanochannel is robust. To this end, we study the

forward osmosis process under way through the bubble using a simple

Lennard-Jones two-component fluid. We then investigate the conditions

under which the gas bubble is impermeable to salt by measuring the

energy-barrier an ion has to overcome to pass through the hydrophobic
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tube. In this case, we use the TIP3P model for water and both coulombic

and Lennard-Jones interactions between ions and water molecules.

5.3 Characterization of the osmotic trans-

port in a gas phase

In this section, the dependency of the permeability with respect to

pore length and radius, and to fluid-particle mass, is investigated with

molecular dynamics simulations. We briefly expose the computational

details before numerically proving the adequacy of Eq. (5.22).

In the following, we consider only simulations where the vapor bubble

is impermeable to ions.

5.3.1 Computational details

Molecular dynamics (MD) provides a molecular-scale resolution of the

transport properties. Considering the low number of gas molecules

inside hydrophobic nanochannels – around 100 water molecules within

the nanochannels experimentally studied by Lee & Karnik of 70-nm

diameter and 100-nm length [6] – MD simulations are fully appropriate

in the present study.

Moreover, since the seminal article by Hummer and co-workers in 2001

[113], MD simulations are an ideal tool to study nanometer-scale flows.

[113] first pointed to the high water flow rates in CNT, fostering much

experimental investigations in this direction [68, 69, 104]. Hummer’s

results on the interactions between water molecules and hydrophobic

CNTs also are of great interest, and will be invoked in this section.

In the present work, all the simulations are performed using LAMMPS
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[114], a now classical molecular dynamics code. This acronym stands for

Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS

is very convenient as it enables to work on a single processor for test

simulations, but also on many processors in parallel. We conducted

simulations on as many as 1000 processor cores with no particular

difficulty.

• System

The system of interest consists in a fixed and rigid nanotube linking

two reservoirs, and 2 pistons to compress the fluid in the direction of

the tube axis, see Fig. 5.5. The present nanotube is made of a rolled

sheet of hexagonally arranged atoms. Even though the use of CNTs in

the present work was not compulsory, as we barely needed a material

capable of hosting a nanometric gas bubble, several reasons guided our

choice. Because of their excellent electrical (and mechanical) properties,

the use of CNTs is getting widespread in the nanofluidic community.

Moreover, their geometry is easy to implement, and we could benefit

from previous MD studies experience [31, 115].

Not only the nanotube, but also the walls at its entrances and the

pistons are made of imitation graphene with a distance between nearest

neighbors of d = 0.6 Å. This value ensures the nanotube and walls

impermeability to the Lennard-Jones fluid.

The nanotube connects two fluid reservoirs, one containing a one-

component fluid and the second one with a one- or two-component

fluid. Periodic boundary conditions were imposed in all directions, and

we checked that the reservoir lateral size L was big enough to give

accurate data [79]. We typically use L � 5a.

• Lennard-Jones fluid

According to Eq. (5.22), the expected osmotic flux is proportional to the

ratio of water vapor density and liquid water density. For water,
ρvsat
ρl

is
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Figure 5.5: Snapshot of the system, with only α particles (blue
spots). The pistons are in grey, the tube and the walls at its
entrances in pink. The system is in an equilibrium state. A bubble
of vapor is nucleated inside the tube, whereas the reservoirs contain
liquid. Snapshot made with VMD [116].

less than 10−4. We thus chose not to use water models here, but rather

a Lennard-Jones fluid for which
ρvsat
ρl

∼ 0.1, which provides a faster

osmotic transport across the gas phase. Moreover, the models used to

simulate water are costly in terms of number of parallel processors and

calculation time, whereas Lennard-Jones fluids are easier to implement,

time-savers, but still capture the physics at stake.

• Interaction parameters

Simulations involve between 2180 and 76050 fluid particles (solvent

particles labeled α and solute particles labeled β) interacting solely via

the Lennard-Jones potential

U(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(5.39)

where ε is the depth of the potential well, and σ the cross-section, worth

the finite distance at which the inter-particle potential U(r) is zero (see

Fig. 5.6).
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Figure 5.6: Reduced Lennard-Jones potential, as a function of the
reduced distance r/σ.

Interactions are suppressed among neighboring nanotube atoms, neigh-

boring wall atoms, and neighboring piston atoms. The interaction

parameter between two solvent molecules εαα is such as to keep the

reduced temperature T ∗ =
kBT

εαα
= 0.9, which is in between the fluid’s

triple-point temperature and the critical temperature [117, 118]. The

temperature was fixed at 300 K using a Langevin thermostat with a

damping parameter of 10 ps. Between the fluid and the tube, or between

the fluid and the tube’s entrances, the interaction strength is set to

εα−tube = 0.1 εαα, (5.40)

and between the fluid and the pistons to

εα−piston = 0.8 εαα. (5.41)
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These values ensure the hydrophobicity of the nanotube and the hy-

drophilicity of the pistons: the particles are distributed in both reservoirs,

while the tube is nearly empty (see Fig. 5.5). We stress that the phase

transition inside the nanotube, from a liquid to a gas phase, is very

sharp when reducing εα−tube, as previously observed by Hummer et

al. [113]. Moreover, under decreasing εα−tube, solid-liquid interfaces

are replaced by solid-vapor ones at the tube’s entrances. This is in

full agreement with Nijmeijer and co-workers’ results, who observed

a drying transition at εα,tube ≈ 0.2 εαα and only solid-vapor interfaces

below this value [110, 117, 119].

To mimick the solvation of ions, we choose a high interaction parameter

between the solvent and the solute,

εαβ = 2.3 εαα, (5.42)

while α and β particles interact similarly with the tube, the walls and

the pistons. This high value of the α− β interaction parameter ensures

that β particles neither evaporate, nor cross the tube.

For the sake of simplicity, we choose cross-sections of 1 Å for the fluid

particles:

σαα = σββ = 1 Å. (5.43)

For the fixed tube and piston atoms, the link between the interatomic

distance d and the cross-section σ is given by

σtube−tube/piston−piston =
d

21/6
= 0.534 Å (5.44)

and

σα−tube/α−piston =
σαα + σtube−tube/piston−piston

2
(5.45)
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according to Lorentz-Berthelot mixing rules.

• Mechanical pressure

On each piston, we apply a reference pressure of 3000 atm in order

to get the vapor phase only inside the tube, and not spilling over the

reservoirs, as in Fig. 5.8. The average vapor density is 0.04/σ3
αα and

the average fluid density is 0.69/σ3
αα, which is in full agreement with

[117]. Unless otherwise stated, solvent and solute particles have the

same mass m = 1 g/mol.

Five different sets of simulations are conducted using solely Lennard-

Jones potentials. The first two sets test the correct functioning of

the simulations, and the last three explore the dependency of the

permeability with the fluid particle mass, pore radius and length.

5.3.2 Pressure-driven flow with no solute

The first set of simulations permits to check that a one-component

fluid (i.e. ΔΠ = 0) under an applied pressure drop ΔP , flows with a

constant rate, proportional to the applied pressure drop, see Fig. 5.7.

We call permeability, the proportionality coefficient between the flow

rate and the pressure drop. It is thus defined as

Ṅ = K(ΔP −ΔΠ) (5.46)

and it is expected to behave according to

K =
ση

2η(1− σ) + σ
× πa2 ×

√
1

2πmwkBT

ρvsat
ρl

(5.47)

=
ση

2η(1− σ) + σ
Kmax, (5.48)
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Figure 5.7: Response of a one-component Lennard-Jones fluid
to an applied pressure drop, vaporizing and flowing through a
nanochannel of dimensions a = 3.4 Åand � = 8.3 Å. (Left) Number
of particles in the right B reservoir as a function of time, while
the excess pressure is applied by the left A piston. The curves in
yellow, red, green and blue correspond to an applied pressure drop
of 1000, 3000, 5000 and 9000 atm respectively. The dashed lines
are linear fit of the curves, their slope is plotted on the right figure
against the excess pressure with purple dots. The purple dashed
line is a linear fit of the flux against the excess pressure, its slope is
the permeability K ∼ 2.108 atm−1.s−1.

where Kmax is the highest reachable permeability with given nanochan-

nel and solvent, attained when σ = η = 1.

In these pressure-driven flows of α particles, through a nanochannel

of radius a = 3.4 Å and length � = 2.5 a, we find for the permeabil-

ity K = 2.108 atm−1.s−1, which gives K/Kmax = 0.6. This value of

K/Kmax is close to the predicted value (0.5) calculated using Eq. (5.21)

with a condensation coefficient σ = 1, (see Fig. 5.10 page 161). The

discrepancy between these two values may come from reservoirs being

too small in these simulations.
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5.3.3 Evolution of the number of solvent particles

under an osmotic forcing

Subsequent sets of simulations involve a concentration gradient, which

entails an osmotic forcing. From now on, solvant flows are driven by

forward osmosis. We first checked that the initial flow rate Ṅα,A(t = 0)

with an initial osmotic pressure ΔΠ (t = 0) was the same than the flux

rate with an applied excess pressure ΔP worth −ΔΠ (t = 0).

Then, the flow of α particles as a function of time is considered. Under

a salt concentration difference between two reservoirs, the number of

α particles in the A reservoir (the “seawater” side) Nα,A(t) does not

increase linearly with time, as it would be under an applied excess

pressure. It can be shown that it follows an algebraic law,

Nα,A(t) = N0
tot,A

√
1 + κKt−Nβ (5.49)

with N0
tot,A the total number of particles in the A reservoir at t = 0,

Nβ the number of β particles which is constant, and κ = 2
kBTNβρ

l

(N0
tot,A)

2
.

Of course Nα,A does not increase infinitely, but until the A reservoir is

drained. More precisely, the complete draining of a reservoir is never

observed. As in Fig. 5.8, one to three strongly-organized layers of

solvent molecules always remained between the piston and the tube.

The same observation can be done with water simulations. The special

stability of 2D sheets of water was first reported by Kalra and co-workers

[120], who showed that fluctuations adding or removing atoms from

such layers are strongly suppressed as compared to a bulk situation.

They point to a metastability arising from the molecule orientations,

leading to close to three in-plane hydrogen bonds per molecule. As a

comparison, water molecules exhibit four hydrogen bonds per molecule
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Figure 5.8: Out-of-equilibrium ending of a run, where the solvent
from the B reservoir (on the right) moved through the bubble and
diluted the two-component reservoir (on the left) under forward
osmosis (ΔP = 0). Snapshot made with VMD [116].

under the ice phase, and around 3.5 hydrogen bonds on average in

the bulk liquid phase [121]. Such phenomenon of water layering near

hydrophilic solid surfaces has received much attention from transport

studies in porous media [122].

5.3.4 Investigation of the permeability dependen-

cies

In the last three sets of simulations with Lennard-Jones fluids, we focus

on the dependencies of the permeability K with respect to the particle

mass m, and then the dependency of K/Kmax with a/l under forward

osmosis.

Rewriting Eq. (5.49), the square of the normalized number of α particles

in the A reservoir is expected to behave as

(
Nα,A(t) +Nβ

N0
tot,A

)2

= 1 + κKt, (5.50)
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Figure 5.9: Results from simulations with a = 3.4 Å, l = 8.3 Å and

various m (a)

(
Nα,A(t) +Nβ

N0
tot,A

)2

as a function of time, for m = 1

(in blue) m = 2 (in red) and m = 30 g/mol (in green). The blue
and the red curves saturate around 2 and 3 ns respectively, because
of the pure water reservoir draining. The maroon dashed lines are
examples of linear fits crossing the y-axis between 0.9 and 1.1 (see
text). (b) Orange dots : log K as a function of log m, with K in
Pa−1s−1 and m in g/mol. The blue dashed line has a slope of -0.5,
it is only a guide for the eye.

which provides an easy access to the permeability K. The curves

obtained from the simulations, such as the ones plotted on Fig. 5.9-a,

are indeed well described by Eq. (5.50) before the (incomplete) draining

of the B reservoir is achieved. We perform several linear fits on different

time scales, and keep only those cutting the ordinate axis at 1 ± 0.1.

From these different fits we extract an average of K and a standard

deviation which are represented in Fig. 5.9-b and Fig. 5.10 by points

and error bars respectively.

As can be seen in Fig. 5.9-b, log K as a function of log m can be fitted

by a linear function of slope -0.5, which is in full agreement with the

dependency of K ∼ 1/
√
m proposed in Eq. (5.22). We now turn to
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the computation of K/Kmax under various pore sizes and lengths. For

varying pore radius, the pore legnth was fixed to � = 8.3 Å , and for

varying pore length the pore radius was a = 8.3 Å.

As established in Eq. (5.48), the theoretical expression of K/Kmax is

K

Kmax
=

ση

2η(1− σ) + σ
(5.51)

which, according to Eq. (5.21), is a function of the aspect ratio �/a.

For long pores (�→ ∞), Eq. (5.21) results in [5]

η −→ 8

3

a

�
. (5.52)

Adding the hypothesis of a perfect condensation (σ = 1), we thus get

K

Kmax

∣∣∣∣
�→∞

=
ση

2η(1− σ) + σ
=

8

3

a

l
. (5.53)

On Fig. 5.10, the numerical results of K normalized by Kmax are

compared to the theoretical expressions (5.51) and (5.53). Numerical

data are well represented by Eq. (5.51) with a condensation coefficient σ

comprised between 0.75 and 1. Indeed, all data from osmosis simulations,

either with a varying tube length or a varying tube radius, fall between

those two theoretical curves. In the case where the inverse aspect ratio

a/� is below 0.2, K/Kmax is reasonably accounted for by the simpler

expression of Eq. (5.53).

The determination of the condensation probability is an issue on which

no general agreement has emerged yet. For Lennard-Jones fluids, values

between 0.1 and 1 have been proposed [123], while σ = 1 is typically

used in calculations [124]. The estimate we provide is therefore not

unreasonable.
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Figure 5.10: K/Kmax as a function of a/�. Blue and purple solid
line : prediction of Eq. (5.51) with σ = 1 and σ = 0.75 respectively.
Maroon dashed line : prediction of Eq. (5.53), which is the limit of
Eq. (5.51) for long pores and σ = 1. It is the tangent at the origin
of the blue curve. Green points and squares stand for simulations
where the tube length varies. Pink triangles stand for simulations
where the tube radius varies. All those points were obtained from
forward-osmotic processes. The orange X-mark is the result of a
hydraulic-pressure driven flow with a zero osmotic pressure.

Note that the same (if not wider) discrepancy exists within the experi-

mental and theoretical results for σ [125]. Lee et al. recently reported

an experimental value of 0.23 at 39◦C, with a slowly decreasing trend

upon increasing temperature [6].

It would be of interest to carry on the same simulations with water mod-

els. Since the Bernal-Fowler model published in 1933 [126], many water

models have been proposed, usually designed to better reproduce one

property in particular. Although it has been suggested that molecular

dynamics simulations could be used to determine the water condensation
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probability [127], current water models may not be accurate enough for

this purpose, as they hardly account for both liquid and gas properties

[128, 129]. In any case, this question deserves a dedicated study, for

which the TIP4P/2005 model could be promising [128, 130].

We now turn to the study of the selectivity of a vapor phase trapped in

a nanochannel, between two liquid reservoirs.

5.4 Selectivity of a hydrophobic nanotube

The selectivity of the non-conventional semi-permeable osmosis mem-

brane used in the present study relies on the nanobubble stability.

Indeed, ions are very unlikely to cross a vapor phase. To maintain the

bubble integrity, it was exposed in section 5.2.3 that limitations to the

pore radius and aspect ratio are required. In the performed numerical

simulations, it was observed that the vapor bubble is stable for pore

lengths down to � = a. For � � a, the vapor phase seems stable, but it

is likely that transient liquid bursts carry ions toward the pure-water

reservoir. For values of � lower than a, the vapor bubble is quickly filled

with liquid water.

To rationalize the observed behaviors, we now focus on the energy

barrier encountered by ions when crossing the tube. This energy bar-

rier is called the potential of mean force (PMF). In the following, the

PMF is measured for various tube lengths, resorting to the umbrella

sampling technique. Umbrella sampling is briefly described in the next

paragraph along with the choosen parameters. We investigate both the

impermeable case where �/a > 1, and the permeable case when this

condition is no longer fulfilled.
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5.4.1 Computational details and umbrella sampling

method

As in the previous section, the calculations are performed with LAMMPS.

The geometry is the same as before (see Fig. 5.5-a) : an armchair single-

wall nanotube made of a rolled graphene sheet, two reservoirs delimited

by graphene walls at the tube entrances and by graphene pistons which

pressure was set to 1 atm. Carbon nearest neighbors are spaced with

d = 1.418 Å. The tube radius is fixed at 8.1 Å, while tube lengths range

from 2.5 to 39 Å.

To describe water molecules, the TIP3P model was used [131], as it is

both easy to implement and efficient in terms of calculation time. The

following results may be refined by using a more sophisticated model

such as TIP4P/2005 [130].

The interactions between water and the nanochannel (and the walls at

its entrances) are modeled with a Lennard-Jones potential of parameters

εO-tube = 0.001 kcal/mol and σO-tube/O-piston = 3.28 Å. Between water

and the pistons, we used the classical value εO-piston = 0.114 kcal/mol

[115].

O-H bonds are fixed using the SHAKE algorithm. Long range Coulombic

forces are computed using the particle-particle particle-mesh (PPPM)

method [132]. Calculations are performed in the nve ensemble and

temperature is set at 300 K with a Dissipative Particle Dynamics

thermostat [133]. A time step of 1 fs is used and, typically, simulations

of a few nanoseconds are performed.

Two ions, K+ and Cl−, are put in one of the reservoirs. Ions interact

with the carbon atoms with the same parameters as oxygen. At the

beginning of each run, the tube is empty from water molecules and

separated from the reservoirs with two graphene sheets. We let the

reservoirs equilibrate during 0.1 ns before removing these sheets. Then,
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the ions are driven through the z-axis tube, starting from 11 Å from

the tube’s entrance and by steps of 1.6 Å. To this end, we apply an

harmonic bias of stiffness b = 1 kJ/mol/Å2 on the z-coordinate of both

ions, which are trapped during 0.1 to 0.5 ns in the same position zi.

This method is called the umbrella sampling technique [134, 135].

We calculate pieces of the PMF of Cl− according to

Fi(z) = −kBT ln pi(z)− 1

2
b(z − zi)

2 + Ci (5.54)

where the subscript i refers to the position of the trap. pi(z) is the

probability of finding the ion in z, zi is the center of the i−th trap and

Ci is an unknown constant. Thanks to the small overlaps between them,

we manually rescale the Fi curves to get the entire energy profile F (z).

Alternatively, one could use the automated weighted histogram analysis

method (WHAM) [135].

5.4.2 Energy barrier experienced by an ion crossing

the nanotube

As can be seen on Fig. 5.11, the computed PMF are symmetrical with

respect to z = 0. For a tube radius of 8.1 Å, the maximum energy

barrier is 30 kBT (75 kJ/mol). This result can be compared to the 75

and 52 kJ/mol found by Song & Corry to fully dehydrate Na+ and Cl−

respectively [136]. Here we do not dehydrate the ions, so one could

expect a lower energy barrier. But as the tube is hydrophobic, water

molecules surroundings the ions are also reluctant to enter it, which

possibly raises the PMF.

The PMF reaches and plateaus at the maximum value of 30 kBT only

for tubes longer than ∼ 20 Å (i.e. �/a > 2.5). In this case, we observe

that when ions are driven through the bubble by umbrella sampling, a
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Figure 5.11: PMF of an ion Cl− crossing a hydrophobic nanotube
of radius 8.1 Å. (a) PMF along the z-coordinate for different tube
lengths : 2.5 Å (black), 4.9 Å (red), 7.4 Å (green), 9.8 Å (blue),
14.7 Å (yellow), 19.6 Å (brown), 29.5 Å (purple) and 39.3 Å (cyan
curve). (b) Height of the free energy barrier as a function of the
aspect ratio. Ions were trapped during 0.1 ns (dots) or 0.2 ns
(triangles) in each position. We evidenced 3 regimes, whether a
water canal would establish instantly (�/a ≤ 1), or only when the
ions get through the tube entrance (1 ≤ �/a ≤ 2.5), or whether
a drop would detach from the reservoir to travel inside the tube
(�/a ≥ 2.5).

liquid drop containing the two ions and various water molecules (from 6

to 17 in our simulations) detaches from one reservoir (see Fig. 5.12-top).

For 1 < �/a < 2.5, ions have to overcome a smaller barrier. It corre-

sponds to the case where, when ions are already engaged inside the

channel, a liquid canal sets inside the tube (see Fig. 5.12-bottom). The

canal disappears when the ions reach the second reservoir.

Tubes shorter than 8 Å (i.e. �/a < 1) are not impermeable to ions

because the bubble is unstable. Liquid water flows inside the tube,

and so do ions. Still, ions experience an energy barrier to cross these

tubes, which can be as high as 6 kBT . This comes from a reduction of

the coordination number as an ion gets into the tube [136]. Another
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Figure 5.12: Snapshots of two different umbrella-sampling pro-
cesses occurring inside an impermeable tube (�/a > 1). Water
molecules are represented in red and the ions in green. (Top :)
�/a = 2, a canal forms and links the two reservoirs. (Bottom
:) �/a = 2.5, a drop forms containing the ions and a few water
molecules. Snapshots made with VMD [116].

explanation could lie in the lower relative permittivity of the nanotube,

compared to that of water. It results in a dielectric exclusion of the ions

inside the nanochannel [137, 138], which is energetically defavorable.

As a last remark, we note that the slopes of the PMF along the z-

coordinate are identical, and that the barrier sets up on a typical

distance ∼ 15 Å, which compares to the tube diameter.

5.5 Partial conclusion

In this section, we considered a new desalination method, combining the

advantages of osmosis processes such as reverse and forward osmosis, and
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of membrane distillation. The osmotic process at stake in this method

makes use of a vapor bubble, trapped inside of a nanochannel, as a semi-

permeable membrane. Even though the bubble-stability requirement

adds constraints to the pore radius and length, which are limited by

a maximum radius and a minimal aspect ratio �/a respectively, this

method is throught to be as efficient as reverse osmosis.

Using molecular dynamics, we investigated the water-flow properties,

especially its dependence with the particle mass and the geometric

characteristics of the nanochannel. Then, we computed the energy

barrier an ion should overcome to penetrate into and cross the vapor

phase. For impermeable nanobubbles, its value is between 10 and

30 kBT . We believe that these values are high enough the prevent ions

from crossing the tube with a close to 100% probability.

Simulations of forward and reverse osmosis in a more realistic system are

ongoing. They require huge computing capacities. For example, using a

nanochannel of radius and length 7 nm, we simulated the dynamics of

35.000 water molecules. Moreover, simulations with more accurate water

models such as TIP4P/2005 [128, 130] are also about to be performed,

which should provide more precise numerical data. The surface tension

values, as well as the liquid-vapor co-existence parameters, are expected

to be the main changes.





Conclusion

In this thesis, we rationalized the collective effect occurring at pore

entrances, and studied their influence on transport properties. We

showed that whereas the ionic conductance scales sub-linearly with the

number of channels, the hydrodynamic permeability keeps an extensive

behavior. Using the deep analogy between diffusive and conductive

ion transport, we concluded that the salt diffusive flux also scaled

sub-linearly with the number of pores.

In a second time, we deduced the behaviors of cross-coupling phenomena.

Unexpected and far from trivial, the scalings of transport phenomena

show that it will not be an easy task to benefit from nanosize good

properties on a macroscopic scale. Designing energy harvesting devices

from nanofluidic building blocks requires ingenuity to bypass collective

entrance effects, which occur at the frontier between the nano-materials

and the macroscopic reservoirs.

Using molecular dynamics simulations, we also carried a study on a new

concept for water desalination, of which the selectivity and permeability

have been investigated. Along with existing experimental results, our

results show that osmosis through a gas phase is competitive with

reverse osmosis, from which it is inspired. Moreover, it is possibly
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easier to implement on a large scale than reverse osmosis, because the

semi-permeable membrane is replaced by a membrane with larger pore

than those required by reverse osmosis.

With the expected end of the fossil-energy era, it is important that new

technologies are proposed and developed, to sustain the global demand.

Nanofluidics is a very helpful tool for this purpose, as evidenced by

the recent contributions on shale-gas desorption and transport [139,

140]. Many countries are in a dynamical development phase, and energy

is one of the main support of economical growth. Thus the need in

energy keeps increasing. So does the need in fresh water supply, which

follows the rhythm of the population growth. Climate change deepens

the fresh water shortage, leading countries and industries to invest

massively in water purification facilities. But in water purification, as

in energy harvesting, devices working at many different scales cohabit.

From the nuclear power plant to the solar cells on rooftops of houses,

the tendency is to the multiplication of devices, in parallel with the

multiplication of involved actors, from the individual to the city or

the company. Providing new devices and new solutions to accompany

the changes under way in the society may well be the most exciting

challenges indeed.



Bibliography

[1] L. Bocquet, P. Tabeling, Lab on a Chip 2014, 14, 3143–3158.

[2] B. Hille, The Journal of General Physiology 1968, 51, 199–219.

[3] J. E. Hall, The Journal of General Physiology 1975, 66, 531–532.

[4] R. A. Sampson, Philosophical Transactions of the Royal Society

of London A 1891, 182, 449–518.

[5] J. Lee, R. Karnik, Journal of Applied Physics 2010, 108, 044315.

[6] J. Lee, T. Laoui, R. Karnik, Nature Nanotechnology 2014, 9,

317–23.

[7] L. Bocquet, Nature Nanotechnology 2014, 9, 249–251.

[8] L. Bocquet, E. Charlaix, Chemical Society Reviews 2010, 39,

1073–1095.

[9] R. Villey, E. Martinot, C. Cottin-Bizonne, M. Phaner-Goutorbe,
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Abstract

The first part of this thesis is an introduction to the different energy

conversion and desalination methods that will be invoked in this work.

In a second part, we show that the ionic conductance of a nanopore

array is sub-additive with the number of pores. Individal contributions

of each pore to the global conductance tend to a null value, if the

network is big enough. We note that this phenomenon only involves

length ratios, and that working at a nanometric scale does not have any

influence.

Then, in a third part, we measure the permeability of a pore array at a

macroscopic scale. There too, the effect of the array does not depend on

the scale of the system. Permeability evolves inversely to conductance:

permeability is enhanced by the presence of neighboring pores, but in

a smaller proportion than the ionic conductance falls under the same

cause.

The fourth part uses the results of the two preceding ones, to determine

a scaling law for the electric power produced by streaming current and

diffusio-osmosis, two methods of osmotic energy conversion. We show

that entrance effects have a negative impact on such conversion, more

efforts are needed to understand them better and circumvent them.

The fifth and last part of this thesis is a numerical work on a new

desalination device. It relies on osmosis through a gas phase which is

trapped within a hydrophobic nanotube. Its main interest is to use

nanotubes bigger than the pores of currently used materials, thus less

prone to fouling. We use molecular dynamics methods to study the

permeability and selectivity of this device.

Key words : nanofluidics, entrance effects, pore arrays, ionic and fluidic

transport, cross-coupling transport phenomena, osmotic energy, energy

conversion, desalination


