Je Voudrais 
  
Jean-François Méhaut 
  
  
  
  
  
  
  

Pierre et Marie Curie), pour leur volonté de travailler avec moi et d'encadrer cette thèse. Je suis très reconnaissant pour la qualité exceptionnelle de l'encadrement qui s'est manifestée dans les nombreuses discussions scientifiques riches et constructives, les retours remarquablement détaillées sur mes productions scientifiques et mes présentations ainsi qu'une ambiance de travail chaleureuse. Je les remercie d'avoir partagé mon enthousiasme aux moments forts et pour le soutien et l'encouragement aux moments critiques de cette thèse.

Je tiens également à remercier chaleureusement Albert Cohen (directeur de

List of Figures

 24Examples of a task graphs with tasks using the inout_reuse clause . . . . . . . . . . 8. [START_REF]OpenMP Application Program Interface Version 4[END_REF] Steps during execution of an application using the inout_reuse clause . . . . . . . . 8.26 Transfer of ownership resulting in a minimal memory footprint of dependent tasks 8. [START_REF] Borkar | The future of microprocessors[END_REF] Copying the contents of an inout_reuse view when changing nodes . . . . . . . . . 9.1 Broadcast to n readers with multiple copies . . . . . . . . . . . . . . . . . . . . . . . 9.2 Broadcast with deferred allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3 Timing related to copies during a broadcast . . . . . . . . . . . . . . . . . . . . . . . 9.4 Sharing of a single input buffer in a broadcast using a broadcast table . . . . . . . . 9.5 Timing of a broadcast when using a broadcast table . . . . . . . . . . . . . . . . . . 9.6 Cholesky: improved layout of data in shared memory . . . . . . . . . . . . . . . . . 9.7 Memory footprint of cholesky with and without broadcast tables . . . . . . . . . . . 9. 8 The number of broadcasts and readers in cholesky as a function of the size of the matrix196 9. 9 

List of Algorithms

Introduction

Microprocessor development from the early 1970s until the mid-2000s was characterized by substantial increases of sequential performance with each new processor generation due to aggressive scaling of the clock frequency and micro-architectural improvements. Towards the mid-2000s this development reached a point at which higher clock rates and more complex microarchitectures became less energy-efficient, such that power consumption and energy density were pushed beyond reasonable limits. As an alternative, the industry has shifted to more energy efficient multi-core designs, integrating multiple processing units on a single chip. [43] To satisfy the ever-increasing need for computing power, the focus now lies on increasing the parallel performance by integrating more cores per chip instead of developing more complex cores with higher sequential performance. Today's high performance computing systems range from multi-core systems with several cores to many-core systems composed of dozens or hundreds of general-purpose computing units. The trend to integrate more and more cores is expected to continue and future systems are expected to integrate thousands of cores [START_REF] Borkar | Thousand core chips: A technology perspective[END_REF].

Memory accesses in these architectures are a major concern for performance for two main reasons. First, the clock frequency of processors and DRAM have evolved at different speeds, resulting in a drastic performance gap between these components known as the memory wall [START_REF] Mckee | Reflections on the memory wall[END_REF]. From the perspective of a core, each access to main memory potentially stalls the core for many cycles until data eventually becomes available and can thus reduce performance considerably. Second, the integration of a large number of cores in a parallel system puts additional stress on the memory interface due to an increased amount of requests that can be issued per time unit. This might lead to contention on the memory controller, further increasing the latency of memory accesses and further decreasing performance.

To improve memory bandwidth and to avoid contention, many-core systems integrate multiple memory controllers and group cores with memory controllers into nodes that are connected through large-scale links. The local memory of a node can be accessed by the cores of the node without using the interconnect and local accesses are thus fast, while accesses to remote nodes are slow. Access to local and remote memory in such systems with non-uniform access to main memory (NUMA) is usually managed transparently through the hardware and main memory is accessible by software through a single, unified address space. However, to keep the latency of memory access low and to avoid contention on specific nodes, data and computations must be distributed across nodes using appropriate software techniques such that all accesses ideally target local memory and such that none of the nodes is targeted by a significantly higher amount of requests than the others.

While existing sequential applications required no or only few changes to benefit from improvements of sequential performance of systems with uniform memory access (UMA), the shift to parallel architectures and non-uniform memory access for mainstream computing represents a major challenge for software development and optimization with fundamental changes throughout the entire software stack [START_REF] Asanovic | A view of the parallel computing landscape[END_REF][START_REF] Borkar | The future of microprocessors[END_REF]. This involves:

-the parallelization of algorithms to take advantage of the processing power of multiple cores.

-the design of parallel programming models that allow to denote parallelism and whose execution models define how a parallel program is executed. -the design of compilers that translate the specification of a parallel program to code that is executable on a parallel target architecture. -the development of low-overhead execution environments that implement the execution models of parallel programming models. -the development of efficient system software providing fine-grained control over the assignment of computations to cores and of data to nodes.

Due to the wide variety of available parallel hardware architectures and short release cycles of systems with higher core counts, parallel applications are expected to be portable across multiple systems and to be able to yield shorter execution times with each additional core. As parallel software is usually significantly more complex than sequential software, parallel programming models must provide means to improve the productivity and to reduce the implementation overhead related to parallelism. Task-parallel programming models [START_REF] Blumofe | Cilk: An efficient multithreaded runtime system[END_REF][START_REF]OpenMP Application Program Interface Version 4[END_REF][START_REF] Planas | Hierarchical task-based programming with StarSs[END_REF][START_REF] Pop | A stream-computing extension to OpenMP[END_REF]36,[START_REF]Threading Building Blocks[END_REF][START_REF] Budimlic | Concurrent collections[END_REF]35,[START_REF] Broquedis | LIBKOMP, an efficient OpenMP runtime system for both fork-join and data flow paradigms[END_REF] are a recent trend to respond to these challenges. A key feature of these models is to abstract from details of the underlying architecture and system software and to reduce the specification of a parallel program to the definition of fine-grained tasks and dependences between them. While this concept greatly improves the productivity of the programmer, it leaves issues related to efficient interaction with system software, efficient exploitation of the hardware and performance portability to the implementation of the execution model. On many-core NUMA systems, this includes the optimization of memory accesses, i.e., keeping accesses to main memory local and distributing requests equally to all nodes. Providing efficient mechanisms for the placement of tasks on cores and the placement of data on nodes is indispensable for the implementation of task-parallel programming models of many-core systems in order to achieve high performance.

Objectives and contributions of this thesis

Past research has lead to a wide variety of approaches for optimized placement of computations and data on NUMA systems, ranging from static optimizations by the compiler to dynamic solutions operating at execution time. However, only little work has been done for task-parallel applications and run-times managing their execution.

The purpose of this thesis is to explore the challenges and opportunities regarding the efficient exploitation of many-core NUMA systems by task-parallel applications with a focus on accesses to main memory and to propose mechanisms for efficient task and data placement. The first major challenge in the development of such mechanisms is to identify and analyze the interactions between the application, the run-time, the hardware and the operating system that are relevant for data locality and performance of task-parallel programs. The second major challenge is to design mechanisms that are portable, fully-automatic, application-transparent and able to react to dynamic changes of the application. From this perspective, the thesis focuses on the identification and detailed analysis of:

1. characteristics of the run-time systems that are needed to support low-overhead implementations of mechanisms for task and data placement and to prevent the run-time system itself from becoming a bottleneck for performance. 2. characteristics of task-parallel programs that are relevant for data locality and performance and that have to be taken into account for the design of mechanisms for data and task placement.

Based on the findings of this analysis we developed multiple automatic on-line techniques for efficient and portable data and task placement exploiting information on point-to-point data dependences readily available in modern task-parallel run-time systems at execution time.

The implementation of these mechanisms and their experimental evaluation led to several practical contributions. First, we developed a NUMA-aware run-time based on OpenStream, a state-of-the-art framework for task-parallel applications, that serves as the basis for our mechanisms for task and data placement. Second, we implemented these mechanisms and integrated them into the NUMA-aware run-time. To validate that our concepts apply to real-world task-parallel applications, we have implemented of a set of high performance, scientific OpenStream benchmarks and executed them using our run-time. Finally, we designed and implemented Aftermath, a tool for performance analysis and debugging of task-parallel applications and run-times. This allowed us to understand the interactions between the task-parallel application, the run-time system, the hardware and the operating system and to take these into account for the theoretical concepts for task and data placement.

Outline of this document

The outline of this thesis is the following. Chapter 2 presents the context of this thesis. The chapter provides a motivation for task-parallel languages as a programming model for manycore systems and defines the goals for efficient exploitation of the hardware through optimized mappings of computation to cores and data to memory controllers by a run-time system. A presentation of related work forms the basis of the problem statement provided at the end of the chapter.

Chapter 3 presents OpenStream, a data-flow extension for OpenMP that enables task parallel programming and that we have chosen for the implementation of the concepts proposed in this thesis. We present the syntax of OpenStream, its execution model and provide an outline for the compilation of OpenStream applications.

Chapter 4 focuses on the requirements for run-time systems to support efficient task and data placement on many-core NUMA systems. The chapter shows how memory is typically placed on nodes by the operating system and investigates the influence of this strategy on the locality of memory accesses in OpenStream programs. Based on these findings, we propose methods for low-overhead, NUMA-aware memory allocation and the determination of memory placement.

Chapter 5 introduces dynamic single assignment, a programming style that allows the run-time system to reliably and accurately determine the data that is accessed by a task before the task is executed. We point out the implications of this programming style on the memory footprint related to task creation and conclude that parallel task creation is beneficial for the memory footprint as well as for performance.

The experimental setup for the validation of the concepts presented in this thesis is given in Chapter 6. This includes a detailed description and characterization of all benchmarks, a description of baselines to which we compare our optimizations, the definition of the methodology for measurements and a description of the architectures of our test systems.

Chapter 7 presents our solutions for NUMA-aware task placement. We propose work-pushing, a technique that transfers tasks to cores associated to nodes that contain the memory regions accessed by the tasks and topology-aware work-stealing, a mechanism that steals tasks from an incrementally widening neighborhood of a core with respect to the memory hierarchy.

Efficient data placement is addressed in Chapter 8 presenting deferred allocation. In this technique, the allocation of the memory regions that receive the input data of a task is delayed from task creation to the moment when the set of tasks writing to the memory regions as well as the nodes on which these tasks execute are known. As in Chapter 7, we analyze the impact of this strategy on data locality and performance.

Chapter 9 treats our optimizations for broadcasts, passing the data of a single producer is to multiple consumers. We present broadcast tables and show that this optimization considerably reduces the memory footprint and significantly increases performance of a broadcast-intensive linear algebra kernel.

Chapter 10 covers Aftermath, a tool for the visualization and analysis of execution traces that we have originally developed for performance debugging of our optimizations and the benchmarks presented in Chapter 6, but whose concepts can be applied to performance analysis of task-parallel applications and run-times in general.

The conclusions on the work presented in this thesis and directions for future research are given in Chapter 11.

Context and problem statement

In this chapter, we introduce the scientific and technical context of this thesis. In Section 2.1, we first explain why the advent of massively parallel general-purpose architectures in mainstream computing has raised the need for alternative programming models. We present the expectations on these models and introduce task-parallel programming as an approach that addresses these issues. The aspects of task-parallel programs that are critical for performance are covered subsequently. Section 2.2 provides an overview of the architecture of high performance many-core systems and emphasizes the prerequisites for their efficient exploitation. The focus of this presentation lies on the efficient use of the memory architecture. Section 2.3 discusses how this problem can be tackled through proper orchestration at execution time. After a presentation of solutions proposed in related work in Section 2.4, we define the objectives of this thesis and how our solutions differ from existing approaches in Section 2.5.

Parallel programming models for many-core architectures

As parallel architectures have become omnipresent from embedded systems through desktop computers to systems dedicated to high performance computing, development of parallel software has become an imperative to exploit the processing power of contemporary systems. The wide variety of available parallel architectures and short periods between releases of new systems with increased core counts have lead to a shift of the expectations on programming models for parallel systems. Modern programming models are expected to enable development of applications that are able exploit the parallel processing power of a machine efficiently, that yield similar performance across machines with similar characteristics and that can take full advantage of an increasing number of processing units. To compensate the additional complexity of the development of parallel software compared to sequential implementations, more productive approaches that abstract from technical aspects of the implementation are needed, such that programmers can concentrate on the specification of parallelism. These key requirements can be summarized as scalability 1 , performance portability and productivity.

Task-based programming models

Task-parallel programming is an increasingly popular approach to address the issues above. Many different approaches for task-parallel programming have been proposed, ranging from generic concepts for task-parallel computations (e.g., CONCURRENT COLLECTIONS [START_REF] Budimlic | Concurrent collections[END_REF]), through general-purpose libraries (e.g., THREADING BUILDING BLOCKS [START_REF]Threading Building Blocks[END_REF]), language extensions (e.g., CILK [START_REF] Blumofe | Cilk: An efficient multithreaded runtime system[END_REF][START_REF] Frigo | The implementation of the Cilk-5 multithreaded language[END_REF], OpenMP [START_REF]OpenMP Application Program Interface Version 3[END_REF][START_REF]OpenMP Application Program Interface Version 4[END_REF], STARSS [START_REF] Planas | Hierarchical task-based programming with StarSs[END_REF], OPENSTREAM [START_REF] Pop | A stream-computing extension to OpenMP[END_REF][START_REF] Pop | Expressiveness and Data-Flow Compilation of OpenMP Streaming Programs[END_REF], X10 [36] and HABANERO [35], LIBKOMP [START_REF] Broquedis | LIBKOMP, an efficient OpenMP runtime system for both fork-join and data flow paradigms[END_REF]) to specialized libraries for specific domains (PLASMA [START_REF] Kurzak | Multithreading in the plasma library[END_REF] based on QUARK [START_REF] Yarkhan | QUARK Users' Guide -QUeueing And Runtime for Kernels[END_REF]).

The key aspect of task-parallel programming models is to expose large amounts of parallelism by creating small units of work, called tasks, and to specify interactions between tasks that constrain which tasks can run in parallel. How tasks are declared and which methods of synchronization are available varies between the approaches for task-parallel programming. The complete set of tasks and the synchronization between tasks representing the parallel computation do not necessarily have to be constituted statically. New tasks can be created and synchronization be defined dynamically and incrementally at execution time. These requests for task creation and synchronization are handled by a run-time system, or run-time for short, whose purpose is to manage the execution of the task-parallel program.

Productivity in task-based programming is addressed by omitting technical details in the specification of a program and by focusing on the definition of tasks and their interactions. Code of task-parallel programs specifies what can execute in parallel, but leaves the choice of where and when to execute tasks to the run-time. This abstraction lifts the obligation to provide code for a particular kind of machine or a particular operating system and allows the programmer to concentrate on issues that are inherent to the algorithm that is being implemented.

Scalability is addressed by encouraging the specification of very fine-grained tasks with finegrained inter-task synchronization, which increases parallelism and enables exploitation of a large number of processing units simultaneously. However, fine-grained parallelism is only a necessary condition for scalability. To unleash the parallel processing power of a machine, it is also necessary that hardware resources are exploited efficiently and that the interface of the operating system is used appropriately. This is the responsibility of the run-time system, which maps parallelism to the machine and which acts as a mediator between the application and the operating system.

Similar to scalability, performance portability is addressed both in the programming model and the specific implementation of the run-time. By leaving out platform-specific code in the specification of a program, the same code can be used to obtain specialized versions for execution on different platforms. The run-time is responsible to adapt the execution of the application to the specificities of the target platform, which does not only involve preservation of correct execution, but also efficient exploitation. This can be achieved through appropriate parameterization of the run-time or by providing platform-specific implementations with a well-defined, platformindependent interface between the application and the run-time.

The run-time system

The run-time system is the central component of task-parallel programming and is responsible for correct and efficient execution of the task-parallel application. Figure 2.1 shows the embedding of the run-time system into the execution environment. The services of the run-time system, e.g., task creation and synchronization, are directly invoked by the application. In many cases, the run-time is provided as a run-time library that the application is linked against dynamically and requests consist in ordinary calls to library functions. The infrastructure of the run-time system satisfying the requests is in turn based on the services provided by the operating system. This interaction is rarely direct and commonly based on system libraries with more convenient interfaces for system calls. The operating system forms the bottom of the software stack and finally provides access to the hardware.

The functionality provided by the run-time system can be grouped into multiple components. The exact set of components and the separation of components depend on the specific programming model and its implementation. Generally, the run-time manages the creation and destruction of tasks, implements task synchronization, detects when a task becomes ready for execution and contains a scheduler that distributes ready task to the different cores of the machine. In cases where the run-time also manages memory of the application, a memory allocator is part of the run-time as well. The performance of a task-parallel application highly depends on the implementation of the run-time components:

-First, algorithms and data structures of the run-time itself should not become a bottleneck for performance. For instance, the computational complexity of algorithms for task management and dependence tracking should be sufficiently low to handle large amounts of tasks, the memory footprint of internal data structures should be small and data exchanges between concurrent activities of the run-time should be efficient. Decentralized algorithms should be preferred to prevent centralized components from becoming a bottleneck. -Second, the run-time must interact efficiently with its environment. For example, slow system calls should be avoided or at least not be invoked frequently and the run-time should use appropriate methods for synchronization provided by the system libraries. -Third, the execution of tasks should be orchestrated, such that hardware resources are used efficiently, resulting in the lowest possible time for execution of the application. This aspect is particularly platform-specific and requires detailed knowledge of the target architecture.

The next section presents the hardware architecture of contemporary high performance systems targeted in this thesis. Its purpose is to emphasize which aspects are relevant to performance and to point out the low-level characteristics of efficient executions of applications. Section 2.3 then discusses how this behavior can be achieved by the run-time.

High performance parallel hardware architectures

Modern high performance hardware architectures are multi-core and many-core systems, which integrate multiple processing units on the same chip and combine multiple chips to provide large amounts of parallel processing power. As energy efficiency has become the driving factor in the development of multi-core and many-core systems, the architecture of individual cores tends to be less complex than for high performance single-core architectures [43]. However, sequential performance still plays an important role [START_REF] Hill | Amdahl's law in the multicore era[END_REF] and, as a consequence, recent generalpurpose parallel architectures inherit many optimizations from single-core architectures. In the context of this thesis, we focus on systems designed for high performance computing with less strict constraints on energy consumption and thus less drastic trade-offs between sequential performance of each individual core and the number of cores. Besides basic micro-architectural optimizations, e.g., pipelining, the use of caches and basic SIMD instructions, these systems also employ more aggressive techniques, such as out-of-order and superscalar execution, branch prediction, speculative execution and hardware prefetching.

Particular attention, both in single-core systems as well as parallel architectures, is paid to architectural improvements that reduce the impact of memory accesses on performance. As this thesis focuses on the analysis and mitigation of bottlenecks related to memory accesses, the following presentation of the hardware architecture of many-core systems spotlights the memory subsystem.

The cache hierarchy

During the past decades, technology for processors and DRAM have evolved at different speeds, leading to a dramatic gap between the computational performance and the main memory access time referred to as the memory wall [START_REF] Mckee | Reflections on the memory wall[END_REF]. While computations involving only the register file of the processor can be carried out fast, accesses to main memory limit performance as the processor stalls for many cycles waiting for data from DRAM before execution can be resumed. Hence, the reduction of the impact of memory accesses on performance is a major concern in computer architecture as well as in the software industry.

Cache hierarchies of single-core systems

To mitigate the impact of high-latency memory accesses, processors have been provided with small and fast on-chip cache memory, which enables exploitation of temporal and spatial locality of memory accesses. Temporal locality refers to the reuse of previously requested data and can be exploited by keeping data in the cache that has already been fetched from main memory. Spatial locality designates the use of data at addresses close to previously requested data and can be exploited by bringing data from neighboring addresses to the cache.

Requests to data that is already present in a cache result in cache hits and those to data that must be fetched from main memory are referred to as cache misses. On the one hand it is desirable that cache capacity is as high as possible in order to maximize the amount of data that can be held simultaneously in the cache. On the other hand, the latency of accesses to a cache increases with its size, such that smaller caches are faster than bigger caches. Dimensioning the cache thus involves a trade-off between the size and the average latency of accesses to the cache. Modern systems therefore rely on a hierarchy of caches with multiple levels, where caches at the upper levels, placed near a processing unit (e.g., first-level caches), are small and fast and caches at the lower levels farther away (e.g., third-level caches) are bigger, but also slower. Hence, the cost of a cache miss in a cache near the CPU is still higher than the cost associated to a hit, but if the request results in a hit in one of the caches at lower levels the cost is lower than an access to main memory. Typically, high performance systems employ three levels of caches with first-level caches of tens of KiB, accessible within only a few processor clock cycles and last level caches of a few MiB that can be accessed in tens of cycles.

As both data and instructions are stored in main memory, the latency of DRAM impacts both data accesses and the transfer of instructions to the CPU. Hence, the use of caches can not only improve latency of accesses to data, but can also speed up instruction fetching. Unified caches store instructions and data jointly and serve requests for the two types equally without differentiation. In contrast to this, in designs with separate caches, data and instructions are stored in distinct caches, namely the data cache and the instruction cache. These separate caches can operate in parallel and are smaller and thus faster than a unified cache. Hence, requests for data and instructions can be satisfied simultaneously, which increases performance for pipelined execution of instructions. However, the use of separate caches represents a static partitioning and can result in under-utilization of the cache capacity. Unused capacity of the instruction cache could be needed by the data cache and vice versa, but remains inaccessible due to the separation of instructions and data. Hence, most commonly, only the level closest to the CPU uses separate caches while the remaining levels are composed of unified caches. Figure 2.2 shows an example of a hierarchy of caches with three levels L1 to L3. The first level cache is separated into an instruction cache (L1I) and a data cache (L1D). The second and the third level cache are both unified caches.

Requests for data elements that have neither been referenced before nor stored at neighboring addresses of previously requested data result in cache misses, independently from the size of caches and the depth of the hierarchy. A hardware technique that aims at reducing the number of these compulsory cache misses is hardware prefetching. In this optimization, the history of previously accessed addresses is analyzed in order to predict which addresses will be accessed in the future. The data at these addresses is brought from main memory to a cache speculatively in the hope that the prediction is correct and that the data will actually be referenced. As prefetching can be done in parallel with the execution of instructions, the delay of the instruction that first accesses this data can be reduced or hidden entirely if prefetching finishes in time. Prefetching is also employed between caches to reduce the number of compulsory misses at upper levels of the cache hierarchy. Figure 2.3 illustrates hardware prefetching between DRAM and the last level cache as well as between the last level cache and the second level cache of the memory hierarchy from Figure 2.2.

Cache hierarchies for architectures with multiple cores

Cache hierarchies of systems with multiple cores are slightly more complex than those of singlecore architectures. An important decision that must be taken for the design of such a hierarchy is whether a cache is shared among multiple cores or whether it is private. The advantage of a private cache is that its capacity is dedicated to the associated core and cannot be polluted with data from another core. Moreover, the absence of concurrent accesses reduces the complexity of the interface and reduces contention, increasing cache performance. Shared caches, however, enable low-overhead communication between cores, as data can directly be exchanged within the cache. Furthermore, data that is accessed by multiple cores must only be stored once, which reduces the total amount of required cache memory. As the impact on performance of cache sharing is application-specific [START_REF] Eddy | Does cache sharing on modern cmp matter to the performance of contemporary multithreaded programs?[END_REF] and as general-purpose architectures must yield acceptable performance for a wide variety of applications, they cannot opt for one extreme and thus employ both private and shared caches. As a rule of thumb, private caches are employed at the upper levels of the cache hierarchy near the core (e.g., first and second level caches) and shared caches are used for the lower levels of the hierarchy (e.g., the third level cache).

An important issue regarding the cache hierarchy of parallel systems is related to cache coherency. With private caches, or, more generally speaking, with caches which are not shared by all cores, data can be present in multiple caches at once. In order to provide a consistent view on memory for all cores, modification of shared data must result in invalidation or update of its copies. Systems that provide this coherence transparently are referred to as cache coherent architectures. [START_REF]MaMI: Marcel memory interface[END_REF] shows an example of a hierarchy of caches for a multi-core system composed of four cores. The first level caches are private, second level caches are shared by pairs of cores and the third level cache is shared by all cores.

Non-uniform memory access

Although caches and prefetching greatly improve performance if exploited efficiently, not all accesses to main memory can be eliminated and improvement of DRAM access latency remains a major concern for performance. Parallel architectures exacerbate this difficulty, as each additional core potentially increases the total number of requests to main memory per time unit and thus increases pressure on the memory controller. Once the bandwidth of the controller is saturated, latency of accesses to DRAM increases and memory accesses rapidly become a bottleneck for performance. Therefore, high performance general-purpose parallel architectures contain multiple memory controllers which are physically distributed over the machine. This allows the hardware to satisfy memory accesses in parallel and overall bandwidth is increased.

Cores, caches and memory controllers in these systems are grouped into nodes connected through large-scale links. The interconnection formed by the links can contain direct connections as well as indirect connections between nodes. For indirect connections, data cannot be exchanged directly and must traverse one or more intermediate nodes on the way from the source to the destination. The distance between a core and the targeted memory for such a transfer is expressed in hops, representing the number of links on the shortest path between the core and the controller.

Accesses from cores to memory of the same node are referred to as local memory accesses and accesses to the memory of different nodes are called remote memory accesses. Local memory accesses can be handled without engaging the interconnect and can thus be carried out rapidly. Accesses to remote nodes require the use of the interconnect and are thus slower, with an increasing latency for each additional hop. As the latency of a memory access depends on the location of the requesting core and the distance to the targeted memory controller, these systems are referred to as systems with non-uniform memory access (NUMA). Non-uniform memory access in addition with cache coherence is abbreviated as ccNUMA (cache-coherent NUMA systems). As we are targeting only architectures with cache coherency, we use the terms NUMA and ccNUMA interchangeably in the rest of this thesis.

Figure 2.5 shows a sample architecture with 16 cores and four memory controllers grouped into four nodes. For cores P 0 to P 3 the memory of Node 0 can be reached at a distance of 0 hops and thus represents the local memory. The direct neighbors, Node 1 and 2, are at a distance of one hop. Node 3 can only be reached by passing through Node 1 or Node 2 first, its distance relative to Node 0 is thus two hops.

Despite the physical distribution of memory controllers across multiple nodes with non-uniform access, NUMA systems provide a uniform addressing scheme that provides access to the entire memory of the system using a single address space. The translation from addresses to nodes and routing within the interconnect is managed by the hardware and the physical distribution remains essentially hidden to programs executing on the machine. However, modern operating systems explicitly support NUMA and provide interfaces that allow application to allocate memory on specific nodes or to obtain information on data placement.

The efficient use of high performance parallel hardware architectures requires that cores, caches and non-uniform memory access are taken into account. The next section defines the goals for efficient exploitation from a software perspective.

Efficient exploitation of many-core architectures and NUMA

Efficient exploitation of the hardware consists in minimizing execution time through appropriate low-level behavior at the micro-architectural level. Due to the complexity of the architecture of many-core NUMA systems, this is a difficult task involving many aspects of the execution of a program. The main directions of efficient exploitation are the following:

-

Maximizing parallelism

Leveraging the parallel processing power of the machine requires that computations are distributed to as many cores as possible. Ideally, all of the cores can be used simultaneously throughout the entire execution time with minimal overhead for communication resulting from the distribution.

-Maximizing sequential performance on each core Sequential execution on each individual core should be as fast as possible. This involves maximizing instruction level parallelism for superscalar architectures, the use of SIMD instructions to perform computations simultaneously on multiple ALUs and optimizations for the instruction pipeline. Memory accesses should be avoided through the efficient use of registers.

-Efficient use of caches To keep the impact of memory accesses on performance as low as possible, the cache hit rate should be as high as possible. Spatial and temporal locality should be maximized through appropriate layout of data elements in memory and appropriate order of memory accesses. Data that is accessed frequently should fit into the hierarchy of caches in order to avoid conflicts and thus eviction of critical data due to limited cache capacity. The pattern of memory accesses should be sufficiently regular to be captured by the prefetchers, such that the number compulsory misses can be kept as low as possible.

-Minimizing the latency of accesses to main memory The latency of memory accesses depends on the contention of memory controllers as well as the distance between the requesting cores and the controllers satisfying the requests. To minimize contention, it is important to distribute memory accesses over all of the nodes of the machine. To minimize the average distance of memory accesses, the ratio of local memory accesses to the total number of accesses should be as high as possible.

Depending on the characteristics of the application, the importance of each of the directions for efficient exploitation above varies. For example, the performance of an application with frequent accesses to memory might be more sensitive to an improvement of the cache hit rate than to an increase of the number of exploited cores, while the performance of a compute-bound application is mostly determined by the number of cores and maximization of sequential performance on each core and may remain insensitive to improvement of the cache hit rate. Each of the directions represents a major challenge on its own with large configuration spaces and complex relationships.

In addition, overall performance generally relies on multiple optimizations belonging to different directions. As improvements in one direction can constrain the configuration space in other directions, it is usually impossible to consider each direction separately and to simply combine the optimizations. Furthermore, optimizations can be applied at different software layers and different stages. For example, partitioning of data for caches can be done manually by the programmer, by the compiler or dynamically at execution time. Each of these solutions has its limitations, advantages and drawbacks. For optimal performance, different aspects must therefore be considered jointly throughout the whole process from the implementation to execution of an application.

However, each direction for the improvement of application performance represents an entire field of research on its own and exhaustive exploration of all possible combinations is infeasible. In this thesis, we concentrate on the aspects of non-uniform memory access in the context of the execution of task-parallel programs. Other directions for improvement are not directly addressed by our approaches, but were taken into account during development and parametrization of the applications for experimental evaluation.

One possibility to avoid node contention and to improve the locality of memory accesses of taskparallel programs is to address NUMA-related issues through efficient mapping of parallelism to the machine, i.e., the efficient mapping of computations to cores and of data to memory controllers. In the next section, we discuss the principles of this approach and motivate which software components are commonly involved in this process.

Efficient mapping of parallelism to the hardware

The mapping of parallelism to the hardware consists of two parts: the mapping of computations to cores and the mapping of data to memory controllers. The definition for an efficient mapping in this thesis is a mapping that keeps the wall clock execution time of an application as low as possible. To this end, both the mapping to cores and to memory controllers must exploit the hardware efficiently by inducing the low-level behavior described in the previous section. For the mapping of computations to cores this means that ideally, all cores of the system are used simultaneously and that each core is used efficiently with maximal sequential performance. The mapping of data to nodes should minimize the latency of memory accesses by avoiding contention on memory controllers and by keeping the distance between cores and the targeted nodes low. Ideally, all memory accesses are local and requests are distributed equally over all memory controllers.

In some cases, these goals can be achieved simultaneously. For example, computations that do not share any data can execute concurrently on cores of different nodes and the data that is accessed by each computation can be mapped to the same node as the computation. However, in many cases, the goals are difficult or even impossible to achieve at the same time. As an example, consider a data buffer that is accessed by multiple concurrent computations. One possible mapping of the data is to place the buffer on a single node. If all the computations accessing the buffer are mapped to cores of the same node, all memory accesses target local memory, but the computing resources of the machine are under-utilized as the cores of the remaining nodes are not used at all. If the computations are spread on cores of multiple nodes, the parallel processing power of the machine is well exploited, but a significant part of the accesses to memory target a remote node. In addition, contention of the node that contains the buffer is high as it has to deal with concurrent accesses from multiple cores. The last possibility for a mapping is to distribute the buffer over multiple nodes and to spread computations over the entire machine. This mitigates the contention problem, but most of the memory accesses still target remote nodes. An efficient mapping is thus often a trade-off between optimizations for data locality, contention and parallel execution.

Whether a trade-off is necessary and which trade-off is required heavily depends on the behavior of the application. To determine where to carry out computations and where to place data, it is crucial to determine which computations have to be mapped, which data has to be placed and, most importantly, how data is accessed. For this purpose, program behavior must be detected and predicted adequately. More detailed information on application behavior and more precise prediction allow for more efficient mapping strategies and better performance.

Two common approaches to implement dynamic mappings of computations to cores and dynamic mappings of data to nodes consist in providing appropriate algorithms for scheduling memory allocation. For efficient exploitation of the hardware, the scheduler must be modified to take into account the topology of the hardware, the behavior of the application at execution time, which data is accessed and the data placement at the moment when a scheduling decision is taken or a combination of these aspects. Efficient memory allocation must take into account the topology of the hardware, the execution locations of threads or tasks, or both characteristics to place data accordingly. The placement of data can be carried out either synchronously upon allocation of new memory or dynamically through data migration during execution. By combining scheduling and memory allocation, the mapping of computations and data can be addressed at the same time, avoiding that each approach only reacts passively to the other. For example, the scheduler can advise the memory allocator to place data on certain nodes on which computations will be scheduled in the future. Similarly, the memory allocator can provide hints about future data placement and advise the scheduler for future mappings of computation. The range of possible mappings is thereby extended and bottlenecks that arise from insufficient communication between the scheduler and the memory allocator can be avoided. As the determination of an optimal solution for a mapping is generally considered to be computationally intensive and thus ill-suited for on-line techniques, the algorithms used for scheduling and allocation are usually based on heuristics.

Related work

Past research has led to a multitude of approaches for efficient exploitation of parallel architectures based on scheduling and data allocation. The main characteristics of these approaches are:

-The set of heuristics (scheduling only, data placement only or scheduling and data placement).

-The layer of the software stack at which the approach is implemented (e.g., the operating system, the run-time system, the compiler, the application or a combination of these layers). -Which information is used by the approach and how this information is obtained (e.g., hints by the application that on data placement, data affinities obtained through profiling, affinities derived from the structure of computations and data accesses in specific types of algorithms). -To which programming model or framework the approach applies (e.g., independent processes, OpenMP or Cilk). -The characteristics of the applications targeted by the approach (e.g., loop-level parallelism or algorithms that operate on arrays). To our knowledge, only few approaches are specific to task-parallel applications executing on many-core NUMA systems. In this section, we present a set of related approaches relevant in the context of this thesis, covering the characteristics above. The presentation groups the approaches by the type of mapping, i.e., data placement and scheduling.

Data placement

The presentation of approaches for data placement below starts with a simple on-line page migration technique called AFFINITY-ON-NEXT-TOUCH that can be implemented in user space or by the operating system. We then introduce CARREFOUR, a more sophisticated kernel-space approach, which focuses on the avoidance of node contention through decisions for page migration, page replication and interleaving based on statistics gathered with hardware performance counters. An application-level approach for manual improvement is provided by MAI. The approach is used by the MINAS framework, which instruments the source code of an application to benefit from placement strategies from MAI automatically. The presentation finishes with two trace-based approaches. The first is based on full-system simulation and uses MINAS for data placement. The second approach performs off-line profiling using hardware performance counters and places data accordingly at execution time.

Affinity-on-next-touch

Many operating systems use first-touch placement as the default placement strategy, in which a page of physical memory is allocated on the node associated to the core that first writes to the page (a detailed discussion of data placement by the operating system will be given Section 4.1). If the cores that initialize data structures and those that access them are located on the same node, first-touch placement yields high locality of memory accesses. However, if the initializing nodes and the accessing nodes do not match, this strategy may lead to high contention and a high fraction of remote memory accesses. A common strategy to circumvent this problem is to migrate pages dynamically after initialization to the nodes that perform the next write accesses. This strategy, referred to as AFFINITY-ON-NEXT-TOUCH or MIGRATE-ON-NEXT-TOUCH, can be implemented entirely in user space using system calls for memory protection and synchronous page migration or in kernel space for transparent, asynchronous migration. Löf and Holmgren [61] have evaluated a user space implementation of AFFINITY-ON-NEXT-TOUCH on an isolated domain of 8 nodes of a Sun Fire 15000 system running an application calculating the scattering of electromagnetic waves in a three-dimensional space mainly by solving a set of equations using the conjugate gradient method. Using AFFINITY-ON-NEXT-TOUCH the performance is improved by up to 166%, showing that data placement can have a huge impact on application performance.

Goglin and Furmento [50] have implemented AFFINITY-ON-NEXT-TOUCH for the Linux kernel and compared the performance to a user space implementation. The kernel-based implementation is about 30% faster on a four-node AMD Opteron 8347HE system and displays significantly less overhead than the user space implementation for small memory regions. However, the authors conclude that a user space implementation performs better in cases where larger memory areas known by the application have to be migrated. The kernel-space implementation migrates such areas page-by-page, whereas a user space implementation can migrate each of these areas in a single operation with lower overhead.

AFFINITY-ON-NEXT-TOUCH represents a simple and elegant way to migrate data to nodes on which it is accessed. However, it is up to the programmer or a software component on a higher level to trigger page migration. AFFINITY-ON-NEXT-TOUCH can be seen as a basic method for data placement that can be employed in more complex and more specific approaches for optimization.

Carrefour

Dashti et. al [START_REF] Dashti | Traffic management: A holistic approach to memory placement on NUMA systems[END_REF] have proposed CARREFOUR, a NUMA-aware data placement mechanism for the Linux kernel. Unlike other approaches for NUMA-aware data placement, CARREFOUR focuses on the avoidance of congestion on memory controllers and interconnect links and considers the reduction of the latency of memory accesses by improving data locality only as a secondary goal. The approach is based on four techniques:

page co-location places a page on the same node than the accessing core, -page interleaving places pages on nodes in a round-robin fashion, -page replication replicates pages on multiple nodes and thread clustering co-schedules threads according to their intensity of data sharing. Which combination of these techniques is used and how each technique is applied depends on the behavior of the applications that execute on the machine. This involves global decisions that enable or disable individual techniques globally and page-local decisions that enable or disable techniques per page. The statistics that serve as a basis to characterize program behavior are derived from values provided by a measurement component that uses INSTRUCTION-BASED SAMPLING [START_REF] Paul | Instruction-Based Sampling: A New Performance Analysis Technique for AMD Family 10h Processors[END_REF] (IBS), a sampling mechanism available on recent AMD processors that provides detailed information on the execution of instructions (e.g., whether an instruction performs a memory access, whether the access targets local or remote memory, the duration of the access, etc.).

Global decisions are taken in four steps. In the first step, the system decides whether data placement is necessary or not. To this end, CARREFOUR compares the number of memory accesses per time unit of the entire system to an experimentally determined threshold of 50 accesses per microsecond. If the actual value for the application is below the threshold, CARREFOUR is disabled and no further actions are taken. The second step consists in deciding whether page replication should be enabled or disabled. To avoid high synchronization overhead due to frequent updates of the contents of pages, page replication is only used for applications whose fraction of read accesses to DRAM compared to the total number of accesses to DRAM is above 95%. In addition, there must be enough free memory before page replication to avoid that the replication causes pages to be swapped out to disk. In the third step, CARREFOUR checks whether interleaving should be used to distribute requests to main memory to all memory controllers. This decision is based on the memory controller imbalance, which is defined as the standard deviation of the frequency of memory accesses among nodes. Interleaving is only applied if the value is higher than a threshold of 35%. The decision whether page co-location should be used is taken in the fourth and final step. Co-location is enabled for applications whose local access ratio is below 80%, i.e., the fraction of memory accesses that targets a local node is below 80%.

Page-local decisions are taken individually for each page by analyzing statistics that are derived from IBS samples that belong to instructions accessing the page. A page is migrated to a node if page migration is enabled globally and if the page is accessed only by cores of a single node. Page replication triggers if the mechanism is allowed globally and if the page has only been accessed by reading instructions. A page that is accessed by cores from multiple nodes in both read and write mode is placed using the interleaving mechanism that moves the page on the node with the smallest number of memory accesses per time unit in order to reduce contention.

The experimental evaluation of CARREFOUR has been conducted on two AMD Opteron systems machines with 16 and 24 cores, respectively, grouped into four nodes. The applications that have been used for this evaluation are the PARSEC BENCHMARK SUITE [START_REF] Bienia | Parsec 2.0: A new benchmark suite for chip-multiprocessors[END_REF]9] (version 2.1), the FACEREC facial recognition engine [10] (version 5.0), the METIS [5] benchmark suite and the NAS PARALLEL BENCHMARKS [6]. The performance of CARREFOUR have been compared to the default first-touch page placement strategy of the Linux kernel, interleaving across all nodes as well as the AUTONUMA patchset [START_REF] Corbet | AutoNUMA: the other approach to NUMA scheduling[END_REF] for the Linux kernel, which migrates pages to the nodes of the accessing cores. For single-application runs, CARREFOUR performs significantly better than default page placement (up to 3.63× faster). Compared to interleaving across all nodes, CARREFOUR performs significantly better in most cases and limits performance degradation in cases, where interleaving across all nodes degrades performance significantly compared to the default placement of the operating system (the maximum performance degradation of CARREFOUR is 4%). In comparison with AUTONUMA, CARREFOUR provides performance comparable results or performs significantly better. CARREFOUR fails to improve performance of applications with fast changes in behavior due to the limited sampling accuracy necessary for low-overhead sampling.

CARREFOUR shows that contention is an important issue on NUMA systems as optimizations decreasing contention result in significant improvement of the execution time. The approach is also an example of an optimization that reacts to actual behavior of an application at execution time and that is thus able to react to dynamic changes. Implementation at the operating system layer allows a wide variety of applications to benefit from the optimizations, but limits the granularity for data placement to entire pages of memory.

MAi

The MEMORY AFFINITY INTERFACE [START_REF] Pousa Ribeiro | Memory affinity for hierarchical shared memory multiprocessors[END_REF] (MAI) is an interface for data placement designed for high performance computing applications that operate on large arrays. The implementation of MAI provides seven policies for the distribution of the pages of an array: bind_all, bind_block, cyclic, cyclic_block, skew_mapp, prime_mapp and random:

-The bind_all policy places all pages on a single node and switches to other nodes only if all of the memory of the current node is in use. -The bind_block policy first divides the array into blocks and then places each block on a different node. -The cyclic policy distributes the pages of an array in a round-robin fashion over all nodes of the machine, such that the ith page is placed on the node whose identifier is i mod M , with M being the number of nodes. -Similarly, the cyclic_block policy distributes blocks of subsequent pages on nodes in a roundrobin manner, for example, the first two pages could be placed on Node 0, the third and fourth page on Node 1 and so on. -The skew_mapp policy places the ith page of an array on node n = (i + i M + 1) mod M . -Prime_mapp combines two policies: first, it associates pages to P virtual blocks of data using the cyclic policy with P being a prime number and P ≥ M . The second step consists of distributing the virtual blocks to nodes using the cyclic policy again. -The last policy used in the paper is random, which places pages randomly across nodes.

The purpose of the more complex policies skew_mapp and prime_mapp, originally proposed in [START_REF] Iyer | Design and analysis of static memory management policies for cc-numa multiprocessors[END_REF], is to avoid node contention that results from very regular memory accesses and distributions by the cyclic or cyclic_block policy. For example, this is the case if an array is divided into equal-sized blocks whose size in pages is a multiple of the number of nodes. The cyclic policy would distribute the pages of the entire array, such that the distribution within each block is identical, which can lead to contention when the blocks are processed in parallel. The skew_mapp and prime_mapp policies yield different distributions for each block and thus avoid contention due to regular access patterns.

The evaluation of MAI has been conducted on systems with four and eight NUMA nodes for the FFT and CG applications from the OpenMP version of the NAS PARALLEL BENCHMARKS [57] as well as for an OpenMP implementation of a geophysics application [START_REF] Castro | Numa-ictm: A parallel version of ictm exploiting memory placement strategies for numa machines[END_REF]. The policies proposed by MAI can improve performance by up to 31% compared to the default first-touch policy of the operating system, but must be chosen manually. The authors have concluded that the best strategy for data placement depends on the target architecture as well as on the structure of memory accesses. Machines with a high difference between the latency of local and remote accesses benefit from data placement that optimizes for locality, such as bind_block, while execution on machines with a low difference between these latencies can be improved with placement that improves load balancing, such as cyclic, random or skew_mapp. Applications with a clear affinity of computations and data yield higher performance with bind_block and applications with irregular accesses benefit from distribution of data over nodes.

The results presented in the experimental evaluation of MAI show that the behavior of an application requires different kinds of distributions of data to nodes and highlights that the architecture also plays an important role in the selection of a placement strategy.

Minas

The conclusions drawn from the evaluation of MAI form the basis of the MINAS [START_REF] Pousa | Minas: Memory Affinity Management Framework[END_REF] framework, which combines the data placement capabilities of MAI with a preprocessor called MAPP and NUMARCH, a module that provides information about the target architecture. MAPP processes the source code of an application, finds shared, static arrays and replaces their declarations with appropriate calls to memory allocation and distribution functions of MAI. The actual policy for the data distribution chosen by MAPP depends on the characteristics of the NUMA platform reported by NUMARCH. For systems with a high remote access latency compared to the latency of local accesses, the bind_block policy is chosen in order to optimize for latency. On systems with lower remote access latency, the framework optimizes for bandwidth and uses the cyclic policy. In the experimental evaluation, the authors compare the performance of the automatic optimization with MINAS to the default page placement policy of the operating system as well as to hand-tuned versions of the applications using combinations of distribution policies that best match the data access patterns. The applications used for evaluation are the same as for the evaluation of MAI with an additional benchmark that simulates wave propagation in three dimensions. The automatic solution improves performance compared to the default page placement strategy of the operating system, but remains behind the performance of the hand-tuned codes. The difference between the automatic and the hand-tuned versions ranges from 0% to 25%.

MINAS is an effort to reduce the burden of the programmer to identify relevant data structures and to choose architecture-specific distributions. The results show that although the automatic approach cannot match the performance of hand-tuned code, automatic optimization can improve performance significantly.

Data placement with MINAS based on data sharing

In [START_REF] Da | Using memory access traces to map threads and data on hierarchical multi-core platforms[END_REF], the MINAS framework has been employed to improve data placement of applications from the C version of the NAS PARALLEL BENCHMARKS [15]. In a first step of this approach, the application is executed in a full-system simulator and its memory accesses are recorded to a trace file. The trace file is then analyzed in order to generate sharing matrices that indicate for each pair of threads how intensively these threads communicate.

The approach uses two metrics to characterize communication, the first is based on the amount of memory that is accessed by two threads, while the second metric measures the number of accesses to shared memory blocks. The two metrics are evaluated separately and threads are grouped into pairs with maximum communication according to the metric. These pairs are then used to generate a second sharing matrix that captures communication between pairs of threads. The reason for this grouping is that caches are often shared between pairs of cores. Pairs with maximum communication can thus take advantage of the shared cache, reducing the mapping to a mapping of pairs of pairs of threads optimizing off-cache communication. However, the number of cores per cache can be higher than two and more complex groupings than pairs might be necessary for an optimal mapping. According to the authors, using pairs is still a reasonable approximation in these cases.

The experimental evaluation has been conducted on an AMD Opteron 875 system with 8 NUMA nodes and 16 cores in total, as well as on an Intel Xeon X7560 system with 4 NUMA nodes and 32 cores in total. It showed that for thread and data mappings based on the sharing matrix, significant improvements on the execution time of up to 75% can be achieved over default thread and data mapping of the operating system. These performance gains have been achieved for applications that initialize data sequentially, and for which the default page placement policy of the operating system allocates all pages on the same node. For applications that initialize data in parallel, no significant speedup has been achieved. For the different types of applications and platforms the choice of the metric for the sharing matrix (amount of memory or number of accesses) did not have a significant impact.

The approach shows that profiling can be used to obtain detailed information on data exchanges between threads, which can be exploited for improved data placement of applications with distinct patterns for memory accesses.

Feedback-directed page placement for OpenMP

Marathe et al. have proposed trace guided placement of pages for OpenMP programs [START_REF] Marathe | Feedback-directed page placement for ccnuma via hardware-generated memory traces[END_REF]. The approach is divided into three phases: trace generation, affinity decision and trace-guided page placement. During trace generation, the framework executes a truncated version of the program whose data placement is to be improved. The framework samples detailed information about memory accesses and memory allocations by using the processors' performance monitoring units and by intercepting calls to the memory allocator of the C / FORTRAN run-time library. The subsequent affinity decisions after the sampling consist in determining on which node each page should be placed, based on the accesses from the trace. The framework provides a simple model, in which the latency of a remote access is assumed to be independent from the distance between the requesting core and the node that satisfies the request as well as a more sophisticated model that takes into account varying latencies. In the former model, a page is associated to the node with the highest number of accesses to the page. The latter model determines the aggregate access cost for each node and associates a page with the node with the minimal cost. The aggregate access cost corresponds to the sum of the products of the number of accesses from a node and the cost of an access.

The actual page placement is carried out at execution of the entire program by intercepting calls to the memory allocator and by initializing pages on the appropriate node before handing the memory regions to the application. The authors have shown that for applications of the C version [7] of the NAS PARALLEL BENCHMARKS [15] and applications from the SPEC OMPM2001 [START_REF] Aslot | Specomp: A new benchmark suite for measuring parallel computer performance[END_REF] benchmarks, the number of remote memory accesses and thus the execution time can be decreased significantly on a NUMA system with four nodes. The authors have also pointed out that simple round-robin page placement on the available nodes using LIBNUMA [58] yields similar results.

Feedback-directed page placement is another approach that exploits information obtained through profiling for improved data placement. However, in contrast to MINAS with profiling, the feedback-directed page placement does not rely on a full system simulator, but uses mechanisms in the run-time library as well as hardware support. The results also illustrate that interleaving across Chapter 2: Context and problem statement NUMA nodes can also be effective and that sophisticated mechanisms are not always needed.

Scheduling

The following approaches rely on scheduling as the main mechanism to improve the performance of memory accesses. We first present SCHEDULE REUSE, which schedules loop iterations to cores to match the node associated to the core executing an iteration with the node whose memory contains the data that is accessed during the iteration. The second approach covers scheduling in applications that do not impose any specific order for task execution.

Schedule reuse

Nikolopoulos et al. [START_REF] Nikolopoulos | Exploiting memory affinity in openmp through schedule reuse[END_REF] have proposed an approach that addresses NUMA-aware scheduling of loop iterations in OpenMP applications with irregular accesses to main memory. The first example of irregularity handled by the approach results from loop nests, where the iteration space of an inner, parallel loop depends on the index of an outer loop, such that the assignment of iterations of the inner loop to processors changes between iterations of the outer loop. For data structures, such as arrays, that have been distributed to nodes using a regular structure, e.g., in blocks or by interleaving across nodes, this leads to a mismatch between the nodes to which the loop iterations are assigned and the nodes that contain data. The other example given in the paper contains parallel loops that perform array accesses whose array indexes are calculated from the loop indexes by indexation of an indirection table. In addition, the array itself can be distributed irregularly, e.g., with blocks of different size resulting from a generalized block distribution.

The main idea of the approach is to first distribute the pages of a data structure accessed by a loop nest over the nodes of the system using an application-specific description of the distribution provided by the programmer through code annotations and to schedule loop iterations accessing the data on the same nodes. The actual placement of pages is implemented by scheduling the iterations first accessing the data structure to nodes according to the description, such that firsttouch allocation places the pages appropriately. Data locality is addressed by assigning subsequent iterations accessing the data to the processors associated to the containing nodes.

The key aspect for local accesses after the distribution is the construction of a two-dimensional array that contains one column for each processor, each of which contains the loop indexes that result in accesses to the local memory of the processor according to the data distribution. Hence, to determine the set of iterations that should be carried out by a specific processor, it is sufficient to iterate over the corresponding column in the array. The loop in the original program is then replaced by an outer loop with indexes from the lowest to the highest node identifier and an inner loop that iterates over the elements of the column that is associated to the node. The outer loop is executed in parallel, with one loop index assigned to every processor.

The authors did not describe any formal method to construct the array and to transform loops, but suggested that an optimizing compiler could carry out this task.

The approach has been evaluated on an application that performs LU decomposition of dense matrices and several kernels from a weather forecast system performing transpositions between grid spaces with irregular densities. All experiments have been conducted on an SGI Origin 2000 system with 64 processors grouped into 32 nodes. For LU decomposition, three versions have been compared: an unmodified OpenMP version, a modified OpenMP version with data distribution directives supported by the SGI compiler and the SCHEDULE REUSE approach of the authors. The kernels from the weather forecast system have been implemented using OpenMP, with the SCHEDULE REUSE approach and with explicit data partitioning and message passing using MPI. The conclusions from the experiments are that the schedule reuse approach outperforms both OpenMP versions for LU decomposition (up to two times faster than the unmodified OpenMP version), that it outperforms the unmodified OpenMP versions of the irregular kernels and that it provides performance comparable to the MPI versions.

SCHEDULE REUSE illustrates that detailed, static information about data accesses, derived from the source code of the application can be combined with a description of an architecture-specific data distribution. This aspect is particularly important to address irregular data distributions and irregular accesses to memory.

Scheduling of unstructured parallelism

The optimizations proposed by Yoo et al. in [START_REF] Yoo | Locality-aware task management for unstructured parallelism: A quantitative limit study[END_REF] address applications with unstructured parallelism, i.e. parallel sections with independent tasks that can be scheduled in any order. The framework for task-parallelism used in the paper is a custom run-time library for task-parallelism provided by the authors. Although there are no explicit data dependences between tasks in these applications, two or more tasks can share data if they access a common set of addresses. The authors did not address NUMA issues directly and focused on cache performance by executing tasks that share data on cores that are near in the memory hierarchy. However, the approach is relevant for this discussion of related work as it shows how information on fine-grained data sharing can be exploited in the run-time system of a task-parallel language.

The approach consists of three major parts. In the first part, the workload is profiled in order to derive information on data sharing between tasks. The second part consists in grouping tasks, ordering groups and assigning the groups to work-queues associated to the components of the memory hierarchy. The third part addresses dynamic load balancing through locality-aware task-stealing.

The result of the profiling run is a task sharing graph whose vertexes represent tasks and whose undirected edges capture data sharing relations between tasks. The weight associated to an edge indicates how many cache lines are accessed by the two tasks that are connected by the edge. The graph is then partitioned heuristically and recursively into groups for each level of the memory hierarchy, starting with the last level cache. Each task group is chosen such that the working set of the tasks fits into a cache of the targeted level in the memory hierarchy and such that intra-group data sharing is maximized. The result is a hierarchy of task groups that can be scheduled over the work-queues associated to each component of the memory hierarchy, e.g., the result can be a hierarchy with task groups for the work-queues of first level caches that belong to groups for the work-queues of second level caches that in turn belong to a groups for the work-queues of third level caches and so on.

At execution time, the tasks are executed by worker threads with one worker thread per core. When a worker has finished executing a task, it first tries to obtain a task from its local queue associated to its first-level cache. If this queue is empty, the worker attempts to steal tasks from one of the queues associated to the first-level cache of its sibling cores with respect to the next level in the memory hierarchy (i.e., the cores sharing a second-level cache with the core of the stealing worker). If these queues are also empty, the worker tries to obtain a task group from the queue associated to its second level cache.

The authors have evaluated their approach on a set of general-purpose workloads (database, 3d image reconstruction, collision detection, image processing, matrix multiplication and a solver for partial differential equations) ported to the author's framework for task parallelism executing on three simulated systems with core counts ranging from 32 to 1024. Besides performance evaluation of the entire approach with fixed parameters, the authors have also explored different values (e.g., how many tasks are stolen by a single attempt for work-stealing) and different heuristics (e.g., group and task ordering, whether to use locality-aware work-stealing or not or the heuristic for the selection of the victim for a steal). However, we only provide a summary of the results without reproducing all the details. Task grouping, ordering and assignment to the queues, but without locality-aware work-stealing can speed up execution by up to 2.39× on 32 cores for memoryintensive benchmarks and up to 3.57× on 1024 cores. Locality-aware work-stealing on 32 cores can speed up execution by as much as 1.9× compared to random work-stealing with artificial load imbalance created through a number of workers that is smaller than the number of cores.

The approach shows that exploiting data sharing in the scheduler can lead to significant performance improvements with higher benefits for larger systems. It also illustrates that initial assignment of tasks can be combined with a locality-aware technique for load-balancing that reacts to the circumstances at execution time. Our approach for topology-aware scheduling presented in Section 7.3 uses a similar technique.

Combined scheduling and data placement

For the presentation of related work combining NUMA-aware scheduling and data placement, we have selected three approaches. The first approach, FORESTGOMP, relies on precise hints on affinities between OpenMP threads and data provided by the programmer. The second approach targets algorithms operating on arrays and relies on the specification of a more general pattern for the distribution of array elements to nodes provided in the source code. The last approach, LAWS, is designed for divide-and-conquer algorithms and does not require any modification of the source code of the application.

ForestGOMP

Broquedis et al. have proposed FORESTGOMP [29,31], an OpenMP run-time with a resourceaware scheduler based on the BUBBLESCHED [START_REF] Thibault | Building portable thread schedulers for hierarchical multiprocessors: The BubbleSched framework[END_REF] scheduler and a NUMA-aware allocator based on the MAMI [32,[START_REF]MaMI: Marcel memory interface[END_REF] memory interface. FORESTGOMP uses three key concepts: grouping of OpenMP threads into bubbles, scheduling of threads and bubbles using a hierarchy of run-queues and dynamic migration of data upon load balancing.

At the beginning of the execution, FORESTGOMP extracts information about the memory hierarchy of the target platform automatically using HWLOC [START_REF] Broquedis | Hwloc: A Generic Framework for Managing Hardware Affinities in HPC Applications[END_REF] and creates a hierarchy of runqueues reflecting this topology. For example, the run-time system might create one run-queue for the entire machine, one run-queue for each NUMA node, one run-queue for each shared cache and one run-queue for each core. Each of the run-queues forms a scheduling domain that restricts the execution of scheduling entities in the queue to the part of the memory hierarchy that the queue is associated to. The scheduling entities used by the BUBBLESCHED scheduler are OpenMP threads and bubbles. Bubbles are groups of threads or nested groups of bubbles and express data sharing among threads or access of a group of threads to data on the same node. The threads that form a bubble are kept together as long as possible to avoid that threads accessing the same data are scattered across the entire machine.

The creation of bubbles is carried out by the run-time system and takes place every time a parallel section is encountered. The set of threads that forms a bubble is identical with the team of threads of a parallel section. Nested parallel sections, i.e., parallel sections encountered within a parallel section, lead to the creation of nested bubbles aggregating other bubbles.

Resource-aware scheduling in FORESTGOMP is implemented using two scheduling algorithms: the memory bubble scheduler and the cache bubble scheduler. The NUMA-aware scheduler relies on so-called memory hints that summarize which data regions will be accessed by a single thread or a team of threads. Memory hints are provided by the programmer by calling appropriate functions of the run-time system before creating a parallel section or from a thread within a parallel section. The run-time attaches information derived from these hints to threads and bubbles, which allows the scheduler to distribute threads accordingly. In a first step, each thread is associated to the node that holds the highest fraction of the thread's data among all nodes. Bubbles that contain threads which are associated to different nodes explode and their threads are distributed accordingly. If the distribution resulting from the first step leads to an imbalance between cores, the run-time relaxes the scheduling constraints for certain threads and associates them to unused cores. To limit the overhead associated to data migration from one node to another, the run-time chooses the threads with the least amount of attached data for redistribution. Once the distribution of threads has finished, the system migrates the data of relocated threads to the right nodes. The distribution of threads and data to nodes is thereby completed and the cache bubble scheduler can start distributing threads within each node.

The goal of the cache bubble scheduler is to maximize data reuse within caches. Three methods are combined for this purpose. First, the cache bubble scheduler attempts to place the threads of a bubble on cores that are close in the cache hierarchy, e.g., on cores sharing the same cache, as threads of the same bubble are likely to access a common set of memory regions. Second, the scheduler tries to exploit temporal locality by restoring the mapping of threads to locations from the previous invocation of the scheduler. Finally, a core that becomes idle first tries to steal a thread from a nearby core before trying to steal a thread from a remote core.

In order to be able to react to changes in program behavior, the run-time allows the application to update memory hints during execution of a parallel region. Every time a hint is updated, the scheduler is invoked to check the current distribution of threads and to redistribute threads appropriately if necessary. To detect changes of affinities not indicated by the programmer, FOREST-GOMP also monitors hardware performance counters and invokes the scheduler automatically if the fraction of remote memory accesses exceeds a certain threshold.

The evaluation of FORESTGOMP was carried out on a modified version of the STREAM BENCHMARK [START_REF] Mccalpin | Memory bandwidth and machine balance in current high performance computers[END_REF] named TWISTED-STREAM and an application performing LU decomposition executing on an AMD Opteron platform with four NUMA nodes.

The TWISTED-STREAM benchmark operates on three vectors A, B and C, divided into M blocks A i , . . . , A M , B i , . . . , B M and C i , . . . , C M , with M being the number of nodes of the machine. A team of threads is created for each node and each team operates on three blocks, one from each vector (the first team operates on blocks A 0 , B 0 and C 0 , the second on blocks A 1 , B 1 and C 1 , etc.). In the middle of the execution the affinities between threads and data change. For the configuration referred to as TWISTED-66, each team changes the affinities for two of the three blocks (e.g., the first team operates on A 0 , B 1 and C 1 , the second on A 1 , B 2 and C 2 , etc.). In another configuration, called TWISTED-100 each team changes the affinities for all of its blocks (e.g., the first team operates on A 1 , B 1 and C 1 , the second on A 2 , B 2 and C 2 , etc.).

The performance of FORESTGOMP on the TWISTED-STREAM benchmark is compared to the OpenMP run-time of the GNU C compiler named LIBGOMP [START_REF]The GNU OpenMP Implementation[END_REF] and to page migration using AFFINITY-ON-NEXT-TOUCH. For TWISTED-100, FORESTGOMP only needs to adjust the distribution of threads to nodes without migration of data, resulting in 25% less execution time compared to LIBGOMP. The gain over page migration depends on the number of iterations that the benchmark performs after the change of affinities, as the relative overhead for page migration decreases with each iteration. The speedup over page migration ranges from 7.9× for a single iteration to 1.3× for 128 iterations. For TWISTED-66 FORESTGOMP has to migrate one third of the data. For less than three iterations, FORESTGOMP is thus slower than LIBGOMP, but still faster than AFFINITY-ON-NEXT-TOUCH. For more than three iterations, FORESTGOMP outperforms both LIBGOMP and AFFINITY-ON-NEXT-TOUCH.

Data affinities in the application performing LU decomposition are more complex and change more frequently than for the STREAM benchmark. Hence, instead of giving precise hints for affinities, the authors have configured FORESTGOMP to mark the entire matrix for AFFINITY-ON-NEXT-TOUCH each time the fraction of remote memory accesses measured with hardware performance counters exceeds a certain threshold. This results in a 30% decrease of execution time compared to interleaving of the matrix across all nodes of the machine.

In conclusion, FORESTGOMP performs best with clear affinities between threads and data and if locality for changing affinities can be restored through scheduling without migration. The approach shows that information that is missing in a more abstract software layer, i.e., the run-time, can be compensated by propagating more detailed information from the application.

Data distribution based on node arrangements

Bircsak et al. have proposed a set of directives for NUMA-aware programming in OpenMP [START_REF] Bircsak | Extending openmp for numa machines[END_REF]. The approach mainly addresses data placement for arrays, but also provides directives that define constraints for the placement of computations. The distribution of the elements of an array requires two parts: a (possibly) multi-dimensional arrangement of the nodes of the system in the form of a matrix containing the node identifiers and a set of distribution policies specifying one policy for each dimension of the array to be distributed. The arrangement does not necessarily represent any physical relationship of nodes and serves only as an auxiliary data structure to determine the mapping of array elements to nodes. The role of a distribution policy is to (1) partition the range of a dimension of the array whose mapping is to be determined and (2) to define the set of nodes that is available for each partition. The combination of the policies from the outermost to the innermost dimension and the arrangement of nodes defines for each element of the array to which node the element will be associated. There are three policies to choose from: BLOCK, CYCLIC and *. The implications of these policies are the following:

-The BLOCK policy divides the range of an array dimension into equal-sized blocks and creates equal-sized partitions from the respective dimension of the node arrangement. -The CYCLIC policy associates to each element of the array dimension an element of the respective dimension of the node arrangement in a round-robin fashion. -Finally, the * policy defines that the respective dimension should not be partitioned at all.

The following examples are adapted from the examples given in [START_REF]Compaq Fortran Parallel Processing Manual for Tru64 UNIX Systems[END_REF] and illustrate the use of distribution policies and node arrangements. As a first example, consider a one-dimensional array with 1024 elements that is to be mapped to a total of eight nodes N 0 to N 8. Using the BLOCK policy, the array is divided into 8 blocks of 128 elements. The first 128 elements are mapped to the first node, the second 128 elements to the second node and so on, as illustrated in Figure 2.6a. If the CYCLIC policy is used, the elements are distributed in a round-robin fashion to the nodes, such that the ith element is placed on the (i mod 8)th node, as shown in Figure 2.6b.

More complex distributions can be defined by combining several policies and by changing the arrangement of nodes. As an example, consider a two-dimensional array with 128 rows and 256 columns and an arrangement of eight nodes in a 4 × 2 matrix as in Figure 2.6c. By using a (BLOCK, BLOCK) policy, the array is divided into four rows of 32 elements and each row is divided into two columns of a width of 128 elements. Hence, the matrix is divided into blocks of size 32 × 128, each associated to a different node, as shown in Figure 2.6d. The block in the first row and the first column is placed on the node at the first row and first column of the arrangement, the block in the first row and second column to the node at the first row and second column of the arrangement and so on. For a (BLOCK, CYCLIC) distribution, the matrix is divided into eight rows and the columns of each row are distributed in a round-robin fashion among the nodes of the second dimension of the arrangement. Hence, the ith element in the jth row of the matrix is placed on the node at the ith row and the (j mod 2)th column of the arrangement. Figure 2.6e illustrates this distribution. As a last example, consider a (CYCLIC, CYCLIC) distribution that associates both columns and rows of the matrix with columns and rows of the arrangement. In the resulting distribution the ith element in the jth row of the matrix is placed on the node at the (i mod 4)th row and the (j mod 2)th column of the arrangement as illustrates by Figure 2.6f.

The approach also allows the programmer to define the granularity of a distribution by specifying if the distribution applies to elements or pages. In the first case, the partitioning of the array is done with element granularity as in the examples above. In the latter case, elements are grouped into pages and the pages are mapped to nodes according to the distribution.

To turn accesses to an array within a loop nest into accesses to local memory, the iterations must be distributed to cores of the NUMA nodes according to the distribution. This is achieved with help from the compiler as well as support by the run-time. In a first step, the compiler parametrizes the loop bounds and loop increments with the node identifier, such that the cores of a node only perform the loop iterations that result in accesses to the node's local memory. In the second step, the compiler partitions the iteration space of the outermost loop among the cores of a NUMA node. If this loop has only few iterations, the programmer can specify that another loop in the loop nest should be chosen for the partitioning among cores. The partitioning can be achieved using a cyclic assignment of loop indexes to cores or by dividing the iteration space into blocks that are each assigned to a different core. The role of the run-time system is to pin threads on the correct cores and to make sure that the iterations are assigned correctly to the appropriate threads.

If the assignment of loop iterations to nodes is not optimal, e.g., if multiple arrays are involved in a computation, the programmer can specify explicitly on which node a computation should be carried out. This is done by using the ON HOME directive and by passing an reference to an array element as a parameter. The node to which the element is associated to defines where the computation should take place.

However, which combination of policies yields optimal performance depends on the pattern of accesses to array elements. In some cases, it is easier to rely on dynamic page migration. This is supported through two directives, namely MIGRATE_NEXT_TOUCH and MIGRATE_TO_OMP_ THREAD. The former causes the pages that form an array to be migrated to the nodes of the first cores modifying the pages after the encounter of the directive. The latter directive migrates pages to the node of the core executing the thread with the thread identifier that is passed as a parameter to the directive. By comparing different versions of an application performing LU decomposition without pivoting on a 32-core ALPHASERVER GS320 system, the authors have concluded that data layouts using the DISTRIBUTE directive employing the concepts of distribution policies and node arrangements above perform substantially better than dynamic page migration due to the overhead of the migration.

N0 N1 N0 N0 N0 N1 N1 N1 N0 N1 N0 N1 N0 N0 N0 N1 N1 N1 N0 N1 N2 N3 N2 N2 N2 N3 N3 N3 N2 N3 N2 N3 N2 N2 N2 N3 N3 N3 N2 N3 N4 N5 N4 N4 N4 N5 N5 N5 N4 N5 N4 N5 N4 N4 N4 N5 N5 N5 N4 N5 N6 N7 N6 N6 N6 N7 N7 N7 N6 N7 N6 N7 N6 N6 N6 N7 N7 N7 N6 N7 ( 
.. N0 N1 N0 N0 N0 N1 N1 N1 N0 N1 N2 N3 N2 N2 N2 N3 N3 N3 N2 N3 N4 N5 N4 N4 N4 N5 N5 N5 N4 N5 N6 N7 N6 N6 N6 N7 N7 N7 N6 N7 N6 N7 N6 N6 N6 N7 N7 N7 N6 N7 N0 N1 N0 N0 N0 N1 N1 N1 N0 N1 N2 N3 N2 N2 N2 N3 N3 N3 N2 N3 N4 N5 N4 N4 N4 N5 N5 N5 N4 N5 N6 N7 N6 N6 N6 N7 N7 N7 N6 N7 N0 N1 N0 N0 N0 N1 N1 N1 N0 N1 N4 N5 N4 N4 N4 N5 N5 N5 N4 N5 4 5 7 (f) CYCLIC, CYCLIC distribution
The approach shows that explicit data distributions for regular data structures provided by the programmer can be combined with very fine-grained scheduling of instructions with appropriate support by the compiler. However, deciding which distribution policy fits best and specifying an appropriate node arrangement can be a difficult task that requires detailed knowledge of the application. In addition, arrangements must be developed for each of the systems on which an application is intended to execute in order to match the number of nodes of the system. [START_REF] Chen | Laws: Locality-aware work-stealing for multisocket multi-core architectures[END_REF] that combines NUMA-aware allocation and scheduling with cache-aware scheduling of CILK tasks from earlier work [START_REF] Chen | CATS: Cache aware task-stealing based on online profiling in multi-socket multi-core architectures[END_REF] of the authors. The approach targets divide-and-conquer algorithms with the following characteristics: the recursive steps of the algorithm are represented by a tree of tasks in which each node represents one step, data accesses only happen in leaf tasks and data sharing is likely to occur between siblings in the tree. Furthermore, the program is assumed to perform multiple iterations with identically structured task trees and equal relationships between tasks and the memory regions accessed during task execution. LAWS has three main components: a NUMA-aware memory allocator, an adaptive DAG packer and a NUMA-aware and cache-aware work-stealing mechanism.

LAWS

Chen et al. have proposed LAWS

NUMA-aware data placement in LAWS is carried out during the first iteration of the algorithm by assigning the data sets of recursively created tasks of the task tree to NUMA nodes using the following scheme. The root task of the tree for the iteration is assumed to represent the entire computation performed by all tasks of the iteration and is thus associated to the entire data set of size D. At each recursive task creation below the root, the data set is assumed to be divided equally among tasks. Hence, if the root task has n child tasks, the children are each assumed to treat a data set of size D n , with the first task treating the interval [0; D n ), the second task treating the interval [ D n ; 2D n ) and so on. The same scheme is applied recursively to the resulting intervals and the tasks located in the sub-trees of the children of the root task. NUMA-aware data placement for M nodes consists in partitioning of the entire data set into M equal-sized intervals, allocating each part on a different node, and associating tasks to nodes by analyzing the data intervals that the task represent. For example, the data set of a task that represents an interval [a; b) with a ≥ i•D M and b < (i+1)•D M should be placed on node i. The actual data placement makes use of first-touch placement, which is the default placement policy of many operating systems. To achieve the placement of the M intervals as described above, this implies that the tasks associated to the intervals must be executed by cores of the appropriate nodes during the first iteration. That is, a task whose data interval should be allocated on node i must be executed by a core of node i.

The role of the adaptive DAG packer is to provide the run-time system with information for cache-aware task scheduling. In a first step, the working set of each task is estimated by measuring the number of misses in the last level private cache during the execution of the task and by multiplying this value with the size of a cache line. The measurement of cache misses is performed at the first iteration of the algorithm using hardware performance counters. Based on this information, the task tree is divided into so-called CF subtrees. A CF subtree is a tree for which the sum of the working sets of its tasks fits into the shared cache of a node. The tasks of a same CF subtree are called socket local tasks and will be scheduled to cores of the same node in order to favor inter-task communication in the shared cache and to limit the number of capacity misses. However, the estimation of the data set size of a task only approximates the actual size of the data set and the packing into CF subtrees might yield suboptimal performance. Therefore, the DAG packer adapts the packing from one iteration to another. The packing can be shrinked by breaking a CF subtree into smaller trees by declaring the child tasks of the subtree's root as roots of CF subtrees. Similarly, it can be coarsened by aggregating CF subtrees by declaring their common parent task as the root of a CF subtree. The adaptive packer compares the execution time of packings and shrinks or coarsens the packing until a point is reached where a finer and a coarser packing both yield longer execution times than the current packing.

The last component of LAWS is a triple-level hierarchical work-stealing scheduler that schedules tasks to their associated nodes and that ensures that the socket local tasks of a CF subtree are executed by cores of the same node. Each node is provided with a CF task pool that can only contain CF root tasks and each core has a socket local task pool which can only contain socket local tasks. When a core runs out of tasks, it first tries to steal a task from the socket local task pool of the cores of the same node. If none of these pools contains a task that can be stolen, the core tries to steal a task from the CF task pool of the local node. If this attempt also fails, the core tries to steal a task from the CF task pool of another node. To avoid concurrency in the shared cache due to the execution of tasks from multiple CF subtrees, the scheduler also ensures that all tasks of a CF subtree have been executed before execution of a new CF subtree starts.

The authors have evaluated LAWS on a four-node AMD Opteron 8380 system executing a set of applications that perform stencil computations and algorithms for Gaussian Elimination as well as successive over-relaxation. Each benchmark is available in two versions. The first version has a regularly structured execution DAG, while the computations of the second version form an irregularly structured DAG. The performance of LAWS has been compared to plain CILK without any modification and to an algorithm from earlier work [START_REF] Chen | CATS: Cache aware task-stealing based on online profiling in multi-socket multi-core architectures[END_REF] named CATS, which does not adapt the packing after the first iteration. The improvement of LAWS over plain CILK ranges from 23.5% to 54.2%. LAWS systematically outperforms CATS, which improves performance over CILK only by up to 19.6%.

LAWS shows that implicit information on the structure of computations as well as the data structures involved in the computations can be exploited both for data placement and scheduling to increase the locality of memory accesses fully automatically by the run-time system.

Optimization for NUMA

Optimization for caches

Data placement

Scheduling

Implementation layer

AFF.-ON-NEXT-TOUCH [61] --Library AFF.-ON-NEXT-TOUCH [50] (OS) --OS CARREFOUR [START_REF] Dashti | Traffic management: A holistic approach to memory placement on NUMA systems[END_REF] -( ) * OS MAI [START_REF] Pousa Ribeiro | Memory affinity for hierarchical shared memory multiprocessors[END_REF] --Library MINAS [START_REF] Pousa | Minas: Memory Affinity Management Framework[END_REF] --Preproc. + Library MINAS + profiling [START_REF] Da | Using memory access traces to map threads and data on hierarchical multi-core platforms[END_REF] ( ) Preproc. + Library Feedback-directed placement [START_REF] Marathe | Feedback-directed page placement for ccnuma via hardware-generated memory traces[END_REF] --Library SCHEDULE REUSE [START_REF] Nikolopoulos | Exploiting memory affinity in openmp through schedule reuse[END_REF] -( ) * * Comp. + run-time Unstructured parallelism in [START_REF] Yoo | Locality-aware task management for unstructured parallelism: A quantitative limit study[END_REF] --Run-time FORESTGOMP [29,31] Run-time Node arrangements [START_REF] Bircsak | Extending openmp for numa machines[END_REF] -Comp. + run-time LAWS [START_REF] Chen | Laws: Locality-aware work-stealing for multisocket multi-core architectures[END_REF] Run-time * Part of CARREFOUR, but not evaluated in the paper * * Data is only placed initially and the approach focuses on scheduling 

Summary

The above presentation on related work illustrates that there are many different existing approaches to improve data locality with respect to NUMA, to reduce contention on memory controllers and interconnects and to improve the exploitation of caches through optimized scheduling and data placement, resulting in significant improvements on performance. Although the discussion only presents a small part of research in this area, the selected publications cover a certain range of methods for the placement of data and instructions. The purpose of this section is to summarize the approaches and to highlight the differences between them. The summary is divided into three parts. First, we provide a overview of general characteristics. The second part focuses on features related to optimized data placement and the third part summarizes characteristics of the approaches for scheduling.

Main characteristics

The general characteristics of the approaches can be summarized as follows:

-the part of the memory hierarchy that the approach optimizes for, i.e, whether it aims at improving accesses to main memory or accesses to caches. -the implementation layer of the approach (e.g., a user space library to be used by a programmer, the operating system or the compiler). -the supported framework for parallelism (e.g., OpenMP, POSIX threads or Cilk).

-whether the approach is based on optimized scheduling, optimized data placement or whether it combines both of the techniques.

Table 2.1 details these points for all approaches presented earlier. Except the approach for unstructured parallelism, all of the papers we have selected provide NUMA-related optimizations. In addition, MINAS with profiling, LAWS and FORESTGOMP also implement cache-related optimizations. Optimized data placement is a cornerstone of the optimizations for the majority of the approaches. The only exceptions are SCHEDULE REUSE, which only places data initially via the first-touch mechanism for deterministic behavior with respect to data locality for subsequent scheduling and the approach for unstructured parallelism, which does not provide any form of explicit data placement at all. Optimized scheduling is provided by the last five approaches in the table, namely SCHEDULE REUSE, the approach for unstructured parallelism, FORESTGOMP, node arrangements and LAWS.

The principal layers of implementation are user space libraries (AFFINITY-ON-NEXT-TOUCH, MAI and feedback-directed page placement), the operating system (the kernel version of AFFINITY-ON-NEXT-TOUCH and CARREFOUR) and the run-time system (the approach for unstructured parallelism, FORESTGOMP and LAWS). Some approaches cover two layers, in particular MINAS, which provides a preprocessor and also relies on the user space library of MAI and SCHEDULE REUSE as well as node arrangements, which combine optimizations in the compiler with a modified run-time.

Determination of relevant data by

Supported data structures

Granularity

Time of decision

Autom. and dyn.

adjustment

Passive (P) / Active (A)

AFF.-ON-NEXT-TOUCH [61] Programmer Any Pages Execution -P AFF.-ON-NEXT-TOUCH [50] 

Characteristics of data placement

The approaches that support data placement differ in:

-how they determine which data is relevant for improved data placement, in particular whether this is done automatically or if the programmer needs to specify relevant data structures. -which kinds of data structures are supported (e.g., arrays or any contiguous memory region).

-the granularity for data placement (e.g., single data elements, pages or blocks representing large memory regions). -the time when the decision for placement is taken (e.g., dynamically at execution time, statically at compile time or during off-line profiling). -the kind of data placement, i.e., passive placement that reacts to accesses and places data accordingly or active placement that places data before it is accessed. -whether data that has once been placed can be migrated dynamically to react to dynamic changes at execution time.

Table 2.2 indicates that many of the approaches either rely on the programmer to determine which data regions are relevant for data placement or determine these regions using profiling. MINAS uses a preprocessor for this task, but is limited to statically allocated memory and LAWS derives this information from the task graph, assuming that data is partitioned equally among leaf tasks. Low-level approaches, i.e., AFFINITY-ON-NEXT-TOUCH, CARREFOUR and feedback-directed page placement can handle any data structure, but the granularity for data placement is limited to entire pages of memory. The other approaches handle arrays with varying granularity for the placement: while MAI-based solutions distribute blocks of memory to different nodes, SCHEDULE REUSE and node arrangements can handle individual elements of an array due to support by the compiler. LAWS always places blocks of memory whose size depends on the number of tasks operating on the array and the size of the array.

Regarding the moment at which the decision for data placement is taken, the approaches can be divided into three sets. AFFINITY-ON-NEXT-TOUCH, CARREFOUR, FORESTGOMP and LAWS take this decision at execution time. In contrast to this, data placement decisions in SCHEDULE REUSE and node arrangements are the taken at compile time as the placement is specified in the application's source code. Feedback-directed page placement determines this relationship after the profiling phase and before the start of the execution. The MAI-based approaches represent an intermediate form in which some decisions are taken at compile time, i.e., the type of data distribution, and others are taken at execution time, e.g., the exact set of nodes for a distribution.

Another difference between the approaches consists in the duration of the placement. In most of the approaches data that has once been placed in is never migrated, unless explicitly requested by the application. However, CARREFOUR and FORESTGOMP can react to dynamic changes in application behavior and relocate data from one node to another.

Type of placement

Source for placement decision

Scheduling entity Time of decision

Autom. and dyn. adjustment AFF.-ON-NEXT-TOUCH [61] -----AFF.-ON-NEXT-TOUCH [50] (OS) -----CARREFOUR [START_REF] Dashti | Traffic management: A holistic approach to memory placement on NUMA systems[END_REF] (Thread clustering) * (OS / PMU) * (OS threads) * (Execution) * ( ) * MAI [START_REF] Pousa Ribeiro | Memory affinity for hierarchical shared memory multiprocessors[END_REF] Thread pinning -Pthreads Start of exec.

-MINAS [START_REF] Pousa | Minas: Memory Affinity Management Framework[END_REF] Thread pinning -Pthreads Start of exec.

-MINAS + profiling [START_REF] Da | Using memory access traces to map threads and data on hierarchical multi-core platforms[END_REF] Co-scheduling Data sharing Pthreads Start of exec.

-Feedback-directed placement [START_REF] Marathe | Feedback-directed page placement for ccnuma via hardware-generated memory traces[END_REF] Thread pinning -Pthreads Start of exec. -SCHEDULE REUSE [START_REF] Nikolopoulos | Exploiting memory affinity in openmp through schedule reuse[END_REF] Loop scheduling Data distrib. Loop iterations Execution -Unstructured parallelism in [START_REF] Yoo | Locality-aware task management for unstructured parallelism: A quantitative limit study[END_REF] Task placement Data sharing Tasks Start of exec. FORESTGOMP [29,31] Thread placement Data distrib. OpenMP threads Execution Node arrangements [START_REF] Bircsak | Extending openmp for numa machines[END_REF] Loop scheduling Data distrib.

Loop iterations Before loop start -LAWS [START_REF] Chen | Laws: Locality-aware work-stealing for multisocket multi-core architectures[END_REF] Task placement Data distrib. Cilk tasks Execution * Part of CARREFOUR, but not evaluated in the paper

Table 2.3: Overview of the features of scheduling in related work

Finally, the approaches can be classified according to the type of placement. Passive methods, such as AFFINITY-ON-NEXT-TOUCH and CARREFOUR react to the events of a given placement and try to improve the mapping of data to nodes accordingly. The other approaches actively place data before it is referenced. FORESTGOMP supports both active data placement, e.g., when migrating threads and attached data, as well as passive placement when using AFFINITY-ON-NEXT-TOUCH.

Characteristics of scheduling mechanisms

To distinguish the approaches for scheduling we have identified the following characteristics:

-the type of placement (e.g., simple thread pinning, loop scheduling).

-the source of information on which placement decisions based (e.g., performance monitoring units, information on the data distribution established by the approach itself or data sharing between threads). -the type of scheduling entities handled by the approach (e.g., operating system threads, loop iterations, OpenMP threads or tasks). -the time of placement decisions (e.g., dynamically during execution, at the beginning of program execution or before a parallel loop). -support for dynamic adjustments of an initial placement.

Although some of the approaches have been presented as solutions for data placement only, they still rely on thread pinning, representing a minimal form of scheduling. Thread pinning is a common technique to virtualize processing units by preventing the operating system from migrating threads between cores, which guarantees a static mapping of threads to cores for the entire execution time. Hence, these approaches do not use scheduling as a mean to place computation close to data, but as a mean for deterministic mappings of threads to cores.

The approaches that use scheduling for improved data locality either rely on co-scheduling, placing threads or tasks that share data on shared caches or closely in the memory hierarchy (MINAS with profiling and the approach for unstructured parallelism), the distribution of loop iterations to cores (SCHEDULE REUSE and node arrangements) or placement of threads and tasks depending on the data that is being accessed (FORESTGOMP and LAWS).

The choice of where a scheduling entity is executed is either based on data sharing to minimize communication between the entities or based on the distribution of data, limiting the delay of accesses from cores to main memory. The type of scheduling entities depends on the supported framework for parallelism and the granularity and can be POSIX threads, individual loop iterations, OpenMP threads or fine-grained tasks, such as Cilk tasks or those of the custom framework for unstructured parallelism.

Most approaches establish an initial placement at the beginning of the execution and only few of them react to dynamic changes at execution time, e.g., load imbalance, by adjusting the initial placement during execution.

Conclusion

A closer look on the characteristics above reveals that not all of them are independent. A key role is taken by the implementation layer, which has an influence on both data placement and scheduling. The layer defines not only which information is available for placement decisions, but also limits when decisions are taken, which granularity for data placement and which entities for scheduling are available. This heavily influences the accuracy for capturing program behavior as well as the accuracy of the prediction of future behavior. The farther away the layer is from the application, the more it abstracts from the data structures and instructions and the less accurate the method becomes. For example, compiler-assisted approaches can rely on detailed information on data structures and instructions, e.g., individual elements of arrays and individual iterations of a loop, while implementations at the operating system layer only have access to coarse information, such as accesses to entire pages and threads. At the same time, low-level approaches are more generic and support a wider variety of programming languages and frameworks for parallelism. The choice of the implementation layer thus limits the range of solutions that is available for data placement and scheduling but also determines to which applications an approach applies.

Summary and problem statement

As motivated in Section 2.1, task-parallel programming is an increasingly popular approach to address the expectations on scalability, performance portability and productivity for applications intended to run on many-core systems. The performance of the execution of a task-parallel program strongly depends on an optimized run-time system that is able to exploit the underlying hardware efficiently. Section 2.2 showed that optimization for the memory hierarchy, i.e., for caches and non-uniform memory access, is a key factor in this context. The issues related to the efficient exploitation of the memory hierarchy can be addressed through optimized placement of tasks on cores and optimized placement of data on memory controllers as pointed out in Section 2.3. Ideally, this placement is fully automatic and thus does not require any intervention by the programmer to ensure high productivity. Furthermore, the solution should be able to adapt to an increasing number of cores and memory controllers and be able to react to dynamic changes of application behavior at execution time for load balancing to allow applications to scale on large machines. Performance portability can only be ensured if the run-time is able to adapt to a wide variety of machines and applications.

From the approaches discussed in the previous section, only LAWS and the approach for irregular parallelism address task-parallel languages or task-parallel frameworks. The other approaches apply to POSIX threads, OpenMP threads and loop iterations. The difference between POSIX threads and tasks is that POSIX threads are intended to run persistently and independently for a longer period of time with occasional synchronization, while tasks are short-lived entities that are synchronized by a run-time. OpenMP threads are closer to the concept of tasks, but originate from regularly structured loops2 . Loop iterations represent an extreme case regarding the granularity, as an iteration can be composed of only a few instructions. However, to be efficient, loop scheduling to different cores must aggregate loop iterations. In addition, these solutions only apply to regularly structured applications based on loops. Finally, the approaches for task-parallel frameworks rely on specific properties of the program whose execution is to be optimized: the approach for unstructured parallelism relies on the property that tasks can be executed in any order while LAWS addresses divide-and-conquer-style computations. Hence, none of the approaches discussed in the previous section meets the needs with respect to the program structure and the granularity for scheduling and data placement for task-parallel programs.

As far as transparency is concerned, the approaches can be divided into three groups. The first group is composed of approaches that can be seen as technical solutions that help establish a specific distribution. Both information on relevant data as well as the actual distribution for approaches of this group must be provided by the programmer (e.g., AFFINITY-ON-NEXT-TOUCH, SCHEDULER REUSE or node arrangements). The second group consists of approaches that automate placement decisions, but which rely on information provided by the programmer (e.g., FORESTGOMP). Approaches that belong to the third group gather information on relevant data automatically and take placement decisions autonomously (e.g., CARREFOUR, MINAS or LAWS). However, the fully automatic solutions of the last group are either restricted to specific kinds of data structures (e.g., MINAS for static arrays), to specific kinds of computations (e.g., LAWS to divide-and-conquer algorithms) or cannot react to dynamic changes at execution time due to the use of off-line profiling (feedback-directed page placement).

None of the solutions is fully transparent to the program, supports irregular applications and is able to react to dynamic changes at the same time.

Hence, efficient placement of data and tasks for many-core NUMA systems motivates revisiting previous run-time system designs and inventing new optimizations for the memory hierarchy fitting the needs of task-parallel applications. One of the crucial points for fully automatic data and task placement is the transparent collection of information on affinities between tasks and data. However, recent task-parallel programming models afford new opportunities to the run-time system to obtain detailed information on data that is accessed by a task as well as inter-task dependences. Thus, mechanisms for data and task placement operating at execution time can base placement decisions on this information. For example, point-to-point synchronization between individual tasks expressed in the programming model and preserved by the compiler indicates which tasks become ready in the future and which events lead to their activation. Models such as OPENMP 4 [START_REF]OpenMP Application Program Interface Version 4[END_REF], STARSS [START_REF] Planas | Hierarchical task-based programming with StarSs[END_REF] or OPENSTREAM [START_REF] Pop | A stream-computing extension to OpenMP[END_REF] allow inter-task dependences to be specified as data dependences and are thus able to provide the run-time system with accurate information on accesses to data by each task and data sharing among tasks. Our approaches for task and data placement differ from existing work in the exploitation of this information for fully automatic, portable on-line placement of tasks and data by the run-time that improves the locality of memory accesses and thus performance significantly.

The solutions presented in this thesis combine point-to-point data dependences with detailed knowledge on target architectures. This requires a profound understanding of all software layers from the application over compilation to the run-time and the operating system. Application behavior has to be taken into account as it defines to which requests and situations the runtime system must be able to respond. Compilation has to be considered to decide which static information and how it must be preserved for placement decisions by the run-time at execution time. The run-time system represents the most important part of the solutions as it is responsible for all placement decisions. Finally, the run-time must be NUMA-aware and must interact with the operating system and the hardware efficiently in order to carry out requests of the application with low overhead and to avoid being a bottleneck for performance.

The theoretical part of our work involves the design of data placement and task placement techniques and elaborates the key aspects of application behavior and of the interaction with the hardware and operating system that have an influence on performance in general and the locality of memory accesses in particular. The practical side of our work consists in the implementation and integration of these techniques into a state-of-the-art task-parallel run-time system, their validation with a set of high performance, scientific applications on different hardware architectures and the development of adequate methods for performance analysis.

Most of the concepts presented in this thesis apply to task-parallel programming in general and can be adopted in the run-time systems of different task-parallel languages. However, the language extension for task-parallel applications that we have chosen for our optimizations is OpenStream. Like other modern task-parallel approaches, such as STARSS and OPENMP 4, dependences in OpenStream are expressed as point-to-point data dependences between tasks. However, the use of streams in OpenStream as first-class objects for synchronization offers a high degree of flexibility and enables advanced patterns for parallel programming, such as dynamic pipelining. Our choice for OPENSTREAM over other approaches has also been motivated by the fact that a widely accepted standard such as OPENMP 4 had not been published at the beginning of this thesis as well as by a close collaboration with Antoniu Pop, the author of OpenStream, and Albert Cohen.

OpenStream

This chapter provides an overview of OpenStream, a data-flow extension to OpenMP 3.0, which we have chosen as a state-of-the-art, task-parallel language for the experimental evaluation of the concepts presented in this thesis. We first introduce the basic concepts of OpenStream, namely data-flow streams, dependent data-flow tasks and synchronization of tasks based on streams. Producer-consumer relationships of an OpenStream program are captured by a dynamic task graph, for which we give a lightweight formal definition. The syntax of OpenStream programs is discussed in Section 3.2, followed by a series of examples illustrating this syntax in Section 3.3. The execution model of OpenStream is presented in Section 3.4. The chapter closes with an outline of the compilation of an OpenStream program in Section 3.5. All aspects of OpenStream presented in this chapter refer to the original implementation before any modification for the concepts proposed in this thesis.

Basic concepts

OpenStream [START_REF] Pop | A stream-computing extension to OpenMP[END_REF] is a language extension 1 to OpenMP 3.0, which supports the specification of fine-grained task parallelism, data parallelism, and pipelining in the C programming language. The three central concepts of the extension are the control program, data-flow tasks and streams, presented below. The semantics of OpenStream are underpinned by the Control-Driven Data Flow (CDDF, [73]) formal computation model. However, in the following definitions we do not use the fully-fledged CDDF model, but a simplified, partial model that focuses on the aspects relevant for the discussion of the execution model.

Streams

Streams are infinite sequences of elements of the same type that act as unbounded FIFO queues for communication between tasks. Each element of a stream has a unique integer index and is written using dynamic single assignment, i.e, each stream element is written at most once. Elements that have not been written are undefined and remain inaccessible for read accesses. Conceptually, a stream has a read position and a write position that define which elements of the stream are affected by subsequent read and write accesses.

Control program

The control program instantiates tasks and specifies inter-task dependences, which are expressed as read and write accesses to stream elements. As an element of a stream cannot be read before it has been written, stream accesses effectively determine the (partial)

1. OpenStream has been proposed by Antoniu Pop and was developed in the context of his thesis [START_REF] Pop | Leveraging streaming for deterministic parallelization: an integrated language, compiler and runtime approach[END_REF]. The work presented in this thesis related to OpenStream is the result of a close collaboration with Antoniu Pop and Albert Cohen. execution order of tasks. In order to guarantee deterministic behavior, OpenStream requires that the control program is sequential. However, under certain conditions the control program can be parallelized, as shown in Section 5.5. In the sequential case, the control program is executed by the root task of the OpenStream application, which corresponds to the main function of the program.

Data-flow tasks

Tasks in OpenStream are short-lived, dynamic instances, defined by a workfunction and an a set of views. The work-function is generated from the body of the task and contains the instructions to be executed when the task is scheduled. A view is a sliding window that allows the task to access a set of consecutive elements from a single stream or from several streams at once and is characterized by three attributes: the access type (read or write), the size of the window called horizon and the burst, which corresponds to the number of elements the read or write position of the stream is advanced after having determined the exact set of elements that the window provides access to. The CDDF computation model allows the burst to be smaller than the horizon for read accesses and restricts the burst to be equal to the horizon for write accesses. Likewise, the current implementation of OpenStream allows the burst to be smaller than the horizon only for read accesses, with the additional restriction that the burst must be zero. The reason for this restriction is explained in Section 3.4.5.

Access to stream elements is only possible indirectly through views, there is no mechanism to address specific elements of the stream directly. In the following parts, we illustrate how the actual stream indexes of the elements of views are determined.

Stream accesses using views

Figure 3.1 illustrates accesses on a single stream with a reading and a writing view of two different tasks. The initial state of a stream named a_stream before any access of producers and consumers is shown in Figure 3.1a. All stream elements are undefined and no sliding window provides access to them. The read position and the write position, indicating at which indexes the next sliding windows of reading and writing views will start, are represented by R and W, initially pointing to the same position i. Figure 3.1b shows what happens when the sliding window of the reading view with a horizon and a burst of six elements is added. The base of the sliding window is determined according to the current read position, enabling access to elements i, i+1, i+2, i+3, i+4, and i + 5 in read mode as indicated by the dotted rectangle. The read position is shifted by the burst and now points to element i + 6, causing the first element of the window of a subsequent read view to start at index i + 6. The write position is not modified and remains at element i. At this point, the set of elements the consumer view provides access to is determined, but the consumer cannot execute as the value of the elements is still undefined. Figure 3.1c shows the effect on the stream state of a writing view with the same characteristics as the reading view treated before. Again, the first element of the sliding window is i and access to elements i, i + 1, i + 2, i + 3, i + 4, and i + 5 is provided. The burst of six elements advances the write position of the stream, which becomes equal to the read position. The elements of the stream remain unchanged until the task with the writing view has finished execution. The state after termination of the writing view is shown in Figure 3.1d, where the elements at indexes i, i + 1, i + 2, i + 3, i + 4, and i + 5 have received their respective values v i , v i+1 , v i+2 , v i+3 , v i+4 , and v i+5 .

As shown in the examples above, the first element in the horizon of a view is always the element at the read or write position when the sliding window is defined. Hence, it is not possible to access elements at arbitrary positions without advancing the read or write position to the desired element. In fact, stream indexes are only a concept of the formal semantics behind OpenStream, but do not appear in the actual implementation at all.

Dynamic task graphs

Tasks with sliding windows on the same stream elements are able to communicate by changing the elements' values. Due to the principle of dynamic single assignment, each stream element can only be written once and communication is unidirectional from a single producer of an element to one or more consumers. These producer-consumer relationships are captured by a structure called dynamic task graph. As OpenStream programs can create an arbitrary amount of streams and tasks dynamically at run-time and as the instructions necessary to create them can be fully embedded into the control-flow of the application, this graph can in general not be constructed statically. Streams, tasks and stream accesses are only known at execution time and to find out which tasks communicate. It is thus necessary to analyze their dynamic relationships obtained from an execution trace. We say that an output view and an input view have been matched, when it has been determined that they provide access to a common set of elements of the same stream. Similarly, we define that two tasks are matched if there is at least one pair of matched views with one view belonging to one task and the other view belonging to the other task. In the following section, we define a minimal formal model for the definition of the dynamic task graph based on matched views. The matching itself is neglected in this model and will be described informally in Section 3.4.3.

Definition of a dynamic task graph

Each matched view can be formalized as a quadruple (u, s, i s , i e ) ∈ {R, W } × S × N × N where u indicates whether the view provides read or write access, s indicates the stream being accessed from the set of streams S, i s is the index of the first element of the sliding window defined by the view and i e is the index of the last element included in the window. The horizon thus corresponds to i e -i s + 1. The burst is not modeled, as it is only necessary to determine the stream indexes, which are already known in this definition. Let V denote the set of all possible views. Each view can be broken down into a set of accesses to individual stream elements vacc :

V → P({R, W } × S × N) with: vacc(u, s, i s , i e ) = {(u, s, i)|i s ≤ i ≤ i e }
Let T τ denote the set of dynamic task instances created from the beginning of the execution of the OpenStream program until a timestamp τ ∈ N and let T ∞ be the (possibly infinite) set of tasks created during the whole execution of the program. We further define views(t) of a task t ∈ T ∞ as the set of views of t with views(t) : T ∞ → P(V). The set of stream accesses sacc(t) of a task t is the set of accesses to individual stream elements of all of its views:

sacc(t) = v∈views(t) vacc(v)
The set of read and write accesses, sacc R and sacc W , can be defined as:

sacc R (t) = {(R, s, i) ∈ sacc(t)} and sacc W (t) = {(W, s, i) ∈ sacc(t)}
We define the dynamic task graph G = (T ∞ , E) as a graph whose vertexes represent dynamic task instances and its weighted, directed edges E ⊂ T ∞ × T ∞ × N indicate producer-consumer relationships between tasks. An edge (t p , t c , w) indicates that t p writes w bytes of data to stream elements read by t c . Let size : S → N be a function that specifies the size in bytes of elements for each stream. Based on the definitions above, E can be formalized as:

(t p , t c , w) ∈ E ⇔ C = {(W, s p , i p , R, s c , i c ) ∈ sacc W (t p ) × sacc R (t c )|s p = s c ∧ i p = i c } ∧ w = (W,sp,ip, R,sc,ic)∈C size(s p ) ∧ w = 0 Figure 3.
2 shows an example of the formal definitions above. The tasks, streams and views are shown in Figure 3.2a and the resulting dynamic task graph is given in Figure 3.2b. Assuming an element size of one byte, the set of tasks, stream accesses of the tasks and the dynamic task graph are:

T ∞ = {t 0 , t 1 , t 2 , t 3 }
views(t 0 ) = {(W, s 0 , 2, 4), (W, s 1 , 2, 5)} views(t 1 ) = {(W, s 0 , 5, 7)} views(t 2 ) = {(R, s 1 , 2, 5)} views(t 3 ) = {(R, s 0 , 2, 7)} sacc(t 0 ) = {(W, s 0 , 2), (W, s 0 , 3), (W, s 0 , 4), (W, s 1 , 2), (W, s 1 , 3), (W, s 1 , 4), (W, s 1 , 5)} sacc(t 1 ) = {(W, s 0 , 5), (W, s 0 , 6), (W, s 0 , 7)} sacc(t 2 ) = {(R, s 1 , 2), (R, s 1 , 3), (R, s 1 , 4), (R, s 1 , 5)} sacc(t 3 ) = {(R, s 0 , 2), (R, s 0 , 3), (R, s 0 , 4), (R, s 0 , 5), (R, s 0 , 6), (R, s 0 , 7)} E = {(t 0 , t 2 , 4), (t 0 , t 3 , 3), (t 1 , t 3 , 3)}

Extended dynamic task graphs

The dynamic task graph as defined above contains information about the flow of data between tasks, but does not capture information about task creation. We define the extended dynamic task graph G * of a dynamic task graph G = (T ∞ , E) as G * = (T * ∞ , E, E * ). The set of tasks T * ∞ is the set of tasks created during execution of the program T ∞ extended with the root task r: T * ∞ = T ∞ ∪ {r}. The set of edges E * ⊂ T * ∞ × T * ∞ defines the task creations. As the control program is executed by the root task, only r can create tasks, such that E * = {r} × T ∞ . The extended dynamic task graph of Figure 3.2b is shown in Figure 3.2c. The sets that were not present in the dynamic task graph are:

T * ∞ = {t 0 , t 1 , t 2 , t 3 , r} E * = {(r, t 0 ), (r, t 1 ), (r, t 2 ), (r, t 3 )}
More examples of dynamic task graphs are provided in the following section, describing the syntax of OpenStream programs.

Terminology related to task graphs

Task graphs are a cornerstone of the analysis of OpenStream applications and will be used frequently throughout the remainder of this document. In order to be able to express certain properties of the task graph succinctly, we define the following terms: light dependences, heavy dependences, balanced dependences and unbalanced dependences and dependence paths.

The former two terms are defined relatively to the highest weight associated to an edge of a dynamic task graph. In many applications analyzed in the experimental evaluation the weights can be divided into a set of low weights and a set of high weights, where the high weights are orders of magnitude higher than the low weights. For example, the task graph of an application might be composed of edges with a weight of a few hundred bytes and other edges with weights of a few hundred KiB. Edges whose weights are associated with the set of lower weights are referred to as light dependences, while the other edges are referred to as heavy dependences.

A task that has both heavy and light input dependences is referred to as a task with unbalanced input dependences. If a task has only heavy or only light input dependences, we say that the task has balanced input dependences.

A dependence path in a dynamic task graph G = (T ∞ , E) or an extended task graph G * = (T * ∞ , E, E * ) is a path that is composed of edges from E. A path of heavy dependences only contains edges with weights from the set of high weights and a path of light dependences only contains edges with weights from the set of low weights. An application is said to have short dependence paths if the number of edges on the longest path between two tasks in the task graph is below a certain threshold, e.g., two edges. In contrast to this, an application with long dependence paths has a task graph whose shortest paths are above a certain threshold, e.g., ten edges.

The syntax of OpenStream programs

After the introduction of the basic concepts of OpenStream, we now explain the textual representation of an OpenStream program. Consistently with the syntax of OpenMP programs, OpenStream uses pragmas to embed OpenStream-specific statements into a program written in the C programming language. The OpenStream compiler translates these pragmas into appropriate data structures and code for interaction with the OpenStream run-time. All pragmas start with #pragma omp, followed by a more specific construct and, depending on the construct, a set of clauses. Currently, OpenStream uses three constructs:

-the task construct creates a new task; views for stream accesses can be specified using additional clauses as part of the construct. -the taskwait construct creates a barrier that blocks execution until all the tasks of the current context have terminated. -the tick construct advances the read position of a stream after the creation of tasks with views on the stream having a burst of zero elements.

All constructs can be embedded anywhere in the control-flow of the application, enabling the construction of dynamic task graphs as shown before. Dynamic creation of streams is not done using pragmas, but relies on a special attribute stream that, added to the definition of a variable, defines the variable as a stream. In the following part of this section, we present the elements necessary for the specification of an entire OpenStream application, starting with the declaration of streams. The description of the general syntax is followed by a set of examples illustrating its use.

Declaring streams and stream references

Streams in OpenStream can be created anywhere the C99 standard [START_REF]International Organization for Standardization[END_REF] allows the definition of a local variable. The syntax of a stream declaration is straightforward: as the state of a stream is entirely managed by the run-time system, all the programmer needs to specify is the type of the stream elements and an identifier, followed by the attribute stream, which lets the compiler distinguish a stream declaration from the declaration of an ordinary variable: OpenStream treats streams as first class objects and therefore also supports stream references. A stream reference can be declared as follows: As with any other data type, it is also possible to create arrays of streams and arrays of stream references, in which case the identifier is followed by an arbitrary expression for the size of the array in brackets: The following example creates a stream of floating point elements and an array of 100 streams of characters, as well as a reference to the first stream from the array of streams: 

Declaring views

The definition of a view is syntactically split into two parts: a declaration specifying its type and horizon and a reference in the clauses of the task construct. The clause specifies which stream is to be accessed as well as the access type (read or write access). The syntax of a view declaration is identical to the declaration of a statically or dynamically sized local array in C99, where the horizon of the view corresponds to the expression that specifies the size of the array: For example, a view on a stream of floating point elements with a statically defined horizon of 5 elements and another view on a stream of integers with a dynamic horizon would be declared as follows:

1 float a_view [5];

2 int another_view[2 * n+3];
If only a single element needs to be accessed, the horizon can be omitted and the declaration can be abbreviated to: A special form of views are multi-dimensional views, which provide access to multiple streams at once, using the same horizon. The declaration of such a view is identical to the declaration of a multi-dimensional array: If the expression specifying the number of streams is not constant, the view is called a variadic view.

The following example declares a variadic view with a variable horizon on a stream of double precision floating point elements:

Creating tasks

The connection between views and stream elements is realized by the task construct, enabling the dynamic creation of tasks. The views to be used by a task are specified by adding input, output, or peek clauses to the construct. Input and output clauses provide read and write access to stream elements, respectively. The peek clause is semantically equivalent to the input clause, but implies a burst of zero elements. Thus, a task using the peek clause has access to the elements of the stream according to the view's horizon, but does not advance the read position of the stream, allowing subsequent views to access the same elements. Task constructs without any clause create tasks that do not access any stream and which are therefore neither producer nor consumer. The full syntax of the task construct is: Sharing clauses allow the programmer to define how scalar variables declared outside the task are accessed within the task body (e.g., a private copy per task or shared use). The stream and view expressions define whether a single stream or multiple streams are referenced at once and whether the burst of the view should be identical to or different from the horizon of the view's declaration. A stream expression can be:

-the name of a stream or a stream reference (e.g., a_stream), in which case only a single stream is referenced and the view specified after the stream expression provides access to a set of consecutive elements of that stream -an array expression composed of the name of an array of streams or stream references and an index expression in brackets (e.g., a_stream_array[num_streams-x]), also giving access to a set of consecutive elements from a single stream as in the first case -the name of an array of streams or stream references, providing a two-dimensional window to the elements of a variable number of streams Depending on the stream expression, a view expression is either:

-the name of a view, which implies a burst of only one element -a view with an explicit, constant or variable burst (e.g., a_view [10] or a_view[2 * n+3]) -a multi-dimensional or variadic view referencing several streams at once with an explicit burst for all of the streams (e.g., a_view[num_streams][burst])

The task body can be either a single statement or a compound statement. The instructions forming the task body are automatically outlined by the compiler into a so-called work-function that is called when the task is executed. Besides access to stream elements through its views, a task body is also allowed to access scalar variables from the context surrounding the task construct using sharing clauses as defined by the OpenMP standard [24]. For input and output clauses, the burst specified in the access clause must be identical to the horizon of the view declaration due to restrictions from the execution model of OpenStream (cf. Section 3.4.5).

The tick construct

The tick construct modifies the read position of a stream without creating a task and is used for broadcasts of stream elements to multiple views. Broadcasts are implemented in two steps. First, the producer writing the elements to be broadcast as well as all the consumers are created in any order using the task construct with appropriate stream access clauses. The producer uses an ordinary output clause to obtain write access to the elements of the stream like any other producer task not involved in a broadcast. The consumers cannot use ordinary input clauses as these would automatically advance the stream's read position, such that consumers would not be able to access the same elements. Therefore, the consumers of a broadcast must use the peek clause, which does not advance the read position of the stream and hence allows multiple consumers to obtain access to the same stream elements. For practical restrictions of the implementation, explained in Section 3.4.3, the burst of the producer's output view must match the horizon of the consumers peeking views. The second step of a broadcast consists of a tick operation that advances the stream's read position. At this point, all the set of consumers of the broadcast is determined and no further consumers can be added. The syntax of the tick construct is:

1 #pragma omp tick(stream_expr >> size_expr)

The stream expression must be either the identifier or an array expression addressing a single stream or a single stream reference. The expression for the size specifies by how many elements the read position is advanced and can be any expression of type size_t that matches the producer's burst.

Barriers

OpenStream offers built-in support for local barrier synchronization with the taskwait construct, which causes the task that encounters it to be suspended until all of the tasks of the current context have terminated. The syntax is conceivably simple: 1

#pragma omp taskwait

Barriers created with the taskwait construct are often employed at the end of the control program to make sure that all tasks have terminated before shared resources are freed.

Examples

To illustrate the principles and the syntax above, this section provides some basic examples with increasing complexity. The presentation starts with programs based only on input and output views and then shows how to implement broadcasts.

Tasks with ordinary output and input views

Figure 3.3a shows the stream accesses of a very simple program with a single output view and a single input view. A producer p writes the square roots of 0 to 5 to a stream named a_stream, read by a consumer task c. As c is the only consumer on a_stream, the elements can be discarded when c terminates, which makes a broadcast unnecessary.

To put into effect this behavior, both tasks need a sliding window of six elements to the same elements of a_stream, with p accessing the elements in write mode and c accessing them in read mode. Hence, the horizon of the input and output views must be six. As the elements are to be discarded afterwards, the burst of the input view is also six. The following listing shows the complete code of the example. The code starts with the declaration of the stream of floating point elements in line 3 using the attribute stream. Lines 6 and 7 declare the views used by p and c, out_view and in_view, both with a horizon of six elements. The producer and consumer tasks are created in lines 10 and 17, respectively, using the task construct and appropriate clauses. Note that the task bodies reference the variable horizon, although it was declared in the surrounding scope and no sharing clause defines how it should be accessed. This is possible because scalar variables declared outside, but referenced inside a task are declared firstprivate by default, meaning that the compiler creates an individual copy of the variable for each task initialized with the value from the surrounding context at the time of the task creation. The taskwait construct in line 23 blocks the control program until p and c have finished. This prevents the application from ending prematurely before the producer and consumer have executed.

Nothing in the example specifies the direct producer-consumer relationship between p and c. The producer and the consumer just happen to operate on the same elements of the same stream and the producer-consumer relationship is the result of the matching of the input view and the output view on the stream. Figure 3.3b shows the dynamic task graph of this application. The exact mechanism matching producers and consumers will be explained in section 3.4 describing the execution model of OpenStream.

The next example adds some complexity to the previous one. Instead of a single producer that writes all the elements at once, two producing tasks p 0 and p 1 each produce three of the six elements, as illustrated in Figure 3.4a. To implement this behavior, the code from the previous listing needs only a few adaptations: Due to the different horizons of the producers and the consumer, the previous view declarations have been replaced by declarations referencing different variables, horizon_out and horizon_ in (lines 6 and 9). The two producer tasks are created in lines 12 and 19. Although they both use out_view in their output clauses, they do not access the same elements of the stream. In fact, the compiler uses the declaration of a view only to determine the element type and the horizon of a view. Within different task bodies, the same view can refer to completely different data locations. The code of the consumer task (lines 26-30) and the rest of the code are almost identical to the previous example. The dynamic task graph resulting from the execution is shown in Figure 3.4b.

As stated earlier, task creation can be fully embedded into the control flow of the control program. This concept is put into practice by the next two examples creating tasks dynamically within a for-loop. Assume that the production of stream elements needs to be parallelized further, such as illustrated in Figure 3.5a and Figure 3.5b, where each producer task writes only a single element of to the stream. To this end, the task construct creating a producer can simply be embedded into the body of a for loop: streams [START_REF] Drebes | Topology-aware and dependence-aware scheduling and memory allocation for taskparallel languages[END_REF] streams [START_REF] Drebes | Aftermath: A graphical tool for performance analysis and debugging of fine-grained task-parallel programs and run-time systems[END_REF] streams [3] streams [START_REF]MaMI: Marcel memory interface[END_REF] streams [5] As only one element is written per task, the output view is declared as a scalar and the output clause uses the abbreviated syntax with an implicit burst of one element.

An alternative way to specify the behavior of the previous example is to use multiple streams, e.g., one stream per element and to let the consumer read from all these streams at once. This is shown in Figure 3.6: each producer p i writes a single element to a single stream streams[i] from an array of streams named streams. The program can be written as: Line 3 defines the array of streams with six elements. The output view of the producers in line 5 remains unchanged, but the input view, now uses a two-dimensional format. The outer dimension specifies the number of streams that will be used by the view and the inner dimension specifies horizon, which must be identical for all streams. Within the task body of the consumer, the input view can be referenced like any two-dimensional array of floating point elements (line 20).

Broadcasts

Broadcasts can be implemented easily using an output view and peeking views on a stream. In the example shown in Figure 3.7, the elements written by a single producer are read by three consumers c 0 , c 1 and c 2 . Listing 3.5 shows how the different consumers use their input data: c 0 (line 17) calculates the sum of all input elements, c 1 (line 28) calculates their product and c 2 (line 39) computes the sum of the squares. All consumers use the peek clause, which implies a burst of 0 elements. The tick construct advances the read position and effectively triggers the broadcast by activating the producer task, i.e., the producer task becomes ready for execution. Upon termination of the producer, the data is available and the consumers are ready for execution. A detailed description of the run-time mechanisms related to broadcasts at execution time is given in Section 3.4.3. 

Execution model

After the discussion of the central concepts and the syntax of OpenStream programs in the previous sections, we give an overview of the execution model. We first explain how tasks that are ready for execution are scheduled and executed on the different cores of the machine. We then discuss how the run-time manages the creation of tasks and how it detects that a task is ready. This discussion also includes the explanation of how views are associated to stream elements. Finally, we introduce the memory management layer of the run-time based on memory pooling. 

Scheduling and work-stealing

One of the central components of the run-time is the scheduler, which manages the execution of tasks that are ready. As the run-time is intended to run on massively parallel systems, the approach used for scheduling is distributed and uses lock-free implementations of the most critical data structures. This avoids high synchronization overhead and thus prevents the scheduler from becoming a bottleneck for performance. In this approach, each core involved in the execution of the application has a persistent worker thread, an ordinary POSIX thread running a scheduling loop, which executes ready tasks on the local core independently from the other processing units. All worker threads are created at the beginning of the execution of the application and remain alive until its termination. By default, one persistent worker is placed on each core as shown in Figure 3.8, but workers can be placed in any order on the cores of the machine as long as no more than one worker executes on every core. However, the mapping of workers to cores can only be set at the beginning and remains the same for the entire execution time.

Figure 3.8 also shows the data structures involved in the scheduling process. The first structure is a work-stealing deque, a double ending queue that can contain an arbitrary amount of tasks ready for execution. The second structure is a single entry software cache that can only contain up to one single ready task at a time. When a worker activates a task, it tries to add the task to the single entry software cache first. If the cache is empty, this operation immediately succeeds. However, if the cache already holds a task, this task is removed from the cache and added to the work-deque in order to leave the entry of the cache to the newly activated task. Hence, the cache always contains the latest task activated by the worker.

When the worker finishes execution of a task, it first checks if there is a task in the software cache and, if so, removes it from the cache and executes it. If the cache is empty, it tries to pop a task from bottom of the work-deque. If both the cache and the deque are empty, the worker chooses a random victim worker using a uniform distribution and tries to steal a task from the top of the victim's work-deque. Work-stealing is only allowed on the work-deque and the software cache The purpose of the software cache is thus twofold. First, as only the worker itself has access to the cache, adding or removing a task can be accomplished without any synchronization overhead. Second, a task in the software cache cannot be stolen by another worker, which avoids the following situation. Let w be a worker that is currently executing a task t and let t r be the task that was last activated by w. Assume further, that the work-queue of w was empty before t r was activated. If t r is stolen by another worker, w runs out of work and has to steal another task after termination of t, with atomic operations on a remote work-deque.

The work-deque is implemented using the lock-free deque proposed by Chase and Lev [37]. Tasks are put into the deque at the bottom end and can only be stolen by other workers at the top end. The only worker that is allowed to remove a task from the bottom is the owner of the deque. From a worker's perspective, tasks are executed in LIFO order, favoring local execution of tasks whose input elements have been written recently, resulting in better cache usage. In contrast to this, task stealing occurs in FIFO order, meaning that tasks whose data is less likely to be present in the cache hierarchy are executed remotely.

Algorithms 1 and 2 summarize the principles of scheduling presented above. Each worker enters scheduler_loop upon its creation, which contains an infinite scheduler loop, ensuring constant execution of tasks obtained from the local software cache, the local work-stealing deque or through work-stealing from another worker's work-deque. The function add_task_locally is called whenever a worker w causes a task to become ready for execution and adds that task to the software cache.

Data structures

Each entity of an OpenStream program (i.e., streams, tasks and views) is associated with a data structure in the run-time as shown in Figure 3.9. A stream is characterized by the attributes shown in Figure 3.9a, which are:

-A list of unmatched output views on the stream (prod_queue) -A list of unmatched or partially matched input views on the stream (cons_queue) -The size in bytes of its elements (elem_size) -A reference counter for garbage collection (refcount) -A list of unmatched peeking views on the stream (peek_chain) The list of producers, consumers and peeking consumers are initially empty when the stream is created and the element size is initialized according to the size of elements specified in the declaration of the stream. The initial value of the reference counter is one and is increased by one at the creation of every stream reference referring to the stream. Views are represented by the data structure illustrated in Figure 3.9b with the following fields:

-the horizon expressed in bytes (horizon) -the burst expressed in bytes (burst) -a field used for chaining of the view in a linked list (next) -the reached position used for indexing of the data buffer and to check if the view is unmatched, partially matched or fully matched (rpos) -a pointer to the elements of the sliding window (data) Note that there is no field indicating whether the view provides read or write access. This information is kept by the compiler and passed to the run-time as a parameter upon a call to the function that matches a view with stream elements. Horizon and burst are initialized according to the horizon and burst of the view. The data structure of a view from a peek clause receives a burst of zero, allowing the run-time code to recognize it as such. For all other views, burst and horizon are identical. Upon creation, the data location of the view is unknown and hence initialized to NULL. The reached position is set to 0, indicating that the view is unmatched, i.e., not associated to any producer or consumer.

The last data structure presented in Figure 3.9 is the data-flow frame or frame for short and represents a task. A frame is composed of:

-A synchronization counter sc, indicating if the task is ready for execution (sc = 0) or if it has unmet dependences (sc > 0) -A set of views, each identified by its respective name from the declaration of the view -A data region buf which has enough space to store all elements of its input views

The synchronization counter of a task is initialized with a value representing the sum of the horizons of its views, each multiplied with the size of the views' element types.

Dependence management

As shown in the introduction and the examples of this chapter, producers and consumer are matched dynamically, only based on their stream accesses. In this section, we show how this matching is implemented by the run-time library based on the data structures presented previously. We start with the matching of ordinary input and output views and present the same procedure for broadcasts using peeking views afterwards.

Ordinary input and output views

When a task is created, its frame is allocated and initialized, including all the data structures for the task's views. Once the initialization is finished, output views are matched with consumers and input views are matched with producers by invoking a procedure called resolve_dependences for each view. To illustrate how the different data structures are used during dependence management by resolve_dependences, reconsider the example of listing 3.2 on page 39, in which a single consumer reads a total of six floating point elements of four bytes produced by two tasks, each writing three of the six elements. The entire process from the creation of the stream and the tasks to the execution of the tasks is illustrated in Figure 3.10.

Figure 3.10a shows the state of the run-time after the creation of the stream a_stream. As there are neither producers nor consumers yet, the corresponding chains of unmatched views, prod_queue and cons_queue, are empty. The stream status at the upper right of the figure does not represent an actual data structure of the run-time and only serves to illustrate the current read and write positions as well as the contents of the stream.

Figure 3.10b shows what happens when p 0 is created. As there is no consumer reading from the stream, the output view cannot be matched with an input view yet and the data structure representing the output view of the task is added to the stream's queue of unmatched producers, prod_queue. However, even though the matching is not complete, conceptually, the write position of the stream is advanced by the burst of the view, such that subsequent producers write the elements at positions following the elements written by p 0 . Note that the values for horizon and burst in the figure are specified using bytes and not the number of elements. The pointer next, used for chaining of unmatched views, is initialized to NULL as the output view of p 0 is currently the only unmatched view writing to the stream and thus does not have a successor in the list. The field rpos is unused for output views in this example and can be ignored. As the data location is currently unknown due to the incomplete matching, the field data it is initialized to NULL. The synchronization counter of the task, sc, keeps its initial value of 12 (one unmatched output dependence with three floating point elements of four bytes).

The next step in the example program is the creation of the second producer, p 1 , as shown in Figure 3.10c. Exactly as was the case at creation of the first producer, no consumer reading from the stream has been created so far. Hence, the output view of p 1 is added to the queue of unmatched producers using the field next of the output view of p 0 . Again, the write position of the stream is advanced by the burst of the view of three elements. The remaining fields are initialized with the same values as for the previous task.

The consumer task c is finally created in the step illustrated by Figure 3.10d. Burst and horizon are both set to 24 bytes corresponding to the six elements specified in the declaration of the input view of c. The buffer for the input elements is embedded into the frame, indicated by the array of 6 elements below buf. The current write position within this array is the first element, thus, rpos is initialized to 0 (this is not shown in the figure, since it represents the state after matching with p 0 ). At execution of resolve_dependences for the input view of c, the list of unmatched producers is consulted. If this list would be empty, the input view would have been added to cons_queue as seen for the producers and prod_queue before. However, as the list is not empty, the first output view is removed and matched with the input view of c. This is done in several steps. First, the data pointer of the output view is set to the current write position of the input view, which is calculated by indexing buf using the current value of rpos of the input view. The result of the indexing operation is the base address of buf, i.e., &buf[0]. The value of rpos is updated according to the horizon of the output view of p 0 , i.e., a value of 12, as shown in the figure .  Next, the synchronization counter of the producer task is updated by subtracting the burst of the output view. The new value of 0 indicates that the task is ready for execution. The matching with p 0 is now complete. However, the reached position of the input view of c still has not reached the horizon, such that resolve_dependences continues matching with the second output view.

The result of this process is shown in Figure 3.10e. Similar to the previous matching, the output view of p 1 is removed from the list of unmatched producers, the data pointer of the output view of p 1 set to the current write position of the input buffer and the synchronization counter of the output view is updated accordingly. The field rpos of the output view receives the value of the input view before the second matching, which was 12. However, in this example, this field can be ignored for output views and is only shown in order provide a coherent description of the matching algorithm. The reached position of the input view now matches its horizon, which indicates that matching of this view is complete. Note that the synchronization counter of the consumer is not updated yet, due to the fact that its input data only becomes available when the producing tasks terminate.

Assume that p 0 is executed first and finishes its execution. Figure 3.10f shows the state of the different data structures right at termination: the input buffer of c now contains the data written by p 0 . After termination of the work function of p 0 , the synchronization counter of c is reduced by the burst of the output view, resulting in an updated value of 12 (cf. Figure 3.10g). When p 1 executes, the last three elements become available and the synchronization counter of c finally reaches zero, which activates c (Figures 3.10h and 3.10i). The task eventually executes and its resources are freed, as shown in Figure 3.10j.

Broadcasts

For the illustration of broadcasts, we show what happens during execution of the code using peek clauses and the tick construct presented in listing 3.5 on page 42. At its creation the producer task is entirely unaware of the broadcast and is treated like any ordinary producer whose consumers have not been created, yet. This is shown in Figure 3.11a: the output view is simply added to the list of unmatched producers just as in Figure 3.10b of the previous example. The consumers, however, are treated differently than before. When resolve_dependences is called with an input view with a burst of 0, i.e., a peeking view, it does not match producers and consumer directly, but defers this action until execution reaches the tick clause. Peeking views on the same elements, i.e., peeking views that are matched before the read position of the stream is advanced with a tick clause, are queued using the field peek_chain of the stream, as shown in Figures 3.11b to 3.11d. Neither the producer, nor the consumers are ready for execution during this period, as indicated by their synchronization counters keeping their initial values of 24. When the run-time encounters the tick clause, it resets the chain of peeking views and resolves the dependences of the first consumer view (Figure 3.11e). The producer is removed from the chain of unmatched output views and its data pointer is set to the first element of the buffer of the input view. The synchronization counter of the producer reaches zero and the producer is ready to execute. At termination of the producer in Figure 3.11f, all input elements of the first consumer have been written, but the task remains blocked until the data has been copied to the remaining consumers (Figure 3.11g). Upon completion of this operation, the consumers' synchronization counters are updated and the producer's data structures can be freed (Figure 3.11h).

Allocation of data structures

There are multiple data structures involved in dependence management and scheduling of tasks, e.g., streams and data-flow frames, presented above. Many of them need to be allocated and freed dynamically throughout the execution of a stream application. Often they are used only from creation of a task until its termination and can therefore have a very short lifetime, resulting in frequent invocations of functions allocating and freeing memory resources. In addition, on many-core systems with a high number of workers executing in parallel, these functions might be called with a high degree of concurrency. To prevent memory management from becoming a bottleneck, the run-time system must thus rely on an optimized memory allocator.

Memory pooling

Due to the parallelism within the run-time itself, resulting from the concurrent activity of workers, a centralized memory allocator satisfying all requests would require a substantial effort on synchronization of concurrent calls. Instead, the OpenStream run-time uses a decentralized approach based on per-worker memory pools.

The principles of memory pooling are straightforward. The size of each data structure used by the run-time system is assumed to be between 2 smin and 2 smax bytes. For each power of 2 i with i ∈ {s min , s min + 1, s min + 2, . . . , s max }, a linked list of free blocks of size 2 i bytes is maintained, as illustrated in Figure 3.12. When an allocation of size m takes place, the allocator first checks if m > 2 smax holds. If this is the case, the size of the request is too big to be handled by the memory pool and the request is redirected to the standard C memory allocator (e.g., malloc). For m ≤ 2 smax the allocator checks whether there is a free block in the list of blocks whose size corresponds to the next greatest power of two at least of size 2 smin , i.e., 2 j with 2 j ≥ m ∧ j : s min ≤ j < j. If such a block exists, the allocator removes it from the list of free blocks and returns it as the result for the request. If no such block is available, the allocator performs a refill operation that allocates a contiguous chunk of memory of size M = k • s j , splits it into k equal-sized blocks, adds the first k -1 blocks the free list and returns the last block as the result of the request. Freeing a block works similarly: the allocator determines the corresponding free list and adds the block at its head. If the size of the block to free exceeds the maximum size handled by the memory pool, it forwards the request to the standard memory allocator (e.g., free).

The main advantage of using memory pools for memory management is that almost all requests can be carried out in constant time. The only exception are refill operations, which become less frequent once the maximum number of blocks used simultaneously is reached. Additionally, per-worker memory pools guarantee that the free lists are completely private and do not need to be protected for concurrent accesses, e.g., using locks or atomic operations. Therefore, they do not induce any synchronization overhead.

Life cycle of objects from a memory pool

The life cycle of blocks that are handled by a memory pool, i.e., objects whose size does not exceed 2 smax , resulting from the allocation scheme above has five distinct stages:

1. Allocation from the operating system due to a refill operation 2. Allocation from the free list of a memory pool 3. Exclusive use of the block by the run-time or use by the run-time and the application 4. De-allocation of the block by putting it back to a free list 5. Return of the memory of the block to the operating system Due to the reuse of blocks when using memory pooling, stages 3 and 4 can occur an arbitrary number of times. An important aspect of these allocations and de-allocations is that they do not necessarily have to involve the same memory pools. For example, a data-flow frame is allocated in the memory pool of the worker executing the control program, but the associated task can be executed by any other worker. The frame could thus be freed to another memory pool than the pool from which is was allocated.

Restrictions from the execution model

The presentation of the data structures and the algorithm for resolving dependences between tasks showed that stream data is not stored in data structures directly associated to a stream, but in input buffers located in the data-flow frames of tasks. Each structure representing a view has only a single field, data, pointing to the first of the elements accessible through the view. An advantage of this representation is that consecutive elements of a stream are stored at consecutive addresses and can thus be accessed by simple indexation. However, in order to guarantee this data layout at execution time, valid OpenStream programs are subject to a few restrictions. Restriction 3.1 (Bursts and horizons of a view) Burst and horizon of a reading view must either be identical or the burst must be equal to zero. This avoids that a subset of the elements of an output view is copied to multiple input views. Figure 3.13 shows an example of an invalid OpenStream program with an output view of six elements and two input views having a horizon of three elements and a burst of two elements. The result in Figure 3.13b shows that there is an element at index i + 2, which is accessed both by c 0 and c 1 and which would have to be copied to the first position of the input view of c 0 and the third position of the input view of c 1 .

Restriction 3.2 (Horizons of output and input views of producers and consumers)

The elements accessible through a view cannot be scattered across multiple input buffers, i.e., there cannot be any output view whose elements are not entirely read by consumers:

∀t ∈ T ∞ : ∀(W, s, i s , i e ) ∈ views(t) : ∀t ∈ T ∞ : ∀(R, s, i s , i e ) ∈ views(t ) : ([i s , i e ] ∩ [i s , i e ] = ∅ ∨ [i s , i e ] ∩ [i s , i e ] = [i s , i e ])
Note that this restriction cannot be verified by the compiler due to the dynamic matching and is therefore checked at execution time. Figure 3.14 shows an example of an invalid program with two input views accessing elements from a single output view. As in Figure 3.13, there is one producer writing 6 elements, but the consumers now have a burst that matches the horizon of 3 elements. However, as the data would have to be distributed onto the input buffers of c 0 and c 1 , this program is invalid. Restriction 3.3 (All elements of a stream that are written must also be read) This restriction forbids to write any stream element that is never read. As the writer relies on the input buffer of at least one consumer to stores its produced elements, each element written to the stream needs to be read at least once:

∀t ∈ T ∞ : ∀(W, s, i) ∈ sacc W (t) : ∃t ∈ T ∞ : (R, s, i) ∈ sacc R (t )
Restriction 3.4 (Absence of unused elements between two elements that are used) As views are matched one after another on consecutive elements of a stream, there cannot be any element between two accessed elements that is never written:

∀s ∈ S : (∃t, t ∈ T ∞ : (W, s, i) ∈ sacc W (t) ∧ (W, s, i ) ∈ sacc W (t ) ∧ i > i + 1) ⇒ (∀i ∈ {i + 1, . . . , i -1} : ∃t ∈ T ∞ : (W, s, i ) ∈ sacc W (t ))
Note that this restriction does not need any additional verification as it results directly from the matching algorithm presented earlier.

Restriction 3.5 (Finite number of consumers for broadcasts)

As the tick construct advances the stream at some point and triggers the broadcast operation, additional peeking views on the same stream cannot be matched to the same producer after the tick. This mechanism effectively limits broadcasts to a finite number of receivers.

This restriction also results directly from the matching algorithm and does not require any specific verification.

Compilation of an OpenStream program

During compilation of an OpenStream program, it is necessary to translate the OpenStreamspecific pragmas and attributes to code that links with the OpenStream run-time library. The rest of the code must be treated as an ordinary program written in the C programming language and must be translated in accordance with its specification. Due to the complexity of the standard, writing such a compiler from scratch is a large undertaking. In addition, this work has already been accomplished in a large variety of existing C compilers, which can be used as a basis for the development of specialized compilers. Therefore, the OpenStream compiler is implemented on top of the GNU C Compiler version 4.7.0 [START_REF] Richard | GNU Compiler Collection Internals[END_REF], reusing existing compilation infrastructure 2 .

The different steps involved in the compilation of an OpenStream application, including translation of the non-specific parts are shown in Figure 3.15. The basic structure of this process is already included in the unmodified version of GCC, but has been adapted to compilation of OpenStream programs. The order of the steps is not strict, in particular steps 2 to 5 are tightly coupled and executed repeatedly for each task. However, the steps can be roughly ordered as follows:

1. During syntax analysis the parser analyzes the pre-processed input file and converts the C statements into a tree representation called GENERIC [START_REF] Merrill | GENERIC and GIMPLE: A New Tree Representation for Entire Functions[END_REF]. OpenStream-specific clauses are represented by nodes with custom types and are processed in later stages. 2. During outlining, the compiler creates a work-function for each task body. 3. In the third step, the compiler determines how much space is needed for the data-flow frame containing the tasks metadata and its views. Once the structure of the data-flow frame is known, the code initializing the fields and calling the appropriate run-time functions can be generated. In particular, the space needed for the data-flow frame is allocated by calling the allocation function of the memory pool seen in section 3.4.4, the synchronization counter of the task is set correctly and the views' bursts and horizons are initialized. For each view, a call to resolve_dependences is added. 5. During gimplification, the generated code is converted into a three-address representation of the GIMPLE intermediate representation, widely used in GCC. 6. The result of the gimplification is passed to subsequent optimization passes of GCC and the back end, which finally generates instructions for the target architecture.

The code of the run-time is kept in a separate, shared library. Hence, to resolve the symbols used by calls of run-time functions generated in step 4, the executable needs to be linked with the run-time library. The actual addresses of the symbols are determined when the executable and the run-time are loaded right before execution.

In the following example, we illustrate steps 2 to 4 on a task with two input views and an output view. The intermediate code resulting from the translation omits details from the actual implementation and therefore does not reflect the generated code by the real compiler. In addition, the OpenStream compiler does not use a source-to-source approach. Thus, the generated code only exists as an internal representation and is not exposed to the environment. However, the simplified code illustrates the concepts of how the compiler translates OpenStream code into generic C code making use of the run-time library. The general lines of the code generated from listing 3.6 are represented by the listing below. ... } Lines 1 to 9 show the definition of the structure of the data-flow frame of the task. Each task created dynamically at execution time from the task construct upon a call to stream_function will be represented by an instance of this data structure. The definition of the structure specifies fields that are common to all tasks as well as fields that are specific to the task construct for which the structure was generated. The common fields are the synchronization counter sc, a pointer to the work function containing the instructions of the task body work_fn and a field buf that provides access to the input data of the task. Note that the size of buf is not specified as the size of input data is known earliest at task creation (cf. line 35). The task-specific fields are the views in_view_ f, in_view_d and out_view and a field for the local variable horizon of stream_function.

The outlined task body is represented by the work function defined in lines 11 to 19. The data structure representing the task, i.e., the data-flow frame is passed as an argument to the function and the statements inside the function only reference fields from the data-flow frame. This also applies to the local variable horizon of stream_function, whose access has been replaced with an access to fp->horizon in line 13.

Task creation takes place in the original function at line 35. The function responsible for task creation is tcreate and takes the size of the frame as an argument. This size is calculated from the size of the data structure representing the task and the amount of memory that is needed to store the task's input data in line 33. The allocation of the frame is carried out by the run-time during execution of tcreate and uses a memory pool. Hence, the code of stream_function does not directly call the allocator, but only assigns the return value of tcreate to fp.

The different fields of the data-flow frame are affected in lines 37 to 60. These are the fields containing metadata of the task itself, as well as the fields of the task's views. The fields of the views named owner point to the data-flow frame which embeds the elements of their sliding windows. For input views, the owner is always the frame containing the view and for output views this is the frame that contains the input view that was matched with the output view. The pointer is primarily used to find the correct data-flow frame when a synchronization counter needs to be decremented, such as in line 17 where the synchronization counter of the task's consumer is updated.

The code finishes with calls to resolve_dependences for every view in lines 62 to 64. The second parameter of this function indicates whether the call is issued for an input view (true) or for an output view (false).

Summary

In this chapter, we introduced OpenStream, a data-flow extension to OpenMP with support from streams and lightweight tasks. We showed the concepts of stream accesses using views and explained how a dynamic task graph can be derived from these accesses. The syntax of OpenStream programs was presented and illustrated with multiple examples. Moreover, we introduced the central data structures and procedures of the run-time in the discussion of the OpenStream execution model. We gave an overview of the steps of the compilation of an OpenStream program and outlined the generated code of an example.

OpenStream is a state-of-the-art language extension for task-parallel applications whose implementation enables the development of high performance applications [START_REF] Pop | A stream-computing extension to OpenMP[END_REF]. Although the specific concepts of stream accesses using views and matching of producers and consumers are unique to OpenStream, the concept of specifying point-to-point data dependences between tasks is a trend for task-parallel languages in general [START_REF]OpenMP Application Program Interface Version 4[END_REF][START_REF] Planas | Hierarchical task-based programming with StarSs[END_REF]. The implementation of our approaches for optimized scheduling and data placement presented in Chapter 7 and 8 and the implementation of our optimizations for broadcasts in Chapter 9 are tightly coupled with the OpenStream run-time and the OpenStream compiler. However, the concepts only rely on information on point-to-point data dependences between tasks and thus apply to other task-parallel languages as well.

Many of our concepts have been merged into the official distribution of OpenStream. As these apply to the run-time system, the majority of our contributions to the codebase are modifications of the OpenStream run-time. These are not only modifications that implement specific algorithms for scheduling and data placement, but also important changes to the technical infrastructure of the run-time, such as the interaction with the operating system, the addition of profiling support or NUMA-specific modifications of the run-time code. Some of the modifications also required changes in the OpenStream compiler or changes at the language level. Furthermore, the experimental evaluation of this thesis has lead to the development of multiple benchmarking applications, which have become part of the official distribution.

The next chapter presents changes to the run-time and execution model that enable efficient support for NUMA. In particular, we analyze the major issues of the NUMA-unaware strategy for memory allocation and propose concepts that solve these problems and support NUMA-aware scheduling and memory allocation.

A NUMA-aware run-time and execution model

The common requirement of techniques for NUMA-aware scheduling for task-parallel applications is that the placement of data structures involved in the execution of a task can be determined accurately within the run-time. NUMA-aware allocation is based on the ability of the run-time system to place data structures on specific nodes. Due to the short execution time of fine-grained tasks, this functionality is needed frequently throughout the execution of a task-parallel application and must thus be provided with low overhead. However, as data placement results from interactions between the task-parallel application, the operating system and the hardware at execution time, support for NUMA by the run-time cannot be implemented independently and must be integrated carefully into the embedding context. This requires a detailed understanding of all events that determine data placement and demands efficient use of the interface to collect information on the distribution of data provided by the operating system.

The goal of this chapter is to point out how the OpenStream run-time system can provide efficient infrastructure to support NUMA-aware scheduling and NUMA-aware allocation. The first part of the chapter explains which software and hardware components are involved in memory allocation and data placement from the perspective of the operating system. We show which events at execution time determine the placement on the different NUMA nodes of the machine and at which moment the placement takes place. We then discuss the influence of these mechanisms on the placement of data structures managed by an allocation mechanism based on memory pools, such as the allocator presented in the previous chapter. From this detailed understanding of the interactions, we conclude which changes must be applied to the OpenStream run-time system and which restrictions must be imposed on streaming applications in order to implement efficient and accurate NUMA-aware memory pooling. The resulting mechanisms allow the run-time to determine the location of structures and enable per-structure data placement with low overhead as a result of reduced interaction between the run-time and the operating system. The techniques form the basis of the solutions for NUMA-aware scheduling and NUMA-aware memory allocation presented in Chapter 7 and 8.

Memory allocation and data placement by the operating system

Modern general-purpose computing systems implement the concepts of virtual memory and paging. In this model, each user space process has its own, private space of virtual addresses, which is mapped to physical addresses by the memory management unit (MMU) using a translation table managed by the operating system. Both virtual and physical memory are organized in pages, representing fixed-size intervals of the address space. The mapping from virtual to physical addresses is implemented with page granularity, i.e., the set of subsequent addresses of a page in virtual memory is mapped to a set of subsequent addresses of a physical page. The table defining the mapping between virtual and physical addresses is therefore referred to as the page table. Memory protection defines which types of accesses to memory are authorized (e.g., read-only mode that disallows write accesses, read and write mode without execution protection to prevent data from being interpreted as instructions, etc.). The protection can be configured individually for each page by setting flags for the corresponding entry of the page table. Illegal access to a page is detected by the hardware and results in an exception that is handled by the operating system.

Logical and physical memory allocation

Additional memory can be allocated by a user space process through a system call, usually wrapped by a function of a user space system library, such as malloc from the standard C library. The return value of the function call is a virtual address that points to a new region of memory that can be used by the process immediately. From the perspective of a process, memory allocation is thus an atomic operation and only involves a single system call. From the perspective of the operating system, however, additional memory is attributed to a process in two steps which we refer to as logical allocation and physical allocation.

Logical allocation is initiated by the system call issued by the process and causes the operating system to modify the page table, such that additional pages of virtual memory become accessible. The corresponding entries are set to point to the so-called zero-page and memory protection is configured to forbid write accesses to addresses associated to these pages. Although only the page table is modified and no additional physical memory is allocated, it appears to the process that additional memory becomes accessible upon return from the system call. Read access to the new virtual pages result in read accesses to the zero page and thus yield zero values as expected from a newly allocated memory region. However, as write accesses alter values in memory, they cannot be redirected to the zero page and require new pages of physical memory to be assigned to the process. This is done upon physical allocation and without notification of the process as explained below.

Due to the write protection configured during logical allocation, the first write access to a newly allocated page generates an exception. During exception handling by the operating system, an unused page of physical memory is selected and initialized with zeros. Afterwards, the entry in the page table is modified to point to the new physical page and the flags are changed to authorize write access. At the end of exception handling, control is transferred back to the application and the write access is repeated. As write access has been authorized during physical allocation, the repeated write access as well as subsequent accesses to the same page succeed without generating an exception.

Memory regions can be composed of multiple pages and it might thus be required that physical allocation is carried out multiple times. Hence, memory allocation from the perspective of the operating system is not an atomic operation, but can be distributed over a longer period of time depending on the timing of write accesses.

Figure 4.1 illustrates logical and physical allocation on a simple example in which a process requests three additional pages of memory. Note that in practice, the page table is not a flat table like the page table shown in the figure, but a hierarchical structure with multiple levels. However, for simplicity we illustrate memory allocation with a page table that has only a single level. The initial mapping is shown in Figure 4.1a, where a set of valid entries in the page table points to pages that are accessible both in read and write mode, while another set of unused entries shown at the bottom indicates that a part of the virtual address space cannot be accessed. At logical allocation, the entries of the page table corresponding to the unused region of virtual memory are modified, such that they point to the zero page and write protection is activated by setting the appropriate flags (Figure 4.1b). The first write to a page of the newly assigned region causes an exception (Figure 4.1c) and initiates triggers reservation of a previously unused physical page by The main advantage of the separation of physical and logical allocation is a reduced memory footprint for processes that demand large amounts of memory, but which use memory only sparsely. Furthermore, the initialization of newly allocated memory can be distributed over time, which avoids that the execution of the allocating process is interrupted for a long duration at allocation time.

Page placement

On systems with non-uniform memory access, physical pages can be selected from multiple memory controllers at physical allocation. Which of the controllers is chosen depends on the placement strategy employed by the operating system. A common default placement strategy is first-touch placement that selects a page from the local memory of the core that executed the write instruction triggering physical allocation. Pages from remote nodes are only selected if all pages of the local node are already in use.

The placement resulting from first-touch allocation leads to a high fraction of local memory accesses if memory regions are initialized and accessed by cores from the same node. Sequential, independent processes, for example, display this behavior and thus benefit from this placement strategy. Also, if logical allocation is carried out on one node and write accesses are performed on a different node, first-touch placement increases data locality as it delays placement to the moment where the location of data accesses is known. However, for parallel applications with dynamic access patterns, first-touch placement does not necessarily provide adequate results for locality. An extreme case are applications that initialize data structures sequentially at the beginning of the execution and then process data in parallel. In this scenario, first-touch placement causes all data to be stored on the memory controller of the initializing node, which results in high contention and remote memory accesses in the parallel phase.

To give a process accurate control over page placement, operating systems usually provide system calls that allow processes to specify from which node the physical pages should be selected for a region of virtual memory (e.g., mbind provided by LIBNUMA [58] on Linux systems). These system calls are employed for two patterns of page placement: allocation on a single node and The former places all physical pages of a memory region on a single node and is particularly useful if the cores and thus the nodes accessing the memory region are known in advance. The latter uses a list of nodes on which physical pages are allocated in a round-robin fashion. Data is thus distributed evenly over multiple nodes, which enables exploitation of the overall bandwidth of multiple memory controllers and avoids contention on a single node. However, the distribution may increase the average latency of accesses as the likelihood of remote accesses increases with every additional node included in the interleaving.

Determining the location of data

Due to the first-touch allocation scheme, an application does not have a-priori knowledge about data placement, unless it specifies the distribution of data before physical allocation or unless it schedules the instructions initializing a memory region for execution on specific cores. To determine where the data of a memory region is located after physical allocation without specific placement and without detailed tracking of write accesses, the application must thus query the operating system explicitly through a system call, such as the move_pages system call of the Linux kernel1 . This system call takes a list of virtual addresses and returns for each address on which node the page covering the address is located. For addresses whose associated pages have not been allocated physically prior to the call, the system call returns values indicating that the placement could not be determined.

Figure 4.2 shows an example for the distribution of data on three NUMA nodes. To determine the placement of the pages p 0 to p 4 , the process passes pointers to two tables to move_pages. The first table has one entry for each page and contains the virtual addresses of the pages. The second table receives the results for the placement and is filled in by the system call. As p 0 , p 1 and p 3 have been allocated physically, the table for the results contains the identifiers of the respective NUMA nodes at positions 0, 1 and 3. For the pages that have not been placed, i.e., p2 and p 4 , the table contains negative values. The contents of the table are thus 1,, 2, -1, 0 and -1.

Implications of the size of pages

Modern hardware platforms provide large amounts of main memory ranging from a few MiB on embedded systems to several hundred GiB on high performance servers. Traditionally, many hardware platforms and operating systems only provided support for a single page size of a few KiB, e.g., 4 KiB on older x86 platforms. The gap between the small page size and the large size of contiguous chunks of memory that can be allocated by an application leads to a high number of entries in the page table. The translation lookaside buffer (TLB), which caches these entries, has only a limited capacity. A translation from a virtual to a physical address that misses the TLB causes the hardware to fetch the entry of the page table that is needed for the translation from main memory. This additional access to memory takes a certain amount of time to complete and slows down execution. Large page tables may result in frequent misses of the TLB and can thus decrease performance significantly. In order to reduce the number of entries in the page table and thus to decrease the likelihood of misses, modern platforms are able to handle larger pages. For example, on x86_64 platforms, the Linux kernel is able to handle pages of 4 KiB, 2 MiB and 1 GiB. Recent versions of the kernel integrate so-called transparent huge page support [START_REF] Corbet | Transparent huge pages in 2[END_REF], where the kernel tries to allocate huge pages upon physical allocation transparently, without explicit requests for huge pages from the application.

However, while huge pages can reduce the number of TLB misses, they increase the granularity of physical allocations and data placement. With small pages, physical allocation occurs frequently, but each time only a small portion of memory is allocated physically. Huge pages reduce the frequency, but increase the amount of memory that is allocated. Even a small modification can thus cause a large amount of memory to be allocated physically and to be placed on a NUMA node.

In the following section, we discuss the consequences of first-touch placement and the page size on memory pooling.

The influence of first-touch placement and the page size on memory pooling

In this section, we show how the mechanisms for first-touch placement presented in the previous section influence how and when blocks managed by memory pools are placed on NUMA nodes. We start by examining the influence on refill operations and consider placement during the use of a block afterwards. Implications on the reuse of blocks are pointed out at the end of the section. For a clear distinction between memory regions obtained from the operating system, memory regions managed by memory pools and memory regions actually used by the run-time system and the application we use the following terminology:

-a chunk of memory refers to a memory region that has been allocated from the operating system (e.g., by calling malloc). Chunks are allocated and are divided into smaller regions during refill operations (as explained in Section 3.4.4). -a block is a memory region resulting from a split operation on a chunk during a refill. As mentioned in Section 3.4.4, the size of a block is always a power of two. Blocks are chained in free lists of memory pools and are handed to the run-time upon allocation from a memory pool. -a data structure refers to a memory region that is used to store an entity of the run-time or the application (e.g., a data-flow frame or a stream). The memory region of a data structure is a subset of the block that was allocated for the data structure, starting at the first address of the block.

The relationship between these terms is illustrated in Figure 4.3.

Page placement during refills

At allocation of a data structure from a memory pool, the allocation function first checks if the list of free blocks corresponding to the size of the structure is empty. If the list is not empty, the first block is removed from the list and returned as the result of the allocation. However, if the list is empty, the memory pool performs a refill operation in order to populate the list with new blocks. During a refill, a memory chunk of a configurable size (e.g., 2 MiB) is allocated logically from the operating system and is split into blocks that correspond to the block size of the free list that is to be refilled. The chain of blocks is realized by using a small portion of memory at the beginning of each block to store the address of the next block in the chain. Hence, the first write access to a block takes place immediately during the refill, but only affects a very small amount of the block's memory. However, depending on the page size used by the system and the size of the block, this determines either the placement of a portion of the block, the placement of the entire block or placement of the block as well as following blocks at subsequent addresses. Figure 4.4 illustrates these three cases. The bar at the top of each figure (step 1, labeled Refill) represents the chunk of memory allocated from the operating system, which is split into blocks afterwards. The individual blocks resulting from the split are shown below the chunk (step 2, labeled Split). The last two lines (step 1, labeled First chaining and Second chaining) show the placement of pages after the chaining of the first block and the second block, respectively. Question marks in the figure indicate that the respective page has not been allocated physically and that its placement is thus unknown.

In Figure 4.4a the block size S B is greater than the page size S P . The chaining of each block only causes physical allocation and thus placement of the first page of each block. Hence, the resulting chain for the free list consists of blocks for which the placement of the majority of the pages still remains to be determined. Figure 4.4b shows the same steps for an equal size of pages and blocks. At each chaining, the entire block is allocated physically and the resulting chain only contains blocks that have been placed entirely. The last case is presented in Figure 4.4b, where a single page contains multiple blocks. The chaining of a block thus causes the current block as well as following blocks to be allocated physically. As in the previous scenario, this leads to a chain of placed blocks.

In summary, allocation from a free list after a refill operation either yields a block that has already been allocated physically or a block whose first page has been placed, but whose remaining pages have only been allocated logically. Which percentage of a block the unplaced pages represent in the latter case depends on the block size and the size of pages. Figure 4.5 illustrates three different cases. In the first case shown in Figure 4.5a, the block is composed of only two pages, such that 50% of the block are placed after a refill. In the second case (Figure 4.5b) the block composed of four pages, such that 25% are placed and in the last case (Figure 4.5c) a block of consists of eight pages with 12.5% of placed data.

The typical sizes of data structures present in the run-time when running the applications used for experimental evaluation presented in Section 6.1 can be divided into two classes. The first class consists of small structures of a few bytes up to a few KiB. These are mainly small data-flow frames and other small entities, such as the instances of structures representing streams. The second class represents large structures of several hundred KiB and is composed exclusively of data-flow frames. The size of pages on our test systems described in Section 6.3 is selected transparently by the operating system through transparent huge page support and is either 4 KiB or 2 MiB. The size of small structures is thus close to the minimal page size and the blocks used for the small structures are almost always allocated physically entirely after a refill, independently from the actual page size. In contrast to this, the status of the placement of a large structure after a refill depends on the size of a page. For small pages only a very small portion of a structure is allocated physically and new structures can be considered as entirely unplaced. When using huge pages, however, the size of a large structure is below or equal to the size of a page and new structures are placed entirely. Hence, intermediate cases with the same amount of placed and unplaced data as in Figure 4.5a do not appear in practice and all structures can be considered as either entirely placed or entirely unplaced. In addition, as only large structures can be unplaced after a refill and as all large structures are frames, unplaced structures are always data-flow-frames. In the following part, we examine the different possible scenarios for page placement of unplaced data-flow frames during their first use. This applies only to frames whose size is significantly higher than the size of a page as this is the only scenario in which a frame can be unplaced right after a refill.

Placement at the first use of data structures

The first write accesses to a data-flow frame occur when the producers of the task associated to the frame write data to the task's input views. Depending on the number of producers, the amount of input data they provide and where they execute, two scenarios for the placement of the frame's pages are possible.

In the first scenario, all pages of the data-flow frame are placed on a single node. This happens if all producers are executed by workers of the same node. The lower the number of producers of a task, the higher the probability that all of them are executed on the same node. For tasks with only a single producer, the data-flow frame is guaranteed to be placed on a single node. Also, for highly unbalanced dependences, the outcome for data placement is similar as the majority of the pages is written by one worker and the frame can be considered as being placed on a single node. Figure 4.6a shows such a task graph, in which one producer p a writes a single page of input data, while another producer p b writes 15 pages of the input data of a task c. Assuming that p a is executed by a worker w a that operates on node n a and p b is executed by a worker on node n b , the resulting distribution corresponds to the placement shown in Figure 4.6b.

In the second scenario, pages of the data-flow frame are scattered across multiple nodes. This is the case if the task associated to the frame depends on several producers which are executed on different nodes. The number of nodes is that contain the frame's pages is limited by the number nodes of the system and the number of producers. The reason for the limitation by the number of producers is that task execute from beginning to end on a single core and thus on a single node2 . Figure 4.6c shows a task graph with balanced dependences between three producers p a , p b and p c and a consumer c. The producers are executed by workers w a , w b and w c and, similar to the previous example, these workers operate on different nodes n a , n b and n c . A possible page placement resulting from this situation is given in Figure 4.6d. The actual order of the regions belonging to n a , n b and n c within the frame can depend on the number of input views of c, the order of the matching of the views of c, p a , p b and p c and the number of streams that are involved in the matching. If c has only a single input view, as in Figure 4.7a, and if the views provide access to elements of the same stream, the order of the memory regions depends on the order of calls to resolve_dependences for the output views of p a , p b and p c . For example, if the call to resolve_dependences for p b is issued before the call for p a and if the call for p c is issued after the call for p a , then the order of the regions on different nodes is n b , n a , n c instead of the order In this case, the order of the memory region depends on the order of calls to resolve_dependences of the output views as well as the order of the calls for the input views. However, the latter is defined statically during translation by the OpenStream compiler as described in Section 3.5 and depends on the order of the input clauses in the source code. Finally, it is also possible that c has three input views that provide access to elements of three different streams as shown in Figure 4.7c. In this scenario the order of the memory regions only depends on the order of the input clauses.

Reuse of data structures

At the end of the execution of a task, its data-flow frame is freed by the worker that executed it. This consists of handing the frame back to the memory pool of the worker and adding the embedding block to the appropriate free list. Depending on the placement of the pages of frames that have already been freed by the worker before and the blocks resulting from earlier refills, the memory pool can thus contain a composition of (a) blocks whose pages are placed on the same node as the worker associated to the memory pool (b) blocks whose pages are placed on a remote node (c) blocks whose pages are scattered across multiple nodes and (d) blocks whose pages are not allocated physically. Subsequent allocations reuse these blocks, e.g., allocations of data-flow frames for new tasks. As the allocator always returns the block that was added last to a free list and as the blocks within the list are not sorted by their placement, the pages of the block that is returned for an allocation can be placed in any of the aforementioned ways.

Hence, by using first-touch placement in conjunction with memory pooling, the run-time does not have any direct control over the placement of data. However, NUMA-aware allocation and NUMA-aware scheduling rely on fine-grained control over the placement of data and are thus difficult to implement with the mechanisms for memory management above. In the following part, we propose two techniques that address this problem. The first technique avoids scattering of blocks on multiple nodes by separating buffers for input data from frames and by imposing a restriction on the use of streams by an application. The second technique combines per-node memory pools with an efficient mechanism to detect the placement of blocks and avoids the presence of remotely placed blocks in memory pools.

Separation of frames and input buffers

The main circumstance that leads to scattered frames is that the input data written by multiple producers is combined in a contiguous region of virtual memory embedded into a single data structure, namely the data-flow frame. Figure 4.8a provides a detailed view of the run-time structures after the matching of views for the task graph with balanced dependences of Figure 4.6c. The data pointers of the producers' output views point to the data region of the input view of c, which is embedded into the data-flow frame of c. Hence, the actual scattering affects the pages of this data region.

Avoiding the scattering of input data across multiple nodes

If each producer targeted a different data structure, there would be only one writer per structure and every structure could only be placed on a single node. Hence, to avoid scattered dataflow frames, the buffers for input data of a task should be separated from the data-flow frame. Figure 4.8b shows the same matching of views as before, but with separate memory regions for each of the input views of c. Each data pointer of the output views now points to the base of a distinct data structure and thus prevents that more than one producer writes to a contiguous memory region. In the remainder of the thesis, we refer to these structures as input buffers. The different input buffers of a task can potentially be located on a different node, but if employed correctly as described below, each input buffer is entirely placed on a single node, i.e. none of the input buffers can be scattered across multiple nodes.

However, even if each input view of a task has its own input buffer, it is still possible that the data of an input view is provided by multiple producers. This happens if multiple output views with a smaller burst are matched with a single input view with a larger horizon as in the code example below: #pragma omp taskwait Figure 4.9 shows the run-time structures after matching of views in that situation. Due to the addressing scheme for data of input views, which is identical to indexation of an array, input data of a single view must be stored in a contiguous region of memory and cannot be split across multiple objects. The only way to avoid situations in which multiple producers write to a single input view is to impose a restriction on programs that forces the burst and the horizon of matched views to be identical.

Restriction 4.1 (One-to-one matching of input and output views)

To avoid that multiple output views provide write access to elements to which a single input view provides read access, the burst of each output view must be identical to the horizon of the matched input view:

∀t ∈ T ∞ : ∀(W, s, i s , i e ) ∈ views(t) : ∀t ∈ T ∞ : ∀(R, s, i s , i e ) ∈ views(t ) : ([i s , i e ] ∩ [i s , i e ] = ∅ ∨ [i s , i e ] = [i s , i e ])
This ensures that each input buffer has a unique writer and thus makes it impossible that an input buffer is scattered across multiple nodes due to write accesses to output views. 

Integration into the compiler

The separation of input buffers from data-flow frames does not only imply changes to the run-time, but also requires a modification of the compiler. In the default scheme for code generation for input data embedded into data-flow frames, the OpenStream compiler generates a single call for the allocation of the entire data-flow frame. For input buffers that are separated from the frame, the compiler must generate a call to the allocator function for each input buffers.

Consider the example below, in which a single task with three input views is defined. ...

28

}

The data-flow frame embedding the input data is allocated by a call to tcreate in Line 22. The assignment of addresses within the data region of the frame to the data pointers of the input views takes place in Lines 24 to 26. The code generated for separate input buffers is presented in the next Listing.

Listing 4.4: General lines of the code generated by the compiler for input buffers that are separated from the data-flow frame 1 ... A first difference is the calculation of the size of the data-flow frame in Line 7. As the frame does not contain input data any more the size of the allocation is equal to the size of the structure representing the frame. Furthermore, the initialization of the data pointers has been replaced with calls to alloc_view_data in Lines 10 to 12. This function allocates a buffer of the size specified by the second argument from a memory pool and assigns the result to the data pointer of the view that was passed as the first argument.

NUMA-aware memory pools

With input buffers separated from data-flow frames and the additional restriction on the horizon and burst of matched input and output views, each data structure that is allocated from a memory pool is placed entirely on a single node. However, it is still possible that, due to the liberation of buffers of tasks executed earlier, the free list of a worker's memory pool contains blocks that have been placed on remote nodes. In this section, we introduce NUMA-aware memory pools, where each pool is associated to a NUMA node and only contains blocks that have been placed on the node. When a data structure is freed, the run-time determines on which node the embedding block has been placed, looks up the corresponding memory pool and adds the block to the appropriate free list of the pool. This requires the run-time system to be able to determine the placement of a block accurately and efficiently, i.e., the identification of the placement of a block must be correct and its overhead on execution time should be as low as possible. We first describe how the placement of blocks can be determined efficiently and accurately and then show how these mechanisms can be integrated into the life cycle of blocks in order to enable NUMA-aware memory pooling.

Determining the placement of blocks

A naive solution to determine on which node a block has been placed is to query the operating system for the placement of each of the block's pages every time information on its placement is needed. This requires that the addresses that correspond to page boundaries within the address range of the block are determined and passed to the operating system using the move_pages system call. As the operating system must traverse the data structure representing the address space of the requesting process for each of the block's pages, each such call takes a certain amount of time to complete. In addition, the time of each call depends on the number of concurrent calls from multiple threads, as shown below.

Figure 4.10 shows the duration of one call to move_pages with increasing concurrency for our two test platforms (described in Section 6.3) with 64 and 192 cores, respectively. The block size used for each call corresponds to a typical size of 512 KiB for an input buffer in the applications used in the experimental evaluation of this thesis. As the minimal page size on the test systems is 4 KiB, the addresses passed to move_pages correspond to the page boundaries of small pages. Each data point in the graphs represents the mean value for a total of 50 runs of a synthetic benchmark that measures the average duration of one call to move_pages for a set of threads, where each thread performs 10,000 calls to move_pages. The error bars indicate the standard deviation. For a low number of concurrent requests, the duration of a single call remains between 10 kcycles and 20 kcycles on both platforms, but becomes orders of magnitude higher when all the cores of the machine are used.

However, in a real-world scenario cores execute other instructions between two calls and thus do not constantly query the operating system. Figure 4.11 shows the mean duration of one call to move_pages as a function of the number of idle cycles between two calls when using all cores of the machines. For the 64-core machine the duration drops rapidly and reaches the minimal duration at about 4 Mcycles of idle time between two calls. In contrast to this, the duration on the 192-core machine drops slower and remains high even if several million cycles lie between two calls to move_pages, as shown in For NUMA-aware data placement and NUMA-aware scheduling, information on the placement of a block is needed before the execution of a task. Hence, the duration between two calls corresponds to the duration of a task. Figure 4.12 interprets the duration between two calls as the task duration and shows the relative overhead in percent of the calls to move_pages on execution time. The stippled lines indicate a limit of five percent, which we consider as the highest acceptable overhead. The graph shows four different curves, each for a different amount of addresses passed to move_pages, ranging from a single address (1 page) to all addresses that represent page boundaries of small pages of the block (all pages).

Interestingly, the determination of the placement of all pages is faster than determining the placement of a single page on the 64-core system, although the overhead increases from a single page to ten pages. Figure 4.13, showing the duration of one call as a function of the number of pages included in each query, provides more detailed information on this issue. The number of cycles between two calls was set to 1.5 Mcycles, which corresponds to the duration with the largest gap between the overhead for determination of the placement of a single page and determination of the placement of all pages. As can be seen in the graph, the duration of one call increases with the number of pages included in the query, until it reaches a maximum at about 90 pages. For a higher number of pages, the duration decreases and reaches its minimum for the total number of 128 pages of a 512 KiB block. However, as Figure 4.12a shows that the duration of a task must be higher than 2.5 Mcycles to stay below the limit of five percent independently from the number of pages included in each query, we do not have investigated the origins of the unexpected behavior above.

For the 192-core system the correlation between the number of pages per query and the overhead is much clearer, as the overhead increases with the number of pages with a minimum for a single page and a maximum for the entire set of pages of a buffer. The minimal duration of a task in order to stay below the limit for the overhead depends on the number of pages that are included in a query. If all pages of the block are included, tasks should take more than 8 Mcycles, while for a single page, the overhead drops below five percent at about 5 Mcycles.

In conclusion, the duration of a task should be at least higher than 5 Mcycles in order to stay below the threshold for the overhead on execution time on both systems. However, the typical duration of tasks in the applications that we have used for experimental evaluation can be below requests to obtain the placement of the pages of blocks is not a viable option for the run-time.

As we have shown above, the overhead on execution time related to the determination of data placement is conditioned by three parameters: the number of concurrent system calls, the total number of calls and the number of pages whose placement is to be determined with each system call. In the following part, we introduce two techniques to reduce the number of system calls and one technique to decrease the number of pages per call.

Determination of the placement only for large blocks

The overhead for the determination of the placement of the input data of a task increases with the number of the input buffers associated to the task as for each input buffer at least one call to move_pages is necessary. Hence, for tasks with a large number of input dependences, the overhead can compensate the possible improvements of the execution time resulting from NUMA-aware scheduling and NUMA-aware allocation. Reduction of this overhead requires more elaborated techniques to determine the placement as simple calls to move_pages for each of the input buffers. However, in the applications studied in this thesis, such tasks only represent a small fraction of the total number of tasks.

500K 1M 1.5M 2M 2.5M 3M 3.
The placement of small input buffers is only crucial for the execution time of a task if the task only reads from and writes to small buffers. The vast majority of tasks has either strongly unbalanced dependences, e.g., one input buffer of 512 KiB and a few input buffers of less than 4 KiB, or balanced dependences with relatively large input buffers, e.g., two input buffers of 512 KiB. The buffers whose placement is crucial for performance thus all exceed a threshold of a few KiB, such that the run-time does not need to determine the placement of small buffers.

As a first measure to reduce the number of system calls, the run-time can thus neglect buffers whose size does not exceed the threshold. A value of 10 kB enables discrimination between small and large buffers, we have thus configured the run-time to determine only the placement of input buffers that are larger than 10 kB.

Page sampling

As shown in the previous section, one can assume that every input buffer is placed entirely on a single node. However, in order to determine on which of the nodes contains the buffer, it is not sufficient to determine only the placement of a single page. For example, for large input buffers composed of small pages, the first page might be allocated on the node that performed the refill operation and the rest of the pages might be allocated on the node that first wrote input data to the buffer. Sampling only the second small page or a page somewhere in the middle of a block is not sufficient either, since for huge pages it is possible that a page spans two or more blocks occupying neighboring memory region. Figure 4.15 illustrates this situation. As the blocks are not aligned to boundaries of huge pages, the page in the center of the figure contains data of two blocks. From a block's perspective, this means its data might be located on two different nodes as is the case for the second block whose data is located on n b and n c .

However, determining the placement of all pages that form a buffer is not required either, since the number of small pages for large buffers is much higher than the maximal number of nodes that could contain the pages. A simple sampling technique that determines the placement of every nth small page is sufficient to determine where the majority of the pages of the buffer are placed. Using this technique, the containing node is defined as the node with the highest number of samples. For the experiments we have used a sampling distance of 64 KiB, i.e., every 16th small page. However, situations in which substantial parts of a buffer are placed on more than one node occur only very rarely, for less than one percent of the buffers. Thus, sampling less pages per buffer might be sufficient in most cases. As the overhead of the sampling of every 16th small page is already sufficiently small, we did not investigate if the sampling distance can be increased or whether sampling at specific positions of the buffer is sufficient.

Caching of information about data placement

Last and most important, querying the operating system multiple times for the placement of the same block is expensive in terms of execution time and is not necessary. As pages are never migrated between nodes unless explicitly requested by the application, it is sufficient to determine the initial placement of a block and to reuse this information each time information about the block's placement is needed afterwards. This information about the placement can be cached in a small metadata section in front of a block, as shown in Figure 4.16. This layout in memory enables rapid determination of information on placement simply by calculating the address of the metadata section from the block's base address and by accessing the appropriate field of the metadata structure. Storing metadata sections in front of the actual data is a common technique in memory management [START_REF] Wilson | Dynamic storage allocation: A survey and critical review[END_REF].

Integration into the life cycle and per-node memory pools

The methods presented above aim at reducing the overhead associated to the determination of the placement of blocks, but we did not discuss at which moment the procedure to determine the initial placement of a block should be triggered. In order to obtain correct results for the placement, it must be ensured that the sampling takes place after physical allocation of all of the block's pages. As explained in Section 4.1.1, this is the case after the pages have been written for the first time. For input buffers, which are the only data structures whose size exceeds the threshold, this means that the sampling can only take place when the producer task writing its output data to the buffer has terminated. As all the producers of a task that becomes ready are guaranteed to have terminated, the run-time can thus safely determine the placement of the input buffers of a task when the synchronization counter of the task reaches zero.

Upon termination of a task, its input buffers are not used anymore and must be freed. To avoid that a memory pool contains blocks from different nodes it is necessary to free an input buffer to a memory pool of a worker that executes on a core of the node that contains the block's pages. As there are as many workers as cores per node, the run-time would have to choose a target pool among the pools of the same node. In addition, a worker that needs to allocate a buffer on its local node, but whose free list of the appropriate size is empty would either have to search through all pools associated to the same node or it would have to initiate a refill operation. By grouping blocks of the same node in a single memory pool and by sharing this pool among the workers that execute on the procedure for allocation and liberation of buffers can be simplified. Allocation of a buffer can be carried by checking a single memory pool and liberation of a buffer can be implemented simply by handing the buffer to the unique memory pool of the node containing the block in which the buffer was embedded. We refer to this approach as per-node memory pools.

Allocation of a data structure in a memory pool of a node yields either (a) a data structure of small or huge pages that has already been placed entirely on the node that the memory pool is associated to or (b) a structure composed of small pages that have not been allocated physically except the first page, which is allocated on the node of the worker that initiated the refill operation from which the structure originates or (c) a data structure that consists of a huge page that is placed entirely on the node that triggered the refill operation from which the structure originates. It is worth noting that the last situation only occurs when a worker of a remote node triggered the refill operation and when the structure is used for the first time. As each structure is freed to the correct memory pool after use, cases (b) and (c) become less likely over time, such that in most cases an allocation from a memory pool yields a structure that is entirely placed on the node to which the pool is associated. This provides the run-time system with fine-grained control over data placement through allocation from an appropriate memory pool.

Reducing the impact of per-node memory pools on performance

A drawback of per-node memory pools compared to worker-private pools is that multiple workers compete for the resources provided by a pool. Hence, the free lists of a pool need to be protected against concurrent accesses, e.g., using locks, which can introduce huge overheads for high concurrency. However, the number of workers per pool depends on the number of cores per node, which is typically relatively low in order to avoid congestion on the resources shared by the cores of a node. For example, on both of our test systems only eight cores share a node. Thus, the most important sources of overhead are the critical sections protected by the locks rather than the operations to acquire and release a lock. Freeing a structure to or unchaining a block from a free list are fast, since they only entail an update of pointers. The most time-consuming operations on free lists are refills, as these operations issue system calls for logical allocation and trigger physical allocation upon the chaining of new blocks. In this section, we propose a set of techniques that aim at reducing the duration of critical sections and which thus reduce the impact on performance resulting from the use of per-node memory pools.

Allowing concurrent operations during refills

During a refill operation on a list other workers might try to free data structures to or allocate data structures from the same list. Keeping the list locked during the refill blocks these operations and prevents the run-time system from reusing existing blocks rapidly. Hence, when a worker detects that a refill is necessary it should release the lock on the free list immediately after detection. During the system call other workers can free and allocate blocks without waiting for the refill operation to finish. When the system call for memory allocation returns, the lock can be re-acquired and the resulting new data blocks can be added safely to the list. When the refill is complete, the lock is released and the new blocks become available.

Avoiding eager physical allocation at a refill through lazy splitting

Another time-consuming operation is the physical allocation of pages during a refill caused by the chaining of blocks. The amount of data that is allocated physically and thus the duration of the chaining depends on the page size, the size of blocks and the size of the chunk that is allocated from the operating system and split into individual blocks. For example, for a fixed chunk size of 2 MiB and a page size of 4 KiB the chaining of blocks of 512 KiB causes four pages or 16 KiB to be allocated physically, while for blocks of 32 KiB using the same page and chunk size a total of 64 pages or 256 KiB must be allocated physically.

By default, the blocks resulting from a split of a chunk are all chained in the free list at the end of the refill operation as shown Figure 4.17a. We refer to this technique as immediate splitting of the chunk. At each allocation afterwards, one block is removed from the list and the chain of the remaining blocks forms the new free list (Figure 4.17b to 4.17d).

The number of physical allocations at the refill can be reduced by employing a mechanism which we refer to as lazy splitting. splitting the entire chunk obtained from the operating system into smaller blocks, the whole chunk is added to the free list as if the chunk was a an ordinary block, but with an indication for the number of blocks that can be obtained from the chunk (Figure 4.18a). At the first allocation after the refill, a first block is separated from the chunk and the remaining part with a reduced number of block forms the new free list (Figure 4.18b). This process continues, until the remaining part is reduced to a single block (Figure 4.18c and 4.18d). The refill operation only touches a single page to store the number of blocks in the chunk, just like each allocation afterwards. Lazy splitting thereby avoids eager physical allocation, such that the overhead for physical allocation and initialization of memory is distributed over time and thus reduces the duration of a refill.

Reducing the number of system calls for logical allocation

Finally, the last time-consuming operation during a refill is related to interaction with the operating system. At each refill, the run-time must issue a call to the operating system in order to trigger logical allocation of a new memory region that will be used as the chunk for the refill. In order to reduce the number of system calls, a technique similar to lazy splitting can be employed. Instead of allocating a chunk from the operating system at each refill, a larger chunk of memory is allocated for each memory pool at initialization. The allocation of smaller chunks needed for refills can be carried out entirely in user space, simply by using a memory region from the large chunk. When the large chunk has been consumed entirely, a new large chunk must be allocated to satisfy further refills.

Placement of persistent run-time structures

An efficient NUMA-aware run-time does not only need to care about placement of dynamic objects for the task-parallel application, but must also place its own data structures efficiently in order to prevent itself from becoming bottleneck for performance. A data structure that is used exclusively within the run-time and whose placement is critical for performance is the structure representing a worker. The size of this structure is low, but each instance is accessed frequently as it contains a work-stealing deque and a single entry software cache for the scheduling of tasks. As each of the instances is primarily accessed by the worker associated to it, each instance should be placed on the node of the worker in order to increase the locality of memory accesses. However, workers are allocated and initialized during set-up of the run-time, which is done sequentially. Hence, first-touch placement would cause all of the structures to be allocated on a single node. Therefore, it is necessary to use explicit placement on the respective nodes, e.g., by using the mbind function mentioned in Section 4.1.2. Another issue is the layout of these instances in memory. As they are very small, using an ordinary array to store them would cause several instances to be located in the same page, which leads to multiple structures being placed on the same node. To avoid this, the structure must be padded to the size of a page and each instance must be placed individually. For most of the benchmarks (seidel, jacobi-1d, jacobi-3d, bitonic) the median execution time can be reduced significantly when placing the structures on appropriate nodes. In addition, the variation is often lower (seidel, jacobi-1d and bitonic). For the other benchmarks the performance of both versions is approximately the same. Hence, placing the worker structures on the local nodes of the workers can be considered as beneficial.

Summary

The solutions presented in this chapter allow the run-time to determine the placement of data efficiently and accurately and to place data structures on specific nodes. We presented the mechanisms behind the placement of data on the different NUMA nodes of the machine from the perspective of the operating system and discussed the influence of the default page placement policy, first-touch placement, and the size of pages on memory allocation using memory pools. We identified the scattering of data as a first problem for accurate data placement and proposed the separation of input data and data-flow frames as well as a restriction on the programming model as a solution. In the second part, we introduced an efficient run-time mechanism to determine the placement of blocks and showed how this mechanism can be integrated into the life cycle of data managed by memory pools. Finally, we introduced per-node memory pools that allow the run-time system to allocate data structures on specific NUMA nodes. In the last section, we focused on the placement of data structures of the run-time that are allocated at the beginning of the execution and remain in use until termination and concluded that explicit placement of these structures using the operating system interface is sufficient.

The methods presented in this chapter are based on first-touch placement, which is the default mechanism for placement employed by the Linux operating system kernel. This strategy makes it necessary to determine explicitly on which node data has been placed after the first write accesses to the respective pages. For future work it would be interesting to investigate the behavior of other placement strategies as well. For example, a per-node memory pool could force physical allocation of a chunk on the local node during a refill operation and store the information about the placement directly in the metadata section without querying the operating system. However, the run-time would have to take into account that such a predefined placement might fail if the targeted node cannot provide unused physical pages.

Also, the thresholds presented in the chapter allow the run-time to discriminate between large and small buffers for the benchmarks studied in this thesis. For a more generic approach that supports tasks with input buffers of different sizes, the actual values for the thresholds have to be determined more accurately or even the concept of using thresholds has to be revised in future work.

Dynamic single assignment

In the previous chapter, we introduced per-node memory pools that provide the run-time system with the ability to place input buffers accurately on NUMA nodes and that allow the runtime to determine the placement of an input buffer efficiently. These capabilities are a necessary condition for NUMA-aware scheduling and NUMA-aware data placement presented in Chapter 7 and Chapter 8. However, to benefit from these optimizations, the run-time must be able to determine which data is accessed by a task and to control its placement.

In this chapter, we introduce programming based on dynamic single assignment (DSA) on stream elements, which puts management of memory accessed by tasks under the responsibility of the run-time. This programming style fully exploits the concepts of data-flow tasks and is naturally supported by the OpenStream programming model. We show how programs based on dynamic single assignment meet the requirement above and illustrate the required implementation steps starting from a sequential program. We then discuss the influence of the control program on data locality and contention in these applications and show that sequential task creation can have a negative impact on these aspects. As a result of this analysis, we conclude that task creation by a parallel control program is often beneficial. The conditions for the parallelization of the control program are sketched at the end of the chapter.

The chapter is organized as follows. Section 5.1 introduces the basic concepts of dynamic single assignment and provides definitions for dynamic single assignment with respect to addresses and dynamic single assignment with respect to stream indexes. Section 5.2 provides a more formal view on deriving the working set of a task from the information made available to the run-time by using dynamic single assignment. Section 5.3 introduces an informal methodology for the implementation of dynamic single assignment using OpenStream, starting from a sequential implementation of an algorithm. The influence of sequential task creation on the memory footprint and data locality of an application is discussed in Section 5.4. The chapter finishes by sketching the conditions for the parallelization of the control program in Section 5.5.

Concepts of dynamic single assignment

Before we explain the principles and go into the details of dynamic single assignment, we first set the terminology that is used in the rest of the chapter.

Terminology

We define a data element as an entity of data that can be read and modified and refer to the range of addresses that is occupied by a data element as its data location. Whenever a data element is modified, a new version of the element is generated. The values of two versions of a data element do not necessarily have to be different. For example, a new version with the same value could be generated by assigning the return value of a function, which in a particular case yields the same value as the previous version of the data element. We illustrate the terms defined above on a simple example with a set of local integer variables i, j and k that are declared, initialized and manipulated by a function as in the following listing. As all variables are declared locally within the scope of the function their addresses belong to the program stack and are defined when foo is called. Their data locations are thus only defined during execution of the function. As i receives a new value at each iteration, a new version of i is also generated at each iteration. The updates of the other variables depend on some predicate of i, which might not be true for each value of i. Hence, there are not necessarily new versions of j and k at each iteration and the total number of generated versions of i, j and k might be different upon return from foo.

The example also shows that there is a tight coupling between data elements and data locations. The data location of an element is defined before its first reference when foo is entered and remains valid until the data element is discarded at the end of the function. Different versions of the data element are thus stored at the same data location.

Principles of dynamic single assignment

The main concept of dynamic single assignment is to use a different data location for each new version of a data element and thus to update each data location at most only once. This implies that a data element cannot be updated without changing its location and that in-place updates are not allowed. This decouples data elements from locations and allows the system to choose a new location at every update. In contrast to static single assignment (SSA), the number of versions is not necessarily known statically and might depend on values that are only known at execution time. The following manual example, which declares an array of integers with one array element per version of a data element i, illustrates this concept.

Listing 5.2: Example of manual dynamic single assignment

1 int i[n]; 2 i[0] = 0; 3 i[1] = i[0] * 5 + 3; 4 i[2] = i[1] * i[1]; 5 i[3] = i[2]/3; 6 ...
At each update of i a new array index and thus a new data location is chosen to store the newly generated version. Note that dynamic single assignment in general does not require a specific mapping of versions to data locations as in the example above, where versions are stored at locations of subsequent array indexes. As long as a location is only used at most for a single version, the mapping is correct. The following listing uses different indexes of the array to store the same versions as in the previous listing and is also a valid example for dynamic single assignment.

Listing 5.3: Example of manual dynamic single assignment with an irregular mapping of versions to data locations

1 int i[n]; 2 i[0] = 0; 3 i[2] = i[0] * 5 + 3; 4 i[715] = i[2] * i[2]; 5 i[1] = i[715]/3; 6 ...
The formal restrictions for the mapping of versions to data locations can be defined as follows. Let E be the set of all possible data elements and let versions of an element be identified by a unique integer with zero identifying the initial version of an element. Let further A ⊂ N 0 be the set of all addresses of a flat address space and let loc : E × N 0 → P(A) be the function that maps each version of a data element to a data location. A data location is defined by a finite set of addresses at which the data of an element can be stored. For dynamic single assignment loc is restricted, such that:

∀e, e ∈ E :

∀v, v ∈ N 0 : (e = e ∨ v = v ) ⇒ loc(e, v) ∩ loc(e , v ) = ∅
Hence, an address is either not used at all or it belongs to a specific version of a specific data element.

Dynamic single assignment on streams

The set of streams and stream indexes of an OpenStream program can be seen as an unbounded, two-dimensional address space that allows to implement dynamic single assignment based on stream accesses, where each version of a data element is stored at a different set of stream indexes. Let loc s : E × N 0 → P(S × N 0 ) be a function that maps each version of a data element to a set of stream indexes. For dynamic single assignment, this function must thus fulfill the same restriction as loc defined above:

∀e, e ∈ E : ∀v, v ∈ N 0 : (e = e ∨ v = v ) ⇒ loc s (e, v) ∩ loc s (e , v ) = ∅
Hence, every OpenStream program that passes all data elements through streams, i.e., each OpenStream program that does not use global variables or pointers to memory regions that are shared by multiple tasks, fulfills the restrictions for dynamic single assignment by construction. However, due to the execution model of OpenStream, the mapping of stream elements to addresses is not necessarily unique. Stream data is stored in input buffers and due to memory pooling these buffers can be reused. It is thus possible that the same address is used multiple times to store different stream elements. Thus, a program based on dynamic single assignment with respect to the address space formed by streams and stream indexes is not necessarily a program with dynamic single assignment with respect to the address space formed by memory addresses of the machine. We illustrate this aspect on a short example, given in the listing below. As can be verified easily, all versions of i are associated to different streams and stream indexes: the first version of i is stored at the first index of istream[0], the second version at the first index of istream [START_REF] Drebes | Topology-aware and dependence-aware scheduling and memory allocation for taskparallel languages[END_REF] and so on. However, the input data of a task is stored within the input buffers associated to the task and the address of a stream element is defined by the input buffer that contains this element. The memory pooling mechanism of Section 3.4.4 and Section 4.4.2 allows an input buffer to be freed if it is not used any longer and, more importantly, to be reused by another task afterwards. Hence, in the example, the data-flow buffer of t0 might be reused for t2 and version 0 and version 2 might be stored at the same addresses, although they are associated to different stream elements.

In the remainder of this document, we use the term dynamic single assignment to refer to dynamic single assignment on streams. Furthermore, a version of an element is defined as the value of the stream elements that represent the data element. Intermediate versions that may be generated during execution of a task, but which do not correspond to the final values written to the stream, are not considered as versions. For example, if a task reads a stream element and copies its value to a task-local variable, modifies this variable multiple times and writes the result back to an element of an output stream, only the value of the element at the beginning and at the end of the task are considered as versions with respect to dynamic single assignment. The following listing provides an example of such a behavior. The intermediate versions generated in the loop body do not count as versions, while the initial value read from a_stream and the final value written to another_stream do.

Obtaining accurate information on data accesses

As stated at the beginning of this chapter, the main reason for the introduction of dynamic single assignment is to be able to determine the working set of a task accurately in order to optimize the locality of memory accesses by scheduling the task near its data or by placing the data actively near the core that executes a task. In this section, we show how the working set of a task can be determined by the run-time system before execution of the task, based on the information provided by dynamic single assignment.

Let M ⊂ N 0 ×A×{R, W } be the set of all possible memory accesses, where a triple (τ, a, u) ∈ M represents a memory access at time τ to address a in mode u. Let τ S (t) and τ E (t) be the start and end of a t task with τ S , τ E : T ∞ → N 0 . The set of memory accesses of a task t is defined as acc : T ∞ → P(M) with ∀(τ, a, u) ∈ acc(t) : τ S (t) < τ < τ E (t) ∧ |{(τ, a, u)}| = 1. The former condition specifies that all memory accesses of a task take place after start and before end of the task, while the latter specifies that only one memory access can take place at a time. We define the working set ws : T → P(A) of a task as the set of distinct data locations accessed during execution of the task, i.e., ws(t) = {a|∃(τ, a, u) ∈ acc(t)}.

Determining the working set of a task before task execution implies that ws(t) is known at a time τ < τ S (t). In Section 5.1.3 we defined that the values of each version of all data elements in dynamic single assignment are stored exclusively in streams, which implies that all relevant data is stored in input buffers. The only exception to this rule are the first and the final version, which are usually handled by initialization and termination tasks and which are stored in shared memory as explained below. However, in the benchmarks presented in Section 6.1, the number of versions generated by the main computation tasks is far higher than the two versions handled by the auxiliary tasks. Hence, for most of the tasks, the rules defined for dynamic single assignment apply: all data handled by the task is stored in streams. In practice, a small portion of data is still read from shared memory for convenience, especially parameters of the application or the parameters for the granularity are often accessed from shared memory. However, these accesses only represent a small fraction of the total number of memory accesses carried out by a task, such that access to shared memory can be neglected and the task can be considered as conforming to the restrictions of dynamic single assignment. The advantage of using dynamic single assignment on stream elements is that acc(t) is restricted to accesses to input buffers and output buffers managed by the run-time and whose addresses and sizes are known when a task becomes ready.

Let addr : T ∞ × S × N → A be a partially defined function that maps a stream element to its address from the perspective of a task. Note that there is no globally unique mapping of stream elements to addresses, as the same element can be available at multiple addresses when copied by a broadcast. Thus, the mapping is only unique from the perspective of each task. Using this definition, the working set of a task t is simply the union of all the addresses of all stream accesses sacc(t) (defined in Section 3.1.2) of the task:

ws(t) = (u,s,i) ∈sacc(t) {addr(t, s, i)}
Furthermore, it can be derived from the execution model that the elements which are made accessible by a view are mapped to consecutive addresses:

∀t ∈ T ∞ : ∀(u, s, i s , i e ) ∈ views(t) : ∀i ∈ {i s +1, ..., i e } : addr(t, s, i) = addr(t, s, i s )+(i-i s )•size(s)
Hence, the working set of a task can be represented by a set of consecutive address regions ws C (t) ⊂ A × A, where each region is defined by its first and its last address:

ws C (t) = (u,s,is,ie) ∈views(t) {(addr(t, s, i s ), addr(t, s, i e ))}
This set can easily be determined from dependence resolution of each view, since the starting address of each of the pairs in ws C (t) is the data pointer of the associated view and the end address can be determined by multiplying the horizon with the element size and by adding the result to the start address. This makes profiling of the working set or deriving the working set from specific properties of the program structure (e.g., memory accesses in leaf tasks of divide-and-conquer algorithms) unnecessary and provides a reliable method for the prediction of a significant subset of a task's memory accesses before its execution.

Implementing an algorithm using dynamic single assignment

In this section, we illustrate the implementation of an algorithm using dynamic single assignment on the one-dimensional version of the seidel benchmark named seidel-1d, calculating the average of three neighboring elements at each iteration of the algorithm. We start from a sequential version and develop a task-parallel version that can be used as a drop-in replacement of the original implementation. The process can be summarized as follows:

1. Identification of the data elements and versions 2. Partitioning of the data elements 3. Mapping to stream elements and definition of the interface of tasks generating new versions 4. Definition of auxiliary tasks needed for initialization and termination 5. Implementation of all tasks 6. Parallelization of the control program Parallel control programs have not been introduced earlier and require some explanation. In this section, we provide only an example of a parallel control program as a motivation and discuss the implications of a parallel control program and restrictions of the parallelization in Section 5.4 and 5.5.

Identification of data elements, versions and appropriate partitioning

The sequential implementation of seidel-1d is straightforward: at each iteration, each element of an array of double precision floating point values is updated according to its own value and the values of the its left and right neighbors. The elements at the first position and at the last position are treated as if their left and right neighbors, respectively had a constant value of zero. The following listing shows an implementation of the complete algorithm. 

; i < N-1; i++) 9 data[i] = (data[i-1] + data[i] + data[i+1]) / 3.0; 10 11 / * Rightmost element * / 12 data[N-1] = (data[N-2] + data[N-1] + 0) / 3.0; 13 } 14 }
Obviously, the data elements in this application are the elements of the array, for which each iteration yields a new version. The partitioning of the data determines the amount of data treated by each task and therefore indirectly determines how much work must be carried out per task. Parallelism is also conditioned by the partitioning, as it determines how many tasks can execute in parallel. In addition, the size of the data treated by a task can have an influence on how well caches are exploited. If the block size is bigger than the capacity of a cache and if data is referenced frequently within the task, the cache miss rate might be high. Hence, the size of a data block is often constrained by the cache size. As the characteristics of the hardware can differ from one machine to another it is possible that a partitioning that yields good performance on one system performs poorly on another system. Hence, using a static partitioning scheme might not yield the same performance across multiple machines.

A solution to this problem is to implement the application with variable granularity, whose actual value is defined at execution time. The granularity which yields minimal execution time among the possible values can then be determined experimentally on each machine without modification of the implementation. For the example of the one-dimensional stencil, the array can be partitioned into blocks whose size is specified at execution time. The sequential version with variable granularity is shown in the listing below. 

; i < N-1; i++) 18 data[i] = (data[i-1] + data[i] + data[i+1]) / 3.0; 19 20 / * Rightmost element * / 21 data[N-1] = (data[N-2] + data[N-1] + 0) / 3.0; 22 } 23 }
The new function seidel_1d_seq_blocked implicitly divides the array in blocks of B elements and treats each block individually during each iteration of the algorithm. The leftmost and the rightmost block must be treated differently from the others due to the missing neighboring elements on the left and the right, respectively. This separated treatment is done in lines 5 to 9 and 17 to 21. The remaining blocks are processed by the loop nest in lines 12 to 14.

Mapping of data elements to stream elements and definition of the interface of tasks generating new versions

The next step towards an implementation using dynamic single assignment is to develop a mapping between the versions of the data elements and stream elements based on the partitioning established before. If possible, this mapping should take advantage of the layout of stream data at execution time, e.g., using subsequent stream indexes for data elements that are processed sequentially. For our example this means that the elements of a block should be mapped to a set of contiguous stream indexes of the same stream. To avoid complex synchronization patterns in the parallelized control program regarding the matching of views on a stream, each stream is used only once, i.e., by a single producer and a single consumer (cf. Section 5.5).

After the determination of the mapping, the interface of the tasks can be defined according to the data dependences. A task that processes a block of data does not only depend on the values of the block itself from the previous iteration, but also on elements of the neighboring blocks. In addition, the number of neighbors of a block depends on the position of the block within the array. For example, a block in the center of the array, i.e., not at the rightmost or leftmost position, depends on the values of its left neighbor from the current iteration, its own values from the previous iteration and on the values of the right neighbor also from the previous iteration. For the blocks on the left or right of the array, there is one dependence less due to the missing neighbor either at the left or the right. Figure 5.1a illustrates these inter-block and inter-version dependences for an array with three blocks.

From a block's perspective, the data of a version of the block is read by up to two tasks. The striped elements in Figure 5.1b indicate elements that are read by two tasks, while the other elements are only read by the task of the same block at the next iteration. Hence, for one version of a block, there are multiple readers and multiple views on the same stream indexes would be required to provide the readers with access to the shared data. This pattern of communication can be implemented either through a broadcast, as described in Section 3.3, or by emitting shared data manually on multiple streams. As the number of readers is fixed for each data element and known at compile time and as optimizations of broadcasts are described after the optimizations for ordinary input and output views, we chose to emit data manually on multiple streams. In addition, each stream is only used to synchronize exactly two tasks in order to facilitate the creation of a parallel control program as explained in Section 5.5.5. Figure 5.1c shows this principle for the first two iterations and three blocks. Each arrow from a task to a rectangle represents a write access to the elements of a unique stream and each arrow starting at a rectangle and ending in a task represents a read access on the same stream. Data that is read by more than one task is simply written twice to different streams, indicated by the dotted line labeled copy.

In summary, for each iteration, there is a set of N B streams used for dependences between tasks processing the same block, N S B -1 streams for inter-block dependences within the same iteration and N S B -1 streams for inter-block, inter-version dependences with N being the number of elements in the data array and S B being the size of a block.

Definition of auxiliary tasks needed for initialization and termination

To replace the sequential algorithm of Listing 5.6, the implementation using dynamic single assignment must use exactly the same interface. However, as the initial version of the data elements is provided in a shared array and not within streams, there must be a set of initial tasks that copy data from shared memory to the streams. Likewise, the values of the final versions must be copied from streams to the shared array. The set of auxiliary tasks is thus composed of initialization tasks that copy data to the streams and termination tasks that write the results back to shared memory.

Implementation of all tasks

The following listing shows the dynamic single assignment implementation with a sequential control program., including main computation tasks and auxiliary tasks copying data from shared memory to streams and from streams to shared memory. The listing starts with the definition of process_block in lines 9 to 43, which performs one iteration of the stencil on a single block. Values from the previous iteration as well as values received from neighbors are passed as pointers to the respective data regions. The position of the block is indicated by a value from an enumeration, such that process_block can carry out the necessary steps depending on the block's position.

Lines 50, 51 and 52 define arrays of streams with one stream for each dependence of a block, each block and each iteration. The stream that is used to exchange data between two tasks is determined through proper indexation of these arrays. For example, two tasks processing the jth block at iterations k and k + 1, the data generated by the first task is passed through the ((k + 1) • B + j)th stream of scenter. Indexation of the other arrays of streams is done in a similar way. The preprocessor definitions of lines 55 to 62 serve as macros that facilitate the indexation of the arrays of streams in the input and output clauses of the main tasks, based on the iteration (iter) and the block identifier (block).

The initial tasks that copy data from shared memory to streams are created by the loop in lines 69 to 86. Depending on the position of a block, the initial data only needs to be copied to one stream or to two streams by the same task. The actual copying is carried out by a simple call to memcpy with the target address corresponding to the base address of the appropriate view. All main computation tasks are created by the loops in lines 89 to 136. Again, depending on the position of the block, the interface of the associated task varies. Also, the task body is adapted to the position and passes appropriate values to process_block. The terminal tasks are created by the loop in lines 139 to 156.

The resulting task graph is shown in Figure 5.1d. The weights of edges between tasks processing the same block at two different interations is 8S B and corresponds to the size of a double precision floating point value multiplied with the number of elements per block. All other weights correspond to dependences of a single double precision floating point value and have a weight of only eight.

Parallelization of the control program

In the last step, the control program is parallelized. This step is necessary since it reduces the memory footprint of the application and increases parallelism, as discussed in Section 5.4. Depending on the complexity of the structure of the task graph, this step can be more or less complicated. For algorithms with regularly structured task graphs, e.g., with a same set of tasks that is instantiated at multiple iterations as in the example, the principles for parallelization are simple: each task creates its indirect successor generating the version after next of the same data elements, as illustrated in Figure 5.2. The initial tasks (i 0 to i 2 ), as well as the tasks treating the blocks for the first iteration (b 0,0 to b 2,0 ), are created directly by the root task. Afterwards, each task creates its indirect successor on the same block, i.e., a task i j creates b j,1 , b j,k creates b j,k+2 and so on, until b j,n-2 creates t j , with n being the number of iterations. The end of task creation is reached before the last iteration and neither b j,n-1 nor t j create follow-up tasks.

As the root task does not create all of the tasks, the taskwait construct at the end of seidel_1d_ dsa in Line 158 of Listing 5.8 does not synchronize the root task with all tasks anymore. Therefore, the task graph contains an additional task d that is created by the root task and that reads a single integer from each of the terminal tasks. When d is ready for execution, all other tasks besides the root task have terminated. By synchronizing with d using a taskwait construct, the root task can thus synchronize indirectly with all tasks of the task graph.

Due to the size of the code, we do not show the entire listing of the implementation with a The enumeration defined in Lines 2 to 5 associates one constant for each type of tasks in the task graph that potentially creates another task: INIT_TASK refers to an initialization task and MAIN_TASK stands for a task that processes a block of data. These constants are referenced in create_followup_task, starting at Line 5 of the listing. The function contains several tests that help determine whether a follow-up task needs to be created and which kind of task this is. A main task can either create another main task for the iteration after the next iteration (Line 15) or a terminal task (Line 18). Which of these tasks must be created depends on the iteration of the calling task, tested in Lines 14 and 17. In most cases, the task created by an initial task is a main task of the second iteration, as in Line 24. However, if there is only a single iteration, the indirect successor of an initial task in the task graph is a terminal task (Line 27).

The functions create_init_task, create_terminal_task and create_main_task are responsible for the creation of initial tasks, terminal tasks and main tasks, respectively. As in the previous listing, there are three types of main tasks with different sets of input and output views: one for the leftmost block, one for blocks in the center and one for the block at the rightmost position. Listing 5.9 omits the code for the creation of main tasks processing blocks at the left or the right of the array and only details the task for blocks in the center in Lines 56 to 69. The first difference to the previous listing is the use of stream references rather than streams in the input and output clauses. Instead of indexing the arrays of streams scenter, sright and sleft, the clauses refer to arrays of stream references named scenter_ref, sright_ref and sleft_ref. This is necessary due to the technical restriction that streams can only be declared in the local scope of a function and thus cannot be referenced directly from multiple functions. In the part not shown in the listing, references to the locally created streams are stored within global arrays of stream references that can be accessed from any function. The second difference with the previous listing consists in the additional function call to create_followup_task after the call to process_ block in Line 68, which effectively implements the parallel control program. Note that this call must be issued from within the task body, otherwise the creation of subsequent tasks would still be carried out by the root task.

Implications of dynamic single assignment on the control program

As all data of dynamic single assignment tasks is stored in input buffers and as these buffers are managed by the run-time, memory allocation for most of the data used by an application based on dynamic single assignment is under the responsibility of the run-time system. While this has the advantage that the run-time can use optimized algorithms and data structures to manage these allocations, dynamic single assignment can have a significant impact on the application's memory footprint as well as on the locality of data accesses. If input buffers cannot be reused, e.g., if tasks are created rapidly, such that none of the tasks has terminated before an allocation takes place, multiple buffers with different versions of the same data elements are kept at the same time, even though not all of them might be referenced simultaneously. However, even for extensive reuse of buffers there is a minimal number of versions that must exist at the same time. For each data element for which multiple versions are produced throughout the execution of the application and for which each version depends on the previous version, there are at least two versions present in data-flow frames when a new version is being generated: one is the current version, whose values are written and the second one corresponds to the previous version that serves as a base to calculate the new values.

The memory footprint of an application depends on the maximum number of input buffers that co-exist and is influenced by different factors. In particular, these are (1) the structure of the control program (sequential or parallel) and (2) dependences between tasks and their order of creation. In this section, we examine both points by unrolling the steps involved in task creation, allocation and de-allocation according to the execution model of OpenStream for simple examples. We also emphasize how the reuse of input buffers influences the locality of accesses to main memory with respect to NUMA.

Allocations of a sequential control program

The input buffers of a task are allocated when the task is created and remain in use until it terminates. Whether these allocations increase the memory footprint of the application or not depends on the state of the free list of the memory pool from which the buffers are allocated. If an allocation requires a refill operation caused by an empty free list, the footprint increases, while the footprint remains the same if a buffer from an earlier refill operation can be reused. However, in order to be reused by a subsequent allocation, an input buffer must be freed to the same memory pool as the pool used for the subsequent allocation. In the following part, we illustrate that a sequential control program either inhibits reuse or leads to poor data locality due to the allocation and de-allocation mechanism used for NUMA-aware memory pooling.

A sequential control program causes all allocations of input buffers to be carried out by a single task, namely the root task. As this task is executed by a single worker, all allocations are made within the same memory pool. Let w 0 be the worker that executes the control program. The tasks created by w 0 eventually become ready and, if w 0 has not finished executing the root task, these tasks are stolen or activated and executed by other workers. Upon termination of a task, the worker that executed the task frees the task's input buffers to the memory pools associated to the nodes on which the input buffers are located. There are two main scenarios for the placement and thus for the de-allocation and reuse of an input buffer. First, if the size of a page is smaller than the size of a buffer, buffer placement is determined by the initial writer of the buffer as explained in Section 4.2.2. Reuse of such an input buffer can only take place if the writer is located on the same node as w 0 , since only in this case the buffer is freed to the memory pool used by w 0 . However, due to the small number of cores per node compared to the total number of cores of a many-core system, it is more likely that the writer executes on a core of a different node and the buffer is never used again. Second, if the size of a page of memory is larger than or equal to the size of the input buffer, the buffer is allocated on the node of w 0 as physical allocation and thus data placement have already been triggered during the refill operation (cf. Section 4.2.1). In this case, the buffer is freed to the memory pool used by w 0 and can rapidly be reused by subsequent allocations. However, this leads to the use of buffers that are all placed on the node of w 0 , which results in poor data locality and high contention on the respective memory controller.

The following examples illustrates the two cases for the reuse of buffers when using a sequential control program.

Large memory footprint resulting from sequential task creation

Figure 5.3 illustrates the first scenario on the task graph, shown in Figure 5.3a. Every single task t 0 , . . . , t 7 as well as t i 0 , . . . , t i 7 is created by the root task r. For simplicity, we assume that t i 0 to t i 7 are all created before any of the tasks t 0 to t 7 is created, such that a steal of a task t i j results in the execution of t j by the same worker, since every task t j only has a single dependence and is thus activated right after the execution of t i j . We also assume that w 0 , w 1 and w 2 execute on different NUMA nodes and thus use different memory pools. Furthermore, the size of all input buffers in the example is identical. Note that t i 0 to t i 7 do not have predecessors in the task graph and thus do not have input buffers. The Figures 5.3b to 5.3r show the state of the free list associated to the size of the input buffers of the memory pool of each worker after each step explained below.

Initially, all lists are empty, as shown in Figure 5.3b. Let w 0 be the worker that executes the control program. Upon the creation of t 0 , the memory pool needs to be refilled and new buffers are allocated. In the example, each refill operation allocates only two frames at once (cf. Figure 5.3c). The creation of t 0 activates the previously created task t i 0 due to the restriction that all consumers of a task must have been created before the task can execute. Let w 1 be the worker that steals t i 0 and which thus becomes the owner of t 0 after its execution, as shown in Figure 5.3d. Similarly, w 2 becomes the owner of t 1 after its creation and a steal of t i 1 (Figure 5.3e). When t 0 and t 1 terminate, their input buffers are freed to the memory pools of w 1 and w 2 , respectively, as shown in Figure 5.3f. These buffers cannot be reused by w 0 for the creation of t 2 and another refill operation in the memory pool of w 0 becomes necessary (Figure 5.3g). The newly created tasks unblock t i 2 and t i 3 and cause w 1 and w 2 to execute t 2 and t 3 after the steals of t i 2 and t i 3 (Figures 5.3h and 5.3i). The input buffers are freed to the memory pools of w 1 and w 2 (Figure 5.3j), which makes them unavailable to w 0 . This process repeats until the last two tasks terminate (Figure 5.3k to 5.3r).

In summary, w 0 cannot reuse any of the buffers as all tasks were stolen by workers from remote nodes. This results in the allocation of a total of eight input buffers by four refill operations.

Extensive reuse with poor data locality and high contention resulting from sequential task creation

Figure 5.4 illustrates the events related to buffer allocation for the same application with huge pages causing input buffers to be placed on the allocating node. The first four steps, shown in Figure 5.4a to Figure 5.4d, are identical to the previous case using small pages. The first difference appears when the input buffers if t 0 and t 1 are freed, shown in Figure 5.4e. Instead of freeing them to the memory pools of w 1 and w 2 , they are handed back to the memory pool of w 0 . Hence, when t 2 is created, the free list of the memory pool of w 0 contains unused buffers and a refill operation is not necessary1 . Figure 5.4f shows the state of the memory pools when t 2 is executed by w 1 after the steal of t i 2 by the same worker. Similarly, the buffer formerly used for t 0 can be reused for t shown in Figure 5.4g. Upon de-allocation of t 2 and t 3 , the free list of the memory pool of w 0 again contains two buffers which can be reused for future tasks (Figure 5.4h). This pattern of allocations and de-allocations repeats as shown in Figure 5.4i to Figure 5.4n until all tasks of the task graph have been executed. In total, only two buffers have been allocated resulting in a smaller memory footprint compared to the previous example. However, as all buffers are placed on the node of w 0 , data locality is poor, resulting in high contention on a single memory controller.

Allocations of a parallel control program

We now show that using a parallel control program leads to a different pattern of allocations and can both significantly reduce the memory footprint of the application and provide improved locality of accesses to main memory. To illustrate this, we use the same tasks as in the previous example, but replace the sequential control program with a parallel control program, in which each task t j creates a follow-up task t j+2 and each task t i j creates t i j+2 for j ∈ {0, . . . , 5}. Only t i 0 , t i 1 , t 0 and t 1 are still created by the root task r, as illustrated by the task graph of Figure 5.5a. To keep the example simple, we assume that small pages are used, which causes all input buffers to be placed on the node of the workers that perform the first write access. The behavior using huge pages would be similar to the steps below, as only the placement of the input buffers of t 0 and t 1 is affected by the page size.

The steps presented in Figure 5.5b to 5.5d are identical to the steps with a sequential control program, since the root task still creates t 0 and t 1 . The first difference appears at the execution of t 0 by w 1 , when the follow-up task t 2 is allocated using the memory pool of w 1 instead of the pool of w 0 . This triggers a refill operation and results in the addition of two input buffers to the free list of the memory pool used by w 1 (Figure 5.5e). The first element from the free list is used for t 2 and upon termination of t 0 the input buffer of t 0 is added at the front of the list, resulting in the state shown in Figure 5.5f. Similarly, w 2 performs a refill operation during execution of t 1 (Figure 5.5g), removes an input buffer for t 3 and pushes the old buffer of t 1 onto the free list (Figure 5.5h). Figure 5.5i shows how previously allocated buffers are reused: the old buffers of t 0 and t 1 are used as the input buffers for t 4 and t 5 . Similarly, the old buffers of t 2 and t 3 are used for t 6 and t 7 in Figure 5.5j and the old buffers of t 4 and t 5 are added to the free list. When all tasks terminate, only 6 buffers have been allocated in total (Figure 5.5k).

Note that in contrast to the sequential control program with huge pages, the footprint increases, but data locality is similar to the sequential control program with small pages as w 1 and w 2 mostly operate on input buffers allocated from their own memory pools.

This example shows that work-stealing is an essential mechanism that spreads the execution of the parallelized control program over the machine and leads to task creations by other workers than the one executing the root task. This causes refill operations to be carried out on multiple memory pools and thus results in better distribution of the data across memory controllers and increases data locality. However, where an input buffer is allocated and whether an existing buffer can be reused varies with the total number of tasks and workers as well as on the timing of events at execution time as these have a strong influence on work-stealing. Hence, it is difficult to predict the exact memory footprint of an application only based on information about the task graph, the control program and the machine.

Estimation of the memory footprint

Although the exact memory footprint is difficult to predict, it is possible to provide upper and lower bounds for the number of buffers that are allocated throughout the execution for a given task graph. We illustrates this on the task graphs of Figure 5.3a and Figure 5.5a.

Let n r be the number of buffers allocated by a single refill operation and let n t be the number of tasks in a program with the same characteristics as the program of the previous examples. For a sequential control program and small pages, the total number of buffers N small seq allocated by refills 

n r ≤ N small seq ≤ n t n r • n r
The minimal number of allocations is achieved when all tasks created by the root task are stolen by workers operating on the same node as the worker executing the root task and if all buffers are freed in time right before an allocation, resulting in maximal reuse. The upper bound corresponds to a scenario where all tasks are stolen by workers that use a different memory pool, preventing any buffer from being reused at task creation. Note that it is more likely that the footprint reaches the upper bound, since the number of workers per node is generally much lower than the total number of workers. For sequential control programs and huge pages the bounds are identical, but can result from different situations:

n r ≤ N huge seq ≤ n t n r • n r
For the minimal footprint, it is no longer required that only workers of the same node steal tasks and it is sufficient that buffers are handed back to the memory pool of the creating worker in time.

The maximal footprint occurs for the worst possible timing, where none of the buffers is freed before creation of the last task. In general, it is unlikely that the footprint reaches the maximum, since the duration of the root task is usually higher than the duration of a task, which makes it likely that buffers are reused. For a parallel control program, the number of buffers allocated by refills varies with the number of parallel chains of task creation n chains . To avoid limiting the parallelism of the application, this number should be equal or greater than the number of workers n w . For n chains = n w and small pages the number of buffers is:

n r ≤ N small par ≤ n chains n r • n r
Sequential creation of the heads of each chain

+ (n w -1) • n r
One refill for each remaining worker

= n chains n r + n w -1 • n r = n w n r + n w -1 • n r
The minimal number of allocations is reached if (1) every chain is stolen by a worker of the same node as the worker executing the root task, (2) n r ≥ 2 and thus sufficient buffers for the stolen chain and the next task in the chain exist and (3) all tasks of the chain terminate before the head of the second chain started by the root task. The maximum number of buffers is allocated if every chain is stolen by a different worker and if all workers operate on different nodes. The upper and lower bounds for huge pages are identical:

n r ≤ N huge par ≤ n w n r + n w -1 • n r
Similar to the sequential control program with huge pages, the minimal number does not require that steals are carried out by workers of the same node as the worker executing the root task. This is due to the circumstance that every worker hands the buffers allocated by the root task back to the same memory pool. As far as the upper bound is concerned, it is reached whenever the last chain is created before any of the previous chains has terminated. While the upper bounds for N small seq and N huge seq are constrained by the number of tasks, the upper bounds of N small par and N huge par are constrained by the number of workers. As the number of tasks is generally much higher than the number of workers, a parallel control program thus yields a lower memory footprint.

The order of task creations in a parallel control program

In the previous examples, we have neglected inter-task dependences and assumed that all tasks besides pairs of tasks formed by t j and t i j for 0 ≤ j ≤ 7 are independent. However, the dependence As the created tasks remain blocked, their input buffers are not available for reuse and the number of input buffers that coexist depends on the distance between two iterations.

In Figure 5.6b the creation scheme is different. Instead of instantiating a task of the same type for the next iteration, each task allocates its indirect successor. As the distance between the creating task and the task that is being created is smaller than in the example before, the number of data-flow frames that coexist is lower, leading to a smaller memory footprint. Due to the restriction that the consumers of a task must be created before the task can start execution this distance cannot be reduced further.

Implementing a parallel control program in which all tasks create their indirect successors is often a lot more complicated than developing a pattern with creations between iterations. However, depending on the actual task graph the creation of tasks with the minimal distance can reduce the memory footprint significantly. A good example for such a program is the bitonic sorting network presented in Section 6.1.4, where the number of tasks per iteration increases with each iteration.

Parallelizing the control program

After the examples of parallel control programs and the discussion of the implications on data locality and the memory footprint we now discuss the restrictions that a parallel control program is subject to. In Section 3.1, we assumed that the control program creates all tasks sequentially. This limitation guarantees reproducible results for the mapping of views to stream elements, which ensures that the same producers are matched with the same consumers for each execution with deterministic results. If task creations and matchings of views would take place concurrently without any restriction, the set of stream elements a view provides access to could vary between two executions, depending on the exact timing. As a result, the order of values in a stream could vary from one run to another. For example, if the producers of Figure 3.5a on page 39 are created concurrently, the elements in the input buffer of the consumer are not necessarily stored in ascending order as specified for the sequential control program and can be shuffled, such as in Figure 5.7a and 5.7b.

In this section, we first point out the performance drawbacks not related to data locality or the memory footprint resulting from sequential task creation and sketch how a parallel control program increases performance. We then define the conditions under which parallel task creation preserves deterministic mappings of views to stream elements and sketch how a parallel control program can be derived from a sequential one. 

Rate of task creation

In the execution model of OpenStream all workers are created at the very beginning of program execution. When all workers are ready, one of them starts execution of the root task. In case of a sequential control program the control program is part of the root task and is thus executed by the same worker. The remaining workers are initially idle and try to obtain tasks through work-stealing. Thus, it is very likely that a newly created task that has become ready is immediately stolen and executed by a worker in parallel with the execution of the control program. Ideally, ready tasks are provided as fast as possible after the start of the control program, such that idle time of the remaining workers on startup is minimized and the arrival rate of these tasks is sufficiently high to provide enough tasks for execution afterwards.

Let t c be average time that is necessary to create a new task, i.e., the duration that it takes the run-time to set up its data structures and to perform calls to resolve_dependences for each of its views. Let t e be the average time for the execution of a task and let t r be the time on average between the moment when a task has been created and the moment when it becomes ready. If a task has neither input dependences nor output dependences, t r is zero and the task becomes ready immediately after its creation. Let N denote the number of workers and, as a matter of simplicity, assume that all tasks are entirely independent. As long as the control program creates tasks at a higher rate than the remaining N -1 workers execute them, the fact that the control program is sequential does not have an impact on the performance of the application. However, if tasks are executed faster than the rate of creation, workers become idle after the execution of a task, resulting in under-utilization of the hardware resources.

In the initial and terminal phase of an application at the beginning and at the end of the control program, only a subset of workers are busy. If these phases are neglected, the creation rate can be considered sufficiently high if the inequation te tc > N -1 holds. If the inequation does not hold, there are idle phases between task executions and the creation rate is too low. Figure 5.8 illustrates these situations. In Figure 5.8a, the control program creates tasks fast enough, such that none of the four workers becomes idle. However, as can be seen in Figure 5.8b with the same values for t c and t e , the rate of creation is too low to keep an additional worker busy and idle phases occur.

For a huge number of workers, sequential task creation can even dominate the execution time. Let M be the number of tasks. The time t seq needed for sequential execution of the entire program is:

t seq = M • t c + M • t e = M • (t c + t e )
For parallel execution, the longest sequential part is either the control program or the duration to execute the tasks on the critical path. Let t max be the duration of the slowest task. For independent tasks and a sufficiently high number of processors, the minimal execution time is max{M • t c , t max } according to Amdahl's Law. For a large number of workers and a large number of tasks, it is thus likely that sequential task creation dominates the execution time of the parallel program. 

Order of task creations

In the discussion above, we assumed that tasks are completely independent and can therefore start execution immediately after creation. While this assumption is suited to illustrate the relationship between the task creation rate and performance, it is unrealistic for real-world applications as these usually have more complicated task graphs. Besides a few initialization tasks copying data from shared memory to streams at the beginning of the execution, the tasks of all the benchmarks presented in the next chapter have at least one input dependence. The order in which these tasks are created defines how fast they can become ready and is therefore crucial for performance. There are two major issues that should be taken into consideration when the order of task creation by the control program is determined.

First, the structure of the task graph is important and should be taken into account. Tasks with shorter paths from a task whose dependences have already been satisfied are good candidates for creation, as they are likely to become ready sooner than others. For example, the tasks t j i with i ∈ {0, . . . , n} and j ∈ {0, . . . , m} in Figure 5.9a with chain-like dependences should be created column-wise from left to right and not from right to left or row-wise. However, it must be taken into account that output dependences also have an effect on the readiness of a task. As output data is written to the consumers' input buffers, a producer cannot start execution before the creation of its dependent tasks. Hence, strict column-wise creation of the tasks in the example, i.e., creating t 0 i to t m i before t 0 i+1 to t m i+1 , delays the execution at the beginning, since t 0 0 is only ready upon creation of t 0 1 with m -1 task creations in between. To unblock tasks more rapidly, it would be preferable to start by first creating pairs of tasks t j 0 and t j+1 0 and to proceed strictly column-wise afterwards. Figure 5.9b shows an example of a task graph in which the creation of a consumer is required to unblock multiple producer tasks. None of the producers p 0 to p m can execute before c has been created. Hence, instead of creating p 0 to p m before c, the control program should create c first, such that an additional producer becomes ready at each subsequent task creation.

The second issue we would like to discuss is related to the duration of each individual task. The length of a path in the task graph to a task that is ready for execution does not necessarily reflect the duration until activation. For example, in Figure 5.9c, the task labeled f executes faster than the task labeled s, indicated by the size of the tasks in the figure. Thus, creating b 0 , b 1 and b 2 before t 0 , t 1 and t 2 unblocks tasks faster than the other way around.

Creating a sequential control program with optimal order with respect to the task graph that is to be constructed is often a non-trivial task. In addition, how fast an application executes tasks and how fast it makes progress within the task graph can be difficult or even impossible to predict. Parallelizing the control program, such that tasks are able to create their indirect successors in the task graph can thus be advantageous, as task creation and task execution progress together. 

Dynamic dependence patterns and termination detection

In some cases, it is even impossible to implement an application with a strictly sequential control program that does not synchronize with the tasks it creates using a taskwait barrier. For example, if the number of tasks of the program is finite, but unknown at the beginning of the execution, the control program cannot determine when task creation should stop. An example of such an application is the k-means benchmark presented in Section 6.1.6, whose control program must create a certain number of tasks for each iteration of the algorithm. The number of iterations, however, depends on the actual input data and is only known upon termination detection that takes place in the course of the execution. To stop the creation of tasks for future iterations, the task that detects the termination of the algorithm must synchronize with the control program. However, this cannot be done by passing data to the root task through a stream, since input data of a task can only be provided before a task is executed.

A parallel control program, in which tasks create their indirect successors is able to stop task creation based on the information that is available during execution. Figure 5.10 illustrates this concept on a simple task graph composed by a chain of tasks. In addition to a producer-consumer relationship between t i and t i+1 for the actual data the graph also contains control dependences whose data indicates whether task creation should be stopped or if it should continue. At the beginning of the execution shown in Figure 5.10a the total number of tasks of the chain is unknown, but each task is capable of detecting whether another task is needed. Initially, the root task creates t 0 and t 1 and t 0 becomes ready for execution. Each task that does not detect that the application should terminate indicates to its successor that task creation should continue, as indicated by the edges labeled yes. Eventually, one of the tasks detects that the algorithm has finished. Let this task be t n shown in Figure 5.10b. As the successor of t n , t n+1 , was created before the execution of t n , the chain of tasks cannot end with t n . In addition, t n cannot stop task creation neither, since t n+1 can only execute when its successor has been created due to the task's output dependence. Hence, an additional task t n+2 must be created whose input view matches the output view of t n+1 . If this task was not created, the application would deadlock and the program would not terminate. The task t n+2 forms the end of the chain and therefore does not have an output dependence. When t n+1 is executed, it first checks the value received through the control dependence and detects that task creation has stopped. This prevents an additional task t n+3 from being created and leads to proper termination.

Conditions for the parallelization of the control program

As discussed above, using a parallel control program can have a positive impact on performance as well as on the memory footprint of the application. However, as shown at the beginning of this section, parallelization of the control program can lead to indeterministic behavior. In the following part, we show that determinism can be preserved if the parallelization verifies certain restrictions.

The condition for deterministic behavior of a parallel control program is that for all possible executions, the views of each task provide access to the same streams and the same elements. Starting from a sequential control program, this means that the parallel control program must yield the exact same matchings as the sequential control program for each possible execution. Let τ C , τ M , τ R : T ∞ → N 0 be functions that indicate when a task is created (τ C ), when all of a task's views have been matched to a set of stream indexes (τ M ) and when a task becomes ready (τ R ). Due to the order of these events in the life cycle of a task, the inequation t ∈ T ∞ : τ C (t) < τ M (t) < τ R (t) holds for all tasks t ∈ T ∞ . Note that τ M (t) and τ R (t) are not necessarily the same. For example, if a task has an output view on a stream and the consumer on this stream has not been created yet, the indexes of the elements that are accessible by the view are known upon the call to resolve_dependences, but the task only becomes ready when the input view of the consumer is matched.

Let further T seq = t 0 , t 1 , t 2 , . . . be the totally ordered set of tasks created by a sequential control program with τ C (t i ) < τ C (t i+1 ). To keep the definitions simple, we assume that a task can reference a stream at most in one of its views. Let τ S : T ∞ × S → N 0 be a partial function that indicates when a task's view accessing a stream has been matched. For each stream s ∈ S there are two totally ordered sets of tasks T s seq,R = t R 1 , t R 2 , . . . and T s seq,W = t W 1 , t W 2 , . . . with τ S (t R j , s) < τ S (t R j+1 , s) and τ S (t W k , s) < τ S (t W k+1 , s). These sets can be obtained by selecting in order only the tasks from T seq that read from or write to s. We define that T seq and one of its permutations T seq are equivalent if for all streams s the ordered sets T s seq,R and T s seq,R as well as T s seq,W and T s seq,W are identical.

Let T par = {p 1 = t 1 1 , t 1 2 , . . . , p 2 = t 2 1 , t 2 2 , . . . , . . .} be the set of all possible orders of task creations that can result from the execution of a parallel control program. If for all T par ∈ T par and s ∈ S the equations T s seq,R = T s par,R and T s seq,W = T s par,W hold, then the parallel control program is equivalent to the sequential control program. As all matchings are identical to those of the sequential control program, deterministic execution is thus preserved.

Sketching deterministic parallel task creation

The development of a method for the construction of a parallel control program from a sequential control program is beyond the scope of this thesis. Hence, we only provide a sketch of how we have parallelized the control programs of most of the applications used in the experimental evaluation of this thesis and leave the development of a general method as a perspective for future work. In order to make concurrent matchings of views on the same stream impossible, each stream is used to synchronize only two tasks: one task takes the role of the producer on the stream and the other task is the consumer. For any order of calls to resolve_ dependences of the two views on a stream, i.e., calling resolve_dependences for the input view before calling the functions for the output view or vice-versa, the input and output view provide access to the same set of stream elements. Using the definitions above, this results in ∀s ∈ S :

|T s par,R | = |T s par,W | = 1 ∨ |T s par,R | = |T s par,W | = 0.
This makes it impossible that the order of values of the elements of a stream varies between executions. This also implies, that the order of creation of these tasks does not have any influence on the matching on the streams, which finally facilitates the development of a parallel control program.

However, although the order of calls to resolve_dependences can be arbitrary while preserving the order of stream elements, the task creation relationships, i.e., which task creates another task, is constrained. In particular, the control program must ensure that there are no deadlocks resulting from the restriction that a task can only become ready when all of its consumers have been created. Figure 5.11a and 5.11c illustrate task graphs and parallel control programs that result in a deadlock due to this restriction. In the first case, shown in Figure 5.11a, each task creates its direct consumer. However, the creation of a consumer takes place when the producer executes, but this requires that the producer has become ready, which in turn requires that the consumer has already been created. This phenomenon is not limited to direct producer-consumer relationships. For example, in the task graph and control program of Figure 5.11c there are no task creations between direct successors in the task graph, but the structure of the dependences still leads to a deadlock. The task t 0 u requires that t 1 u has been created and creates t 1 l . However, t 1 u is created by t 0 l , which in turn requires that t 1 l has been created. The solution for the problems shown in the figures is given in Figure 5.11b and 5.11d. In Figure 5.11b, each task creates its indirect successor in the task graph, as seen for seidel-1d. In Figure 5.11d, the creation of t 0 u and t 0 l is now done by t. Furthermore, t 0 u and t 0 l create their indirect successors. These examples illustrate that the dynamic task graph resulting from the sequential control program must be analyzed carefully in order to avoid deadlocks when creating tasks with output dependences. Hence, providing a generic method for the construction of a parallel control program is a non-trivial task.

Summary

In this chapter, we introduced dynamic single assignment, which allows the run-time to determine the working set of a task and allows it to control where the data accessed by a task is placed through the allocating of input buffers. We provided an informal methodology for the implementation of programs based on dynamic single assignment and illustrated this methodology on a simple one-dimensional stencil code. We examined the influence of sequential control programs on the memory footprint, data locality and contention on memory controller and motivated that applications using dynamic single assignment benefit from the implementation of a parallel control program. The conditions for the parallelization of a control program are out of the scope of this thesis and could thus only be outlined.

In the next chapter, we present a set of high performance scientific benchmarks based on dynamic single assignment and describe the experimental setup for the experiments conducted in this thesis.

Experimental Setup

To demonstrate that the optimizations presented in this thesis apply to real-world applications and thus to show that they are practically relevant, we evaluate our concepts on a set of applications executing on machines with contemporary hardware architectures. The purpose of this chapter is to provide an overview of these applications as well as on the hardware environment used for evaluation. We introduce a set of high performance, scientific applications implemented using the language extensions of OpenStream of Chapter 3 and dynamic single assignment described in Chapter 5 and describe the memory hierarchy of the many-core systems used in our experiments. Furthermore, we provide a methodology for measurements and show which events are quantified.

The chapter is structured as follows. In Section 6.1 we provide an overview of the benchmarks used for evaluation as well as details on their implementation using dynamic single assignment presented in the previous chapter. Section 6.2 presents the different baselines for the evaluation and introduces shared memory programming using tokens for synchronization used in one of the baselines. The methodology for the measurement of the execution time and the collection of statistics using hardware performance counters is explained in Section 6.2.3, which introduces the definition of the measurement interval. Details about the hardware environment are given in Section 6.3 that describes the two test platforms used for the execution of the benchmarks. The parametrization of the benchmarks, e.g., the size of input data and the granularity defining the amount of work per task is presented in Section 6.4. To estimate which benchmarks are most sensitive to the locality of memory accesses, Section 6.5 provides an overview of the characteristics of the applications with respect to the memory hierarchy. The chapter finishes with an analysis of the scalability of the applications of the shared memory baseline in Section 6.6 to show that interleaved allocation across all nodes is essential for performance. Parts of this chapter were previously published in [46].

Benchmarks

For the experimental evaluation of the concepts presented in Chapters 7, 8 and 9, we have implemented a set of high performance, scientific benchmarks. These applications can roughly be divided into four categories: stencil computations (seidel, jacobi, and blur-roberts), integer sorting (bitonic), clustering (k-means) and linear algebra (cholesky). In this section, we provide an overview of these benchmarks and briefly describe their implementations.

Seidel

The seidel benchmark implements the Gauß-Seidel method, which iterates a five-point stencil over a two-dimensional, dense N × N matrix of double precision floating point elements with N being a power of two. Similar to the one-dimensional stencil presented in Section 5.3, the value v i x,y of an element of an iteration i at position (x, y) in the matrix is calculated by taking into account values from the previous iteration i -1 as well as the current iteration, but in two dimensions:

v i x,y = 1 5 v i x-1,y + v i x,y-1 + v i-1 x,y + v i-1 x+1,y + v i-1 x,y+1
Elements at the border of the matrix are treated as if the values of the missing neighbors were zero.

For example, the element in the corner at position (0, 0) is updated as follows:

v i 0,0 = 1 5 0 + 0 + v i-1 x,y + v i-1 x+1,y + v i-1 x,y+1 = 1 5 v i-1 x,y + v i-1 x+1,y + v i-1 x,y+1
As processing of the elements of the entire matrix in a single task would limit parallelism and thus lead to poor performance, the matrix is tiled into blocks of S B • S B elements, each treated by a separate task performing a single iteration on the tile. The number of tasks per iteration is thus N 2 S 2

B

. However, not all of these tasks can execute in parallel, since each block relies on data from its neighborhood, as illustrated in Figure 6.1a. A subset of the dynamic task graph showing the producers and consumers of a task b i X,Y , calculating the values of the ith iteration on the block at coordinates X, Y , is given in Figure 6.1b. The values generated by this task belong to the elements that are within the square-shaped block of the matrix, which The data of a block is processed by two nested loops iterating over the x and y coordinates of the elements of a block. Throughout the execution of these two loops, each data element is read multiple times. It is therefore crucial for performance that a block fits into the cache of the processor to avoid repetitive accesses to main memory for the same elements. Hence, S B must be chosen such that S B • S B • S dbl is smaller than the cache capacity associated to a single core.

are {v i x,y |X • S B ≤ x < (X + 1) • S B ∧ Y • S B ≤ y < (Y + 1) • S B }.
Similar to the implementation of the one-dimensional version of the benchmark, elements at the borders of a block are read by more than one task and need to be copied to two streams. The first stream is used to pass the whole block to the task treating the same block at the next iteration and the other stream is used to pass the elements to the task treating the neighbor block. This is shown in Figure 6.1c. Figure 6.1d combines the illustrations of Figure 6.1b and 6.1c and shows the data dependences of a single task, the elements of a block and the copied elements at the borders.

The parallel control program is also similar to the one-dimensional version of the benchmark as each task b i X,Y creates its indirect successor along the path of heavy dependences, i.e. the task processing b i+2 X,Y . Figure 6.1e shows a three-dimensional illustration of a task graph that includes the scheme for task creation for 16 blocks and four iterations. The vertical axis in this illustration represents the iterations, while the other two axes indicate the block coordinates of the block treated by a task. Note that neither the tasks in the center of the cube nor the dependences from and to these tasks are shown in order to keep the figure readable. To be used as a drop-in replacement for a sequential version operating on a global matrix in shared memory, i.e. whose elements are not stored in streams, the benchmark requires two types of auxiliary tasks. The first type corresponds to initial tasks that copy data from shared memory to streams and that execute before the tasks that carry out the actual computation of the stencil. The second type consists of terminal tasks that copy the data back to shared memory and which are thus needed at the end of the execution. Figure 6.1f shows the tasks of Figure 6.1e, but also includes the auxiliary tasks. The purpose of the root task (not shown in the graph) is the creation of the initial tasks as well as the tasks for the first iteration. If the number of iterations is smaller than two, the root task also creates the terminal tasks, as these tasks do not have indirect predecessors. Due to the dependences between tasks within and across iterations, execution starts at the lower left corner of the matrix at block coordinates (0, 0) at the front of the three-dimensional illustration. Afterwards, execution progresses along the dependences, from left to right, from front to the rear and from the bottom to the top as shown in Figure 6.2. Hence, in a first phase, the number of tasks that are ready for execution increases, resulting in growing parallelism (Figure 6.2a to 6.2c). Once the maximum number of tasks ready for execution has been reached, parallelism declines until the task at the upper right corner at the rear of the three-dimensional representation is executed at the very end (Figure 6.2d to 6.2f).

Jacobi

The two-dimensional version of the jacobi benchmark, jacobi-2d, is a five-point iterative stencil operating on a dense, N × M matrix of double precision floating point values with N and M being powers of two. The code of this benchmark is inspired by an implementation from the POLY-BENCH [START_REF] Pouchet | PolyBench/C[END_REF] suite with characteristics similar to the seidel benchmark presented above. The matrix is processed in tiles of size S B,N × S B,M with S B,N |N and S B,M |M , resulting in N •M S B,M •S B,N tasks per iteration. However, in contrast to seidel, jacobi-2d does not have intra-iteration dependences and each value generated for the ith version of an element only depends on values from the previous iteration i -1:

v i x,y = 1 5 v i-1 x-1,y + v i-1 x,y-1 + v i-1 x,y + v i-1 x+1,y + v i-1
x,y+1

Figure 6.3a illustrates the principles of this calculation. The division into blocks is identical to seidel with similar dependences for each task, as shown in Figure 6.3b and Figure 6.3c. The absence of intra-iteration dependences in Figure 6.3c manifests as the absence of arrows pointing from the top towards the task in the middle. The parallel control program is identical to seidel and each task creates its indirect successor in the task graph along the iteration dimension, i.e. the task processing the same block at the iteration i + 2. Figure 6.3d illustrates the control program for 16 blocks and four iterations, including auxiliary tasks copying data from shared memory to streams as well as auxiliary tasks writing the results back to shared memory.

Although the task graph of jacobi-2d is similar to seidel, execution progresses differently within the task graph during execution due to the missing intra-iteration dependences. In contrast to the triangle-shaped wavefront of seidel, the wavefront of jacobi-2d can have a rectangular shape and the program can advance iteration by iteration as shown in Figure 6.4. However, this pattern of progress is not unique and is only likely to occur for a high number of workers. If the number of workers is lower than the number of blocks, it is more likely that tasks of later iterations execute in parallel with tasks of earlier iterations, leading to dynamic pipelining effects. Examples of such cases are given in Figure 6.5, showing triangular-shaped wavefronts similar to seidel (Figure 6.5a and 6.5b) as well as progress in a pyramid-like fashion (Figure 6.5c and 6.5d). Which progress pattern occurs at execution time depends on the number of workers, on the order of the creation of auxiliary tasks as well as on the timing of task execution due to dynamic events such as work-stealing.

In addition to the two-dimensional version, we have also implemented a one-dimensional version, jacobi-1d implementing a three-point stencil as well as a three-dimensional version of the benchmark, jacobi-3d implementing a nine-point stencil with similar characteristics. 

Blur-roberts

The blur-roberts benchmark [59] carries out the stencil computations of two kernels used in image processing on a dense N × M matrix of double precision floating point elements, processed in blocks of size S B,N × S B,M , with S B,M |N and S B,N |M . The application first applies a blur filter on each element of the two-dimensional input matrix, averaging the values of the eight neighbors surrounding the element and the element itself. In a second step, the algorithm applies the Roberts Cross Operator used for edge detection involving the lower left element, the element right below, the left element and the element itself. At the end of this operation, the result is written back to the original matrix. An illustration of the two steps for a single block is given in Figure 6.6a and Figure 6.6b. According to the description of the two steps the final value v x,y of an element at the position (x, y) in the output matrix is calculated as follows:

v x,y = v x,y -v x-1,y+1 + v x,y+1 -v x-1,y with v x,y = 1 9 (v x-1,y-1 + v x,y-1 + v x+1,y-1 + v x-1,y + v x,y + v x+1,y + v x-1,y+1 + v x,y+1 + v x+1,y+1 )
In contrast to seidel and jacobi, blur-roberts only performs a single iteration on each block. To limit the overhead related to the execution of auxiliary tasks, the application does not use dedicated tasks to copy data from shared memory to streams and from streams back to shared memory. Instead, initial data is read from shared memory directly by blur tasks and final data is written back by tasks applying the Roberts Cross Operator. Hence, streams are only used to exchange data between the blur tasks and the tasks applying the Roberts Cross Operator. Similar to seidel and jacobi, data needed by multiple tasks is copied to several streams. From a block's perspective these are the elements at the top row, the upper right corner and the right column as shown in Figure 6.6c.

One of the key characteristics of blur-roberts are the short dependence paths including only two tasks per block, namely the blur filter and the Roberts Cross Operator. Figure 6.6d shows the dependences from the perspective of a single task of the blur filter. The task b X,Y designates a blur task operating on block (X, Y ) and r X,Y is a task that applies the Roberts Cross Operator on the block with the block coordinates (X, Y ). Besides the main dependence between b X,Y and r X,Y for the block data of size S B • S B multiplied with the size of a double precision floating point value S dbl , the graph also contains dependences for the right and top border of a tile, i.e. a dependence of S B elements between b X,Y and r X+1,Y and a dependence of the same size between b X,Y and r X,Y +1 , as well as a dependence for the upper right corner of the tile of a single element between b X,Y and r X+1,Y +1 . The remaining dependences of a single integer of size S int ensure that the values of the input matrix are not overwritten before they have been read by the corresponding tasks carrying out the blur filter as explained below.

When the blur filter is applied to a block, the task associated to this block both reads values from within the block and from the direct neighbors, as shown in Figure 6.6e. As the final data is written back to the original matrix, it must be ensured that the Roberts Cross tasks operating on neighboring blocks do not overwrite the original values before the blur task has finished reading all of the required elements. Without protection, it would be possible that the blur filter operates with data already updated by a Roberts Cross Task as shown in Figure 6.6f. To avoid these early updates of the original matrix, each Roberts Cross Operator task requires the permission of the neighboring blur tasks, which is modeled as a data dependence of a single integer element.

Due to the absence of dependences between blur tasks, all blur tasks can execute in parallel.

The available parallelism at the beginning of the execution is thus only limited by the rate of task creation and progress can be made on any part of the matrix. As far as the Roberts Cross Operator tasks are concerned, parallelism is limited by the number of completed blur tasks as well as the location of the blocks associated to these tasks. The bitonic benchmark implements a bitonic sorting network [16], capable of sorting an array of 2 N arbitrary 64-bit signed integer values. The sorting process is divided into N stages, each performing a series of compare-and-exchange operations on the elements of the array. At each stage, chunks of the array with a fixed size are sorted with a doubling chunk size from one stage to another. That is, at the end of the kth stage, all chunks of size 2 k+1 are sorted internally. Hence, the first stage sorts pairs, the second stage all chunks of size four and so on, until the entire array is sorted at the end of stage N -1. An advantage of the bitonic sorting algorithm is that data can be treated in fixed-size blocks by a sorting network of a fixed structure, keeping parallelism and the amount of work per task constant on average. Figure 6.7a shows a sorting network for arrays with eight elements divided into blocks of two elements. During stage 0, each block is sorted internally by applying a compare-and-swap operation to the pair that forms the block. This means that the element with a lower index in the array is swapped with its neighbor if its value is greater. If this is not the case, both values remain at their current positions. Let v k j be the element at position j of the array, resulting from stage k. The values v 0 j of the array at the end of stage 0 are sorted, such that

v 0 2i ≤ v 0 2i+1 for 0 ≤ i ≤ 2 N -1 -2.
The next stage sorts quadruples and yields v 1

j with v 1 4i ≤ v 1 4i+1 ≤ v 1 4i+2 ≤ v 1 4i+3 for 0 ≤ i ≤ 2 N -2 -4.
During the last stage, the entire array is sorted with v 2 i ≤ v 2 i+1 for 0 ≤ i < 2 N -1. Figure 6.7b reveals that there are two types of operations, which can be seen best in stage 2. The triangle-shaped operations merge two chunks by comparing the elements v c+i with v c+s-i-1 , where c is the base index of a chunk and s the size of a chunk (e.g., for s = 2 the base index of the third chunk is c = 4). The second type of operation sorts a chunk internally by comparing and swapping the elements of the upper and the lower half of the chunk for a successively refined chunk size, indicated by the rectangles in Figure 6.7b. The compare-and-swap operations of both types of operations can be grouped, such that a task that executes these operations takes either one block as its input and produces exactly one block of output or such that it takes two blocks on input and generates two output blocks. Figure 6.7c provides an example of such a grouping. Note that this property is independent of the block size and the size of the array, as long as both are a power of two. If a task is associated to each group of operations in the grouping scheme above, this results in a task graph given in Figure 6.7d for the example. The task graph also includes initialization tasks i 0 to i 3 that copy data from shared memory to streams and t 0 to t 3 , which write the result back to shared memory. The tasks named h 0 j execute the operations necessary for the comparisons of the halves of the blocks at stage 0. The first merging tasks, labeled m 1 j , appear at the beginning of stage 1 and provide data for the set of comparison tasks of the same stage, h 1 j . The value S B indicates the number of elements per block. As each element is a 64-bit integer, the weight of each dependence is thus 8S B .

The parallel control program follows the same pattern as the previous applications, in which each task creates an indirect successor in the task graph. However, bitonic is less regularly structured than the stencil computations and task creations can span the boundaries of two stages. Figure 6.8 shows an example of a larger sorting network with task creations.

The structure of the task graph of bitonic guarantees that the number of tasks ready for execution always ranges between the number of blocks N B = 2 N S B and the number of blocks divided by two

N B 2 = 2 N -1
S B throughout the execution of the program if progress is made from left to right and if all tasks with the same distance to the initialization tasks are executed in parallel. Figure 6.9 illustrates this property on the task graph of the previous figure. If all tasks in a dashed rectangle execute in parallel, parallelism never drops below 2 N -1 S B and is at most 2 N S B . For each compare halves operation of a given stage, a constant number of tasks can execute in parallel and although the merge operations operate on data from multiple chunks, they do not act as global barriers synchronizing all tasks before the operation. The upper bound of tasks that can execute in parallel is reached at the beginning of the execution and at the end of each stage, while the lower bound applies to all other intermediate steps. However, this property for parallelism is only valid if progress in the task graph is made stage by stage and if the number of workers is greater than or equal to N B 2 . For a lower number of workers, it is more likely that the overall progress spans multiple stages, such as in Figure 6.10a and Figure 6.10a, where tasks that have terminated are marked with a striped pattern.

Cholesky

Cholesky is a linear algebra kernel that calculates the lower triangular matrix L of a dense, symmetric, positive definite matrix A, such that

A = L • L T . The N × N -matrix A is divided into S B • S B sub-matrices A x,y , each of size S B × S B with A x,y = (a ij ) x,y and x • S B ≤ i < (x + 1) • S B , y•S B ≤ j < (y+1)•S B .
To calculate the Cholesky Factorization of A, it is necessary to apply different operations to the sub-matrices and to propagate updated values accordingly. The principles are illustrated in Figure 6.11, showing the updates of sub-matrices in the fifth column of a matrix decomposed into 64 blocks. The order of the operations is the following:

1. Each block below the block on the diagonal is successively updated by calculating A x,y = -A i,x • A T i,y + A x,y and setting A x,y := A x,y after each step for 0 ≤ i < x (cf. Figure 6.11a). 2. A symmetric rank k update is applied on the block on the diagonal, i.e., A x,x = -A 2 i,x + A x,x for 0 ≤ i < x and A x,x := A x,x after each update (cf. Figure 6.11b). 3. A Cholesky Factorization is performed on the diagonal block, such that A x,x = L x,x with A x,x = L x,x • L T x,x . As specified for the previous operations, A x,x is set to A x,x afterwards (cf. Figure 6.11c). 4. The result from the Cholesky Factorization is propagated vertically to all blocks below the diagonal by solving: A T x,x • X x,y = A x,y and by setting A x,y := X x,y afterwards (cf. Figure 6.11d).

Each of the operations is carried out by a highly optimized sequential function using the interface from BLAS [20] and LAPACK [START_REF] Anderson | LAPACK Users' Guide[END_REF], namely dgemm for the matrix multiplication, dsyrk for the symmetric rank k update, dpotrf for the Cholesky Factorization and dtrsm for solving the equation from step 4. The implementation of these interfaces is provided by Intel's MATH KERNEL LIBRARY (MKL [START_REF] Drebes | Aftermath: A graphical tool for performance analysis and debugging of fine-grained task-parallel programs and run-time systems[END_REF]) with optimized code for high performance processors of the x86 family.

Due to its complexity, the task graph for Cholesky Factorization cannot be shown here. However, the dependences between the blocks as shown in Figure 6.11 give an idea of the structure of the task graph. Each operation, dgemm, dsyrk, dpotrf and dtrsm on each block is carried out by a separate task. Data dependences of the factorization algorithm require that the results produced by a task might be communicated to multiple subsequent tasks. The exact number of readers depends on the operation that the producer carries out, the number of blocks as well as on the position of the associated block within the matrix. For example, the result of the dpotrf operation on block (1, 1) in Figure 6.12a is read by six tasks calling dtrsm on the blocks below. As the number of blocks below the diagonal decreases for blocks towards the left, the number of readers for the same operation on block (4, 4) is only three as shown in Figure 6.12b. For the dtrsm operation the number of readers is constant for all blocks in the same column, but the partitioning across dgemm and dsyrk readers changes as shown in Figure 6.12c and 6.12d. However, the number of readers of each version of a block is known at execution time as soon as the block size and the size As almost all blocks need to be communicated to multiple tasks our implementation makes heavy use of broadcasts. Due to the complex dependences and due to the fact that ticks must take place after the creation of all readers of a broadcast, it is difficult to develop a parallel control program that creates tasks throughout the entire execution of the application. Therefore, we have implemented a less complex control program that creates all tasks in parallel at the beginning of the execution. Figure 6.13 shows the principles of this control program 1 . In a first step, the root task allocates an array with a description including the operation and the coordinates of the block for each task to be created. These descriptions are read by the leaf tasks of a tree of tasks whose root is formed by the root task and where each leaf creates the set of tasks that correspond to the portion of the array assigned to it. A barrier task b reads a single integer token from each of the leaf tasks and is thus activated when all tasks for the Cholesky Factorization have been created. The root task synchronizes with this barrier task using a taskwait construct to make sure that the tick operations that are necessary to enable broadcasts all take place after the creation and matching of all readers.

Progress on the factorization is made starting with the upper left block of the matrix in vertical and horizontal direction. The available parallelism at the beginning of the execution is low, but increases until the maximum is reached towards the middle of the execution. Afterwards, parallelism decreases until the block at the lower right is processed and execution finishes. Instead of using auxiliary tasks for the transfer of data from shared memory to streams, the data is simply copied by the first task accessing a block. In contrast to this, the transfer from streams back to shared memory is done by dedicated tasks. The reason for this implementation scheme is that a transfer at the end of the execution of a broadcasting task would delay its termination, which might result in delaying the start of a potentially high number of reading tasks. By adding a dedicated task to the readers of the broadcast the transfer of the result to shared memory can be carried out in parallel.

K-means

K-means is a data-mining benchmark that partitions a set of n d-dimensional points into k clusters using a naive implementation of the K-means clustering algorithm. The algorithm starts with a random selection of k points from the points to be clustered as the cluster centers and then calculates for each point p i and each cluster center c q the euclidean distance δ i,q :

δ i,q = d j=0
(v i,j -c q,j )2 with p i = (v i,0 , . . . , v i,d-1 ) and c q = (c q,0 , . . . , c q,d-1 )

Afterwards, each point is associated to the cluster with the minimal distance 2 . The cluster centers for the next iteration are updated by calculating the barycenters of their associated points of the current iteration:

c q = 1 |A q | pi∈Aq p i where A q = {p i | δ i,r : δ i,r < δ i,q ∧ r = q}
The algorithm stops when the number of points that changed their associated clusters falls below a user-defined threshold. The principal data structures used by the implementation of the clustering algorithm are a global array with the multi-dimensional points to be clustered, an array with one point per cluster representing its current center and an array storing the cluster membership of each point. While the array with the points is referenced only in read mode, both the cluster center array and the membership array are updated at each iteration. The parallelization is straightforward: the array containing the points to be clustered is divided into equal-sized blocks of S B elements and during each iteration, each of these blocks can be processed in parallel. The new barycenters are calculated by aggregating intermediate values of the sum successively in a tree-like fashion.

The structure of the task graph for the clustering of an array with eight blocks is given in Figure 6.14. For readability not all task creation relationships and not all data dependences and weights are shown. The creation and execution of this graph can roughly be divided into four phases.

During the first phase, the initial tasks as well as the tasks for the first and second iteration of the algorithm are created by the tree-like structure on the left side formed by c 0,0 , c 1,0 , c 1,1 , c 2,0 , . . ., c 2,3 . The leaves of this tree, i.e., c 2,0 to c 2,3 , are responsible for the creation of the initial tasks i 0 to i 7 reading data from shared memory and writing it to streams as well as for the tasks k 0 0 to k 0 7 of the first iteration of the clustering algorithm and k 1 0 to k 1 7 of the second iteration. This ensures that maximum parallelism is achieved quickly after the start of the application 3 .

The second phase consists in the execution of i 0 to i 7 , which read the blocks of multi-dimensional point data, the current cluster centers and the membership information from shared memory and write this data to streams.

In the third phase, the application performs as many iterations as needed until the number of points whose assigned cluster changes falls below a threshold. Except the first and last iteration, each iteration is characterized by three steps. The first step consists in propagating the updated cluster centers by a tree-like subgraph formed by the tasks p i j,o , where i stands for the iteration, j for the depth of the propagating task below the root p i 0,0 of the subgraph and o for the identifier of the task at depth j. In the second step, each task k i j calculates the distance of each point of block j to the cluster centers and updates cluster membership accordingly. In the final step of an iteration, the new cluster centers are calculated based on this membership. Furthermore, statistics about the number of points that changed cluster membership are aggregated. This is done by the tasks r i j,o , where i designates the number of the iteration whose results are analyzed, j stands for the depth of the task in the aggregating tree starting with the leaves and o corresponds to the number of the task among all tasks at the same level of the aggregation. The last of the tasks in the tree finally detects whether the algorithm has terminated (e.g., r 1 2,0 in the figure). The fourth and final phase consists in the termination of the algorithm. Due to the structure of the control program, in which each task k i j creates k i+2 j , and the fact that termination detection takes places after termination of all tasks of an iteration, the application terminates two iterations after the first iteration for which the number of points that changed membership is below the threshold. Let q be the iteration at which termination is detected. The tasks k q+1 j of the following iteration are not necessary, but cannot be canceled and the algorithm cannot terminate instantly. To bypass this problem, each task k i j receives a value from a propagating task that indicates whether the algorithm is terminating or whether execution continues. In the first case, the task skips all calculations and simply forwards all data to the terminal task t j . In the latter case, the task performs a single iteration on the associated block. The application terminates when all terminal tasks have finished execution. This can be detected by the root task by synchronizing using the taskwait construct with a task b reading a token from all tasks t j .

The k-means benchmark also highlights an issue related to the implementation of broadcasts in OpenStream. The data of the points to be clustered is only read and never written by any of the tasks. Hence, a broadcast from the initial task reading a block from shared memory to all tasks that read the block would be preferable (e.g., from i 0 to k 0 0 , k 1 0 , . . ., k q 0 ). However, as the number of readers of a block depends on the number of iterations q, which is only known when termination detection takes place, and as the number of readers of a broadcast must be known before it can take place, it is impossible to use the broadcast mechanism of OpenStream to pass the point data to all tasks k i j . Thus, to be able to determine the working set of a task and its memory accesses in the run-time all read-only data must be copied manually from one iteration to another. To this end, each task k i j performs a call to memcpy before termination, copying the entire block of points from an input view to an output view of the same size.

As a result of the aggregation mechanism which features a single task towards which all dependence paths converge, progress in the task graph is made iteration by iteration. At each iteration, parallelism increases exponentially from p i 0,0 until all tasks k i j have become ready for execution. Afterwards, parallelism decreases exponentially until the last task of the reduction executes. Note that the depth of the tree of reduction and propagation tasks in the examples corresponds to the logarithm to the basis two of the number of blocks and that the amount of work for these tasks is proportional to the number of cluster centers. Usually, the number of cluster centers is several orders of magnitude lower than the number of points to be clustered, such that the impact on execution time is small. However, due to the short execution time of reduction and propagation tasks the relative overhead for task creation, synchronization and destruction can be high. Therefore, the implementation of k-means allows the specification of an arbitrary number f of aggregations at each step of a reduction or a propagation as long as the number of blocks is a power of f . The amount of work of each task is proportional to the product of the number of clusters and f . Thus, for a higher value for f both the relative overhead as well as the depth of reduction and propagation trees decreases. However, at the same time parallelism between two iterations decreases. During parametrization of the benchmark for a specific machine parallelism and overhead must be traded off by adjusting f and the block size.

Baselines and measurement

The evaluation of the concepts presented in this thesis highlights different aspects related to data locality and performance. For the comparison in our analyses we use two parallel baselines as well as a sequential baseline. The first parallel baseline corresponds to the dynamic single assignment version of the benchmarks presented in the previous section, executed by the NUMAaware implementation of the OpenStream run-time described in Chapter 4. This run-time uses complete random work-stealing and does not include any of the optimizations for scheduling and memory allocation presented in Chapters 7 and 8. The second parallel baseline consists in shared memory implementations of the benchmarks that do not follow the principles of dynamic single assignment and that use streams only for token-based synchronization. This baseline highlights the benefits and drawbacks of using dynamic single assignment and allows for the comparison with more conventional shared memory programming. The principles of this programming style are given in the following section. Last, the sequential baseline consists of a set of sequential implementations of the benchmarks not using any OpenStream-specific constructs and executing without the OpenStream run-time system.

All implementations of the benchmarks use the same sequential optimizations, i.e. tiling of matrices and arrays into blocks, manual loop unrolling etc., and all parallel baselines use identical control programs. Furthermore, the data sets processed by the benchmarks implementing the same algorithms are identical. In some cases, the shared memory and sequential implementation differ sightly from the dynamic single assignment version. This is the case for in-place updates of memory locations which require that older versions of elements which have not been read by all dependent calculations are saved in a separate memory location. For example, the shared memory versions of the jacobi benchmarks require the data at the borders of a tile to be saved for the treatment of neighboring blocks before overwriting the current block.

With the exception of cholesky, all benchmarks have been implemented in three versions: dynamic single assignment, token-based synchronization and as a sequential algorithm. Instead of comparing the dynamic single assignment version of cholesky to a shared memory version with token synchronization, we compare its performance to highly optimized, state-of-the-art linear algebra codes. This comparison in provided in Chapter 9 dealing with the optimization of broadcasts. 

Synchronization using tokens

As an example of shared memory programming with OpenStream tasks, consider the 1-dimensional Seidel stencil introduced in Section 5.3. At each iteration, every element is updated by calculating the average of the current value of the left neighbor, the value of the previous iteration of the right neighbor and the value of the element itself (Figure 6.15a). Elements of different iterations that are not direct neighbors can be processed in parallel. For example, the jth iteration of the element at index i can take place at the same time as iteration j -2 of the element at index i + 2.

The shared memory implementation of this application with token synchronization uses a global array to store the data elements, implicitly partitioned into multiple blocks as shown in Figure 6.15b. Tasks that operate on the same or neighboring blocks are synchronized through streams. Similar to the dynamic single assignment version, a task for each block and each iteration is created. The benchmark also creates initialization and termination tasks that are necessary to set up and terminate synchronization, shown in Figure 6.15c. As in the dynamic single assignment version, the dependences in the task graph reflect the data dependences of Figure 6.15a: horizontal arrows represent dependences to the right neighbors, vertical arrows represent dependences to the same sets of element from previous iterations and diagonal arrows indicate dependences to the left neighbors. However, in contrast to the dynamic single assignment version, the weight associated to each edge is the size of an integer element of four bytes rather than the actual size of the data that corresponds to the dependence. As all data is stored in the global matrix, the dependences between tasks are only control dependences that ensure the correct order of execution of the tasks. The stream elements that correspond to these control dependences can be seen as tokens that are passed from one task to another for task activation, hence the name token-based synchronization. The following code listing shows the implementation of this token-based synchronization scheme. As tokens are represented by simple integers, all streams are typed as integer streams. Lines 10, 11 and 12 define arrays of streams with one stream for each dependence of a block, each block and each iteration. The stream that a token is passed through for synchronization is determined using the same macros as for the dynamic single assignment version of Section 5.3.4, defined in lines 15 to 22.

The shared array containing all data is allocated in line 7 with an ordinary call to malloc and initialized in line 25. Input and output views on the synchronization tokens are declared in lines 28 and 29. The views only serve for proper declaration of the stream accesses of each task, but are not accessed within a task.

The initial tasks, created by the loop starting at line 32, only generate tokens and do not perform any useful computation. Therefore, their task bodies do not include any statement. The same applies for the terminal tasks created in lines 88 to 101, which consume the tokens produced by the tasks of the final iteration. The function process_block carries out the actual computation and is called from the main tasks in lines 51 (leftmost block), 62 (rightmost block) and 73 (blocks not at the border of the array). Note that the position of the block in the global array determines the number of tokens the associated task needs in order to become activated: the block on the very left only depends on the previous value of the block at the same position, while all the other blocks also depend on the value of their left neighbors of the current iteration.

Before freeing the global array, it must be ensured that all tasks operating on its elements have terminated. This is achieved by the taskwait construct in line 103 that blocks execution of the main function until all tasks have completed.

As mentioned in the previous section, all shared memory implementations of benchmarks are provided with a parallel control program that is identical to the dynamic single assignment version. However, for simplicity, the listing above only contains a sequential control program.

Generic optimizations for load balancing across memory controllers

The sequential initialization of the matrix in Listing 6.2.1 causes all pages of the matrix to be placed in the memory of the NUMA node of the worker executing the root task. Hence, during execution of the benchmark, all memory accesses target the same memory controller, leading to high contention resulting in high latency of memory accesses and low throughput. For benchmarks with regular data structures, such as arrays and matrices, load balancing can be addressed simply by distributing the pages of the data structures over multiple nodes. On Linux systems, LIBNUMA provides support for interleaved allocation of data on a set of nodes that can be specified by the application. By passing all of the system's nodes as the list, it is thus possible to distribute data over the entire machine. The interleaving is implemented at page granularity and allocates pages in a round-robin fashion by cycling over the nodes from the list. Figure 6.16 shows this principle for a an array allocated in an interleaved fashion on a system with n nodes in total.

In order to take advantage of this load balancing technique, we have provided all parallel benchmarks with calls to a run-time function implementing interleaved allocation. This does not only apply to the global data structures of the shared memory parallel baseline, but also to the shared memory data structures for input and output data of the dynamic single assignment versions.

After this description of the concepts and implementation of the benchmarks in the previous sections, the next section focuses on measurement of indicators for performance and data locality. 

Execution phases and measurement interval

Depending on the benchmark, not all of the executed instructions and micro-architectural events are relevant for the experimental evaluation and it does not always make sense to measure the time and all events that occur during the entire execution. For example, the initialization of the input matrices of seidel, jacobi or blur-roberts is not part of the actual algorithm that the benchmark implements and thus should not be taken into account for any evaluation. However, these steps are essential for the execution of the benchmark and cannot be omitted.

Therefore, we have instrumented all benchmarks with calls to run-time functions that indicate the beginning and the end of a relevant part of the execution. In the remainder of this thesis, we refer to the interval between these function calls as the measurement interval. The execution time and all data obtained using hardware performance counters refer exclusively to the measurement interval and exclude all events related to initialization and de-allocation of resources. Activities that are carried out by the run-time system outside the measurement interval are also excluded. Figure 6.17 provides an overview of the activities that are included in and excluded from the measurement interval, respectively. On startup of an OpenStream application, control is transferred to the run-time system before any application-specific code is executed. The run-time starts by initializing the data structures needed by the first worker, which will later execute the root task of the application. Afterwards, memory pools are initialized, with one memory pool per NUMA node as described in Section 4.4.2, including the allocation of large chunks of memory explained in Section 4.5.1. Note that these chunks are only allocated logically, which results in fast initialization of the memory pools.

Once all memory pools are initialized, the run-time creates the remaining workers w 1 to w n-1 , where n corresponds to the number of cores. This is followed by the initialization of hardware performance counters through appropriate calls to the PAPI [80] library 4 . Depending on the type of hardware counters provided in the configuration of the run-time system, e.g., per-core counters or hardware counters that count micro-architectural events generated by multiple cores, all of the workers or only a subset of workers are involved in this part of the initialization. After this step, the run-time is set up and ready to start executing tasks. However, as no task has been created so far, all workers except the first worker executing the root task remain idle. The root task is created implicitly and starts with the main function of the application. Usually, all streams used by the program are declared in the local scope of the main function at the beginning, such that the first instructions of the application correspond to the creation of streams. Note that, although an application can request the creation of large arrays with tens of thousands of streams, the duration of this phase is usually negligible compared to the duration of the measurement interval.

The next step consists in the initialization of the benchmark, which includes the allocation of global data structures as well as the generation of initial data. The beginning of the measurement interval is marked by a call to gettimeofday that captures the current time followed by a call to openstream_start_hardware_counters, which starts counting micro-architectural events. All the activities of the benchmark itself as well as all activities of the run-time that occur within the measurement interval are included in the statistics. For the benchmarks studied in this thesis, this involves the creation of all tasks, the execution of all tasks including auxiliary tasks transferring data between global data structures and streams as well as the termination of the algorithm using a data-flow barrier. The end of the measurement interval is marked by a call to openstream_ 

Hardware environment

For the experimental evaluation of our concepts we used two many-core systems: an AMD Opteron platform and an SGI system with Intel Xeon processors. In this section, we provide an overview of the memory hierarchy of these systems and determine the ratio of the latency of accesses to remote memory over the latency of accesses to local memory.

Opteron test platform

The first test system is a quad-socket AMD Opteron 6282 SE running at a clock frequency of 2.6 GHz. Figure 6.18a shows a hierarchical view of its basic components. At the coarsest level, the machine is composed of 4 physical packages called multi-chip modules. Each module contains two dies, each of which finally contains 8 cores organized as pairs of cores sharing some resources.

At the core pair level, the floating point unit, the instruction fetcher and decoder, the first-level instruction cache as well as the 2 MiB of second level cache are shared. The third level cache of 6 MiB and the memory controller are shared by all of the cores located on the same die. Among the private, per-core resources are the integer unit and the 16 KiB first level data cache.

As implied by the sharing of memory controllers, main memory is divided into 8 equal-sized NUMA domains of 8 GiB so that the total amount of main memory available is 64 GiB. Their distances as reported by the NUMACTL tool [58] is visualized in Figure 6.18b. For each node there are four neighbors at a distance of one hop and three neighbors at a distance of two hops.

The machine runs Scientific Linux 6.2 with kernel 3.10.1.

SGI test platform

The second system we have used is an SGI UV2000 with a total of 192 cores and 756 GiB RAM distributed over 24 NUMA nodes. The system is organized in blades, each of which contains two Intel Xeon E5-4640 CPUs running at 2.4 GHz. Each CPU has 8 cores and has direct access to a memory controller. The cache hierarchy consists of three levels with separate, core-private instruction and data cache at the first level, each with a capacity of 32 KiB, a core-private unified L2 cache of 256 KiB at the second level and a unified third level cache of 20 MiB, shared among all cores of the CPU. Each core supports two hardware threads through Intel's Hyperthreading technology, such that the system appears to have 384 processing units in total. For our experiments, Each blade has a direct connection to a set of other blades and an indirect connections to the remaining ones. From a core's perspective, a memory controller can be either local if associated to the same CPU, at 1 hop if on the same blade, at 2 hops if on a different blade that is connected directly to the core's blade or at 3 hops if on a remote blade with an indirect connection.

The system runs SUSE Linux Enterprise Server 11 SP3 with kernel 3.0.101-0.46-default.

Latency of memory accesses and NUMA factors

To measure the latency of memory accesses as a function of the distance in hops between the requesting core and the memory controller that satisfied the request, we have implemented a synthetic benchmark that allocates a buffer on a single node using LIBNUMA, initializes it and measures the execution time for a sequence of memory accesses to the buffer from a core of a specific node. Each sequence traverses the whole buffer from beginning to end in steps of 64 B, such each cache line of the buffer is only accessed once. The buffer size was set to 1 GiB to make sure that data is evicted from the cache before it is reused and thus to measure only memory accesses that are satisfied by the memory controller and not by the hierarchy of caches.

The results are summarized in table 6.1 and 6.2. On both systems, the latency of memory accesses increases with the distance between the requesting core and the targeted memory controller. In addition, for each distance, write accesses are significantly slower than read accesses. The rightmost column of each table indicates how many times accesses are slower compared to accesses to a node's local memory. For read accesses on the Opteron system, these values range from 1.81 for on-chip accesses to a memory controller at a distance of one hop to a factor of 4.34 for off-chip accesses at a distance of two hops. For write accesses these values are lower, ranging only from 1.2 to 2.48 due to the higher initial latency of local write accesses. Not surprisingly the factors for both read and write accesses are significantly higher on the larger SGI system. The highest factor of 7.48 corresponds to read accesses at a distance of three hops.

Parametrization and tuning of the benchmarks

In this section, we describe which parameters we have chosen for the benchmarks presented in Section 6.1 and how these parameters have been determined. The second part of the section deals with the sequential optimization of the applications and presents the flags used for compilation as well as manual optimizations of the code.

Parametrization

The parameters for the benchmarks have been chosen carefully with respect to the architectures above. Four criteria were particularly relevant to the parametrization:

-The input size defining whether the entire data set can be held in caches or if accesses to main memory are necessary. The maximal reasonable size should prevent the system from swapping out contents of the main memory to the hard disk. -The available parallelism depending on the input size and the granularity of tasks defined by the block size. -The cache hit rate for sequential execution within a task constrained by the block size. -The wall clock execution time mainly constrained by the size of the data set and the number of iterations for stencil computations.

Some of these criteria are dependent, e.g., the block size both influences the cache hit rate as well as the available parallelism during execution. The methodology we have used for the parameterization is the following. First, we defined the size of the data set. As this thesis focuses on the optimization of accesses to main memory, we have chosen an initial size for the data set for each benchmark that exceeds the overall cache capacity of both test platforms by several orders of magnitude. Next, we defined a number of iterations for the stencil computations, except for blur-roberts that always performs only a single iteration. To avoid that the execution of auxiliary tasks represents a significant fraction of the execution time, we set the number of iterations to 60, such that the number of main computation tasks is at least one order of magnitude higher than the number of auxiliary tasks. In the third step, we defined several block sizes and chose the size that yielded minimal execution time among them when executed using the OpenStream run-time with random work-stealing, i.e., without any of the optimizations proposed in Chapter 7 or Chapter 8. Finally, we analyzed the parallelism with our performance analysis tool Aftermath, presented in Chapter 10. If workers were idling during a significant fraction of the measurement interval, we increased the size of the data set until parallelism was sufficiently high. Table 6.3 summarizes all parameters for the benchmarks. These apply to the dynamic single assignment implementations, the shared memory baseline as well as the sequential baseline. For seidel, jacobi-1d, jacobi-2d, jacobi-3d and bitonic the data set has a size of 2 GiB (2 28 double precision floating point elements or 64-bit integers, respectively). For blur-roberts, we have chosen matrices with a size of 8 GiB for the Opteron system and 16 GiB for the SGI platform. The main reason for the difference between the size for the Opteron platform and the size for the SGI system is that the 2 15 × 2 15 matrix is processed very fast on the SGI system, resulting in a wall clock execution time of far less than one second. Therefore, we have increased the size to 2 16 × 2 16 elements on the SGI system. However, we could not use this size on the Opteron platform as the parallel baseline without optimizations for scheduling and data placement starts swapping out contents of the main memory to the hard disk. For cholesky we have evaluated different sizes of the symmetric matrix with up to 8 GiB. The k-means benchmark is executed with 40, 960, 000 points with 10 double precision floating point dimensions, which corresponds to a data set of 3.125 GiB.

The block size yielding the minimal execution time for the majority of the benchmarks is 512 KiB. The only exceptions are jacobi-3d, for which a block size of 2 MiB performs best and k-means with a block size of 800 kB. The number of clusters and the number of dimensions for k-means have been set arbitrarily to 11 and 10, respectively. A value of two for the fan-out of propagations (equal to the fan-in for reductions) provided sufficiently short reduction and propagation phases.

All input data structures are initialized at the beginning of the execution, triggering physical allocation of the memory for the input data. The seidel benchmark sets all elements of the matrix to zero, except two elements near the upper left corner and the lower right corner, which are initialized with a value different from zero. As the latter values do not have any significant impact on the execution time we have chosen an arbitrary value of 500. The same procedure for initialization applies to jacobi-2d. In the one-dimensional version of the benchmark we initialize all elements to zero except two values at the beginning and the end of the array are, which are set to 500. Similarly, jacobi-3d initializes only an element in the upper left corner towards the front and one in the lower right corner towards the rear to 500. The blur-roberts application sets all elements to values obtained by calculating the sum of their coordinates within the matrix, i.e. v x,y = x + y. For the initialization of the input vector of the bitonic sorting network, we chose to generate random integers using a linear congruential generator.

The initialization of the input matrix for cholesky is slightly more complicated. The matrix is first initialized by the dlarnv function of the LAPACK interface, generating a random double precision floating point value between between 0 and 1 for each element of the matrix. To make sure that the matrix is positive definite as required for Cholesky Factorization, a diagonally dominant matrix is derived from the random matrix by adding N to the elements on the diagonal, where N is the number of elements in a row.

Relevant compiler flags Manual optimizations

Bitonic

-O2 -Cholesky -O2 -ffast-math Calls to an optimized library (MKL) Jacobi-1d

-O3 -ffast-math - Jacobi-2d -O3 -ffast-math - Jacobi-3d -O3 -ffast-math - K-means -O3 - Blur-roberts -O3 -ffast-math - Seidel
-O3 -ffast-math 16× loop unrolling of the innermost loop Table 6.4: Compiler flags and manual optimizations for the benchmarks

The points for the k-means benchmark are generated through random walks around 11 randomly chosen cluster centers. Similar to bitonic, all random data is generated using a linear congruential generator.

Compiler flags and manual optimizations

All benchmarks have were compiled using the OpenStream compiler based on GCC 4.7.0 [START_REF] Richard | GNU Compiler Collection Internals[END_REF]. Table 6.4 summarizes the relevant compiler flags and the manual optimizations applied to the source code used on both hardware platforms. The majority of the benchmarks was compiled using aggressive optimizations enabled by the -O3 flag and using faster floating point operations enabled by -ffast-math. In addition, we have unrolled 16 iterations of the innermost loop of the loop nest for the main computation in seidel. The cholesky benchmark is compiled using the less aggressive -O2 switch. However, as described in Section 6.1.5, we have configured cholesky to use the highly optimized MATH KERNEL LIBRARY for all BLAS and LAPACK functions, such that the compiler flags above only have little influence on the performance of the benchmark. The bitonic benchmark has also been compiled using the -O2 flag as the use of -O3 did not improve performance.

Characterization of memory accesses

To understand the impact of data locality on performance in the experimental evaluation of the following chapters, it is important to understand the behavior of the benchmarks with respect to the memory hierarchy. In this section, we provide an overview of the cache miss rates and analyze the frequency of memory accesses of the parallel baseline using dynamic single assignment on both test systems presented above. To characterize the behavior for the execution with maximal parallelism, the number of workers used in the experiments is equal to the number of cores of the systems. The goal of this section is to classify the applications according to the frequency of memory accesses into a set of memory-bound applications that are sensitive to the latency of memory accesses and thus sensitive to data and task placement and a set of cache-bound applications for which placement does not have a significant impact on performance. Figure 6.20 shows the cache miss rates for the three cache levels of the memory hierarchy of the Opteron and the SGI platform for the execution of the different benchmarks, except cholesky. The reason why we do not provide an analysis of cholesky is that this benchmark relies on optimizations for broadcasts that are introduced in Chapter 9. Without these optimizations, the memory footprint is excessively high, such that a presentation of the cache miss rate would not provide insight on inherent characteristics of the benchmark. The frequency of last level cache misses for cholesky will be presented in Section 9.4.2. The cache miss rate is defined as the number of cache misses divided by the number of accesses to the cache. Due to the lack of an appropriate counter for the number of accesses to the first level cache on the SGI system, we use the number of load instructions as an approximation for the number of accesses. As this counter does not capture all accesses to the first level cache, it represents an over-estimation of the actual number of accesses. At the first On the Opteron system, the fraction of accesses to the first level cache generating a miss is below 2% for all of the benchmarks. The miss rates of the second level cache on this platform are significantly higher and range from 8.5% for jacobi-3d and k-means to more than 30% for bitonic and seidel. The third level cache has the highest cache miss rates with at least 33.5% for k-means to up to 73.5% for seidel.

Execution on the SGI system yields higher cache miss rates in general due to the fact that remote memory accesses have a significantly higher latency, resulting in less cache lines that are brought to the cache in time by the hardware prefetching mechanism. The approximated first-level cache miss rates range from 0.9% for k-means to as much as 12.7% for bitonic. The minimal miss rate for the second level cache is also achieved by k-means and reaches its maximum again for jacobi-1d. The last level cache miss rates on this system are all higher than 50% and reach more than 80% for four of the benchmarks, namely seidel, jacobi-1d, jacobi-2d and blur-roberts.

Although the miss rates of the second level and third level caches are high, the total number of accesses missing all levels remains reasonable due to the low miss rates of the first level cache. However, cache miss rates help characterize the benchmarks with respect to the cache hierarchy and indicate the fraction of cache accesses resulting in misses, but do not provide information on 5. The actual PAPI hardware counter names used for data collection are PAPI_L1_DCM, PAPI_L1_DCA, PAPI_L2_DCM, PAPI_L2_DCA for the per-core counters of the first and second level as well as the per-northbridge counters L3_CACHE_MISSES:ALL and READ_REQUEST_TO_L3_CACHE:ALL on the Opteron system and PAPI_L1_DCM, PAPI_LD_INS, PAPI_L2_DCM, PAPI_L2_DCA, PAPI_L3_TCM and PAPI_L3_TCA on the SGI platform. An access to main memory occurs when the data requested by the access is present in either of the system's cache. Hence, the number of accesses to main memory is equal to the number of last-level cache misses. We define the frequency of last level cache misses as the number of last level cache misses per thousand instructions. Figure 6.21 shows the frequency of last level cache misses for each benchmark except cholesky, executing on the two test systems. Each bar in Figure 6.21 represents the median number of last level cache misses of the respective benchmark divided by the median number of instructions for the same benchmark for 50 executions 6 . Without exception, all of the frequencies of the SGI system are higher than those of the Opteron system. This is due to the higher cache miss rates on the SGI system, which result in frequent accesses to the last level cache and hence a higher absolute number of misses.

A comparison of the frequencies of all benchmarks reveals that the characteristics are approximately the same on both platforms. Among all benchmarks, blur-roberts generates the highest number of last level cache misses per thousand instructions, followed by seidel. The ranking of bitonic and jacobi-1d differs between the systems: while bitonic has a higher frequency of last level cache misses than jacobi-1d on the Opteron platform, jacobi-1d generates more misses per instruction than bitonic on the SGI system. Furthermore, jacobi-2d and jacobi-3d yield approximately the same values on the Opteron system, while the frequencies of these benchmarks differ significantly on the SGI system. However, on both platforms k-means has by far the lowest frequency of last level cache misses among all benchmarks.

Hence, we expect k-means to be the benchmark with the least sensitivity to data and task placement and seidel, blur-roberts and bitonic to be among the benchmarks with the highest sensitivity. For the benchmarks in between the categorization is less clear.

Scalability of NUMA-agnostic shared memory benchmarks

To support our choice in Section 6.2.2 to use interleaved allocation for global data structures in shared memory, we analyze the scalability of the shared memory baseline with and without interleaving. Figure 6.22 shows the speedup over the sequential baseline of the benchmarks on the Opteron system for an increasing number of workers used for execution 7 . Due to the long execution time for a low number of workers, each data point represents the median of only 10 executions. As for the previous graphs, error bars indicate the standard deviation. The workers in the experiments have been assigned to cores in increasing order of logical processor identifiers, resulting in placements where all cores of a NUMA node are used before workers are placed on neighboring nodes. For example, a configuration with eight workers uses the cores with the identifiers 0 to 7, which all belong to the first NUMA node. To maximize the available bandwidth, interleaved allocation always involves all NUMA nodes independently from the number of cores.

The graphs for the Opteron system show that the maximum speedup over sequential execution without interleaving is reached when using six or seven workers for most of the benchmarks. For a higher number of workers, the performance either remains approximately the same (seidel, jacobi-2d, jacobi-2d, blur-roberts, bitonic) or performance drops (jacobi-1d). The k-means benchmark is the only application that scales beyond seven workers and achieves higher performance with each additional core. However, neither benchmark performs better with the default data placement scheme than with interleaved allocation for more than 24 cores. Using interleaved allocation scaling is near linear, although the slope of the curves is below a preferable slope of one.

The results for the SGI system shown in Figure 6.22 are similar. With interleaved allocation, each additional core increases performance, except for blur-roberts whose performance drops for more than 128 cores. Though, the performance increase by each core becomes lower for a high number of cores for most of the benchmarks. An interesting observation is that for all benchmarks except k-means the default allocation scheme performs better than interleaved allocation for up to eight cores. This is due to the placement of workers, which associates the first eight workers to cores of the same node. With the default allocation scheme, all memory accesses are local, while most of the accesses are remote using interleaved allocation. However, as soon as the number of workers exceeds the number of cores per node, reduced contention compensates the reduced locality of interleaved allocation, resulting in higher performance compared to the default method for memory allocation. Another interesting result is that the performance of blur-roberts using interleaved allocation decreases when using more than 112 cores. Similarly, the performance of seidel drops for 160 cores, but reaches the maximum for 192 cores. In the case of blur-roberts, we suspect that the high number of requests to main memory creates contention on all memory controllers. An explanation for the performance drop of seidel for 160 cores seems more complicated. However, a detailed analysis of this behavior is out of the scope of this analysis. As the majority of benchmarks provides the highest performance when using all cores of the machine, the experiments for the evaluation use 64 and 192 cores, respectively.

The conclusion of the results above is that interleaved allocation significantly improves the scalability of the shared memory baseline and should therefore be used by default. This confirms our choice to use interleaved allocation for data structures in shared memory in our experiments.

Summary

In this chapter, we provided an overview of the applications and the hardware environment used for the evaluation of the concepts presented in this thesis and introduced the methodology used for measuring the execution time as well as the quantification of micro-architectural events based on hardware performance counters. The set of applications consists of eight high performance scientific benchmarks covering stencil computations (seidel, jacobi-1d, jacobi-2d, jacobi-3d, blur-roberts), integer sorting (bitonic), clustering (k-means) and linear algebra kernels (cholesky). All of the benchmarks except cholesky have been implemented as a sequential application, as a parallel application using dynamic single assignment and as a parallel application using shared memory programming with token synchronization. The cholesky benchmark has only been implemented using dynamic single assignment and will be compared to state-of-the-art parallel linear algebra 7. As cholesky has not been implemented using shared memory and token synchronization the graphs do not include results for this benchmark. codes in Chapter 9. For the dynamic single assignment versions, we provided details on the partitioning of work into tasks and the parallel control program as well as on the use of streams. Wherever possible, we kept the same partitioning, the same data structures and the same control programs for the shared memory baseline. A basic characterization of the behavior of the benchmarks with respect to the memory hierarchy showed that some benchmarks are likely to be more sensitive to remote memory accesses than others. Finally, we confirmed our choice to use interleaved allocation for all data structures in shared memory by analyzing the results for the scalability of the applications of the shared memory baseline.

The next two chapters introducing data-aware scheduling and deferred allocation build on the information of this chapter as they both refer to the applications and the hardware environment described above and make use of the measurement methodology.

Data-aware scheduling

In the previous chapters, we laid the foundations of data-aware scheduling by providing accurate and efficient methods to determine the placement of data and by constraining the structure of streaming applications, such that the working set of the majority of tasks is known before their execution. In this chapter, we show how this information can be used to improve the locality of accesses to main memory with respect to NUMA. We first analyze the effects of the default scheme for task activation on data locality and identify possible causes for accesses to remote memory. Based on these observations, we introduce work-pushing, a data-aware and topologyaware mechanism for task transfers between workers that is triggered at task activation. The goal of this technique is to avoid a mismatch of task ownership and the ownership of data and thus to favor execution of tasks on the nodes containing their data. We then analyze the influence of random work-stealing on data locality with matching task and data ownership and introduce topology-aware work-stealing, which attempts to steal tasks in a worker's, incrementally widening, neighborhood based on an abstract, static description of the memory hierarchy. We show that work-pushing and topology-aware work-stealing are complementary techniques that improve the locality of accesses to main memory significantly compared to the default task activation scheme and random work-stealing. For memory-bound applications, the increase of data locality results in a significant improvement of performance. Parts of this chapter were previously published in [46].

The influence of task activation on data locality

A task is activated when all of its producers have terminated and all of its consumers have been created. To illustrate the different scenarios for data locality resulting from task activation, we use the most general case for task dependences presented in Figure 7.1, showing a task t that depends on n producers p 0 to p n-1 and that provides input data for m consumers c 0 to c m-1 . The amount of data read from each producer is indicated by δ 0 i to δ n-1 i while δ 0 o to δ m-1 o refer to the amounts of output data of t written to the consumers. The task that creates t is labeled t c and tasks t 0 c,o to t m-1 c,o are the creators of the consumers of t. The figure also indicates for each task by which worker it is executed: the producers are executed by w 0 i to w n-1 i , t is executed by w t , t c is executed by w c and the creators of the consumers are executed by w 0 c,o to w m-1 c,o . Note that the identifiers for the workers are only used as a shorthand to refer to the workers executing the task and different identifiers do not necessarily imply different workers. Throughout the entire chapter, we assume that the memory allocation techniques presented in Chapter 4 are used and that the size of each input buffer exceeds the threshold defined in Section 4.4.1, such that the placement of each buffer ... ...

Figure 7.1:

A task with n producers and m consumers is determined by the run-time system. All applications are assumed to implement dynamic single assignment on streams. As stated in Section 3.4.1, the execution model of OpenStream defines that a task which becomes ready for execution is added to the single entry software cache of the worker that satisfies its last dependence. This is the worker that executed the producer which finished last among all producers of the task and which decremented the task's synchronization counter to zero. Unless the newly activated task is transferred to the worker's work-deque due to the activation of another task by the same worker and unless it is stolen by another worker, the task will also be executed by the worker that satisfied its last dependence. We say that a worker owns a task if the task is either in the worker's single entry software cache or in the worker's work-deque. For the task graph of the example, this means that the worker that owns t and which is likely to execute t afterwards is defined by the order of termination of p 0 to p n-1 . Depending on the timing at execution this could be any of the workers w 0 i to w n-1 i .

The locality of read accesses

All of the input buffers of a task are allocated at task creation and originate from the memory pool of the creating worker. Due to the use of per-node memory pools presented in Section 4.4.2, buffers allocated from the same memory pool are generally placed on the same node, which corresponds to the node associated to the memory pool. Hence, the input buffers of a task are all placed on the node of the creating worker. In the example, all of the input buffers of t are thus placed on the node associated to w c . Whether access to these buffers during execution of t targets local or remote memory depends on the core on which w t executes. If the core is associated to the same node as w c , the accesses to input data of t all target local memory, as shown in Figure 7.2a. If w t is a worker that executes on a CPU that is associated to a different node than the node of w c , the accesses target a remote node, as shown in Figure 7.2b. However, this last configuration becomes more likely for a higher number of nodes and thus a higher number of workers if we assume that the probability for the execution of a producer task is equal for all workers. The default task activation scheme does neither have control over the timing of the execution of the producers nor does it define the set of workers w 0 i to w n-1 i . Thus, local accesses are the result of favorable circumstances at execution time.

The locality of write accesses

The placement of the buffers receiving the output data of t can be more complex than the placement of input buffers. As the consumers are potentially created by different workers operating on different nodes, the input buffers of the consumers, which serve as the output buffers for t, can also be placed on different nodes. Hence, not only the worker executing t, but also the distribution of output buffers define whether write accesses during execution of t target local or remote memory. For a distribution of output buffers on more than one node a part of the write accesses of t inevitably targets a remote node, independently from the worker that executes t. 3 illustrates different cases for the locality of write accesses resulting from the placement of the input buffers of c 0 to c m-1 . In Figure 7.3a, only one of the consumers' input buffers is placed on the node of the worker executing t and the large majority of write accesses targets remote memory independently from the node on which t is executed. For example, if t were executed on Node 0, access to the input buffer of c 0 would be local, but accesses to the input buffer of c 1 would be turned from local into remote accesses. Figure 7.3b and Figure 7.3c show different situations in which output buffers are also distributed over multiple nodes, but in which some of the nodes contain more output data than others. The imbalance of the distribution in Figure 7.3b results from the placement of multiple output buffers on the same node, while the imbalance in Figure 7.3c is due to the varying size of output buffers. Hence, some nodes are more favorable for execution than other as they contain a larger fraction of the memory regions for output. However to maximize data locality, ideally all output buffers of t are placed on a single node and t is executed on a core of the same node as in Figure 7.3d. This requires that all of the workers w 0 c,o to w m-1 c,o as well as w t are workers operating on cores of the same node. For higher numbers of nodes and workers this becomes less likely if the probability of execution of a task is equal for each worker.

As already mentioned above for input buffers, the default task activation scheme neither takes into account data placement nor does it control data placement actively. As a result, the fraction of local accesses to main memory heavily depends on the application and on parameters determined at execution time.

The influence of the task graph on task ownership

In the discussion above we assumed that the probability of a task to be executed by a worker is equal for each worker. However, in practice, the probability of task ownership often varies between the workers that execute the task's producers, as the order of execution of the producer tasks can be influenced by the structure of the task graph. Consider the task graphs shown in Figure 7.4a with five tasks u 0 , u 1 , l 0 , l 1 and t. Assume that u 0 and l 0 are executed in parallel by two different workers w u and w l and have the same duration. At the end of their execution l 1 becomes ready and w l becomes the owner of l 1 as shown in Figure 7.4b. The consumer of u 0 also depends on data from l 1 and therefore cannot become ready immediately at termination of u 0 . At termination of l 1 the only worker that can become the owner of u 1 is w l (Figure 7.4c). Thus, although t depends on two tasks it can only be activated by w l (Figure 7.4d) and the probability of task ownership for w u is zero.

Depending on the relationships of task creation and the initial distribution of tasks to workers, the probabilities for task ownership resulting from the structure of the task graph can lead to remote or local memory accesses. For example, if w u and w l operate on different nodes and if the task creation in the task graph of the previous example is carried out as in Figure 7.5a, where u 0 creates t, read accesses during execution of t are guaranteed to target remote memory. In contrast to this, read accesses are guaranteed to be local if l 0 creates t as shown in Figure 7.5b. This would also be the case if w u and w l operated on the same node.

The implications of the structure of the task graph on task ownership and locality can be complex for sufficiently large task graphs. In addition, they depend on the initial distribution of tasks to workers as well as on the architecture of the system executing the application. Hence, it is generally impossible to control the locality of memory accesses through modification of the structure of a parallel application in this execution model.

Conclusion

The default method for task activation causes the worker that satisfies the last dependence of a task to become its owner, independently from the placement of input and output buffers of the newly activated task. This often leads to a mismatch between the ownership of tasks and the ownership of data, resulting in accesses to remote memory during execution of tasks. For data locality, ideally task and data ownership match and each task is executed on the node that contains its data or, if its data is distributed over multiple nodes, on the node with the minimal average distance to the data. In the following section, we introduce work-pushing, a task activation mechanism that improves data locality by transferring a task to a worker of an appropriate node.

Work-pushing

Improving the fraction of memory accesses targeting local memory is an important step to reduce the average latency of memory accesses and thus to increase performance. From this perspective, it is crucial to reduce the mismatch of task and data ownership explained in the previous section. To this end, we propose work-pushing, which transfers a task that becomes ready for execution to an appropriate worker based on information about the working set of the task derived from dynamic single assignment as well as information on the placement of this data. The selection of the target worker for such a transfer is essential for the locality of accesses to memory during task execution. Based on the observations of the previous section, we propose three simple heuristics for this selection: -The first heuristic, which we refer to as input only, avoids a mismatch between task ownership and the ownership of input data by pushing a task to a worker operating on the node that contains the task's input buffers.

-The output only heuristic tries to avoid a mismatch between task ownership and the ownership of output buffers. However, as there can be several nodes containing the output buffers of a task, it might be necessary to choose between multiple nodes. To take into account these situations, the heuristic estimates the access time for each node and each output buffer and chooses a worker from the node with the smallest overall access time.

-Finally, we also evaluate a heuristic named weighted, which acts similarly to the output only heuristic, but which also includes input buffers when determining the most appropriate worker to reduce the time spent on memory accesses.

Efficient lock-free work-stealing deques, as the one used for work-stealing in OpenStream [37], cannot be used to remotely push tasks without changing the algorithm and incurring high synchronization costs. As a solution to this problem, the run-time can employ an additional work-sharing mechanism that uses a data structure dedicated to task transfers, such as a multi producer, single consumer FIFO queue (MPSC FIFO). In this solution, each worker is provided with an MPSC FIFO whose only purpose is to receive tasks from remote workers and which does not interfere with the single entry software cache or the work-deque. Figure 7.6 shows the updated set of structures associated to each worker. When a task needs to be transferred from the activating worker to the target worker, it is simply added to the target worker's MPSC FIFO. The target worker checks after each execution of a task if new tasks have been added to the MPSC FIFO and transfers them to its single entry software cache and its work-deque.

Algorithm 3 shows how a worker w discovering that a task t is ready for execution transfers the task to another worker if necessary. This procedure called last_dep_satisfied is composed of four parts explained below.

In the first part from lines 3 to 42, the actual placement of input and output buffers of the task is determined and weighted according to the heuristic. Input views are only taken into account if the selected heuristic is either the input only heuristic or the weighted heuristic. For each of the input views the procedure first determines the node that contains the associated input buffer by calling node_of with the data pointer of the view in line 10. This function looks up the placement from the metadata cache of the input buffer introduced in Section 4.4.1. If the placement is known, the input buffer is taken into account and its size is added to the element of an array called data, which stores the amount of data for each node (line 15). The size of the view is also added to data_size in line 18, even if the placement could not be determined. This variable stores the overall size of the task's data relevant to the heuristic and is used to estimate whether a transfer to a remote worker is likely to be beneficial or not. Output views are taken into account if the selected heuristic is the output only or weighted heuristic. The statements of lines 25 to 42 are similar to the statements for input views with the exception that the weighted heuristic uses a weight of two when counting the amount of output data on a node. The reason for this choice is that write accesses to main memory are usually more critical for performance than read accesses as shown in Section 6.3.3. In case of an equal number of bytes of input and output data on different nodes, the weighted heuristic thus prioritizes the node for the output data.

In the second part in lines 43 to 47, the procedure estimates whether a transfer of the task to a remote worker is beneficial or not and, if this is the case, determines to which node the task should be transferred. To this end, the variable data_size is compared with an empirically determined threshold of 10 kB of relevant data 1 . The purpose of this check is to avoid that tasks with a small working set are transferred to remote workers, incurring an overhead for the transfer of the task without improvements on performance due to improved locality of data accesses. If the value of data_size is below the threshold, the task is added to the single entry software cache of the worker by calling add_task_locally (presented in Algorithm 2 of Section 17) and the procedure returns immediately.

1. For the benchmarks studied in this thesis the threshold of 10 kB is superior to the size of the working set of tasks that only access small buffers whose placement does not have an impact on performance. Whether this value is appropriate in general is to be determined with a broader range of applications. If the check is passed, execution reaches the third part of the procedure, which consists in a call to node_with_min_cost with the array holding the per-node values for the data size in line 49. The details of this function are given in Algorithm 4. The return value of the call, which represents the node with the minimal overall access time to the data, is assigned to node min .

In the last part, the procedure checks if a transfer to a remote node using the task transfer mechanism involving the MPSC FIFO is needed. This is the case if node min is different from the node of the worker that activated the task (Line 51). As there are generally multiple workers per node, the procedure must first select a worker from the target node. This is done in line 53 by choosing the worker randomly among the workers of the node based on a uniform distribution. Once the target worker is known, the actual transfer is triggered in line 54. If this transfer fails, e.g., due to a full MPSC FIFO of the target worker, the worker activating the task becomes the owner and the procedure returns (line 58). The same happens if the target node is the local node of the activating worker, as this does not require the use of the MPSC FIFO and can be carried out using the worker's own single entry software cache and work-deque.

The algorithm that returns the node with the lowest estimated overall access time, node_with_ min_cost, is presented in Algorithm 4. Its arguments are the identifier node w of the node associated to the calling worker and the array data with an entry for each node, specifying how much data is located on that node. The function starts with the calculation of an estimation for the access cost for each node in lines 3 to 10. The base for this calculation is the array data and a function called cost, which indicates the cost of a data transfer between two nodes. In our experiments, this architecture-specific function is modeled according to the distance matrix reported by the NUMACTL tool, which indicates for each pair of nodes the distance and thus an approximation of latency of data transfers the between the nodes. After having calculated the access costs, the node with the minimal cost is selected. The variables score min and node min are initialized with the score and the identifier of the local node, respectively. This ensures that the local node is selected by default if is has the minimal score and there are other nodes with the same score. The array other min stores the nodes that have the same score as the current minimum and num_other min indicates how many of these nodes exist. Their values are updated throughout the execution of the loop in lines 17 to 31. Afterwards, the node with the minimal cost is elected among the nodes from other min , by selecting one of them randomly using a uniform distribution (lines 33 to 40). Choosing this node randomly ensures that the node identifier does not have an influence on the election and avoids favoring specific nodes. For example, if other min were traversed sequentially to find the minimal value, nodes with lower identifiers would be more likely to be elected.

Tasks pushed to a remote worker by last_dep_satisfied are stored in the MPSC FIFO of the target worker and are thus ineligible by the scheduler as they are neither in the software cache nor in the work-deque. Hence, in order to be executed eventually, they need to be transferred to the software cache and the work-deque. Algorithm 6 illustrates how this simple transfer is done: while the MPSC FIFO is not empty, the front element is removed and added to the work-deque. Using this order has an important side effect. The front of the MPSC FIFO contains the oldest tasks while the back holds the most recent tasks. Thus, during the last iteration of the loop, the most recent task is added to the software cache and becomes the next task to be executed by the worker. Input data of the most recent task has the highest probability to be still present in caches near to the executing core in the memory hierarchy. The last task from the MPSC FIFO is therefore a good candidate for execution. As pushes to a worker can occur at any time, the MPSC FIFO needs to be emptied regularly. This behavior is achieved by adding a call to empty_mpsc_fifo to the scheduler loop of each worker, e.g., such as in Algorithm 5, where the function is called each time before the worker selects a new task for execution.

Topology-aware work-stealing

Work-pushing is triggered when a task becomes ready and transfers the task to an appropriate worker. Work-stealing acts as a complementary technique, which provides workers that run out of work with tasks ready for execution and hence ensures global computational load balancing. The default random work-stealing strategy neither takes into account the working set of tasks nor the topology of the machine. The property of matching task ownership and data placement from work-pushing could be exploited by the work-stealing algorithm to steal a task whose data is near the node of the stealing worker.

From a core's perspective, the nodes of the machine are reachable at different distances, e.g., at one hop, two hops and so on. Hence, depending on the topology of the machine, the distinction between local and remote nodes can be too coarse when stealing a task. For example, if two workers executing on two different nodes both have tasks available and the first worker is at a distance of a single hop and the other at a distance of two hops, the worker whose node is at a lower distance should be favored for a steal as data transfers from this node and to this node have a lower latency. Similarly, within a node, it might be beneficial to prioritize steals from neighboring workers sharing the same cache as the stealing worker. As data of the task to be stolen may already be present in the shared cache, data accesses during its execution may be faster.

Defining the inter-node and intra-node priorities requires knowledge of the topology of the machine. Before we discuss the topology-aware work-stealing algorithm, we present a lightweight static model for the representation of the memory hierarchy, which is used by the work-stealing algorithm in order to adapt to the topology of the target machine. This model can either be provided by the system administrator or the manufacturer or it could be generated automatically using a tool such as HWLOC [START_REF] Broquedis | Hwloc: A Generic Framework for Managing Hardware Affinities in HPC Applications[END_REF]. The description can be broken down to the following parts:

-A set C ⊂ N 0 of identifiers for processing units, e.g. C = {0, . . . , 63}.

-An ordered set L containing the levels of the memory hierarchy from the cache nearest to the CPUs down to the different NUMA domains or memory controllers, e.g. L = L1, L2, L3, RAM . -A function sibs : L × C → N describing how many processing units share an instance of a hardware part at a given level. We refer to these processing units as siblings. For example, if four cores with identifiers 8, 9, 10 and 11 share a third level cache then sibs(L3, 8) = sibs(L3, 9) = sibs(L3, 10) = sibs(L3, 11) = 4. Passing a processing unit as a parameter to sibs allows the definition of asymmetric architectures. For example, in the architecture of the SGI test system presented in Section 6.3.2 the number of siblings at a distance of two hops varies between the cores of the different nodes. -A function nth_sib : L × C × N → C describing which processing unit is the nth sibling of another processing unit in ascending order of CPU identifiers at a given level, e.g. if processing units 0 to 7 share a third level cache, nth_sib(L3, 0, 2) = 2 and nth_sib(L3, 3, 2) = 5.

By using L, sibs, nth_sib and the order relation on L the neighbors of a core at the different levels of the memory hierarchy can be determined easily for topology-aware work-stealing.

The idea behind our optimized heuristic for work-stealing is that instead of randomly selecting a steal victim, task deques of neighboring workers are favored, which leads to more local memory accesses when the stolen task is executed. However, the work-deques of close workers might not always provide enough tasks to steal. To avoid poor load balancing, other attempts at higher levels in the memory hierarchy must be performed if work-stealing fails on close deques.

Our topology-aware work-stealing technique is shown in Algorithm 7. At each level l beginning with the level nearest to the CPU, a number of steal attempts defined by attempts(l) is performed until an attempt is successful or no level is left. In addition to the definitions of the memory hierarchy, the algorithm uses the following notations and functions:

rand(n) generates a random integer value in [0; n] using a uniform distribution cpu : W → C returns the processing unit a worker executes on with W being the set of workers attempts : L → N 0 defines the maximal number of steal attempts at a given level of the memory hierarchy -steal_task : W → T ∞ ∪ {null} is a function that performs a steal attempt on a target deque and returns the stolen task from the set of tasks T if the attempt is successful or null if the 

Experimental results

To evaluate the effectiveness of work-pushing and topology-aware work-stealing, we have implemented these techniques in the OpenStream runtime and measured the impact on the locality of data accesses as well as the impact on performance. As topology-aware work-stealing relies on work-pushing, it can only be evaluated together with work-pushing. To differentiate between the configurations, we use the following acronyms: rnd for plain random scheduling without work-pushing and without topology-aware work-stealing, input only for work-pushing with the input only heuristic, output only for work-pushing with the output only heuristic and weighted for work-pushing with the weighted heuristic. Combinations of work-pushing and topology-aware work-stealing are indicated by the name of the push heuristic followed by a plus sign and taws, i.e., input only+taws, output only+taws or weighted+taws.

Metrics for evaluation

We define multiple metrics to evaluate the locality of data accesses, as well as the performance of the applications for the different configurations. All of them are based on data collected by the run-time during execution of the benchmarks. The main data sources are statistics about data placement obtained from the operating system as described in Section 4.4.1 and samples from hardware performance counters.

Measuring data locality in terms of NUMA

A simple way to measure data locality in terms of NUMA is to configure a set of hardware performance counters for the appropriate events and to count the number of events during the interval of interest. On the Opteron platform, we have configured counters for two northbridge events, indicating requests to local memory2 and requests to the memory of a remote node 3 , respectively. The northbridge is shared between sets of 8 cores forming a node, such that the events only have to be configured once for each node. Let N i loc be the number of requests to the local memory controller and let N i rem be the number of requests to remote memory issued by the cores of node i. We define the locality of requests to main memory R loc as the ratio between the number of local requests to the total number of requests for the set of NUMA nodes N as:

R loc = i∈N N i loc i∈N N i loc + i∈N N i rem = i∈N N i loc i∈N N i loc + N i rem
Due to missing support for the appropriate counters in the kernel version used on the SGI system, we can provide the results for this metric only for the Opteron test system. However, it is possible to approximate R loc based on information about the working set of tasks and page placement available in the OpenStream run-time. Let core_node : C → N be a function that associates each core with the identifier of the core's NUMA node and let node_of : A → N be the function used earlier for work-pushing that returns the identifier of the node containing the data of the input buffer whose address is specified as the parameter. The function is_local : W × A → {0, 1}, indicating whether the access to an address from a worker is local, can then be defined as:

is_local(w, a) = 1 if core_node(cpu(w)) = node_of(a) 0 otherwise
In the following definition we assume that each input buffer is entirely placed on a single node. This implies that for each address of the buffer node_of yields the same value. With a function worker_of : T ∞ → W , which defines by which worker a task was executed, R loc can be approximated as follows:

R loc ≈ R appr loc = A loc A tot with A loc = t∈T∞ (as,ae) ∈ WS C (t)
(a e -a s + 1) • is_local(worker_of(t), a s )

and

A tot = t∈T∞ (as,ae)

∈ WS C (t)
(a e -a s + 1)

In this definition, A loc is an approximation for the number of bytes accessed locally and A tot is an approximation for the overall number of bytes accessed throughout execution of all tasks. The resulting approximation for R loc is less precise than using hardware performance counters, since it entirely neglects the cache hierarchy. For example, if a worker executes a task whose input data is present in the local cache, the accesses to the input buffers would be counted by A tot , although the transfer takes place between the core and the cache and not between the core and the memory controller. However, assuming a constant average last level cache miss rate r LLC m , the definition of the approximation of R loc does not change:

R appr loc = r LLC m • A loc r LLC m • A tot = A loc A tot
Last, this metric does not take into account tasks for which the working set cannot be determined or for which the placement of input or output buffers cannot be determined. In particular, these are auxiliary tasks with memory accesses that do not target stream elements and tasks that write to buffers that have not been used before and whose placement thus cannot be determined by the run-time before the access. However, auxiliary tasks only represent a small fraction of all tasks and the occurrence of tasks writing for the first time to a buffer after a refill becomes less likely over time. The accuracy of the approximation is briefly discussed in Section 7.4.2. 

Measuring performance

The performance is expressed as the speedup over the default OpenStream run-time with random work-stealing and without work-pushing and as the speedup over the parallel baseline of shared memory implementations. The former speedup, s rnd , is defined as the wall clock execution time t wct,rnd of the default configuration divided by wall clock execution time t wct of the configuration for which the speedup is calculated:

s rnd = t wct,rnd t wct
Similarly the latter speedup s shm is defined as the wall clock execution time of the shared memory baseline t wct,shm divided by t wct :

s shm = t wct,shm t wct

Graphical representation of data locality

The explanation of some of the results in the following section requires an analysis of the influence of the task graph on the work-pushing heuristics. For a compact visual representation combining the task graph, the placement of input data and the node on which a task executes, each task hereinafter may be represented by two colored and patterned semi-circles. The color and pattern of the right semi-circle indicate on which node the task's input data is placed, while the color and pattern of the left semi-circle show to which node the executing core belongs (cf. Figure 7.7). A question mark on the left circle indicates that the worker that will execute the task is still to be determined as can be the case for a task that has not been created, a task that is not ready for execution or a task whose dependences have all been satisfied, but which is not executing, yet. A question mark on the right side indicates that the placement of the input buffers is still unknown. This applies to tasks that have not been created and to input buffers that have not been allocated physically. In the examples, we use up to four different NUMA nodes n a , n b , n c and n d , identified by the following colors and patterns:

-Red / small triangles: node n a -Green / small rectangles: node n b -Blue / horizontal stripes: node n c -Yellow / crosshatch: node n d

Results for work-pushing

We start the experimental evaluation with a comparison of the different heuristics for workpushing with default random work-stealing. We first investigate the influence on data locality and then evaluate the impact on performance. Unless mentioned otherwise, each bar in the graphs below represents the mean value for a total of 50 executions. Error bars indicate standard deviation. Due to a huge memory footprint resulting from the default mechanism for broadcasts the cholesky benchmark is not evaluated in this chapter.

Locality of accesses to main memory

Figure 7.8 shows the locality of requests to main memory R loc on the Opteron platform for the three work-pushing heuristics and the set of benchmarks using dynamic single assignment. The graph shows that all of the three heuristics improve the fraction of accesses to local memory significantly. When using the input only heuristic, approximately half of the requests to memory target local memory for most of the benchmarks. The highest value of 80.6% is achieved for k-means and the lowest value of 36.6% is the result for blur-roberts. For seidel, jacobi-1d, jacobi-2d, jacobi-3d and k-means the output only heuristic and the weighted heuristic yield approximately the same locality and perform significantly better than the input only heuristic with values of about 80% and more than 90% for k-means. For the bitonic benchmark input only and output only provide the same data locality of more than 50%, while the weighted heuristic increases locality to more than 60%.

The locality of blur-roberts is similar for input only and weighted (more than 30%) and a bit lower for the output only heuristic (less than 30%).

The reason for the improvement of locality by the output only and weighted heuristic is a synergistic effect of the structure of the task graph, the control program and the push heuristic. One of the main characteristics of the benchmarks for which the output only and weighted heuristic yield a higher value for data locality is the presence of highly unbalanced dependences and long paths with heavy dependences, such as in the task graph shown in Figure 7.9. Although this task graph represents only a simplified subset of the actual task graphs and shows only a subset of the light dependences, the behavior of the work-pushing heuristics at execution time is similar. while the input buffers of t 1 are placed on n b . The input only heuristic pushes each task to the node that contains the tasks input buffers. As the input buffers of new tasks are allocated on the same node as the worker executing the creating tasks, the transfer of the creating task also conditions the placement of the task following the consumer of the creating task. For example, when t 0 becomes ready, it is pushed to a worker on n a , which causes the input buffers of t 2 to be allocated on n a , as shown in Figure 7.9b. The next task on the path, t 1 is pushed to a worker on n b , which causes the input buffers of t 3 to be allocated on n b . The resulting placement, shown in Figure 7.9c, is an alternation of nodes n a and n b . Due to work-pushing, read accesses are local, but write accesses are always remote. The output only and the weighted heuristic indirectly break these alternations, as a task is pushed to the worker containing a task's output buffers, which corresponds to a transfer to the node containing the input buffers of the following task on the path. Hence, at the very beginning of the execution, the input buffers of tasks are placed on different nodes due to initial placement, but after the creation of t 2 (Figure 7.9d) all tasks are executed on the same node containing both the tasks' input and output buffers as shown in Figure 7.9e.

For blur-roberts the output only heuristic does not perform as well as the input only and weighted heuristic. This is due to the structure of the task graph, with dependences similar to seidel and jacobi, but with only two tasks on a dependence path. Figure 7.10a shows a simplified excerpt of the task graph for blur-roberts. For a significant part of the tasks, the output only fails to obtain information on data placement as the the metadata sections of the output buffers have not been updated due to the fact that they are used for the first time (Figure 7.10b). This information is only added to the metadata section at termination of the first tasks on the path. When these buffers are reused, their placement is known and the output only heuristic succeeds (Figure 7.10c). Thus, the output only heuristic does not systematically fail for all tasks and is able to improve the locality of data accesses compared to the default task activation strategy. However, the input only heuristic is guaranteed to be provided with accurate information just in time as the information on placement for the second tasks on the paths is available when they become ready for execution. Similarly, the weighted heuristic can react to the placement of input data. For tasks with missing information on the placement of output buffers, the heuristic simply ignores output dependences and acts exactly like the input only heuristic.

For bitonic, the improvement of data locality is less pronounced than for the other benchmarks. In addition, the input only and output only heuristic perform equally well. The weighted heuristic, however, yields slightly better results than the other heuristics. This is due to the influence of the task graph on the different heuristics illustrated in Figure 7.11, showing a subset of the task graph of bitonic. Assume that initially, the input buffers of t 0 , t o 0 , t 1 and t i 1 are placed as shown in Figure 7.11a. The input only heuristic causes t 0 to be executed on the node containing its input data, leading to the allocation of the input buffers of t 2 on the same node as t 0 (Figure 7.11b). When t 1 becomes ready, it is scheduled on the node containing its input buffers, causing the input buffers of t 3 to be allocated on the same node as shown in Figure 7.11c. This leads to an alternating placement with limited data locality as seen earlier for the input only heuristic applied to seidel and jacobi.

However, in contrast to these benchmarks, the output only heuristic does not trigger the same synergistic effect leading to both local read and write accesses. Consider Figure 7.11d, which shows a possible outcome for the task ownership of t 0 . Although there is a beginning of a path of tasks with input buffers on the same node including t 1 and t 2 , it is not guaranteed that these tasks will be scheduled to nodes that ensure local accesses. For example, where t 1 will be scheduled also depends on the placement of t o 0 , which is created by another task. Hence, the input buffers of t 3 might be allocated on a different node than t 2 and the path of tasks with input data on the same node finishes, leading to a lower locality of memory accesses. In addition, t 0 could have been scheduled differently, as shown in Figure 7.11e, where a worker on the node containing the input buffers of t o 0 is the owner of t 0 . In this case, the input buffers of t 2 are allocated on a different node than those of t 1 , leading to an alternating pattern for the placement of input buffers with lower data locality.

The weighted heuristic initially has the choice between a worker of the node containing the input buffers of t 0 , t 1 or t o 0 . If a worker on the same node as t o 0 or t 0 is chosen, the input buffers of t 1 and t 2 will be allocated on different nodes. However, if the same node as the node containing the input buffers of t 1 is chosen, t 1 is guaranteed to execute on the node containing its input buffers (the cost for this node will be minimal among all nodes since it contains the entire input buffers as well as half of the output buffers representing three quarters of the working set of t 1 ). This causes the input buffers of t 3 to be allocated on the same node as t 1 and t 2 as shown in Figure 7.11f. Afterwards, this pattern repeats for t 2 and t 3 and the series of dependent tasks whose input buffers are placed on the same node is not interrupted as easily as for the output only heuristic. The locality of data accesses for the weighted heuristic is thus higher than the locality for the other heuristics.

Figure 7.12 shows the approximation R appr loc of the locality for the push heuristics on the Opteron and the SGI system. The locality for the Opteron system measured with hardware performance counters of Figure 7.8 is well reflected by the approximation in Figure 7.12a. pushing and an overestimation of the locality of blur-roberts, the relative error is equal to or less than five per cent and thus relatively low. Hence, it is reasonable to assume that the approximation for the SGI system shown in Figure 7.12b reflects the actual locality for the push heuristics for seidel, jacobi-1d, jacobi-2d, jacobi-3d, k-means and bitonic. The results shown in this graph are very similar to the results for the Opteron system presented above and the conclusions are the same. Thanks to the use of architecture-independent concepts and the adaptation of the work-pushing heuristics to the respective target platform through the definition of an appropriate function modeling the cost of data transfers, the work-pushing heuristics perform similarly for each benchmark on both machines. The push heuristic that yields the best locality for memory accesses depends on the benchmark and not on the topology of the machine, which emphasizes the portability of both work-pushing as well as the applications.

Impact on performance

Figure 7.14 shows the speedup of the executions with work-pushing enabled over the default randomized work-stealing without work-pushing. The improvements on the locality of accesses to main memory result in a significant increase of the performance for most of the memory-intensive benchmarks with speedups of up to 2.36×. The only exception to this rule are the input only heuristic for jacobi-1d on both systems (0.87× and 0.75×), jacobi-2d on the SGI system (0.92×) and jacobi-2d on the SGI system (0.96×) as well as the output only heuristic for blur-roberts on the Opteron system (0.97×). For the jacobi benchmarks, this can be explained with the effect shown earlier in Figure 7.9c. Although the locality of read accesses to main memory is significantly higher, resulting in an overall locality that is higher than rnd, almost all write accesses target remote memory and performance is lower compared to rnd. As far as blur-roberts is concerned, the output only heuristic fails too often due to missing information on data placement as explained above. In the remaining cases, the heuristic causes a slight load imbalance across memory controllers and thus decreases performance. On the SGI system, this is not the case and the improvement of data locality reduces the execution time in comparison to rnd.

The performance of k-means is not affected on the Opteron platform and only increases slightly on the SGI system with a maximum speedup of 1.08×. This is due to the fact that this benchmark has a very low cache miss rate in contrast to the other benchmarks, which are clearly memorybound. Hence, the locality of the few memory accesses missing the last level cache only has little influence on performance. Another interesting observation is that the speedup over random work-stealing without work-pushing is generally higher for the SGI system. This is a result of an increased ratio of the average latency of accesses to remote memory over the latency of accesses to local memory compared to the Opteron system. In addition, the higher number of nodes leads to a lower initial locality of random work-stealing on this platform.

Considering the geometric mean of the mean speedups, shown at the right side of the figures, it can be concluded that in most cases the weighted heuristic performs best (1.26× and 1.50×), followed by the output only heuristic (1.22× and 1.42×) and the input only heuristic (1.07× and 1.04×). Hence, using the weighted heuristic as the default heuristic for work-pushing might be most beneficial for the average performance of applications whose behavior has not been studied in detail. However, although the input only heuristic performs less well than the other heuristics, it can be beneficial combined with NUMA-aware allocation, as shown in the next chapter.

The speedups of random work-stealing without work-pushing and the different push heuristics over the shared memory implementations with interleaved allocation are summarized in Figure 7.15. For the Opteron system, the experiments yield the following results. The output only and weighted heuristic allow the dynamic single assignment version of seidel to compensate the low performance of rnd and exceed the performance of the shared memory implementation with a speedup of 1.2×. The execution time of work-pushing using the input only heuristic for this benchmark is approximately the same as for the shared memory implementation. For jacobi-1d, the initial performance of rnd is much lower than the shared memory baseline (0.63×). Even the improvements of the output only and weighted heuristic with speedups of 0.75× and 0.76× cannot increase performance above this level. The jacobi-2d benchmark yields similar performance for rnd and input only. Both of these configurations have a higher execution time than the shared memory implementation with speedups of 0.76× and 0.8×. However, the output only and weighted heuristic increase performance of jacobi-2d to the same level as the shared memory implementation (1.04× and 1.05×). The initial performance of rnd for jacobi-3d already slightly exceeds the performance of the shared memory implementation (1.02×) and each push heuristic widens this gap (1.17×, 1.41× and 1.42×). As mentioned above, the k-means application is insensitive to data placement on the Opteron system due to its low cache miss rate. The initial performance of this benchmark is worse than shared memory due to the copying of read-only data from one task to another. Hence, the performance of all configurations remains lower than for the shared memory implementation. For blur-roberts all dynamic single assignment configurations, with or without work-pushing, outperform the shared memory implementation with a speedup of up to 1.23× for the input only and the weighted heuristic. The performance increase resulting from work-pushing for the bitonic benchmark are not sufficient to meet the performance of the shared memory implementation, the maximum speedup is only 0.60×.

For the SGI platform, the results for the comparison with the shared memory implementations are similar. A notable exception is jacobi-1d, which performs significantly better than the shared memory implementation even for default random work-stealing without work-pushing (1.58×). This performance is further improved when using either the output only (2.49×) and the weighted heuristic (2.50×). Also, the output only and the weighted heuristic allow the jacobi-2d benchmark to exceed the performance of the shared memory implementation more distinctly (1.17× and 1.18×) than on the Opteron platform. The geometric mean of the mean speedups shows that using the output only or the weighted heuristic, the dynamic single assignment versions outperform the shared memory implementations on average. For the Opteron platform, the geometric mean for these heuristics is still a bit lower than one. The reason for the higher values on the SGI platform is that remote accesses on this platform have a higher latency, such that accesses to data that is distributed over all nodes as in the shared memory benchmarks are slower. Hence, the higher the ratio of the latency of remote memory accesses over the latency of local memory accesses, the more data locality becomes important for performance and the more techniques such as work-pushing are beneficial.

Results for topology-aware work-stealing

The following presentation of the results for topology-aware work-stealing has the same order as the presentations of the results for the push heuristics: we first analyze the impact on the locality of accesses to main memory and demonstrate the resulting performance over random work-stealing without work-pushing. We then show how work-pushing with topology-aware work-stealing performs compared to the shared memory implementations. As topology-aware work-stealing relies on the matching of task and data ownership restored by work-pushing, we do not evaluate topology-aware work-stealing with the default task activation scheme. 

Locality of accesses to main memory

.16 shows the locality of requests to main memory R loc for the different work-pushing heuristics combined with topology-aware work-stealing on the Opteron platform. Compared to the configurations that use work-pushing only of Figure 7.8, the locality of memory accesses resulting from the combination of work-pushing with topology-aware work-stealing is significantly higher and reaches a value of more than 90% for all applications, except blur-roberts and bitonic. To highlight these differences, Figure 7.17 shows the relative improvement of the combination of the approaches over work-pushing only. Each bar shows the median of the relative improvement of the locality over the median for the data locality of work-pushing only expressed in per cent. For example, the first value of 22.6% for topology-aware work-stealing and the input only heuristic at execution of the seidel benchmark indicates that the fraction of accesses to local memory is 22.6% higher compared to work-pushing with the input only heuristic with random work-stealing. The figure shows that data locality is improved for all work-pushing heuristics and all benchmarks. The geometric mean ranges from 8.8% for the weighted heuristic to 12.2% for the input only heuristic. The lower improvements for output only and weighted are due to the fact that data locality for these heuristics without topology-aware work-stealing is already very high and thus more difficult to improve than for the input only heuristic.

Figure 7.18 shows the approximation for the fraction of accesses to local memory for the SGI system. As was the case for the Opteron system, topology-aware work-stealing improves the locality of all benchmarks and all heuristics. The relative improvement over work-pushing without topology-aware work-stealing presented in Figure 7.12b is shown in Figure 7.19. The high variation of blur-roberts and the output only heuristic results from different timings of buffer reuse and thus different availability of information on buffer placement upon task activation mentioned in Section 7.4.2, such that the results for this benchmark should not be taken into account. We have therefore excluded blur-roberts from the calculation of the geometric mean.

In conclusion, topology-aware work-stealing improves the locality of memory accesses on both systems for all benchmarks and almost reaches the maximum locality with values close to or higher than 90% for most of the benchmarks.

Impact on performance

To quantify the impact of the increased data locality of topology-aware work-stealing on performance, Figure 7.20 shows the reduction of execution time of the different push heuristics with respect to work-pushing without topology-aware work-stealing. For seidel, jacobi-2d, jacobi-3d and bitonic the execution time can be reduced on both systems and for all work-pushing heuristics.The impact on performance for the k-means and blur-roberts benchmark is slightly negative on the Opteron platform, while the results for these applications are mixed on the SGI system. The same applies to the JACOBI-1D benchmark on the SGI system only. For k-means on the SGI system the median value corresponds to a slight reduction of the execution time, but the variation is high as indicated by the large standard deviation.

Figure 7.21 shows the speedup of the dynamic single assignment versions with work-pushing and topology-aware work-stealing over the shared memory implementations. The characteristics are similar to Figure 7.15. Configurations whose performance already exceeded the performance of the shared memory implementation without topology-aware work-stealing keep this advantage and configuration with initial lower performance still require more time to execute than the baseline.

Summary and conclusion

In this chapter, we showed that the default task activation scheme, which adds a newly activated task to the single entry software cache of the activating worker, can lead to a mismatch between task and data ownership and thus to poor data locality during execution of the task. In particular, the locality can depend on the timing of the execution of the task's producers or on the structure of the dynamic task graph as well as the order of task creation by the parallel control program. reduce the mismatch between the ownership of data and tasks and thus to increase the locality of accesses to main memory, we proposed work-pushing, which transfers a task to a worker of an appropriate node upon activation according to a heuristic based on dynamic information on the placement of the task's input and output buffers. We presented three heuristics for the selection of this node, which take into account only input buffers, only output buffers or both kinds of buffers. We also showed that the default random work-stealing mechanism can cause accesses to remote memory even with matching task and data ownership. To mitigate this problem, we introduced topology-aware work-stealing, which prioritizes steals from nearby workers.

The experimental evaluation showed that work-pushing and topology-aware work-stealing can be integrated into the run-time system and improve the data locality significantly on an AMD Opteron system with eight NUMA nodes as well as on an SGI platform with 24 NUMA nodes. On both platforms, the fraction of accesses to local memory using these techniques comes close to the maximal locality with values close to or above 90% for most of the applications. We showed that data placement can be essential for the performance as for memory-intensive applications the improvement of the locality translates into a significant reduction of the wall clock execution time. The maximal speedup over the default task activation scheme with random work-stealing is as high as 1.73× on the Opteron platform and reached 2.36× on the SGI system. In some cases, the improvements on execution time allow the dynamic single assignment implementations to outperform the parallel shared memory baseline (seidel, jacobi-2d and jacobi-3d on the Opteron system and seidel as well as jacobi-2d on the SGI system) with speedups of up to 1.42× on the Opteron system and 2.50× on the SGI system. For another set of benchmarks, namely jacobi-1d and jacobi-3d on the SGI system as well as blur-roberts on both systems, the performance of the dynamic single assignment versions already exceeds the performance of the shared memory implementations when using the default task activation scheme and random work-stealing and can be improved further using work-pushing and topology-aware work-stealing. Finally, the performance of k-means and bitonic can be improved in some cases, but remains lower than the performance of the shared memory baseline. We showed that work-pushing and topology-aware work-stealing are portable across the test systems thanks to the use of platform-independent code in conjunction with light-weight descriptions of the hardware topology. Which work-pushing heuristic performs best and whether topology-aware work-stealing should be applied depends on the application. However, in most cases, the weighted heuristic yields the best results and topology-aware work-stealing improves performance.

Work-pushing and topology-aware work-stealing are techniques that react to the placement of data and only influence data placement indirectly. In the next chapter, we focus on run-time mechanisms for memory allocation and introduce techniques that improve the locality of accesses to main memory through active data placement.

Deferred allocation

The work-pushing heuristics and topology-aware work-stealing presented in the previous chapter react to the placement of data and assign tasks to workers whose associated nodes have the lowest latency for accesses to the data. The placement of input buffers is only addressed indirectly through allocations within the memory pools of the workers that execute the creating tasks. The restriction of the OpenStream execution model, which defines that a task cannot create a direct consumer, causes the input buffers of tasks to be placed in advance before the nodes of the workers executing the tasks producers are known. This can lead to data placement that is unfavorable for the locality of accesses using either work-pushing heuristic or topology-aware work-stealing.

In this chapter, we analyze the impact of the default mechanism for the allocation of input buffers on data locality and load balancing across memory controllers. We then present a memory allocation technique which we refer to as deferred allocation that aims at mitigating the issues related to early allocation. We show that deferred allocation decouples task creation from data placement and improves both data locality and data distribution. We also illustrate an important side effect of deferred allocation that allows the run-time to decrease an application's memory footprint. The concepts of deferred allocation are evaluated on the same set of benchmarks as in the previous chapter.

Influence of the allocation mechanism on data locality

In the default scheme for memory allocation of the OpenStream execution model, all input buffers of a task are allocated when the task is created. To distinguish this allocation mechanism from the concepts introduced below, we use the term immediate allocation in the remainder of this chapter. Figure 8.1a shows the graph with a task t, which depends on n producers p 0 to p n-1 and which is created by t c . During the execution of t c , the creation of t is triggered and the input buffers of t are allocated and associated to t as indicated by the buffers connected with dashed lines. A detailed view of the run-time structures involved in this process is given in Figure 8.1b. As a result of the separation of input data from input views, introduced in Section 4.3, only the data structures representing input views of t are embedded in its data-flow frame with data fields pointing to the respective input buffers. The placement of these buffers is determined before t becomes ready and depends on the node associated to the worker that executes t c . The main drawback of this placement strategy is that it does not take into account on which nodes p 0 to p n-1 execute. If these tasks are executed by workers on different nodes than the worker that executed t c , all of the write accesses target remote memory, which leads to a high average latency of memory accesses. In this section, we examine under which circumstances the producers of a task are executed on workers of different nodes than the creating task. This can be due to the structure of the task graph and the control program or due to work-stealing events. We first analyze the influence of the control program on data locality using immediate allocation, followed by an analysis of the influence of work-stealing. Finally, we show that the creation of initial tasks is an important part of the control program and greatly determines initial data placement when using immediate allocation.

Influence of the control program

A common strategy for the creation of tasks in a parallelized control program is that tasks create their grandchildren in the task graph, as shown in Figure 8.2a. If this pattern of task creation follows a path of heavy dependences and if the input buffers of the task between the creating task and the created task is allocated on the same node as the creator, this results in a chain of tasks with input buffers on the same node and enables execution with a high fraction of accesses to local memory. However, for unbalanced dependences the relationship between the control program and data locality can be more complex and it can be less clear in which order tasks should be created to favor a high fraction of accesses to local memory. Consider the excerpt of the task graph of the bitonic benchmark shown in Figure 8.2b, in which two tasks t a and t b are created by their respective grandparents t a c and t b c . The predecessors of t a c and t b c have common ancestors in the task graph (not shown in the figure), but the path of dependences from the nearest common ancestor to these tasks is long and includes numerous tasks with balanced dependences. It is thus likely that the input buffers of t a and t b are placed on different nodes, which in turn results in a placement of the input buffers of t a and t b and their respective siblings t a s and t b s on different nodes. Hence, independently from the choice of the workers for execution, their parent tasks t a p and t b p each write at least half of their input data to buffers on a remote node. A control program, in which t a and its sibling t a s as well as t b and its sibling t b s are created by the same node, as shown in Figure 8.2c, might be more convenient as t a p and t b p can be scheduled to workers for which all of the write accesses target local memory.

However, adapting the control program to avoid remote write accesses can be a tedious and complicated task. Some choices for the order of task creation might seem reasonable when analyzing a small excerpt of a task graph, but can have a negative impact on the tasks in other parts of the graph. Hence, the development of a control program resulting in a low number of remote write accesses often requires a global understanding of large parts of the task graph. However, ideally, the control program does not have any influence on the locality of memory accesses and the programmer can concentrate on providing sufficient parallelism without worrying about locality. For example, there should not be any difference in the results for data locality between the creation of t 2 by t 0 in Figure 8.2a and the creation of t 2 by t c as in Figure 8.2d. This last pattern of task creation represents an extreme case for immediate allocation, since t 0 does not have any common ancestor with t c . Hence, the structure of the task graph does not favor any relationship between the worker executing t c and the worker executing t 1 . The probability that the input buffers of t 2 are placed on the same node as t 1 is low and it is more likely that this pattern for task creation results in a placement similar to Figure 8.2e. Work-pushing can improve the locality in these cases, but it must choose between a high fraction of local accesses for write accesses (as would be the case when using the output only or weighted heuristic) and a high fraction of local read accesses of t 1 (such as for the input only heuristic).

Influence of work-stealing

The early placement due to immediate allocation can also cause remote accesses upon workstealing by a remote worker. Consider the initial placement in Figure 8.3a, where the input buffers of a task t i and its successor t i+1 in a chain of heavy dependences are both placed on the same node. If t i is stolen by a remote worker, as shown in Figure 8.3b, not only read accesses, but also write accesses target remote memory. In addition, the input buffers of t i+2 are allocated on the node of the worker that executes t i , such that remote accesses become inevitable during execution of t i+1 . Thus, when using immediate allocation, it is possible that a steal does not only have a negative impact on the locality of accesses during execution of the stolen task, but also on tasks that depend on it.

Figure 8.4 shows how the different work-pushing heuristics react to the data placement after the steal. The input only heuristic transfers t i+1 to the node that contains the input buffers of this task, which results in local accesses to input data, but which causes remote write accesses due to the placement of the input buffers of t i+2 (Figure 8.4a). Similarly, t i+2 must be transferred upon activation, resulting in local accesses to input data but also in remote write accesses to output buffers as shown in Figure 8.4b. The locality of accesses is higher when using the output only or weighted heuristic as illustrated by Figure 8.4c and 8.4d. An important point is that these heuristics keep the tasks t i+1 and t i+2 on the worker that initially stole t i if t i is the producer of t i+1 that finishes last and if t i+1 is the last producer of t i+2 . This ensures that the worker can obtain work simply by removing a task from the software cache (indicated by the label take in the figures) and thus does not have to steal another task right after the execution of t i . However, if these tasks do not finish last among all producers, t i+1 and t i+2 are each transferred to a worker on the same node and the amount of locally accessed data remains the same.

Influence of the creation of initial tasks

Although the creation of initial tasks is part of the control program, whose influence has been discussed above, this phase deserves particular attention as it largely influences data distribution at the beginning of the execution. In order to provide sufficient parallelism at the beginning of the execution, the creation of initial tasks is parallelized in the benchmarks presented in Section 6.1. Instead of creating all initial tasks during execution of the root task, the root task creates a set of auxiliary tasks whose only purpose is to create the initial tasks of the application. At the beginning of the execution these tasks are stolen by the remaining workers and thus execute in parallel, resulting in parallel creation of the initial tasks.

Figure 8.5a illustrates this principle on the jacobi-1d benchmark. The root task r creates n auxiliary tasks t 0 c to t n-1 c , which in turn create the first two tasks on each chain of heavy dependences associated to each block of data 1 . A large fraction of the tasks t 0 c to t n-1 c is stolen by remote workers, which causes the input buffers of the first tasks on the chains to be spread across the machine's memory controllers. Hence, a side effect of the parallelization of the creation of initial tasks is a distribution of data that avoids the placement of an excessively large fraction of input data is placed on the node of the worker executing the root task. This is shown in Figure 8.5b, where the input buffers of the initial tasks are spread in a uniform manner across the nodes. Note that the right semi-circle of the first tasks of the chains of heavy dependences below the auxiliary tasks for task creation do not indicate any data placement, since these tasks do not have input dependences and thus do not have input buffers.

In practice, some nodes might be privileged for steals of the t 0 c to t n-1 c from the worker executing the root task due to faster access time to the memory of the node on which the worker executes. As a result, it is possible that these workers steal more auxiliary tasks for task creation than others, resulting in a situation such as the one illustrated in Figure 8.5b, where the amount of data varies between nodes. This leads to imbalance at the beginning of the execution and can cause contention on the nodes containing more input buffers than others.

Different delays for work-stealing are not the only possible cause for data distributions favoring node contention. Such an imbalance can also arise from task creation itself if the number of tasks created by an auxiliary task is not well chosen. This is shown in Figure 8.5d, in which only m < n auxiliary tasks t 0 c to t m-1 c each create significantly more initial tasks than in the previous figures. While the number of tasks and the actual set of tasks created by each auxiliary task might be easy to determine for regularly-structured task graphs with similar progress on task execution for each part of the graph, it might be more difficult to develop an appropriate strategy for more complex graphs. For example, although the task graph of the one-dimensional version of the seidel benchmark shown in Figure 8.6a is similar to the task graph of jacobi-1d it is less obvious to find a pattern for the creation of initial tasks that does not introduce node contention. The main difference with jacobi-1d are the dependences between tasks processing data blocks of the same iteration represented by the horizontal arrows. The presence of these dependences is the reason that tasks at the left side of the graph are activated earlier than tasks on the right side. The directions in which the application progresses within the task graph are illustrated by Figure 8.6b. If the auxiliary tasks for task creation create the tasks at the beginning of the paths with heavy dependences in groups of horizontal neighbors the nodes containing the input buffers of tasks at the left side of the graph are targeted more frequently at the beginning of the execution than other nodes.

In all of the cases presented above, immediate allocation plays a key role for initial data distribution, since it determines the placement of the buffers of initial tasks at task creation. Data distribution can depend on the topology of the hardware, on the number of tasks created by each auxiliary task for the creation of initial tasks and on the position of the tasks in the task graph.

In the following section, we introduce deferred allocation, which aims at mitigating the negative effects on data locality and load balancing described above. We first present the principles of this technique and show how we have integrated this mechanism into the OpenStream run-time and the compiler. Afterwards, we illustrate how deferred allocation mitigates the negative effects on data locality and load balancing described above.

Deferred allocation

The main drawback of immediate allocation is that decisions for placement of data are made before the location of execution of the task writing the data is known. Work-pushing and topologyaware work-stealing can improve data locality and load balancing, but can only react to a given placement that has been determined in advance. However, even with these techniques enabled, data locality can still depend on the control program in general and the creation of initial tasks in particular.

Principles of deferred allocation

To mitigate these issues, we introduce a strategy for memory allocation that we refer to as deferred allocation. The key idea of deferred allocation is to delay the allocation and thus the placement of each input buffer as long as possible, until the node executing the producer that writes to the buffer is known. Hence, instead of allocating input buffers of a task upon its creation during execution of the creating task, each input buffer is allocated by the task that writes to it. If multiple producers write to the same input buffer, the buffer is allocated during the call to resolve_dependences that matches the first output view with the input view, which avoids concurrent allocations or synchronization during execution of the producers of a task 2 . Hence, deferred allocation is used only for the input buffers of input views that are matched with a single output view, which is the case for a large majority of views in our benchmarks. Figure 8.7 illustrates deferred allocation on the task graph of Figure 8.1a. At the creation of t only its data-flow frame is allocated, but none of its input buffers, as indicated by the question marks in Figure 8.7a. Let p 1 be the first of the producers of t that is activated. Before the instructions of the task body can be executed, the input buffer of t receiving the output data of p 1 must be allocated. The state after the allocation of this input buffer is shown in Figure 8.7b. The same procedure is repeated for each of the producers when these become ready for execution. As there is either a one-to-one mapping of the producers output views to the input views or an input buffer was already allocated upon the call to resolve_dependences, the deferred allocations can be carried out in parallel without any overhead for locking or synchronization. When t becomes ready for execution, all producers have terminated and all input buffers of t are guaranteed to be allocated as shown in Figure 8.7d.

Modification of the run-time

The implementation of deferred allocation requires changing the data structures and code of the run-time. When using immediate allocation, input buffers are managed by the creating task as well as the task that is created: the creating task allocates the input buffers and the newly created task frees these buffers when it terminates. During dependence resolution, the data pointers of the output views of a producer are set to addresses within the address ranges of the input buffers of the consumers. Hence, neither the consumer task, nor the consumer view are known by an output view. When using deferred allocation, however, allocation of input buffers is under the responsibility of the producer. When the producer allocates the input buffer for a consumer, the data pointer of the input view of the consumer must be set as well as the data pointer of the output view. Thus, the producer must be aware of the address of the structure representing the input view.

We have therefore modified the data structure representing a view in order to store the address of the input view with which an output view has been matched during the call to resolve_ dependences. When deferred allocation is triggered, a new input buffer is allocated and its address is made available to the producer view and the consumer view. The function that carries out these steps is prepare_data with the pseudo-code of Algorithm 8. The function first determines whether the data pointer of the output view v o already points to the input buffer of the consumer, which is the case for output views providing access to the elements of an input view with multiple producers. If the input buffer has not been allocated before, the function obtains a new buffer from 2. Restriction 4.1 in Section 4.3.1 defines a one-to-one matching of input and output views. However, in a few cases a pattern where multiple producers write to a single input view is still useful and does not have significant impact on performance. For example, the benchmarks studied in this thesis use a data-flow style barrier at the end of the execution, in which a task receives integer tokens from all tasks performing the last iteration on a block of data and the root task synchronizes with this task using a taskwait construct. pool ← memory_pool_of (node w )

5 v i ← v o .consview 6 v i .data ← alloc(pool, v i .horizon) 7 v o .data ← v i .data 8 end Algorithm 9: prepare_data_vec(v v , num) 1 v a ← view_array_base(v v ) 2 3 for i ∈ {0, . . . , num -1} do 4 v o ← v a [i] 5 prepare_data(v o ) 6 end 7 8 9
the memory pool of the node on which the calling worker executes. This requires several steps. In Line 2, the function first determines the identifier of the calling worker. This identifier is passed to local_node_of_worker in order to obtain the identifier of the worker's NUMA node (Line 3). The node identifier is needed to obtain a reference to the worker's memory pool (Line 4). The actual allocation takes place in Line 6, in which the return value of a call to alloc is assigned to the data pointer of the input view of the consumer. The same value is assigned to the data pointer of the output view afterwards. Deferred allocation for multi-dimensional views are treated by another function called prepare_ data_vec, shown in Algorithm 9. The implementation of this function is straightforward: for each individual view prepare_data_vec simply issues a call to prepare_data.

Figure 8.8 shows the effects of deferred allocation on the data-flow frames of t and p 1 of Figure 8.7. After the creation of t in Figure 8.8a, all of the data pointers of the input views of t are initialized to NULL. When p 1 is created, the run-time calls resolve_dependences for its output view, which causes the pointer consview to be set to the address of the respective input view of t (Figure 8.8b). The data pointers for both the output view of p 1 and the input view of t are still set to NULL. Figure 8.8c shows the state of the data structures at the beginning of the execution of p 1 . The address of the input buffer allocated during the call to prepare_data has been assigned to the data pointer of the output view of p 1 and to the data pointer of the respective input view of t.

Modification of the compiler

To guarantee that a producer task executes correctly, the calls to prepare_data must be issued at the very beginning of the execution of each task that has at least one output view. To this end, we have modified the compiler, such that it generates a call to prepare_data for each output view and a call to prepare_data_vec for each multi-dimensional view during processing of input and output clauses.

The following listing is used as an example to illustrate the result of the translation with the modified OpenStream compiler supporting deferred allocation. ...

22

}

For each of the task's output views a call to prepare_data must be added at the beginning of the output views as shown in the resulting outlined task body in the listing below. 

Deferred allocation and work-pushing

Deferred allocation delays the allocation of output buffers to the moment when the core executing a producer task is known. This improves the locality of write accesses when a producer task is executed as shown below, but it does not address the locality of read accesses. Hence, data locality might still need to be improved through work-pushing. When using immediate allocation, the addresses of input buffers and output buffers of a task are known when the task becomes ready for execution and the work-pushing heuristics presented in Section 7.2 can use both information on the placement of input buffers and information on the placement of output buffers to decide which worker should become the owner of the task. When using deferred allocation, this is not necessarily the case, since the location of a subset or all of the output buffers of a task might be determined only at the beginning of the execution of the task and can thus be unknown at the moment the task becomes ready. The entire set of addresses of output views of a a task is known when the task becomes ready only if all output views provide access to input views with multiple writers, which occurs only very rarely. Hence, in most cases, the output only heuristic and the weighted heuristic could only operate with incomplete information on the placement of output buffers. In this case, the output only heuristic would behave like the default task activation mechanism in which the worker satisfying the last dependence of a task becomes its owner and the weighted heuristic would behave as the input only heuristic.

However, due to deferred allocation, the run-time can assume that the output buffers will be placed on the node of the worker executing the task and it is sufficient for data locality to base the transfer decision on the placement of the input buffers of a task. Thus, we have only implemented and evaluated the input only heuristic for work-pushing in conjunction with deferred allocation.

Influence of deferred allocation on data locality

After the definition of the principles and the integration of deferred allocation into the Open-Stream run-time, this section shows how these modifications impact the locality of accesses compared to immediate allocation.

Influence of the control program

Figure 8.9 shows the placement of input buffers in a chain of tasks with heavy dependences and the creation of a task in the chain by an unrelated task which is not a predecessor in the task graph, as already illustrated for immediate allocation in Figure 8.2d and Figure 8.2e. Input buffers that have not been allocated, but whose associated tasks have already been created, are labeled with an exclamation mark. This is the case for t 2 in Figure 8.9a, which has been created by t c , but whose input buffer holding the majority of its input data has not yet been allocated. The allocation takes place when t 1 becomes active, as shown in Figure 8.9b. In contrast to immediate allocation, the majority of the memory accesses are local, although t 2 has been created by a task executed by a remote worker. The only accesses that can target remote memory are read accesses to the input buffers associated to light dependences if the corresponding producers have been executed by remote workers. However, these buffers only hold a small fraction of input data, such that read and write accesses can be considered as entirely local. For unbalanced dependences, deferred allocation thus effectively decouples data locality from task creation by the control program.

The decoupling also applies to the task graph of Figure 8.2b with balanced and unbalanced dependences. Figure 8.10 shows the placement of input buffers at execution of the tasks t a c and t b c , which create t a , t a s , t b and t b s . Half of the input buffers of t a p and t b p are placed on one node and the other half is stored on another node, while the input buffers of t a and t b and their siblings have not been allocated yet. The nodes to which the owners of t a p and t b p are associated determine where the input buffers of t a , t a s , t b and t b s are allocated. The figures 8.10b, 8.10c, 8.10d and 8.10e show the possible outcomes for the placement.

In Figure 8.10b, the worker executing t b c has become the owner of t a p and the worker executing In both results for placement, half of the input buffers of the tasks on the right are placed on one node and the other half is placed on another node, with high locality of memory accesses and well balanced load. However, it is also possible that the same worker becomes the owner of t a p and t b p as shown in Figure 8.10c and Figure 8.10d. While this has an influence on load balancing across memory controllers, the amount of locally accessed data is the same as in the previous scenarios for data placement and thus remains high.

The previous task graph contains both balanced and unbalanced dependences, with a high amount of the data placed on the node of the worker executing a task. However, the task graphs of applications can contain large sub-graphs that are entirely composed of tasks with unbalanced dependences, such as the bitonic benchmark. An excerpt of the task graph of this benchmark is shown in Figure 8.11a. In the following discussion, we concentrate on the chain formed by the tasks t 0 to t 3 . .11b shows a possible initial placement for the input buffers of t 0 and t i 1 . To keep the graphs at the following steps of the execution simple, we assume that the two input buffers of tasks that do not depend on tasks on the chain are both placed on the same node (e.g., t i 1 in Figure 8.11b and t i 2 in Figure 8.11d). The execution of t 0 and t i 1 leads to the allocation of the input buffers of t 1 as shown in Figure 8.11c. As implied by the balanced dependences, half of the input buffer is placed on the node of the worker executing t 0 and the remaining input data is placed on the node executing t i 1 . During execution of t 1 in Figure 8.11d, the input buffers of t o 1 and t 2 , receiving the output of t 1 , are allocated locally on the node of the worker executing t 1 . Three quarters of the data involved in the execution of t 1 are thus accessible locally. At execution of t i 2 in Figure 8.11e, the remaining input buffer of t 2 is allocated on the node of the worker executing t i 2 . In Figure 8.11f, the amount of locally placed data at execution of t 2 is identical to the amount of locally placed data during execution of t 1 : three quarters of the data involved in the execution are accessible on the node executing the task. In contrast to immediate allocation, deferred allocation is thus able to provide high data locality even for tasks with balanced dependences.

Influence of work-stealing

Another important effect of deferred allocation is the improvement of data locality in case of work-stealing events by remote workers. An example for such a situation is provided in Figure 8.12. The initial placement for the input buffers of t i in Figure 8.12a is identical to Figure 8.3a of Section 8.1.2, used for the illustration of work-stealing in conjunction with immediate allocation. As t i is not yet ready for execution, the input buffers of t i+1 have not been allocated. The allocation is triggered after the steal and execution of t i by a remote worker, as shown in Figure 8.12b. The deferred allocation on the local node of the stealing worker causes only read accesses to target remote memory and all write accesses are local. If t i satisfies the last dependence of t i+1 and if t i+1 is the producer of t i+2 that finishes last, t i+1 and t i+2 are also executed by the worker that initially stole t i as shown in Figure 8.12c and Figure 8.12d. However, even if this is not the case, data locality can be restored using any of the work-pushing heuristics, as these all transfer t i+1 and t i+2 to a node for which all of the accesses to memory target the node's local memory.

Deferred allocation generally improves the locality of accesses to main memory of tasks stolen by remote workers. As the output buffers of tasks are guaranteed to be allocated locally, the 

f loc ≥ m-1 j=0 d j o n-1 k=0 d k i + m-1 j=0 d j o
Of course this definition is only valid if each node is provided with sufficient memory and if all input buffers allocated from the memory pool associated to a node are placed on the node.

Creation of initial tasks

The decoupling of the execution location of a creating task from the placement of the input buffers of the created task also has a positive impact on load balancing across memory controllers upon creation of initial tasks. Neither the number of tasks created by each auxiliary task, nor faster steals of auxiliary tasks by workers on nodes with faster accesses to the work-deque of the worker executing the root task can lead to an imbalanced initial placement of input buffers as seen for immediate allocation in Section 8.1.3.

Consider Figure 8.13a and Figure 8.13b with different number of auxiliary tasks for the creation of initial tasks. As the placement of input buffers of the initial tasks is only determined upon execution of the predecessors, the outcome is the same for both task graphs and only depends on the timing of task execution. As in the illustration for immediate allocation, the right semi-circles of tasks at the beginning of the chains with heavy dependences are empty due to the absence of input buffers for these tasks. A possible scenario for the placement is shown in Figure 8.13c. Due to the decoupling between the locations of execution of creating tasks and the placement of the input buffers of the created tasks, as well as the improvement of the data locality upon work-stealing by remote workers, the input buffers of initial tasks that have been created by the same auxiliary task are not necessarily placed on the same node. Figure 8.13d illustrates the same data placement as in Figure 8.13c but for the task graph of Figure 8.13b, in which more than two tasks are created by each auxiliary task for task creation.

As a result of deferred allocation, load balancing across memory controllers is not predetermined and only depends on computational load balancing 3 . Workers that run out of work steal additional auxiliary tasks and thus cause more data to be placed on the associated node.

Reduction of the memory foot print

Delayed allocation of input buffers when using deferred allocation does not only increase data locality of write accesses, but also has an important side effect on the memory footprint of the application. When using immediate allocation on a path of dependent tasks t 0 , . . . , t n , where t i creates t i+2 , at least three buffers are in use at any time between the execution of t 1 and the execution of t n-1 . Figure 8.14a, showing the execution of a task t i with 0 < i < n -1, illustrates this property. The first buffer, which contains the input data of t i cannot be freed until t i terminates.

The second buffer, which is the output buffer of t i and which corresponds to the input buffer of t i+1 can be freed earliest at termination of t i+1 , which happens after termination of t i . As t i creates t i+2 , the input buffer of t i+2 is allocated during execution of t i and thus before termination of t i . Figure 8.14b illustrates the same setting using deferred allocation. A first difference to the previous scenario is that the allocation of the input buffer of t i+2 is delayed until the beginning of the execution of t i+1 . When t i+1 becomes ready, t i has terminated, since termination of t i is a prerequisite for activation of t i+1 . The input buffer of t i is not referenced any more and can be reused for t i+2 as shown in Figure 8.14c. Hence, deferred allocation reduces the number of buffers that have to exist simultaneously on a chain of dependent tasks by one. Figure 8.15 on page 174 provides a more detailed view of the events related to memory management when using deferred allocation. Figure 8.15a shows the initial state of the memory pools of two workers w r , executing the auxiliary task that creates t 0 and t 1 , and w e , executing the chain of dependent tasks. For simplicity, the task graph only shows the heavy dependences between the tasks on the chain. We assume that w r and w e are associated to different nodes and thus use different memory pools. Each pool has a list of free data-flow frames, containing only the metadata of a task, and a list of free input buffers. Let s f be the size of objects corresponding to frames and let s v be the size of objects in the pool corresponding to the size of the input buffers used by the tasks on the chain. Initially, all free lists are empty, as shown in Figure 8.15a. When execution of the auxiliary task for task creation starts, t 0 is created and w r refills the free list for frames in its local memory pool (Figure 8.15b). A refill for the list of input buffers is not necessary as t 0 does not have any input dependences. Next, the data-flow frame of t 0 is initialized, but the task remains blocked due to the missing consumer t 1 (Figure 8.15c). When t 1 is created, t 0 becomes ready (Figure 8.15d) and can be stolen by w e4 (Figure 8.15e). At the beginning of the execution of the task body of t 0 , the input buffer of t 1 is allocated. This is shown in Figure 8.15f, where w e carries out a refill operation on the list of free input views. The input view is taken from the free list (Figure 8.15g) and t 2 is created, which causes a refill of the list of free frames of w e , followed by a remove of the first free object from that list in Figure 8.15h. The task t 0 then finishes execution and activates t 1 , which allows w e to free the frame of t 0 (Figure 8.15i). Upon execution of t 1 deferred allocation triggers and removes an objects from the list of free views of w e (Figure 8.15j). At this point, no further refill operations are necessary, since three frames and two views can be used at the same time. Hence, upon creation of t 3 , the frame of t 0 can be reused (Figure 8.15k) and the input buffer of t 1 can be reused as the input buffer of t 3 upon deferred allocation by t 2 (Figure 8.15l).

The total amount of memory that can be saved due to the reduction of the number of co-existing input buffers during execution of tasks on a chain directly depends on the size and structure of the task graph. For a high number of chains with inter-chain dependences that prevent chains from executing to the end before executing tasks from neighboring chains, such as in seidel, the jacobi benchmarks or the bitonic sorting network, the memory that can be saved directly depends on the number of chains present in the task graph. Using deferred allocation, the number of refill operations on memory pools can be reduced, which results in a lower memory footprint of the application and which reduces overhead for the initialization of buffers upon physical allocation.

Experimental results

In this section, we evaluate the impact of deferred allocation using the benchmarks of Section 6.1.

We first analyze the locality of memory accesses as well as the reduction of the applications' memory footprints before showing the impact on performance. The following abbreviations are used to identify the different configurations:

rnd refers to default random work-staling, immediate allocation and without work-pushing or topology-aware work-stealing, -dfa refers to deferred allocation only without work-pushing or topology-aware work-stealing, -dfa+input only is used for deferred allocation and work-pushing with the input only heuristic and, -dfa+input only+taws refers to deferred allocation with work-pushing and topology-aware work-stealing.

Due to the excessive memory footprint of the cholesky benchmark without broadcast-specific optimizations, the results for this benchmark will be presented in Chapter 9.

Data locality

Figure 8.16 shows the fraction of requests to local main memory over the total number of requests to main memory for the execution of our benchmarks on the Opteron platform. Thanks to the high locality of write accesses, deferred allocation only already improves data locality significantly for all of the benchmarks. For seidel, jacobi-1d, jacobi-2d, jacobi-3d, k-means and bitonic about two thirds of all requests target local memory. The low locality of memory accesses in the blur-roberts benchmark can be explained with the fact that its task graph only contains very short paths of heavy dependences. Thus, accesses to the input matrix and the output matrix in shared memory with interleaved allocation, as explained in Section 5.3.4, have a large impact on data locality.

Work-pushing using the input only heuristic can further improve data locality of all benchmarks with the highest improvements for seidel, jacobi-1d, jacobi-2d, jacobi-3d, and k-means. More than 85% of the requests to main memory of these benchmarks target local memory. For blur-roberts the improvement is much lower due to the influence of the matrix in shared memory explained above. For the bitonic benchmark, work-pushing only yields a minimal increase of data locality. This is due to the fact that the activating workers of the vast majority of tasks are workers that provided half of the tasks' input data, such that in most cases work-pushing does not initiate a transfer to a remote worker. The difference between the default task activation mechanism and work-pushing is thus minimal.

Except for blur-roberts, topology-aware work-stealing increases the locality of accesses to main memory for all benchmarks. For seidel, jacobi-1d, jacobi-2d, jacobi-3d and k-means deferred allocation combined with work-pushing and topology-aware work-stealing leads to more than 90% of the requests to main memory that target local memory and thus yields almost maximum locality. For bitonic, this value is lower due to the balanced dependence pattern, but still reaches a value that is greater than 75%.

As in the analysis of the results for data locality for the different work-pushing heuristics and topology-aware work-stealing in the previous chapter, we cannot provide results for the locality of accesses to main memory for the SGI platform gathered using hardware performance counters due to the lack of support by the operating system. In addition, deferred allocation makes it impossible to determine the location of output buffers before execution of a task. Hence, the approximation of the fraction of memory accesses to local memory R appr loc as defined in Section 7.4.1 cannot be calculated based on placement information gathered before task execution. Therefore, we introduce another approximation of the fraction of accesses to local memory called R wloc loc whose definition is similar to R appr loc , but which assumes that all write accesses target local memory. Figure 8.17 shows the results for the locality based on the approximation R wloc loc for the Opteron system and the SGI platform. The value indicated for rnd corresponds to the estimation using R appr loc , as deferred allocation is not enabled for this configuration and write accesses thus cannot be assumed to be local. The relative error of the approximation over the locality measured with hardware performance counters for the Opteron system is given in Figure 8.18. As in the previous chapter, the error for blur-roberts is extremely high and the values for the approximation for this benchmark cannot be taken into account. The error for the other benchmarks is much lower and ranges between -25.5% and 18.5%. For deferred allocation with work-pushing and deferred allocation with work-pushing and topology-aware work-stealing, the relative error is below 10%.

The results for the SGI system are similar to the Opteron system. Deferred allocation only already improves the locality of memory accesses significantly for all of the benchmarks. Workpushing increases the locality further for all benchmarks except bitonic. The increase of topologyaware work-stealing is lower, but never decreases locality. Except bitonic, all benchmarks reach a value for locality based on the approximation R wloc loc which is close to the maximum of 100%. For the bitonic benchmark more than three quarters of the data are accesses locally. As mentioned above, the values of R wloc loc for blur-roberts should not be taken into account. Hence, we do not provide any conclusion based on this data for blur-roberts.

To relate the results for the locality of memory accesses for deferred allocation with the results of the previous chapter on work-pushing and topology-aware work-stealing, Figure 8.19 shows the fraction of requests to local main memory on the Opteron platform for the work-pushing heuristics in conjunction with topology-aware work-stealing and deferred allocation with work-pushing and topology-aware work-stealing. A notable result is that deferred allocation with work-pushing and topology-aware work-stealing yields approximately the same locality as the work-pushing heuristic with the highest locality for all benchmarks for most of the benchmarks. For the bitonic benchmark, deferred allocation even yields a significantly higher locality than all of the workpushing heuristics with topology-aware work-stealing. Hence, in all cases, independently from the structure of the task graph, it is beneficial for data locality to use deferred allocation in conjunction with work-pushing and topology-aware work-stealing.

Memory footprint

As discussed in Section 8.3.4, deferred allocation can reduce the memory footprint of an application considerably. Figure 8.20 shows the maximum resident size of the dynamic single assignment versions with default random work-stealing and different combinations of deferred allocation, work-pushing and topology-aware work-stealing as well as for the shared memory implementations of the benchmarks. The huge difference between the memory footprint of blur- roberts on the Opteron system and the SGI system is due to the different size of the input and output matrix on both systems. Also, the shared memory version of blur-roberts has a footprint that is substantially higher than the dynamic single assignment versions. This is due to the use of an auxiliary matrix for intermediate results generated by the blur filter, which ensures that elements in the overlapping areas of blocks are not overwritten before all calculations depending on this data have terminated.

A rule of thumb for all other benchmarks is that the dynamic single assignment implementations either have a significantly larger footprint than the shared memory versions of the benchmarks without deferred allocation (seidel, jacobi-2d, jacobi-3d, k-means and bitonic) or require approximately the same amount of memory (jacobi-1d). In all cases except for jacobi-1d and blur-roberts, deferred allocation considerably reduces the amount of memory required for execution. The short dependence paths in blur-roberts and the structure of the task graph of jacobi-1d with few dependences lead to less tasks that are in-flight at the same time. Hence, less input buffers are needed simultaneously and the size of the input matrix dominates the memory footprint.

The improvement over rnd is shown in Figure 8.21. For seidel, jacobi-2d, jacobi-3d, k-means and bitonic the reduction is close to or even exceeds 30%. The only negative impact was measured for jacobi-1d on the Opteron system, for which deferred allocation can increase the footprint by up to 21.9%. We did not investigate this issue in detail, but we believe that this behavior is related to improved load balancing, causing refill operations on a higher number of memory pools. For blur-roberts the improvement is less than 5% on both platforms. .22 shows the speedup of the different configurations using deferred allocation over random work-stealing. Deferred allocation improves performance of all benchmarks without any exception. The highest speedups are achieved for seidel with up to 3.57× on the SGI system and 2.71× on the Opteron system. The smallest speedup is the speedup of the k-means benchmark with only 1.01× on the Opteron system and 1.29× on the SGI system. However, the speedup for the best configurations of the other benchmarks is at least 1.38× on the Opteron system and 1.68× on the SGI system. Hence, the improvements on data locality and the reduction of the memory footprint by deferred allocation translate into large performance gains for memory-intensive applications and moderate gains for cache-bound applications. Figure 8.23 relates the performance of deferred allocation to the shared memory implementations. Except for k-means on both platforms and bitonic on the Opteron system, the dynamic single assignment implementations with deferred allocation outperform the shared memory implementations at least by a factor of 1.15 for the best configuration. In the best case, i.e., for jacobi-1d using deferred allocation and work-pushing on the SGI system, execution can be sped up by a factor of 4.17. A notable difference with the results for work-pushing with topology-aware work-stealing of the previous chapter is that jacobi-1d on the Opteron system and bitonic on the SGI system now perform better than the shared memory implementations. 

Ongoing work: reduction of the memory footprint with the inout_reuse clause

A major drawback of dynamic single assignment is the possibly larger working set of each task compared to shared memory solutions with in-place updates even with deferred allocation. This has two consequences. The first consequence is a possibly negative impact on the memory footprint of the application, as shown in the previous section. Second, as data of both input and output buffers occupies caches, tasks using dynamic single assignment have a higher footprint in the hierarchy of caches, resulting in a higher number of cache misses. In this section, we present a new clause that we have implemented for OpenStream, called inout_reuse. This clause allows tasks that read data from an input buffer, process the data and write the results to an output buffer of the same size to be rewritten such that they only use a single buffer with in-place updates. As this is ongoing work, we only present the principles of this solution as a perspective, but do not provide conclusive results. The syntax of the inout_reuse clause is the following: The first stream expression defines from which stream the elements are read and the second stream expression defines to which stream the elements are written after the in-place updates in the task body. To illustrate this concept, consider the following task that reads data from a stream s1, calculates the square root of each element and writes the result to another stream s2. Using dynamic single assignment with an input and an output clause, this task would be specified as follows: As the size of the input and output view is the same and as the data between these two views is directly related, the task can be rewritten using the inout_reuse clause as: for(int i = 0; i < horizon; i++)

6 rview[i] = sqrtf(rview[i]); 7 }
The memory footprint of the task is half of the memory footprint of the implementation using one input and one output clause. As an inout_reuse clause always references two streams, a minimal task graph of an application using this clause must have at least three tasks, as shown in Figure 8.24a. The first task writes the initial data to the stream of the first stream reference in the inout_reuse clause, the second task uses the inout_reuse and the third task reads from the stream corresponding to the second reference in the inout_reuse clause. A task using the inout_reuse clause can be the producer or the consumer of another task using this clause. The only restriction that applies to this construct is that the views of the producer and consumer must have exactly the same size. This allows the run-time system to use a single input buffer that only needs to be handed from the producer to the consumer.

Figure 8.24b shows a task graph with two consecutive tasks using the inout_reuse clause. Between t 1 and t 2 the same input buffer can be reused. To keep the changes for the code carrying out dependence resolution in resolve_dependences as little as possible, we have chosen to implement inout_reuse views using two views, one input view and one output view. This allows the run-time to match input and output views with in-out_reuse views the same way as it matches input views with output views. We refer to the input view of an inout_reuse view as the reuse input view and to the output view as the reuse output view. Among the new fields representing a view is a field called reuse_view, pointing to the reuse input view of the producer view if this is an inout_reuse view and refctr, indicating for a reuse input view by how many views its input buffer is referenced, including the view itself. Frames are also provided with a reference counter, as views embedded in the frame can be referenced beyond the lifetime of the task associated to the frame.

In the following illustration of the steps at execution time, we assume that deferred allocation is enabled. Figure 8.25a shows the creation of the task t 0 . As the output view has not been matched with an input view yet, cons_view and data are initialized with NULL and since the task does not have any predecessors, reuse_view also receives NULL. The reference counters for the view and the frame are set to one.

The creation of t 1 in Figure 8.25b causes the output view of t 0 to be matched with the reuse input view of the inout_reuse view of t 1 . No special treatment is required and the cons_view pointer receives the address of the reuse input view, just as if the reuse input view were an ordinary input view not associated to an inout_reuse clause. As t 0 does not have any inout_reuse views and as the consumers of t 1 have not yet been created, all pointers of the views of t 1 are initialized with NULL and the reference counters are set to one.

Figure 8.25c shows the matching of the two inout_reuse views of t 1 and t 2 after the creation of t 2 . The reuse input view of t 2 references the reuse input view of t 1 by assigning the address of the reuse input view of t 1 to reuse_view. As the reuse input view of t 1 is now referenced by t 1 and t 2 , the reference counter is increased to the value two. The same applies to the reference counter of the frame of t 1 .

The creation of t 3 and the matching of its output view is shown in Figure 8.25d. Similar to t 2 , the field reuse_view receives the address of the reuse input view of the predecessor t 2 and the reference counters of t 2 are updated accordingly. At the beginning of the execution of t 1 in Figure 8.25e, deferred allocation is triggered and the input buffer of the reuse input view of t 1 is allocated, which results in an update of the data pointers of the output view of t 0 and the reuse input view of t 1 . Upon termination of t 0 in Figure 8.25f, the reference counter of its frame is decremented and reaches zero, indicating that the frame is no longer being referenced. Note that the reference counter of the output view is not updated. This is due to the convention that input buffers can only be owned by input views. Reference counters of output views are thus never used and do not need to be updated. The frame associated to t 0 is freed in Figure 8.25g. In a first step, the data pointer of the reuse input view of t 2 receives the address of the input buffer used by t 1 (Figure 8.25h). Afterwards, the data pointer of the reuse input view of t 1 is set to NULL and its reference counter as well as the reference counter of the frame are decremented (Figure 8.25i). This transfers the ownership for the input buffer from t 1 to t 2 Upon termination of t 2 in Figure 8.25j, the reference counters of t 2 are decremented again and the frame of t 2 becomes ready for de-allocation freed 5 . To pass the contents of the input buffer to t 3 the data pointer of t 3 is set to the corresponding address. Figure 8.25k shows the last part of the termination of t 2 . Similar to the end of t 1 the data pointer of the reuse input view of t 2 is set to NULL, transferring the ownership of the input buffer to t 3 . As neither the reuse input view nor the frame of t 2 are used anymore, the respective reference counters are decremented.

In the last step, shown in Figure 8.25l, the frame of t 2 is freed and t 3 becomes ready for execution. Nothing in the data structures of t 3 indicates that the input buffer has been transferred using inout_reuse clauses. When the reference counters of the input view of t 3 is decremented, it reaches zero and as the data pointer has a value different from NULL, the input buffer will be freed.

As can be seen in the example, only a single input buffer is allocated for all of the tasks. Hence, the minimal number of input buffers for a chain of dependent tasks is reduced from two buffers for deferred allocation without the inout_reuse clause (as discussed in Section 8.3.4) to a single input buffer. Figure 8.26 illustrates this property on an example with four tasks t i , t i+1 , t i+2 and t i+3 . In Figure 8.26a, the ownership for the input buffer allocated at the very beginning of the chain is transferred from t i to t i+1 . During its execution, t i+1 reads the data written to the input buffer by t i and overwrites the contents with the results of its own calculation. In the next step, shown in Figure 8.26b, this data is passed to t i+2 , again by transferring the ownership of the input buffer. This pattern continues for all remaining tasks on the chain until the destruction of the input buffer at the end of the chain after the execution of a task with an ordinary input view. However, a drawback of this approach is that all tasks reusing a buffer target the same memory controller during their execution. For example, if t i and t i+1 execute on different NUMA nodes, one of them accesses remote memory. However, in contrast to a static placement, the run-time can decide to migrate the data of a buffer from one node to another when the ownership for data is transferred between two views. For example, when t i finishes, the data pointer of the reuse input view of t i+1 could be initialized with the address of a new buffer on an appropriate node. The contents of the buffer used by t i+1 would simply need to be copied from the previous buffer to the new buffer and the reference counters of t i+1 would need to be updated, such that the old buffer would be Copying the contents of an inout_reuse view when changing nodes destroyed properly. This is shown in Figure 8.27, where t i is executed by a core associated to the node n a and t i+1 is executed by a core associated to n b . Before t i is executed, the run-time allocates a new input buffer on n b , copies the contents of the old input buffer to the new one, sets the data pointer of the reuse input view of t i+1 accordingly and frees the old input buffer.

The inout_reuse clause can also be used to pass read-only data or data that is modified infrequently from one task to another. For example, the read-only point data passed between tasks that calculate the distance to cluster centers in the k-means benchmark does not have to be copied from an input view to an output view by using the inout_reuse clause.

We have integrated the support for inout_reuse clauses into the OpenStream compiler and runtime as well as different schemes for the allocation of buffers during transfer of ownership between two tasks on different nodes. Furthermore, the inout_reuse clause is an incremental extension and applications using the clause can take advantage of all of the optimizations presented in previous chapters. However, the analysis of the data locality and performance of these solutions is still in an early phase and will be continued in future research following this thesis.

Summary

In this chapter, we introduced deferred allocation, which delays the allocation and thus the placement of input buffers to the latest possible moment. We showed that this technique mitigates the negative effects on data locality and load balancing of immediate allocation related to the structure of the control program, work-stealing events by remote workers and the creation of initial tasks. As a side effect, deferred allocation can reduce the number of input buffers that are used simultaneously, which results in a reduction of the memory footprint of the application. We showed that deferred allocation can be combined with the input only heuristic for work-pushing as well as the mechanism for topology-aware work-stealing presented in the previous chapter.

The experimental evaluation shows that deferred allocation improves the locality of accesses to main memory significantly compared to default random work-stealing with immediate allocation. For a large set of benchmarks, deferred allocation in conjunction with work-pushing and topology-aware work-stealing almost reaches maximum locality. The fraction of local accesses for a benchmark with balanced dependences can be improved to more than 75% of local accesses. The memory footprint is decreased by as much as 47.5% and is only increased for a single benchmark on the Opteron platform. Compared to the default random work-stealing technique and immediate allocation, deferred allocation improves the performance of all benchmarks and yields speedups of up to 3.57× when used in conjunction with the other optimizations. In addition, deferred allocation allows the majority of the dynamic single assignment implementations to outperform the shared memory implementation significantly.

All of the optimizations presented in this chapter and the previous chapter are implemented at the run-time level. They rely on high-level programming information naturally available in task-parallel programs with point-to-point data dependences at execution time and do not require program or input set profiling. Once an application has been implemented using dynamic single assignment on stream elements, the run-time is able to automatically improve its data locality and thus increases performance in many cases, independently from the actual topology of the hardware. Especially on larger systems, dynamic single assignments versions can be significantly faster than shared memory implementations. However, the shared memory implementations in the comparison use interleaved allocation with excellent load balancing across memory controllers, but with poor average data locality. For an entirely fair comparison, it would be necessary to use shared memory versions with explicit, manual data placement adapted to the target platform. Although these versions might yield higher performance, they require substantial engineering efforts and become dependent on the target machine.

The improvements achieved through data-aware scheduling and deferred allocation of the previous chapters focused on the data locality of applications with point-to-point dependences, where data produced by a task is read by a single consumer. In the next chapter, we focus on the performance of broadcasts, where the output data of a single producer needs to be transferred to multiple consumers.

Optimizing broadcasts

The previous chapters focused on point-to-point communication, where elements of a stream are written and read by exactly one task. We showed that it is possible to improve the placement of tasks and data dynamically at execution time to increase the locality of memory accesses by exploiting these dependences, leading to higher performance of memory-intensive applications. In this chapter, we focus on applications with broadcasts, in which the results of a producer are read by more than a single reader. We show that deferred allocation, presented in the previous chapter, improves performance of such applications, but that the benefits are limited due to the high memory footprint caused by the broadcast mechanism presented in Section 3.3. We then introduce broadcast tables, an optimization for broadcasts that reduces the memory footprint and increases performance. The experimental evaluation is conducted on the cholesky benchmark, which extensively uses broadcasts throughout its entire execution. We show that using broadcast tables, OpenStream is able to match the performance of state-of-the-art implementations of Cholesky Factorization for many-core systems. Data locality and load balancing across memory controllers are addressed at the end of the chapter, generalizing the concept of broadcast tables for future research.

Memory footprint and execution time of broadcasts

To motivate the performance issues related to broadcasts, recall the principles of broadcasts in the execution model of OpenStream. In this model, data that is read by multiple readers through peek views is broadcast by the producer of the data at the end of its execution by copying the data to each of the readers' input buffers. The order of the copies depends on the order of the matching of the readers' peek views on the stream used for the broadcast. Figure 9.1a illustrates these concepts on a broadcast with one producer t p and n readers t 0 c to t n-1 c

. Assume that the order of task creation of the readers corresponds to their indexes, i.e., the first reader that is created is t 0 c , followed by t 1 c and so on. According to the matching mechanism described in Section 3.4.3, all readers are added to a list of siblings reading the same stream elements upon their respective calls to resolve_dependences, which immediately follows task creation. The tick operation on the stream that is used for the broadcast must take place after the creation of all readers and after the creation of the producer. This causes the producer t p to be matched with the first reader t 0 c in the list of siblings. The synchronization counter of the producer is decreased and the producer is activated, unless it has other unmet dependences. During the execution of t p , the task writes its output data to the input buffer of t 0 c , just as if there was a simple point-to-point dependence between t p and t 0 c . The actual broadcast takes place at the end of the execution of t p and consists in copying the input data of t 0 c to the input buffers of the remaining tasks t 1 c to t n-1 c . In the worst case with respect to the memory footprint, there are n copies stored in n buffers at completion of the broadcast, as shown in Figure 9.1b.

Deferred allocation, presented in the previous chapter, can help to reduce the footprint, but does not guarantee a lower memory footprint under all circumstances. Figure 9.2 illustrates the events leading to the minimal footprint for a broadcast. The situation at the beginning of the broadcast is given in Figure 9.2a, where the output data of the producer is only available in the input buffer of the first reader t 0 c . Due to the use of deferred allocation, neither of the input buffers of the remaining readers t 1 c to t n-1 c has been allocated at task creation. Each of these buffers will be allocated during the traversal of the chain of readers, when the data of the first reader needs to be copied to the private input buffer of the corresponding reader. The first allocation is shown in Figure 9.2b, where the data pointer of the peek view of t 1 c is initialized with the address of the newly allocated buffer. In the next step, shown in Figure 9.2c, the data of the broadcast is copied from the input buffer of t 0 c to the input buffer of t 1 c . Note that after this operation, t 1 c is ready for execution as all of its input data is available and unlike t 0 c no other task depends on the existence of its buffer. However, due to the use of the single entry software cache, presented in Chapter 3.4.1, the task is protected from steals and remains only accessible to the worker that activated the task, which is the worker executing the producer of the broadcast. Figure 9.2d and 9.2e show the allocation and the initialization of the input buffer of the next task t 2 c . The activation of t 2 c after these events causes t 1 c to be transferred from the single entry software cache to the work-queue of the worker executing the producer and thus exposes t 1 c to steals. For a minimal memory footprint, this task must be stolen and be executed by another worker and its input buffer must be freed before the producer reaches t 3 c in the chain of readers. Only in this case the buffer of t 1 c can be reused for t 3 c , as shown in Figure 9.2i. A minimal footprint also requires that this pattern of copying, stealing, freeing and reusing continues for the remaining readers until the end of the broadcast.

As shown above, in the best case for the memory footprint only three input buffers are needed: the input buffer of t 0 c from which data is copied and the input buffer of two of the remaining readers (the first of the remaining readers is the one in the single entry software cache and the second one is the reader whose input buffer is being written). However, this requires that each reader t i c terminates before the input buffer of t i+2 c is allocated, which in turn requires that another worker steals and executes t i c in between. It is highly unlikely that this timing of events occurs during execution and it is more likely that the input buffers of at least a few of the readers are allocated before the first reuse of an input buffer can take place. How many input buffers co-exist also depends on the amount of parallelism of the application and load balancing across workers. If many workers are idle during the broadcast, readers that are ready for execution are likely to be stolen quickly and the time to the first reuse of a buffer is low. On the contrary, if all workers are busy executing other tasks, the worker executing the producer of the broadcast accumulates readers that are ready for execution in its work queue. As these tasks are not executed before the worker finishes the broadcast, their resources cannot be freed and the number of co-existing buffers is high. As we will show in the experimental evaluation of this section, the footprint using deferred allocation ranges between the minimal footprint and the footprint of the default implementation for broadcasts that allocates all buffers of the readers at their creation.

Another issue arising from the default mechanism for broadcasts is related to the timing of the copies shown in Figure 9.3. Let t exe be the time that is necessary for the producer to carry out all instructions of its task body, including the writes to the input buffer of the first reader, and let t cpy be the time that is needed to copy the contents of the input buffer of t 0 c to the input buffer of one of the remaining readers 1 . As the input buffer of the first reader acts as the source for all copy operations, t 0 c cannot become ready until all copies are done. Hence, t 0 c becomes ready only upon termination of t p . The other readers t i c are unblocked earliest at t exe + i j=1 t cpy = t exe + i • t cpy after the start of t p . Note that the second reader t 1 c becomes ready after the first copy, but cannot be stolen by other workers as it is first transferred to the single entry software cache. Therefore, the arrow indicating the steal of t 1 c in Figure 9.3 is located at 2 • t cpy after the beginning of the broadcast. The average waiting time t w,avg of a reader to become ready for execution can be calculated as 

t w,avg = 1 n (n -1) • t cpy First reader + n-1 i=1 i • t cpy Remaining readers = t cpy n (n -1) + n-1 i=1 i = t cpy n (n -1) + n • (n -1) 2 = t cpy n • (n + 2)(n -1) 2 = t cpy n • n 2 + n -2 2 = 1 2 t cpy • n + 1 - 2 n
Hence, the average waiting time grows linearly with the number of readers involved in a broadcast and the more readers are involved in the broadcast the longer it takes for each task on average to become ready for execution. In the next section, we will show how the memory footprint as well as the average waiting time can be reduced considerably.

Reducing the memory footprint and execution time

As peek views are a special form of input views with a burst of zero, they do not allow the data that is available through the view to be modified by the task owning the view. Hence, all values that are broadcast from a producer to its readers are guaranteed to remain constant after termination of the producer. An individual copy of the data for each reader is thus not required to preserve the semantics of an OpenStream program. In addition, sharing a single buffer among all readers does not only reduce the memory footprint considerably, but also decreases the average time from the termination of the producer to the activation of a reader by orders of magnitude, as shown below. However, as described in Section 4.3, an input buffer is used only by a single task and freed upon its termination. Sharing a buffer among multiple tasks thus requires a protection mechanism that prevents the buffer from being freed until all of the readers of the broadcast have terminated.

Task execution

Task steal Time ... ...

B B

.5: Timing of a broadcast when using a broadcast table

.4 shows the data structures involved in a broadcast with a single input buffer shared by all readers. The central data structure is called broadcast table and allows the run-time to keep track of references to the shared input buffer. The broadcast table is allocated at the beginning of the broadcast upon termination of the producer and its data pointer is initialized with the address of the input buffer of the first reader t 0 c . In addition to the data pointer, each input view is also provided with a pointer to the broadcast table. During the broadcast, these pointers are set to the address of the broadcast table, which allows each reader to locate the shared input buffer and to update its data pointer when it becomes ready for execution. After the broadcast and when all readers are ready for execution, all data pointers of the readers' input views point to a unique input buffer, as illustrated by the figure 2 . The reference counter refcount holds the number of tasks currently using the buffer. At the beginning of the broadcast, this counter is initialized with the number of readers and is successively decreased with each reader that terminates afterwards. Similar to the synchronization counter of tasks, it is updated using an atomic decrement each time a reader finishes execution. When the counter reaches zero, the input buffer referenced by the broadcast table as well as the broadcast table itself are freed. To be able to carry out the decrement on the correct broadcast table, the address of the broadcast table must be known when a task terminates. Therefore, each of the peek views is provided with an additional pointer named bctable, which points to the broadcast table used by the view.

Obviously, the memory footprint using broadcast tables does not grow linearly anymore as in the default implementation, since the amount of memory per broadcast is constant for any number of readers. The number of buffers that can be saved compared to the default broadcast mechanism depends on the timing of allocations, executions and reuse of buffers with this mechanism, as shown in the analysis for the minimal number of buffers in the last section. The value ranges from a reduction by two buffers if the default broadcast mechanism yielded the minimum size of buffers, to n -1 in the worst case scenario for the default broadcast mechanism.

As far as the average waiting time is concerned, it still depends on the number of readers, but is orders of magnitude smaller than before. Figure 9.5 illustrates the timing of a broadcast based on a broadcast table. At the end of the execution of the producer, the pointer to the broadcast table of all readers must be initialized. If the time that is required to initialize a pointer is t setptr , the entire broadcast can thus be carried out in n • t setptr . Depending on the size of the data to be broadcast, setting a pointer is usually orders of magnitude faster than copying the data, such that the entire broadcast is orders of magnitude faster than without broadcast tables.

Reducing the waiting time has also a positive effect on the critical path of an applicaiton. In the worst case without broadcast tables, a task on the critical path is the last reader in the chain of siblings and becomes ready after (n -1) • t cpy . By using broadcast tables, this time is reduced to n • t setptr and the task on the critical path becomes ready almost instantaneously. In summary, -reducing the time spent on copying data from the first reader of the broadcast to the individual input buffers of the remaining reader. This reduces the average and worst-case waiting time, unblocking tasks including those on the critical path almost instantaneously. -reducing the number of input buffers that is necessary to store the input data of all reader, resulting in a lower memory footprint and less time spent on logical and physical allocation of buffers.

In the next section, we compare the performance and the memory footprint of the default broadcast mechanism with broadcast tables on the cholesky benchmark, a broadcast-intensive linear algebra kernel carrying out Cholesky Factorization.

Experimental evaluation

To evaluate the impact of broadcast tables on the memory footprint and on performance, we measured the execution time and the footprint of the cholesky benchmark, described in Section 6.1.5. One of the key characteristics of this benchmark is that it makes extensive use of broadcasts to a large number of readers. In a second evaluation, we compare the OpenStream implementation to two state-of-the-art implementations of the Cholesky Factorization, PLASMA [START_REF] Kurzak | Multithreading in the plasma library[END_REF] and an OpenMP implementation provided by Intel's MATH KERNEL LIBRARY [START_REF] Drebes | Aftermath: A graphical tool for performance analysis and debugging of fine-grained task-parallel programs and run-time systems[END_REF]. Before we discuss the experimental results, we first describe the changes that we have applied to the layout of the matrix to be factorized in main memory, in order to improve the fraction of requests to caches that result in cache hits.

Changes of the data layout improving cache hit rates

The elements of a two-dimensional N × N matrix in shared memory are stored linearly at consecutive addresses ranging from a base address a 0 to a N 2 -1 with a i+1 = a i + S e , where S e is the size in bytes of a single element of the matrix (e.g., 8 bytes for a double precision floating point value). To improve the cache hit rate, the matrix is processed in blocks of S B × S B elements that can be held in the cache simultaneously. The elements of each row of such a block are stored at consecutive addresses, but the distance between two consecutive rows is greater than zero if the matrix is composed of more than one block, i.e., if S B = N . Figure 9.6a illustrates the distance between the first element of the first row of a block to the first element of the second row. If this distance is a multiple of the cache size S C , the elements of each row are mapped to the same index in the cache, as indicated by the striped pattern in the figure. Depending on the associativity of the cache, this effectively limits the space that is available for the elements of a block and can result in a high miss rate. For example, if the associativity is four, then only four rows of a block can be held in the cache simultaneously, although the capacity of the cache might be orders of magnitude higher. As the elements of a block are read multiple times, this leads to an unnecessarily high number of cache misses. A simple way to deal with this situation is to add padding elements to each row of the matrix, which increases the distance between the rows of a block. This is shown in Figure 9.6b, in which each row of the matrix is padded with S pad bytes, resulting in a distance of n•S C +S pad between two rows of a matrix. Ideally, S pad is equal to the size of a row of the block, such that two consecutive rows of a block are mapped to consecutive indexes of the cache. In all experiments discussed below, we used a padding of 2048 bytes, which corresponds to the size of a row of a block of S B = 256 double precision floating point elements, independently from the size of the matrix, as defined in Section 6.4.

As the padding is beneficial to all operations on matrices in shared memory, we have applied the same padding to the input matrix of the cholesky benchmark using dynamic single assignment. Most of the time, this benchmark operates on blocks stored in streams, representing contiguous regions of memory that do not induce the problems described above. However, initial data is read from the input matrix in shared memory, such that the padding is beneficial to tasks processing input data and writing the results to streams.

Impact on the memory footprint and performance

To evaluate the impact of deferred allocation and broadcasts tables on the memory footprint and on the execution time, we have executed the cholesky benchmark using three configurations of the run-time. The first configuration, named default, uses neither deferred allocation nor broadcast tables, but applies work-pushing using the weighted heuristic and topology-aware work-stealing, as described in Section 7.2 and 7.3. The second configuration, labeled dfa, applies work-pushing with the input only heuristic, topology-aware work-stealing and deferred allocation. The last configuration, labeled dfa+bt, finally applies all optimizations at the same time, i.e., work-pushing using the input only heuristic, deferred allocation, topology-aware work-stealing and broadcast tables.

Figure 9.7 shows the memory footprint in GiB of the benchmark executing on the Opteron system and on the SGI platform, presented in Section 6.3, using the three configurations above for a matrix size ranging from 2 8 × 2 8 to 2 14 × 2 14 and 2 15 × 2 15 double precision floating point elements, respectively. Each point on the curves represents the median value for a total of 50 runs using all 64 cores on the Opteron platform and all of the 192 cores of the SGI system. Error bars indicate the standard deviation. The lower bound for the memory footprint of an algorithm that performs Cholesky Factorization is achieved if a single global matrix used in shared memory with in-place updates, in which case the memory footprint is equal to the size of the matrix. To illustrate the overhead of the above configurations compared to the lower bound, the figure also plots the size of the matrix, indicated by the line labeled SHM (ideal). The dashed lines on the graphs indicate the total size of the main memory for each system. To highlight the differences for both small and large matrices, the axes of the graph use a logarithmic scale. The reason for the smaller maximum size of the matrix on the Opteron system is that the unoptimized version swaps out memory pages to the hard disk for matrices bigger than 2 14 × 2 14 . Swapping may also occur for matrices of 2 14 × 2 14 on this system, but only affects a small subset of the data.

For small matrices of up to 2 10 × 2 10 elements, the three configurations yield approximately the same memory footprint. This is primarily due to the fact that the number of blocks is small, such that the number of readers per broadcast is also small. Figure 9.8 illustrates this property by plotting the number of broadcasts and the total number of peek views of the entire application. As can be seen in the graph, both the number of broadcasts and the number of peek views or readers increase with the size of the matrix. As the number of tasks that rely on a block increases with the number of blocks of the matrix, the gap between the two curves is small for smaller matrices and widens for bigger matrices. In other words, for larger matrices there are more broadcasts and each broadcast has more readers. In addition, Figure 9.7 shows that the difference between the actual footprint of the application and the ideal footprint decreases for larger matrices. The reason for this behavior is that the footprints in the graph represent the overall footprints of the application, including the input matrix in shared memory, all auxiliary data structures, such as data structures that represent workers, streams, frames containing only metadata as well as the stack segments for each worker. As most of this overhead is constant, the relative overhead thus becomes smaller for bigger matrices.

On both systems, deferred allocation and broadcast tables reduce the memory footprint of large matrices significantly. For the largest matrix on the Opteron system, these optimizations reduce the memory footprint by a factor of approximately 15, from more than 62 GiB to approximately 6 GiB (dfa) and less than 4.2 GiB (dfa+bt). For the largest matrix on the SGI platform, the reduction is even higher: the initial footprint for the default broadcast algorithm without deferred allocation of more than 520 GiB is reduced to less than 26 GiB (dfa) and about 17 GiB (dfa+bt), which corresponds to a factor of 20 and more than 30. Hence, both the use of deferred allocation and broadcast tables result in huge improvements on the memory footprint of the application. The largest difference represents more than one order of magnitude. Gains for bigger matrices are expected to be even higher.

Figure 9.9 shows the total number of allocations of 512 KiB-blocks, corresponding to the size of a block of the matrix, from memory pools during the execution of the benchmark. The number of allocations for the default broadcast mechanism and the one for deferred allocation are identical. This is due to the fact that deferred allocation favors the reuse of buffers, but still allocates one buffer for each peek view. In contrast to this, broadcast tables reduce the number of allocations significantly. Figure 9.10 takes into account the reuse of buffers and presents the total number of refill operations for 512 KiB blocks. While the default mechanism yields the least reuse, both deferred allocation and broadcast tables reduce the number of refills significantly.

A similar conclusion as for the memory footprint can be drawn from Figure 9.11, showing the wall clock execution time for the three configurations, i.e., the default broadcast mechanism, deferred allocation and deferred allocation in conjunction with broadcast tables. However, the gap between the configurations appears only for matrices with 2 14 × 2 14 elements and more. For a 2 15 × 2 15 matrix processed on the SGI platform, execution with the default configuration terminates after about 80 s. Deferred allocation reduces the execution time to about 10 s and the configuration using broadcast tables finishes in less than 7 s on average. For the largest matrix on the Opteron system, the execution time for the default broadcast mechanism varies between about 200 s and more than 500 s. This time can be reduced to less than 6 s by deferred allocation and to less than 5 s by using broadcast tables.

Comparison with state-of-the-art implementations of Cholesky Factorization

The results above show that deferred allocation and broadcast tables can improve both the memory footprint as well as the execution time significantly. In this section, we show that the resulting performance is comparable to state-of-the-art implementations of Cholesky Factorization for many-core systems. To this end, we compare our implementation based on OpenStream to parallel Cholesky Factorization provided by PLASMA [START_REF] Kurzak | Multithreading in the plasma library[END_REF] and an OpenMP implementation by Intel's MATH KERNEL LIBRARY [START_REF] Drebes | Aftermath: A graphical tool for performance analysis and debugging of fine-grained task-parallel programs and run-time systems[END_REF], presented below.

PLASMA and QUARK

PLASMA [START_REF] Kurzak | Multithreading in the plasma library[END_REF] (PARALLEL LINEAR ALGEBRA SOFTWARE FOR MULTI-CORE ARCHITECTURES) is a library providing a set of ready-to-use functions for dense linear algebra operations optimized for the execution on multi-socket multi-core systems. The aim of PLASMA is to provide efficient implementations of LAPACK [START_REF] Anderson | LAPACK Users' Guide[END_REF] routines for modern parallel hardware architectures that can be used as a drop-in replacement of existing implementations. Internally, PLASMA breaks operations down into multiple computations with data dependences and passes the resulting DAG of dependent tasks to the QUARK [START_REF] Yarkhan | QUARK Users' Guide -QUeueing And Runtime for Kernels[END_REF] scheduler. As a computation may result in a large number of task executions, PLASMA creates tasks on-the-fly and passes them to QUARK as soon as possible. Each QUARK task is defined by a pointer to a function with the code to be executed by the task, a set of parameters and a specification of the modes in which parameters are accessed (read, write or both) as well as the size of the data. The order of task execution is derived automatically from the parameters of the task by the QUARK scheduler. In addition to data dependences, the scheduler also takes into account information about the topology of the machine based on information obtained from the HWLOC [START_REF] Broquedis | Hwloc: A Generic Framework for Managing Hardware Affinities in HPC Applications[END_REF] library. High sequential performance of each task is achieved through calls to an optimized BLAS library. For our experiments, we have configured the latest available version of PLASMA (2.6.0) to use the sequential kernels of the MKL for each task.

Parallel Cholesky Factorization using the MKL

Besides the sequential implementations of linear algebra routines, the INTEL MATH KERNEL LIBRARY [START_REF] Drebes | Aftermath: A graphical tool for performance analysis and debugging of fine-grained task-parallel programs and run-time systems[END_REF] also offers parallel implementations of BLAS [20] and LAPACK [START_REF] Anderson | LAPACK Users' Guide[END_REF] operations, including the dpotrf function for Cholesky Factorization of double precision floating point matrices. These implementations are based on OpenMP and automatically adapt the tile size to the target architecture [8]. For our experiments, we used the parallel implementation of the latest release of the MKL, which was the INTEL MATH KERNEL LIBRARY 11.1 UPDATE 3 FOR LINUX at the time the experiments were run.

Results

Figure 9.12 shows the execution time in seconds for the OpenStream implementation, the parallel implementation by the MKL and for PLASMA, operating on matrices whose size ranges from 2 8 × 2 8 to 2 15 × 2 15 double precision floating point elements. As in the previous graphs, each point represents the median value for 50 runs using all 64 cores on the Opteron platform and all of the 192 cores of the SGI system and error bars indicate the standard deviation. On the Opteron platform, the parallel implementations by the MKL and OpenStream perform equally well, while PLASMA is slightly slower for matrices with more than 2 13 × 2 13 elements. The fastest implementations on the SGI system are OpenStream and PLASMA with the same execution time. In contrast to the Opteron system, the parallel implementation by the MKL is by far the slowest implementation on the SGI system. In addition, the execution time of the parallel version of the MKL routine has huge variations for large matrices. As the source code of the MKL is not publicly available, we could not investigate the cause for the low performance and the variations, but we suspect that this is related to the synchronization scheme used by the OpenMP code of the MKL.

The absolute performance in GFLOPS is shown in Figure 9.13 3 . As the absolute performance is proportional to the inverse of the execution time shown above in Figure 9.12, OpenStream and the MKL reach higher values than PLASMA on the Opteron system for larger matrices. Similarly, OpenStream and PLASMA outperform the MKL on the SGI system. For a fixed block size for all experiments as in the graphs, parallelism in cholesky increases with the size of the matrix. Hence, for small matrices parallelism is limited and might even be below the number of cores of the system and for large matrices all cores can effectively contribute to the factorization of the matrix. As a result, the graphs show that the absolute performance increases with the size of the matrix.

The highest median performance of about 1.8 TFLOPS is achieved by both PLASMA and OpenStream for matrices with 2 15 × 2 15 elements on the SGI system, representing about 50% of the theoretical peak performance of the machine of 24 • 153.6 GFLOPS ≈ 3.67 TFLOPS [3]. Given the fact that the peak performance can only be achieved for embarrassingly parallel algorithms operating on the register bank, the exploitation of the machine for Cholesky Factorization can be considered as high. However, the performance increase between matrices of size 2 14 × 2 14 and matrices of 2 15 × 2 15 elements gives reason that performance has not leveled out. We could not evaluate the performance of all implementations with bigger matrices due to a technical restriction of PLASMA to matrices with less than 2 32 elements.

The memory footprint of the three implementations is illustrated in Figure 9.14. For large matrices, OpenStream and the MKL require the least amount of memory on both systems. The memory footprints of PLASMA and the MKL are smaller than the footprint of OpenStream only on the SGI system for small matrices.

Conclusion

The comparison of different versions of the OpenStream run-time using the default immediate allocation scheme, using deferred allocation and using both deferred allocation and broadcast ta- bles shows that broadcast tables yield the best performance and the smallest memory footprint for cholesky, a benchmark that uses the broadcast mechanism of OpenStream extensively. The results of the comparison with PLASMA and the MKL show that the dynamic single assignment implementation in OpenStream using broadcast tables is able to match the performance of PLASMA operating on a shared memory matrix with interleaved allocation for load balancing across the machine's memory controllers. All benchmarks have been tuned for the target architecture with respect to the block size and conflict misses in the cache using appropriate values for the padding of the shared memory matrices. Hence, the overhead on the memory footprint due to the use of dynamic single assignment as well as the overhead on execution time of the OpenStream run-time can be considered as sufficiently small and OpenStream can be considered as a state-of-the-art run-time system that enables the implementation of high performance applications for many-core systems.

NUMA-aware broadcasts with on-demand copies

As shown in the previous section, broadcast tables can reduce the memory footprint of an application with frequent broadcasts significantly. However, in contrast to the default scheme for broadcasts, in which every reader has its own input buffer, all readers of a broadcast read from the same input buffer. As this buffer is located on a single NUMA node, this potentially creates contention on a single memory controller and may lead to poor data locality during execution of the readers. Deferred allocation for broadcasts suffers from a similar problem for data locality. Compared to the default mechanism, the memory footprint is reduced due to the reuse of buffers, but it is not minimal. Each reader still reads from a private buffer and due to the fact that all buffers of a broadcast are allocated by the worker executing the producer of the broadcast, all buffers are placed on the same node. As with broadcast tables, this potentially leads to high contention and poor data locality. In addition, multiple buffers with the same data might co-exist, which represents a redundancy that might result in a waste of cache space.

In this section, we address the locality of memory accesses and contention of broadcasts by generalizing the concept of broadcast tables. Instead of referencing a single input buffer located on a single node, the generalized form of broadcast tables, presented below, is able to provide copies of the data on multiple nodes, which allows readers executed by workers associated to the same NUMA node to benefit from locally available data.

Broadcasts with on-demand copies

Figure 9.15 gives an example of the data structure for generalized broadcast tables. A first modification compared to broadcast tables with a single copy of the data consists in the replacement of the data pointer in the data structure representing a broadcast table with an array of pointers to input buffers with one entry per NUMA node. After the termination of the producer of a broadcast, this table only contains a single valid entry, pointing to the input buffer of the first reader. To find this initial entry quickly without having to seek through the entire array, the broadcast table contains an additional field called source_node, which indicates on which NUMA node the original input buffer is placed. In the example of Figure 9.15, the input buffer of the first reader is located on node one. The pointer to the input buffer of the first reader can be determined in constant time by indexing the data array with src_node. All data pointers of the peeking views of the remaining readers are initially set to NULL, indicating that it has not yet been determined which input buffer will be accessed by a reader. As with broadcast tables using a single copy, the update of the data pointer is delayed to the beginning of the execution of a reader. The generalized form of broadcast table can take advantage of this mechanism and may create a local copy of the broadcast data as the node on which the reader executes is known at that moment. The steps that are necessary for this update are carried out by the procedure prepare_peek_data, which is shown in Algorithm 10.

The first lines of the algorithm determine which worker is executing the reader whose peek view has been passed to the function, its NUMA node and the broadcast table of the view. The test in Line 6 checks whether a copy of the data is already available on the local node. If this is the case, the procedure simply sets the data pointer of the view to the appropriate entry of the array of the broadcast table and returns (Lines 7 and 8).

The first check for a local copy might fail in two situations. As prepare_peek_data can be called concurrently for many readers at the same time, it might be that a local copy is currently being created and will become available shortly after the check, indicated by the value updating in the array of pointers to local copies. In this case, the reader can either wait for the copy to be available by going back to the first check, as in Line 13 (busy waiting), or the reader can decide to use a remote copy instead, as in Line 15. Whether the reader waits or not can be set through a configuration option of the run-time at compile time, referred to as busy_wait in the algorithm.

If no other worker is currently creating a local copy, the reader allocates a copy itself as shown in Lines 18 to 27. The reader needs to update the according entry in the array of copies atomically in Line 19 to indicate to concurrent readers that a copy is being created. This update might fail if another worker has decided to do likewise between the last check and the attempt of the atomic update. If this is the case, the worker simply needs to check the status of the copy again by going back to the label retry. If the atomic update succeeds, the reader is responsible for the allocation and initialization of the local copy and determines the local memory pool (Line 20), allocates an input buffer (Line 21), copies the contents of the original buffer (Line 22) and updates the broadcast table (Line 23).

Figure 9.16 illustrates the execution of Algorithm 10 for the peek view of the nth reader t n-1 c of a broadcast. The initial situation is shown in Figure 9.16a, in which already two copies of the input data exist on nodes one and two and where t n-1 c is executed by a worker on node N -2, with N standing for the total number of NUMA nodes of the system. As the entry of the data array of the broadcast table is initially NULL, the reader allocates its own buffer and sets the corresponding entry to updating indicated by the letter U in Figure 9.16b. Next, it copies the contents of the original buffer to the newly allocated local buffer as shown in Figure 9.16c. As the broadcast table indicates that the source node is the second NUMA node with an identifier of one, the pointer to the original buffer is retrieved from the second entry of the data array. Note that during the copying, the entry for the (N -1)th node remains updating, since setting it to the address of the newly allocated buffer could result in read accesses to incomplete data by concurrent readers of the same node. When all data has been copied to the new buffer, the corresponding entry in the data array of the broadcast table can be set to the buffer's address (Figure 9.16d). The reader t n-1 c becomes ready for execution and reads its input data from the local node.

As there is exactly one single entry per NUMA node in the data array of a broadcast table, the maximum number of copies per broadcast is limited to the number of NUMA nodes. For a high number of readers in a broadcast, the memory footprint is thus lower than in the default broadcast mechanism with per-reader copies, but higher than for broadcast tables with a single copy. Similarly, the overhead for a copy is only generated for the first reader on a node, resulting in less time spent on copying than by the default mechanism and more time compared to broadcast tables with a single copy. However, all subsequent readers executing on the same node can simply reuse the appropriate entry of the data array without any overhead, resulting in accesses to local memory during execution and less contention on the node containing the input buffer of the first reader of the broadcast 4 . 

Experimental evaluation

To evaluate the impact of the generalized form of broadcast tables on performance and on the memory footprint, we have executed the cholesky benchmark with two configurations of a run-time implementing benchmark tables with per-node copies. The first configuration, named busy waiting, uses the busy waiting feature of Algorithm 10 to wait for the completion of a copy, while the other configuration, labeled nowait, refers to the copy on the source node if a copy to the local node is in progress. For the comparison with broadcast tables using only a single copy, we have also added a configuration named single copy to the graphs, which corresponds to the broadcast tables of Section 9.1 5 .

Figure 9.17 shows the median memory footprint of 50 runs of cholesky with each configuration of the run-time. Error bars indicate the standard deviation. As expected, broadcast tables with multiple copies increase the memory footprint on both platforms for larger matrices compared to broadcast tables with a single copy. As the number of copies is limited by the number of nodes, this increase is higher on the SGI system than for the Opteron platform. The differences between the configuration with busy waiting and the configuration that does not wait until a local copy is available are negligible.

Figure 9.18 shows the fraction of requests to local memory on the Opteron platform measured with hardware performance counters. Due to the absence of these counters on the SGI platform, we only provide statistics on the locality for the Opteron system. For very small matrices, the locality is high due to the low number of blocks (a single block for matrices with 2 8 × 2 8 elements, four blocks for 2 9 × 2 9 matrices and so on) and a high probability of tasks processing these blocks to be stolen by workers on the same node. The lowest locality is achieved for matrices with 2 10 × 2 10 elements. For larger matrices parallelism increases, such that the probability of remote steals becomes lower. However, the configurations with local copies yield a significantly higher locality for accesses to main memory, reaching more than 95% for matrices with 2 15 × 2 15 elements. To estimate the impact of the improved locality on performance, we have also measured the number of last level cache misses per thousand instructions. Figure 9.19 shows the median number of last level cache misses for 50 instructions multiplied by thousand and divided by the median number of instructions for cholesky using broadcast tables with a single copy. In comparison with the number of misses per thousand instructions of the other benchmarks, presented in Figure 6.21a and Figure 6.21b in Section 6.5 on page 127, these values are low and cholesky can be considered as cache bound. The improvement of local copies on performance is thus expected to be low.

Figure 9.20 shows the median execution time as a function of the matrix size for both test platforms. The values for the three configurations are nearly identical. This confirms the above assumption that data locality only has little influence on the performance of this benchmark. However, applications with a higher frequency of last level cache misses and thus a higher frequency of accesses to main memory could take advantage of the locality improvement and their execution time could be reduced. Furthermore, the performance of these applications might differ depending on whether busy waiting is employed or not.

Conclusion

The analysis of the results for the cholesky benchmark showed that broadcast tables with ondemand node-local copies yield a significantly higher fraction of accesses to local memory, which comes with a substantial increase of the memory footprint. However, the execution time of cholesky cannot be improved by these techniques due to the application's high cache hit rate. Hence, broadcast tables with a single copy for all readers of the broadcast are the best choice both in terms of performance and the memory footprint for the cholesky benchmark.

However, other benchmarks with different characteristics, such as more last level cache misses than cholesky or other timings for tasks to become ready might benefit from broadcast tables with multiple copies. The conditions under which this is true are to be determined in future work.

Summary

In this chapter we analyzed the memory footprint, the execution time and the data locality of broadcasts in OpenStream. We showed that both the footprint as well as the average waiting time of a reader until activation are proportional to the number of readers participating in the broadcast. We then introduced broadcast tables that allow multiple tasks to share a single input buffer and showed that the memory footprint remains constant, independently from the number of readers involved in the broadcast. Depending on the size of the data to be broadcast, this results in an improvement of the average waiting time and a reduction of the memory footprint by more than one order of magnitude. The experimental evaluation involving a dynamic single assignment implementation of Cholesky Factorization using OpenStream, a shared memory implementation for many-core systems based on PLASMA and an implementation using the parallel routine for Cholesky Factorization of the INTEL MATH KERNEL LIBRARY showed that using broadcast tables, OpenStream is able to match the performance of state-of-the-art linear algebra libraries for many-core systems.

As an outlook to further optimizations regarding the locality of memory accesses related to broadcasts, we analyzed the performance, the memory footprint and the data locality of a generalized concept of broadcast tables with on-demand creation of per-NUMA node copies of data. For the cholesky benchmark these optimizations yield a higher data locality, but an increased memory footprint and the same performance as broadcast tables with a single copy.

10 Performance analysis of task-parallel programs and run-times

The performance of task-parallel programs depends on many aspects, ranging from static code optimizations by the compiler or manual data-layout transformations by the programmer to dynamic optimizations regarding the structure of the task graph, the order of task creation and interactions with the operating system and the underlying hardware architecture. Identifying performance anomalies and finding their cause requires a detailed understanding of all of these aspects. In particular, a programmer needs to understand the complex interactions between the software and hardware components involved in the execution. One way to analyze performance is to collect and record all relevant dynamic events into a trace file and to use a tool for off-line analysis after termination of the program. A visual representation of events, system entities and their relationships is an approach to provide the necessary insight for an accurate analysis, sorting causes and effects and distinguishing application-specific anomalies from inefficiencies in the heuristics used by the run-time system. During the last decades, a multitude of tools for tracebased analysis have been developed, e.g. [START_REF] Pillet | Paraver: A tool to visualize and analyze parallel code[END_REF][START_REF] Müller | Developing scalable applications with vampir, vampirserver and vampirtrace[END_REF][START_REF] Drebes | Topology-aware and dependence-aware scheduling and memory allocation for taskparallel languages[END_REF]. However, most of them target distributed applications executing on clusters systems that communicate through message passing and thus do not natively support performance analysis of task-parallel applications and run-time systems.

In this chapter, we present Aftermath, a tool for interactive, off-line visualization, filtering and analysis of execution traces that we have developed during this thesis primarily for performance debugging of OpenStream applications and the OpenStream run-time. The tool has been used extensively during the implementation of the benchmarks presented in Section 6.1 and for performance debugging of the optimizations introduced in Chapters 7, 8 and 9 and allowed us to gain deep insight into the interactions between the application, the run-time, the operating system and the hardware. However, Aftermath provides a large set of tools that apply to performance analysis of task-parallel applications and run-time systems in general and can thus be reused for performance debugging of other task-parallel languages as well. Different key metrics and indicators can be displayed jointly, which accelerates the discovery of significant correlations. For more complex relationships, Aftermath offers powerful filtering mechanisms and is able to match relevant information with the topology of the machine. A responsive graphical user interface gives quick access to all of these features, allowing to explore traces rapidly and to control the degree of detail that is needed for the analysis.

The chapter is organized as follows. In Section 10.1, we identify the requirements for performance analysis in general before we give an overview of Aftermath in Section 10.2. Section 10.3 provides examples of the use of Aftermath for performance debugging of task-parallel applications. Section 10.4 illustrates how Aftermath can be used for performance debugging of the run-time system. Directions of ongoing and future research on guided performance analysis are pointed out in Section 10.5. A brief discussion of related work is provided in Section 10.6 and a summary is given in Section 10.7. Parts of this chapter were previously published in [START_REF] Drebes | Aftermath: A graphical tool for performance analysis and debugging of fine-grained taskparallel programs and run-time systems[END_REF][START_REF] Drebes | Automatic detection of performance anomalies in task-parallel programs[END_REF].

Requirements for trace-based performance analysis

The interactions between hardware and software components involved in the execution of a task-parallel program can generate a high number of dynamic events, especially on many-core systems with dozens or hundreds of cores. Deriving statistics from these events or filtering events relevant to a specific kind of performance analysis is thus likely to be computationally intensive, such that on-line analysis during execution can have a significant impact on the system that is being analyzed and thus lead to biased results. For example, to determine the average duration of all tasks belonging to a certain set of task types in a specific interval, it is necessary that each worker checks for each task it executes if the type of the task belongs to the set and if its beginning and end of the execution lay within the interval. Furthermore, the duration of tasks matching these criteria must be calculated and stored at a memory location that is known during calculation of the average duration. Especially the last step might change the timing of events during execution of the program. If the average is calculated by a single worker, this worker cannot execute tasks during the calculation, which decreases parallelism. If the average is calculated concurrently, multiple workers must synchronize on intermediate results, which might lead to differences in the timing or have an influence on micro-architectural events (e.g., on the number of memory accesses if spin-locks are used for synchronization). More complex analyses usually require more processing time and might thus change the timing at execution time substantially. In addition, the types of analyses must be known in advance, before execution of the application and it is impossible to carry out additional analyses for the same execution after termination of the program.

A common strategy to deal with the issues above is to rely on off-line analysis of trace files. In this approach, a subset of the dynamic events related to the execution of an application is written to a trace which is only analyzed once the application has terminated. Besides the overhead for the collection of relevant events at execution time and for storing the events to the trace file, the analysis does not have any impact on the system that is being examined. This allows a user to investigate all relevant aspects of the execution without limitations for the duration or the amount of memory that is required for the analysis. If additional analyses are needed, these can be based on the events already collected the trace file and do not require re-executing the application.

The presentation below first introduces two recurring scenarios for performance debugging, referred to as trace exploration and hypotheses testing. We then present the requirements on trace visualization and filters for trace data, before we give a brief overview of how trace data is collected in the OpenStream run-time.

Trace exploration and hypothesis testing

We identified two key scenarios frequently occurring in the performance debugging based on execution traces. In the first case, the programmer suspects that there is a performance anomaly or is looking for optimization opportunities, but has not identified any specific issues. Browsing through an execution trace, which we refer to as trace exploration, can help build up a hypothesis by identifying program behavior that leaves room for improvement. In the second case, the programmer has already developed one or more hypotheses and tries to confirm or to refute them. In the rest of the chapter, this scenario is referred to as hypothesis testing. Performance debugging is often an iterative refinement process, alternating between these two situations, as shown in Figure 10.1. Usually, the programmer starts by executing a program, explores the trace containing the events collected at execution, identifies possible sources of performance anomalies, tests the hypotheses and finally fixes the issues in the application or run-time system. As trace exploration and hypothesis testing are the cornerstones of performance analysis, a program for trace analysis should provide appropriate tools for data selection and examination that fit both situations. 

Figure 10.2:

Capturing events related to the interactions between the application, the runtime system and the hardware

Trace visualization

Execution traces of task-parallel applications generally contain two types of information. The first type relates to static information about the execution context, e.g., the number of cores, the machine topology and the different tasks or work functions, while the second type refers to dynamic information on execution events, e.g, worker state transitions, communication events and samples collected using hardware performance counters. For efficient analysis, the basic topological, temporal and relational aspects need to be represented adequately at the same time.

In particular, the user should be able:

-to distinguish the activity of different cores and worker threads, -to observe activity over time and the evolution of metrics, -to precisely identify the different types of events, and -to determine involved entities, e.g., source and destination of data exchanges.

Visualization is an appropriate method to present large quantities of events and provides various means to present multi-dimensional data (e.g., by the position on the screen, colors, patterns, etc.). A graphical representation should provide adequate support to make apparent any strong correlations between events. For example, if a performance issue only occurs on specific cores, in specific intervals or after specific events, this behavior should be directly identifiable on the visual representation.

The interactive exploration of traces is an essential aspect that provides a quick overview of the trace data and helps to develop a working hypothesis. Navigation along the different dimensions, e.g., changing the interval to be displayed or limiting the graphical representation to a subset of cores should therefore be intuitive to the user. With trace files of up to several gigabytes, containing hundreds of thousands of events, rendering needs to be sufficiently fast for interactive trace exploration.

Control over the amount of detail

For the exploration of specific aspects or in order to reduce the amount of data that is visualized, it should be possible to filter the information from the trace, such that only relevant information is displayed. To avoid interrupting the user's work-flow, there should not be any notable delays and the result should be visible immediately when the filter is applied. Filters also represent an essential tool for hypothesis testing. To check if an assumption is correct, the user needs to filter out all situations for which the premise of the hypothesis does not hold. As conditions can be complex, it should be possible to combine filters easily. However, even with powerful filtering schemes, visual feedback is not always sufficiently precise for a distinct conclusion. In such cases it may be necessary to statistically correlate events, which means that it should be possible to aggregate trace data and display statistical information on event distributions, either presented in separate views or along with the information that was quantified. The latter case might enable the user to draw conclusions on relationships between existing and newly aggregated aspects. If none of the basic statistical counters alone can provide enough information about a relationship, it is essential to be able to combine multiple counters. The user should be guided through this process by a user interface that allows to precisely select which information should be derived and how it should be displayed.

Finally, it must also be possible to obtain detailed information about specific events. This can help to detect outliers or to develop generalized rules from particular situations. For example, the user could select a few corner cases for task duration one after another and then try to figure out the generalized conditions for fast or slow task execution.

Recording execution traces of task-parallel applications

The collection of trace data itself also plays an important role for performance analysis. This involves the methods for data collection during execution as well as the definition of a file format that is suited to store all relevant events. However, as this chapter focuses on methods for the presentation and processing of existing traces, we only motivate basic requirements for the collection of trace data and give a short overview of the instrumentation of programs and the run-time, enabling support for execution traces in OpenStream.

To keep the amount of work for programmers to support execution traces low, tracing should be implemented as a generic, application-independent mechanism. Ideally, the instrumentation of the application should be done fully automatically or tracing should be provided automatically through underlying software and hardware interfaces. For programs whose execution is managed by a run-time system, tracing is thus often implemented transparently to the application within the run-time and does not require any specific support by the application. However, it should also be possible to record application-specific events and high-level information that cannot be derived automatically, e.g., the beginning or the end of measurement intervals. Support for low-level events, such as hardware performance counters or statistics obtained from the operating system is essential for the analysis of the interplay between hardware and software components.

The format of trace files should also be application-independent, such that a generic tool for trace analysis supporting this format can be used to analyze a wide variety of applications. For example, instead of using a fixed set of task names with a predefined meaning, the format should support the definition of a variable set of task types. To keep the size of trace files low, the format should contain as few redundancies as possible. In addition, a binary representation for trace data is preferable as binary representations often require less space than textual representations and can be parsed faster when the trace file is loaded by the performance analysis tool. Support for large quantities of events and large file sizes however are mandatory, especially on large systems with high numbers of cores. Figure 10.2 shows a basic view of the implementation of tracing in OpenStream. The run-time is responsible for the collection of all events as well as for the creation of the trace file. To avoid time-consuming system calls related to tracing and thus to reduce the overhead of serializing events into the trace file, all events are collected in main memory and are only written to the trace file at termination of the program. The majority of the events are generated by the run-time itself. Examples of such events are task creations, information about accesses to views, task destructions, the beginning and end of the execution of a task, work-stealing and work-pushing events. The only application-specific events that are currently supported are the beginning and the end of measurement intervals, which can be recorded through simple calls to run-time functions as described in Section 6.2.3. Low-level events from the hardware are recorded by the run-time using the PAPI [START_REF] Terpstra | Collecting performance data with PAPI-C[END_REF] library, which provides access to monotonically increasing counters available on the target system that measure how many micro-architectural events of a certain type have occurred.

The set of events to be sampled is set up at the beginning of the execution, but the counters are only enabled during measurement intervals to avoid including unrelated micro-architectural events in the trace. Although the period for the sampling of hardware performance counters during the measurement intervals can be arbitrary, we have chosen to sample each counter only before and after the execution of each task. While this leads to sampling periods of variable length and a relatively low resolution, this strategy allows a tool reading the trace to derive statistics for each individual task (e.g., the number of cache misses that have been generated during execution of each task). Moreover, a low sampling period helps to keep the size of the trace file small.

In the next section, we introduce Aftermath, a tool that we have developed to meet the requirements outlined above for the analysis of execution traces of task-parallel programs and run-time systems. Examples for the use of Aftermath for performance debugging of task-parallel applications and run-time systems are given in the following sections.

Aftermath

We have designed and implemented Aftermath1 for fast, interactive, visual exploration and analysis of traces generated by fine-grained task-parallel applications and their run-time systems, executing on modern many-core architectures. In this section, we give an overview of the design of Aftermath and its features, we present the layout of its graphical user interface, we give an outline of the required trace format and we explain how Aftermath can exploit information from application symbol tables and trace annotations. Although Aftermath has primarily been developed for OpenStream applications and the OpenStream run-time, many of its concepts apply to task-parallel languages and run-times in general. 1. The timeline component in the center of the user interface shows the activity of each of the cores over time (e.g. the different states of the worker threads associated to the cores, evolution of performance counter data and specific discrete events, such as task creations, and communication between workers). 2. The right side contains a group of statistical views aggregating individual events in order to quantify basic information for an interval from the timeline view selected by the user (e.g., a histogram showing the distribution of task durations, a text field indicating the average parallelism and a communication matrix indicating which cores and nodes communicate). 3. A set of filters for various basic properties at the left side allows the user to control what is shown in the timeline component and in statistical views (e.g. only tasks of a specific type, tasks whose execution duration is in a certain range, tasks that write to certain NUMA nodes, etc.). 4. The bottom part is reserved for detailed textual information about a selected state and the task execution associated to it (e.g. the task and state type, the duration and data-flow-specific information about the producers of the task's input data as well as the consumers of its output data). 5. A menu bar at the top provides access to a set of generators for metrics derived from high-level events or metrics that combine existing statistical counters (e.g. the average task duration, number of bytes exchanged between specific NUMA nodes, the ratio of two hardware performance counters, etc.). Selecting the appropriate menu entry opens the corresponding dialog that guides the user through the creation of a derived metric.

Organization of the main user interface

Aftermath supports arbitrary zooming and scrolling along the timeline through an intuitive interface. Filters directly affect the information shown in the timeline and the statistical views 3), information on selected tasks / events (4) and menu bar for derived metrics (5).

for the selected portion of the trace to provide immediate visual feedback. Rendering has been optimized carefully, such that no delays interrupt the user's work-flow. During development of Aftermath, we found that complete traversal even of multi-gigabyte traces only represents a small fraction of the rendering time. Displaying only information that is visible at the selected zoom level reduced the overall delay sufficiently. For example, instead of rendering all the state changes in the timeline, only states that represent a relevant part of the interval defined by a pixel on the screen are shown. For a set of communication events whose communication lines overlap, only one line is drawn. The resulting rendering operations are carried out by the CAIRO GRAPHICS LIBRARY [START_REF]The Cairo Graphics Team[END_REF]. For standard user interface components we have used GTK+ [START_REF] The | The GTK+ project[END_REF].

As the size of the different parts suggests, the main visual representation is the timeline component. The user can choose a mode for visualization for the timeline from a set of modes, each of which highlights specific aspects of the trace. The modes currently supported by the timeline are the following.

-The default state mode shows which states the workers traverse over time. Aftermath supports a handful of different states, which are mainly related to activities of the run-time. For example, there are states for task execution, task creation, broadcasts and dependency resolving of tasks. The state mode of the timeline allows the user to identify visually which workers and how much time these workers spent in a particular state. -In heatmap mode, the timeline represents the duration of tasks with different shades of red. We refer to the visual representation of the timeline in this mode as a heatmap for short. Phases during which a worker executes slow tasks are rendered in the heatmap using dark red, while phases with fast tasks are white. The interval that defines which tasks are considered as slow and which tasks are considered as fast can be set by the user or can be determined automatically by Aftermath from the minimal and maximal duration of all tasks present in the trace or from a subset of tasks defined by a filter. The number of shades that are used for rendering is also configurable. -The timeline in task type mode, also called typemap, associates a different color to every task type found in the trace and shows which type of task each worker executes over time. The term task type refers to a task construct in the source code. For example, an application with three task constructs, one for tasks that perform matrix multiplication, one for auxiliary tasks for the initialization of the application and one for the termination defines three task types. Instances of these task types might be rendered using blue, green and yellow, respectively. This allows the user to identify at which moments of the execution the different types of tasks are executed and where they execute.

-When the timeline is in NUMA mode, it associates a color to each NUMA node and shows which nodes are targeted by memory accesses performed by the tasks executed by each worker over time. This information is derived from the addresses of memory accesses and information on data placement present in the trace. Intervals during which many tasks with a low fraction of remote memory accesses were executed are rendered in violet, while intervals with a high fraction of remote accesses are pink. This view is useful especially when the NUMA read and write modes show that a lot of different nodes were targeted and thus do not show a clear relationship between accessing nodes and the targeted nodes.

The different components of the user interface and the different modes for the timeline require different kinds of information to be present in a trace. In the following paragraphs we briefly discuss the layout and the types of information that can be stored in a trace file for Aftermath.

Trace format

Trace files for Aftermath are organized as streams of data structures, which can either contain events (i.e., state changes, hardware performance counter values, communication events or discrete events, such as the creation of a task or beginning and end of task execution), topological information about the machine (e.g., how cores relate to the system's NUMA nodes), descriptions of hardware performance counters or information about the location of OpenStream-specific dataflow buffers. Structures can appear in any order, e.g., the trace might contain events of different cores in an interleaved fashion, as long as total order with respect to the timestamp for events is preserved for each core. The interleaving of events from different cores keeps the overhead low during collection of trace data and when this data is written to a file as no time-consuming sorting is necessary. The total order of events per core limits the overhead when a trace file is loaded from the disk.

Aftermath currently defines a native trace format, which is optimized for the OpenStream run-time and for OpenStream applications. However, not all types of data structures are mandatory for all kinds of analyses that are supported by the tool. Trace files that omit OpenStream-specific events can still be loaded and only limit the set of analyses that can be carried out on the trace. For example, if a trace file only contains events marking the beginning and the end of the execution of each task but does not include information on accesses to input buffers, Aftermath cannot provide information on the locality of memory accesses but can still be used for analyses based on task durations and is able to visualize data for hardware performance counters. Hence, although Aftermath has been developed primarily for the analysis of OpenStream programs and the OpenStream run-time, it is also suited for the analyses of applications and run-times of other task-parallel languages.

As traces can contain hundreds of thousands of events, trace data is stored in a binary format to reduce its size and to avoid long parsing delays when a trace is opened. Further reduction of the file size is achieved through the compression of traces with standard GNU/Linux tools, such as GZIP, BZIP2 or XZ. Opening a compressed trace causes Aftermath to call the appropriate tool for decompression and to read uncompressed data from an unnamed pipe.

Finally, the format was also designed to contain only few redundancies. Information not explicitly available in the trace file, but needed for rendering or generation of basic statistics is added to the internal representation when the trace is loaded into main memory or when the information is needed during rendering. For example, the identifiers of NUMA nodes targeted by accesses to input buffers are not stored in each data structure describing these accesses, but are retrieved from the addresses of the accesses and the data structures describing the placement of input buffers. This way, the information on the placement is only stored once for each buffer regardless of the number of accesses.

Symbol tables and annotations

The development cycle for task-parallel applications and run-time systems introduced in Section 10.1 contains steps in which the programmer inspects a trace and locates performance bottlenecks as well as steps in which the code of the implementation needs to be modified. To support these alternations during application development, Aftermath is able to relate the information of the visual representation to the source code of the application. If the user specifies the path to the executable of the application with debug symbols that was executed to obtain the trace in addition to the name of the trace file on startup, Aftermath extracts these symbols and the location of each symbol in the source code using standard command-line tools of the GNU/Linux system, in particular NM. When a task is selected from the timeline, the tool retrieves the address of the associated work-function, looks up the corresponding entry in the table with debug symbols and shows the name of the work-function in the detailed text view. A click on this name starts an editor that opens the source file containing the function and jumps to the correct line.

However, in the default naming scheme, the OpenStream compiler automatically generates the names for the work-functions by concatenating the name of the function containing the task construct with the string _wstream_df_workfn_ and a sequential number, which makes it difficult to distinguish several tasks have been defined within the scope of the same function. Therefore, we have added a new clause to OpenStream called task_name, which allows the programmer to define a custom name for the work function associated to a task construct.

Another useful feature of Aftermath supporting the user in the development cycle are userdefined annotations. A double-click on the timeline opens a dialog that lets the user enter an arbitrary text and choose a color for the new annotation. Each annotation appears as a symbol on the timeline at the time and core that corresponds to the position of the click. When the user moves the mouse pointer over the annotation, Aftermath displays its contents. A double click on an annotation lets the user change or delete the annotation. As Aftermath only displays annotations and does not interpret their contents, annotations can be used to provide arbitrary information on specific events (e.g., to label a specific task execution) or to mark specific moments of the execution of the program (e.g., the beginning or end of an iteration of an algorithm). Since trace analysis can be a time-consuming task taking hours or even days, involving more than one person, annotations can be saved independently from the trace file and loaded for further analysis at a later point in time.

Debugging application performance

After the overview of Aftermath above, we now present two cases that deal with issues that we have encountered during development of benchmarks for the OpenStream project and that illustrate how Aftermath can be used for performance debugging of task-parallel applications. The first example features the detection of a design problem of the shared memory implementation of the seidel benchmark that results in inefficient access to main memory. The second example illustrates how multiple views and statistics can be combined to identify an issue related to branch mispredictions in the k-means application.

Seidel: detecting contention on memory controllers

As a first example, we show how the cause for the poor scalability of the shared memory implementation of seidel with sequential initialization of the global matrix of Section 6.6 can be identified with Aftermath. All trace data has been collected on the Opteron test system with 64 cores grouped into 8 NUMA nodes as described in Section 6.3.1.

Figure 10.4a shows the timeline in its default mode, indicating the states each worker traverses over time. At the beginning of the execution most workers are idle (light blue) due to the sequential initialization of the matrix. This phase is followed by a parallel phase during which the actual computations are carried out. All cores during this phase remain in task execution state until program termination (dark blue), indicating that there is sufficient parallelism available. The beginning and the end of the measurement interval are marked by a vertical green line with a triangle at the top pointing to the right (beginning) and a vertical red line with a triangle pointing to the left (end).

The majority of the tasks in this benchmark should have approximately the same duration due to an identical amount of work, except for a few blocks at the borders of the matrix and auxiliary tasks. However, upon selection of the measurement interval from the timeline to obtain statistical data about task duration, a performance anomaly becomes apparent: the task duration histogram shows an abnormal distribution with several peaks denoting groups of tasks with different execution durations shown in Figure 10.4c. .4b shows the timeline in heatmap mode, in which tasks are presented with a different intensity of red according to their execution time, from white for fast tasks to dark red for slow tasks. The presence of large horizontal stripes with the same color indicates that there are no variations of the task duration over time and suggests that the task duration directly depends on the core executing the task. The shortest tasks are executed by cores 0 to 8 (almost white), which are located next to the memory controller of NUMA Node 0. Tasks from cores associated to nodes 3 (cores 23 to 31), 5 (cores 40 to 47) and 7 (cores 56 to 63), which are at a distance of two hops from node 0, have the highest duration (dark red). The shared matrix is thus located on Node 0, which causes memory accesses to be the bottleneck in this application.

The trace file also contains hardware performance counter data for the number of requests to local and remote memory controllers. On the Opteron platform, these are northbridge-wide counters [START_REF] Amd | BIOS and Kernel Developer's Guide (BKDG) for AMD Family 15h Models 00h-0Fh Processors[END_REF] that aggregate accesses of 8 cores sharing a memory controller. In the trace file, these have been associated to the cores with the smallest identifiers, i.e. cores 0, 8, 16, 24, 32, 40, 48 and 56. Aftermath is able to combine the two counters for remote and local accesses to a derived metric representing the ratio between local accesses and the total number of accesses. Figure 10.4d shows the evolution of this metric extracted from the timeline view, with a vertical plotting range clipped to the interval [0, 1.1]. For core 0, associated to Node 0, the value is close to one, indicating a high fraction of local accesses. For the other cores the value is close to zero. Thus, most of the memory accesses are remote, targeting Node 0, which finally explains the abnormal distribution of task durations.

Using interleaved allocation as suggested in Section 6.2.2 partly solves this problem as distributing memory accesses across NUMA nodes reduces the contention on a specific memory controller. After the modification of the benchmark, the task duration is much more uniform, which can be confirmed by loading the trace of the modified benchmark into Aftermath and by verifying that the abnormal distribution is no longer visible in the task duration histogram.

K-means clustering: branch mispredictions

As stated in Section 6.5, the k-means benchmark is a compute-intensive application whose performance is mostly insensitive to data placement. However, during development of this application, we encountered a performance anomaly that we first suspected to be related to memory accesses, but which turned out to be related to branch mispredictions. Figure 10.5 shows the task duration histogram after selection of the measurement interval for a trace recorded with our first implementation of k-means executing on the Opteron platform. To focus the analysis on the computation, all auxiliary tasks have been filtered out. Although all k-means computational tasks have similar workloads, their execution time is not uniform as indicated by the peaks in the histogram. Contrary to the seidel example above, there is no clear and simple relationship between task duration and topology. Each core executes slow and fast tasks during the entire measurement interval as shown in Aftermath's timeline in heatmap mode in Figure 10.6a.

Selecting a slow task from the heatmap and clicking on the task name in the lower part of the main window opens an editor with the task's source code. The innermost loop of the task contains a conditional update of the cluster associated to a point. This results in frequently changing Aftermath can display hardware performance counters from a trace file, either directly or after having calculated the (discrete) derivative for each sampling interval. The latter option has been used to generate the branch misprediction count of Figure 10.6b. As the hardware counters for each core are sampled right before and right after task execution, the graph interpolates with a constant value corresponding to the average misprediction rate for each task. The interval represented by the vertical axis has automatically been adjusted to the minimum and the maximum number of branch mispredictions per cycle and corresponds to the interval [0; 0.009215]. The combination of the graph and the task duration heatmap immediately reveals a correlation: slow tasks (darker shade of red) have a higher branch misprediction rate than faster tasks (lighter shade).

It is possible to transform the condition in the loop, making the cluster update unconditional, and hoisting the check outside of the time-critical loop. The task duration distribution becomes more uniform, which solves the performance anomaly. Figure 10.7 shows the task duration histogram of the updated version of k-means2 . The number of peaks has been reduced to two close peaks near 6.5 Mcycles. The heatmap shown in Figure 10.8a also confirms that the distribution is much more uniform. Figure 10.8b, showing the zoomed heatmap combined with the average number of branch mispredictions during execution of a task3 , illustrates that the duration of a task is not related to the number of branch mispredictions any longer.

The examples above for seidel and k-means are excellent examples of performance debugging that does not involve any OpenStream-specific features of Aftermath. The only information that is exploited in these analyses relates to the different states each worker traverses, the duration of tasks 

Debugging run-time performance

Aftermath has also played an essential role in performance debugging of the OpenStream runtime and for the comprehension and implementation of the optimizations presented in this thesis. The following part starts with an analysis of random work-stealing and shows how Aftermath can be used to verify that topology-aware work-stealing, work-pushing and deferred allocation effectively increase data locality. Afterwards, we use Aftermath to analyze the impact of broadcast tables on the performance of the cholesky benchmark.

Deferred allocation and work-pushing

The first use case for performance debugging of the run-time that we present illustrates how Aftermath exploits information on memory accesses from a trace file with topological information on NUMA nodes. We first discuss the behavior of the dynamic single assignment implementation of seidel with random work stealing and without work-pushing or deferred allocation and then illustrate how work-pushing and deferred allocation improve the locality of memory accesses resulting in higher performance.

Aftermath's trace format supports the tracing of an arbitrary number of memory accesses as well as an arbitrary number of instances of data structures providing information on relationship between address regions and NUMA nodes. Each memory access in a trace consists of the start address of the memory region that is accessed, its size and the access mode, i.e., whether the access is reading or writing data. Data structures describing the mapping of addresses to NUMA nodes simply consist of a start address, the size of the corresponding data region and the identifier of the NUMA node. The memory region of each memory access must be included entirely in a single data region. If a memory access relates to regions on two or more NUMA nodes, the access must be traced as two or more memory accesses, each targeting only a single node.

Figure 10.9 shows multiple views of a trace of the seidel benchmark executed on the SGI platform with a run-time configured for random work stealing and without work-pushing or deferred allocation. The first view, showing the states of the 192 workers over time, indicates that there is only a short phase at the beginning during which parallelism is low. Figure 10.9b shows the timeline in task type mode. As described above in Section 10.2.1, each task construct in the source code is associated to a different color and each pixel on the bar showing the activity of a worker has the color of the construct that took most of the time within the interval represented by the pixel. Initialization tasks, copying data from the shared matrix to streams are pink, while the main computational tasks are ocher. The phase with a low number of workers in the task execution state is located between the initialization phase and the phase composed of main tasks and is due to low parallelism at the beginning of the algorithm (cf. Section 6.1.1).

The locality of read accesses to main memory is illustrated in Figure 10.9c. For each worker in this view and each interval represented by one pixel on the timeline, Aftermath first calculates the set of tasks whose execution time overlaps with that interval. It then determines for each task the set of read accesses that took place during execution of the task and calculates how much data was accessed per node during the part of the task execution that overlaps with the pixel interval. This calculation is based on the assumption that accesses are not instantaneous, but are continuous operations that cover the whole task execution. When all tasks for the interval have been considered, the tool determines from which NUMA node most of the data has been read.

As an example for the calculation of the amount of data accesses by a task consider Figure 10.10. Assume that one pixel on the timeline represents 5.5 Mcycles and that there are three tasks t 1 , t 2 and t 3 whose interval of execution overlaps with the pixel to be drawn. Aftermath assumes that the memory accesses of the tasks are carried out continuously during the entire execution of a task. Hence, for the interval of the pixel, it assumes that t 1 reads 0.5 Mcycles 3 Mcycles • 128 KiB from Node 5, t 2 reads 320 KiB from Node 2 and that t 3 does not perform any read access. As Node 2 represents the node which provides most of the data that is accessed in the interval, the pixel in this example would be drawn with the color associated to Node 2.

The untidy appearance of intervals of different colors in Figure 10.9c shows that there is no clear relationship between the nodes targeted by read accesses and the cores accessing the data. The same conclusion can be drawn for the locality of write accesses, illustrated in Figure 10.11b. However, the views presented in Figure 10.9c and 10.9d only show qualitative information, but do not reflect the locality of memory accesses quantitatively. For example, a task that reads only a bit more than half of its input data from a remote node and the rest of the data from the local node would be drawn using the color of the remote node, although a large fraction of memory accesses are local. A view that is more suited to investigate the quantitative aspects of data locality is the NUMA heatmap view, briefly introduced in Section 10.2.1, which uses different shades to represent the amount of memory that is accessed locally, ranging from blue (entirely local) to pink (entirely remote). The majority of the timeline component in this view shown in Figure 10.11c is pink, indicating that most of the memory accesses are in fact accesses to remote nodes. The absence of a clear relationship between the requesting nodes and the targeted nodes of memory accesses can be confirmed by looking at the communication incidence matrix for the measurement interval shown in Figure 10.9f. This graph captures for every pair of nodes how much data has been read and written by the cores of one node that is stored in the memory of the other node. Ideally, the matrix displays a sharp, diagonal pattern indicating that all memory accesses target the memory controller of the same node as the requesting cores. However, the matrix in the example indicates that all nodes communicate with all other nodes. The global statistics for the entire measurement interval and all workers indicate that only 5.36% are local accesses. Figure 10.11 shows the same views for the seidel benchmark after activation of topology-aware work-stealing, work-pushing and deferred allocation. The views indicating the major nodes accessed in read mode (Figure 10.11a) and write mode (Figure 10.11b) show that there is a clear relationship between the cores accessing data and the targeted nodes. The timeline for all cores of the same node (core 0 to 7, 8 to 15 and so on) have the same color almost throughout the entire measurement interval. In addition, this color corresponds to the local node of the cores, indicating that at least half of all data is stored on the local node. This is confirmed by Figure 10.11c, which is almost entirely blue with only a few pink spots, which means that nearly 100% of data transfers are local. The communication matrix of Figure 10.11d with a sharp, diagonal pattern confirms this. Global statistics report that 97.94% of the data transfers found in the trace target local memory. In the next example, we examine the impact of broadcast tables with a single copy presented in Section 9.2 on the cholesky benchmark, also executing on the 192-core SGI system. Figure 10.12a shows the activity of each worker during the measurement interval. This unzoomed view already reveals the numerous broadcast phases, indicated by the dark red parts as well as multiple phases during which most of the workers are idle, indicated by light blue. Aftermath reports in the statistical view that only 58% of the measurement interval is spent in task execution. The time spent on broadcasts represents 19% of the interval and 18% of the time workers are idle.

Another feature of Aftermath confirms this poor exploitation of the computing resources. By creating a derived counter, whose samples represent how many workers were in task execution state at the same time, the user is able to display the average parallelism over time. Figure 10.13a shows the graph for this derived counter. Ideally, all the 192 cores of the machine are busy during the entire measurement interval. The graph should thus display a steep increase to 192 at the beginning and should only drop below 192 towards the end of the measurement interval. However, the graph of Figure 10.13a has a different shape. The value of 192 is only reached a few times for a short period. Most of the time, the number of workers that execute tasks in parallel remains below 192 and often reaches values close to zero. Zooming further into the trace reveals that the broadcasts are responsible for phases with low parallelism: Figure 10.12b shows several broadcasts that are on the critical path. Figure 10.12c zooms on the first of these sets of broadcasts and clearly shows that there is only little activity besides the broadcasts themselves.

By using broadcast tables with a single copy per broadcast, the time spent on task execution during the measurement interval can be increased to 91%. Broadcasts only take less than 0.1% of the time in this configuration and idle time can be reduced to about 4.5% of the execution time. .12d shows the activity of all cores during the measurement interval. There are still phases with few activity, but these can essentially be found at the beginning and at the end of the execution when the number of tasks ready for execution is low due to limited parallelism of the algorithm. Figure 10.13 summarizes how many workers are in task execution state in parallel. In contrast to the graph without broadcast tables, the number of workers executing tasks in parallel is near 192 almost during the whole measurement interval.

The examples above showed that Aftermath can be used to debug the performance of taskparallel applications and run-time systems. However, many of the steps involved in this analysis are repetitive and time-consuming due to the large number of potential causes for bottlenecks and the large number of available metrics (e.g., hardware performance counters). The next section presents a perspective to automate some of these tasks and to guide the user through the process of performance analysis.

A perspective for the automation of performance analysis

Currently, the user has to detect bottlenecks manually, i.e., by selecting appropriate views and by applying the filters that highlight a performance anomaly and emphasize its cause. For example, if the user suspects that low performance is due to a high cache miss rate of a certain type of tasks (e.g., tasks carrying out matrix multiplications), it is necessary to visualize the task duration, to limit the view to tasks of that type, to inspect the cache miss rate of slow and fast tasks and to develop the hypothesis of a correlation between task duration and the cache miss rate. The user must repeat these steps for every potential source of performance anomalies. Some of the steps in this process could be automated and the user could concentrate on the essential parts of performance analysis. In this section, we illustrate two scenarios for automated performance analysis. In the first scenario, the trace analysis tool analyzes the time spent in the different run-time states and informs the user about insufficient parallelism or high overhead, while the second scenario deals with the automatic detection of correlations between performance indicators. Future versions of Aftermath could integrate these mechanisms and thus guide the user through the process of performance analysis.

High-level analysis based on thresholds

Ideally, each core of the machine effectively contributes to the overall computation and spends nearly all of its time in the task execution state. Assume that there are n cores and an interval of a duration d. Let T exe be a user-defined threshold indicating the targeted fraction of time in the task execution state; e.g., T exe = 0.95 indicates that at least 95% of the time should be spent in that state. Let further D e,i be the overall duration a core i spends in task execution state within the interval. If the inequality n i=1 D e,i < T exe • n • d holds, there is not enough parallelism to saturate the machine with running tasks.

The root cause for insufficient parallelism can be refined with further threshold-based analysis. For example, if more than a fraction T create is spent in the task creation state, task creation overhead is likely to be too high or if a fraction of time T idle is spent idling, then there might simply not be enough parallelism exposed by the application or there might be a load balancing problem.

The exact rules and thresholds are to be determined in future work. However, these simple examples show that basic high-level performance analysis can be carried out without intervention of the programmer. This can be particularly convenient when comparing a larger number of implementations of an application or combinations of optimizations in the run-time. A trace for each of the configurations can be examined automatically and the results could be summarized in a report.

Correlating performance indicators with task durations

The analysis above does not cover performance anomalies that occur during the execution of tasks, such as the performance anomaly related to branch mispredictions of Section 10.3.2. Hardware performance counters can provide insight on what happens during task execution. Correlating per-task values for these counters with other performance indicators, e.g., correlating the branch misprediction rate with the execution time, can help develop a hypothesis to explain the anomaly. As shown in the examples, Aftermath already provides a generic interface for analysis of arbitrary performance counters, but it is up to the user to select the appropriate event type, to configure the run-time to capture hardware performance counter samples and to write the samples to the trace file. Manually determining the relevant event types by correlating the per-task values for each of the available counters with the execution time of tasks can be time-consuming due to the multitude of events that can be monitored on modern architectures. Hence, automating this process is highly desirable. We propose a method based on linear regression in order to determine automatically whether a specific hardware event should be considered for performance analysis and under which conditions it is relevant. This method can be outlined as follows:

1. Selection of a micro-architectural event that might be relevant (e.g., branch mispredictions, cache misses or accesses to remote memory). 2. Execution of the application that is to be analyzed and generation of a trace file with hardware performance counter samples for the selected event. 3. Calculation of per-task values for the duration and the increase of the number of the selected micro-architectural events by analyzing the hardware performance counter samples in the trace (e.g., the number of cache misses that occurred during execution of each task). 4. Analysis of the variation of the task execution time. This can be done by calculating the coefficient of variation of the execution time and by comparing it to a threshold. If the variation is sufficiently high, the analysis continues with the next step. If the variation is low, a performance anomaly that shows up in a subset of all tasks is unlikely and the analysis stops. 5. Correlation of the per-task values for the micro-architectural events with the task durations using linear regression. If the coefficient of determination exceeds a user-defined threshold, the correlation is considered to be relevant and the user is informed. Otherwise, the analysis restarts at the first step with a different micro-architectural event.

A performance anomaly does not necessarily concern all types of tasks of the application and all cores of the machine. For example, the performance anomaly related to branch mispredictions above only affected main computational tasks and the performance problem of the seidel benchmark described in Section 10.3.1 was only present on cores of nodes 1 to 7. Hence, steps 3, 4 and 5 should be repeated for user-defined subsets of task types and cores.

As steps 1 and 2 involve the configuration of the run-time system and generation of the trace and are thus specific to a particular implementation, the description below focuses on steps 3, 4 and 5.

Calculation of per-task hardware performance counter values

Hardware performance counter values are usually captured per core and first need to be associated with tasks before they can be correlated with other performance indicators. Assume that v(c, i, t) returns the absolute value of a counter c for core i at a time t. Determining how much a value has changed during execution of a task is done by comparing v at the beginning T s and the end T e of the task. mispredictions generated by the task t 2 , is N misp,t2 = v(n misp , i, T e ) -v(c misp , i, T s ) and the number of cycles is N cyc,t2 = v(c cyc , i, T e ) -v(c cyc , i, T s ). Hence, the branch misprediction rate R t2 of t 2 is:

R t2 = N misp,t2 N cyc,t2 = v(n misp , i, T e ) -v(c misp , i, T s ) v(c cyc , i, T e ) -v(c cyc , i, T s )
The misprediction rates of t 1 and t 3 , R t1 and R t3 , can be determined similarly.

The calculation of the misprediction rate above assumes that the number of branch mispredictions and the number of cycles at T s and T e are known. However, as hardware performance counter data is not available as a continuous function, but as a set of samples, these values might not be available directly in the trace file. Figure 10.15 shows the most frequent case, where the timestamps T sj and T sj+1 of the nearest samples do not exactly match T s and T e . However, assuming that the values for each counter are monotonically increasing, it is possible to approximate the required values through linear interpolation. For example, the value v(c, i, T s ) in the figure can be approximated as:

v(c, i, T s ) ≈ V sj + T s -T sj • V sj+1 -V sj T sj+1 -T sj
where V sj is the value of c captured in the first sample and V sj+1 is the value of the second sample.

The value for v(c, i, T e ) the end of the task execution can be approximated similarly.

Correlation of performance indicators

We consider that a performance indicator is relevant for performance analysis if the variation of task durations is sufficiently high according to the coefficient of variation and if the duration correlates with the performance indicator according to a linear model. In Figure 10.14, the durations d i differ substantially and depend on the misprediction rates R ti with d i ≈ α • R ti + β, α and β being constant. Such relationships can easily be detected automatically by performing linear regressions and by comparing the coefficients of determination to a threshold value.

As a simple example, consider the correlation between the misprediction rate and the duration that has been determined manually in Section 10.3.2 by plotting the branch misprediction rate over the timeline in heatmap mode. Figure 10.16 shows the duration of the main computation tasks in the benchmark as a function of the rate of branch mispredictions. Outliers with an execution time below 1 Mcycles have been filtered out. The dashed line in the graph represents the regression line and clearly indicates the linear correlation between the misprediction rate and the duration.

Status of the implementation

Aftermath currently provides only basic support for the techniques described above. High-level analysis based on thresholds is supported, but requires manual interpretation by the user: after the selection of an arbitrary interval from the timeline the tool shows the fraction of the time spent in the different states, but whether these exceed the thresholds must be detected by the user.

For the correlation of performance indicators with task durations, Aftermath is able to calculate per-task values using linear interpolation and supports the export of these values to a data file. However, the analysis of the variation and linear regression must be performed by external tools ran by the user. Also, the configuration of the run-time to sample specific micro-architectural events and automation of the execution of the application whose traces are to be analyzed has not yet been implemented.

Related Work

Visualization and analysis of trace files are common techniques, critical for performance analysis and debugging in high performance computing, for which many tools have been developed. As performance analysis is not the main topic of this thesis, providing a complete survey of this field is out of the scope of this document. For the following overview of related work, we have selected four representative tools, PARAPROF, PARAVER, VAMPIR, and VITE. We briefly explain why they do not fully meet our requirements for performance analysis in the OpenStream project and thus why we implemented Aftermath.

PARAVER [START_REF] Pillet | Paraver: A tool to visualize and analyze parallel code[END_REF] is a tool for interactive trace analysis, providing powerful filtering mechanisms for different graph types and independent views on trace data. Earlier versions of OpenStream included support for trace files in Paraver's native format. However, the tool's resource model focuses on computation and does not model memory-related resources and task communication patterns, which are essential to the characterization of performance anomalies on many-core NUMA architectures.

PARAPROF [17], a profile visualization tool of TAU [78], is a retargetable framework for writing trace analysis applications rather than a single tool for a specific type of trace files or performance analysis. It provides a set of extensible components for data sources, data management, analysis and visualization that can be used as a basis for new tools. The overlap between functionality of existing components of Paraprof and those required for data-flow analysis in the OpenStream project is small, such that the implementation cost for an OpenStream-specific tool using Paraprof would have been close to the cost for Aftermath.

VAMPIR [START_REF] Müller | Developing scalable applications with vampir, vampirserver and vampirtrace[END_REF] is a well-known commercial tool that has been used in high performance computing for almost two decades. It provides a rich user interface for interactive exploration and analysis of huge traces and has a highly elaborated filter interface. Multiple connected views with different granularity from cluster level to function calls are supported. But unlike Aftermath, the tool is optimized for analysis of massively parallel applications based on message passing. Neither NUMA resources nor tasks are modeled explicitly, making fine grained task-based and memory-related analysis impossible.

VITE [START_REF] Drebes | Topology-aware and dependence-aware scheduling and memory allocation for taskparallel languages[END_REF] is a freely available tool for trace-based analysis of parallel programs focusing on fast rendering. However, the tool lacks support for NUMA topologies and analysis filters.

Summary and conclusions

After an analysis of the requirements for performance debugging of task-parallel applications and run-time systems we presented Aftermath, a tool that we have implemented for trace visualization and interactive trace analysis. We illustrated the strengths of Aftermath on several examples based on genuine situations encountered during the development of the OpenStream run-time system, the optimizations presented in this thesis and OpenStream benchmarks. Aftermath fulfills the requirements mentioned at the beginning, and has proven invaluable when simultaneously tracking the sources of performance anomalies in a task-parallel application and its supporting execution environment.

While initially designed for our specific needs for the analysis of OpenStream, only some of the graphs and metrics covered in this analysis are specific to OpenStream or to data-flow languages. Aftermath can thus also be used for performance debugging of other task-parallel languages and run-times. In future releases, we plan to add support for data dependences in OpenMP 4 similar to the support for input buffers for OpenStream.

At the end of the chapter, we showed how a user can be guided through the process of performance analysis by automating recurring tasks and by detecting certain types of performance anomalies fully automatically. We presented a first technique for high-level analysis based on thresholds that is able to detect insufficient parallelism and high overheads. The second technique correlates performance indicators using linear regression and detects which performance indicators are relevant for performance analysis. Aftermath provides basic support for a subset of the mechanisms employed by these techniques but requires the intervention of the user. We plan to fully integrate the above functionality in future releases. Other features developed in future work are the support for very large trace files that do not fit into main memory and the development of indexes that allow to calculate statistics without the need to traverse the entire trace.

Conclusion and perspectives

This chapter summarizes the work presented in this thesis and provides a conclusion on our findings. The chapter closes with a discussion of directions and opportunities for future research.

Summary of the thesis

Power dissipation has become a driving factor in the processor industry and led to a shift towards more energy efficiency designs integrating multiple cores on a single chip. Such multicore designs are now used in a wide variety of machines ranging from embedded systems to high performance servers. The growth of the number of cores per machine is expected to carry on and many-core systems with dozens or even hundreds of cores are emerging. Task-parallel programming has become an increasingly popular approach to address productivity, scalability and portability in these environments, but leaves decisions for the efficient mapping of parallelism to an optimized run-time system. As many-core systems usually integrate multiple memory controllers with non-uniform memory access, efficient strategies must provide both efficient mappings of computations to cores and efficient mappings of data to memory controllers. As shown in Chapter 2, only little work has been done on transparent, portable and fully automatic on-line mapping mechanisms for task-parallel programs executing on many-core NUMA machines. The purpose of this thesis is to investigate how such mappings can be implemented based on information on point-to-point data dependences readily available in the run-time systems of modern task-parallel programming frameworks. We explored the main factors on performance and data locality and proposed fully automatic, transparent and portable run-time mechanisms for the mapping of data to memory controllers and the mapping of tasks to cores.

As a representative for a modern task-parallel language with point-to-point data dependences, we have chosen OpenStream, a data-flow extension to OpenMP based on the concepts of shortlived, fine-grained tasks and streams. Communication and synchronization between tasks in this model is achieved by accessing streams. The elements of streams become accessible to a task through views, which appear as finite arrays within the task body. The actual synchronization is carried out by the run-time by matching output views with input views on the same streams. Chapter 3 provided an overview of the concepts of OpenStream, its syntax and its execution model. The main formal construct for OpenStream programs used throughout this thesis are task graphs, capturing the producer-consumer relationships of an OpenStream application.

As efficient mechanisms for data-aware scheduling and memory allocation require a NUMAaware run-time, we investigated in Chapter 4 how a run-time can determine the placement of data on nodes efficiently and how it can be provided with fine-grained control over memory allocation and data placement. The focus on this chapter lay on the integration of these techniques with the default first-touch data placement mechanism of many operating systems and the avoidance of frequent time-consuming system calls. We introduced input buffers that store the stream elements read by a task and described methods for low-overhead placement and low-overhead determination of the placement of these buffers.

In Chapter 5, we introduced dynamic single assignment to gain control over the placement of application data and to be able to determine its placement. In this programming style, tasks communicate and synchronize exclusively using streams, such that all application data is stored in streams whose data is in turn stored in input buffers. Through the placement of input buffers the run-time has full control over data placement of the entire application and is able to determine the working set of each task reliably before a task executes.

The experimental setup for this thesis was given in Chapter 6. This included a description of a set of high performance scientific benchmarks implemented using dynamic single assignment, a description of the hardware and software environment and a description of the methodology used for the experiments. We introduced three baselines for the benchmarks, namely a dynamic single assignment baseline, a shared memory baseline implemented using token synchronization in which streams are only used to enforce data dependences and a sequential baseline that does not make use of OpenStream. We characterized the memory access behavior of the dynamic single assignment versions to classify the benchmarks into memory-bound applications and cache-bound applications.

Chapter 7 introduced two scheduling techniques that aim at improving the locality of accesses to main memory. The first of these techniques is work-pushing, which transfers a task to a core associated to the node that contains the data that will be accessed by the task. This mechanism heavily relies on information on the working set of tasks derived from accesses to stream elements in dynamic single assignment. The choice of the target core depends on a heuristic. We evaluated the input only heuristic, which transfers a task to a core of the node containing the majority of its input data, the output only which chooses a core on the node containing the majority of the tasks output buffers and the weighted heuristic, which takes into account the placement of both input and output buffers. As a complementary technique, we proposed a second scheduling mechanism called topology-aware work-stealing, which acts as an architecture-aware load balancing mechanism favoring steals from nearby cores in the memory hierarchy. The evaluation of the scheduling optimizations on the benchmarks of Chapter 6 showed that the locality of memory accesses could be improved significantly, resulting in speedups for memory-bound applications of up to 2.36× on 192 cores grouped into 24 NUMA nodes compared to random work-stealing without work-pushing.

Work-pushing reacts to a given data placement resulting from local allocations and the interplay of initial task placement, task creations and work-stealing. To decouple data placement from the control program, from initial data placement and to react to work-stealing, we introduced deferred allocation in Chapter 8. The key concept of this mechanism is to delay the allocation of input buffers from task creation to the time the producers of a task become ready for execution. This allows the run-time to place buffers according to the node on which the producers are executed and prevents input buffers from being placed at task creation. The results are a reduced memory footprint, increased data locality and improved load balancing across memory controllers. The approach can be combined with the input only heuristic for work-pushing as well as topologyaware work-stealing and yields speedups of up to 3.57× on 192 cores grouped into 24 NUMA nodes compared to a run-time with random work-stealing and using neither work-pushing nor deferred allocation.

Broadcasts, in which the data of a producer is read by multiple readers also benefits from work-pushing, topology-aware work-stealing and deferred allocation, but suffers from a high overhead in time and the memory footprint for copying data to all readers. These issues were addressed in Chapter 9, introducing broadcast tables. Broadcast tables allow the readers of a broadcast to share a single input buffer, keeping the amount of memory required for a broadcast on a static description of the machine topology describing the levels of the memory hierarchy and the siblings of each core of each level.

Deferred allocation for the NUMA-aware management of task input buffers (Chapter 8)

We proposed deferred allocation, a technique that delays the allocation of an input buffer of a task until the node of the producer writing to this buffer is known. Similar to the decisions for task scheduling above, deferred allocation relies on precise knowledge on data accesses of each task specified by point-to-point data dependences available in the run-time. Unlike other approaches for data placement, deferred allocation neither represents a static partitioning of the data nor migrates data. The principles of dynamic single assignment allow the run-time to choose a different node to store data each time it is passed from one task to another, allowing the run-time to react to dynamic changes in program behavior.

Broadcast tables for NUMA-aware broadcasts (Chapter 9) We proposed broadcast tables, a NUMA-aware technique to broadcast data produced by a single task to multiple readers. By sharing a single input buffer for all readers, this approach compensates the large amount of memory and the time spent on copying data for the distribution of broadcast data when using a naive implementation of dynamic single assignment. We also introduced broadcast tables with on-demand copies on nodes executing the readers of a broadcast, resulting in a significant increase of the data locality.

Experimental validation of the key contributions (Chapters 7, 8 and 9)

We evaluated all of the techniques above on a set of high performance scientific benchmarks executing on two many-core NUMA platforms with 64 cores (8 NUMA nodes) and 192 cores (24 NUMA nodes), respectively. We demonstrated that work-pushing can increase the fraction of memory accesses targeting local memory above 90% and speed up execution by a factor of up to 2.36× compared to the parallel baseline with random work-stealing. The speedup over the shared memory baseline with interleaved allocation over all memory controllers of the machine can be as high as 2.50×. Deferred allocation also results in significant improvements on data locality and can speed up execution by up to 3.57× compared to random work-stealing without work-pushing. The speedup over the shared memory baseline can be as high as 4.17×.

The use of broadcast tables can reduce the memory footprint as well as the execution time of Cholesky Factorization by more than one order of magnitude. We showed that the OpenStream implementation matches the performance of two state-of-the-art parallel implementations of Cholesky Factorization provided by PLASMA and the INTEL MATH KERNEL LIBRARY.

Contributions that form the theoretical and technical basis for the key contributions

The following contributions from the theoretical and technical base required for the main contributions above. The identification of factors with an influence on data locality and performance form the basis for the development of techniques for data and task placement. From these findings we derived work-pushing, topology-aware work-stealing, deferred allocation and broadcast tables. The technical support for these techniques is provided by the second contribution, which consists in the concepts for NUMA-aware run-time systems.

Identification and analysis of factors with an influence on data locality, the memory footprint and performance (Chapters 4, 5, 7, 8 and 9) Throughout this thesis we identified and analyzed factors with an influence on data locality, on the memory footprint of an application and on performance. These are:

-the interaction between the run-time and the operating system during memory allocation and placement of pages on nodes, -the structure of the task graph, the order of creation of tasks by the control program and the order in which tasks are executed, -parallelism in the control program creating all tasks, -initial placement of input buffers and -steals by remote workers upon work-stealing.

We illustrated the influence of these factors on examples and quantified the impact of a subset of them on synthetic benchmarks.

Concepts for NUMA-aware run-times for task-parallel applications (Chapter 4)

We analyzed first-touch allocation, the default mechanism of many operating systems for memory allocation and proposed a NUMA-aware memory management layer based on this mechanism for run-time systems of task-parallel languages. The key factor for efficiency in this solution are NUMA-aware memory pools, which reduce of the number of time-consuming system calls by reusing buffers that have been allocated from the operating system and by caching information on data placement in small metadata sections in front of these buffers. Fine-grained control over data placement is achieved by allocating a buffer of the requested size from a memory pool associated to the target node.

Practical contributions

The contributions below are the result of the practical evaluation of the scientific concepts, but do not represent purely scientific contributions on their own. However, as the utility of these contributions goes beyond the prototyping of scientific concepts, we present them separately.

Integration into the run-time of a state-of-the-art task-parallel language

We implemented and integrated the techniques for NUMA-aware allocation and the determination of data placement of Chapter 4 as well as work-pushing, topology-aware work-stealing, deferred allocation and broadcast tables into the run-time of OpenStream. Our contributions to the run-time and the compiler have been integrated into the official release of OpenStream.

A set of high performance scientific applications implemented using OpenStream (Chapter 6)

We implemented a set of high performance, scientific benchmarks using OpenStream, based on dynamic single assignment presented in Chapter 5. These are:

seidel, a five point two-dimensional, iterative stencil operating on a two-dimensional matrix of double precision floating point elements, -jacobi-1d, a three point one-dimensional iterative stencil operating on a vector double precision floating point elements, -jacobi-2d a five point two-dimensional iterative stencil operating on a two-dimensional matrix of double precision floating point elements, -jacobi-3d, a seven point three-dimensional iterative stencil operating on a three-dimensional matrix of double precision floating point elements, -blur-roberts, a benchmark for image processing that implements a blur filter, followed by an edge detection using the Roberts Cross Operator, -bitonic, a bitonic sorting network capable of sorting 2 N arbitrary 64-bit integers, -cholesky, performing a Cholesky Factorization on a symmetric, positive definite matrix of double precision floating point values and k-means that partitions a set of n-dimensional points into k clusters using the K-means algorithm. All of these benchmarks except cholesky were also implemented as a shared memory version based on token synchronization as well as a sequential version. Future versions of the OpenStream run-time can be evaluated using these benchmarks.

Aftermath, a tool for trace-based performance analysis and visualization

We developed Aftermath, a tool for trace-based off-line performance analysis and visualization and used this tool extensively during the work for this thesis to understand the aspects with an influence on data locality and performance, to debug the performance of the run-time system, to develop the applications used for the evaluation of our concepts and to validate our concepts for data and task placement. Although the tool has been designed primarily for OpenStream programs and the OpenStream run-time, many of its concepts apply to task-parallel programs and run-times in general. As a valid trace file does not necessarily have to contain OpenStream-specific information, the tool can already be used for the analysis of other task-parallel applications and run-times.

Conclusions

From the analyses and the experimental results presented in this thesis, we draw the following conclusions regarding task and data placement.

-By exploiting point-to-point data dependences, readily available in the run-time systems of modern task-parallel languages it is possible to determine the working set of tasks and the placement of the working set on NUMA nodes reliably and efficiently. -Run-time systems of task-parallel languages can be provided with fine-grained and efficient control over the placement of application data. -Many static aspects (e.g., partitioning of data among tasks) and a multitude of dynamic events (e.g., the order of task creation, load balancing, interaction with the operating system) have a strong influence on the memory footprint, the data locality and the performance of task-parallel applications. -It is possible to provide transparent, fully automatic and dynamic run-time techniques for data and task placement improving data locality and performance of memory-bound applications executing on many-core NUMA machines. -The performance improvements of task and data placement are higher for larger machines with more cores and a higher number of memory controllers.

This leads us to more general conclusions on task-parallel applications and run-times, in particular:

-task parallel programming allows for the efficient exploitation of the computing resources and the memory bandwidth of many-core NUMA systems. -data-flow programming can be beneficial for the efficient exploitation of shared memory many-core NUMA systems and outperform shared memory implementations.

In the remainder of this chapter, we discuss directions for future research, starting with ongoing work with preliminary results.

Future work and perspectives

The work on this thesis lead to a multitude of opportunities for future research. The following axes of research seem to be the most appealing and promising opportunities to us.

Control over the memory footprint through automatic throttling at task creation A side effect of step-by-step construction of a dynamic task graph by a parallel control program is that the maximum number of co-existing tasks can be substantially smaller compared to a sequential control program. For example, when using a sequential control program to construct a chain of n dependent tasks t 0 , . . ., t n-1 , the maximum number of tasks that might co-exist is n. Using a parallel control program in which each task t i creates t i+2 as proposed in Section 5.5.5, the maximum number of co-existing tasks is only two. As the memory footprint grows linearly with the number of co-existing tasks, developing a control program that limits the number of co-existing tasks can be essential for large task graphs to prevent an application to exceed the amount of available main memory. However, in contrast to the trivial example of a chain of dependent tasks, the development of a control program for large task graphs with complex dependences might involve a trade-off between parallelism and the number of co-existing tasks. The development of an appropriate control program is a complex task and represents a burden on the programmer, such that automatic throttling of task creations is desirable. However, such a mechanism must take into account the structure of the task graph as naive throttling might result in deadlocks due to the fact that a task remains blocked if a subset of its consumers has not been created.

Reducing the memory footprint and increasing cache utilization

As the memory footprint plays an important role for the performance of task-parallel applications, it is crucial to keep it as low as possible. The inout_reuse clause presented in Section 8.5 is one possibility to reduce the size of the working set of a task, resulting in better utilization of caches, and to reduce the application's global memory footprint. However, to be effective, this clause requires a trade-off between data locality and the overhead for copying when migrating data from one node to another. Early results for the performance of applications using this clause showed that the overhead for copies is likely to cancel the performance improvement of increased locality. One way to mask this delay could be the specification of an alternate implementation for each task using the inout_reuse clause that relies on dynamic single assignment and to let the run-time choose between the two versions of a task. If the producer and a consumer execute on cores of the same node, the run-time would choose the version with the inout_reuse clause and in case of a migration the dynamic single assignment version reading from one node and writing to the target node would be chosen.

However, there are many other aspects of program execution have an influence on the footprint, which we did not explore in this thesis (e.g., the order of task execution). Future concepts for task-parallel run-times could include algorithms that estimate the footprint for multiple orders of task executions based on deeper inspection of the task graph and choose the order with the smallest memory footprint.

Software prefetching of input data

Compulsory cache misses at the beginning of the execution of a task can have a serious impact on performance as they might stall the executing core during the execution of instructions on the critical path of the task. One possibility to reduce the number of these misses is to fetch the task's input data to a cache by executing appropriate prefetch instructions before it starts execution. As dynamic single assignment provides the run-time with the ability to determine the working set of a task before it is executed, prefetching could be carried out automatically by th run-time. However, aggressive prefetching might lead to cache pollution and evict data from the cache that is referenced by tasks executing on cores sharing the cache. In addition, the probability that the input data of a task is still present in the cache when the task starts execution highly depends on the order of task execution. The conditions under which software prefetching is effective are to be determined in future work.

Dynamic adjustment of the task granularity Task granularity, i.e., how much data is processed by each task, has a strong influence on the amount of available parallelism, on the overhead for intertask communication as well as on the exploitation of the memory hierarchy. The optimal granularity can therefore vary between different applications and machines. Currently, the programmer has to choose and implement task granularity manually. If an application should provide multiple granularities, the programmer must develop a parametric model that allows the user to choose a granularity at execution time (e.g., as in Section 5.3.1). While this is already a challenging task for applications with regularly-structured parallelism, the implementation of such a model is even more complicated for applications with irregular parallelism and less regularly-structured task graphs. Ideally, the run-time is able to trade-off the overhead for inter-task communication, the exploitation of the memory hierarchy and parallelism by adjusting the granularity automatically. An approach towards this solution is to let the programmer specify the program with a very fine-grained granularity and to dynamically fuse tasks at execution time in the run-time.

Improving the performance of cache-bound applications

The mechanisms for task and data placement presented in this thesis mainly improve performance by reducing the amount of accesses to remote memory. The performance of cache-bound applications remains unaffected by these optimizations. In future work, we would like to investigate techniques for cache-aware scheduling and cache-aware memory allocation for task-parallel applications that improve the performance of cache-bound applications. The development and analysis of such concepts is considerably more challenging due to frequent changes of the contents of each cache. Hence, a method for optimized task placement must be able to estimate whether the data needed by the task that becomes ready is still available in a cache or if the data must be fetched from main memory.

Validation on applications with irregular parallelism All of the applications studied in this thesis display regular patterns of parallelism. However, none out optimizations relies on a specific pattern of parallelism. To demonstrate that our approaches also apply to applications with irregular patterns for parallelism additional benchmarks are needed.

Integration into other task-parallel run-times

To emphasize the portability of our solutions it would be interesting to integrate them into run-times of other task-parallel languages. The recently appeared OpenMP 4 standard adds point-to-point data dependences on memory regions to OpenMP tasks. Run-times implementing this standard are thus excellent candidates for the implementation of our concepts.

Comparison with shared memory implementations using static placement The baseline for shared memory for the experimental evaluation uses interleaved allocation across all nodes of the machine. While this solution yields an excellent distribution of requests to main memory and thus high memory bandwidth, it only achieves poor data locality. For a totally fair comparison between dynamic single assignment and shared memory versions, hand-tuned shared memory implementations with manual data placement are needed.

Hybrid static / dynamic approaches for optimization

The solutions presented in this thesis all operate dynamically at execution time. However, the work in this thesis also showed that many static aspects have an influence on performance. As mentioned above, the granularity of the data processed by tasks has an influence on the available parallelism, cache hit rates and the overhead for task creation. Hybrid approaches combining optimizations at compile time, such as the automatic partitioning of regular data structures among tasks, with dynamic optimizations at execution time could improve performance significantly and reduce the burden of the programmer to take decisions for static optimizations manually.

B About this document

This document has been created exclusively using free software, mainly provided by the DEBIAN GNU/LINUX distribution. The purpose of this section is to provide a list of these software packages.

B.1 Typesetting and editing

Typesetting was done using L A T E X (pdfTeX 3.1415926-2.4-1.40.13 (TeX Live 2012/Debian)) with the following packages:

-algorithm2e -amsmath -amssymb -babel -caption -colortbl -enumitem -fancyhdr -float -fontenc -geometry -graphicx -hyperref -idxlayout -ifthen -inputenc -listings -makeidx -microtype -multicol -multirow -palatino -siunitx -subfig -tikz -titlesec -xstring -xcolor
Bibliographical information has been processed by BIBT E X and the index has been generated using MAKEINDEX.

L A T E X files have been edited using the EMACS editor. For basic spell checking we have used the FLYSPELL mode using the HUNSPELL spell checker and for more advanced grammar checks we have used the LANGUAGETOOL proofreading software.

A helpful tool for continuous proofreading is DIFFLATEX, which is able to highlight differences between two versions of a L A T E X file. All intermediate versions have been stored in a GIT repository.

Grayscale versions to check that figures remain readable when printed in black and white have been generated using GHOSTSCRIPT.

For the visualization of the PDF files generated by PDFLATEX, we have used the OKULAR and EVINCE document viewers. Occasionally, we have used the SYNCTEX tool, generating a file with metadata that allows the user to click on a word in the document viewer to open an editor at the corresponding line of the source file.

B.2 Figures and graphs

Most of the figures have been created with INKSCAPE. The screenshot of the main user interface of Aftermath (Figure 10.3) has been created using XFCE4-SCREENSHOOTER. All other illustrations of Aftermath were directly created using the PDF export function of Aftermath. Annotations on these figures and small changes to improve the readability (e.g., thicker lines for graphs) have been added using INKSCAPE.

The data for bar graphs and graphs showing lines has been extracted from the log files of the experiments using custom PYTHON scripts. The actual graphs have been generated by passing this data to functions of the MATPLOTLIB package. Statistical functions, e.g., to calculate means, medians and the standard deviation have been provided by the NUMPY package.

The graph showing the linear regression on the frequency of branch mispredictions and the task duration in Figure 10.16, as well as the linear regression itself have been created using GNUPLOT.

The build process for the PDF file is based on a Makefile using extensions of GNU MAKE.

C.1 Introduction (chapitre 1)

Le développement de microprocesseurs entre les années soixante-dix et les années deux mille était marqué par des gains en performances séquentielles pour chaque nouvelle génération de processeurs grâce à l'augmentation de la fréquence de fonctionnement et des améliorations de la micro-architecture. Cependant, au milieu des années deux mille, cette évolution a conduit au développement de processeurs avec des micro-architectures très complexes, fonctionnant à des fréquences supérieures moins efficaces en termes de consommation d'énergie, poussant la densité d'énergie au delà du raisonnable. Par conséquent, l'industrie a basculé vers des architectures multi-coeurs intégrant plusieurs unités de calcul sur une même puce. [43] Afin de satisfaire la demande continue de puissance de calcul, l'industrie se focalise désormais sur l'intégration d'un nombre croissant de coeurs au lieu de développer des coeurs plus complexes avec plus de puissance de calcul séquentielle. Les systèmes haute performance contemporains vont des systèmes multi-coeurs avec plusieurs coeurs à des machines many-cores avec des dizaines ou des centaines d'unités de calculs généralistes. Il est prévu que des systèmes futurs intégreront des milliers de coeurs [START_REF] Borkar | Thousand core chips: A technology perspective[END_REF]. [START_REF] Blumofe | Cilk: An efficient multithreaded runtime system[END_REF][START_REF]OpenMP Application Program Interface Version 4[END_REF][START_REF] Planas | Hierarchical task-based programming with StarSs[END_REF][START_REF] Pop | A stream-computing extension to OpenMP[END_REF]36,[START_REF]Threading Building Blocks[END_REF][START_REF] Budimlic | Concurrent collections[END_REF]35,[START_REF] Broquedis | LIBKOMP, an efficient OpenMP runtime system for both fork-join and data flow paradigms[END_REF] est une tendance récente pour répondre à ces enjeux. L'élément clé de ces modèles de programmation réside dans l'abstraction des détails de la couche matérielle et logicielle du système sous-jacent et de réduire la spécification d'un programme parallèle à la définition de tâches à grain fin ainsi que des dépendances entre ces tâches. Bien que ce concept augmente la productivité de manière significative, l'exploitation efficace du matériel ainsi que les aspects de portabilité de performances sont sous la responsabilité de l'implémentation du modèle d'exécution. Sur des machines NUMA cela comprend également l'optimisation des accès à la mémoire par la distribution de calculs et de données. Des mécanismes de placement de tâches sur des coeurs et de données sur des noeuds de la machine sont indispensables pour l'implémentation des modèles de programmation à base de tâches afin d'obtenir des performances satisfaisantes sur des machines many-cores. La recherche sur l'optimisation du placement d'instructions et de données sur des machines NUMA est un domaine a méné à une multitude d'approches différentes allant des optimisations statiques par le compilateur à des optimisations dynamiques à l'exécution. Cependant seulement peu d'approches visent l'optimisation d'applications à base de tâches. L'objectif de cette thèse est de déterminer les enjeux et les opportunités concernant l'exploitation efficace de machines many-core NUMA par des applications à base de tâches et de proposer des mécanismes efficaces pour le placement de tâches et de données mettant l'accent sur les accès mémoires. Le premier enjeu principal pour développer tels mécanismes est d'identifier et d'analyser les interactions entre l'application, le run-time, le matériel et le système d'exploitation qui sont pertinentes pour la localité des accès aux données et les performances d'applications à base de tâches. Le deuxième enjeu principal est de développer des mécanismes portables, entièrement automatiques, indépendents de l'application et capables de réagir à des changements dynamiques du comportement d'une application. Cette thèse met l'accent sur l'identification et l'analyse des caractéristiques :

1. du run-time nécessaires pour des implémentations de mécanismes de placement de tâches et de données à faible surcoût qui empêchent le run-time de devenir un goulot d'étranglement pour la performance. 2. d'applications à base de tâches pertinentes pour la localité des accès à la mémoire et des performances et qui doivent être prises en compte pour au développement de mécanismes de placement de tâches et de données.

Basé sur les résultats de ces analyses nous avons développé plusieurs techniques dynamiques portables et automatiques pour le placement de tâches et de données qui exploitent des informations sur les dépendances point-à-point disponibles dans les run-times modernes d'applications à base de tâches à l'exécution.

Les contributions pratiques qui s'ajoutent aux contributions théoriques ci-dessus sont le résultat de l'implémentation de ces mécanismes et leur évaluation expérimentale. Premièrement, nous avons développé un run-time prenant en compte l'accès non-uniforme à la mémoire. Ce run-time est basé sur OpenStream, un modèle de programmation à base de tâches haute performances, et forme la base de nos mécanismes de placement de tâches et de données. Deuxièmement, nous avons implémenté et intégré nos optimisations dans ce run-time. Afin de valider que nos concepts s'appliquent à des vraies applications, nous avons implémenté un ensemble de benchmarks scientifiques OpenStream hautes performances et nous les avons exécutées en utilisant notre run-time optimisé. Finalement, nous avons développé Aftermath, un outil de débogage de performances d'applications à base de tâches et leurs run-times, ce qui nous a permis de comprendre les interactions entre l'application, le run-time, le matériel et le système d'exploitation et de prendre ces interactions en compte dans nos concepts théoriques pour le placement de tâches et de données.

C.2 Contexte et définition de la problématique (chapitre 2)

Ce chapitre présente le contexte scientifique et technique de cette thèse. Dans la section 2.1, nous expliquons pourquoi l'apparition des systèmes parallèles pour le calcul grand public a créé un besoin de modèles de programmation alternatifs. La raison principale est que la programmation parallèle est devenue une nécessité pour exploiter la puissance de calcul des architectures récentes. Les applications s'exécutant sur ces machines devraient être capables d'exploiter l'intégralité des capacités de calcul, avoir les mêmes performances sur des machines avec des caractéristiques similaires et s'exécuter plus rapidement sur des machines avec un plus grand nombre d'unités de calcul. Afin de compenser la complexité supplémentaire due à la programmation parallèle, un modèle de programmation devrait également abstraire des détails techniques de l'implémentation et permettre ainsi au programmeur de se concentrer sur la spécification du parallélisme de l'application. Ces attentes peuvent être résumées en scalabilité, portabilité de performances et productivité.

La programmation à base de tâches est une approche permettant de répondre à priori à ces attentes. De nombreux modèles ont été proposés, allant des concepts génériques pour les calculs à base de tâches (e.g., CONCURRENT COLLECTIONS [START_REF] Budimlic | Concurrent collections[END_REF]) à des bibliothèques réutilisables (e.g., THREADING BUILDING BLOCKS [START_REF]Threading Building Blocks[END_REF]), des extensions de langages de programmation (e.g., CILK [START_REF] Blumofe | Cilk: An efficient multithreaded runtime system[END_REF][START_REF] Frigo | The implementation of the Cilk-5 multithreaded language[END_REF], OpenMP [START_REF]OpenMP Application Program Interface Version 3[END_REF][START_REF]OpenMP Application Program Interface Version 4[END_REF], STARSS [START_REF] Planas | Hierarchical task-based programming with StarSs[END_REF], OPENSTREAM [START_REF] Pop | A stream-computing extension to OpenMP[END_REF][START_REF] Pop | Expressiveness and Data-Flow Compilation of OpenMP Streaming Programs[END_REF], X10 [36] and HABANERO [35], LIBKOMP [START_REF] Broquedis | LIBKOMP, an efficient OpenMP runtime system for both fork-join and data flow paradigms[END_REF]) jusqu'aux bibliothèques spécialisées (PLASMA [START_REF] Kurzak | Multithreading in the plasma library[END_REF] basé sur QUARK [START_REF] Yarkhan | QUARK Users' Guide -QUeueing And Runtime for Kernels[END_REF]). L'idée principale de ces modèles est d'exposer de grandes quantités de parallélisme par la création de petites unités de travail, appelées tâches, et de spécifier les interactions entre les tâches afin de restreindre l'ensemble de tâches pouvant s'exécuter en parallèle. L'ensemble des tâches ainsi que les dépendances ne doivent pas nécessairement être définis de manière statique et peuvent être créés dynamiquement à l'exécution. La création de tâches et la synchronisation sont assurées par une couche logicielle, le run-time, qui gère l'exécution de l'application parallèle. L'état de l'art de cette thèse est présenté dans la section 2.4. Peu de travaux proposent des techniques dynamiques de placement de calculs et de données adaptées pour les applications à base de tâches. La présentation de l'état de l'art couvre des approches de placement de données seul (AFFINITY-ON-NEXT-TOUCH [61,50], CARREFOUR [START_REF] Dashti | Traffic management: A holistic approach to memory placement on NUMA systems[END_REF], MAI [START_REF] Pousa Ribeiro | Memory affinity for hierarchical shared memory multiprocessors[END_REF], MINAS [START_REF] Pousa | Minas: Memory Affinity Management Framework[END_REF][START_REF] Da | Using memory access traces to map threads and data on hierarchical multi-core platforms[END_REF] et feedback-directed page placement for OpenMP [START_REF] Marathe | Feedback-directed page placement for ccnuma via hardware-generated memory traces[END_REF]), d'ordonnancement seul (SCHEDULE REUSE [START_REF] Nikolopoulos | Exploiting memory affinity in openmp through schedule reuse[END_REF] et une approche pour le parallélisme non-structuré [START_REF] Yoo | Locality-aware task management for unstructured parallelism: A quantitative limit study[END_REF]) et des approches qui utilisent une combinaison des deux mécanismes (FORESTGOMP [29,31], node arrangements [START_REF] Bircsak | Extending openmp for numa machines[END_REF] et LAWS [START_REF] Chen | Laws: Locality-aware work-stealing for multisocket multi-core architectures[END_REF]). Parmi ces approches seulement LAWS combine l'ordonnancement et l'allocation de mémoire, mais l'approche ne supporte que des algorithmes de type diviser pour régner.

Le chapitre termine avec la définition des objectifs de cette thèse dans la section 2.5. Un des points clés pour le placement automatique de données et de tâches est la collection d'informations d'affinités entre les tâches et les données. Les modèles de programmation à base de tâches récents offrent de nouvelles opportunités aux run-times en fournissant des informations sur les dépendances de données entre tâches qui peuvent être exploitées à l'exécution. Les solutions proposées dans cette thèse combinent ces informations avec une description détaillée de l'architecture cible. Elles opèrent principalement dans le run-time à l'exécution, mais comprennent également des parties de compilation. La partie théorique de notre travail consiste en la proposition et le développement de techniques de placement et de données pour des run-times de programmes à base de tâches et l'élaboration des aspects clés du comportement de ces applications ainsi que l'interaction avec le système d'exploitation et le matériel ayant une influence sur les performances. La partie pratique consiste en l'implémentation et l'intégration de ces techniques dans le run-time d'OpenStream, leur validation sur un ensemble de benchmarks scientifiques hautes performances sur différentes architectures et le développement de techniques adaptées pour l'analyse de performances.

C.3 OpenStream (chapitre 3)

Ce chapitre présente OpenStream, une extension d'OpenMP 3.0, que nous avons choisi pour l'implémentation des concepts présentés dans cette thèse. La section 3.1 présente les concepts de base : les tâches data-flow dépendantes et la synchronisation de ces tâches par des flux de données. La sémantique d'OpenStream est définie par le concept de Control-Driven Data Flow (CDDF, [73]). Toutefois, pour se concentrer sur les aspects spécifiques de cette thèse, on utilise un modèle simplifié. Chaque tâche est représentée par une structure de donnée appelée frame, présentée dans la figure C.5. Cette structure contient un compteur de synchronisation qui est initialisé avec le nombre d'octets accédés en lecture et le nombre de vues en sortie. Quand un producteur de la tâche termine, ce compteur est décrémenté par le nombre d'octets écrits par le producteur et ce même compteur est décrémenté de un à chaque fois qu'un consommateur de la tâche vient d'être créé. Quand le compteur de synchronisation atteint la valeur zéro la tâche devient prête. Les données des flux ne sont pas directement stockées dans des structures de données associées aux flux, mais dans les frames des tâches lecteurs. Chaque producteur écrit donc directement dans les frames de ses consommateurs. Les structures de données qui représentent des vues sont incluses dans la frame et contiennent des informations nécessaires pour associer des producteurs et consommateurs.

Les flux

Les étapes de compilation d'un programme OpenStream sont résumées par la figure C.6. Le compilateur OpenStream est basé sur GCC 4.7.0 [START_REF] Richard | GNU Compiler Collection Internals[END_REF] et réutilise l'infrastructure de compilation de GCC pour toutes les parties qui ne sont pas spécifiques à OpenStream (en particulier une grande partie des étapes 1 et 2 ainsi que les étapes 5 et 6). Pendant l'analyse syntaxique, le compilateur transforme la représentation textuelle du programme en une représentation sous forme d'un arbre GENERIC [START_REF] Merrill | GENERIC and GIMPLE: A New Tree Representation for Entire Functions[END_REF]. Les clauses spécifiques à OpenStream sont représentées avec des sommets propres à OpenStream qui sont analysés dans des étapes ultérieures. L'outlining consiste en la création d'une fonction dédiée pour chaque corps de tâche. Pendant la quatrième étape, le compilateur génère du code qui appelle les fonctions du run-time qui sont nécessaires pour la création de tâches et pour associer producteurs et consommateurs sur les streams. Il suit une étape de génération de code capable de créer la frame pour une tâche créée à partir du pragma actuel. La passe de gimplification transforme l'arbre en une représentation à trois adresses appelée GIMPLE. Cette représentation forme la base pour des passes d'optimisation et sert à la génération de code machine par le backend. La brique de base essentielle à toute technique d'ordonnancement d'applications parallèles à base de tâches tenant compte de l'accès non-uniorme à la mémoire est que le placement des structures de données accédées pendant l'exécution des tâches puisse être déterminée de manière exacte. De plus, l'allocation mémoire pour des machines NUMA est basée sur la capacité du run-time à placer des structures de données sur des noeuds NUMA en particulier. À cause de la durée de vie très limitée des tâches à grain fin, ces fonctionnalités sont demandées fréquemment mais doivent induire un surcoût le plus faible possible pour ne pas rendre le run-time goulot d'étranglement. Comme le placement est le résultat d'interactions entre l'application parallèle à base de tâches, le système d'exploitation et le matériel, le support NUMA du run-time ne peut pas être implémenté séparément et nécessite une intégration minutieuse dans le contexte d'exécution. Ceci nécessite une compréhension détaillée de tous les événements déterminant le placement d'une donnée dans le système complet composé de l'architecture matérielle, du système d'exploitation, du run-time et de l'application et demande une utilisation efficace de l'interface système pour déterminer le placement. Le but de ce chapitre est de montrer comment le run-time d'OpenStream peut fournir une infrastructure efficace afin de supporter des techniques de placement de données et d'ordonnancement tenant compte de l'accès non-uniforme à la mémoire. La première partie du chapitre explique quels composants matériels et logiciels sont impliqués dans l'allocation et le placement de mémoire d'un point de vue du système d'exploitation. Nous montrons quels événements à l'exécution déterminent de placement sur les noeuds NUMA de la machine et à quel moment le placement est effectué. L'influence de ces mécanismes sur le placement de structures de données gérées par des memory pools comme par le run-time OpenStream est analysée par la suite. Partant de cette compréhension détaillée, nous proposons des changements au run-time OpenStream et des restrictions aux applications qui permettent d'implémenter un mécanisme de memory pooling adapté pour des machines NUMA. Ce mécanisme permet au run-time de déterminer le placement d'une structure en mémoire ainsi que le placement précis de chaque structure sur des noeuds NUMA en particulier. Ces techniques forment la base des solutions pour l'ordonnancement et le placement de données pour des architectures NUMA présentées dans les chapitres 7 et 8. La section 4.1 présente comment le système d'exploitation alloue de la mémoire et comment les décisions de placement sont prises dans le cas d'un placement first-touch. Du point de vue de l'application une allocation se fait par un seul appel système et la mémoire supplémentaire est disponible directement après cet appel. D'un point de vue du système d'exploitation, cette activité est divisée en deux étapes. Pendant l'allocation logique qui a lieu lors de l'appel système, la table de pages du processus est étendue avec des entrées vers une page particulière qui ne contient que des zéros, appelé zero page. Ceci donne l'impression au processus demandeur que la mémoire supplémentaire est disponible immédiatement après l'appel système puisque des lectures dans la zone de mémoire réservée par l'appel système est valide et retourne des zéros. Lors de la première écriture à une page de cette zone, le système d'exploitation réserve une nouvelle page, l'initialise avec des zéros et modifie l'entrée dans la table des pages afin qu'elle pointe vers la nouvelle page.

Cette suite d'événements, appelée allocation physique, représente l'allocation propre et doit être répétée pour chacune des pages accédées en écriture d'une zone de mémoire allouée par une allocation logique. D'un point de vue du système d'exploitation, l'allocation de mémoire est donc composée de plusieurs événements qui peuvent avoir lieu pendant un intervalle de temps plus grand. La stratégie de placement de données selon le placement first-touch suit un schéma simple. A l'allocation physique la nouvelle page est sélectionnée sur le même noeud NUMA que le coeur ayant déclenché l'allocation physique est associé. La granularité du placement de données est définie par la taille des pages utilisée par le système. Afin de donner la possibilité à un processus de déterminer le placement d'une région de mémoire des systèmes d'exploitation avec du support pour les machines NUMA offrent un appel système spécialisé. Par exemple, le noyau Linux offre l'appel move_pages. La séparation en l'allocation logique et l'allocation physique et le placement first-touch ont deux inconvénients principaux concernant la gestion de mémoire par des memory pools :

1. La zone de mémoire d'une frame contenant les données d'entrée de la tâche associée peut être écrite par plusieurs producteurs qui s'exécutent sur des noeuds différents, en conséquence les pages constituant la frame peuvent être placées sur plusieurs noeuds. 

C.5 Dynamic single assignment (chapitre 5)

Le contrôle du run-time sur le placement de données et la capacité à déterminer le placement d'une donnée avec un surcoût faible par les memory pools par noeud NUMA sont une condition nécessaire pour les techniques de placement de tâches et de données présentées dans les chapitres 7 et 8. Afin de profiter de ces optimisations, le run-time doit connaître l'ensemble des données accédées par les tâches et doit avoir le contrôle sur son placement. Le chapitre 5 introduit la programmation même et de quatre éléments voisins. Ce calcul est répété à chaque itération pour un nombre d'itérations configurable. Soit v i x,y la valeur de l'élément aux coordonnées x, y à l'itération i. Cette valeur est calculée en tenant compte des valeurs de l'itération courante ainsi que des valeurs de l'itération précédente :

v i
x,y = 1 5 v i x-1,y + v i x,y-1 + v i-1 x,y + v i-1 x+1,y + v i-1

x,y+1

Afin d'obtenir suffisamment de parallélisme et d'exploiter les caches de manière efficace, la matrice est divisée en blocs de taille S B •S B et chacun des blocs est traité par une tâche dédiée.

-Jacobi-1d, jacobi-2d et jacobi-3d L'application jacobi-2d est similaire à seidel, mais n'utilise que des valeurs de l'itération précédente pour calculer la valeur d'un élément de la matrice :

v i x,y = 1 5 v i-1
x-1,y + v i-1

x,y-1 + v i-1 x,y + v i-1 x+1,y + v i-1

x,y+1

Les benchmarks jacobi-1d et jacobi-3d sont des variations de jacobi-2d à une seule et trois dimensions qui utilisent respectivement trois et sept éléments pour calculer la nouvelle valeur d'un élément de la matrice.

-Blur-roberts Le benchmark blur-roberts [59] est également une application de type stencil, mais contrairement à seidel et jacobi cette application n'effectue qu'une seule itération composée de deux filtres sur une matrice de N × M éléments. Le premier filtre calcule la moyenne du voisinage de chaque élément de la matrice et le deuxième filtre applique l'opérateur de Roberts sur la matrice. La valeur finale v x,y d'un élément à la positions (x, y) de la matrice est calculée comme suit : -Bitonic Le benchmark bitonic est implémentation d'un réseau de tri bitonique [16] capable de trier 2 N entiers arbitraires sur 64 bits. L'algorithme de tri opère en N étapes qui effectuent des séries d'opérations de type compare-and-swap sur les éléments du vecteur. A chaque étape k, le vecteur est divisé en morceaux de taille 2 k+1 . A la fin de l'étape courante, tous les morceaux sont triés. Lorsque la dernière étape est achevée le vecteur est entièrement trié. Un avantage de cet algorithme de tri est que les données peuvent être traitées en des blocs de taille fixe et avec une garantie sur la quantité minimale de parallélisme à chaque étape sous certaines conditions.

-Cholesky L'application cholesky effectue une Factorisation de Cholesky d'une matrice symétrique définie positive de taille N × N d'éléments à virgule flottante double précision. La matrice est divisée en blocs de taille S B × S B sur lesquels sont effectuées des opérations dgemm, dsyrk, dpotrf et dtrsm des interfaces BLAS [20] et LAPACK [START_REF] Anderson | LAPACK Users' Guide[END_REF]. L'implémentation de ces interfaces est fournie par la MATH KERNEL LIBRARY (MKL [START_REF] Drebes | Aftermath: A graphical tool for performance analysis and debugging of fine-grained task-parallel programs and run-time systems[END_REF]) d'Intel qui est optimisée pour des processeurs x86. Une des caractéristiques principales de cholesky est l'utilisation fréquente de broadcasts, des opérations où un seul producteur fournit des résultats lus par plusieurs lecteurs. Les phases d'exécution d'un benchmark OpenStream ainsi que l'intervalle de mesure définissant la période de l'exécution epndant laquelle sont effectués les calculs de l'application sont illustrés par la figure C.7. Une première phase est constituée par l'initialisation du run-time. Ensuite, le premier worker commence à exécuter la tâche racine, correspondant à la fonction main de l'application et initialise le benchmark. Cela comprend l'initialisation de flux ainsi que l'initialisation des structures de données globales. Pendant cette deuxième phase, tous les autres workers restent oisifs. Il suit la phase parallèle pendant laquelle les workers exécutent des tâches en parallèle. Une barrière permet de synchroniser toutes les tâches à la fin de cette phase. L'application termine par la libération des structures de données globales. L'intervalle de mesure ne prend en compte que la phase parallèle. L'évaluation expérimentale a été conduite sur deux machines décrites dans la section 6.3. La première plate-forme est composée de processeurs AMD Opteron 6282SE avec un nombre total de 64 coeurs répartis sur huit noeuds NUMA de huit coeurs et 8 Gio de mémoire chacun. La seconde machine dispose de 192 coeurs de processeurs Intel Xeon E5-4640 répartis en 24 noeuds NUMA et un total de 756 Gio de mémoire. Le paramétrage des benchmarks de la section 6.4 se concentre sur quatre aspects clés :

-La taille de données d'entrée qui définit si l'intégralité des données peut tenir dans des caches ou si des accès mémoires sont nécessaires. La taille maximale devrait dépasser la capacité des caches de plusieurs ordres de grandeur et devrait être plus faible que la taille de la mémoire vive afin d'éviter que le système soit contraint de décharger une partie des données sur le disque. -Le parallélisme disponible pendant l'exécution dépend de la taille des données en entrée et de la granularité des tâches définie par la taille des blocs. La taille des blocs devrait être choisie de sorte que le parallélisme est suffisamment élevé pour occuper tous les coeurs de la machine pendant la majorité de l'intervalle de mesure.

-Le taux de succès lors de l'exécution séquentielle d'une tâche est également contrainte par la taille des blocs. La taille des blocs devrait donc être choisie également en fonction de la taille des caches. -Le temps d'exécution est principalement défini par la taille des données en entrée et le nombre d'itérations des algorithmes. Ces valeurs devraient être suffisamment importantes afin que le temps d'exécution soit suffisamment long pour ne pas être masqué par des courtes variations issues du contexte de l'exécution (par exemple, des délais induits par l'ordonnanceur du système, l'état initial des caches, etc.).

Nous avons appliqué les mêmes optimisations séquentielles à tous les benchmarks. La taille de données en entrée ainsi que la taille des blocs est identique pour les différentes versions des applications.

La caractérisation des accès mémoires dans la section 6.5 indique que les benchmarks peuvent être divisés en un ensemble d'applications intensives en accès mémoires (seidel, jacobi-1d, jacobi-2d, jacobi-3d, blur-roberts et bitonic) et une autre ensemble application qui est intensive en accès aux caches (k-means). On s'attend donc à ce que les performances des applications du premier ensemble soient sensibles aux placement des données et de tâches tandis que les performances de k-means soient plutôt insensibles au placement. La dernière partie du chapitre 6 dans la section 6.6 illustre le passage à l'échelle de la version en mémoire partagée des benchmarks. Nous montrons qu'une allocation entrelacée sur tous les noeuds NUMA d'une machine est essentielle pour obtenir des performances décentes pour l'utilisation de tous les coeurs. Ainsi, nous appliquons ce type d'allocation dans tous les benchmarks parallèles pour toutes les structures de données globales dont la taille est suffisamment grande.

C.7 Ordonnancement tenant compte de données (chapitre 7)

Les chapitres précédents forment la base pour l'ordonnancement et le placement de données tenant compte de l'accès non-uniforme à la mémoire en précisant des méthodes qui permettent de déterminer le placement de données de manière efficace et de placer des structures de données de manière précise. Dans le chapitre 7, nous montrons comment l'information sur le placement peut être exploitée par l'ordonnanceur afin d'augmenter la localité des accès à la mémoire. Nous commençons par une analyse des effets du mécanisme d'activation de tâches par défaut sur la localité des accès à la mémoire et nous identifions les raisons potentielles pour des accès distants. A partir de cette analyse, nous proposons une technique appelé work-pushing qui est déclenchée lors de l'activation d'une tâche. Le but de cette technique est d'éviter que la file d'attente locale d'un worker contienne des tâches dont les données sont placées sur des noeuds distants et de favoriser l'accès à la mémoire locale à l'exécution. Par la suite, nous analysons l'influence du vol de tâches aléatoire sur la localité et nous proposons un mécanisme appelé topology-aware work-stealing qui priorise des vols dans le voisinage d'un coeur par rapport à la hiérarchie mémoire. Nous montrons que le work-pushing et le topology-aware work-stealing sont deux techniques complémentaires qui augmentent la localité des accès à la mémoire de manière significative comparé à l'activation de tâches par défaut et le vol de tâches aléatoire. Des parties de ce chapitre ont été publiées dans [46]. solution qui devrait permettre d'éliminer l'anomalie de performances. -l'exécution de l'application. L'application est ré-exécutée avec les modifications de l'étape précédente, ce qui génère une nouvelle trace qui est analysée lors de la prochaine itération du cycle.

La visualisation de traces est un moyen de présenter simultanément une grande quantité d'informations et permet de structurer cette information par plusieurs biais (par exemple par la couleur, par la position sur l'écran ou par des formes différentes). Cette visualisation devrait permettre à l'utilisateur de :

-distinguer l'activité de différents coeurs et workers, -d'observer l'activité dans le temps et l'évolution des métriques, -d'identifier précisément les différents types d'événements et de déterminer les entités concernées, par exemple la source et la destination d'un échange de données.

Un contrôle fin sur le degré de détails de la visualisation par des filtres est indispensable afin de permettre à l'utilisateur d'inspecter des aspects particuliers de la trace. Cette capacité est primordiale pour les test d'hypothèse pour lequel tous les événements qui ne sont pas concernés par l'hypothèse doivent être exclus de la visualisation. La section 10.1 fournit également un résumé de l'enregistrement d'événements liés aux interactions entre l'application, le run-time et le matériel ainsi que du format de trace d'Aftermath. Idéalement, le support pour la génération de traces n'est pas spécifique à une application et peut être réutilisé avec un surcoût de développement faible. Pour des applications dont l'exécution est gérée par un run-time tel que les applications à base de tâches la génération de trace peut être intégrée dans le run-time. Le principe d'enregistrement d'événements par le run-time OpenStream est illustré par la figure C.10. Le run-time représente l'entité centrale de l'enregistrement d'une trace responsable de la création du fichier de trace et de l'enregistrement de tous les événements pertinents. La plupart des événements proviennent directement du run-time (création de tâches, communication entre tâches par des flux, synchronisation entre tâches, etc.). Les seuls événements issus de l'application sont le début et la fin de l'intervalle de mesure puisqu'ils ne peuvent pas être déduits automatiquement par le run-time. L'application signale ces événements par des appels à des fonction du run-time lors de l'exécution. Les événements micro-architecturaux sont également enregistrés par le run-time par le biais de PAPI [START_REF] Terpstra | Collecting performance data with PAPI-C[END_REF], une bibliothèque spécialisée qui permet l'accès aux compteurs matériels exposés par le système d'exploitation. L'ensemble des événements est 1. la timeline au centre de l'interface graphique qui illustre l'activité de chaque coeur dans le temps (par exemple les différents états des workers associés, l'évolution des compteurs matériels, etc.). 2. un groupe de vues statistiques à droite agrégeant des événements individuels afin de quantifier des informations de base de l'intervalle sélectionné par l'utilisateur (par exemple un histogramme qui montre la distribution de la durée des tâches, des champs de texte indiquant le parallélisme en moyenne et une matrice qui visualise la quantité de données échangées entre des noeuds NUMA). 3. un ensemble de filtres sur la gauche qui permet à l'utilisateur de contrôler ce qui est affiché sur la timeline et dans les vues statistiques (par exemple des événements d'un certain type, des tâches ayant une certaine durée ou des tâches qui accèdent à la mémoire d'un noeud NUMA en particulier). 4. une vue textuelle détaillée en bas montrant des informations pour un état sélectionné sur la timeline et sa tâche associée (par exemple le type de la tâche, sa durée et les producteurs des données en entrée de la tâche ou ses consommateurs). 5. une barre de menu en haut de l'interface qui permet d'accéder à un ensemble de générateurs de métriques dérivées d'événements haut niveau ou issues d'une combinaison de compteurs existants (par exemple l'évolution de la durée moyenne des tâches dans le temps, le nombre d'octets échangés entre des noeuds NUMA spécifiques ou le ratio entre deux compteurs matériels). passante des contrôleurs mémoires des machines many-cores NUMA de manière efficace.

-La programmation data-flow peut être bénéfique pour l'exploitation efficace des machines many-cores NUMA et peut dépasser les performances des programmes à mémoire partagée.

Les travaux présentés dans cette thèse ouvrent sur un éventail de perspectives pour des recherches futures. Les axes de recherche qui nous paraissent les plus prometteurs sont présentés dans la section 11.4.

Contrôle sur l'empreinte mémoire par la limitation automatique de la fréquence de créations de tâches Un des effets secondaires de la construction successive du graphe de tâches par un programme de contrôle parallèle est la réduction de l'empreinte mémoire par le plafonnement implicite de créations de tâches. Préchargement logiciel de données en entrée L'ensemble de données accédées par une tâche étant connu avant que cette tâche démarre, il est donc envisageable de précharger l'intégralité ou un sous-ensemble de ces données dans le cache par le run-time en utilisant des instructions de préchargement. Un timing précis de ce préchargement peut réduire le nombre de miss lors de la première utilisation de données en entrée par une tâche. Toutefois, un préchargement trop agressif peut mener à une pollution du cache et à l'évincement de données par un nombre plus élevé de conflits. Les conditions sous lesquelles le préchargement peut être bénéfique est à déterminer par des travaux de recherche futurs.

L'ajustement automatique de la granularité des tâches La granularité des tâches a une forte influence sur la quantité de parallélisme disponible à l'exécution, l'exploitation de caches et le surcoût de synchronisation. Les paramètres pour un partitionnement idéal peuvent varier d'une machine à l'autre et entre différentes applications. Le développement d'applications avec une granularité variable est non-triviale et fastidieuse. Idéalement, le programmeur peut se concentrer sur la spécification du parallélisme à grain très fin et le run-time offre un mécanisme d'agrégation automatique permettant de fusionner plusieurs tâches afin d'obtenir la granularité idéale pour la machine cible et l'application en question. 

Amélioration des performances d'applications intensives en accès aux caches

2. 1

 1 Embedding of the run-time system into the execution environment . . . . . . . . . 2.2 Example of a hierarchy of caches with three levels L1 to L3 with separate and unified caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Hardware prefetching between DRAM and the last level cache and between caches 2.4 Shared and private caches in a multi-core system . . . . . . . . . . . . . . . . . . . . 2.5 Example of a NUMA system with 16 cores and 4 nodes . . . . . . . . . . . . . . . . 2.6 Examples of distributions using BLOCK and CYCLIC . . . . . . . . . . . . . . . . . 3.1 Illustration of stream accesses with burst and horizon . . . . . . . . . . . . . . . . . 3.2 Example of a dynamic task graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.3 Simple example with a single producer and a single consumer . . . . . . . . . . . . 3.4 Two producers and a single consumer . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Six producers and a single consumer operating on the same stream . . . . . . . . . 3.6 Six producers and a single consumer operating on six streams of an array of streams 3.7 Multiple consumers reading the same elements . . . . . . . . . . . . . . . . . . . . . 3.8 Per-worker data structures and worker placement in OpenStream . . . . . . . . . . 3.9 Major data structures of the OpenStream run-time . . . . . . . . . . . . . . . . . . . 3.10 Dependence resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.11 Dependence resolution of broadcasts . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.12 Illustration of the principles of a per-worker memory pool . . . . . . . . . . . . . . 3.13 Invalid program with bursts smaller than the horizons . . . . . . . . . . . . . . . . 3.14 Invalid program with multiple consumers reading from the same producer . . . . 3.15 Compilation of an OpenStream program . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Logical and physical allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Example of the distribution of data on three NUMA nodes . . . . . . . . . . . . . . 4.3 Illustration of the terms used for memory regions managed by memory pools . . . 4.4 Physical allocation upon a refill of a free list . . . . . . . . . . . . . . . . . . . . . . . 4.5 Different amounts of placed data after a refill for blocks larger than a page . . . . . 4.6 Balanced and unbalanced dependences leading to different distributions of the pages of a frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7 Different relationships between output and input views with different implications on the order of the scattering of a view . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8 Separation of input buffers from data-flow frames . . . . . . . . . . . . . . . . . . . 4.9 Multiple writers of an input view with input buffers separated from data-flow frames 4.10 Duration of a call to move_pageswith increasing concurrency . . . . . . . . . . . . 4.11 Duration of a call to move_pageswith maximum concurrency and varying duration between two calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.12 Overhead of a call to move_pageswith maximum concurrency as a function of the duration between two calls for a varying number of pages . . . . . . . . . . . . . .

  Memory footprint of broadcast tables with local copies . . . . . . . . . . . . . . . . 9.18 Fraction of requests to local memory of broadcast tables with local copies on the Opteron system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.19 Number of last level cache misses per thousand instructions of cholesky using broadcast tables with a single copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.20 Execution time of cholesky using broadcast tables with a single copy and local copies 10.1 Stages in the development of task-parallel applications and run-times . . . . . . . . 10.2 Capturing events related to the interactions between the application, the run-time system and the hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3 Aftermath's main window: timeline (1), filters (2), statistics (3), information on selected tasks / events (4) and menu bar for derived metrics (5). . . . . . . . . . . . 10.4 High-latency memory accesses of seidel using a shared matrix . . . . . . . . . . . . 10.5 Distribution of the duration of the main computation tasks in k-means . . . . . . . . 10.6 Heatmap view showing the task duration of k-means . . . . . . . . . . . . . . . . . . 10.7 Distribution of the duration of the main computation tasks of the modified k-means benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.8 Heatmap view showing the task duration of the modified version of k-means with a lower number of branch mispredictions . . . . . . . . . . . . . . . . . . . . . . . . . 10.9 Trace of seidel with random work-stealing and without work-pushing or deferred allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.10Example of memory accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.11Different views for a trace of seidel with topology-aware work-stealing, workpushing and deferred allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.12Worker states for each core during execution of cholesky without and with broadcast tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.13Number of workers in task execution state during execution of cholesky without and with broadcast tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Listings 3 . 1

 31 Single producer and single producer operating on a single stream . . . . . . . . . . 3.2 Two producers and a single consumer operating on a single stream . . . . . . . . . 3.3 Creation of producers in a for-loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Consumer using a variadic view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Multiple consumers reading the same elements . . . . . . . . . . . . . . . . . . . . . 3.6 Example code to be translated by the compiler . . . . . . . . . . . . . . . . . . . . . 3.7 General lines of the code generated by the compiler . . . . . . . . . . . . . . . . . . 4.1 Multiple producers writing to the same input buffer . . . . . . . . . . . . . . . . . . 4.2 Example of a task with multiple input views . . . . . . . . . . . . . . . . . . . . . . 4.3 General lines of the code generated by the compiler for input data embedded into a data-flow frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4 General lines of the code generated by the compiler for input buffers that are separated from the data-flow frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Illustration of the terminology for dynamic single assignment . . . . . . . . . . . . 5.2 Example of manual dynamic single assignment . . . . . . . . . . . . . . . . . . . . . 5.3 Example of manual dynamic single assignment with an irregular mapping of versions to data locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 Stream indexes and addresses in the context of dynamic single assignment . . . . . 5.5 Task-local modifications not counted as versions . . . . . . . . . . . . . . . . . . . . 5.6 Sequential implementation of seidel-1d . . . . . . . . . . . . . . . . . . . . . . . . . . 5.7 Sequential, blocked implementation of a seidel-1d . . . . . . . . . . . . . . . . . . . . 5.8 Parallel, dynamic single assignment implementation of seidel-1d . . . . . . . . . . . 5.9 Sketch of seidel-1d with a parallel control program . . . . . . . . . . . . . . . . . . . 6.1 One-dimensional stencil using tokens for synchronization . . . . . . . . . . . . . . 8.1 Task with output dependences causing the modified compiler to add calls to pre-pare_data to the task body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 General lines of the code with deferred allocation generated by the compiler . . . . 8.3 Example of a task with equal-sized input and output views . . . . . . . . . . . . . . 8.4 Example of a task using the inout_reuse clause . . . . . . . . . . . . . . . . . . . . .

Figure 2 . 1 :

 21 Figure 2.1: Embedding of the run-time system into the execution environment

Figure 2 . 2 :Figure 2 . 3 :

 2223 Figure 2.2: Example of a hierarchy of caches with three levels L1 to L3 with separate and unified caches

Figure 2 . 4 :

 24 Figure 2.4: Shared and private caches in a multi-core system

Figure 2 . 5 :

 25 Figure 2.5: Example of a NUMA system with 16 cores and 4 nodes

Figure 2 .

 2 Figure 2.4 shows an example of a hierarchy of caches for a multi-core system composed of four cores. The first level caches are private, second level caches are shared by pairs of cores and the third level cache is shared by all cores.

  e) BLOCK, CYCLIC distribution

  .

Figure 2 . 6 :

 26 Figure 2.6: Examples of distributions using BLOCK and CYCLIC

Figure 3 . 1 :

 31 Figure 3.1: Illustration of stream accesses with burst and horizon

( a )Figure 3 . 2 :

 a32 Figure 3.2: Example of a dynamic task graph

1

  element_type stream_identifier __attribute__((stream));

1

  element_type stream_ref_identifier __attribute__((stream_ref));

1

  element_type stream_arr_identifier[size_expr] __attribute__((stream)); 2 element_type stream_ref_arr_name[size_expr] __attribute__((stream_ref));

1 /* 4 /

 14 Single stream of floating point elements * / 2 float float_stream __attribute__((stream)); 3 * Array of 100 streams of characters * / 5 char char_stream_arr[100] __attribute__((stream));

6 7/ 10 /

 610 * Reference to a stream of characters * / 8 char char_stream_ref __attribute__((stream_ref)); 9 * Assignment of a stream reference * / 11 char_stream_ref = char_stream_arr[0];

1

  element_type view_identifier[size_expr];

1

  element_type view_identifier[num_streams][size_expr];

1 # 3 output

 13 pragma omp task input(stream_expr >> view_expr, ...) | 2 peek(stream_expr >> view_expr, ...) |

Figure 3 . 3 :

 33 Figure 3.3: Simple example with a single producer and a single consumer

Listing 3 . 1 :Figure 3 . 4 : 3 float 10 # 11 { 12 for 17 #

 3134310111217 Figure 3.4: Two producers and a single consumer

Listing 3 . 2 :

 32 Two producers and a single consumer operating on a single stream 1 int main(int argc, char ** argv) 2 { a_stream in_view out_view ... ... ... ... ...

( a )Figure 3 . 5 : 3 float

 a353 Figure 3.5: Six producers and a single consumer operating on the same stream

12 # 13 { 14 for 19 # 26 #

 1213141926 pragma omp task output(a_stream << out_view[horizon_out]) (int i = 0; i < horizon_out; i++) 15 out_view[i] = sqrtf((float)i); pragma omp task output(a_stream << out_view[horizon_out]) pragma omp task input(a_stream >> in_view[horizon_in])

Listing 3 . 3 :

 33 Creation of producers in a for-loop 1 float out_view;

2 3

 2 for(int i = 0; i < 6; i++) { in_view streams[0] 

Figure 3 . 6 : 5 { 6 out_view 7 } 8 }

 365678 Figure 3.6: Six producers and a single consumer operating on six streams of an array of streams

Listing 3 . 4 : 2 { 3 float

 3423 Consumer using a variadic view 1 int main(int argc, char ** argv) streams[6] __attribute__ ((stream));

17 #

 17 pragma omp task input(streams >> in_view[6][1]) 18 { 19 for(int i = 0; i < 6; i++) 20 printf("Read %f\n", in_view[i][0]);

Listing 3 . 5 : 2 { 3 float

 3523 Multiple consumers reading the same elements 1 int main(int argc, char ** argv) a_stream __attribute__ ((stream));

10 # 11 { 12 for 17 # 19 float 28 # 29 { 30 float

 1011121719282930 pragma omp task output(a_stream << out_view[horizon]) (int i = 0; i < horizon; i++) 13 out_view[i] = sqrtf((float)i); pragma omp task peek(a_stream >> in_view[horizon]) 18 { accu = 0.0f; 20 21 for(int i = 0; i < horizon; i++) 22 accu += in_view[i]; pragma omp task peek(a_stream >> in_view[horizon]) accu = 1.0f;

  i = 0; i < horizon; i++) 33 accu * = in_view[i];

39 # 40 { 41 float

 394041 pragma omp task peek(a_stream >> in_view[horizon]) accu = 1.0f;

  i = 0; i < horizon; i++)44 accu += in_view[i] * in_view[i]; 45 46printf("Sum of squares: %f\n", accu);

Figure 3 . 7 :Figure 3 . 8 :

 3738 Figure 3.7: Multiple consumers reading the same elements

Algorithm 1 :

 1 scheduler_loop(w) other workers than the owner.

Figure 3 . 9 :

 39 Figure 3.9: Major data structures of the OpenStream run-time

Figure 3 . 10 :Figure 3 . 10 :

 310310 Figure 3.10: Resolution of the dependences of the tasks from listing 3.2 on page 39

  Creation of the first consumer

Figure 3 . 11 :Figure 3 . 12 :

 311312 Figure 3.11: Dependence resolution of broadcasts

  Creation of the second consumer

Figure 3 . 13 :

 313 Figure 3.13: Invalid program with bursts smaller than the horizons

Figure 3 . 14 :

 314 Figure 3.14: Invalid program with multiple consumers reading from the same producer

6 Figure 3 . 15 :

 6315 Figure 3.15: Compilation of an OpenStream program

Listing 3 . 6 :

 36 Example code to be translated by the compiler 1 void stream_function(void)

8 9# 12 { 13 for

 81213 pragma omp task input(fstream >> in_view_f[horizon], \ 10 dstream >> in_view_d[horizon]) \ 11 output(istream << out_view[horizon]) (int i = 0; i < horizon; i++) 14 out_view[i] = (int)round(in_view_f[i] * in_view_d[i]);

17

 17 

}

  

Listing 3 . 7 : 4 struct view in_view_f; 5 struct view in_view_d; 6 struct

 37456 General lines of the code generated by the compiler 1 view out_view; 7 void ( * work_fn)(void * ); 8 char buf[]; }; void work_function_1(struct frame_1 * fp) { for(int i = 0; i < fp->horizon; i++) ((int * )fp->out_view.data)[i] = (int)round(((float * )fp->in_view_f.data)[i] * ((double * )fp->in_view_d.data)[i])); tdecrease(fp->out_view.owner, fp->out_view.horizon); int out_view[horizon]; float in_view_f[horizon]; double in_view_d[horizon]; size_t frame_size = sizeof(struct frame_1) + horizon * sizeof(float) + horizon * sizeof(double); struct frame_1 * fp = tcreate(frame_size); fp->work_fn = work_function_1; fp->sc = horizon * sizeof(float) + horizon * sizeof(double) + horizon * sizeof(int); fp->horizon = horizon; fp->in_view_f.horizon = horizon * sizeof(float); fp->in_view_f.burst = horizon * sizeof(float); fp->in_view_f.next = NULL; fp->in_view_f.rpos = 0; fp->in_view_f.owner = fp; fp->in_view_f.data = &fp->buf[0]; fp->in_view_d.horizon = horizon * sizeof(double); fp->in_view_d.burst = horizon * sizeof(double); fp->in_view_d.next = NULL; fp->in_view_d.rpos = 0; fp->in_view_d.owner = fp; fp->in_view_d.data = &fp->buf[horizon * sizeof(float)]; fp->out_view.horizon = horizon * sizeof(int); fp->out_view.burst = horizon * sizeof(int); fp->out_view.next = NULL; fp->out_view.rpos = 0; fp->out_view.owner = NULL; fp->out_view.data = NULL; resolve_dependences(&fp->in_view_f, true); resolve_dependences(&fp->in_view_d, true); resolve_dependences(&fp->out_view, false);

Figure 4 . 1 :

 41 Figure 4.1: Logical and physical allocation

Figure 4 . 2 :

 42 Figure 4.2: Example of the distribution of data on three NUMA nodes

Figure 4 . 3 :

 43 Figure 4.3: Illustration of the terms used for memory regions managed by memory pools

Figure 4 . 4 :

 44 Figure 4.4: Physical allocation upon a refill of a free list

Figure 4 . 5 :

 45 Figure 4.5: Different amounts of placed data after a refill for blocks larger than a page

( a )

 a Task graph with unbalanced dependences (b) Placement of the majority of the frame's pages on a single node (c) Task graph with balanced dependences (d) Even distribution of the frame

Figure 4 . 6 :Figure 4 . 7 :

 4647 Figure 4.6: Balanced and unbalanced dependences leading to different distributions of the pages of a frame

Listing 4 . 1 :

 41 Multiple producers writing to the same input buffer 1 float a_stream __attribute__ ((stream));

10 # 18 # 19 { 20 for

 10181920 pragma omp task output(a_stream << out_view[horizon_out]) pragma omp task input(a_stream >> in_view[horizon_in]) (int i = 0; i < horizon_in; i++) 21 printf("Read %f\n", in_view[i]);

Figure 4 . 8 :

 48 Figure 4.8: Separation of input buffers from data-flow frames

Figure 4 . 9 :

 49 Figure 4.9: Multiple writers of an input view with input buffers separated from data-flow frames

Listing 4 . 2 :}Listing 4 . 3 :

 4243 Example of a task with multiple input views void stream_function(void) { ... int horizon = 10; float in_view_f[horizon]; int in_view_i[horizon]; double in_view_d[horizon]; #pragma omp task input(fstream >> in_view_f[horizon], \ istream >> in_view_i[horizon], \ dstream >> in_view_d[horizon]In the default scheme for code generation the program above is translated into the code of the next listing. As explained in the previous chapter in Section 3.5, the code generated by the compiler only exists in an intermediate representation and the code below only serves as an illustration. General lines of the code generated by the compiler for input data embedded into a data-flow frame size_t frame_size = sizeof(struct frame_1) + horizon * sizeof(float) + horizon * sizeof(int) + horizon * sizeof(double); .data = &fp->buf[0]; 25 fp->in_view_i.data = &fp->buf[horizon * sizeof(float)]; 26 fp->in_view_d.data = &fp->buf[horizon * sizeof(float)+horizon * sizeof(int)];27

6 7 13 ... 14 }

 61314 size_t frame_size = sizeof(struct frame_1); 8 struct frame_1 * fp = tcreate(frame_size); 9 ... 10 alloc_view_data(&fp->in_view_f, horizon * sizeof(float)); 11 alloc_view_data(&fp->in_view_i, horizon * sizeof(int)); 12 alloc_view_data(&fp->in_view_d, horizon * sizeof(double));

Figure 4 .

 4 11b. The minimal duration is reached between 8 Mcycles and 10 Mcycles.

1 . 5

 15 Mcycles and is below 5 Mcycles for most of the applications. Hence, systematic redirection of

Figure 4 . 10 :

 410 Figure 4.10: Duration of a call to move_pages with increasing concurrency

Figure 4 . 11 :

 411 Figure 4.11: Duration of a call to move_pages with maximum concurrency and varying duration between two calls

Figure 4 . 12 :Figure 4 . 13 :

 412413 Figure 4.12: Overhead of a call to move_pages with maximum concurrency as a function of the duration between two calls for a varying number of pages

Figure 4 . 14 :

 414 Figure 4.14: Page sampling with a sampling distance of 16 pages

Figure 4 . 15 :Figure 4 . 16 :

 415416 Figure 4.15: Huge page spanning two blocks

Figure 4 .

 4 Figure 4.14 illustrates sampling of every 16th small page. The size of a small page is indicated by S P and only pages with an offset which can be represented as an integer multiple of 16S P are sampled. For the experiments we have used a sampling distance of 64 KiB, i.e., every 16th small page.However, situations in which substantial parts of a buffer are placed on more than one node occur only very rarely, for less than one percent of the buffers. Thus, sampling less pages per buffer might be sufficient in most cases. As the overhead of the sampling of every 16th small page is already sufficiently small, we did not investigate if the sampling distance can be increased or whether sampling at specific positions of the buffer is sufficient.

Figure 4 .

 4 [START_REF] Bienia | Parsec 2.0: A new benchmark suite for chip-multiprocessors[END_REF] illustrates how this mechanism works. Instead of

Figure 4 . 17 :Figure 4 . 18 :

 417418 Figure 4.17: Refill and allocation with immediate splitting

Figure 4 . 19 :

 419 Figure 4.19: Influence of the placement of structures representing workers on performance

Figure 4 .

 4 19 shows the wall clock execution time in seconds for the dynamic single assignment versions of the benchmarks presented in Section 6.1 on the 192-core machine with 24 NUMA domains. The first bar for each benchmark represents the median execution time of 50 executions for the version of the run-time which places all worker structures on the first node of the system. Error bars indicate the standard deviation. The second bar shows the same value for the version of the run-time which places each structure representing a worker on the local node of the worker.

Listing 5 . 1 : 8 i

 518 Illustration of the terminology for dynamic single assignment 1 void foo(void) = bar(i);

  (i)) { 11 j = baz(i, j); 12 k = doz(i, k);

Listing 5 . 4 :

 54 Stream indexes and addresses in the context of dynamic single assignment 1 int istream[4] __attribute__((stream));

8 # 13 / 21 # 28 # 35 #

 813212835 pragma omp task output(istream[0] << i_out) * Task: t0 * / 14 #pragma omp task input(istream[0] >> i_in) \ output(istream[1] << i_out) pragma omp task input(istream[1] >> i_in) \ 22 output(istream[2] << i_out) pragma omp task input(istream[2] >> i_in) \ 29 output(istream[3] << i_out) pragma omp task input(istream[3] >> i_in) 36 { 37 }

Listing 5 . 5 :

 55 Task-local modifications not counted as versions 1 int a_stream __attribute__((stream)); 2 int another_stream __attribute__((stream)); 3 int i_in, i_out;

4 5#

 4 pragma omp task input(a_stream >> i_in) \ 6 output(another_stream << i_out) j = 0; j < N; j++) 11 i += some_function(i);

Listing 5 . 6 : 2 { 3 for 7 /

 56237 Sequential implementation of seidel-1d 1 void seidel_1d_seq(double * data, size_t N, int num_iter) (int iter = 0; iter < num_iter; iter++) { 4 / * Leftmost element * / 5 data[0] = (0 + data[0] + data[1]) / 3.0; 6 * Elements in the center * / 8 for(size_t i = 1

Listing 5 . 7 : 2 { 3 for 7 / 11 /

 5723711 Sequential, blocked implementation of a seidel-1d 1 void seidel_1d_seq_blocked(double * data, size_t N, size_t B, int num_iter) (int iter = 0; iter < num_iter; iter++) { 4 / * Leftmost element * / 5 data[0] = (0 + data[0] + data[1]) / 3.0; 6 * Leftmost block * / 8 for(int i = 1; i < B; i++) 9 data[i] = (data[i-1] + data[i] + data[i+1]) / 3.0; 10 * Blocks in the center * / 12 for(size_t i = B; i < N-B; i += B) 13 for(size_t j = 0; j < B; j++) 14 data[i+j] = (data[i+j-1] + data[i+j] + data[i+j+1]) / 3.0; 15 16 / * Rightmost block * / 17 for(int i = N-B

Figure 5 . 1 :

 51 Figure 5.1: Dependences in the dynamic single assignment version of seidel-1d

Listing 5 . 8 :

 58 Parallel, dynamic single assignment implementation of seidel-1d the values of one block according to the block's position in the array. * / void process_block(enum block_position pos, size_t B, double * center_in, double * center_out, double * left_in, double * left_out, double * right_in, double * right_out) { double vleft_in = 0.0; double vright_in = 0.0; / * Left neighbor? * / if(pos != POS_LEFT) vleft_in = * left_in; / * Right neighbor? * / if(pos != POS_RIGHT) vright_in = * right_in; / * Update first element of the block * / center_out[0] = (vleft_in + center_in[0] + center_in[1]) / 3.0; / * Update elements in the middle of the block that only depend on the block's own elements * / for(int i = 1; i < B-1; i++) center_out[i] = (center_out[i-1] + center_in[i] + center_in[i+1]) / 3.0; / * Update last element of the block * / center_out[B-1] = (center_in[B-2] + center_in[B-1] + vright_in) / 3.0; / * Communicate the first value of the block to the left * / if(pos != POS_LEFT) * left_out = center_out[0]; / * Communicate the last value of the block to the right * / if(pos != POS_RIGHT) * right_out = center_out[B-1]; } void seidel_1d_dsa(double * data, size_t N, size_t B, int num_iter) { size_t num_blocks = N/B; / * Streams storing the values generated for each version * / double scenter[(num_iter+2) * num_blocks] __attribute__((stream)); double sleft[(num_iter+2) * num_blocks] __attribute__((stream)); double sright[(num_iter+2) * num_blocks] __attribute__((stream)); / * Indexes in the array of streams for input dependences * / #define LEFT_IN_IDX ((iter+1) * num_blocks+block-1) #define RIGHT_IN_IDX (iter * num_blocks+block+1) #define CENTER_IN_IDX (iter * num_blocks+block) / * Indexes in the array of streams for output dependences * / #define LEFT_OUT_IDX ((iter+1) * num_blocks+block) #define RIGHT_OUT_IDX ((iter+1) * num_blocks+block) #define CENTER_OUT_IDX ((iter+1) * num_blocks+block) / * Views on the stream elements * / double left_in, right_in, center_in[B]; double left_out, right_out, center_out[B]; / * Create tasks copying the initial version to the streams * / for(size_t block = 0; block < num_blocks; block++) { / * Leftmost block * / if(block == 0) { #pragma omp task output(scenter[block] << center_out[B]) { memcpy(center_out, &data[B * block], B * sizeof(double)); } } / * Other blocks * / else { #pragma omp task output(scenter[block] << center_out[B], \ sleft[block] << left_out) { memcpy(center_out, &data[B * block], B * sizeof(double)); left_out = data[B * block]; } } } / * Create one task for each block and each iteration * / for(size_t iter = 0; iter < num_iter; iter++) { for(size_t block = 0; block < num_blocks; block++) { / * Leftmost block * / if(block == 0) { #pragma omp task \ input(scenter[CENTER_IN_IDX] >> center_in[B], \ sleft[RIGHT_IN_IDX] >> right_in) \ output(sright[RIGHT_OUT_IDX] << right_out, \ scenter[CENTER_OUT_IDX] << center_out[B]) { process_block(POS_LEFT, B, center_in, center_out, NULL, NULL, &right_in, &right_out); } } / * Rightmost block * / else if(block == num_blocks-1) { #pragma omp task \ input(scenter[CENTER_IN_IDX] >> center_in[B], \ sright[LEFT_IN_IDX] >> left_in) \ output(sleft[LEFT_OUT_IDX] << left_out, \ scenter[CENTER_OUT_IDX] << center_out[B]) { process_block(POS_RIGHT, B, center_in, center_out, &left_in, &left_out, NULL, NULL); } } / * Block in the center * / else { #pragma omp task \ input(scenter[CENTER_IN_IDX] >> center_in[B], \ sright[LEFT_IN_IDX] >> left_in, \ sleft[RIGHT_IN_IDX] >> right_in) \ output(sright[RIGHT_OUT_IDX] << right_out, \ sleft[LEFT_OUT_IDX] << left_out, \ scenter[CENTER_OUT_IDX] << center_out[B]) tasks copying the final version back to shared memory * / for(size_t block = 0; block < num_blocks; block++) { / * Leftmost block * / if(block == 0) { #pragma omp task input(scenter[num_iter * num_blocks+block] >> center_in[B]) { memcpy(&data[B * block], center_in, B * sizeof(double)); } } / * Other blocks * / else { #pragma omp task \ input(sleft[num_iter * num_blocks+block] >> left_in, \ scenter[num_iter * num_blocks+block] >> center_in[B]) 152 { 153 memcpy(&data[B * block], center_in, B * sizeof(double));

Figure 5 . 3 :

 53 Figure 5.3: Memory footprint resulting from sequential task creation with small pages

Figure 5 . 5 :Figure 5 . 6 :

 5556 Figure 5.5: Memory footprint resulting from parallel task creation

Figure 5 . 7 :

 57 Figure 5.7: Concurrent task creation with different matching of the views

Figure 5 . 8 :

 58 Figure 5.8: Sequential control program with a different number of workers

Figure 5 . 9 :

 59 Figure 5.9: Examples of task graphs for which the order of task creation has an influence on performance

Figure 5 . 10 :

 510 Figure 5.10: Parallel control program with termination detection

( a )Figure 5 . 11 :

 a511 Figure 5.11: Deadlocking and non-deadlocking parallel task creation

  The graph contains two types of dependences: heavy dependences between tasks that treat the same block at different iterations (e.g., between b i-1 X,Y and b i X,Y or between b i X,Y and b i+1 X,Y ) and light dependences between neighboring blocks of the same iteration (e.g., between b i X,Y and b i X+1,Y or between b i X,Y and b i X,Y +1 ) or neighboring blocks across iterations (e.g., between b i X,Y and b i+1 X-1,Y or between b i X,Y and b i+1 X,Y -1 ). The heavy dependences correspond to data dependences for entire blocks, which consist of S B • S B elements, while light dependences represent data dependences for the borders of blocks and only comprise S B elements. The value S dbl in the task graph stands for the size of a double precision floating point value of eight bytes.

Figure 6 . 1 :Figure 6 . 2 :

 6162 Figure 6.1: Seidel: two-dimensional five-point stencil

Figure 6 . 3 :Figure 6 . 4 :Figure 6 . 5 :

 636465 Figure 6.3: Jacobi-2d: two-dimensional five-point stencil

Figure 6 . 6 :

 66 Figure 6.6: Blur-roberts: consecutive applications of two stencils

Figure 6 . 7 :

 67 Figure 6.7: Bitonic: bitonic sorting network

Figure 6 . 8 :Figure 6 . 9 :Figure 6 . 10 :Figure 6 . 11 :

 6869610611 Figure 6.8: Parallel control program of a bitonic sorting network

Figure 6 . 12 :Figure 6 . 13 :

 612613 Figure 6.12: Cholesky: varying number of readers depending on the operation and the block position

Figure 6 . 14 :

 614 Figure 6.14: K-means: clustering of multidimensional data

Figure 6 . 15 :

 615 Figure 6.15: 1d stencil synchronizing with tokens

Listing 6 . 1 : 7 double 9 / 14 / 15 # 19 / 22 # 33 / 35 #

 6179141519223335 One-dimensional stencil using tokens for synchronization 1 int main(int argc, char ** argv) * data = malloc(N * sizeof(double)); 8 * Streams with tokens for synchronization * / 10 int tokens_center[(num_iters+2) * num_blocks] __attribute__((stream)); 11 int tokens_left[(num_iters+2) * num_blocks] __attribute__((stream)); 12 int tokens_right[(num_iters+2) * num_blocks] __attribute__((stream)); 13 * Indexes in the array of streams for input tokens * / define LEFT_IN_IDX ((iter+1) * num_blocks+block-1) 16 #define RIGHT_IN_IDX (iter * num_blocks+block+1) 17 #define CENTER_IN_IDX (iter * num_blocks+block) 18 * Indexes in the array of streams for output tokens * / 20 #define LEFT_OUT_IDX ((iter+1) * num_blocks+block) #define RIGHT_OUT_IDX ((iter+1) * num_blocks+block) define CENTER_OUT_IDX ((iter+1) * num_blocks+block) tasks writing initial tokens * / 32 for(size_t block = 0; block < num_blocks; block++) { pragma omp task output(tokens_center[block] << right_out_token)

Figure 6 . 16 :

 616 Figure 6.16: Interleaved allocation on n nodes

Figure 6 . 17 :

 617 Figure 6.17: Phases during execution of a benchmark

Figure 6 . 18 :

 618 Figure 6.18: Architecture of the Opteron test system

Figure 6 . 19 :

 619 Figure 6.19: Architecture of the SGI test system

Figure 6 . 20 :

 620 Figure 6.20: Cache miss rates of the dynamic single assignment versions

  seidel jacobi-1d jacobi-2d jacobi-3d kmeans blur-roberts bitonic 0

Figure 6 . 21 :

 621 Figure 6.21: Number of last level cache misses per thousand instructions

Figure 6 . 22 :Figure 6 . 23 :

 622623 Figure 6.22: Scalability of shared memory benchmarks (Opteron platform with 64 cores)

Figure 7 . 3 :

 73 Figure 7.3: Remote / local write accesses depending on the placement of output buffers

(a) Execution of u 0 and l 0 ( b )Figure 7 . 4 :Figure 7 . 5 :

 0b7475 Figure 7.4: Different probabilities among workers for task ownership

Figure 7 . 6 :

 76 Figure 7.6: Updated structure of the workers with MPSC FIFO

Algorithm 4 : 33 if 1 37 38 r

 433138 node_with_min_cost(node w , data) 1 costs[0 . . . N -1] ← 0, . . . , ← costs[node w ] node min ← node w other min ← 0, . . . , 0 num_other min ← 0 for n ∈ {0, . . . , N -1} do if costs[n] = cost min then other min [num_other min ] ← n num_other min ← num_other min + 1 end if costs[n] < cost min then cost min ← costs[n] node min ← n num_other min ← 0 end end node min = node w and num_other min = 0 34 then 35 other min [num_other min ] ← n min 36 num_other min ← num_other min + ← rand(num_other min -1) 39 node min ← other min [r]

Algorithm 7 : 1 cpu w ← cpu(w) 2 3for level ∈ L do 4 num_siblings 6 for attempt ← 1 to attempts(l) do 7 n 8 target_cpu 10 if target_cpu = cpu w then 11 target_worker ← cpu - 1

 712467810111 topology_aware_stealing(w) ← sibs(l, cpu w ) 5 ← rand(num_siblings -1) ← nth_sib(l, cpu w , n) 9

Figure 7 . 7 :

 77 Figure 7.7: Visual representation of data and task placement

Figure 7 . 8 :

 78 Figure 7.8: Locality of requests to main memory on the Opteron system for the push heuristics

Figure 7 . 9 :

 79 Figure 7.9: Influence of the push heuristic on seidel and jacobi

Figure 7 .

 7 9a shows a possible initial placement of the first two tasks on the path of heavy dependences indicates by the thick arrows. The input buffers of t 0 are placed on the node n a , After termination of the first tasks

Figure 7 . 10 :

 710 Figure 7.10: Timing of the determination of data placement in blur-roberts

Figure 7 . 11 :

 711 Figure 7.11: Effect of the push heuristics on bitonic

Figure 7 . 12 :

 712 Figure 7.12: Approximation R appr loc of the locality for the push heuristics

Figure 7 . 13 :

 713 Figure 7.13: Relative error of R appr loc over the locality measured with hardware performance counters

Figure 7 . 15 :

 715 Figure 7.15: Speedup of the push heuristics over the shared memory implementations

Figure 7 . 18 :

 718 Figure 7.18: Approximation R appr loc of the locality for the push heuristics combined with topology-aware work-stealing for the SGI system

Figure 7 . 21 :

 721 Figure 7.21: Speedup of the push heuristics combined with topology-aware work-stealing over the shared memory implementations

Figure 8 . 1 :

 81 Figure 8.1: Immediate allocation of input buffers

( a )Figure 8 . 2 :Figure 8 . 3 :

 a8283 Figure 8.2: Influence of the control program on locality using immediate allocation

( a )Figure 8 . 4 :

 a84 Figure 8.4: Work-pushing after a steal using immediate allocation

Figure 8 . 5 :

 85 Figure 8.5: Influence of the creation of initial tasks on data locality

Figure 8 . 6 :Figure 8 . 7 :

 8687 Figure 8.6: Example of a task graph that requires a less obvious scheme for the creation of initial tasks to avoid contention

Algorithm 8 : 1 if v o .data = null then 2 w

 812 prepare_data(v o )

Listing 8 . 1 : 1 void

 811 Task with output dependences causing the modified compiler to add calls to prepare_data to the task body

11 #

 11 pragma omp task input(fstream >> in_view[horizon]) \ 12 output(sq_stream << out_view_sq[horizon], \ 13 sqrt_stream << out_view_sqrt[horizon]) 14 { 15 for(int i = 0; i < horizon; i++) { 16 out_view_sq[i] = in_view[i] * in_view[i];

Listing 8 . 2 :

 82 General lines of the code with deferred allocation generated by the compiler 1 void work_function_1(struct frame_1 * fp)

7 ( 8 ( 9 ( 10 } 11 12

 7891011 i = 0; i < fp->horizon; i++) { (float * )fp->out_view_sq.data)[i] = ((float * )fp->in_view.data)[i] * (float * )fp->in_view.data)[i]); (float * )fp->out_view_sqrt.data)[i] = sqrtf(((float * )fp->in_view.data)[i]); tdecrease(fp->out_view_sq.owner, fp->out_view_sq.horizon); 13 tdecrease(fp->out_view_sqrt.owner, fp->out_view_sqrt.horizon); 14 tend(fp); 15 }

( a ) 2 (c) Execution of t 2 Figure 8 . 9 :

 a2289 Figure 8.9: Decoupled control program and buffer allocation on a path of heavy dependences

( a )Figure 8 . 10 :

 a810 Figure 8.10: Decoupled control program and buffer allocation on a path of heavy dependences

2 (f) Execution of t 2 Figure 8 . 11 :

 22811 Figure 8.11: Deferred allocation on a task-graph with balanced dependences

Figure 8 . 12 :

 812 Figure 8.12: Work-stealing in conjunction with deferred allocation

( b )Figure 8 . 13 :Figure 8 . 14 :

 b813814 Figure 8.13: Improved data locality and load balancing resulting from the creation of initial tasks using deferred allocation

1 Figure 8 . 15 :

 1815 Figure 8.15: Illustration of the reduced memory footprint due to deferred allocation

  placed data (appr.)[%] 

Figure 8 . 17 :

 817 Figure 8.17: Approximation R wloc loc (and R appr loc for rnd) of the locality for deferred allocation

Figure 8 . 18 :

 818 Figure 8.18: Relative error of R wloc loc (and R appr loc for rnd) over the locality measured with hardware performance counters for the Opteron system

Figure 8 . 19 :allocation 8 . 4 . 2 PerformanceFigure 8

 8198428 Figure 8.19: Comparison of the locality of requests to main memory on the Opteron system for work-pushing and deferred allocation

Figure 8 . 20 :

 820 Figure 8.20: Maximum resident size for dynamic single assignment implementations with and without deferred allocation and the shared memory implementations

Figure 8 . 23 :

 823 Figure 8.23: Speedup of deferred allocation over the shared memory implementations

1

  inout_reuse(stream_expr >> view_expr >> stream_expr)

Listing 8 . 3 :

 83 Example of a task with equal-sized input and output views 1 float in_view[horizon]; 2 float out_view[horizon];

3 4# 6 { 7 for

 367 pragma omp task input(s1 >> in_view[horizon]) \ 5 output(s2 << out_view[horizon]) (int i = 0; i < horizon; i++) 8 out_view[i] = sqrtf(in_view[i]); 9 }

Listing 8 . 4 : 3 # 4 { 5

 84345 Example of a task using the inout_reuse clause 1 float rview[horizon]; 2 pragma omp task input(s1 >> rview[horizon] >> s2)

Figure 8 .

 8 25a to Figure 8.25l illustrate the steps at the execution of the application with this task graph. Before we explain each of these output input inout_reuse (a) Minimal example output input inout_reuse inout_reuse (b) Two subsequent tasks using the inout_reuse clause

Figure 8 . 24 :

 824 Figure 8.24: Examples of a task graphs with tasks using the inout_reuse clause

Figure 8 .

 8 Figure 8.25h and Figure 8.25i show what happens at termination of t 1 .In a first step, the data pointer of the reuse input view of t 2 receives the address of the input buffer used by t 1 (Figure8.25h). Afterwards, the data pointer of the reuse input view of t 1 is set to NULL and its reference counter as well as the reference counter of the frame are decremented (Figure8.25i). This transfers the ownership for the input buffer from t 1 to t 2

Termination of t 0 Figure 8 . 25 :Termination of t 2 Figure 8 . 25 : 1 (l) De-allocation of t 2 Figure 8 . 25 :Figure 8 . 26 :

 0825282512825826 Figure 8.25: Steps during execution of an application using the inout_reuse clause

Copy ( a )

 a Detection that a local copy is needed Free (b) De-allocation of the source buffer

Figure 8 .

 8 Figure 8.27: Copying the contents of an inout_reuse view when changing nodes

Figure 9 . 1 :

 91 Figure 9.1: Broadcast to n readers with multiple copies

( a ) 1 c 1 cAllocation of the input buffer of t 2 c 2 cFigure 9 . 2 : 2 cFigure 9 . 2 :Figure 9 . 3 :

 a11229229293 Figure 9.2: Broadcast with deferred allocation

Figure 9 . 6 :

 96 Figure 9.6: Cholesky: improved layout of data in shared memory

Figure 9 . 7 :

 97 Figure 9.7: Memory footprint of cholesky with and without broadcast tables. The configurations are the default broadcast without deferred allocation (default), with deferred allocation (dfa) and with deferred allocation in conjunction with broadcast tables (dfa+bt).

Figure 9 . 8 :Figure 9 . 9 :

 9899 Figure 9.8: The number of broadcasts and readers in cholesky as a function of the size of the matrix

Number of elements in each dimension of the matrix 10 Figure 9 . 10 :

 10910 Figure 9.10: Number of refills during execution of cholesky for blocks of 512 KiB. The configurations are the same as in Figure 9.7.

Figure 9 . 11 :

 911 Figure 9.11: Execution time of cholesky with and without broadcast tables. The configurations are the same as in Figure 9.7.

Number of elements in each dimension of theFigure 9 . 13 :

 913 Figure 9.13: Performance of cholesky compared to state-of-the-art implementations for many-core systems

Figure 9 . 14 :Figure 9 . 15 :

 914915 Figure 9.14: Footprint of cholesky compared to state-of-the-art implementations for many-core systems

Algorithm 10 : 1 w 3 bt ← v p .bctable 4 5 retry: 6 if 15 v

 10135615 prepare_peek_data(v p ) ← this_worker() 2 node w ← local_node_of_worker(w) bt.data[node w ] = null and bt.data[node w ] = updating then 7 v p .data ← bt.data[node w ] p .data ← bt.data[bt.src_node] bt.data[node w ], updating, null) = success then 20 pool ← memory_pool_of (node w ) 21 v p .data ← alloc(pool, v p .horizon) 22 memcpy(v p .data, bt.data[bt.src_node], v p .horizon) 23 atomic_set(bt.data[node w ], v p .data, updating)

Figure 9 . 20 :

 920 Figure 9.20: Execution time of cholesky using broadcast tables with a single copy and local copies

Figure 10 . 1 :

 101 Figure 10.1: Stages in the development of taskparallel applications and run-times

Figure 10 .

 10 Figure 10.3 shows the main window of Aftermath during analysis of a trace file. The various elements of the user interface are grouped into five different parts:

Figure 10 . 3 :

 103 Figure 10.3: Aftermath's main window: timeline (1), filters (2), statistics (3), information on selected tasks / events (4) and menu bar for derived metrics (5).

Figure 10 . 4 :

 104 Figure 10.4: High-latency memory accesses of seidel using a shared matrix

Figure 10 . 5 :

 105 Figure 10.5: Distribution of the duration of the main computation tasks in k-means

Figure 10 . 6 :Figure 10 . 7 :

 106107 Figure 10.6: Heatmap view showing the task duration of k-means 26.93% 0% Fraction of tasks

Figure 10 . 9 :

 109 Figure 10.9: Trace of seidel with random work-stealing and without work-pushing or deferred allocation

Figure 10 . 12 : 4 . 2

 101242 Figure 10.12: Worker states for each core during execution of cholesky without and with broadcast tables

Figure 10 . 13 :

 1013 Figure 10.13: Number of workers in task execution state during execution of cholesky without and with broadcast tables

Figure 10 .Figure 10 . 14 :Figure 10 . 15 :

 1010141015 Figure 10.14: Evolution of the values of hardware counters for branch mispredictions (c misp ) and cycles (c cyc ) on core i

Figure 10 . 16 :

 1016 Figure 10.16: Task duration as a function of the number of branch mispredictions per thousand cycles in k-means

FIGURE C. 3 - 1 # 3 output 6 corps_de_la_tache 2 { 3 float 4 float vue[ 4 ] ; 5 6 # 21 }FIGURE C. 4 -FIGURE C. 5 -

 3136234462145 FIGURE C.3 -Exemples de graphes de tâches

6 FIGURE C. 6 -

 66 FIGURE C.6 -Compilation d'un programme OpenStream

v

  x,y = v x,y -v x-1,y+1 + v x,y+1 -v x-1,y avec v x,y = 1 9 (v x-1,y-1 + v x,y-1 + v x+1,y-1 + v x-1,y + v x,y + v x+1,y + v x-1,y+1 + v x,y+1 + v x+1,y+1 )où v x,y est la valeur de l'élément aux coordonnées x, y de la matrice d'entrée.

FIGURE C. 7 -

 7 FIGURE C.7 -Phases d'exécution d'un benchmark avec intervalle de mesure

La section 7 . 1 FIGURE C. 8 -

 718 FIGURE C.8 -Structures de données représentant des workers avec une FIFO MPSC pour le transferts de tâches par le work-pushing

FIGURE C. 9 -FIGURE C. 10 -

 910 FIGURE C.9 -Les étapes dans le cycle de développement d'applications à base de tâches et de run-times

La section 10 . 3

 103 présente deux cas d'utilisation d'Aftermath pour le débogage de performances d'applications OpenStream. Le premier cas concerne la détection d'une contention et une mauvaise localité des accès mémoires dans la version du benchmark seidel utilisant des flux uniquement pour la synchronisation de tâches. Le deuxième cas explique comment Aftermath a été utilisé pour reconnaître un cas de mauvaises prédictions de branchements fréquentes dans la version dynamic single assignment de k-means. Le débogage de performances d'un run-time est présenté dans la section 10.4. Le premier exemple montre comment l'outil peut être utilisé pour vérifier les effets de work-pushing sur la localité des accès mémoires. La dernière partie concerne la détection de broadcasts lents en utilisant le mécanisme de broadcast par défaut du modèle d'exécution d'OpenStream et l'élimination de cette anomalie de performances par l'utilisation de tables de broadcast.

  

  7.8 Locality of requests to main memory on the Opteron system for the push heuristics 146 7.9 Influence of the push heuristic on seidel and jacobi . . ... . . . . . . . . . . . . . . 146 7.10 Timing of the determination of data placement in blur-roberts . . . . . . . . . . . . . 147 7.11 Effect of the push heuristics on bitonic . . . . . . . . . . . . . . . . . . . . . . . . . . 148 7.12 Approximation R appr loc of the locality for the push heuristics . . . . . . . . . . . . . . 149 7.13 Relative error of R appr loc over the locality measured with hardware performance counters150 7.14 Speedup of the push heuristics over default random work-stealing without workpushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 7.15 Speedup of the push heuristics over the shared memory implementations . . . . . 152 7.16 Locality of requests to main memory on the Opteron system for the push heuristics combined with topology-aware work-stealing . . . . . . . . . . . . . . . . . . . . . 154 7.17 Relative improvement of the locality of requests to main memory on the Opteron system for the push heuristics combined with topology-aware work-stealing . . . 154 7.18 Approximation R appr loc of the locality for the push heuristics combined with topologyaware work-stealing for the SGI system . . . . . . . . . . . . . . . . . . . . . . . . . 154 7.19 Relative improvement of the approximation R appr loc of the locality of requests to main memory on the SGI system for the push heuristics combined with topology-aware work-stealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 7.20 Improvement of the execution time of the push heuristics combined with topologyaware work-stealing compared to work-pushing only . . . . . . . . . . . . . . . . . 155 7.21 Speedup of the push heuristics combined with topology-aware work-stealing over the shared memory implementations . . Work-pushing after a steal using immediate allocation . . . . . . . . . . . . . . . . . 160 8.5 Influence of the creation of initial tasks on data locality . . . . . . . . . . . . . . . . 161 8.6 Example of a task graph that requires a less obvious scheme for the creation of initial tasks to avoid contention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 8.7 Example of deferred allocation of the input buffers of a task t with n producers . . 164 8.8 Immediate allocation of input buffers . . . . . . . . . . . . . . . . . . . . . . . . . . 166 8.9 Decoupled control program and buffer allocation on a path of heavy dependences 168 8.10 Decoupled control program and buffer allocation on a path of heavy dependences 168 8.11 Deferred allocation on a task-graph with balanced dependences . . . . . . . . . . . 169 8.12 Work-stealing in conjunction with deferred allocation . . . . . . . . . . . . . . . . . 170 8.13 Improved data locality and load balancing resulting from the creation of initial tasks using deferred allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 8.14 Deferred allocation compared to immediate allocation . . . . . . . . . . . . . . . . . 172 8.15 Illustration of the reduced memory footprint due to deferred allocation . . . . . . . 174 8.16 Locality of requests to main memory on the Opteron system for deferred allocation 175 8.17 Approximation R wloc loc (and R appr loc for rnd) of the locality for deferred allocation . . . 176 8.18 Relative error of R wloc loc (and R appr loc for rnd) over the locality measured with hardware performance counters for the Opteron system . . . . . . . . . . . . . . . . . . . . . . 177 8.19 Comparison of the locality of requests to main memory on the Opteron system for work-pushing and deferred allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 177 8.20 Maximum resident size for dynamic single assignment implementations with and without deferred allocation and the shared memory implementations . . . . . . . . 178 8.21 Reduction of the maximum resident size by deferred allocation compared to rnd . 178 8.22 Speedup of deferred allocation over default random work-stealing without work-

. . . . . . . . . . . . . . . . . . . . . . . . . 155 8.1 Immediate allocation of input buffers . . . . . . . . . . . . . . . . . . . . . . . . . . 158 8.2 Influence of the control program on locality using immediate allocation . . . . . . 159 8.3 Influence of work-stealing in conjunction with immediate allocation on the locality of write accesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 8.4 pushing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 8.23 Speedup of deferred allocation over the shared memory implementations . . . . . 179 xxi LIST OF FIGURES 8.

  Number of allocations of 512 KiB-blocks from memory pools during execution of cholesky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.10 Number of refills during execution of cholesky for blocks of 512 KiB . . . . . . . . . 9.11 Execution time of cholesky with and without broadcast tables . . . . . . . . . . . . . 9.12 Execution time of cholesky compared to state-of-the-art implementations for manycore systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.13 Performance of cholesky compared to state-of-the-art implementations for many-core systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.14 Footprint of cholesky compared to state-of-the-art implementations for many-core systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.15 Broadcast table with support for multiple copies . . . . . . . . . . . . . . . . . . . . 9.16 Broadcast table with node-local copies . . . . . . . . . . . . . . . . . . . . . . . . . . 9.17

  1 scheduler_loop(w) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 add_task_locally(t, w) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 last_dep_satisfied(w, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 node_with_min_cost(node w , data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 scheduler_loop(w) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 empty_mpsc_fifo(w) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 topology_aware_stealing(w) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 prepare_data(v o ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 prepare_data_vec(v v , num) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 prepare_peek_data(v p ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 . 1 :

 21 Overview of basic characteristics of approaches in related work

Table 2 . 2 :

 22 Overview of the features of data placement in related work

Table 6 . 3 :

 63 Parameters for the benchmarks

		Matrix / Vector size		Block size	Iterations
	Seidel	2 14 × 2 14			2 8 × 2 8	60
	Jacobi-1d	2 28			2 16	60
	Jacobi-2d	2 14 × 2 14			2 8 × 2 8	60
	Jacobi-3d	2 10 × 2 9 × 2 9			2 6 × 2 6 × 2 6 60
	Blur-roberts 2 15 × 2 15 (Opteron) / 2 16 × 2 16 (SGI)	2 8 × 2 8	-
	Bitonic	2 28			2 16	-
	Cholesky	Up to 2 15 × 2 15 *		2 8 × 2 8	-
		Points	Block size Dimensions Clusters	Fan-out
	K-means	40, 960, 000 10, 000	10	11	2
	* Different matrix sizes are evaluated, see Chapter 9	

  Imbalance between nodes due to buffers placed on the same node

	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU			CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU
	. . .				...				...	. . .				...			...
		RAM			RAM					RAM			RAM
		Node i			Node j					Node i			Node j
				Interconnect									Interconnect	
			(a) Local read accesses							(b) Remote read accesses
	Figure 7.2: Remote / local memory accesses to input buffers depending on activating worker
		CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU
					...				...					...		
			RAM			RAM			RAM			RAM
			Node 0			Node i			Node j			Node N-1
									Interconnect						
		CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU
					...				...					...		
			RAM			RAM			RAM			RAM
			Node 0			Node i			Node j			Node N-1
									Interconnect						
		CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU
														...		
			RAM			RAM			RAM			RAM
			Node 0			Node i			Node j			Node N-1
									Interconnect						
					(c) Imbalance between nodes due to a varying buffer size		
		CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU	CPU
					...				...					...		
			RAM			RAM			RAM			RAM
			Node 0			Node i			Node j			Node N-1
									Interconnect						

(a) Remote accesses to multiple nodes, equal-sized buffers (b) (d) Local accesses only

  Relative improvement of the locality of requests to main memory on the Opteron system for the push heuristics combined with topology-aware work-stealing

	Fraction of req. to local mem. [%]	20 40 60 80 100		17.6	66.2	91.0 92.9	49.8	61.4	91.7 92.7	39.9	64.5	92.0 93.5	34.7	59.2	89.4 90.2	24.3	84.8	92.9 94.4	23.8	39.8 33.4 random input only+taws 39.8	44.8	60.0 61.8 output only+taws 72.1 weighted+taws
					seidel	jacobi-1d	jacobi-2d		jacobi-3d			kmeans	blur-roberts	bitonic
	Figure 7.16: Locality of requests to main memory on the Opteron system for the push heuristics combined
	with topology-aware work-stealing											
		Rel. imp. ov. work-pushing only [%]	0 5 10 15 20 25	seidel 12.4 13.5 22.6	jacobi-1d 15.6 13.6 13.7	jacobi-2d 14.7 7.2 7.1	jacobi-3d 15.1 17.1 16.9	kmeans 5.3 2.2 1.8 input only+taws		blur-roberts 8.7 13.4 8.9 output only+taws bitonic Geometric mean 10.8 17.7 12.3 12.2 10.1 8.8 weighted+taws
	Figure 7.17: seidel 0 20 40 60 80 100 5.0 53.0 Frac. of req. to loc mem [%] (appr.) 92.7 93.4	jacobi-1d 31.2 52.4 89.9 89.7	jacobi-2d 27.6 58.1 93.8 94.6	jacobi-3d 21.5 48.6 84.9 85.7	9.7	kmeans 73.3 92.7 93.3	blur-roberts 13.4 57.8 28.4 57.4 random input only+taws	27.2	bitonic 51.4 51.3 output only+taws 64.2 weighted+taws
																						To

  Locality of requests to main memory on the Opteron system for deferred allocation

	64.5	87.8	93.0	66.8	86.0	91.8	65.5	89.6	92.8	75.0	88.8	93.8	71.4	93.0 93.6	rnd dfa dfa+input only dfa+input only+taws	72.4	76.0 78.6
			49.8			39.9			34.7						34.2	40.3 39.0	44.8
	17.6											24.3			23.8		
	Figure 8.16:														

  3. These values are based on the number of floating point operations for a Cholesky Factorization of a matrix of 2 N × 2 N

	Execution time [s]	20 30 40 50 60	OpenStream MKL PLASMA	Execution time [s]	4 6 8 10 12 14	OpenStream MKL PLASMA
			10			2
			2 7 0	2 8 Number of elements in each dimension of the matrix 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16		2 7 0	2 8 Number of elements in each dimension of the matrix 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16
				(a) Opteron platform			(b) SGI system
	Figure 9.12: Execution time of cholesky compared to state-of-the-art implementations for many-core
	systems			
	Performance [GFLOPS]	100 150 200 250 300 350	OpenStream MKL PLASMA		
			50			
			2 7 0	2 8 Number of elements in each dimension of the matrix 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16		2 7	2 8	2 9	2 10 2 11 2 12 2 13 2 14 2 15 2 16
				(a) Opteron platform		
	of 1 3 2 3N + 1 2 2 2N + 1 6 2 N as reported in [21].		

  Allocation of an input buffer on the target node and update of the data pointer in the broadcast table to updating

	Memory footprint [GiB]	5 10 15 20	broadcast_table src_node next peek_view bctable ... data ... single copy busy waiting nowait	peek_view next bctable ... data ...	peek_view next bctable ... data ...	Memory footprint [GiB]	10 15 20 25 30 35 40	... single copy peek_view next bctable ... data ... busy waiting nowait	peek_view next bctable ... data ...
			refcount data							5
		2 7 0	(a) Initial situation 2 10 2 11 2 12 2 13 2 14 2 15 2 16 Number of elements in each dimension of the matrix 2 8 2 9 2 7 0	2 8 Number of elements in each dimension of the matrix 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16
			(a) Opteron platform						(b) SGI system
			... Figure 9.17: Memory footprint of broadcast tables with local copies peek_view next peek_view bctable peek_view peek_view peek_view data next bctable data next bctable data next bctable data data bctable ... ... ... ... ... next
	refcount broadcast_table data src_node ... broadcast_table src_node next peek_view bctable ... data ... 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 U ... peek_view peek_view ... next bctable ... data next bctable ... data ... ... Number of elements in each dimension of the matrix 2 8 single copy busy waiting nowait Figure 9.18: Fraction of requests to local mem-2 7 60 65 70 75 80 85 90 95 100 Fraction of requests to local memory [%] ory of broadcast tables with local copies on the (b) refcount Opteron system	... allocate peek_view next bctable ... data ... 2 10 2 11 2 12 2 13 2 14 2 15 2 16 ... Number of elements in each dimension of the matrix ... peek_view next bctable ... data ... copy 2 8 2 9 Opteron system SGI platform Figure 9.19: Number of last level cache misses 2 7 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Number of L3 misses per Kinstruction per thousand instructions of cholesky using broadcast tables with a single copy
			data		U					
				(c) Transfer of data from the source node to the new buffer
			peek_view	peek_view	peek_view			peek_view	...	peek_view
			next bctable data	...	next bctable data	...	next bctable data	...			next data bctable	...	next bctable data	...
			...		...		...				...	...
			broadcast_table						
			src_node							
			refcount							
			data							

(d) Update of the entry in the broadcast table Figure 9.16: Broadcast table with node-local copies

  The graphical representations generated in NUMA mode are called NUMA maps. There are two kinds of NUMA maps. The first map only takes into account read accesses and thus indicates which nodes are targeted by reads. The other map analyzes write accesses and thus shows which nodes are targeted by write accesses. More details on these views are provided in Section 10.4.1.-The last mode that the timeline can be set into is called NUMA heatmap mode. Similar to the NUMA modes, Aftermath analyzes memory accesses and placement information in this mode to derive NUMA-related information. However, in NUMA heatmap mode both read and write accesses are taken into account and combined with information about the topology of the machine, also present in the trace. The result is a view that indicates the average fraction of remote memory accesses per interval with different shades from violet to pink.

Ratio close to 0 Ratio close to 0 CPU 36 CPU 37 CPU 38 CPU 39 CPU 40 CPU 41 CPU 42 Ratio close to 0 Ratio close to 0 CPU 43 CPU 44 CPU 45 CPU 46 CPU 47 CPU 48 CPU 49 Ratio close to 0 Ratio close to 0 CPU 52 CPU 53 CPU 54 CPU 55

  

	CPU 0 CPU 2 CPU 4 CPU 6										CPU 0 CPU 2 CPU 4 CPU 6					Fast tasks		
	CPU 8										CPU 8							
	CPU 10										CPU 10							
	CPU 12										CPU 12							
	CPU 14										CPU 14							
	CPU 16 CPU 18 CPU 20 CPU 22 CPU 24 CPU 26 CPU 28 CPU 30 CPU 32	Sequential initialization with most of			Task execution			CPU 16 CPU 18 CPU 20 CPU 22 CPU 32 CPU 24 CPU 26 CPU 28 CPU 30				Very slow tasks	
	CPU 34 CPU 36 CPU 38	the workers								CPU 34 CPU 36 CPU 38							
	CPU 40 CPU 42 CPU 44 CPU 46	being idle								CPU 40 CPU 42 CPU 44 CPU 46				Very slow tasks	
	CPU 48										CPU 48							
	CPU 50										CPU 50							
	CPU 52										CPU 52							
	CPU 54										CPU 54							
	CPU 56 CPU 58 CPU 60 CPU 62										CPU 56 CPU 58 CPU 60 CPU 62				Very slow tasks	
		0.000e+00	1.000e+10	2.000e+10	3.000e+10	4.000e+10	5.000e+10	6.000e+10	7.000e+10	8.000e+10		0.000e+00	1.000e+10	2.000e+10	3.000e+10	4.000e+10	5.000e+10	6.000e+10	7.000e+10	8.000e+10
	(a) All of the 64 workers are in task execution state (dark blue) for almost the whole execution	(b) Heatmap mode indicating a relationship core → task duration
											CPU 0 CPU 7 CPU 14 CPU 21 CPU 28	1.1 1.1 0 0			Ratio close to 1 Ratio close to 1		
											CPU 1 CPU 8 CPU 15 CPU 22 CPU 29				Ratio close to 0 Ratio close to 0		
	27.35%									CPU 2 CPU 9 CPU 16 CPU 23 CPU 30				Ratio close to 0 Ratio close to 0		
		0% Fraction of tasks	1M		Task duration [cycles]		30M	CPU 3 CPU 4 CPU 5 CPU 10 CPU 11 CPU 12 CPU 17 CPU 18 CPU 24 CPU 25 CPU 26 CPU 31 CPU 32 CPU 33 CPU 6 CPU 13 CPU 27 CPU 34	1.000e+10 1.000e+10 1.000e+10 1.000e+10 1.000e+10	2.000e+10 2.000e+10 2.000e+10 2.000e+10 2.000e+10		3.000e+10 Ratio close to 0 4.000e+10 Ratio close to 0 3.000e+10 4.000e+10 3.000e+10 4.000e+10 3.000e+10 4.000e+10 3.000e+10 4.000e+10	5.000e+10 5.000e+10 5.000e+10 5.000e+10 5.000e+10	6.000e+10 6.000e+10 6.000e+10 6.000e+10 6.000e+10	7.000e+10 7.000e+10 7.000e+10 7.000e+10 7.000e+10
			(c) Distribution of the task duration										

  Heatmap view showing the task duration of the modified version of k-means with a lower number of branch mispredictions and hardware performance counters, which could be provided by any run-time for task-parallel applications.

	CPU 0																												
	CPU 2																												
	CPU 4 CPU 6												CPU 0																
	CPU 8																												
	CPU 10																												
	CPU 12																												
	CPU 14																												
	CPU 16																												
	CPU 18 CPU 20 CPU 22 CPU 24 CPU 26 CPU 28 CPU 30 CPU 32												CPU 1 CPU 2			Only low variations of the Only low variations of the misprediction rate misprediction rate			
	CPU 34																												
	CPU 36																												
	CPU 38																												
	CPU 40																												
	CPU 42 CPU 44												CPU 3																
	CPU 46																												
	CPU 48																												
	CPU 50																												
	CPU 52																												
	CPU 54 CPU 56												CPU 4																
	CPU 58																												
	CPU 60																												
	CPU 62																												
	1.100e+10	1.200e+10	1.300e+10	1.400e+10	1.500e+10	1.600e+10	1.700e+10	1.800e+10	1.900e+10	2.000e+10	2.100e+10	2.200e+10	2.300e+10	1.288e+10	1.289e+10	1.290e+10	1.291e+10	1.292e+10	1.293e+10	1.294e+10	1.295e+10	1.296e+10	1.297e+10	1.298e+10	1.299e+10	1.300e+10	1.301e+10	1.302e+10	1.303e+10
	(a) The timeline in heatmap mode covering several				(b) Zoom with branch misprediction rate		
	iterations																												
	Figure 10.8:																											

  Une des préoccupations principales de l'optimisation dans ces architectures est des accès mémoires pour deux raisons. Premièrement, les fréquences de fonctionnement des processeurs et de la DRAM ont évolué à des vitesses différentes. Ce phénomène nommé memory wall[START_REF] Mckee | Reflections on the memory wall[END_REF] a comme effet qu'après une requête à la mémoire le processeur peut rester gelé pendant des dizaines ou des centaines de cycles, jusqu'à ce que les données soient disponibles. Deuxièmement, l'intégration d'un grand nombre d'unités de calcul augmente la pression à l'interface mémoire : comme un plus grand nombre de requêtes mémoires peut être effectué par intervalle de temps, cela peut créer de la contention et réduire les performances. Afin d'améliorer la bande passante et de réduire la contention, les systèmes many-cores sont organisés en noeuds. Chaque noeud est constitué d'une mémoire locale et d'un ensemble de coeurs. L'interconnexion des noeuds se fait par des liens à grande échelle qui permettent à l'ensemble de tous les coeurs d'accéder à l'intégralité de la mémoire distribuée sur les différents noeuds. La mémoire locale d'un noeud peut être accédée par ses coeurs associés sans passer par l'interconnect avec une latence faible. Par contraste, les accès à la mémoire d'un noeud distant nécessitent l'utilisation de l'interconnect et sont donc plus lents. L'aiguillage des accès vers la mémoire locale ou une mémoire distante dans ces architectures avec accès non-uniforme à la mémoire (NUMA) est le plus souvent réalisé par le matériel. Pour la couche logicielle, la mémoire apparaît comme une seule entité avec un espace d'adressage unifié. Cependant, la couche logicielle doit éviter la contention et tenter de réduire la latence en distribuant les calculs et les données de sorte qu'une grande partie des accès à la mémoire cible la mémoire locale et de sorte qu'aucun des contrôleurs ne subit une charge plus importante que les autres.Alors que les logiciels séquentiels existants ne nécessitaient aucune modification ou que des modifications mineures pour profiter des performances séquentielles améliorées des machines à accès uniforme à la mémoire (UMA), le changement vers des architectures parallèles pour le grand public représente un enjeu majeur pour le développement et l'optimisation des logiciels et concernant toutes les couches logicielles[START_REF] Asanovic | A view of the parallel computing landscape[END_REF][START_REF] Borkar | The future of microprocessors[END_REF]. En particulier, cela nécessite :-la parallélisation des algorithmes afin de profiter de la puissance de calcul de plusieurs coeurs, -le développement de modèles de programmation qui permettent d'exprimer le parallélisme d'une application et dont les modèles d'exécutions définissent de manière précise comment un programme parallèle s'exécute, -le développement de compilateurs qui traduisent la spécification d'un programme parallèle en une suite d'instructions exécutable par l'architecture parallèle cible, -le développement d'environnements d'exécution à faible surcoût qui implémentent les modèles d'exécutions associés aux modèles de programmation parallèles, -le développement d'une couche logicielle système efficace avec un contrôle fin sur le placement de données aux différents noeuds et le placement d'instructions aux différents coeurs. Due à la grande variété d'architectures parallèles et la succession rapide de nouveaux systèmes avec un plus grand nombre de coeurs, les applications parallèles devraient idéalement être portables entre plusieurs systèmes et s'exécuter plus rapidement sur des machines avec plus de coeurs. Comme le développement d'applications parallèles est habituellement plus complexe que le développement d'applications séquentielles, les modèles de programmation parallèles devraient donc disposer de moyens adaptés pour augmenter la productivité et ainsi réduire le surcoût d'implémentation lié au parallélisme. La programmation à base de tâches

  Le run-time représente le composant central responsable pour l'exécution correcte et efficace d'une application à base de tâches. La Figure C.1 montre comment le run-time est intégré dans l'environnement d'exécution. Les services pour la création de tâches et la synchronisation sont directement sollicités par l'application. L'infrastructure du run-time qui satisfait ces requêtes repose sur les ser-simultanément pendant la durée intégrale de l'exécution avec un surcoût minimal lié à la répartition. -Maximiser les performances séquentielles sur chaque coeur L'exécution séquentielle sur chaque coeur devrait être le plus rapide possible. Ceci comprend la maximisation du parallélisme au niveau des instructions, l'utilisation des instructions SIMD et des optimisations pour le pipeline d'instructions. Les accès à la sont à limiter par une utilisation efficace des registres. -L'utilisation efficace des caches Afin de minimiser l'impact des accès mémoires sur les performances le taux de succès des caches devrait être maximal. La localité spatiale et temporelle devrait être exploitée par un agencement en mémoire et un ordre d'accès adapté. Les données qui sont accédées fréquemment devraient tenir dans la hiérarchie de caches afin de limiter les conflits et les évincements fréquents liés à la capacité limitée des caches. -Minimiser la latence des accès à la mémoire La latence des accès mémoires dépend de la contention des contrôleurs mémoires ainsi que de la distance entre le coeur qui effectue l'accès et le noeud qui contient les données demandées. Afin de réduire la contention, il est essentiel de distribuer les accès sur tous les noeuds de la machine. Pour minimiser la distance des accès le taux d'accès à la mémoire locale par rapport au nombre total d'accès devrait être le plus élevé possible. L'importance des directions d'optimisations citées ci-dessus dépend fortement de l'application et les performances peuvent dépendre de plusieurs aspects en même temps. Une grande difficulté pour l'optimisation est le fait que ces directions ne sont pas indépendantes et il est donc habituellement impossible d'effectuer des optimisations dans chacune des directions indépendamment et de les combiner. De plus, chacune des directions représente un domaine de recherche en soi, ce qui rend une optimisation exhaustive impossible. Dans cette thèse nous focalisons sur les aspects NUMA. Les autres aspects ne sont pas adressés en premier lieu, ils ont été néanmoins pris en compte pendant le développement et la paramétrisation des applications pour l'évaluation expérimentale. La section 2.3 montre comment l'ordonnancement et l'allocation de mémoire peuvent contribuer à l'exploitation efficace de la machine. Une répartition de tâches et de données est efficace si elle minimise le temps d'exécution de l'application. Dans ce but, la répartition devrait induire le comportement micro-architectural décrit plus haut. Toutefois, les objectifs d'optimisation peuvent être contradictoires (e.g., la localité des accès mémoires et la distribution de données pour éviter la contention) et un compromis peut être nécessaire à l'exécution. Pour l'exploitation efficace du matériel l'ordonnanceur doit prendre en compte la topologie de la machine, le comportement de l'application, les données accédées par une tâche ainsi que le placement des données sur les différents noeuds NUMA. Un mécanisme d'allocation efficace doit prendre en compte la topologie de la machine et le placement des tâches qui effectuent les accès mémoires. Une combinaison des deux techniques, le placement de données et de tâches, peut être effectuée simultanément ce qui évite qu'une des deux techniques réagis passivement aux décisions de prises par l'autre. La détermination d'une répartition optimale étant potentiellement intensif en calcul et donc mal adaptée pour des techniques dynamiques, les algorithmes d'ordonnancement et d'allocation sont généralement basés sur des heuristiques.

  2. Les frames libres dans le memory pool d'un worker peuvent être placées sur des noeuds différents, le run-time n'a donc aucun contrôle sur le placement de données lors de la réutilisation d'une frame pour une nouvelle tâche.Cette problématique est détaillée dans la section 4.2. Afin d'éviter que les données d'une vue d'entrée d'une tâche puissent être placées sur plusieurs noeuds, nous proposons de séparer les données d'entrée de la structure de données représentant une frame et de ne pas créer des paires de producteurs et consommateurs dont les horizons de la vue de sortie et celle de la vue d'entrée sont différents. Ces restrictions sont présentées dans la section 4.3. Ainsi, chaque vue d'entrée est associée à une région de mémoire contiguë qui ne peut être placée que sur un seul noeud. Pour éviter qu'un pool de mémoire ne contienne des régions de mémoires placées sur des noeuds différents, nous proposons dans la section 4.4 de regrouper les structures de données libres dans des memory pools par noeud NUMA. Le pool d'un noeud est partagé par tous les workers qui s'exécutent sur des coeurs associés à ce noeud. Quand une structure est libérée, son placement est déterminé et la structure est rendue au memory pool du noeud qui la contient. En utilisant cette stratégie, le run-time peut contrôler le placement de structures de données en effectuant une allocation dans le pool de mémoire du noeud cible. De plus, les allocations locales d'un worker rendent des structures placées dans la mémoire locale de son noeud NUMA associé. Le fonctionnement correct des memory pools par worker repose sur la capacité du run-time à déterminer le placement d'une structure de données. Pour rendre ce service performant, nous proposons de stocker des méta-informations sur le placement dans une petite zone de mémoire devant chaque structure de données. Ces informations sont initialement déterminées après la première utilisation de la structure par un appel à move_pages. A chaque fois que le placement doit être déterminé de nouveau, le run-time peut simplement lire les méta-informations et n'a pas besoin d'interroger le système d'exploitation. La section 4.5 présente des techniques pour réduire le surcoût de l'allocation physique et la section 4.6 montre qu'un run-time prenant en compte l'accès non-uniforme à la mémoire devrait non-seulement optimiser le placement des données de l'application, mais également le placement de ses structures de données internes.

10 Analyse des performances des applications à base de tâches et leurs run-times (chapitre 10)

  Contrairement au work-pushing, cette technique n'est pas déclenchée lors de l'activation d'une tâche, mais quand un worker devient oisif et tente donc de voler une tâche d'un autre worker. Dans le modèle d'exécution d'OpenStream, la victime d'un vol est choisie de manière aléatoire parmi tous les workers en utilisant une distribution uniforme. Avec un nombre croissant de coeurs et de noeuds NUMA la probabilité d'un vol d'une tâche d'un worker distant avec des données placées à distance augmente. Afin de favoriser des vols de tâches avec des données proches du worker qui initie le vol, le topology-aware work-stealing tente d'abord de voler une tâche d'un worker très proche (par exemple, un worker qui s'exécute sur un CPU qui partage le cache avec le coeur du voleur). Si cela échoue, une autre tentative de vol d'un worker moins proche est effectué (par exemple, d'un worker qui s'exécute sur un coeur du même noeud NUMA). Chaque fois qu'une tentative de vol échoue, le worker passe au niveau suivant jusqu'à ce que le dernier niveau qui comprend tous les workers du système est atteint. L'évaluation expérimentale est présentée dans la section 7.4. Nous analysons l'impact du workpushing et du topology-aware work-stealing sur la localité des accès mémoires pour les benchmarks en version dynamic single assignment du chapitre 6 ainsi que sur les performances. La part de requêtes à la mémoire locale peut être augmentée à plus de 90% pour la plupart de benchmarks respectivement sur les deux plate-formes de test avec huit et 24 noeuds NUMA. Pour les applications avec une forte intensité d'accès à la mémoire, l'augmentation de la localité se traduit en un gain en performances qui peut atteindre un speedup de 1.73× sur le système à 64 coeurs et huit noeuds et 2.36× sur la plate-forme à 192 coeurs et 24 noeuds NUMA. Le speedup des versions dynamic single assignment sur les versions en mémoire partagée peut atteindre 1.42× sur la plate-forme Opteron et 2.50× sur le système avec des processeurs Xeon.Les techniques de work-pushing et de topology-aware work-stealing présentées dans le chapitre précédent réagissent au placement de données et exécutent des tâches sur les workers des noeuds ayant le coût le plus faible d'accès. Le placement des données n'est traité qu'indirectement par l'allocation locale dans les memory pools des workers qui exécutent les tâches créatrices. A cause du modèle d'exécution d'OpenStream impliquant qu'une tâche ne peut pas créer son successeur direct dans le graphe de tâches, les buffers d'entrée des tâches sont placés avant que les noeuds des workers exécutant les producteurs des tâches soient connus. Cela peut avoir comme conséquence que le placement de données soit désavantageux pour la localité des accès à la mémoire malgré l'utilisation de work-pushing et de topology-aware work-stealing. Dans le chapitre 8, nous analysons l'impact du mécanisme d'allocation par défaut sur la localité d'accès à la mémoire et sur l'équilibrage de charge des contrôleurs mémoires. Par la suite, nous présentons un mécanisme d'allocation différée (deferred allocation) qui permet de mitiger l'impact négatif de l'allocation mémoire prématurée sur la localité des accès et les performances. Nous montrons que la deferred allocation découple la création de tâches du placement de données et que cette technique augmente la localité des accès à la mémoire et l'équilibrage de charge des contrôleurs mémoires. Dans la section 8.1, nous analysons l'influence du mécanisme d'allocation par défaut sur la localité des accès mémoires et l'équilibrage de charge concernant les contrôleurs mémoires. Cette analyse est divisée en trois parties. Premièrement, nous montrons que le programme de contrôle peut avoir une influence sur la localité des accès à la mémoire et que dans certains cas le work-pushing doit faire un compromis entre une grande part d'accès locaux en lecture et une grande part d'accès locaux en écriture. Deuxièmement, nous montrons que le vol de tâches peut induire une grande part d'accès à une mémoire distante pour les tâches volées ainsi que les tâches qui dépendent des tâches volées. Finalement, nous montrons qu'avec le mécanisme d'allocation par défaut la création initiales de tâches peut avoir une influence sur l'équilibrage de charge et la localité au début de l'exécution d'un programme. Afin de mitiger l'influence de ces trois aspects sur la localité des accès à la mémoire et l'équilibrage de charge des contrôleurs mémoire, nous proposons une technique d'allocation de mémoire différée dans la section 8.2. L'idée centrale de ce mécanisme est de ne pas allouer les buffers d'entrée d'une tâche directement à sa création localement sur le noeud du worker exécutant la tâche créatrice, mais d'allouer chaque buffer individuellement dans la mémoire locale du worker exécutant le producteur qui y accède en écriture. Ainsi toutes les accès en écriture ont pour cible une zone de mémoire locale. Le support pour cette technique nécessite d'adapter le run-time et le compilateur OpenStream. Ces changements sont présentés à la fin de la section 8.2. La section 8.3 reprend les scénarios de la section 8.1 et montre comment l'allocation différée peut augmenter la localité des accès à la mémoire et comment elle peut réduire le déséquilibrage de charge entre les contrôleurs mémoires. Nous montrons comment l'allocation différée découple la création de tâches et l'allocation de mémoire et comment ce mécanisme d'allocation peut contribuer à une réduction de l'empreinte mémoire d'une application. Les résultats de l'évaluation expérimentale sont présentés dans la section 8.4. Nous analysons trois configurations et les comparons au mécanisme d'allocation par défaut avec le mécanisme de vol de tâche aléatoire, c'est-à-dire sans work-pushing et sans topology-aware work-stealing. Les trois configurations sont l'allocation différée seule (dfa), l'allocation différée avec le work-pushing basé sur l'heuristique input only 1 (dfa+input only) et l'allocation différée avec le work-pushing basé sur l'heuristique input only ainsi que le topology-aware work-stealing (dfa+input only+taws). Pour tous les benchmarks, l'allocation différée seule augmente la localité des accès mémoires de manière significative. La combinaison de l'allocation différée et le work-pushing et l'ajout de topologyaware work-stealing améliorent la localité successivement de sorte que la majorité des benchmarks atteint une part d'accès locaux à la mémoire proche du maximum. Un résultat clé concernant la localité par rapport au work-pushing seul et le work-pushing avec le topology-aware work-stealing est que la localité de bitonic avec des dépendances symétriques peut être augmenté de manière significative à plus de 75% de requêtes vers la mémoire locale. Par rapport à la configuration du run-time sans allocation différée, sans work-pushing et sans topology-aware work-stealing (rnd) l'allocation différée peut réduire l'empreinte mémoire de plus de 40%. Seulement pour un seul benchmark et une des deux plate-formes de test l'allocation différée peut augmenter l'empreinte mémoire. Le speedup par rapport à rnd peut atteindre 2.71× sur la plate-forme à 64 coeurs et huit noeuds NUMA et 3.57× sur le système de test à 192 coeurs et 24 noeuds NUMA. Par rapport aux versions des benchmarks utilisant les flux uniquement pour la synchronisation et dont les données sont traitées en mémoire partagée le speedup peut respectivement atteindre 1.88× et 4.17× sur ces deux plate-formes de test. Le chapitre termine avec la section 8.5 qui introduit une extension d'OpenStream permettant de réduire d'avantage l'empreinte mémoire et l'exploitation des caches. Cette section présente des travaux en cours, l'évaluation expérimentale sera présentée dans des futures publications.Les chapitres précédents traitent des communications point-à-point pour lesquelles les données émises sur un flux par un producteur ne sont lues que par un seul consommateur. Nous avons montré que les placements de données et de tâches peuvent être améliorés en exploitant des informations sur ces dépendances, ce qui peut mener à une augmentation des performances pour des applications intensives en accès mémoires. Le chapitre 9 s'intéresse aux communications par des broadcasts dans lesquelles les données d'un producteur dont lues par plusieurs lecteurs. Nous montrons que l'allocation différée peut améliorer les performances des applications utilisant des broadcasts. Cependant, les gains sont limités à cause d'une empreinte mémoire élevée induite par le mécanisme de broadcast par défaut du modèle d'exécution d'OpenStream. Afin de réduire l'empreinte mémoire des broadcasts et d'améliorer les performances, nous introduisons des tables de broadcast. Nous évaluons cette technique sur le benchmark cholesky dont une des caractéristiques clés est l'utilisation fréquente de broadcasts. Nous montrons que les performances de cholesky avec un run-time supportant des tables de broadcasts peuvent atteindre les performances de deux implémentations récentes de Factorisation de Cholesky hautement optimisées pour des systèmes parallèles. L'impact des tables de broadcast sur la localité des accès mémoires est analysé à la fin du chapitre. Cette dernière partie du chapitre introduit une généralisation des tables de broadcast qui représente un compromis entre l'empreinte mémoire et la localité des accès mémoires. Dans le mécanisme de broadcast par défaut du modèle d'exécution d'OpenStream, les données du producteur sont recopiées vers le buffer d'entrée de chaque consommateur. Dans la section 9.1, nous montrons que dans le cas général l'empreinte mémoire d'un broadcast croît de manière linéaire avec le nombre de lecteurs. De la même façon, le temps d'attente moyen et le temps d'attente au pire cas entre le moment où le producteur termine et le moment où un lecteur devient prêt augmente linéairement. Les données d'un broadcast n'étant accédées en écriture que par le producteur, il n'est pas nécessaire de créer une copie privée par lecteur, en effet un seul buffer d'entrée peut être partagé par tous les lecteurs d'un broadcast. La section 9.2 introduit les tables de broadcast qui implémentent ce concept. Cette structure supplémentaire est composée d'un pointeur vers le buffer partagé ainsi qu'un compteur de référence qui permet de déterminer le moment où le buffer n'est plus utilisé et peut donc être libéré. En utilisant des tables de broadcast, l'empreinte mémoire par broadcast ne dépend que de la taille de données diffusées et non du nombre de lecteurs. Les temps d'attente moyen et pire cas restent linéaires par rapport au nombre de lecteurs, mais sont réduits de plusieurs ordres grandeurs et peuvent donc être négligés. Les effets des tables de broadcasts sur l'empreinte mémoire et sur les performances de cholesky sont évalués dans la section 9.3. Sur la plate-forme de teste à 64 coeurs et huit noeuds NUMA l'empreinte mémoire de cholesky pour une matrice de taille 2 14 × 2 14 peut être réduite environ d'un facteur 15 par rapport à l'allocation par défaut. La réduction de l'empreinte par rapport à l'allocation différée est d'environ 30%. Sur le système de test SGI à 192 coeurs et 24 noeuds NUMA, l'empreinte est réduite d'un facteur d'environ 30 par rapport à l'allocation par défaut et d'environ 30% par rapport à l'allocation différée pour une matrice de 2 15 × 2 15 éléments. Le temps d'exécution sur le système à 64 coeurs varie entre 200 s et 500 s et peut être réduit à environ 6 s avec l'allocation différée et environ 5 s avec les tables de broadcast. Sur la plate-forme à 192 coeurs, le temps d'exécution initial est d'environ 80 s et peut être réduit à environ 10 s (allocation différée) et environ 7 s (tables de broadcasts). La section termine par une comparaison des performances de cholesky avec un runtime supportant des tables de broadcast avec des implémentations de Factorisation de Cholesky hautement optimisées pour des architectures parallèles fournies par la INTEL MATH KERNEL LIBRARY[START_REF] Drebes | Aftermath: A graphical tool for performance analysis and debugging of fine-grained task-parallel programs and run-time systems[END_REF] et PLASMA[START_REF] Kurzak | Multithreading in the plasma library[END_REF]. Les résultats montrent que sur les deux machines l'implémentation OpenStream atteint les mêmes performances que la meilleure implémentation. Le partage d'un seul buffer de données par tous les lecteurs d'un broadcast a comme effet que tous les lecteurs accèdent à la mémoire d'un même noeud NUMA. Le résultat est une grande part de requêtes vers une mémoire distante et potentiellement de la contention sur un contrôleur mémoire. Dans la section 9.4, nous introduisons un mécanisme de généralisation de tables de broadcasts qui crée des copies locales à la demande sur les noeuds dont les workers exécutent les lecteurs d'un broadcast. Une copie locale est créée lorsqu'un lecteur est exécuté par un worker associé à un noeud différent de celui qui contient les données du buffer initial écrit par le producteur du broadcast et s'il n'existe aucune autre copie locale de ces données. Si une copie locale est en cours de création nous proposons deux stratégies d'attente. Dans le premier cas, nommé busy waiting, les workers ayant détecté qu'une copie est en cours de création attendent la fin de la copie et utilisent la copie locale par la suite. Dans le deuxième cas, nommé nowait ces workers n'attendent pas la fin de la copie et utilisent le buffer d'origine. L'évaluation expérimentale montre que pour des matrices suffisamment grandes les deux stratégies augmentent la localité des accès mémoires de manière significative (d'environ 80% à plus de 95% sur la machine Opteron à 64 coeurs et huit noeuds NUMA pour des matrices de taille 2 15 × 2 15 éléments). Toutefois, cette amélioration de la localité ne se traduit pas en un gain de performance significatif à cause du taux de réutilisation élevé de cholesky de données dans le cache.Les performances d'une application à base de tâches dépendent d'une multitude d'aspects allant des optimisations statiques du code par le compilateur ou par le programmeur à des optimisations dynamiques telles que l'ordre de création de tâches et l'interaction avec le système d'exploitation et le matériel. L'identification des goulots d'étranglement et la détermination de leurs causes exige une compréhension détaillée de tous ces aspects. En particulier, le programmeur doit comprendre les interactions complexes entre les parties logicielles ainsi que les interactions avec la partie matérielle lors de l'exécution. Une approche pour l'analyse de performance est d'enregistrer une trace avec tous les événements à l'exécution et d'utiliser un outil d'analyse de trace hors ligne après la terminaison du programme. Une représentation visuelle des événements, des entités systèmes et leurs relations peut fournir des éléments nécessaires pour l'analyse détaillée qui met en relation les causes et effets d'anomalies de performances. Elle permet ainsi de distinguer des anomalies spécifiques à l'application des anomalies causées par les heuristiques d'ordonnancement et de placement de données du run-time. Pendant les dernières décennies, une multitude d'outils d'analyse de traces a été proposée, par exemple[START_REF] Pillet | Paraver: A tool to visualize and analyze parallel code[END_REF][START_REF] Müller | Developing scalable applications with vampir, vampirserver and vampirtrace[END_REF][START_REF] Drebes | Topology-aware and dependence-aware scheduling and memory allocation for taskparallel languages[END_REF], mais la plupart d'entre eux ont été développés pour des applications réparties communiquant par des messages asynchrones et ne sont donc pas adaptés pour l'analyse de performances des applications à base de tâches et leurs run-times. Dans le chapitre 10, nous présentons Aftermath, une application de visualisation, de filtrage et d'analyse interactive de traces d'exécution développée pendant cette thèse principalement pour le débogage de performances d'applications et du run-time OpenStream. Cet outil a été utilisé intensivement pendant l'implémentation des benchmarks du chapitre 6 et pour le débogage de performances des optimisations présentées dans les chapitres 7, 8 et 9. Il nous a permis de comprendre en détail les interactions entre les applications, le run-time, le système d'exploitation et le matériel. Malgré cette utilisation principale spécifique à OpenStream, Aftermath fournit un ensemble d'outils génériques qui sert à l'analyse de performances des applications à base de tâches en général et qui peut donc être utilisé pour d'autres approches de programmation à base de tâches. Aftermath est capable de visualiser plusieurs indicateurs de performances simultanément ce qui accélère la découverte de corrélations significatives. Pour des relations plus complexes, Aftermath offre des mécanismes puissants de filtrage et peut lier des informations pertinentes à la topologie de la machine. Une interface graphique rapide et réactive donne rapidement accès à toutes ces fonctionnalités, ce qui permet d'explorer des traces rapidement et de contrôler le degré de précision demandé. Des parties de ce chapitre ont été publiées dans[START_REF] Drebes | Aftermath: A graphical tool for performance analysis and debugging of fine-grained taskparallel programs and run-time systems[END_REF][START_REF] Drebes | Automatic detection of performance anomalies in task-parallel programs[END_REF]. La section 10.1 définit les attentes d'une application d'analyse de trace. Un des concepts centraux est l'intégration de l'outil dans le cycle de développement illustré par la figure C.9. Ce cycle consiste en quatre étapes : -L'exploration de la trace. Durant cette phase le programmeur inspecte la trace en quête d'une anomalie et développe une hypothèse pour en expliquer la cause. -La vérification d'hypothèse. Une fois qu'une hypothèse est développée le programmeur cherche à la confirmer ou l'invalider. -Le prototypage d'une solution. Si l'hypothèse est valide, le programmeur implémente une

C.8 Allocation différée (chapitre 8)

C.9 Optimisation de broadcasts (chapitre 9) C.

empreinte mémoire et l'amélioration de l'exploitation des caches

  Toutefois, le développement d'un programme de contrôle garantissant une empreinte mémoire inférieure à un certain seuil est fastidieux et porte des risques d'interblocage. La proposition de techniques automatiques de plafonnement est donc souhaitable. L'empreinte mémoire joue un rôle clé pour les performances d'une application parallèle à base de tâches. Notre extension d'OpenStream présentée dans la section 8.5 est une possibilité pour réduire l'empreinte mémoire et de mieux exploiter les caches en réutilisant un même buffer pour les données d'entrée et de sortie d'une tâche. En revanche, une implémentation naïve de ce concept risque d'aggraver la localité des accès mémoires. Il est donc à déterminer s'il est nécessaire de faire un compromis entre l'empreinte mémoire et la localité par la génération de copies locales similaire au concept généralisé des tables de broadcast du chapitre 9.

	Réduction de l'

de nos optimisations sur des applications avec du parallélisme irrégulier

  Les mécanismes de placement de tâches et de données présentées dans cette thèse permettent d'améliorer les performances d'applications qui accèdent fréquemment à la mémoire vive. Les performances d'applications avec des accès fréquents aux caches restent essentiellement insensibles à ce placement. Dans des travaux de recherche futurs, nous souhaitons découvrir quelles techniques de placement pourraient permettre à ce type d'applications de mieux exploiter les caches. Comme le contenu d'une mémoire cache change fréquemment le timing des placements joue un rôle clé pour les performances, contrairement à des techniques de placement de tâches et de données adaptées aux accès non-uniformes à la mémoire. Toutes les applications utilisées pour la validation expérimentale ont des motifs de parallélisme réguliers. Pourtant, aucune des techniques d'optimisation présentée dans cette thèse repose sur le principe que le parallélisme d'une application soit régulier. Par la suite, nous souhaitons implémenter des benchmarks avec du parallélisme irrégulier et évaluer nos optimisations sur ces benchmarks afin de démontrer de manière expérimentale que nos optimisations sont capables d'améliorer la localité des accès mémoires et les performances d'applications avec du parallélisme irrégulier.

	Validation Intégration

de nos optimisations dans d'autres run-times d'applications à base de tâches

  Afin de démontrer la portabilité de nos techniques de placement de tâches et de données, il serait intéressant de les implémenter dans d'autres run-times. Le standard OpenMP 4 apparu récemment ajoute le concepts de dépendances de données point-à-point aux tâches OpenMP. Des run-times qui implémentent ce standard sont donc d'excellents candidats pour l'implémentation de nos optimisations.

	Comparaison

avec des implémentations à mémoire partagée avec un placement statique

  Pour une comparaison juste entre des applications data-flow basées sur des flux de données avec des applications utilisant la mémoire partagée, il serait préférable d'utiliser un placement statique optimisé manuellement. Les comparaisons présentées dans cette thèse utilisent un placement entrelacé sur tous les noeuds NUMA pour les applications utilisant la mémoire partagée, ce qui donne un équilibrage de charge excellent, mais une localité des accès mémoires sous-optimale.Approches d'optimisation hybrides statiques et dynamiquesLes solutions présentées dans cette thèse sont dynamiques et agissent pendant l'exécution d'une application. Nous avons montré que des aspects statiques d'optimisation tel que la granularité des tâches a une influence sur l'utilisation des caches, la quantité de parallélisme ainsi que le surcoût lié à la création et la synchronisation des tâches. Des approches hybrides avec des combinaisons d'optimisations statiques au moment de la compilation et des optimisations dynamiques lors de l'exécution pourraient améliorer les performances de manière significative et réduire ainsi la quantité de travail à effectuer par le programmeur.

OpenMP 4 [25] supports fine-grained, dependent tasks, but the approaches above apply to earlier versions of OpenMP that support only parallel loops and independent tasks.

double view[num_streams][horizon];

#pragma omp task output(a_stream << out_view)

The current version has been updated to version 4.9.0 of the compiler, but the results presented in this thesis were obtained from an earlier branch based on version 4.7.0.

Linux uses the same system call to obtain information about page placement and to migrate pages between nodes, hence the name move_pages.

The only exception to this rule are tasks whose execution is interrupted by a taskwait and which are resumed on a different core. However, OpenStream applications use barriers only rarely, e.g., towards the end of the execution of the application, such that task migration can be neglected.

In practice, task creation is often faster than task execution, such that t 2 would likely be created before the input buffers of t 0 and t 1 are freed. However, the reuse of input buffers would take place for later task creations starting at the first de-allocation of an input buffer. To keep this example simple, we assume that buffers are reused immediately.

The number of 32 task descriptions in this example does not represent an actual value of an instance of cholesky and only serves as an example for the illustration of the principles of the control program. Moreover, the actual data dependences for the tasks implementing the factorization are not shown.

The actual implementation leaves out the calculation of the square root, since the squared euclidean distance δ 2 i,q is sufficient to determine which of the cluster centers is nearest to a point.

The tree-like structure is implemented slightly differently in the actual implementation. However, the principle of parallel task creation remains the same.

The use of hardware performance counters can be entirely disabled in the configuration of the run-time, e.g., if only the execution time is measured.

The PAPI counter measuring the number of executed instructions on both platforms is PAPI_TOT_INS.

CPU_IO_REQUESTS_TO_MEMORY_IO:LOCAL_CPU_TO_LOCAL_MEM

CPU_IO_REQUESTS_TO_MEMORY_IO:LOCAL_CPU_TO_REMOTE_MEM

In the actual implementation the number of tasks created is four, but to keep the task graph simpler, we have shown the creation of two tasks per auxiliary task.

out_view_sqrt[i] = sqrtf(in_view]);

However, the placement of the metadata stored in data-flow frames is still determined by the task creation, but the size of the metadata is small compared to the actual data stored in input buffers.

In reality t 0 stays in the software cache of wr and cannot be stolen at this point. However, each auxiliary for task creation task usually creates and unblocks more than a single task, such that t 0 is quickly transferred to the work-deque of wr and gets exposed to steals.

Technically this could already happen at the beginning of the execution of t 2 . However, in earlier implementations the transfer of ownership was handled differently, which required the de-allocation to be delayed.

As a reader t i c might execute before another reader t j c with j > i becomes ready, it is possible that there are less than n references to the broadcast table at the end of the broadcast.

If busy waiting is disabled, memory accesses might still be remote if subsequent readers on the same node become ready before the copy is ready.

Technically, the broadcast tables of Section 9.1 have been implemented with the same data structures as for broadcast tables with multiple copies, but with a modification of Algorithm 10 that forces all readers to use the copy on the source node.

Available under a GNU GPL license at http://www.openstream.info

The minimum and maximum duration indicated on the left and right side at the bottom are slightly different than those of Figure10.5. This is due to the fact that Aftermath automatically adjusts this interval according to the shortest and the longest task within the selection on the timeline.

The interval represented by the vertical axis has been set to the same interval as in Figure10.6b.

Les heuristiques output only et weighted ne peuvent pas être combinées avec l'allocation différée puisqu'elles reposent sur la connaissance du placement des buffers en sortie de la tâche qui n'est déterminé qu'après l'activation de la tâche dans la plupart des cas.

Remerciements

D Data cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Data distribution policy (BLOCK, BLOCK) . . . . . . . . . . . . . . . . . . . 22 (BLOCK, CYCLIC) . . . . . . . . . . . . . . . . . . 22 (CYCLIC, CYCLIC) . . . . . . . . . . . . . . . . . . 22 * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 22 BLOCK . . . . . . . . . . . . . . . . . . . . . . . . . . 21-23 CYCLIC . . . . . . . . . . . . . . . . . . . . . . . . . 21-23 Data element . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Data location . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Data structure. . . . . . . . . . . . . . . . . . . . . . . . . . . .61 Data-flow frame . . . . . . . . . . . . . . . . . . . . . . . . . Data-flow tasks . . . . . . . . . . . . . . . . . . . . . . . . . . Debian GNU/Linux . . . . . . . . . . . . . . . . . . . . Deferred allocation . . . . . . . . . . . . 157, 162, Dependence path . . . . . . . . . . . . . . . . . . . . . . . . Dependence paths . . . . . . . . . . . . . . . . . . . . . . . Deque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43, Difflatex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Directive MIGRATE_NEXT_TOUCH . . . . . . . . . . MIGRATE_TO_OMP_THREAD . . . . . ON HOME . . . . . . . . . . . . . . . . . . . . . . . . . . Divide-and-conquer . . . . . . . . . . . . . . . . . . . . . Divide-and-conquer algorithms . . . . . . . . . . DSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77, Dynamic single assignment . . . . . . 31, 77, Dynamic task graph . . . . . . . . . . . . . . . . . . . . . E Élément de données . . . . . . . . . . . . . . . . . . . . Emacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Evince . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended dynamic task graph . . . . . . . . . . . . F FaceRec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FIFO queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . First-touch . . . . . . . . . . . . . . . . . . . . . . . 15, 16, First-touch placement . . . . . . . . . . 13, 14, 24, Firstprivate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flyspell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ForestGOMP . . . . . . . . . . 20, 21, 25-27, 29, Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45, Frequency of last level cache misses . . . . . G Gauß-Seidel . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gaussian Elimination . . . . . . . . . . . . . . . . . . . . GCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GENERIC . . . . . . . . . . . . . . . . . . . . . . . . . . . 52, Ghostscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GIMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53, Gimplification . . . . . . . . . . . . . . . . . . . . . . . . . . . Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GNU make . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gnuplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graphe de tâches . . . . . . . . . . . . . . . . . . . . . . . GTK+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GZIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H A Personal Publications

Jean-François Méhaut et ses collaborateurs de m'avoir donné accès à une machine NUMA grande échelle, ce qui m'a permis d'évaluer la scalabilité des

The next chapter provides an introduction to OpenStream. We present the basic concepts of OpenStream, the syntax of OpenStream programs and its execution model. In conclusion, we expect that the optimization of the locality of accesses to main memory has a higher impact on the SGI system and that applications react more sensitively to the optimization of write accesses than to the optimization of read accesses. 

end

Further research is thus necessary to determine under which conditions these optimizations can be beneficial for the execution time.

constant and avoiding the overhead on execution time for copying the data of the broadcast to all readers. The evaluation on the cholesky benchmark, which uses broadcasts extensively, showed that the memory footprint and the execution time could be decreased by more than an order of magnitude compared to the default broadcast mechanism without any of the optimizations of previous chapters. We showed that using broadcast tables, OpenStream is able to match the performance of state-of-the-art high performance implementations for Cholesky Factorization. To increase the locality of memory accesses during broadcasts, we added a mechanism to broadcast tables that creates on-demand copies on the NUMA nodes executing the readers of a broadcast. We showed that this strategy can increase the locality of memory accesses significantly, but due to the high cache hit rate of the cholesky benchmark the improvement of the locality does not result in improved performance for this benchmark.

In the last chapter, we presented Aftermath, our tool for trace-based performance analysis and visualization. We have used this tool extensively for performance debugging of the OpenStream run-time, in particular during the development of the optimizations presented in this thesis, as well as for performance debugging of the benchmarks presented in Chapter 6. Although we have originally implemented the tool specifically for OpenStream, many of its concepts apply to task-parallel applications and run-time systems in general. As a perspective for future work, we presented two approaches for automating recurring tasks and guiding the user through the process of performance analysis. The first of these approaches detects insufficient parallelism and high overheads, while the second approach identifies performance indicators that are relevant for performance analysis.

Contributions

The contributions of this thesis can be grouped into three categories. Contributions belonging to the first category are the key contributions of this thesis. The second category consists of technical concepts that form the basis for NUMA-aware scheduling and memory allocation. Practical contributions that are the result of the implementation of the concepts presented in this thesis or that helped during their development are summarized in the third category of contributions.

Key contributions

The key contributions of this thesis are mechanisms for efficient and portable, on-line placement of tasks and data for task-parallel applications executing on many-core systems. The proposed scheduling mechanisms are called work-pushing and topology-aware work-stealing, while the method for data placement is named deferred allocation. For broadcasts we proposed broadcast tables. All of the techniques were evaluated on a set of scientific benchmarks.

Work-pushing and topology-aware work-stealing (Chapter 7)

We proposed work-pushing, a data-aware and NUMA-aware scheduling mechanism for task-parallel application that transfers tasks to cores associated to the nodes that contain the data that will be accessed by the tasks during their execution. The decision to which core a task is transferred is taken before the task is executed and is based on precise knowledge on the placement of the task's working set. This knowledge is derived from point-to-point data dependences readily available in the run-times of modern task-parallel languages and an efficient memory-management layer that caches information on data placement. Unlike existing approaches for NUMA-aware scheduling of tasks, work-pushing neither relies on a specific structure of the computations carried out by the task-parallel application, nor on specific types of data structures and does not require profiling. The approach thus supports a wide variety of applications. As work-pushing operates at execution time, it is able to react to dynamic changes of the program behavior. The approach is entirely transparent to the application and is carried out fully automatically.

We also introduced topology-aware work-stealing as a complementary technique to workpushing for load balancing, stealing tasks from an incrementally widening neighborhood with respect to the memory hierarchy. This mechanism is similar to hierarchical work-stealing and relies -Maximiser le parallélisme Afin de profiter de la puissance de calcul parallèle de la machine, les calculs devraient être distribués à autant de coeurs que possible. Idéalement toutes les unités de calcul sont utilisées Le chapitre se termine par la présentation des perspectives d'automatisation de l'analyse de performances dans la section 10.5. On présente une automatisation de la détection d'un surcoût excessif du run-time ainsi qu'un mécanisme permettant la reconnaissance automatique des corrélations entre des indicateurs de performances. Des outils d'analyse de traces d'exécution sont présentés dans la section 10.6.

Index

C.11 Conclusions et perspectives (chapitre 11)

Le dernier chapitre fournit un résumé de la thèse, une description synthétique des contributions, une conclusion et une section sur les perspectives et les travaux de recherche futurs.

Les contributions de cette thèse présentées dans la section 11.2 peuvent être divisées en trois catégories : des contributions clés, des contributions qui forment les bases théoriques et techniques des contributions clés et des contributions pratiques.

Les contributions clés

Les contributions clés sont les mécanismes efficaces et portables, de placement de tâches et de données en ligne pour des applications à base de tâches qui s'exécutent sur des machines many-cores :

-Le work-pushing et le topology-aware work-stealing présentés dans le chapitre 7. Le workpushing est déclenché quand une tâche devient prête et la transfert vers un worker sur le noeud le plus approprié pour l'accès aux données de la tâche. On a proposé trois heuristiques : input only qui initie un transfert vers le noeud qui contient la plus grande part de données en entrée de la tâche, output only qui choisit le noeud dont le coût d'accès cumulé aux buffers de sortie de la tâche est le plus faible et weighted qui agit comme output only, mais qui prend en compte également les données en entrée. Le topology-aware work-stealing est une technique complémentaire au work-pushing qui remplace le work-stealing complètement aléatoire et qui favorise des vols de tâches dans le voisinage proche d'un worker par rapport à la hiérarchie mémoire. Les deux techniques augmentent la localité des accès à la mémoire de manière significative, ce qui permet d'augmenter les performances des applications avec des accès fréquents à la mémoire.

-L'allocation différée introduite dans le chapitre 8 est une technique qui retarde l'allocation et donc le placement des buffers d'entrée d'une tâche au moment où les noeuds associés aux workers qui exécutent les producteurs de la tâche sont connus. Ceci permet d'augmenter la localité des accès mémoires et de réduire l'empreinte mémoire d'une application de manière significative, ce qui augmente les performances de tous les benchmarks présentés dans cette thèse.

- -En exploitant l'information sur les dépendances de données point-à-point disponibles à l'exécution dans les run-time modernes d'application à base de tâches il est possible de déterminer l'ensemble de données accédées par les tâches d'une application de manière fiable, exacte et efficace.

-Les run-times d'applications à base de tâches peuvent être fournis avec un contrôle à fin grain sur le placement de données de l'application exécutée.

-Il y a une multitude d'aspects statiques, (par exemple le partitionnement de données entre les tâches) et d'événements dynamiques (par exemple l'ordre de création de tâches, l'équilibrage de charge et l'interaction avec le système d'exploitation) qui ont une influence forte sur l'empreinte mémoire, la localité des accès mémoires et les performances d'applications à base de tâches.

-Il est possible d'implémenter des techniques de placement de tâches et de données transparentes, entièrement automatiques et dynamiques dans les run-times d'applications à base de tâches qui améliorent de manière significative la localité des accès mémoires ainsi que les performances d'applications intensives en accès à la mémoire.

-Le gain en performance par le placement de tâches et de données est habituellement plus important pour des machines plus grandes avec un nombre élevé de coeurs et de contrôleurs mémoires.

Cela nous mène à des conclusions plus généralistes sur les applications à base de tâches et leurs run-times :

-La programmation à base de tâches permet d'exploiter les ressources de calcul et la bande