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Abstract

Different types of dynamical systems have been widely used to model different plants to
be controlled in many different disciplines. Although control is the final goal in the control
theory, given a concrete model, the designed controller sometimes could depend not only on
the output, but also its internal states. This motivates us to study whether it is possible to
reconstruct system’s internal states by using external measurements, named as the problem
of observability analysis and observer design.

This manuscript will summarize our obtained results on observability analysis and
observer design for three types of dynamical systems, respectively in three parts. Part I
studies the observability analysis and observer design for ordinary systems in continuous time,
where the differential geometrical approach and the technique of immersion are used to study
the observation problem. Finite-time and interval observers are proposed for time-continues
systems. The second Part of this manuscript concerns the observability analysis and observer
design for singular system. For linear singular system, the observability will be analyzed by
using elementary algebraic method, while the differential geometrical method is extended
to study nonlinear singular system. Luenberger-like and interval observers are studied for
different types nonlinear singular systems. The observability analysis and observer design
for time-delay system is considered in Part III. By introducing delay operator, the backward
(causal) and forward (non-causal) unknown input observability are defined. Sufficient
conditions are given to investigate the observability of a quite general linear/nonlinear time-
delay system with unknown inputs. Luenberger-like observer is also studied for linear
time-delay systems.
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Chapter 1

General Introduction

Dynamical systems have been widely used to model different plants to be controlled in many
different disciplines, ranging from biology, chemistry, to mechanics and so on. Nowadays,
one of the most popular ways to model the real process is to use the state-space equation,
described normally by the ordinary differential equation, which is named as time-continuous
system in the literature. Of course, when the modeling by ODE is not feasible, we can
try other systems, such as singular and time-delay systems, non-smooth systems [29], or
even PDEs. From engineering point of view, a wide variety of information cannot directly
be obtained through measurement for the modeling systems. Due to some economical or
technological reasons, we cannot place as many sensors as we want to measure the internal
information, since it costs expensive, or sometimes impossible. Besides, given a concrete plat,
some kinds of inputs (external disturbances for example) and some parameters (constants of
an electrical actuator, delay in a transmission...) are unknown or are not measured, whose
estimates are sometimes needed to be used in the closed-loop controller. Similarly, more often
than not, signals from sensors are distorted and tainted by measurement noises. Therefore,
although control is the final goal in the control theory, given a concrete model, in order to
simulate, to control or to supervise processes, and to extract information conveyed by the
signals, one often has to estimate parameters, internal variables, or the unknown inputs.

Estimation techniques are, under various guises, present in many parts of control, signal
processing and applied mathematics. Such an important area gave rise to a huge international
literature that cannot be summarized here. Roughly speaking, in automatic control, the
estimation covers at least the following topics:

• Identification of uncertain parameters in the system equations, including delays;

• Estimation of state variables, which are not measured;

• Observation fault diagnosis (unknown input) and isolation;

From control point of view, we know the problem of the parameter estimation can be
converted into the problem of state observation, by regarding those parameters as additional
states, and then extending the system’s state with zero dynamics, provided that they are
(piece-wise) constant, or slowly time-varying. Therefore, this manuscript will focus on the
state estimation problem with known or unknown inputs.

When dealing with state observation problem for the studied system, normally we need
to consider the following two important issues:

• Observability: With the available external measurement (output), is it possible to
reconstruct the internal information (states)?
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• Observer design: Which kind of observer can be designed (asymptotical or not,
interval, ...), and how?

The concept of controllability and observability are two key points when Kalman estab-
lished the modern control theory for linear time-invariant system around 1960 [57]. The aim
to analyze the observability for the studied system is to find out the conditions (at least suffi-
cient ones) under which the internal states of the treated systems can be estimated. Depending
on the properties of the studied system (linear or nonlinear, for example), methodologically
researchers adopts two quite different approaches to study this problem:

• Algebraic method;

• Differential geometric method;

As it was mentioned in [57] that the entire modern theory of linear constant dynamical
systems can be viewed as a systematic development of the equivalent algebraic conditions
on controllability and observability. In fact, the use of modules to study those properties
can be dated back to 1920 under the influence of E. Noether. This method can be easily
extended to study other types of linear systems, including linear time-delay systems [154].
However, the generalization of the similar theory to nonlinear system is not so trivial. Till
the beginning of 1970, based on the works of Chow [36], Hermann [75], Sussman [157],
Krener showed in his thesis that the differential geometric method is very powerful to analyze
the controllability and observability for nonlinear systems. By using geometric method, in
1977 with Hermann, he gave the definitive treatment of controllability and observability for
nonlinear systems [76]. This method opened a door in the control domain to study many
control problems for nonlinear systems, and lots of results are published by using differential
geometric method in 1980s, such as disturbance decoupling, feedback linearization, output
injection [29]. However, as stated in [39] some special problems for nonlinear systems, such
as system inversion, or the synthesis of dynamic feedback, could hardly be tackled with the
already well-established differential geometric methods. This forces researchers turn back to
algebraic method. Introduced by Fliess in [61, 64], the differential algebraic methods were
used as well to solve many problems for nonlinear systems, including observability [50],
invertibility [62, 63], dynamic feedback linearization [4], and so on.

Concerning the theory of observer design in control domain, it was initialized by Kalman
[91] and Luenberger [113], where the observation error was used to drive the designed
observer. After that, lots of different types of techniques have been developed to estimate
the interval states of the studied system. From a general point of view, we can classify those
techniques into two different categories:

• Estimation by using differentiator;

• Estimation by using observer.

If the studied system is fully observable, algebraically all its states can be represented
as a function of the output (and input if it is known) and its derivatives [49]. This implies
that an efficient differentiator, enabling to calculate the successive derivative of the signal, is
enough to estimate the states. The only problem is that the not well designed differentiator
will amplify the high frequency noise, if the signal is corrupted. Estimating the derivatives
of noisy signals is a longstanding problem in numerical analysis, in signal processing and
control. It has attracted a lot of attention due to its importance in many fields of engineering
and applied mathematics. Differentiating a noisy signal at various orders is a fundamental
issue. A number of different approaches have been proposed and are recalled in [109].
In the control domain, we can cite two important ones: algebraic differentiator [120] and
higher-order sliding modes differentiator [107]. They both have the ability to attenuate the
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high frequency noise when calculating high-order derivatives for a given corrupted signal.
The second category is a typical topic in the control domain. The list of different types of
observers is quite long, including Kalman observer [91], Luenberger observer [114], adaptive
observer [112], high-gain observer [71], sliding mode observer (finite-time or fixed-time)
[52], moving horizon observer [93], dissipative observer [150], interval observer [119] ...
Those observers have been studied for different types of systems.

It is worth noting that the observability and observer design are not two equivalent
concepts. The system is observable implies the existence of observer, but the inverse is not
always true, since the system can be detectable. In other word, the deduced observability
condition is only sufficient for some types of observers, such as algebraic observer. Some-
times other sorts of observers (Luenberger-like, high-gain,...) could ask additional conditions,
for example the well-known Lipschitz condition when treating nonlinear time-continuous
systems.

As we have mentioned in the beginning, different plants request different types of models,
such as time-continuous/discrete, delays, singular and so on. Therefore, the observability
analysis and observer design are logically dependent of the properties of each kind of model.
During my research activities, besides the classical time-continuous system, I encountered
as well singular system and time-delay system. A concrete application is the formation
of several mobile robots with delayed transmission. For each robot, their dynamics are
time-continuous. In order to keep the desired formation for different robots, the algebraic
constraints have to be imposed. Besides, the measurement of robot’s state can be delayed
in reality. This motivated me to focus on the observability analysis and observer design
for these three different types of systems (time-continuous, singular, and time-delay). The
following will briefly explain the differences and difficulties when treating these three types
of systems. For each sort of systems, the relevant works published in the literature will be
presented in the detail respectively in Chapter 2 for time-continuous system, in Chapter 7 for
singular system, and in Chapter 12 for time-delay systems.

1.1 Differences and difficulties

Time-continuous systems

Considering the observability for time-continuous system, the simplest one is the linear
time-invariant system. Due to the fact that the studied system is linear, we can normally
use the elementary algebra (vector space, linear transformation, rank, image) to analyze
its properties, such as observability and detectability for systems with known or unknown
inputs. For such type of systems, several different but equivalent definitions of observability
are proposed in the literature. The most common way, like for nonlinear system, is the
distinguishability [76, 160], i.e. different initial conditions yield different outputs. Since
zero initial conditions produce the zero outputs, the above property is equivalent to say that
non-zero initial condition implies non-zero outputs. Moreover, since the output of the system
is uniquely determined by its initial condition, we can also characterize the observability for
LTI system thought the ability to reconstruct the initial conditions. For LTI, this expression
leads to the well-known invertibility of the observability Gramian, which can be used as
a criteria to test whether the studied system is observable or not. Of course, some other
checkable conditions are proposed to test the observability, such as the famous Kalman rank
condition [92], Popov-Belevich-Hautus test condition [134, 13, 73], unobservable space and
invariant zero set [160].
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For linear system with unknown input, the definition of observability was generalized in
the sense that the state can be reconstructed for all unknown inputs, i.e. independent of the
unknown inputs. The generalization is named as strong observability in the literature [74].
Similar expressions, as for LTI system with known inputs, were used as well to characterize
it from different aspects, like distinguishability for all unknown inputs, non-zero initial
condition implies non-zero outputs for all unknown inputs, and so on [160].

Unlike LTI system where we can use the elementary algebraic approach to analyze the
observability, for nonlinear system, normally the differential geometric method is used to
characterize the observability [76]. Sometimes, we can also mix these two methods, if
necessary. But this time, since the model is nonlinear, thus we need to use the abstract
algebra (meromorphic functions, field, one-form...) [39]. Generally speaking, we are seeking
an injective map from the output and its derivatives to the state. Due to the nonlinear
properties, the observability might be local, thus different definitions can be found in the
literature. Nowadays, most of researchers adopt the definitions given by Hermann and Krener,
including global, local, weak ones [76] and the algebraic definition given by Fliess [49]. For
nonlinear system with known input, we have also a nice sufficient condition to judge the
local observability, which is called as well the observability rank condition, by using the Lie
derivative. For the system with unknown input, one can refer to the work [152].

Singular systems

Due to the characteristic that singular systems contain both differential and algebraic
equations, even for the linear case, singular system might contain impulse if the initial
condition is not consistent or the input is not enough differentiable. Therefore, the well-
defined concept of observability for singular systems have to be reconsidered with respect
to that for regular (non-singular) systems. In fact, this special characteristic (i.e, might
contain impulse) leads to different definitions, including observability, R-observability and
Impulse-observability [42]. Generally speaking, they characterize the state reconstruction
ability from different aspects: R-observability defines the ability to estimate the reachable
set of the studied system. Impulse-observability corresponds to the ability to estimate the
impulse term of the studied system and the observability covers both mentioned abilities to
estimate all states of the studied system.

For linear singular systems, since it might contain impulse, the state could be non-
differentiable. In this situation, the solution can be represented in the framework of Schwartz
distributions [38], by introducing Dirac function to allow the derivative of discontinuous
signal. For the linear case, we can also use the distinguishability to characterize the different
definitions of observability. R-observability requests only to distinguish two reachable states.
Impulse-observability considers only the impulsive part [79]. Since the solution explicitly
consists of two parts: impulsive part and non-impulsive part, due to the speciality of Dirac
function, we can even more have the similar ‘zero output implies zero state’ statement to
define the different concepts of observability. The only thing we need to pay attention is to
separate the impulsive and non-impulsive parts in the output, and to precise which part in the
output and in the state is zero. For example, if a zero impulsive part in the output implies the
impulsive part in the state is zero, then it gives the definition of the Impulsive-observability.

For those mentioned different definitions, we can always follow similar ideas, used
to analyze the linear time-invariant system, to study the observability of linear singular
system. Those approaches are still based on the elementary algebra. The similar Hautus
rank condition, Invariant zero set, and Monilari algorithm can be also deduced for linear
singular system with known or unknown input [10]. The corresponding conditions can be
then obtained as well to design the simple Luenberger-like observer for linear singular system
([80, 46]).
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Considering nonlinear singular system, the distinguishability is still valid to define the
observability. Therefore, like nonlinear regular system, we can use as well the differential
geometric method to analyze its observability [11].

Time-delay systems

The analysis of observation for time-delay systems can be dated back to the 80’s of the last
century [106, 128, 142, 136]. The main difficulty on the observability analysis for time-delay
system is due to the fact that its state is infinite-dimensional, which in fact is a collection of
information which contains the history of the system. This characteristic can explain why the
initial condition for time-delay system is normally a function. For systems without delay, the
observability can be characterized by the estimation of the initial condition, which in fact is
equivalent to the reconstructibility of the state. For linear systems with delay, we can also
characterize the observability by this property, In [127], the so called initial observability
was proposed. This definition is useful when the primary goal is to estimate the initial (past)
states. If the initial condition x(t) for t < 0 is zero or a known function, and x(0) ∈ Rn is
arbitrarily unknown, the initial observability becomes as Rn-observability, introduced by
[70]. This notion is useful if the objective is to estimate the instantaneous disturbance. As it
has been pointed out in the literature, for linear system with delay, the notion of observability
for initial condition is not equivalent to the reconstructibility of the system’s final trajectory
[106]. More precisely, for systems without delay, the knowledge of the initial condition is
equivalent to know the final state. However, for systems with delay, the knowledge of initial
condition is only sufficient, but not necessary to estimate the final trajectory of the state.
Therefore, although the natural extension of observability from the linear systems without
delay to the ones with delay is to as well estimate the initial condition, it is in fact not very
useful since in practice the most important purpose is indeed to estimate the final trajectory of
the state at any time, not the initial condition. Due to this fact, other concepts of observability
related to the reconstructibility of the final trajectory of the states were introduced. As we
know that the reconstruction can be finite-time, or infinite-time (asymptotical, when the time
tends to infinity), therefore two different definitions on observability are proposed in [128]:
finally observable (finite-time) and infinite-time observable (asymptotical, as detectability).
Besides, there exist as well two observability concepts defined by using a formal algebraic
way, called as weak observability and strong observability [146]. The studied system is
strongly observable (i.e. observable over the polynomial ring) if the observability matrix with
delay operator is left invertible over the polynomial ring. It is said to be weakly observable
(i.e. observable over the real field) if this observability matrix has a left inverse over the
real field. The last four observability definitions are for the purpose of only estimating
the final trajectory of the states. For the sake of simplicity and convenience (coherent to
the observability definition for other types of systems), we will use the word ’state’ when
treating time-delay systems in this manuscript, which in fact means the final trajectory of the
infinite-dimensional state of the studied system.

For linear time-delay systems, various aspects of the observability problem have been
studied in the literature, using different methods such as the functional analytic approach [19]
or the algebraic approach [28, 65, 154] (polynomial ring, Smith form, Hermit form...). For
linear time-delay system, by using the abstract algebra with polynomial ring, the matrices
are not constant any more, but polynomials of delay operator. Due to the similarity, we can
still follow the same ideas (Molinari algorithm, Hautus-like condition) for LTI to deduce
necessary and sufficient conditions of observability for systems with delay. For nonlinear
time-delay systems, the theory of non-commutative rings was firstly proposed in [124] to
disturbance decoupling problem. After that, the observability problem has been studied in
[165] for systems with known inputs. The nonlinear time-delay system with unknown inputs
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was studied in [172] by using the same approach. The associated observer for some classes
of time delay systems can be found in [40, 146, 44, 59, 69] and the references therein.

Comparisons

From the above discussions, it is clear that different types of systems have different
properties, thus the observability should be analyzed differently. Generally speaking, the
distinguishability is the most common way to define the observability for different types
of systems, which was firstly proposed for nonlinear time-continuous systems. Compared
to systems described by ODEs, the singular systems might contain impulse, therefore, the
definitions of observability are adapted by considering the ability to estimate the impulsive
terms. Considering the time-delay systems, in this case the observability depends on the delay,
therefore the estimation could be causal (i.e. needs only the past information) or non-causal
(i.e. depends as well the future information). Hence, the definitions of observability need to
be adapted by taking into account this issue. Moreover, when the inputs are unknown for
those types of systems (time-continuous, singular and time-delay), the observability should
not depend on the unknown input, which yields the so called strong observability.

1.2 Organization
This manuscript will only summarize the obtained result on observability analysis and
observer design for three types of dynamical systems: continuous-time, singular and time-
delay systems.

Part I studies the observability analysis and observer design for nonlinear time-continuous
system. Chapter 2 presents some existing works on these two topics for nonlinear time-
continuous systems, as well as the motivations of our researches. In Chapter 3, by using
the technique of immersion, we propose an extended output-depending normal form, for
which a simple high-gain observer can be designed. Here, we use differential geometric
method to deduce necessary and sufficient conditions which guarantee the existence of a
diffeomorphism to transform the general nonlinear system into the proposed normal form.
Concerning partial observable case, Chapter 4 treats this problem by employing again the
differential geometric approach to study the observation problem. We investigate a special
partial observer normal form, and give necessary and sufficient conditions as well to transform
the studied system into this special form. For the output-depending normal form, there exists
an asymptotical observer, such as high-gain observer. However, we are wondering whether
it is possible to design a finite-time observer for such a form. This problem will be studied
in Chapter 5. The above mentioned chapters are based on the assumption that the model of
the studied system is precise, i.e. without uncertainties. If the systems suffer from unknown
disturbances, normally the asymptotical estimation becomes impossible. In this situation, the
last chapter of this part deals with the interval observation for such an uncertain nonlinear
systems.

The second Part of this manuscript concerns the observability analysis and observer
design for singular system. Like Part I, Chapter 7 gives a general introduction of these two
topics for linear and nonlinear singular systems. For linear singular system, the observability
will be analyzed in Chapter 8, where necessary and sufficient conditions will be deduced.
Moreover, a constructive estimation method for the state is presented. The observability
for nonlinear singular system is investigated in Chapter 9. In this chapter, we will use the
well-known concept of zero-dynamics in nonlinear system to analyze the observability of
nonlinear singular systems. Again, sufficient conditions are reported in this chapter. Like the
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first part of this manuscript, we are trying as well to extend the differential geometric method
to study nonlinear singular system. For this, Chapter 10 studies a special class of nonlinear
singular systems which can be regularized into a regular nonlinear system, and then the
conventional Lie-bracket conditions are deduced. Finally, the uncertain nonlinear singular
system is considered in Chapter 11. Following what we did for nonlinear time-continuous
system in Part I, the same interval estimation technique is applied as well to nonlinear
uncertain singular system, and an interval observer is proposed for this issue.

The observability analysis and observer design for time-delay system is considered in
Part III. The motivation with respect to the existing result for linear and nonlinear time-delay
systems is introduced in Chapter 12. Concerning linear time-delay system, the backward and
forward unknown input observability are defined in Chapter 13. Based on these definitions,
sufficient conditions are given to investigate the observability of a quite general linear
time-delay system with unknown inputs. Here, we generalize the conventional algorithm
for LTI system (such as Monilari, Silverman) to study linear time-delay system. Things
become more complicated when studying nonlinear time-delay system. By extending the
Lie-derivative in the sense of non-commutative rings, we deduce sufficient conditions on the
observability for nonlinear time-delay systems with unknown inputs in Chapter 14. Moreover,
the identifiability of delay in the nonlinear time-delay system is treated as well in this chapter.
For the general linear time-delay system with unknown input studied in Chapter 13, Chapter
15 tries to answer the question whether it is possible to design a simple Luenberger-like
observer, as what we did for LTI system. In this chapter, some sufficient conditions are
deduced by using the concept of polynomial ring, and we show that they are equivalent to
necessary and sufficient conditions for the existence of a Luenberger-like observer when
treating LTI system without delay.

Finally, this manuscript, in the final part, ends up with some conclusions and potential
research perspectives.





Part I

O&O for Continuous-Time System





Chapter 2

Introduction

Observability and observer design problem for linear systems have been exhaustively studied
[160]. It becomes more complex when studying the nonlinear dynamical systems. During
last four decades, many different methods have been proposed for observability analysis and
observer design.

Unlike linear time-invariant system where the algebraic approach can be applied to
analyze the observability, for nonlinear system, normally we use the differential geometric
method to characterize the observability. Sometimes, we can also mix these two methods, if
necessary. Due to the nonlinear properties, the observability might be local, thus different
definitions can be found in the literature. Nowadays, most of researchers adopt the definitions
given by [76], including global, local, weakly ones. For the system with unknown input, one
can refer to the work of [152].

Concerning the observer design for nonlinear systems, conceptually, there exist two quite
different methods. Given a general nonlinear system, the first method tries to directly design
an observer, either asymptotical or finite-time. Up to now, many asymptotical observers
have been widely studied, such as Luenberger observer [114], high-gain observer [32] and
so on [17, 2, 30]. Compared to asymptotical observer, finite-time one was less studied
in the literature, which however is well appreciated in practice. Different methods have
been proposed, such as sliding mode technique [131, 67], delay measurement [143], output
injection [56], algebraic methods [66, 8] and homogeneity [21, 20]. The global finite-time
observer based on homogeneity was firstly introduced by [132] for the nonlinear systems
which can be transformed into a linear system with output injection. After that, [149]
extended this idea and proposed a semi-global finite-time observer for the special systems
with triangular structure. The global finite-time observer for such a system was studied
respectively in [122] by introducing the second gain, in [148] and [31] by introducing
adaptive gains.

The second methods is to transform the nonlinear system into a more simple form
which enables us to apply existing observers. The first idea of normal form is due to [18]
for time variant dynamical systems, and to [102] for time invariant dynamical systems,
where the author introduced the so-called observer canonical form with output injection
with all nonlinear terms being only function of the output. Then [103] gave the associated
canonical form with output injection for multi-outputs nonlinear systems without inputs, and
the result for multi-outputs systems with inputs was studied in [164]. Based on the above
works many algorithms are developed to generalize the existing results, including algebraic
approaches ([97, 133, 141]), geometric approaches ([82, 116, 26, 115]) and the so called
direct transformations stated in [110]. To enlarge the class of observer forms, the concept
of output depending normal form was firstly addressed in [72, 139], then was developed
in [173] and [162, 163]. The other approaches to enlarge the class of normal forms are the
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extended normal form introduced in ([89, 126, 6, 168, 169]), where the main idea is to add
an auxiliary dynamics to the dynamical system in such a way that the extended system can
satisfy the conditions proposed in the literature. The geometric characterization of the second
method was addressed in [24] and [25].

Concerning the second method based on differential geometric approach, the solvability
of the problem requires the restrictive commutative Lie bracket condition for the deduced
vector fields. In order to relax this restriction, we can reconstruct a new family of vector
fields which can satisfy the commutative Lie bracket condition. Moreover, inspired by this
solution, we can also use the technique of immersion to construct a less restrictive family of
vector fields. Sometimes, we can also apply a change of coordinates on the output to relax
this restriction. If the system is not fully observable, the same method can be adapted to treat
partially observable case [94].

For a more general normal form, such as output-depending one, due to the fact that the
existing results deal only with the triangular systems with linear constant part which is of
Brunovsky form, thus they cannot be applied for some nonlinear systems which cannot be
transformed into this form. The design of a finite-time observer is quite challenging. Another
difficult aspect is about the uncertain systems, for which an exact estimation is not possible.
In this situation, it is interesting to provide an interval estimation for the studied systems.

The following summarizes our recent results on observability analysis and observer
design for nonlinear continuous-time systems:

• The first result concerns the relaxation of the commutative Lie bracket conditions, by
using the immersion technique. After having proposed a simple form by using this
approach, sufficient geometric condition is deduced to guarantee the existence of a
change of coordinates to transform a nonlinear system into the proposed normal form;

• Secondly, we investigate the estimation problem for a class of partially observable
nonlinear systems. For the proposed Partial Observer Normal Form (PONF), necessary
and sufficient conditions are deduced to seek a diffeomorphism which can transform
the studied system into the proposed PONF;

• The third result treats the problem of global finite-time observer design for a class of
nonlinear systems which can be transformed into the output depending normal form.
By introducing the output-dependent gains, we extend the result in [122] to design a
global finite-time observer for the studied normal form;

• Finally, we study the interval observer design for a class of nonlinear continuous
systems, which can be represented as a superposition of a uniformly observable
nominal subsystem with a Lipschitz nonlinear perturbation. It is shown in this case
there exists an interval observer for the system that estimates the set of admissible
values for the state consistent with the output measurements.



Chapter 3

Extended Output-Depending Normal
Form

The observer design for nonlinear dynamical systems is an important issue in the control
theory. One of the methods is to transform the nonlinear system into a more simple form
which enables us to apply existing observers. Here, we will recall our recent work, published
in [J11, C20], by applying the technique of immersion (i.e. adding an auxiliary dynamics into
the dynamical system) in order to relax the commutative Lie bracket conditions. We propose
a new observer normal form by mixing the output depending normal form and the extended
normal form. Sufficient geometric condition will be deduced to guarantee the existence of a
diffeomorphism to transform the studied system into the proposed normal form.

3.1 Notations and problem statement
Consider a single output nonlinear dynamical system in the following form:

ẋ = f (x)

y = h(x)
(3.1)

where x ∈U ⊆ Rn is the state and y ∈ R is the output. We assume that the vector field f and
the output function h are smooth. In the following, we also assume that the pair (h, f ) satisfies
the observability rank condition. Thus, the so-called observability differential 1-forms are
independent, and given by:

θ1 = dh (3.2)
θi = dLi−1

f h for 2 ≤ i ≤ n (3.3)

where Lk
f h is the kth Lie derivative of h along f and d is the differential operator.

Thus, according to [102], one can construct τ = [τ1, · · · ,τn] where the first vector field τ1
is a solution for the following algebraic equations:

θi(τ1) = 0 for 1 ≤ i ≤ n−1

θn(τ1) = 1
(3.4)
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and the other vector fields are given by induction as follows:

τi = [τi−1, f ] (3.5)

for 2 ≤ i ≤ n, where [, ] denotes the Lie bracket.
In [102], the commutativity of Lie bracket, i.e.

[
τi,τ j

]
= 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ n is the

necessary and sufficient condition to transform system (3.1) into a nonlinear observer form
with output injection. If this condition is not fulfilled, then another frame τ = [τ1,τ2...τn]
can be built from τ according to [139, 173, 162, 163] as follows:{

τ1 = πτ1

τ i =
1
αi
[τ i−1, f ]

(3.6)

where π =
n
∏
i=2

αi, and αi(y) for 2 ≤ i ≤ n being non vanishing functions of the output to be

determined. If the commutativity of Lie bracket condition is fulfilled for the new frame τ ,
then system (3.1) can be transformed into the output depending nonlinear observer form with
output injection. However, there exist as well some dynamical systems which do not fulfill
the above conditions. In this situation, we are wondering whether it is possible to relax these
conditions by applying the technique of immersion.

3.2 Extended output depending normal form

Consider the nonlinear system (3.1), one seeks an auxiliary dynamics ẇ = η(y,w) so that the
following extended dynamical system:

ẋ = f (x) (3.7)
ẇ = η(y,w) (3.8)
y = h(x) (3.9)

could be transformed via a diffeomorphism (zT ,ξ )T = φ(x,w) into the following more
general extended output depending observer form:

ż = A(y)z+B(y,w) (3.10)

ξ̇ = Bn+1(y,w) (3.11)
y = Cz (3.12)

where ξ ∈ R, w ∈ R, C = [0, ...,0,1],

A(y) =


0 ... ... ... 0

α2(y) 0 ... ... 0
0 α3(y) ... ... ...

0 ... ... ... ...

0 ... ... αn(y) 0

 (3.13)
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For the proposed form (3.10-3.12), we can design a high-gain observer as follows [32]:

˙̂z = A(y)ẑ+B(w,y)−Γ
−1(y)R−1

ρ CT (Cẑ− y)

0 = ρRρ +GT Rρ +RρG−CTC

where

G =


0 · · · 0 0
1 · · · 0 0
... . . . ...

...
0 · · · 1 0


Γ(y) = diag[

n
Π

i=2
αi(y),

n
Π

i=3
αi(y), · · · ,αn(y),1]

Rρ(n+1− i,n+1− j) =
(−1)i+ jC j−1

i+ j−2

ρ i+ j−1

for 1 ≤ i ≤ n and 1 ≤ j ≤ n, where Cp
n = n!

(n−p)!p! is a binomial coefficient. The observation
error will be governed by the following dynamics:

ė = ˙̂z− ż = (A(y)−Γ
−1(y)R−1

ρ CTC)e

If y and w are bounded, then the observation error is exponentially stable by well choosing ρ .

3.3 Main result

We are going to deduce the sufficient geometric condition which guarantees the existence of
an auxiliary dynamics ẇ = η(y,w) and a diffeomorphism (zT ,ξ )T = φ(x,w) for the purpose
of transforming the extended system (3.7-3.9) into the proposed extended output depending
observer normal form (3.10-3.12) where ξ ∈ R and w ∈ R.

For this, let us consider a function l(w) ̸= 0 to be determined later and build the following
new frame σ from τ defined in (3.6):{

σ1 = l(w)τ1

σk =
1

αk
[σk−1,F ]

(3.14)

where αk for 2 ≤ k ≤ n is uniquely determined when constructing τ , and F is the vector
field for the extended system (3.7-3.9), noted as F = f +η(y,w) ∂

∂w . Then we can state the
following theorem.

Theorem 3.1 If there exists a function l(w) ̸= 0 such that[
σi,σ j

]
= 0
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for 1 ≤ i ≤ n and 1 ≤ j ≤ n where σi is defined in (3.14), then there exists a diffeomorphism
(zT ,ξ )T = φ(x,w) which transforms the extended system (3.7-3.9) into the proposed normal
form (3.10-3.12).

Assuming that there exists a function l(w) ̸= 0 such that
[
σi,σ j

]
= 0 for 1 ≤ i ≤ n and

1 ≤ j ≤ n. Denote ∆0 = span{σ1, · · · ,σn} the distribution spanned by vector fields σi for
1 ≤ i ≤ n. It is clear that ∆0 is involutive. Let ∆ be the global distribution of dimension
n+1. One has ∆0 ⊂ ∆ since ∆ is involutive, then by Frobenius’s theorem one can always
find another σn+1 which is independent of σi such that [σi,σn+1] = 0 for 1 ≤ i ≤ n and
dw(σn+1) = 1. Note

σ = [σ1,σ2, · · · ,σn,σn+1]

and denote the set of the observability 1-forms of the extended system as:

θe = (dh,dLFh, · · · ,dLn−1
F h,dw)T

then one can calculate the following matrix:

Λ = θeσ =



0 0 0 · · · 0 l ∗
0 0 0 0 lαn ∗ ...

0
... 0 . . . ∗ ... ∗

... 0 lπ
α2α3

∗ ... ∗ ∗
0 lπ

α2
∗ · · · ∗ ∗ ∗

lπ ∗ ∗ · · · ∗ ∗ ∗
0 0 0 0 0 0 1


It is clear that Λ is invertible, thus one can define the following multi 1-forms:

ω =


ω1

ω2
...

ωn+1

= Λ
−1

θe (3.15)

Moreover, due to Poincaré’s lemma, the condition
[
σi,σ j

]
= 0 for 1≤ i≤ n and 1≤ j ≤ n

is equivalent to the existence φ = (φ1, · · · ,φn+1)
T such that ω = dφ := φ∗. As ω = dφ = φ∗,

then the diffeomorphism can be obtained by integration: zi = φi(x) =
∫

ωi.

Remark 3.2 The following lists some special cases of the proposed normal form:

• If the vector field σn+1 is obtained by induction as σn+1 = [σn,F ], then ∂φ∗(F)
∂ zn

= ∂

∂ξ

and the normal form becomes ż = A(y)z+B(w), where the second term B(w) will
depend only on the auxiliary variable w.
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• As stated in the assumption of Lemma 3.1 in [25], it can be shown that

[τ i,τn]−ρ(y)τ i−1 ∈ span{τ1, · · · ,τ i−1}

is the condition to ensure the existence of η(y,w) and l(w), where ρ(y) is only a
function of y.

3.4 Application to SEIR model
Consider the Susceptible Exposed Infected and Recovered (SEIR) model [84]:

dS
dt

= bN −µS−β
SI
N

− pbE −qbI

dE
dt

= β
SI
N

+ pbE +qbI − (µ + ε)E

dI
dt

= εE − (r+δ +µ)I

dR
dt

= rI −µR

dN
dt

= (b−µ)N −δ I

(3.16)

where S(t) is the susceptibility of the host population to the contagious disease, E(t) is the
exposed population but not yet expressing symptoms, I(t) is the infected population, R(t) is
the recovered population, b is the rate of the natural birth, µ is the rate of fecundity, β is the
transmission rate, δ is the death rate related to diseases, ε is the rate at which the exposed
population becomes infective, p is the rate of the offspring from an exposed population, q is
the rate of the offspring from an infected population and r is the rate at which the infected
individuals are recovered.

It is supposed that one can measure the infected population I(t) and the total population
N which is given as follows:

N = S+E + I +R (3.17)

One wants to estimate the susceptibility of the host population S(t) and the exposed popu-
lation E(t) from the infectious population. Then R(t) can be deduced from the algebraical
equation (3.17).

For the sake of simplicities, let us consider the normalized model of (3.16), by setting
x1 = S

N , x2 = E
N , x3 = I

N , x4 = R
N and y = I

N . Consequently the SEIR dynamics can be
rewritten as follows:

ẋ1 = b−bx1 + γ1x1x3 − pbx2 −qbx3 (3.18)
ẋ2 = βx1x3 + γ2x2 +δx2x3 +qbx3 (3.19)
ẋ3 = εx2 + γ3x3 +δx2

3 (3.20)
ẋ4 = rx3 −bx4 +δx3x4 (3.21)
y = x3 (3.22)
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with γ1 =−(β −δ ), γ2 =−(b+ ε − pb), γ3 =−(r+δ +b) and

x1 + x2 + x3 + x4 = 1 (3.23)

Due to the above constrain, we need only study the observability of (3.18-3.20) with the
measurement (3.22). If it can be transformed into the proposed normal form, then the above
algebraic constrain enables us to estimate x4. The following will show step-by-step how to
seek an auxiliary dynamics and deduce such a diffeomorphism.

3.4.1 Calculation of τ

A simple calculation gives the associated observability 1-forms as follows:

θ1 = dx3

θ2 = εdx2 +(γ3 +2δx3)dx3

θ3 = εβx3dx1 + ε(γ2 + γ3 +3δx3)dx2 +Q1dx3

where Q1 = εβx1 +3εδx2 + εqb+ γ2
3 +6δγ3x3 +6δ 2x2

3.
Then the associated frame τ is given by:

τ1 =
1

εβx3

∂

∂x1

τ2 = uτ1 +
1
ε

∂

∂x2
where u =−b+ γ3 +(δ + γ1)x3 + ε

x2
x3

τ3 =− pb
ε

∂

∂x1
−
(
L f u
)

τ1 +uτ2 +
1
ε
(γ2 +δx3)

∂

∂x2
+ ∂

∂x3

A straightforward calculation gives [τ1,τ2] = [τ1,τ3] = 0 and

[τ2,τ3] = Q2τ1 +
1
x3

τ2

where Q2 =−(3δ +2γ1 +
2γ2−γ3

x3
−3ε

x2
x2

3
).

As [τ2,τ3] ̸= 0, then system (3.18-3.20) cannot be transformed into the observer form
with output injection, but one can use them to construct a new frame τ .

3.4.2 Calculation of τ

To build τ , one needs to seek non vanishing functions α2(y) and α3(y) from τ . Without loss
of generality, one can always assume that α3(y) = 1. The reason is that if α3(y) is different to
1 in one normal form, one can always apply a diffeomorphism on the output z3 =

∫ y
0

1
α3(s)

ds
which will make α3(y) = 1 in the transformed normal form. Therefore, one needs only to
determine α2(y).

According to [173], one uses the following equation:

[τ2,τ3] = λ (y)τ2 mod τ1
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with λ (y) = dα2(y)
dy

1
α2(y)

to determine α2(y). Then one has:

dα2(y)
dy

1
α2(y)

=
1
x3

=
1
y

which yields α2(y) = y = x3.
Consequently, one has α2 = x3, α3 = 1 and π = α2α3 = x3. Then from (3.6) one obtains:

τ1 = x3τ1 =
1

εβ

∂

∂x1

τ2 =
1
x3
[τ1, f ] =

1
εβx3

(−b+ γ1x3)
∂

∂x1
+

1
ε

∂

∂x2

τ3 = [τ2, f ] = (−pbβ +
(−b+ γ1x3)

2

x3
−bε

x2

x2
3
)τ1

+
1
ε
(γ2 −b+(δ + γ1)x3)

∂

∂x2
+

∂

∂x3

A straightforward calculation gives [τ1,τ2] = [τ1,τ3] = 0 and [τ2,τ3] = −2 b
x2

3
τ1. One can

see again that the commutativity condition for the new frame τ is not satisfied, and according
to the third point of Remark 3.2 the functions η(y,w) and l(w) exist.

3.4.3 Calculation of σ

In this step, we will seek an auxiliary dynamics ẇ = η(y,w) and a non zero function l(w)
which fulfill the condition of Theorem 3.1. For this, set σ1 = l(w)τ1 =

l
εβ

∂

∂x1
, then one has:

σ2 =
1
x3

[σ1,F ] =
1
x3
(lH −η l

′
)σ1 +

l
ε

∂

∂x2

σ3 = [σ2,F ] = (−LF(
1
x3
(lH −η l

′
))−β pb)σ1 +(lH −η l

′
)σ2

+(
l
ε
(γ2 +δx3)−

l′

ε
η)

∂

∂x2
+ l

∂

∂x3

where H = (−b+ γ1x3). Finally, one gets:

[σ2,σ3] = (
l
ε

L ∂

∂x2
(−LF(

1
x3
(lH −η l

′
))− lL ∂

∂x3
(

1
x3
(lH −η l

′
)))σ1

Therefore, [σ2,σ3] = 0 implies that:

l
ε

L ∂

∂x2
(−LF(

1
x3
(lH −η l

′
))− lL ∂

∂x3
(

1
x3
(lH −η l

′
)) = 0

which is equivalent to:
− lb+ l′(−η + x3η

′
y) = 0 (3.24)
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where η ′
y =

∂η

∂y and l′ = dl
dw .

As l is only a function of w then −η + x3η ′
y is only a function of w. Consequently, the

function η(w,y) has the following form: η = κ1(w)y+κ2(w). Then, according to (3.24) one
has:

lb+ l′κ2(w) = 0 (3.25)

which implies l(w) = e−
∫ w

0
b

κ2(s)
ds. To simplify the calculations, we take η = −κ(w)H =

−κ(w)(γ1x3 − b), i.e. κ1(w) = −κ(w)γ1 and κ2(w) = κ(w)b. Therefore, one can add the
following auxiliary dynamics:

ẇ =−κ(w)(γ1y−b) (3.26)

where w ∈ R is an auxiliary variable, considered as an extra output and κ(w) can be freely
chosen in order to ensure the boundedness of w.

Then, the corresponding frame σ is as follows:

σ1 =
l

εβ

∂

∂x1
, σ2 =

l
ε

∂

∂x2

σ3 = − pb
ε

l
∂

∂x1
+

γ2 +b+(δ − γ1)x3

ε
l

∂

∂x2
+ l

∂

∂x3

One can check that [σ1,σ2] = [σ1,σ3] = [σ2,σ3] = 0. To complete the dimension of the
frame, one should find σ4 which commutes with σi for 1 ≤ i ≤ 3. For this, one can choose:

σ4 =
l′x1

l
∂

∂x1
+

l′

l
(x2 +

(δ − γ1)

2ε
x2

3)
∂

∂x2
+

l′x3

l
∂

∂x3
+

∂

∂w

which makes [σ4,σi] = 0 for 1 ≤ i ≤ 3.

3.4.4 Determination of diffeomorphism
After determining the auxiliary dynamics, one can calculate the observability 1-forms θe =
[dh,dLFh,dL2

F ,dw]T , then one obtains:

Λ = θeσ =


0 0 l l′

l x3

0 l Λ23 Λ24

x3l l (γ2 + γ3 +3δx3) Λ33 Λ34

0 0 0 1


where:

Λ23 = (γ2 +b+(δ − γ1)x3) l +(γ3 +2δx3)l

Λ24 =
l′

2l

(
2εx2 +2γ3x3 +(5δ − γ1)x2

3
)

Λ33 = (γ2 + γ3 +3δx3)(γ2 +b+(δ − γ1)x3) l − pbεβx3l +Q1l

Λ34 =
l′

l
(x2 +

(δ − γ1)

2ε
x2

3)ε(γ2 + γ3 +3δx3)+ εβx3
l′x1

l
+

l′x3

l
Q1
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Thus one obtains ω = Λ−1θe = dz which yields the following diffeomorphism:

z1 =
βε

l(w)
x1 +

bpβ

l(w)
x3

z2 =
ε

l(w)
x2 −

(b+ γ2)

l(w)
x3 −

1
2
(δ − γ1)

l(w)
x2

3

z3 =
1

l(w)
x

ξ = w

(3.27)

allowing the transformation of system (3.18-3.20) and the auxiliary dynamics (3.26) into the
following extended output depending form:

ż1 = B1(w,y)

ż2 = yz1 +B2(w,y)

ż3 = z2 +B3(w,y)

ξ̇ = B4(w,y)

y = z3

(3.28)

where

B1(y,w) = bβ (
1
l
(p(b+ γ3)−qε)y+

p
l
(δ − γ1)y2)+

bβε

l

B2(y,w) = −βbpy+
1
l
(δ 2 +

1
2

γ
2
1 −

3
2

δγ1)y3 −
1
l
(δ (γ2 + γ3 +

3
2

b)−2γ1γ3 −
3
2

bγ1)y2 −
1
l
(b(γ2 + γ3 +b−qε)+ γ2γ3)y

B3(y,w) =
1
l
(3b+ γ2 + γ3)y+

3
2l
(δ − 5

3
γ1)y2

3.4.5 Simulation results

For the simulation, in order to have a bounded state for the auxiliary dynamics, we choose
κ(w) = sin2(aw)

(aw)2 where a ∈ ]0,1[, and the same parameters of the SEIR model as those in

[108] are used, i.e. N = 141, b = 0.221176/N, δ = 0.002, p = 0.8, q = 0.95, β = 0.05,
ε = 0.05, r = 0.003. The initial conditions are S(0) = 140, E(0) = 0.01, I(0) = 0.02 and
N(0) = 141. The simulation results are presented in the following figures.
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3.5 Conclusion
The first result of Part I is to introduce the auxiliary dynamics to relax the restrictive Lie
bracket condition. For this, a new extended output depending normal form was proposed,
which mixes both the extended normal form and the output depending normal form. This
new normal form enables us to design a simple high-gain observer. Sufficient condition was
given in order to guarantee the existence of a diffeomorphism which can be used to transform
the extended dynamical systems into the proposed normal form.



Chapter 4

Partial Observer Normal Form

In the literature, most the existing results are devoted to designing a full-order observer,
under the assumption that the whole state of the studied system is observable. Few works
have been dedicated to the partial observability which however makes sense in practice when
only a part of states are observable or are necessary for the controller design. Here, we
will propose a more general Partial Observer Normal Form (PONF) for a class of partially
observable nonlinear systems. This new form is a generalization of the normal form studied
in [88]. The proposed PONF is divided into two subsystems, and we relax the form proposed
in [88] by involving all states in the second subsystem. To deal with this generalization, we
use the notion of commutativity of Lie bracket modulo a distribution. Our results allow as
well to apply additionally a diffeomorphism on the output space. Therefore, the deduced
necessary and sufficient geometric conditions are more general because of the introduction
of commutativity of Lie bracket modulo a distribution. The result of this chapter has been
published in [J2, C23].

4.1 Notation and problem statement
Consider the following nonlinear dynamical system with single output:

ẋ = f (x)+g(x)u = f (x)+
m

∑
k=1

gk (x)uk (4.1)

y = h(x) (4.2)

where x ∈Rn, u ∈Rm, y ∈R, and the functions f : Rn →Rn, g = [g1, · · · ,gm] with gi : Rn →
Rn for 1 ≤ i ≤ m, h : Rn → R are supposed to be sufficiently smooth. It is assumed that
f (0) = 0 and h(0) = 0.

Let X ⊂Rn be a neighborhood of 0, for system (4.1)-(4.2), if the pair (h(x), f (x)) locally
satisfies the observability rank condition on X , i.e. rank

{
dh,dL f h, · · · ,dLn

f h
}
(x) = n for

x ∈ X , then the following 1-forms:

θ1 = dh and θi = dLi−1
f h, for 2 ≤ i ≤ n

are independent on X , where Lk
f h denotes the kth Lie derivative of h along f . Therefore,

there exists a family of vector fields τ̄ = [τ̄1, · · · , τ̄n] proposed in [102], where the first vector
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field τ̄1 is the solution of the following algebraic equations:{
θi(τ̄1) = 0 for 1 ≤ i ≤ n−1
θn(τ̄1) = 1

(4.3)

and the other vector fields are obtained by induction as τ̄i =−ad f τ̄i−1 = [τ̄i−1, f ] for 2≤ i≤ n,
where [, ] denotes the Lie bracket. According to [102], if[

τ̄i, τ̄ j
]

= 0 for 1 ≤ i, j ≤ n (4.4)
[τ̄i,gk] = 0 for 1 ≤ i ≤ n−1 and 1 ≤ k ≤ m (4.5)

then system (4.1)-(4.2) can be locally transformed, by means of a local diffeomorphism
ξ = φ(x), into the following nonlinear observer normal form: ξ̇ = Aξ +B(y)+

m
∑

k=1
αk (y)uk

y =Cξ

(4.6)

where A ∈ Rn×n is the Brunovsky matrix and C = [0, · · · ,0,1] ∈ R1×n.

Obviously, for the nonlinear dynamical system (4.1)-(4.2), if rank
{

dh, · · · ,dLn
f h
}
(x) =

r < n for x ∈X , which implies that only a part of states of the studied system are observable,
the proposed method by [102] could not be applied.

To treat this partially observable situation, we propose the following Partial Observer
Normal Form (PONF): 

ξ̇ = Aξ +β (y)+
m
∑

k=1
α1

k (y)uk

ζ̇ = η(ξ ,ζ )+
m
∑

k=1
α2

k (ξ ,ζ )uk

y =Cξ

(4.7)

where ξ ∈ Rr, ζ ∈ Rn−r, y ∈ R , β : R → Rr , η : Rr ×Rn−r → Rn−r, α1
k : R → Rr,

α2
k : Rr ×Rn−r → Rn−r, C = (0, · · · ,0,1) ∈ R1×r and A is the r× r Brunovsky matrix:

A =


0 0 · · · 0 0

1 0 . . . ...
...

0 1 · · · 0 0
0 · · · · · · 0 0
0 · · · · · · 1 0

 ∈ Rr×r

For the proposed form (4.7), one can easily design a reduced-order observer to estimate
the part of observable state ξ , by choosing the gain K such that (A−KC) is Hurwitz.
Therefore, the rest focuses only on how to deduce a diffeomorphism which transforms the
nonlinear system (4.1)-(4.2) into the proposed PONF (4.7).
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4.2 Geometric conditions
In the following, we will deduce necessary and sufficient conditions which guarantee the
existence of a diffeomorphism to transform the studied partially observable nonlinear system
into the proposed PONF. For this, considering the studied system (4.1)-(4.2), it is assumed
that rank

{
dh,dL f h, · · · ,dLn

f h
}
(x) = r < n for x ∈ X ⊂ Rn, where X is a neighborhood

of 0.
Denote the observability 1-forms for 1 ≤ i ≤ r by θi = dLi−1

f h and note

∆ = span{θ1,θ2, · · · ,θr}

as the co-distribution spanned by the observability 1-forms. Specifically, thanks to observ-
ability rank condition, it is clear that dLi

f h ∈ ∆ for i ≥ r+1. Then one can define the kernel
(or the annihilator) of the co-distribution ∆ as follows:

∆
⊥ = ker∆ = {X : θk(X) = 0, for 1 ≤ k ≤ r} (4.8)

for which we have the following properties.

Lemma 4.1 For the distribution ∆⊥ defined in (4.8), the following properties are satisfied:

P1: ∆⊥ is involutive, i.e. for any two vector fields H1 ∈∆⊥ and H2 ∈∆⊥, we have [H1,H2]∈
∆⊥;

P2: there exist (n− r) vector fields {τr+1, · · · ,τn} that span ∆⊥ such that [τi,τ j] = 0 for
r+1 ≤ i, j ≤ n, i.e. {τr+1, · · · ,τn} is the commutative basis of ∆⊥;

P3: ∆⊥ is f -invariant, i.e. for any vector field H ∈ ∆⊥, we have [ f ,H] ∈ ∆⊥.

Now, let τ̄1 be one of the vector field solutions of the following under-determined
algebraic equations: {

θk(τ̄1) = 0 for 1 ≤ k ≤ r−1
θr(τ̄1) = 1

(4.9)

and it is obvious that this solution is not unique, since (4.9) contains only r algebraic equations.
Therefore, for any H ∈ ∆⊥, τ̄1 +H is also a solution of (4.9). By following the method
proposed in [102], we can construct, for any chosen τ̄1 satisfying (4.9), the following vector
fields:

τ̄i = [τ̄i−1, f ] for 2 ≤ i ≤ r (4.10)

Let τ̃1 be another solution of (4.9), which enables us, by following the same method, to
construct another family of (r−1) vector fields:

τ̃i = [τ̃i−1, f ] for 2 ≤ i ≤ r (4.11)

Then the following lemma highlights the relation between these two families of vector fields
for the different chosen τ̄1 and τ̃1.

Lemma 4.2 For any two different solutions τ̄1 and τ̃1 of (4.9), there exist Hi ∈ ∆⊥ for
1 ≤ i ≤ r such that τ̃i = τ̄i +Hi where τ̄i and τ̃i are defined in (4.10) and (4.11), respectively.
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The above lemma reveals an important property: no matter how to choose the first vector
field τ̄1 satisfying (4.9), the family of vector fields τ̄i for 1 ≤ i ≤ r are defined modulo ∆⊥.
Other important properties for this family of vector fields τ̄i are listed in the following lemma.

Lemma 4.3 For any τ̄1 satisfying (4.9) and the associated τ̄i for 2 ≤ i ≤ r deduced from
(4.10), the following properties are satisfied:

1) for any H ∈ ∆⊥, we have [τ̄i,H] ∈ ∆⊥;

2) for any Hi ∈ ∆⊥ and H j ∈ ∆⊥ with 1 ≤ i, j ≤ r, we have

[τ̄i +Hi, τ̄ j +H j] = [τ̄i, τ̄ j] modulo ∆
⊥;

3) for 1 ≤ i ≤ r and r+1 ≤ j ≤ n, we have
[
τ̄i,τ j

]
∈ ∆⊥ where τ j was defined in P2 of

Lemma 4.1, which is the commutative basis of ∆⊥.

Lemma 4.4 For any τ̄1 satisfying (4.9) and the associated τ̄i for 2 ≤ i ≤ r deduced from
(4.10), there exists a family of vector fields τi = τ̄i modulo ∆⊥ such that

[
τi,τ j

]
= 0 for

1 ≤ i, j ≤ r, if and only if [τ̄i, τ̄ j] ∈ ∆⊥.

Remark 4.5 Any family of vector fields τ̄i for 1 ≤ i ≤ r given by (4.9)-(4.10) together with
the family of vector fields τ j for r+1 ≤ i ≤ n defined in P2 of Lemma 4.1, are independent
on X . Thus they provide a basis of the tangent fiber bundle TX of X .

With the deduced r independent vector fields τ̄i for 1 ≤ i ≤ r, we can then define the
following matrix:

Λ1 =
(
θ j(τ̄i)

)
1≤i, j≤r =

 θ1
...

θr

(τ̄1, · · · , τ̄r) =


0 · · · 0 1
... · · · 1 λ2,r

0 · · · λr−1,r−1 λr−1,r

1 · · · λr,r−1 λr,r


(4.12)

with λi, j = θi(τ̄ j) for 1 ≤ i, j ≤ r. Since it is invertible, we can define the following 1-forms: ω1
...

ωr

= Λ
−1
1 [θ1, · · · ,θr]

T (4.13)

A straightforward calculation shows that

ωr = θ1

ωr−k =

(
θk+1 −

n
∑

i=r−k+1
λk+1,iωi

)
for 1 ≤ k ≤ r−1

(4.14)

which are linear combination of the 1-forms θi for 1 ≤ i ≤ r. Then it is easy to verify that the
deduced 1-forms ωi for 1 ≤ i ≤ r have the following properties.
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Lemma 4.6 1) the annihilator of 1-forms ωk for 1 ≤ k ≤ r is equal to ∆⊥ defined in
(4.8);

2) the 1-forms ωk for 1 ≤ k ≤ r are well defined such that they are independent of the
choice of τ̄i modulo ∆⊥;

3) for 1 ≤ i,k ≤ r, ωk(τ̄i) = δ i
k where δ i

k represents the Kronecker delta, i.e. δ i
k = 1 if

k = i, otherwise δ i
k = 0.

The above lemma shows that, for any chosen solution of (4.9), the constructed family of
vector fields always yields the same 1-form ωk for 1 ≤ k ≤ r, which allows us to state the
following theorem.

Theorem 4.7 There exists a local diffeomorphism (ξ T ,ζ T )T = φ(x) on X which transforms
system (4.1)-(4.2) into the proposed normal form (4.7), if and only if the following conditions
are fulfilled:

1) there exists a family of vector fields τi = τ̄i modulo ∆⊥ such that [τi,τl] = 0 for 1≤ i≤ r
and 1 ≤ l ≤ r;

2)
[
τi,τ j

]
= 0 for 1 ≤ i ≤ r and r+1 ≤ j ≤ n where τ j was defined in P2 of Lemma 4.1;

3) [τi,gk] ∈ ∆⊥ for 1 ≤ i ≤ n, i ̸= r and 1 ≤ k ≤ m.

If the above conditions are fulfilled, then the diffeomorphism φ is locally determined by
its differential φ∗ := dφ = ω , i.e. φ(x) =

∫
γ

ω , where γ is any path on X with γ(0) = 0 and
γ(1) = x.

For any choice of τ̄1 satisfying (4.9) with the associated family of vector fields τ̄i for
2 ≤ i ≤ r, Theorem 4.7 needs to seek a new family of vector fields τi = τ̄i modulo ∆⊥ such
that [τi,τl] = 0 for 1 ≤ i ≤ r and 1 ≤ l ≤ r. Thanks to Lemma 4.4, we can remove at the
beginning all terms in the directions of the basis of ∆⊥ in τ̄1, noted as τ1. It is important to
emphasize that this elimination will yield a unique τ1 for any solution of (4.9). Then, we
can iteratively eliminate all terms in the directions of the basis of ∆⊥ in τ̄i, which gives the
following simple and constructive procedure to calculate τi for 1 ≤ i ≤ n:

Procedure 4.8 For the nonlinear system (4.1)-(4.2), the family of vector fields τi for 1≤ i≤ n
can be simply computed via the following steps:

Step 1: Compute the observability 1-forms θi for 1 ≤ i ≤ r;

Step 2: Determine ∆⊥ and seek a commutative basis {τr+1, · · · ,τn} that spans ∆⊥;

Step 3: Choose any solution τ̄1 of (4.9), then eliminate all its terms in the directions of
{τr+1, · · · ,τn} which yields τ1;

Step 4: Iteratively, for 2 ≤ i ≤ r, compute [τi−1, f ] in which eliminate all terms in the directions
of {τr+1, · · · ,τn} which gives τi.



32 Partial Observer Normal Form

The following example is to highlight Theorem 4.7 by following Procedure 4.8.

Example 4.9 Let us consider the following nonlinear system:
ẋ1 =−x2

3 + x3
1x3 − 1

2x3
3 + x5

2
ẋ2 = x1 − 1

2x2
3

ẋ3 =−x3 + x3
1 −

1
2x2

3
y = x2

(4.15)

Step 1:
A simple calculation gives rank

{
dh,dL f h,dL2

f h
}
= 2, thus r = 2, and one has θ1 = dx2 and

θ2 = dx1 − x3dx3, since dL2
f h = 5x4

2θ1.

Step 2:
Then one obtains ∆ = span{θ1,θ2}, and ∆⊥ = span

{
x3

∂

∂x1
+ ∂

∂x3

}
. Since τ3 should be a

commutative basis of ∆⊥, thus one has τ3 = x3
∂

∂x1
+ ∂

∂x3
.

Step 3:
By solving equation (4.9), one obtains τ̄1 = ∂

∂x1
+ q1(x)τ3. Following Procedure 4.8, by

eliminating all terms in τ̄1 in the direction of τ3, we have τ1 =
∂

∂x1
.

Step 4:
Then we can calculate: [τ1, f ] = ∂

∂x2
+3x2

1τ3. for which the elimination of all terms in the

direction of τ3 yields τ2 =
∂

∂x2
.

Finally Procedure 4.8 enables us to easily get the following vector fields: τ1 = ∂

∂x1
,

τ2 =
∂

∂x2
and τ3 = x3

∂

∂x1
+ ∂

∂x3
with which it is easy to check that all conditions of Theorem

4.7 are satisfied, thus there exists a diffeomorphism which can transform the studied example
into the proposed form (4.7).

For the deduction of the diffeomorphism, we use the obtained vector field τ = [τ1,τ2,τ3]
which gives:

Λ1 =

[
θ1
θ2

]
(τ1,τ2) =

(
0 1
1 0

)
thus one has (

ω1
ω2

)
= Λ

−1
1

(
θ1
θ2

)
=

(
dξ1
dξ2

)
= d

(
x1 − 1

2x2
3

x2

)
Then one can solve the following equation:

ω3

(
∂

∂x1
,

∂

∂x2
,

∂

∂x3
+ x3

∂

∂x1

)
= (0,0,1)
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which uniquely determines ω3 = dx3. Finally, one gets the following diffeomorphism φ (x) = x1 − 1
2x2

3
x2
x3

 which transforms the studied system (14.22) into the following form


ξ̇1 = 0
ξ̇2 = ξ1

ζ̇1 = ξ 3
1 −ξ3 +

ξ 2
3
2

(
3ξ 2

1 + 3
2ξ1ξ 2

3 + 1
4ξ 4

3 −1
)

y = ξ2

4.3 Diffeomorphism on the output

In the following, we will deal with the case when the conditions of Theorem 4.7 are not
fulfilled. Let us remark that the deduced diffeomorphism φ(x) in Section 4.2 does not modify
the output. This is due to the fact that θr(τ̄1) = 1. One way to relax this constraint is to seek
a new vector field, noted as σ̄1, such that θr(σ̄1) becomes a function of the output, and this
will introduce a diffeomorphism on the output. For that purpose, we need modify the new
vector field τ1 obtained in Section 4.2 by following Procedure 4.8 and construct a new family
of commutative vector fields, with which the deduced diffeomorphism φ(x) will apply as
well a change of coordinates on the output (see [103, 139, 24]). Since this diffeomorphism
will modify the output of the studied system (4.1)-(4.2), therefore the PONF (4.7) is adapted
as follows: 

ξ̇ = Aξ +β (y)+
m
∑

k=1
α1

k (y)uk

ζ̇ = η(ξ ,ζ )+
m
∑

k=1
α2

k (ξ ,ζ )uk

ȳ = ξr = ψ(y)

(4.16)

With the same procedure, we can calculate the observability 1-forms θi for 1 ≤ i ≤ r where r
is the rank of observability matrix, which defines the co-distribution ∆= span{θ1,θ2, · · · ,θr},
and the kernel (or the annihilator) of the co-distribution ∆, noted as ∆⊥.

By following Procedure 4.8 presented in Section 4.2, it is assumed that we have already
obtained a family of vector fields τ j for r+1 ≤ j ≤ n which are commutative basis of ∆⊥, and
τi for 1 ≤ i ≤ r which do not contain any component in the direction of τ j for r+1 ≤ j ≤ n.
In this section, it is assumed that there exist 1 ≤ i, l ≤ r such that [τi,τl] ̸= 0, thus Theorem
4.7 cannot be applied. In order to introduce a change of coordinate for the output, let s(y) ̸= 0
be a function of the output which will be determined later. Then one can define a new vector
field σ1 from τ1 as follows: σ̄1 = s(y)τ1. By induction, one can define the following new
vector fields σ̄i = [σ̄i−1, f ] modulo ∆⊥, for 2 ≤ i ≤ r. A straightforward calculation gives

σ̄i =
i

∑
k=1

(−1)i−k Ck−1
i−1 Li−k

f s(y)τk modulo ∆
⊥ (4.17)

where Ck−1
i−1 is the binomial coefficients and L0

f s(y) = s(y).
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For the same reason stated in Procedure 4.8, by eliminating all terms in the directions of
τ j for r+1 ≤ j ≤ n (the commutative basis of ∆⊥) we obtain:

σi =
i

∑
k=1

(−1)i−k Ck−1
i−1 Li−k

f s(y)τk, for 1 ≤ i ≤ r (4.18)

For the sake of completeness, we simply note

σ j = τ j, for r+1 ≤ j ≤ n (4.19)

where {τr+1, · · · ,τn} are commutative basis of ∆⊥, obtained by following Procedure 4.8
presented in Section 4.2.

We can then define the following matrix:

Λ̃1 =

 θ1
...
θr

(σ1, · · · ,σr) =


0 · · · 0 s(y)
... · · · s(y) ∗
0 · · · ∗ ∗

s(y) · · · ∗ ∗

 (4.20)

Since s(y) ̸= 0, thus it is invertible, and we can define the following 1-forms: ω̃1
...

ω̃r

= Λ̃
−1
1 [θ1, · · · ,θr]

T (4.21)

and using the same method in Section 4.2 we can uniquely determine ω̃i for r+1 ≤ i ≤ n by
solving the following equations:

ω̃i(σ j) = δ
j

i (4.22)

for 1 ≤ j ≤ n. Finally we have the following theorem.

Theorem 4.10 There exists a local diffeomorphism (ξ T ,ζ T )T = φ(x) on X which trans-
forms system (4.1)-(4.2) into the PONF (4.16) if and only if the following conditions are
fulfilled:

1) [σi,σl] = 0 for 1 ≤ i ≤ r and 1 ≤ l ≤ r where σi defined in (4.18);

2)
[
σi,σ j

]
= 0 for 1 ≤ i ≤ r and r+1 ≤ j ≤ n where σ j defined in (4.19);

3) [σi,gk] ∈ ∆⊥ for 1 ≤ i ≤ n, i ̸= r and 1 ≤ k ≤ m.

If the above conditions are fulfilled, then the diffeomorphism φ is locally determined
by its differential φ∗ := dφ = ω̃ , i.e. φ(x) =

∫
γ

ω̃ , where γ is any path on X with γ(0) = 0
and γ(1) = x. Moreover, one has ξr = ȳ = ψ(y) where ψ(y) =

∫ y
0

1
s(c)dc is a change of

coordinates on the output.
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Example 4.11 Let us consider the well-known SIR (Susceptible, Infected, Removed) epi-
demic model describing the contagious disease propagation [60] as follows:

Ṡ =−βSI
İ = βSI − γI
Ṙ = γI
y = I

where S denotes the suspected population, I denotes the infected and R denotes the removed
population and the total population.

By using the same notations introduced in Section 4.2, a simple calculation gives θ1 = dI
and θ2 = β IdS+(βS− γ)dI, and we have ∆ = span{dI,β IdS+(βS− γ)dI} which gives
∆⊥ = span{ ∂

∂R}.

Calculation of τ̄:
Following the procedure proposed in [102], we obtain the following vector fields: τ̄1 =
1

β I
∂

∂S +q1
∂

∂R and τ̄2 = [τ̄1, f ] = ∂

∂ I +
βS−γ−β I

β I
∂

∂S +q2
∂

∂R , with q1(S, I,R) is any function and
q2 =−L f q1, which gives [τ̄1, τ̄2] ̸= 0. Therefore the conditions stated in [88] are not fulfilled.

Calculation of τ:
Applying Procedure 4.8 proposed in Section 4.2, we obtain the following new vector fields:
τ1 =

1
β I

∂

∂S , τ2 =
∂

∂ I +
βS−γ−β I

β I
∂

∂S , and τ3 =
∂

∂R . It is obvious that [τ1,τ2] ̸= 0, which implies
that the conditions of Theorem 4.7 are not fulfilled.

Calculation of σ :
In order to construct a new family of commutative vector fields by introducing a change
of coordinates on the output, the method proposed in [25] is used to deduce a non-zero
output function s(y). For this, set σ1 = s(y)τ1. According to (4.18) one has σ2 = s(y)τ2 −
s′(y)(βSI − γI)τ1. A straightforward calculation gives [σ1,σ2] =

(
2s2(y)

I −2s(y)s
′
(y)
)

τ1,
thus [σ1,σ2] = 0 if and only if the function s(y) fulfills the following differential equation:
s(y)

y − ds(y)
dy = 0, which motivates us to choose s(y) = y = I. Then one has σ1 =

1
β

∂

∂S , σ2 =

−I ∂

∂S + I ∂

∂ I , and σ3 =
∂

∂R , with which one has [σ1,σ2] = [σ1,σ3] = [σ2,σ3] = 0, thus the
first two conditions of Theorem 4.10 are satisfied. As the SIR model does not contain any
input, then the third condition of Theorem 4.10 does not need to be verified.

Since

Λ̃1 =

[
θ1
θ2

]
(σ1,σ2) =

(
0 I
I −β I2 +(−γ +Sβ ) I

)
which yields (

ω̃1
ω̃2

)
= Λ̃

−1
(

θ1
θ2

)
=

(
dξ1
dξ2

)
= d

(
β (S+ I)

ln I

)
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Following (4.22), one can solve the following equation:

ω̃3 (σ1,σ2,σ3) = ω̃3

(
1
β

∂

∂S
,−I

∂

∂S
+ I

∂

∂ I
,

∂

∂R

)
= (0,0,1)

which uniquely determines ω̃3 = dR. Therefore, the local diffeomorphism is given as follows
φ (x) = [β (S+ I), ln I,R]T , which transforms the SIR model into the following form:

ξ̇1 =−βγeȳ

ξ̇2 = ξ1 −βeȳ − γ

ζ̇1 = γeȳ

ȳ =Cφ = ln I

4.4 Conclusion
The result presented in this chapter concerns the partial observability for a class of nonlinear
systems. Necessary and sufficient conditions are established to guarantee the existence of a
local diffeomorphism transforming the studied systems into the proposed partial observer
normal form with and without a change of coordinates on the output. The introduction of
a change of coordinates on the output is for the purpose of relaxing the restriction of the
commutativity of Lie bracket condition. For the transformed system, a simple Luenberger
observer can be designed to estimate the part of observable states.



Chapter 5

Finite-Time Observer Design

As presented in the previous chapters, besides the traditional methods to design observers
directly for the studied systems, the technique of normal form seeks a transformation to
convert the studied system into a simple form for which the classical observer design
approaches, such as Luenberger observer, can be realized easily. Sometimes, the well-chosen
desired normal form enables us to design not only asymptotical observer, but also finite-time
one. Here, for the output depending normal form, we will show how to extend the global
finite-time observer, proposed in [122] for the normal form of Krener and Isidori, to design
a global finite-time observer for the general output depending form. Sufficient condition
will be given to guarantee the existence of such a global observer. The presented result was
published in [C11].

5.1 Notations and problem statement

Consider the following nonlinear system:{
ẋ = f (x)+b(x)u
y = h(x)

(5.1)

where x ∈ Rn is the state vector, u ∈ Rm represents the smooth input, y ∈ R is the output,
f (x) : Rn →Rn, b(x) : Rn →Rn×m and h(x) : Rn →R are smooth. It is supposed that the pair
(h, f ) satisfies the observability rank condition, i.e. rank{dLi−1

f h,1 ≤ i ≤ n}= n. Therefore,
system (5.1) with u = 0 is locally observable. It is assumed as well that system (5.1) can
be transformed via a smooth diffeomorphism z = φ(x) into the following output depending
normal form: {

ż = A(y)z+β (y)+g(z)u
y =Cz

(5.2)
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where z ∈ Rn, u ∈ Rm, y ∈ R, A(y) ∈ Rn×n is of the Brunovsky form:

A(y) =


0 a1(y) · · · 0 0
...

... . . . ...
...

0 0 · · · 0 an−1(y)
0 0 · · · 0 0

 (5.3)

with ai(y) ̸= 0, C = (1,0, · · · ,0) and g(z) ∈ Rn×m is of the following triangular form:

g(z) =
[
gT

1 (z1),g
T
2 (z2), · · · ,g

T
i (zi), · · · ,g

T
n (zn)

]T
(5.4)

where gi = [gi,1, · · · ,gi,m] for 1 ≤ i ≤ n and zi means the vector (z1, · · · ,zi).
It is worth noting that the above output depending normal form is more general than

the normal form with output injection proposed in [103, 164] and [139] where A(y) is the
product of a scalar function of y and the classical Brunovsky form. Asymptotical observer for
the normal form (5.2) has been studied in [32] and [17], but no result on finite-time observer
has been reported.

5.2 Assumptions, notations and preliminary result
Due to the physical constraint, the control and the state values of the practical systems are
normally bounded. Therefore, in what follows, we make the following standard (see [71, 58]
for example) assumption in the estimation theory on the boundedness of the state under a
given bounded input for system (5.1).

Assumption 5.1 For the studied system (5.1), it is assumed that the state x is bounded under
a given bounded input u, i.e. there exists a positive constant u0 with ||u||∞ ≤ u0, such that
x ∈ X ⊂ Rn under this u where X is a given nonempty compact set.

Assumption 5.1 requires that the state x of system (5.1) is bounded under a given bounded
input u, i.e. x ∈ X . Since it is assumed that system (5.1) can be transformed via a smooth
diffeomorphism z = φ(x) : X → Z into the output depending normal form (5.2), therefore
the state z and the output y of (5.2) are both bounded as well, i.e. z ∈Z ⊂Rn and y ∈Y ⊂R
where Z and Y are two corresponding nonempty compact sets. With the above boundedness
assumption, we have the following results for the transformed system (5.2).

Lemma 5.2 Suppose that system (5.1) can be transformed via a smooth diffeomorphism
z = φ(x) into the output depending normal form (5.2). If Assumption 5.1 is satisfied, for
any ai(y) ̸= 0 of system (5.2) with y ∈ Y , there always exist positive constants ai > 0,
ai > 0 and σi > 0 for 1 ≤ i ≤ n − 1 such that 0 < ai <| ai(y) |< ai < ∞, ∀y ∈ Y and
|dai(y(t))

dt |< σi < ∞, ∀y ∈ Y .

Lemma 5.3 Suppose that system (5.1) can be transformed via a smooth diffeomorphism
z = φ(x) into the output depending normal form (5.2). Then, g(z) of system (5.2) is locally
Lipschitz on Z .
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When designing a global observer for nonlinear systems, normally the global Lipschitz
property is required, see for example [122], which however is quite restrictive and difficult to
be satisfied for many systems. The above Lemma 5.3 only showed that g(z) of system (5.2) is
locally Lipschitz on Z . However, as explained in [58], under Assumption 5.1 we can extend
the local nonlinearity of g(z) to the whole space Rn. The idea is to define a smooth bounded
saturation function σ : Rn → Z which coincides with z on Z , such that σ(z) = z for all
z ∈ Z , then we can define an extended function ḡ(z) of g(z) as follows: ḡ(z) = g(σ(z)).
By the construction, it is obvious that ḡ(z) is globally Lipschitz with respect to z on Rn but
bounded for all z ∈ Z . With this extension, system (5.2) can be embedded into the following
dynamics: {

ż = A(y)z+β (y)+ ḡ(z)u
y =Cz

(5.5)

where ḡ(z) ∈ Rn×m is of the following triangular form: ḡ(z) =
[
ḡT

1 (z1), · · · , ḡT
n (zn)

]T with
ḡi = [ḡi,1, · · · , ḡi,m] for 1 ≤ i ≤ n.

Since system (5.5) is equivalent to system (5.2) when z ∈ Z under the same input u,
hence there is no difference that we consider system (5.5) instead of system (5.2) for the
observer design [58]. Therefore, in what follows, we will synthesize a global finite-time
observer for system (5.5) in the next section.

For the sake of simplicity and without loss of generality, let us note the Lipschitzian
constant for ḡi(zi) of system (5.5) with 1 ≤ i ≤ n as l on Rn, and define a = min1≤i≤n{ai}
and a = max1≤i≤n{ai}.

Denote

A0 =


0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 0 1
0 0 · · · 0 0

 (5.6)

and
Γ(y,θ) = diag{γ1, · · · ,γn} (5.7)

where
γ1 = 1

γi =

i−1
Π
j=1

a j(y)

θ i−1 , for 2 ≤ i ≤ n
(5.8)

with positive constant θ which will be determined in the next section. Since ai(y) ̸= 0 and
bounded for all y ∈ Y , then Γ(y,θ) is always invertible and bounded. Define

Λ(y, ẏ,θ) = Γ̇(y,θ)Γ−1(y,θ) (5.9)

where Γ̇(y,θ) = dΓ(y,θ)
dt = dy

dt
∂Γ(y,θ)

∂y .

Lemma 5.4 If Assumption 5.1 is satisfied, then Λ(y, ẏ,θ) defined in (5.9) is bounded for all
y ∈ Y , and there always exists a positive constant λ̄ such that each element of Λ(y, ẏ,θ)
satisfies the following inequality: |Λi, j(y, ẏ,θ)|< λ̄ <∞, ∀y∈Y for 1≤ i≤ n and 1≤ j ≤ n.
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Then, let S∞(θ) be the solution of the following equation:

0 = θS∞(θ)+AT
0 S∞(θ)+S∞(θ)A0 −CTC (5.10)

with A0 defined in (5.6). Because of the structure of A0 and C, i.e. the pair (A0,C) is
observable, it has been proven that there exists a unique symmetric positive definite solution
S∞(θ) to the above algebraic matrix equation [16]. Then it can be shown that S∞(θ) = ST

∞(θ)

with the (i, j)th entry as S∞(θ)i, j =
S∞(1)i, j
θ i+ j−1 for 1 ≤ i ≤ n and 1 ≤ j ≤ n, where S∞(1)i, j =

(−1)i+ j (i+ j−2)!
(i−1)!( j−1)! .

5.3 Main result

5.3.1 Finite time observer
Let us firstly recall the following theorems.

Theorem 5.5 [149] Suppose there is a Lyapunov function V (x) defined on a neighborhood
U ⊂Rn of the origin, and dV (x)

dt ≤−pV (x)β +kV (x),∀x ∈U \{0} with β ∈ (0,1), p,k > 0,
then the origin is finite-time stable. The set Ω = {x |V (x)1−β < p

k }∩U is contained in the

domain of attraction of the origin. The settling time satisfies T (x0)≤
ln(1− k

pV (x0)
1−β )

k(β−1) ,∀x0 ∈Ω.

Theorem 5.6 [77] If a system is globally asymptotically stable and finite-time attractive on
a neighborhood of the origin, then it is globally finite-time stable.

The above theorems show a way to prove the global finite-time stability. Now let us recall
that, for system (5.5) with β (y) = 0 and A(y) = A0, i.e. ai(y) = 1 for all 1 ≤ i ≤ n−1, [122]
has already proved that it admits the following global finite-time high-gain observer:

˙̂z1 = ẑ2 + k1 (⌈e1⌋α1 +ρe1)+
m
∑
j=1

ḡ1, j(ẑ1)u j

˙̂z2 = ẑ3 + k2 (⌈e1⌋α2 +ρe1)+
m
∑
j=1

ḡ2, j(ẑ2)u j

...

˙̂zn−1 = ẑn + kn−1 (⌈e1⌋αn−1 +ρe1)+
m
∑
j=1

ḡn−1, j(ẑn−1)u j

˙̂zn = kn (⌈e1⌋αn +ρe1)+
m
∑
j=1

ḡn, j(ẑn)u j

(5.11)

with e1 = y−Cẑ and ⌈e1⌋αi =| e1 |αi sign(e1) where αi are defined as those in [132]: αi =
iα − (i− 1) for 1 ≤ i ≤ n and α ∈ (1− 1

n ,1) for α close to 1. The gains in (5.11) are
determined by:

K = [k1, · · · ,kn]
T = S−1

∞ (θ)CT (5.12)
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Inspired by the above result, for the system (5.5) with a general A(y) defined in (5.3) and
K defined in (5.12), one can define the following gain depending on the output:

L(y,θ) = [L1(y,θ), · · · ,Ln(y,θ)]T = Γ
−1(y,θ)K (5.13)

based on which we can propose the following observer dynamics:

˙̂z1 = a1(y)ẑ2 +β1(y)+L1(y,θ)(⌈e1⌋α1 +ρe1)+
m
∑
j=1

ḡ1, j(ẑ1)u j

˙̂z2 = a2(y)ẑ3 +β2(y)+L2(y,θ)(⌈e1⌋α2 +ρe1)+
m
∑
j=1

ḡ2, j(ẑ2)u j

...

˙̂zn−1 = an−1(y)ẑn +βn−1(y)+
m
∑
j=1

ḡn−1, j(ẑn−1)u j +Ln−1(y,θ)(⌈e1⌋αn−1 +ρe1)

˙̂zn = βn(y)+Ln(y,θ)(⌈e1⌋αn +ρe1)+
m
∑
j=1

ḡn, j(ẑn)u j

(5.14)
where θ and ρ are both positive constants.

5.3.2 Change of coordinates

For the proposed observer described in (5.14), denote e = z− ẑ, then the observation error is
governed by the following system:

ė = (A(y)−ρΓ−1(y,θ)S−1
∞ (θ)CTC)e−L (L,e)+G (z, ẑ,u) (5.15)

with G (z, ẑ,u) = (ḡ(z)− ḡ(ẑ))u and

L (L,e) = [L1(y,θ)⌈e1⌋α1, · · · ,Ln(y,θ)⌈e1⌋αn]T (5.16)

The stability analysis directly for (5.15) is complicated since the matrix in the linear term
is not constant. In order to facilitate the analysis, let us introduce the following change
of coordinates: ε = Γ(y,θ)e where Γ(y,θ) is defined in (5.7) which is always invertible
and bounded for all y ∈ Y . From the above equation, we have e1 = ε1, then we obtain:
L (L,e) = L (L,ε) and

ε̇ = Γ(y,θ)
[
(A(y)−ρΓ−1(y,θ)S−1

∞ (θ)CTC)
]

e
−Γ(y,θ)L (L,e)+Γ(y,θ)G (z, ẑ,u)+ Γ̇(y, ẏ,θ)e

= Γ(y,θ)
[
A(y)−ρΓ−1(y,θ)S−1

∞ (θ)CTC
]

Γ−1(y,θ)ε
−Γ(y,θ)L (L,ε)+Γ(y,θ)G (z, ẑ,u)+Λ(y, ẏ,θ)ε

(5.17)

where is Λ(y, ẏ,θ) is given by (5.9).
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Since Γ(y,θ)A(y)Γ−1(y,θ) = θA0 and CΓ−1(y,θ) =C, one has

ε̇ =
[
θA0 −ρS−1

∞ (θ)CTC
]

ε −Γ(y,θ)L (L,ε)+Γ(y,θ)G (z, ẑ,u)+Λ(y, ẏ,θ)ε
(5.18)

Since ε = Γ(y,θ)e with Γ(y,θ) being always invertible and bounded, then the finite-time
convergence of e to zero is equivalent to the finite-time convergence of ε to zero. In what
follows, instead of proving the global finite-time convergence of e to zero, we will prove the
global finite-time stability of the observation error dynamics described by (5.18).

5.3.3 Finite-time convergence
According to Theorem 5.6, we are going to prove the global finite-time convergence of the
proposed observer (5.14) in two steps. More precisely, we will firstly prove that (5.18) is
globally asymptotically stable on Rn\U 1 and then show that it is locally finite-time stable in
U2, where U1 and U2 are two neighborhoods of the origin. Finally, the global finite-time
convergence can be achieved by proving that U1 ⊂ U2.

For this, let us define
U1 = {ε : ||ε||2S∞(θ)

≤ 1} (5.19)

as the ball centered at the origin with the radius equal to 1, then we can state the following
lemma.

Lemma 5.7 If Assumption 5.1 is satisfied, then there exist positive constants 0 < θ1 < ∞

and ρ1 = θ1/2, such that for all θ > θ1 and ρ > ρ1 the observation error system (5.18) is
globally asymptotically stable on Rn\U 1.

Lemma 5.8 If Assumption 5.1 is satisfied, then there exist positive constants 0 < ε < 1,
1 < θ2 < ∞ and a neighborhood of the origin U2, such that for all α ∈ (1−ε,1) and θ > θ2
the observation error system (5.18) is locally finite-time stable on U2.

Theorem 5.9 If Assumption 5.1 is satisfied, then there exist positive constants 0 < ε < 1,
0 < θ̄ < ∞ and 0 < ρ̄ < ∞ such that for all θ > θ̄ , ρ > ρ̄ and α ∈ (1−ε,1) system (5.14) is
a global finite-time observer for (5.5).

5.4 Example
Let us consider the following example:

ẋ1 = exp(x2)(x3 + x2
2)− exp(−x2)(x1 + x2)+ sin(x1 + x2)u−u

ẋ2 = exp(−x2)(x1 + x2)+u
ẋ3 = −2x2 exp(−x2)(x1 + x2)+ sin(x1 +2x2 + x2

2 + x3)u−2x2u
y = x2

(5.20)

where the input is chosen as u = 2cos(5t)− 5 in order to satisfy Assumption 5.1 and the
boundedness of state is X = [0,7]× [−1,1]× [−1,4] (verified via Fig. 5.2 - Fig. 5.4).
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Following the procedure presented in [173], one obtains the following diffeomorphism:

z = φ(x) =
(

x2,x1 + x2,x2
2 + x3

)T
which transforms (5.20) into the following normal form:


ż1 = exp(−y)z2 +u
ż2 = exp(y)z3 + sin(z2)u
ż3 = sin(z1 + z2 + z3)u
y = z1

(5.21)

Since g(z) = [1,sin(z2),sin(z1+ z2+ z3)]
T in (5.21) is already global Lipschitz, therefore

no extension is needed, or we can simply set ḡ(z) = g(z) in (5.5). Since Assumption 5.1
is satisfied, thus one can follow the proposed result stated in Theorem 5.9 and design the
following finite-time observer:

˙̂z1 = exp(−y)ẑ2 +u+L1(y)(⌈e1⌋α +ρe1)
˙̂z2 = exp(y)ẑ3 + sin(ẑ2)u+L2(y)

(
⌈e1⌋2α−1 +ρe1

)
˙̂z3 = sin(ẑ1 + ẑ2 + ẑ3)u+L3(y)

(
⌈e1⌋3α−2 +ρe1

) (5.22)

where e1 = ẑ1 − z1. Since

S∞(θ) =


1
θ

− 1
θ 2

1
θ 3

− 1
θ 2

2
θ 3 − 3

θ 4
1

θ 3 − 3
θ 4

6
θ 5

 (5.23)

which yields K = [3θ ,3θ 2,θ 3]T , thus we obtain L(y,θ) = [3θ ,3θ 3 exp(y),θ 5]T . For the
simulation settings, we choose θ = 3, α = 0.8, ρ = θ/2+10θ 2/3.

After having estimated zi of (5.21) for 1 ≤ i ≤ 3 via the observer (5.22), we can apply the

inverse of the deduced diffeomorphism: x̂ = φ−1(ẑ) =
(

ẑ2 − ẑ1, ẑ1, ẑ3 − ẑ2
2

)T
to estimate

the original state x of (5.20). The corresponding simulation results are depicted in Fig.
5.1-Fig. 5.4 with a noisy measurement (random noise in [−0.03,0.03]) of the output.

5.5 Conclusion
Asymptotical and finite-time observers have been widely studied for the some well-known
forms, such as output injection and triangular form. Concerning the more general form
like output depending one, it is not so trivial to design a finite-time observer. For this, we
investigated the global finite-time observer design problem for a special class of nonlinear
systems, which can be transformed into an output depending triangular normal form. By
imposing some assumptions, a global finite-time observer is proposed by adapting the result
in [122]. Two parameters (θ and ρ) are used to tune the convergence time for the proposed
observer.
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Fig. 5.1 The bounded output and the measurement with noise.
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Fig. 5.2 x1 and its estimation x̂1 with the initial conditions x1(0) = 1 and x̂1(0) = 0.
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Fig. 5.3 x2 and its estimation x̂2 with the initial conditions x2(0) = 1 and x̂2(0) = 0.
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Fig. 5.4 x3 and its estimation x̂3 with the initial conditions x3(0) = 1 and x̂3(0) = 0.





Chapter 6

Interval Observer Design

Concerning nonlinear uncertain systems containing unknown parameters, despite of the exis-
tence of many solutions for observer design, a design of state estimator is rather complicated
since the system is intrinsically nonlinear and it has uncertain terms in the state and in the
output equations. Therefore, the whole system may be even not observable, which means
that an exact estimation is not possible. Under this situation, we can relax the estimation goal
to make an evaluation of the interval of admissible values for the state applying the theory of
set-membership or interval estimation. The following recalls our recent results published in
[J3, C18] on interval observer design for general uncertain nonlinear systems.

6.1 Notations and problem statement
Suppose that the unknown (may be time-varying) parameters θ belong to a compact set
Θ ⊂ Rp, then the plant dynamics under consideration is given by{

ẋ = f (x)+B(x,θ)u+δ f (x,θ),
y = h(x)+δh(x,θ),

(6.1)

where x belongs to an open subset Ω of Rn (it is assumed that 0 ∈ Ω) and the initial state
value belongs to a compact set I0(x0) = [x0,x0]; y ∈ R and u ∈ Rm represent respectively the
output and the input. The vector fields f and h are smooth, and δ f , δh and B are assumed to
be locally Lipschitz continuous.

In our study, the studied system (6.1) is not assumed to be observable. Moreover, due to
the unknown parameters, the exact estimation of state is impossible for such a system. Under
this situation, the goal is to present a method to obtain an interval estimation.

For the state x, the basic idea of interval observer is to provide the upper and lower
estimations of the state, noted as x and x respectively, and satisfying x ≤ x ≤ x in the element-
wise sense. In other words, we want to design observers which give us two dynamics ė and ė
with e = x− x and e = x− x, such that both e and e are always positive. In this sense, the
interval observer is linked to the following concept of positive system:

Corollary 6.1 [153] Assume that A is a Metzler matrix and b(t) ∈ Rn
+,∀t ≥ t0, where t0

represents the initial time, then the following system

dx(t)
dt

= Ax+b(t), (6.2)
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possesses, for every x(t0) ∈ Rn
+, a unique solution x(t) for all t ≥ t0. Moreover, for any

x(t0) ∈ Rn
+, the inequality x(t)≥ 0 holds for every t ≥ t0.

In other words, under conditions of Corollary 6.1, Rn
+ is positively invariant w.r.t (6.2). The

result of our work is in spirit of the above corollary.

6.2 Canonical form

For the studied system (6.1), one obtains the nominal drift-system by setting u = 0, δ f = 0,
δh = 0 in (6.1): {

ẋ = f (x),
y = h(x).

(6.3)

Here, it is assumed that the nominal system (6.3) satisfies the observability rank condition,
i.e. the following map:

Φ(6.3) =
(

h(x),L f h(x), . . . ,Ln−1
f h(x)

)T
(6.4)

is a change of coordinates. With this diffeomorphism ζ = Φ(6.3)(x), it follows that, system
(6.3) can be rewritten as: {

ζ̇ = Ãζ + b̃ϕ(ζ ),

y = C̃ζ ,
(6.5)

where

Ã =


0 1 0

. . . . . .
. . . 1

0 0

 , b̃ =


0

0
1

 , C̃ = (1,0, . . . ,0,) , ϕ(ζ ) = Ln
f h(x) (6.6)

The forthcoming analysis is based on this canonical form. We will not even assume that
(6.1) is observable, but need only the observability for the nominal system (6.3).

Assumption 6.2 The nominal system (6.3) is observable and f (0) = 0, h(0) = 0 in (6.3).

It is obvious that, with the diffeomorphism Φ(6.3)(x), system (6.1) can be transformed into
the following one: {

ζ̇ = Ãζ + F̃(ζ ,θ)+ G̃(ζ ,θ)u,
y = C̃ζ + H̃(ζ ,θ),

(6.7)
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where

G̃(ζ ,θ) =
(
G̃1(x,θ), . . . , G̃n(x,θ)

)T
x=Φ

−1
(6.3)(ζ )

,

G̃i(x,θ) = LB(x,θ)L
i−1
f (x)h(x), i = 1 . . .n,

F̃(ζ ,θ) =
(
F̃1(x,θ), . . . , F̃n−1(x,θ)

)T
x=Φ

−1
(6.3)(ζ )

+ b̃ϕ(ζ ),

F̃i(x,θ) = Lδ f (x,θ)L
i−1
f (x)h(x), i = 1 . . .n,

H̃(ζ ,θ) = δh(x,θ)|x=Φ
−1
(6.3)(ζ )

.

Then we have the following fact.

Claim 6.3 Under Assumption 6.2, there exist a matrix L̃ and an invertible matrix P such
that the matrix Ã − L̃C̃ is similar to a Metzler matrix A − LC, which means A − LC =
P(Ã− L̃C̃)P−1.

The conditions of the existence of such a transformation matrix P can be found in [137],
they are related with solution of a Sylvester equation. By Assumption 6.2 the pair (Ã,C̃) is
observable, then there always exists a matrix L̃ such that the claim is satisfied [137].

Introducing the new coordinates z = Pζ we arrive at the desired representation of system
(6.1): {

ż = Az+F(z,θ)+G(z,θ)u,
y =Cz+H(z,θ),

(6.8)

where the matrices A, C are given in Claim 6.3, and H(z,θ) = H̃(P−1z,θ), F(z,θ) =
PF̃(P−1z,θ), G(z,θ) = PG̃(P−1z,θ).

Remark 6.4 Since the origin of (6.3) is assumed to be an equilibrium and Φ(6.3) is a diffeo-
morphism with Φ(6.3)(0) = 0, thus the origin is also an equilibrium for the both transformed
systems in coordinates ζ and z for F = 0 and u = 0. By construction, F, H and G are locally
Lipschitz continuous.

Let us remind that, since the initial condition x0 for (6.1) is only known within a certain
interval I(x0) = [x0,x0], then using the diffeomorphism Φ(6.3)(x), the initial condition z0 =
PΦ(6.3)(x0) is also known within a certain interval I(z0) = [z0,z0]. Thus our original problem
turns out to a dynamical system with the input (u,y) and the outputs z(t) and z(t) such that
for all t ≥ 0 we have z(t)≤ z(t)≤ z(t).

6.3 Bounding functions
Since Θ is a compact set and by continuity of F(z,θ),H(z,θ) and G(z,θ) (the functions
δ f (x,θ),B(x,θ) and δh(x,θ) were assumed to be continuous and Φ(6.3) given by (6.4) is a
diffeomorphism), the element-wise minimum and maximum of F(z,θ),H(z,θ) and G(z,θ)u
(for a given u) in the domain θ ∈ Θ, z ≤ z ≤ z exist. In order to built the observers, we need
a more precise knowledge on these max and min functions.
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For a matrix A ∈ Rn×n, define A + = max{0,A }1 and A − = A +−A . For a vector
x ∈ Rn, define x+ = max{0,x} and x− = x+− x. Then, let us firstly recall the following
lemma.

Lemma 6.5 [53] Let A ∈ Rn×n, by the definition A = A +−A − and for any [z,z]⊂ Rn

and z ∈ Rn, if z ≤ z ≤ z, then A +z−A −z ≤ A z ≤ A +z−A −z.

Lemma 6.6 Let x,x,x ∈ Rn and A ,A ,A ∈ Rn×m, then

x ≤ x ≤ x ⇐⇒ x+ ≤ x+ ≤ x+, x− ≤ x− ≤ x−;

A ≤ A ≤ A ⇐⇒ A + ≤ A + ≤ A
+
, A

− ≤ A − ≤ A −.

Lemma 6.7 [53] Let A ≤ A ≤ A for some A , A , A ∈ Rn×n and x ≤ x ≤ x for x, x,
x ∈ Rn, then

A +x+−A
+

x−−A −x++A
−

x− ≤ A x (6.9)

≤ A
+

x+−A +x−−A
−

x++A −x−.

To apply these lemmas, we have to introduce the following standard (see [71], for
example) assumption in the estimation theory on the boundedness of the state x and the input
u values for system (6.1).

Assumption 6.8 For system (6.1), it is assumed that x(t) ∈ X and u(t) ∈ U for all t ≥ 0,
where X ⊂ Ω and U ⊂ Rm are two given compacts.

Under this assumption, since ζ = Φ(6.3)(x) defined by (6.4) is a diffeomorphism and due
to the fact that z = Pζ , thus there exists a compact set Z ⊂ Rn such that z(t) ∈ Z for all
t ≥ 0.

In [137] it has been assumed that uncertain terms in the system equations admit known
upper and lower bounding functions. In our work we are going to prove that these functional
bounds exist and satisfy some useful properties.

Lemma 6.9 There exist two functions F ,F : R2n →Rn such that, for all θ ∈ Θ and z ≤ z ≤ z
with z ∈ Z , the following inequalities hold:

F(z,z)≤ F(z,θ)≤ F(z,z), (6.10)

and for a given submultiplicative norm ∥ · ∥ we have:

∥F(z,z)−F(z,θ)∥ ≤ lF∥z− z∥+ lF∥z− z∥+ lF ,

∥F(z,z)−F(z,θ)∥ ≤ lF∥z− z∥+ lF∥z− z∥+ lF ,

for some positive constants lF , lF , lF , lF , lF and lF .
1The max{·} operation is applied element-wise.
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Remark 6.10 Lemma 6.9 shows that the difference of functions F ,F and F has a linear
growth with respect to the interval width estimates z− z and z− z.

Remark 6.11 It is clear that the positive constants lF , lF , lF , lF , lF and lF depend on the
choice of P. Due to the fact that F(z,θ) = PF̃(P−1z,θ), then we have F(z,z)≤ F(z,θ)≤
F(z,z) where F = P+F̃ −P−F̃ and F = P+F̃ −P−F̃. The above relations imply that the
result of Lemma 6.9 is equivalent to the following one:

∥F(z,z)−F(z,θ)∥ ≤ ∥P∥∥P−1∥
[
lF̃∥z− z∥+ lF̃∥z− z∥+ lF̃

]
,

∥F(z,z)−F(z,θ)∥ ≤ ∥P∥∥P−1∥
[
lF̃∥z− z∥+ lF̃∥z− z∥+ lF̃

]
,

for some positive constants lF̃ , lF̃ , lF̃ , lF̃ , lF̃ and lF̃ , which are independent of P.

Remark 6.12 Note that the values of constants lF , lF , lF , lF , lF , lF and functions F, F are
the theoretically maximal bounds. The goal of the lemma is just to show that the bounds exist
and to provide some approximate outer estimates for them. For the concrete applications,
more accurate values may be computed.

Using the same arguments, a similar result can be established for H, i.e. there exist two
functions H,H : R2n → Rn such that, for all θ ∈ Θ and z ≤ z ≤ z with z ∈ Z , the following
inequality holds:

H(z,z)≤ H(z,θ)≤ H(z,z), (6.11)

and for a given submultiplicative norm ∥ · ∥ we have

∥H(z,z)−H(z,θ)∥ ≤ lH∥z− z∥+ lH∥z− z∥+ lH ,

∥H(z,z)−H(z,θ)∥ ≤ lH∥z− z∥+ lH∥z− z∥+ lH ,

for some positive constants lH , lH , lH , lH , lH and lH .
Similar relations for the term G can be also derived using Lemma 6.9, i.e. there exist two

functions G,G : R2n+m → Rn such that the following inequality holds for all u ∈ U , θ ∈ Θ

and z ≤ z ≤ z:
Gi(z,z,ui)≤ uiGi(z,θ)≤ Gi(z,z,ui) (6.12)

for all 0 ≤ i ≤ m, and for a given submultiplicative norm ∥ · ∥ we have

∥Gi(z,z,ui)−Gi(z,θ)ui∥ ≤ |ui|(lG∥z− z∥+ lG∥z− z∥+ lG),

∥Gi(z,z,ui)−Gi(z,θ)ui∥ ≤ |ui|(lG∥z− z∥+ lG∥z− z∥+ lG),

for some positive constants lG, lG, lG, lG, lG and lG.
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6.4 Main result
Let z, z be the estimates of the transformed state z, whose dynamics constitute the interval
observer as follows:

ż = Az+G(z,z,u)+F(z,z)+L(y−Cz)+L+H(z,z)−L−H(z,z),
ż = Az+G(z,z,u)+F(z,z)+L(y−Cz)+L+H(z,z)−L−H(z,z),

where the observer gain L= (l1, . . . , ln)T has to be designed. Defining the upper error e= z−z
and the lower error e = z− z, their dynamics read as:

de
dt

= (A−LC)e+∆(z,z,z,θ ,u,L),

de
dt

= (A−LC)e+∆(z,z,z,θ ,u,L), (6.13)

where ∆(z,z,z,θ ,u,L) is the sum of the following terms:

∆G(z,z,z,θ ,u) = G(z,z,u)−G(z,θ)u, ∆F(z,z,z,θ) = F(z,z)−F(z,θ),

∆LH(z,z,z,θ ,L) = L+H(z,z)−L−H(z,z)+LH(z,θ),

and ∆(z,z,z,θ ,u,L) is the sum of

∆G(z,z,z,θ ,u) = G(z,θ)u−G(z,z,u), ∆F(z,z,z,θ) = F(z,θ)−F(z,z),
∆LH(z,z,z,θ ,L) = −LH(z,θ)−L+H(z,z)+L−H(z,z)).

Corollary 6.13 For all z ∈ Z , u ∈ U and θ ∈ Θ there exist positive constants l∆, l∆, l
∆

, l
∆

,
l
∆

, l∆ such that for a chosen submultiplicative norm ∥ · ∥

∥∆(·,L)∥ ≤ [l
∆
∥z− z∥+ l

∆
∥z− z∥+ l

∆
](1+∥L∥),

∥∆(·,L)∥ ≤ [l∆∥z− z∥+ l∆∥z− z∥+ l∆](1+∥L∥).

Remark 6.14 As it has been explained in Remark 6.11, the result of Corollary 6.13 can be
stated as well for some positive constants independent of P, i.e. there exist l

∆̃
, l

∆̃
, l

∆̃
, l

∆̃
, l

∆̃
,

l
∆̃

, independent of P, such that

∥∆(·,L)∥ ≤ [l
∆̃
∥z− z∥+ l

∆̃
∥z− z∥+ l

∆̃
](1+∥L∥)∥P∥∥P−1∥,

∥∆(·,L)∥ ≤ [l
∆̃
∥z− z∥+ l

∆̃
∥z− z∥+ l

∆̃
](1+∥L∥)∥P∥∥P−1∥.

Lemma 6.15 Assume that Assumptions 6.2 and 6.8 are satisfied, then for any u ∈ L∞ in U
and any (e(t0),e(t0)) ≥ 0 (componentwise), the inequality (e(t),e(t)) ≥ 0 holds for every
t ≥ t0.

Theorem 6.16 Suppose that Assumptions 6.2 and 6.8 are satisfied. For the constants l∆, l∆,
l
∆

, l
∆

deduced from Corollary 6.13, if there exist positive definite and symmetric matrices S,
Q, O such that the following inequality is satisfied:

DT S+SD+SO−1S+α∥O∥I +Q ⪯ 0, (6.14)
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where D = A−LC and α = 3(1+∥L∥)2 max{l
2
∆ + l

2
∆, l

2
∆
+ l2

∆}, then the variables z(t) and
z(t) are bounded. Moreover,

z(t)≤ z(t)≤ z(t). (6.15)

is satisfied for all t > 0 if it is valid for t = 0.

Note that if the relation (6.15) is satisfied and the variables z and z are bounded, then by
standard arguments [86] we can compute x(t) = Ψ(z(t),z(t)) and x(t) = Ψ(z(t),z(t)) (where
Ψ,Ψ depend on Φ(6.3) and P) such that x(t) ≤ x(t) ≤ x(t), for all t ≥ 0, i.e. we obtain the
interval estimation for the original nonlinear system (6.1).

If the output y equals to h(x), i.e. there is no uncertainty δh(x,θ), then clearly the above
theorem has more simple conditions.

Corollary 6.17 Let Assumptions 6.2 and 6.8 be satisfied, and y = h(x) in (6.1). For the
deduced matrices L̃ and P in Claim 6.3, if there exist the positive definite and symmetric
matrices S and Q such that the following LMI be true[

−I S
S DT S+SD+αI +Q

]
⪯ 0 (6.16)

where D = PÃP−1−LC̃P−1, α = 3max{l
2
∆+ l

2
∆, l

2
∆
+ l2

∆} with the constants l∆, l∆, l
∆

and l
∆

deduced from Corollary 6.13, then the variables z(t),z(t) are bounded and (6.15) is satisfied
for all t ≥ 0.

Based on the result stated in Corollary 6.17, the following algorithm is presented to
summarize the design procedure for the proposed interval observer:

Step 1: Since the nominal system of (6.1) is observable, compute the diffeomorphism Φ(6.3) to
obtain Ã and C̃;

Step 2: Due to the fact that the pair (Ã,C̃) is observable, seek a matrix L̃ and an invertible
matrix P such that the matrix A− LC is Hurwitz and Metzler, where A = PÃP−1,
C = C̃P−1 and L = PL̃;

Step 3: Transform system (6.1) by applying the change of coordinates z = PΦ(6.3)(x) to (6.8)
with F , H and G, and calculate the positive constants l∗, l∗, and l∗ where ∗ represents
F ,H,G and F ,H,G, which enables us to compute l∆, l∆, l

∆
(see Corollary 6.13);

Step 4: Set D = A−LC and α = 3max{l
2
∆ + l

2
∆, l

2
∆
+ l2

∆}. If the LMI (11.15) can be solved,
then go to Step 5. Otherwise, go back to Step 2 by changing the choices of L̃ and P.

Step 5: Design the interval observer (6.13), whose observation error is bounded since (11.15)
is satisfied.

As it has been shown that an interval observer for the uncertain nonlinear system (6.1) is
proposed using the transformation of coordinates calculated for the nominal system (6.3). It is
worth noting that the original system may be non-uniformly observable, but if it is possible to
extract from (6.1) a nominal observable system (6.3), then the proposed approach establishes
the interval observer and the corresponding transformation of coordinates providing the
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interval state estimation for (6.1). Moreover, if Assumption 6.8 is not satisfied for (6.1) for
all t ≥ 0, the presented interval method is still valid during a finite time T if x(t) ∈ X and
u(t) ∈ U for T ≥ t ≥ 0. Let us demonstrate the advantages of this approach via an example
of a nonlinear non-observable system.

6.5 Example

Consider the following example of the nonlinear system (6.1):

ẋ1 = x2 +a1 sin(θ1x1x2),

ẋ2 = −a4x2 −a2 sin(θ 2
2 x1)+a3 cos(y)u,

y = x1 + cx2 +θ3x1x2,

where a1 = 0.25, a2 = 19, a3 = 1, a4 = 2 and c = 0.526 are given known parameters,
the unknown parameters admit the condition |θi| ≤ θ̄ for i = 1,2,3 with θ̄ = 0.1. For
simulation we will use θ1 = 0.1, θ2 =−0.1, θ3 =−0.05[1+0.25sin(3t)+0.25cos(5t)] (it
is a time-varying signal representing additional disturbance/noise) and u(t) = 0.1sin(t)+
0.75cos(0.25t). It is straightforward to check that the linearization of this system at the
origin for all admissible values of parameters is stable. We assume that |x1(0)| ≤ 0.1,
|x2(0)| ≤ 0.1 and that solutions stay bounded and |x1(t)| ≤ x̄1 = 0.2, |x2(t)| ≤ x̄2 = 0.2
Therefore, Assumption 6.8 is satisfied for X = [−0.2,0.2]2 and U = [−1,1]. Moreover,
since the observability matrix of this system depends on the unknown parameters, thus the
system is not always observable on these compact sets.

For this example, the following nominal system has been chosen:

f1(x) = x2, f2(x) =−a4x2, h(x) = x1 + cx2

then δ f1(x,θ) = a1 sin(θ1x1x2),δ f2(x,θ) =−a2 sin(θ 2
2 x1), δh(x,θ) = θ3x1x2. It is straight-

forward to check that the nominal system as a linear system in the canonical form is observ-
able. Thus Assumption 6.2 is verified. Claim 6.3 is satisfied for the matrix L = [1.9,0]T . Let
us compute the bounding functions for δ f and δh. To this end, define the following two
functions:

Product(x,x) =

[
min{x1x2,x1x2,x1x2,x1x2}
max{x1x2,x1x2,x1x2,x1x2}

]
,

[
sin(x,x)
sin(x,x)

]
=

[
sin(x)
sin(x)

]

corresponding to the interval of the product x1x2 for x = [x1 x2]
T with x ≤ x ≤ x and the

interval of the function sin(x) for a scalar x with x ≤ x ≤ x (for |x| ≤ π/2). Then

δ f 1(x,x) = a1sin
{

ρ(θ̄ ,x,x)
}
,δ f 2(x,x) =−a2sin

{
Product

([
−θ̄

θ̄

]
,

[
x̄1

x̄1

])}

δ f 1(x,x) = a1sin
{

ρ(θ̄ ,x,x)
}
,δ f 2(x,x) =−a2sin

{
Product

([
−θ̄

θ̄

]
,

[
x̄1

x̄1

])}
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and

[
δh1(x,x)
δh1(x,x)

]
= ρ(θ̄ ,x,x) where ρ(θ̄ ,x,x) = Product

([
−θ̄

θ̄

]
,Product(x,x)

)
. Take

l∆ = l
∆
= l

∆
= l∆ = [a2+(a1+1)x̄2]θ̄ , then α = 3(1+∥L∥)2 max{l

2
∆+ l

2
∆, l

2
∆
+ l2

∆}= 1.279.
For the chosen parameters, the matrix inequality from Theorem 6.16 is satisfied for:

S =

[
0.8 −0.4
−0.4 1.8

]
, O = I, Q = 0.8I,

thus all conditions of Theorem 6.16 have been verified. The results of the interval estimation
are given in Fig. 6.1.
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Fig. 6.1 The results of interval estimation for the coordinates x1 and x2

6.6 Conclusion
The problem of state estimation is studied for an uncertain nonlinear system not in a canonical
form. The uncertainty is presented by a vector of unknown time-varying parameters, the
system equations depend on this vector in a nonlinear fashion. It is assumed that the values
of this vector of unknown parameters belong to some known compact set. The idea of
the proposed approach is to extract a known nominal observable subsystem from the plant
equations, next a transformation of coordinates developed for the nominal system is applied
to the original one. The interval observer is designed for the transformed system. It is
shown that the residual nonlinear terms dependent on the vector of unknown parameters have
linear upper and lower functional bounds, that simplifies the interval observer design and
stability/cooperativity analysis. As a direction of future research, the problem of estimation
accuracy optimization can be posed, i.e. how by a selection of the observer gain L to improve
the asymptotic accuracy of estimation.
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O&O for Singular System





Chapter 7

Introduction

Singular system (known as well descriptor system/differential-algebraic system) was in-
troduced to model a large class of systems in many different domains, such as physical,
biological, and economic ones, for which the standard representation sometimes cannot be
applied [34, 33]. The structure of this type of systems contains both the dynamic equations
and the algebraic ones, and due to this characteristic, many well-defined concepts dealing
with the observability problem for regular (non-singular) systems have to be reconsidered.
Due to as well this special structure, singular system might contain impulse, and this leads
to different definitions, including observability, R-observability and Impulse-observability
[170, 42]. Generally speaking, they characterize the state reconstruction ability from different
aspects: R-observability defines the ability to estimate the reachable set of the studied system;
Impulse-observability corresponds to the ability to estimate the impulse term of the studied
system and the observability covers both mentioned abilities to estimate all states of the
studied system.

Observability and the problem of observer design have been widely studied for singular
systems with perfectly known model. For linear singular system, in [170], the authors have
studied the solvability, controllability and observability concepts for singular systems with
regular matrix pencil. There, the observability analysis is addressed and algebraic char-
acterizations were found. The algebraic duality between controllability and observability
for singular systems with regular matrix pencil is proven by using the Schwartz distribu-
tion framework in [38]. Necessary and sufficient conditions allowing for the design of a
Luenberger-like observer were found in [129]. In the three previous mentioned works, it was
considered that the system has a regular matrix pencil which entails a unique state solution.
Without any particular assumption over the matrix pencil of the system, the casual observ-
ability, which does not allow to use neither the derivatives of the input nor the derivatives
of the output, is studied in [79]. The same authors suggest an observer design in [80]. In
that work it is shown that by allowing the derivatives of the input and output to be involved
in the observer (called it there as a generalized observer), detectability is enough for the
convergence of the observation error. A reduced order observer is designed in [46]. In spite of
the extended literature regarding the observability analysis and synthesis of singular systems,
there exist few results dealing with such problems when the system contains unknown input.
In [130], the observer design problem is considered for linear singular systems with unknown
input and necessary and sufficient conditions are given for the design of a Luenberger-like
observer. In [47], a reduced order observer is proposed. Under some regularity conditions,
the observer design is studied in [37]. Meanwhile, in [99] a proportional multiple-integral
observer is proposed. Using the graph-theory approach, observability conditions are found in
[23].
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Concerning nonlinear singular systems, for the case when all the inputs are known, the
algebraic observability of DAE time varying systems has been studied in [159]. [96] studied
an observer for a class of nonlinear singular systems in which the system was linearized
around the equilibrium point. The same technique was used in [27] to study a reduced
order observer for a class of nonlinear singular systems. Other techniques, such as LMI
([111, 45]) and convex optimization [100], are proposed as well to design an observer for
nonlinear singular systems with known (or unknown) inputs. Using also LMIs, a reduced
order observer for a class of Lipschitz nonlinear singular systems is presented in [111].
Asymptotic observers for systems having index one were proposed in [54] and [5].

Although the singular systems are different to the conventional regular systems, but they
do exist some similarities, since they both contain differential equations. The difficulty is
how to treat the algebraic equations existing in singular systems. If we can overcome this
problem, then we can reuse the well developed techniques for regular systems to analyze
the observability and to design observer for both linear and nonlinear singular system with
known or unknown inputs. This consideration motivates us to seek the conditions under
which the singular systems might be regularized, if possible.

This part summarizes our recent works on observability analysis and observer design for
linear and nonlinear singular systems with known or unknown inputs.

• Firstly, the strong observability and strong detectability of a general class of linear
singular systems with unknown inputs are tackled by converting the singular system
into a regular one with unknown inputs and algebraic constraints. Moreover, the
assumption of regular matrix pencil for singular systems is removed;

• Secondly, we study a class of nonlinear singular systems with unknown inputs. Under
suitable conditions, we achieve to replace the DAE of the system by ODE on a manifold
of reduced dimension. This is done by searching for an invariant submanifold (called
zeroing submanifold, conceived from the zero dynamics concept in [85]) where the
DAE are satisfied during an interval of time. Then observability conditions are found
in terms of the original system parameters;

• Thirdly, we generalize the well-known differential geometric method to study the
nonlinear singular systems. By applying the technique of regularization, we are
seeking a diffeomorphism to transform the regularized system into a simpler singular
normal form, for which a Luenberger observer can be designed to estimate its state.
Necessary and sufficient conditions are deduced to guarantee the existence of such a
diffeomorphism;

• Most of the existing results are for the asymptotic estimation of the state for singular
systems without uncertainties. The observer design becomes complicated when con-
sidering the systems with uncertain terms in the state and in the measurement. In this
situation, the exact estimation may be not possible, and one solution is to provide the
upper and lower bound estimation of the admissible values for the state by applying
the theory of set-membership or interval estimation. Therefore, in the last result of this
part, we propose an interval observer for such uncertain nonlinear singular systems.



Chapter 8

Linear Singular System

In this chapter, we will present our recent results on the observability analysis for a general
class of singular linear systems with unknown input, published in [J14, C31]. In our study,
the system is not required to have a regular matrix pencil, which is always assumed in most
of the existing works when the observability is studied. Our study focuses on the estimation
of the non-impulsive states (slow part) of the singular system. Based on this limitation, it is
possible to reuse the existing method for linear regular system to analyze the observability
for linear singular system. Necessary and sufficient conditions for the strong observability
and strong detectability will be studied.

8.1 Notation and problem statement
Consider the linear singular system with unknown inputs governed by the following equations

Σ :

{
Eẋ(t) = Ax(t)+Bu(t)

y(t) = Cx+Du(t)
, (8.1)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rp is the system output, and u(t) ∈ Rm is the
unknown input vector. Matrices E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m are all
constant. The matrix E is assumed to be singular. Given a state x0 ∈ Rn and a function u(t),
we denote by xu (x0, t) the state of Σ at time t which results from taking the initial condition
equal to x0 and the input vector is equal to u. Therefrom, in a straightforward manner we
define the output yu (x0, t) =Cxu (x0, t)+Du(t).

We are interested in the reconstruction of the (non-impulsive) trajectory of state vector
x(t) given the output information y(τ)

τ∈[0,t]. System Σ is not assumed to have a regular
pencil ([90]), i.e., it is allowed that det(sE −A) = 0 for all s ∈ C (then xu (x0, t) may have
more than a solution). Nevertheless, u(t) must be so that x(t) bepiecewise continuous for all
t > 0; however, an impulse may occur at t = 0. In order to give algebraic conditions allowing
the reconstruction of x(t), we consider the following definitions, which are based on classical
definitions for linear time invariant systems (see, e.g. [160]).

Definition 8.1 (Strong observability) System Σ is strongly observable (SO) if for all x0 ∈
Rn and for every input function u, the following implication is satisfied

yu (x0, t) = 0 ∀t > 0 implies x
(
0+
)
= 0. (8.2)
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Definition 8.2 (Strong detectability) System Σ is strongly detectable (SD) if for all x0 ∈Rn

and for every input function u, the following implication holds

yu (x0, t) = 0 ∀t > 0 implies lim
t→∞

xu (x0, t) = 0. (8.3)

It is clear that strong observability is a necessary condition to reconstruct the entire
trajectory of the state x(t). Indeed, let us suppose that Σ is not strongly observable, then it
means that there exist ū and x̄0 such that yū (x̄0, t) = 0 ∀t > 0, but x(0+) ̸= 0. Then, since
we assume that x(t) is piecewise continuous, then xu=0 (0, t) ≡ 0 and xū (x̄0, t) ̸= 0 in an
open interval, however, both yield a system output identically equal to zero. Thereby, it
would be impossible to reconstruct the entire state trajectory. Below it would be shown that
SO is a structural necessary and sufficient condition for the reconstruction in finite time of
x(t). Analogously, it will be shown as well that SD is a structural necessary and sufficient
condition for the asymptotic reconstruction of x(t).

8.2 Observability analysis
Since E is singular, there exist non-singular matrices T ∈ Rn×n and S ∈ Rn×n such that E
can be transformed as follows:

T ES =

[
IρE 0
0 0

]
(8.4)

where ρE = rankE. Thus, let us define the vector z :=
[

zT
1 zT

2

]T
= S−1x, where z1 ∈ RρE

and z2 ∈ Rn−ρE . In these new coordinates, Σ can be rewritten as follows

Ψ :

{
T ESż(t) = TASz(t)+T Bu(t)

y(t) = CSz(t)+Du(t)
. (8.5)

In view of (8.4), Ψ takes the following form

ż1 (t) = T1AS1z1 (t)+T1AS2z2 (t)+T1Bu(t) , (8.6a)
0 = T2AS1z1 (t)+T2AS2z2 (t)+T2Bu(t) , (8.6b)
y = CS1z1 (t)+CS2z2 (t)+Du(t) . (8.6c)

where S1 and S2 matrices arise from the following partition of S, S =
[

S1 S2

]
with

S1 ∈ RρE×ρE and S2 ∈ RρE×n−ρE . Analogously, T1 and T2 matrices come from the partition
T T =

[
T T

1 T T
2

]
with T1 ∈ RρE×n and T2 ∈ Rn−ρE×n. It is clear that Σ is SO (resp. SD)

if, and only if, Ψ is SO (resp. SD). Below we will see that a simple manner to study the
observability of Ψ, and by extension of Σ, is by considering (8.6b) as part of the system
output of a new pseudo system and considering z2 as part of the vector of UI. Indeed, let us
define the system Φ by means of the following equation,

Φ :

{
ż1 (t) = Āz1 (t)+ B̄v(t)
ȳ(t) = C̄z1 (t)+ D̄v(t)

, (8.7)
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where v(t) ∈ Rn−ρE+m, ȳ(t) ∈ Rn−ρE+p and the matrices Ā, B̄, C̄, and D̄ are defined as
follows

Ā = T1AS1, B̄ =
[

T1AS2 T1B
]

,

C̄ =

[
T2AS1

CS1

]
, D̄ =

[
T2AS2 T2B
CS2 D

]
.

(8.8)

It is clear by (8.6) that Φ looks like system Ψ. In general, they do not represent identical
systems. However, both systems are identical if these two identities hold: ȳT =

[
0T yT

]
and vT (t) =

[
zT

2 (t) uT (t)
]
. In the next theorem it is claimed that the fulfillment of the

SO (resp. SD) of Σ is equivalent to the fulfillment of the SO (resp. SD) of Φ (condition
needed for the reconstruction of z1) plus a rank condition (required for the reconstruction of
z2).

Theorem 8.3 System Σ is SO (resp. SD) if, and only if, Φ is SO (resp. SD) and the following
rank condition holds

rank
[

B̄
D̄

]
= n− rankE + rank

[
B
D

]
. (8.9)

Furthermore, this equivalence is independent of the choice of T and S.

As for Σ, we could expect that SO and SD can be completely characterized by the
five-tuple (E,A,B,C,D). Indeed, let R(s) be the so-called system matrix of Σ, i.e.,

R(s) =

[
sE −A −B

C D

]
, s ∈ C.

We say that s0 ∈C is a zero of Σ if rankR(s0)< n+ rank

[
B
D

]
. Let σz (Σ) be defined as the

set of zeros of Σ. Let us characterize SO and SD in terms of the zeros of Σ.

Corollary 8.4 System Σ is SO (resp. SD) if, and only if, σz (Σ) =∅ (resp. σz (Σ)⊂ C−).

8.3 State reconstruction
Let Mk (k ≥ 1) be the matrices obtained by the following Molinari recursive algorithm (see,
[123]):

Mk+1 = N⊥⊥
k+1Nk+1, M1 =

(
D̄⊥C̄

)⊥⊥ D̄⊥C̄,

Nk+1 = Tk

(
MkĀ

C̄

)
, Tk =

(
MkB̄

D̄

)⊥

.
(8.10)

where F⊥ is the annihilator of the matrix F (i.e. X⊥X = 0), F⊥⊥ a full row rank matrix

such that rankF⊥⊥F = rankF (then the matrix
[ (

F⊥)T (
F⊥⊥)T

]T
is nonsingular). Let
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us denote by l, the smallest integer such that rankMl = rankMl+1. For our purposes, we point

out that Φ is SO if, and only if, rankMl = rankE. For the case of SD we have to work a bit

more with system Φ. Indeed, let us assume that rankMl < rankE. Let V be a full column

rank matrix so that MlV = 0. There exists a pair of matrices Q and K∗ such that

ĀV + B̄K∗ =V Q and C̄V + D̄K∗ = 0. (8.11)

From (8.11), it is clear that the im
((

Ā+ B̄K∗V+
)

V
)
⊂ imV and

(
C̄+ D̄K∗V+

)
V = 0. We

can define a non-singular matrix P of dimension rankE as P =

[
Ml

V+

]
, P−1 =

[
M+

l V
]
,

where V+ and M+
l are the Moore-Penrose pseudo-inverse of V and M, respectively: V+ =(

V TV
)−1V T and M+

l = MT
l

(
MlMT

l

)−1. By defining the vectors w1 = Mlz1 and w2 =V+z1,
we have that z1 = M+

l w1 +V w2. System Φ in these new coordinates can be rewritten as
follows:

ẇ1 = Ā1w1 + B̄1 (v−K∗w2) , (8.12a)
ẇ2 = Ā2w1 + Ā3w2 + B̄2 (v−K∗w2) , (8.12b)

ȳ = C̄1w1 + D̄(v−K∗w2) , (8.12c)

where
Ā1 = Ml

(
Ā+ B̄K∗V+

)
M+

l , B̄1 = MlB̄,
Ā2 =V+

(
Ā+ B̄K∗V+

)
M+

l , B̄2 =V+B̄,
Ā3 =V+

(
Ā+ B̄K∗V+

)
V , C̄1 = C̄M+

l .
(8.13)

Thus, as for SD, it is known that system Φ is SD if, and only if, rank

[
B̄1

D̄

]
= rank

[
B̄
D̄

]
and Ā3 is a Hurwitz matrix (see, e.g. [12]).

Coming back to system Φ. Define ξ1 :=
(
D̄⊥C̄

)⊥⊥ D̄⊥ȳ = M1z1, with M1 defined as in
(8.10). Let us derive the vector ξ1:

ξ̇1 (t) = M1Āz1 (t)+M1B̄v(t) . (8.14)

Let us define a new vector ξ2 as follows

ξ2 := N⊥⊥
2 T1

[
ξ̇1

ȳ(t)

]
, (8.15)

with N⊥⊥
2 and T1 defined by (8.10). Thus, taking into account (8.7), (8.14), and (8.10), we

have that
d
dt

J2

[
ȳ∫ t

t0 ȳ(τ)dτ

]
= ξ2 = M2z1 (t) , t > t0 ≥ 0, (8.16)
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where

J2 = N⊥⊥
2 T1

[
J1 0
0 Ip̄

]
, J1 =

(
D̄⊥C̄

)⊥⊥
D̄⊥.

In the first identity of (8.16), we take outside the differential operator from (8.15) and use the
definition of ξ1. Thus, we can follow an iterative procedure to obtain the following set of
equations, for k ≥ 1,

dk

dtk Jk+1

 ȳ(t)
...∫ t

t0 · · ·
∫

τ2
t0 ȳ(τ1)dτ1 · · ·dτk

= Mk+1z1, (8.17)

where Mk+1 is defined by (8.10), and Jk+1 is defined by the following recursive algorithm,
for k ≥ 1,

J1 =
(

D̄⊥C̄
)⊥⊥

D̄⊥, Jk+1 = N⊥⊥
k+1Tk

[
Jk 0
0 Ip̄

]
. (8.18)

Thus Mkz1 is expressed by a high order derivative of a function of y(t). In such a way a
real-time differentiator could be used, two of them frequently used due to their finite time
convergence can be found in [107] and [121]. For instance if rankMl = rankE, then z1 is
algebraically observable, i.e. it could be reconstructed by using a real-time differentiator.

In order to match system Σ with system Φ, from now on, we define ȳ=
[

01×n−rankE yT
]
∈

R p̄ (p̄ := n− rankE + p), and v(t) =
[

zT
2 (t) uT (t)

]T
∈ Rq (q = n− rankE +m), then in

view of (8.6), equations (8.5) and (8.7) are identical. Below, we consider two cases: when Σ

is SO and when it is SD, but not SO. Of course, since Φ is a standard linear system, there
might be other methods, besides the one proposed below.

Case 1: Σ is SO.
Since Φ is SO, rankMl = rankE. Then in this case, from (8.17), we obtain the equation

dl−1

dt l−1 M−1
l Jl

 ȳ(t)
...∫ t

t0 · · ·
∫

τ2
t0 ȳ(τ1)dτ1 · · ·dτl−1

= z1, (8.19)

where Ml ∈ RρE×ρE and Jl ∈ RρE×p̄l . Let U be a matrix so that

rank

[
D
F

]
U = rank

[
D
F

]
=: m̄, U ∈ Rq×m̄ (8.20)

Since (8.9) must be satisfied according to Theorem 8.3, we have that

z2 (t) =
[

In−ρE 0q̄

]([ B̄
D̄

]
I 0
0 U

)+([
ż1 (t)

ȳ

]
−

[
Ā
C̄

]
z1 (t)

)
(8.21)
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where q̄ := n−ρE + m̄. Now, we are ready to give a formula to reconstruct x in finite time.

Theorem 8.5 If system Σ is SO, then the state x can be expressed algebraically by the
following formula:

x(t) =
dl

dt l

[
S 0n×m̄

][ H1
H2

] ȳ(t)
...∫ t

t0 · · ·
∫

τ1
t0 ȳ(τ1)dτ1 · · ·dτl

 , (8.22)

where H1 ∈ RρE×p̄(l+1) and H2 ∈ Rq̄×p̄(l+1) are defined as

H1 :=
[

0ρE×p̄ M−1
l Jl

]
, H2 :=

[
B̄U
D̄U

]+
(G1 −G2) ,

G1 :=
[

M−1
l Jl 0ρE×p̄

0p̄×p̄l Ip̄×p̄

]
, G2 :=

[
0ρE×p̄ ĀM−1

l Jl
0p̄×p̄ C̄M−1

l Jl

]
,

G1,G2 ∈ RρE+p̄×p̄(l+1), and Ml and J defined recursively in (8.10) and (8.18), respectively,
and U defined by (8.20).

Remark 8.6 One might obtain a little more from the previous analysis, that is, one can
express by an algebraic formula the part of u that can be reconstructed (assuming Σ is SO).
Indeed, let ū be implicitly defined by the equation

[
DT FT ]T u =

[
DT FT ]T Uū. With

the same procedure followed to obtain (8.22), ū can be expressed by the formula

ū(t) =
dl

dt l

[
0m̄×n Im̄

][ H1
H2

] ȳ(t)
...∫ t

t0 · · ·
∫

τ1
t0 ȳ(τ1)dτ1 · · ·dτl

 . (8.23)

Case 2: Σ is SD.
Let us assume that Σ is SD, but not SO. Next we show how to carry out the estimation of

x(t).

Theorem 8.7 Assuming that Σ is SD, but not SO, we obtain that

lim
t→∞

∥x(t)− x̂(t)∥= 0,

provided that x̂(t) is designed by following (8.24)-(8.25).

x̂(t) =
dl

dt l

([
S 0n×m̄

][ H̄1
H̄2

]
Yl (t)

)[
S 0n×m

][ V
K∗

]
ŵ2 (8.24)

˙̂w2 = Ā3ŵ2 + Ā2
dl

dt l

([
0ρE−ρM×p̄ Jl

]
+ B̄2UH̄2

)
Yl (8.25)
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where H̄1 ∈ RρE×p̄(l+1), H̄2 ∈ Rq̄+p̄×p̄(l+1), and Ḡ1, Ḡ2 ∈ RρM+p̄×p̄(l+1) (ρM = ρMl ) satisfy
the following identities,

H̄1 =
[

0ρE×p̄ M+
l Jl

]
, H̄2 :=

[
B̄1U
D̄U

]+ (
Ḡ1 − Ḡ2

)
,

Ḡ1 :=
[

Jl 0ρM×p̄
0p̄×p̄l Ip̄

]
, G2 :=

[
0ρM×p̄ Ā1Jl
0p̄×p̄ C̄1Jl

]
.

Remark 8.8 If ū needs to be reconstructed also, then it can be done by means of ̂̄u(t),
defined as follows,

̂̄u(t) = dl

dt l

([
0m̄×n Im̄

][ H̄1
H̄2

]
Yl (t)

)[
0m̄×n Im̄

][ V
K̄∗

]
ŵ(t) (8.26)

where K̄∗ is implicitly defined by the equation[
B̄
D̄

]
K∗ =

[
B̄
D̄

][
In−ρE 0

0 U

]
K̄∗

So, we obtain straightforwardly that ∥û(t)−u(t)∥ goes to zero.

8.4 Example
Let us consider that Σ has the following matrices values

E =


0 1 0 1
0 0 0 0
1 0 1 1
0 0 0 0

 , A =


−1 −1 1 1
2 1 2 0
1 1 1 −1
0 0 0 0

 , D =


1
−1
0
0


C =

[
0 1 0 1
0 −1 0 2

]
, F =

[
0
1

]
.

It is easy to see that, in this example, det(sE −A) = 0 for every s ∈C. Hence, many solutions
for x(t) are expected to satisfy the differential equation in (8.1). However, to each output
y(t) corresponds only one trajectory of x(t) (a.e.). Indeed, we will see that, according to
Theorem 8.3, Σ is SO.

For this case matrices S and T are chosen as follows,

S =


0 0 −1 −1
0 0 0 −1
0 1 1 0
1 0 0 1

 , T =


1 0 0 0
−1 0 1 0
0 1 0 0
0 0 0 1

 ,
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Matrices Ā, C̄, B̄, and D̄ take the following values:

Ā =

[
1 1
−2 0

]
, B̄ =

[
2 3 1
−2 −6 −1

]
, C̄ =


0 2
0 0
1 0
2 0

 , D̄ =


0 −3 −1
0 0 0
0 0 0
0 3 1

 .

Matrices M2 and J2 take the values

M2 =

[
1 0√
2

√
2

]
, J2 =

[
0 0 0 0 0 0 1 0
0 0 0 0

√
2/2 0 0

√
2/2

]
.

Here, rankM2 = 2, rankB̄ = 3, and n−ρE = 2. Therefore, both conditions of Theorem
8.3 are satisfied.

The reconstruction of x(t) can be done by means of the formula (8.22), once we define
ȳT =

[
0 0 yT

]
. For this example, the reconstruction of u is also possible following

formula (8.23). Thus, we have

x1 =−1
3

y1 +
7

12
y2 −

1
2

ẏ1 +
1
6

ẏ2, x2 =
2
3

y1 −
1
6

y2 +
1
6

ẏ2,

x3 =−1
4

y2 +
1
2

ẏ1, x4 =
1
3

y1 −
1
6

y2 +
1
6

ẏ2, u =
1
2

y2 +
1
2

ẏ2.

8.5 Conclusion
We have given necessary and sufficient conditions to estimate the slow (non-impulsive)
trajectories, for singular systems in which more than one solution of the differential equation
is allowed, i.e. the pencil of the system is not required to be regular as it is assumed in most
of the previous works where the observability is studied. Moreover, the explicit formulas
have been deduced to reconstruct the states, respectively for the strong observability and
strong detectability cases.



Chapter 9

Nonlinear Singular System

In this chapter, we consider that the system contains unknown inputs and the DAE are given
in an explicit form. Under suitable conditions, we try to replace the DAE of the system
by ODE on a manifold of reduced dimension. This is done by searching for an invariant
submanifold (called zeroing submanifold) where the DAE are satisfied during an interval of
time. Then observability conditions can be found in terms of the original system parameters.
The results of this chapter have been published in [J6, C24].

9.1 Notations and problem statement
Consider systems described by the following equations:

ẋ(t) = f (x(t))+g(x(t))u(t) (9.1a)

0 = F (x(t))+G(x(t))u(t) (9.1b)

y(t) = h(x(t)) (9.1c)

where the state x(t) belongs to an open set U⊂ Rn. The maps f : U→ Rn, g : U→ Rn×m,
F :U→Rq, G :U→Rq×m, and h :U→Rp are all smooth maps. The input vector u(t)∈Rm

is unknown a priori; however it should be noted that u(t) has to be so that a solution for
(9.1a)-(9.1b) exists. The aim is the estimation of x(t) by means of the system output y(t).
Let N be a set defined as

N = {x ∈ U :x∈ Rm s.t. F (x)+G(x)ux = 0} (9.2)

In what follows we will do our study around an x0 ∈N for which x(t;x0) satisfies (9.1a)-(9.1b)
in a neighborhood of t = 0.

As we have shown in the last chapter on the observability analysis for linear singular
system, we can combine (9.1b)-(9.1c) as a whole new output, and adapt the conventional
method for regular system to study the observability of singular system. However, it is not
equivalent for nonlinear case, as it can be shown in the following simple example:

ẋ1 = f1(x,u), ẋ2 = f2(x,u)
0 = x2

1, y = x2
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In the above system, if we take ȳ = (0,y)T as the whole new output (as what we have done for
linear singular system in the last chapter), it is easy to see that the system is not observable
around 0. However, from the constraint 0 = x2

1 we can see that the above system is always
observable with x1 = 0. The reason that we cannot make such a combination is that the
constraint is nonlinear. In order to treat this case, the following will borrow the well-known
concept of zero dynamics in nonlinear system to search a maximal zeroing submanifold from
this nonlinear constraint.

9.2 Searching for a maximal zeroing submanifold
The procedure pursued here to estimate x(t) lies into two main steps. Firstly, we look for a
maximal zeroing submanifold (w.r.t. F (x) and G(x)), which is a submanifold such that if
x(0) belongs to it then there exists an input function u(t) such that x(t;x(0)) satisfies (9.1a)-
(9.1b) for all t in a neighborhood of t = 0. The first part yields a coordinates transformation so
that some terms of the state in the new coordinates are equal to zero (the same number as the
dimension of the zeroing submanifold). This also allows for expressing the input vector as a
function of the state vector. The second part consists in observability analysis on the reduced
system without unknown inputs. Now, we proceed to give a formal definition of a zeroing
submanifold. For it, we will need to define invariant and locally invariant submanifolds (see
[1]). Let M be a smooth submanifold of Rn.

Definition 9.1 Let V ⊂ M be a smooth submanifold, and f a vector field on M. Then, V
is an Invariant submanifold (ISM) w.r.t. f if, for all v ∈V , f (v) ∈ TvV ⊂ TvM, where TvM
means the tangent space to M at v.

Definition 9.2 M is a locally ISM at x0 w.r.t. f if there exists a neighborhood U0 of x0 such
that M∩U0 is an ISM w.r.t. f .

Next definition is in its essence a definition found in Chapter 6 of [85]; however, we have
adapted it using the previous definitions of ISM and also clause i) has been slightly modified
to consider the effect of G(x) of (9.1b).

Definition 9.3 A zeroing submanifold (ZSM) at x0 is a smooth submanifold M ⊂ U contain-
ing x0 that satisfies i) M ⊂ N and ii) there exists a smooth mapping u : M → Rm so that M is
a locally ISM at x0 w.r.t. the vector field f̂ (x) := f (x)+g(x)u(x).

Remark 9.4 Clause ii) means that there exists a neighborhood U0 of x0 such that if x(0) ∈
M∩U0 then x(t) ∈ M∩U0 for all t in a neighborhood of t = 0 (see, e.g., [1]).

Proposition 9.5 If a ZSM M is such that the ISM M∩U0 (w.r.t. f̂ (x)) is a closed set of U,
then x(t) stays within M∩U0 for all t, provided x(0) belongs to M∩U0.

Definition 9.6 A ZSM M is locally maximal if, for any other ZSM M̄, there exists a neigh-
borhood U of x0 such that the inclusion M∩U ⊃ M̄∩U is satisfied.
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We will seek for a locally maximal ZSM. The proposed method is similar to the one
given in [85], pp. 299-301. However, we do not assume that q = m and we include the
input explicitly in the algebraic equation. The proposed algorithm is a nonlinear version of
the algorithm used to find the weakly unobservable subspace in linear systems with inputs
appearing explicitly in the differential equations and in the system output (see, e.g., [12]).
The following is our step-by-step algorithm to find a locally maximal ZSM.

Step 1. It is assumed that there exists a neighborhood U0 containing x0 such that the
rankG(x) = r0 for all x ∈U0, for some r0. Let us define M0 =U0. For if, there exists a full
row rank matrix R0 (x) with terms being smooth functions of x in a neighborhood U

′
0 of x0

such that
rankR0 (x) = q− r0 and R0 (x)G(x) = 0 for all x ∈U

′
0 (9.3)

Thus, the maps Φ0 (x) and H1 (x) are defined as H1 (x) = Φ0 (x) := R0 (x)F (x). Let us
assume that the rank of dH1 (x) is constant in a neighborhood U1 ⊂U

′
0 of x0. Then, the set

M1 := {x ∈U1 : H1 (x) = 0} is a smooth submanifold.

Proposition 9.7 M1 satisfies the identity M1 = N ∩U1.

Step 2. Let us assume that rank of col (G(x) ,LgH1 (x)) is equal to a constant r1 for
all x in M1. Then there exists a matrix R1 (x) with terms being smooth functions of x

in a neighborhood U
′
1 of x0 such that, for all x ∈ M1 ∩U

′
1, R1 (x)

(
G(x)

LgH1 (x)

)
= 0 and

rankR1 (x) = q+dimH1 (x)− r1. Thus, we define H2 (x) = col (H1 (x) ,Φ1 (x)) where

Φ1 (x) = R1 (x)col
(
F (x) ,L f H1 (x)

)
Again, let us assume that dH2 (x) has constant rank in a neighborhood U2 ⊂U

′
1. Thus, the

set M2 := {x ∈U2 : H2 (x) = 0} is a smooth submanifold also.
Step k. Assuming that rankcol (G(x) ,LgHk−1 (x)) = rk−1 for all x ∈ Mk−1, then there

exists a neighborhood U
′
k−1 of x0 and a matrix Rk−1 (x) of smooth functions on U

′
k−1 such

that
rankRk−1 (x) = q+dimHk−1 (x)− rk−1

Rk−1 (x)

(
G(x)

LgHk−1 (x)

)
= 0

(9.4)

for all x ∈ Mk−1 ∩U
′
k−1. By defining Hk (x) as

Hk (x) =
(

Hk−1 (x)
Φk−1 (x)

)
, Φk−1 (x) = Rk−1 (x)

(
F (x)

L f Hk−1 (x)

)
(9.5)

and if dHk (x) has constant rank on Uk ⊂U
′
k−1 around x0, we obtain the smooth manifold Mk:

Mk = {x ∈Uk : Hk (x) = 0}

Proposition 9.8 Under assumptions of Lemma 9.9, we obtain that Mk+1 ⊂ Mk, for k ≥ 1.
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Lemma 9.9 Assume that there exist nested neighborhoods Uk+1 ⊂Uk and U ′
k+1 ⊂U ′

k (k ∈
1,n) of x0 such that, for every k, dHk (x) has constant rank in Uk and col (G(x) ,LgHk (x))
has constant rank for all x on the smooth manifold

Mk := {x ∈Uk : Hk (x) = 0} (9.6)

for all k ∈ 1,n, and Hk (x) and Rk (x) satisfy (9.5) and (9.4), respectively, on U ′
k. Then, there

exists a k∗ ≤ n and a neighborhood Ūk∗ so that Mk∗ ∩Ūk∗ = Mk∗+ j ∩Ūk∗ for all j ≥ 1.

Remark 9.10 Lemma 9.9 implies that the algorithm will stop at k∗ step. Moreover, k∗ will
be the first integer k satisfying rankdHk (x) = rankdHk+1 (x). This is true because of the
dimension of Mk is n− rankdHk (x) (for k ≥ 1) and Mk∗ and Mk∗+1 have the same dimension.

Proposition 9.11 If conditions of Lemma 9.9 are satisfied with a set of matrices R0 (x),
R1 (x), . . . ,Rk∗−1 (x), then those conditions remain valid for other choices of such a set of
matrices.

Theorem 9.12 Z∗ := Mk∗ is a locally maximal ZSM.

Proposition 9.13 Assuming that rank of col (G(x) ,LgHk∗ (x)) is equal to m for x ∈ Z∗, there
exists a unique (locally) smooth mapping u∗ : Z∗ → Rm, such that F (x)+G(x)u∗ (x) = 0
and f̂ (x) ∈ TxZ∗ ( f̂ (x) := f (x)+g(x)u∗ (x)). That is, the equation(

F (x)
L f Hk∗ (x)

)
+

(
G(x)

LgHk∗ (x)

)
u∗ (x) = 0 (9.7)

has a unique solution around x0.

Remark 9.14 Under the assumption of the previous proposition, the differential index of the
DAE will be equal to k∗ . This is due to the fact that the algorithm followed to calculate the
zeroing submanifold introduces intrinsically a procedure with which, after k∗ time derivatives
of the algebraic equation, we may obtain an ODE around x0.

9.3 State reconstruction

Let f ∗ be the restriction of f̂ (x)= f (x)+g(x)u∗ (x) to Z∗ (assuming that rank

(
G(x)

LgHk∗ (x)

)
=

m for any x ∈ Z∗). Thus on Z∗, the dynamics of system (9.1) is governed by

ẋ = f ∗ (x) and y = h(x) (9.8)

Lemma 9.15 Under the assumptions of Lemma 9.9, system (9.1) is LWO at x0 if, and only if,
(9.8) is LWO at x0.



9.3 State reconstruction 73

Let n∗ be the dimension of Z∗. Since rankdHk∗ (x) = n− n∗ for all x ∈ Z∗, we can
arrange a vector function H̄∗ (x) ∈ Rn−n∗×n whose terms are taken from Hk∗ (x) so that

rankdH̄∗ (x0) = n− n∗. Thus, there exists a diffeomorphism Ψ(x) =

(
H̄∗ (x)
φ (x)

)
with

which, defining z = Ψ(x), we obtain

z1 (t) = H̄∗ (x(t)) = 0, ż2 (t) = f̃2 (z2 (t)) , and y(t) = h̃2 (z2)

where z1 (t) ∈Rn−n∗ and z2 (t) ∈Rn∗ . There, f̃2 (z2 (t)) and h̃2 (z2) are given by the formulas

f̃2 (z2) =
[

∂φ(x)
∂x f ∗ (x)

]
x=Ψ−1(z)

h̃2 (z2) = h̃(z) |z1=0
(
h̃(z) = h

(
Ψ−1 (z)

)) (9.9)

Thereby, the original problem is reduced to the estimation of z2 from the knowledge of y(t).
However, since LWO is not enough for the design of an observer, below we will assume that
(9.8) is uniformly observable (see, e.g., [71]), i.e., we assume that on

Z∗
0 =

{
z2 ∈ Rn∗ : z2 = φ (x) for x ∈ Z∗ s.t. H̄∗ (x) = 0

}
the rank condition (9.10) is satisfied

rankcol
(

dh̃2 (z2) ,dL f̃2 h̃2 (z2) , . . . ,dLn∗−1
f̃2

h̃2 (z2)
)
= n∗ (9.10)

Below, in Theorem 9.16, we show that condition (9.10) can be checked in the original
coordinates.

Theorem 9.16 Under the assumptions of Lemma 9.9, (9.1) is uniformly observable on Z∗ if
(9.11) is satisfied for all x ∈ Z∗.

rankcol
(

dHk∗ (x) ,dh(x) ,dL f ∗h(x) , . . . ,dLn∗−1
f ∗ h(x)

)
= n (9.11)

Condition (9.10) implies that z2 can be locally expressed as a function of
(

y, ẏ, . . . ,y(n
∗−1)

)
which is known as algebraic observability [49]. In fact, it was shown in [156] that for analytic
systems the fulfillment of (9.10) is equivalent to the algebraic observability of z2. Thus, the
following corollary is an immediate consequence of Theorem 9.16.

Corollary 9.17 Under the assumptions of Lemma 9.9, rankcol (G(x0) ,LgHk∗ (x0)) = m and

(9.11), there exists a function Γ such that x(t) = Γ

(
y, ẏ, . . . ,y(n

∗−1)
)

.

Remark 9.18 For the case when the map u∗ is not unique, i.e. that rankcol (G(x0) ,LgHk∗ (x0))=
r < m, the state estimation may still be done. As if rank of col (G(x) ,LgHk∗ (x)) is constant
in a neighborhood of x0, locally there exist matrices D1 (x) and D2 (x) of rank r and m− r, re-
spectively, whose entries are smooth functions of x, such that rank (col (G(x) ,LgHk∗ (x))D1 (x))=
r and col (G(x) ,LgHk∗ (x))D2 (x) = 0 for all x in a neighborhood of x0. Thus, with D(x) :=
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(D1 (x) ,D2 (x)), and a partition of its inverse as (D(x))−1 = col (D̄1 (x) , D̄2 (x)), we obtain
that

col
(
F (x) ,L f Hk∗ (x)

)
+ col (G(x) ,LgHk∗ (x))D1 (x) D̄1 (x)u = 0 (9.12)

Let us define α1 = D̄1 (x)u and α2 = D̄2 (x)u. Then, (9.12) has a unique solution for
α1 = α1 (x). Thus, defining f ∗ (x) = f (x)+g(x)D1 (x)α1 (x), we can rewrite, locally on the
manifold Z∗, the dynamic equations of the system as follows

ẋ = f ∗ (x)+g(x)D2 (x)α2 and y = h(x)

Thereby, the state estimation may be carried out by using an unknown input observer
(α2 is the UI). In particular a reduced order observer may be designed. Indeed, using the
diffeomorphism defined at the beginning of this section and the change of coordinates given
by z = Ψ(x), we obtain the sub-vector z1 = H̄∗ (x) = 0 and z2 being the state of the system
ż2 = f̃2 (z2)+ g̃2 (z2)α2 and y = h̃2 (z2) where

f̃2 (z2) =
[

∂φ(x)
∂x f ∗ (x)

]
x=Ψ−1(z)

, g̃2 (z2) =
[

∂φ(x)
∂x g(x)D2 (x)

]
x=Ψ−1(z)

h̃2 (z2) = h̃(z) |z1=0 with h̃(z) = h
(
Ψ−1 (z)

)
Hence, an UI observer for z2 (t) ∈ Rn−n∗ could be designed.

9.4 Example

Let us consider an example with the following functions:

f (x) =
(

x2 x4 + x6x1 x1x4 x5 x3 x7 −x5x2
)T

g(x) =

 0 x2 1 x2 1 0 0
0 0 0 0 0 x6x7 1
0 0 x1 0 0 0 0

T

, h(x) =
(

x1
x3

)

F (x) =

 0
−cos( x5

2 )
10
x6

 , G(x) =

 0 0 2x5 − sinx3
0 0 1
0 0 0


By (9.2), N =

{
x ∈ R7 : x6 = 0, x5 = sin(x3) or x5 = π

}
. Thus, the observability is around

x0 = 0.
Step 1. Since rankG(x) = 1 for all x ∈ R7,

R0 (x) =
(

−1 2x5 − sinx3 0
0 0 1

)
, H1 = R0 (x)F (x) =

(
− 1

10 (2x5 − sinx3)cos( x5
2 )

x6

)
We see that rank of the matrix dH1 is equal to 2 for all x∈U1 =

{
x ∈ R7 : |x5|< π and |x3|< π

2

}
.

Hence, M1 = {x ∈U1 : x6 = 0, 2x5 = sinx3} is a 5-dimension manifold.
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Step 2. For col (G(x) ,LgH1 (x)), we obtain(
G(x)

LgH1 (x)

)T

=

 0 0 0 δ 0
0 0 0 0 x6x7

2x5 − sinx3 1 0 γ 0

 (9.13)

where γ = 1
10x1 cos

(x5
2

)
cos(x3) and

δ =
1

20
sin
(x5

2

)
(2x5 − sinx3)−

1
5

cos
(x5

2

)
+

1
10

cos
(x5

2

)
cos(x3)

Therefore, for all x ∈ M1, the rank of the matrix in (9.13) is equal to 2. Thus, R1 (x), Φ1 (x),
and H2 (x) are taken as

R1 (x) =

 1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

 , Φ1 (x) =

 0
x6

x7

 , H2 (x) =

 − 1
10 (2x5 − sinx3)cos(x5

2 )

x6

x7


Since rankdH2 (x) = 3 on U1, M2 = {x ∈U1 : x6 = x7 = 0 and 2x5 = sinx3}.

Step 3. Now, we have that col (G(x) ,LgH2 (x)) = col
(

G(x) ,LgH2 (x) ,
(

0 1 0
))

,

which has rank equal to 3 on M2. Thus, matrix R2 (x) ∈ R3×6 has zeros everywhere except
in the entries (1,1), (2,3), and (3,5), which have a number one. As for Φ2 (x), it takes the

form Φ2 (x) =
(

0 x6 x7

)T
. Finally, we obtain that H3 (x) = H2 (x), which implies that

Z∗ = M2 and H∗ = H2. Moreover, rankcol (G(x) ,LgH∗ (x)) = 3 for all x ∈ Z∗. Therefore,
u = u∗ (x) satisfies the equation (9.7) with k∗ = 2, for x ∈ Z∗. Thus, we obtain u∗1 (x) =
2x3−( 1

10 x1 cos(
x5
2 )+x1x4)cosx3

cosx3−2 , u∗2 (x) = x2x5, and u∗3 (x) =
1

10 cos
(x5

2

)
. Thus, f ∗ (x) (x ∈ Z∗) has

the form:

f ∗1 = x2, f ∗6 = f ∗7 = 0

f ∗2 = x4 + x2

2x3 −
(

1
10x1 cos

(
2sin(x3)

2

)
+ x1x4

)
cosx3

cosx3 −2

f ∗3 = x1x4 +
2x3 −

( 1
10x1 cos

(x5
2

)
+ x1x4

)
cosx3

cosx3 −2
+

1
10

x1 cos
(

2sin(x3)

2

)

f ∗4 = 2sin(x3)+ x2

2x3 −
(

1
10x1 cos

(
2sin(x3)

2

)
+ x1x4

)
cosx3

cosx3 −2

f ∗5 = x3 +
2x3 −

(
1
10x1 cos

(
2sin(x3)

2

)
+ x1x4

)
cosx3

cosx3 −2

In this case, matrix in (9.11) is equal to col
(

dH∗,dh,dL f ∗h,dL2
f ∗h
)

, which has rank
7 in a vicinity of x = 0. Then, the system is (locally) uniformly observable according to
Theorem 9.16. Furthermore, as the dimension of Z∗ is equal to 4, at most 3 derivatives of y
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are required for the estimation of the entire state x. In fact, we have that x can be expressed
in terms of (y, ẏ, ÿ) as follows:

x1 = y1, x2 = ẏ1, x3 = y2, x4 = ÿ1 + ẏ1
(
y2 − 1

2 ẏ2 cosy2
)

x5 =
1
2 siny2, x6 = x7 = 0

(9.14)

9.5 Conclusion
A new method to carry out the state estimation for a class of nonlinear singular systems has
been proposed. By means of a zeroing manifold algorithm, provided that suitable conditions
are satisfied, the state space whose dynamics is governed by a sole system of differential
equations is found. This has allowed to apply standard techniques for the state and unknown
input reconstruction. Nevertheless, the observability conditions allowing the state estimation
can be checked also in terms of the original system with DAE. For a future work, one could
look for considering a class of system with states having no explicit differential equations
governing their dynamics.



Chapter 10

Luenberger-like Observer Design

This chapter proposes a new method for observer design of nonlinear singular systems from
normal form point of view, by applying the differential geometric method, without any
Lipschitz assumption on the nonlinearity. Here we focus only on a class of nonlinear singular
systems with a single output and one algebraic equation. By introducing an intermediate
artificial regular dynamical system, necessary and sufficient conditions will be deduced to
transform nonlinear singular systems into a singular observable normal form, for which a
simple Luenberger-like observer is proposed. The results of this chapter have been published
in [C25].

10.1 Notations and problem statement
Consider the following class of nonlinear singular systems:{

Eẋ = f (x)+g(x)u
y = h(x) =Cx

(10.1)

where x ∈ Rn, u ∈ Rm, y ∈ R, f : Rn −→ Rn, g = [g1, · · · ,gm] where gi : Rn −→ Rn, with E
being canonical Nilpotent matrix with degree n−1 defined as follows:

E =


0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0
0 0 · · · 0 1
0 0 · · · 0 0

 (10.2)

and C = (1,0, · · ·0). It is assumed as well that (10.1) is observable.
When applying the technique of normal form, we need firstly propose a simple form which

enables us to reuse the existing observers proposed in the literature. The goal is then to deduce
necessary and sufficient conditions which guarantee the existence of a diffeomorphism to
transform (10.1) into the proposed normal form. For this, let us firstly introduce the following
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singular normal form: {
Eż = z+β (y)+α(y)u
y =Cz

(10.3)

where z ∈ Rn, u ∈ Rm, y ∈ R, α(y) ∈ Rn×m and β (y) ∈ Rn are vector fields depending only
on the output. The matrix E is a canonical Nilpotent matrix with degree n−1 defined in
(10.2) and C = (1,0, · · ·0). Therefore, the pair (E,C) is observable, i.e. there exists K such
that (E −KC) is Hurwitz.

The reason to propose such a simple form is that, by defining Γ = E −KC, we can easily
design the following simple Luenberger-like dynamics:{

η̇ = Γ−1η +Γ−1α(y)u+Γ−1(β (y)−Γ−1Ky)
ẑ = η −Γ−1Ky

(10.4)

which in fact is an exponential observer for the singular dynamical system (10.3). Thus,
the following focuses on seeking necessary and sufficient conditions to transform nonlinear
singular system (10.1) to the proposed normal form (10.3).

10.2 Main result

The basic idea is to reuse the well-known differential geometric tools for regular systems
to treat the singular ones. For this, let us regularize system (10.1) by adding an artificial
dynamics on x1. For 1 ≤ i ≤ n, denote ei = (0, ...,0,1,0, ...,0)T the ith canonical basis of Rn,
then (10.1) can be rewritten as follows:{

Eẋ+ ẋ1en = f (x)+g(x)u+ ẏen

y = x1
(10.5)

Let
P = (en,e1, · · · ,en−1) (10.6)

which gives Pe1 = en and Pei = ei−1 for 2 ≤ i ≤ n. Then system (10.5) is equivalent to the
following one: {

Pẋ = f (x)+g(x)u+ ẏen

y = x1
(10.7)

where P is defined in (10.6) .
The above idea is to make system (10.7) to be a regular one. Since P is invertible, then

by multiplying both sides of (10.7) with Q = P−1, one obtains the following artificial regular
system: {

ẋ = Q f (x)+Qg(x)u+ ẏe1

y = x1
(10.8)
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with the fact that Qen = P−1en = e1. By using the same technique for (10.1), system (10.3)
is equivalent to the following one as well:{

ξ̇ = Aξ + α̃(y)u+ β̃ (y)+ ẏen

y = ξn
(10.9)

where

A =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

... . . . ...
...

0 0 · · · 1 0

 (10.10)

where ξn = z1,ξk = zk+1, for 1 ≤ k ≤ n−1. The dynamics (10.9) is in the Brunovsky form
and β̃ (y) = β (y)+ ye1.

Assumption 10.1 For system (10.1), it is assumed that its associated regular system (10.8)

fulfills the rank condition rank
(

dh,dLQ f h, · · · ,dLn−1
Q f h

)T
= n where h(x) = y = Cx with

C = (1,0, · · · ,0).

In the following, we will deduce geometric condition under which there exists a change
of coordinates transforming the singular system (10.1) (or (10.8) since they are equivalent)
into the observable normal form (10.3) which enables us to design the proposed observer
(10.4).

Consider the following 1-forms:

θ1 = dh = dx1 (10.11)
θi = dLi−1

Q f h for 2 ≤ i ≤ n (10.12)

Since the rank condition of Assumption 10.1 is satisfied, then θi for 1 ≤ i ≤ n are linearly
independent.

Let τ1 be the vector field uniquely determined by the following equation:{
θi (τ1) = 0 for 1 ≤ i ≤ n−1
θn (τ1) = 1

(10.13)

and by induction one constructs the family of vector fields as follows:

τi+1 = [τi,Q f ] for 1 ≤ i ≤ n−1 (10.14)

where [, ] denote the conventional Lie bracket.
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Note θ =

 θ1
...
θn

 and τ = (τ1, · · · ,τn), one can define the following matrix for the

transformation: Λ =

 Λ1,1 · · · Λ1,n
... . . . ...

Λn,1 · · · Λn,n

 where for 1 ≤ i, j ≤ n we have Λi, j = θi(τ j).

From (10.11-10.14), it is easy to see that: Λi,n−(i−1) = 1 and Λi, j = 0 for j < n− (i−1),
thus one has

Λ =


0 0 · · · 0 1
0 0 · · · 1 Λ2,n

0 0 · · · Λ3,n−1 Λ3,n
...

... . . . ...
...

1 Λn,2 · · · Λn,n−1 Λn,n


It is clear that Λ is invertible, thus one can define the following multi 1-forms:

ω = Λ
−1

θ (10.15)

from the structure of Λ one obtains ωn = θ1 and

ωn−k = θk+1 −
n

∑
j=n−k−1

Λk, jω j.

The following result gives necessary and sufficient conditions to guarantee the existence
of the seeking diffeomorphism.

Theorem 10.2 Suppose Assumption 10.1 is satisfied, then there exists a diffeomorphism
which transforms (10.1) (or (10.8)) into (10.3) (or (10.9)) if and only if one of the following
conditions is fulfilled:

•
[
τi,τ j

]
= 0 for 1 ≤ i ≤ n, 1 ≤ j ≤ n, [gl,τi] = 0 for 1 ≤ i ≤ n− 1, 1 ≤ l ≤ m and

[τi,e1] = 0 for 1 ≤ i ≤ n−1;

• dω = 0, [gl,τi] = 0 for 1 ≤ i ≤ n−1, 1 ≤ l ≤ m and [τi,e1] = 0 for 1 ≤ i ≤ n−1.

We have shown as well that if the transformation ξ = φ(x) exists, then its differential is
such that dφ := φ∗ = ω . In other words, the seeking diffeomorphism φ is just the integral of
the closed one-form ω .

10.3 Example
The following gives an academic example in order to highlight the proposed results. For this,
consider the following nonlinear non-Lipschitz singular system:
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
ẋ2 = x1 − 3

2x2
3 +

3
2x

1
2
3 x2 +

3
2x

1
2
3 ex1u

ẋ3 = x2 − x
3
2
3 + ex1u

0 = x3 + x1 +u
y = x1

(10.16)

Following the technique introduced in the last section, this system can be re-formulated
into an artificial regular nonlinear system as follows:

ẋ = Q f +Qgu+ e1ẏ =


x3 + x1

x2 − x
3
2
3

x1 − 3
2x2

3 +
3
2x

1
2
3 x2

+


u+ ẏ

3
2x

1
2
3 ex1u
ex1u


y = x1

(10.17)

Then, one can calculate the corresponding 1-forms:

θ1 = dh = dx1, θ2 = dLQ f h = dx1 +dx3

θ3 = dL2
Q f h = dx2 −

3
2

x
1
2
3 dx3 +dx3 +dx1,

then (10.16) is observable. Moreover, it can be used to uniquely determine the following
vector fields:

τ1 =
∂

∂x2
, τ2 =

∂

∂x3
+

3
2

x
1
2
3

∂

∂x2
, τ3 =

∂

∂x1
.

It is clear that for all 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3 one has
[
τi,τ j

]
= 0.

Moreover, one can easily check that [τi,g] = 0 and [τi,e1] = 0 for 1 ≤ i ≤ 2. Denote
θ = (θ1,θ2,θ3)

T and τ = (τ1,τ2,τ3), one gets

Λ =

 0 0 1
0 1 1
1 1 1


which is invertible. Thus one has

ω = Λ
−1

 θ1

θ2

θ3

=

 d(x2 − x
3
2
3 )

dx3

dx1


which gives the following change of coordinates:

ξ1 = x2 − x
3
2
3

ξ2 = x3

ξ3 = x1
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Fig. 10.1 Discontinuous input u.

This brings (10.16) into the following one:
ξ̇1 = y
ξ̇2 = ξ1 + eyu
ξ̇3 = ξ2 + y+u+ ẏ
y = ξ3

(10.18)

which is of the form (10.9). Then one can apply the proposed method to design an observer
for the studied system.

In the simulation, K = (5,5,1)T , and the input u is chosen as follows:

u =


sin(2t), t ∈ [0,12.5]
1+ sin(3t), t ∈ (12.5,25]
sin(4t), t ∈ (25,37.5]
1− sin(2t), t ∈ (37.5,50]

The simulation results for the observer are given in Fig. 10.1-Fig. 10.4.

10.4 Conclusion
Observer design for a class of nonlinear singular systems is studied in this chapter. We
firstly proposed a normal form which represents a class of nonlinear singular systems with a
linear dynamic errors, then presented a new observer for such a form. Employing differential
geometric method which is widely used in nonlinear regular systems, we gave necessary
and sufficient conditions which is able to deduce a diffeomorphism to transform a class of
nonlinear singular systems into the proposed singular normal form.
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Fig. 10.2 x1 and its estimation with initial conditions x1(0) = 0.5 and x̂1(0) = 0.
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Fig. 10.3 x2 and its estimation with initial conditions x2(0) = 0.5 and x̂2(0) = 0.
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Fig. 10.4 x3 and its estimation with initial conditions x3(0) =−0.5 and x̂3(0) = 0.





Chapter 11

Interval Observer Design

Most of the existing results are for the asymptotical estimation of the state for singular
systems without uncertainties. The observer design becomes complicated when considering
the systems with uncertain terms in the state and in the measurement. In this situation, the
exact estimation may be not possible, and one solution (as we did for regular systems in the
previous chapter) is to provide the upper and lower bound estimation of the admissible values
for the state by applying the theory of set-membership or interval estimation. This chapter
recall the results, published in [J3, C1], to design an interval observer for a class of nonlinear
singular systems with uncertainties.

11.1 Notations and problem statement

Consider the following uncertain nonlinear singular system:

Σξ :

{
Ēξ̇ = Āξ + f̄ (ξ ,u)+ v(t)
y = C̄ξ +w(t)

(11.1)

where ξ ∈Rn is the state whose initial value belongs to a compact set I0(ξ (t0))= [ξ (t0),ξ (t0)];
y ∈Rp and u ∈Rm are respectively the output and the input. Ē ∈Rn×n, Ā ∈Rn×n, C̄ ∈Rp×n,
and the vector field f̄ represents the nonlinear term with the appropriate dimension. w(t) and
v(t) are the disturbance in the output and in the model, respectively.

When the matrix Ē is nonsingular, then (11.1) can be written as:{
ξ̇ = Ē−1Āξ + Ē−1 f̄ (ξ ,u)+ Ē−1v(t)
y = C̄ξ +w(t)

(11.2)

which becomes a classical regular system. When the matrix Ē is singular, (11.1) represents
a large class of nonlinear singular systems with uncertainties in the state and in the output,
covering those studied in [100] and [45]. This chapter is devoted to designing an interval
observer for this larger class of uncertain nonlinear singular systems.



86 Interval Observer Design

11.2 Assumptions and preliminary results
In this chapter, for the uncertain nonlinear singular system Σξ , we are interested in the interval
estimation of the (non-impulsive) trajectory of the state ξ (t) with the known information
of y(t) and u(t) for t > 0. Therefore, this paper considers the following definition of
observability adopted from Definition 1 in [10].

Definition 11.1 System Σξ is observable if y(ξ1, t) = y(ξ2, t) for all ξ1,ξ2 ∈ Rn and t > 0
implies ξ1(0+) = ξ2(0+).

In what follows, we make the following assumption for the original system Σξ .

Assumption 11.2 For the triple (Ē, Ā,C̄) of system Σξ defined in (11.1), it is assumed that
the following rank conditions:

rank
[

Ē
C̄

]
= n (11.3)

and

rank
[

sĒ − Ā
C̄

]
= n,∀s ∈ C (11.4)

are satisfied.

It is obvious that, even if the rank conditions (11.3) and (11.4) are assumed to be
satisfied, the studied uncertain nonlinear singular system Σξ might not be observable, due
to the nonlinear term f̄ (ξ ,u) and the uncertainties (v,w). Without loss of generalities,
for the singular matrix Ē ∈ Rn×n, it is assumed that rankĒ = q < n. Due to the rank

condition (11.3), there exists a non-singular matrix P =

[
P1 P2

P3 P4

]
∈ R(p+n)×(p+n) such

that P

[
Ē
C̄

]
=

[
In

0

]
, which is equivalent to:

 P1Ē +P2C̄ = In

P3Ē +P4C̄ = 0
(11.5)

with P1 ∈ Rn×n, P2 ∈ Rn×p, P3 ∈ Rp×n and P4 ∈ Rp×p. Based on the above result, we have
the following lemma.

Lemma 11.3 Suppose Assumption 11.2 is satisfied for the triple (Ē, Ā,C̄) of Σξ . Then there
always exist matrices K ∈ Rn×p, L ∈ Rn×p and an invertible matrix Q ∈ Rn×n such that the
following matrix:

R = QNQ−1 (11.6)

is Hurwitz and Metzler, where

N = (P1 +KP3)Ā+LC̄, (11.7)

with P1 and P3 being defined in (11.5).
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With the above deduced matrix Q which transforms the Hurwitz matrix N to the Hurwitz
and Metzler matrix R, since it is non-singular, then we can choose x = Qξ as a diffeomor-
phism, with which system Σξ in (11.1) can be rewritten as follows:

Σx :

{
Eẋ = Ax+ f (x,u)+ v(t)
y =Cx+w(t)

(11.8)

where E = ĒQ−1, A = ĀQ−1, C = C̄Q−1 and f (x,u) = f̄ (Q−1x,u). For the transformed
system (11.8), we can state the following lemma.

Lemma 11.4 Suppose Assumption 11.2 is satisfied for the triple (Ē, Ā,C̄) of Σξ . Then for the
transformed system Σx(E,A,C) defined in (11.8), there always exist a matrix K ∈ Rn×p, two

invertible matrices P =

[
P1 P2
P3 P4

]
∈ R(p+n×(p+n) and Q ∈ Rn×n, such that the following

equality is satisfied:
QP24C+QP13E = In

where the matrices P13 and P24 are defined as follows:

P13 = P1 +KP3
P24 = P2 +KP4

(11.9)

Since the initial condition ξ0 for (11.1) is supposed to be located into a certain interval
I(ξ0) = [ξ0,ξ0], then using the diffeomorphism x = Qξ , the initial condition x0 is also
known within a certain interval I(x0) = [x0,x0]. Thus the interval estimation of ξ in (11.1) is
equivalent to estimate the interval of x in (11.8) by using the knowledge of (u,y).

11.3 Interval estimation
Prior to introduce the interval observer for (11.1), let us firstly make the following assumption
which is necessary in the sequel.

Assumption 11.5 For the studied system (11.1), it is assumed that:

1) the state ξ (t) is bounded under the bounded input u(t) ∈C∞, i.e. ξ (t) ∈ Ω ⊂ Rn for a
given u(t) ∈ U ⊂ Rm for all t ≥ 0 where Ω and U are two given compact sets;

2) the function f̄ (ξ ,u) for all ξ ∈ Ω and u ∈ U is locally Lipschtiz w.r.t (ξ ,u);

3) the disturbances w(t) and v(t) are bounded, and the derivative of w(t) is bounded for
all t ≥ 0, i.e. there exist constants v,v,w,w,wd,wd such that v ≤ v(t)≤ v, w ≤ w(t)≤
w, and wd ≤ ẇ(t)≤ wd .

Remark 11.6 Since system (11.8) was transformed from the system (11.1) by applying the
diffeomorphism x = Qξ : Ω → X , therefore if Assumption 11.5 is fulfilled for (11.1), then
the state x(t) of (11.8) is bounded as well for the bounded input u(t), i.e. x(t) ∈ X ⊂ Rn



88 Interval Observer Design

for all t ≥ 0 where X represents the compact set defined via the diffeomorphism. Moreover,
since f (x,u) = f̄ (Q−1x,u) in (11.8), thus it is locally Lipschtiz w.r.t (x,u) for all x ∈ X and
u ∈ U .

With Assumption 11.5, let us recall the following boundedness results stated in [171] and
[53] which will be used to design the interval observer.

Lemma 11.7 [171] For a locally Lipschitz continuous function f (x,u) w.r.t (x,u) with x∈X
and u ∈ U , there exist two functions f , f : R2n+m →Rn such that, for x ≤ x ≤ x with x ∈ X ,

f (x,x,u)≤ f (x,u)≤ f (x,x,u) , and for a given submultiplicative norm ∥ · ∥ we have

∥ f (x,x,u)− f (x,u)∥ ≤ l f ∥x− x∥+ l f ∥x− x∥+ l f
∥ f (x,x,u)− f (x,u)∥ ≤ l f ∥x− x∥+ l f ∥x− x∥+ l f

for some positive constants l f , l f , l f , l f , l f and l f .

As we have stated in Section 11.2, if Assumption 11.2 and Assumption 11.5 are satisfied,
then there exist the matrices K, L, and the non-singular matrices P and Q such that the matrix
N defined in (11.7) is Hurwitz, and the matrix R defined in (11.6) is Hurwitz and Metzler.
For the sake of simplicity, note QP13 = QP13, QP24 = QP24, QL = QL where P13 and P24
are defined in (11.9). Then one can design the following two dynamics:{

ż = Rz+(RQP24 −QL)y+∆(z,z,u)
x = z+QP24y

(11.10)

and {
ż = Rz+(RQP24 −QL)y+∆(z,z,u)
x = z+QP24y

(11.11)

with

∆(z,z,u) = ∆ f (z,z,u)+∆v +∆w +∆wd , ∆ f (z,z,u) = Q+
P13

f (z,z,u)−Q−
P13

f (z,z,u)
∆v = Q+

P13
v−Q−

P13
v, ∆w = Q+

L w−Q−
L w, ∆wd = Q−

P24
wd −Q+

P24
wd

and

∆(z,z,u) = ∆ f (z,z,u)+∆v +∆w +∆wd , ∆ f (z,z,u) = Q+
P13

f (z,z,u)−Q−
P13

f (z,z,u)

∆v = Q+
L v−Q−

L v, ∆w = Q+
L w−Q−

L w, ∆wd = Q−
P24

wd −Q+
P24

wd

By noting

Γ(x,x,x,u) = ∆(z,z,u)−QP13 f (x,u)−QP13v(t)−QLw(t)+QP24ẇ(t) (11.12)

and

Γ(x,x,x,u) = −∆(z,z,u)+QP13 f (x,u)+QP13v(t)+QLw(x,u)−QP24ẇ(t) (11.13)
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we have the following corollary.

Corollary 11.8 For Γ(x,x,x,u) and Γ(x,x,x,u) defined in (11.12) and (11.13) with x ∈ X
and u ∈ U , we have Γ(x,x,x,u) ≥ 0 and Γ(x,x,x,u) ≥ 0. Moreover, there exist positive
constants lΓ, lΓ, l

Γ
, l

Γ
and l

Γ
, lΓ such that for a chosen submultiplicative norm ∥ · ∥ the

following inequalities:

∥Γ(x,x,x,u)∥ ≤ l
Γ
∥x− x∥+ l

Γ
∥x− x∥+ l

Γ

∥Γ(x,x,x,u)∥ ≤ lΓ∥x− x∥+ lΓ∥x− x∥+ lΓ

are satisfied for all t ≥ 0.

Theorem 11.9 Suppose Assumption 11.2 and Assumption 11.5 are satisfied. Then for any
initial state x(t0) of (11.8) belongs to a certain interval I(x(t0)) = [x(t0),x(t0)], systems
(11.10) and (11.11) form an interval observer for (11.8) such that the following inequality:

x(t)≤ x(t)≤ x(t), (11.14)

holds for all t ≥ t0. Mover, if there exist positive definite symmetric matrices S, M and a
positive scalar µ such that the following LMI is satisfied:[

RT S+SR+ α

µ
I +M S

S − 1
µ

I

]
⪯ 0 (11.15)

where R = diag{R,R}, α = 2max{l2
Γ, l

2
Γ, l

2
Γ
, l

2
Γ, l

2
Γ
, l2

Γ
}, then the variables x(t) and x(t) are

bounded for all t ≥ 0.

Corollary 11.10 For system (11.8) with the initial state ξ (t0) ∈ [ξ (t0),ξ (t0)], if Assumption
11.2 and Assumption 11.5 are satisfied, then there exists a non-singular matrix Q such that
the interval estimation of ξ in (11.1) is given as follows:[

Q−1]+ x−
[
Q−1]− x ≤ ξ ≤

[
Q−1]+ x−

[
Q−1]− x (11.16)

where x and x are the states of the proposed interval observer defined in (11.10) and (11.11).

Let us remark that Assumption 11.5 imposed the state boundedness ξ (t) ∈ Ω ⊂Rn under
a given bounded input u(t) ∈ U ⊂ Rm for all t ≥ 0, and this property is sometimes difficult
to be checked for general uncertain nonlinear singular systems, therefore the proposed result
could not be applied. However, if the boundedness property of the state in Assumption 11.5
is satisfied only for t ∈ [0,T ] with T being a finite time, i.e. ξ (t) ∈ Ω ⊂ Rn under a given
bounded input u(t) ∈ U ⊂ Rm for all t ∈ [0,T ], then Theorem 11.9 is still valid during this
finite time T . Therefore the proposed result can be relaxed by the following corollary.

Corollary 11.11 Suppose Assumption 11.2 and Assumption 11.5 are valid only for t ∈ [0,T ]
with T being a finite time. Then for any initial state x(t0) of (11.8) belongs to a certain
interval I(x(t0)) = [x(t0),x(t0)], systems (11.10) and (11.11) give an interval estimation
of x(t) of (11.8) for t ∈ [t0,T ], i.e. x(t) ≤ x(t) ≤ x(t) for all t ∈ [t0,T ]. And the interval
estimation of ξ (t) of (11.1) for all t ∈ [t0,T ] can be still obtained by (11.16).
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11.4 Design procedure

For system Σξ

(
Ē, Ā,C̄

)
defined in (11.1), supposed that Assumption 11.2 and Assumption

11.5 are both satisfied for all t ≥ 0 (or for all t ∈ [0,T ]), then the interval estimation of the
state ξ for (11.1) can be obtained via the following procedure:

Step1: Due to the satisfaction of the rank condition (11.3) in Assumption 11.2, determine an

invertible matrix P =

[
P1 P2

P3 P4

]
such that P

[
Ē
C̄

]
=

[
In

0

]
;

Step2: Due to the satisfaction of the rank condition (11.4) in Assumption 11.2, choose the
matrices K, L such that N = LC̄+(P1 +KP3) Ā is Hurwitz;

Step3: Choose an invertible matrix Q such that R = QNQ−1 is Hurwitz and Metzler;

Step4: Transform system Σ̄ξ

(
Ē, Ā,C̄

)
into Σx (E,A,C) by applying the diffeomorphism x =

Qξ ;

Step5: If Assumption 11.5 is satisfied for all t ≥ 0 (or for all t ∈ [0,T ]), calculate the bound
of the function f in (11.8);

Step6: Design interval observer (11.10) and (11.11) for Σx (E,A,C), which yields x(t) ≤
x(t)≤ x(t) for all t ≥ 0 (or for all t ∈ [0,T ]);

Step7: Finally we obtain the interval estimation of ξ (t) for all t ≥ 0 (or for all t ∈ [0,T ]):[
Q−1]+ x−

[
Q−1]− x ≤ ξ ≤

[
Q−1]+ x−

[
Q−1]− x.

11.5 Example
Consider the following nonlinear RLC circuit in Fig. 11.1, modified from [166], where

v
c


R


u
 L


Fig. 11.1 Nonlinear RLC ciruit.

the capacitor is not linear, but satisfying nonlinear q− vc characteristic vc = q+0.5sinq2.
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Fig. 11.2 The interval estimation for q.

According to the analysis in [166], we have

q̇ = φ/L
φ̇ =−φR/L− vc +u
0 = vc −q−0.5sinq2

y = vc

where u is source voltage, q and vc represent respectively the charge and the voltage of the
capacitor, and φ is the flux through the inductor. Denote ξ = (q,φ ,vc)

T , and taking into
account the uncertainties, the above dynamics can be written into the form (11.1) with

Ē =

 1 0 0
0 1 0
0 0 0

 , Ā =

 0 1/L 0
0 −R/L −1
−1 0 1

 and C̄ =

 0
0
1


T

f̄ (ξ ,u) =

 0
0

−0.5sin(ξ 2
1 )

 and v(t) =

 0.2sin2t
0.2sin4t
0.1cos3t

, w(t) = 0.1sin(t), where v(t) and

w(t) are the assumed disturbances.
In the simulation setting, we choose L = 5, R = 10 and u = 1.5+30sin2.8t. For such a

simple nonlinear singular system, we can easily follow the proposed procedure to design an
interval observer, thus the intermediate steps are omitted. The simulation results are depicted
in Fig. 11.2-11.4.

11.6 Conclusion
When treating the uncertain nonlinear singular systems while the asymptotic estimation is not
possible, this chapter is devoted to designing an interval observer for the studied uncertain
system. By imposing the rank conditions and assuming the boundedness of the uncertainties
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0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

2

2.5

Time (s)

 

 

v
c

Upper estimation of v
c

Lower estimation of v
c

Fig. 11.4 The interval estimation for vc.



11.6 Conclusion 93

(and the derivative of the uncertainty) in the state and in the output, we show that an interval
observer can always be synthesized to provide the upper and the lower estimations of the real
state.





Part III

O&O for Time-Delay System





Chapter 12

Introduction

Time-delay systems are widely used to model concrete systems in engineering sciences, such
as biology, chemistry, mechanics and so on [101, 125, 140, 146]. Many results have been
published to treat this kind of systems for different aspects [140, 146, 68]. Like other types of
systems (such as continuous-time, singular and so on), stability and observability are as well
two most important issues. Beside, since some results have been reported for the purpose
of stability and observability analysis, by assuming that the delay of the studied systems is
known, therefore it makes the delay identification be one of the most important topics in the
field of time-delay systems. Hence, Part III will summarize our results on the observability
and identifiability analysis, and observer design for time-delay system with unknown input.

As we have mentioned before, the observability property has been exhaustively studied for
linear and nonlinear systems without delays. It has been characterized in [76, 103, 155, 158]
from a differential point of view, and in [49] from an algebraic point of view. However,
when the system is subject to time delay, such analysis is more complicated (see the surveys
[140] and [146]). The analysis of observation for time-delay systems can be dated back
to the 80’s of the last century [106, 128, 142, 136]. For this issue, different definitions of
observability have been proposed, such as strong observability, spectral observability and
weak observability [105].

For linear time-delay systems, various aspects of the observability problem have been
studied in the literature, using different methods such as the functional analytic approach
[19] or the algebraic approach [28, 65, 154]. For nonlinear time-delay systems, by using
the theory of non-commutative rings [124], the observability problem has been studied in
[165] for systems with known inputs. The associated observer for some classes of time-delay
systems can be found in [40, 146, 44, 59, 69] and the references therein.

The majority of the existing works on observability analysis are focused on time-delay
systems whose outputs are not affected by unknown inputs. Although the inputs are com-
monly supposed to be known and are usually used to control the studied system, however
there exists as well other cases, such as observer design for time-delay systems, in which
the inputs can be unknown ([144, 48, 99, 167]). Moreover, some proposed unknown inputs
observer design methods do depend on the known delay, which should be identified in ad-
vance. Concerning the delay identification problem, up to now, various techniques have been
proposed, such as identification by using variable structure observers [51], modified least
squares techniques [138], convolution approach [14], algebraic fast identification technique
[15] as initiated in [66], and so on (see [51] for additional references). Note that most of
the papers on identification in presence of delays concern linear models. Another source of
complexity comes from the presence of feedback loops involving the delays. Indeed, when
the delay appears only on the inputs or outputs, the system has the finite dimension. When
the delays are involved in a closed-loop manner, the resulting model has delayed states and
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become a functional differential equation, which has the infinite dimension [140]. Motivated
by this requirement, the delay identification problem for nonlinear time-delay systems with
unknown inputs will be investigated as well in this part.

After the analysis of observability, we will focus on the unknown input observer design
problem for time-delay system. In fact, this problem for linear systems without delays has
been already solved in [22, 48, 167, 81, 104, 161, 78]. It becomes more complicated when
the studied system involves delays, which might appear in the state, in the input and in the
output. For this issue, different techniques have been proposed in the literature, such as
infinite dimensional approach [142], polynomial approach based on the ring theory [145, 55],
Lyapunov function based on LMI [43, 147] and so on.

More precisely, [59] proposed an unknown input observer with dynamic gain for linear
systems with commensurate delays in state, input and output variables, while the output was
not affected by the unknown inputs. Inspired by the technique of output injection [103], [83]
solved this problem by transforming the studied system into a higher dimensional observer
canonical form with delayed output injection. In [43, 44], the unknown input observer was
designed for the systems involving only one delay in the state, and no delay appears in the
input and output. The other observers for some classes of time-delay systems can be found
in [40, 146, 69] and the references therein.

In summary, Part III presents our recent results on observability analysis and observer
design for time-delay systems, which are listed as follows:

• Firstly, for the linear time-delay system whose model and output could be both affected
by the unknown inputs, we introduced the Unknown Input Observability (UIO), Back-
ward UIO and Forward UIO concepts. For each definition of observability, we obtain
sufficient conditions that can be verified by using some matrices depending on the
original system parameters. The established condition for the unknown input observ-
ability turns out to be a generalization of the already known condition for systems with
unknown inputs, but without delays (in that case such condition is also a necessary
one), and also it is a generalization of the known strongly observable condition for
linear systems with commensurable delays, but without unknown inputs.

• Secondly, concerning nonlinear time-delay systems, by using the framework of non-
commutative rings, we deduce necessary and sufficient conditions for identifying
the delay in two different cases: dependent outputs over the non-commutative rings,
and then independent ones. Also necessary and sufficient conditions of causal and
non-causal observability for nonlinear time-delay systems with unknown inputs are
studied;

• The last result of this part is to investigate an unknown input observer design for a large
class of linear systems with unknown inputs and commensurate delays. We propose a
Luenberger-like observer by involving only the past and actual values of the system
output. The required conditions for the proposed observer are considerably relaxed
in the sense that they coincide with the necessary and sufficient conditions for the
unknown input observer design of linear systems without delays.



Chapter 13

Linear Time-Delay System

As we have pointed out that, the majority of the existing works on observability analysis is
focused on time delay systems whose outputs are not affected by unknown inputs. However,
this situation might exist in some practical applications and this motivates this work, published
in [J5]. Here, we deal with linear time-delay systems whose delays are commensurable. We
consider that delays may appear in the state, input, and output. The aim is searching for some
conditions allowing for the reconstruction of the entire state vector using backward, actual,
and/or forward output information.

13.1 Notations
The method we used to analyze the observability for linear time-delay systems with unknown
inputs is based on the polynomial ring. The following recalls some basic notations which are
widely used by using this method.

Denote R as the field of real numbers, then introduce the delay operator δ : x(t) →
x(t −h) with δ kx(t) = x(t −kh), k ∈N0. Let R [δ ] be the polynomial ring of δ over the field
R, i.e. each element a(δ ) ∈ R[δ ] can be written as follows:

a(δ ) =
da

∑
i=0

aiδ
i with ai ∈ R

where da is the maximum degree of a(δ ), noted as da = degδ a(δ ). For any a(δ ) and
b(δ ) ∈ R[δ ], the additional and multiplicative operations are defined as usual:

a(δ )+b(δ ) = ∑
max{da,db}
i=0 (ai +bi)δ

i

a(δ )b(δ ) = ∑
da
i=0 ∑

db
j=0 aib jδ

i+ j

from which it is obvious that R[δ ] is a commutative ring.
Rn [δ ] is the R [δ ]-module whose elements are the vectors of dimension n and whose

entries are polynomials. By Rq×s [δ ] we denote the set of matrices of dimension q× s, whose
entries are in R [δ ]. For f (δ ), a polynomial of R [δ ], deg f (δ ) is the degree of f (δ ). For
a matrix M (δ ), degM (δ ) (the degree of M (δ )) is defined as the maximum degree of all
the entries mi j (δ ) of M (δ ). detM (δ ) is the determinant of this matrix, and rankR[δ ]M (δ )
means the rank of the matrix M (δ ) over R [δ ]. For a matrix M (δ ), rankR[δ ]M (δ ) means
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the rank of the matrix M (δ ) over R [δ ]. M(δ ) ∼ N(δ ) means the similarity between two
polynomial matrices M(δ ) and N(δ ) over R[δ ], i.e. there exist two unimodular matrices
U1(δ ) and U2(δ ) over R[δ ] such that M(δ ) =U1(δ )N(δ )U2(δ ). The acronym for greatest
common divisor is gcd.

Using the same methodology, we can introduce the forward time-shift operator as δ−1 :
x(t)→ x(t +h). Then the Laurent polynomial ring is denoted as R

[
δ ,δ−1]. It is obvious

that R
[
δ ,δ−1] contains R [δ ].

13.2 Problem statement and definitions
We will deal with the following class of linear systems with commensurate delays

ẋ(t) =
ka
∑

i=0
Aix(t − ih)+

kb
∑

i=0
Biu(t − ih)

y(t) =
kc
∑

i=0
Cix(t − ih)+

kd
∑

i=0
Diu(t − ih)

(13.1)

where the state vector x(t) ∈ Rn, the system output vector y(t) ∈ Rp, and the unknown
input vector u(t) ∈ Rm, the initial condition ϕ (t) is a piecewise continuous function ϕ (t) :
[−kh,0]→ Rn (k = max{ka,kb,kc,kd}); thereby x(t) = ϕ (t) on [−kh,0]. Ai, Bi, Ci, and Di
are matrices of appropriate dimension with entries in R.

By using the delay operator (backward time-shift operator) δ , system (13.1) may be
represented in the following compact form:

ẋ(t) = A(δ )x(t)+B(δ )u(t)
y(t) = C (δ )x(t)+D(δ )u(t)

(13.2)

where A(δ ), B(δ ), C (δ ), and D(δ ) are matrices over the polynomial ring R [δ ], defined as

A(δ ) :=
ka
∑

i=0
Aiδ

i, B(δ ) :=
kb
∑

i=0
Biδ

i, C (δ ) :=
kc
∑

i=0
Ciδ

i, and D(δ ) :=
kd
∑

i=0
Diδ

i. As for x(t;ϕ,u),

we mean the solution of the delay differential equation of system (13.1) with the initial
condition equal to ϕ , and the input vector equal to w. Analogously, we define y(t;ϕ,u) :=
C (δ )x(t;ϕ,u)+D(δ )u(t), that is, to be the system output of (13.1) when x(t) = x(t;ϕ,u).

Practically, what we search for is to find out conditions allowing for the estimation of x(t).
To tackle the problem in a more formal way, we use the following observability definitions.

Definition 13.1 (Unknown Input Observability) System (13.1) is called unknown input
observable (UIO) on the interval [t1, t2] if there exist t ′1 and t ′2 (t ′1 < t ′2) such that, for all input
u and every initial condition ϕ ,

y(t;ϕ,u)= 0 for all t ∈
[
t ′1, t

′
2
]

implies x(t;ϕ,u)= 0 for t ∈ [t1, t2]

Definition 13.2 (Backward UIO) System (13.1) is said to be Backward UIO (BUIO) on
[t1, t2] if it is UIO with t1 > t ′2.

Definition 13.3 (Forward UIO) System (13.1) is said to be Forward UIO (FUIO) on [t1, t2]
if it is UIO with t ′1 > t2.
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Remark 13.4 These definitions are essentially formulated following the observability defini-
tions given in [92] for linear systems. Basically, UIO considers the case when the state vector
can be reconstructed using past, actual, and future values of the system output. As for BUIO,
it is related with the case when only actual and past values of the system output are needed
for the actual state reconstruction. Finally, FUIO defines a property which theoretically
allows for the reconstruction of the actual state vector using only actual and future values of
the system output.

Obviously, either BUIO or FUIO implies UIO. It should be noted that BUIO and FUIO
do not exclude each other. For instance, the system

ẋ1 = x2, ẋ2 = x1 +δx2; y1 = δx1, y2 = x2

is BUIO on [t1, t1 +h] (t1 ≥ h) since, for each τ ∈ [t1, t1 +h], y(t) = 0 on [t1 −h,τ] implies
x(τ) = 0. Moreover, it is FUIO on [t1, t1 +h], since, y(t) = 0 on [τ, t1 +2h] implies x(τ) = 0.

13.3 Basic results

The study of the observability for linear systems (without delays) has been successfully
tackled by using geometric methods, in particular invariant subspaces. For the time delay
case such methods cannot be followed straightforwardly, but still many of those ideas can be
borrowed (see [40], [41]).

Let P(δ ) be a matrix of q× s dimension with rank equal to r (clearly r ≤ min{q,s}).
We know there exists an invertible matrix T (δ ) over R [δ ] (representing elementary row
operations) such that P(δ ) is put into (column) Hermite form. Thus, we have that

T (δ )P(δ ) =

[
P1 (δ )

0

]

where P1 (δ ) is of r × s dimension, and rankR[δ ]P1 = r. Also, there exist two invertible
matrices U (δ ) and V (δ ) over R [δ ] (representing elementary row and column operations,
respectively) such that P(δ ) is reduced to its Smith form, i.e.,

U (δ )P(δ )V (δ ) =

[
diag(ψ1 (δ ) · · ·ψr (δ )) 0

0 0

]

where the {ψi (δ )}’s are monic nonzero polynomials satisfying

ψi (δ ) |ψi+1 (δ ) and di (δ ) = di−1 (δ )ψi (δ )

where di (δ ) is the gcd of all i× i minors of P(δ ) (d0 = 1). The {ψi (δ )}’s are called invariant
factors, and the {di (δ )}’s determinant divisors.
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Following the ideas of [151] and [123], let us define {∆k (δ )} matrices generated by the
following algorithm,

∆0 ≜ 0, G0 (δ )≜C (δ ) , F0 (δ )≜ D(δ )

Sk (δ )≜

[
∆k (δ )B(δ )

Fk (δ )

]
, k ≥ 0[

Fk+1 (δ ) Gk+1 (δ )
0 ∆k+1 (δ )

]
≜ Tk (δ )

[
∆k (δ )B(δ ) ∆k (δ )A(δ )

Fk (δ ) Gk (δ )

] (13.3)

where Tk (δ ) is an invertible matrix over R [δ ] that transforms Sk into its Hermite form, and
∆0 is of dimension 1 by n. Then, {Mk (δ )} matrices are defined as follows,

M0 (δ )≜ N0 (δ )≜ ∆0, Nk+1 (δ )≜

[
Nk (δ )

∆k+1 (δ )

]
, for k ≥ 0[

Mk+1 (δ )

0

]
≜

[
diag

(
ψ

k+1
1 (δ ) , . . . ,ψk+1

rk+1
(δ )
)

0

0 0

]
=Uk+1 (δ )Nk+1 (δ )Vk+1 (δ )

(13.4)

with Uk (δ ) and Vk (δ ) being invertible matrices over R [δ ] that transform Nk to its Smith
form. It is worth noting that, by construction, Fk (δ ) and Mk (δ ) matrices have both full row
rank, and Mk (δ ) has always n columns.

It is intuitively clear that since {Tk}, {Uk}, and {Vk} are invertible over R [δ ], then the
invariant factors of {Nk}, and so {Mk} matrices, should not depend on the particular selection
of those former invertible matrices, which was guaranteed by the following lemma.

Lemma 13.5 {Mk} matrices given by (13.3)-(13.4) are independent of the choice of {Tk},
{Uk}, and {Vk}.

Lemma 13.6 By using the notation dk
j (δ ) as the j-th determinant divisor of Mk (δ ) (gener-

ated by (13.3)-(13.4)), we obtain dk+1
j (δ ) | dk

j (δ ), for every j ≤ rankR[δ ]Mk (δ ).

Lemma 13.7 Mk+1 (δ ) = Mk (δ ) if, and only if, ∆k+1 (δ ) = P(δ )Nk (δ ) for some matrix
P(δ ).

Theorem 13.8 If Mk+1 (δ ) = Mk (δ ), then Mk+i (δ ) = Mk (δ ) for all i ≥ 0.

Theorem 13.9 After a finite number of steps, let’s say k∗, the algorithm (13.3)-(13.4) con-
verges, i.e., there exists a least integer k∗ such that Mk∗+1 (δ ) = Mk∗ (δ ). Furthermore, k∗ is
independent of the choice of {Tk}, {Uk}, and {Vk} matrices used in (13.3)-(13.4).

Next corollary is a direct consequence of the previous results.

Corollary 13.10 Let k∗ be the least integer k such that Mk+1 = Mk, then for all i ≥ 0,
Mk∗+i = Mk∗ .
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13.4 State reconstruction

From now it is possible to give sufficient observability conditions. In the way to arrive

to such conditions we will draw the connection of the recursive algorithm used to obtain

∆k (δ ) and a way that may be used for the reconstruction of the state vector. Let us define

ŷ1 (t) = T0 (δ )

[
0

y(t)

]
. Thus, from (13.2) and (13.3) we obtain

ŷ1 (t)≜

[
ŷ1

1 (t)
ŷ1

2 (t)

]
=

[
G1 (δ )x(t)+F1 (δ )u(t)

∆1 (δ )x(t)

]
(13.5)

From here, we will define a chain of vectors
{

ŷi (t)
}

. Thus, ŷi
1 (t) and ŷi

2 (t) will be the upper
and lower subvectors of ŷi (t), respectively, whose dimension will be implicitly defined.

We have already obtained a virtual output ŷ1
2 (t) without the influence of the unknown

input u(t). Let us define α1 = deg∆1 (δ ), then, for t ≥ α1h, ŷ1
2 (t) is differentiable. Hence,

according to (13.5) and (13.2), we obtain the following equation for t ≥ α1,

d
dt

ŷ1
2 (t) =

d
dt

∆1 (δ )x(t) = ∆1 (δ )A(δ )x(t)+∆1 (δ )B(δ )u(t) (13.6)

Now, let us generate an extended vector ξ1 (t) ≜

[
d
dt ŷ1

2 (t)
ŷ1

1 (t)

]
. Thus, again, we define

ŷ2 (t) = T1 (δ )ξ1 (t), t ≥ α1h. In view of (13.3) and (13.6), we obtain the following identity,

ŷ2 (t)≜

[
ŷ2

1 (t)
ŷ2

2 (t)

]
=

[
G2 (δ )x(t)+F2 (δ )u(t)

∆2 (δ )x(t)

]

Differentiation of ŷ2
2 (t) gives, for t ≥ hmax(α1,α2) (where α2 = deg∆2 (δ )),

d
dt

ŷ2
2 (t) = ∆2 (δ )A(δ )x(t)+∆2 (δ )B(δ )u(t)

Likewise, we may define a second extended vector ξ2 (t) ≜

[
d
dt ŷ2

2 (t)
ŷ2

1 (t)

]
. After defining

ŷ3 (t) ≜ T2 (δ )ξ2 (t), we obtain the identities ŷ3
1 (t) = G3 (δ )x(t)+F3 (δ )u(t) and ŷ3

2 (t) =
∆3 (δ )x(t).
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The previous procedure allows us for writing the following expressions, for k ≥ 1 and
t ≥ h max

1≤i≤k−1
deg∆i (δ ),

ξ0 (t)≜

[
0

y(t)

]
, ξk (t)≜

[
d
dt ŷk

2 (t)
ŷk

1 (t)

]

ŷk (t)≜

[
ŷk

1 (t)
ŷk

2 (t)

]
≜ Tk−1 (δ )ξk−1 (t)

(13.7)

Thus, we obtain the identities

∆k (δ )x(t) = ŷk
2 (t) , k ≥ 1 (13.8)

Hence, we define Y (t) as

Y (t)≜


ŷ1

2 (t)
ŷ2

2 (t)
...

ŷk∗
2 (t)


With the definition t∗ = h max

1≤i≤k∗−1
deg∆i (δ ), by (13.8) we have that

Nk∗ (δ )x(t) = Y (t) for all t ≥ t∗ (13.9)

If we enlarge the case by allowing forward time-shift operator, then the following
proposition is an obvious consequence of properties of R

[
δ ,δ−1].

Proposition 13.11 Mk∗ (δ ) matrix has an inverse on R
[
δ ,δ−1] if, and only if, Mk∗ (δ ) has

n invariant factors, all of them of the form aδ j, with a ∈ R̸=0 and j ∈ N0.

Let us define t∗1 as follows

t∗1 = h×deg
([

Vk∗M−1
k∗ 0

]
Uk∗
)
+ t∗ (13.10)

Theorem 13.12 The vector x(t) can be reconstructed in finite time, for any t > t∗1 , if Mk∗ (δ )
has n invariant factors of the form aδ j, where a ∈ R ̸=0, j ∈ N0. The formula to reconstruct
x(t) is

x(t) =
[

Vk∗M−1
k∗ 0

]
Uk∗Y (t) , t > t∗1 (13.11)

Furthermore, the i-th entry of x(t) is given by an expression of the form:

xi (t) = ∑
k, j

qk, jy
( j)
k (t) (13.12)

where y(i)k (t) is the i-th derivative of the k-th entry of y(t) and 0 ̸= qi
j,k ∈ R

[
δ ,δ−1].
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Remark 13.13 For the trivial case h = 0, the condition that Mk∗ is invertible over R is also
a necessary condition for the system to be UIO (known it as strong observability, see, e.g.
[123] and [160]).

Remark 13.14 For the case when B(δ ) = 0 and D(δ ) = 0, the condition that Mk∗ is invert-

ible over R [δ ] is equivalent to
(
(C (δ ))T ,(C (δ )A(δ ))T , · · · ,

(
C (δ )An−1 (δ )

)T
)T

is left
invertible over R [δ ]. This condition is known as strong observability also (see, [106]).

Thereby, we suggest a definition of strong observability (as a generalization) for the
systems considered in this work. We consider R

[
δ ,δ−1] as the ring over which the matrix

(given below) may be invertible, this allows to have a less restrictive characterization of the
observability.

Definition 13.15 System (13.1) is said to be strongly observable (SO) if, and only if, Mk∗

is invertible over R
[
δ ,δ−1], i.e. iff Mk∗ has n invariant factors all of them of the form aδ j

(a ∈ R̸=0, j ∈ N0).

Now, we can deduce easily sufficient conditions for the UIO, BUIO and FUIO.

Corollary 13.16 If system (13.1) is SO then it is UIO on [t∗1 , t2], for all t2 > t∗1 .

Corollary 13.17 If system (13.1) is SO and, for all i ∈ 1,n, every polynomial q j,i of (13.12)
belongs to R [δ ], then (13.1) is BUIO on [t∗1 , t2], for every t2 > t∗1 .

Proposition 13.18 Let us assume that system (13.1) is SO. Then every polynomial q j,i in
(13.12) belongs to R [δ ] if, and only if, detMk∗ = 1.

Corollary 13.19 Assume that system (13.1) is SO. Then it is BUIO on [t∗1 , t2], for all t2 > t∗1 ,
if, and only if, detMk∗ = 1.

As for FUIO, we have the following corollary which characterizes it, provided (13.1) is
SO.

Corollary 13.20 If system (13.1) is SO and, for all i ∈ 1,n, every polynomial q j,i of (13.12)
belongs to R

[
δ−1], then (13.1) is FUIO on [t∗1 , t2], for all t2 > t∗1 .

13.5 Examples
Example 13.21 Let us consider the following example:

A(δ ) =


1 δ δ 0 0

−δ 2 0 δ 0 −δ

δ 1 −δ 2 −1+δ 1−δ +δ 3

0 0 −1 0 0
δ −δ 2 0 −1+δ 2 1−δ

 , B(δ ) =


−δ 0
0 −δ

1+δ 1
1 0
0 1−δ


C (δ ) =

 1 0 0 0 0
0 1 0 0 0
0 0 0 0 δ

 , D(δ ) =

 0 0
1 0

−1+δ 0


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According to (13.3) and (13.4), we have that

T0 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 1−δ 1

 , ∆1 =

 1 0 0 0 0
0 0 0 0 0
0 1−δ 0 0 δ

 , M1 =

[
1 0 0 0 0
0 1 0 0 0

]

Following with the described procedure we obtain the matrices

T1 =

 0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 δ

, ∆2 =

 0 0 0 0 0
0 0 0 2δ 0
1 2δ δ 0 0

, M2 =

 1 0 0 0 0
0 1 0 0 0
0 0 δ 0 0
0 0 0 δ 0


and

T2 =


0 0 0 1
0 0 −1

2
1
2δ 2

0 1
2 0 −δ

1 0 0 0

 , ∆3 =

[
0 −δ −δ 0 0
0 0 0 0 0

]
, M3 = M4 = diag

(
1,1,δ ,δ ,δ 2)

Thus, in this case k∗ = 3, and the system is UIO since all the invariant factors of M3 belong
to R

[
δ ,δ−1]. Explicitly, we have that the state vector can be expressed as

x1 = y1, x2 =−δ
−1y1 +δ

−1ẏ1 +
1
2
(
1−δ

−1) ẏ2 −
1
2

δ
−1ẏ3

x3 = δ
−1y1 + y2 −δ

−1ẏ1 −
1
2
(
1−δ

−1) ẏ2 +
1
2

δ
−1ẏ3 −

1
2
(
1−δ

−1) ÿ2 +
1
2

δ
−1ÿ3

x4 =
1
2
(
1−δ

−1) ẏ2 −
1
2

δ
−1ẏ3

x5 =
(
δ
−2 −δ

−1)y1 +
(
δ
−1 −1

)
y2 +δ

−1y3 +
(
δ
−1 −δ

−2) ẏ1 +
1
2
(
1−δ

−1)2
ẏ2

+
1
2
(
δ
−2 −δ

−1) ẏ3

Therefore, according to Corollary 13.20, the system is FUIO.

Example 13.22 Now, let us consider that the matrices of the system (13.2) are the following,

A =

 0 −1 1
−1 δ 0
1 0 1

 , B =

 0 0
0 0
0 δ

 , C =

(
δ 0 0
0 1 0

)
, D =

(
−2δ 0

0 0

)
In this example, we have that M1 has an invariant factor equal to 1, M2 has the invariant
factors {1,1}, and the invariant factors of M3 are {1,1,1}. Hence the system is SO and
furthermore, it is BUIO also, that is the state vector can be reconstructed using actual and
past values of the system output. Indeed, it is easy to verify that the state variables can be
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expressed as

x1 (t) = −ẏ2 (t)+δy2 (t) , x2 (t) = y2 (t)
x3 (t) = −ÿ2 (t)+δ ẏ2 (t)+ y2 (t)

Example 13.23 Finally let us consider the following example:

A =

 0 1 0
0 δ 1
δ 0 0

 , B = 0, C =

[
1 0 0
0 1 0

]
, D =

[
1
δ

]

In this case M3 = diag(1,δ ,δ ), so the system is UIO, however, it is neither BUIO nor FUIO.
As we can see, x depends on past, actual, and future values of the system output:

x1 =−y1 +δ
−1ẏ2, x2 =−ẏ1 +δ

−1ÿ2, and x3 =−δy1 + ẏ2

13.6 Conclusion
We have tackled the observability of linear commensurable time-delay systems with unknown
input using three different definitions. Essentially, the first definition (UIO) deals with the
possibility of reconstructing the state vector using output information (using past, actual,
and/or future values), the second definition (BUIO) is related with the state reconstruction
using just actual and past output information. And the third definition (FUIO) is about
the state reconstruction using future values of the system output. We have given sufficient
conditions allowing for the system to be UIO, BUIO, or FUIO, respectively. As for the
conditions given for the UIO we have seen that the condition obtained includes the already
known conditions for systems with delays without unknown inputs and for the case of linear
systems with unknown inputs without delays. However, when treating the observability
problem for nonlinear time-delay system with unknown input, the generalization of the
current result is not trivial, since, as we can see in the next chapter, the polynomial ring is no
longer commutative.





Chapter 14

Nonlinear Time-Delay System

This chapter will analyze the observability for nonlinear time-delay system with unknown
input. Moreover, concerning nonlinear time-delay system, since many results have been
reported for the purpose of stability and observability analysis, by assuming that the delay of
the studied systems is known, it makes the delay identification be one of the most important
topics in the field of time-delay systems, and this issue will be studied as well in this chapter.

Our analysis will be still based on the theory of ring, which however becomes non-
commutative when treating nonlinear time-delay system. Therefore, we will adopt the
methodology proposed in [124] to study those systems. The presented results in this chapter
have been published in [J13, J18, C30, C35, C39]. As usual, the following will recall some
basic notations of the theory of non-commutative rings.

14.1 Notations
Consider the following nonlinear time-delay system with commensurate delay:

ẋ = f (x(t − iτ))+∑
s
j=0 g j(x(t − iτ))u(t − jτ),

y = h(x(t − iτ)) = [h1(x(t − iτ)), . . . ,hp(x(t − iτ))]T ,
x(t) = ψ(t), u(t) = ϕ(t), t ∈ [−sτ,0],

(14.1)

where the constant delays iτ are associated to the finite set of integers i ∈ S− = {0,1, . . . ,s};
x ∈ W ⊂ Rn refers to the state variables; u = [u1, . . . ,um]

T ∈ Rm is the unknown input;
y ∈ Rp is the measurable output; f , g j and h are meromorphic functions1; f (x(t − iτ)) =
f (x,x(t − τ), . . . ,x(t − sτ)); ψ : [−sτ,0] → Rn and ϕ : [−sτ,0] → Rm denote unknown
continuous functions of initial conditions. It is assumed that, for initial conditions ψ and ϕ ,
system (14.1) admits a unique solution.

Denote K as the field of meromorphic functions of a finite number of the variables from
{x j(t − iτ), j ∈ [1,n], i ∈ S−}. Like the linear time-delay system, we can introduce the delay
operator δ , which means, for i ∈ Z+:

δ
i
ξ (t) = ξ (t − iτ), ξ (t) ∈ K , (14.2)

1 means quotients of convergent power series with real coefficients [39, 165].
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δ i (a(t)ξ (t)) = δ ia(t)δ iξ (t) = a(t − iτ)ξ (t − iτ). (14.3)

Then, denote K (δ ] as the set of polynomials in δ over K , of the form

a(δ ] = a0(t)+a1(t)δ + · · ·+ara(t)δ
ra (14.4)

where ai(t) ∈ K and ra ∈ Z+. The addition in K (δ ] is defined as usual, but the multiplica-
tion is given as:

a(δ ]b(δ ] =
ra+rb

∑
k=0

i≤ra, j≤rb

∑
i+ j=k

ai(t)b j(t − iτ)δ k. (14.5)

Considering (14.1) without input, differentiation of an output component h j(x(t − iτ))
with respect to t is defined as follows:

ḣ j(x(t − iτ)) =
s

∑
i=0

∂h j

∂x(t − iτ)
δ

i f .

Thanks to the definition of K (δ ], (14.1) can be rewritten in a more compact form:
ẋ = f (x,δ )+G(x,δ )u = f (x,δ )+∑

m
i=1 Gi(x,δ )ui(t)

y = h(x,δ )
x(t) = ψ(t), u(t) = ϕ(t), t ∈ [−sτ,0],

(14.6)

where f (x,δ ) = f (x(t − iτ)) and h(x,δ ) = h(x(t − iτ)), with entries belonging to K , u =
u(t), and G(x,δ ) = [G1, · · · ,Gm] with Gi(x,δ ) = ∑

s
l=0 gl

iδ
l .

With the standard differential operator d, denote by M the left module over K (δ ]:

M = spanK (δ ]{dξ , ξ ∈ K } (14.7)

where K (δ ] acts on dξ according to (14.2) and (14.3).
Unlike the polynomial ring defined in the last chapter for linear time-delay system, the

polynomial ring K (δ ] is non-commutative, however it is proved that it is a left Ore ring
[87, 165], which enables us to define the rank of a left module over K (δ ].

Define the vector space E over K :

E = spanK {dξ : ξ ∈ K }

E is the set of linear combinations of a finite number of elements from dx j(t − iτ) with row
vector coefficients in K . Since the delay operator δ and the standard differential operator
are commutative, the one-form of ω ∈ M can be written as: ω = ∑

n
j=1 a j(δ ]dx j, where

a(δ ] ∈ K (δ ]. For a given vector field β = ∑
n
j=1 b j(δ ]

∂

∂x j
with b j(δ ] ∈ K (δ ], the inner

product of ω and β is defined as follows:

ωβ =
n

∑
j=1

a j(δ ]b j(δ ] ∈ K (δ ].
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For 0 ≤ j ≤ s, let f (x(t − jτ)) and h(x(t − jτ)) respectively be an n and p dimensional
vector with entries fr ∈ K for 1 ≤ r ≤ n and hi ∈ K for 1 ≤ i ≤ p. Let

∂hi

∂x
=

[
∂hi

∂x1
, · · · , ∂hi

∂xn

]
∈ K 1×n(δ ], (14.8)

where, for 1 ≤ r ≤ n:
∂hi

∂xr
=

s

∑
j=0

∂hi

∂xr(t − jτ)
δ

j ∈ K (δ ].

Then, the Lie derivative for nonlinear systems without delays can be extended to nonlinear
time-delay systems in the framework of [165] as follows

L f hi =
∂hi

∂x
( f ) =

n

∑
r=1

s

∑
j=0

∂hi

∂xr(t − jτ)
δ

j ( fr) (14.9)

and in the same way one can define LGihi.

14.2 Definitions and preliminary result
Based on the above notations, the following definitions are given:

Definition 14.1 (Change of coordinates) [118] z = φ(δ ,x) ∈ K n×1 is a causal change of
coordinates over K for the system (14.1) if there locally exist a function φ−1 ∈ K n×1 and
some constants c1, · · · ,cn ∈ N such that diag{δ ci}x = φ−1(δ ,z). The change of coordinates
is bicausal over K if max{ci}= 0, that is x = φ−1(δ ,z).

Definition 14.2 (Relative degree) System (14.6) has the relative degree (ν1, · · · ,νp) in an
open set W ⊆ Rn if the following conditions are satisfied for 1 ≤ i ≤ p:

1. for all x ∈W, LG jL
r
f hi(x) = 0 for all 1 ≤ j ≤ m and 0 ≤ r < νi −1;

2. there exists x ∈W such that ∃ j ∈ {1, · · · ,m}, LG jL
νi−1
f hi(x) ̸= 0.

If the first condition is satisfied for all r ≥ 0 and some i ∈ {1, · · · , p}, we set νi = ∞.

Moreover, for system (14.6), one can also define observability indices introduced in [103]
over non-commutative rings. For 1 ≤ k ≤ n, let Fk be the following left module over K (δ ]:

Fk := spanK (δ ]

{
dh,dL f h, · · · ,dLk−1

f h
}
.

It was shown that the filtration of K (δ ]-module satisfies F1 ⊂ F2 ⊂ ·· · ⊂ Fn, then
define d1 = rankK (δ ]F1, and dk = rankK (δ ]Fk − rankK (δ ]Fk−1 for 2 ≤ k ≤ n. Let
ki = card {dk ≥ i,1 ≤ k ≤ n}, then (k1, · · · ,kp) are the observability indices. Reorder, if
necessary, the output components of (14.6) so that

rankK (δ ]{∂h1
∂x , · · · ,

∂Lk1−1
f h1

∂x , · · · , ∂hp
∂x , · · · ,

∂L
kp−1
f hp

∂x }= k1 + · · ·+ kp.
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Based on the above definitions, let us define the following notations, which will be used
in the sequel. For 1 ≤ i ≤ p, denote by ki the observability indices, νi the relative degree for
yi of (14.6), and

ρi = min{νi,ki} .

Without loss of generality, suppose ∑
p
i=1 ρi = j, thus {dh1, · · · ,dLρ1−1

f h1, · · · , dhp, · · · ,dLρp−1
f hp}

are j linearly independent vectors over K (δ ]. Then note:

Φ = {dh1, · · · ,dLρ1−1
f h1, · · · ,dhp, · · · ,dLρp−1

f hp} (14.10)

and
£ = spanR[δ ]

{
h1, · · · ,Lρ1−1

f h1, · · · ,hp, · · · ,L
ρp−1
f hp

}
, (14.11)

Let £(δ ] be the set of polynomials in δ with coefficients over £. The module spanned by
element of Φ over £(δ ] is defined as follows:

Ω = span£(δ ] {ξ ,ξ ∈ Φ} . (14.12)

Define
G = spanR[δ ]{G1, . . . ,Gm},

where Gi is given in (14.6), and its left annihilator:

G⊥ = span£(δ ]{ω ∈ M | ωβ = 0,∀β ∈ G }, (14.13)

where M is defined in (14.7).
After having defined the relative degree and observability indices via the extended Lie

derivative for nonlinear time-delay systems in the framework of non-commutative rings, now
an observable canonical form can be derived.

Theorem 14.3 Consider the system (14.6) with outputs (y1, · · · ,yp) and the corresponding
(ρ1, · · · ,ρp) with ρi = min{ki,νi} where ki and νi are the observability indices and the
relative degree indices, respectively. There exists a change of coordinates φ(x,δ ) ∈ K n×1,
such that (14.6) is transformed into the following form:

żi, j = zi, j+1 (14.14)

żi,ρi =Vi(x,δ ) = Lρi
f hi(x,δ )+

m

∑
j=1

LG jL
ρi−1
f hi(x,δ )u j (14.15)

yi =Cizi = zi,1 (14.16)

ξ̇ = α(z,ξ ,δ )+β (z,ξ ,δ )u (14.17)

where zi =
(
zi,1, · · · ,zi,ρi

)T
=
(

hi, · · · ,Lρi−1
f hi

)T
∈K ρi×1, α ∈K µ×1,β ∈K µ×1(δ ] with µ =

n−
p
∑
j=1

ρ j and Ci = (1,0, · · · ,0) ∈ R1×ρi . Moreover, if ki < νi , one has Vi(x,δ ) = Lρi
f hi =

Lki
f hi.
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Based on Theorem 14.3, noting ρi = min{νi,ki} for 1 ≤ i ≤ p where the ki represent
the observability indices and νi stands for the relative degree of yi for (14.6), the following
equality can be derived:

H (x,δ ) = Ψ(x,δ )+Γ(x,δ )u, (14.18)

with
H (x,δ ) =

(
h(ρ1)

1 , · · · ,h(ρp)
p

)T
, Ψ(x,δ ) =

(
Lρ1

f h1, · · · ,L
ρp
f hp

)T
,

and

Γ(x,δ ) =


LG1Lρ1−1

f h1 · · · LGmLρ1−1
f h1

... . . . ...

LG1Lρp−1
f hp · · · LGmLρp−1

f hp

 , (14.19)

where H (x,δ )∈K p×1, Ψ(x,δ )∈K p×1 and Γ(x,δ )∈K p×m(δ ]. Assume that rankK (δ ]Γ=

m. Since Γ ∈ K p×m(δ ] with m ≤ p, according to Lemma 4 in [117], there exists a matrix
Ξ ∈ K p×p(δ ] such that:

ΞΓ =
[

Γ̄T ,0
]T

, (14.20)

where Γ̄ ∈ K m×m(δ ] has full rank m. With the compact equation (14.18), identifiability and
observability will be analyzed separately in Sections 14.3 and 14.4.

14.3 Identifiability
In order to study the delay identifiability of (14.6), let us firstly introduce the following
definition of the identifiability of time delay, which is an adaptation of Definition 2 in [3].

Definition 14.4 For system (14.6), an equation with delays, containing only the output and
a finite number of its derivatives:

α(h, ḣ . . . ,h(k),δ ) = 0,k ∈ Z+

is said to be an output delay equation (of order k). Moreover, this equation is said to be an
output delay-identifiable equation for (14.6) if it cannot be written as α(h, ḣ . . . ,h(k),δ ) =
a(δ ]α̃(h, ḣ . . . ,h(k)) with a(δ ] ∈ K (δ ].

As stated in [3], if there exists an output delay-identifiable equation for (14.6) (i.e.
involving the delay in an essential way), then the delay can be identified for almost all y
by numerically finding zeros of such an equation. For this issue, the interested reader can
refer to [9] and the references therein. Thus, delay identification for (14.6) boils down to the
research of such an output delay equation.

14.3.1 Dependent outputs over K (δ ]

Let us firstly consider the simplest case for identifying the delay for (14.6), i.e., from only
the outputs of (14.6), which is stated in the following result.
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Theorem 14.5 There exists an output delay-identifiable equation (of order 0) α(h,δ ) for
(14.6) if and only if

rankK (δ ]
∂h
∂x

< rankK
∂h
∂x

. (14.21)

Example 14.6 Consider the following dynamical system:
ẋ = f (x,u,δ ),
y1 = x1,
y2 = x1δx1 + x2

1.
(14.22)

It can be seen that
∂h
∂x

=

(
1, 0

δx1 +2x1 + x1δ , 0

)
which yields rankK (δ ]

∂h
∂x = 1 and rankK

∂h
∂x = 2. Thus Theorem 14.5 is satisfied, and the

delay of system (14.22) can be identified.
In fact, a straightforward calculation gives y2 = y1δy1 +y2

1, which permits to identify the
delay δ by applying an algorithm to detect zero-crossing when varying δ .

Inequality (14.21) implies that the outputs of (14.6) are dependent over K (δ ]. Theorem
14.5 can be seen as a special case of Theorem 2 in [3]. However, as it will be shown in
the next section, this condition is not necessary for the case where the output of (14.6) is
independent over K (δ ].

14.3.2 Independent outputs over K (δ ]

Theorem 14.5 has analyzed the case where the outputs of (14.6) are dependent over K (δ ].
In the contrary case (independence over K (δ ]), the dynamics of system (14.6) have to be
involved in order to deduce some output delay equations, which might be used to identify the
delay. In the following, it will be firstly given the sufficient condition for the existence of a
delay output equation for system (14.6) when the output is independent over K (δ ]. Then a
necessary and sufficient condition will be provided.

For this, denote Q= [q1, · · · ,qp] as 1× p vector with q j ∈K (δ ] for 1≤ j ≤ p. According
to (14.18), one has:

QH = Q(Ψ+Γu) (14.23)

where H =
[
y(ρ1)

1 , · · · ,y(ρp)
p

]T
.

In what follows, we will give sufficient conditions yielding QΓ = 0, which implies that

Q(H −Ψ) = 0 (14.24)

is exactly the output delay equation, since it contains only the output, its derivatives and
delays.

Theorem 14.7 There exists an output delay equation for (14.6), if there exists a non zero

ω = ∑
n
c=1 ∑

p
j=1 q j

∂L
ρ j−1
f h j

∂xc
dxc, with q j ∈ K (δ ] for 1 ≤ j ≤ p, such that ω ∈ G⊥ ∩Ω and

ω f ∈ £, where G⊥ is defined in (14.13), Ω in (14.12), and £ in (14.11).
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If, in addition, the deduced output delay equation (14.24) is an output delay-identifiable
equation, i.e. containing the delay δ in an essential way, then the delay of (14.6) can be
identified (at least locally) by detecting zero-crossing of (14.24). The following will give
necessary and sufficient conditions guaranteeing the essential involvement of δ in (14.24).
But before this, let us define:

Y =
(

h1, . . . ,L
ρ1−1
f h1, . . . ,hp, . . . ,L

ρp−1
f hp

)T
,

and denote by K0 ⊂ K the field of meromorphic functions of x, which will be used in the
following theorem (also involving Ψ defined in (14.18)).

Theorem 14.8 The output delay equation (14.24) is an output delay-identifiable equation if
and only if

rankK (δ ]
∂Y

∂x
< rankK

∂{Y ,Ψ}
∂x

(14.25)

or for any element q j of Q ∈ K 1×p(δ ] , ∄a(δ ] ∈ K (δ ] such that

q j = a(δ ]q̄ j, with q̄ j ∈ K0,1 ≤ j ≤ p (14.26)

and

rankK (δ ]
∂Y

∂x
= rankK

∂{Y ,Ψ}
∂x

. (14.27)

Remark 14.9 It is clear that Theorem 14.5 is a special case of Theorem 14.8, since the
output delay-identifiable equation stated in Theorem 14.5 does not contain any derivative of
the output.

In [3], a condition similar to (15.5) of Theorem 14.8 is stated as a necessary and sufficient
condition for delay identification for nonlinear systems with known inputs. However, as we
proved above, in the case of unknown inputs, this condition is sufficient, but not necessary.

14.4 Observability
Similarly to the observability definitions given in [76] and [49] for nonlinear delay-free
systems, it has been given in [118] a definition of observability for nonlinear time-delay
systems. The following gives a more generic definition of observability in the case of systems
with unknown inputs.

Definition 14.10 System (14.6) is locally unknown input observable if the state x(t) can be
expressed as a function of the output and a finite number of its time derivatives with their
backward and forward shifts. A locally observable system is locally backward unknown input
observable if its state can be written as a function of the output and its derivatives with their
backward shifts only. If, however, its state can be written as a function of the output and its
derivatives with their forward shifts only, then it said to be locally forward unknown input
observable.

In the same way, the following definition is given of systems with unknown inputs.
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Definition 14.11 The unknown input u(t) can be locally estimated if it can be written as a
function of the output and a finite number of its time derivatives with backward and forward
shifts. The input can be locally backward (or forward) estimated if u(t) can be expressed as
a function of the output and its time derivatives with backward (or forward) shifts only.

Theorem 14.12 Consider the system (14.6) with outputs (y1, · · · ,yp) and their correspond-
ing (ρ1, · · · ,ρp) with ρi = min{ki,νi} where ki and νi are the observability indices and
the relative degree indices, respectively. Consider Φ and Γ̄ defined in (14.10) and (14.20),
respectively.

If rankK (δ ]Φ = n,, then there exists a change of coordinates φ(x,δ ) such that (14.6) can
be transformed into (14.14-14.17) with dim ξ = 0.

Moreover, if the change of coordinates is locally bicausal over K , then the state x(t)
of (14.6) is locally causally observable; if, in addition, Γ̄ ∈ K m×m(δ ] is unimodular over
K (δ ], then the unknown input u(t) of (14.6) can be locally backward estimated.

For the case where the condition rankK (δ ]Φ = n in Theorem 14.12 is not satisfied, a
constructive algorithm was proposed in [7] to solve this problem for nonlinear systems
without delays. In the following we are going to extend this idea to treat the observation
problem for time-delay systems with unknown inputs. The objective is to generate additional
variables from the available measurement and unaffected by the unknown input such that an
extended canonical form similar to (14.14)-(14.15) can be obtained for the estimation of the
remaining state ξ .

Theorem 14.13 Consider the system (14.6) with outputs y = (y1, · · · ,yp)
T and the corre-

sponding (ρ1, · · · ,ρp) with ρi = min{ki,νi} where ki and νi are the observability indices
and the relative degree indices, respectively. Suppose rankK (δ ]Φ < n where Φ is defined in
(14.10). There exist l new independent outputs over K suitable to the backward estimation
problem if and only if rankK L = l where

L = spanR[δ ]{ω ∈ G⊥∩Ω | ω f /∈ £} (14.28)

with f defined in (14.6), £ defined in (14.11), Ω defined in (14.12) and G⊥ defined in (14.13).
Moreover, the l additional outputs, denoted as ȳi, 1 ≤ i ≤ l, are given by:

ȳi = ωi f mod £

where ωi ∈ L .

Remark 14.14 Theorem 14.13 gives a constructive way to treat the case where rankK (δ ]Φ<
n. Once additional new outputs are deduced according to Theorem 14.13, it enables to
define a new Φ. If rankK (δ ]Φ = n, Theorem 14.12 can then be applied. Otherwise, if
rankK (δ ]Φ < n and if Theorem 14.13 is still valid, then one can still deduce new outputs for
the studied system. Thus a “Check-Extend” procedure is iterated until rankK (δ ]Φ = n is
obtained.
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Like what we did for linear time-delay system, the above result can be also extended to

the case of non-causal observations (i.e. contain the forward operator) of the state and the
unknown inputs. For this, let us introduce the forward time-shift operator δ−1, similarly to

the backward time-shift operator δ defined in Section 14.1:

δ
−1 f (t) = f (t + τ)

and, for i, j ∈ Z+ :

(δ−1)
i
δ

j f (t) = δ
j(δ−1)

i
f (t) = f (t − ( j− i)τ) .

Now, denote by ¯K the field of meromorphic functions of a finite number of variables

from {x j(t − iτ), j ∈ [1,n], i ∈ S} where S = {−s, · · · ,0, · · · ,s} is a finite set of relative
integers. One has K ⊆ ¯K . Denote by ¯K (δ ,δ−1] the set of polynomials of the form:

a(δ ,δ−1] = ārā(δ
−1)

rā + · · ·+ ā1δ−1 +a0(t)+a1(t)δ + · · ·+ara(t)δ
ra, (14.29)

with ai(t) and āi(t) belonging to ¯K . Keep the usual definition of addition for ¯K (δ ,δ−1]
and define the multiplication as follows:

a(δ ,δ−1]b(δ ,δ−1] =
ra

∑
i=0

rb

∑
j=0

aiδ
ib jδ

i+ j +
ra

∑
i=0

rb̄

∑
j=1

aiδ
ib̄ jδ

i(δ−1)
j

+
rā

∑
i=1

rb

∑
j=0

āi(δ
−1)

ib jδ
−1i

δ j +
rā

∑
i=1

rb̄

∑
j=1

āi(δ
−1)

ib̄ j(δ
−1)

i+ j
.

(14.30)

It is clear that K (δ ]⊆ ¯K (δ ,δ−1] and that the ring ¯K (δ ,δ−1] possesses the same prop-
erties as K (δ ]. Thus, a module M̄ can be also defined over ¯K (δ ,δ−1], as follows:
M̄ = span ¯K (δ ,δ−1]{dξ ,ξ ∈ ¯K }. Then Theorem 14.12 can be extended to deal with non-
causal observability as follows:

Theorem 14.15 Consider the system (14.6) with outputs (y1, · · · ,yp) and the corresponding
(ρ1, · · · ,ρp) with ρi = min{ki,νi} where ki and νi are the observability indices and the
relative degree indices, respectively. If rankK (δ ]Φ = n, where Φ is defined in (14.10),
then there exists a change of coordinates φ(x,δ ) such that (14.6) can be transformed into
(14.14-14.17) with dim ξ = 0.

Moreover, if the change of coordinates is locally bicausal over ¯K , then the state x(t) of
(14.6) is at least locally non-causally observable; if, in addition, Γ̄∈K m×m(δ ] is unimodular
over ¯K (δ ,δ−1], then the unknown input u(t) of (14.6) can be at least locally non-causally
estimated.
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14.5 Example

Consider: 
ẋ1 =−δx2

1 +δx4u1, ẋ2 =−x2
1δx3 + x2 + x1δx4u1,

ẋ3 = x4 − x2
1δx4u1, ẋ4 = x5 +δx1, ẋ5 = δx1δx3 +u2,

y1 = x1, y2 = x2, y3 = x1δx1 + x3.

(14.31)

One can check that ν1 = k1 = ν2 = k2 = 1, ν3 = 1, k3 = 3, yielding ρ1 = ρ2 = ρ3 = 1
and Φ = {dx1,dx2,(δx1 + x1δ )dx1 +dx3}. One has rankK (δ ]Φ = 3 < n.

Set G =spanR[δ ]{G1, · · · ,Gm}, then one has:

G⊥ = spanR[δ ]
{

x1dx1 −dx2,x2
1dx1 +dx3,dx4

}
.

Since rankK (δ ]Φ = 3, thus £ = spanR[δ ] {x1,x2,x1δx1 + x3} and

Ω = span£(δ ] {dx1,dx2,dx3} ,

which yields:
Ω∩G⊥ = span£(δ ]

{
x1dx1 −dx2,x2

1dx1 +dx3
}
.

In the following, identifiability and observability will be successively checked for (14.31).

Identifiability analysis:

Following Theorem 14.3, one has:

H = [ẏ1, ẏ2, ẏ3]
T , Ψ =

[
−δx2

1,−x2
1δx3 + x2,x4

]T
,

and

Γ =

 δx4, 0
x1δx4, 0
−x2

1δx4, 0

 .
Thus, by choosing Q = [x1,−1,0], a non zero one-form can be found, such as:

ω = x1dx1 −dx2 ∈ Ω∩G⊥,

satisfying
ω f =−x1δx2

1 + x2
1δx3 − x2 ∈ £.

According to Theorem 14.7, the following equation is an output delay equation:

Q(H −Ψ) = 0, (14.32)

since it contains only the output, its derivatives and delays.
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Since Y = (x1,x2,x1δx1 + x3)
T , one has:

∂Y

∂x
=

 1, 0, 0, 0, 0
0, 1, 0, 0, 0

δx1 + x1δ , 0, 1, 0, 0

 ,

and

∂Ψ

∂x
=

 −2δx1δ , 0, 0, 0, 0
−2x1δx3, 1, −x2

1δ , 0, 0
0, 0, 0, 1, 0

 .

Thus, one obtains:

rankK (δ ]
∂Y

∂x
= 3 < rankK

∂{Y ,Ψ}
∂x

= 6.

Theorem 14.8 is satisfied and (14.32) involves δ in an essential way. A straightforward
calculation gives:

y1ẏ1 − ẏ2 =−y1δy2
1 + y2

1δy3 − y2
1δy1δ

2y1 − y2,

which permits to identify the delay.

Observability analysis:
From the definition of L in (14.28), one can check that rankK L = 1, which gives

the one-form ω = x2
1dx1 +dx3, satisfying ω ∈ Ω∩G⊥ and ω f = −x2

1δx2
1 + x4 /∈ £. Thus,

according to Theorem 14.13, a new output ȳ1 = h4 is given by:

ȳ1 = h4 = ω f mod £ = x4 = y2
1ẏ1 + ẏ3 + y2

1δy2
1. (14.33)

For the new output ȳ1, one has ki = νi = 1 for 1 ≤ i ≤ 3, k4 = ν4 = 2, thus ρi = 1 for 1 ≤ i ≤ 3
and ρ4 = 2. Finally, one obtains the new Φ as follows:

Φ = {dx1,dx2,(δx1 + x1δ )dx1 +dx3,dx4,δdx1 +dx5}.

It can be checked that rankK (δ ]Φ = 5 = n, and the new £ is:

£ = spanR[δ ]{x1,x2,x1δx1 + x3,x4,x5 +δx1}.

This gives the following change of coordinates:

z = φ(x,δ ) = (x1,x2,x1δx1 + x3,x4,x5 +δx1)
T .

It is easy to check that it is bicausal over K (δ ], since:

x = φ
−1 = (z1,z2,z3 − z1δ z1,z4,z5 −δ z1)

T .
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When t ≥ τ , one gets the following estimations of states:{
x1 = y1, x2 = y2, x3 = y3 − y1δy1,

x4 = ȳ1, x5 =−δy1 + ˙̄y1,

with ȳ1 defined in (14.33).
Moreover, the matrix Γ with the new output ȳ1 can be obtained as follows:

Γ =


δx4, 0

x1δx4, 0
x2

1δx4, 0
0, 1

 ,

with rankK (δ ]Γ= 2. One can find matrices Ξ=


1 0 0 0
0 0 0 1
x1 −1 0 0
x2

1 0 1 0

, Γ̄=

(
δx4 0
0 1

)
, and

Γ̄−1 =

(
1

δx4
0

0 1

)
such that

[
Γ̄−1 0

]
ΞΓ = I2×2. Consequently, according to Theorem

14.12, u1 and u2 can be causally estimated. When t ≥ 3τ , a straightforward computation
yields the following estimates for the unknown inputs:{

u1 =
ẏ1+δy2

1
δ ȳ1

,

u2 = ¨̄y1 −δ ẏ1 −δy1δy3 +δy2
1δ 2y1.

14.6 Conclusion
This chapter has studied identifiability and observability for nonlinear time-delay systems
with unknown inputs. Concerning the identification of the delay, dependent and independent
outputs over the non-commutative rings have been analyzed. Concerning the observability,
necessary and sufficient conditions have been deduced for both backward and non-backward
cases. The backward and non-backward estimations of unknown inputs of the studied systems
have been analyzed as well.



Chapter 15

Luenberger-Like Observer Design

The unknown input observer design for linear systems without delays has already been
solved in the literature. This problem becomes more complicated when the studied system
involves delays, which might appear in the state, in the input and in the output. Most of
the existing works on unknown input observer are focused on time-delay systems whose
outputs are not affected by unknown inputs. However, this situation might exist in many
practical applications since most of the sensors involve computation and communication,
thus introduce output delays. Compared to the existing results in the literature, this chapter
deals with the unknown input observer design problem for a more general sort of linear
time-delay systems where the commensurate delays are involved in the state, in the input as
well as in the output. Moreover, the studied linear time-delay system admits more than one
delay.

The presented result, published in [J5], adopts as well the polynomial method based on
ring theory, which has already been presented at the beginning of Part III, since it enables us
to reuse some useful techniques developed for systems without delays.

15.1 Problem statement
Consider the same type of systems as before:

ẋ(t) =
ka
∑

i=0
Aix(t − ih)+

kb
∑

i=0
Biu(t − ih)

y(t) =
kc
∑

i=0
Cix(t − ih)+

ke
∑

i=0
Diu(t − ih)

(15.1)

where the state vector x(t) ∈ Rnx , the system output vector y(t) ∈ Rp, the unknown in-
put vector u(t) ∈ Rm, the initial condition ϕ (t) is a piecewise continuous function ϕ (t) :
[−kh,0]→ Rn (k = max{ka,kb,kc,kd}); thereby x(t) = ϕ (t) on [−kh,0]. Ai, Bi, Ci and Di
are the matrices of appropriate dimension with entries in R.

After having introduced the delay operator δ , system (15.1) may be then represented in
the following compact form:{

ẋ(t) = A(δ )x(t)+B(δ )u(t)
y(t) = C (δ )x(t)+D(δ )u(t)

(15.2)
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where A(δ ) ∈ Rnx×nx [δ ], B(δ ) ∈ Rnx×m[δ ], C (δ ) ∈ Rp×nx [δ ], and D(δ ) ∈ Rp×m[δ ] are

matrices over the polynomial ring R [δ ], defined as A(δ ) :=
ka
∑

i=0
Aiδ

i, B(δ ) :=
kb
∑

i=0
Biδ

i,

C (δ ) :=
kc
∑

i=0
Ciδ

i, and D(δ ) :=
kd
∑

i=0
Diδ

i.

Remark 15.1 For the system without delay, i.e. A(δ ) = A, B(δ ) = B, C(δ ) =C and D(δ ) =
D in (15.2), [74] proposed the following unknown input Luenberger-like observer:

ξ̇ = Pξ +Qy
x̂ = ξ +Ky

and it has been proven as well the above Lunberger-like observer exists only if the following
rank condition:

rank
[

CB D
D 0

]
= rank

[
B
D

]
+ rankD (15.3)

is satisfied.

When considering the general linear system (15.2) with commensurate delays which can
appear in the state, in the input and in the output, the problem to design a simple unknown
input Luenberger-like observer is still open. Our solution is inspired by the method proposed
in [83] where only linear time-delay systems without input were studied. More precisely, we
firstly try to decompose system (15.2) into a simpler form provided that some conditions are
satisfied, and then transform it into a higher dimensional observer normal form with output
(and the derivative of the output) injection and its delay. Finally we can design an unknown
input observer for the obtained observer normal form.

15.2 Notations and definitions
Since we are going to analyze system (15.2) which is described by the polynomial matri-
ces over R[δ ], therefore let us give some useful definitions of unimodular and change of
coordinates over R[δ ].

Definition 15.2 A given polynomial matrix A(δ ) ∈ Rn×q[δ ] is said to be left (or right)
unimodular over R[δ ] if there exists A−1

L (δ )∈Rq×n[δ ] with n≥ q (or A−1
R (δ )∈Rq×n[δ ] with

n ≤ q), such that A−1
L (δ )A(δ ) = Iq (or A(δ )A−1

R (δ ) = In). A square matrix A(δ ) ∈ Rn×n[δ ]

is said to be unimodular over R[δ ] if A−1
L (δ ) = A−1

R (δ ).

Definition 15.3 [83] For x(t) defined in (15.2), z(t) = T (δ )x(t) with T (δ ) ∈ Rnz×nx [δ ] and
nz ≥ nx is said to be a causal generalized change of coordinates over R[δ ] if rankR[δ ]T (δ ) =
nx. Moreover, it is said to be a bicausal generalized change of coordinates over R[δ ] if T (δ )
is left unimodular over R[δ ].

When designing an unknown input observer for time-delay systems, it is desired to use
only the actual and the past information (not the future information) of the measurements
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to estimate the states because of the causality. This implies that we prefer the definition of
backward unknown input observability given before.

Recall that a Molinari-like algorithm has been presented before in Part III to test the
backward unknown input observability. When applying such an algorithm to system (15.2),
it has been proven that there always exists a least integer k∗, which is independent of
the choices of {Pk(δ ),Λk(δ ),Σk(δ )}, such that Mk∗+1 (δ ) = Mk∗ (δ ), based on which the
following assumption will be made.

Assumption 15.4 For the quadruple (A(δ ),B(δ ),C(δ ),D(δ )) of system (15.2), there exists
a least integer k∗ ∈ N0 such that rankR[δ ]Mk∗(δ ) = nx, and Mk∗(δ ) is unimodular over R [δ ].

According to the result stated before, this assumption implies in fact that system (15.2) is
backward unknown input observable.

For simplicity, for any polynomial matrix D(δ ) ∈ Rp×m[δ ] with rankR[δ ]D(δ ) = rD ≤
min{p,m}, let us denote

InvS [D(δ )] = {ψi (δ )}1≤i≤rD

as the set of its invariant factors of the Smith form defined in (13.4). Thereby, the following
statement, adapted from the result on the left unimodular stated in [83], is obvious.

Lemma 15.5 A polynomial matrix D(δ ) ∈ Rp×m[δ ] is left (or right) unimodular over R[δ ]
if and only if rankR[δ ]D(δ ) = m ≤ p (or rankR[δ ]D(δ ) = p ≤ m ) and InvS [D(δ )]⊂ R.

It is said to be unimodular over R[δ ] if and only if rankR[δ ]D(δ )= p=m and InvS [D(δ )]⊂
R.

15.3 Main result
Before proposing an unknown input observer for the general system (15.2), we will firstly
decompose system (15.2) into a simpler form under some additional conditions.

15.3.1 Preliminary result
In order to transform the general system (15.2) into a simpler form, let us make the following
assumption.

Assumption 15.6 For the polynomial matrices B(δ ), C(δ ) and D(δ ) in system (15.2), it is
assumed that

InvS

 C(δ )B(δ ) D(δ )
D(δ ) 0
B(δ ) 0

= InvS

[
C(δ )B(δ ) D(δ )

D(δ ) 0

]
(15.4)

Remark 15.7 When treating linear systems without delay, the conditions imposed in As-
sumption 15.4 is equivalent to:

rank
[

sI −A −B
C D

]
= n+ rank

[
B
D

]
for all s ∈ C (15.5)
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which is exactly the necessary and sufficient condition such that the system is strongly
observable [160].

The condition (15.4) imposed in Assumption 15.6 is equivalent to:

rank

 CB D
D 0
B 0

 = rank
[

CB D
D 0

]
= rank

[
B
D

]
+ rankD

and it is exactly the necessary condition to ensure the existence of such a Luenberger-like
observer. As we are going to propose an unknown input observer for the general time-delay
system (15.2) with the same structure, thus the condition (15.4) imposed in Assumption 15.6
is not restrictive.

Lemma 15.8 Suppose Assumption 15.6 is satisfied, then there exists a matrix W (δ ) ∈
R(nx+p)×2p[δ ] satisfying the following conditions:

1. W (δ )

[
C(δ )B(δ ) D(δ )

D(δ ) 0

]
=

[
B(δ ) 0
D(δ ) 0

]
;

2. for any matrix J(δ ) such that J(δ )
[

B(δ )
D(δ )

]
= 0, then J(δ )W (δ ) = 0.

15.3.2 System decomposition
Suppose that W (δ ) ∈ R(nx+p)×2p[δ ] is a matrix over R[δ ] such that Lemma 15.8 is sat-
isfied. Decompose W (δ ) = [W1(δ ),W2(δ )] with W1(δ ),W2(δ ) ∈ R(nx+p)×p[δ ], then we

have W1(δ )D(δ ) = 0 since W (δ )

[
C(δ )B(δ ) D(δ )

D(δ ) 0

]
=

[
B(δ ) 0
D(δ ) 0

]
. Thus, we obtain

W1(δ )y =W1(δ )C(δ )x which yields the following equation

W1(δ )ẏ =W1(δ )C(δ )A(δ )x+W1(δ )C(δ )B(δ )u

Since W (δ )

[
C(δ )B(δ )

D(δ )

]
=

[
B(δ )
D(δ )

]
, then we have

W1(δ )ẏ+W2(δ )y =W (δ )

[
C(δ )A(δ )

C(δ )

]
x+W (δ )

[
C(δ )B(δ )

D(δ )

]
u

=W (δ )

[
C(δ )A(δ )

C(δ )

]
x+

[
B(δ )
D(δ )

]
u

Decompose again the matrix W (δ ) as W (δ ) =

(
K(δ )

Γ(δ )

)
=

[
K1(δ ) K2(δ )

Γ1(δ ) Γ2(δ )

]
, where

Ki(δ ) ∈ Rnx×p[δ ] and Γi(δ ) ∈ Rp×p[δ ] for 1 ≤ i ≤ 2. Thereby, we can substitute

[
B(δ )
D(δ )

]
u
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into the original system (15.2) in order to replace the unknown input u. That is, if Assumption
15.6 is satisfied, then system (15.2) can be put into the following simpler form:

ẋ = Ā(δ )x+K1(δ )ẏ+K2(δ )y
y = C̃(δ )x+Γ1(δ )ẏ+Γ2(δ )y

(15.6)

where Ā(δ )=A(δ )−K (δ )

[
C (δ )A(δ )

C (δ )

]
∈Rnx×nx [δ ] and C̃(δ )=C (δ )−Γ(δ )

[
C (δ )A(δ )

C (δ )

]
∈

Rp×nx [δ ].
Suppose rankR[δ ]C̃(δ ) = r ≤ p, then there exists a unimodular matrix Λ(δ ) over R[δ ]

such that

Λ(δ )C̃(δ ) =

[
C̄(δ )

0

]
(15.7)

with C̄(δ ) ∈ Rr×nx [δ ] being full row rank over R[δ ]. By noting ȳ = Λ(δ )y, finally system
(15.6) can be written into the following decomposed form:

ẋ = Ā(δ )x+K1(δ )Λ
−1(δ ) ˙̄y+K2(δ )Λ

−1(δ )ȳ

ȳ =

[
C̄(δ )

0

]
x+ Γ̄1(δ ) ˙̄y+ Γ̄2(δ )ȳ

(15.8)

where
Γ̄1(δ ) = Λ(δ )Γ1(δ )Λ

−1(δ ) ∈ Rp×p[δ ]

Γ̄2(δ ) = Λ(δ )Γ2(δ )Λ
−1(δ ) ∈ Rp×p[δ ]

(15.9)

15.3.3 Observer normal form

This subsection is devoted to designing a Lunberger-like observer for the deduced simple
form (15.8). Before this, define the following polynomial matrix over R[δ ]:

Ōl(δ ) =


C̄(δ )

C̄(δ )Ā(δ )
...

C̄(δ )Āl−1(δ )

 ∈ Rrl×nx [δ ] (15.10)

where l ∈ N0, and let us recall a useful result stated in [81].

Theorem 15.9 [81] There exists a bicausal generalized change of coordinates z = T (δ )x
which transforms the following system:

ẋ = Ā(δ )x
ȳ = C̄(δ )x (15.11)
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with rankR[δ ]C̄(δ ) = r into the following observer normal form:{
ż = A0z+F(δ )ȳ
ȳ =C0z

where F(δ ) =
[
FT

1 (δ ), · · · ,FT
l∗ (δ )

]T and

A0 =


0 Ir · · · 0

0 0 . . . ...
0 0 · · · Ir
0 0 · · · 0

 ∈ Rrl∗×rl∗

C0 = [Ir,0, · · · ,0] ∈ Rr×rl∗

(15.12)

if and only if there exists a least integer l∗ ∈ N0 such that Ōl∗(δ ) defined in (15.10) is left
unimodular over R [δ ].

Moreover, the bicausal generalized change of coordinates z = T (δ )x with

T (δ ) = col{T1(δ ), · · · ,Tl∗(δ )}

is defined as follows:{
T1(δ ) = C̄(δ )

Ti+1(δ ) = Ti(δ )Ā(δ )−Fi(δ )C̄(δ ), for 1 ≤ i ≤ l∗−1
(15.13)

with Fi(δ ) being determined through the following equations:

[Fl∗(δ ), · · · ,F1(δ )] = C̄(δ )Āl∗(δ )
[
Ōl∗(δ )

]−1
L (15.14)

Remark 15.10 Theorem 15.9 deduces a very simple observer normal form with constant
matrices A0 and C0 plus a linear output delayed term F(δ )ȳ for a special form of system
(15.8), which implies in fact that in the original system (15.2) the matrices B(δ ) = D(δ ) = 0,
i.e. system (15.8) has no inputs. Theorem 15.9 can be also applied to design a Luenberger-
like observer for system (15.2) with known input, however it cannot treat directly system
(15.2) with unknown input, since the observability in this case depends as well on the matrices
B(δ ) and D(δ ).

We have pointed out that system (15.2) is backward unknown input observable if As-
sumption 15.4 is satisfied. In the following it will be shown that Assumptions 15.4 and 15.6
imply that the observability matrix defined in (15.10) is left unimodular. For this, we need
the following result.
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Lemma 15.11 If Assumption 15.4 is satisfied for the quadruple (A(δ ),B(δ ),C(δ ),D(δ )) in
system (15.2), then there exists a least integer l∗ ∈ N0 such that

Ol∗(δ ) =


C(δ )

C(δ )A(δ )
...

C(δ )Al∗−1(δ )

 ∈ Rpl∗×nx [δ ] (15.15)

is left unimodular over R [δ ].

Based on Lemma 15.11, we have the following result for the deduced system (15.6).

Lemma 15.12 If Assumption 15.4 is satisfied for the quadruple (A(δ ),B(δ ),C(δ ),D(δ ))
defined in (15.2), then for the deduced system (15.6) there exists a least integer l∗ ∈ N0 such
that

Õl∗(δ ) =


C̃(δ )

C̃(δ )Ā(δ )
...

C̃(δ )Āl∗−1(δ )

 ∈ Rpl∗×nx [δ ] (15.16)

is left unimodular over R [δ ].

Lemma 15.13 If there exists a least integer l∗ ∈ N0 such that Õl∗(δ ) defined in (15.16) is
left unimodular over R [δ ], then Ōl∗(δ ) defined in (15.10) is left unimodular over R [δ ].

Theorem 15.14 If Assumption 15.4 and Assumption 15.6 are both satisfied for system (15.2),
then for the deduced system (15.8) there exists a least integer l∗ ∈N0 such that Ōl∗(δ ) defined
in (15.10) is left unimodular over R [δ ].

After having proved the left unimodularity of Ōl∗(δ ) defined in (15.10) over R [δ ], the
following corollary is obvious due to Theorem 15.9.

Corollary 15.15 If Assumption 15.4 and Assumption 15.6 are both satisfied for system (15.2),
then there exists a bicausal generalized change of coordinates z = T (δ )x defined in (15.13)
such that system (15.8) can be transformed into the following observer normal form:

ż = A0z+[F(δ ),0] ȳ+ K̄1(δ ) ˙̄y+ K̄2(δ )ȳ

ȳ =

[
C0
0

]
z+ Γ̄1(δ ) ˙̄y+ Γ̄2(δ )ȳ

(15.17)

where Γ̄1(δ ), Γ̄2(δ ), A0, C0 and F(δ ) are defined in (15.9), (15.12) and (15.14) respectively,
with

K̄1(δ ) = T (δ )K1(δ )Λ
−1(δ ) ∈ Rnz×p[δ ]

K̄2(δ ) = T (δ )K2(δ )Λ
−1(δ ) ∈ Rnz×p[δ ]

(15.18)

where nz = rl∗.
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15.3.4 Unknown input observer design
For the obtained observer normal form (15.17), we are ready to present our main result.

Theorem 15.16 If Assumption 15.4 and Assumption 15.6 are both satisfied for system (15.2),
then the following dynamics:  ξ̇ = L0ξ + J(δ )Λ(δ )y

ẑ = ξ +H(δ )Λ(δ )y
x̂ = T−1

L (δ )ẑ
(15.19)

with T−1
L (δ ) being defined in (15.13), and

L0 = A0 −G0C0
H(δ ) = K̄1(δ )− [G0,0] Γ̄1(δ )
J(δ ) = [F(δ ),0]+ K̄2(δ )+L0H(δ )− [G0,0] Γ̄2(δ )+ [G0,0]

(15.20)

where G0 is a constant matrix which makes (A0 −G0C0) Hurwitz, is an exponential unknown
input observer for system (15.2).

Remark 15.17 The proposed method is based on the output injection (delayed) technique.
It can be seen that the observation error dynamics ėz = [A0 −G0C0]ez is independent of the
delay, which implies that this method can be applied to any commensurate and constant
delay.

15.4 Design procedure
For the given quadruple (A(δ ),B(δ ),C(δ ),D(δ )), if Theorem 15.16 is valid, the following
summarizes the procedure to design the proposed unknown input observer for system (15.2):

Step 1: Compute the unimodular matrix U(δ ) over R[δ ] which transforms the following matrix
into its Hermite form:

U(δ )

[
C(δ )B(δ ) D(δ )

D(δ ) 0

]
=

[
V (δ )

0

]

with V (δ ) being full row rank over R[δ ], and calculate V̄ (δ ) such that V̄ (δ )V (δ ) =[
B(δ ) 0
D(δ ) 0

]
. Then we obtain the gain matrix W (δ ) = [V̄ (δ ),0]U(δ );

Step 2: With the obtained matrix W (δ ), decompose it as W (δ )=

(
K(δ )

Γ(δ )

)
=

[
K1(δ ) K2(δ )

Γ1(δ ) Γ2(δ )

]
,

then transform system (15.2) into (15.8) with Ā(δ ) = A(δ )− K(δ )

[
C(δ )A(δ )

C(δ )

]
,
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C̃(δ ) =C(δ )−Γ

[
C(δ )A(δ )

C(δ )

]
, and find the unimodular matrix Λ(δ ) over R[δ ] such

that Λ(δ )C̃(δ ) =

[
C̄(δ )

0

]
;

Step 3: After having obtained Ā(δ ) and C̄(δ ), deduce T (δ ) defined in (15.13) and F(δ )
defined in (15.14);

Step 4: Deduce A0 and C0 defined in (15.12), Γ̄1(δ ) and Γ̄2(δ ) defined in (15.9), K̄1(δ ) and
K̄2(δ ) defined in (15.18);

Step 5: Design the observer of the form (15.19) by choosing the matrices L0, H(δ ) and J(δ )
defined in (15.20).

15.5 Example
Consider the following example:

A(δ )=


0 −1 1 0
−1 δ 0 0
1 0 1 0
δ 1 1 −1

 , B(δ )=


0 0
0 0
1 1
0 δ

 , C(δ )=

 δ 0 0 0
0 1 0 0
0 0 1 1

 , D(δ )=

 1 δ

0 0
1 δ


For the given quadruple (A(δ ),B(δ ),C(δ ),D(δ )), by applying the algorithm (13.3)-(13.4),

we find that there exist k∗ = 3 such that Mk∗ = Mk∗+1 = I4, thus Assumption 15.4 is satisfied.
Moreover, by calculating the invariant factors we have

InvS

 C(δ )B(δ ) D(δ )

D(δ ) 0
B(δ ) 0

 = InvS

[
C(δ )B(δ ) D(δ )

D(δ ) 0

]
= {1,1,1}

therefore Assumption 15.6 is satisfied as well. According to Theorem 15.16, there exists a
Luenberger-like observer to exponentially estimate the state of the studied system.

Step 1:

In order to transform the matrix

[
C(δ )B(δ ) D(δ )

D(δ ) 0

]
into its Hermite form, we can find

U(δ ) =



δ 0 −δ 1 0 δ

−1 0 1 0 0 −1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 −1 0 1
0 0 0 0 1 0


, V (δ ) =

 1 0 0 0
0 1 0 0
0 0 1 δ





130 Luenberger-Like Observer Design

then we can find

V̄ (δ ) =

 0 0 1 0 1 0 1
0 0 1 δ δ 0 δ

0 0 0 0 0 0 0


T

such that V̄ (δ )V (δ ) =

[
B(δ ) 0
D(δ ) 0

]
, which gives us

W (δ ) =

[
K1(δ ) K2(δ )
Γ1(δ ) Γ2(δ )

]
=



0 0 0 0 0 0
0 0 0 0 0 0

δ −1 0 1−δ 1 0 δ −1
−δ 0 δ 0 0 −δ

0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 1 0 0



Step 2:
With the above deduced W (δ ), we obtain:

Ā(δ ) =


0 −1 1 0
−1 δ 0 0

δ 2 −δ δ 2 −1 −δ 2 +2δ −2δ +2
−δ 2 1−δ −δ 2 1−δ +δ 2 2δ −1



and C̃(δ ) =

 0 0 0 0
0 1 0 0
−δ 0 1 1

, thus we can choose the unimodular matrix over R[δ ] as

Λ(δ ) =

 0 1 0
0 0 1
1 0 0

, which gives C̄(δ ) =

[
0 1 0 0
−δ 0 1 1

]
.

Step 3:
With the deduced Ā(δ ) and C̄(δ ), we can check that there exists l∗ = 3 such that

Ō3(δ ) =



0 1 0 0
−δ 0 1 1
−1 δ 0 0
−δ 0 1 1
−δ 1+δ 2 −1 0
−δ 0 1 1


,
[
Ō3(δ )

]−1
L =


δ 0 −1 0 0 0
1 0 0 0 0 0
1 0 δ 0 −1 0

δ 2 −1 1 −2δ 0 1 0


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which gives [F3(δ ),F2(δ ),F1(δ )] = C̄(δ )Ā3(δ )
[
Ō3(δ )

]−1
L with

F(δ ) =

 F1(δ )

F2(δ )

F3(δ )

=



−2−δ 2 +5δ 0
0 0

1+3δ −5δ 2 +δ 3 0
0 0

3−4δ −δ 2 +δ 3 2δ −2
0 1


(15.21)

Then we obtain the bicausal generalized change of coordinates z = T (δ )x where

T (δ ) =



0 1 0 0
−δ 0 1 1
−1 2−4δ +δ 2 0 0
−δ 0 1 1

−2+4δ −δ 2 −δ +δ 2 −1 0
−δ 0 1 1


with

[T (δ )]−1
L =


2−4δ +δ 2 0 −1 0 0 0

1 0 0 0 0 0
−19δ 2 +15δ +8δ 3 −4−δ 4 0 −4δ +2+δ 2 0 −1 0
15δ 2 −13δ −7δ 3 +4+δ 4 0 3δ −2−δ 2 1 1 0



Step 4:

With the deduced change of coordinates, the studied system can be transformed into the
simple observer form (15.17) with F(δ ) given in (15.21) and

A0 =



0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0


,
[

K̄1(δ ) K̄2(δ )
]
=



0 0 0 0 0 0
0 1 −1 0 −1 1
0 0 0 0 0 0
0 1 −1 0 −1 1
0 δ −1 1−δ 0 1−δ −1
0 1 −1 0 −1 1


C0 =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
,
[

Γ̄1(δ ) Γ̄2(δ )
]
=

 0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 1


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For the simulation setting, we can choose

G0 =

[
85 0 2000 0 12500 0
0 85 0 2000 0 12500

]T

such that (A0 − G0C0) has negative eigenvalues (−10,−10,−25,−25,−50,−50). And
finally we obtain the following gain matrices:

L0 =



−85 0 1 0 0 0
0 −85 0 1 0 0

−2000 0 0 0 1 0
0 −2000 0 0 0 1

−12500 0 0 0 0 0
0 −12500 0 0 0 0


, H(δ ) =



0 0 0
0 1 −1
0 0 0
0 1 −1
0 δ −1 1−δ

0 1 −1



J(δ ) =



83+5δ −δ 2 0 0
0 0 0

2001−5δ 2 +3δ +δ 3 δ −1 1−δ

0 0 0
12503−4δ −δ 2 +δ 3 δ −1 −1

0 0 1



Step 5:
With the deduced L0, H(δ ) and J(δ ), one can easily design the unknown input observer

described in (15.19). In the simulation of the studied system, we set the unknown input as
u1 = −10sin100t and u2 = 20sin20t (see Fig. 15.1). The simulation step is 0.001s, and
the basic delay h = 0.01s. By choosing the calculated gain matrices L0, H(δ ) and J(δ ), the
observation errors (in log scale) are given in Fig. P3Ch3:fig:obs1, from which we can notice
not only the convergence of the proposed observer, but also the delay effect in the observer
which is equal to 0.04s and it is due to the term δ 4 in [T (δ )]−1

L . The singularity in the figure
is due to the fact that the observation error passes zero and changes the sign. In order to show
that the proposed method is independent of the time-delay involved in the studied system,
another simulation was made with the same gains and a bigger delay h = 0.1s, whose results
(again in log scale) were depicted in Fig. 15.3. Compared Fig. 15.2 with Fig. 15.3, we can
conclude that, with two distinct delays, the resulting estimation errors converge to 0 with the
same speed, depending on the eigenvalues of T−1

L (δ )(A0 −G0C0)T (δ ). Moreover, with a
bigger delay, the estimations will have a bigger delay as well (in Fig. 15.3 the delay effect in
the observer equals to 0.4s, corresponding to the term δ 4 in [T (δ )]−1

L ).
In order to show the robustness of the proposed observer, the third simulation (the same

gains with h = 0.01s) was made by adding a mean-zero random disturbance in the output
belonging to [−2,2]. The estimation errors are depicted in Fig. 15.4 and it can be noticed
that the estimation error is always bounded.
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Fig. 15.1 Unknown input u of the studied system.
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Fig. 15.2 The observation error (in log scale) for h = 0.01s.
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Fig. 15.3 The observation error (in log scale) for h = 0.1s.
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Fig. 15.4 The observation error for h = 0.01s with noisy measurement.

15.6 Conclusion
The class of linear time-delay systems investigated in this chapter is quite larger than that
those studied in the literature since we consider unknown inputs in both the state equation
and in the system output. Moreover, commensurate delays are allowed to appear in the state,
input, and in the output also. We have matched the backward unknown input observability
condition recently obtained in [J10], with the observability condition required in [83] for the
observer design of linear time-delay systems without inputs. The required conditions for the
observer design are considerably relaxed in the sense that they coincide with the necessary
and sufficient conditions for the unknown input observer design of linear systems without
delays.
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Chapter 16

Conclusions and Perspectives

This manuscript summarized my main recent theoretical contributions since my recruitment
at Inria in 2009 dealing with observability analysis and observer design for different types of
dynamical systems, including nonlinear tim-continuous systems, linear/nonlinear singular
systems and linear/nonlinear time-delay systems.

For the observability analysis, this document used 2 different approaches: algebra and
differential geometry, to study respectively linear and nonlinear systems:

• When treating linear systems, normally we use algebraic tools to analyze the observ-
ability. In this manuscript, we adopt this approach to analyze the observability for
linear singular systems and linear time-delay systems with unknown input, respectively
in Chapter 8 by using elementary algebra and in Chapter 13 by using abstract algebra.

• When studying nonlinear systems, the differential geometrical method is commonly
applied. One main reason to use the differential geometrical method is to seek a
simple way in order to transform the studied nonlinear systems into some simple and
equivalent observable normal forms (such as triangular form, output injection, output
depending and so on), for which the existing observers proposed in the literature can
be reused to estimate its states. This powerful approach enables us to deduce necessary
and sufficient conditions for such an equivalence. Therefore, this technique has been
used in this manuscript to study nonlinear time-continuous systems (Chapter 3 and 4),
nonlinear singular systems (Chapter 9) and nonlinear time-delay systems (Chapter 14).

Concerning observer design for different types of systems, this document considered 3
types of observers:

• Luenberger-like observer;

• Finite-time observer;

• Interval observer.

Luenberger-like observer has simple structure, but possesses only asymptotical estimation.
This kind of observer has been designed for nonlinear singular system (Chapter 10) and linear
time-delay system (Chapter 15). When finite-time estimation is needed, a non-asymptotical
observer is desired, and this type of observer has been synthesized for nonlinear time-
continuous system in Chapter 5. The interval observer is proposed for the systems with
uncertainties, since in this case neither asymptotical nor non-asymptotical observer can
provide precise estimation. This sort of observer is studied for nonlinear time-continuous
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systems in Chapter 6 and for nonlinear singular system in Chapter 11 in order to give the
upper and lower bounded estimations.

Although the topics on observability analysis and observer design have been widely
studied for a long time in the literature, but there still exist lots of interesting aspects which
need to be developed from the different sizes point of view.

• Small size, i.e. only single system is considered. That will be the simplest and natural
way to continue my current work for different types of systems. In this direction, at
least two aspects can be considered.
The first one is to enlarge the different types of systems to be studied. Except these
three kinds of systems discussed in this document, we can envisage to analyze the ob-
servability for sampled-data systems with unknown inputs, since nowadays the digital
device has been widely used to design the controller, and to collect the measurement
with a fixed or variable frequency. Besides, since fractional order differential equations
are normally used to model some biological processes, it would be nice as well to
extend the techniques presented in this manuscript to analyze the observability for such
kind of systems. Another interesting topic I would like to treat is linked to the recent
concept of compressive sensing [35]. This new technique enables us to sample the
output with a very lower frequency than that required by Shanon-Nyquist theorem, but
can still successfully reconstruct the whole state. The analysis of observability from
the control theory point of view has never been done, which in fact needs us to study
the properties of stochastic systems.
The second consideration is to design different types of observers for those mentioned
systems, including asymptotical, non-asymptotical and interval ones. Also, the ob-
servers might not be always limited to estimate the states, as what we have only done
in this document. We can also expect to propose those sorts of observers for the men-
tioned systems to identify parameters, to estimate the unknown inputs, to detect the
faults, and so on. Most of the existing observers for the mentioned problems (parameter
identification, unknown inputs estimation) are asymptotic, rare results on finite-time or
interval estimation have been studied. We can adopt the technique of sliding mode to
treat them. Besides, we have obtained the simultaneous delay identification and state
observation for time-delay systems, however the related observers have not yet been
developed in the literature. This problem can be also investigated in the future work, by
synthesizing asymptotic, finite-time or interval observers. The required approaches to
study those mentioned problems have already developed separately in this manuscript,
therefore the future works will be focused on how to combine those techniques to have
a simultaneous estimation. From my point of view, this generalization can be done in
short term. In fact, those estimations for different aims are requested in many practical
applications, which has plentiful economical influences. As we can see, even for this
small aspect, it deserves lots of future works.

• Medium size, i.e. several coupled or distributed systems will be studied. With the
development of technology, nowadays the process to be controlled becomes more and
more complex. Frequently, the plant might contain several systems, which can belong
or not belong to the same class, named as system of system. The connection among
several systems will substantially increase the complexity of analysis. However, the
requirement to manage system of system is in fact driven by many real applications,
ranging from chemical industry to transportation. A very simple but quite illustrative
example is the famous heterogeneous network. We can imagine a surveillance system
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with different types of robots, including mobile robots (might be different types),
manipulators (with different degrees of freedom, could be even flexible), quad-rotor,
blimp... Those different kinds of systems construct a heterogeneous network in order to
achieve a certain goal, for example grasp a desired object. For those coupled systems,
it might contain lots of restrictions, such as: the communications could be limited
and delayed, the sampled frequencies for different types of robots are not the same,
the measurements for a common object from different sensors equipped on different
robots have different precisions.
It is obvious that the control for system of system is a very difficult task. A famous
example is that connecting two stable systems may not result in a stable one, even
if both systems belong to the same class. This issue will not exist for observability
analysis for system of system, and we can use the existing technique to analyze the
global or partial observability. This argument is valid provided that the connections
between systems are topologically fixed. Obviously there exists another issue for the
observability analysis if the topology is time-varying, or sometimes suddenly changed.
Therefore, two different cases will be studied in the future:

– Time-invariant topology connection. In this case, the observability analysis
is straightforward, and we just need to reuse the well developed techniques
(algebraic and differential geometric) to study the global or partial observability
for system of system. However, when designing observer for this kind of coupled
systems, the same issue mentioned above occurs. We will solve this problem
by using two different methods. The first one is inspired by the pioneering
researches on cascade systems, and we can envisage to use ISS properties for
different types of systems to synthesize observer. The second solution is to design
separately non-asymptotic observers (algebraic, finite-time or fixed-time) for
each subsystem, and then combine all into a global one.

– Time-varying topology connection. Unlike the case of time-invariant topology
connection, besides the observer design challenging, the observability analysis
becomes more complicated for the second case. It is clear that, in this situation,
the time-varying topology plays an important role on the observability. Different
topology will lead to the lost or the reconstruction of the global or partial observ-
ability of the whole system. A similar problem has been treated for the consensus
of multi-agent systems to synthesize the relative controller. But, from the best
of our knowledge, such a problem has not yet been solved in the literature for
observability analysis and observer design. To deal with such a problem, the first
task is to seek a global model to describe all the coupled systems, including the
time-varying topology. This can be done by borrowing the idea of Laplacian ma-
trix from multi-agent systems, which however in this case is time-varying. With
the deduced global model, we need then redefine the observability concept, since,
unlike conventional single system, it depends now on the time-varying topology
too. After the new observability definition, we can then analyze its observability
in the global sense. Concerning observer design for this complicated case, a
general solution seems to be difficult. We can start with some simple assumptions
on the time-varying topology, such as slowly time-varying, and then design the
associated observers (asymptotic or non-asymptotic) for the whole system.

Other sorts of coupled systems widely exist in many practical applications as well.
Therefore, the observability analysis and observer design (data fusion) for these ho-
mogeneous or heterogenous systems are very promising, and I do believe that efforts
should be made on this issue.
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• Immense size, i.e. thousand of systems are linked. It is obvious that, when the size of
the coupled systems becomes bigger, the observability and observer design become
more and more challenging. In this direction, I would like to focus on two things. The
first one is related to the very popular concept, named as ‘big data’. As we know, lots of
smart devices (or systems) are linked together, and establish a huge Internet of things.
Those devices in this internet can provide immense data (relevant or not), a hot topic
on this issue nowadays is how to proceed the collected big data to get more precise
decision. For example, we are used to check the weather information before leaving
for the vacations, but how to make a precise and long term prediction, this is still an
unsolved problem [95, 98]. In practice, the collected data are of different types, since
they are from lots of different sensors, such as light, wind, humidity, temperature....
Moreover, the collected data are memorized (hours, days, months, years,...), this is
due to the fact that the weather is in some sense ‘periodic’. Obviously, more precise
the model we want, larger dimension of the systems will be led. Not mentioned that
different sensors have different reliability, thus play different impacts in the model
prediction, and this will make the observation problem more complicated. We are
going to use different types of observers, not only the traditional Kalman filter, in order
to have a more precise estimation.
Another interesting aspect in this direction is linked to the optimal sensor placement
[135]. For a concrete application, we need to answer at least the following questions:

– How many sensors (maximal number) we need to place?
– Which types of sensors we need to choose?
– Where we should place those sensors?
– What is the sensitivity for the observation?

If the system’s dimension is not so large, we can still manage the optimal placement of
sensors by hands, but when the size becomes bigger enough, we should relay on the
super computer to answer the above questions. Take the soft robot as an example. When
designing a soft robot, according to special requirements in the different scenarios, we
should integrate different types of actuators and sensors measuring the robot position
and parameters (such as applied force, shape and so on) in the soft robot. The type of
the sensors and where they are mounted will determine the observability (possibility
of state and posture reconstruction) of the final reduced model. Moreover, since the
robot is flexible, the dimension of the precise model (by using finite element method,
for example) will reach millions. Those above mentioned problems then become very
difficult to be answered, even by using computer. This is still an open problem up to
now. To deal with this problem, we will use the optimization framework, in which
we need firstly define the objective to be optimized and the observability sensitivity
index. Then a numerical algorithm will be developed to display this index according
to different choices of sensors we used and the different places we putted.
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