
HAL Id: tel-01258572
https://theses.hal.science/tel-01258572

Submitted on 19 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Cinematography and Editing in Virtual
Environments.

Quentin Galvane

To cite this version:
Quentin Galvane. Automatic Cinematography and Editing in Virtual Environments.. Artificial Intel-
ligence [cs.AI]. Université Grenoble Alpes, 2015. English. �NNT : 2015GREAM033�. �tel-01258572�

https://theses.hal.science/tel-01258572
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Mathématiques-Informatique

Arrêté ministériel : 7 août 2006

Présentée par

Quentin GALVANE

Thèse dirigée par Rémi RONFARD, Marc CHRISTIE

préparée au sein du Laboratoire Jean Kuntzmann (LJK)
et de l’École doctorale EDMSTII

Automatic Cinematography and
Editing in Virtual Environments

Thèse soutenue publiquement le 26 Octobre 2015,
devant le jury composé de :

Karan SINGH
Professor, University of Toronto, Rapporteur
Mateu SBERT
Professor,University of Girona, Rapporteur
Arnav JHALA
Assistant Professor, University of California at Santa Cruz, Examinateur
Philippe GUILLOTEL
Distinguished Scientist, Technicolor, Examinateur
Gérard BAILLY
Directeur de Recherche, CNRS, Président
Rémi RONFARD
Chargé de Recherche, INRIA, Directeur de thèse
Marc CHRISTIE
Associate Professor, University of Rennes 1, Directeur de thèse

RÉSUMÉ

La large diffusion de modèles 3D de qualité ainsi que la mise à disposition de nombreux
moyens facilitant la création de contenus animés ont permis de populariser la production
d’œuvres cinématographiques 3D. A l’heure actuelle, on peut cependant observer le manque
d’outils abordables par tous permettant de traiter la cinématographie (placement des caméras
pour l’enregistrement des plans) et d’effectuer le montage de tels contenus (sélection des plans
et transitions entre caméras). La création d’un film nécessite la connaissance d’un grand nom-
bre de règles et de conventions. La plupart des outils d’animation n’intégrant pas ces connais-
sances, le besoin de méthodes automatiques qui pourraient, au moins partiellement, assister
l’utilisateur est présent. A travers cette thèse, nous abordons à la fois les problématiques liées
à la gestion automatique de la cinématographie et le montage des plans générés.

L’utilisation de caméras afin de retranscrire les actions et événements se déroulant au
sein d’un environnement 3D dynamique est une préoccupation importante pour beaucoup
d’applications graphiques. Dans le contexte de la simulation de foule, nous présentons une
nouvelle approche qui traite du contrôle simultané de plusieurs caméras filmant des groupes
d’individus. Nous proposons un système se reposant sur le modèle de "comportements guidés"
développé par Reynolds. Ce système permet de contrôler et coordonner localement un ensem-
ble de caméras évoluant dans un environnement dynamique.

Le montage d’un film est une tache particulièrement complexe et méticuleuse qui néces-
site une expertise dans le domaine. La formalisation de cette expertise est donc indispensable à
l’automatisation du processus. En utilisant la méthode de montage linéaire (ou "continuity edit-
ing") comme référence pour l’évaluation du montage, nous présentons une nouvelle approche
automatique se reposant sur une hypothèse semi-Markovienne et les principes de programma-
tion dynamique pour déterminer le montage optimal d’une séquence animée.

A partir de notre première contribution, nous proposons une nouvelle approche à la création
de replay cinématographiques qui utilise à la fois les informations narratives et géométriques
extraites des jeux vidéos pour automatiquement calculer des trajectoires de caméra. En combi-
nant ce système avec notre framework de montage, notre solution génère rapidement les replay
de sessions de jeu.

Enfin, en s’inspirant de pratiques couramment utilisées dans l’industrie du cinéma, nous
proposons une nouvelle approche à la planification de mouvements de caméra. Notre solution
assure le réalisme des trajectoires en contraignant les caméras sur des rails virtuels. La posi-
tion et l’orientation de la caméra sont optimisées dans le temps le long du rail pour satisfaire
différentes propriétés visuelles. Les plans générés sont ensuite envoyés à notre framework de
montage qui produit alors la cinématique.

ABSTRACT

The wide availability of high-resolution 3D models and the facility to create new geometrical
and animated content, using low-cost input devices, open to many the possibility of becom-
ing digital 3D storytellers. To date there is however a clear lack of accessible tools to easily
create the cinematography (positioning and moving the cameras to create shots) and perform
the editing of such stories (selecting appropriate cuts between the shots created by the cam-
eras). Creating a movie requires the knowledge of a significant amount of empirical rules and
established conventions. Most 3D animation packages do not encompass this expertise, calling
the need for automatic approaches that would, at least partially, support users in their creative
process. In this thesis we address both challenges of automating cinematography and editing
in virtual environments.

Using cameras to convey events and actions in dynamic environments is a major concern
in many CG applications. In the context of crowd simulation, we present a novel approach
to address the challenge of controlling multiple cameras tracking groups of targets. In this
first contribution we propose a system that relies on Reynolds’ model of steering behaviors
to control and locally coordinate a collection of autonomous camera agents evolving in the
dynamic 3D environments to shot multi-scale events.

Editing a movie is a complex and tedious endeavor that requires a lot of expertise in the
field. Therefore, automating the process calls for a formalization of this knowledge. Using
continuity editing – the predominant style of editing – as a benchmark for evaluating edits, we
introduce a novel optimization-based approach for automatically creating well-edited movies
from a 3D animation. We propose an efficient solution through dynamic programming, by
relying on a plausible semi-Markov assumption.

Building upon our first contribution we then propose a novel importance-driven approach
to cinematic replay that exploits both the narrative and geometric information in games to
automatically compute camera paths. Combined with our editing framework, our solution
generates coherent cinematic replays of game sessions.

Finally, drawing inspiration from standard practices in the movie industry, we introduce a
novel approach to camera path planning. This solution ensures realistic trajectories by con-
straining camera motion on a virtual rail. The camera position and orientation are optimized
in time along the rail to best satisfy visual properties. The computed shots constitute relevant
inputs for the editing framework which then generates compelling cinematographic content.

ACKNOWLEDGMENTS

Before getting into the core of thesis, I would like to start by thanking all the people who
helped me and supported me throughout these last three years. I first want to express my
gratitude to my advisors Rémi Ronfard and Marc Christie for giving me the opportunity to do
this thesis and for all the time and energy they spent to guide me through this journey. I express
my gratitude towards Marie-Paule Cani, the team leader, who was not only supportive and
encouraging but also gave me many opportunities to assist to great international conferences
that always boosted my motivation. Thank you also to all the jury members for their precious
feedback. Their comments and suggestions helped me to greatly improve this thesis.

A lot of work in this thesis was only made possible thanks to the collaboration with many
people. I would like to thank Nicolas Szilas and Nicolas Habonneau for their time and excel-
lent work. I’m also really thankful to the engineers Tristan and Julian for the precious help
they provided in times of despair. Obviously, I can not mention my coworkers without ac-
knowledging the amazing work produced by Estelle, Laura, Romain and Adela. Their work
was fundamental for my research. Thank you also to Christophe, Vineet and Mike Gleicher,
whose advises and suggestions always turned out useful. And a special thanks to the Christie’s,
whose feedback was always most appreciated.

Working at INRIA during the last three years, I came across many wonderful people both
in Grenoble and Rennes. I won’t go through an extensive list as I’m afraid I might forget to
mention a couple and regret it later. But thank you to all the Coinche’s players that were there
to take a break when I needed one. Thank you to all the runners who accompanied me to the
Bastille, even when the weather was not the most friendly. And obviously, thank you to my
two roommates, coworkers and friends Benjamin and Kévin. I hope it was not too difficult to
cope with me and the many sleepless nights I spent working on this very thesis. Overall, thank
you to all my friends for all the memorable moments we spent together.

Finally, I would like to thank my family, whose support was an essential component to the
success of this thesis. I will never be grateful enough for everything they have done for the past
twenty-six years to help me get there. I will now conclude with a huge thanks to Aurélie, my
constant source of inspiration and motivation.

7

PLAN

Plan 9

1 Introduction 13

2 State of the art 19
2.1 Cinematographic background . 20

2.1.1 Storytelling and cinematography . 20
2.1.2 Camera placement and shot composition 21
2.1.3 Camera movements . 25
2.1.4 Editing principles . 26

2.2 Controlling virtual cameras . 27
2.2.1 Automated camera placement . 28
2.2.2 Realtime camera planning . 31
2.2.3 Offline camera planning . 34

2.3 Automatic film editing . 36
2.3.1 Idiom-based editing . 36
2.3.2 Optimization-based editing . 39
2.3.3 Narrative-driven editing . 41

2.4 Summary . 43

3 Steering Behaviors for Autonomous Cameras 45
3.1 Introduction . 46
3.2 Background on steering behaviors . 47

3.2.1 Agent dynamics . 47
3.2.2 Steering forces . 47

3.3 Steering cameras . 48
3.3.1 Targets and events . 49
3.3.2 Camera dynamics . 50
3.3.3 Camera steering forces . 50

9

10

3.3.4 Camera steering torques . 54
3.4 Experimental results . 56

3.4.1 Crowd simulation . 57
3.4.2 Implementation details . 58
3.4.3 Qualitative evaluation . 58
3.4.4 Quantitative evaluation . 59

3.5 Limitations and future work . 60
3.6 Summary . 62

4 Semi-Markov Model of Film Editing and Applications 63
4.1 Introduction . 64
4.2 Movies as Semi-Markov Chains . 64
4.3 Measuring Shot Quality . 66

4.3.1 Symbolic projection . 67
4.3.2 Narrative importance . 68
4.3.3 Narrative relevance . 69
4.3.4 Visual quality . 70

4.4 Measuring Cut Quality . 73
4.4.1 Screen continuity . 73
4.4.2 Motion continuity . 73
4.4.3 Gaze continuity . 74
4.4.4 Left-to-right ordering . 75
4.4.5 Jump cuts . 76

4.5 Measuring Rhythm Quality . 77
4.6 Optimizing over Semi-Markov Chains . 78
4.7 Experimental results and validation . 80

4.7.1 Case study . 80
4.7.2 User-study . 82
4.7.3 Qualitative comparison . 83
4.7.4 Qualitative evaluation of the Action Visibilty 86
4.7.5 Qualitative evaluation of the Hitchcock Principle 87
4.7.6 Qualitative evaluation of the cuts and continuity editing 88
4.7.7 Qualitative evaluation of the pacing 89
4.7.8 Framework and implementation details 93

4.8 Limitations and future work . 95
4.9 Summary . 96

5 Narrative-Driven Camera Control for Cinematic Replay 97
5.1 Introduction . 98
5.2 Overview . 100
5.3 An importance-driven approach . 100
5.4 The Director: from importance to specification of camera behaviors 102

5.4.1 High level specifications . 102
5.4.2 Behaviors . 102
5.4.3 Editing . 104

5.5 The Cinematographer: from specifications to camera coordinates 104
5.5.1 Computing camera coordinates . 104
5.5.2 Animating cameras . 106

10

11

5.5.3 Filtering . 107
5.6 Experimental results . 110

5.6.1 Narrative importance . 110
5.6.2 Shots specifications . 110
5.6.3 Computing camera positions . 111
5.6.4 Overall process and results . 112

5.7 Limitations and future work . 113
5.8 Summary . 113

6 Camera-on-rails 115
6.1 Introduction . 116
6.2 Overview . 116
6.3 Building camera rails . 117

6.3.1 Computing a raw trajectory . 117
6.3.2 From raw trajectories to camera rails 118

6.4 Moving the camera on the rail . 119
6.4.1 Raw camera motion . 120
6.4.2 Smooth camera motion . 120
6.4.3 Camera orientation . 122

6.5 Results . 123
6.5.1 Performance . 123
6.5.2 Comparison with other methods . 125
6.5.3 Camera rails for cinematic replay . 126
6.5.4 Virtual movie making using virtual rails 128

6.6 Limitations and future work . 130
6.7 Summary . 131

7 Conclusion 133
7.1 Contributions . 134
7.2 Perspectives . 135

Bibliography 139

11

CHAPTER

1

INTRODUCTION

13

Chapter 1. Introduction

I N the last century, the seventh art has seen a spectacular growth, becoming one of the most
popular means of storytelling. More recently, the progress in computer graphics, allow-
ing the creation of computer animated movies, has strongly contributed to the increasing

expressiveness and quality of this modern type of entertainment. However, whether it is CG or
real, movie-making is a long and tedious endeavour that requires tremendous amount of work
and expertise in order to pull through the many stages of the production. For the past decades, a
fair amount of research has been conducted to ease and accelerate the film production process.
In virtual movie-making especially, latest 3D software, game engines, motion capture devices
or other virtual production technologies, along with the wide availability of high-resolution
3D models, have revolutionized traditional film-making pipelines. Both industry and public
research have eagerly invested in these technologies that not only benefit the movie industry
but also enable simple amateurs to become digital 3D storytellers. Gaming companies are also
heavily involved in these research topics as the constantly improving quality in graphics urges
them to rely more and more on cinematics and cinematographic techniques to enhance the
gaming experience and narrative expressiveness of their games.

The rise of the machinima community (portmanteau of machine cinema), which relies on
the use of real-time game engine as a storytelling tool, has lead to the emergence of low-cost
yet powerful alternatives for the creation of virtual cinematic productions. Several projects
such as Xtranormal, Moviestorm, iClone or more recently Crytek’s Cinebox, addressed many
of the challenges of virtual movie-making to provide users with high level tools and ease the
creation of high quality cinematographic content (see Figure 1.1). To date however, as a large
part of the research in the field focuses on modeling, animation and rendering, there remains a
clear lack of accessible tools to easily carry out the cinematography (positioning the cameras
to create shots) and perform the editing (selecting appropriate cuts between the shots created
by the cameras).

(a) Xtranormal (b) Cinebox

Figure 1.1: Examples of virtual movie-making tools. While some focused on automating as
much as possible of the movie-making process (a), others remain highly interactive to provide
higher quality results (b).

These tasks indeed require the knowledge of a significant amount of empirical rules and
established conventions, as well as experience with complex computer graphics tools. As such
they remain highly interactive and are usually manually performed by graphists and editors.
Thus, the cinematographic expertise of the user constitutes a strongly limiting factor for the
creation of virtual movies. Providing users with automated tools encompassing this knowledge
constitutes a major challenge for virtual storytelling. Not only would it greatly facilitate the
creation of cinematographic content in virtual environments but it would also allow users to
quickly learn and gain experience in cinematography.

14

Chapter 1. Introduction

The computation of appropriate cinematography in complex 3D scenes is a key problem
in a number of computer graphics applications. The camera constitutes the window through
which viewers perceive the virtual environment. Thus, for virtual storytelling, it is the primary
tool used to convey the events composing a narrative. Research on camera control has lead to
many applications ranging from interactive-based solutions that partially assist users, to fully
automatic approaches. In this thesis we investigate the use of fully automatic camera control
for storytelling purposes.

Frame composition is the primary concern of cinematographers. As such, the main objec-
tive in virtual cinematography is the computation of viewpoints that satisfy layouts of narrative
elements on the screen. Due to the dynamic nature of the environments, the other concern in
virtual camera control is the motion of the camera. Path planning plays an important role in
the shooting of animated scenes. However, even though there is a range of techniques to auto-
matically compute camera paths in virtual environments, to this day, many challenges remain
under-addressed. One of them is the use of multiple cameras to convey events in animated
scenes in realtime. This objective was partly tackled with solutions either tracking a limited
number of targets or restrained to a single viewpoint. None of them however tackled the chal-
lenge of coordinating several cameras to optimize the coverage of the scene. Moreover, despite
the obvious applications to cinematic replay or other storytelling tools, the use of narrative
information to guide cameras was never properly considered. Controlling multiple cameras to
convey given communicative goals is a complex endeavor that deserves more consideration.
This is the first challenge we address in this thesis.

Finally, very few approaches seriously tackled the problem of generating realistic camera
motions. Working with virtual cameras has the advantage of removing physical constraints that
usually bound camera movements, hereby giving more space to creativity and expressiveness.
However, this convenient property is also a considerable source of errors as the generated
path often lacks realism. The second challenge we address in this thesis is the design of new
algorithms and techniques that draw inspiration from traditional movie-making practices to
automatically generate realistic shots that follow common movie standards.

The last stage of movie making consists in editing the recorded shots to produce the fin-
ished motion picture. This task used to be extremely tedious and performed manually by
professionals in the movie industry. With the rise of digital media, it has become much faster
and accessible to anyone with a computer and proper knowledge of editing principles. Part of
the research conducted in the domain now aims at automating the editing process to ease the
creation of cinematographic content (see Figure 1.2).

(a) (b) (c)

Figure 1.2: Evolution of film-editing. Formerly performed manually by professionals in the
movie industry (a), it is currently achieved digitally and also accessible to amateurs (b). Recent
research now addresses the automation of the process that would no longer require interactions
with expert users (c).

15

Chapter 1. Introduction

In virtual cinematography, the problem of cutting and pasting shots from all available cam-
eras has never been addressed extensively. Most 3D animation packages lack editing tools,
calling for automatic approaches that would, at least partially, support users in their creative
process. The third challenge we address here is the automation of the editing process from vir-
tual cameras using both geometric and narrative information to select the shots that best serve
narrative purposes.

The research conducted in this thesis addresses all three challenges through the following
contributions, ranging from basic camera control to the automated generation of cinemato-
graphic contents.

Steering Behaviors for Autonomous Cameras

In a first contribution, we tackle the challenge of controlling multiple cameras in animated envi-
ronments. We designed a system based on autonomous cameras which enables the conveyance
of events occurring in complex crowded scenes. Our approach relies on Reynolds’ model of
steering behaviors to control and locally coordinate a collection of camera agents similar to a
group of reporters. The key benefit, in addition to the simplicity of the steering rules, holds
in the capacity of the system to adapt to the evolving complexity of crowded environment by
self-organizing the camera agents to track interesting events.

Continuity Editing for 3D Animation

After focusing on camera control issues, we then address the problem of automatic editing for
3D animation by relying on continuity editing, the predominant style of editing. We review
the main causes of editing errors in literature and propose an editing model relying on a mini-
mization of such errors. We make a plausible semi-Markov assumption, resulting in a dynamic
programming solution which is computationally efficient. We also show that our method can
generate movies with different editing rhythms and validate the results through a user study
and a qualitative analysis based on a comparison with a professionally edited sequence.

Narrative-driven Camera Control

This next contribution uses and extends our previous work on camera control and editing to
devise a system that generates cinematic replays for dialogue-based 3D video games. The sys-
tem exploits the narrative and geometric information present in these games and automatically
computes camera framings and edits to build a coherent cinematic replay of the gaming session.
We propose a novel importance-driven approach to virtual cinematography. Rather than rely-
ing on actions performed by characters to drive the cameras (as in most existing approaches),
we rely on the importance of characters in the narrative. We demonstrate the features of our
system by implementing three camera behaviors and present results obtained by interfacing our
system with a full-fledged serious game containing several hours of 3D animated content.

Constrained Camera Paths: Camera-on-Rails

Finally, in our last contribution, we propose an offline camera motion planning system that
takes inspiration from live cinematography techniques. Among possible devices, real cine-
matographers often rely on camera rails to create smooth camera motions which viewers are
familiar with. Following this practice, we propose a method for generating virtual camera

16

Chapter 1. Introduction

rails and computing smooth camera motions on these rails. Our technique analyses charac-
ter motions and user-defined framing properties to compute rough camera motions which are
further refined using constrained-optimization techniques. Comparisons with recent techniques
demonstrate the benefits of our approach and opens interesting perspectives in terms of creative
support tools for animators and cinematographers.

The outline of the remaining chapters is as follows. After reviewing the related literature
and state of the art in chapter 2, we detail our approach of camera control based on autonomous
cameras in chapter 3, followed by our work on automatic editing in chapter 4. Chapter 5 details
our narrative-driven approach to camera control for cinematic replays. Then in chapter 6, we
present our novel approach to camera motion planning using virtual camera rails. Finally, in
chapter 7, after discussing limitations and perspectives on future work, we conclude this thesis
dissertation.

17

Chapter 1. Introduction

18

CHAPTER

2

STATE OF THE ART

I S it for a real movie or a CG movie, movie-making is a complex process that is comprised
of many distinct stages including script writing, blocking, staging, shooting and editing.
The amount of resources and time required for each of these stages is strongly dependent

on the content and the format of the media. The work presented in this thesis exclusively
targets virtual environments and deals with two specific phases of the movie-making process:
the shooting (cinematography) and the editing. Throughout this state of the art, we introduce
the background and review the existing literature related to both of these phases.

This chapter first gives an insight on live cinematography and the common practices in the
field. It describes the concepts and grammar used by filmmakers (see section 2.1). After this
overview of standard movie-making principles, we focus on the problem of virtual cinematog-
raphy which consists in shooting in animated virtual environments (see section 2.2). Finally,
we conclude this chapter with a thorough analysis of the existing literature on automatic film-
editing (see section 2.3).

19

Chapitre 2. State of the art

2.1 CINEMATOGRAPHIC BACKGROUND

Before addressing the problem of virtual cinematography and editing, one must be aware of
the many conventions, techniques and rules used in real-world movie-making. Compared to
others, the seventh art [Can23] is relatively recent and it is only in the second half of the
twentieth century that literature on the matter started to define standard practices. Before these
conventions were set, movie-makers mostly relied on their experience through trial and error
methodologies.

With his book, “The 5 C’s of Cinematography”, [Mas65], Mascelli successfully addressed
the issue of "defining, explaining, clarifying and graphically illustrating motion picture filming
techniques in an easy-to-understand way”. This first attempt at providing movie-making stan-
dards was long considered the main reference for filmmakers. Later, during the past decades,
with the popularization of cinema, many books addressed this same issue, focusing on different
aspects and trying to formalize common practices [Ari76, Mur86, Kat09, TB93, TB98, Mer10].

When studying filmmaking, it is essential to remember that the primary goal of a movie is
to tell a story. There exists many medium through which a story can be told, and in the case of
films, cinematography and editing are the tools given to the director to communicate his vision
of the story to the audience (2.1.1). After introducing camera placement techniques and shot
composition rules (section 2.1.2), we review the fundamental knowledge on camera motion
(section 2.1.3) and key editing guidelines (section 2.1.4).

2.1.1 Storytelling and cinematography

Storytelling is the art of narrating a story through one or more mediums (text, speech, images
or any other means). As such, movies are considered as a form of storytelling. The main
purpose of every filmmaker is to narrate a story ; throughout his book “The Five C’s of cine-
matography” [Mas65], Mascelli insists on this key principle: “every shot must serve the story”.
Cinematography is the tool provided to filmmakers to assist them in the narration of a story. It
helps them construct a narrative discourse and convey the story as they want it to be understood.

The theory of G. Genette [Gen72], explains that a narrative is composed of three distinct
layers: first, there is the story – also referred to as the Fabula – which consists of all events
chronologically ordered that occur within the fictional world; then there is the discourse which
consists of the subset of events, re-organized in an identical or different temporal order; and
finally, there is the narration, which is the act of narrating a story through a specific medium.
In [RS14], the authors tackle the issue of expressing a story through different digital media
(text, audio, 2D or 3D graphics, etc.). They present several models (that could be applied to
any type of media) to transform a Fabula (obtained from generated narratives), into a finished
mediated discourse. Even though they do not address the specific field of movie-making their
general approach relies on cinematographic metaphors. One of their models especially makes
use of the movie-making pipeline: a screen-writer transforms a raw story into a refined narrative
discourse that describes narrative goals (convey or not a specific action for instance) ; the
director is then left with the task of narrating these goals if possible – their last model allows
the director to suggest modifications of the narrative discourse in case of failure.

Prior to shooting a movie, directors already know how they want to narrate the scenario (or
narrative discourse). The way a sequence is being shot plays a significant role in the informa-
tion and emotion it conveys (see section 2.1.2). Thus, even though the scenario might contain
a lot of details on the narrative goals, the director’s vision of the story will always have a major
impact on its understanding by the audience. From the same scenario two directors could con-

20

Chapitre 2. State of the art

vey two different stories. Moreover each director has his own style and usually takes decisions
beforehand as he often works from storyboards. Directors know precisely how they want to
tell the story before even shooting it. Figure 2.1 from the movie Back to the Future [ZKSC85],
directed by Robert Zemeckis and edited by Arthur Schmidt, shows how precisely Zemeckis
shot one of the sequences. Before M.J. Fox, another actor had been chosen to interpret Marty
McFly. After five weeks of shooting, the director decided to change the main actor and had
to start over. Figures 2.1a and 2.1b show how similar the shots are: the director already knew
exactly what he wanted for the end result and shot the sequence only from very specific view-
points.

(a) E. Stoltz as Marty McFly (b) M.J. Fox as Marty McFly

Figure 2.1: Shots of Eric Stoltz and Michael J. Fox as Marty McFly in Back To The Future. In
both cases, the director shot the sequence from the exact same viewpoint to convey a specific
idea to the audience.

Overall, filmmakers’ work consists in transforming a raw story into a finished movie that
tells the story under their perspective. The following sections aim at introducing the many tools
directors have and how they can use them to achieve this goal.

2.1.2 Camera placement and shot composition

A movie is composed of a succession of shots. For each of them, the placement of the camera is
essential to the story. It requires finding the best viewpoint to convey actors’ actions, reactions
and emotions at a precise moment in the narrative, in coherence with previous and following
shots. Over the years, filmmakers have defined many stereotypical types of shots that can be
defined using shot properties.

Shot properties:

• Shot size: it partially describes the framing of a character (or object) by specifying its
proportion in the frame. There exists different shot sizes which can be used to convey
different emotions to the audience. Figure 2.2 illustrates eight different shot types with
a single character. In the “Grammar of the Shots” [TB98], Thompson suggested that all
different shot sizes belong to three main categories: Full Shot (including Long Shot),
Medium Shot and Close-up. Full shots and long shots allow to see the whole character
from head to toe as well as part of the environment. It gives the audience the possibility
to follow the character while seeing its surrounding. Medium shots usually focus on the
characters’ upper body. It allows to both follow the actions the characters are involved
in and see their reactions and emotions. Finally, Close-up shots are used by filmmakers
to emphasize emotions and trigger the audience attention. In his book [Mas65], Mascelli

21

Chapitre 2. State of the art

dedicates a whole chapter to this type of shot that he considers as “among the most
powerful storytelling devices available to the filmmaker”.

• Profile angle: it is defined as the angle between the camera and the orientation of an actor
or a group of actors. As illustrated in Figure 2.3(a), in the case of one actor, it corresponds
to the position of the camera around him. The variety of possible shots allows filmmakers
to shot scenes from various viewpoints thus conveying different information on the scene
and adding some interest to it (a unique frontal shot would probably bored the audience
for example). These camera angles can be further extended to the case of two or more
actors using the lines of action between them (apex shot or over-the-shoulder shot for
instance).

• Vertical angle: it can either be low, neutral or high (see Figure 2.3(b)). Low angle shots
are taken with a camera usually placed bellow the actor’s head. It tends to emphasize
their strength and dominance. On the contrary, high angle shots (where the camera shots
from above) have the opposite effect; it diminished characters’ strength and set them on
a weaker position. Taken approximatively from the same height as the characters, neutral
angle is used in most cases as it relates the characters to the audience (it sets them at the
same level, as equals). This simple change in height of the camera constitutes a powerful
tool for filmmakers to emphasize emotions and convey different impressions.

Extreme
Close-up

(ECU)

Close-up
(CU)

Medium
Close-up
(MCU)

Medium
Shot (MS)

Medium
Full Shot

(MFS)

Full Shot
(FS)

Long Shot
(LS)

Extreme
Long Shot

(ELS)

Figure 2.2: Examples of eight different shot sizes: Extreme Close-up, Close-up, Medium Close-
up, Medium shot, Medium Full shot, Full shot, Long shot, Extreme Long shot

Most of the examples given so far relate to one-actor situations. But all the vocabulary can
also be extended to the case of multiple actors. This grammar of the shot was formalized
by [RGB13] with the Prose Storyboard Language (PSL). The PSL is a formal language used to
describe movies shot by shot, where each shot is described with a unique sentence. It covers all
possible types of shots and also handles camera movements. Figure 2.4 gives a few examples
of PSL sentences used to describe camera shots.

This cinematographic grammar is used to describe what the camera is filming. But the
framing of shots also have to obey some rules to ensure the aesthetics of the movie. These

22

Chapitre 2. State of the art

Front

3/4 left

LeftRight

3/4 right

3/4 back right 3/4 back left

Back

High
angle

Low
angle

Neutral
angle

(a) (b)

Figure 2.3: Variety of camera angles: profile angles (a) and vertiacl angles (b)

(a) CU on A1 3/4 front-left (b) MS on A1 and A2 front

(c) CU on A2 3/4 back-right screen-
left and A1 screen-right

(d) MS on A1 left screen-right and
A2

Figure 2.4: Description of shots using PSL with two actors A1 and A2

rules aim at ensuring that the shots are properly balanced. The composition of the frame can
be broken down into two distinct entities (horizontal and vertical composition) that both obey
specific rules:

• Headroom: it is the space between the top of the head of a subject and the top of the
screen. A large headroom results in unaesthetic framing as a big amount of screen-space
is wasted on insignificant elements. On the contrary, no headroom tends to disturb the
audience and might result in cropping characters’ head.

23

Chapitre 2. State of the art

• Lookroom: it is the empty space in the direction the subject is facing or moving. To
obtain a proper horizontal composition, the lookroom should remain sufficient. The idea
behind this principle is that the gaze of the characters should be accounted for in the
balance of the shot.

Another well-known composition rule is the rule of thirds. It states that important composi-
tional elements (characters’ eyes for instance) of a frame should be positioned along imaginary
vertical and horizontal lines placed at the thirds of the screen. This rule of thirds is comple-
mentary to the lookroom and headroom rules as seen in Figures 2.5 and 2.6.

(a) (b)

Figure 2.5: Examples of shots with different lookroom. Insufficient lookroom is observed when
a character positioned on the left is looking towards the same side of the frame (a) ; appropriate
lookroom is obtained when a character positioned on the right side of the screen is looking
toward the opposite side (b)

(a) (b) (c)

Figure 2.6: Examples of shots with different vertical composition. (a) The top of the head of
the subject touches the top of the frame and the eyes are not at the third of the screen ; (b) the
shot contains a proper headroom and the eyes are nicely aligned at the third of the screen; (c)
the headroom is too important and result in a poor shot aesthetic

This thesis mainly focuses on these few principles and does not account for other rules re-
garding the lighting, the salience, the background staging, etc. The last criterion that is being
used in this work is the Hitchcock principle. As seen in section 2.1.1, the goal of a movie is
to communicate a story through a specific point of view. To reach their communicative goals,
filmmakers determine camera placement by narrative significance. In other words, filmmak-
ers decide where to place a camera depending on how it conveys the story. This idea was

24

Chapitre 2. State of the art

also expressed by film director Alfred Hitchcock. What we refer to as the Hitchcock princi-
ple [TS67, Haw05, DeL09] states that the size of a character on the screen should be propor-
tional to its narrative importance in the story. Selecting a shot then consists in finding the one
that best balances the importance of the characters with their perceived size on the screen to
reach what we describe as an "Hitchcock equilibrium".

2.1.3 Camera movements

In the previous section, we discussed essential cinematographic principles that, all together,
constitute a strong basis on shot composition. Yet, we only looked into the simple case of
static composition. Due to the strongly dynamic nature of movies, it is easy to understand the
necessity of using dynamic shots. The dynamism can sometimes come from the characters
motion within the frame – some directors such as Steve McQueen, Tsai Ming-liang or even
Orson Welles are well-known for there extensive use of long static shots – but in many cases,
it is induced by camera motion. In [TB98] Thompson defines three categories of shots:

• Simple shot: it is taken from a static camera that can neither move nor turn. Any change
in the composition necessarily comes from movements of the characters or objects being
filmed.

• Complex shot: it is taken from a fixed camera with three degrees of freedom: tilt, pan
and zoom. Tilt affects the vertical composition of the shot as the camera rotates up and
down. Pan is obtained by rotating the camera horizontally and thus affects the horizontal
composition. And finally zoom-in and zoom-out narrow or widen the field of view.

• Composite shot: it is taken from a moving camera. The number of degrees of freedom
depends on the type of support the camera is attached to (see Figure 2.7). With a dolly
for instance, the camera is able to move in one direction. It can be used to provide consis-
tency in the framing by tracking characters or on the contrary to transition between two
different framings (from a medium shot to a close-up for example). Other more compli-
cated movements can be achieved with the use of camera devices such has steadycam or
crane that might require several camera operators.

(a) (b) (c)

Figure 2.7: Examples of various camera devices used in the movie industry: (a) camera cranes
are used to shot sequences with important changes in viewpoints’ height ; (b) steadycam assist
operators to film without any shaking artifacts ; (c) camera tracks are used to make precise
dolly shots and often requires several camera operators

25

Chapitre 2. State of the art

As mentioned before, camera placement is the key to communicate a story. The way the
director places the camera will affect the way the audience understands the story. For the same
reasons, the way the camera moves affects the global understanding of the story. As a result,
the use of camera motion should always be motivated. It has to serve a purpose, otherwise, the
overuse of camera motion might only confuse the audience.

2.1.4 Editing principles

Film-editing is the task of selecting shots to combine them into sequences that finally create a
finished motion picture. As Bordwell and Thompson stated, it is “the coordination of one shot
with the next” [BT01]. Originally, before the appearance of digital media, the editing used to be
hand-made by physically cutting and gluing raw footage (or “rushes”) from different cameras
(see Figure 2.8). Nowadays, this task is computer-assisted but the principle remains the same.

Figure 2.8: Movie editing before the apparition of digital media

As a standard 90 minutes movie contains in average a thousand edits (i.e. cut from one
camera to another), it is easy to understand the importance of editing. For the same reason shot
composition follow standard practices, film editing obey to its own set of rules and conventions.
There exist many different styles of video editing (each with its own standards). The dragnet
style [Mur86] for instance, adopts a reactive approach where cuts are dictated by new narrative
events (such as new actions or new speaker). In this thesis, we focus on continuity editing, the
predominant style of editing in Hollywood. This less mechanical and more subtle editing style
has been extensively studied by [Smi05].

Editing is considered by many as the invisible art [O’S09]. Its main purpose is to convey
a series of actions and events from different viewpoints while keeping cuts unnoticed by the
audience. According to Smith, the goals of continuity editing are to “minimize the awareness
of cuts, create the perception of continuity across a cut and ensure that continuity is not violated
as a consequence of a cut” [Smi05]. To accomplish these goals, continuity editing relies on
several rules (later illustrated in chapter 4.4):

• Jump cuts: In film editing, a jump cut is defined as a cut in which two sequential shots
of the same subject are taken from similar camera positions. This type of edit gives the
effect of jumping forwards in time and thus should be avoided.

• Screen continuity: Spatial continuity is essential to ease the transition between two shots
and enforce the visual fluidity of the cut. It prevents the disorientation of the audience.

• Motion continuity: Motion of the characters on the screen also affects the quality of a cut.
Transitions between two shots where one or more characters have a different perceived
motion (in screen space) have a disorienting effect on the audience.

26

Chapitre 2. State of the art

• Gaze continuity: Visual discomfort may also happen in a transition between two shots
when characters involved in both shots are looking in different directions on the screen
before and after the cut.

• Left-to-right ordering: The left-to-right ordering of characters is another important factor
to enforce visual continuity. Characters whose relative screen positions are reversed after
a cut appear to be jumping around, which attracts attention to the cut [Smi05] – this
criteria is also known as the 180-degree rule which states that a camera should never
cross the line of interest [Ari76].

In addition to the rules and editing principles previously mentioned, the last century of cin-
ema has seen the emergence of patterns in the way films are shot and edited. These stereotypical
ways of filming specific actions are call idioms. They are predefined sequences of shots used
to convey series of actions and events. Figure 2.9 gives a simple example of a two-character di-
alogue idiom. It switches from an apex shot to successive over-the-shoulder shots and internal
shots in order to always keep the character speaking in the frame and intensify the dialogue.
There also exist idioms to film fighting scenes, 3-characters dialogue, characters walking and
any other type of event that usually occur in movies.

(a) (b) (c) (d) (e)

Figure 2.9: Example of a dialog idiom. After an apex shot (a), the editor uses successively
over-the-shoulder shots (b and c) and internal shots (d and e) to intensify the dialog.

Finally, the desired pacing of a scene has a direct influence on the editing. It sets the
rhythm (or tempo) of the scene and has an important influence on the emotional response from
the audience. For instance, an action scene with a lot of movement involved would probably
be better conveyed with a higher pace to emphasize the idea of movement. On the opposite a
dramatic scene would better communicate the tension through longer shots. Film scholars have
extensively studied shot durations in cinema and found it to be an important parameter of film
style. They found that the distribution of shot durations in a movie sequence approximately
follows a log-normal distribution [CDN10, Sal09], whose two parameters can be used as a
stylistic signature for movie directors.

2.2 CONTROLLING VIRTUAL CAMERAS

The challenge of controlling virtual cameras has triggered the interest of researchers in the past
decades which results in a wide literature in the field. A significant part of this literature focuses
on the problem of interactive control where the purpose is to assist a user in the placement of a
camera. This issue was tackled under three different angles. The most common approach is the
direct control of the camera parameters through various metaphors (eyeball in hand, world in
hand, flying vehicle, etc.). A large spectrum of these solutions was reviewed in [WO90]. Other
more sophisticated solutions adopt the “Through-The-Lens” paradigm introduced by Gleicher
and Witkin in [GW92]. It consists in manipulating the 3D camera by controlling and constrain-
ing features in the 2D image seen through its lens. Finally, a more recent approach consists in

27

Chapitre 2. State of the art

assisting camera control through physical controllers similar to real-world cameras [LCRB11b]
(see Figure2.10).

(a) (b)

Figure 2.10: Virtual camera system used to interactively explore virtual environments. It was
made famous through its extensive use by movie director James Cameron during the production
of Avatar (a). It is also used for previsualization and fast prototyping purposes [LCRB11b] (b).

In the context of this thesis we are not interested in low-level interactivity with a potential
user. The goal of our work is to fully automate camera placement and motion. This thesis
will not focus on interactive camera control. The first part of this section is dedicated to static
camera placement (section 2.2.1). We review constraint-based, optimization-based and alge-
braic solutions to the problem of positioning the camera at a precise moment in time. We then
consider camera motion and look at the work conducted in real-time camera planning (sec-
tion 2.2.2). Finally we review the related work that deal with camera planning as an offline
process (section 2.2.3).

2.2.1 Automated camera placement

Before looking at ways to control camera motion it is mandatory to look at the problem of
static camera placement. Positioning a camera in a 3D environment to satisfy a precise 2D shot
composition is a challenging issue that requires solving a 7D problem as camera set-ups have
7 degrees of freedom (dof): 3D position, 3D orientation, 1D focal.

The early work of Blinn [Bli88] presents the first mathematical formalization of the prob-
lem and addresses it using vector algebra. In the paper, he addresses the specific challenge
of placing a camera in a virtual environment to film two entities with constraints on their on-
screen composition, on the distance to one of the entities and on the onscreen orientation of
the other. He proposed an iterative algorithm that computes an approximate solution to this
onscreen composition problem. This algorithm however might compute undesired results for
some singular cases.

More recently, Lino and Christie proposed a toric surface model that efficiently generates
a range of viewpoints corresponding to the exact on-screen composition of two or three tar-
gets [LC12]. Unlike Blinn’s algorithm, their solution is not restricted to one particular case
and can be used with different constraints on the onscreen layout of the targets, such as their
orientation or their scale (i.e. their distance to the camera). To demonstrate their solution, they
first consider the problem in a 2D world. The screen of the camera is then a 1D segment. Using
the inscribed angle theorem, we know that all camera positions that are solutions to the system
define an arc-circle with the targets at its extremities as explained by [Fis] and illustrated in
Figure 2.11a. Using the same reasoning, the authors extended this solution to the 3D problem
by rotating the arc-circle around the axis defined by the two targets. For a given focal length

28

Chapitre 2. State of the art

and aspect ratio, the manifold surface illustrated in Figure 2.11b contains all the solution to the
on-screen composition problem. Other constraints can be satisfied by searching this manifold
space defined by two angles θ and φ, reducing the space search from 6D to 2D.

A B

OCam1

Cam2

Cam3

C

A BC

(a) (b)

Figure 2.11: Range of solutions for the exact composition of two subjects on a screen in a 2D
and in a 3D world [LC12]. (a) In a 2D environment, all the solutions are along the arc-crircle
AB, centered in O ; (b) in 3D, solutions are on a toric manifold surface

Algebraic approaches offer fast and efficient solutions to automatic viewpoint computa-
tion. Nevertheless these methods are generally limited to a small number of targets and do not
handle cinematographic issues such as obstruction or occlusion. To tackle these challenges,
researchers have devised many systems relying either on optimization or constraint-based ap-
proaches. In a state of the art paper, Christie and Olivier [CO09] reviewed and classified the
literature. Along with a thorough analysis of the previous work, they presented the classifica-
tion illustrated in Figure 2.12.

Optimization

Constraints

Discrete Continuous

OHPL99

Dru94

BMBT00

Pic02

BRZL98

BGL98
CN05

JL98, CLG02

Figure 2.12: Classification of viewpoints computation systems approaches by [CO09], consid-
ering two axes: from discrete to continuous techniques and from constraint-based to optimiza-
tion techniques.

29

Chapitre 2. State of the art

Optimization-based techniques are considered soft solving techniques, as the best solution
is computed using heuristics that measure violations of each property (i.e. an approximate so-
lution can be returned when there are no exact solution). The optimal solution is computed
by maximizing a set of objective functions derived from visual properties. With CAMDROID,
Drucker et al. [DZ94, DZ95, Dru95] proposed a system relying on constrained optimization
techniques. The authors encoded visual properties through constraints and objective functions
to numerically solve the problem using Newton’s method. Later, introducing their CAMPLAN

system [OHPL99] (improved in [HO00]), Olivier et al. proposed a purely optimization-based
solution. Given a set of visual properties (position, size, orientation or visibility of objects on
the screen), the system uses a genetic algorithm to optimize the camera position by encoding
its parameters as a gene. Similar to these approaches, Bares et al. [BMBT00] used storyboard
frames to define objectives on shot composition. The search space is recursively sampled to
search for optimal solutions using the objective functions to evaluate visual properties. Pick-
ering et al. [Pic02, PO03] proposed a discretization approach that only explores a fraction
of the search space: after pruning inconsistent areas (see Figure 2.13), the system performs a
genetic search to find the optimal solution. More recently, [BDER08] addressed the issue us-
ing a Particle Swarm Optimization (PSO) algorithm which proved more efficient than previous
solutions.

Figure 2.13: Construction of a 3/4 front shot using [Pic02] prunning approach. The search
space is progressively reduced to the grey area

At the other end of the spectrum, constraint satisfaction techniques are considered as hard
solving techniques. They perform an exhaustive exploration of the search space and either
return the set of solutions to the problem or the guarantee that the problem has no solution.
Nevertheless, hierarchical constraint approaches are able to relax some of the constraints and
find an approximate solution. For instance, with CONSTRAINTCAM, Bares et al. [BGL98]
proposed a partial constraint satisfaction system that can relax weak constraints to return al-
ternative solutions when all constraints cannot be satisfied. When no solution is found, the
system gathers pairs of conflicting constraints and relaxes the weak ones to compute an ap-
proximate solution (this constraint relaxing process is iteratively performed until there remains
no conflicts). In [CN05], Christie and Normand introduce the notion of semantic volume that
is defined as “a volume of possible camera locations that give rise to qualitatively equivalent
shots with respect to to cinematographic properties, i.e. semantically equivalent shots”. This
approach consists in defining the search space using cinematographic terms. Semantic vol-
umes are created to satisfy visual properties (such as occlusion, framing, orientation of objects
or shot sizes) specified by the user (see Figure 2.14). The solution that satisfies all properties is
given by the intersection of the semantic volumes associated with these properties.

All these general solutions rely on different metrics to evaluate the quality of shots regard-
ing various visual properties. Thus, the quality and computational efficiency of the proposed
approaches are strongly dependent on the quality of the metrics being used which often turns
out to be a limitation factor. To address this issue, Ranon et al. [RCU10] recently focused

30

Chapitre 2. State of the art

(a) (b)

(c)

Figure 2.14: Semantic partitioning of the space search [CN05]: (a) encoding of shot sizes ;
(b) encoding of relative camera angles ;(c) camera volumes yielding no occlusion between the
characters on the screen.

on the computation of relevant heuristics and proposed a new rendering-based technique to
accurately measure the satisfaction of common visual properties.

2.2.2 Realtime camera planning

The computer graphics research community has been showing an increasing interest for tech-
niques to automatically move virtual cameras in 3D environments in realtime. A first and
fundamental requirement of any camera control system is the ability to track (i.e. maintain
visibility) one or several targets. Techniques vary according to the knowledge available to the
camera control system (known vs. unknown environments, known vs. unknown trajectories of
targets) and to the static or dynamic nature of the 3D scene. The complexity and unpredictable
nature of interactive 3D animated scenes, coupled with the necessity to convey contents match-
ing some viewpoint quality metrics, has been addressed through different reactive approaches
where camera set-ups are recomputed each frame to respond to external stimuli from their envi-
ronment. As they share the same constraints and requirements, results in robotics have greatly
inspired such techniques. For Instance, in [CM01] Courty and Marchand propose a solution
based on visual servoing – also known as vision-based robot control [ECR92]. Their solu-
tion integrates constraints in the camera trajectory to address non-trivial computer animation
problem.

Another type of robotic-like approach was also applied to the camera planning problem:
the Probabilistic Roadmap Method (PRM) [LT00, SGLM03, NO04, LC08]. The PRM is a
motion planning algorithm in robotic that solves the problem of computing a path between
the starting configuration of a robot and a goal configuration while avoiding collisions with

31

Chapitre 2. State of the art

obstacles. It randomly samples the space and tests whether the nodes (samples) are in free
space. It then connects each node with its nearby neighbours to create a graph. A graph search
algorithm is finally applied to find the best path between the starting configuration and the
goal. Figure 2.15 illustrates how PRM works and how it can be applied to camera planning.
In [LT00], Li et al. used PRM to compute collision-free paths in order to correct a user’s
input. The method however only works with static obstacles. Li later addressed the issue in
[LC08] where they compute a local probabilistic roadmap that is defined in the basis of the
target (as the target moves, the whole roadmap moves). Camera planning is then performed
locally in this roadmap and globally checked against visibility issues. Another inconvenient of
the PRM is that it generates unaesthetics path. Since the graph is built on randomly sampled
nodes linked together, the computed path is only made of consecutive segments. This issue was
tackled in [NO04] by Nieuwenhuisen and Overmars who use circular blending at the nodes of
the graph to smoothen the camera path. Geraerts also addressed this issue in [Ger09] by using
another roadmap planner: the Corridor Map Method (CMM).

Figure 2.15: Camera path are computed with PRM by first sampling the space between the
initial and goal locations [SGLM03]. The roadmap is then created by linking together close
nodes with no obstacles in-between. After a graph search is perform, the camera can follow
the computed path.

Still relying on robot path planning literature, researchers have looked at another approach:
Artificial Potential Fields (APF). APF is a reactive approach where the robot’s path is not
planned but is instead the result of its interactions with the environment. It mainly consists of
force vector fields caused by obstacles or target positions. In [BJ09], Burelli and Jhala exploited
APF by using force fields to express frame constraints and control both the camera motion and
the visual composition. Repulsive force fields are used to push the camera away from obstacles
whereas attractive force fields are used to push towards a target position. Frame constraints are
expressed using forces affecting both the camera position and orientation in order to reach the
desired frame composition.

In 1997, [LGBBL97] addressed the problem of computing robot motion strategies and pro-
posed a solution to maintain the visibility over a moving target. It relies on the prediction of
future target position and move in the environment. Similarly, [BGBLT97] presents the Intelli-
gent Observer (IO), a mobile robot which moves through an environment while autonomously
observing moving targets selected by a human operator. The observer moves the camera so
that it would see most of the future target positions. Restricted to the task of tracking a single
target, [VMGL12] recently extended these methods to the case of a potentially large group of
targets in virtual environments. The authors proposed the first group following method that

32

Chapitre 2. State of the art

partitions the workspace into a set of Monotonic Tracking Regions (MTR). MTR are regions in
which every point can be collectively visible from a trajectory in the MTR. The group following
problem is then cast to a small linear-programming problem in each MTR.

Lino et al. [LCL∗10] presented a solution to automatically position a camera in a 3D
environment for given specifications on visual properties (on-screen layout of subjects, van-
tage angles, visibility, scale) in an animated scene. They introduced the Director Volumes,
built upon [CN05] semantic volumes which provide a characterization of the space of view-
points through cinematographic terms (see Figure 2.16a), and combined with full or partial
visibility computation (see Figure 2.16b). Continuous transitions between Director Volumes
is performed by building a roadmap from a topological analysis of the environment and the
partitioning of the space (obtained from subdivisions of the semantic volumes).

(a) Design of semantic volumes for two key subjects represented as circles

(b) Steps leading to the creation of Director Volumes from an input 3D model

Figure 2.16: Examples of Semantic and Director Volumes proposed by [LCL∗10] for a classi-
cal interaction between two key subjects.

Other real-time systems have addressed the problem of controlling cameras in a virtual ani-
mated environment through various methods. In [LZ14] for example, Lixandru et al. proposed
a physics based model (physical camera rig) to simulate a reactive camera that is capable of
both tracking a moving target and producing plausible response interactively to a variety of
game scenarios. With a completely different approach, [HHS01] used a reasoning process
on visual properties coupled with hardware projections to track a target in a reactive way.
[OGK∗10] proposed a solution based on a viewpoint entropy map to evaluate the goodness of
viewpoints and find the goal position of the camera. It then uses the A* algorithm to find the
best path on a roadmap graph. Despite providing interesting novel approaches, these solutions
remain limited to the case of a single target. The tracking of multiple targets has been tackled
in [CNO12] by performing a sampling process in the space of camera viewpoints using shadow

33

Chapitre 2. State of the art

maps principles to compute the visibility of targets. The method provides an efficient evalua-
tion of the visibility within a restricted search space (a set of close candidate camera locations)
and composes the resulting visibility information to find the best camera position. Bares and
Lester have also worked on several systems relying on real-time camera control. In [BZRL98],
Bares et al. developed a cinematic task modeling framework for automated real-time task-
sensitive camera control. Their camera planning system is composed of three elements: a
shot composer that interprets the shot composition guides to place the camera, an occlusion
checker that forces cuts to other cameras when occlusions are detected and a transition planner
that creates motion splines to smoothly transition between viewpoints. And in [BGL98], they
presented CONSTRAINTCAM that uses a partial constraint satisfaction system which can relax
weak constraints to ensure a solution can be found. The user study they conducted however
highlighted that the continuity and transitions should be improved.

In this section we did not review standard methods used in video games as they address
a completely different challenge. They aim at controlling the camera during the gameplay to
ease gamers’ control over their character. These approaches are usually limited to one target
and have no consideration for cinematographic quality. Haigh-Hutchinson detailed a large
spectrum of these techniques in [HH09].

2.2.3 Offline camera planning

Even though a large part of the literature tries to address camera planning as an online process,
other approaches tackle the problem with no regard to any real-time constraints. Since most
of these solutions are not dedicated to video game camera control or any other interactive
application, the computational time required to generate a solution is not a major concern.

A recent contribution by Lino and Christie [LC15] demonstrated the use of their camera
placement solution [LC12] for camera path planning. Their system enables the creation of
complex camera motions such as long takes using a limited set of keyframes to specify camera
composition at precise moments in time. To compute a path between two keyframes, they first
compute the two camera configurations and then express each of them in the other’s toric space.
By using interpolation of the parameters in the toric space of the two cameras, they are able to
generate two separate camera paths that can be blended together (cf. Figure 2.17).

(a) (b)

Figure 2.17: Composition-based interpolation of the camera position around a pair of tar-
gets A and B (a). Interpolation curves over the camera motion and re-framing along time
(b).[LC15]

In section 2.2.1 we mentionned CAMPLAN [OHPL99, HO00] as an optimization system
to compute static shots. However, the system was also designed to plan camera motion for

34

Chapitre 2. State of the art

both static and dynamic scenes (cf. Figure 2.18). By considering the path of a camera to
be a quadratic bezier curve between two known points (established using the static version
of CAMPLAN), a camera path is found by optimizing the control points to maximise visual
properties specified by a user. Samples of camera positions along the path are evaluated, and
the cumulative fitness of the path is estimated as a linear combination of the fitness at the
sampled positions. The system however does not handle polygonal worlds ; it is limited to
spheroid approximations of the scene elements.

(a) (b)

Figure 2.18: Camera planning with CAMPLAN [OHPL99, HO00] on a static (a) and a dy-
namic (b) environment.

Dedicated to the specific task of creating overviews of human motions (e.g. from mo-
cap data), [ACOYL08] cast the problem of camera control as an energy minimization process
guided by the conjunction of external forces (describing the viewpoint quality at each location
and time) and internal forces (enforcing smoothness on the generated path). As a result, the
system generates a sequence of camera paths (with edits) using an optimization process on
a potential field defined by the aggregation of forces. While purely based on character mo-
tion analysis and viewpoint quality heuristics, the process generates meaningful overviews of
human motions without integrating semantic aspects. Later, [LLY∗12] proposed to automat-
ically extract social events from the joint analysis of multiple character motions, e.g. related
to trajectories and similarities in distance and direction of characters’ motion. Events are then
processed, analysed for spatio-temporal correlation and ranked so as to generate motion clip
segmentation. This segmentation is used as a basis to express an optimization problem on the
camera parameters for each motion clip (actually long motion clips can be separated into seg-
ments solved individually). Following the lines of [ACOYL08], the optimization process is
guided by internal, external and continuity forces shaping a potential field. Continuity forces
integrate the 180-degree rule as well as the jump-cut rule. The computational cost of the opti-
mization process remains significant (1 to 3 minutes).

Recently, in [OSTG09], Oskam et al. proposed a hybrid solution that can run in real-time
after pre-processing the environment. The system performs a pre-computation of visibility be-
tween all possible locations in a static environment, and create a visibility graph that encodes
this information. When tracking a single target (which the method is limited to), the camera
relies on the visibility graph to plan the best path towards the target (following different cri-
teria). Changes in environments are partially handled by dynamically updating the visibility
graph at the expense of many visibility tests. Figure 2.19 illustrates the creation of the roadmap
by going through every steps of the algorithm.

Finally, part of the research on camera control addresses the challenge of scene exploration
in virtual environments. Even though those virtual walkthroughs mostly use a single camera

35

Chapitre 2. State of the art

(a) (b) (c) (d)

Figure 2.19: Overview of the creation algorithm for the roadmap [OSTG09]. A spatial dis-
cretization is computed from an initial geometry of the environment (a). Portal regions are com-
puted for overlapping spheres (b). A graph is then built from the portal regions (c). Finally,
for each pair of spheres, a visibility probability is computed with a Monte-Carlo raytracing
algorithm (c).

and their direct purpose is not telling a story, they offer interesting approaches to camera con-
trol. In [BDP99, BDP00] for instance, the authors proposed a solution to move the camera on
a sphere surrounding the scene by using several heuristics to find the best path on this surface.
In [AVF04], the authors introduced Way-Finder; this system generates guided tours of com-
plex walkthrough models. Their approach relies on identifying the free-space structure of the
scene (represented by a cell and portal graph) and an entropy-based measure of the relevance
of a view-point. This metric is used for deciding which cells have to be visited and for com-
puting critical way-points inside each cell. In [VS03], Vásquez et al. focused on automatic
indoor scene exploration based on Information Theory. With their approach, the camera path
is guided by viewpoint entropy to always provide the maximum amount of new information.
Their system however remains limited to three possible camera movements: turn left, turn right
and move forward. Later, Serin et al. [SAB12] also used the concept of viewpoint entropy for
best view determination to address the challenge of terrain navigation. In [SP08], the authors
introduced the notion of semantic distance between objects of the scene. After choosing a
set of good viewpoints that gives users a maximum knowledge of the scene, they compute a
camera path between them that account for the semantic information instead of only using the
geometry of the environment.

2.3 AUTOMATIC FILM EDITING

Automating the editing process is a really complex challenge as the editing remains strongly
dependent on the director’s style and point of view. So far, several approaches have offered
interesting solutions to this difficult task. In [Ron12], Ronfard reviews some of the existing
solutions and categorizes them under three main categories : procedural, declarative and opti-
mization approaches. In this section we use a different classification. We first review the largest
part of the research on the field that rely on cinematographic idioms (section 2.3.1). We then
present some work based on optimization (section 2.3.1) and finally review other alternatives
that presses the narrative aspect of editing

2.3.1 Idiom-based editing

Starting in 1996 the Virtual Cinematographer [HCS96] first formalized the notion of film-
idioms (mentioned in section 2.1.4) in the context of virtual cinematography. Film idioms are
“recipes for obtaining good framing and editing in any given situation, similar to cases in case-

36

Chapitre 2. State of the art

based reasoning” [Ron12]. Solutions based on film idioms are close to live-cinematography
as they try to imitate and simplify the process by combining director and editor: decisions can
be made on the fly. The Virtual Cinematographer implements this cinematographic knowledge
(idioms) through a set of small hierarchically-organized finite state machine (FSM). Each idiom
is composed of a set of camera modules associated with the states of the FSM. A camera
module takes as input the number of actors. It then automatically positions and orients the
camera to place actors at particular locations on the screen. It also accounts for editing rules in
the placement of the cameras (such as the 180-degree rule).

(a) Virtual Cinematographer structure (b) FSM of a two-character dialog idiom

Figure 2.20: The Virtual Cinematographer structure is hierarchically composed of idioms (a).
Idioms are encoded as FSM where each state is associated to a camera module (b).

To test their results on a simple “virtual party”, the authors implemented several idioms
(Moving, Converse, 2Talk and 3Talk) as well as sixteen distinct camera modules. While this
system presents the advantages of being simple and running in real-time it is still limited by
the heavy task of defining the idioms. Indeed, as they are hard-coded, the idioms still require
expert knowledge from the user. Moreover, the use of deterministic finite state machine results
in a lack of expressiveness as every similar situations will be handled with the same idiom.

In the same time, [CAH∗96] introduced the Declarative Camera Control Language (DCCL)
as a general framework for generating idiom-based solutions to cinematography and film edit-
ing problems. The language devised by Christianson et al. is used to formalize idioms using
four primitive concepts: fragments, views, placements and movement endpoints. Shots are
composed of a collection of one or more fragments defining an interval of time during which
the camera is either static or operating a simple motion. An idiom is defined by a name, a list
of arguments, a list of shots described in the DCCL format and by specifying the activities it
should be associated with. The system presented in the paper relies on a Camera Planning
System (CPS) to generate the final movie from the specified idioms. The CPS takes as input
an animation trace (i.e. geometric and narrative information about the scene) and uses a Se-
quence Planner to build a film tree (see Figure 2.22) with all candidate idioms for each scene
of the sequences in the movie. The idioms (expressed in DCCL) are then compiled to place
and move the cameras in the actual environment, generating all candidate frames. Finally a
heuristic evaluator selects appropriate candidate frames for each scene.

This solution suffers from the same inconvenient as the Virtual Cinematographer. Even
though it allows more expressiveness thanks to the use of the DCCL, such approach fails to
be extensible due to the burden of creating new idioms for each style, action and context.
Moreover, it cannot be considered fully automatic as it still requires expert knowledge for
the creation of idioms. Finally, despite having proved efficient to create cinematographically

37

Chapitre 2. State of the art

Figure 2.21: Pipeline of the CPS presented by [CAH∗96]. After finding all candidate idioms
from the simulation data using a sequence planner, the CPS compile them to generate all
candidate frames. Finally, the candidate frames are evaluated to compute the best possible
edit.

Figure 2.22: Film tree expanded by the CPS of [CAH∗96]. Each scene of the sequences of a
movie can be filmed through one or several candidate idioms. Candidate frames are computed
in the virtual environment for each idiom using the DCCL compiler.

correct edits on simple cases such as dialogue scenes, this approach still lacks the ability to
account for directors’ specific communicative goals.

The seminal work of [CAH∗96] and [HCS96] has been extensively used and extended by
many researchers. Markowitz et al. [MKSB11] for example extended the film idiom approach
by replacing finite state machines with behavior trees. Using behavior trees allows more flexi-
bility as it is possibly non-deterministic. Unlike previous solutions based on FSM, the system
is able to handle any obstacle that arises and avoid getting stuck in a state when encounter-
ing unexpected events. It also enforces the 180-degree rule and the 30-degree rule, assuming
a single line of interest at any given time in the scene. Similar to film idioms, their solution
remains reactive, resulting in an editing style that immediately follows the action and cannot
easily control the pacing or style of the editing.

Friedman and Feldman [FF04] presented a knowledge-based camera planner (namely Mario)
which encodes both cinematographic and film editing knowledge, in a similar way to idioms,
but in the form of rules. Using a knowledge acquisition process they converted domain expert
principles taken from well-known textbook (such as [TB93]) into declarative rules. Then, to
compute the sequence of shots, they use a non-monotonic reasoning process. As a result, film
idioms are discovered heuristically as solutions obeying the rules in a particular situation. The
main issue with their solution is that the reasoning is exponential in the number of film frames
and cameras. Moreover, the system was only tested on simple solutions with limited number
of actors and actions (always sequential).

More recently, Amerson and Kime devised a system for real-time camera control in inter-
active narratives called FILM [AKY05]. Their work strongly relies on [CAH∗96] and [HCS96]
foundations. They implemented their own FILM language, similar to DCCL, that also accounts
for the narrative impact of an idiom. The generated film tree is hierarchically organized so that
each subsequent level contains a scene that is more refined and conveys more information to
the user. Their system is managed by a director that receives narrative information and perform
a depth first search on the tree to find the most appropriate idiom to convey the narrative dis-

38

Chapitre 2. State of the art

course. The director then sends directives (idioms) to the cinematographer which is in charge
of the rendering. The idioms are expressed in the FILM language as weighted constraints. In
case of an over-constrained problem, the system uses a procedural model for the relaxation of
constraints. Even though this work offers an interesting alternative to [CAH∗96] and [HCS96]
– it runs in real-time and offers the flexible structure of film trees – it still has the main inconve-
nient of the two methods: it requires the creation every idiom for every situation. Furthermore,
the implementation of this approach was not completed and thus remain untested.

2.3.2 Optimization-based editing

Another approach consists in considering film-editing as an optimization problem. In [LCCR11]
and [CLR12], the authors presented a framework capable of generating cinematics for interac-
tive storytelling. Their system uses a path finding algorithm that runs in real-time to find an
approximate solution. It chooses shots and cuts incrementally as the story unfolds. To decide
whether to stay within the current shot or perform a cut, the system relies on simple heuris-
tics based on cinematographic and editing rules mostly implemented as binary cost functions
(see Figure 2.23). This work offers interesting perspectives yet remains limited by its realtime
constraints and the binary aspect of its cost functions.

(a) (b)

Figure 2.23: Illustration of shot costs computed by [LCCR11] to find the best solution: (a)
three shots of a drinking action ; (b) three shots of a pouring action

With the Cambot system, Elson and Riedl [ER07] also addressed the challenge of auto-
matic editing using an optimization-based approach. Unlike standard idiom-based solutions,
they encoded three distinct layers (or facets) of cinematic knowledge (see Figure 2.24): the
stage (area of space that the system assumes to be free of occlusions and obstructions), the
blocking (placement and movements of the characters within the stage) and the shot (position,
orientation and focal length of a virtual camera relative to the stage ; it also handles camera
motion). From a given scenario (script Figure 2.25a) and a set (virtual environment), the sys-
tem automatically computes the stages, blocking and shots from an hand-authored library of
facets. With the correlation between the three facets they ensure the quality of the generated
rushes (actors were placed to avoid occlusion or obstruction).

With a Markov assumption, the editing of the rushes is then computed using a dynamic
programming algorithm (see Figure 2.26) which searches for the sequence of shots that best
covers the beats. With their solution, only one shot can be selected for the whole duration of a
beat ; transitions are only considered between beats.

As promising as the system looks, it still presents many limitations. First of all, its ex-
pressiveness is limited by the assets available in the facets’ library. Moreover, it requires the
scenario to be decomposed into a linear sequence of beats (i.e. it can not deal with overlapping
actions and dialogues). Even though the beat-by-beat structure allows to considerably reduce
the search-space, it also prevents any precise control over the pacing. As the cuts can only
be operated between beats, it is not possible to choose the precise cutting point between shots.
Furthermore the system was built to handle every aspect of the movie-making process (creating

39

Chapitre 2. State of the art

(a) (b)

Figure 2.24: This figure shows the correlations between the three types of facets (a) and how
they can be arranged in a set (b). The blocking of the characters is contained within the stage so
that no occlusion or obstruction can occur. And the cameras are placed at predefined positions
to shot the sequence under stereotypical viewpoints. [ER07]

(a) Scenario given as input to the system (b) Final rendered movie

Figure 2.25: The cambot system [ER07] takes as input a scripted scenario (a) and generates
a fully animated movie (b).

the stage, placing the actors, shooting the scene and editing it). Taken separately, the editing
step might not generate pleasing results. For instance, it could not be applied as it is on an
already existing animation: the quality of the shots would not be ensured as the system would
not control the characters’ placement. Finally, the paper does not provide any detail on the
selection process during the editing. The heuristics used to cut from one shot to another are not
described.

A similar approach was later used by Xtranormal Technologies as part of their Text-to-
Movie animation pipeline. Their Magicam system [Ron10] also computes the editing of an
animation movie as a solution to an optimization problem. But unlike Cambot, it represents
film editing as a search problem over a space of semi-Markov chains, allowing to control the
rhythm of the editing while satisfying the rules of film editing. However, Magicam is a propri-
etary system whose internal details are not disclosed, and whose validity is not demonstrated.

40

Chapitre 2. State of the art

Rush 1

Rush 2

Rush 3

Rush 4

Rush M

...

tt3t2t1t0

B(3,t)

... t-1

Figure 2.26: This figure illustrates a dynamic programming approach to the problem of film-
editing. The best edit at time t is computed only from the best solutions at time t-1 and the
transitions between rushes. Cuts can only be performed between narrative beats (blue dots).

2.3.3 Narrative-driven editing

Most of the work previously mentioned aims at producing a finished movie that follows cine-
matographic and editing standards. At the exception of [AKY05] (that was not implemented),
none of the proposed models succeeded to really account for both the narrative impact on the
audience (to convey emotion for example) and the cinematographic quality. They lack consid-
ering the viewer’s comprehension of the complete sequence of shots and cuts. The following
related work presents a last class of editing methods that attempt to drive the editing from
narrative goals.

Tomlinson et al. [TBN00] proposed a fully automatic method for generating expressive
cinematography. Their system uses autonomous cameras, with emotional states and goals,
which choose between a number of visual targets – such as a specific character, two characters
interacting with each other, or one character interacting with its environment. Though their
system interestingly motivates the shots both emotionally and visually, the rules of editing are
not enforced, and the pacing of the shots is resolved by ad hoc rules.

Kennedy and Mercer [KM02] directly addressed the problem of planning a complete se-
quence of shots for a given sequence of actions which must be known in advance. Users can
choose between fast or slow editing in two different styles. Authors used a depth-first forward
chained planner which can only evaluate a small number of possible plans and enforce a single
continuity editing rule ("not crossing the line of action"). The system uses the LOOM knowl-
edge representation language to encode different communicative acts in the rhetorical structure
theory. By mapping the story-line into communicative goals, stated in terms of themes and
moods, the system is able to plan the choice of camera and perform the editing. Figure 2.27
illustrates how a simple zoom along with a subtle change in lighting can affect how a character
or an event is perceived.

With their Darshak system [Jha06, JYM10, JY11], Jhala and Young propose an AI-based
approach to virtual cinematography that relies on a hierarchical partial order planner. Taking
as input a structured representation of the sequence of actions in the scene, the system searches
for the best idioms and best shots to convey the actions. Camera shots are defined as intentional
communicative acts planned by the camera planner to influence the beliefs and mental states
of the viewer. The system relies on a hierarchical partial-order causal link (POCL) planning
algorithm to generate story events and directives for filming them.

In parallel, [CJBY08, DYR11b, DYR11a] addressed the specific problem of automatically
generating cinematic highlights for game sessions. The authors of [DYR11b, DYR11a] pro-

41

Chapitre 2. State of the art

(a) (b)

Figure 2.27: A change in shot size along with a subtle change in lighting can affect the audi-
ence’s perespective [KM02]. (a) The character that seems happy in the first frame looks scary
in the other one. (b) The dramatic tension between the two frames is significantly different.

pose Afterthought, a system that analyses actions performed by the players to recognize nar-
rative patterns expressed as Finite State Machines. The detected narrative patterns are then
paired with cinematographic instructions to generate a meaningful cinematic sequence. Cine-
matographic instructions then trigger camera scripts in the rendering environment to compute
viewpoints, taking care of visibility and optimal distances to characters. Interestingly, the pro-
posed approach relies on patterns of actions to build the cinematographic instructions, in a
principled and context-sensitive way. The mapping is however straightforward which leads to
the repetition of a cinematic sequence with two identical patterns.

Finally, even though one might question the relation between their work and storytelling,
Assa et al. tackled an interesting challenge that is the task of creating overviews of human mo-
tions (e.g. from mocap data). Their narrative goal here is to convey as best as possible human
motion in an animated sequence. In a first paper [ACOYL08] they presented a solution relying
on camera control and targeting only one character. Later, in [AWCO10], they propose a fully
automated editing process that performs cuts in real-time between multiple cameras viewing
human motions. The ranking between shots is computed by measuring for each camera the
correlation between human motions in the 3D scene, and the on-screen 2D projection of these
motions (the larger the correlation, the better the shot). A measure of erosion of the current
view is employed to motivate the cuts between the viewpoints, while enforcing continuity rules
(jump-cut and crossing the line of action). Figure 2.28 gives examples of camera set-up for two
different animated sequences. Despite being restricted to viewing human motion their results
have shown that in simple cases, their solution mimics the behaviors of cinematic idioms.

(a) (b)

Figure 2.28: Camera setups for a long character walk (a) and a conversation-like scene (b).
The timelines at the bottom of the images indicate the selected camera as the animation is being
played. [AWCO10]

42

Chapitre 2. State of the art

2.4 SUMMARY

In this chapter, we covered a large spectrum of the existing techniques that address the prob-
lems of virtual cinematography and editing. Through this state of the art, we observed the
lack of existing methods capable to coordinate multiple cameras. We also noticed that real-
time approaches to camera control currently provide poor cinematographic quality and do not
consider narrative goals. Finally, no existing techniques gave any consideration whatsoever on
the realism of the motion of the cameras. In this thesis, we address each of these limitations
through different techniques presented in chapters 3, 5 and 6.

In terms of editing we highlighted the need for more automatic methods. Existing solutions
based on idioms still require too much hand work. Optimization based techniques on the other
hand rarely focus on the narrative aspects of editing or do so at the expense of the cinemato-
graphic and editing quality. Chapter 4 presents an optimization based solution that ensures the
cinematographic quality while using narrative information to drive the editing.

43

Chapitre 2. State of the art

44

CHAPTER

3

STEERING BEHAVIORS FOR
AUTONOMOUS CAMERAS

T He automated computation of appropriate viewpoints in complex 3D scenes is a key
problem in a number of computer graphics applications. In particular, crowd simula-
tions create visually complex environments with many simultaneous events for which

the computation of relevant viewpoints remains an open issue.

In this chapter we address the challenge of controlling multiple cameras in a dynamic en-
vironment. We present a system which enables the conveyance of events occurring in complex
crowd simulations. It relies on Reynolds’ model of steering behaviors to control and locally
coordinate a collection of camera agents similar to a group of reporters. The key benefit, in
addition to the simplicity of the steering rules, holds in the capacity of the system to adapt to
the evolving complexity of crowd simulations by self-organizing the camera agents to track
interesting events.

45

Chapter 3. Steering Behaviors for Autonomous Cameras

3.1 INTRODUCTION

Crowd simulations generate complex 3D scenes that include both local events (individual ac-
tions of crowd members) and larger scale events emerging from many individual behaviors
such as a group of individuals simultaneously moving from one location to another. Conveying
the resulting animations to spectators is therefore a challenge. Unfortunately, as seen in chap-
ter 2, previous realtime camera control methods focus on maintaining the visibility either of a
small number of targets (see [HHS01, OSTG09, CNO12]), or of a large number of targets but
from a single viewpoint [VMGL12]. Other methods are designed for highlighting the motions
of isolated characters or of predefined groups of characters [ACOYL08, LLY∗12, AWCO10],
or focus on high-level aspects by encoding elements of cinematographic rules which are only
applicable to a small number of characters (see [LCL∗10]). Closer to our approach, the method
proposed by [BJ09] also relies on a force-based system. However, the use of APF to find the
optimal camera placement is not appropriate in the case of tracking large group of targets. The
camera might never find an optimal solution, resulting in continuous jittering motion. More-
over, their method does not implement cinematic camera movements. Therefore, capturing a
full crowd simulation, with the variety of multi-scale events taking place, calls for the design
of new methods.

In this chapter, we propose a novel approach for controlling multiple cameras, in the task
of conveying as-many-as-possible of the events occurring in a crowd simulation. The original
idea is to simulate a team of reporters trying to capture the diversity of behaviors in an envi-
ronment encompassing both local events (interactions between small numbers of characters)
and emerging events that involve many characters. Our approach for animating cameras draws
its inspiration from Reynold’s steering behaviors [Rey99]. Indeed, each camera is animated
separately as an autonomous agent in our system. This ensures smooth displacements and
rotations of cameras. Our camera behaviors are driven by the necessity to both convey local
and emerging events, while ensuring a proper distribution of camera agents around the events.
More precisely, our camera agents automatically avoid static objects that obstruct the visibility
of targeted events. In addition, camera-agent behaviors are specifically designed so that each
of them either scouts the environment, searching for new events to shoot, or tracks existing
events. While tracking an event, the steering behavior favors good views of the event. When
scouting for an event, the steering behavior favors events that are not already followed by other
camera agents. We also set up specific interaction rules between camera agents, preventing
them from tracking the same event from similar viewpoints. Nearby camera agents are steered
away from each other both in position and in orientation. Distant camera agents following the
same event are also steered to rotate around the event and take different views of it. All those
desirable properties are obtained by allowing the camera agents to be steered horizontally (as
in Reynolds’ original paper) and also vertically and rotationally (with pan and tilt angles). As
a result the user is therefore provided with a gallery of relevant shots on individual and emerg-
ing events occurring in crowd simulation, among which the user can select the appropriate
animation sequences.

The first key benefit of this approach stands in its simplicity. We show that a small range
of simple steering behaviors are sufficient for creating quality camera motions, while covering
a wide range of the events occurring in the simulation. Behaviors are crafted in a way which
is independent of the crowd simulation model. The second benefit stands in the adaptivity of
the method: the same set of steering behaviors enables camera agents to adapt to a wide range
of situations, from a small number of cameras in a simulation with many occurring events to a
large number of camera agents with a small number of events. In crowd simulations, in which

46

Chapter 3. Steering Behaviors for Autonomous Cameras

individual and emergent behaviors of the characters are mostly unanticipated, those benefits
are especially important.

3.2 BACKGROUND ON STEERING BEHAVIORS

In this section, we review some important concepts related to steering behaviors. Some of them
will be extended to the case of steering cameras in Section 3.3.

3.2.1 Agent dynamics

In Reynolds’ approach, autonomous agents are driven by steering forces [Rey99] and their
position is updated at every time step in the simulation as follows:

Algorithm 1 Agent dynamics. At each time step, the acceleration of an agent i at time t
(denoted γi(t)) is computed as a sum of forces, and a Euler integration is performed to compute
velocity vi(t) and position pi(t).
t = 0
while simulation is running do

for all agents i do
Update steering forces Fij(t)
γi(t) =

∑
j Fij(t)

vi(t) = vi(t− δt) + γi(t)δt
pi(t) = pi(t− δt) + vi(t)δt

end for
t = t+ δt

end while

Figure 3.1: Computation of forces applied to an agent. The agent is represented as a triangle:
(a) the agent’s velocity v(t) is updated by integrating acceleration expressed as a sum of forces;
(b) the agent is then oriented along the newly computed velocity v(t).

3.2.2 Steering forces

Simple steering forces enable the creation of complex simulations with emerging behaviors.
A simulation is created using a set of agents that are defined by a set of characteristics: po-
sition, velocity, radius, mass, maximum force and maximum speed. Motions of the agents

47

Chapter 3. Steering Behaviors for Autonomous Cameras

are generated using these simple characteristics, and by applying a simple particle based al-
gorithm where each particle is represented as a "vehicle". In order to improve the efficiency
of the entire computation and implementation of the system, Reynolds specified a simple but
efficient constraint: agents always move in their forward direction. Despite this simplifying
assumption, Reynolds was able to present a rich vocabulary of steering behaviors driven by
specific steering forces including seeking, fleeing, pursuit, evasion, offset pursuit, arrival, ob-
stacle avoidance, wandering, path following, wall following, containment, flow field following,
unaligned collision avoidance, separation, cohesion, alignment, flocking and leader following.

Many of these different forces are based on a simple concept: the force that will be applied
to the agent is computed by subtracting the current velocity of the agent from the desired
velocity related to the behavior. The acceleration being the sum of all the forces, at each
time step, the velocity will be updated by adding part of the acceleration (depending on the
time step) which will reduce the difference between the velocity and the desired velocity. The
seeking force devised by Reynolds and illustrated in Figure 3.2(a) is based on this concept. The
desired velocity is computed by first finding the direction vector, and then multiplying it by the
maximum speed of the agent. The direction of the desired velocity is the vector between the
target and the agent.

For the sake of clarity, we hereby illustrate the design of the arrival behavior: an agent
should slow down when reaching its target. When the distance between the agent and the
target becomes smaller than a threshold distance, the desired velocity needs to decrease with
the distance. Therefore, it is multiplied by the ratio of the distance to the threshold distance.
When the distance is greater than the threshold distance, the normal seeking force is applied.
Figure 3.2(b) illustrates this arrival behavior.

Current velocity
Desired
velocity

Seeking

Max speed

Trajectory

Threshold
distance

(a) (b)

force

Figure 3.2: Illustration of two behaviors: (a) seeking behavior, (b) arrival behavior

3.3 STEERING CAMERAS

In this section, our objective is to implement appropriate steering behaviors for our camera
agents. The task assigned to camera agents is to convey individual and emerging events occur-
ring in a crowd simulation. For this purpose, we propose two steering behaviors:

• Scouting: default behavior when a camera is not following an event; the camera is
searching the scene for events to track.

• Tracking: behavior of a camera while it is following an event; the camera is in recording
mode during tracking.

48

Chapter 3. Steering Behaviors for Autonomous Cameras

In both cases, we need to extend the dynamics of Reynolds’ agents to desynchronize the
agents’ direction of motion from their orientation (a strong hypothesis proposed by Reynolds).
We will explain how this extension is performed in 3D with cameras that can change their
pan and tilt angles independently of their position and motion direction, while simultaneously
changing their elevation. We will then describe camera-specific forces and torques, whose
combined effects generate the desired camera behaviors during scouting and tracking.

3.3.1 Targets and events

We define an event in the simulation as a spatio-temporal segment where a particular behavior
is observed, should it be relative to an individual behavior, a one-to-one interaction behavior
or a group behavior (e.g. flocking, herding, and leader-following, where an entire group of
characters follows a recognizable and coherent motion pattern). Each event involves a number
of characters (characters concerned by this event in the crowd simulation). Our representation
is detached from any specific crowd simulation model but requires a step to extract the events
from the simulation using geometrical features relative to the characters.

More precisely, the computation of events is based on the following information:

• position and speed vector of the characters;

• orientation of the characters (forward vector).

• type of the characters (if the simulation uses several types of characters);

In this work, we propose to extract two types of events:

• one-to-one interaction: two characters face each other for a long time without moving
(see Figure 3.3(a));

• group motion: emergent behavior observed when a group of characters is moving to-
gether in the same direction (see Figure 3.3(b)).

Figure 3.3: During scouting, cameras search for interesting events: (a) One-to-one interaction
event; (b) Crowd behavior event.

Our one-to-one interaction events are easily detected when pairs of characters face each
other with zero velocity. Our group motion events are detected by studying a group of charac-
ters, based on their direction, speed, density and homogeneity in the following way:

49

Chapter 3. Steering Behaviors for Autonomous Cameras

• Average direction: by summing the normalized speed vectors of each character and then
dividing the total by the number of characters in the group, we get a vector which mag-
nitude will be related to the alignment. Thus the length of this vector gives us a good
estimate of the alignment of the characters in the group: the closer the value is to one,
the more the group is aligned.

• Average speed: The speed of each character is closer to the average speed.

• Density: the amount of characters per unit of surface.

• Homogeneity: the number of characters in the group belonging to the same type.

In order to efficiently implement the detection of group motions, we rely on a quad-tree
representation. The scene is divided into a 2D multi-resolution grid and, starting from the
finest (highest) resolution, we evaluate in each cell whether the characters in the cell form a
group motion. At the next (coarser) level, we create a group containing all cells with similar
group motions and repeat the process until it reaches the coarsest level in the hierarchy. During
group motion, both the group and its motion are continuously updated over time. New group
motion events are created when a new group is detected and deleted when the group becomes
too small.

3.3.2 Camera dynamics

In Reynolds paper, one simple assumption is made: the agents are always moving in the direc-
tion of their orientation, i.e. their velocity vector (that gives the movement direction and the
speed) and their forward vector (gives the orientation of the agent) are aligned. Implementing
steering behaviors for a camera agent however requires to distinguish the camera orientation
from its direction, typically moving in one direction while filming in another one.

Simple strategies that consist in re-orienting the camera at each time step towards the cen-
ter point of the group of characters involved in an event would fail. The varying number of
characters in an event would make the center move significantly at each time step, leading to
undesirable jerky motion. Moreover, no targets are available in the scouting behavior (since
no events are detected). Instead, we propose to apply a dynamic model on the camera orienta-
tion, expressed as a torque. Camera position and orientation are therefore computed separately:
steering forces are applied to move the camera around the scene and rotation forces are applied
to turn the camera around. The model intrinsically produces smoother changes in orientation.

Figure 3.4 illustrates the computation of a new camera orientation given different forces (in
2D for illustration). First, the angular acceleration is computed using the torques. Then, the
rotational velocity is updated using the acceleration. Finally, the new orientation is computed
with the angular velocity. A camera agent is represented by its 3D position in the Cartesian
space pi, a pan angle θi and a tilt angle φi. For the sake of clarity, we denote the camera
orientation as a quaternion qi and rewrite the camera dynamics equations using quaternion
multiplication. The algorithm 2 details the computation of the new orientation used at each
time step.

3.3.3 Camera steering forces

We now detail the design of steering forces associated to each camera. The essential require-
ments are: maintaining a good framing of an event, maintaining visibility of an event, keeping a

50

Chapter 3. Steering Behaviors for Autonomous Cameras

Figure 3.4: 2D representation for the computation of the camera’s horizontal orientation (θ)
from the angular acceleration (θ̈) and the angular velocity(θ̇).

Algorithm 2 Camera dynamics: q̈i(t) represents the rotation acceleration of agent i at time t,
q̇i(t) the rotation velocity and qi(t) the orientation.

while simulation is running do
for each camera agent i with orientation qi do

Update steering forces Fij(t) and torques Tij(t) of agent i
Update camera position as usual
q̈i(t) =

∑
j Tij(t)

q̇i(t) = q̇i(t− δt)q̈i(t)δt
qi(t) = qi(t− δt)q̇i(t)δt

end for
t = t+ δt

end while

given distance to an event and finally ensuring that different cameras cover different viewpoints
of the same event.

In order to control the camera position, five forces have been designed: target following,
obstacle avoidance, camera separation, wandering and containment. We now review them one
by one.

Framing force:

moves the camera towards the closest optimal camera position in terms of framing (composi-
tion of characters on screen (without considering obstacles). The goal of this force is to ensure
that the camera maintains a specific framing of an event, i.e. that characters composing the
event stay within the camera frustum. To ensure this framing, we designed a force which at-
tracts the camera agent towards a range of viewpoints defined by two points A and B. This
range represents a continuous set of viewpoints (see examples in Figure 3.6) for which the
framing can be easily computed. The computation relies on Lino and Christie’s frame compo-
sition technique [LC12] by considering that a group of characters can be framed by framing
their left-most and right-most characters on the screen as illustrated in Figure 3.5(a).

Indeed, as seen in chapter 2.2.1, for two points A and B, viewed with a constant angle α, the
camera must lay on a circle of radius 2α [LC12]. Figure 3.5(b) shows the two arcs representing
the possible positions of the camera. In our case, we choose the angle α as a percentage of the
field of view and then compute the two arcs.

However, although all cameras positioned on these two arcs maintain a constant viewing
angle, the viewpoints which are too close to A or B (displayed in red dashed lines in Figure

51

Chapter 3. Steering Behaviors for Autonomous Cameras

A B

P

O

O'

α

2α

B
A

(a) (b)

Figure 3.5: Framing force: (a) selecting the left-most and right-most characters of a group
w.r.t the current camera position enables (b) the construction of a specific range of viewpoints,
for which the framing of both characters is ensured.

3.6) are not suitable. Indeed, when framing a group of two characters we prefer to avoid these
less informative shots (very close shots to one or the other agents). To account for this problem,
we propose to modify Lino and Christie’s approach by changing the range of possible camera
positions when the angle (~O′P , ~O′O) is less than a minimum value (β), meaning the camera
is too close to the agents (see Figure 3.6). We rely on a Bezier curve to define this range.
The three control points P0, P1 and P2 are computed by using the values of β, and P1 is the
intersection of the tangent lines to the two circles in P0 and P2.

A B

P0

P1

P2

O

O'

A B

O

O'β

β
β

β

P

A B

O

O'

β

β

Figure 3.6: Framing force: modifying the range of viewpoints around two characters A and B,
in function of β. The framing force pushes the camera to the closest point on this range.

The force is then easily expressed by using Reynolds’ arrival force targeting the closest
point from the camera agent to the range of possible viewpoints. In addition, when the camera
is filming a large group, a force elevating the camera is added to mimic crane cameras and to
improve the visibility of the agents.

52

Chapter 3. Steering Behaviors for Autonomous Cameras

Obstacle avoidance force:

moves the camera agent on one side or the other depending on the position of the obstacle in
the frustum. This force differs from the obstacle avoidance force presented in Reynolds’ paper:
the process loops on the list of obstacles entirely or partially included in the frustum. Each
time an obstacle at position o is in the frustum and is closer to a camera agent position pi than
a target position k is, we consider the obstacle may potentially occlude the target. To prevent
these potential occlusions, a force is applied to the camera depending on whether the obstacle
is in the left part of the frustum (in such case the force moves the camera on the right) or in the
right part of the frustum (in such case the force moves the camera on the left). The position of
the target k is computed as the center of all characters involved in the event. For each obstacle,
the force is computed by subtracting the current velocity vi of camera agent i from a desired
velocity. See Algorithm 3 for details.

Algorithm 3 Obstacle avoidance: computes a sum of forces Fobs that pushes the camera on
the left or the right according to the relative positions of the obstacles and the target. li repre-
sents the normalized look at vector (orientation) of camera agent i at time t, ri represents the
normalized right vector of camera agent i at time t and vmax is the maximum allowed velocity
for the camera.

for each obstacle at a position o in the frustum of camera agent i do
// check whether the obstacle is closer to the
// camera than the target is
if (o− pi) · li < (pi − k) · li then

// if obstacle is on the right hand side of the camera
if (o− pi) · ri > 0 then
u = −rivmax // compute a desired velocity to the left

else
u = rivmax // compute a desired velocity to the right

end if
// subtract the current velocity to the desired force
Fobs = Fobs + (u− vi)

end if
end for

Camera separation force:

moves a camera agent away from other camera agents that are too close and are looking in the
same direction. In scouting mode, this force ensures a degree of diversity by separating similar
cameras and locally improving the coverage of different events. In tracking mode, this same
force enables the cameras to pick different views of the same event (useful when tracking a
large group). The corresponding force is computed as described in Algorithm 4: if the distance
between a camera agent c and a camera agent i 6= c is lower than a threshold dmax, a force
is applied either towards the right or the left of the camera. The intensity of this force is
proportional to the angle between the look at vector li of camera i and the look at vector lc of
camera c, computed with max(0, lc · li).

53

Chapter 3. Steering Behaviors for Autonomous Cameras

Algorithm 4 Camera separation: computes the sum Fsep of forces that pushes the camera c
away from other camera agents. pi and pc represent the positions of camera agents i and c and
rc is the right vector of camera c.

for each camera i different from camera c do
if |pi − pc| < dmax then

// move the camera to the left or to the right
if (pi − pc) · rc > 0 then
u = −vmaxrc // compute a desired velocity to the left

else
u = vmaxrc // compute a desired velocity to the right

end if
// subtract the current velocity to the desired velocity
// and scale it
Fsep = Fsep +max(0, lc · li)(u− vc)

end if
end for

Wandering force:

moves the camera in the scene while searching for new events in scouting mode. This force is
computed by updating a wandering direction at each time step and computing a desired velocity
from this direction (see [Rey99] for more details).

Containing force:

prevents the camera from wandering away in the scene. When the camera agent wander too far
from the crowd, a steering force will push it back toward the center of the crowd (see [Rey99]
for more details)

3.3.4 Camera steering torques

For the camera rotation, three torques were designed: aiming, camera avoidance and wander-
ing.

Aiming torque:

rotates the camera towards the "optimal" orientation. This torque is inspired by Reynolds’
arrival force (see Figure 3.2) and transposed to the problem of camera orientation. Given a
desired camera orientation qd, and the orientation qi of a camera agent i, we need to compute
the appropriate torque to reach the target camera orientation within the limits of a maximal
rotational speed αmax. We first compute the difference between quaternions qd and qi to extract
the angle qα and axis qa of rotation.

As defined in the arrival behavior (see Figure 3.2), if the angle α is below a given threshold
αt (meaning the angle is getting close to its desired value qd), we progressively reduce the
rotational speed. If the angle α is above the threshold, the rotational speed is set to a maxi-
mum value αmax at each time step. Algorithm 5 presents the computation of the torque Taim
depending on the angle α and the threshold angle αt.

54

Chapter 3. Steering Behaviors for Autonomous Cameras

Algorithm 5 Aiming torque: computes a torque Taim applied to camera c. The rotational
velocity of camera c is denoted by q̇c.

// computing the quaternion difference between qd and qc
q = qdq

−1
c

// qα is the rotation angle of quaternion q
if qα > αt then
α = αmax

else
α = αmaxq

α/αt
end if
// compute a rotation of angle α and axis qa

Taim = (α, qa)q̇−1c

Figure 3.7 illustrates how the magnitude of the force (i.e. the value of the angle) is com-
puted.

Figure 3.7: Aiming torque inspired from the arrival behavior: two cases (a) qα is less than αt
and (b) qα is greater or equal to αt.

Camera avoidance torque:

turns cameras away from each other when they share part of their frustum.
The computation of this torque is two-fold. For each pair of cameras, we first check whether

their frustums intersect. This collision test is simplified by using a 2D representation of the
frustum. The intersection of the left and right axis (representing the frustum side planes) of
the cameras are computed. Then the collision is detected if, for at least one of these four in-
tersection points, their projections on the the forward vectors of the two cameras are contained
inside the frustum of the respective cameras (i.e. the distance from the projection point to the
camera origin is greater than the near plane distance of the frustum, and smaller than the far
plane distance). Figure 3.8(a) shows an example where no collision are detected: the two pro-
jections Pj of each intersection point Ii on the forward vectors of the cameras are never inside
both of the frustums. Conversely, Figure 3.8(b) shows an example of frustum intersection: the
two projections P1 and P2 of the intersection point I1 are respectively inside the frustum of
the camera 1 and 2. If a frustum collision is detected, the desired rotation velocity (q̇d) will

55

Chapter 3. Steering Behaviors for Autonomous Cameras

be oriented depending on the relative positions of the two cameras. The process is detailed in
Algorithm 6.

Algorithm 6 Camera avoidance torque: computes a torque Tavoid for a camera c. The rotational
velocity of camera c is denoted q̇c and the right vector of camera c is denoted rc. In addition,
αvmax represents the maximum rotational speed and uc the up vector of the camera.

for all cameras i different from current camera c do
if frustum of i intersects frustum of c then

if (pi − pc) · rc > 0 then
q̇d = (−αvmax, uc)

else
q̇d = (αvmax, uc)

end if
Tavoid = Tavoidq̇dq̇c

−1

end if
end for

I1

I2

P3

P4

P1

P2

P3 P4

P1
P2

I1

I2

C1

C2

C1 C2

(a) (b)

Figure 3.8: Frustum collision test; the continuous lines indicate the frustum and the dotted
arrows indicate the forward vectors.

Camera wandering torque:

used for scouting new events. This torque is created by computing a wandering direction and
aiming at a point along this direction.

3.4 EXPERIMENTAL RESULTS

For testing our approach, we implemented a realistic crowd simulation framework, based on a
large number of characters (over a hundred) belonging to different ethnic groups. The task of

56

Chapter 3. Steering Behaviors for Autonomous Cameras

the camera agents is to report as many events as possible, and to record or broadcast the best
possible coverage of those events. A video demonstrating the results is accessible online1.

3.4.1 Crowd simulation

Our crowd simulation is actually based on Reynolds steering behaviors (see [LCG∗13]). The
scene simulates two distinct types of ethnic groups in Weld Quay, Malaysia back in the 19th
century. The interactions of these two ethnic groups are highly influenced by their standard
roles in the trading port. The main roles of each of these ethnic groups are as follows:

• Malay: local inhabitant/ seller at the market place

• Indian: imported worker

There are various interactions either between individual agents and within the same ethnic
groups or among other different ethnic groups that are transpired in the trading port and we
experiment our camera steering behaviors based on two scenarios as follows:

• Residents: Initialized interactions with any agents from the other ethnic group to sell
their local products. These events are the one-to-one interactions that we are interested
to identify.

• Workers: Unload the goods at the pier and download the goods at the containers. Emer-
gents group movement should result from this shared goal.

The simulation takes place in a moderately complex environment (Figure 3.9) with the
following scenario. At initialization, the workers are wandering in the market, the residents are
trying to sell their products. When the boat arrives, some of the workers will try to reach the
pier to unload the goods. When the boat is empty, it sails away and the workers can go back to
the market place.

Figure 3.9: Virtual environment of Weld Quay simulating the interactions between two ethnic
groups in Malaysia back in the 19th century.

1https://team.inria.fr/imagine/steering-behaviors/

57

https://team.inria.fr/imagine/steering-behaviors/

Chapter 3. Steering Behaviors for Autonomous Cameras

3.4.2 Implementation details

For the purpose of efficiency, we used a quad-tree to accelerate crowd simulation and event
detection. As a result, each camera agent is aware of all events and characters within its field of
view. Figure 3.10 shows the 2D spatial layout of characters (red and blue dots) in an overview
of our virtual environment.

Figure 3.10: Using a quad-tree representation to reduce computational cost in querying char-
acters in camera frustums and detecting events.

3.4.3 Qualitative evaluation

To evaluate our approach, we propose an activity metric that shows the overall presence of
active characters (characters involved in an event) compared to inactive characters (characters
not involved in an event). The activity metric is composed of a score representing the active
characters and a score representing the inactive characters. These scores are evaluated for each
camera by integrating a weight on characters: the closer a character is to the camera, the more
he will affect the overall score of the camera.

Algorithm 7 Activity metric

for all cameras do
for all characters seen by the camera do

if character is Active then
scoreActive += 1/distance(camera, character)

else
scoreIdle += 1/distance(camera, character)

end if
end for

end for

We compared the activity metrics for our system with a much simpler solution with static
cameras placed at strategic positions (to ensure that they would not lose sight of the crowd –

58

Chapter 3. Steering Behaviors for Autonomous Cameras

information that our autonomous camera agents do not have). Figure 3.11(a) shows the tem-
poral evolution of the ratio of active vs. idle characters captured by autonomous cameras.
Figure 3.11(b) shows the results for static cameras (dark gray values correspond to active char-
acters). We can see that, even though it is less stable (due to the scouting state) the average
proportions of active characters remains more important than with statics cameras. Indeed,
autonomous cameras try to get closer to the active characters, and thus improve scores whereas
static camera are only waiting for active characters to pass by. We can observe the same phe-
nomenon with eight static and moving cameras in Figure 3.12. Moreover, autonomous cameras
are able to maintain a good framing of their targets while performing elaborate and dramatic
camera motion, as can be seen in the accompanying video. Figures 3.3(a) and 3.3(b) display
typical shots for one-to-one interactions and group motion events.

In Figures 3.11 and 3.12 we can observe some fluctuations in the graph. These fluctuations
are due to the fact that when an event ends, it might not have any other events in its field of
view since the camera was focusing on this specific event, and thus it sometimes results in a
drastic drop in the ratio idle/active while the camera is searching for a new event.

(a) autonomous camera (b) static camera

Idle Visible
Idle Visible

Active visible
Active visible

Figure 3.11: Ratio between the active score and the idle score for groups of 4 autonomous (a)
and static (b) cameras

3.4.4 Quantitative evaluation

One way to present quantitative results is to express the number of active characters that are
being viewed by the cameras, in comparison with the number of active characters not viewed
by the camera. Results are reported in Figure 3.13 with 4 autonomous cameras and Figure 3.14
with 8 autonomous cameras. These results illustrate both the capacity of a small number of
cameras to cover a crowd simulation (in comparison to 4 static cameras), and show that an
increase in the number of cameras improves the results essentially for autonomous cameras.

In terms of performance, the method remains efficient and can steer 30 camera agents
in real-time (15fps) on a Core i7@2.4GHz running Unity 4 with 100 virtual characters (see
Figure 3.15). The bottleneck is essentially due to the number of virtual characters to simulate.
The drop in framerate comes from the cross-computations between all camera agents necessary
in the camera avoidance and camera separation forces.

59

Chapter 3. Steering Behaviors for Autonomous Cameras

(a) autonomous camera (b) static camera

Idle Visible

Idle Visible

Active visible Active visible

Figure 3.12: Ratio between the active score and the idle score for groups of 8 autonomous (a)
and static (b) cameras

(a) autonomous camera (b) static camera

Active not visible

Active visible

Active not visible

Active visible

Figure 3.13: Temporal evolution of the ratio between active characters viewed by the cameras
and active characters not viewed by the camera, considering 4 autonomous camera agents (a)
and 4 static cameras (b).

3.5 LIMITATIONS AND FUTURE WORK

At this stage, our model suffers from several limitations. The system was built to work
with exterior environments and only handles two event classes (one-to-one interactions and
group motions) which calls for the need to investigate a richer model of event categories
[LCG∗13, RS14]. Morever, the implementation only offers a single tracking mode. Other
camera behaviors could easily be added as specialized idioms, in the fashion of [HCS96]. The
focus in this chapter has been on the single task of tracking as many events as possible ; our
solution could be extended to the case of coordinated cameras, where camera behaviors can be
chosen by a "director" agent, taking higher level goals into account. Chapter 5 tackles several

60

Chapter 3. Steering Behaviors for Autonomous Cameras

(a) autonomous camera (b) static camera

Active not visible

Active visible

Active not visible

Active visible

Figure 3.14: Temporal evolution of the ratio between active characters viewed by the cameras
and active characters not viewed by the camera, considering 8 autonomous camera agents (a)
and 8 static cameras (b).

Figure 3.15: Performance on crowd simulation when increasing the number of camera agents.

of these limitations to address the challenge that is the computation of cinematic replays of
game sessions.

Finally, this chapter was only dedicated to the task of controlling the cameras, without any
consideration for editing. The system was designed to generate multiple camera shots and
let an expert user deal with the editing. In the following chapter, we address this challenge
and focus on the automation of the editing process to provide a tool that encompasses expert
knowledge of editing principles [Ron12].

61

Chapter 3. Steering Behaviors for Autonomous Cameras

3.6 SUMMARY

In this chapter we have presented a novel approach to camera control through steering behav-
iors. The proposed method is used for the automatic computation of shots in crowd simulations
using a predefined number of autonomous cameras. Experimental results show that the method
provides a good coverage of events in moderately complex crowd simulations, with consis-
tently correct image composition and event visibility. The autonomous cameras react to crowd
animation events using specialized camera steering behaviors and forces based on Reynolds’
model. By separately designing forces applied to the camera position, and torques applied to
the camera orientation, our method offers a fine control over the camera agents. Overall, the
strength of this approach lies in its simplicity and its ability to be extended with new steering
behaviors.

62

CHAPTER

4

SEMI-MARKOV MODEL OF FILM
EDITING AND APPLICATIONS

W Hile the previous chapter focused on the problem of placing cameras to produce
nice-looking views of the action, the problem of cutting shots from all available
cameras was not addressed. In this chapter, we describe an optimization-based

approach for automatically creating well-edited movies from a 3D animation.

After reviewing the main causes of editing errors in literature, we propose an editing model
relying on a minimization of such errors. We make a plausible semi-Markov assumption, re-
sulting in a dynamic programming solution which is computationally efficient. We also show
that our method can generate movies with different editing rhythms and validate the results
through a user study and a comparative analysis. Though this chapter is illustrated with man-
ually placed cameras, this work is also used in chapters 5 and 6 with automatically computed
shots.

63

Chapter 4. Semi-Markov Model of Film Editing and Applications

4.1 INTRODUCTION

The wide availability of high-resolution 3D models and the facility to create new geometrical
and animated contents, using low-cost input devices, open to many the possibility of becom-
ing digital 3D storytellers. In chapter 3, we have described a new method for automating the
positiong of the cameras. To date there is however a clear lack of accessible tools helping to
easily perform the editing of such stories (selecting appropriate cuts between the shots cre-
ated by the cameras). As seen in section 2.1.4, editing a movie requires the knowledge of a
significant amount of empirical rules and established conventions. In particular continuity edit-
ing is a complex endeavor. Most 3D animation packages lack continuity editing tools, calling
the need for automatic approaches that would, at least partially, support users in their creative
process [DZO∗13].

Previous contributions in automatic film editing have focused on generative methods mix-
ing artificial intelligence and computer graphics techniques. However, evaluating the quality
of film editing (whether generated by machines or by artists) is a notoriously difficult prob-
lem [LRGG14]. Some contributions mention heuristics for choosing between multiple editing
solutions without further details [CAH∗96] while other minimize a cost function which is in-
sufficiently described to be reproduced [ER07]. Furthermore, the precise timing of cuts has
not been addressed, nor the problem of controling the rhythm of cutting (number of shots per
minute) and its role in establishing film tempo [ADV02]. As a result, most approaches tend to
reproduce a reactive style of editing comparable to the dragnet style [Mur86], which mechani-
cally cuts to new speakers or actions.

In this chapter, we propose a continuity editing model for 3D animations that provides a
general solution to the automated creation of cinematographic sequences. Our model encodes
the continuity editing process as a search for the optimal path through an editing graph. In
this editing graph, a node represents a time-step (a temporal fragment of a shot), and an arc
represents a transition between two cameras, going from a camera to either the same camera
(no cut) or another camera (cut).

Our optimization uses dynamic programming to minimize, under a semi-Markovian hy-
pothesis, the errors made along three criteria (see Figure 4.1): the quality of the shots (with
respect to the unfolding actions), the respect of continuity editing rules and the respect of a
well-founded model of rhythm (cutting pace). Semi-Markov models [Mur02, Yu10] have been
used before in the context of information extraction [SC04], speech generation [ZTM∗07] and
computer vision [SWCS08]. To the best of our knowledge, this is the first time they are sug-
gested as a computational model for film editing.

The contributions detailed in this chapter are: (i) a detailed formalization of continuity
editing for 3D animation, encompassing a thorough number of visual properties and continuity
rules (ii) an optimal algorithm for automatic editing in which parameters such as pacing can
be controlled, thereby significantly increasing the expressiveness of editing tools, and (iii) a
validation of our model through a user evaluation comparing the original edit of an existing
movie with our optimal edit and with degraded approaches.

4.2 MOVIES AS SEMI-MARKOV CHAINS

In this chapter, we cast the problem of film editing as an optimization problem over a space of
semi-Markov chains. Our system takes as input a 3D animation scene, comprising a flow of
world events, and a set of rushes taken from different cameras and covering the whole scene.
We then rank possible edits on three key aspects: (i) how much shots convey unfolding actions,

64

Chapter 4. Semi-Markov Model of Film Editing and Applications

Continuity errors

Non-motivated shots and cuts

Our solution

Jump Cutleft-to-right ordering gaze directionscreen position

Figure 4.1: Editing errors in a short sequence of a movie. From top to bottom: breaking the continuity
errors; non-motivated shots and cuts. The last edit is the output of our system.

(ii) how much continuity editing rules are enforced and (iii) how much an input cutting rhythm
is respected.

Given a 3D animated scene with arbitrarily complex actions a and a choice of rushes
(i.e. unedited footage) from M cameras, a semi-Markov chain is a sequence of states (shots) sj
with durations dj , chosen according to a probability model over sj , dj and a. The probability
of the next shot sj+1 of duration dj+1 and starting at time tj+1 depends only on the previous
shot sj and the actions a in the segment [tj+1, tj+1 + dj+1].

We here introduce the notion of editing graph, the graph of all possible shots and transi-
tions. In this graph, a node represents a time-step (one frame) of a rush and an arc represents
a transition from frame i of a rush (camera) to frame i + 1 of a rush (same or different). The
output of our system is then a full edit decision list (EDL) of the scene [AP12], which is com-
puted as the continuous path through our editing graph minimizing the errors on these three
key aspects.

The first input of our system is a symbolic representation of the story being represented
in the virtual world. For convenience and simplicity, we summarize it with an ordered list
of durative events represented expressed in the discrete event calculus [Mue07, Mue09]. The
discrete event calculus is an appropriate representation for events taking place at discrete time
steps (animation frames in our case), making it possible to reason about the consequences of
events at intermediates time steps. We use it as a short-hand notation of events for all practical
purposes.

Further, we extend the discrete event calculus for durative actions with the short-hand no-
tation

HappensAt(t1, t2, Action(subject, verb, object))

with the meaning that a durative action takes place between times t1 and t2. This translates to
two separate discrete event calculus formulas

• HappensAt(t1, StartAction(subject, verb, object)

• HappensAt(t2, StopAction(subject, verb, object)

65

Chapter 4. Semi-Markov Model of Film Editing and Applications

with the result that HoldsAt(t, Action(subject, verb, object) is true at all times t ∈ (t1, t2).
In the following, we consider that the subject and object of all actions are characters, and

we refer to the set of all characters as C and the set of all actions holding at a given time t as
A(t). We use four main categories of actions: speaking actions performed by the character’s
mouth, reacting actions performed by the character’s eyes, manipulating actions performed by
the character’s hands, and moving actions performed by the character’s feet. As a result, a
character can be the subject of at most four different actions at any given time and the object
of an unlimited number of actions. Actions in our systems are typically generated by the
animation system, but only a subset of the animation is labeled as action.

The second input of our system is a list of M rushes from different cameras filming the
scene for a total duration of N video frames. We are agnostic about how the rushes are ob-
tained.

The output of our system is a movie, described as an edit decision list (EDL) defined as
a sequence of shots sj in the form of triplets (rj , tj , dj). Note that in this chapter, we only
consider chronological EDLs where time is preserved (tj+1 = tj + dj). In this limited context,
the EDL can be reconstituted using the rush selection function r(t) which gives the rush index
as a function of time.

We here propose to cast the editing process into a mathematical model accounting for three
criteria: (i) how much shots convey unfolding actions, (ii) the continuity editing principles
and (iii) the cutting rhythm of the movie. To do so, we use a log-linear model where the
probability of choosing a particular sequence of shots sj is taken to be the exponential of a
linear cost function C(s, a). The cost function C(s, a) is further decomposed into three terms
which separately measure (i) errors in conveying unfolding actions in each shot, (ii) violations
of continuity editing rules in each cut and (iii) errors in choosing shot durations.

C(s, a) =
∑
j

∑
tj≤t≤tj+dj

CS(rj , t) +
∑
1≤j

CT (rj−1, rj , tj) +
∑
j

CR(dj) (4.1)

In this equation, the first term is a sum over all frames of all shots of a cost function
CS related to shot quality (see section 4.3). The second term is a sum over all cuts of a
cost function CT related to transitions between shots (see section 4.4). Those two term are
further decomposed into weighted sums of features, i.e. CS(rj , t) =

∑
k w

S
kC

S
k (rj , t) and

CT (ri, rj , t) =
∑

k w
T
k C

T
k (ri, rj , t). The third term is a sum over all shots of a cost func-

tion CR related to editing rhythm (see section 4.5). In the following sections, we explain in
details each of those terms.

4.3 MEASURING SHOT QUALITY

In video editing, shot selection is performed based on two different aspects: the visual quality
and the narrative relevance of the shots [TB98, TB93]. Professional film editors use a complex
combination of aesthetic judgements, common sense reasoning, deep understanding of the
story and the psychology of the targeted audience to make decisions. In addition, they use their
personal experience and knowledge of film history. In this work, we avoid the difficult task of
understanding what makes a "good shot’" or a "best shot" and instead use a measure of what
certainly makes a "bad shot". With respect to narrative relevance, a shot that presents irrelevant
information is almost certainly wrong. Thus, the relative sizes of actors and actions should
remain consistent with the relative importance in the story. This general principle was phrased
out by Alfred Hitchcock [TS67] and can be used to discard narratively irrelevant shot choices.

66

Chapter 4. Semi-Markov Model of Film Editing and Applications

(a) Speak (b) React (c) Manipulate (d) Move

Figure 4.2: Symbolic projection of all 4 action categories.

Similarly, we evaluate the visual quality of a shot by counting the number of composition
errors, based on established practices.

In this section, we first describe how the different elements of the environment (objects
and characters) are identified in the rushes through a stage of symbolic projection. We then
explain the computation of narrative importance, and using these two concepts, we detail the
computation of the different cost functions that evaluate the narrative relevance of the shots.
Finally we describe the cost functions used to evaluate the quality of the framing and ensure
the visual aesthetic of the final edit.

4.3.1 Symbolic projection

During the shooting of a virtual scene, all cameras capture images which are perspective pro-
jections of the world scene into their own frame of reference. In parallel to the computation
performed by the graphics pipeline, we perform a symbolic projection of the actions which
keeps a record of how much of the action is visible in each rush at every single frame.

This is performed as follows. First, each action is decomposed into its constituents – verb,
subject and object. Based on the verb category (speaking, reacting, moving or manipulating),
we then compute the bounding boxes of involved body parts (see Figure 4.3) of the subject and
object characters. We then compute the screen size of their projection in each frame of a rush
(see Figure 4.2).

Second, to evaluate how much of these actions are visible, we compute the visible and
occluded areas of characters. To do so, for each face f of each body part b of a character,
we compute its projected size (or area) S(f, r, t) at time t in rush r. This projected size is
measured relatively to the screen size, and comprises both the on-screen and off-screen pro-
jections of f . We then define the visible and occluded sizes of f as follows. Its occluded
size O(f, r, t) corresponds to the cumulative size of its areas that are either occluded or ap-
pear off-screen, while its visible size V (f, r, t) is the complementary value computed such that
S(f, r, t) = V (f, r, t) +O(f, r, t). We finally define the projected size and the visible size of
each character c as the sum of corresponding values on each face of its body parts:

V (c, r, t) =
∑
b∈c

∑
f∈b

V (f, r, t)

S(c, r, t) =
∑
b∈c

∑
f∈b

S(f, r, t)

This method is further easily extended to the case of non-character objects (we use their
bounding boxes) and multiple-characters.

67

Chapter 4. Semi-Markov Model of Film Editing and Applications

Figure 4.3: Body parts defined on each character.

4.3.2 Narrative importance

We evaluate the narrative relevance of shots with a measure of the importance of the actions
they present to the viewer. In an ideal world, that information would be inferred from the movie
script, or annotated by the film director. In our system, we compute the narrative importance
of actions based on a heuristic decomposition of the cast into main characters and secondary
characters. We label all actions involving the main characters as foreground actions, and all
other actions as background actions. To each action a holding at time t, a narrative importance
I(a) is attributed depending on whether a is a foreground or a background action. The total
importance of actions at time t is then given by

Itot(t) =
∑
a∈A(t)

I(a)

Each action type also defines a distribution of importance on the subject and object characters
that sums to 1. For instance, in a speak action, the subject have an importance of 60%, while
the object have an importance of 40%. The overall importance of a character c is then given by

I(c, t) =
∑
a∈A(t)

I(a) · I(c|a)

where I(c|a) represents the importance of character c in action a. Note that the same com-
putation can be performed based on other heuristic rules on what constitutes a foreground or
background action.

In the same way, actions define a distribution of importance on the body parts of subject
and object characters which also sums to 1 on each character. For instance, in a speak action
the subject’s and object’s visual targets are their heads (importance of 100%), in a manipulate
action the subject’s visual target is its head and chest (importance of 50% for each) and in a
move action, the subject’s visual target is its full body (the importance is equally distributed
on each body part). The overall importance of a body part b belonging to character c is finally

68

Chapter 4. Semi-Markov Model of Film Editing and Applications

(a) Bad action visibility (b) Good action visibility

Figure 4.4: Examples of bad(left) and good(right) action visibility.

given by
I(b, t) =

∑
a∈A(t)

I(a) · I(c|a) · I(b|a)

where I(b|a) represents the importance of body part b in action a.
Finally the importance attributed to a body part is non-uniformly distributed on the different

faces of its bounding box. We arbitrarily defined values based on commonsense estimations.
For the head or chest, for instance, front is given an importance of 50%, sides is given an
importance of 15%, top is given an importance of 10% and bottom/back are both given an
importance of 5% each. Since, at any time, no more than 3 faces are visible, this importance
is finally normalized through a division by the maximum value possible (front, one side and
top: 75%). The overall importance of a face f belonging to body part b of character c is finally
given by

I(f, t) =
∑
a∈A(t)

I(a) · I(c|a) · I(b|a) · I(f |b)

where I(f, t) is the importance of the face (front,back,top,bottom or side) on the body part at
a given time t.

4.3.3 Narrative relevance

Based on the symbolic and geometric data related to unfolding actions of a given frame, we
evaluate every frame of every shot on three aspects: the action visibility, the action proximity
and the action ordering (also known as the Hitchcock principle).

The action visibility term evaluates how much of unfolding actions is visible (see Fig-
ure 4.4). To fully satisfy this criteria, each important body part of a character taking part in an
unfolding action should be on-screen and fully visible. The cost associated to action visibility
is computed as the sum, on each face f of each body part b of each character c, of the occluded
proportion of the face weighted by its narrative importance:

CSV (r, t) =
∑
c∈C

∑
b∈c

∑
f∈b

I(f, t) · O(f, r, t)

S(f, r, t)

The action proximity term evaluates how immersed the camera is in the unfolding actions,
i.e. how much the screen is filled by actions (see Figure 4.5). The cost (or penalty) associated

69

Chapter 4. Semi-Markov Model of Film Editing and Applications

(a) Bad action proximity (b) Good action proximity

Figure 4.5: Examples of bad(left) and good(right) action proximity.

to poor action proximity is then given by the proportion of the screen filled by the characters:

CSP (r, t) = 1−
∑
c

V (c, r, t)

The action ordering term evaluates how much the on-screen importance of a character
matches its narrative importance. This term is most closely related with the original Hitchcock
principle (which states that the size of a character should be proportional to its narrative im-
portance in the story [TS67]). Previous work has proposed several partial implementations of
the Hitchcock principle [Haw05, DeL09], which all have shortcomings. Our implementation
considers all characters present in the scene, not just the characters present in each shot, or the
characters participating in the main action. This has the benefit to easily rule out prominent
shots of unimportant characters and favor prominent shots of important characters, focusing on
the relevant body parts (mouth while speaking, eyes while reacting, hands while manipulating,
feet while moving). The cost associated to the Hitchcock principle is computed as the sum of
all deviations of the on-screen visibility of a character compared to its narrative importance:

CSH(r, t) =
∑
c∈C

∣∣∣∣∣∣ I(c, t)∑
c′
I(c′, t)

− V (c, r, t)∑
c′
V (c′, r, t)

∣∣∣∣∣∣
Figure 4.27 shows the correlation between the narrative importance of characters and their

on-screen sizes. An important result of our work is that the three terms CSV (r, t), CSP (r, t) and
CSH(r, t) contribute to the narrative relevance of shots in complementary ways and must be
taken into account together, rather than separately.

4.3.4 Visual quality

Previous cost functions focus on the narrative relevance of the shots regarding the story but do
not account for any visual aesthetic. To consider visual quality, we analyse frame composition
on two separate directions: horizontal and vertical. This approach does not intend to guarantee
a perfect frame composition but rather to eliminate shots that break basic composition rules
described in section 2.1.4.

Horizontal composition

First, at each frame, we study the horizontal composition of the characters in each rush. Follow-
ing common practices, we favor shot composition where each character is given enough screen

70

Chapter 4. Semi-Markov Model of Film Editing and Applications

(a) Good look-room (b) Bad look-room

Figure 4.6: Examples of good/bad horizontal composition.

(a) φHCmin when the character is aligned with
the camera: θ = 0o

(b) φHCmax when the character is perpendicular
to the camera: θ = 90o

Figure 4.7: Cost functions of the horizontal composition for an actor facing the camera (a)
and perpendicular to the camera (b)

space relative to the image frame, especially in the direction where he is looking (referred here
as look-room). Figure 4.6 gives an example of bad and good horizontal frame composition.

The cost function for the horizontal composition is given by:

CSHC(r, t) =
∑
c

v(c) · φHC (eyesxr , θ)

where φHC(x, θ) is a non-linear piecewise-defined function. It takes as input eyes(c, r)x, the
x coordinate of the eyes position in the screen space of character c in the rush r and θ, the angle
between the camera and characters’ orientation. φHC returns a maximum value when the eyes
are at the extreme sides of the screen or when the character is near and facing a side of the
screen. Figure 4.7 shows φHCmin(x) and φHCmax(x): the functions for the extreme values
of θ. They both use sigmoids defined by different upper and lower limits. For any θ, φHC is
computed by interpolating the lower and upper limits from these extreme cases.

Figure 4.8 demonstrates the importance of handling horizontal composition. A set of sim-
ilar viewpoints is created by degrading the composition of a shot with small variations of its
horizontal composition. Given this set of possibilities, our system successfully select the prop-
erly composed shot.

71

Chapter 4. Semi-Markov Model of Film Editing and Applications

1.0 0.47 0.04 0.33 0.97

(a) (b) (c) (d) (e)

Figure 4.8: Evaluation of different shot with regard to the horizontal composition. The com-
puted cost is displayed for each shot and the selected shot is highlted in green.

(a) Good vertical composition (b) Bad vertical composition

Figure 4.9: Examples of good (left) and bad (right) vertical composition.

Vertical composition

We then study, at each frame, the vertical composition of the characters for each rush. Fol-
lowing established practices in cinematography, we penalize poor vertical composition based
on two distinct rules: rule of the third and headroom. The rule of thirds consist in placing the
characters’ eyes at the third of the screen. The headroom is a rule on the vertical framing of
a character, and is commonly measured as the distance between the top of a character’s head
and the top of the screen. It is important to make the headroom not too much or too little.
Figure 4.9 gives an example of bad vertical composition. The cost function penalizing poor
vertical composition is defined as followed:

CSV C(r, t) =
∑
c∈C(t)

∣∣∣∣23 − eyes(c, r)y
∣∣∣∣+ φH(top(c, r)y)

where eyes(c, r)y is the y coordinate of the eyes position in the screen space of the rush r and
φH is a non-linear function taking in parameter top(c, r)y, the y coordinate of the top of the
head. φH returns a maximum value when the top of the head is at the top of the screen and a
minimum value when it is further than a threshold distance (10% of the height of the screen for
example).

Figure 4.10 illustrates the importance and validity of this approach. A set of similar view-
points is created by degrading the composition of a shot with small variations of its vertical
composition. Given this set of possibilities, our system successfully select the properly com-
posed shot.

72

Chapter 4. Semi-Markov Model of Film Editing and Applications

0.79 0.56 0.06 0.28 0.90

(a) (b) (c) (d) (e)

Figure 4.10

4.4 MEASURING CUT QUALITY

In this section, we propose a solution to evaluate the quality of the cuts. More precisely, we use
a computational model of continuity-editing to penalize poor cutting decisions. Continuity-
editing is the most commonly used editing style in filmmaking. It relies on a set of well es-
tablished rules: enforcing screen, motion and gaze continuity, maintaining the left-to-right
ordering of on-screen characters, and avoiding jump cuts[Dmy84, TB98]. Jump cuts attract
the attention of audience and create the illusion that the actors, rather than the camera, change
positions during the cut. They are sometimes referred to as first-order editing errors, while
screen, motion, gaze and left-to-right order continuity errors are considered second–order edit-
ing errors [dDR98]. Preserving continuity in the screen positions, motion directions and gaze
directions of actors as well as their left-to-right ordering makes it easier for the audience to
build a consistent three-dimensional representation of the scene [Smi05, Gd07, BC11]. Third-
order editing errors are caused by violations of the causal order of actions in the scene, and are
not directly addressed in this work. As a foundation for future work, we provide formulas for
systematically detecting and quantifying first-order and second-order editing errors according
to the elementary rules of continuity editing, given the symbolic projection of the scene in the
two shots. Unlike previous work, our formulas are independent of the number of characters
present in the two shots, and can therefore be used to evaluate the quality of the cut between
shots of arbitrary complexity (number of actors, depth of field, shot sizes).

4.4.1 Screen continuity

Spatial continuity is essential to ease the transition between two shots and enforce the visual
fluidity of the cut. It prevents the disorientation of the audience.Figure 4.11 illustrates the
problem of screen discontinuity. We penalize such a discontinuity by summing, on each single
character, its screen position change (in screen space coordinates). The associated cost function
is defined as follows

CTS (r1, r2, t) =
∑
c

v(c) · φS (P (c, r2)− P (c, r1))

where P (c, r1) and P (c, r2) represent the 2D screen position of character c resp. before and
after the cut. φS is a non-linear function which takes as input the distance between both po-
sitions. It then returns the minimum penalty (0) for two identical positions, and the penalty
increases with their distance.

4.4.2 Motion continuity

Motion of the characters on the screen also affects the quality of a cut. Transitions between
two shots where one or more characters have a different perceived motion (in screen space)

73

Chapter 4. Semi-Markov Model of Film Editing and Applications

(a) Screen discontinuity

(b) Screen continuity

Figure 4.11: Examples of cuts violating (top) or respecting (bottom) screen continuity.

have a disorienting effect on the audience. This problem of motion continuity is illustrated in
Figure 4.12. To penalize such discontinuity, a cost function CTM is computed by summing, on
each single character, its change of apparent motion direction.

CTM (r1, r2, t) =
∑
c

v(c) · φM (M(c, r1),M(c, r2))

where M(c, r1) and M(c, r2) are 2D vectors representing the on-screen motion direction of
character c resp. before and after the cut. φM is a non-linear function which takes as input
these two consecutive motion directions. It then returns the minimum penalty (0) when the two
vectors are close enough (e.g. a character moving in a given direction keeps moving in a similar
direction after the cut), and the penalty increases as these vectors differ from each other.

4.4.3 Gaze continuity

Visual discomfort may also happen in a transition between two shots when characters involved
in both shots are looking in different direction on the screen before and after the cut. An
illustration of gaze continuity is given in Figure 4.13. In a similar way to the motion continuity,
we penalize such a discontinuity by summing, on each single character, its change of apparent
gaze direction. The cost function is given

CTG(r1, r2, t) =
∑
c

v(c) · φG (G(c, r1), G(c, r2))

where G(c, r1) and G(c, r2) are 2D vectors representing the on-screen gaze direction of char-
acter c resp. before and after the cut. φG is a non-linear function which takes as input these two
consecutive gaze directions. It then returns the minimum penalty (0) when the two vectors are
close enough (e.g. a character looking in a given direction keeps looking in a similar direction
after the cut), and the penalty increases as these vectors differ from each other.

74

Chapter 4. Semi-Markov Model of Film Editing and Applications

(a) Motion discontinuity

(b) Motion continuity

Figure 4.12: Examples of cuts violating (top) or respecting (bottom) motion continuity.

(a) Gaze discontinuity

(b) Gaze continuity

Figure 4.13: Examples of cuts violating (top) or respecting (bottom) gaze continuity.

4.4.4 Left-to-right ordering

The left-to-right ordering of characters is another important factor to enforce visual continuity.
Characters whose relative screen positions are reversed after a cut appear to be jumping around,
which attracts attention to the cut [Smi05] – this criteria is also known as the 180-degree rule.
An illustration of the left-to-right continuity rule is given in Figure 4.14. We penalize such a
discontinuity by summing, on each pair of characters (c, c′), their change in relative on-screen
position (from left to right, this is also known as the 180-degree rule). To do so, we define

75

Chapter 4. Semi-Markov Model of Film Editing and Applications

(a) Left-to-right ordering discontinuity

(b) Left-to-right ordering continuity

Figure 4.14: Examples of cuts with inconsistent (top) and consistent (bottom) left-to-right
ordering.

a new weighting factor v(c, c′) computed as the product v(c) · v(c′) of the weights of both
characters. We then give no importance to a pair of characters where at least one is off-screen
either before or after the cut, little importance to a pair of background characters, and much
importance to a pair of foreground characters. Practically, this penalty is computed as follows

CTL (r1, r2, t) =
∑
c,c′

v(c, c′) · φL
(
L(c, c′, r1), L(c, c′, r2)

)
where L(c, c′, r1) and L(c, c′, r2) are two real values representing the relative position of char-
acters c and c′ resp. before and after the cut (practically, this relative position is computed as
the signed difference of their on-screen horizontal coordinates). φL is a non-linear function
taking as input these two reals. It then returns the minimum penalty (0) when both values are
of same sign (i.e. the relative position of characters is enforced) and the maximum penalty (1)
when the two values are of opposite sign (i.e. the relative position of characters is reversed).

4.4.5 Jump cuts

In film editing, a jump cut is defined as a cut in which two sequential shots of the same subject
are taken from similar camera positions. This type of edit gives the effect of jumping forwards
in time. An illustration of jump cut is given in Figure 4.15. We penalize a jump cut by summing,
on each single character, the degree of similarity (both in size and view angle) between the two
frames before and after the cut. Practically, this penalty is computed as follows

CTJ (r1, r2, t) =
∑
c

v(c) · φJ (∆S(c, r1, r2),∆θ(c, r1, r2))

where ∆S(c, r1, r2) and ∆θ(c, r1, r2) are the differences in resp. apparent size and view angle
of character c between the two frames. φJ is a non-linear function taking these two parameters

76

Chapter 4. Semi-Markov Model of Film Editing and Applications

(a) Insufficient change in both size and view angle

(b) Change in apparent size

(c) Change in view angle

Figure 4.15: Example of a jump cut (top) where the main character is seen with similar shot
sizes and view angles. Changing the shot size (middle) or the view angle (bottom) prevents the
jump cut impression.

as input. It considers a minimum acceptable change in apparent size ∆Smin, as well as a
minimum acceptable change in view angle θmin (often set to 30 degree). φJ then returns the
maximum penalty when no change occurs neither in apparent size nor view angle of character
c, and the penalty decreases as the change in either apparent size or view angle increases.

4.5 MEASURING RHYTHM QUALITY

Cutting rhythm is an important element of film editing style [Bor98]. Cutting between cameras
produces visual rhythm. Fast cutting as in an action scene can change cameras as often as every
half second. The cutting rhythm has been studied extensively by film scholars [Sal09, CDN10,
Sal11, DBC12] who have shown that it is well approximated with a log-normal distribution of
shot durations, and that the mean and standard deviations (SD) of the log-normal distribution
can be used to summarize the editing style of the movie. Recently, that claim was challenged by
Redfern who showed that statistical tests in fact rejected the log-normal hypothesis in a majority
of cases [Red15]. For our purpose, it is sufficient that the distribution of shot duration is
qualitatively similar to a log-normal distribution. Furthermore, we have experimentally verified

77

Chapter 4. Semi-Markov Model of Film Editing and Applications

Rush 1

Rush 2

Rush 3

Rush 4

Rush M

...

tt3t2t1t0

B(3,t)

... t-1

Figure 4.16: Illustration of a dynamic programming algorithm, using Markov decisions. The best edit
in which a shot is in Rush 3 at time t only depends on the best edits at time t − 1 and the transitions
from Rushes r0 6= 3 to Rush 3 between t− 1 and t.

that the log-normal hypothesis is well verified at the scale of a movie scene or sequence, even
it may be rejected at the scale of an entire movie. Based on those findings, we propose to
measure the rhythm quality of an edited sequence by counting the number of outliers to a given
log-normal distribution.

Parameters of the log-normal distribution are the mean µ and standard deviation σ of the
log-transformed durations log dj , which result in a skewed distribution of durations with av-
erage shot length ASL = exp

(
µ+ σ

2

)
and variance V ar = exp

(
2µ+ σ2

)
(expσ2 − 1)

[LSA01]. Rather than making automatic decisions, our system is designed to let the user/di-
rector choose the average shot length (ASL) which dictates the rhythm of editing, and hence
the editing style. To enforce those values, we compute a cost measuring, for each shot sj of
duration dj , the deviation of its duration from the log-normal distribution

CR(dj) =
(log dj − µ)2

2σ2
+ log dj

4.6 OPTIMIZING OVER SEMI-MARKOV CHAINS

We evaluate the cost of an arbitrary edit decision list of shots sj with a weighted sum of simple
feature functions. To do so, we use a dynamic programming approach to find the minimum
cost solution by storing partial solutions [MHJ95, Mur02].

Figure 4.16 and Figure 4.17 illustrate two different approaches to the problem. In the first
approach (see Figure 4.16), we consider a classical Markov model. The Markov chain is a
sequence of states (cameras) sj where the probability of the next state sj+1 depends only on
the previous state sj and the actions a at time tj+1. This approach is limited as it does not
account for the rhythm of the sequence (given by the duration of the shots) and thus, does not
explore every solutions. Using a semi-Markov, model our approach (see Figure 4.17) better
suits the problem. The semi-Markov chain is defined by a sequence of states sj with durations
dj , where the probability of the next state sj+1 and duration dj+1 starting at time tj+1 depends

78

Chapter 4. Semi-Markov Model of Film Editing and Applications

Rush 1

Rush 2

Rush 3

Rush 4

Rush M

...

t

B(3,t)

t3t2t1t0 ... t-1H

Figure 4.17: Illustration of our dynamic programming algorithm, using semi-Markov decisions. The
best edit in which a shot ends in Rush 3 at time t is computed as the best combination (drawn in red) of
an edit in which a shot ends in Rush r0 6= 3 at a prior time ti < t then a shot using Rush 3 between ti
and t.

only on the previous state sj and the actions a in the segment [tj+1, tj+1 + dj+1]. This model
retains the benefits of the dynamic programming approach while significantly increasing its
expressiveness.

We define B(r, t) to be the cost of the best sequence of shots ending at time t with a
shot using rush r. One important result that follows from our choice of cost functions is the
following recurrence relation

B(r, t) = min
t0 < t
r0 6= r

[
B(r0, t0) + CT (r0, r, t0 + 1) +

t∑
t′=t0+1

CS(r, t′) + CR(t− t0)
]

(4.2)

In plain words, the best sequence ending on rush r at time (frame) t can be computed by
comparing all combinations of a shot ending on rush r0 at time t0 < t, followed by a cut from
rush r0 to rush r between frames t0 and t0 + 1, followed by a shot of duration t− t0 using rush
r (see Figure 4.17).

The weights of the feature functions were first arbitrarily defined based on simple assump-
tions. For the shot selection, we gave the Hitchcock principle and the action visibility the
highest weights, as the main objective of editing remains the communication of narrative in-
formation – sometimes at the expense of visual quality. For the cutting criteria, we stressed the
importance of the rules which violations are the most disturbing to the audience, namely the
jump cuts and 180-degree rules. We then adjusted all these parameters with the dataset detailed
in section 4.7.1. For instance, we increased the weight for the action proximity in order to favor
close shots (such as over the shoulder shots) to more distant ones (such as apex shots). With
our system, we provide a default set of parameters that can be adjusted to suit other cinemato-
graphic styles. The pacing especially should be adapted to match the desired rhythm. Finally,
we tested this set of values with various camera inputs in different environments (see sections
5.6,6.5.3 and 6.5.4).

79

Chapter 4. Semi-Markov Model of Film Editing and Applications

Rush 1

Rush 2

Rush 3

Rush 4

Rush M

...

t

B(3,t)

t3t2t1t0 ... t-1...ti tj

user
input

user
input

Figure 4.18: Illustration of film graph pruning. Every possible edit necessarily uses rush 3 between ti
and tj as specified by the user. Any other rush is removed from the graph between ti and tj .

This optimization-based approach allows to automatically compute edits without the need
for interaction with an expert user. However, if a user wishes to contribute to the edit, our
solution allows to enforce the choice of camera at any moment in time. To account for such
constraints in the computation of the optimal edit, the system performs a straightforward prun-
ing on the film graph as illustrated in Figure 4.18. User-constraints of this type can be useful for
enforcing higher-level stylistic effects that would be otherwise difficult to obtain with a purely
automatic method, i.e. book-ending (forcing the sequence to begin and end on the same shot).
The user can separately specify the starting and ending shots as user-constraints, resulting in a
book-ending structure, without sacrificing the efficiency of the method.

4.7 EXPERIMENTAL RESULTS AND VALIDATION

The evaluation of editing is a general and challenging problem [LRGG14] since no ground
truth is available for objective comparisons. As a consequence, the quality of an edit can only
be measured subjectively through indirect user evaluations.

As a result, we validated our approach with a subjective user study comparing our solution
with various baseline methods using the same set of rushes. This section describes our data set
and experiments, and discusses their results quantitatively and qualitatively.

4.7.1 Case study

To validate our approach, we have recreated the animation of a well-known scene from Robert
Zemeckis’ movie “Back to the future”. This short (80 seconds) scene is a moderately complex
interior scene, with four main characters, all engaging in a variety of actions, including two-
way and three-way dialogues, physical contacts, and everyday activities such as sweeping the
floor and serving food. To recreate this scene, we had to go through several stages of the
movie-making process. We first retrieved the script of the movie (Figure 4.19) and translated
it into a sequence of actions annotated to provide (subject, verb, object) descriptions at the
right time-codes (see section 4.2).

80

Chapter 4. Semi-Markov Model of Film Editing and Applications

MARTY (i n d i s b e l i e f) : You ’ r e George McFly .
GEORGE: Yeah , who a r e you ?
GOLDIE : Say , why do you l e t t h o s e boys push you around

l i k e t h a t ?
GEORGE: Well , they ’ r e b i g g e r t h a n me .
GOLDIE : S tand t a l l , boy , have some r e s p e c t f o r y o u r s e l f .

Don ’ t you know t h a t i f you l e t p e o p l e walk a l l ove r
you know , they ’ l l be wa lk ing a l l ove r you f o r t h e
r e s t o f your l i f e ? L i s t e n t o me , do you t h i n k I ’m
gonna spend t h e r e s t o f my l i f e i n t h i s s l o p house ?

LOU (has h e a r d t h e remark) : Watch i t , G o l d i e .
GOLDIE (he ’ s on a r o l l) : No s i r , I ’m gonna make some th ing

o u t o f mysel f , I ’m go ing t o n i g h t s c h o o l and one day −
I ’m gonna be somebody .

MARTY: That ’ s r i g h t , he ’ s gonna be mayor .
GOLDIE : Yeah , I ’m− mayor . Now t h a t ’ s a good i d e a . I c o u l d

run f o r mayor .
LOU: A c o l o r e d mayor , t h a t ’ l l be t h e day .
GOLDIE : You w a i t and see , Mr . C a r u t h e r s , I w i l l be mayor

and I ’ l l be t h e most p o w e r f u l mayor i n t h e h i s t o r y
o f H i l l Va l l ey , and I ’m gonna c l e a n up t h i s town .

LOU: Good , you c o u l d s t a r t by sweeping t h e f l o o r .
GOLDIE (t o h i m s e l f) : Mayor Go ld i e Wilson , I l i k e t h e sound

of t h a t .
MARTY: Hey Dad , George , hey , you on t h e b i k e .

Figure 4.19: Extract of the script from Back To The Future

After modeling each of the characters (Figure 4.20) and the environment (Figure 4.21), we
animated them to match the annotated actions. In order to further improve the quality of the
animation, we also performed lip syncing with the dialogues using Faceshift. Finally, we set up
the lighting and manually placed twenty-five cameras for the whole duration of the sequence
(sixteen of them closely approximating the actual cameras from the original movie, and nine
providing alternative angles). In chapters 5 and 6, we use different camera planning techniques
to provide this input to the system.

Once all these stages were completed, to conduct the experiments of the following sections,
we generated many variations of the same sequence using our system and, for each, performed
a last post process operation to link the video with the audio track of the movie.

Finally, for evaluation purposes, we are making our experimental data (including rushes and
their annotations) and our experimental results publicly available1. This dataset also contains
a working Unity3D project with all the 3D models and animations.

1https://team.inria.fr/imagine/continuity-editing/

81

Chapter 4. Semi-Markov Model of Film Editing and Applications

(a) Marty (b) George (c) Goldie (d) Lou

Figure 4.20: Characters of Back to the future.

(a) (b)

Figure 4.21: 3D model of the scene from Back to the future viewed from inside (a) and outside
(b) the bar.

4.7.2 User-study

To demonstrate the soundness of our model, we have experimentally compared our method
(O) to the original edit of the scene (Z) reproduced from Zemeckis’ movie (which serves
as a reference for comparison with expert cinematographers) and to three degraded versions:
a degraded version (Ds) where the content of shots is not considered (i.e. the shot cost is
removed), a degraded version (Dp) where the enforcement of the specified cutting rhythm
is not considered (i.e. the rhythm cost is removed), a degraded version (Dc) where visual
discontinuities are enforced (i.e. the cut cost is reversed).

We performed a subjective evaluation of our method by designing a perceptual user-study.
Twenty-one participants volunteered for this experiment. They were 27.5 (± 5.7) years old
(range: 20 to 42). They were naive with respect to the purpose of the experiment. All had
normal or corrected-to-normal vision. They gave written and informed consent and the study
conformed to the declaration of Helsinki. We prepared 5 stimuli (a fully edited version of 80
seconds per method). Participants were asked to observe the video stimuli while seated in front
of a desk. After each stimulus viewing, participants were asked to rank the global film-making
quality2 on a discrete scale ranging from 0 (very bad) to 10 (very good). In total, they repeated
this task 20 times (5×4 repetitions). Stimuli were presented in a randomized order. The total
duration of the experiment was about 30 minutes.

2We additionally proposed a number of criteria that participants could consider to score each version: the
enhancement of characters performance, the synchronization of cuts with the scene content, the aesthetic of shots.

82

Chapter 4. Semi-Markov Model of Film Editing and Applications

Figure 4.22: The scores obtained by the five stimuli, each represented with a whisker plot. The
central point represents the median score, the box represent the scores between the first and
third quartiles, and the bottom and top lines represent the minimum and maximum scores.

We tested three hypotheses. H1: editing has an impact on the perceived quality of the ob-
served video stimulus; H2: each of the three terms in our cost function (shot content, continuity
rules and cutting rhythm) has a positive impact on perceived quality; H3: the perceived quality
of the version done by an expert cinematographer is significantly higher than our method. The
dependent variable in this study was the participants’ score given to each version. Figure 4.22
illustrates the scores obtained for each version.

Hypothesis H1 was confirmed using a non-parametric Friedman test (p < 0.05). Post-hoc
comparisons summarized in Figure 4.22 confirm hypothesis H2 that the consideration of each
of the three key aspects has a positive impact on subjective quality, but discard hypothesis H3
that the version done by an expert cinematographer is significantly better scored than the one
generated by our system (though Zemeckis’ version globally obtained better scores).

This "subjective analysis" proves the validity of the method but does not reveal limitations
nor provide any lead for future work.

4.7.3 Qualitative comparison

To further validate our approach and highlight areas of improvement we now proceed to an
extensive qualitative comparison over the detailed criteria. As mentioned before, no ground
truth exist in film-editing – different editors would create different, yet correct, versions of
the same sequence – but a precise comparison of our results with the original movie offers
precious insights of the decision process. In the following, we analyse the differences between
an automatically generated edit and the original sequence of the movie.

Figure 4.23 illustrates the two edits and will be used as reference for the rest of this analysis.
We observe that 35% of the shots are shared by the two edits. Thus, 65% of the time, the
director and/or editor took a different decision. To better understand these differences we now
present the detailed comparison of the three aspects of editing: shot selection, cut and rhythm
of the sequence. The first aspect is the core of the shot selection process, and so we detail it
more extensively by looking at both the action visibility and the hitchcock principle. We then

83

Chapter 4. Semi-Markov Model of Film Editing and Applications

analyse the main cutting decisions and “mistakes” made by R. Zemeckis that are detected by
our system. Finally, we compare the shot durations of the two sequences.

Figure 4.23

84

Chapter 4. Semi-Markov Model of Film Editing and Applications

Figure 4.23: Comparison of Human and computer generated edits of the same sequence from
25 cameras. Each camera is assigned a color based on its id. The scenario describes the
actions involving Marty (M.), George (G.), Goldie (Go.), Lou (L.) and the Cashier (C.).)

85

Chapter 4. Semi-Markov Model of Film Editing and Applications

For this analysis, we computed the cost of each criterion for the two edits. To highlight the
differences we display these costs using the colormap in Figure 4.24 (blue for a low cost and
red for a high cost).

Figure 4.24: Colormap used to display the cost values. Lowest cost (0) are displayed in blue
and highest cost (1) in red.

4.7.4 Qualitative evaluation of the Action Visibilty

The first analyzed criterion is the action visibility. Figure 4.25 highlights several significant
differences in action visibility between the original and generated sequences.

Figure 4.25: Action visibility costs computed throughout the whole sequence for the original
movie and the automatically generated sequence. Main differences are highlighted in (a),(b)
and (c) where the visibility of the characters in Zemeckis’ version is bad.

Figure 4.26 illustrates the difference in visibility highlighted in Figure 4.25(a). At this
frame, the only occurring action is Marty, staring at George. The lack of visibility on Marty’s
face was obviously orchestrated by the director in order to slowly reveal Marty’s reaction.
While our system safely chose a shot with the proper visibility over the two characters for the
whole duration of the action (see Figure 4.26b), R. Zemeckis uses this lack of visibility to drag
the audience’s interest toward Marty’s appearing face and emphasize his reaction.

(a) Shot from the movie (b) Computed shot

Figure 4.26: Shot taken at t = 3s when Marty stares at George. Zemeckis uses the lack of
visibility to drag the audience’s attention (a). The generated sequence uses a shot with perfect
visibility over the two characters (b).

When trying to automate a process as complex as video editing, one is bound to make
simplifying assumptions. Even though assuming that poor visibility is synonymous with poor

86

Chapter 4. Semi-Markov Model of Film Editing and Applications

Marty
George

Goldie
Lou

100%0% 40% 60% 80%20%

(a) Narrative importance per character per frame
Marty
George

Goldie
Lou

(b) On-screen character sizes in Zemeckis movie
Marty
George

Goldie
Lou

(c) On-screen character sizes in our solution

Figure 4.27: The relative narrative importance of a character is computed from all actions where
it plays a role. It correlates with the screen size of the characters in both the Zemekis movie (linear
correlation coefficient of 0.56) and our solution (0.73). Here the colormap is not related to the computed
costs.

shot quality might sound reasonable, in some circumstances, it might not be the case. With
this optimization based approach, the goal is only to avoid making mistakes. Handling such a
motivated and complex shot would require a lot more reasoning on the actions and computation
of importance.

4.7.5 Qualitative evaluation of the Hitchcock Principle

The other important criterion used in shot selection is the action ordering. It is based on the
Hitchcock principle detailed in section 4.3.3. Figure 4.27 shows the evolution of the computed
importance of the characters and their respective size on the screen during the sequence. It
reveals noticeable differences between the two. Figure 4.28 highlights these strong differences
with the hitchcock principle’s cost.

The shots in Figures 4.26a and 4.26b also illustrate the difference (a) of Figure 4.28. At
this specific moment in the story, Marty is the most important character, followed by George. In
Figure 4.26a, it is obvious that the narrative importance of the characters does not match their
screen sizes, as Marty barely appears in the screen. During this shot, the cost slowly decreases
with the appearance of Marty in the frame which slowly reaches a "Hitchcock equilibrium".
This example illustrates one of the current limitations of the system. It does not allow this form
of intensification. It would require a variable importance within the action itself. Figure 4.29a
offers another illustration of Hitchcock principle violation (see Figure 4.28(b)). It is taken
during a dialogue between George and Goldie and yet most of the screen space is occupied by
Marty in the foreground. Figure 4.29b shows the automatically selected shot. This one satisfies
the hitchock principle as it focuses on the two characters involved.

87

Chapter 4. Semi-Markov Model of Film Editing and Applications

Figure 4.28: Hitchcock costs computed through the whole sequence for the original movie
and the automatically generated sequence. Main differences are highlighted in (a),(b) and (c)
where the generated version has a better Hitchcock equilibrium.

(a) Shot from the movie (b) Computed shot

Figure 4.29: Shot taken at t = 23s when Goldie talks to George. Zemeckis included the
main protagonist in the frame (a). Only characters involved in occurring actions appear in the
generated version (b).

Here Marty is not involved in this specific dialogue, but his presence on the screen is
important since he is the main protagonist of the movie. It shows that he is listening to the
conversation and, thus, gives information to the audience on his understanding of the situation.
This limitation does not come from the Hitchcok principle but rather from the computation of
importance itself. It does not consider any higher level of importance or involvement in the
situation (such as a three person dialogue) or the global story.

Finally, in order to validate our implementation without depending on the interpretation
of a scenario, we make the assumption that Zemeckis did follow the Hitchcock principle. We
then compute the importance of the characters from their actual onscreen sizes in the movie
(see Figure 4.3.1(b)). Using this importance as input to our system instead of the scenario, the
computed edit then shares 75% of its shots with the original version (instead of 35% when using
the scenario). To further validate our implementation, we computed an edit by only relying on
Hitchcock principle, with no regards to any other rule. This experiment proves the validity of
our implementation as the resulting edit shares over 95% of its shots with the original. The
remaining 5% are due to the time granularity used for this test; shots are only evaluated every
half second to reduce computational time. Figure 4.30 details the different edits computed.

4.7.6 Qualitative evaluation of the cuts and continuity editing

In this section, we analyse the quality of the cuts with regards to the continuity editing style.
Figure 4.31 shows the computed costs of each cut (the value displayed for each shot is the
cost of the previous cut). This cost is a weighted sum of costs computed from the different

88

Chapter 4. Semi-Markov Model of Film Editing and Applications

Figure 4.30: Comparison of the original movie (a) with two other edits that uses narrative
importance extracted from the movie: one uses the whole algorithm (b) and the other one only
uses the hitchcock principle.

continuity rules mentioned in section 4.4 with an emphasis on the left-to-right continuity and
jump-cut rules.

Figure 4.31: Cut costs computed through the whole sequence for the original movie and the
automatically generated sequence. In both version, only minor transgressions can be noticed
(a)

For both the original and automatic editing, only minor transgressions can be noticed, as
illustrated in Figure 4.32 with the spatial displacement of Marty in screen space. None of the
two sequences have jump-cuts or left-to-right discontinuity.

Figure 4.32: Cutting discontinuity: the position of Marty significantly changes from one shot
to another, introducing a position discontinuity.

This result not only confirms that the original sequence from Back To The Future satisfies
the rules of continuity but also that the optimization based approach gives a proper implemen-
tation of the continuity editing style for this dataset.

4.7.7 Qualitative evaluation of the pacing

Finally, the last element of film-editing that we analyse and compare with the original sequence
of Back To The Future is the rhythm. For the generated sequence, an average shot length of
5.25s was used as parameter of the cost function which resulted in an actual ASL of 5.31s. In

89

Chapter 4. Semi-Markov Model of Film Editing and Applications

the original version, the average shot length (ASL) is 6.6 seconds and the distribution of shot
lengths is well approximated with a log-normal law of mode m = 2.28 and standard deviation
σ = 0.82. Figures 4.33 shows the distributions of the shot durations for the two versions.

(a) ASL = 6.64s; SD = 0.82 (b) Mean = 0.66s; SD = 0.37

(c) ASL = 5.31s; SD = 0.51 (d) Mean = 0.66s; SD = 0.25

Figure 4.33: Shot duration distributions for the original version (a) and the computed edit (c),
along with the distribution of the log of their shots durations respectively (b) and (d).

Despite the two distributions being similar and both relatively close to the computed log-
normal distribution (over the whole sequence), the cumulative cost of the pacing is four times
larger with Zemeckis’ version than our automatically generated sequence. The explanation
appears in Figure 4.34, which shows the computed pacing cost for each shot of the sequence.
Two categories of "bad" pacing can be identified in the graph: very short takes and very long
takes. The high cost highligted in Figure 4.34(a) is due to a very small shot duration (see
Figure 4.35(b)). This shot breaks the rhythm of the sequence to show the short reaction of
the character. In the automatically generated version, the same sequence is handled using two
longer shots that cover several actions.

In Zemeckis’ movie, the last two shots of the sequence are long takes lasting 27 seconds
and 11 seconds with elaborate panning camera motion (see Figure 4.37). Due to their devia-
tion from the ASL, the cost of these two shots is very high, as shown in Figure 4.34(b). In the
computer-generated version, those same 38 seconds are handled with ten different shots from
six different viewpoints. This gives a different dynamic to the scene, but does not make it a
better solution. By preventing large deviation from the ASL, the computer-generated version
sometimes fails to find better solutions. Future work is needed to better understand how to han-

90

Chapter 4. Semi-Markov Model of Film Editing and Applications

Figure 4.34: Pacing costs computed through the whole sequence for each shot for the original
movie and the automatically generated sequence. Important costs are computed in the original
version for very short (a) and very long (b) shots.

Figure 4.35: Shot sequence from the original movie. A very short shot (b) is inserted to show
Marty’s reaction.

Figure 4.36: Shot sequence from the generated version. Only shots with all characters involved
in the occurring actions are used.

dle such cases, where the quality of extended shots with elaborate camera movements should
probably be given more weight.

Figure 4.37: Very long take from the original movie handled with an elaborate panning camera
motion.

To further illustrate and validate our method, we have also generated two new versions of
the scene with ASLs of resp. 2 seconds (fast cutting style) and 10 seconds (slow cutting style).
The choice of shots is very different in those different styles. In fast cutting style, there is
a preference for close-ups and medium shots. In slow cutting style, there is a preference for

91

Chapter 4. Semi-Markov Model of Film Editing and Applications

medium long shots and full shots. Figure 4.38 shows the first 40 seconds of the two sequences.
The complete videos are also available in the dataset.

Figure 4.38: Comparison of the first 40 seconds of two sequences generated with ASL of two
seconds for the left edit and ten seconds for the right edit. Each camera is assigned a color
based on its id (in this figure, colors are not related to the cost of the shots).

92

Chapter 4. Semi-Markov Model of Film Editing and Applications

4.7.8 Framework and implementation details

To conduct all the previous experiments and test our results, we implemented a complete frame-
work that uses our method to perform the editing of animated content. This framework was
fully implemented in C# with the 3D engine Unity3D. It takes as input a 3D animated scene
along with a scenario file and requires some quick setup to match the elements of the scenario
with the 3D elements of the scene. Once the setup completed, the framework guides users
through the different steps (see Figure 4.39) to transform the raw animation into a fully edited
sequence:

1. Generate the cameras: this first step was not addressed in this chapter. At this stage, we
simply use predefined cameras. The work detailed in chapters 5 and 6 offers interesting
solutions to automatically generate camera shots.

2. Generate the rushes: the system performs the computation of the costs for each camera
and for the whole duration of the animation. It also computes the costs for every possible
transition in the film graph. Users have access to this information through an interface
similar to Figure 4.41.

3. Compute the editing: this is the core of the system. It performs the editing using the
costs computed in the previous step. Default parameters can be modified to generate
different outputs.

4. Watch the results: it plays the generated sequence. Users still have access to the infor-
mation previously computed and can loop back to the previous step if not satisfied with
the results.

Figure 4.39: Main menu of the system. It guides users through the

Figure 4.40 shows the interface implemented to allow users to adjust the default parameters
of the method. By modifying the weights of the cost functions and providing different values
for the desired pacing, users define an editing profile specific to their own editing style. The
feature highlighted in the figure offers users a finer control of the final output. It allows them
to force the selection of a shot at any moment in time.

Finally, Figure 4.41 shows the main interface of the system. It is used after generating the
rushes to let the user analyse the shots and after computing the edit to replay the solution. The
interface is divided into three part. The first one is made of a navigation bar and the set of all

93

Chapter 4. Semi-Markov Model of Film Editing and Applications

Figure 4.40: Graphical interface for the computation of an edit. Users can adjust the weights
of every cost functions. They can also specify the desired pacing and add constraints on shots.

available cameras. Several modes can be activated to display bounding boxes or switch to a
single camera view. The second part contains the scenario. It shows every actions unfolding in
the story – past, current or future. The last part of this interface displays all the information on
the selected shot and the previous cut. It details the costs associated with each cinematographic
rule to help users adjust their editing profile if needed.

Figure 4.41: Main interface of the framework. It is made of three parts. (A) displays all
generated shots and highlight the selected one. (B) shows the scenario with the past (red),
current (green) and future (blue) actions. (C) displays all the information on the selected shot
and the previous cut.

94

Chapter 4. Semi-Markov Model of Film Editing and Applications

Even though the interface could be improved to be more user friendly, this framework
represents the first draft for a smart digital assistant to the production of edited videos.

4.8 LIMITATIONS AND FUTURE WORK

Our model remains currently limited in several aspects. First, it is currently limited to the
case of linear editing, where the chronology of events is maintained. This limitation could
be addressed by allowing temporal ellipses and re-ordering of events. In addition, the com-
parative study conducted in section 4.7 showed that the sequences generated by the system
minimize violations of editing and cinematographic rules at the expense of stylistic decisions.
The proposed model only enables to control the pacing. Other style parameters such as shot
composition (flat vs. deep staging), camera movements (static shots, dolly shots, crane shots),
transitions (reverse shots) and lighting preferences would favor user creativity. Our model of
shot selection is based on bounding boxes of the character’s body parts and a primitive clas-
sification of their actions. Objects and places in the scene, as well as character’s moods and
intentions, should also play a part. Furthermore, we should note that the semi-Markov assump-
tion has limitations of its own. Important film editing patterns such as book-ending, separation
or parallel action [Sha82] cannot be taken into account by such a memory-less model. The
investigation of higher-order Markov models or context-free grammars could be pursued to
overcome such limitations.

In contrast to previous work in virtual cinematography, our model clearly separates the roles
of the virtual cinematographer and the virtual film editor. This has important consequences for
future work. Firstly, it makes it possible to combine our film editing model with any given
cinematography (camera control) technique in a generate-and-test approach where the virtual
cinematographer proposes camera choices, and the virtual film editor chooses the best available
combination. Secondly, the evaluation of our cost function can be performed in screen space,
and does not require knowledge of the three-dimensional configuration of actors in the scene.
As a result, it is possible, at least in principle, to learn the parameters (weights) of our model
from examples of real movies. This opens the way to extrapolate our model to other editing
styles beyond the basic continuity editing style studied in this paper. Future work is needed for
annotating movie scene examples with actions and their narrative importances, and learning
statistical models of film styles from those training sets. A promising approach in this direction
is to automatically classify shots in real movie scenes using plan recognition methods [CPR98,
CPR00] based on computer vision techniques for recognizing actors’ shapes, appearances,
motions and behaviors [HFR06]. Alternatively, one may use movies scripts [RT03, Ron04,
CJMT08, PGHA15] or descriptive video services [RRTS15] as an external source of high-level
annotation, allowing to train different film editing models from real movie scenes in different
styles.

Finally, at this stage, the main limitation of the system remains its lack of consideration
for the cinematography aspect. It does not deal with the automatic computation of shots and
is restricted to a limited choice of cameras. Combined with virtual cinematography, our ap-
proach promises to significantly extend the expressiveness and naturalness of automatic virtual
movie-making. In chapters 5 and 6, we address this current limitation using our previous work
on camera control to optimize over camera positions and framings and tackle the problem of
virtual movie-making as a whole.

95

Chapter 4. Semi-Markov Model of Film Editing and Applications

4.9 SUMMARY

In this chapter, we have presented a continuity-editing approach to the automated creation of
cinematographic sequences for 3D animated contents. We have introduced the notion of editing
graph and showed how dynamic programming can be used to compute an optimal edit under a
semi-Markov hypothesis. We also provided a thorough description of means to rank shots and
edits, and to measure the distance to a specified cutting rhythm. Our solution is supported by
subjective evaluations obtained in a perceptual user study as well as a thorough qualitative com-
parison with a professionally edited sequence. The proposed approach performs a clear shift
from existing techniques such as idiom-based representations, with a level of expressiveness
not addressed by previous contributions. Finally, this work provides the foundations to address
novel challenges in automated cinematography, such as learning and reproducing cinematic
styles from real-movies.

96

CHAPTER

5

NARRATIVE-DRIVEN CAMERA
CONTROL FOR CINEMATIC

REPLAY

A Fter addressing separately the cinematography and editing aspects of virtual movie-
making, we now tackle the overall challenge. In this chapter, we present a system
that automatically generates cinematic replays. It exploits the narrative and geometric

information present in games and computes camera framings and edits to build a cinematic
replay of the gaming session.

Our solution relies on Alfred Hitchcock’s principle, using the narrative importance of the
characters in the story to guide the framing and editing process. We propose a virtual director
that maps narrative importance of characters into camera behavior specifications, and we then
devise a technique to transform the camera behavior specifications into shots using different
camera steering techniques introduced in chapter 3. We demonstrate our system by imple-
menting a Director that controls three camera behaviors (one for master shots, one for shots
on the player character, and one for reverse shots) and test it by interfacing with a full-fledged
serious game (Nothing for Dinner).

97

Chapter 5. Narrative-Driven Camera Control for Cinematic Replay

5.1 INTRODUCTION

In this chapter, we apply the work detailed in chapters 3 and 4 to address the challenge of
cinematic replays: computing a cinematographically aesthetic review of the animation gener-
ated during a game session. With the continuous growth in popularity of video games, gaming
companies have invested a lot to improve the cinematographic quality of their products. Cin-
ematics and cinematographic techniques now play a significant role to enhance the gaming
experience [PKG12]. Furthermore, with the advent of multi-player games, and the possibili-
ties of sharing players’ performance and playing experiences on the web, there is a significant
demand in generating relevant cinematic replays of gaming sessions. Dedicated tools have
been designed to ease the creation of replays1, either to report game experiences, or for more
aesthetic considerations such as machinima.

However, a close look at these dedicated tools shows that a lot is still done manually, typi-
cally in selecting the appropriate moments, setting the cameras, and performing edits between
multiple cameras. In parallel, as detailed in section 2.2, researchers in computer graphics focus-
ing on automated virtual camera control have been proposing a number of efficient techniques
to automatically place and move cameras as well as editing algorithms to automatically or in-
teractively edit the shots of a movie. Moreover, unlike the work conducted in chapter 3, the
creation of cinematic replays is not subject to realtime constraints, thus allowing the use of
offline planning techniques.

These approaches are mostly founded on what could be referred to as “action-based” cam-
era control, in the sense that a typical idiom is associated to each action occurring in the 3D
environment (an idiom is a stereotypical way of shooting the action, either through a single
shot or a sequence of shots). A film is then constructed by computing the best sequence of
shots portraying a sequence of actions performed by the characters (as in [ER07, LCRB11a,
LCCR11, MKSB11]).

Automated cinematography techniques have rarely been adapted to the specific case of cin-
ematic replays (with the notable exception of [DYR11a]). The problem is actually challenging.
Character tracking techniques such as [HHS01, LC12] would generate cinematics of low in-
terest by creating continuous camera motions without cuts. Idiom-based techniques [CAH∗96]
would typically fail due to the inability to handle complex situations and the necessity to de-
sign idioms for many different actions and situations. Finally, optimization-based approaches
such as [ER07] require the manual specification of cinematographic patterns for each situation,
while [LCCR11] maps actions to shot preferences in a straightforward way.

To overcome limitations of idiom-based techniques, as well as approaches which solely
rely on characters’ actions, we propose a more principled approach. Based on Hitchcock’s
well-known rule which states that the size of a character on the screen should be proportional
to its narrative importance in the story [TS67, Haw05, DeL09], we propose means to compute
the individual importance of each character from the replay, and map these importances with
cinematographic specifications. Importance therefore serves as an novel intermediate repre-
sentation which can account for more elaborate and contextual situations between characters
in a replay sequence, typically including intentions, significance of the characters in the whole
story, as well as causal relations between events.

Unlike idiom-based techniques, this approach to cinematography is agnostic to the type of
action occurring. It only requires the provision of an importance function on the characters.
The mapping between the importances and the camera specifications is not related to how im-

1see Simatography for the Sims, Warcraft movies, replay editor or Team Fortress 2 or Total war shotgun 2

98

Chapter 5. Narrative-Driven Camera Control for Cinematic Replay

portance is computed, therefore providing an independent and reusable set of cinematography
techniques.

Our approach comprises a preliminary stage which enables the extraction and computation
of the characters’ importances from a game trace (this is specific to each game engine). Our
technique is then composed of three stages: (i) mapping importances with cinematographic
specifications by defining camera behaviors, (ii) animating cameras by enforcing the specified
behaviors, and (iii) editing the rushes computed by the cameras.

The contributions of this chapter are: (i) a character importance-based approach to drive
camera placements and camera edits, thereby moving a step beyond action-based and idiom-
based techniques, (ii) a novel incremental technique to convert camera specifications into cam-
era coordinates using spherical and toric surfaces, and (iii) a smooth camera animation tech-
nique that maintains the specifications as the scene is evolving and enables smooth transitions
between different camera specifications.

The benefit of the system stands in its ability to effectively convey, with a realistic and
dynamic cinematic style, a dialogue-based video game session through a collection of simple
and dynamic camera behaviors.

anim at ion scenario

Cinem atographer

cam 1 ...cam 2 cam n

Cinem at ic Replay

Gam e Recorder

Gam e EnginePlayer

Specificat ions

Rushes

Director

Play t im e

Replay t im e
Recorded Gam e

Com pute im portances

m ap to cam era
specificat ions

perform edit ing
on rushes

com pute list
of target characters

Figure 5.1: System overview

99

Chapter 5. Narrative-Driven Camera Control for Cinematic Replay

5.2 OVERVIEW

In this section, we give an overview of the method used to generate the cinematic replay from
the extraction of the information to the generation of the camera rushes. In order to produce
a cinematic replay, we need to access to all the information generated by the game engine. In
our case, we devised a game recorder with two purposes: record the animation of the scene
(characters, objects, etc.) and retrieve the scenario from the game engine.

Figure 5.1 shows the different stages of our system and Figure 5.2 illustrates them with
a concrete example. Our system makes use of the recorder with two other components: a
virtual director and a virtual cinematographer. Our director’s goal is to extract the important
targets using the narrative importance of the characters (see Section 5.3, and then assign camera
specifications to the cinematographer using the prose storyboard language (PSL) introduced by
[RGB13] (see Section 5.4).

It is then the task of the cinematographer to place and move different cameras in the scene.
The cinematographer transforms the high-level PSL specifications given by the director into
3D coordinates, and angles for the camera using the geometric information on the scene (see
Section 5.5).

Finally, once all the cameras have been properly animated for the whole replay, the cine-
matographer sends back to the director the rushes filmed by the cameras. The director is then
in charge of performing the editing and creating the final cinematic replay as presented in our
results.

5.3 AN IMPORTANCE-DRIVEN APPROACH

In our context, we assume that the game engine is based on a classical two-level narrative struc-
ture: beats that describe a narrative unit [MS02], and atomic actions that compose a beat (e.g.
characters moving, speaking or reacting). This is not a restrictive hypothesis nor a prerequisite,
and typically can be adapted to whatever information is provided by the game engines.

Using this two-level structure, we compute two different levels of importance. The first
level of importance Ibeat(c, t) provides an estimation of the importance of character c over
a specified beat, measured in terms of how many actions he was involved in over the beat
occurring at time t and the significance of his role in each action (significance is a numerical
value mapping the range “absent” to “significant” to 0..1). The second level, Iatomic(c, t)
provides an estimation of the importance of a character c from the relevance of the action he’s
involved in, and from the significance of his role in the action.

Ibeat(c, t) =
∑

a∈Abeat,c

Sc(a, t)

Iatomic(c, t) =
∑
a∈Ac,t

R(a, t)× Sc(a, t)

where

• Abeat,c is the set of actions performed by character c in the specified beat;

• Ac,t is the set of actions performed by character c at time t (a character can perform
multiple actions simultaneously);

100

Chapter 5. Narrative-Driven Camera Control for Cinematic Replay

0 5 10 15 20 25 30 35 40 45 50 55

0

1

0

1

0

1

<
F

ra
nk

>

<
F

ra
nk

,L
ili

>

<
Li

li,
F

ra
nk

>

<
Li

li,
F

ra
nk

>

<
O

liv
ia

,F
ra

nk
>

W
al

k

S
pe

ak

S
pe

ak

S
pe

ak

S
pe

ak

Frank

Olivia

Lili

BeatA2BeatA1

CamA1

CamA2

CamA3

CamA1

CamA2

CamA3

Im
po

rt
an

ce
Ain

AA
ct

io
ns

T
ar

ge
ts

S
pe

ci
fic

a
tio

ns
R

us
he

s
E

di
tin

g

Esecd

BeatA3

0

1

0

1

0

1

Frank

Olivia

Lili

Im
po

rt
an

ce
Ain

AB
ea

ts

<
O

liv
ia

,F
ra

nk
,A

AAA
AAA

AAA
Li

li>

T
ar

ge
ts

<
F

ra
nk

>

<
F

ra
nk

,L
ili

>

R
ea

ct
<

O
liv

ia
>

Figure 5.2: An illustration of the complete cinematic replay process. Starting with the list of
beat and actions, the importances of the characters are computed to establish the configura-
tions of characters. Each configuration is converted into camera specifications given each of
the camera behaviors (3 behaviors are defined here). Finally, the rushes are generated from
the specifications and edited.

101

Chapter 5. Narrative-Driven Camera Control for Cinematic Replay

• R(a, t) is the relevance of the action a performed at time twith regards to the completion
of the overall objective of the game;

• Sc(a, t) is the significance the role played by the character c in action a at time t.

Values of R(a, t) and Sc(a, t) are considered to be provided by the game engine. While
other game engine may provide different information, the key here is to propose a mapping
from this information to importances.

5.4 THE DIRECTOR: FROM IMPORTANCE TO SPECIFICATION
OF CAMERA BEHAVIORS

Once the importances have been computed for each character, we propose to map this list
of importances with a collection of camera behaviors. The purpose of this collection is to
simultaneously control multiple individual cameras to offer simultaneous distinct viewpoints
over which film editing is performed.

5.4.1 High level specifications

In order to specify camera behaviors, a shot description language is necessary. It defines the
specification that will be associated with the characters’ importances.

The Prose Storyboard Language (PSL) elaborated by [RGB13] seemed appropriate for
this task as it defines the syntax and semantics of a high-level shot description language. Using
PSL, partial or full camera specifications can be authored (i.e expecting only one solution or
a set of possible solutions). Figure 5.3 shows the subset of the language we focus on. We
extended the grammar to handle Point Of View (POV) shots (a shot from the physical point of
view of the character).

<Composi t ion > : : = [< a n g l e >| < pov >] {< F l a t C o m p o s i t i o n >}+
< F l a t C o m p o s i t i o n > : : = < s i z e > on < S u b j e c t >[< p r o f i l e >]

[< s c r e e n >] (and < S u b j e c t >[< p r o f i l e >]
[< s c r e e n >] [i n (back | f o r e) ground]) ∗

< S u b j e c t > : : = (< Actor >| < Objec t >)+
< ang le > : : = (h igh | low) a n g l e
< s i z e > : : = ECU | BCU | CU | MCU | MS | MLS | FS | LS | ELS
<pov > : : = POV (< Actor >| < Objec t >)
< p r o f i l e > : : = 3 / 4 l e f t back | l e f t | 3 / 4 l e f t | f r o n t

| 3 / 4 r i g h t | r i g h t | 3 / 4 l e f t back | back
< s c r e e n > : : = s c r e e n (c e n t e r | l e f t | r i g h t)

Figure 5.3: PSL Grammar - Screen composition

5.4.2 Behaviors

In order to ease the mapping between the characters’ importances and the camera behaviors,
we propose to abstract the characters as either PC (player character), Pi (primary non-player

102

Chapter 5. Narrative-Driven Camera Control for Cinematic Replay

characters), and Si (secondary non-player character). PC is directly provided by the game
engine, while Pi and Si are derived from the relative importance of the characters. We man-
ually determined two threshold values αS and αP . At each frame, all the characters (but the
player character) with an importance higher than αP are considered primary characters. The
remaining ones with an importance higher than αS are considered secondary characters. All
the others are neglected.

This abstraction creates a configuration of characters for each frame. The different config-
urations of characters are displayed in Table 5.1.

Configuration Meaning
< PC > The player character is the only

target
< P0 > One primary target that is not the

player character
< PC,P0 > Two primary targets, one of

which is the player character
< P0, P1 > Two primary targets not includ-

ing the player character
< P0, S0 > One primary and one secondary

target not including the player
character

< P+ > One primary target or more
< S+ > One secondary target or more

Table 5.1: Different configurations of characters

A camera behavior is finally constructed by manually mapping a set of PSL shot specifica-
tions with a set configurations of characters (one specification per configuration). The configu-
ration represents the stimulus of the camera, and the PSL specification represents the response
to the stimulus by the camera. For example, an over-the-shoulder behavior (a point of view
always behind the shoulder of the character) can be specified on the player character as illus-
trated in Table 5.2. Our system requires a mandatory specification whenever no configuration
can be matched (the default case provided in the Table 5.2).

Behaviors can then be attached to as many cameras as desired in the scene. It is then the
role of the Director to select the appropriate rushes from the different cameras.

Configuration Specification
Default MCU on PC 3/4 backright

screenleft
< PC,P0 > CU on PC 3/4 backright screen-

left and P0 screencenter
< PC,P+ > CU on PC 3/4 backright screen-

left and P+ screencenter

Table 5.2: A camera behavior encoding the Over-the-shoulder principle on the player charac-
ter (PC).

103

Chapter 5. Narrative-Driven Camera Control for Cinematic Replay

5.4.3 Editing

Once the rushes are generated by the different cameras, the director takes care of editing the
rushes to output the final cinematic replay. We perform the editing using the framework pre-
sented in chapter 4. With a default average shot length of five seconds the optimization process
automatically computes an edit, hence providing the final replay. The importance used as input
to the system is based on Iatomic and is computed as follows:

I(b, t) =
∑
a∈Ac,t

R(a, t)× Sc(a, t)× I(b|a)

Where I(a|b) is the importance of a body part b in action a. It is obtained by casting actions
into one the four categories already described in the previous chapter.

5.5 THE CINEMATOGRAPHER: FROM SPECIFICATIONS TO
CAMERA COORDINATES

The purpose of the Cinematographer component is to translate a given PSL specification into
camera coordinates: position, orientation and focal length for each frame of the animation.

The automated computation of camera coordinates given a PSL specification is not straight-
forward. The problem is strongly under-constrained – there are many camera coordinates satis-
fying the same specification – and the space of possibilities is continuous in the 7D space. In re-
lated contributions, more specific camera description languages have been proposed ([OHPL99,
BZRL98] and [RU14]). Sophisticated optimization techniques were proposed to compute
camera coordinates by expressing properties of the camera with an aggregated cost func-
tion (genetic algorithms in [OHPL99], gradient descent [DZ94], particule swarm optimiza-
tion [RU14]).

However, the technique proposed by [LC12] provides the algebraic solution to efficiently
solve a subset of camera properties (exact screen location of two targets, distance to targets,
viewing angle). We propose to extend this technique for two purposes: (i) to efficiently com-
pute camera coordinates satisfying a PSL specification, and (ii) to smoothly animate the camera
while the geometry is changing or to enable smooth transitions between different PSL specifi-
cations.

5.5.1 Computing camera coordinates

We propose to express the computation of camera coordinates from a PSL specification us-
ing an incremental pruning process that will successively prune regions of the search space.
The search space is define by either a spherical surface or a toric surface [LC12] depending
on whether one or two targets are specified. The incremental pruning is performed until all
properties of the PSL specification are satisfied, or until an inconsistency is encountered (see
Figure 5.4). The output of the process is a region of a surface in which all points satisfy the
PSL specification.

Before detailing the pruning process, we propose a new solution to address the singularity
observed with the toric manifold in chapter 3.3 when the camera gets too close to one of the
visual targets. As illustrated in Figure 5.5, when the camera is too close to points A and B
on the toric surface, and when considering that A and B are complex objects such as virtual

104

Chapter 5. Narrative-Driven Camera Control for Cinematic Replay

characters, the corresponding viewpoint will be of bad quality (having a camera either inside
one of the objects, or too close to an object to create a good viewpoint).

We propose in a first stage to extend this toric surface by introducing a threshold value d
preventing the camera from being too close to targets A or B. This occurs at the cost of losing
the exact composition of A and B in these regions, but improves the quality of the viewpoint.
This solution is an improvement over the Bezier curve method that we proposed in chapter 3.

We use this threshold value d between the camera and the targets to alter the surface of
the manifold in the following way. For a given arc-circle of the toric (i.e. a given value of the
vertical angle ϕ on the parametric surface of the toric), we compute the intersection point I
between the arc-circle and the circle defined by either A or B and radius d. The curve is then
replaced by the arc circle of center C2 and radius |C2I| (in blue on Figure 5.5) where C2 is the
intersection between (C1A) and (AB). The arc circle provides a C1 continuity with the initial
curve, hence creating a smooth transition that will be useful when animating the camera (see
Section 5.5.2).

For a PSL specification with two targets A and B (actors or objects), each with their optional
parameters (e.g. <screen>, <size>, <angle>, <profile> and (back|fore) ground), we then apply
an incremental pruning process on the extended toric surface by considering the following
stages:

1. construct the extended toric surface for the two targets defined by 〈FlatComposition〉.
If no 〈screen〉 specification is provided, a default one is proposed (first target on the left,
second on the right),

2. use the 〈size〉 specification to compute a vertical band on the toric surface (i.e. pruning
values of θ). The band represents a range of distances corresponding to the specified shot
size. Knowing the camera focal length and the size of the target, the Medium-closeup
specification is straightforwardly expressed as a distance δ to the target to which we
add some flexibility (±ε), then converted to a range values for θ – see [LC12] for more
details and illustration in Figure 5.4(a).

3. use the 〈angle〉 specification to compute a horizontal band on the toric surface (i.e. prun-
ing values of ϕ see Figure 5.4(b)),

4. use the 〈profile〉 specification on each target to prune values of θ, by computing the
intersection between the specified wedge of the target (e.g. 3/4 left back) and the toric
surface (see Figure 5.4(c))

5. finally use the (back|fore) ground specification to decide whether the camera is closer to
actor A or to actor B (hence pruning values of θ, see Figure 5.4(d)).

Each pruning process is performed on the result of the previous stage. Given that some
specifications may be optional, not all the pruning stages are performed. At each stage, the
pruning process may lead to an empty set corresponding to an inconsistent specification. In
such cases of impossible PSL querries, a failure message is returned.

For a PSL specification with only one target, the same pruning process is applied on a
spherical surface, using spherical coordinates ϕ, θ, r. In such case, 〈size〉 defines a range of
values for the radius r. For a PSL specification with more than two targets, the toric surface is
constructed using the pair of targets having the greatest distance between them.

Using the spherical or toric surface models, our technique efficiently computes ranges of
parameters using the PSL specification. By selecting any given value in these ranges, one can
compute a precise camera location and orientation satisfying the specification.

105

Chapter 5. Narrative-Driven Camera Control for Cinematic Replay

(a) pruning the toric surface
 for the <size> constraint

(b) pruning the toric surface
 for the <angle> constraint

(c) pruning the toric surface
 for the <profile> constraint.
 Here, back of red target

(d) pruning the toric surface
 for the <back|fore> ground.
 here, red target in foreground

Figure 5.4: The pruning process applied on the toric surface to satisfy terms of the PSL shot
specification for two targets A and B (displayed in red and green). The intersection of the
regions represent the locations in which to position the camera.

5.5.2 Animating cameras

The next issue consists in providing means to smoothly animate the camera in two different
contexts: (i) maintaining a PSL specification while the scene geometry is evolving, typically
when the targets are moving, and (ii) performing transitions between different PSL specifica-
tions (either due to a change in the target list, or to a failure in computing a shot satisfying a
PSL specification).

Drawing our inspiration from the model we detailed in chapter 3, we propose a physically-
based camera animation model that relies on forces directly driven by our extended toric surface
or spherical surface and constrained by the 3D environment. The model considers the camera
as an oriented particle, influenced by forces guiding both its position and orientation (i) towards

106

Chapter 5. Narrative-Driven Camera Control for Cinematic Replay

C1

d C2

I

A B

C1

C2

d

I

A B

Figure 5.5: Modified toric surface. The toric surface is modified for camera positions closer
than threshold value d from either target A or B so as to avoid collisions. The process is
illustrated for a given value ϕ of the toric surface, and two different threshold values d. The
modified region is replaced by the blue arc circle of center C2, and radius |C2I| where I is the
intersection of the circle of center B and radius d, and C2 is the intersection of lines (C1)I
and (AB).

the appropriate range of viewpoints satisfying a PSL specification (the positioning force) and
(ii) avoiding collisions with obstacles in the environment (the containment force).

The positioning force helps to maintain a consistent framing of the targets by ensuring
the continuous satisfaction of a PSL specification. The force is expressed with two distinct
forces: one that pushes the camera on the spherical or toric surface, and another force that
pushes the camera on the surface until it reaches a desired position. Algorithm 8 details the
computation of these two forces. Figure 5.6 illustrates the idea behind this force using our
modified toric surface: we compute the projection P of the camera on the surface and steer the
camera to this position (force

−→
F1) while pushing the camera on the right hand side or the left

hand side, towards the desired position D (force
−→
F2). The camera is steered on the right when

the desired position D is on the right side of the vector going from the camera Ci to the point
C (middle of the two targets). The camera C2 illustrates the reason for which we don’t simply
steer the camera directly towards the desired position: with a camera following the red line, the
composition will not be ensured, and the resulting viewpoints would be of low quality (having
the camera between the targets).

The containment force maintains the camera away from obstacles in the environment (typ-
ically walls). Figure 5.7 illustrates the computation of the force and algorithm 9 details its
implementation.

The key benefit of this physical camera animation system is to generate smooth camera
motions, and to provide control over the transitions between different PSL specifications.

5.5.3 Filtering

Using a physically based model to control cameras offers a practical way to avoid unrealistic
camera movements and ensures continuity. The current solution however comes with a draw-
back: since the toric and spherical surfaces are directly computed from targets’ positions, any
noisy motions in these positions (nodding, head motion due to walking) will directly impact

107

Chapter 5. Narrative-Driven Camera Control for Cinematic Replay

PD
C1

C2

F1

F2

A B

C

Figure 5.6: Steering the camera towards the toric surface (force F1) and steering the camera
along the surface towards target D (force F2).

Algorithm 8 Positioning: computes the two forces Fprojection and Ftargeting which push the
camera towards the desired position while staying on the toric surface. P is the projection of
the camera position Ci of camera agent i at time t on the manifold surface and D its desired
position. right represents the tangent vector of the manifold surface at P . And vmax is the
maximum allowed velocity for the camera. vc represents the current camera velocity.

F1 = arrive(P)
aim = D − P
// move the camera to the left or to the right
if desired position on the right then
dir = right // compute a desired velocity to the left

else
dir = −right // compute a desired velocity to the right

end if
u = vmax((aim · dir)dir + (aim · up)up)
// subtract the current velocity to the desired velocity
F2 = u− vc
Fframing = F1 + F2

the camera motions. Figure 5.8 illustrates these issues on target trajectories. Even though the
use of a physical system can dampen some of these noisy motions, a more elaborate model is
necessary.

While a simple solution could be to apply thresholds to the camera forces to prevent moving
the camera when unnecessary, it requires a lot of parameter tuning, induces undesirable motion
such as peaks in the acceleration and leads to latency in camera tracking.

To solve this problem, we cast it into a denoising problem by considering the small vari-
ations in the target trajectories as noise. The filtered trajectories are then obtained using a
total variation (TV) regularization algorithm. The idea of using TV algorithm for denoising
was introduced by [ROF92]. Their use in cinematography was introduced by [GKE11] for

108

Chapter 5. Narrative-Driven Camera Control for Cinematic Replay

Dmin

n
d

v

dv
FC

wall

Figure 5.7: Obstacle avoidance: compute the force F that pushes the camera C away from an
obstacle. Dmin represents the threshold distance, n is the normal of the surface at the closest
distance from the camera to the obstacle, vc is the velocity of the camera and dv the desired
velocity

Algorithm 9 Containment: computes a sum of forces Fobs that pushes the camera away from
the obstacles. li represents the normalized look at vector (orientation) of camera particule i
at time t, ri represents the normalized right vector of camera particule i at time t and vmax is
the maximum allowed velocity for the camera. Dmin represents the distance threshold under
which the force is applied.

for each obstacle o do
d = distanceToObstacle(o, pi)
// check whether the wall is under a threshold distance
if d < Dmin then

// compute the magnitude of the force
mag = Dmin − (d+ (v · n))
Fobs = Fobs + n ∗mag

end if
end for

(a) Continuous head movement (b) Oscillations of the character’s head

Figure 5.8: A denoising algorithm is applied on the motion of the character (eg balancing
head motions, or head walking motions) to prevent noisy camera trajectories.

video stabilization. The idea behind the TV denoising problem is the following: we are given
a (noisy) signal y = (y[1], ..., y[N]) ∈ RN of size N ≥ 1, and we want to efficiently compute

109

Chapter 5. Narrative-Driven Camera Control for Cinematic Replay

the denoised signal x∗ ∈ RN , defined implicitly as the solution to the following minimization
problem with a regularization parameter λ ≥ 0:

minimize
x∈RN

1

2

N∑
k=1

∣∣∣y[k]− x[k]
∣∣∣2 + λ

N−1∑
k=1

∣∣∣x[k + 1]− x[k]
∣∣∣

For the purpose of filtering trajectories, the denoising is performed by applying the TV
regularization to each of the coordinates (x, y and z) over time (N thus represents the number
of frames of the sequence). To obtain smooth and steady camera movements, we propose
to denoise the target’s trajectories as a pre-process (rather than denoise the computed camera
motions). We keep the advantage of the force-based system by tracking trajectories that have
already been filtered and thus do not induce extra forces to constantly adjust the camera when
it is not needed.

For denoising the trajectories, we used a direct non-iterative algorithm presented by [Con13].
Finding the appropriate value for parameter λ was performed through multiple experimenta-
tions. The value was finally set to 2.0.

5.6 EXPERIMENTAL RESULTS

To demonstrate our approach, we used the video game Nothing For Dinner. This interactive
drama presented in [HSRD12] and available online2 uses the story engine IDtension. The goal
of this serious game is to help teenagers cope when a parent suffers from traumatic brain injury.
The simulation immerses the players in an interactive environment in which they play active
roles and have to make decisions that require their attention. The gaming experience provided
by Nothing For Dinner gives users a way to experience different situations that they might
encounter in their everyday life. We integrated our cinematic replay system within this serious
game, giving the possibility for users to replay their experiences.

5.6.1 Narrative importance

All the narrative information is generated by the IDtension engine and saved for further anal-
ysis by our system. What is being generated by IDtension could be considered as the fabula
of the story: it contains all events and actions occurring during the game session along with
their temporal relations within the fictional world without any consideration of viewpoint or
focalisation. To generate the cinematic replay, our system extracts information from this fab-
ula, typically beats and atomic actions. Each atomic action is described with the following
attributes: starting time, duration, type of actions and description.

The information on the relevance of the actions performed by the characters is part of the
internal mechanisms of IDTension. It is termed motivation and corresponds to the relevance of
the action in terms of the accomplishment of the character’s goal. Combined with the signifi-
cance of character’s role in each action, this metric provides a means to establish the individual
importances of the characters.

5.6.2 Shots specifications

For the results, we demonstrate the capacities of our system by using only 3 cameras. Two
cameras rely on the fine-grain importance Iatomic and the third one (the master shot) relies on

2http://tecfalabs.unige.ch/tbisim/portal/

110

http://tecfalabs.unige.ch/tbisim/portal/

Chapter 5. Narrative-Driven Camera Control for Cinematic Replay

the beat importance Ibeat. Tables 5.3, 5.4 and 5.5 describe the behaviors defined for each of
these cameras. With this implementation, the first camera represents the Point-Of-View shot
from the player character’s perspective and the second camera represents its reverse shot.

Configuration Specification
Default MCU on PC 3/4 backright screenleft
< P0 > POV PC on P0 screencenter
< PC,P0 > POV PC on P0 screencenter
< PC,P+ > POV PC on P+ screencenter

Table 5.3: Behavior for the first camera

Configuration Specification
Default MCU on PC 3/4 right screencenter
< P0 > CU on PC 3/4 right screencenter
< PC,P0 > CU on PC 3/4 right screencenter
< PC,P+ > CU on PC 3/4 right screencenter

Table 5.4: Behavior for the second camera

Configuration Specification
Default MS on PC right screenleft
< P0 > MS on PC screenleft, P0

< PC,P0 > MS on PC screenleft, P0

< PC,P+ > MS on PC screenleft, P+

Table 5.5: Behavior corresponding to a master shot

5.6.3 Computing camera positions

To evaluate the cinematography, we present qualitative results produced by our system. Fig-
ures 5.9, 5.10 and 5.11 show shots generated for different situations using different camera
behaviors. Figure 5.9 shows the output of the three cameras when no specific action is occur-
ring. The camera simply performs a tracking of the player character PC. Figure 5.10 shows
the results obtained in a situation of dialog between the player character and another character.
Figure 5.10a shows the Point Of View shot obtained using the set of rules previously defined
and Figure 5.10b shows its reverse shot: the internal shot.

To illustrate the benefit of the system, we show how a change in camera behaviors impacts
the computed viewpoints. Rather than using a Point Of View shot combined with an internal
shot, we used two complementary Over-The Shoulder-shots. To produce the result displayed
in Figure 5.11 – to be compared with Figure 5.10, we simply replaced the following rules
respectively for the first and second cameras, thereby offering simple means for users to author
their cinematic replays without manually moving the camera and re-editing the sequence.

• < PC,P0 >: CU on PC 3/4backright screenleft and P0 center

• < PC,P0 >: CU on P0 3/4backleft screenright and PC center

111

Chapter 5. Narrative-Driven Camera Control for Cinematic Replay

(a) First camera (b) Second camera (c) Master shot

Figure 5.9: Shots computed for three different camera behaviors on the same scene at the same
time (a) first camera behavior, (b) second camera behavior and (c) master shot behavior.

(a) First camera (b) Second camera (c) Master shot

Figure 5.10: Shots computed for three different camera behaviors on the same scene at the
same time: (a) point-of-view behavior defined on the PC Frank, (b) point-of-view behavior
defined on P0 Lili and (c) master shot behavior defined on < PC,P0 >.

(a) First camera (b) Second camera (c) Third camera

Figure 5.11: Shots computed for three different camera behaviors on the same scene at the
same time: (a) over-the-shoulder behavior defined on Frank, (b) over-the-shoulder behavior
defined on Lili and (c) master shot behavior on Franck and Lili.

5.6.4 Overall process and results

These few examples illustrate the type of camera shots generated by our system. It highlights
the complementarity of the behaviors in generating various shots that makes the editing process
easier. To illustrate the overall system, Figure 5.2, already introduced in section 5.2, presents
the complete cinematic replay process. The process starts with the analysis of the list of actions
and activities to compute both the atomic and beat importances of the character along the time-
line. The figure shows the evolution of the atomic importance of the characters over time
(the same computation is performed for the beat importance). Using this information at each
time step we can extract the list of characters involved (configurations of characters) and use
it to define the camera specifications from the set of behaviors presented in Tables 5.9, 5.10
and 5.11 (in this case, Frank is the Player Character). The rushes are then computed from the

112

Chapter 5. Narrative-Driven Camera Control for Cinematic Replay

camera specifications using the steering behaviors and the editing between the different rushes
is performed.

Finally, a video demonstrating the results can be seen online3. It presents two different
replays of the same game session. We generated them by changing the behaviors of the camera
as mentioned before. This video shows that a small set with three cameras and only a few rules
is enough to cover basic interactions between characters and transitions between actions.

5.7 LIMITATIONS AND FUTURE WORK

In this chapter, the focus was set on the generation of cinematic replays for dialogue-based
role playing games. It provides a generic solution for this purpose but doesn’t make full use
of the narrative information that some games or interactive narratives might provide. Looking
at richer information, the proposed cinematography system could be improved, for example
by addressing the emotion of the characters. Though the game Nothing For Dinner itself pro-
vides us with such information, the automated computation of compelling cinematographic se-
quences conveying emotions remains an open challenge. Future work could be pursued based
on the studies conducted to evaluate the impact of camera control on the emotional state of the
audience [MJY09, YMJ10] – even though these studies were related to the gaming experience,
their results could be extended to cinematographic purposes.

In addition, the method presented for the computation of camera shots from PSL specifi-
cations proved to be efficient on simple cases but does not handle over-constrained situations.
When the system can not find a solution, it immediately falls back to a default configuration
with minimal constraints and guaranteed solutions. Investigation of constraint relaxation meth-
ods could be conducted to properly address this problem and provide approximating solutions
for inconsistent specifications.

Finally, the steering behaviors method used for the cinematography remains a reactive ap-
proach. As such, combined with an on-line camera editing technique (such as [CAH∗96]), it
could be adapted to address real-time contexts. However, when real-time is not a constraint,
such a method does not fully benefits from the off-line advantages. For instance it can not use
information on characters’ trajectories to anticipate the movement and globally improve the
camera path. Offline optimization techniques are more suited for this task. Moreover, even
though this technique constrains cameras in terms of speed and acceleration to ensure realism,
it still allows free displacements in the environment which sometimes results in unrealistic
trajectories. In chapter 6, we address both these limitations and make full use of the off-line
property of the system to ensure plausible camera trajectories and motions by using virtual
camera rails.

5.8 SUMMARY

In this chapter we have presented a new system designed to automatically generate cinematic
replays of game sessions. We presented a new way to define high-level camera specifications
using a principled and contextual importance-driven approach, as an answer to the limitations
of action-based or idioms-based cinematography. We also introduced a mean to express camera
behaviors using these specifications, and proposed novel techniques to smoothly animate the
cameras. The results obtained with only three camera behaviors illustrate the capacity of the
system to properly convey a game replay, with a realistic and dynamic camera style.

3https://team.inria.fr/imagine/narrative-driven-camera-control/

113

https://team.inria.fr/imagine/narrative-driven-camera-control/

Chapter 5. Narrative-Driven Camera Control for Cinematic Replay

114

CHAPTER

6

CAMERA-ON-RAILS

T Hough our previous work on camera control gave satisfying results to automatically
compute camera paths in virtual environments, it does not seriously consider the prob-
lem of generating realistic camera motions even for simple scenes. Among possible

cinematographic devices, real cinematographers often rely on camera rails to create smooth
camera motions which viewers are familiar with.

Following this practice, in this chapter we propose a method for generating virtual camera
rails and computing smooth camera motions on these rails. Our technique analyzes characters
motion and user-defined framing properties to compute rough camera motions which are fur-
ther refined using constrained-optimization techniques. Comparisons with recent techniques
demonstrate the benefits of our approach and open interesting perspectives in terms of creative
support tools for animators and cinematographers.

115

Chapter 6. Cinematography with virtual rails

6.1 INTRODUCTION

Computing smooth and well-composed camera paths is a key problem in both real and virtual
cinematography. In both contexts, a crucial step is to provide cinematographers with means to
design camera motions which, on one side enable to track the motion of targets (often char-
acters) while on the other side maintain the camera motions as smooth as possible – this is
particularly desired in real cinema, where minimizing the optical flow is one of the main con-
cerns.

In related work, virtual cameras have often been considered either as able to move com-
pletely freely, or been restricted to simple stereotypical motions (e.g. traveling, arcing, dolly-
in). Conversely, in the real cinema industry, camera motions are often restricted to those of a
camera rig (e.g. a Louma or a dolly) moving along a single continuous rail. Generating realistic
camera motions in such a context remains a tedious task that requires iterating on (i) position-
ing the rail in the scene, then (ii) generating a camera motion along this rail (through a fine
control of the on-screen layout and camera speed), and finally (iii) viewing the on-screen result
to decide whether or not changes should be operated on the rail positions or on the camera
motions.

In an attempt to reproduce cinematographic practices to create realistic and smooth camera
paths, we propose a two-stage approach to the automated creation of camera paths. In the first
step, we compute a virtual camera rail that will constrain the camera motions while the camera
is transitioning between two framings. In the second step, we generate a smooth camera motion
onto this rail, that ensures a proper composition of target characters on the screen.

Ranging from the tracking of simple motions of characters to the creation of camera move-
ments portraying complex motions of characters, our system provides means to efficiently
compute stereotypical and natural camera shots through the simple specification of initial and
final framings. As a result, our method allows to automatically create rushes that can be used
either as input to an editing or previsualisation system (such as the one presented in chapter 4
or the work by Lino et al. [LCRB11a]), or to create a single extended shot (long take) which
conveys a whole movie scene.

The contributions detailed in this chapter are:

1. a method to compute virtual camera rails that enable creating realistic camera transitions
between an initial and a final framing, while accounting for the overall motion of target
characters;

2. a method to compute smooth camera paths constrained on a given rail. Our method
nicely combines constraint solving and optimization to account for both aesthetic con-
straints (e.g. frame characters all along the camera path) and constraints on the camera
(e.g. smoothly adapt the camera velocity and acceleration, and prevent the camera to get
too close or too far from characters).

The chapter is built as follows. We first present an overview of our method (Section 6.2).
We then detail our two contributions (Sections 6.3 and 6.4). We further compare and discuss
our solution with other methods and demonstrate its use in several context(Section 6.5). Finally,
we conclude and present perspectives for future research (Section 6.7).

6.2 OVERVIEW

In this chapter, we focus on the automated computation of natural camera motions between
an initial and a final framing specified on a single character or on two characters. A framing

116

Chapter 6. Cinematography with virtual rails

in this context represents the specification of the visual layout of characters on the screen in
terms of exact on-screen positions, relative camera angle (high to low, front to back [Ari76]) or
on-screen sizes.

As in the real cinema industry, our camera planning method is divided into two consecutive
steps: (i) creating a camera rail, and (ii) moving the camera along the rail. The first step
consists in computing a camera rail that links an initial and a final framing, and along which
the characters’ motions can be viewed. The second step then consists in computing appropriate
camera orientations and speed along the rail so as to track the characters. To this end, we rely
on a constrained-optimization process which accounts for the framing of characters, as well as
the speed and acceleration of the camera along the camera rail.

6.3 BUILDING CAMERA RAILS

In order to build a camera rail, we first rely on a parametric representation of viewpoints similar
to the one proposed in [LC12]. This allows us to create a raw trajectory which satisfies, at each
frame, the exact linearly interpolated framing between the initial framing and the final framing.
This raw trajectory generally results in jerky camera motions. We then approximate the raw
trajectory with a Bezier curve so as to smooth it out. We restrict the complexity of the camera
rail to a cubical curve, so as to limit rails to those that are commonly used in real movies, hence
enhancing the naturalness of created shots.

6.3.1 Computing a raw trajectory

The input of this process is the motion of the characters as well as the user-specified initial and
final framings –at times t0 and t1 respectively– of these characters. These framings comprise
on-screen desired positions, on-screen sizes and vantage angles. Different optimization tech-
niques can be used to compute actual camera configurations from these framing specifications;
we here rely on [LC15] that provides an efficient and algebraic implementation.

Initial and final camera configurations can therefore be expressed into a 2D-parametric
representation, using the manifold surfaces mentioned in the previous chapter: a spherical
surface (that can handle single-character configurations) or a toric-shaped surface (that can
handle two-character configurations). In the case of a single character, the sphere is defined by
using the shot size of the character. The horizontal and vertical vantage angles are defined in
spherical coordinates, as shown in Figure 6.1a. The on-screen position of the character is finally
determined through its projection onto the image plane. In the case of a pair of characters, we
rely on the toric-shaped manifold surface proposed by Lino and Christie [LC12] to compute
the camera settings from the viewpoint. As explained by Lino and Christie, the toric surface is
fully determined by the on-screen positions of the pair of characters. The vantage angles are
then computed in a way similar to the single-character case, as shown in Figure 6.1b.

To compute the raw trajectory linking the initial and final camera configurations, we pro-
pose to interpolate their framing properties (on-screen position, view angle and size) along
time, and compute for each time step, the camera configuration satisfying the interpolated
framing. Framing properties such as characters’ on-screen positions, vantage angles or sizes
are computed through a straightforward linear interpolation. In the case of a pair of characters,
it is however required to distinguish two types of viewpoint interpolations. Indeed, since the
vantage angle and the size of the target characters are correlated (getting closer to one character
changes the vantage angle on the other), it is only possible to constrain (and thus interpolate)

117

Chapter 6. Cinematography with virtual rails

(a) Spherical surface (b) Toric surface

Figure 6.1: Manifold surfaces used to defined visual properties in the case of (a) one target
and (b) two targets. In both cases, profile and vantage angles are given respectively by θ and
ϕ.

one of them. Figure 6.2 illustrates the computation of the raw path which interpolates between
both viewpoints.

(a) (b)

Figure 6.2: Example of raw trajectories computed in the cases of (a) a single moving target A
and (b) two moving targets A and B. The camera raw trajectory is displayed in red while the
targets’ trajectories are displayed in black.

6.3.2 From raw trajectories to camera rails

The computation of a camera rail then requires a curve fitting process to create a rail as close
as possible to the raw trajectory (hence satisfying the framing properties along the path), while
smoothing it out. While a classical B-spline model provides a good fitting, it may result in the
creation of complex, hence unnatural, camera paths. Simpler models such as quadratic Bezier
curves (as suggested by [OHPL99] in their CAMPLAN system) remain limited (e.g. cannot
handle loops). We here propose a cubic Bezier curve, which offers a simple representation of
a camera rail with limited curvature changes and yet provides sufficient flexibility to handle
most common camera motions from the literature [Ari76].

118

Chapter 6. Cinematography with virtual rails

A rail R is therefore defined by a parametric function with four control points (P0 to P3).
P0 and P3 represent the extremities of the rail, while P1 and P2 represent tangents at these
extremities (hence controlling the curvature and shape of the rail). Any point on R can be
computed from parameter t ∈ [0, 1] using the equation

R(t) = P0(1− t)3 + 3P1t(1− t)2 + 3P2t
2(1− t) + P3t

3

To approximate the raw path (which we will refer to as a datasetD), we compute the Bezier
parameters by using a least squares fitting method. At each camera position Di along the raw
path, we first associate a parameter ti computed as the cumulative distance (following the raw
path) to reach Di, divided by the total length of the raw path. We then minimize an error ξ
defined as the cumulative squared distance between all camera positions of the raw path and
their corresponding positions onto the Bezier curve R. This error is computed as

ξ =

N∑
i=0

(R(ti)−Di)
2

Since our rail needs to operate the exact transition between the initial and final viewpoints,
we can directly assign the first and last control points to the initial and final camera positions
of the raw path respectively. At this point, only the positions of P1 and P2 are left unknown.
To find the minimum value of the error function, we compute partial derivatives with respect
to these two unknowns and find where these equal zero, i.e.

δξ

δP1
= 0 and

δξ

δP2
= 0

Finally, as the maximum error is infinite, we know that the solution of the system corre-
sponds to the minimum error. To compute control points P1 and P2, we then solve this system
of linear equations. Figure 6.3 shows how our method approximates complex raw paths with
simple camera rails.

(a) (b) (c) (d)

Figure 6.3: Examples of camera rails (in blue) computed to approximate raw trajectories (in
red) when tracking one or several characters with increasingly complex motions (from (a) to
(d)). As the motion of the character becomes more complex, our method still provides a rail
that well approximates the raw path.

6.4 MOVING THE CAMERA ON THE RAIL

We now focus on generating a smooth camera motion (in position and orientation) along this
rail while maintaining an optimal framing over the target characters. To address this problem,
we first compute at each time step ti, the optimal camera position on the rail that satisfies the

119

Chapter 6. Cinematography with virtual rails

interpolated framing at ti. We then improve this camera motion through an iterative optimiza-
tion process which accounts for constraints on the camera (in terms of position, velocity and
acceleration). Hence, we compute a camera motion closest to the optimal framing while en-
forcing smoothing constraints. We perform a similar process to compute the orientation of the
camera along the path. These stages are described in the following sections.

6.4.1 Raw camera motion

To initiate a raw camera motion along the rail, we try at each time step to position the camera
at an optimal position on the rail, knowing it’s previously defined raw position, i.e. on the
raw trajectory. Though a straightforward solution could consist in projecting this raw camera
position onto the rail, it may not ensure the satisfaction of visual properties (see Figure 6.4
for an example). Our solution consists in finding the position on the rail that is closest to the
intersection between the rail and the manifold surface. Since every position on this manifold
surface satisfies part of the desired visual composition (at least the on-screen position of target
characters, as shown in [LC12]), this methods tends to provide better camera positions to frame
the target characters (and limits disturbing changes in on-screen sizes of characters).

Figure 6.4: The point on the rail (in grey) that provides the best approximation of the desired
camera viewpoint C is not its projection C1 on the rail. It is given by the closest intersection
C2 of the rail with the manifold surface (in black).

As the intersection of a Bezier curve with a manifold surface is not straightforward, we
compute the optimal camera position at a given frame by performing a dichotomous search on
the neighborhood (along the rail) of the position found at previous frame. This search algorithm
is detailed in Algorithm 10.

6.4.2 Smooth camera motion

To compute a smooth camera motion from the raw motion on the rail, we need to add con-
straints such as smooth changes of camera velocity and acceleration. We therefore search for
the camera motion that satisfies these constraints while minimizing the distance to the raw
camera motion.

The problem is solved using an optimization process which takes as input a shot duration d
(comprisingN frames) and a rail of length L. This process then minimizes equation (1), where
xi and x′i are the parameters respectively defining the optimal and optimized camera position
on the rail. Our optimization process is then subject to a number of constraints, each addressing

120

Chapter 6. Cinematography with virtual rails

Algorithm 10 Dichotomous search of the point on the rail that is the closest to the manifold
surface. The search is performed in the neighborhood (defined by ∆) of the previous optimal
camera position p. Rail(t) returns the position of the point at time t on the rail.

left := p−∆
right := p+ ∆
while left− right ≥ ε do
middle := (left+ right)/2
pleft := Rail(middle− ε)
pright := Rail(middle+ ε)
dl := ||projectOnManifold(pleft)− pleft||
dr := ||projectOnManifold(pright)− pright||
if dl then
left := middle

else
right := middle

end if
end while
return (left+ right)/2

one aspect of the motion. Firstly, through constraint (2) we state that the camera position will
always belong to the rail, in-between both extremities of the rail. Secondly, through constraints
(3) and (4) we state that the camera initial and final positions will be the extremities of the
rail (P0 and P3 respectively). Thirdly, through constraints (5) and (6) we define a maximum
velocity vmax and a maximum acceleration amax for the camera motion. Finally, through
constraints (7) and (8) we state that the camera motion will start with a zero speed and end with
a zero speed (i.e. a complete stop of the camera). In other words, our optimization process is
formulated as

Minimize
N∑
i=0

|x′i − xi| (6.1)

Subject to

0 ≤ x′i ≤ 1 (6.2)

x′0 = 0 (6.3)

x′N = 1 (6.4)

|x′i − x′i−1| ≤ vmax ∗ dt/L ∀i ≥ 1 (6.5)

|2x′i−1 − x′i − x′i−2| ≤ amax ∗ dt2/L ∀i ≥ 2 (6.6)

x′1 − x′0 ≤ amax ∗ dt2/L (6.7)

x′N − x′N−1 ≤ amax ∗ dt2/L (6.8)

Now formalized, the problem can be solved using any existing linear programming library1.
However, to ensure that our problem has a solution, we further define an implicit constraint on

1we used GLPK (GNU Linear Programming Kit)

121

Chapter 6. Cinematography with virtual rails

the minimum input values of vmax and amax in the following way. If we use the minimum
acceleration satisfying all constraints, the camera will constantly accelerate until it reaches half
of the rail length at precisely half of the rush duration, then constantly decelerate until it reaches
the end of the rail at precisely the end of the rush (with zero speed). This can be formalized in
a simple mathematical way, as

amax ≥
4L

d2

Using this formula, we then deduce the minimum value of vmax. We know that the camera
will reach half of the rail at precisely half of the rush duration and at its maximum speed. The
camera will also constantly accelerate until it reaches its maximum speed, then will remain
constant until half of the rail length. This can be formalized as

vmax ≥
d.amax −

√
d2.a2max − 4L.amax

2

6.4.3 Camera orientation

The two previous steps have computed a smooth camera motion (in terms of position) along
the rail. Now computing the optimal camera orientation at each frame, given its position on
the rail and a framing to satisfy, is easily addressed in [LC12] through an algebraic formulation
of camera orientation. However, for the same reasons as before, we also want to limit the
angular speed and acceleration of the camera while it is moving along the rail to avoid jerky
camera rotations that may occur. In a way similar to camera position, we therefore perform an
optimization process along each of the three axes of the camera (i.e. pan, tilt, and roll).

This optimization process takes as input the duration d of the rush (comprising N frames)
and is defined as the minimization of equation (9), where θi and θ′i are respectively the optimal
and optimized rotation along a given camera axis at frame i. The camera orientation is also
subject to a number of constraints, both at its initial and final states and on the way it evolves
along time. Firstly, through constraints (10) and (11), we state that the initial and final camera
orientations will be equal to the initial and final optimal orientations respectively. Secondly,
through constraints (12) and (13), we define a maximum angular velocity θ̇max and acceleration
θ̈max for re-orienting the camera. Finally, through constraints (14) and (15), we state that the
camera will start the rush and end the rush with a zero angular speed. In other words, this
optimization process can be formulated as:

Minimize
N∑
i=0

|θ′i − θi| (6.9)

Subject to

θ′0 = θ0 (6.10)

θ′N = θN (6.11)

|θ′i − θ′i−1| ≤ θ̇max ∗ dt ∀i ≥ 1 (6.12)

|2θ′i−1 − θ′i − θ′i−2| ≤ θ̈max ∗ dt2 ∀i ≥ 2 (6.13)

|θ′1 − θ′0| ≤ θ̈max ∗ dt2 (6.14)

|θ′N − θ′N−1| ≤ θ̈max ∗ dt2 (6.15)

122

Chapter 6. Cinematography with virtual rails

6.5 RESULTS

In this section we analyse the performance of our solution on a number of scenarios and com-
pared our approach with existing camera control techniques. We also illustrate our method by
applying it on animated scenes to produce short edited videos. All the results are accessible
online2.

6.5.1 Performance

We here provide an overview of the performance of our method for different character place-
ments and motions. The computational time required (on a Core i7@2.4GHz running Unity
5) to generate a camera rail is given in Table 6.1 for three different scenarios (S1 to S3). In
each scenario, the camera makes a transition between two different user-defined framings (see
Table 6.2). In the first scenario (S1), the camera tracks a single character as he moves in the
environment for 32 seconds. In the second scenario (S2), the camera transitions between two
different viewpoints specifications around a pair of static characters during 8 seconds. In the
last scenario (S3), the camera tracks during 18 seconds two moving characters walking at dif-
ferent speeds and with different walking directions. Figure 6.5 shows the characters’ paths and
the camera rails computed for each of these scenarios.

S1 S2 S3

Raw path 5 ms 13 ms 10 ms

Bezier interpolation 13 ms 14 ms 15 ms

Desired positions on the rail 74 ms 103 ms 342 ms

Optimization of the position 920 ms 49 ms 231 ms

Desired orientation on the rail 7 ms 9 ms 26 ms

Optimization of the orientation 940 ms 117 ms 877 ms

Overall computation 1.95 s 0.30 s 1.5 s

Table 6.1: Computation times for the different steps of the planning process in three different
scenarios (S1 to S3). S1: track a single moving character during 28s. S2: move around a pair
of static characters for 8s. S3: track two moving characters for 20s.

Scenario Initial specification Final specification

S1 MFS on P1 3/4 frontright screencenter MFS on P1 3/4 frontright screencenter

S2 CU on P1 3/4 backleft screenrigh and
P2 screencenter

CU on P2 3/4 backright screenleft and
P1 screencenter

S3 MS on P1 screenright and P2 screenleft MS on P1 screenright and P2 screenleft

Table 6.2: Initial and final PSL specifications used for each scenario.

2https://team.inria.fr/imagine/camera-on-rails/

123

https://team.inria.fr/imagine/camera-on-rails/

Chapter 6. Cinematography with virtual rails

(a) Scenario 1

(b) Scenario 2

(c) Scenario 3

Figure 6.5: Sample camera rails (blue) computed from the raw camera trajectory (red) for a
single moving character (a), for two static characters (b) and for two moving characters (c).

Table 6.1 shows the computation time spent in each step of the process for each of the three
scenarios. The overall computation time to create a smooth camera motion and orientation for
the first scenario well illustrates the efficiency of our solution; less than 2 seconds are required
to generate a 32-seconds camera motion. Moreover, most of computation time is spent in the
optimization process (95% in average). Thus, there is not a significant impact of the number of
targets or the type of transition on the overall computational time. We can however notice that
the time spent in finding an optimal position on the rail is greater when tracking a pair of targets
than when tracking a single character, since working with toric surfaces is more expensive than
working with simple spheres.

124

Chapter 6. Cinematography with virtual rails

6.5.2 Comparison with other methods

We compared our method with three other camera planning techniques: (i) an approach relying
on the model introduced by Lino and Christie [LC12], (ii) the technique based on steering
behaviors presented in chapter 3, and (iii) a derived version of this previous technique where the
camera is steered along a virtual rail rather than optimized. All the comparisons are performed
on the scenario S3.

Lino and Christie [LC12]. Their technique can be used to create camera motions that
strictly enforce a simple framing on a pair of targets. The resulting camera path corresponds to
our raw camera path. The main problem of this method is illustrated in Figure 6.6. When the
targets’ motions are too complex, the method will tend to create jerky and unnatural camera
motions. Moreover, as the camera viewpoint is recomputed at each frame without considering
either the previous camera position, nor the camera speed, the resulting camera motion is not
guaranteed to be continuous nor smooth.

(a) (b)

Figure 6.6: Comparison between the trajectory computed with (a) the Manifold surface intro-
duced by Lino and Christie and (b) our camera rail.

Steering-based camera control. For this comparison, we use the camera control method
presented in chapter 3 and used in chapter 5. An optimal viewpoint is computed and the camera
is then steered toward this viewpoint. The resulting camera motions are much smoother than
the one obtained with [LC12] and provide interesting results in simple cases. However, as
shown in Figure 6.7, when confronted to complex situations, steering-based cameras fail in
generating smooth trajectories. Furthermore, the computational time required to compute the
camera path from the raw trajectory by using steering behaviors is greater than when using
our method. It takes 3.33 seconds to compute both the position and orientation for the whole
duration of the rush (given the raw optimal trajectory), whereas when using our optimization
process it only takes 1.1 second. Even though our approach only offers an off-line solution – it
requires an analysis of the target characters’ motions –, it demonstrates better performances in
average than when using our real-time method.

Extended version of steering-based cameras. We also compared our solution to an ex-
tended version of the method presented in chapter 3. Instead of freely steering the camera
around in the environment, we constrain its motion along the same rail as in our method. We
then steer, at each frame, the camera towards the optimal viewpoint on the rail by using the
steering behaviours of chapter 3. This last comparison is important since it confirms the ne-
cessity of the optimization we propose. Indeed, Figure 6.8 shows the evolution of the position
of the camera on the rail for both methods and displays the optimal camera position along
time. Our method closely follows the optimal position whereas the steering camera is always

125

Chapter 6. Cinematography with virtual rails

(a) (b)

Figure 6.7: Comparison between the path computed (a) by steering a camera and (b) by using
our rail positioning process.

behind on the rail. This graph reveals the main drawback of using a reactive method like steer-
ing behaviors. The camera only moves or accelerates at the last possible moment for it does
not anticipate the characters motion. Our solution on the other hand is able to anticipate the
movements by globally optimizing the camera positions. Figure 6.9 illustrates the difference
between the two approaches. When the characters suddenly move away from the camera, the
reactive solution does not handle the abrupt movement and looses the visibility over the targets
for a moment. Our camera is able to maintain the visibility over the characters by moving
earlier along the rail.

Figure 6.8: Position of the cameras on the rail along time. Our optimized solution (green)
smoothly approximates the optimal camera positions on the rail (blue) while the autonomous
camera (red) hardly keeps-up and introduced a delay.

6.5.3 Camera rails for cinematic replay

To further evaluate our new camera planning method, we tested it with the cinematic replay
system detailed in chapter 5. To do so, we only changed part of the cinematographer component
(see Figure 5.1). In the previous version, we used the PSL specification given by the camera
behavior to prune regions of the manifold surface and steer the camera towards the remaining
area on the manifold. Instead, we now create a new rail every time the PSL specification
changes. The raw trajectory of each camera is computed by taking the middle point of the

126

Chapter 6. Cinematography with virtual rails

Figure 6.9: Viewpoints of the two constrained cameras as the characters move. The au-
tonomous camera C1 is not able to track them whereas our solution C2 is able to maintain the
visibility over the two characters by anticipating their movements.

remaining area on the manifold at each frame. The tests were also conducted with the game
introduced in section 5.6 and with the same set of behaviors. Edited sequences are available
online with the rest of the results3.

(a) First camera (b) Second camera (c) Master shot

Figure 6.10: Shots computed for three different camera behaviors on the same scene at the
same time: (a) over-the-shoulder behavior defined on the main character Frank, (b) over-the-
shoulder behavior defined on Olivia and (c) master shot behavior on Franck and Olivia.

Figure 6.10 shows examples of shots recorded by the system during the replay. For dia-
logues sequences, the results are identical with our two methods. This is explained by the lack
of motion of the characters when involved in such actions ; the camera does not need to move
to maintain the framing. The main differences between the two methods occur while tracking
the main character. When a player moves in the environment, he tends to produce many un-
necessary movements (i.e. going back and forth, left and right or abruptly changing direction),
leading to unnatural and complex trajectories. Using steering behaviors, our previous solution
is bound to partially reproduce these trajectories, leading to undesirable and unrealistic mo-
tions. On the other hand, as illustrated in Figure 6.11, our virtual rails offer a smooth solution
to this problem. Moreover, as seen in previous results and again illustrated in Figure 6.11, due
to their reactive nature, steering based cameras are not always able to keep up with the charac-

3https://team.inria.fr/imagine/camera-on-rails/

127

https://team.inria.fr/imagine/camera-on-rails/

Chapter 6. Cinematography with virtual rails

ters which results in poor framing quality, whereas our optimization based approach manages
to ensure the framing.

Figure 6.11: The virtual camera rail (blue) provides a more realistic approximation of the raw
trajectory (red) than the steering-based camera (green). The optimization process on the rail
also results in better framing of the character.

Applying our new method to the case of cinematic replays confirmed its efficiency and the
quality of its results. – a user study is yet to be conducted to fully assess the benefits of the
technique. However it also highlighted its main limitation. As we purposely limited camera
rails to cubic Bezier curves, it is sometimes difficult to well approximate complex trajectories
(see in Figure 6.12).

Figure 6.12: The computed rail (blue), is not always capable to approximate the raw trajectory
(in red) when characters’ motions are too complex.

6.5.4 Virtual movie making using virtual rails

To test our camera planning technique on a more complex situation, we used the dataset in-
troduced in section 4.7.1. Unlike previous test cases, this scene not only provides complex
characters’ trajectories, but also stages a variety of animated actions. For instance, some dia-
logues between characters occur while they are moving, which makes the computation of some
standard shots (such as Over-the-shoulder shots) much more complicated.

For this final experiment however, since there is no information available on the narrative
importance of the characters, we could not use the cinematic replay system. Instead, we imple-
mented a slightly different and more generic solution based on the concept of idioms. However,

128

Chapter 6. Cinematography with virtual rails

unlike traditional idiom-based methods, the system does not execute the editing in realtime ; it
only handles the cinematography and then uses our editing framework to perform the editing.
As a result, this approach lightens the burden of creating idioms. This task no longer requires
expert knowledge nor tremendous amount of work. To create an idiom, it is only necessary to
specify the initial and final set-up (i.e. PSL specifications) of each camera ; these set-ups are
used to compute the initial and final viewpoints of the rails.

To test our solution we devised four different idioms: monologue, two-person dialog, three-
person dialog and walk. Each idiom is then instantiated with a starting time, an ending time,
and the list of characters involved. For the scene from Back to the Future we instantiated the
idioms of Figure 6.13 – we simply gathered related actions of the scenario.

D ia log2 (0 , 1 3 . 5 , Marty and George)
Dia log3 (1 3 . 5 , 3 7 . 7 5 , Marty and George and G o l d i e)
Monologue (3 7 . 7 5 , 5 0 . 1 , Go ld i e)
Move (4 6 . 0 , 5 6 . 2 5 , G o ld i e and Lou)
Dia log2 (5 6 . 2 5 , 6 2 . 5 , G o l d i e)
Move (6 2 . 5 , 7 9 . 6 , Marty and George)

Figure 6.13: List of idioms defined for an extract from Back To The Future. Each idiom is
defined by its type, its starting time, its ending time and the list of characters involved.

Figure 6.14 shows the scene with all the rails that were computed to shot the whole se-
quence. For each idiom two to three different rails are generated. In Figure 6.15, we show
some of the viewpoints computed on the rails for different idioms. The complete edited se-
quence can be seen online, along with the other results.

Figure 6.14: Overview of the scene after the computation of all the rails. Two distinct rails are
computed for each idiom.

This last test however highlighted another limitation of our method. As seen in Figure 6.16,
our model does not consider the environment and the potential obstacles that might get in the

129

Chapter 6. Cinematography with virtual rails

(a) (b) (c) (d)

Figure 6.15: Shot computed at different times for different idioms in Back to the Future: (a)
two-person dialogue, (b) three-person dialogue, (c) monologue, (d) walk.

way of the camera. Nevertheless, this problem is dealt with during the editing. Indeed, due to its
poor visual quality, the resulting shot is not selected by the editing tool during the optimization
process.

Figure 6.16: In some cases, the rails are poorly placed in environment which results in unaes-
thetic shots. Objects or characters sometimes get in the way of the camera.

6.6 LIMITATIONS AND FUTURE WORK

Currently, our model clearly lacks the capacity to compute occlusion free paths. Future work
could be conducted to account for environmental constraints during the computation of the rail
from the raw trajectory, and during the optimization stage by using visibility tests to compute
the optimal position on the rail. The work by Oskam et al. [OSTG09] presents interesting
leads to address this issue. Another important limitation of the method resides in its objective
to create simple camera rails. The use of cubic Bezier curves limits the complexity of the rail
but also prevents it to approximate complex trajectories. To overcome this limitation, possible
extensions of our method could be to combine pieces of camera rails together.

This work also offers new perspectives in terms of interactive tools. Allowing users to
interact with camera rails (or other camera rigs) and refine camera placement along the rail
represents a first step in the creation of tools to assist cinematographers and animators in rapidly
drafting camera motions for applications such as virtual movie-making or cinematic replays.

130

Chapter 6. Cinematography with virtual rails

6.7 SUMMARY

In this last chapter, we have introduced a novel approach to create smooth and natural cam-
era motions that relies on traditional cinematographic techniques. Our method automatically
computes a camera rail from the specification of initial and final framings, and by knowing
the motions of the targets to track. We rely on two constrained-optimization processes that
ensure both the proper framing of target characters and smooth changes in the camera speed.
Results demonstrate the benefits of our technique in comparison with previous approaches.
It also showed that combined with our automatic editing method (see chapter 4), the system
automatically generates complete sequences from 3D animated content.

131

Chapter 6. Cinematography with virtual rails

132

CHAPTER

7

CONCLUSION

133

Chapter 7. Conclusion

Throughout this dissertation we have tackled the grand challenge that is the automatic com-
putation of cinematographic sequences from 3D animated content. We did so by addressing
both the cinematography and editing aspects of movie-making. We devised new algorithms
and provided new tools to automatically compute camera shots and edit them together. In this
final chapter we summarize all our contributions and propose some interesting perspectives for
future work in the field.

7.1 CONTRIBUTIONS

Drawing inspiration from a technique commonly used in a different field of study – namely
autonomous control of virtual agents – we proposed a new model for addressing the cine-
matography aspect of our grand challenge. Adapting Reynolds’ model of steering behaviors to
camera control in dynamic environments, we were able to devise new algorithms to coordinate
both position and orientation of our camera agents in realtime. The separate use of forces and
torques to handle respectively the position and the orientation allows a refined and physically
plausible control of the camera. This physically-based approach demonstrated great results
when tested in a crowd simulation.

After this first approach to cinematography problem, we addressed the lack of editing tools.
Using continuity editing as a base for this work, we mathematically formalized its rules to
quantify editing errors. Our solution minimizes such errors through an efficient dynamic-
programming optimization. Based on a semi-Markov assumption, the model also allows us
to overcome limitations of other offline approaches by providing control over the pacing of the
sequence. The user study conducted in chapter 4 proved the capacity of our solution to properly
edit camera shots together without making basic errors.

Once equipped with the cinematographic and editing tools, we tackled the challenge that
is the generation of cinematic replay of game sessions. We devised a tool where the cine-
matography and editing are guided using narrative and geometric information extracted from
the gameplay. Extending our first approach to camera control, we managed to improve the
force-based method and formalize the definition of camera behaviors to satisfy given commu-
nicative goals. The system was tested on a dialogue-based serious game and showed promising
results.

Finally, after highlighting the need for more realistic trajectories we introduced an offline
method to constrain camera trajectories onto virtual camera rails. Unlike our previous approach
this method is not suited for realtime cinematography. The motion planning is performed
through a double optimization process on the position and orientation that ensures plausible
motion – in terms of speed and acceleration – while globally maintaining the composition
on the screen. Combined with the editing tool, this approach provided better results on the
cinematic replay examples and also generated aesthetically pleasing sequences using the Back
To The Future dataset.

Parts of these contributions have been published in peer reviewed conferences. Following
is the list of publications:

1. GALVANE Q., CHRISTIE M., LINO C., RONFARD R.: Camera-on-rails: Automated
Computation of Constrained Camera Paths. In MIG 2015. 8th ACM SIGGRAPH con-
ference on Motion in Games.

134

Chapter 7. Conclusion

2. GALVANE Q., RONFARD R., CHRISTIE M.: Comparing film-editing. In WICED 2015.
Eurographics Workshop on Intelligent Cinematography and Editing.

3. GALVANE Q., RONFARD R., LINO C., CHRISTIE M.: Continuity Editing for 3D Ani-
mation. In AAAI 2015. AAAI Conference on Artificial Intelligence.

4. GALVANE Q., RONFARD R., CHRISTIE M., SZILAS N.: Narrative-Driven Camera Con-
trol for Cinematic Replay of Computer Games. In MIG 2014. 7th ACM SIGGRAPH
conference on Motion in Games.

5. LINO C., RONFARD R., GALVANE Q., GLEICHER M.: How Do We Evaluate the Qual-
ity of Computational Editing Systems?. In WICED 2014. AAAI Workshop on Intelligent
Cinematography And Editing.

6. GALVANE Q., CHRISTIE M., RONFARD R., LIM C.K., CANI M-P: Steering Behaviors
for Autonomous Cameras. In MIG 2013. 6th ACM SIGGRAPH conference on Motion
in Games.

7. LIM C.K., CANI M-P, GALVANE Q., PETTRÉ J., TALIB A.Z.: Simulation of Past Life:
Controlling Agent Behaviors from the Interactions between Ethnic Groups. In Digital
Heritage International Congress 2013.

7.2 PERSPECTIVES

With our final contribution, we presented a solution that automatically handles the shooting
and editing of animated 3D environments. This last achievement represents a new step in the
creation of tools dedicated to the production of virtual cinematographic content. To get virtual
cinematography to the next level, many open challenges are yet to be addressed. We here
propose several leads for future work based on our research that could greatly benefits this
field of study.

Narrative Discourse

One of the main concerns of this thesis was to provide new means of virtual storytelling that
better convey the narrative discourse. Both our work on camera control and editing used the
narrative impact of actors and actions to guide their respective processes. However, there re-
mains a lot of room for improvement on both sides to enrich our narrative models and cover a
larger spectrum of communicative goals. The work conducted in chapter 5 provides a generic
solution to narrative driven cinematography but doesn’t make full use of the narrative infor-
mation that might be available. For instance, future research on this field could explore richer
model of information to account for emotions of the characters. The work by [KM02] was a
first step in this direction. The comparison study conducted in chapter 4 also clearly highlighted
the need for further investigation of richer narrative models to improve the expressiveness of
editing tools. Research conducted in cognitive science, and more precisely in cognitive film
theory [And96, Smi05], represents a valuable asset for future work. Indeed, the editing defines
the cognitive path taken by the viewer – established by inferring information from transitions
between consecutive shots – and thus its understanding of the story logic. Therefore, the de-
sign of more complex models requires a higher understanding of viewers’ cognitive reason-
ing [JY09a, JY09b].

135

Chapter 7. Conclusion

Live-action video editing

The editing model we detailed in this thesis is based on the minimization of a weighted sum of
cost functions. The evaluation of these cost functions can be performed in screen space, and
does not require knowledge of the three-dimensional configuration of actors in the scene. As a
result, our model is equally applicable in principle to live-action video editing. Future work is
however required to adapt the proposed algorithm to the case of live-action video, which will
require the detection and recognition of actors in all rushes [GR13, Gan14] and the recognition
of their actions [WRB11].

Learning from movies

The comparison analysis conducted in chapter 4 also stressed the conventional nature of our
results and raised the question of learning variations of editing styles from real movies. As
mentioned before, our model is based on the minimization of a weighted sum of cost func-
tions. Thus, a given set of weights defines a variation of the continuity editing style. In order to
extrapolate our model to other editing styles using existing movies, and in addition to the detec-
tion and recognition of actors, future work is needed for annotating movie scene examples with
actions and their narrative importance. This tedious annotation task is essential for learning
the statistical models of film styles from the training sets. It can be, at least partially, achieved
through various automatic approaches either based on computer vision techniques [HFR06] or
using movie scripts to extract the information [PGHA15].

User interactions

The research presented in this thesis specifically focused on the task of automating movie mak-
ing processes with non-interactive approaches. By avoiding low-level interactions with users,
we are able to generate multiple camera shots and perform basic edits without continuity er-
rors. However, due to the complexity and the subjective nature of movie making – each director
shoots and edits movies in different ways –, putting the user back in the loop seems a wise di-
rection for future work. For instance, the solution introduced in the last chapter highlighted the
potential of user interaction with virtual rails. Drafting an initial camera path that optimizes
camera placement in space and time from minimal user input would indeed save animators
a lot of time. Further investigation on interactive modification of trajectories accounting for
optimal camera placement would also greatly ease the shot creation process. On the editing
side, traditional approaches require editors to manually perform every cut of the movie. In
chapter 4, we pointed out the capacity of our solution to consider user input to constrain cam-
era choices. Improvements on our current system, especially with regards to user inputs and
user interface, could greatly benefits editors. Combined with a more traditional interface, users
could be allowed to handle important cuts and let our system fill in the rest.

Realtime Cinematography

A last potential direction is worth considering. In this thesis, we started to address camera
control issues as a realtime challenge but then focused on offline algorithms to deal with the
cinematography. The work detailed in chapter 3 and extended in chapter 5 probably needs more
consideration as it could be adapted for realtime applications. Using online editing methods
(such as [CAH∗96]) to cut between cameras, our approach could be improved to provide the
missing tools for fully automatic live cinematography. Finally, as seen in section 2.2.2, a large
amount of work on realtime camera control has drawn its inspiration from research in robotics.

136

Chapter 7. Conclusion

To this date however, the proposed reactive approaches clearly lack cinematographic quality.
Going the other way around and use our work on realtime cinematography in the robotics
field seems a promising perspective. In particular, with the recent interest in drones shown by
both the robotics and cinema communities [Dia15, Aud14], our work on autonomous cameras
represents an interesting lead for the control of autonomous drones.

137

Chapter 7. Conclusion

138

BIBLIOGRAPHY

[ACOYL08] ASSA J., COHEN-OR D., YEH I.-C., LEE T.-Y.: Motion overview of human
actions. In ACM SIGGRAPH Asia (2008), pp. 115:1–115:10.

[ADV02] ADAMS B., DORAI C., VENKATESH S.: Toward automatic extraction of expres-
sive elements from motion pictures: tempo. IEEE Transactions on Multimedia
4, 4 (2002), 472–481.

[AKY05] AMERSON D., KIME S., YOUNG R. M.: Real-time cinematic camera control
for interactive narratives. In Proceedings of the 2005 ACM SIGCHI International
Conference on Advances in Computer Entertainment Technology (New York, NY,
USA, 2005), ACE ’05, ACM, pp. 369–369.

[And96] ANDERSON J.: The Reality of Illusion: An Ecological Approach to Cognitive
Film Theory. Southern Illinois University Press„ 1996.

[AP12] ASCHER S., PINCUS E.: The Filmmaker’s Handbook: A Comprehensive Guide
for the Digital Age. Plume, 2012.

[Ari76] ARIJON D.: Grammar of the Film Language. Silman-James Press, 1976.

[Aud14] AUDRONIS T.: Building Multicopter Video Drones. Packt Publishing Ltd, 2014.

[AVF04] ANDÚJAR C., VÁZQUEZ P., FAIRÉN M.: Way-finder: Guided tours through
complex walkthrough models. In Computer Graphics Forum (2004), vol. 23,
pp. 499–508.

[AWCO10] ASSA J., WOLF L., COHEN-OR D.: The virtual director: a correlation-based
online viewing of human motion. Computer Graphics Forum 29, 2 (2010), 595–
604.

[BC11] BERLINER T., COHEN D. J.: The illusion of continuity: active perception and
the classical editing system. Journal of Film and Video 63, 1 (2011), 44–63.

139

Chapter 7. Conclusion

[BDER08] BURELLI P., DI GASPERO L., ERMETICI A., RANON R.: Virtual camera com-
position with particle swarm optimization. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) (2008), vol. 5166 LNCS, pp. 130–141.

[BDP99] BARRAL P., DORME G., PLEMENOS D.: Visual understanding of a scene by
automatic movement of a camera. In International Conference GraphiCon’99,
Moscow (Russia), August 26 – September 3 (1999).

[BDP00] BARRAL P., DORME G., PLEMENOS D.: Scene understanding techniques using
a virtual camera.

[BGBLT97] BECKER C., GONZÁLEZ-BAÑOS H., LATOMBE J., TOMASI C.: An intelligent
observer. In Experimental Robotics IV (1997), Khatib O., Salisbury J., (Eds.),
vol. 223 of Lecture Notes in Control and Information Sciences, Springer Berlin
Heidelberg, pp. 151–160.

[BGL98] BARES W. H., GREGOIRE J. P., LESTER J. C.: Realtime constraint-based cine-
matography for complex interactive 3d worlds. In In Tenth National Conference
on Innovative Applications of Artificial Intelligence (1998), pp. 1101–1106.

[BJ09] BURELLI P., JHALA A.: Dynamic Artificial Potential Fields for Autonomous
Camera Control. AAAI Press, 2009.

[Bli88] BLINN J.: Where am i? what am i looking at? (cinematography). Computer
Graphics and Applications, IEEE 8, 4 (July 1988), 76–81.

[BMBT00] BARES W. H., MCDERMOTT S., BOUDREAUX C., THAINIMIT S.: Virtual 3D
camera composition from frame constraints. In Proceedings of the eighth ACM
international conference on Multimedia - MULTIMEDIA ’00 (2000), pp. 177–
186.

[Bor98] BORDWELL D.: On the History of Film Style. Harvard University Press, 1998.

[BT01] BORDWELL D., THOMPSON K.: Film Art: An Introduction. McGraw-Hill
Higher Education, 2001.

[BZRL98] BARES W. H., ZETTLEMOYER L. S., RODRIGUEZ D. W., LESTER J. C.: Task-
sensitive cinematography interfaces for interactive 3d learning environments. In
Proceedings of the 3rd International Conference on Intelligent User Interfaces
(New York, NY, USA, 1998), IUI ’98, ACM, pp. 81–88.

[CAH∗96] CHRISTIANSON D. B., ANDERSON S. E., HE L.-W., WELD D. S., COHEN

M. F., SALESIN D. H.: Declarative camera control for automatic cinematogra-
phy. In AAAI (1996), pp. 148–155.

[Can23] CANUDO R.: Manifeste des sept arts. Gazette des septs arts, 1923.

[CDN10] CUTTING J. E., DELONG J. E., NOTHELFER C. E.: Attention and the Evolution
of Hollywood Film. Psychological Science 21, 3 (Mar. 2010), 432–439.

140

Chapter 7. Conclusion

[CJBY08] CHEONG Y.-G., JHALA A., BAE B.-C., YOUNG R. M.: Automatically gen-
erating summary visualizations from game logs. In Proceedings of the Fourth
Artificial Intelligence and Interactive Digital Entertainment Conference (2008),
The AAAI Press.

[CJMT08] COUR T., JORDAN C., MILTSAKAKI E., TASKAR B.: Movie/script: Alignment
and parsing of video and text transcription. In Proceedings of 10th European
Conference on Computer Vision, Marseille, France (2008).

[CLR12] CHRISTIE M., LINO C., RONFARD R.: Film editing for third person games and
machinima. In Workshop on Intelligent Cinematography and Editing (2012).

[CM01] COURTY N., MARCHAND E.: Computer animation: a new application for
image-based visual servoing. In IEEE Int. Conf. on Robotics and Automation,
ICRA’01 (Seoul, South Korea, 2001), vol. 1, pp. 223–228.

[CN05] CHRISTIE M., NORMAND J.-M.: A Semantic Space Partitioning Approach to
Virtual Camera Composition. Computer Graphics Forum (2005).

[CNO12] CHRISTIE M., NORMAND J.-M., OLIVIER P.: Occlusion-free camera control
for multiple targets. In Symposium on Computer Animation (2012), pp. 59–64.

[CO09] CHRISTIE M., OLIVIER P.: Camera control in computer graphics: Models, tech-
niques and applications. In ACM SIGGRAPH ASIA 2009 Courses (New York,
NY, USA, 2009), SIGGRAPH ASIA ’09, ACM, pp. 3:1–3:197.

[Con13] CONDAT L.: A Direct Algorithm for 1D Total Variation Denoising. IEEE Signal
Processing Letters 20, 11 (2013), pp. 1054 – 1057.

[CPR98] CARRIVE J., PACHET F., RONFARD R.: Using Description Logics for Indexing
Audiovisual Documents. In International Workshop on Description Logics (DL
’98) (Trento, Italy, June 1998).

[CPR00] CARRIVE J., PACHET F., RONFARD R.: Clavis - a temporal reasoning system
for classification of audiovisual sequences. In Recherche d’Informations Assistée
par Ordinateur (RIAO ’00) (Paris, France, Apr. 2000), Mariani J.-J., Harman D.,
(Eds.), pp. 1400–1415.

[DBC12] DELONG J. E., BRUNICK K. L., CUTTING J. E.: Film through the human
visual system: Finding patterns and limits. In Social Science of Cinema (2012),
Kaufman J. C., Simonton D. K., (Eds.), Oxford University Press.

[dDR98] D’YDEWALLE G., DESMET G., RENSBERGEN J. V.: Film perception: the
processing of film cuts. In Eye guidance anin reading and scene perception
(1998), Eslsevier Science Ltd.

[DeL09] DELOURA M.: Real Time Cameras, A Guide for Game Designers and Develop-
ers. Morgan Kaufman, 2009.

[Dia15] DIAZ T.: Lights, drone... action. Spectrum, IEEE 52, 7 (2015), 36–41.

[Dmy84] DMYTRYK E.: On Film Editing: An Introduction to the Art of Film Construction.
Focal Press, 1984.

141

Chapter 7. Conclusion

[Dru95] DRUCKER S. M.: Intelligent Camera Control for Graphical Environments. PhD
thesis, Massachusetts Institute of Technology, 1995.

[DYR11a] DOMINGUEZ M., YOUNG R. M., ROLLER S.: Automatic identification and
generation of highlight cinematics for 3d games. In Proceedings of the 6th Inter-
national Conference on Foundations of Digital Games (2011), ACM, pp. 259–
261.

[DYR11b] DOMINGUEZ M., YOUNG R. M., ROLLER S.: Design and evaluation of af-
terthought, a system that automatically creates highlight cinematics for 3d games.
In AIIDE (2011), The AAAI Press.

[DZ94] DRUCKER S. M., ZELTZER D.: Intelligent camera control in a virtual environ-
ment. In Proceedings of Graphics Interface ’94 (1994), pp. 190–199.

[DZ95] DRUCKER S. M., ZELTZER D.: CamDroid: A system for implementing in-
telligent camera control. In Proceedings of the Symposium on Interactive 3D
Graphics (1995), pp. 139–144.

[DZO∗13] DAVIS N., ZOOK A., O’NEILL B., HEADRICK B., RIEDL M., GROSZ A.,
NITSCHE M.: Creativity support for novice digital filmmaking. In SIGCHI
Conference on Human Factors in Computing Systems (2013), ACM, pp. 651–
660.

[ECR92] ESPIAU B., CHAUMETTE F., RIVES P.: A new approach to visual servoing in
robotics. IEEE Transactions on Robotics and Automation 8 (1992).

[ER07] ELSON D. K., RIEDL M. O.: A lightweight intelligent virtual cinematogra-
phy system for machinima generation. In Artificial Intelligence and Interactive
Digital Entertainment (AIIDE ’07) (2007).

[FF04] FRIEDMAN D., FELDMAN Y. A.: Knowledge-based cinematography and its
applications. In Proceedings of the 16th Eureopean Conference on Artificial
Intelligence, ECAI’2004, including Prestigious Applicants of Intelligent Systems,
PAIS 2004, Valencia, Spain, August 22-27, 2004 (2004), pp. 256–262.

[Fis]

[Gan14] GANDHI V.: Automatic Rush Generation with Application to Theatre Perfor-
mances. Theses, Grenoble University, Dec. 2014.

[Gd07] GERMEYS F., D’YDEWALLE G.: The psychology of film: perceiving beyond
the cut. Psychological Research 71, 4 (2007), 458–466.

[Gen72] GENETTE G.: Figures III. Seuil, 1972.

[Ger09] GERAERTS R.: Camera planning in virtual environments using the corridor map
method. In Proceedings of the 2Nd International Workshop on Motion in Games
(Berlin, Heidelberg, 2009), MIG ’09, Springer-Verlag, pp. 194–206.

[GKE11] GRUNDMANN M., KWATRA V., ESSA I.: Auto-directed video stabilization
with robust l1 optimal camera paths. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR 2011) (2011).

142

Chapter 7. Conclusion

[GR13] GANDHI V., RONFARD R.: Detecting and naming actors in movies using gener-
ative appearance models. In CVPR (2013).

[GW92] GLEICHER M., WITKIN A.: Through-the-lens camera control. In Proceedings
of the 19th Annual Conference on Computer Graphics and Interactive Techniques
(New York, NY, USA, 1992), SIGGRAPH ’92, ACM, pp. 331–340.

[Haw05] HAWKINS B.: Real-Time Cinematography for Games. Charles River Media,
2005.

[HCS96] HE L.-W., COHEN M. F., SALESIN D. H.: The virtual cinematographer: a
paradigm for automatic real-time camera control and directing. In SIGGRAPH
(1996), ACM, pp. 217–224.

[HFR06] HILTON A., FUA P., RONFARD R.: Modeling people: Vision-based understand-
ing of a person’s shape, appearance, movement, and behaviour. Comput. Vis.
Image Underst. 104, 2 (Nov. 2006), 87–89.

[HH09] HAIGH-HUTCHINSON M.: Real Time Cameras: A Guide for Game Designers
and Developers. CRC Press, 2009.

[HHS01] HALPER N., HELBING R., STROTHOTTE T.: A camera engine for computer
games: Managing the trade-off between constraint satisfaction and frame coher-
ence. Computer Graphics Forum 20, 3 (2001), 174–183.

[HO00] HALPER N., OLIVIER P.: CamPlan: A Camera Planning Agent. In Smart
Graphics 2000 AAAI Spring Symposium (2000), pp. 92–100.

[HSRD12] HABONNEAU N., SZILAS N., RICHLE U., DUMAS J.: 3D Simulated Interac-
tive Drama for Teenagers coping with a Traumatic Brain Injury in a Parent. In
5th International Conference on International Digital Storytelling (ICIDS 2012).
LNCS 7648 (Heidelberg, 2012), Oyarzun D., Peinado F., Young R. M., Elizalde
A., Méndez G., (Eds.), Springer, pp. 174–182.

[Jha06] JHALA A.: Darshak: an intelligent cinematic camera planning system. In
AAAI’06: proceedings of the 21st national conference on Artificial intelligence
(2006), AAAI Press, AAAI Press, p. 1918–1919.

[JY09a] JHALA A., YOUNG R. M.: Comparing effects of different cinematic visualiza-
tion strategies on viewer comprehension. In Proceedings of the 2Nd Joint Inter-
national Conference on Interactive Digital Storytelling: Interactive Storytelling
(Berlin, Heidelberg, 2009), ICIDS ’09, Springer-Verlag, pp. 26–37.

[JY09b] JHALA A., YOUNG R. M.: Evaluation of intelligent camera control systems
based on cognitive models of comprehension. In Proceedings of the 4th Inter-
national Conference on Foundations of Digital Games (New York, NY, USA,
2009), FDG ’09, ACM, pp. 327–328.

[JY11] JHALA A., YOUNG R. M.: Intelligent machinima generation for visual story-
telling. In Artificial Intelligence for Computer Games. Springer New York, 2011,
pp. 151–170.

143

Chapter 7. Conclusion

[JYM10] JHALA A., YOUNG R. M., MEMBER S.: Cinematic visual discourse: Rep-
resentation, generation, and evaluation. IEEE Transactions on Computational
Intelligence and AI in Games (2010).

[Kat09] KATZ S. D.: Film Directing Shot by Shot: Visualizing from Concept to Screen.
Focal Press, 2009.

[KM02] KENNEDY K., MERCER R. E.: Planning animation cinematography and shot
structure to communicate theme and mood. In Smart Graphics (2002), ACM,
pp. 1–8.

[LC08] LI T.-Y., CHENG C.-C.: Real-time camera planning for navigation in virtual en-
vironments. In Proceedings of the 9th international symposium on Smart Graph-
ics (Berlin, Heidelberg, 2008), SG ’08, Springer-Verlag, pp. 118–129.

[LC12] LINO C., CHRISTIE M.: Efficient Composition for Virtual Camera Control. In
ACM Siggraph / Eurographics Symposium on Computer Animation (Lausanne,
Suisse, July 2012), Kry P., Lee J., (Eds.).

[LC15] LINO C., CHRISTIE M.: Intuitive and efficient camera control with the toric
space. In SIGGRAPH 2015 (2015), ACM Press.

[LCCR11] LINO C., CHOLLET M., CHRISTIE M., RONFARD R.: Computational Model of
Film Editing for Interactive Storytelling. In ICIDS 2011 - International Confer-
ence on Interactive Digital Storytelling (Vancouver, Canada, Nov. 2011), Si M.,
Thue D., André E., Lester J. C., Tanenbaum J., Zammitto V., (Eds.), vol. 7069,
Springer, pp. 305–308.

[LCG∗13] LIM C. K., CANI M.-P., GALVANE Q., PETTRE J., TALIB A. Z.: Simulation
of past life: Controlling agent behaviors from the interactions between ethnic
groups. In Digital Heritage International Congress (2013), p. (to appear).

[LCL∗10] LINO C., CHRISTIE M., LAMARCHE F., GUY S., OLIVIER P.: A Real-time
Cinematography System for Interactive 3D Environments. In SCA ’10 Proceed-
ings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation (Madrid, Spain, July 2010), pp. 139–148.

[LCRB11a] LINO C., CHRISTIE M., RANON R., BARES W.: The director’s lens: An in-
telligent assistant for virtual cinematography. In Proceedings of the 19th ACM
International Conference on Multimedia (New York, NY, USA, 2011), MM ’11,
ACM, pp. 323–332.

[LCRB11b] LINO C., CHRISTIE M., RANON R., BARES W.: A smart assistant for shoot-
ing virtual cinematography with motion-tracked cameras. In ACM Mutlimedia
(Technical Demonstration) (2011), ACM Press.

[LGBBL97] LAVALLE S., GONZALEZ-BANOS H., BECKER C., LATOMBE J.-C.: Motion
strategies for maintaining visibility of a moving target. Proceedings of Interna-
tional Conference on Robotics and Automation 1 (1997).

[LLY∗12] LEE T.-Y., LIN W.-C., YEH I.-C., HAN H.-J., LEE J., KIM M.: Social-
event-driven camera control for multicharacter animations. IEEE Transactions
on Visualization and Computer Graphics 18, 9 (2012), 1496–1510.

144

Chapter 7. Conclusion

[LRGG14] LINO C., RONFARD R., GALVANE Q., GLEICHER M.: How Do We Evaluate
the Quality of Computational Editing Systems? In AAAI Workshop on Intelligent
Cinematography And Editing (2014).

[LSA01] LIMPERT E., STAHEL W. A., ABBT M.: Log-normal distributions across the
sciences: Keys and clues. BioScience 51, 5 (2001), 341–352.

[LT00] LI T.-Y., TING H.-K. T. H.-K.: An intelligent user interface with mo-
tion planning for 3D navigation. Proceedings IEEE Virtual Reality 2000 (Cat.
No.00CB37048) (2000).

[LZ14] LIXANDRU E. T., ZORDAN V.: Physical rig for first-person, look-at cameras in
video games. In Proceedings of the Seventh International Conference on Motion
in Games (New York, NY, USA, 2014), MIG ’14, ACM, pp. 119–124.

[Mas65] MASCELLI J. V.: The Five C’s of Cinematography: Motion Picture Filming
Techniques. Silman-James Press, 1965.

[Mer10] MERCADO G.: The Filmmaker’s Eye: Learning (and Breaking) the Rules of
Cinematic Composition. Focal Press, 2010.

[MHJ95] MITCHELL C., HARPER M., JAMIESON L.: On the complexity of explicit
duration hmm’s. IEEE Transactions on Speech and Audio Processing 3, 3 (May
1995), 213–217.

[MJY09] MARTINEZ H. P., JHALA A., YANNAKAKIS G. N.: Analyzing the impact of
camera viewpoint on player psychophysiology. In Affective Computing and Intel-
ligent Interaction and Workshops, 2009. ACII 2009. 3rd International Conference
on (2009), IEEE, pp. 1–6.

[MKSB11] MARKOWITZ D., KIDER J. T., SHOULSON A., BADLER N. I.: Intelligent
camera control using behavior trees. In Proceedings of the 4th International
Conference on Motion in Games (Berlin, Heidelberg, 2011), MIG’11, Springer-
Verlag, pp. 156–167.

[MS02] MATEAS M., STERN A.: A behavior language for story-based believable agents.
IEEE Intelligent Systems 17, 4 (July 2002), 39–47.

[Mue07] MUELLER E. T.: Modelling space and time in narratives about restaurants. LLC
22, 1 (2007), 67–84.

[Mue09] MUELLER E. T.: Automating commonsense reasoning using the event calculus.
Commun. ACM 52, 1 (2009), 113–117.

[Mur86] MURCH W.: In the blink of an eye. Silman-James Press, 1986.

[Mur02] MURPHY K. P.: Hidden semi-Markov models. Tech. rep., MIT AI Lab, 2002.

[NO04] NIEUWENHUISEN D., OVERMARS M.: Motion planning for camera move-
ments. IEEE International Conference on Robotics and Automation, 2004. Pro-
ceedings. ICRA ’04. 2004 4 (2004).

145

Chapter 7. Conclusion

[OGK∗10] OZAKI M., GOBEAWAN L., KITAOKA S., HAMAZAKI H., KITAMURA Y.,
LINDEMAN R. W.: Camera movement for chasing a subject with unknown be-
havior based on real-time viewpoint goodness evaluation. Vis. Comput. 26, 6-8
(June 2010), 629–638.

[OHPL99] OLIVIER P., HALPER N., PICKERING J. H., LUNA P.: Visual Composition
as Optimisation. In Artificial Intelligence and Simulation of Behaviour (1999),
pp. 22–30.

[O’S09] O’STEEN B.: The Invisible Cut: How Editors Make Movie Magic. Michael
Wiese Productions, 2009.

[OSTG09] OSKAM T., SUMNER R. W., THUEREY N., GROSS M.: Visibility transi-
tion planning for dynamic camera control. In Proceedings of the 2009 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (New York, NY,
USA, 2009), SCA ’09, ACM, pp. 55–65.

[PGHA15] PAVEL A., GOLDMAN D., HARTMANN B., AGRAWALA M.: Sceneskim:
Searching and browsing movies using synchronized captions, scripts and plot
summaries. In UIST (2015).

[Pic02] PICKERING J. H.: Intelligent Camera Planning for Computer Graphics. PhD
thesis, University of York, 2002.

[PKG12] PONTO K., KOHLMANN J., GLEICHER M.: Effective replays and summariza-
tion of virtual experiences. IEEE Trans. Vis. Comput. Graph. 18, 4 (2012), 607–
616.

[PO03] PICKERING J. H., OLIVIER P.: Declarative camera planning roles and require-
ments. In Proceedings of the 3rd International Conference on Smart Graphics
(Berlin, Heidelberg, 2003), SG’03, Springer-Verlag, pp. 182–191.

[RCU10] RANON R., CHRISTIE M., URLI T.: Accurately measuring the satisfaction
of visual properties in virtual camera control. In in Proceedings of the 2010
Smartgraphics Symposium (2010), LNCS, Smartgraphics, Springer.

[Red15] REDFERN N.: The log-normal distribution is not an appropriate parametric
model for shot length distributions of hollywood films. Literary and Linguis-
tic Computing 30, 1 (2015), 137–151.

[Rey99] REYNOLDS C.: Steering behaviors for autonomous characters. In Game Devel-
opers Conference (1999), pp. 763–782.

[RGB13] RONFARD R., GANDHI V., BOIRON L.: The Prose Storyboard Language: A
Tool for Annotating and Directing Movies. In 2nd Workshop on Intelligent Cin-
ematography and Editing part of Foundations of Digital Games - FDG 2013
(Chania, Crete, Grèce, May 2013).

[ROF92] RUDIN L. I., OSHER S., FATEMI E.: Nonlinear total variation based noise
removal algorithms. Phys. D 60, 1-4 (Nov. 1992), 259–268.

146

Chapter 7. Conclusion

[Ron04] RONFARD R.: Reading movies: An integrated dvd player for browsing movies
and their scripts. In Proceedings of the 12th Annual ACM International Confer-
ence on Multimedia (New York, NY, USA, 2004), MULTIMEDIA ’04, ACM,
pp. 740–741.

[Ron10] RONFARD R.: Automated cinematographic editing tool. Canadian Patent Appli-
cation, Xtranormal Technologies, 2010.

[Ron12] RONFARD R.: A Review of Film Editing Techniques for Digital Games. In
Workshop on Intelligent Cinematography and Editing (Raleigh, United States,
May 2012), Arnav Jhala R. M. Y., (Ed.), ACM.

[RRTS15] ROHRBACH A., ROHRBACH M., TANDON N., SCHIELE B.: A dataset for
movie description. CoRR abs/1501.02530 (2015).

[RS14] RONFARD R., SZILAS N.: Where story and media meet: computer genera-
tion of narrative discourse. In Computational Models of Narrative (Quebec City,
Canada, July 2014), Schloss Dagstuhl OpenAccess Series in Informatics.

[RT03] RONFARD R., THUONG T.: A framework for aligning and indexing movies
with their script. In Multimedia and Expo, 2003. ICME ’03. Proceedings. 2003
International Conference on (July 2003), vol. 1, pp. I–21–4 vol.1.

[RU14] RANON R., URLI T.: Improving the efficiency of viewpoint composition. IEEE
Trans. Vis. Comput. Graph. 20, 5 (2014), 795–807.

[SAB12] SERIN E., ADALI S. H., BALCISOY S.: Automatic path generation for terrain
navigation. Computers & Graphics 36, 8 (2012), 1013–1024.

[Sal09] SALT B.: Film Style and Technology: History and Analysis (3 ed.). Starword,
2009.

[Sal11] SALT B.: The metrics in cinemetrics. http://www.cinemetrics.lv/
metrics_in_cinemetrics.php, 2011.

[SC04] SARAWAGI S., COHEN W. W.: Semi-markov conditional random fields for
information extraction. In Advances in Neural Information Processing Systems
(2004).

[SGLM03] SALOMON B., GARBER M., LIN M. C., MANOCHA D.: Interactive naviga-
tion in complex environments using path planning. In Proceedings of the 2003
symposium on Interactive 3D graphics - SI3D ’03 (2003), p. 41.

[Sha82] SHARFF S.: The elements of cinema. Towards a theory of cinesthetic impact.
Columbia University Press, 1982.

[Smi05] SMITH T. J.: An Attentional Theory of Continuity Editing. PhD thesis, University
of Edinburgh, 2005.

[SP08] SOKOLOV D., PLEMENOS D.: Virtual world explorations by using topological
and semantic knowledge. The Visual Computer 24, 3 (2008), 173–185.

147

http://www.cinemetrics.lv/metrics_in_cinemetrics.php
http://www.cinemetrics.lv/metrics_in_cinemetrics.php

Chapter 7. Conclusion

[SWCS08] SHI Q., WANG L., CHENG L., SMOLA A.: Discriminative human action seg-
mentation and recognition using. semi-markov model. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2008).

[TB93] THOMPSON R., BOWEN C. J.: Grammar of the Edit. Focal Press, 1993.

[TB98] THOMPSON R., BOWEN C. J.: Grammar of the Shot. Focal Press, 1998.

[TBN00] TOMLINSON B., BLUMBERG B., NAIN D.: Expressive autonomous cinematog-
raphy for interactive virtual environments. In International Conference on Au-
tonomous Agents (2000), AGENTS ’00, ACM, pp. 317–324.

[TS67] TRUFFAUT F., SCOTT H. G.: Truffaut/Hitchcock. Simon & Schuster, 1967.

[VMGL12] VO C., MCKAY S., GARG N., LIEN J.-M.: Following a group of targets in
large environments. In Motion in Games (2012), pp. 19–30.

[VS03] VÁZQUEZ P. P., SBERT M.: Automatic indoor scene exploration. In Proceedings
of 6th International Conference on Computer Graphics and Artificial Intelligence
3IA’2003 (Limoges (France), May 2003), pp. 13–24.

[WO90] WARE C., OSBORNE S.: Exploration and virtual camera control in virtual three
dimensional environments. In Proceedings of the 1990 Symposium on Interactive
3D Graphics (New York, NY, USA, 1990), I3D ’90, ACM, pp. 175–183.

[WRB11] WEINLAND D., RONFARD R., BOYER E.: A survey of vision-based methods
for action representation, segmentation and recognition. Comput. Vis. Image Un-
derst. 115, 2 (Feb. 2011), 224–241.

[YMJ10] YANNAKAKIS G. N., MARTÍNEZ H. P., JHALA A.: Towards affective cam-
era control in games. User Modeling and User-Adapted Interaction 20, 4 (Oct.
2010), 313–340.

[Yu10] YU S.-Z.: Hidden semi-markov models. Artificial Intelligence 174, 2 (2010),
215 – 243.

[ZKSC85] ZEMECKIS R., KERAMIDAS H., SCHMIDT A. F. E., CUNDRY D. C.: Back to
the future. Universal Pictures, 1985.

[ZTM∗07] ZEN H., TOKUDA K., MASUKO T., KOBAYASIH T., KITAMURA T.: A hidden
semi-markov model-based speech synthesis system. IEICE - Trans. Inf. Syst.
E90-D, 5 (May 2007), 825–834.

148

	Plan
	Introduction
	State of the art
	Cinematographic background
	Storytelling and cinematography
	Camera placement and shot composition
	Camera movements
	Editing principles

	Controlling virtual cameras
	Automated camera placement
	Realtime camera planning
	Offline camera planning

	Automatic film editing
	Idiom-based editing
	Optimization-based editing
	Narrative-driven editing

	Summary

	Steering Behaviors for Autonomous Cameras
	Introduction
	Background on steering behaviors
	Agent dynamics
	Steering forces

	Steering cameras
	Targets and events
	Camera dynamics
	Camera steering forces
	Camera steering torques

	Experimental results
	Crowd simulation
	Implementation details
	Qualitative evaluation
	Quantitative evaluation

	Limitations and future work
	Summary

	Semi-Markov Model of Film Editing and Applications
	Introduction
	Movies as Semi-Markov Chains
	Measuring Shot Quality
	Symbolic projection
	Narrative importance
	Narrative relevance
	Visual quality

	Measuring Cut Quality
	Screen continuity
	Motion continuity
	Gaze continuity
	Left-to-right ordering
	Jump cuts

	Measuring Rhythm Quality
	Optimizing over Semi-Markov Chains
	Experimental results and validation
	Case study
	User-study
	Qualitative comparison
	Qualitative evaluation of the Action Visibilty
	Qualitative evaluation of the Hitchcock Principle
	Qualitative evaluation of the cuts and continuity editing
	Qualitative evaluation of the pacing
	Framework and implementation details

	Limitations and future work
	Summary

	Narrative-Driven Camera Control for Cinematic Replay
	Introduction
	Overview
	An importance-driven approach
	The Director: from importance to specification of camera behaviors
	High level specifications
	Behaviors
	Editing

	The Cinematographer: from specifications to camera coordinates
	Computing camera coordinates
	Animating cameras
	Filtering

	Experimental results
	Narrative importance
	Shots specifications
	Computing camera positions
	Overall process and results

	Limitations and future work
	Summary

	Camera-on-rails
	Introduction
	Overview
	Building camera rails
	Computing a raw trajectory
	From raw trajectories to camera rails

	Moving the camera on the rail
	Raw camera motion
	Smooth camera motion
	Camera orientation

	Results
	Performance
	Comparison with other methods
	Camera rails for cinematic replay
	Virtual movie making using virtual rails

	Limitations and future work
	Summary

	Conclusion
	Contributions
	Perspectives

	Bibliography

