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Abstract

Cloud applications consist of a set of interconnected software components running
on multiple virtual machines. Thus, there is a need for protocols that can dynamically
reconfigure such distributed applications. We present in the first part of this thesis
a novel protocol, which can resolve dependencies in distributed cloud applications, by
(dis)connecting and starting/stopping components in a particular order. The proto-
col also supports virtual machine failures. The virtual machines interact through a
publish-subscribe communication media and reconfigure themselves upon demand in a
decentralised fashion. Designing such protocols is an error-prone task. Therefore, we
investigated the use of formal specification languages and verification techniques, in
particular the LNT value-passing process algebra to specify the protocol and the model
checking tools available in the CADP toolbox to verify it. Moreover, managing dis-
tributed cloud applications is a challenging problem because the manual administration
is no longer realistic for these complex distributed systems. Thus, autonomic computing
is a promising solution for monitoring and updating these applications automatically.
This is achieved through the automation of administration functions and the use of con-
trol loops, called autonomic managers. Multiple autonomic managers can be deployed
in the same system and must make consistent decisions. However, using them without
coordination may lead to inconsistencies and error-prone situations. We propose a new
approach for coordinating stateful autonomic managers, which relies on a simple coor-
dination language, new techniques for asynchronous controller synthesis and Java code
generation. We used our approach for coordinating real-world cloud applications.

Keywords. Cloud Computing, Dynamic Reconfiguration, Distributed Applica-
tions, Fault-Tolerance, Autonomic Management, Coordination, Controller Synthesis,
Asynchronous Communication, Formal Verification, Process Algebra Encoding, La-
belled Transition System



Résumé

Les applications reparties dans le nuage sont constituées d’un ensemble de com-
posants logiciels interconnectés et répartis sur plusieurs machines virtuelles. Cet envi-
ronnement nécessite des protocoles pour reconfigurer dynamiquement ces applications.
Nous présentons dans la première partie de cette thèse un nouveau protocole pour ré-
soudre les dépendances dans ces applications. Ce protocole consiste à (dé) connecter et
démarrer/arrêter les composants dans un ordre spécifique. Il supporte les pannes des
machines virtuelles et les opérations de reconfiguration se terminent toujours avec suc-
cès. Ces machines virtuelles interagissent à travers un «publish-subscribe support de
communication» et se reconfigurent d’une manière décentralisée. La conception de ces
protocoles étant une source d’erreurs. Alors, nous avons étudié l’utilisation des langages
et techniques de verification formelles. En particulier, nous avons utilisé LNT pour spé-
cifier le protocole et les outils disponibles dans la boîte à outils CADP pour le vérifier.
D’autre part, la gestion des applications reparties dans le nuage est une tâche complexe
car l’administration manuelle n’est plus réaliste pour ces systèmes. Nous avons proposé
d’automatiser certaines fonctions d’administration en utilisant des boucles de contrôle
appelées gestionnaires autonomes. Plusieurs gestionnaires peuvent être déployés pour
la gestion de la même application. Cependant, leur utilisation sans coordination peut
conduire à des incohérences et à des situations d’erreur. Dans la deuxième partie de
cette thèse, nous avons proposé une nouvelle approche pour coordonner plusieurs ges-
tionnaires autonomes. Cette approche repose sur un language de coordination simple,
de nouvelles techniques asynchrones pour la synthèse de contrôleur et la génération de
code Java. Nous avons appliqué notre approche pour coordonner les applications repar-
ties dans le nuage dans le monde réel.

Mots clés. Informatique en Nuage, Reconfiguration Dynamique, Applications
Distribuées, Tolérance aux Pannes, Gestion Autonome, Coordination, Synthèse de Con-
trôleurs, Communication Asynchrone, Vérification Formelle, Encodage en Algèbre de
Processus
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1
Introduction

" Work is the only thing that gives substance to life. "

Albert Einstein
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1.1. Industrial Context 2

THis Ph.D. thesis research is part of the OpenCloudware project 1. We present
in this chapter the OpenCloudware project, a brief survey of its expecta-

tions, the thesis positioning in the project and, in a second part, we introduce
the problem statement, the main contributions, and the thesis organization.

1.1 Industrial Context

1.1.1 Presentation of the OpenCloudware Project

The OpenCloudware project is a collaborative research project. It is funded
by the French authorities – specifically through the Fonds National pour la So-
ciété Numérique (FSN) and started in January 2012 for a duration of three years
and nine months. The project, known for its original approaches and technical
innovations, is endorsed by Pôles de compétitivité Minalogic 2, Systematic 3, and
SCS 4.

The project members include 18 partners composed of academic partners
(Armines, Inria, IRIT – INP Toulouse, Télécom Paris Tech, Télécom Saint-
Etienne, Université Joseph Fourier, and Université de Savoie – LISTIC), indus-
try leaders and innovative technology start-ups (France Telecom, ActiveEon,
Bull, eNovance, eXo Platform, Peergreen, Linagora, Thales Communications,
Thales Services, and UShareSoft), and a world-renowned open source commu-
nity (OW2).

Each partner of the OpenCloudware project participated with one or more
contributions to the project solution and had its own expectations.

1. http://www.opencloudware.org
2. http://www.minalogic.org/
3. http://www.systematic-paris-region.org/
4. http://www.pole-scs.org/
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1.1.2 Project Expectations

The openCloudWare project intends to build an open software engineering
platform. This platform will be used for the development of distributed appli-
cations, e.g., multi-tier applications such as JavaEE, which need to be deployed
on multiple Cloud infrastructures. The project results will be summarized as a
set of software components that allow the cloud users to model, develop, and
build their applications in order to obtain a multi-IaaS compliant PaaS plat-
form for the deployment, orchestration, performance testing, self-management,
and provisioning of the applications. These components have been made avail-
able, in October 2015, as open source components through the OW2 open source
community.

It is worth noting that the OpenCloudware project addresses multiple tech-
nological issues and challenges that we summarize here:

– providing a complete modeling, so-called end-to-end (retro-) modeling,
starting from the applications and achieving both PaaS and IaaS services
on the platform of cloud computing;

– automating the orchestration of the modules that compose the platform to
manage the applications life-cycle in a virtual context;

– reacting to the dynamic changes that can occur in a cloud PaaS application
by means of autonomic management, which takes into account elasticity
constraints, energy optimization, and also the reliability of the deployed
services;

– providing an interoperable execution of multi-cloud IaaS interfaces;
– optimizing the services performance and cost by taking globally coherent

decisions;
– ensuring the security in terms of application isolation, encryption, and

management.

1.1.3 Position in the OpenClouware Project

The OpenCloudware project contains six technical and scientific subprojects
(SP1, 2, 3, 4, 5, and 7), a validation subproject SP6, and a subproject dedicated
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to dissemination SP8.
Within this project, the CONVECS and ERODS teams, in which this thesis was
prepared, participate essentially in SP1 and SP3. The major goal of SP1 is to de-
fine an overall architecture, a model for distributed applications, services of the
PaaS platform, and capacities of the IaaS infrastructures. The major goal of SP3
is to develop generic components and tools for the deployment, the automated
orchestration, and the performance testing. SP3 also aims at administrating the
PaaS platform, particularly the autonomic management of dynamic changes in
distributed applications.

The position of this thesis in the OpenCloudware project has responded to
the need for the management of dynamic models and the autonomic admin-
istration of applications. It also includes the need to formalize the dynamic
aspects of these models in order to experiment the administrative functions,
to formally specify management protocols for cloud applications, and to ver-
ify them using the model-checking and verification tools developed within the
CONVECS team.

1.2 Scientific Results of the Thesis

1.2.1 Motivations

During the last few years, the IT operating costs have risen considerably in
a continuous way. Therefore, companies have, increasingly, outsourced their IT
services and have been reluctant to entrust them to specialists, such as cloud
providers. Thus, cloud computing has been an active research topic. In terms
of market adoption, it leverages hosting platforms based on virtualization and
provides resources and software applications as services over the network.
Cloud computing allows, on the one hand, service providers to develop and
then sell distributed applications, composed of virtual machines and hosting
interconnected software components, worldwide without having to invest up-
front in expensive IT infrastructures. On the other hand, it allows the users to
access services, to benefit from them through a Web browser, and to pay only
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for the services used. As a result, the software systems transform from central-
ized to distributed and from static to dynamic.
The cloud users need to (re) configure and monitor applications during their
time life for elasticity or maintenance purposes. Therefore, after the deploy-
ment of these applications, some reconfiguration operations are required for set-
ting up new virtual machines, replicating some of them, destroying or adding
virtual machines, handling VM failures, and adding or removing components
hosted on a VM. These tasks are required to react to changes (such as the occur-
rence of a failure), to include new requirements, or to fulfill the users expecta-
tions. Some of these tasks are executed in parallel, which involves a high degree
of parallelism and complicates their correct execution. Moreover, in the context
of the OpenCloudware project, architectural invariants (e.g., started compo-
nents cannot be connected to stopped components) must be preserved when
the reconfiguration operations are executed.
Several research studies and protocols have been proposed to support the self-
deployment of cloud applications. These protocols manage static applications,
which are composed of a set of virtual machines, ports, components, and con-
nections between the components where the number of these elements and the
involved connections are known before the application execution. However,
cloud users need protocols that permit to deploy such applications and that
are also able to modify these applications during their execution. The existing
protocols, e.g., [60, 62, 126] do not support the applications that require to be
changed after the deployment phase.

Moreover, today, the requirements of the cloud users are continuously evolv-
ing, which leads to the increase of the complexity of the cloud applications and
their management becomes a crucial feature. Therefore, the management of
these applications is a challenging problem for administrators. The manual ad-
ministration is no longer realistic for these complex distributed systems and en-
vironments. Thus, autonomic computing has become a promising solution for
observing, monitoring, and updating these applications automatically. These
actions are achieved through the automation of administrative functions and
the use of control loops, called autonomic managers. However, available man-
agers can be designed to address the requirements of a particular application
domain without coordination. This may lead the whole system to the perfor-
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mance degradation and some undesired situation (e.g., adding two new servers
whereas one was enough as a result of a server failure). Therefore, the coor-
dination of multiple control loops managing the same application, particularly
distributed cloud applications, is a central issue that appears as a real need in
the context of the OpenCloudware project.

1.2.2 Objectives and Main Contributions

One of the goals of the OpenCloudware project is to dynamically reconfigure
cloud applications composed of interconnected software components running
on different virtual machines in an automatic way. However, achieving dynam-
ically the reconfiguration process is a complicated task. First, when reconfigur-
ing a distributed application, it is necessary to execute the reconfiguration oper-
ations, while preserving architectural invariants (e.g., a started component can-
not be connected to a stopped one) at each step of the application runtime, par-
ticularly when components need to be stopped in sequence across several VMs.
Another difficulty with the dynamic reconfiguration of distributed applications
is that these applications can be faced with a set of virtual machines or compo-
nents failures that may occur during the reconfiguration process. Therefore, in
this thesis, we take into consideration the fault tolerance, meaning that the re-
configuration process must always terminate successfully even in the presence
of a finite number of failures. Another issue, which arises when automating
the reconfiguration process, is the necessity to take coherent decisions, which
should not lead the system to inconsistent situations.

To automatically bring the deployment and (re)configuration tasks in dis-
tributed applications, this thesis contributes with a novel, robust, and fault-
tolerant protocol, which enables to execute dynamically reconfiguration tasks,
e.g., instantiate and destroy virtual machines and supports virtual machine
failures. Moreover, the protocol is decentralized in the sense that all virtual
machines communicate information (e.g., binding details, component state)
through a publish-subscribe communication media. The protocol also allows
to start/stop the disconnected components in a particular order for preserving
the application consistency (i.e., architectural invariants) at each step of its ex-
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ecution. This first contribution is assessed through the use of formal methods
and verification techniques of the CADP toolbox. Concretely, the evaluation
is performed by the specification and the verification of multiple properties on
different reconfiguration scenarios and a large set of case studies, ranging from
simple ones to other containing several VMs and components.

A second contribution of this thesis is the integration of new controller syn-
thesis techniques in the automatization of administration functions in order to
reduce the manual execution of reconfiguration tasks. The automatization pro-
cess is performed through the use of control loops, called autonomic managers.
An autonomic manager observes the application execution, ensures a continu-
ous monitoring, and reacts to events and changes by automatically reconfigur-
ing the applications. This contribution proposes new asynchronous synthesis
techniques in order to coordinate several managers and allow them to take co-
herent decisions globally. The generation of the controller is based on reaction
rules and regular expressions used to specify the coordination requirements and
interaction constraints. This contribution relies on formal techniques, in partic-
ular we use the verification techniques available in the CADP toolbox for gener-
ating the controller, validating it, and ensuring that all managers globally satisfy
the objectives. We also propose Java code generation techniques that allow to
deploy the generated controller for real applications in the cloud.

1.3 Thesis Organization

We have started this dissertation with the industrial context of the thesis, a
summary of the scientific motivations, and the main contributions. The remain-
der of this dissertation is structured as follows:

– Chapter 2 In this chapter, we present a description of some terms (e.g.,
distributed applications, cloud computing, dynamic reconfiguration, au-
tonomic computing, coordination, formal methods) used in the results
presented in the subsequent chapters.

– Chapter 3 In this chapter, we present a literature review on dynamic
reconfiguration, coordination languages, and controller synthesis tech-
niques.



1.3. Thesis Organization 8

– Chapter 4 In this chapter, we present a novel dynamic protocol for re-
configuring distributed cloud applications. The protocol is specified and
verified using formal techniques and tools to ensure that it preserves im-
portant architectural invariants (e.g., a started component cannot be con-
nected to a stopped component) and satisfies certain properties (e.g., each
VM failure is followed by a new creation of that VM).

– Chapter 5 In this chapter, we describe new asynchronous controller
synthesis techniques allowing the generation of a centralized controller,
which aims at coordinating several autonomic managers in the cloud.
These techniques cover the whole development process from the expres-
sion of coordination requirements to the deployment of the controller for
coordinating real applications.

– Chapter 6 In this chapter, we conclude and present some perspectives for
further research.
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IN this chapter, we introduce techniques and definitions of some terms used
in the results presented in the subsequent chapters. First, we give defini-

tions and general characteristics of distributed applications, cloud computing,
dynamic reconfiguration, autonomic computing, and coordination. In a sec-
ond step, we introduce existing formal techniques and tools that have been em-
ployed to achieve the objectives and contributions of the thesis.

2.1 Distributed Applications

Since the appearance of computers in the middle of the 20th century, the ap-
plication complexity has been continuously and exponentially growing. In fact,
applications are more sophisticated and able to respond to new users needs and
requirements in terms of Quality of Service (QoS), availability, performance,
and also productivity [83, 122]. These applications often consist of a set of in-
terconnected software components that interact together, where configuration
attributes characterize each component. All components are hosted on different
possibly remote machines.

2.1.1 Characteristics of Distributed Applications

Various types of distributed applications have been developed and used in
different domains. All of them are characterized by the following important
features [118, 18, 37, 73]: (i) the composition of several entities, which are dis-
tributed across multiple machines or servers geographically distant; (ii) the de-
ployment of that entities on heterogeneous servers; (iii) an important diversity
of resources used for the decision-making process and for the reduction of the
reaction time; and (iv) the ability to take into account dynamic modifications
and to inter-operate with other applications deployed in the same environment.
These features are fundamental to the understanding of this type of applica-
tions. Furthermore, they are accompanied by a set of issues, e.g., a low auton-
omy, a high administration cost, and a resource under-utilization.
First, the lack of autonomy in the administration of a distributed application
has a significant impact on limiting its adaptation to the changes that may oc-
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cur in its environment. Actually, the installation phases or application updates
require, sometimes, the intervention of an expert to examine the machines used
for the application deployment.
Second, each distributed application also requires the intervention of adminis-
trators, who need diverse knowledge bases of hardware, middleware, and also
of the application itself, in order to configure it properly. Thus, the administra-
tion of the distributed applications has become a critical task in terms of time
and cost. According to J. Moad [109], A. Eastwood [56], and L. Erlikh [58], the
cost of software maintenance and evolution management represents between
75% and 90% of the total budget spent on information technology.
Moreover, taking into account constraints on reliability, security, and quality
of service requires that each application is deployed on a set of machines ded-
icated to it, which leads to a potential under-utilization of the same hardware
resources. Referring to a recent study conducted by Kelton Research [120], com-
missioned in association with the Alliance to Save Energy, the world’s largest IT
departments have 15% of servers that are not doing anything useful according
to 72% of the server managers.

In this context, the OpenCloudware project aims at building an open soft-
ware platform. The platform will be used for the collaborative development of
distributed applications that need to be deployed on multiple Cloud infrastruc-
tures. Modifications in distributed applications composed of interconnected
components play a significant motivation of this work, with a focus particu-
larly set on the dynamic reconfiguration and how reconfiguration operations
can be executed.

2.1.2 Purposes of Distributed Applications

Distributed applications are composed of interconnected software compo-
nents that interact together to access services and exchange information. To
ensure interactions between the different components, five important purposes
have to be guaranteed [51]: (i) the resource sharing, which presents the ability
to easily share data, hardware, and software resources among different users
with access control; (ii) the scalability, which presents the ability to provide a
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higher load, especially when adding users, transactions, or data volume; (iii) the
fault-tolerance, which presents the capacity to minimize the loss of resources
when faults happen, while interactions and operations between components
must still stand, even when other components have failed; (iv) the dynamicity,
which presents the ability to, easily, make the system extensible by integrating
or removing components during the application life cycle in order to meet new
users’ requirements; and finally (v), the transparency, which presents the ability
to duplicate the resources invisibly and ensure seamless access to both local and
remote resources.

These purposes, especially resource sharing, fault-tolerance, and openness
play a fundamental role in this thesis. As stated before, one of the major contri-
butions of this thesis is designing a fault-tolerant protocol, which dynamically
reconfigures distributed applications by adding or removing components to in-
clude new users’ requirements.

2.2 Cloud Computing

2.2.1 Cloud Computing Definition

There exist different definitions and concepts that aim at describing cloud
computing [34, 45, 129, 140, 131, 65, 106, 71]. We present in this chapter some
notions of cloud computing proposed in the literature (Table 2.2.1) to define
a common denominator for all these concepts. In [65], J. Geelan introduces
some cloud computing definitions, which are proposed by several experts, e.g.,
P. Gaw, J. Kaplan, K. Sheynkman. According to K. Sheynkman, the deploy-
ment, the optimization of energy consumption, and the provisioning of re-
sources on-demand are the main goal of cloud computing. Other experts, such
as L.M. Vaquero [129] and the National Institute of Standards and Technology
(NIST) [106], consider the cloud as a convenient model, which enables sharing
virtualized resources, on-demand, for a large pool of users who pay only what
they consume. R. Buyya [34] and L. Wang [131] describe the cloud as a set of
networks enabled services, which focus on service-level agreements (SLA) and
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quality of service (QoS).

Table 2.1: Cloud Computing Definitions
Author, Year Definitions

P. Gaw, 2008 [65] Cloud computing refers to the bigger picture ... basi-

cally the broad concept of using the internet to allow

people to access technology-enabled services.

J. Kaplan, 2008 [65] Cloud computing is a broad array of web-based ser-

vices aimed at allowing users to obtain a wide range

of functional capabilities on a ’pay-as-you-go’ basis

that previously required tremendous hardware/soft-

ware investments and professional skills to acquire.

Cloud computing is the realization of the earlier ide-

als of utility computing without the technical com-

plexities or complicated deployment worries.

K. Sheynkman, 2008 [65] Cloud model initially has focused on making the

hardware layer consumable as on-demand compute

and storage capacity. This is an important first step,

but for companies to harness the power of the cloud,

complete application infrastructure needs to be easily

configured, deployed, dynamically-scaled and man-

aged in these virtualized hardware environments.

R. Buyya et Al., 2008 [34] A Cloud is a type of parallel and distributed sys-

tem consisting of a collection of inter-connected and

virtualised computers that are dynamically provi-

sioned and presented as one or more unified com-

puting resources based on service-level agreements

established through negotiation between the service

provider and consumers.
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L.M. Vaquero et Al.,

2009 [129]

Clouds are a large pool of easily usable and acces-

sible virtualized resources (such as hardware, devel-

opment platforms and/or services). These resources

can be dynamically reconfigured to adjust to a vari-

able load (scale), allowing also for an optimum re-

source utilization. This pool of resources is typically

exploited by a pay-per-use model in which guar-

antees are offered by the Infrastructure Provider by

means of customized SLAs.

L. Wang et Al., 2010 [131] A computing Cloud is a set of network enabled ser-

vices, providing scalable, QoS guaranteed, normally

personalized, inexpensive computing infrastructures

on demand, which could be accessed in a simple and

pervasive way.

NIST, 2011 [106] Cloud computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared

pool of configurable computing resources (e.g., net-

works, servers, storage, applications, and services)

that can be rapidly provisioned and released with

minimal management effort or service provider inter-

action.

E. Griffith, 2015 [71] Cloud computing means storing and accessing data

and programs over the Internet instead of your com-

puter’s hard drive. The cloud is just a metaphor for

the Internet. It goes back to the days of flowcharts

and presentations that would represent the gigantic

server-farm infrastructure of the Internet as nothing

but a puffy, white cumulonimbus cloud, accepting

connections and doling out information as it floats.

From these definitions and common concepts, we propose the following def-
inition of cloud computing:

Definition 1. Cloud computing is a set of services and programs accessible over the



2.2. Cloud Computing 16

networks from anywhere, at any time, and on various media. It enables users to pur-
chase virtualized resources on-demand, pay only what they consume, and optimize the
energy consumption.

2.2.2 Cloud Characteristics

According to the NIST company [106], cloud computing is composed of
five essential characteristics, which are: (1) on demand self-services refers to
the ability to consume services (e.g., email, applications, network storage), as
needed, without requiring human interaction with the service provider. The
consumer pays only what he uses, i.e., only for the amount of the resources he
uses. (2) Resource pooling means that computer resources are grouped into a
large pool, which allows to serve all the consumers. These resources are dynam-
ically allocated according to the demand of users. The consumer has no control
or knowledge over the resources providers and locations. (3) Rapid elasticity
refers to the cloud capabilities that can be elastically released to scale outward
and inward about the request. For the consumer, the required resources must
be appropriated in any quantity and at any time. (4) Broad network access al-
lows the availability of cloud services over the network and their accessibility
through standard mechanisms, e.g., mobile phones, smartphone. (5) Measured
services mean that cloud systems automatically control, optimize, and monitor
the use of resources by using the model "pay only what you consume" which
provides the transparency for both service provider and service consumer.

These characteristics explain the need for protocols that are not limited to
the self-deployment issues where the application model (virtual machines, com-
ponents, ports, and bindings between components) to be deployed exists and
guides the configuration process. The cloud users need protocols that work, as
automatically as possible, in all the situations where changes have to be applied
on to a running application. The protocols should dynamically reconfigure the
applications. The protocol developed in this thesis dynamically reconfigures
and manages cloud applications, which consist of interconnected software com-
ponents. Every component exports services that it is willing to provide and
imports required services. Therefore, each service may be needed by several
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components and can thus be accessible to several imports.

2.2.3 Cloud Service Models

There are different cloud service delivery models, which are provided to the
cloud users and divided into the three main following Layers [106]:

– Infrastructure as a Service (IaaS) is the basis layer, which contains all
the resources provided to the cloud consumers. IaaS cloud providers of-
fer these resources (e.g., CPU, memory, network) on-demand to allow the
consumers to deploy and run their applications. Examples of typical IaaS
providers include Amazon EC2 1, Windows Azure 2, Google Compute En-
gine 3, and Rackspace OpenStack 4.

– Platform as a Service (PaaS) is located above the IaaS layer. It contains
all the tools and technologies necessary to make the cloud users build,
deploy, and manage the lifecycle of their applications. It allows them
to focus mainly on their applications development without taking into
consideration the configuration of the other infrastructures. Examples
of PaaS providers include Salesforce.com 5, Google App Engine 6, Cloud-
Bees 7, and Cloud Foundry 8.

– Software as a Service (SaaS) is placed above the PaaS layer. It contains
a set of applications used by the final consumers. These applications can
be directly accessible via the Web browser. Examples of SaaS suppliers
include: email providers (e.g., Gmail), office providers (e.g., Google Docs),
storage providers (e.g., DropBox). The users of these applications do not
have to worry about the other infrastructures such as network and op-
erating systems. However, the developers have to handle their applica-
tion’s configuration. They benefit from the computing power offered by

1. https://aws.amazon.com/fr/ec2/
2. http://azure.microsoft.com/fr-fr/
3. https://cloud.google.com/compute/
4. http://www.rackspace.com/cloud/openstack
5. http://www.salesforce.com
6. https://appengine.google.com
7. https://www.cloudbees.com/
8. https://www.cloudfoundry.org/
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the cloud computing.
The protocol that we design aims to dynamically reconfigure distributed

cloud applications by instantiating/destroying VMs and adding/removing
components in order to include new users’ requirements or environment
changes. In this context, instantiating virtual machines, which consist of in-
terconnected software components, ensures the execution of these distributed
applications on different IaaS layers. Indeed, the core of the system of our proto-
col implementation is based on an IaaS abstraction layer, such as Amazon EC2.

2.2.4 Cloud Deployment Models

Nowadays, there is an immense growth of cloud adoption in real applica-
tions. This growth is explained by the need to, increasingly reduce the control
operating costs. However, before choosing and using the deployment mod-
els available on the cloud, users must understand their requirements in or-
der to avoid cases where the cloud can bring security risks and challenges for
the systems management. The choice of a deployment model is based on the
user needs. According to the NIST company [106] and an article published in
CloudTweaks.com [49], there exist four primary deployment models in cloud
computing, which are the following:

– Private Cloud is very popular in business. It brings a large value from the
security point of view, but not from the cost efficiency point of view. This
model ensures data security by building and maintaining hosting only for
specific clients. When there is a security problem, it is resolved through a
secure-access VPN. The private model is used by the organizations, which
need more control over their infrastructures. Therefore, for a critical ap-
plication, it is more advisable to use a private cloud. Examples of private
cloud providers include HIPAA [3] and Sarbanes-Oxley Act (SOX) [5].

– Public Cloud is available to the general public (e.g., business, academic,
and government organization). It allows to bring down IT operating cost.
The public cloud provides services and infrastructures to various clients.
These services may be supplied free of charge or on the pay-per-use ba-
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sis. Examples of typical infrastructure providers of public cloud include
Google, Amazon Elastic Compute Cloud (EC2) [1], and Google App En-
gine.

– Hybrid Cloud is the composition of two or more distinct cloud infrastruc-
tures with orchestration between them. It allows, for instance, the cloud
users to take advantages of both private and public deployment models.
In fact, it helps them to benefit from several applications and data avail-
able on a private deployment model, and to to share data and applications
on a public cloud.

– Community Cloud is shared across several organizations and community
members that have common concerns (e.g., policy, security requirements,
and compliance considerations). Using this model helps the organiza-
tions to reduce the operational cost. Examples of providers of commu-
nity cloud include GovCloud [2] and NYSE Capital Market Community
Platform [96].

Finally, choosing a cloud deployment model is based on several reasons such
as business requirements.
In this context, a focus of the OpenCloudware is the development of an open
source platform for private, public and also hybrid clouds running across dif-
ferent IaaS Infrastructures.

2.3 Reconfiguration of Distributed Applications

Nowadays, the task of reconfiguring an application (e.g., changing its con-
figuration) is a real burden, especially with distributed applications, which run
on different virtual machines and are enabled by scalable cloud infrastructures.
The reconfiguration is a fundamental activity for administrators. Indeed, it
allows them to adapt a running application by taking into account new re-
quirements and environmental changes. This enables the application to move
from a configurationi to another configurationi+1 in some particular situations,
such as: (i) when an error is detected, faulty components may need to be re-
paired, other components may need to be removed or stopped, and the system
tasks may need to be reassigned; (ii) when the physical location of resources
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or users is constantly changing, the application structure needs to be adapted;
(iii) when new requirements are added, the application must evolve by the ad-
dition of new elements or the removal of existing elements; and (iv) when main-
tenance operations are required, some elements may be temporarily stopped or
removed.
In all these cases, reconfiguration is needed in order to respond to new require-
ments, to reassign and adapt the application structure, or to avoid undesired
configurations occurred by the removal or failure of components.
We distinguish two types of reconfiguration:

– Programmed reconfiguration refers to the reconfiguration that is an-
ticipated when designing the program, and that will be executed in a
running application. Therefore, it is possible to predict the components
that will be deployed during the application’s lifetime. This kind of recon-
figuration requires the shutdown of the application in order to be applied.
Programmed reconfiguration is not sufficient to satisfy the unexpected
requirements and to react to sudden environmental changes. Therefore,
it is not suitable for distributed applications, especially cloud applications.

– Dynamic reconfiguration is not known when designing the system. It
corresponds to arbitrary changes that may intervene at each step of the
application runtime. This reconfiguration is introduced to satisfy new
requirements or to react to environmental changes. It is crucial to per-
form a reconfiguration dynamically on a managed application at runtime,
where the components cannot simply be started or shut down. Dynamic
reconfiguration allows the resources to be added, deleted or moved when
the operating system is running, without deactivating it. This kind of re-
configuration does not need the shutdown or the redeployment of all the
system to update it. Therefore, the interruption of services is minimized,
system availability is preserved, and so, the system can execute in a con-
tinuous way. Dynamic reconfiguration is applied in different domains.
This includes, for instance, complex embedded systems used in the air-
traffic control systems and automotive industry. At this point, complex
embedded systems used in the automotive industry contain software op-
erations that require to be running in different modes. Switching from a
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mode to another one needs that all components, whose number can be
not known a priori, are updated and form a consistent system state. This
is a major challenge in the area of dynamic reconfiguration. Readers in-
terested in further detailed descriptions of the utilization of the dynamic
reconfiguration within the automotive industry can consult [38].

During our work, we have specifically focused on dynamic reconfiguration,
which fits in the area of distributed applications and is required in the context
of cloud applications. Our goal was, first, to achieve some reconfiguration op-
erations (e.g., adding a new component, destroying an existing virtual machine,
and handling virtual machine failures.) and second, to automatically execute
them.
The addition of new elements (i.e., components or virtual machines) does not
raise particular problems. Conversely, the removal of existing elements and
handling failures may modify the application structure. This can lead to the vi-
olation of some architectural invariants (e.g., started components are connected
to stopped components). Moreover, some of these operations are executed in
parallel, which complicates their correct execution.

2.4 Autonomic Computing

IBM introduced autonomic computing in 2001 [85]. It was inspired by
the strategies used by the human nervous system. During the last few years,
autonomic computing has been an active research topic. It aims to design
software systems and automate as much as possible the self-management of
applications and the administration functions. This paradigm is characterized
by different features, such as self-healing and self-configuration, and seeks to
use automatic management approaches [76, 132]. It was particularly adopted
for the self-management of large-scale complex distributed systems, where
the management is a challenging problem that cannot be ensured easily in a
manual way [85, 134, 46].
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2.4.1 Autonomic Manager Definition and Implementation

The main goal of the use of autonomic computing is to reduce error-prone
situations and to provide automated and intelligent decisions, especially in the
existence of conflicting requests. In this context, the role of the human is to
define a set of rules governing the autonomous process instead of controlling
manually the systems, which relieve the human from complex tasks.
Autonomic computing is based on the use of autonomic managers [84] that are
built as control loops. An autonomic manager adapts and reacts to events and
changes detection, such as software failures [85, 87]. Actually, it observes the ap-
plication execution, ensures a continuous monitoring, and reacts to events and
changes detection by automatically reconfiguring the application. Typically, an
autonomic manager is implemented using the MAPE-K (Monitor Analyze Plan
Execute - Knowledge) reference model [28] (see Fig. 2.1).

Analyse  Plan 

Execute Monitor 

Knowledge 

Managed Element 

Sensors Actuators 

Figure 2.1: The MAPE-K reference model

The MAPE-K reference model is composed of the following main functions and
a knowledge model:

1. Monitor: this function monitors the execution of the driven elements us-
ing a set of sensors. It receives details and changes from the sensors and
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then, generates information (e.g., failure, overload, underload) which are
sent to the analyze function.

2. Analyse: this function analyzes the information received from the moni-
tor function and then, takes decisions to change or not the managed sys-
tem. It sends the decision to the plan function.

3. Plan: this function, after receiving the decision from the analyze function,
generates a reconfiguration program that contains the required reconfigu-
ration operations. The program is transferred to the execute function.

4. Execute: this function executes the reconfiguration operations that are ap-
plied through a set of actuators on the managed element.

5. Knowledge: this model is used by an autonomic manager as a basis for
the administrative decisions. It provides information that the autonomic
manager may maintain about the managed element.

The increasing complexity of applications implies the use of various and
heterogeneous autonomic managers in the same system. Multiple research
studies have demonstrated the importance of using autonomic managers. To-
day, multiple managers are designed to ensure administrative tasks. Exam-
ples of autonomic managers include the self-healing and self-protecting man-
agers [112, 33, 103].

2.4.2 Coordinating Multiple Autonomic Managers

Today, using an entirely autonomous system, in which all the administra-
tive functions are ensured, requires the use of multiple autonomic managers.
In this context, when several managers monitor the same system, they should
necessarily take coherent decisions. Therefore, we must coordinate all the used
managers in order to enable them to make coherent self-management decisions.
We present in Table 2.4.2 some definitions of coordination proposed in the liter-
ature.



2.4. Autonomic Computing 24

Table 2.2: Coordination Definitions
Author, Year Definitions

A. H. Bond and L. Gasser,

1988 [24]

Coordination is a property of interaction among some

set of agents performing collective activities.

N. Carriero and D. Gelern-

ter, 1989 [67]

Coordination is the process of building programs by

gluing together active pieces. Where each active

piece means a process, task, data object, agent or ap-

plication. The main goal of the glue is to allow all in-

dependent activities to communicate and to synchro-

nize together. The role of a coordination language is

to provide this kind of glue.

T. Malone and K. Crow-

ston, 1994 [100]

Coordination is the process of managing dependen-

cies among activities.

F. Arbab, 1998 [13] Coordination is the study of the dynamic topologies

of interactions among Interaction Machines, and the

construction of protocols to realize such topologies

that ensure well-behavedness.

From these definitions and common concepts, we define the notion of coor-
dination as follows:

Definition 2. Coordination is a solution allowing the interaction between several enti-
ties, e.g., agents, applications. It allows them to manage dependencies and take globally
(i.e., for the system rather than for themselves) coherent and optimal decisions, which
avoid performance degradation and system consistency problems, and also limit the en-
ergy consumption.

In [13], F. Arbab distinguishes different characteristics of coordination lan-
guages:

1. a coordination language that may be data - or control-oriented, where the
coordination is the result of the interaction with the data. In that category,
the data handles the activation and deactivation of the control flow;
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2. a coordination language that may be endogenous or exogenous, where
the endogenous language may provide some concrete primitives neces-
sary for the semantic of computation. Examples of endogenous languages
include Linda, introduced by D. Gelernter in [66]. An exogenous lan-
guage may provide primitives required for the coordination of entities
without depending on the computations models. Examples of exogenous
languages include Manifold, introduced by F. Arbab, I. Herman, and P.
Spilling in [15]

The use of autonomic managers for automating the execution of reconfig-
uration tasks in the context of this thesis will be presented, in Chapter 4. A
part of this chapter also provides a holistic vision of our approach for coordi-
nating stateful autonomic managers in the cloud. This approach is based on re-
action rules and regular expressions for describing coordination requirements,
and new techniques for asynchronous controller synthesis.

2.5 CADP and LOTOS NT (LNT)

2.5.1 Formal Methods

During the past three decades, several formal methods have been proposed.
J. Rushby [123], J. Woodcock [138], and C.L. Heitmeyer [77] define formal meth-
ods as follows:

Definition 3. Formal methods are based on the use of mathematical techniques and
formal logic to specify and verify requirements and designs for computational systems
(software and hardware) at any part of the program life-cycle (e.g., specification, archi-
tecture, implementation, testing).

A guidebook presented by the NASA agency [82] gives some tips and ap-
proaches for a successful application of formal methods for developing high-
quality systems at a reasonable cost. The suggested approaches have the role
of reducing and optimizing the cost of making computer systems and also im-
proving their quality.
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In [113], the authors introduce two important characteristics of formal methods:
first, formal methods are based on mathematical notations and objects (e.g., sets,
sequences), with the intention of formalizing the system description. Second,
formal methods allow to check the consistency of a system description, while
verifying whether the properties defined by the analysts meet the system re-
quirements. Indeed, they ensure the detection of defects earlier in the software
development life-cycle, which is cheaper than detecting them later (e.g., during
the implementation). Finding the defects early helps to validate the correctness
of the system description. Some defects can be detected through formal meth-
ods and not through conventional design methods [50].

These characteristics show that for safety-critical and high-assurance soft-
ware systems, it is better to supplement the use formal methods, e.g. static anal-
ysis, formal proof, and enumerative model checkers. We explain below how
these three tools can provide a guarantee that a given design does not contain
specific flaws:

– Static analysis aims to analyze the source code of a program while taking
into account the semantics of the language in which the program is
written. Examples of static analysis techniques include abstract inter-
pretation, which is applied to the compilation of programs in order to
verify the correctness of optimizations and the certification of programs.
Among the static analysis tools, we can mention The Astrée Static Ana-
lyzer [52] released in 2001 by École Normale Supérieure, and the Polyspace
Verifier [57] released in 1999 by Gemplus Research and ID-IMAG Labs.

– Formal proof aims to prove that a program satisfies properties using
a system of rules. The tools that provide proofs of theorems are called
computer proof assistants. Examples of computer proof assistants include
the Coq formal proof system [6] and Isabelle [4].

– Model checker allows to build an explicit model representing all possi-
ble executions of the system that will be verified. Most of the time, it is a
concurrent system that contains parallelism. Model checking and equiv-
alence checking are among the main approaches in the field that verify
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the proper functioning of the system. Model checking is a widespread ap-
proach for verifying temporal logic formulas of reactive programs. Equiv-
alence checking is a Rule-Based approach for verifying the equivalence
of a concurrent system with another desired model, such as an external
behavior. Examples of model checker tools include SPIN [78] which is a
generic verification system that supports the design and the verification
of asynchronous process systems, SMV [104] which is a symbolic model
checker that allows the automatic verification of programs, Uppaal [20]
which is a toolbox for verifying real-time systems based on the theory of
timed automata, and CADP [64] which is a toolbox for the design of asyn-
chronous concurrent systems.

Among these approaches, we focus on model checking in the subsequent
chapters for an important reason. Actually, model checking is able to provide
a large set of automated tools reasoning in the programs handled and also in
the properties that can be checked on these programs. We focus particularly on
CADP. This toolbox is developed by the CONVECS team, in which this thesis
was mainly prepared. In the remainder of this chapter, we give an overview of
the CADP toolbox (Section 2.5.2) and the syntax and semantics of LOTOS NT
(LNT) (Section 2.5.3), which is an input language of CADP.

2.5.2 CADP toolbox

CADP [64] (Construction and Analysis of Distributed Processes) is a formal
verification toolbox for designing asynchronous concurrent systems (e.g., dis-
tributed systems, communication protocols, asynchronous circuits, etc.). An
important number of industrial projects and academic institutions utilize the
CADP toolbox in several application fields and in many case studies. Various
complementary tools developed within the Open/CÆSAR environment have
been connected to CADP. The CADP tools can be used to make different analy-
sis, such as model checking, equivalence checking, test case generation, compo-
sitional verification, interactive simulation, rapid prototyping, and performance
evaluation.
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2.5.2.1 Process Algebras

CADP uses process algebras for formally modeling concurrent systems. Pro-
cess algebras rely on well-defined semantics. It allows us to verify properties
of concurrent systems, which communicate and exchange data with synchro-
nization and also, to describe systems execution in terms of Labelled Transition
Systems (LTSs). In this context, transitions figuring in the LTSs represent the
communication between different processes. Leading examples of process alge-
bras include CCS (Calculus of Communicating Systems) [107, 117], CSP (Theory
of Communicating Sequential Processes) [31], and ACP (Algebra of Communi-
cating Processes) [21]. Some languages, such as OCCAM [35], µCRL (micro
Common Representation Language) [72], and LOTOS (Language Of Temporal
Ordering Specification) [80], combine concepts from process algebraic with fea-
tures from classical programming languages.
Initially, CADP used LOTOS as main specific language. The recent versions of
CADP use LOTOS NT (LNT) [42], which is a simplified and improved version
of LOTOS. An automatic translator is developed within the CADP toolbox that
ensures the transformation of LNT specifications to LOTOS specifications. Each
LOTOS specification can be compiled into a Labelled Transition System (LTS),
which enumerates all the possible executions of the corresponding specifica-
tion. Last but not least, CADP provides scripting languages (e.g., SVL [64]) for
describing verification scenarios.

2.5.2.2 CADP Tools

CADP is a rich toolbox, which provides several tools and libraries dedicated
to the manipulation of LOTOS and LNT specifications, of Labelled Transitions
Systems (explicit 9 and implicit 10), and of temporal logic formulas. It imple-
ments a broad range of optimized state space exploration techniques and verifi-
cation tools that can be used to make various kinds of analysis [63], e.g., model

9. An explicit LTS usually describes an expected service, where the states and transitions
composing it are listed exhaustively.

10. An implicit LTS usually describes a protocol, where states and transitions are given in
comprehension.



2.5. CADP and LOTOS NT (LNT) 29

checking and equivalence checking.

Tools for Labelled Transition Systems

CADP contains several tools dedicated to the manipulation of explicit (such
as Bcg graphs) and implicit (explored on the fly) LTSs.
Bcg (Binary Coded Graphs) is a format for the LTSs representation and a soft-
ware environment for handling this format. It has a central role in CADP. It
includes several tools, e.g., Bcg_draw, which gives a graphical representation of
Bcg graphs, Bcg_edit, which allows to modify manually the graph generated by
Bcg_draw, and Bcg_min, which reduces graphs via strong or branching bisim-
ulation.
Open/CÆSAR is a generic software environment that has the advantages of de-
veloping tools, which explore graphs on the fly. Open/CÆSAR plays a central
role in CADP. It allows connection to the CADP tools (language-oriented tools
and model-oriented tools). Examples of tools written in the Open/CÆSAR
framework include Bisimulator (for comparing two LTSs modulo a given equiv-
alence), Reductor (for eliminating tau-transitions/duplicate transitions and de-
terminizing graphs), Evaluator (the on-the-fly model checker of CADP), and
Executor (a random execution tool).
The connection between explicit and implicit models is ensured by several com-
pilers, such as CÆSAR.OPEN for models expressed as LOTOS specifications,
Bcg_OPEN for models represented as Bcg graphs, EXP.OPEN for models ex-
pressed as communicating automata, and SEQ.OPEN for models represented
as execution traces.

Tools for equivalence checking

Equivalence checking is a verification technique that consists of comparing
the description of a system behavior with the description of its desired exter-
nal behavior modulo a given equivalence relation [81]. It also targets mini-
mizing explicit graphs. Examples of tools dedicated to equivalence checking
include Bcg_min, for minimizing explicit LTS, Bcg_cmp for comparing two ex-
plicit LTSs, and Bisimulator for comparing two LTSs modulo a given equiva-
lence.
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Tools for model checking

Model checking is a verification technique, which explores all the possible
states of a system [95, 17] and checks that the system satisfies a set of properties
represented by temporal logic formulas. Classical tools used for model check-
ing include XTL (eXecutable Temporal Language), which explores and queries
explicit LTSs presented in the Bcg format, Evaluator3, and recently Evaluator4,
which handles formulas described in the temporal logic formalism MCL (Model
Checking Language) [102]. MCL presents an extension of alternation-free µ-
calculus and is equipped with regular expressions, data-based constructs, and
fairness operators. In this thesis, we used MCL to specify two groups of proper-
ties: (1) those allowing us to verify the protocol that we propose to reconfigure
dynamically distributed cloud applications (Chapter 4); and (2) those allowing
us to verify the controller generated with the new asynchronous synthesis tech-
niques we propose (Chapter 5). We use model checking to verify that these
properties are respected.

Tools for Visual checking

Visual checking is a technique that allows the visualization and edition of
Bcg graphs. CADP tools dedicated to visual checking include Bcg_draw and
Bcg_edit.

Tools for compositional verification

Compositional verification is a technique implemented within CADP and
used to fight state explosion when applying enumerative verifications of com-
plex concurrent systems. Examples of tools that support the compositional
checking include EXP.OPEN, projector, and SVL (Script Verification Language),
which aims at automating the generation, minimization, hiding, and verifica-
tion of the LTSs.

Tools for LOTOS and LNT

CADP contains several compilers, which allow the transformation of the
LOTOS and LNT specifications to other languages and graphs, such as C or fi-
nite graphs. Multiple transformations are ensured using lnt2lotos, which trans-
lates a source program, described as a set of LNT processes, into either LOTOS.
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CÆSAR.ADT translates LOTOS data types into C types and functions.

During this thesis, we have used several tools available in CADP, in partic-
ular, tools for Labelled Transition Systems, model checking, and equivalence
checking. Last but not least, there exist other tools, which are also available in
CADP and used for distributed verification, testing, and performance evalua-
tion.

2.5.3 LOTOS NT (LNT)

LNT is an input language of CADP, which is supported by the LNT.OPEN
tool. It is a simplified and improved version of LOTOS. LNT relies on an im-
perative specification language that makes its writing and understanding much
simpler. In 1993, ISO/IEC defined a revised version of the LOTOS standard.
Then, the CONVECS team defined a simplified version, called LOTOS NT
(LNT).

As stated before, LNT and CADP are chosen in this thesis. This choice is mo-
tivated by several reasons. First, LNT is an expressive process language with
formal and operational semantics. It combines the asynchronous parallelism
inherited from process algebra with the user-friendly syntax inherited from im-
perative and functional programming languages. Second, LNT is supported by
CADP, a toolbox that contains optimized state space exploration techniques and
verification tools (see Section 2.5.2).

2.5.3.1 LNT grammar

The behavioural part of the LNT specification language consists of the fol-
lowing constructs: actions with input/output parameters, assignment (:=), se-
quential composition (;), non-deterministic choice (select), conditional structure
(if), breakable loop (loop and break), empty statement (null), and parallel com-
position (par). Each process defines an alphabet of actions, a list of typed pa-
rameters, and a behavior built using the aforementioned operators. Commu-
nication is carried out by rendezvous on actions with a bidirectional transmis-
sion of multiple values. The parallel composition explicitly declares the set of
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actions on which processes must synchronize. If the processes evolve inde-
pendently from one another (interleaving), this set is empty. The semantics of
LNT programs are defined in [41] using Structural Operational Semantics (SOS)
rules. We adopt the following notations to present the LNT identifiers: M for
modules, T for types, X for variables, F for functions, L for loop labels, B for
behaviors, Γ for channels, G for gates, and Π for processes.
We present in Appendix A an excerpt of the LNT process grammar.

Each LNT process is composed of three parts: an alphabet of actions, a set of
typed parameters, and a behavior built using the constructs as mentioned ear-
lier. The LNT language provides communication semantics that rely on multi-
way rendezvous on actions with bidirectional transmissions of value exchange
on the same gate. Each action may be followed by a sent value (!) or receive
value (?). The parallel composition explicitly declares the set of actions on which
two processes or more must synchronize. If the processes evolve independently
from one another (interleaving), this set is empty (the "par" is not followed by
actions).

For illustration purposes, we give an example (see Example 2.1), which de-
scribes the behavior of an automatic hot drink vending machine. The example
shows how the machine, if it is not failing, is always waiting to distribute a
drink. Once the customer inserts money, he can choose a certain drink (coffee
or tea). Then, the machine returns an error message if the client did not insert
enough money or delivers the drink and the rest of the money.

2.6 Conclusion

We have presented in this chapter some general background used to sup-
port the thesis. The chapter begins with some definitions and general charac-
teristics of distributed applications, cloud computing, dynamic reconfiguration,
and autonomic computing. It also presents well-known definitions of coordina-
tion proposed in the literature. Finally, we have surveyed existing formal tech-
niques and tools, which motivate the use of the LNT specification language and
model checking in order to specify and verify the dynamic reconfiguration of
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Exemple 2.1 Hot drink vending machine

process CoffeeTeeMachine [PIECE_RECEIVED:any, CAFE:any, THE:any,

ERRORMSG:any, DRINK:any, PIECE_RETURNED:any] is

var drink_price, rest_money: nat in

drink_price:=10;

loop L1 in

select

(* machine failure *)

break L1

[]

(* money insertion and drink choice *)

PIECE_RECEIVED (?money of nat);

select

CAFE

[]

THE

end select;

if (money > drink_price) then

(* deliver the drink *)

DRINK;

(* compute the rest *)

rest_money:=money - drink_price;

only if(rest_money>0) then

(* deliver the rest *)

PIECE_RETURNED(!rest_money)

end if

else

(* money inserted is not sufficient *)

ERRORMSG

end if

end select

end loop

end var

end process
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distributed applications and the coordination of stateful autonomic managers
in the cloud.
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WE review in the first part of this chapter existing languages and ap-
proaches that have been used to reconfigure applications (e.g., dis-

tributed applications), including a comparison of the features and limitations
of the reviewed approaches. The second part of the chapter overviews some
well-known techniques for coordinating entities, including the coordination of
autonomic managers. Finally, controller synthesis techniques are surveyed.

3.1 Dynamic Reconfiguration

In the last 20 years, dynamic reconfiguration has been an active research
topic with the advent of distributed applications. It has been studied in several
research areas that include software architecture [16, 115, 105, 97, 88, 9, 68] (e.g.,
software architecture in the cloud), graph transformation [133, 8, 90], and recon-
figuration patterns [32, 70, 116].
In [88, 97, 99, 98, 9, 133, 36, 124, 90], the authors propose various formal models
and languages, such as Darwin and SmartFrog to specify dynamic reconfig-
uration of component-based systems and distributed applications whose con-
figurations can evolve (addition/removal of components and connections) at
run-time. Some of these approaches are based on Architecture Description Lan-
guages (ADLs) that have textual and/or graphical syntax used to specify soft-
ware architectures. In this context, the purpose of an ADL is allowing both
developers and clients to reason together in order to provide understandable
system abstractions. Multiple ADLs are used in several fields of studies and in-
dustries, but few of them offer a description of dynamic software architectures,
where dynamic reconfiguration operations are strongly required.
Let us summarize in the following paragraphs the languages and approaches
that have been suggested for the specification, deployment, and dynamic re-
configuration of distributed systems and component-based systems. These ap-
proaches attempt to address three major challenges, which are: (1) deploying
and managing distributed applications, e.g., cloud applications; (2) defining re-
configuration plannings that must be performed; and (3) automating the (inter)
connection of software components in order to realize desired target architec-
tures.
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We will show that some of these languages and approaches concentrate on one
single challenge (e.g., designing a target architecture), while others try to tackle
more than one challenge in a unified manner.
Some of these languages and approaches are used in the context of cloud com-
putation, whereas others are used for component-based systems.

3.1.1 Reconfiguration in the Context of Cloud Computing

3.1.1.1 DADL and SmartFrog Languages

In [108], the authors propose DADL (Distributed Application Description
Language), a language for managing virtual resources. DADL allows the ex-
pression of constraints on resources in terms of service level agreements (SLAs)
and elasticity rules when describing an application architecture with its avail-
able resources. The DADL language is an extension of the open source Smart-
Frog project (Smart Framework for Object Groups), which is a Java-based
framework, developed at Hewlett-Packard European Research Laboratories in
Bristol [69], and tested on client and server operating systems. SmartFrog, writ-
ten in Java, can be implemented in any operating system that supports Java
virtual machines (JVMs). It is used to configure, deploy, manage, and describe
the needs of distributed software systems. SmartFrog is based on available re-
sources and declarative descriptions of the components that compose the ap-
plication. The SmartFrog component model is composed of the following three
parts:

– configuration data are defined in a uniform way using standardized APIs.
It may refer to the components themselves or references to other com-
ponents. For each configuration data, an initialized phase is defined to
specify if it will be initialized statically via the application description or
generated dynamically according to the requirements defined at run-time.
The SmartFrog component model includes two mechanisms: composition
and extension. The composition mechanism allows the use of a compo-
nent description as an attribute in another one, while the extension mech-
anism allows the combination of separated components descriptions as an
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attribute in a reference which does not have a description;
– a life-cycle manager uses the configuration data and multiple specific

methods to drive a configuration when creating, initializing, starting,
stopping a component, and also consulting its state. The SmartFrog allows
the description of a system as a group of components. The inter-related
components can present software, data, and also hardware. Each compo-
nent is bound to other components through parent-child relationships. In
the same system, different components communicate with each other via
the SmartFrog framework. The configuration data of the system members
may be inter-related with one life-cycle manager, which emerges from the
life-cycles of all the system members (i.e., the components that compose
the system). The set of systems is independent, but SmartFrog provides
a discovery process that locates them. The life-cycle managers allow to
initialize, implement, and monitor the application in a deployed system;

– a managed entity presents the component functionality. It uses configu-
ration details to give an interpretation of the component description.

Finally, SmartFrog provides an automated and optimal allocation of cloud re-
sources. It allows its users to build and deploy their running management sys-
tems. However, it requires specific components to deploy the system automati-
cally.

Evaluation

SmartFrog supports distributed application deployment and also allows the
automation of the component instantiation, initialization, and startup phases,
but not the application deployment. It presents some similarities with our ap-
proach. However, contrary to us, it does not explain either how a life-cycle
manager preserves architectural invariants when stopping a running system. It
does not explain either how it manages the component failures. Furthermore, it
is not an open source product and has the following limitations:

– the SmartFrog framework requires the use of nodes to install a Java Virtual
Machine;

– SmartFrog does not allow to deal with software installation management.
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3.1.1.2 RESERVOIR project

In [44], the authors discuss the implications of architecture definition for
distributed applications that are deployed on cloud environments. The authors
also propose configuration protocols, which are based on Application Descrip-
tion Languages (ADLs). The ADL is used to define a contract, between an IaaS
provider and an application developer, in which the IaaS provider can meet
some QoS objectives. A defined contract contains a specification of architectural
constraints and invariants at runtime used to explain how software architec-
tures must be described. The authors also adopt, for the manifested language,
a model-driven approach with extensions of the Essential Meta-Object Facil-
ity (EMOF) abstract syntax, which is defined by the initiative Model Driven
Architecture (MDA) of the Object Management Group (OMG). The model is
used to describe a distributed application, its requirements towards the under-
lying execution platforms, its architectural constraints (e.g., concerning place-
ment, collocation, and startup/stopping order), elasticity rules that must be de-
clared when deploying an application on the cloud environment, and finally
new abstractions (e.g., specification of on-demand scaling). The requirements,
constraints, and rules are used to describe when and how the application must
consume more/fewer resources from the cloud. In this work, the proposed ar-
chitecture targets at supporting the abstractions and specifying clear semantic
for the ADL, while respecting the architecture using denotational approach. As
for the deployment mechanism, components are deployed on the RESERVOIR-
based infrastructure, which is provided by the RESERVOIR project [121].

Evaluation

This approach proposes an architectural description that can evolve at run-
time. However, these works still have some limitations, which are:

– the approach guarantees the application deployment, but not in a decen-
tralized fashion, which harms the scalability of applications that can be
deployed;

– this approach does not explain the order of the component instantiations
and the dependency constraints.
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3.1.1.3 Engage

A recent paper presents Engage [62], a prototype deployment system devel-
oped by the genForma Corp company and MPI-SWS Institute, for managing ap-
plication stack configurations and dependencies between them. Thus, Engage
solves the dependencies by using the MiniSat SAT solver. Furthermore, it uses
a high-level modeling language to configure services across machines (physical
or virtual machines) according to their dependencies, to deploy components, to
describe interactions between components, and to manage their life cycles. En-
gage presents software or hardware components, which are called resources.
These resources are described using a Domain Specific Language (DSL), by
means of two parts: a declarative one, which is presented by a resource type,
and an implementation part that is represented by a resource driver. The re-
source type describes a set of ports that specify attributes, which are internal to
the configuration of the component, attributes which are internal to configura-
tions of other components on which the component depends on, and attributes
which are exported by the component. A resource type allows, also, to gener-
ate deployment plans and to verify deployment properties. Last but not least,
the resource type defines dependencies on other resources. These dependen-
cies can be classified into three broad types: (1) environment dependencies,
which present the other resources that are required by the current one, located
on the same machine (physical or virtual machine), and must be installed before
its installation and execution. Examples of environment dependencies include
the Java programs that need JRE; (2) peer dependencies, which present the re-
sources that must be used, but not necessarily collocated on the same machine
containing the current resource. Thus, it can be deployed anywhere; and finally
(3) inside dependencies, which present container resources in which the current
resource is running.
The Engage workflow provides a universe of available resources defined by the
vendor applications. These resources may be required by other users in order to
define partial specifications of systems they want to deploy. Each partial speci-
fication is fed to Engage to verify properties, e.g., the union of an environment,
peer, and inside dependencies relations is acyclic. From each partial specifi-
cation, Engage generates a hyper-graph where nodes present the instances of
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resources and edges present the dependencies between them.
The resource driver is implemented using a specific language. It presents the
state machine that installs and manages the life-cycle of the resources. Each re-
source driver is composed of a set of states and the transitions between these
states. Each state machine has, at least, three states that are uninstalled, active,
and inactive. Each transition is described as a guarded action [↑ c] A or [↓ c] A,
where c is a Boolean condition, the ↑ arrow expresses the necessity to satisfy the
condition c for all the resources that a given resource depends on, the ↓ arrow
expresses the need to meet the condition c for all the resources that depend on
a particular resource, and A presents the action executed when the transition is
triggered (see, Fig. 3.1).

uninstalled inactive active 
restart 

install 

uninstall 

start 

stop 

[   active] 

[    inactive] 

Figure 3.1: An example of a state machine associated to a resource driver

Evaluation

Despite the compromise provided between efficiency and applicability, En-
gage presents the following limitations:

– a resource type is used to verify, statically, deployment properties;
– it is not clear how Engage preserves composition consistency and archi-

tectural invariants when stopping resource drivers;
– the authors write that going from an active state to an inactive state re-

quires, as a precondition, that dependencies are inactive without explain-
ing the mechanism used to deactivate them.
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3.1.1.4 VAMP

In [59, 60, 126, 61], the authors describe a general solution, called Virtual
Applications Management Platform (VAMP), that automates the configuration
of distributed applications in the cloud environments. This solution is based
on a representation of distributed architectures. The framework VAMP extends
the OVF (Open Virtualization Format) language, which is provided by the Dis-
tributed Management Task Force (DMTF) and dedicated to uniform presenta-
tions of applications running on virtual machines, with an ADL that describes
the global architecture of distributed applications. This extension provides an
explicit specification of the component building, interfaces, dependencies, and
binding between components. We present in Figure 3.2 an example of an appli-
cation (left) and the extended OVF descriptor that corresponds to that applica-
tion (right). The application is composed of three interconnected components,
hosted on distinct virtual machines and called C0, C1, and C2, respectively.
Each component has a server interface s with a set of client interfaces c and
is connected to other components through bindings among its client interfaces
and their service interfaces.

This solution also presents a decentralized and self-configuration deployment
protocol that can be implemented on a compensation-based mechanism. In [61],
the authors present a reliable self-deployment protocol, which represents an
extension of the original deployment protocol VAMP [59]. This protocol can
automatically deploy cloud applications in a decentralized fashion, even in the
case of a finite number of virtual machine failures. Thus, the protocol supports
the failures by detecting and repairing them, but it is not compatible with some
reconfiguration features.

Evaluation

This solution introduces a protocol for deploying distributed applications.
The protocol allows the automation of the application deployment, but it
presents some limitations, which are:
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C0 

VM0 

C1 

VM1 

VM2 
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C2 
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c 

<!-- Applicative architecture --> 

<AppArchitectureSection> 

  <definition name= application_name"> 

     <component name="C0"> 

         <interface name="c" role="client" .../> 

         <interface name="s" role="server" .../> 

          ... 

         <virtual-node name="VM0"/> 

     </component> 

     <component name="C1"> 

        ... 

     </component> 

     <component name="C2"> 

           ... 

     </component> 

     <binding client="C0.c" server="C1.s" /> 

     <binding client="C0.c" server="C2.s" /> 

      ... 

  </definition> 

</AppArchitectureSection> 

Figure 3.2: An example of an application (left) and its extended OVF descriptor
(right)

– in the applications, all elements are known from the beginning (e.g., num-
bers of VMs and components, bindings between components);

– the protocol does not allow to modify the application at run-time.

3.1.1.5 Aeolus Component Model

In [91, 40], the authors present a design and an implementation of an ap-
proach used for the automatic synthesis of deployment plans. This approach
provides a reconfiguration algorithm for deploying heterogeneous software
components and computing a sequence of actions to deploy the desired config-
uration. This algorithm works in the presence of circular dependencies among
components. To master the complexity of cloud applications, the authors pro-
pose the Aeolus component model and explain how some activities, such as de-
ployment, reconfiguration, and management phases of such applications (i.e.,
cloud applications), can be automated in this model. Aeolus uses a set of avail-
able components, where each component is regarded as a gray-box that owns
internal states and mechanisms to change its state during the three phases. A
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component may also provide and require ports, where each port can be active
or inactive according to the current internal state. The Aeolus component model
allows to describe several characteristics of components, e.g., the dependencies
between components, the conflicts, and the non-functional requirements. Aeo-
lus takes as inputs high-level application designs, user needs, and constraints
(e.g., the number of requiring ports which can be bound to a given provided
port) to provide valid configurations of target cloud environment, which is
composed of a set of interconnected components where each component must
require or/and provide services. We present in Figure 3.3 an example of an ap-
plication model described by the Aeolus model. The application consists of two
packages. The first one (wordpress) provides a service named wordpress and
requires five services. One of these services is named httpd and supplied by the
second package (apache2), which also requires six services.

installed 

uninstalled 

httpd 

mysql-client 

php5 

php5-mysql 

libphp-phpmailer 

wordpress 

installed 

uninstalled 

lsb-base 

procps 

perl 

mime-support 

apache2-bin 

apache2 

apache2-data 

httpd wordpress 

apache2 

Package   : wordpress 

Version    : 3.0.5 + dfsg - 0 + squeeze 1 

Depends :  httpd , mysql-client, php5, php5-mysql, libphp-phpmailer,    

Figure 3.3: An example of packages, services, and bindings described by the
Aeolus model

Last but not least, to efficiently deploy and configure their components, the Aeo-
lus users may use a planning tool [92], which supports the deployment of cloud
applications or the Zephyrus tool, which allows computing a configuration in
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order to check if it satisfies a high-level specification. Some of the packages
are popularized by Free and Open Source Software (FOSS) distributions, e.g.,
Debian.

Evaluation

The Aeolus component model focus on mastering the complexity of cloud
applications. It automates as much as possible the management of such appli-
cations. A component is a grey-box presenting internal states and mechanisms
to change its state during the deployment and reconfiguration process. These
works present some similarities with ours, but present the following limitations:

– these works do not propose solutions for verifying that all the constraints
defined by the components in the initial configuration are also satisfied in
the target configurations;

– the Aeolus model takes as inputs the initial configuration, the target con-
figuration, and the required actions. Thus, it does not support modifica-
tions that can take place at runtime.

3.1.2 Reconfiguration in the Context of Component-Based Systems

3.1.2.1 Synergy

In another approach [26, 25], the authors propose a robust reconfiguration
protocol for an architectural assembly of software components. The protocol
takes as input a current assembly, a target assembly, and a set of reconfiguration
operations. It transforms the current assembly to the target one by applying re-
configuration steps (e.g., connecting/disconnecting port and changing compo-
nent states) to a set of connected components, with respecting a reconfiguration
contract given to the developers of components. The protocol preserves some
architectural invariants and a specified reconfiguration grammar, even when
multiple failures occur during the reconfiguration, which is characterized by
two phases (see Fig 3.4):

1. the "prepare" phase uses a copy of the current architecture to define the
target architecture;
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2. the "commit" phase uses the execution of reconfiguration operations by
the reconfiguration protocol to evolve the managed system and obtain the
target architecture.

Current architecture Target architecture 

prepare  phase 

 

Reconfigured 

 managed system 

 

Managed system commit  phase  

Figure 3.4: The reconfiguration steps: the prepare and commit phases

Evaluation

This protocol is fault tolerant. It was formalized and proved using the Coq
Proof Assistant. The protocol also guarantees that all the reconfiguration steps
preserve architectural invariants. However, it assumes that the interconnected
components are hosted on the same VM. Thus, it does not consider its distribu-
tion across several VMs. Therefore, the protocol does not easily scale to cloud
applications that are distributed.

3.1.2.2 Wright

In [11], the authors present another ADL, named Wright. A Wright specifi-
cation is based on the following elements:

– the components are regarded as computational entities. Each component
is composed of an interface (input/output ports) and computation, which
presents the specified behavior;
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– the connectors provide the communication between components. Each
connector is composed of a set of roles and a glue. Each role defines a
behavior expected from one of the components connected to it, while the
glue defines the behavior of the connector. Both the expected behavior
and the behavior of the connector are specified using communicating se-
quential processes (CSP). The CSP is also used to specify the computation
of basic components;

– a configuration presents the design of the system architecture. It is com-
posed of a set of instances of components, connectors, and description of
the connection between the component ports and connector roles. The
configuration can be also used, in some cases, to replace the specification
of computation of complex components.

Dynamic Wright [10], based on the concept of event-based control, was intro-
duced to express architectural reconfiguration that cannot be described through
Wright. Dynamic Wright uses a reconfiguration controller to define the states
where changes can occur in the system and to trigger reconfiguration tasks. It
uses CSP extended with new operators (e.g., del, attach, new) to describe the
reconfiguration tasks.

Evaluation

Despite the extension of Wright to be able to describe architectural configu-
ration, it still has some drawbacks:

– the configuration described using CSP must be known at the design time;
– the reconfiguration controller must know all the elements in the architec-

ture;
– changing a component by another one, with different events, may provide

a new configuration different from that described using CSP, which may
produce reconfiguration problems (e.g., how do connect components in
the new configuration, which is not described using CSP).

3.1.2.3 Darwin and Tracta

In [97], the authors describe the system configurations in terms of compo-
nents and interactions between them using Darwin, which is a pioneer configu-
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ration description language that has both textual and graphical notations. This
ADL allows to specify the components and the services they require and/or
provide. One of the interests of Darwin is taking into account the dynamicity of
a configuration topology (e.g., create/delete components, bind/unbind connec-
tions) in order to form composite components. In [88, 99, 68, 98] for instance,
the authors show how to formally analyze behavioral models of components by
means of Labeled Transitions Systems (LTSs) [68] and process algebra (FSP) [98].
In [88, 99], the authors focus on behavioral specifications with components and
give the example of a gas station. They use these specifications to analyze the
overall system architecture and check safety and liveness properties (e.g., the
amount of gas delivered must be equivalent to the quantity paid for). In [68],
the authors present an overview of the Tracta project, which gives an extension
of the Darwin approach. Tracta checks two categories of properties: (1) safety
properties, which are expressed using deterministic LTSs to describe the de-
sired system; (2) liveness properties, which are specified in Linear Temporal
Logic. In [99], the models described previously with Darwin, are described tex-
tually as finite state processes (FSP), displayed, and analyzed by the Labelled
Transition System Analyser (LTSA).

Evaluation

The studies presented in this section present the Darwin language and the
Tracta project used for the description of the system configuration and the ver-
ification of safety and liveness properties. However, these studies use Darwin,
which is limited to simple structural modeling. Moreover, the execution of the
reconfiguration operations ensured by Engage (e.g., create a component) are not
automated. Our focus is different here because we work on a protocol whose
goal is to execute automatically the reconfiguration tasks.

3.1.3 Summary

We have presented in this section a review of different languages and ap-
proaches in the field of dynamic reconfiguration. We observe that not all of
them are suitable for the dynamic reconfiguration of distributed cloud applica-
tions.
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Table 3.1: Comparison between the languages and approaches used for dy-
namic reconfiguration

Distributed

Applications

Architectural

Invariants

Fault

Tolerance
Dynamism Automation

DADL/

SmartFrog
✓ ✗ ✗ ✓ ✓

RESERVOIR ✓ ✗ ✗ ✓ ✓

Engage ✓ ✗ ✗ ✗ ✓

VAMP ✓ ✓ ✓ ✗ ✓

Aeolus ✓ ✓ ✗ ✗ ✗

Synergy ✗ ✓ ✓ ✗ ✓

Wright ✗ ✗ ✓ ✗ ✗

Darwin/

Tracta
✓ ✗ ✓ ✗ ✗

Table 3.1.3 presents multiple categories of solutions: (i) those, such as Synergy,
which do not scale to distributed applications; (ii) those, such as Engage, which
do not propose methods or do not explain how they preserve architectural in-
variants; (iii) those, such as DADL and SmartFrog, which are not fault-tolerant
in the sense that they are not able to detect and repair VM failures; (iv) those,
such as VAMP, which work fine only with specific applications and do not sup-
port modifications that can occur at run-time; and finally (v) those, such as
SmartFrog, which do not execute operations that are completely autonomous.
As stated before, one of our most substantial contributions was to design a
protocol that aims to deploy automatically and dynamically (re)configure dis-
tributed cloud applications and support VM failures. The protocol must also
preserve important architectural invariants (e.g., a started component cannot be
connected to a stopped one) at each step of the protocol application. Another
goal identified in this thesis is the verification of the protocol using the CADP
model checker.
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3.2 Coordination Models and Languages

Coordination models and languages provide language support for control-
ling and communicating software architectures composed of interconnected
components. They can be classified into several categories, according to the
techniques used to coordinate entities: (1) those, which use data available in
a common data space, (2) those, which use events occurring within the ports
of the coordination entities, (3) those, which use rules and decision policy,
(4) those, which use utility functions, and finally (5) those, which use shared
knowledge.

3.2.1 Data-driven Coordination Models and Languages

In the data-driven coordination model, the coordination media is defined as
a shared and common data space, so-called coordination medium, where the
values of data being sent and received by coordination entities are useful for
defining system states. Indeed, the coordination entities communicate among
themselves by exchanging these values. Each entity may deposit (consume,
resp.) information at (from, resp.) the coordination medium (see Figure 3.5,
left). The data-driven coordination model provides information about how the
data should be deposited and consumed into/from the coordination medium,
which does not have any idea about their state changes. The focus of these
models and languages is on the exchanged information and not on the control
flow between coordination entities.

3.2.1.1 Linda

The Linda coordination language allows the separation of the computation
part of an application from its coordination part. It is based on simple coor-
dination primitives useful for designing distributed systems. Linda is intrin-
sically regarded as multi-paradigm by providing generative communication
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Figure 3.5: The coordination medium when: using a data driven coordination
language (left); using an event-driven coordination language (right)

paradigms, where processes communicate asynchronously by inserting and re-
trieving data objects, called tuples. The tuples are accessible to all the pro-
cesses but are bound to none. They are deposited by the sender processes in
a shared and common memory called tuple space, from which the receiver
processes consume them. This mechanism is decoupled in space, time, and
destination (i.e., does not require that a sender (receiver, resp.) process iden-
tifies the receiver (sender, resp.) one). Each tuple in the Linda model is com-
posed of a list of information items that are usually of the following form:
”tag”, value1, ..., valuen, where the tag parameter allows to distinguish between
tuples, a tuple may have 0 or more values, and every valuei represents a target
(address) or a communication (data). An extension of a tuple, named template,
allows to distinguish its passive values from actual, and formal values, which
represent wildcards for matching.
Linda uses four basic coordination primitives for manipulating the tuple space
(i.e., operations about how the tuples should be deposited and consumed
to/from the tuple space): the out() primitives are used when the tuple has
been filed in the tuple space; the in() and rd() primitives are used to find
a tuple that matches their template. More precisely, the in() primitives are
required when a receiver process has retrieved the matching tuple from the tu-
ple space, whereas the rd() primitives are required when a receiver process
has only examined and read the tuple from the tuple space without modifying
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and removing it. When more than one tuple matches the template, only one is
selected non-deterministically. Contrariwise, if there is no tuple to match the
template, the process is not blocked. The eval() primitives are used when
creating an active tuple that turns into a passive one after its evaluation. The
in() and rd() primitives are synchronous, whereas the out() and eval()

primitives are asynchronous.

Evaluation

The Linda coordination language is an intuitive language where all tuples
are accessed in a concurrently way by multiple processes, but it suffers from the
following limitations:

– the coordination medium, so-called tuple space, has a fixed behavior.
Thereby, the coordination mechanisms cannot represent generic coordi-
nation policies;

– the coordination medium is implemented as a shared and common mem-
ory. Linda does not propose other solutions to implement it, especially in
the absence of shared memories;

– the Linda model does not support the process failures (i.e., it is not fault-
tolerant);

In order to add more coordination features to coordinate more complex appli-
cations, the Linda coordination model has been extended, by introducing new
primitives and several data spaces. In this regard, examples of extensions of
the Linda paradigm include Objective Linda [86], PoliS [47], Shared Prolog [30],
and TSpaces [139].

Other examples of data-driven coordination languages and models include
Concurrent Constraint Programming [29] and Opus [43].

3.2.2 Control- and Event-Driven Coordination Models and Languages

In the control driven coordination model, the coordination entities interact
with the external environment through events occurring on input/output ports.
The control driven coordination model allows the coordination medium to ob-
serve the states update and the events occurring within the ports of the co-
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ordination entities (see Figure 3.5, right). The coordination medium provides
information, called coordination laws, about how the events should propagate.
The event-driven coordination models and languages focus on the control flow
management and not on the information exchanged between coordination en-
tities.

3.2.2.1 Manifold

In [15], the authors present Manifold, a strongly typed and exogenous
control- and event-driven coordination language based on the IWIM (Idealized
Worker Idealized Manager) model [12]. In the Manifold model, a set of features
that include composition and separation of concerns are introduced to manage
asynchronous interactions between concurrent computations. Furthermore,
the system is defined, topologically, by channeling components through their
external behavior, which presents the interfaces that a component may publish.
Manifold defines four categories of primitives, which are processes, events,
streams, and ports.

Processes

The processes have a set of input/output ports used to send and receive data
and are classified into two types: (1) the atomic processes can consume input
data, compute, and produce output data through their ports. They are also able
to receive and generate events; (2) the coordination processes, called manifolds,
coordinate the activities of some atomic processes. Each manifold is composed
of two main parts:

– the head contains details, such as the process name and the names of its
ports;

– the body is represented as a block that contains a finite number of states.
Each state, in turn, is composed of a label that defines the condition allow-
ing transitions to that state and a body that contains all the instructions
performed, in a non-deterministic order, upon transition to another state.
The main role of a state body is to generate event occurrences.
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Events

The events are raised by the components to enact a configuration. In Mani-
fold, a configuration is defined by connections, disconnections, and rearrange-
ment of the binding established between the components, which is necessary for
the context of dynamic applications. The manifold model also provides other
processes, named observer processes, and are in charge of observing event oc-
currences. Once an event occurrence is observed by an observer process, it will
be put into its event memory. An observed event may be reacted by only one
observer process. The Manifold language provides an event-driven state tran-
sition mechanism as the only control mechanism.

Streams

The streams are communication links, connected to the ports, and used to
transfer data in the form of sequences of bits from a source to its sink. There exist
four basic types of stream, which are: BB (break-break) 1, BK (break-keep) 2, KB
(keep-break) 3, and kk (keep-keep) 4.

Ports

The ports are used by the processes to exchange information. Indeed, each
process has a set of ports located at its boundary. Manifold provides three stan-
dard ports (input, output, and error) defined for all instances of the process.

3.2.2.2 Reo

A channel-based exogenous coordination language, called Reo, was de-
signed by F. Arbab in [14] as an extension of the Manifold language. Reo allows
to coordinate multiple entities, with supporting a high degree of synchrony.
The entities may refer to processes, threads, agents, and software components.
These entities, called component instances, execute at one or more locations.
In the Reo model, each component is defined as black boxes and may have in-

1. the BB stream is used to break automatically a connection
2. the BK stream is used to break the source connection and keep the sink connection
3. the BK stream acts as the other way as the KB stream
4. the kk stream is used to never disconnect
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put/output ports. The communication between the components is exogenous
and established by a set of so-called connectors that coordinate their activities.
Each connector may build up using a set of simpler connectors, which are com-
posed of channels and nodes. A channel allows to flow data items by dispos-
ing of two types of ends: source end for accepting data into the channel and
sink end for putting data out of the channel. A channel in the Reo model can
have only one of the two ends or both source and sink ends. Furthermore,
Reo disposes of an open-ended number of channels, which allow developers
to use their custom semantics to integrate their own channels. Examples of
Reo channels include Sync channel, LossySync channel, SyncDrain channel,
and FIFO channel, which is an asynchronous channel. The Nodes are based on
channel ends and classified into three types: source, sink, or mixed, depending
on the channel ends. The two first types (e.g., source and sink nodes) allow the
interaction of the channel with its environment. The Reo semantics is given by
constraint automata, where the transitions are labeled with synchronous ports
and, if needed, data constraints on these ports.
In [89], C. Krause presents some reconfiguration tasks in the context of Reo
connectors. In this work, the author supposes that both components and co-
ordination layer are distributed. Thereby, the simpler connectors are hosted at
different locations (logical or physical machines). Furthermore, these connec-
tors are supposed to connect to each other after knowing when and in which
way they will be reconfigured.

Evaluation

Reo is a highly exogenous and a powerful coordination language that
presents an extension of the Manifold language. The Reo model is composed of
a set of components that are regarded as black boxes. It is also based on a set
of constraints that may be defined by channels and describe the connectors be-
haviors. Our focus is different here because we take into account the behavior
of the coordinated entities, which execute the reconfiguration process and are
modeled as LTSs. We use coordination requirements to describe the behavior of
a generated controller, which aims to orchestrate these entities and communi-
cate with them asynchronously.
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3.2.3 Coordination Using Rule Agents and Decision Policies

3.2.3.1 Accord

In [93], the authors present the framework Accord, a component-based
model designed to build autonomous applications. These applications are
based on autonomous components that incorporate rule agents with autonomic
properties. Accord allows to coordinate several autonomic components using
high-level rules for their dynamic composition. The components are hosted on
distributed applications, which may include dynamism in the component states
and provided/required services. An Accord component is composed of the fol-
lowing three elements:

– a functional port that describes the operations provided/required by the
component;

– a control port that controls the system. Indeed, it uses a set of sensors to
monitor the component state, a set of actuators to modify the component
state and adapt it dynamically, and a set of constraints;

– an operational port that adds new rules, manages, and removes existing
rules dynamically.

The rule agents configure, monitor, adapt the managed components, and en-
sure the communication between them. To do this, they execute two types of
rules: behavior rules, which are used to describe the dynamic composition of
the components (i.e., the component configuration) and the behavior of their
self-management, and interaction rules, which are used, with functional ports,
to coordinate the interaction relationships between the components.
The dynamic composition of an Accord system is based on multiple constraints.
This includes, for instance, the composed components that interact together,
how components interact together, and when components interact together.
The first constraint, i.e., composed components, is described by means of a
workflow graph where multiple reconfiguration tasks can be dynamically ex-
ecuted, e.g., adding, removing, and updating components or establishing, re-
moving, and changing interactions in the workflows. This constraint is de-
scribed using behavior rules, while the second and third constraints are de-
scribed using interaction rules.
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The conflicting decisions between agents are solved with associating priorities
with rules. Indeed, a rule that has a low priority should wait for locks held by
those having higher priorities. Moreover, several decision policies are handled
by the agents in order to monitor the managed components. Agents are clas-
sified into multiple categories, such as configuration, context, and composition
agents. Accord uses composition agents to support the centralized coordina-
tion of workflows adaptation. It also supports the definition of decentralized
coordination, which is described using Rudder, but it does not provide any de-
centralized coordination model.

Evaluation

The Accord model is a component-based model based on rules and decision
policies and used to design autonomous applications in distributed environ-
ments. However, we identified some limitations which are:

– Accord is based on interaction rules and not on connectors to describe
the interaction between components, which prevent components taking
independent decisions;

– Accord uses a manual administration to evaluate and update the interac-
tion rules.

3.2.4 Coordination Using Utility-Functions

In [53], the authors present an approach based on multi-agent systems,
which are autonomous decision makers that interact with each other to take
coherent decisions. The suggested approach provides a consistent control pol-
icy for managing the agents (see Fig. 3.6). Furthermore, it introduces four major
participants: (1) the performance agents manage the performance by distribut-
ing load among the active servers, while taking into account the QoS; (2) the
power agents, based on the Energy Management Tool (EMT) program, manage
the energy consumption of servers by adjusting the power of the servers; (3) the
coordination agents, implemented in Java and hosted on a separate server, have
two main roles. It coordinates the two first agents (i.e., performance agents
and power agents) and also provides coherent control policies, such as power-
performance policy in order to manage a data center, while using a system
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model and a set of predefined utility functions. Indeed, the coordinating agents
receive information describing the QoS and energy consumption (e.g., control
signals, monitored performance, and power data). Then, based on these func-
tions, they send decisions about adding or retrieving applications to the perfor-
mance or power agents. Finally, (4) the policy generators use predefined utility
functions and a system model to derive the control policy, such as the power-
performance policy, received from the coordination agents and transferred to
other agents.
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Figure 3.6: Multi-agent architecture for establishing an energy consumption
policy

In turn, predefined utility functions [130] present high-level objectives for man-
aging the behavior of autonomic systems. To do this, the suggested approach
defines two types of policies:

– action policies are presented in the form of "IF (condition) THEN action".
Therefore, an action policy guarantees that some actions should be exe-
cuted by the system, once the condition is satisfied;
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– goal policies define the high-level objectives of the system. They are trans-
lated, using utility functions, into specific actions to the possible condi-
tions. To establish a translation, the utility functions allow to map a cur-
rent system state to another preferred state.

Evaluation

We observe that this approach is based on multi-agent system, which are
used as autonomous decision makers. This approach focuses on a specific ap-
plication domain and and its results are not reusable in other contexts.

3.2.5 Coordination Using Shared Knowledge

In [111], the authors propose a generic integration model that focuses, first,
on categorizing autonomic loops in terms of reciprocal interference using their
reciprocal interferences. The control loops are implemented using the MAPE-
K reference model (see Fig. 2.4.1). This generic model, based on actions and
events of inter-loop, can be used to manage the synchronization and coordina-
tion of multiple control loops. The control loops communicate with one another
through a shared knowledge-based synchronization pattern. This knowledge is
composed of two parts:

– private knowledge, which contains necessary internal information asked
by a set of internal control loop functions;

– public knowledge, which provides information shared among control
loops. When one of these loops needs to modify any information, this
knowledge must be synchronized. When multiple loops need to modify
the same information at the same time, error-prone situations may occur.
To avoid this problem, the authors propose that only the owner of the
public knowledge should modify it directly, by using a control loop coor-
dination protocol.

Before explaining the control loop coordination protocol proposed by this ap-
proach, let us clarify the difference between an event and an action used by the
integration model.

– an action can be used in three cases: (i) when executing a decision on
the managed system, (ii) when notifying another control loop (i.e., inter-
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loop), and (iii) when launching a step within a control loop (i.e., intra-
loop). In the two first cases, the action is executed by the execute function
(the fourth function of the MAPE reference model). Contrariwise, in the
third case, it may be executed by the monitor function to launch the an-
alyze function, or by the analyze function to launch the plan function, or
by the plan function to launch the execute function. An intra-loop action
is used to change public knowledge or to invoke handler actions.

– an event has one of the two major types: endogenous event that has the
managed system as a source and exogenous event that has another control
loop as a source.

This approach proposes a coordination protocol, which aims to coordinate
multiple control loops. To do this, the execute function of a control loop asks
every loop, with which it must take globally coherent decisions, services before
executing. Then, it waits for the answers. This mechanism is ensured by trigger-
ing an inter-loop event, which will be detected by the monitor function of the
second control loop, in order to start it. At the same time, it creates a handler
that has all the actions needed to be executed after the reception of the answers.
Once the second control loop makes its responses, an inter-loop event will be
sent to the first control loop.

Evaluation

The suggested protocol was applied to a scenario in the context of cloud
computing. The scenario is composed of multiple self-adaptive applications
that communicate with a shared self-adaptive infrastructure. Indeed, the pri-
mary role of the coordination protocol in this context is, on the one hand, max-
imize the Quality of Service at the applications while minimizing costs, and on
the other hand to optimize the utilization rate at the common infrastructure.
The model was evaluated through simulation-based experiments. However,
this approach still has some limitations, which are:

– the model is restricted to a controller loop. It is not clear if the same model
can be used for other entities, such as agents, processes, and software com-
ponents;

– the decisions taken by every control loop must take into account informa-
tion provided by other loops. Therefore, when several loops control the
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same application, every one of these loops cannot execute before asking
services from the other loops and waiting for all their answers. This slows
the response time of the loop;

– in the cloud computing scenarios, multiple unexpected events can occur at
each time of the runtime. This approach does not explain how the shared
knowledge takes into consideration the changes that have occurred.

Our focus is quite different here because we work on controller synthesis tech-
niques whose goal is to control other entities where components are modeled
as LTSs and communicate asynchronously. Moreover, our techniques are based
on a set of coordination requirements that take into account all the changes that
can occur in the system.

3.3 Controller Synthesis Techniques

3.3.1 Original Theory for Controller Synthesis Techniques

We start this section with a short overview of the original theory for con-
troller synthesis. The approach was originally introduced by Ramadge and
Wonham in 1987 [137, 119] in order to resolve problems of Discrete Event Sys-
tems (DESs), which contains discrete states, where the controller switches be-
tween them by means of events. The approach is called Discrete Controller
Synthesis (DCS) and aims to control the logical behavior of discrete event sys-
tems originally described using programming languages for programmable
logic controllers (PLCs).
The controller synthesis technique focuses on models of entities to be controlled
and a set of properties to be satisfied by the models to design a controller. The
controller has an impact on the system behavior in order to avoid incorrect be-
havior specified by the properties. To do this, the controller observes all the
system events and enforces it to respect the properties, which are regarded as
constraints imposed by the system. They can describe the relationship between
states in the models or incorporate temporal aspects. In the context of DESs,
the controller synthesis is applied to ensure the properties verifying the system
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state. The controller must take coherent decisions, even in the context of com-
plex systems (e.g., decentralized systems, system composed of multiple subsys-
tems deployed on distant sites) or in the presence of structural constraints (e.g.,
communication constraints).
In [137], the authors present a controllable language as a solution for the super-
visory of hybrid control systems. This work gives an approach that generates
controllers from a particular system called plant and designed as a finite au-
tomaton.
[119] proposes a supervisor synthesis algorithm, which allows the automatic
generation of a controller (represented by a language C) from a given plant,
modeled by a language P as finite state machines, and a specification language.
The language P defines an alphabet of events. The generated controller, called
maximally permissive, may dynamically enable/disable some events, named
controllable events. It also permits all possible legal executions and must satisfy
the properties (e.g., safety and liveness properties) and minimal restrictiveness
objectives required in the specification. This suggested synthesis approach is
based on a classical two-person game approach which: (1) formally synthesize
a controller from a representation of all possible behaviors of the system repre-
sented as state machines or Petri nets, or STS. (2) Then, check if the monitored
system verifies given properties that may describe situations to reach or/and
situations to avoid. These approaches can be characterized as restrictive be-
cause they directly influence and impact the controlled system. The events is-
sued by the system are broadly divided into two categories: controllable events,
which may be prevented by the controller, and non-controllable events, which
cannot be disabled by the controller. For a detailed overview of supervisory
control theory, the reader is referred to [39, 135].
This synthesis controller approach is based on the supervisor construction con-
cept and regarded as a modular synthesis technique, which decomposes a com-
plex discrete event system (DES) to a set of independent components, defines
algebra of the DES and also of the corresponding supervisors. Therefore, the
desired supervisor is synthesized as a product system. The interaction be-
tween the components is modeled as control constraints. The approach aims
at controlling the components and also satisfying constraints specified using
controlled languages. Indeed, the supervisor tries to respect the constraints by
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inhibiting some behaviors to provide the correct behavior of the originally un-
controlled DES.

Evaluation

The authors introduce a solution that is interesting from a theoretical point
of view. They propose a polynomial-time algorithm that allows to respect the
constraints and ensure a large set of correct and optimal behaviors of the origi-
nally uncontrolled systems that are modeled as finite state automata. However,
this solution has some drawbacks. It is very difficult to implement and does not
tackle the state space explosion problems. Therefore, it does not easily scale to
real systems where the generated controller may have an enormous number of
states even for small systems. For this, it has been extended by control theo-
retic ideas (e.g., controllability, modular, and decentralized control) and several
algorithms have been improved in numerous ways [136].

3.3.2 Modular Discrete Controller Synthesis Using Synchronous Lan-

guage BZR

Other syntheses techniques are based on synchronous languages, such as
BZR, that provide formal methods for the specification of reactive systems, fea-
ture verification tools, and code generation executable from the specification.

3.3.2.1 Synchronous Synthesis Techniques for Coordinating Adaptive and Reconfig-

urable Systems

In [55], Delaval et Al. present an extension of the Heptagon/BZR language,
a reactive programming language, with behavioral contract constructs. This
programming language is used to specify discrete control part of systems with
automata. The authors introduce an approach based on contract enforcement
and components abstraction to apply a modular discrete controller synthesis
(DCS) on synchronous programs. Namely, each program is represented as a
composition of nodes, which are the abstraction level used in BZR in order to
achieve a modular application of the DCS. Each node is compiled in an inde-
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pendent way and has a contract with itself. Indeed, the DCS synthesizes a set of
reconfiguration controllers for the program. It computes automatically, for each
abstraction, a controller. Then, all the controllers are recomposed to generate a
controller for the initial program. The generated controller must satisfy proper-
ties given as objective for the co-execution of the initial program. This approach
stems from both control of discrete event system and control theory. The au-
thors integrate it in a high-level programming language combining data-flow
and automata machines, named BZR. This synchronous language defines reac-
tive systems using generalized Moore machines. In turn, BZR has been used in
several works (e.g., component based software, the coordination of administra-
tion loops). This approach is applied to adaptive and reconfigurable systems,
such as embedded systems. It was implemented in the Sigali tool [101], a sym-
bolic model checker and synthesis controller that uses as input a global view of
the system.

3.3.2.2 Synchronous Synthesis Techniques for Coordinating Autonomic Managers

In other recent works [54, 74, 75], Delaval, Rutten, Gueye et Al. propose some
techniques based on synchronous discrete controller synthesis for coordinating
autonomic managers, such as self-repair and self-sizing managers. The commu-
nication between the generated controller and managers is synchronous and
uses the reactive and synchronous language BZR. BZR contains a behavioral
contract mechanisms and dynamic temporal properties, which are enforced by
an automatically build controller. The use of BZR is based on the notion of con-
tract in system modeling. The contract is composed of three parts: (1) enforce
is the part where the properties are declared as control objectives, (2) with is
the part where some local controllable variables are added when the model that
describes the system operation does not respect the properties, and (3) assume
is the part that contains relevant properties of the run-time environment. This
information is taken into account when synthesizing the control logic.
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3.3.2.3 Evaluation

Compared to monolithic synthesis, this approach has the advantage of
breaking down the synthesis computation cost. But, it also has some drawbacks
which are:

– BZR cannot impose a specific order between requirements.
– this approach allows the designers to describe the constraints that must

be ensured at runtime to compute the corresponding controller. How-
ever, the approach does not explain how the designers ensure that the
constraints do not lead to an error-prone expression;

– the computed controller describes all the possible behaviors, which can
be allowed in every step. The implementation of the controller needs a
decision system that chooses only one of them;

– this approach does not provide additional information (e.g., the false con-
straint on the contracts) to the designers when the controller synthesis
fails;

– this approach does not propose solutions to deal with the synthesis failure.

3.3.3 Synthesis of Decentralised Supervisors for Distributed Adap-

tive Systems

A decentralized supervisory control approach for synchronous reactive sys-
tems is presented by Belhaj et Al. in [128, 127]. This work is based on distributed
adaptive systems modeled through adaptation managers as synchronous reac-
tive systems. The reactive systems, based on a set of events and states, are mod-
eled as finite state machines, so-called Moore machines. Each machine contains
a set of input/output signals and transition guards. The adaptation managers
interact with the environment and continuously react to input signals by ma-
nipulating them and producing output signals. It is worth noting that the adap-
tation managers read simultaneously the values of input signals and compute
instantly the output signals. This approach is based on existing techniques for
discrete controller synthesis, to control the decentralized reactive systems. Each
system is regarded as a composition of subsystems hosted on remote sites. Ev-
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ery local subsystem computes abstracted behavior models of the other distant
subsystems by using observable variables, which it may observe. To do this,
every local subsystem should benefit from the maximum of available informa-
tion in order to reflect detailed abstract behaviors that are the most similar to
the real subsystems. Then, discrete controller synthesis is used with abstracted
behavior models to automatically generate local controllers on the remote sites
(see Figure 3.7). Once generated, every local controller acts collectively and in-
dependently on its corresponding subsystem to ensure global safety properties,
which may be decoupled into local properties.
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S2 

C2 

. . . . . . . . . . . 

Sc 

Sn 

Cn 

Figure 3.7: Control of a decentralized reactive system, regarded as subsystems,
through local controllers on each subsystem

Evaluation

The approach was applied to several examples for validation purposes and
allows decentralized control consisting of several subsystems spread across re-
mote sites. Each remote subsystem benefits of computing abstracted behav-
ior models. Moreover, the local controllers rely on synchronous systems and
synchronous communication semantics, whereas we assume asynchronous sys-
tems and communication, meaning that the controllability hypothesis is impos-
sible in our context.
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3.3.4 A Framework for the Coordination of Multiple Autonomic Man-

agers in Cloud Environments

In [110], Oliveira et Al. present a framework for the coordination of mul-
tiple dependent autonomic managers in the cloud computing context. Man-
agers are broadly classified in two categories: application-related managers
that manage applications on the SaaS layer and infrastructure-related managers
which manage the IaaS layer. The two categories use a protocol based on inter-
manager events and actions and synchronization mechanisms for coordinating
these managers. The suggested framework defines how the managers must
communicate using these actions and events. The authors also propose some
analytical models that are based on constraint programming and allow one to
equip the managers with self-optimization capabilities.

Evaluation

This approach focuses on quality of service whereas our focus was on be-
havioral and functional aspects of the system execution.

3.3.5 Summary

We have presented a review of different controller synthesis techniques,
which use languages and models for coordination purposes (see Section 3.2).
The coordination techniques use constraints, shared information, or event-
driven coordination models and languages for coordinating entities. In our
approach, we use constraints to describe the controller that we want to gen-
erate. We observe that most controller synthesis techniques are stemming from
synchronous languages, whereas our approach assumes that communication is
achieved asynchronously. Finally, we observe that not all these approaches use
verification techniques to verify the control behavior.

Table 3.2: Comparison between controller synthesis techniques
Synchronous Asynchronous Verification Coordination

Ramadge,

Wonham
✓ ✗ ✓ constraints
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Delaval et Al. ✓ ✗ ✓ contracts

Belhaj et Al. ✓ ✗ ✓ shared data

Oliveira et Al. ✗ ✓ ✗ constraints

Our

techniques
✗ ✓ ✓ requirements
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" There is a tremendous difference between a computing system that works and one
that works well. "
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WE present in this chapter a novel protocol, which targets automatic de-
ployment and (re)configuration of cloud applications. These applica-

tions are intricate distributed applications composed of virtual machines (VMs)
running a set of interconnected software components. A reconfiguration man-
ager guides the reconfiguration tasks by instantiating new VMs or destroy-
ing/repairing existing VMs. This reconfiguration manager may also execute ar-
chitectural changes to the application by adding new components or removing
existing components hosted on specific VMs. After the creation of new compo-
nents due to the instantiation of a new VM or to components addition requests,
the protocol is in charge of starting all components in the correct order accord-
ing to the architectural dependencies. Each VM embeds a local reconfiguration
agent (agent for short in the rest of this dissertation). Each agent interacts with
the other remote agents. For each component, the VM agent tries to satisfy its
required services by connecting them to their providers in order to finally start
the component. The component cannot be started before the components on
which it depends for mandatory imports. The supplier of the service can be
hosted on the same VM or on another VM. When an agent receives a compo-
nent removal or a VM destruction request from the reconfiguration manager,
it tries to stop and unbind all the components hosted on the VM. A compo-
nent cannot stop before all partner components connected to it have unbound
themselves. To exchange messages and bind/start/unbind/stop components,
the VMs communicate together through a publish-subscribe messaging system.
The protocol is fault-tolerant in the sense that it enables the detection of VM fail-
ures that occur to a running application and repair them. When a VM failure
occurs, the protocol notifies the VMs that are impacted. The protocol supports
multiple failures. It always succeeds in finally reconfiguring the application
at hand and stopping/starting all components. Our management protocol im-
plies a high degree of parallelism. Hence, we decided to use formal methods
and tools to specify, verify the protocol, and ensure that it preserves important
architectural invariants (e.g., a started component cannot be connected to a stopped
component) and satisfies certain properties (e.g., each VM failure is followed by a
new creation of that VM). The protocol was specified using the specification lan-
guage LOTOS NT (LNT) and verified with the CADP verification toolbox. For
verification purposes, we used 600 hand-crafted examples (application models
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and reconfiguration scenarios). For each example, we generated the Labelled
Transition System (LTS) from the LNT specification, and we checked on them
about 40 properties that must be respected by the protocol during its applica-
tion. To do so, we used the model checking tools available in the CADP toolbox.
These formal techniques and tools helped us to improve the protocol by (i) iden-
tifying two important issues that we detected, and by then (ii) correcting them
in the corresponding Java implementation which was written at the same time
as the specification by another partner from the OpenCloudware project.

4.1 Reconfiguration Protocol

This section successively presents the application model, the protocol partic-
ipants (i.e., the reconfiguration manager, the publish-subscribe messaging sys-
tem, and the reconfiguration agents), the protocol itself including the different
possible reconfiguration operations, and an overview of the Java implementa-
tion.

4.1.1 Application Model

In this section, we first introduce an abstraction of the model, which is suf-
ficient for describing the protocol principles. The real model exhibits more de-
tails, such as port numbers, URLs, and other implementation details. The model
we use here is used for reconfiguring distributed cloud application. Its primary
role is to keep track of the VMs and components currently deployed in a cloud
application.

Distributed cloud applications are composed of a set of interconnected
software components hosted on different virtual machines (VMs). Each one
of these components is willing to provide services via exports and/or require
services via imports. Ports are typed and matched when they share the same
type. In fact, each import requires an export with the same type for being
satisfied. An export can provide its service to several components and can
thus be connected to several imports. An import should be connected to an
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export, supplied by a component hosted on the same machine (local binding)
or a component hosted on another machine (remote binding). Each import
may be mandatory or optional. A mandatory import represents a service
required by the component to be functional. Therefore, if the component needs
mandatory imports, it cannot be started before all its imports are satisfied (i.e.,
all mandatory imports are connected to started components). On the other side,
an optional import is a service needed by the component, but not necessary
for starting it. When a component has an optional service, it can be started
before the component that provides it, which makes our model supports
circular dependencies that involve at least one optional import. Hence, the
connection of an optional import may be achieved after the start-up of the
service requester and provider. Our protocol does not distinguish port types
during the port resolution and (un)binding phases, but does when starting /
stopping components.
The component used in this model has three states, namely, stopped, started,
and failed. Initially, when the VM is instantiated, all its hosted components
are stopped. For each component, once all its mandatory imports are bound to
started components, the component can be started. Reversely the component
must stop when at least one of the components to which it is connected through
mandatory import requires stopping. When the VM fails, all its components
are failed.

Figure 4.1: Example of an application model (before binding ports)
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We present in Figure 4.1 an example of an application model composed of three
VMs. The first one (VM1) hosts one component C1 that has a mandatory import
that is S1. Therefore, it cannot be started before the start-up of the S1 provider.
The second VM (VM2) hosts two components, which are C2 and C3. C2 pro-
vides three services that are S1, S2, and S3. It has an optional import that is
S4. Thus, it can be started immediately before the start-up of S4 provider. C3
needs a mandatory service S3. Therefore, it cannot be started before the start-up
of this service provider. The third VM (VM3) hosts one component C4, which
does not require any service. Therefore, it can be started immediately.

Figure 4.2: Example of an application model (after binding ports)

Figure 4.2 shows how C1 is connected to C2 via the mandatory import, S1 (re-
mote binding). Therefore, it cannot start before the start-up of C2. C2 needs
only an optional import, named S4, and provided by C4 and thus, it can be
started immediately. However, it cannot be connected to C4 before the start-up
of this last one, which prevents to have a started component bound to a stopped
one. C3 is connected to C2 via a mandatory import (local binding). Therefore, it
cannot start before the start-up of C2. Finally, C4 does not require any service.
Therefore, it can be started immediately.

4.1.2 Architectural Invariants
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As stated before, the architectural invariants must hold for any reconfigura-
tion of distributed cloud applications. We present below the set of invariants
that we defined to preserve the application consistency.

– there are no circular dependencies through mandatory imports;
– a component cannot be started before the component it depends on for

mandatory imports;
– a started component cannot be connected to a stopped component;
– there is no component connected to failed or removed components.

The satisfaction of these invariants during the application execution is an im-
portant goal in the context of cloud applications.

4.1.3 Protocol Participants

The management protocol consists of three following participants: the
reconfiguration manager (RM), virtual machines (VMs), and the publish-
subscribe communication messaging system (PS), depicted in Figure 4.3.

4.1.3.1 Reconfiguration Manager (RM)

The RM is responsible for reconfiguring the application. It is used to per-
form two main roles: (1) it guides the application reconfiguration by succes-
sively sending reconfiguration operations, which are described in a reconfigu-
ration scenario and indicate changes to perform on the application. Namely, the
reconfiguration operations are instantiating a new VM, destroying an existing
VM, repaired a failed VM, adding a new component, and removing an exist-
ing component. (2) The RM is also in charge of repairing each VM failure by
creating a new instance of the failed VM when a failure is detected.

4.1.3.2 Virtual Machine (VM)

Each VM is associated with a reconfiguration agent (agent for short in the
rest of this dissertation). Each agent interacts with the other participants and ef-
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Figure 4.3: Protocol participants: reconfiguration manager, VMs, and publish-
subscribe messaging system

fectively manages its own VM. It has certain goals to achieve, such as connect-
ing bindings and starting components in response to the VM instantiation or
the adding reconfiguration operations received from the RM. The agent should
also disconnect bindings and stop components upon reception of a destruction
VM or component removal operations from the RM.

4.1.3.3 Publish-Subscribe messaging system (PS)

The PS supports the exchange of communications among all VMs. When it
receives a message containing some information (e.g., binding details, compo-
nent state) from a VM, it transfers it to the VMs that need that information. In
order to ensure that this is done, the PS is equipped with a set of FIFO buffers (a
buffer for each VM). A buffer for each new VM is added to the PS once that VM
is instantiated to the application. Once an existing VM is destroyed from the ap-
plication, its buffer is immediately removed from the PS. Each buffer is basically
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used to store the messages that are sent to its VM and that can contain useful
information for the start-up or shutdown. We assume that transferred mes-
sages are never lost during this communication. The PS is also equipped with
two topics 1: (i) an export topic where a component subscribes its imports and
publishes its exports, and (ii) an import topic where a component subscribes its
exports and publishes its imports. We show in Section 4.1.4.1 why this double
subscription/publication is required.

4.1.4 Protocol Description

We explain in this section how the protocol works in order to perform its
main goal, which is to reconfigure dynamically distributed cloud applications
by instantiating new VMs/destroying existing VMs, adding a new component
to an existing VM/removing a component from its hosting VM, and repairing
failures. We detail how it works in each of these situations.

4.1.4.1 Start-up

The first goal of an agent is to start all the local components when instan-
tiating a new VM or when adding a component to an existing VM. The agent
behavior, illustrated in Figure 4.4, aims to start each component having manda-
tory and/or optional imports. First, when the agent receives an add component
request from the RM (➊), it checks the presence of exports and import for that
component. If the component provides services, it subscribes to the import topic
and then publishes each of these services to the export topic (➋). Then, the agent
reacts following the list of imports.

No import

If the component does not have any import, it starts immediately (➐) and
then, sends a started message to the PS (➑) to notify it about its new state that

1. A topic is a logical channel where messages are published and subscribers to a topic re-
ceive messages published on that topic.
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Figure 4.4: The agent behaviour when adding a new component: (i) without
imports; (ii) with, at least, a mandatory import; and (iii) with, only optional
imports
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is started.

Mandatory import

To be functional, the component expects that all its mandatory imports will
be connected to exports with the same types provided by started components.
The service provider can be a component hosted on the same VM (local) or on
another VM (remote). For each mandatory import, the component subscribes
to the export topic and then publishes the import to the import topic (➌). When
the PS receives the publication message, it checks the import topic. If it does
not find any provider for the service, that message is deleted. Otherwise, if the
PS finds more than one service provider, it picks one randomly. Then, it sends
a message containing binding details and provider state to the component. The
import can connect to the service provider (➎) upon reception of that message
from the PS (➍). Finally, the agent sends a binding message (➏) to the PS inform-
ing it about the connection to the service provider. Every time the component
receives a message containing binding details/and or component states, it veri-
fies the provider state and if all mandatory imports are connected. If it finds that
all its mandatory imports are connected to started components, the VM agent
starts the component (➐) and then, sends a started message to the PS notifying
it about its new state that is started (➑).

Optional import

When the component has only optional imports, it can immediately start
even if these imports are not satisfied (➒) and send a started message to the PS
( 10 ). Then, for each optional import, it subscribes to the export topic and pub-
lishes the import to the import topic ( 11 ). Upon reception of a message with
binding details and component state ( 12 ), the import binds ( 13 ) to this compati-
ble export and then sends a binding message ( 14 ) only if the component state is
started.

When the component has several optional imports and at least one manda-
tory import, it cannot start before satisfying the mandatory import (bind it to
the service provider and the partner component has been started).

When the RM guides the application reconfiguration by instantiating a new
VM, a buffer for this VM is added to the list of buffers contained in the PS.
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The agent tries to start all components hosted on the added VM. For this, it
considers each component hosted on the new VM like a new component that
will be added to an existing VM.

Importance of the double subscription/publication

To illustrate how the PS is used for resolving port dependencies and
start/stop components, we focus on two concrete scenarios for deploying a part
of the application presented in Figure 4.1. This part includes only VM1 and
VM2, where VM1 contains C1 and VM2 contains only C2. In the first scenario,
we instantiate VM1 and then VM2 (see Fig. 4.5), whereas they are instantiated
in the other way round in the second scenario (see Fig. 4.6).

1. First scenario: Instantiating VM1 then Instantiating VM2 When VM1 is
instantiated, C1 requires a mandatory import and does not provide any
service. Therefore, it subscribes to the export topic (A1.1) and then pub-
lishes its import to the import topic (A1.2). The PS receives the publication
message, checks the import topic, but it does not find a provider of this re-
quired service (there is no component subscribed to the import topic with
the S1). The publication message is deleted. When VM2 is instantiated,
C2 requires an optional import and can, therefore, be started immediately
(A2.1). Its state changes to started. Then, it subscribes to the export topic
and publish its import to the import topic. C2 provides three services with
types S1, S2, and S3. Therefore, for each export, it subscribes it to the im-
port topic (A2.2) and then publishes it with its state to the export topic
(A2.3) (we show only the S1 service for simplifying the Figure 4.5). The PS
receives the publication message corresponding to S1 from the VM2 agent,
checks the export topic and finds that C1 hosted on VM1 has required this
service (C1 has subscribed to the export topic). Hence, a message with
binding details and C2 state is added to VM1 buffer (PS.1). Upon recep-
tion of this message, the C1 component is bound to the C2 component
(A1.3). The state of C2 component is started (8). Therefore, VM1 agent
starts the C1 component (A1.4). The application is fully operational.

2. Second scenario: Instantiating VM2 then Instantiating VM1 When VM2
is instantiated, the C2 component has only an optional import. It is, there-
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Figure 4.5: Instantiating VM1 then Instantiating VM2

fore, started immediately (A2.1) and its state changes to started. C2 pro-
vides three exports with types S1, S2, and S3. So, for each export, it sub-
scribes it to the import topic (A2.2) and then publishes it with its new
state (started) to the export topic (A2.3). The PS receives the publication
message corresponding to S1 from the VM2 agent, checks and does not
find any component that requires it. Therefore, the publication message
is deleted. When VM1 is instantiated, C1 component requires a manda-
tory service whose type is S1. Therefore, it subscribes to the export topic
(A1.1) and then publishes its import to the import topic (A1.2). When PS
receives the publication message from the VM1 agent, it checks the import
topic and finds that C2 has provided the S1 service (it has subscribed to
the import topic). So, it notifies VM2 that here is a component (C1) hosted
on VM1 that needs S1 (PS.1). VM2 receives the notification message, so it
publishes C2 export and state, which is started (A2.4). The PS forwards
this message to the VM1 agent (PS.2), and the C1 component can finally
be bound to the C2 component (A1.3) and started (A1.4).
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Figure 4.6: Instantiating VM2 then Instantiating VM1

4.1.4.2 Shutdown

We describe in this section the second goal of the management protocol
which consists in removing existing components from a VM or destroying an
existing VM from a running application.

Removing a component

When the RM requires the removal of a component from its VM, it sends a
remove component request to the agent of the VM that contains the component.
Upon reception of the request, the agent tries to stop the component and then
remove it without violating any architectural invariants (e.g., a started compo-
nent cannot be connected to a stopped component). Most importantly, the way
to stop a component depends on its list of exports (see Fig. 4.7). We distinguish
the two following cases:

1. Empty exports list. When the component does not provide any service, it
stops immediately (➎). Then, it unbinds all its connections (➏) and sends
an “unbind confirmed" message for each import (➐).
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2. Export list with at least one export. When the component provides ser-
vices, its VM agent cannot stop it before that all components bound to
it through mandatory imports stop and then unbind in order to restore
consistency of the whole application. Components bound to it through
optional imports, need only to unbind without stopping. To do so, for
each export, it unsubscribes from the import topic (➋) and then sends a
message “ask to unbind" to the PS (➌). Then, it waits until all components
bound to it through mandatory imports disconnect. Components bound
to it through optional imports need only to disconnect. When the PS re-
ceives an “ask to unbind" message, it transmits it to all components sub-
scribed to that export. The PS notifies the component that need to stop
each time a component connected to it has unbound by sending an “un-
bind confirmed" message (➍). Once all components, connected to it, have
effectively unbound, it can finally stop itself (➎), unbind all its imports
(➏), and send an “unbind confirmed" message to the PS (➐).

Asking to unbind a component

When a component receives an “ask to unbind" message (➊) (see Fig. 4.8),
it can remain in the same state and then unbinds directly if it is bound
through an optional import (➎). If it is bound through a mandatory import,
the protocol handles it as done to the component that needs to be removed.
The only difference between stopping a component that will be removed and
a component that receives an “ask to unbind" message is that, the second one
should not unsubscribe from the import topic if it provides exports. Moreover,
after unbinding, it publishes its import in order to connect to another export
proposed by the publish-subscribe system (➐).

The component shutdown implies a backward propagation of “ask to un-
bind" messages and, when this first propagation ends (on components with no
export or optional imports only), a second forward propagation of “unbind con-
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Figure 4.7: The agent behavior when removing a component

firmed" messages starts to let the components know that the disconnection has
been actually achieved.

When the RM requires destroying a VM, it sends a destruction VM request
to the VM agent. This agent must properly stop all the components hosted on
that VM as well as all components bound to them. Therefore, for each compo-
nent hosted on the VM that will be destroyed, it behaves as if it has received
a remove component request. Once all components are removed, the VM is
finally destroyed.

4.1.4.3 VM Failures
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Figure 4.8: The agent behavior when stopping a component

VM failures and component failures can occur at any time to a running ap-
plication (e.g., during a reconfiguration). We present in this section only the VM
failure. A component failure is a particular case of a VM failure. When a VM
fails, all its hosted components stop unexpectedly without alerting any partner
components. Therefore, we can be in a situation where started components are
connected to failed components. In order to restore the application consistency
(i.e., architectural invariants), VM failures must be handled immediately. We ex-
plain in this section how the protocol takes into account VM failures and how it
works to manage them (Fig. 4.9). The protocol also supports the case of multiple
failures.

When a VM is instantiated, its agent interacts with the RM by periodically
sending an “alive" message. The RM is configured to receive this message pe-
riodically from each agent. As long as the RM receives these “alive" messages
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from each agent within a specific delay, it considers that its VM is working cor-
rectly and still alive [22] (➊). Once the RM does not receive one of these “alive"
messages from an agent before the delay elapses, it assumes that its VM has
failed (➋). In that case, it alerts the PS (➌) and then starts the repair phase by
creating a new instance of the failed VM (➍). The new VM behaves as if the
machine is instantiated for the first time (see Section 4.1.4.1).

Figure 4.9: The RM behavior when detecting a VM failure

Figure 4.10 shows that when the PS receives an “alert failure" message from
the RM (➎), it unsubscribes each failed component exporting services from the
import topic to avoid that other components try to connect to it (➏). Then, it
warns the other VMs of this failure by:

– sending messages notifying all components bound to the failed compo-
nents about the VM failure and asking them to unbind (➐). When an
agent receives this kind of message, it stops immediately the impacted
component if it is bound through a mandatory import without waiting
the disconnection of components bound to it. The impacted component
remains in the same state if it is bound through an optional import. Then,
it unbinds it and tries to connect it to another import provider in order to
restart the component as presented in Section 4.1.4.1;
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– sending an “unbind confirmed" message to each component to which a
failed component was connected via mandatory or optional import (➑).
The reception of this message by a component that needs to stop indicates
the disconnection has been actually achieved.

Figure 4.10: The PS behavior when receiving an alert failure message

When a component fails, the agent of the VM on which it is hosted informs
the PS and then creates a new instance of the failed component. The new com-
ponent behaves like a component added to the application for the first time (see
Section 4.1.4.1). When the PS receives the component failure alert, it reacts in
the same way as for each component hosted on a failed VM.

4.1.5 Example of a Component Removal/Addition and VM Failure

This section successively introduces an example of removal and addition
of a component to the application showed in Figure 4.11, as well as an ex-
ample of VM failure. In this example, we begin with a running application
where all components are connected and started. The application is com-
posed of three VMs. The first one (VM1) hosts two components Apache1 and
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Apache2. Apache1 is bound to Tomcat, which is hosted on the second VM
(VM2), through the mandatory import Workers1. Apache2 is bound to the
same Tomcat server through the optional import Workers2. Finally, Tomcat is
bound to a MySQL database named MySQL and hosted on the third VM (VM3)
through the mandatory import data.

Figure 4.11: Example of a running application composed of connected and
started components

4.1.5.1 A Scenario of Component Removal

As it is showed in Figure 4.12, the RM requests the VM2 agent to remove
Tomcat (RM.1). Once VM2 receives the request, it aims to stop the Tomcat com-
ponent before removing it. To do so, all components connected to the Tomcat
must be stopped before. Tomcat provides two services Workers1 and Workers2.
Thus, for each export, it unsubscribes from the import topic (A2.1 and A2.3)
and sends messages to the PS asking it to unbind all components connected to
it through Workers1 and Workers2 (A2.2 and A2.4). The PS receives these mes-
sages, checks the export topic and finds that Apache1 (Apache2 respectively)
hosted on VM1 imports Workers1 (Workers2 respectively) from Tomcat. There-
fore, it sends “ask to unbind" messages to Apache1 and Apache2 (PS.1 and PS.2).
When VM1 receives these messages, Apache1 does not provide any service and
it is bound to the Tomcat component through a mandatory import, so it is im-
mediately stopped (A1.1). Then, it is unbound from Tomcat, sends an “un-
bind confirmed" message to the PS (A1.2), and publishes its import to the import



4.1. Reconfiguration Protocol 90

topic (A1.3). VM2 receives that message from the PS (PS.3) but cannot stop the
Tomcat component because Apache2 is still connected to it. Apache2 is con-
nected to the Tomcat component through an optional import. Thus, it is only
unbound from Tomcat without stopping, then sends an “unbind confirmed" mes-
sage to the PS (A1.4), and publishes its import to the import topic (A1.5). The
PS checks the import topic, but there is no component that provides Workers1
or Workers2. VM2 receives the “unbind confirmed" message from the PS (PS.4).
Tomcat has no component bound to it any more, so it is stopped (A2.5). Tom-
cat is unbound from MySQL, and the VM2 agent sends an “unbind confirmed"
message to the PS (A2.6). The PS finally sends that message to the MySQL com-
ponent (PS.5).

Figure 4.12: The participants behavior when removing the Tomcat component
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4.1.5.2 A scenario of component addition

In this section, an example of component addition to an existing VM is pre-
sented. We show in Fig. 4.13 how to add a new instance of Tomcat to VM2 after
removing it in Section 4.1.5.1.

VM2 receives the Tomcat addition request from the RM (1). The Tom-
cat component requires a mandatory service whose type is Data. Therefore,
it subscribes to the export topic and then publishes its import to the import
topic (A2.1). Tomcat provides two services Workers1 and Workers2. Therefore,
for each export it subscribes to the import topic and then publishes it to the
export topic (A2.2 and A2.3). The PS receives the first message from the VM2
agent, checks the import topic and finds that only MySQL provides a Data ser-
vice (it has subscribed to the import topic). The PS notifies VM3 that there is
a Tomcat that needs Data (PS.1). When Tomcat publishes its exports, the PS
forwards the binding details and Tomcat state to Apache1 because it has sub-
scribed to the export topic for Workers1 (PS.2) (Apache2 respectively because
it has subscribed to the export topic for Workers2 (PS.3)). When VM1 receives
the binding details and Tomcat state, Apache1 connects to Tomcat (A1.1) but it
cannot start because the Tomcat state is stopped. Apache2 cannot connect to
Tomcat because it is started and Tomcat is still stopped. After receiving the no-
tification message from the PS about the Tomcat component need (PS.1), VM3
sends the MySQL binding details and state that it is started (A3.1). The PS re-
ceives the start-up information from the VM3 agent, checks and finds that the
Tomcat component has required this service (it has subscribed to the export
topic). Hence, a message with binding details and MySQL’s state is added to
VM2 buffer (PS.4). Upon reception of this message, the Tomcat component is
bound to the mySQL component (A2.4) and the VM2 agent starts the Tomcat
component (A2.5). Then, the Tomcat component publishes a started message
containing its new state (A2.6). The PS receives that message and forwards
it to VM1 (PS.5). Upon reception of this message, the VM1 agent starts the
Apache1 component (A1.2). Apache2 can finally connect to the Tomcat compo-
nent (A1.3).
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Figure 4.13: The participants behavior when adding the Tomcat component

4.1.5.3 A scenario of VM Failure repair

We present in the remainder of this section an example of failure/repair of
VM2 (see Fig. 4.14). When VM2 fails, Tomcat is suddenly stopped without alert-
ing the components bound to it. Therefore, Apache1 and Apache2 that are
started are bound to a stopped component. When the RM detects the failure
of VM2 (RM.1), it immediately alerts the PS (RM.2). Then, the RM creates a new
instance of VM2 (RM.3).
When the PS receives the alert message from the RM announcing the VM2 fail-
ure, it unsubscribes Tomcat from the import topic (PS.1). Then, it checks the
export topic to find the impacted components. Thus, it finds that Apache1 and
Apache2 are connected to Tomcat. Therefore, it notifies them about the fail-
ure (PS.2 and PS.3). When VM1 receives the notification messages, Apache1
does not provide any service and it is connected to Tomcat through a manda-
tory import, so it is immediately stopped (A1.1). It is also unbound from the
Tomcat component, sends an “unbind confirmed" message to the PS (A1.2), and
then publishes its import to the import topic (A1.3). Apache2 does not pro-
vide any service and is connected to the failed component through an optional
import so it is unbound from Tomcat without stopping, sends an “unbind con-
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firmed" message to the PS (A1.4), and then publishes its import to the import
topic (A1.5).
After the creation of a new instance of VM2, each agent starts the components
impacted by the failure as presented in Section 4.1.5.2.

Figure 4.14: The participants behavior when detecting the VM3 failure

4.2 Protocol Specification and Verification

Our management protocol implies a high degree of parallelism. Hence, we
decided to use formal techniques and tools to specify and verify it. We ensure
that it preserves important architectural invariants (e.g., a started component
cannot be connected to a stopped component) and satisfies certain properties
(e.g., each VM failure is followed by a new creation of that VM). The protocol
was specified using the specification language LOTOS NT (LNT) [42], which is
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an improved version of LOTOS [80], and verified with the CADP verification
toolbox [64]. For verification purposes, we used 600 hand-crafted examples
(application models and reconfiguration scenarios). For each example, we gen-
erated the Labelled Transition System (LTS) from the LNT specification. We
checked on them about 40 properties that must be respected by the protocol
during its application. To do so, we used the model checking tools available
in the CADP toolbox. These formal techniques and tools helped us improve
the protocol by (i) detecting several issues and bugs, and by (ii) correcting them
systematically in the specification and also in the corresponding Java imple-
mentation.

4.2.1 Protocol Specification

Thr LNT processes are built from actions, choices (select), parallel compo-
sition (par), looping behaviors (loop), conditions (if), and sequential compo-
sition (;). The communication between the protocol participants is carried out
by rendezvous on a list of synchronized actions included in the parallel com-
position (par). The number of lines of processes depends on the size of the
application model (the number of VM, component and ports), which represents
the input of the protocol (see Fig. 4.15). Processes are generated for each input
application model 2, because a part of the LNT code depends on the number of
VMs and on their identifiers. Therefore, the number of lines for processes grows
with the number of VMs in the application model. The specification of the pro-
tocol is described in the "reconfig.lnt" file and consists of three parts: data types
(200 lines), functions (800 lines), and processes (1,500 lines). The number given
above corresponds to an example with three VMs.

2. We developed an LNT code generator in Python, named reconf.py, for automating this
task.
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Figure 4.15: Tool support

4.2.1.1 Data types

They are used to describe the distributed cloud application model (VMs,
components, ports), the communication model (binding between components,
messages, buffers, and topics), and the component states. We present below a
few examples of data types. The application model (TModel) consists of a set
of virtual machines (TVM). Each VM has an identifier (TID) and a set of compo-
nents (TSoftware). Each component (TComponent) has an identifier (TID), a
set of imports (TImport), a set of exports (TExport), and a state (TState).

type TModel is

set of TVM

end type

type TVM is

tvm (idvm: TID, cs: TSoftware)

end type

type TSoftware is

set of TComponent

end type

type TComponent is
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tcomponent (idcomp: TID, imports: TImport,

exports: TExport, state: TState)

end type

4.2.1.2 Functions

They apply on data expressions. Functions are used to define all the compu-
tations necessary for reconfiguration purposes (e.g., extracting information from
the application, describing buffers and basic operations on them like adding/re-
trieving messages, changing the state of a component, keeping track of the start-
ed/unbound components, verifying the satisfaction of the imports, etc.). Let us
show, for illustration purposes, two functions that aim at removing (adding,
resp.) a message from (to, resp.) a buffer by using the FIFO strategy. This strat-
egy consists in removing the message from the beginning and adding a new
message at the end of the buffer.

– The remove function takes as input a buffer (q) whose type is (TBuffer)
that is composed of an identifier (TID) and a list of messages (TMessage).
If the buffer is empty, nothing happens. When the buffer is not empty, the
first message is removed.

function remove_MSG (q: TBUFFER): TBUFFER is

case q in

var name: TID, hd: TMessage, tl: TQueue in

tbuffer(name,nil)

-> return q

| tbuffer(name,cons(hd,tl))

-> return tbuffer(name,tl)

end case

end function

– The add function takes as input the buffer (q) and the message that will
be added. If the buffer is empty, the message is added. When the buffer
is not empty, the function calls another function that adds the message to
the end of the buffer tail, whose type is (TQueue).

function add_MSG (m: TMessage, q: TBUFFER): TBUFFER is

case q in
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var name: TID, hd: TMessage, tl: TQueue in

tbuffer(name,nil)

-> return tbuffer(name,cons(m,nil))

| tbuffer(name,cons(hd,tl))

-> return tbuffer(name,cons(hd,add_queue(m,tl)))

end case

end function

function add_queue (m: TMessage, tl_q: TQueue): TQueue is

case tl_q in

var hd: TMessage, tl: TQueue in

nil -> return cons(m,nil)

| cons(hd,tl) -> return cons(hd,add_queue(m,tl))

end case

end function

4.2.1.3 Processes

They are used to specify the participants of the protocol (the reconfiguration
manager, the publish-subscribe messaging server, and an agent per VM). The
reconfiguration manager guides the application reconfiguration. Each agent
drives the behavior of its VM and encodes most of the protocol functionality in
order to start/stop all the components hosted on its VM. The publish-subscribe
messaging system assures the communication between all VMs. It is equipped
with a set of FIFO buffers (a buffer for each VM in the application). Each partic-
ipant is specified as an LNT process and involves two sorts of actions:

– actions which correspond to interactions with the other participants such
as PStoAGENT that presents the message transferred from the publish-
subscribe messaging system processes to the agent processes, AGENTtoPS
that presents the message transferred from the agent processes to the
publish-subscribe messaging system;

– actions which tag specific moments of the protocol execution such as
the VM instantiation/destruction, the component start-up/shutdown, the
component addition/removal, the effective binding/unbinding of an im-
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port to an export, the failure of a VM, etc.
For illustration purposes, we present the LNT process main (named MAIN)

generated for an example of application model involving three VMs. The LNT
parallel composition is described with par followed by a set of synchroniza-
tion actions that must synchronize together. Two processes synchronize if they
share the same action. We can see that the agents do not interact directly to-
gether and evolve independently from one another. The VM agents commu-
nicate together through the PS. Each agent is identified using the VM name
and synchronizes with the PS on AGENTtoPSi action when sending a mes-
sage to the PS and PStoAGENTi action (i = 1, 2, 3) when receiving a message
from it. Each agent defines actions for port binding (BINDCOMPO), for start-
ing a component (STARTCOMPO), for stopping a component (STOPCOMPO), etc.
The PS is initialized with a buffer per VM and two topics for imports/exports
(ListBuffers). The RM process is composed in parallel with the rest of sys-
tem and synchronizes with the other processes on many actions. For example,
the RM defines actions for VM creation and destruction (INSTANTIATEVMi (i =
1, 2, 3) and DESTROYVM, resp.). The RM guides also the application reconfigura-
tion by adding and removing components from VMs (ADDCP and REMOVECP).
When the RM detects a VM failure (FAILURE), it alerts the PS by an ALERTPS

action.

All these actions are used for analyzing the protocol as we will see in the
next subsection.

process MAIN [INSTANTIATEVM1:any, DESTROYVM:any, STARTCOMPO:any,

ADDCP:any, REMOVECP:any, ..] is

par INSTANTIATEVM1, ..., DESTROYVM, ADDCP, REMOVECP, FAILURE,

ALERTPS in

(* the reconfiguration manager *)

RM [INSTANTIATEVM1, ..., DESTROYVM, ADDCP, REMOVECP,

FAILURE, ALERTPS] (appli)

||

par AGENTtoPS1, PStoAGENT3, FAILURE, ... in

par

(* first virtual machine, VM1 *)

Agent[INSTANTIATEVM1, AGENTtoPS1, PStoAGENT1,
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DESTROYVM, STARTCOMPO, BINDCOMPO, STOPCOMPO,

UNBINDCOMPO, ADDCP, REMOVECP, FAILURE] (vm1)

||

(* second virtual machine, VM2 *)

Agent[...] (vm2)

||

(* third virtual machine, VM3 *)

Agent[...] (vm3)

end par

||

(* publish-subscribe messaging system *)

PS[AGENTtoPS1, ..., PStoAGENT3, ALERTPS] (?ListBuffers)

end par

end par

end process

4.2.2 Protocol Verification

We apply the LNT specification of the protocol to a set of 600 examples (ap-
plication models and reconfiguration scenarios) in order to extensively validate
our protocol. When achieving these tasks, we paid much attention to cover
very different examples, in particular pathological and corner cases. Hence,
this large set of examples makes us very confident in the correctness of the
protocol at hand. Proving the accuracy of our protocol using theorem prov-
ing techniques would be a very interesting and ambitious objective, and would
complement the validation of the reconfiguration protocol using model check-
ing.
We rely on the state-of-the-art verification tools provided by CADP to check that
the protocol respects some important properties. Indeed, from the specification
and an example, CADP exploration tools generate an LTS that describes all the
possible executions of the protocol for each example of application model and
scenario. Moreover, we specified 40 properties in MCL [102], the temporal logic
used in CADP. MCL is an extension of alternation-free µ-calculus with regu-
lar expressions, data-based constructs, and fairness operators. We use model
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checking to verify that the properties are respected during the protocol execu-
tion. There is an exception that when a VM failure occurs, some properties are
not respected (e.g., a started component can be connected to a stopped one). The
model checker automatically says whether these properties are not verified on
the LTS. When a bug is detected by model checking tools, it is identified with a
counterexample (a sequence of actions violating the property). We automated
the verification of the properties using scripts that are generated from the LNT
code generator (see Fig. 4.15).
We distinguish two kinds of properties: (i) those verifying that the final objec-
tives of the protocol behavior are executed (Prop. 1 below for instance) and
guaranteeing that the architectural invariants for a reconfigurable application
are always satisfied (Prop. 2), (ii) and those helping us to identify more precisely
the source of error when one of the original properties was violated by verifying
that the progress/ordering constraints are respected (Prop. 3, 4, 5, and 6). Fol-
lowing the scenarios that we want to check, these properties belong to different
categories: properties dedicated to start-up scenarios (Prop. 1 and 2), destruc-
tion scenarios (Prop. 3), mixed scenarios (Prop. 4), and VM failure scenarios
(Prop. 5, and 6). We present in this section some concrete properties verified on
the application model showed in Figure 4.11:

1. All components are eventually started.

( µX . ( < true > true and [ not "STARTCOMPO !Apache1 !VM1" ] X ) )

and

. . .

and

( µX . ( < true > true and [ not "STARTCOMPO !MySQL !VM3" ] X ) )

This property is automatically generated from the application model be-
cause it depends on the name of all VMs and components hosted on each
VM.

2. A component cannot be started before the components on which it de-
pends for mandatory imports.

[
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( "nil" or

true* . "STOPCOMPO !Apache1 !VM1" .

(not "STARTCOMPO !Apache1 !VM1")* .

"STOPCOMPO !Tomcat !VM2"

) . (not "STARTCOMPO !Tomcat !VM2")* .

"STARTCOMPO !Apache1 !VM1"

] false

In the example of application showed in Figure 4.11, the Apache1 com-
ponent is connected to the Tomcat component on a mandatory import.
Therefore, we must never find a sequence where Apache1 is started be-
fore Tomcat, or a sequence where Apache1 is stopped, the Tomcat server is
then stopped, and Apache1 is started again before Tomcat. This property
is automatically generated from the application model because it depends
on the component and VM names in the application model.

3. All components hosted on a VM eventually stop after that VM receives a
destruction request from the DM.

[ true* . { DESTROYVM ?vm:String } ]

inev ( { STOPCOMPO ?cid:String !vm } )

This property does not depend on the application. It can be verified for
any application without knowing the name of VMs and components. Pa-
rameters can be related in MCL by using variables in action parameters
(e.g., vm for the virtual machine identifier and cid for the component iden-
tifier). This property shows the data-based features that are available in
MCL.

4. There is no sequence where an import (mandatory or optional) is bound
twice without an unbind in between.

[ true* .

"BINDCOMPO !Apache1 !Workers1" .

( not "UNBINDCOMPO !Apache1 !VM1" )* .

"BINDCOMPO !Apache1 !Workers1"
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] false

When a component is connected to another component through an import
(mandatory or optional), it cannot be bound again except if it is unbound
before.

5. There is no sequence with two VM instantiations without a failure or a
destroy in between.

[ true* .

"INSTANTIATEVM1" .

( not "FAILURE !VM1 or DESTROY !VM1" )* .

"INSTANTIATEVM1"

] false

When a VM is instantiated, it cannot be instantiated again except if this
VM is destroyed or failed.

6. A failure action in the VM is eventually followed by an alert of this failure

[ true* . { FAILURE ?vm:String } ] inev ( { ALERTPS !vm } )

This property does not depend on the application. The variable vm (the
virtual machine identifier) used as first parameter of FAILUREmust be the
first parameter in ALERTPS. This property is verified for all applications
and all VM names.

This property and property 3 use the macro inev (M), which indicates
that a transition labeled with M eventually occurs. This macro is defined
as follows:

macro inev (M) = mu x .( < true > true and [ not M ] X )

end macro

4.3 Experiments
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We conducted our experiments on more than 600 hand-crafted examples on
a Pentium 4 (2.5GHz, 8GB RAM) running Linux. Each example consists of an
application model and a specific scenario (a sequence of instantiate/destroy VM
operations and add/remove components to/from VMs). From this input, the
CADP exploration tools generate the corresponding LTS by enumerating all the
possible executions of the system. Finally, the CADP model checker is called,
providing as results a set of diagnostics (true or false). The model checker re-
turns true if a property is verified. When a property is not satisfied, it returns
false as well as a counterexample. We present in this section experiments that
summarize some of the numbers obtained when varying the number of VMs,
the number of reconfiguration operations, and the number of failures.

We present in Figure 4.16 (left) the size of the LTS (transitions) as well as
the time to execute the whole process (LTS generation and properties checking)
when we modify the application model. We only instantiate VMs without de-
stroying VMs and thus, the number of reconfiguration operations is the same as
the VM number. Increasing the VMs number leads to an increase of the number
of components and ports. Then, the more VMs and ports, the more parallelism
in the system and, therefore, the more messages exchanged among VMs. Fig-
ure 4.16 (left) shows how the LTS size grows exponentially when we slightly
increase the number of VMs in the application. The computation time scales
from a few minutes for applications with 1 VM and few ports to a few hours for
an application with 4 or more VMs.

Figure 4.16 (right) summarizes the results obtained for the same application
used to get results showed in Figure 4.16 (left) but with a destruction and re-
instantiation operations at the end of the scenario. The LTSs size and analysis
time increase in a remarkable way even when just adding one destruction op-
eration to the same application. This operation triggers a double propagation,
hence more exchanged messages between the PS and the agents.

Table 4.1 shows the size of the LTS (states and transitions) before and after
minimization (wrt. a strong bisimulation relation) as well as the time to execute
the whole process in the last column of the tables (LTS generation and mini-
mization on the one hand, and properties checking on the other). These results
are obtained for the application described in Figure 4.11, with an increasing
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number of failures (F). The more VMs fail, the more the LTS size and analysis
time increase.

Fortunately, our goal here was not to analyze huge systems (with poten-
tially many VMs) during the verification of the protocol but to find bugs in
the protocol. Indeed, most issues were found on small applications describing
pathological reconfiguration cases.

tr
a

n
si

ti
o

n
s 

n
u

m
b

e
r 

 

10 

     100 

 1000  

       0 

10 000  

   100 000 

   1 000 000 

  10 000 000 

1 

10 

100 

500 

200 

300 

400 

 g
e

n
e

ra
ti

o
n

 +
 v

e
ri

fi
ca

ti
o

n
  

ti
m

e
 (

m
:s

) 

LTS transitions generation + verification 

time 

3 4 5 6 0 

10 

     100 

 1000  

       0 

1 

10 

100 

500 

10 000  

   100 000 

   1 000 000 

  10 000 000 

2 1 

200 

300 

400 

 g
e

n
e

ra
ti

o
n

 +
 v

e
ri

fi
ca

ti
o

n
  

ti
m

e
 (

m
:s

) 
600 600  100 000 000  100 000 000 

3 4 5 6 0 2 1 

tr
a

n
si

ti
o

n
s 

n
u

m
b

e
r 

 

VMs number  VMs number  

Figure 4.16: Experimental results when increasing the number of VMs (left)
start-up scenario without failure, (right) start-up and destruction scenario with-
out failure

4.4 Problems Found and Corrected
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F LTS (states/transitions) Time (m:s)

raw minimized LTS gen. / Verif.

0 452,378/983,963 8,531/29,394 9:21 / 1:84

1 612,293/1,262,732 9,568/31,472 10:37 / 1:79

2 682,459/1,420,543 12,390/38,971 16:59 / 2:83

3 793,813/1,584,238 16,673/48,562 24:73 / 3:69

4 993,527/1,763,227 19,586/63,254 31:91 / 4:56

Table 4.1: Experimental results (with failures)

We have presented in Section 4.2 the specification and verification of our
protocol. Model checking tools permitted us to find bugs that were identified
by counterexample analysis. This allowed us to revise several parts and cor-
rect specific issues (e.g., adding some acknowledgement messages after bind-
ing/unbinding ports, starting/stopping components, etc ) in both the specifica-
tion and implementation that were written at the same time. During the veri-
fication steps, we detected two important issues that we corrected in the latest
version of the protocol. The implementation was systematically corrected. In
the remainder of this section, we focus on these two problems.

In the first version of the protocol, the RM was centralized and in charge of
creating VMs, starting and stopping components. Therefore, it kept track of the
states of components for each VM. To do this, the RM was informed every time
there was a change in the application. It communicated with all the agents by
exchanging messages in order to update the application after each change in
the component architecture (e.g., a component binds to another component, a
component changes its state). There was an overhead of messages transmitted
to and from the RM. We noticed during our experiments that even with simple
applications, CADP generated huge LTSs. We solved this drawback by propos-
ing a decentralized version of the protocol. The new version of the protocol
consists of an RM that is not in charge of starting or stopping components. The
RM guides only the application reconfiguration by instantiating, destroying,
and repairing VMs, or by adding and removing components from an existing
VM. It is part of the agent behavior to drive the component start-up/shutdown.
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The decentralized version of the protocol avoids additional, unnecessary mes-
sages exchanged between agents and the RM. This version guarantees more
parallelism and better performance in the corresponding implementation of the
protocol.

The second issue that we detected during the verification of the protocol is
in the way VMs are destroyed. Originally, when a component required to stop,
it was stopped and then all components bound to it were stopped. Stopping
components in this order induced started components connected to stopped
components. This violated the consistency of the component composition and
well-formedness architectural invariants. This bug was detected thanks to a
property stating that “ a component cannot be started and connected through an im-
port (mandatory or optional) to a stopped component ". Thus, we corrected this bug
by proposing another way to stop components. When a component needs to
stop, it requests to all components bound to it to unbind, and once it is done, it
can immediately stop. This implies first a backward propagation along compo-
nents bound on mandatory imports. Once this first propagation stops (a com-
ponent does not provide service or is connected only through optional imports),
we start a forward propagation during which components are actually stopped
and indicate to their partners that they have just stopped and unbound. This
double propagation, as presented in Section 4.1.4.2, is necessary for preserving
the component architecture consistency and for avoiding that started compo-
nents can keep on using stopped components.

4.5 Protocol Implementation

The protocol was implemented by another partner of the OpenCloudware
project in RoboConf [114]. Roboconf is a system for configuring, installing, and
managing complex legacy application stacks deployed on the cloud which dy-
namically evolve in time 3. We present in this section some implementation
details concerning the protocol. The core of the system of our implementation
is roughly 6K lines of Java code. It is based on an IaaS abstraction that allows

3. http://roboconf.net/fr/index.html
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to instantiate VMs on different IaaS layers (such as Amazon EC2 and Microsoft
Azure) and on RabbitMQ 4, which is an implementation of the AMQP stan-
dard 5. It is a message server, implementing the publish-subscribe messaging
system. It is mainly used for the communication between VMs and RM. An
AMQP communication system was chosen in order to have a reliable and asyn-
chronous communication system.

When the user requests the deployment of a new software instance, the RM
first contacts the IaaS API to check about the VM instance defined in the soft-
ware instance model. If the user asks to deploy the software application on an
already existing VM instance, the RM immediately sends the model to the VM.
Otherwise, the RM checks if the software type of the software instance has a VM
type defined. If so, the RM asks the IaaS to instantiate one VM of this kind. Oth-
erwise, the RM asks the IaaS to instantiate a VM from the default VM template.
When the RM asks the IaaS to instantiate a VM, it creates a message buffer on
the message server (implementing the publish-subscribe messaging server) for
that VM.

When the RM sends the software instance model to the VM instance, it seri-
alizes the software instance object and sends it to the message buffer of the VM
along with the configuration files (Puppet recipes for example). This part can
be done even when the VM is not running thanks to the messages stored in its
message buffer. When the VM boots, the agent starts, connects to the message
buffer and gets the message.

The agent on the VM gets the software instance model and the configuration
files associated with it. It checks what “connector” it has to use to perform the
operations for the software instance. A connector is a Java class that implements
the four operations: setup, update, start, and stop. A connector is independent
from any software it will install, it only does basic operations. The operations
related to the software are located in the configuration files. Each connector,
when calling a basic operation, transmits the configuration of the model (such
as variables and imported variables) to the packaging and configuration sys-
tem. This mechanism enables the user to separate actual operations on VM

4. http://www.rabbitmq.com/
5. http://www.amqp.org
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from binding details. Multiple connectors enable users to keep the original way
of installing and configuring the software. In addition, it also enables to cover
almost any kind of software: from software available in Linux repositories to
legacy software. A Puppet 6 connector was implemented in order to install and
update software on VMs. Puppet is one of the most known configuration sys-
tems. It provides a language and a program. The language enables to describe
the state of a system by describing its packages, files, and services.

When the installation is completed (software instances are installed on
VMs), each agent publishes its configuration (according to the exports) and sub-
scribes to other remote configurations (according to the imports) by using the
RabbitMQ API.

4.6 Conclusion

We have successively presented in this chapter the design, specification,
and verification of a novel reconfiguration protocol involving components dis-
tributed over several VMs. This protocol enables one to instantiate new VM-
s/destroy existing VMs and add a new component/remove an existent one.
Upon reception of one of these reconfiguration operations, each VM agent con-
nects/disconnects and starts/stops components in a particular order in order
to preserve the application consistency (i.e., architectural invariants), which is
quite complicated due to the high parallelism degree of this protocol. The pro-
tocol also supports the VMs failures. It detects failures and repairs them by
creating new instances of the failed VMs. We specified and verified our pro-
tocol using the LNT specification language and the CADP toolbox, which is
considered as very convenient for modeling and analyzing such protocols. We
used model checking techniques to verify 40 properties of interest on a large
number of application models and reconfiguration scenarios. The experience
was successful because we detected several issues that were corrected in the
corresponding Java implementation, which is established by another partner of
the OpenCloudware project. In particular, we deeply revised the part of the

6. http://docs.puppetlabs.com/
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protocol dedicated to the VM destruction and component shutdown.
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" The value of achievement lies in the achieving. "
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THis thesis proposes new techniques that aim at automatically monitoring
and updating complex distributed applications. Managing these applica-

tions is a challenging problem because the manual administration is no longer
realistic for complex systems. Thus, autonomic computing is a promising so-
lution for automating the administration functions, which focus particularly on
replicating virtual machines, destroying or adding them, and handling VM fail-
ures in the cloud. These operations are executed by different autonomic man-
agers considered as control loops. Each manager observes the application ex-
ecution, ensures a continuous monitoring, and immediately reacts to changes
by automatically executing reconfiguration tasks. Several managers can be de-
ployed to manage the same application and must make consistent decisions.
Nonetheless, using them without coordination may lead the system into in-
consistencies and error-prone situations (e.g., removing a server that will be
needed). As a consequence, the use of multiple managers (e.g., self-repair and
self-sizing managers) implemented in the same system requires taking globally
consistent decisions. Hence, a manager should be aware of decisions of all man-
agers before reacting. We present in this chapter our synthesis techniques for
generating a controller, which aims at coordinating several managers. The gen-
erated controller prevents every manager from violating global objectives of all
the managers. Our controller synthesis techniques ensure an asynchronous in-
teraction of all the managers with the generated controller, meaning that all the
messages transmitted from/to the managers (controller, resp.) are stored/con-
sumed into/from FIFO buffers.

More precisely, an autonomic manager is described using a formal model,
namely a Labelled Transition System (LTS). We defined a set of reaction rules
and regular expressions to specify the coordination requirements and interac-
tion constraints. As a consequence, each manager is not only able to manage
its internal behaviour but also its relationship with other autonomic managers,
which is achieved by the specification of the coordination requirements. Look-
ing at Figure 5.1, one can observe that our controller synthesis techniques rely
on an encoding of our inputs (LTS models and coordination requirements) into
the LNT process algebra. We particularly used the CADP compilers and mini-
mization tools (e.g., strong equivalence) to generate a reduced LTS from the LNT
specification. The generated LTS corresponds to all possible executions of the
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controller. It is worth noting that since we rely on formal techniques and tools,
all the verification techniques available in the CADP toolbox can be used for
validating the generated controller.

Once we have synthesized the controller LTS and we are satisfied by the
coordination requirements, Java code is generated using a code generator we
developed. This Java code is finally deployed and used for coordinating real
applications. In this chapter, we use a typical example of a N-tier Web appli-
cation as running example. We validated our approach on several variants of
this distributed application involving several instances of autonomic managers,
such as self-sizing or self-repair managers.

We emphasize that our approach covers the whole development process
from the expression of the requirements to the final implementation and de-
ployment of our solution.

Figure 5.1: Overview of our approach

5.1 Formal Models

In this part, we first introduce the abstract model that we used to repre-
sent an autonomic manager. Second, we propose reaction rules and regular
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expressions for specifying how the involved managers are supposed to interact
together through the controller that we want to generate. The managers models
and the coordination expressions are used as inputs to our synthesis technique
(see Section 5.2).

5.1.1 Autonomic Manager Model

Each autonomic manager is modelled as a Labelled Transition System (LTS),
which consists of a set of states and transitions that occur between those states.
Formally, an LTS is defined as follows:

Definition 4. A Labelled Transition System is a tuple defined as LTS = (Q, A, T, q0)

where Q is a finite set of states, A = A! ∪ A? is an alphabet partitioned into a set of
send and received messages, T ⊆ Q × A × Q is a transition relation, and q0 ∈ Q is
the initial state.

We refer to a send message m ∈ A!, which must be required and consumed
by another manager or by the controller, as m!. We refer to a received message
m ∈ A?, which is consumed by the actual manager, as m?. A transition that oc-

curs between two states is represented as q l
−→ q′ ∈ T where q, q′ ∈ Q and l ∈ A.

We assume that managers are deterministic, which can be easily obtained using
standard determinization algorithms [79].
Given a set of manager LTSs, where every manager is defined as (Qi, Ai, Ti, q0

i ),
we assume that each message should have a unique sender and a unique re-
ceiver: ∀i, j ∈ 1..n, i 6= j, A!

i ∩ A!
j = ∅ and A?

i ∩ A?
j = ∅. Furthermore, each

message is exchanged between two different managers: A!
i ∩ A?

i = ∅ for all i.
The uniqueness of messages can be achieved via renaming.

5.1.2 Coordination Requirements Specification

The backbone of our approach is the coordination of multiple managers,
handling the same system, using a generated controller. To do this, we use reac-
tion rules and regular expressions with their basic operators, such as sequence,
choice, and iteration, to describe the behaviour one expects from the controller.
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The generated controller aims at orchestrating the execution of the managers.
We define a reaction rule as a set of receptions followed by a set of emissions.
Basically, it expresses that when the controller receives a set of messages from
managers within a certain period of time (left hand part), it must send all the
messages specified in the second set (right hand part) once the period is expired.
We note that the real period will be chosen during the deployment phase, and
both sets of messages can be received and emitted in any order.

Definition 5. Given a set of managers {M1, . . . , Mn} with Mi = (Qi, Ai, Ti, q0
i ), a

reaction rule R is defined as a1, ..., am → b1, ..., bp where aj presents a message received
from a manager Mi (aj ∈ A?

i ) and bk presents a message emitted to a manager Ml

(bk ∈ A!
l) for 1 6 j 6 m and 1 6 k 6 p.

The specification of the behaviour one expects from the controller is ex-
pressed using a coordination expression C.

Definition 6. A coordination expression C is a regular expression over reaction rules
R:

C ::= R | C1.C2 | C1 + C2 | C∗
where C1.C2 represents a coordination expression C1 followed by C2, C1 +C2 represents
the choice between C1 and C2, and C∗ presents a repetition of C zero or several times.

It is worth noting that all participants, namely the autonomic managers
and the controller to be generated, communicate asynchronously using mes-
sage passing via FIFO buffers. Each participant is equipped with one input
buffer. Therefore, it consumes messages from its buffer and sends messages
that are putted at the input buffer of the message’s recipients. Once generated
and added to the system, all managers communicate through the controller,
which means that the controller acts as a centralized orchestrator for the whole
system.

5.2 Asynchronous Synthesis Techniques
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In this section, we present new asynchronous controller synthesis tech-
niques, which rely on an encoding of our models (aut format 1) and coordi-
nation requirements into the LNT specification language. From this LNT spec-
ification, we can generate the corresponding LTS model of the controller using
CADP compilers, hiding, and reduction techniques. We also use CADP verifi-
cation tools to validate the generated controller. All the steps presented in this
section are fully automated using a tool that we developed in Python 2. This
tool generates the LNT code as well as SVL scripts that are used for invoking
CADP exploration and reduction tools, which finally results in the generation
of the controller LTS.

5.2.1 Process Algebra Encoding

We present successively in this section the encoding into LNT of the different
parts of our system, i.e., autonomic managers, coordination requirements, and
architecture.

5.2.1.1 Encoding of An Autonomic Manager

An LNT process is generated for each state in the manager LTS. Each process
is named using the state identifier of the corresponding state. The alphabet of
the process consists of the set of send and receive messages appearing on the
LTS transitions. The behavior of the process encodes all the transitions of the
LTS going out from the corresponding state and eventually calls the processes
encoding the target states of those transitions. Actually, if there is no such transi-
tion, the body of the process is the null statement. If there is a single transition,
the body of the process corresponds to the message labelling this transition, fol-
lowed by a call to the process encoding the target state of the transition. Finally,
if there is more than one transition, we use the select operator. Let us assume

that two transitions q
l
−→ q’, q

l′
−→ q” ∈ T have the same source state q. The

behavior of the process encoding q in LNT is:

1. The aut format is the textual format used to represent automata in the CADP toolbox, see
http://cadp.inria.fr/man/aut.html

2. We developed an LNT code generator in Python for automating this task.
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select l; q’ [...] [] l’; q"[...] end select

where the LNT operator select encodes a non-deterministic choice between l

and l’.

Since a message name can be used in different autonomic manager LTSs,
each message is prefixed with the manager name to avoid further name clashes.
We encode emitted messages (received messages, resp.) with a _EM (_REC,
resp.) suffix. These suffixes are necessary because LNT symbols ! and ? are
used for the data transfer only. As an example, m1 ∈ A! is encoded as m1_EM,
and m2 ∈ A? is encoded as m2_REC.

message0 ! 

message1 ? 

message2 ! 

message20 ! 

Process P0 [M1message0_EM: any, M1message1_REC: any,     

                      M1message2_EM: any, M1message20_EM: any] is  

    select 

          M1message0_EM;  

          P0 [M1message0_EM, M1message1_REC, 

                 M1message2_EM, M1message20_EM] 

    [ ] 

          M1message1_REC; 

          P1 [M1message0_EM, M1message1_REC,  

                 M1message2_EM, M1message20_EM] 

    end select 

end process 

P0 

P1 

P2 

Figure 5.2: Example of a manager modelled as an LTS (left), and the LNT pro-
cess encoding the initial state (right)

Figure 5.2 exhibits the LTS model of a manager example, as well as the en-
coding of its initial state P0 into the LNT process algebra. We observe that the
process name is the same as the identifier of that state, whereas the process al-
phabet is composed of all the messages appearing in the LTS, prefixed with the
name of the manager (M1) and suffixed by _EM in the case of an emission and
by _REC in the case of a reception.
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5.2.1.2 Encoding of the Coordination Requirements

The coordination requirements specified using reaction rules and regular ex-
pressions describe an abstract version of the controller to be generated. These
requirements are encoded into an LNT process called coordination. The process
alphabet is composed of all received and emitted messages appearing in the re-
action rules. The body of this process encodes the regular expression of reaction
rules.
Each reaction rule is translated to LNT separating both sides of the rule (i.e.,
left hand part and right part) using the sequential composition construct (;). In
order to make explicit in the controller LTS the logical interval of time that will
be chosen in the implementation step and during which the controller receives
messages, the left hand part of the reaction rule starts with an action TBEGIN

and ends with an action TEND. This part is translated using the par operator
without synchronization (pure interleaving) since all messages can be received
in any order (see Fig. 5.3). After the execution of the TEND action, the right hand
part of the reaction rule is translated using the sequential composition. We will
explain in the Section 5.2.2 why this part is not translated using the parallel
composition without composition, as is the case for the left hand part.
As far as the regular expression is concerned, a sequence (.) of rules is encoded
using the sequential composition (;), a choice (+) between several rules is
translated using the select construct, and an iteration (∗) is encoded using the
loop operator as follow:

loop L1 in

select break L1 [] ... end select

end loop

5.2.1.3 Encoding of the Architecture

In this section, we present how all participants, i.e., managers and coordina-
tion expression, are composed altogether. The communication between them is
achieved asynchronously. The coordination expression represents an abstract
description of the future controller that we aim to generate, and all messages
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Process coordination [message1_REC: any, 

 message1_EM: any,  message2_REC:  any, 

 message2_EM: any] is  

     Loop L1 in  

          select 

                break L1 

          [] 

                TBEGIN; 

                message1_REC;  

                TEND; message1_EM 

          [] 

                 TBEGIN; 

                  par 

                         message2_REC 

                  || 

                         message1_REC 

                   end par; 

                   TEND; message2_EM 

           end select  

     end loop 

end process 

   ( message1_REC -> message1_EM 

   + 

   message2_REC, message1_REC ->message2_EM) * 

Figure 5.3: Example of coordination requirements encoded into an LNT process

must go through this controller, which acts as a centralized orchestrator. Each
participant is equipped with an input FIFO buffer. When a participant wants
to read a message, it consumes the oldest message putted in its buffer. When it
sends a message to another participant, the message is stored in the input buffer
of that participant. LNT functions are used to describe basic operations on these
buffers (e.g., adding and retrieving messages). We present below, an example of
function that removes a message from a FIFO buffer (i.e., from the beginning).

function remove_MSG (q: TBUFFER): TBUFFER is

case q in

var hd: TMessage, tl: TBUFFER in

nil -> return nil

| cons(hd,tl) -> return tl

end case

end function

The function takes as input a buffer (q), which type is (TBuffer) and composed
of a list of messages (TMessage). If the buffer is empty, nothing happens. If it
is not empty, the first message is removed.
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It is worth noting that our synthesis techniques allow one to choose buffer
bounds. One can either decide to fix an arbitrary bound for buffers or to use
unbounded buffers. In the first case, the only constraint is that the same buffer
bound should be used when deploying the controller. Otherwise if at some
point it must be changed (e.g., after a modification in memory requirements),
unexpected behaviours and erroneous situations may occur. In the second case
(unbounded buffers), the risk is to attempt to generate a controller whose cor-
responding state space is infinite [27]. As an intermediate solution, one can
use the recent results presented in [19] for identifying whether the interactions
between managers with unbounded buffers can be mimicked with bounded
buffers. If this is the case, the lower bound returned by these techniques should
be used as the minimum buffer bound for both our synthesis techniques and
the deployment of the application.

A buffer in LNT is first encoded using an LNT list and classic operations
on it. Then, for the behavioral part, a buffer is encoded using a process with
a buffer data type as a parameter. This process can receive messages from
the other participants, and synchronizes with its own participant when that
one wants to read a message. We generate a process encoding each couple
(participant, buffer) that corresponds to a parallel composition (par) of the par-
ticipant with its buffer. The synchronization set contains messages consumed
by the participant from its buffer.

Finally, the whole system (main process in LNT, see below) consists of
the parallel composition of the couple (coordination, buffer) and the couples
(manageri, bufferi) generated for all the managers. It is worth noting that since
autonomic managers communicate via the controller, they evolve indepen-
dently from one another and are therefore composed using the par operator
without synchronizations. In contrast, the couple (coordination, buffer) must
synchronize with all the other couples on all emissions from the managers/to
the buffers, and this is made explicit in the corresponding synchronization set
of this parallel composition.

process main [message1:any, ..., messagen:any] is

par messagep, ..., messagek in

couple_buffer_coordination [...]
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||

par

couple_buffer_manager1 [...]

|| . . . ||

couple_buffer_managern [...]

end par

end par

end process

5.2.2 Compilation and Verification

5.2.2.1 Generation of the Controler LTS

Once all the inputs (models and coordination requirements) are encoded
into LNT, we can use compilers available in the CADP tools to obtain the LTS
corresponding to all behaviors of the LNT specification. In order to keep only
the behavior corresponding to the most permissive controller [94, 137], we need
to hide message exchanges corresponding to consumptions of the managers
from their buffers and emissions from managers to the coordination expres-
sion buffer. All these messages are replaced by internal actions τ. Thus, we
use the reduction techniques available in CADP for getting rid of internal ac-
tions, removing duplicated paths, and determinizing as much as possible the
final LTS. In this context, the reduction can be ensured on-the-fly modulo:
(1) strong equivalence for replacing duplicate transitions by a single transition
and (2) weak trace equivalence for determinizing the generated LTS. Finally,
we preserve only local emissions/receptions from the coordination expression
point of view (messages shown in the dashed grey rectangle in Fig. 5.4). Transi-
tions figuring in the final LTS are labelled with the messages corresponding to
the process alphabet of the couple (coordination, buffer).
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Figure 5.4: Exchange of messages between the coordination expression and the
managers

5.2.2.2 Verification of the Generated Controller

Last but not least, let us stress that, since the writing of the coordination
expression is achieved manually by a designer, this step of our approach may
lead to an error-prone expression. Indeed, the designer can provide a wrong
specification of the coordination requirements, which does not take into consid-
eration the global objectives of all the managers. However, we can take advan-
tage of the encoding into LNT to check either the controller LTS alone (and thus
the coordination expression) or the LTS corresponding to the final system (i.e.,
composition of all participants). To do so, one can use the CADP model checker
(Evaluator), which takes as input an LTS model and temporal properties speci-
fied in MCL [102]. We distinguish two types of properties:

1. properties which depend on the application (e.g., the controller must even-
tually transmit a specific message to a certain manager);

2. properties which do not depend on the application (e.g., checking the
absence of deadlock). One of these properties was specified at the de-
ployment step and allowed us to avoid the nondeterministic choice be-
tween different behaviors which can be executed by the controller once
the period is expired. This property allows us to correct the coordination
requirements, more precisely, the right hand part of the reaction rules.
It verifies that the TEND action should never be followed by a choice be-
tween a set of possible executions, meaning that the left hand part of every
reaction rule must be followed by only one behavior.
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5.3 Java Code Generation and Deployment

We present in this section our techniques to automatically generate the Java
code, which corresponds to the controller LTS obtained during the compilation
phase (see Section 5.2.2). This Java code allows to deploy controllers in the
context of real-world applications.

5.3.1 Java Code Generation Techniques

Our Java code generation techniques are based on the use of object-oriented
programming. It take as input the controller LTS synthesized beforehand and
automatically generate all Java classes, methods, and types necessary for de-
ploying it. The controller LTS is encoded as an instance of a Java class LTS.
This class relies on two classes, namely a class State and a class Transition,
which represents the transitions between the states. The LTS class also de-
fines an attribute cstate representing the current active state in the controller
model. This variable is initialized with the LTS initial state. Some Java code
is necessary to interface the controller with the running application. We par-
ticularly define a method called react that takes as input a list of messages
received within a period of time and applies successive moves according to the
received messages, the current state of the controller, and the behavior of the
generated controller. This method computes the messages that the controller
has to send as a reaction to these received messages and updates the current
state of the controller.

5.3.2 Deployment

Our generated Java code can be deployed and applied on concrete applica-
tions using the event-based programming paradigm. The period of time de-
scribed using special actions TBEGIN and TEND in the controller LTS has to be
instantiated with a real value. This period is computed using sampling tech-
niques and implemented using the sleep method in Java. The choice of this
period cannot be realized during the synthesis phase and is achieved just before
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deployment.

The main behaviour of the controller (run method) consists of an infinite
reactive loop, which successively receives events from the application and com-
putes reactions (messages to be sent by the controller). The result produced
by each call of the run method (i.e., controller reactions) must also be inter-
preted and executed. Therefore, all the messages returned by that method are
encoded as events too. A part of the Java program is dedicated to handling the
events raised by the application by converting them into the input format of the
react method, and conversely handling the output of the react method by
translating it into a list of events executed by the system. Each event contains
the corresponding message and additional information, for instance, a failure
event also has as parameter the impacted server and further information (iden-
tifier, port, etc.). Therefore, all the messages received/emitted by the generated
controller are connected to the corresponding events.

5.4 A Multi-tier Application Supervised by Autonomic

Managers

We introduce in this section an example, which consists of a JEE multi-tier
application supervised by instances of two sort of autonomic managers, namely
a self-repair and a self-sizing manager. We also present an example of coordi-
nation requirements describing how to orchestrate several instances of these
autonomic managers.

5.4.1 Multi-Tier Application

Our example is a JEE multi-tier application (Fig. 5.5) composed of an Apache
Web server, a set of replicated Tomcat servers, a MySQL proxy server, and a set
of replicated MySQL databases. The Apache server receives incoming requests
and distributes them to the replicated Tomcat servers. The Tomcat servers ac-
cess the database through the MySQL proxy server that distributes the SQL
queries to a tier of replicated MySQL databases fairly.
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Figure 5.5: A multi-tier application

5.4.2 The Managers Role

The dynamic sizing plays an important role in the energy consumption of
the replicated hosted on this type of application. Varying the number of re-
quests makes difficult the estimation of the number of duplicated servers when
starting the application. Therefore, adjusting dynamically the degree of repli-
cation allows to allocate only the number of needed servers according to the
number of requests. Moreover, once a server fails, the failure must be imme-
diately detected and repaired in order to preserve the application consistency.
To optimize the energy consumption of the replicated servers and preserve the
application consistency, we used managers such as self-sizing and self-repair
for the management of the dynamic sizing and the servers repair of multi-tier
applications.
Figure 5.6 displays how the architecture of each one of these managers is based
on the MAPE-K (Monitor Analyse Plan Execute - Knowledge) reference model
(see Section 2.4). For instance, the self-sizing manager continuously observes a
load of replicated servers through the Monitor function. It computes the av-
erage of the load and detects the presence of an overload or an under-load
through the Analyze function. Once an overload (under-load, resp.) is detected,
the manager makes a decision about the addition or removal of a server through
the Plan function. This decision is executed by the execute function.
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Figure 5.6: (left) The architecture of the self-sizing manager, (right) the architec-
ture of the self-repair manager

5.4.3 The Managers Models

We describe the managers behaviors using several LTS models. First, we
model the behavior of the monitor, analyse, and execute functions of the man-
agers by what we call the application manager (Fig. 5.7, right), which sends
messages when a change occurs in the system and receives messages indicating
actual administrative changes to perform on the application. As for the plan
functions, we use two models called self-sizing and self-repair managers, resp.
More precisely, the generated controller has the role of coordinating the mes-
sages transmitted from the analyze function to the plan function and from the
plan function to the execute function.

Figure 5.7: (left) Self-repair manager LTS, (middle) Self-sizing manager LTS,
(right) Application manager LTS
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5.4.3.1 The Self-Sizing Manager

The self-sizing is in charge of adapting the number of replicated servers dy-
namically by sending the message add! (remove!, resp.) to the system when
detecting an overload (underload, resp.). The overload (underload, resp.) is
detected when the average of the load exceeds (is under, resp.) a maximum
(minimum, resp.) threshold (Fig. 5.7, middle). We associate one instance of the
self-sizing manager to the Tomcat servers and another instance to the MySQL
databases. Therefore, we consider, here, that we have two managers having
two different models. Both models have the same states and transitions as the
LTS shown in Figure 5.7 (middle), but suffixed by _tc (_mq, resp.) when the
instance is associated with the Tomcat servers (MySQL databases, resp.).

5.4.3.2 The Self-Repair Manager

The self-repair manager asks the system to repair a failure by creating a new
instance of the failed server (Fig. 5.7, left). We have four instances of the self-
repair manager, one per tier. Therefore, we consider, here, that we have four
managers. All the models have the same states and transitions as the LTS shown
in Figure 5.7 (left), but suffixed by _ap (_tc, _pq, _mq, resp.) when the in-
stance is associated to the Apache server (Tomcat servers, MySQL proxy server,
MySQL databases, resp.).

5.4.4 Coordinated Problems

The absence of coordination between these managers may lead the whole
system to some undesired situations such as adding two new servers whereas
one was enough or removing a server that is needed, as result of a server failure.
We distinct two types of problems: those occurring in the same tier (i.e., the
replicated servers) and those occurring in different tiers.
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5.4.4.1 Coordinated Problems in the Same Tier

A failure of a server in a set of replicated servers triggers an overload of the
remaining servers. Actually, when the self-repair manager receives a message
indicating the detection of this failure, it sends a message to the application
manager requesting it to repair the failure by creating a new replica. Before
completion of this repair phase, the other replicated servers receive more re-
quests than before the failure, which causes an overload. Upon reception of this
overload detection from the application manager, the self-sizing manager sends
a message back asking the addition of another server. In this scenario, as a re-
sult of a server failure, two new servers are added to the application whereas
one was enough.

5.4.4.2 Coordinated Problems in Different Tiers

A failure of a server, which is hosted on a first tier and connected to other
servers hosted on another tier, triggers an under-load in the second tier. Actu-
ally, when the self-repair manager receives a message indicating the detection of
this failure, it sends a message to the application manager requesting it to repair
the failure by creating a new replica. Before completion of this reparation, the
servers hosted on the second tier receive fewer requests than before the failure,
which causes an under-load. Upon reception of this under-load detection from
the application manager, the self-sizing manager sends a message back calling
for the removal of a server. Then, once the failed server is repaired, the servers
hosted on the second tier receive more requests than before the server repa-
ration, which causes an overload and therefore the addition of another server
by the self-sizing manager. Therefore two unnecessary operations (i.e., the re-
moval and the addition operations) are executed as a result of a server failure.

5.4.5 Managers Coordination

We present below an excerpt of the requirements for the controller we want
to generate for our example. These rules ensure that all managers globally sat-
isfy the coordination objectives. Each line presents the actions that can be re-
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ceived by the controller in a period T (left parts of reactions rules). At the end
of each period, if the received messages match the left part of one fireable rule,
it reacts by emitting the messages appearing in the right part of that rule. All
messages are prefixed by the manager name (app stands for the application
manager) and suffixed by the name of the tier to which is associated the man-
ager.

( app_failure_ap? -> repair_failure_ap! (➊)

+ app_failure_tc? -> repair_failure_tc! (➋)

+ app_overload_tc? -> sizing_overload_tc! (➌)

+ app_underload_tc? -> sizing_underload_tc! (➍)

+ app_failure_mysql? -> repair_failure_mysql! (➎)

+ app_failure_px? -> repair_failure_px! (➏)

+ app_failure_ap?, app_underload_tc? -> repair_failure_ap! (➐)

+ app_failure_tc?, app_overload_tc? -> repair_failure_tc! (➑)

+ ... ) *

We distinguish two kinds of rules:

1. those where a unique message appears in the left part of the reaction rule
(see, e.g., ➊, ➋). In that case, the corresponding controller immediately
transfers that message to the manager;

2. those encoding the coordination we want to impose on managers, e.g.,
rule ➑ permits to generate a controller that can avoid to add two Tomcat
servers by forwarding only one of the two received messages on a same
period of time.

Last, since there is no specific order between all these rules, we use a simple
regular expression where all rules can be fired at any time (combination of +
and * operators).

5.4.6 Encoding into LNT

Let us first show some excerpts of LNT obtained when calling our LNT
code generator in this example. We first show the LNT processes encod-
ing an instance of the repair manager, which handles the tier of the Tom-
cat servers. The first process has the same name as the initial state identifier
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R0_tc. The process alphabet is the set of labels used in this manager LTS
(repair_failure_tc_REC and repair_repairing_tc_EM). Each mes-
sage is prefixed with the manager name. The body of the first process, for in-
stance, receives a failure message (repair_Failure_tc_REC) and calls the
process encoding the target state, that is R1_tc.

process R0_tc [repair_failure_tc_REC: any,

repair_repairing_tc_EM: any] is

repair_failure_tc_REC;

R1_tc [repair_failure_tc_REC, repair_repairing_tc_EM]

end process

process R1_tc [repair_failure_tc_REC: any,

repair_repairing_tc_EM: any] is

repair_repairing_tc_EM;

R0_tc [repair_failure_tc_REC, repair_repairing_tc_EM]

end process

We show now an example of process encoding a couple (manager, bu f f er),
particularly the couple corresponding to the repair manager handling the tier
of the Tomcat servers. This manager synchronizes with its buffer on the
repair_failure_tc_REC message, which is emitted by the buffer and re-
ceived by the manager. Note that the buffer process (buffer_repair_tc) is
equipped with a parameter corresponding to the buffer data type, that is the
structure where messages are stored, initialized to nil.

process couple_buffer_repair_tc [repair_failure_tc_REC: any,

repair_repairing_tc_EM: any, repair_failure_tc_EM: any] is

par repair_failure_tc_REC is

R0_tc [repair_failure_tc_REC, repair_repairing_tc_EM]

||

buffer_repair_tc [repair_failure_tc_EM, ...] (nil)

end par

end process

After generating all the couples (autonomic manager/buffer, application
manager/buffer, and controller/ buffer), the main process is encoded using par-
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allel compositions. The managers do not interact directly together. Therefore
their couples are translated using the par construct without synchronizations
(pure interleaving). All the managers communicate together through the con-
troller. This interaction is expressed using another parallel composition where
the synchronization set makes explicit all emissions sent by the managers to the
controller buffer, or sent by the controller to the managers buffers.

process main [repair_failure_ap_REC:any, ...] is

par sys_failure_ap_EM, sys_failure_tc_EM, ... in

(* couple coordination/buffer *)

couple_buffer_coordinaiton [...]

||

par

(* couple application manager/buffer *)

couple_buffer_AM [...]

||

(* couple repair manager/buffer for the Apache server*)

couple_buffer_repair_ap [...]

||

(* couple repair manager/buffer for the Tomcat servers*)

couple_buffer_repair_tc [...]

||

(* couple repair manager/buffer for the MySQL proxy server*)

couple_buffer_repair_px [...]

||

(* couple repair manager/buffer for the MySQl databases*)

couple_buffer_repair_mq [...]

||

(* couple sizing manager/buffer for the Tomcat server *)

couple_buffer_sizing_tc [...]

||

(* couple sizing manager/buffer for the MySQL databases *)

couple_buffer_sizing_mq [...]

end par

end par

end process
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5.4.7 Compilation and Verification

From the encoded LNT specification obtained when calling the LNT
code generator, we use CADP compilers to generate the LTS describing the
whole system for our running example (consisting of 194,026,753 states and
743,878,684 transitions). Then, we use hiding and minimization techniques to
generate the LTS of the controller (consisting of 28,992,305 states and 46,761,782
transitions). An excerpt of the controller LTS, which focuses on the failure and
overload detection of a Tomcat server in the same period of time, is shown in
Figure 5.8. We recall that we use specific labels (namely TBEGIN and TEND) for
characterizing the messages received during a same period of time. This LTS
shows that when the controller receives a failure and an overload message (of a
Tomcat server in this example) during a same period, it forwards only the fail-
ure message and drops the overload message. In contrast, when the controller
receives these two messages in two different periods, it forwards them to the
repair and sizing manager, resp.

Figure 5.8: Excerpt of the controller LTS for the running example

For this example, we used the Evaluator model checker to verify temporal
properties expressed in the temporal logic formalism MCL. This has been done
on a set of properties, as the two liveness properties illustrated below. The first
one is checked on the controller LTS and the second one holds on the LTS of the
whole system:



5.4. A Multi-tier Application Supervised by Autonomic Managers 133

– The reception of a failure message by the controller is eventually followed
by an emission of a repair message to the application manager in order to
ask it to repair the Tomcat server

[true* .app_failure_tc_REC] inev (app_repair_tc_EM)

– The emission of an overload message by the application manager is even-
tually followed by an emission of a reparation or addition message by the
controller

[true* .app_overload_tc_EM]

inev (app_repair_tc_EM or app_add_tc_EM)

This property shows that the overload message is handled by the repair
manager when both Tomcat failure and overload occur within a same pe-
riod of time. Otherwise, it is handled by the sizing manager.

Both properties use the macro inev (M), which is used especially when speci-
fying liveness properties that are inevitability assertions. The inevitability asser-
tions can be expressed using fixed point operators that indicate that a transition
labelled with M eventually occurs. The inev macro is defined as follows:

macro inev (M) = mu X .( < true > true and [ not (M) ] X )

end macro

Our approach was applied for validation purposes on many illustrative ex-
amples of our dataset (managers and coordination requirements). Table 5.1
summarizes some of our experiments. Each managed application used as in-
put is characterized using the number of managers and the coordination re-
quirements. We give the size of the LTS (states/transitions) of the whole system
as well as the controller LTS obtained after minimization (wrt. a strong and a
weak trace relations). The last column gives the overall time to synthesize the
controller.

We observe that, for some examples (gray lines), the size of the generated
controller LTSs and the time required for making those LTSs grow importantly
when one of the managers exhibit looping behaviours, and particularly cycles
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|Managers| Whole system LTS Controller LTS Time

|states| |transitions| |states| |transitions| (m:s)

2 2,307 6,284 118 157 0:10

3 103,725 365,845 1,360 2,107 1:15

4 145 267 38 44 0:06

5 10,063,873 39,117,110 17,662 28,003 43:59

6 1,900 4,945 186 285 0:08

10 300,000 1,686,450 1,786 3,471 6:54

Table 5.1: Experimental results: LTSs size and synthesis time

with send messages (see, e.g., the 4th example in Table 5.1). On a wider scale, we
note that LTS sizes and generation times increase with the number of managers
in parallel (see, e.g., the last line of Table 5.1).

5.4.8 Deploying and Running the Generated Controller

In this section, we present some experiments we performed when deploying
and running our controller for the multi-tier application introduced previously
(see Fig 5.5). To do so, we used a virtualized experimental platform based on
Openstack 3, which consists of six physical machines on which we instantiate
virtual machines (VMs) with 1 vCPU, 2GB of memory and 8GB of disk.

The JEE multi-tier application is initially configured and deployed with a
server at each tier, i.e., an Apache Web server, a Tomcat server, a MySQL proxy,
and a MySQL database. The initial deployment phase is automated using a dy-
namic management protocol allowing to connect and start the involved servers
and database in the right order [7]. In a second step, we use jmeter to inject in-
creasing load on the Apache server and thus to simulate the clients that send
HTTP requests on the managed system. Once we have at least two active Tom-
cat servers and two MySQL databases, we start simulating failures using a fail-
ure injector. When we start injecting failures, we stop augmenting the work-
load on the Apache server and keep the same load for the rest of the execution.

3. https://www.openstack.org/
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The failure injector is flexible and can be used for affecting any active server
(Apache, Tomcat, MySQL, etc.), any number of times (single failure or multiple
failures of the same or of different servers), and at any time (same period of
time, different periods of time, etc.). We conducted our experiments on applica-
tions with or without the controller. We have considered various scenarios with
failures of the Apache server and of the MySQL proxy as well as failures/load
variation of the Tomcat servers and of the MySQL databases.

Figure 5.9 shows an excerpt of the system behaviour after 500 minutes since
the application deployment. We observe that, at this moment, the application
is composed of five Tomcat servers and three MySQL databases. Figure 5.9
presents several cases of failure injection. As an example, at minute 508, a fail-
ure of a replicated MySQL database causes a workload increase on the other
replicated servers. These two actions happen in the same period, but the con-
troller forwards only the failure detection to the repair manager. Accordingly, a
single MySQL is added by the repair manager and the workload returns at once
to its average value.
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Figure 5.9: Tomcat and MySQL failure/overload in a coordinated environment
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We made several experiments in which we varied the number of failures, the
Apache load, and the minimum/maximum thresholds of the Tomcat servers
and of the MySQL databases. In all these cases, we observe that the controller
succeeds in detecting and correcting the problems while avoiding undesired op-
erations, that is, the unnecessary addition/removal of VMs. Figure 5.10 shows
experimental results obtained with different numbers of failures. For instance,
we see that when injecting 14 failures to our running application, the controller
applies 18 reconfiguration operations on the system (instead of 40 without con-
troller), and thus avoids 22 undesired operations.
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Figure 5.10: Number of reconfiguration operations with/without coordination
and number of undesired operations avoided by coordination

5.5 Conclusion

We have shown in this chapter new asynchronous synthesis techniques for
generating a controller allowing to monitor and orchestrate the reconfiguration
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operations executed by several autonomic managers in the context of cloud ap-
plications. The generated controller interacts asynchronously with the man-
agers, which are regarded as control loops that react to events and changes by
automatically reconfiguring the application, via FIFO buffers and allows them
to take globally coherent decisions in order to deal with control and incoher-
ent decisions problems. The chapter presents also some Java code generation
techniques that allows to quickly deploy the generated controller for real-world
applications such as N-tier applications.
This chapter shows how the approach covers the whole development process
from an expression of the requirements to the final implementation and de-
ployment of the synthesized controller, which helps to coordinate at runtime
real-world applications. In addition, these synthesis techniques can be used to
control other applications where components are modelled as LTSs and com-
municate asynchronously. This is the case in application areas such as Web
services, multi-agent systems, or hardware protocols.



6
Conclusion

" He who is not contented with what he has, would not be contented with what he
would like to have. "

Socrates
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THis chapter summarizes the thesis contributions and perspectives. In a first
step, it concludes the major achievements of this thesis. Then, it points

out, for future work, some perspectives that have been identified for the dy-
namic reconfiguration protocol that we designed. Some areas of prospective
future research have been also identified for the improvement of the coordi-
nation requirements, which we specified for coordinating autonomic managers
used for the management of distributed cloud applications.

6.1 Achievements

This Ph.D. thesis research is part of the OpenCloudware project, which is
interested in building and providing an open software platform for the devel-
opment of distributed applications that need to be deployed on multiple Cloud
infrastructures. Within this project, we have focused on the dynamic reconfig-
uration of the software architecture of distributed applications at run-time and
the automation of the reconfiguration tasks.
In the context of the OpenCloudware project, cloud applications are complex
distributed applications that consist of interconnected software components
running on several virtual machines (VMs), located on remote physical servers.
The deployment and the reconfiguration of these applications are regarded as
very complicated tasks, especially when one or multiple virtual machines fail
when achieving them. Hence, the cloud users need protocols that allow them
to dynamically reconfigure and manage their distributed applications.
We have introduced in Chapter 4 the first contribution of this thesis. We spec-
ified a novel protocol, which aims at dynamically reconfiguring distributed
cloud applications and supporting multiple VM failures. The protocol enables
the execution of reconfiguration operations, such as instantiating new VMs, de-
stroying existing VMs, adding new components, and removing existing com-
ponents. It also allows the resolution of dependencies among interconnected
components by exchanging messages, (dis)connecting, starting, and stopping
components in a specific order. The exchange of the messages between the vir-
tual machines is ensured through a publish-subscribe communication media.
Upon reception of reconfiguration operations, each machine reconfigures itself
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in a decentralized manner. Indeed, each machine is equipped with a recon-
figuration agent. An agent connects/disconnects and starts/stops components
hosted on that machine in a defined order for preserving the application con-
sistency. Namely, the application consistency is quite complicated due to the
high parallelism degree of the protocol. We have also explained how the pro-
tocol is robust, fault-tolerant, and reconfiguration operations always terminate
successfully even in the presence of a finite number of failures. We specified the
protocol in a manner that it supports multiple virtual machine failures. Thus,
it does not only detect VM failures but also repairs them by (i) creating new
instances of the failed VMs and (ii) notifying the other VMs of this failure.
Furthermore, due to the high degree of parallelism inherent in this kind of ap-
plications, we formally specified the protocol using the LNT value-passing pro-
cess algebra. We also verified it using the model checking tools available in the
CADP toolbox. This toolbox turned out to be very convenient for modeling and
analyzing such protocols, see [125] for a discussion about this subject. We ver-
ified about 40 properties of interest, specified using MCL, on a large number
of application models and reconfiguration scenarios. More importantly, dur-
ing these verification steps, the use of formal tools helped us to detect several
bugs and also to improve several parts of the protocol. In particular, we deeply
revised the part of the protocol dedicated to the VM destruction and compo-
nent shutdown. All these detected bugs have been corrected in the correspond-
ing Java implementation, which has been established by another partner of the
OpenCloudware project.

Another contribution of this thesis was to reduce the manual execution of the
reconfiguration operations, which is a major challenge for cloud applications.
Autonomic computing is a promising solution for monitoring and updating au-
tomatically these kind of applications. This is achieved through the automation
of administration functions and the use of autonomic managers. An autonomic
manager is regarded as a control loop. It observes the applications, detects spe-
cific changes (such as the occurrence of a failure), and then reacts to them by
dynamically reconfiguring the application. Multiple autonomic managers can
be implemented in the same system and must make consistent decisions. Using
them without coordination may lead to inconsistencies and error-prone situa-
tions. Thus, an important challenge is to use synthesis controller techniques in
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order to generate a controller that aims at coordinating these managers.
We have introduced in Chapter 5 new synthesis techniques that generate a cen-
tralized controller. The particularity of these techniques is the asynchronous
coordination of stateful autonomic managers through the generated controller.
We have explained how the autonomic managers are modeled as LTSs. We also
defined coordination requirements to describe the behavior of the controller we
aim to generate. We specified these requirements using reaction rules and regu-
lar expressions. The generated controller ensures proper reconfiguration of the
managed system. In fact, it coordinates the autonomic managers and communi-
cates with them asynchronously using message passing via FIFO buffers. Our
solution for controller synthesis relies on an encoding of our models and the
coordination requirements into the LNT process algebra. From this encoding,
an LTS can be generated using CADP compilers, hiding, and reduction tech-
niques. This LTS exhibits all the possible executions of the controller. In this
part of work, we have taken advantage of this encoding to validate the gener-
ated controller with the CADP verification tools, such as the Evaluator model
checker. Indeed, since coordination requirements are written by a human being,
they can be erroneous, which results in that case in an incorrect controller as
well. Finally, we proposed code generation techniques to automatically obtain
the Java code corresponding to the controller LTS. We validated our approach
with many variants of the multi-tier Web application we presented as an ex-
ample at the end of Chapter 5. Our approach covers all the development steps
from the design of the coordination requirements to the actual deployment of
the synthesized controller, which helps to coordinate at runtime real-world ap-
plications. We note that the generated controller can be used to control other
applications where components are modeled as LTSs and communicate asyn-
chronously. This is the case in application areas such as Web services, multi-
agent systems, or hardware protocols.

6.2 Perspectives

The thesis achievements present multiple research directions for future
work. This section successively describes perspectives to address the short-
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comings of our contributions, addressing the dynamic reconfiguration of dis-
tributed cloud applications. Then, it presents some research directions leverag-
ing our contributions to coordinate several autonomic managers in the cloud.

– In Chapter 4, we presented an abstraction of a model for distributed cloud
applications, which is expressive enough for reconfiguration purposes. It
is used for verifying the soundness of the protocol, but its primary role is
to keep track of the VMs and components currently present in the appli-
cation. However, it should be enhanced for other tasks.
This model can be enriched with more details to deal with the quality of
service associated with the resources. We plan to add further information
to the model, such as resources availability and response time.

– In this thesis, we specified over 600 application models and reconfigura-
tion scenarios in order to extensively validate our novel dynamic proto-
col. When achieving these tasks, we paid much attention to cover very
different applications and scenarios, in particular pathological and corner
cases. Hence, this large investment in validation makes us highly confi-
dent in the correctness of the protocol.
This work needs to be generalized by correctness proof. To solve these
gaps, proving the correctness of the protocol using theorem proving tech-
niques would be a very interesting objective. This would complement
the validation of the reconfiguration protocol using model checking tech-
niques presented in this thesis.

– We presented in Chapter 5 a new controller synthesis techniques for co-
ordinating multiple autonomic managers. These techniques are based on
a set of reaction rules and regular expressions allowing to specify how
the involved managers are supported to interact together. However, the
coordination expressions do not provide the ability to specify concurrent
flows (e.g., by means of fork/join operators), which are quite common in
orchestration and distributed coordination. Furthermore, our coordina-
tion expressions can not describe specific requirements (e.g., elastic behav-
iors with oscillations or cool-down periods). Expressing this type of re-
quirements require the extension of our coordination expressions and LTS
model by data-awareness and real-time constraints. When numerical val-
ues, specific constraints, and requirements are added, these may, however,
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lead to large state-space problems, especially when addressing more com-
plicated applications with an important number of involved managers.
Thus, some improvements are considered to integrate numerical values
when describing the behavior one expects from the controller we want
to generate. The enrichment of the requirements by these values allows
to express specific constraints, such as a maximum/minimum permissi-
ble number of servers to a tier of replicated servers. In this view, we will
also study further how to enhance the coordination expressions with more
specific requirements (e.g., bounds on resource usages and actuation de-
lays) to manage complex cloud applications. Last but not least, to tackle
the state space problems, we plan to integrate techniques available in the
model checking, such as the Symbolic Model Checking with OBDDs and
Partial Order Reduction [48].

– In this thesis, we also propose new controller synthesis techniques to gen-
erate a centralized controller for distributed cloud applications. This con-
troller allows us to orchestrate a set of autonomic managers. Nonetheless,
coordinating managers on a distributed infrastructure would rather re-
quire a distributed choreography.
The generation of distributed controllers instead of a centralized controller
would be an ambitious future work. This is required in order to control the
system and exchange messages without passing through a unique central-
ized controller, while preserving the degree of parallelism of the system.

– Last but not least, in this thesis, we use the controller LTS synthesized by
our synthesis techniques to automatically generate all the Java codes for
deploying it. However, for some reason there may have a need to mod-
ify the coordination requirements during the controller execution. In that
case, our controller synthesis techniques should generate the new con-
troller we want to deploy.
We will study further how to incorporate changes in the deployed con-
troller and update them while they are running, without stopping and
restarting them.
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Appendix: LNT process grammar

lnt_file ::= module M [M0, ..., Mm] is

definition0, ..., definitionm

end module module definition

type_definition ::= type T is

type_expression

end type type definition

function_definition ::= function F (parameter1, ..., ): T is

instructions

end function function definition
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process_definition ::= process Pi [ gate_declaration0, ..., ]

(parameter1, ..., ) is

B

end process process definition

gate_declaration ::= G0, ..., Gn: Gamma typed gate declaration

| G0, ..., Gn: any polymorphic gate declaration

channel_definition ::= channel Gamma is

gate_profile0, ..., gate_profilen

end channel channel definition

gate_profile ::= T1, ..., Tn

|(exp_declaration1: T1, ..., ) gate profile

exp_declaration ::= X0, ..., Xn experiment list

B ::= null no effect

| stop termination

| X := E deterministic assignment
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| var X1: T1, ... Xn: Tn in

B

end var variable declaration

| B1 ; B2 sequential composition

| select

B1 [] ... [] Bn

end select non-deterministic choice

| [only] if E then B1

[elsif Ei then Bi ... elsif Ej then Bj]

else Bn

end if conditional behaviour

| loop

B

end loop forever loop

| while E loop

B

end loop while loop

| loop L in

B

end loop breakable loop

| case E in

[var declaration 0 ,..., declaration n in]

A1 -> B1

| ...

| An -> Bn

| any -> Bn+1

end case case behaviour

| par [ A in ]
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B1 || ...|| Bn

end par parallel composition
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