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Abstract

Gossip-based content dissemination protocols are a scalable and cheap alternative to

centralized content sharing systems. However, it is well known that these protocols

suffer from rational nodes, i.e., nodes that aim at downloading the content without

contributing their fair share to the system. While the problem of rational nodes that act

individually has been well addressed in the literature, colluding rational nodes is still

an open issue. In addition, previous rational-resilient gossip-based solutions require

nodes to log their interactions with others, and disclose the content of their logs, which

may disclose sensitive information. Nowadays, a consensus exists on the necessity

of reinforcing the control of users on their personal information. Nonetheless, to the

best of our knowledge no privacy-preserving rational-resilient gossip-based content

dissemination system exists.

The contributions of this thesis are twofold.

First, we present AcTinG, a protocol that prevents rational collusions in gossip-based

content dissemination protocols, while guaranteeing zero false positive accusations.

AcTing makes nodes maintain secure logs and mutually check each others’ correctness

thanks to verifiable but non predictable audits. As a consequence of its design, it is

shown to be a Nash-equilibrium. A performance evaluation shows that AcTinG is able

to deliver all messages despite the presence of colluders, and exhibits similar scalability

properties as standard gossip-based dissemination protocols.

Second, we describe PAG, the first accountable and privacy-preserving gossip pro-

tocol. PAG builds on a monitoring infrastructure, and homomorphic cryptographic

procedures to provide privacy to nodes while making sure that nodes forward the

content they receive. The theoretical evaluation of PAG shows that breaking the

privacy of interactions is difficult, even in presence of a global and active opponent.

We assess this protocol both in terms of privacy and performance using a deployment

performed on a cluster of machines, simulations involving up to a million of nodes, and

theoretical proofs. The bandwidth overhead is much lower than existing anonymous

communication protocols, while still being practical in terms of CPU usage.

Keywords. Gossip, selfish nodes, collusions, accountability, privacy, homomorphic

encryption.



Résumé

Les protocoles de dissémination de contenus randomisés sont une alternative bon

marché et pouvant monter en charge aux systèmes centralisés. Cependant, il est bien

connu que ces protocoles souffrent en présence de comportements individualistes, i.e.,

de participants qui cherchent à recevoir un contenu sans contribuer en retour à sa

propagation. Alors que le problème des participants égoïstes a été bien étudié dans

la littérature, les coalitions de participants égoïstes ont été laissés de côté. De plus,

les manières actuelles permettant de limiter ou tolérer ces comportements exigent des

noeuds qu’ils enregistrent leurs interactions, et rendent public leur contenu, ce qui peut

dévoiler des informations gênantes. De nos jours, il y a consensus autour du besoin de

renforcer les possibilités de contrôle des usagers de systèmes informatiques sur leurs

données personnelles. Cependant, en l’état de nos connaissances, il n’existe pas de

protocole qui évite de divulguer des informations personnelles sur les utilisateurs tout

en limitant l’impact des comportements individualistes.

Cette thèse apporte deux contributions. Tout d’abord, nous présentons AcTinG, un

protocole qui empêche les coalitions de noeuds individualistes dans les systèmes pair-à-

pair de dissémination de contenus, tout en garantissant une absence de faux-positifs

dans le processus de détection de fautes. Les utilisateurs de AcTinG enregistrent leurs

interactions dans des enregistrements sécurisés, et se vérifient les uns les autres grâce à

une procédure d’audit non prédictible, mais vérifiable a posteriori. Ce protocole est un

équilibre de Nash par construction. Une évaluation de performance montre qu’AcTinG

est capable de fournir les messages à tous les noeuds malgré la présence de coalitions,

et présente des propriétés de passage à l’échelle similaires aux protocoles classiques de

dissémination aléatoire.

Ensuite, nous décrivons PAG, le premier protocole qui évite de dévoiler des infor-

mations sur les usagers tout en les contrôlant afin d’éviter les comportements égoïstes.

PAG se base sur une architecture de surveillance, formée par les participants, ainsi que

des procédures de chiffrement homomorphiques. L’évaluation théorique de ce proto-

cole montre qu’obtenir le détail des interactions des noeuds est difficile, même en cas

d’attaques collectives. Nous évaluons ce protocole en terme de protection de l’intimité

des interactions et en terme de performance en utilisant un déploiement effectué sur

un cluster de machines, ainsi que des simulations qui impliquent jusqu’à un million de

participants, et enfin en utilisant des preuves théoriques. Ce protocole a un surcoût en



bande-passante inférieur aux protocoles de communications anonymes existants, et est

raisonnable en terme de coût cryptographique.

Mots-clés. Gossip, utilisateurs égoïstes, coalitions, responsabilité, protection vie privée,

chiffrement homomorphique.





Preface

This thesis presents the research conducted in the Erods team of the LIG (Laboratoire

d’Informatique of Grenoble) to pursue the Ph.D. in the specialty "Informatics" from

the Doctoral School "Mathématiques, Sciences et Technologies de l’Information, Infor-

matique" of the University of Grenoble. The research activities have been carried out

under the supervision of Prof. Vivien Quéma (LIG/Grenoble INP) and Dr. Sonia Ben

Mokhtar (LIRIS/CNRS).

This thesis focuses on two problems faced by content dissemination protocols in peer-to-

peer networks: (i) the presence of selfish nodes, following either individual or collective

strategies, and (ii) the protection of the privacy of users which is endangered by the

mechanisms traditionally used to detect selfish nodes.

While the second part of this thesis is currently under submission, novel contributions

to tackle problem (i) have been published in an international conference:

• AcTinG: Accurate Freerider Tracking in Gossip. Sonia Ben Mokhtar,

Jérémie Decouchant, Vivien Quéma. In Proceedings of the International Sympo-

sium on Reliable Distributed Systems (SRDS), Nara, Japan, October 2014 [5]

During these three years, I also had the occasion to do research on a problem, concerning

the management of memory on multicore architectures. We will not detail this thematic

in this document. This work led to a publication in an international conference:

• Large Pages May Be Harmful on NUMA Systems. Fabien Gaud, Baptiste Lep-

ers, Jérémie Decouchant, Justin R. Funston, Alexandra Fedorova, Vivien Quéma

In Proceedings of the USENIX Annual Technical Conference 2014, Philadelphia,

USA, June 2014
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Terminology



Term used Concept Alternative terms

User The human who uses an application.

Node
The virtual representation of a user in a P2P sys-

tem.

Information

dissemination

The process of serving every node in an audience

with a given information. In a P2P context nodes

forward to each other this information.

Content

dissemination

Gossip protocol
A P2P information dissemination protocol that re-

lies on random exchanges between nodes.

Selfish node

A peer that tries to minimize its participation (e.g.,

upload bandwidth, CPU usage) in a protocol while

maximizing its benefit (e.g., delay to receive a con-

tent).

Rational node,

freerider,

opportunistic node

Byzantine node
A node deviating from the protocol in an arbitrary

or malicious way.
Malicious node

Selfish-resilient

protocol

An information dissemination protocol that can

efficiently serve a content to an audience of nodes

in presence of a given proportion of selfish nodes.

Rational-resilient

protocol

Collusion-resilient

protocol

An information dissemination protocol that can

efficiently serve a content to an audience in pres-

ence of selfish nodes that collude to improve their

benefit, or avoid being detected.

Source
In a content-dissemination system, the node that

generates the content to be disseminated.
Broadcaster

Update
A chunk of content that a source releases, and that

peers want to receive.
Chunk, Message

Membership
The set of nodes that participates in a protocol at a

given moment.

Session
Dissemination of one or several contents among a

membership.

Churn
Nodes arrival and departure, possibly completely

desynchronized. Maintaining the membership in

presence of churn is challenging.

Round
Interval of time between two successive emissions

of updates by the source during which nodes have

to complete their exchanges.

Gossip period

Table I – Terminology used in this document.
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In this section, we first present the scientific context of this document, and more

specifically, we focus on the problem of disseminating information inside a P2P network

in presence of selfish nodes. We develop the motivation of our research in the two

following sections. We first analyze the negative impact that selfish nodes have on the

dissemination of information in a P2P system. Then, we detail how selfish-resilient

protocols may allow users to learn information about each others, and explain for which

reasons they may be reluctant to use such protocols. After providing a description of

these two problems, we detail the objectives of this research work. The first contribution

consists in the design of a gossip protocol that is resilient to individual, and collective,

selfish behaviors. The second one is a protocol that limits the information that is revealed

about users, while deterring selfish behaviors. Finally, we give a brief description of the

contents of this document.

Scientific context

The Internet allowed the development of numerous applications which use it to connect

physically distant machines in order to provide elaborated services. In a general way,

in these distributed applications some network nodes provide a service while others

consume it. Several paradigms exist to design applications over a network, including

the client-server and the peer-to-peer approaches, which are illustrated in Figure 1.

The traditional client-server approach is built around a server, which processes the

requests of one or more clients. Using this paradigm, the service quality can suffer

from the nature of the Internet and the habits of the users. Thus, the server can become

a bottleneck if it receives too many requests simultaneously, or if the network links are
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overloaded. In addition, the server constitutes a single point of failure of the application,

and could crash or even become Byzantine. Due to the cost of high performance

servers, applying this paradigm is not accessible to everyone. In Figure 1, a single

server answers the requests of 4 clients, which use different devices (e.g., a laptop, a

smartphone, a personal computer).

Differently, in the peer-to-peer (P2P) model, the users of the application, called peers,

play both the roles of clients and servers, sharing their resources (CPU cycles, memory,

network bandwidth) to the application, and benefiting in return from it. Using a P2P

architecture instead of a client-server approach can be interesting for several reasons.

First, there is no single point of failure, or bottleneck, and peers can join or leave the

system at any moment. Then, scaling the system up to several thousands of nodes is

easier and cheaper, and it is possible to design an application whose membership is able

to absorb quick and massive joining/departure of nodes without significantly degrading

the quality experience of nodes. In Figure 1, all nodes collaborate with two other nodes,

both in emission and in reception, to benefit from the application.

It is worth mentioning that hybrid approaches (e.g., used in [6, 7]) exist, where some

servers help a P2P system with some tasks. For example, in NetSession [7] peers are

coordinated by a dedicated infrastructure to exchange content. These hybrid approaches

seek to obtain the best of the client-server and peer-to-peer approaches.

(a) A client-server system

(b) An example of peer-to-peer system

Figure 1 – Distributed systems architecture paradigms
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Historically, file sharing applications were the firsts to adopt the P2P paradigm. Nowa-

days, these applications are mainly represented by BitTorrent. In a file sharing applica-

tion each user is interested in obtaining a copy of at least one file. Each file is splitted

in fragments, and nodes have to collaborate to obtain all the fragments, and reconstitute

the file. Users will receive fragments from those who have it, and send it to the others.

In this case, each peer has to dedicate some of its upload bandwidth to send fragments

to other nodes, even if it does not benefit from doing it. Other types of applications that

relied on the P2P approach include phone applications (Skype [79]), instant messaging

(Jabber [80], ICQ [81]), live streaming (SopCast [82], Veetle [83]), and even social

networking (Diaspora [84]), in which client sites are peer nodes.

In this document, we are focusing on the problem of information dissemination in

P2P networks, which consists in efficiently providing a given content to a set of nodes.

Indeed, this is a central service in various applications, for example used to update the

list of peers in an applications, or share a multimedia content.

A simple yet efficient way to disseminate content in a network of peers is to use random

exchanges between nodes. More precisely, each user has to choose randomly a given

number of other users to which it will send fragments of the content it already owns.

Then, each of these users that received these fragments will have to forward further this

content to other peers. After a given number of hops each member of the audience will

have received all the fragments with high probability. This paradigm, called gossip, has

the advantage of being simple, of ensuring probabilistic guarantees on the dissemination

success, and of easily tolerating the arrival, or departure, of nodes.

Gossip, coalitions of freeriders and privacy

As we previously said, users in a P2P system are expected to share their resources and

benefit from the system in return. It has been shown that some users tend to be selfish,

as they try to avoid contributing to the system, for various reasons, while trying to

maximize their benefit. For example, in DSL networks, nodes have more bandwidth

available in download than in upload, and peers may be tempted to participate to a

gossip session even if they are not able to contribute properly to it. Another possible

reason is that users may want to minimize their participation in a protocol to hide it

from their Internet Service Provider (ISP).

In addition, selfish nodes can collude to collectively decrease their contribution to the

system, or to increase more their benefit. For example, nodes located inside a same local

area network could be more interested in exchanging chunks between them, because

the latencies of their exchanges are lower and their throughput higher. These exchanges,

which are not random, could degrade the performance of the global gossip system. For

example, if all exchanges between nodes have to be balanced (i.e., a user must send the

same number of fragments that it is receiving), then these nodes will receive updates

from their coalition more frequently, and collaborate less with other nodes. Identifying

collective rational deviations in state-of-the-art protocols, and designing a gossip-based
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protocol protected from rational coalitions constitute the first contribution of this thesis.

The impact of individual or collective selfish nodes is particularly acute in the case of

live streaming applications. In these applications, a particular node produces content,

for example a video, creates the fragments, and immediately starts spreading the frag-

ments in the audience of users, which have to share them. Regularly, some fragments

are supposed to have been received by all nodes and are then delivered to the media

application of nodes. These updates will not be exchanged in upcoming exchanges.

Thus, if some nodes have not received the updates due to selfish behaviors, they will

suffer from a degradation of their experience quality.

In order to protect a protocol from selfish nodes, which do not participate as they are

supposed to, system designers usually try to detect all kind of faults and evict the guilty

nodes, or try to design a system in which the best interest of nodes is to participate

correctly. As we will see later in this document, in the first case, the details of the

interactions of nodes can be learned by other participating nodes, while in the second

case all rational behaviors cannot be avoided. There is a tension between the idea of

verifying the behavior of nodes and the idea of protecting their privacy. Nowadays,

Internet users are aware that their private information is worth something. For example,

two billions dollars are used each year in the United States to buy personal data [85].

As a consequence, users may want to have more control on their data, and may avoid

to use protocols that do not offer them this possibility. Conciliating both privacy and

resistance to selfish nodes is the second problem we tackle in this document.

Objectives of this research work

We highlighted two problems that P2P content sharing applications face. First, we

have shown that selfish peers threaten the good dissemination of content, either by

deviating individually, or by elaborating collaborative strategies to game the system.

Thus content dissemination systems have to detect selfish behaviors and evict the guilty

nodes, or to provide incentives for nodes to stick to the protocol. We defined, prototyped

and evaluated AcTinG, a gossip-based protocol that deters and detects collusions of

selfish nodes. The performance of AcTinG was evaluated on a testbed comprising 400

nodes running on 100 physical machines, and compared its behavior in the presence

of collusions to two state-of-the-art protocols. The performance evaluation shows that

AcTinG is able to deliver all messages. It also shows that AcTinG is resilient to

massive churn. Finally, using simulations, we showed that AcTinG exhibits similar

scalability properties as standard gossip-based dissemination protocols.

Then, we argued that detection methods typically leak information about users, either

to a central entity, or to other users. Nowadays, people are becoming reluctant to use

systems that collect information about them. Designing a gossip protocol that limits

selfish behaviors and protect the users’ privacy is an interesting challenge. The second

objective of this work is to define and prototype such a gossip protocol. We evaluated

this protocol, named PAG, using deployments on a cluster of 48 machines, simulations

involving up to 10000 nodes, and a cryptographic protocol verifier. The performance
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evaluation of PAG, performed using a video live streaming application, shows that

PAG is compatible with the visualization of live content on commodity Internet

connections. Furthermore, PAG’s bandwidth consumption scales logarithmically with

the number of users thanks to the inherited properties of gossip.

Research location

This research has been made in the Erods team of the LIG (Laboratory of Informatics

at Grenoble). This team is interested in the construction and the management of Cloud

systems, but also in distributed and multicore systems.

Organization of this document

This thesis is organized into 5 Chapters, and 2 Parts:

Chapter 1 shortly reviews the fundamental concepts behind gossip-based content dis-

seminations, presents the problems caused by selfish nodes and how protocols generally

deal with them. We also explain that selfish nodes may collude and thus perturb the

dissemination of information, and that traditional mechanisms designed to deal with

selfish nodes may endanger the privacy of users.

Rational collusions in gossip-based dissemination systems
Part I treats the problem of collusions of selfish nodes in gossip, and is made of Chap-

ters 2 and 3.

Gossip in presence of rational nodes

Chapter 2 presents an overview of the works related to rational-resilient gossip-based

dissemination. We detail gossip protocols that were specially designed to detect or

deter selfish deviations, accountability approaches and general Byzantine-tolerant ap-

proaches. We identify the requirements of a gossip protocol accounting for collective

selfish behaviors, and present a summary of whether existing approaches match them.

AcTinG: accurate freerider detection in gossip

Chapter 3 proposes a novel gossip-based protocol, named AcTinG, designed specially

to tolerate collective selfish deviations. This chapter provides an overview and details

of our prototype of AcTinG. Nodes running this protocol are shown to have all interest

in sticking to it, and if they do not, would not harm the dissemination of updates and

eventually be detected. AcTinG is evaluated using deployments on a cluster of 40

machines, simulations involving up to one million nodes, and scalability metrics.

Privacy and rational resiliency in gossip-based dissemination
systems
Part II treats the problem of privacy in selfish-resilient gossip, and is made of Chapters 4

and 5.
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Privacy in rational-resilient gossip

Chapter 4 studies the problem of protecting the privacy of nodes while tolerating selfish

nodes in gossip. First, we formalize the requirements to tolerate both selfish behaviors

and protect the privacy of users in gossip. Then, we explain that existing selfish-resilient

gossip protocols may leak information about users. Moreover, we assert that some

anonymous communication protocols are both accountable and privacy-preserving but

suffer from poor performance. In the same way, we introduce some solutions that

combine both privacy and accountability, but we claim that they cannot be applied to

gossip.

PAG: Private and accountable gossip

Chapter 5 proposes and evaluates a gossip-based protocol, named PAG, that forces

nodes to participate actively in the dissemination of a content, while limiting the infor-

mation they can learn the one about the other. First, we detail our assumptions about

nodes and about the system. Then, we introduce the intuition behind PAG that relies

on homomorphic encryptions. We also explain how this intuition is implemented in

practice, using message exchanges. In addition, we detail the practical details that make

PAG practical. Finally, the security of PAG is assessed using a cryptographic protocol

verifier, simulations and a prototype of PAG is used to evaluate its performance on a

deployment on a cluster of 48 machines.

Lastly, we conclude this document and expand on the possible future works. Exten-

sions include designing a more lightweight privacy-preserving dissemination algorithm

and handling collusions in PAG. Another challenge is to exclude faulty nodes while

preserving the privacy of correct nodes.
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In this chapter, we introduce the fundamental concepts we will use throughout this

document. This chapter has been thought as an extension of the introduction in the

sense that it motivates the problems that are studied in this thesis. As such, the following

chapters are more detailed, and develop notions that are quickly presented here.

First, in Section 1.1 we describe the theoretical foundations of gossip. Then, in Sec-

tion 1.2 we present selfish behaviors which form a subset of the possible deviations

that nodes could follow, and explain how these particular deviations are traditionally

modeled. Finally, we describe in Section 1.3 the impact of individual or collective

selfish deviations on the dissemination of updates, but also more surprisingly on the

privacy of users.

SECTION 1.1

Probabilistic dissemination

In this section, we introduce the various existing ways to disseminate content in a

peer-to-peer audience. Among them, we detail the gossip paradigm, and precise its

probabilistic dissemination guarantees.

1.1.1 Structured and unstructured overlays

During the last decade, several peer-to-peer information dissemination methods have

been developed. Some are based on a static overlays that nodes have to maintain and

through which information is propagated, e.g., dissemination trees [8, 9, 10, 11, 53] or

meshes [12, 54], while others like gossip uses an unstructured approach.

In a tree-based structured overlay, nodes are organized in a tree, and the disseminated

content flows from the root of the tree towards the leaves. Maintaining a quality of

service in presence of churn in trees is challenging because when an internal node

disappears its subtree stop receiving the content. In addition, the participation of nodes

to the system is not equally distributed among them, as leaves do not forward the

content they receive to any nodes. For example, in a binary tree more than half of

the nodes are leaves. In addition, nodes higher in a tree have to participate more than

the others, and it is necessary to take this into account when creating or maintaining

a tree. SplitStream [9] tries to overcome these drawbacks using several trees which

simultaneously disseminate parts of the content.

A mesh consists in a static graph, which links all the nodes interested in a similar

content. Contrary to trees, where the root is the only node distributing the content,

in a mesh several nodes may receive the content in different places of the graph, and

simultaneously propagate it in different directions. Typically, nodes retrieve content

from several nodes in parallel, rather than just from one node, which improves the

resilience of the system to nodes failures. For this reason, it is also easier to repair a

mesh than a tree without affecting the service quality.

In gossip, nodes exchange contents the one with the others without using static associa-

tions, like in trees and meshes. This unstructured approach is thus simpler to create and
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maintain. We detail gossip in details in the following parts.

1.1.2 Principles of gossip

The gossip paradigm has been inspired by the probabilistic studies on epidemic diffusion.

Such studies tried to model the mechanisms that nature deploys to spread an infection

among a population of individuals. In gossip, once a message is received by a node, the

node is then infected and contagious, which means that it can propagate the disease to its

neighbors during a given period of time. After some time, using this infect-and-spread

approach, all nodes are infected, i.e., received the message. Gossip protocols represent

a simple, yet efficient, approach to disseminate a message in a system.

Parameters. In [55], the authors discuss the parameters that are implicitly used in the

previous paragraph. Each time a node receives a message for the first time, it forwards

this message to a random subset of nodes, whose size is called the dissemination fanout.

The period during two forwardings is called a dissemination round. In addition, nodes

forward a message during a limited number r of rounds, which is called the number

of dissemination repetitions. Following the analogy of an infectious disease, r is the

number of rounds after which a node stays alive, or contagious, after its infection. The

special case where r equals 1 is called the infect-and-die model.

Illustration. Figure 1.1 provides an example of a file dissemination using gossip in a

system of 7 nodes. In this situation nodes forward a newly received message to 2 other

random nodes during 1 round. During round number 1, the source of the dissemination

owns a file that it transmits to two other nodes. Nodes that have received the file are

represented in black, while those who have not are represented in white. The two nodes

that received the message from the source forward this message to two other nodes

during round 2. During round 3, the nodes that have received the message for the first

time forward it, and after four rounds, all the nodes in the system have received the

message. One may see that using gossip a node may receive several times the same

message, which is the case of many nodes in the illustration. In practice, determining

the ideal fanout and number of dissemination repetitions usually depends on the targeted

application, and on the assumptions that the system designer takes (e.g., concerning

churn).

1.1.3 Probabilistic guarantees

In this section, we provide theoretical results that prove that gossip is both an efficient

and scalable method to disseminate information in a set of N nodes.

Atomic dissemination. Kermarrec et al. [56] have analytically and experimentally

studied the probability that all nodes receive a given message, a situation which is

called atomic dissemination. Their results show that in the infect-and-die model, where

nodes forward a message during only one round after its reception, if the fanout of

nodes is close to ln(N) + c, where c is a constant, then the probability to ensure atomic
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Figure 1.1 – Example of gossip with 7 nodes
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dissemination is equal to:

(1.1) Patomic = e−e−c

Another interesting result is that even if nodes participate differently to the system

atomic dissemination can be enforced. Indeed, it is enough that nodes participate to the

dissemination in average by forwarding to O(ln(N)) other nodes.

Latency of dissemination. When the fanout of nodes is on average close to ln(N)+c,

nodes receive all the messages with high probability. Under this assumption and in the

infect-and-die model, Bollobás [1] has shown that nodes receive a message in average

R rounds after its emission, where:

(1.2) R =
ln(N)

ln(ln(N))
+O(1)

As R grows slowly with N , this equation proves the scalability of gossip.

We have seen that gossip is efficient to propagate messages inside a population of nodes

if the fanout of nodes is correctly chosen as atomic dissemination is then ensured with

high probability. In addition, the fanout of nodes and the latency of dissemination

increase slowly with the system size, which proves its scalability.

SECTION 1.2

Selfish behaviors

In this section we present the types of deviations that nodes may execute in a gossip

protocol. We first introduce the BAR model that consider three types of nodes. The

following sections explain how rational nodes can be modeled using utility functions,

and how it is possible to protect a protocol against selfish deviations.

1.2.1 BAR model

Assuming the existence of only two categories of nodes, correct and faulty nodes, limit

the number of faults that can be tolerated in a system to one third of the membership.

Considering a new category of faults, rational deviations, allowed researchers to build

protocols that tolerate an unbounded number of rational nodes in addition to a bounded

number of Byzantine nodes. Contrary to the two other categories of nodes, altruistic

and Byzantine, the precise definition of rational nodes depends on the protocol they

participate in.

In the Byzantine Altruistic Rational (BAR) model [13], nodes are classified into three

categories.

• Byzantine nodes. First defined in [57] Byzantine nodes may deviate arbitrarily

from a protocol. Nodes may be broken, for example if they are misconfigured or

malfunctioning, but may also behave deterministically, e.g., to harm other users.
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• Rational nodes. These nodes are self-interested and seek to maximize their

benefit according to a known utility function. Rational nodes deviate from the

protocol in any way that increases their benefit.

• Altruistic nodes. They strictly follow the protocol, and are often named correct

nodes.

Nodes may be rational for several reasons, for example, they may want to save their

resources [14], or they may limit their participation in order to avoid being detected if

they illegally share files [58].

1.2.2 Utility functions

Rational nodes deviate from the protocol in any way that increases their benefit. How-

ever, defining this benefit depends on the application that nodes are running. For system

designers, tolerating rational nodes can be done in two ways: (i) first, rational nodes can

be considered Byzantine, and if all deviations can be detected they would be handled

correctly, (ii) second, the protocol can be adapted to encourage rational nodes to follow

it. The first approach is usually more costly in terms of resources than the second one.

To evaluate precisely the benefit of nodes, and later convince rational nodes to partici-

pate correctly, it is conventional to define a utility function that accounts for the costs

and the benefits of nodes when they participate in a protocol. The costs of nodes may

include computation cycles, storage, network bandwidth, overhead associated to send-

ing or receiving messages, power consumption, etc. Their benefit can be represented,

for example, as the fraction of released updates they receive, or as the (lowest possible)

jitter in the case of live-streaming. In this last case, jitter is the proportion of time

during which the stream is not viewable. Due to the use of error correction methods

(e.g., FEC1) jitter is not exactly equal to the proportion of missing updates. Erasure

codes [15, 16, 17] and Multiple Description Coding [59] are techniques that can help

reduce the average jitter of a application that disseminates multimedia content.

In Figure 1.2 we use the same gossip scenario we presented in Figure 1.1 to introduce

a situation in which a single rational node has a negative impact on the dissemination

of an update. This time, node 1 is a rational node, and is represented in red. During

round 2, node 1 chooses not to forward the update it should send to nodes 2 and 6.

Consequently, at the end of round 3, nodes 2 and 6 did not receive the update everyone

else received. In this situation, these two nodes would have no other possibility to

receive this update, while node 1 decreased its participation.

1.2.3 Byzantine fault tolerance or Nash equilibrium

System designers have two ways to protect their protocol from rational nodes: detect-

ing all kind of faults using Byzantine fault tolerant methods, or establishing a Nash

equilibrium. The first method consider all deviations equally and is generally costly.

The second one, however can be more easily attained.

1FEC stands for Forward Error Correction
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Figure 1.2 – Example of gossip with 7 nodes in presence of a rational node

John Nash developed in 1951 some theoretical basis of game theory that are intensively

used today in fields like economy, geopolitics and computer science. In [60], he intro-

duced the notion of equilibrium that was later named after him. Simply stated, a Nash

equilibrium consists in a situation where the players stick to their behavior because of

their assumptions about other players.

Applied to gossip, where the players are the nodes, it means that a node that makes

the assumption that the other nodes are correct, or altruistic, because it does not know

them will deviate from the protocol if its utility function tells it to do so. Thus, system

designers can build their protocols and model the utility of nodes in such a way that the

best strategy for individual rational nodes is to stick to the protocol.

SECTION 1.3

Impact of selfish nodes

In this section, we introduce individual and collective rational deviations, and the threats

that current detection mechanisms imply on the privacy of users.

1.3.1 Individual deviations

The authors of [61] found that 70% of the users of Gnutella where freeriders in a 24-hour

period. In addition, the top 1% of contributors returned 50% of all contributions.

Several protocols have been devised to deal with the problem of rational nodes in

different kind of collaborative systems, among which spam-filtering content dissemina-

tion [18], N-party transfer [62], and file transfer protocols [61].

In Figure 1.1, we detailed an example of dissemination in presence of a rational
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node. This simple example illustrated how selfish deviations can heavily harm the

dissemination of updates in a system. Gossip protocols have to consider this situation

and be designed to avoid this situation. We will further examine in chapter 2 the

protocols that have been devised to treat the problem of individual selfish nodes in

gossip-based systems.

1.3.2 Collusions

Collective deviations, or collusions, are situations where some nodes deviate from

the protocol according to a strategy collectively defined. This type of deviation have

been observed in P2P file sharing systems [19, 20]. To define their strategy, nodes

could silently communicate (i.e., outside the official protocol), which has also been

observed [21]. Collective deviations are more subtle than the individual ones. They are

generally defined in reaction to mechanisms that aim at limiting the impact of individual

deviations. As a consequence, depending on the protocol nodes are running they will

be different.

As an example, a possible way to force nodes to communicate is to use tit-for-tat, or

balanced, exchanges where a node cannot receive more updates from its partner than it

is sending to it. In these kinds of systems, one possible colluding strategy is for two (or

more) nodes to exchange updates off-the-record the one with the other as soon as one

of them received it. This way, the colluding nodes receive updates sooner than other

nodes, and do not miss them. However, this strategy does harm the dissemination of

updates. When correct nodes would want to exchange updates with colluding nodes

the resulting exchanges will be poor in term of number of updates exchanged. The

messages that colluding nodes receive are less propagated in the system. We examine

more in details the possible strategies of colluding nodes in state-of-the-art protocols,

in chapters 2 and 3.

1.3.3 Privacy and selfish nodes

In order to protect a protocol from selfish nodes, which do not participate as they are

supposed to, system designers usually try to detect all kind of faults and evict the guilty

nodes, or try to design a system in which the best interest of nodes is to participate

correctly. As we will see later in this document, in the first case, the details of the

interactions of nodes can be learned by other participating nodes, while in the second

case all rational behaviors cannot be avoided, e.g., collective deviations. There is a

tension between the idea of verifying the behavior of nodes and the idea of protecting

their privacy. Nowadays, Internet users are aware that their private information is worth

something. For example, two billions dollars are used each year in the United States to

buy personal data [85]. As a consequence, users may want to have more control on their

data, and may avoid to use protocols that do not offer them this possibility. Conciliating

both privacy and collusions resistance is the second problem we tackle in this document

detailed in chapters 4 and 5.
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Using a gossip-based protocol to disseminate information in large-scale P2P systems is

a simple yet reliable and scalable approach. However, in the basic version of gossip

users are not forced to participate in the dissemination. They can receive the content,

maximize their benefit, and yet try to minimize the cost they pay in return, which often

consists in upload bandwidth or CPU cycles they dedicate to the application.

In order to tolerate selfish nodes, a first approach consists in designing specific gossip-

based dissemination protocols that encourage nodes to participate correctly. The ideas

behind these protocols is to provide incentives that will reward the participation of

nodes, and/or to detect and punish the deviations of nodes. The second possibility is to

apply generic accountability mechanisms on top of a gossip protocol to compare the

behavior of nodes with the execution of a correct node.

This chapter, which reviews the works related to collective rational deviations in

dissemination protocols, is organized as follows: Section 2.1 provides some background

about existing rational-resilient gossip protocols. Section 2.2 details accountability

approaches that could be applied on top of any gossip protocol to verify the correctness

of nodes. Section 2.3 presents methods that transform a P2P protocol into a Byzantine

tolerant protocol. Section 2.4 identifies the requirements of a gossip protocol accounting

for collective selfish behaviors, and presents a summary of whether the related works

match these requirements. Section 2.4.3 concludes this chapter.

SECTION 2.1

Rational resilient dissemination protocols

In this section, we present the existing rational resilient gossip-based dissemination

protocols. For each of them, after providing an overview of their data dissemination

scheme and of their defense mechanisms against rational behaviors, we underline

the weaknesses that colluding nodes can seize. In sections 2.1.1.1 we present a live-

streaming protocol which is built around the principle of Nash equilibrium. We later

describe, in sections 2.1.2.1 and 2.1.2.3, solutions which use the principle of distributed

auditing to check the correctness of nodes.

2.1.1 Nash equilibriums

In the following, we present two live-streaming protocols, based on gossip, that are

shown to be Nash equilibriums, which means that individual selfish nodes stick to the

protocol believing that it is the best strategy they could apply.

2.1.1.1 BAR Gossip and FlightPath

BAR Gossip [22] is the first P2P gossip-based live-streaming protocol designed ex-

plicitly to tolerate both rational and Byzantine (i.e., arbitrary) behaviors. It was later

modified into Flightpath [23] to increase its scalability and improve its churn manage-

ment.
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Streaming model and main ideas. In gossip-based content dissemination systems,

chunks of data are exchanged at each round between randomly selected partners. It is

precisely this randomness that gives gossip protocols their robustness. However, such

non-determinism refrains the system from easily checking the legitimacy of partner

selections. For example, without determinism nodes could exchange updates only with

their accomplices, or sometimes avoid to forward them. Thus, while traditional gossip

elects partners randomly, BAR Gossip employs a verifiable pseudo-random number

generator (PRNG) and signature schemes to build the partner selection algorithm. In-

deed, the randomness of associations is preserved, and hence so is the robustness of the

dissemination algorithm, while the legitimacy of associations can be verified.

BAR Gossip makes several assumptions about nodes and communications synchrony.

Nodes are uniquely identified, and maintain their clocks synchronized within δ seconds

of each others, and communicate over point-to-point, synchronous and unreliable links

using both TCP, and UDP. During the streaming session, time is divided into rounds

of duration (T + δ) seconds, where T is a time interval sufficient to complete the

exchanges of updates required by the two possible exchange protocols. The source

of the video stream is supposed to be altruistic (i.e., to strictly follow the protocol).

Each round, it generates some new updates, and send them to a random fraction of

the audience. The membership is assumed to be static: nodes have to subscribe to the

session prior to its start, and non-Byzantine nodes remain in the system for the whole

duration of the broadcast.

The role of POMs. All messages that a node sends are signed, and when a node

does not comply with the protocol it takes the risk of being denounced to the source of

the stream via the generation of a verifiable proof of misbehavior (POM). This POM

links a fault with its author using cryptographic primitives, possibly joining several

messages sent from the guilty node. A centralized trusted entity periodically collects

the POMs from nodes. The interaction relies on a balanced cost principle: interacting

with the trusted entity has a constant cost, independently of the presence of a POM. The

identity of non replying nodes is also communicated to the source. These nodes are

then evicted from the live streaming session by means of an eviction list that the source

sends together with the updates it generates.

Exchange protocols. Updates exchanges between two nodes, called partners, can

follow two schemes:

• Balanced exchanged protocol where the two partners exchange the same number

of updates.

• Optimistic push protocol where the two partners exchange a different number of

updates.

These two exchange protocols share the same basic structure, illustrated in Figure 2.1,

made of four steps. We briefly describe these steps and explain why rational nodes are

encouraged to follow them.
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• Partner selection. A node chooses a gossip partner to exchange updates with.

The identity of this node is obtained using a PRNG which is seeded using the

current round number signed with the initiator’s key. The first number generated

is deterministically mapped into the identity of a gossip partner. The chosen

gossip partner can verify this computation, and denounce the initiator using the

signed message it sent, which in this case constitutes a POM.

• History exchange. The two parties learn about the unexpired updates the other

party holds. In particular, the initiator sends a hashed history, and only after

obtaining the other node’s history in clear it sends its history in clear. The

contacted node can check that the hashed history and the clear one are consistent

the one with the other. Otherwise, these two messages constitute a POM again

the initiator.

• Update exchange. Each party copies a subset of these updates into a briefcase

that is sent, encrypted, to the other party. Depending on the exchange protocol,

the number of updates that is placed in these briefcases may not be the same.

Particularly, using the balanced exchange protocol nodes are encouraged to

announce all their updates if they want to maximize the number of updates they

will receive. Each of them sends a briefcase message containing the encrypted

updates that it is supposed to send, and their ids in clear.

• Key exchange. The nodes swap the keys needed to access the updates in the

briefcases they received. If a node does not send the right key, the other one

would be able to constitute a POM. Also, if a node does not respond to a key

request, the requester node continues sending the request, thus consuming the

download bandwidth of the other node.

The two protocols differ in the way they select the updates that will be placed in the

briefcases. The balanced exchange protocol uses a tit-for-tat principle where both

nodes profit from the same number of new updates. The authors have proved that this

exchange protocol is a Nash equilibrium [60], which means that the best strategy nodes

could follow is the protocol. The keystone of this protocol is a principle of deferred

gratification: when interacting with each others, the best option of nodes is to correctly

follow each step of the balanced exchange protocol to finally benefit from it.

On the contrary, the optimistic push protocol is designed to help nodes that have fallen

behind in the broadcast, and allow a peer to receive more updates than it can give in

return. This protocol is not a Nash equilibrium. However, during unbalanced exchanges,

the same quantity of data (but not the same number of updates) is exchanged, through

the sending of updates that are about to expire (old updates), or of junk data. This

results in a waste of bandwidth, but this is designed to prevent free rides.

FlightPath: an approximate Nash equilibrium. To improve its performance and

to obtain a dynamic membership, the authors of BAR Gossip modified it into another

protocol named FlightPath. The core of the protocol remains the same, but several

modifications are introduced. FlightPath exhibits better performance, decreasing the

jitter and the bandwidth consumption of nodes, than its predecessor. In opposition with
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Figure 2.1 – Basic trade illustration of BAR Gossip (Based on [22]).

BAR Gossip, where the set of participating peers is defined at the beginning of the

streaming session, FlightPath allows a dynamic membership, and deals more efficiently

with realistic conditions, where nodes can leave or join the system at any moment. This

gain is allowed thanks to an evolution of the system goal, which is now to reach an

approximate Nash equilibrium, allowing a bounded imbalance in trades.

In an approximate Nash equilibrium [2], rational peers deviate from the protocol if

and only if they expect to increase their benefit by a proportion of ε doing so. The

advantages of using a ε-Nash equilibrium consist in giving more freedom to design

practical solutions. FlightPathuses BAR Gossip as a basis, but the authors claim to have

improved performance while decreasing the overhead of the protocol. For example,

nodes do not have to waste network bandwidth by sending garbage data to balance

bandwidth consumption, the load can be redirected away from a busy peer, trades with

"poor" peers can be avoided and the use of arithmetic coding of data provide more

opportunities for useful trades.

FlightPath optimizations. Gossip protocols are well-known for their robustness, but

the authors explain that the very randomness of partner selection, basis of this robustness,

may induces difficulties to propagate updates by a hard deadline in live streaming system.

To overcome this issue, this article introduces two kinds of improvements, the first three

have an influence on the peak bandwidth of the protocol, and the other three on jitter.

• Reservation. This mechanism seeks at limiting the number of concurrent trades of
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any peer, for each round. Too many exchanges may lead a peer to the impossibility

of finishing all exchanges in time, but also to receive duplicate updates.

• Splitting need. During a round, if a peer has many partners it can split its demands

among them instead of demanding every missing update to each. There is a limit

between two few demands per peer and risking not to obtain all updates, and

demanding too many and wasting bandwidth.

• Erasure codes. For each round, the source codes all the stream data in more

updates that normally necessary introducing erasure codes. The probability to

trade similar updates during a round is decreased.

• Tail inversion. to reduce jitter, peers have the possibility to request updates that

do not come from the current round. Instead of requesting updates in most-recent-

first order, a peer has the option to receive updates coming from the two most

recent rounds first and then updates in oldest-first order.

• Imbalance ratio. each peer bounds by α the proportionality factor between the

downloads and uploads coming from any other node. When α = 0, every trade

is balanced, allowing an unlucky peer to fall behind. At the opposite, if α = 1,

free-riders can game the system. Experimentally, the authors set α to 10%. This

is the basis of their ε-Nash equilibrium.

• Trouble detector. Each peer monitors its performances during each round. If they

fall below a certain threshold, peers can initiate more than one trade in a round to

avoid jitter. This solution is only a security net, because increasing the number of

concurrent trades also increases the bandwidth dedicated to uploading.

Dynamic membership. FlightPath also presents two schemes to handle nodes that

want to join or leave the system during a streaming session, a phenomenon that is also

called churn. In a BAR environment one has to be careful in providing benefit to any

peer who has not earned it. Two mechanisms are proposed : the first allows the tracker

to modify the membership list and to disseminate it to all relevant peers, the second lets

a new peer immediately begin to trade so that it does not have to wait in silence until

the tracker’s list takes effect.

In the first solution, a tracker periodically assigns new membership to reflect joins and

leaves. An epoch is defined as a set of ∆ successive rounds. If a peer joins in epoch

e, the tracker places it into the membership that will be used in epoch e + 2. At the

boundary between epochs e and e + 1, the tracker shuffles the membership list and

transmits it to the source. Shuffling prevents Byzantine peers from attempting to place

themselves at specific indexes. The tracker notifies nodes about this new membership

list with a new kind of updates, partial membership lists, that are exchanged in priority

compared with other updates (digests or stream updates).

The second proposition organizes peers as tubs such that the first tub contains the oldest

peers and subsequent tubs contain younger and younger peers. A peer selects partners

from its own tub and also from any other peer older than itself. However, the probability

that a peer from tub t selects from a tub t′ < t decreases exponentially with t− t′.
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2.1.2 Audits and statistical approaches

Other protocols, which are not based on Nash equilibriums, have been devised to deal

with selfish nodes. These solutions make nodes maintain a log of their interactions and

audit each others in order to detect deviations and punish them. These protocols are

explained in this section.

2.1.2.1 Enforcing fairness in a live-streaming protocol

The live-streaming system presented in [24], the fault model of nodes and the approach

are quite different compared to those of BAR Gossip, and FlightPath, where nodes are

free to avoid to initiate some type of exchanges. In this work, any node not contributing

its fair share of data may be expelled from the system. Nodes trying to maximize their

utility are classified as Byzantine, and a punishment-based system is designed to evict

them from the system. This punishing approach differs radically from the one used in

BAR Gossip where a rational node is encouraged to stay and participate in the system

by mean of a controlled exchange protocol.

Mesh overlay. The basis of the work presented in this publication consists in auditing

a live-streaming system in order to encourage nodes to participate. Contrary to gossip,

where partners are chosen randomly, nodes are here part of a mesh, and trade with

a given static set of neighbors. These neighbors are randomly determined by the

streaming system initially, to make it harder for malicious users to take profit of this

kind of configuration.

Characterization of a system under attack. The expected average behavior of a

streaming system working in ideal conditions, without Byzantine nodes, is determined

through simulations which monitor the minimum, average, and maximum download

and upload factors of nodes. These simulations showed that when the maximum upload

factor authorized per node increases, some nodes participate more in the dissemination

of data than other, even though all of them are behaving correctly. When a proportion

of the peers is behaving opportunistically the minimum upload factors of correct nodes

are increased. Thus, the principle of this solution is to monitor the upload factor of

nodes, and when it is greater than a determined threshold evict all nodes that do not

participate enough in the dissemination.

Auditing approach. The auditing method consists in monitoring the maximum up-

load factor measured in the membership to detect the presence of rational nodes.

However, the minimum upload factor does not follow a clear pattern, making it hard

to identify the minimum contribution of correct nodes under compromised scenarios.

Therefore, applying a minimum threshold for the upload factor to detect opportunistic

nodes may also punish correct nodes if it is not carefully chosen.

Auditing infrastructure. The auditing infrastructure has two functions: (i) collect

accountable information about the download and upload factors of nodes; and (ii)

determine the best threshold and apply it to evict nodes that do not participate enough.

Each task is assumed by a different component. We illustrate the different components
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of the monitoring infrastructure in Figure 2.2. In this figure, node S is the source of the

content that nodes A to F share with each others. Local auditors are based on nodes A
to F , while global auditors G1, G2 and G3 periodically audit the whole system.

Local Auditors. Local auditors are hosted on the nodes participating in the system,

and are not trusted as any node can be malicious. It is important to distinguish a

local auditor from the live streaming application from which it obtains the history of

exchanged packets.

• Local auditors periodically compile the history of exchanged packets of the node

they control. This history is then signed and published to an assigned subset of

neighbors. This level of indirection is used to prevent nodes from masking their

real upload and download factors by presenting different information to different

auditors.

• Each local auditor checks that its node’s neighbors sent more data than the

minimum threshold. If not, it emits an accusation against the node that is

transmitted to a global auditor. Local auditors also verify that the quantity of

data received from, or sent to, a neighbor is exactly what it says to have sent,

or received. If these checks fail then the local auditor tells its local streaming

application not to further exchange packets with the suspect neighbor (in this

situation it is not possible to say if it is really misbehaving).

Global Auditors. Global auditors are trusted components that run on dedicated exter-

nal nodes. They have a global membership knowledge and interact with one another and

local auditors. Their number is not fixed, and may vary depending on some parameters,

such as the size of the system.

• Global auditors periodically sample the state of the system by querying local

auditors. Then they cooperate and establish the minimum threshold according

to a given strategy. Once a threshold has been chosen, it is gossiped to all local

auditors.

• They also verify accusations issued by local auditors against particular nodes

and, after validation, expel misbehaving nodes from the system. The validation is

made by verifying the node’s local history. Expelling a node consists in informing

all its immediate neighbors of its status.

Choice of a threshold. Several strategies may be designed to establish a threshold to

detect selfish nodes. We briefly present those that are described in the following:

• Constant threshold. Using a fixed threshold would either not detect enough

selfish nodes, or evict correct nodes. In addition, selfish nodes that would learn

the threshold would simply adapt their contribution in order not to be detected.

• Increasing threshold. The session starts with a upload threshold of 0.5, and once

the average download factor of nodes is lower than 0.98 the system increases

the threshold until the situation is considered normal again, in which case the

threshold is decreased.
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set of nodes in the system. This is usually achieved through full membership (as in BAR

Gossip or FlightPath) or a peer sampling protocol [27, 28, 64]. A source broadcasts a

stream to a set of peers, using the same three-phase gossip protocol that is used by other

nodes. The stream content is divided into multiple updates uniquely identified by their

ids.

We detail below the three phases of the protocol:

◦ Propose phase. At every gossip period, each node proposes the set of updates it

received since its last propose phase to a random set of f nodes. The fanout f is

the same for all nodes in the system.

◦ Request phase. Upon reception of a proposal of a set of updates, a node deter-

mines the subset it needs and requests these updates.

◦ Serving phase. When a proposing node receives a request corresponding to a

proposal, it serves the updates requested. If a request does not correspond to a

proposal it is ignored, and non-requested updates are not served.

Rational deviations. Freeriders (or rational nodes) allow themselves to deviate from

the protocol in order to minimize their contribution while maximizing their benefit.

In addition, freeriders may adopt any behavior not to be expelled, including lying to

verifications, e.g., to cover up the bad actions of colluding freeriders. However, it is

assumed that freeriders have no interests in wrongfully accusing correct nodes. There

are three different ways in which a freerider may deviate from the protocol : bias the

partner selection, drop messages they are supposed to send, or modify the content of

the messages they send.

The study of the methods with which a node can game the protocol gives three charac-

teristics the system has to provide to prevent them. They are listed below.

◦ Quantitative correctness. a node must propose to f nodes at each period.

◦ Causality. received updates must be proposed in the next gossip period.

◦ Statistical validity. communication partners must be randomly selected.

Verifications. The verifications in LiFTinGare of two kinds, direct and a posteriori.

Verifications can lead to the emission of blames or expulsions depending on the gravity

of the misbehavior.

• Direct verifications. They are performed regularly, while the protocol is running

and check if requested updates are all served and if received updates are further

proposed to f nodes (quantitative correctness and causality).

• A posteriori verifications. They are launched sporadically, and require each node

to maintain an history of its past interactions. In practice, a node stores a trace

of the events of the last h seconds (nh = h/Tg gossip periods). The history

is audited to check the statistical validity of the random choices made when
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Attack Type Detection

Fanout decrease Quantitative correctness Direct cross-check

Partial propose Causality Direct cross-check

Partial serve Quantitative correctness Direct check

Bias partner selection Entropy Entropic check, a posteri-

ori cross-check

Table I – Possible attacks on the LiFTinG protocol (Based on [26]).

selecting communication partners (entropic check). The veracity of the history is

checked by cross-checking the involved nodes with probability pcc.

Direct checks aim at verifying locally that every requested updates is served. This

detection is always performed. Direct cross-checks are in charge of ensuring that every

served update is further proposed to f nodes during next round. If node p1 was served

a given update by p0, it has to transmit to p0 the list of nodes to which it proposed

the received update. Then p0 can contact these nodes to check if p1 told the truth. In

practice, this is done with probability pcc.

We reproduce in table I the classification of all possible deviating behaviors along with

the type of verification that allows their detection.

Blaming Architecture. The detection of freeriders is achieved by means of a score

assigned to each node. When a node detects that some other node freerides, it emits

a blame message containing a blame value against the suspected node. Summing up

the blame values results in a score. For scores to be meaningful, blame values are

homogenized. Each node is monitored by a set of M other nodes named managers,

distributed among the participants. When the score of a node is beyond a fixed threshold,

the manager spreads through gossip, a revocation message against the node making the

participants progressively expel it from the system. The mapping nodes-managers is

done through a hash function, whose entry is the node IP address.

We give in Table II the blame values corresponding to direct verifications (quantitative

correctness and causality). For a given node, R is the set of received update and S is

the set of those that were served to neighbors. Figure 2.4 presents the type of message

exchange involved in cross-checking.

The history of nodes are checked through an entropic check. When inspecting the local

history of a node, the verifier computes the number of occurrences of each node in the

set of proposals sent by p during the last h seconds. The uniformity of the distribution

of these number of occurrences is then compared to a perfectly uniform distribution,

with a tolerance threshold equals to γ. The value of γ must be set in order to be tolerant,

and to limit the number of false positives (i.e., correct nodes being blamed). A posteriori
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Figure 2.4 – Cross-checking protocol in LiFTinG (Based on [26]).

Cause Blame value Blame emitter

Non received update (di-

rect)

f
|R| for each of the (|R| −

|S|) missing update

requester

Non received ack (cross-

checking)

f initial sender

Missing or negative an-

swer (cross-checking)

1 initial sender

Table II – Values and source of blames emitted during direct verifications in

LiFTinG (Based on [26]).
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cross-checking is achieved by polling all, or a subset of the nodes mentioned in the

history for an acknowledgement. Each non verified allegation results in a blame.

Cause Blame value Blame emitter

Non acknowledged pro-

posal

1 verifier

SECTION 2.2

Accountability techniques

Contrary to the protocols described in the previous section, accountability mechanisms

are not specific to gossip-based dissemination protocols, but are designed to be applied

on top of them to verify that the logs of nodes are identical to those that a correct

execution could generate. In this section, we present some accountability techniques

that either rely purely on software solutions, or also use specialized hardware.

2.2.1 Software-only accountability

The first set of accountability techniques do not rely on trusted hardware but use specific

data structures based on cryptographic mechanisms. In this section we describe two

protocols that use such accountability techniques.

2.2.1.1 PeerReview

In PeerReview [29], nodes must execute actions that are deterministic. Each of them

maintains a secure record of the messages it exchanges with other nodes. The cor-

rectness of each node is then periodically, and independently, checked by other nodes,

using a reference implementation that replays its log. This reference implementation

can make snapshot of its state, and initialize itself from a given snapshot. Each node is

in possession of a cryptographic pair of private/public keys, linked to a unique node

identifier, that is be used to sign messages. A node that does not answer to a message

cannot be exposed (presented as faulty) by the system, but is eventually suspected by

every correct node. The reason is that under bad network conditions, which are not rare

in the Internet, messages sent by correct nodes can be lost. Correct nodes do not com-

municate with suspected nodes, consequently a suspected node has to follow correctly

a challenge/response protocol to be able to communicate anew with them. Each node

is associated to a set of nodes, which are called its witnesses. These witnesses collect

information about the node, check it correctness and make the results available to the

rest of the system. For the system to work correctly, it is necessary to be able to map

each node to its set of witnesses. It is assumed that each node has at least one correct

witness. The processing overhead of PeerReview grows linearly with the number of

peers which are in charge of checking a node actions. However, the message overhead

depends on the targeted strength of fault detection. If every fault has to be eventually

detected, then the overhead grows with the square of the number of nodes in the system.

If a probabilistic detection is enough, this overhead can be logarithmic with the total

number of nodes.





32 CHAPTER 2. GOSSIP IN PRESENCE OF RATIONAL NODES

message, and in its acknowledgement. These authenticators cover the corresponding

log entry. A log entry for a received message must include a matching authenticator;

therefore, a node cannot invent log entries for messages it never received. Authentica-

tors cannot be forged because they are signed.

When node i is about to send a message m to node j, it creates a new entry (sk, SEND, {j,m}),
where sk is the chosen entry number, attaches hk−1, sk and σi(sk||hk) to m, and sends

the result to j. Thus, j has enough information to calculate hk and to extract αi
k, which

must be valid. If it is, j creates its own log entry (sl, RECV, {i, sk,m}) and return an

acknowledgement with hl−1, sl and σj(sl||hl) to i. This allows j to extract and verify

αj
l . If it does not receive a valid acknowledgement, i sends a challenge to j’s witnesses.

Consistency protocol. If a node i receives authenticators from another node j, it

must eventually forward these authenticators to the witnesses of j. Then, periodically,

each witness of j picks the authenticators with the lowest and highest sequence number,

and challenges j to return all log entries in between. If j is not correct, then its witness

obtained a verifiable evidence that j is faulty. Finally, each witness uses the log entries

to extract all the authenticators that j has received from other nodes, and sends them

to the corresponding witness sets. This propagation of the authenticators is planned to

prevent faulty accomplices to mutually protect themselves.

Audit protocol. Each witness w of a node i periodically takes its most recent authen-

ticator from i (say αi
k), and then challenges i to return all log entries since its last audit,

up to and including ek. Then w appends the new entries to its local copy λwi of i’s log.

Node w can also create an instance of i’s reference implementation and initialize it with

a recent snapshot from λwi. Then, it replays all the inputs starting from that snapshot

and it compares the outputs with those of the log.

Challenge/Response protocol. If nodes decide not to answer to messages, the above

protocols are not useful. When a node j concludes that a node i does not answer, it

indicates the suspected state for i and creates a challenge for i. Node j sends the chal-

lenge to i’s witnesses, that forward it to i. If i does not send a response, the witnesses

indicate that i is suspected. Challenges can take two forms.

The first kind of challenges, audit challenge, consists in demanding to node i to return

a log segment which is delimited by two known values aik and ail (whose signatures

are controlled). If i is correct, then it should answer the challenge with the correct log

segment.

Send challenges are the second possibilities, they are triggered when a node did not

acknowledged a message m. After extracting and checking the authenticator from

m, any correct node is convinced that i must acknowledge m, and is waiting for this

acknowledgement to release its suspicion.

Evidence transfer protocol. When a correct node has collected enough evidence

to prove that node j is not correct, it has to propagate this proof. To achieve this,
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any correct node is able to obtain the challenges collected by the witnesses of a node.

Generally, a node collects the challenges that concern a node it communicates with.

Eventually, each correct node come to the same conclusion concerning the correctness

of a node.

PeerReview is a general method that can be used with any protocol to check the correct

behavior of nodes. Its utilization of tamper-evident log allows the detection of any

deviation. Combined with CSAR [30], PeerReview can be applied to non-deterministic

protocols. The authors of PeerReview studied how their ideas can be applied with

virtual machines. We present their work in the next Section. No specialized hardware is

needed. However, nothing forces nodes to execute the audit phase.

2.2.1.2 AVM

Accountable Virtual Machines (AVMs) run a binary software image in a virtualized copy

of a computer system. The method presented in [31] adapts the ideas of PeerReview to

virtual machines which are in charge of detecting the possible deviations of a hosted

program. AVMs are virtual machines that also provide the following services:

• Logs. Maintain a tamper-evident log (similar to the one presented in PeerReview)

with enough information to reproduce the entire execution of a node.

• Authenticators. Associate each outgoing message with a cryptographic signature

that links it to the log of the execution that produced it.

• Snapshot. Generates a snapshot of its state, and initialize itself with a snapshot to

allow the verification of the correctness of a node based on a snapshot and the

log of events from the moment this snapshot was taken.

Improvements over PeerReview. The interest of accountable virtual machines is

their capability to record non-repudiable information. The log of all inputs and outputs

that they generate allows auditors to check that the hosted software behaves correctly,

checking if it corresponds with the log of an execution known to be correct. The idea of

this paper is close to the one of PeerReview, but using virtual machines does not imply

to understand and modify the source code of the untrusted application. In addition,

using a virtual machine permits the simultaneous monitoring of several applications.

Audits. When user A wants to audit user B, he has to retrieve a segment of B’s log

and use B authenticators he previously learned about to check the integrity of the log.

If this verification fails, A can transmit to all users the authenticator that will serve as

a proof of B’s misbehavior. In order to verify the execution, A needs a snapshot of

the initial state of A at the beginning of the log segment, and will replay the execution

using a reference implementation of the state machine used by B.

2.2.2 Hardware-assisted accountability

In this section, we now describe accountability techniques that rely on specific trusted

hardware in addition to software procedures to obtain accountability. The main interest
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of these methods is to show that the overhead of accountability can be significantly

reduced through the use of simple trusted hardware.

2.2.2.1 A2M

A2M uses trusted hardware to provide an abstraction of a trusted log, that can be used

to build accountable systems at a lower cost. The aim of [32] is to demonstrate the

advantages of using a minimal trusted hardware in the fault tolerance domain. This

work proposes Attested Append-Only Memory (A2M) to provide the abstraction of a

trusted log, whose aim is to suppress equivocation (the act of telling different stories to

different people) which limits performances of fault-tolerant systems.

A2M Usage. A service can mitigate the effects of Byzantine faults using an A2M to

store information that cannot be altered. During setup, the untrusted component must

make known to all possible verifiers the authentication keys for its A2M module and

the identifier of the A2M log used for each distinct purpose.

To prove that it has committed a data item D in its log, a component can execute

append(q, h(D)). The hashing operation allows to use the same size for all entries in the

A2M. An interested verifier can establish that the data item is, indeed, in the untrusted

component’s committed state by demanding the attestation given by a call to lookup.

Thanks to the collision-resistant properties of the hash function, for a given cumulative

hash value, there is a single path of data items appended to a given log.

Attested Append-Only Memory. Using an A2M implementation within the trusted

computing base, a protocol can assume that a seemingly correct host can give only a

single response to every distinct protocol request. An A2M equips an untrusted host

with a set of trusted logs. Each log has a unique identifier q and consists of a sequence

of values, each annotated with a log-specific sequence number and an incremental

cryptographic digest of all log entries up to itself. Only a suffix of the log is stored in

A2M, starting from position L > 0 and going up to position H ≥ L.

Interface. A call to append(q,x) takes a value x, appends it to the log with identifier

q, increments the highest assigned sequence number H by 1, places it in it x, and

computes the cumulative digest dH = h(H||x||dH−1), where d0 = 0.

The lookup method takes a log number q, a sequence number n and a nonce z and

return an attestation. This method indicates if the sequence number was unassigned

(n > H), forgotten (n < L), assigned (in this case, the log value and the digest value

are returned), or skipped (see below). An important fact is that the response given by

the A2M is signed by it, and thus cannot be forged. A special call (q,z) executes lookup

on the last value of the log.

truncate(q,n) allows the log to forget all entries with sequence numbers lower than n
in log queue q, setting L to n. A call advance(q,n,d,x) allows log q to skip ahead by

n values, using a computation similar to the one in append where dH−1 is replaced
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by d, and finally to affects x. All the skipped slots will return a skipped status when

concerned by a call to lookup.

A2M is based on a hardware solution, and provides an API which can be used as a

tamper-evident log. The overhead of using tamper-evident log based protocols is then

lowered, because logs are made tamper-evident by construction. However, using trusted

hardware is far from being a general possibility in nowadays large scale systems, as

they are not easily available for customers.

2.2.2.2 TrInc

TrInc [33] is another hardware-based accountability solution whose main contribution

is to reproduce the features of A2M at a lower cost. In TrInc, a trusted hardware that

consists essentially in a non-decreasing counter, and a shared session key, provides

unique attestations. The authors prove that despite its light-weight characteristics, TrInc

can reproduce, or improve previous protocols such as A2M and PeerReview.

One goal of TrInc, in comparison with previous works, is to minimize the additional

communication overhead and the number of non-faulty participants required. To use

TrInc, a participant has to attach a trusted piece of hardware, called a trinket, to its

computer. This device is linked with the computer over an untrusted channel. This

trinket provides attestations for messages that will be bind with a counter value, but

they are further stored in untrusted memory.

When a message has to be send by the computer, it is associated to an attestation from

the trinket. In this attestation, the trinket ensures that a counter value is associated to

the message and, implicitly, that this value will never be reused for any other message.

A trinket provides the possibility to create new counters. Thus, on a given trinket, each

counter has a unique identifier. All trinket participating in a same system have the

possibility to own the same shared symmetric key, related to the session, and stored in

trusted memory, unexposed to untrusted parties.

Trinkets. Each trinket owns a unique identity I , and a public/private key pair (Kpub,Kpriv)
which are both provided by its manufacturer. The manufacturer also provides an attesta-

tion A that proves the values I and Kpub belong to a valid trusted trinket. A trinket can

also tell how many counters it has created through a value M , which cannot decrease.

A trinket also possess a FIFO queue containing the most recent counter attestations

generated by the trinket allowing it to recover after a power failure. These attributes

constitute the global state of a trinket, and are summarized in table III.

Each counter has some attributes (see table IV), which are its identity i, its current value

c and its associated key K. The identity i is equal to the value M had when the counter

was created. Counter c is initialized to 0, and can only increase. The key K contains a

symmetric key to use for attestations of this counter.

TrInc API. An attestation < COUNTER, I, i, c, c′, hash(m) >K , for a message

m, can be generated for two different reasons. If it binds the counter to a message, the
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Notation Meaning

Kpriv Unique private key of this trinket

Kpub Public key corresponding to Kpriv

I ID of this trinket, the hash of Kpub

A Attestation of this trinket’s validity

M Meta-counter: the number of counter this trinket has

created so far

Q Limited-size FIFO queue containing the most recent

few counter attestations generated by this trinket

Table III – TrInc: Global state of a trinket

Notation Meaning

i Identity of this counter , i.e., the value of M when it

was created

c Current value of the counter (starts at 0, monotoni-

cally non-decreasing)

K Key to use for attestations, or 0 if Kpriv should be

used instead

Table IV – TrInc: Per-counter state.
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counter value is increased. If it is an attestation of the counter value, this value does not

evolve.

A trinket can generate attestations based on the identity of a counter, the value that

should replace the counter value, and the hash of the message that should be bound to

the counter value. It is the same procedure that is applied to know the value of a counter.

Attestations are signed using the shared session key, if it exists, or the private key of the

trinket. Some other functions of the TrInc API allow the trinket to return its certificate,

to create or to free a counter, and to receive a session key which will be affected to a

counter.

When node A wants to send a message to node B, it first obtains an attestation from

its trinket, and sends it along with the message to node B. It is also necessary for A
to send its certificate C = (I,Kpub, A), where I is the trinket identity, Kpub its public

key and A an attestation that I and Kpub belong to a valid trinket. B can then learn A
public key and verify that this is a valid trinket’s public key. If the trinket uses a session

key, B can check whether the attestation is really issued from this key.

Sessions. At the beginning of a session, the session administrator generates a sym-

metric key K. To allow a certain user to join the session, he asks that user for his

trinket certificate C. It can then answer it with the session key through a message

{KEY, K}Kpub
that can only be decrypted by the user. At the same time, the user can

initialize a counter from this message and set the session key associated. Any node that

knows this key is allowed to check the node attestations.

SECTION 2.3

BAR-transformation protocols

Nysiad [34] presents a technique which transforms a distributed system which is crash-

tolerant into a Byzantine-tolerant one. Relying on the principles of State Machine

Replication (SMR) [65], each node is replicated on a given number of other nodes,

called the replicas. The number of replicas per node is determined depending on the

assumption of the maximum number of replicas that can be simultaneously faulty. The

replicas run a replication protocol which ensures that they remain synchronized with

the replicated node, named the primary. Nodes are supposed to execute a deterministic

state machine that transitions in response to receiving messages or expiring timers.

To maintain their synchronization, the replicas have to treat the messages the primary

received in the same order, even in case of network failure. If a replicated node does

not faithfully follow the protocol, its replicated state machine is stopped, or considered

as crashed, which is a case that the original translated protocol can handle.

Nysiad architecture. In a t-guard graph, the state machine replicas of each node,

which are also called its guards, are assigned to at least 3t+1 nodes, including the node

itself. Furthermore, each two nodes have (at least) 2t+ 1 common guards, which are

called the monitors of the two nodes. Nysiad makes the assumption that an upper bound
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t of guards of a node can be Byzantine, and that message communication between

non-Byzantine guards is reliable. The assignments of guards to nodes is made by a

centralized, Byzantine-tolerant service called the Olympus. The Olympus certifies the

guards of a host, and is involved only when the communication graph changes as a

result of churn, or new communications pattern in the pattern.

In the following we present the three protocols that constitutes the basis of the SMR

system run by guards, and the epoch protocol that the Olympus executes to reconfigure

the guard graph in case of churn. The three protocols of the replicas are the following:

• Replication protocol. The guards of a host remain synchronized.

• Attestation protocol. Only messages corresponding to a faithful protocol execu-

tion are delivered to the guards of a node.

• Credit protocol. A node is considered as crashed by other nodes if it does not

fairly process all its input, thus forcing a node to either process all its inputs fairly

or to ignore all of them.

In the following, we first illustrate the various parts of the replication protocol. Then,

we discuss the role of the Olympus.

Nodes state machine replication protocol. We illustrate in the following the func-

tioning of the three sub-protocols forming the state machine replication protocol.

Replication protocol. This protocol ensures the guards (the replicas) are synchronized

on the state of the node they replicate. To achieve this, the replicated node uses a

reliable ordered broadcast for communication with its guards. This protocol works as

follows. When a node hi wants to send an input message m to its guards, it first sends

an order request message to its guards containing the hash of m. Guards reply with an

order certificate message, which includes a sequence number c that they maintain on

behalf of the replicated node hi . The node hi is able to collect (at least) ni − t order

certificates, ni being the number of guards of hi. A consistent sequence number in

ni − t order certificates constitutes an order proof for the message m to be delivered.

At this point, hi delivers the messages m to its own running replica of its state machine,

and sends the message m with the order proof to all its guards. If a guard assesses

the order proof is valid, it delivers the message m to its running replica of hi’s state

machine, and gossips it with the other guards of hi to ensure that if a non-Byzantine

guard delivers a message, also all other non-Byzantine guards will be able to do so.

The reliable ordered broadcast protocol ensures synchronization among guards (the

replicas) of a node, but it does not preclude to a node the possibility of forging or

ignoring inputs. The attestation and credit protocols described next provide the comple-

mentary pieces to take these two misbehaviors into account.

Attestation protocol. Attestations prevents a host from forging invalid messages that

would be processed by all its replicas. Checking the validity of message events is

slightly different than checking timer events. Suppose node hi wants to send a message
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m to node hj . Each guard of hi implements a RSM and can produce an attestation for

m that it has to send to node hi. When hi has received at least t+ 1 such attestations,

it can send them to node hj . Node hj is then able to broadcast m along with the

attestations from the guards of hi to its own guards, who will then trust the reception of

this message. When a timer event occurs, node hi needs to collect t+ 1 attestations,

including its own. Doing so, a node cannot produce events at a rate higher than the one

of the fastest correct host. In an asynchronous system, doing so prevents nodes from

denunciating each other for non-responsiveness, for example using a ping protocol,

without waiting for the responses of nodes. Collecting the attestations slows down the

eviction process and avoids false accusations.

Credit protocol. The aim of this protocol is to force nodes to consider all inputs and

produce the expected output, or to ignore all of them. For example, in gossip applica-

tions selfish nodes would typically try to avoid to take into account some messages to

avoid retransmitting them. To avoid this, before sending new messages, a host must

first have obtained credits from its guards for the previous inputs it received. If a host

does not produce any output, it will eventually be considered as a crashed host. Nodes

use certificates that order several inputs at a time.

Epoch protocol. The Olympus is in charge of producing signed epoch certificates

for hosts which can then convince the receivers of a message of their validity. An

epoch certificate contains the host identifier, the set of identifiers of all its guards, the

epoch number (to avoid replay attacks), and a hash of the final state of the node in the

previous epoch. The Olympus does not need to know the underlying protocol that nodes

are executing, and is completely independent of the three previous protocols we pre-

sented. Several triggers can provoke the changing of the guards of a node among which

the failure of a guard (detected by means of ping messages), or the emission of a first

message for a given host because two nodes must have at least 2t+1 guards in common.

When the changing of a node’s guards occur, each guard of a node hi sends a state

certificate containing the current epoch number and a secure hash of its current state to

hi. When hi has received ni − t such certificates, hi sends the collection of certificates

to the Olympus. In response, the Olympus chooses new guards for hi and begins a new

epoch, sending a new certificate to hi. Upon receiving its new certificate, hi informs its

new guards of their role by sending them its signed state and its certificate. The guards

have also ways to check the validity of the assignment. When hi generates a message

for the first time for another node hj , the Olympus has received ni − t certificates from

the guards of hi and then asks hj to change its guards.

SECTION 2.4

Summary

In the previous sections, we presented the existing works that try to limit the impact

of rational deviations on content dissemination, or works closely related to it. In this

section, we analyze the main needs of a gossip-based content dissemination protocol.

We then explain why previous works are not satisfactory in presence of collusions of
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rational nodes.

2.4.1 Requirements

In this section, we present the main concerns a system designer should have in mind

when building a content-dissemination protocol based on gossip and tolerating rational

collusions.

Efficiency of the dissemination. First, as any content dissemination protocol, infor-

mation should be quickly disseminated among the nodes. Usually, two metrics are used

to determine this efficiency: latency and throughput. The latency is equal to the delay

between the emission of a new update from the source and its average reception time

by the nodes. The throughput is equal to the quantity of data that can be emitted by the

source during a period of one second without perturbing the reception by nodes. The

design choices, e.g., the choice of using an unstructured or a structured overlay, may

impact these metrics. If the protocol is based on random associations, it is necessary to

control the randomness of each node’s associations.

Scalability and churn. The dissemination protocol must be able to propagate data

efficiently among various quantity of nodes, starting from some hundreds nodes to

several thousands. For example, the streaming of live events, like the Olympic Games,

may interest a large quantity of nodes located all over the world. Being able to tolerate

a high number of peers is an important requirement. In addition, the membership may

evolve abruptly. If numerous nodes massively join a gossip session, they should be

served quickly with content, and old nodes should not suffer from this massive arrival.

When massive departure occurs, the nodes that decided to stay should not suffer either.

Incentives to follow the protocol for individual nodes. In the BAR model, rational

nodes are interested in decreasing their contribution to the protocol while maximizing

their benefit. Several mechanisms have been designed to encourage nodes to contribute.

The principle of balanced exchanges, or tit-for-tat, where nodes cannot receive more

updates than they contribute in return, is probably the more immediate one. However,

other mechanisms exist, and have been presented in the related works of this section.

Protecting the protocol from individual rational nodes is an important prerequisite,

because this kind of deviation is easy to implement in practice and highly tempting for

participating nodes.

Incentives to deter rational coalitions. When assuming selfish behaviors, it is im-

mediate to consider them followed by individuals. However, in presence of mechanisms

that aim at limiting them, nodes may also be tempted to make coalitions to protect them-

selves from being detected and still contribute less than the average. It is also possible

for nodes to prefer to interact inside their coalition because of better communications,

e.g., if the nodes are geographically close, or if they are part of a high-bandwidth

low-latency local network. However, the protocol has to be built in such a way that

participating in a coalition does not prevent nodes from also executing their tasks.

This way, coalitions would not affect the quality of service of the whole dissemination

system.
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Forcing the detection of deviations. As rational collusions could still happen it is

important to detect them. To do so, mechanisms can be designed, however one has to

be sure that nodes would denounce coalitions. If it is costly to do it, rational nodes

would avoid to do it. In addition, a coalition has to be observable from the point of

view of nodes outside of it. To reach these goals, the randomness of associations is a

good advantage, but still a node has to be threatened to denounce other nodes. Knowing

if a node has been able to observe a deviation is then important in order to later take

sanctions.

2.4.2 Drawbacks of existing solutions

We summarize here why the existing systems presented so far are not satisfactory

against coalitions of rational nodes. When possible, we detail which strategies the

coalitions could use.

BAR Gossip [22]/FlightPath [23]. As seen previously, BAR Gossip relies on tit-for-

tat exchanges of updates of data, which has scalability limitations. First, the data source

has to ensure that packets are spread evenly across the system by sending data to a fixed

proportion of nodes, which is getting difficult as the number of nodes increases, and by

sending different packets to different nodes. In addition, it requires the source and all

nodes to have full membership knowledge in order to allow random partner selections.

These restrictions affect scalability when the source has bounded upload bandwidth.

In BAR Gossip and FlightPath, colluding groups cannot completely disrupt the protocol,

but they can limit their participation. Indeed, any node has the choice not to initiate

optimistic push exchange requests, and not to answer positively to them. Colluding

nodes, obtaining updates off the record, are free to apply a passive/decline strategy.

Two other aspects of the protocol also suggest that correct nodes may suffer from the

presence of colluding nodes in the system during balanced exchanges. If a node is part

of a colluding group where updates are immediately distributed to everyone, and if for a

given round it already obtained all available updates, then it will not initiate a balanced

exchange. The direct consequence is that colluding nodes will less frequently initiate

balanced exchanges than correct peers. The second point is based on a property, proved

in the paper’s demonstration, that tells that a rational node has no interest in lying about

the updates it owns. Due to the tit-for-tat policy, used in balanced exchanges, a node

receives a new update only if it can provide one in return. Thus, the number of updates

exchanged in a transaction that includes a "rich" node is small. It results that, when

they exchange with colluding nodes, correct nodes see their average benefit decrease.

The scalability of BAR Gossip is limited by three factors. First, the full membership

has to be known from every node. Second, balanced exchanges, known as tit-for-tat

or symmetric, exchanges, are known to limit the efficiency of the content dissemina-

tion [24]. Finally, the source of the streaming session has to send updates to a constant

fraction of the audience.

van Renesse et al. 2008 [24] In this article, when the maximum upload rate of

the system is greater than a threshold, then nodes that did not upload enough data ,
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according to a global auditor decision, are expelled from the system.

Local auditors, located on colluding nodes, may not be able to denounce any other

colluding node during the study of their history. The underlying problem is that the

history of a node is not verified, and could perfectly not correspond to the reality of its

exchanges. If a colluding node tamper with its history, saying that it exchanged with

one accomplice, it will fool the auditing protocol, which searches nodes that upload

less than a threshold. Thus, colluding nodes are able to protect themselves from audits,

even if they do not participate actively in the system.

Another point is the utilization of thresholds concerning the minimum upload factor

of each node. The drawback of this solution is its number of false-positive detected.

More specifically, the differences between the upload factors of two correct nodes may

be important, even in systems where all nodes are correct. Thus, correct nodes that

suffered from a bad position in the overlay may be expelled because they were detected

as rationals.

LiFTinG [26]. Similarly to the preceding method, the score based punishment ap-

proach of LiFTinG can potentially punish a correct node that was not allowed to

participate sufficiently, due for example to limited connectivity, message losses and

bandwidth limitation. The experimental results show that after 30 seconds, 12% of

correct nodes were expelled and 14% of rational nodes were not. This rate of false-

positive could be even more important if rational nodes were to incorrectly denounce

other nodes in order to protect themselves. In this case, either correct nodes would be

evicted instead of rational nodes, or the system designer would be force to avoid the

eviction of any node.

Talking about colluding nodes, the research report introduces three ways in which the

direct cross-check can be fooled. To counter them, the randomness of partner choices

is controlled through a statistical study of the associations made during intervals of

h seconds. During this duration, peers can join or leave at any moment, it is then

expectable that associations with old nodes will be more frequent than those with peers

that were not in the system since a long time. No mechanism is employed in Lifting to

consider the utilization of statistical check with churn events. It results that using a pure

statistical check for controlling associations may produce accusations of correct nodes.

Let us now suppose that, in a certain extent, nodes choose partners randomly. A sur-

viving problem is that if colluding nodes, after having selected at random a partner,

recognize a node that belongs to their own colluding group they are still allowed to

deceive the system applying exactly the methods presented in the paper. In a system

where 10% of nodes collude together, in average one in ten exchanges will potentially

deviate from the protocol. The entropic check limits these misbehaviors but do not

prevent them from occurring regularly.

Finally, upon reception of a proposal, a node is free to request or not an update. However,

colluding nodes may obtain updates illegally and thus not wish to participate in their



2.4. SUMMARY 43

propagation. If a node obtained an update off the record, it will refuse it when receiving

a proposition, because it would imply to diffuse it further. The direct consequence of

this behavior is that colluding nodes will not participate in the propagation of updates

they obtained illegally.

Nysiad [34]. Nysiad assumes that selfish nodes are Byzantine and try to use a

Byzantine-tolerant approach to detect them. However, this approach has an important

limitation. Since basic distributed computing primitives such as consensus cannot be

implemented if more than a third of the audience is Byzantine [57], this approach limits

the number of nodes that can be simultaneously faulty. In addition, Nysiad is also

not completely decentralized as a special entity named the Olympus is in charge of

affecting guards to nodes.

2.4.3 Conclusion

The objectives of this chapter were to present the more relevant publications of the

domain that are related to gossip in presence of rational nodes. We first presented

rational-resilient protocols that are either based on establishing Nash-equilibriums

which encourage nodes to behave correctly or use auditing techniques to detect and

punish the deviations of nodes. These approaches have scalability issues, and can

suffer from simple collective rational deviations. It should be noted that we performed

experiments where these protocols are put in presence of collusions. The results are

reported in section 3.4.2.

The second part detailed generic accountability approaches that allow a system to

securely record the behavior of nodes and later compare them with a correct execution.

Accountability approaches are either entirely software-based, or use specialized trusted-

hardware. These interesting methods could be used on top of gossip, but they assume

that nodes will voluntarily verify each others through audits, which is not true when we

assume that all nodes may behave rationally.

We then presented a protocol, Nysiad, which considers all deviations as Byzantine, and

builds a Byzantine-resilient version of a protocol. However, as all protocols that aim at

handling Byzantine faults, this protocol is not completely decentralized and limits the

possible number of faulty nodes to one third. In our assumption, we desire a system

where nodes can all behave rationally, which is closer to the reality.
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In this chapter, we present AcTinG, a novel gossip protocol that includes account-

ability techniques that are directly included in a content dissemination protocol. This

approach allows this protocol to detect coalitions of rational nodes, and allows the

verifying tasks of nodes to be verified.

This chapter is organized as follows. Section 3.1 describes the principal ideas behind

the design of AcTinG. Section 3.2 provides the detailed implementation. Section 3.3

provides theoretical probabilistic results that show that rational nodes are encouraged to

follow the protocol correctly. Finally, Section 3.4 evaluates AcTinG based on several

aspects. Section 3.5 summarizes and concludes this chapter.

SECTION 3.1

Introduction to AcT inG

In this section we describe the principal ideas behind the design of AcTinG. Then

we detail the system model we consider, and present a protocol overview.

3.1.1 Principal ideas

In order to reach the requirements we presented in Section 2.4, we propose the

mechanisms that follows.

Asymmetric exchanges. Allowing nodes to receive more updates than they can

provide in return during an exchange is an important need of content-dissemination

systems. It has been observed that applications based on symmetric exchanges have

limited scalability. BAR Gossip [22], for example, needs a source that broadcasts to 5%

of the audience to balance this lack of scalability.

Pseudo-randomness. Associations between nodes must be random for several rea-

sons. First, to ensure a good dissemination of updates. Second, because if a node

can predict its future partners it would be able to decide if the moment is adequate

to deviate. However, allowing associations to be completely random allow somehow

nodes to deviate without detecting abnormal behaviors accurately. To obtain the best of

both solutions, we decided to use pseudorandom associations.

Secure logs and associations. To detect coalitions, nodes will maintain a secure log

that will accurately register the behavior of a node during several rounds, and provide

enough context to check its correctness. The bigger the number of rounds included in a

log the smaller the probability that a rational node will only interact with accomplices.

If a correct node observe a log, it should be able to detect coalitions.

Audits: verifiability without predictability. To verify each others, nodes should

have access to the logs of their partners. However, nodes could be tempted to avoid

receiving a log, or to avoid verifying it. Thus, the execution of audits should be verified

as the other steps of the protocol, and should not be predictable (or nodes would deviate

only when it would be safe).
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3.1.2 System model

We consider a system with N nodes. Each node is uniquely identified, e.g., using a

hash value of its IP address. We consider two classes of nodes: correct nodes and

rational nodes. Correct nodes follow the protocol. Rational nodes are defined as

in [22] extended with the notion of collusion: they aim at getting the content (i.e.,

while missing the lowest possible number of updates) at the lowest possible overhead

in terms of bandwidth consumption. This means that rational nodes would deviate in

any sort from the protocol, possibly by colluding with each other, as long as the devi-

ation saves their resources while not impacting the quality of the content they are getting.

Specifically, the benefit of colluding rational nodes can be represented along the follow-

ing axes:

1. (Stream Quality) Receiving as much as possible (possibly, all) stream updates,

2. (Communication) Sending as little as possible (possibly, none) stream updates or

protocol messages to nodes not belonging to their coalition,

3. (Computation) Performing as little as possible computations for other nodes.

Colluding rational nodes would typically exchange updates off the record, and, in order

to save bandwidth, would not share the updates they obtained secretly with nodes

outside their group. It is important to note that rational nodes are risk averse, i.e., they

never deviate from the protocol if there is any risk of being evicted from the system.

This assumption is commonly used in BAR systems [13]. Furthermore, this assumption

is particularly relevant in our context as we use accountability techniques to deter faults

and accuse nodes (as described in the following section). In this context, when a fault

is detected, a proof of misbehavior is produced, which can convince any correct node

in the system of the necessity of evicting the misbehaving node. As eviction corre-

sponds to an infinite penalty, no benefit is worth taking such risk. We also suppose that

rational nodes join and remain in the system for a long time and seek a long-term benefit.

We refer to the source node as the node that is disseminating a given content. We

assume that each content is disseminated from a single source node at a time but our

principles can be easily applied to systems where the content is disseminated from

multiple sources at the same time. We assume that all nodes but the source may be

rational, or experience failures, and may organize themselves in colluding groups of

arbitrary sizes.

We assume that the network allows every pair of nodes to exchange messages, and

that they are eventually received if sent by a correct node and retransmitted sufficiently

often. We also assume that hash functions are collision resistant and that cryptographic

primitives cannot be forged. We denote a message m signed by a node i as (m)σ(i).

As in [22] and [23], we assume that nodes maintain clocks synchronized within δ
seconds, and we structure time as a sequence of rounds in which nodes exchange

updates. We assume that nodes have a secure log that is used to check their correctness

through its analysis. A secure log is a log that is tamper evident and append only. Many
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(not necessarily its partners or predecessors) to get updates off the record without

sharing them with anyone else. To avoid these temptations, the core idea underlying

AcTinG is to make nodes accountable for their actions. Specifically, each node in

AcTinG logs in a secure log its interactions with other nodes in the system, including

the identifiers of the updates it received. Because any node can verify the information

in the log of a node it is interacting with, the latter will be obliged to send to its partners

the updates it has, and to receive the updates it is missing. Consequently, no node will

have an interest in behaving rationally or forming collusions. Indeed, assume that node

px colludes with another node to receive an update u off the record. Node px will not

be able to record update u in its log (because the exchange was unofficial; we explain

later how it is done). The good news for node px is that it does not have to forward u
to other nodes because u does not appear in its log. The problem is that the next time

a correct node having u in its log will interact with node px, it will send update u to

px. Consequently, px will eventually have to forward u, and thus will have wasted its

bandwidth, because it will have received u twice (off the record and from a correct

node).

This core idea raises several questions and challenges that we answer in the remainder

of this section.

“What if px chooses only colluders as partners with which it will interact with in

the near future?". This way, px could accept updates and arrange with its future part-

ners so as they do not audit its log, or so they do not send it updates it already received

unofficially. Our protocol deals with this issue by forcing nodes to (periodically) estab-

lish random, yet deterministically verifiable partnerships as presented in Section 3.2.3.

Specifically, each time a node px has to change its partners, it computes their identifier

using a pseudo random generation function seeded with a deterministically computed

seed. As such, nodes that will audit its log will be able to verify the legitimacy of the

partners that it has selected.

“What if a node, px, maintains many (correct) logs?". For instance, px could have

a log in which an update u appears, which it will show to nodes who already have

u (to avoid sending it to them), and another log in which the same update does not

appear, which will be presented to nodes that do not have u (to avoid having to send it

to them). This problem is known as equivocation, i.e., the ability to make conflicting

statements to different participants [33]. We deal with this issue by forcing nodes

to audit their partners’ logs at the beginning of each new partnership (arrow 5 in the

figure). This audit verifies the consistency of the log of a node as a whole as presented

in Section 3.2.4.

“Is not this periodic exchange of logs a performance overkill?". It is not necessary

to audit the logs of nodes each time two nodes exchange updates. Indeed, we build on

the assumption that colluders, and rational nodes in general, are risk averse. Hence, it is

enough to ensure that for each step of the protocol, a deviation has a high probability

to be detected in the near future, in order to make sure that rational nodes will not

deviate. Consequently, instead of performing audits each time nodes communicate,

audits are triggered in a random yet verifiable manner. Indeed, audits (from the point of
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view of audited nodes) must not be predictable, because rational nodes would seize an

opportunity to deviate undetected if they could predict them. Yet they must be verifiable

(from the point of view of nodes performing them), because rational nodes have to

be forced to trigger this procedure. To reach this objective, a node that starts a new

partnership with a node, performs a deterministic computation that results in a boolean

telling it whether it should audit its partner or not.

“What if rational nodes decide not to answer to correct nodes to avoid trading

updates, or being audited?”. There are many reasons why a rational node may be

tempted not to answer to a request from a correct node. This could, for instance,

preserve it from sending its log and being audited as a result (arrow 6 in the figure).

This type of misbehavior is known as omission failures. We deal with this problem

using a mechanism where unresponsive nodes are eventually suspected by all correct

nodes, which stop interacting with them (as described in Section 3.2.2). As it is not in

the interest of rational nodes to be isolated in the system, a rational node in AcTinG
will answer all correct node requests. To avoid correct nodes to be expelled from the

system because one of their message has been lost or delayed, we allow suspicions to

be released, e.g., if the missing message eventually arrives. Similarly, rational nodes

may be tempted to wrongly suspect correct nodes of omission failure, by claiming that

they did not send a given message to them, as it is the only reason why a node can

skip mandatory interactions. We avoid this deviation by overcharging the sending of

suspicion messages in such a way that it is more costly to suspect a node of omission

failure than to effectively interact with it. As such, nodes would suspect other nodes

of omission failures only if they are really missing a given message. Instead, if a node

effectively left the system (assume node pz in the figure), its predecessors (among

which, node px in the figure) contact pz partners to collect evidence about the effective

unresponsiveness of pz (as described in Section 3.2.2). Then, px sends this evidence to

the source node (arrow 7 in the figure), which eventually updates the membership list,

and will also inform its partners during future exchanges.

Summarizing, our protocol builds on accountability techniques, and on a set of mecha-

nisms to provide incentives to rational, possibly colluding, nodes to stick to the protocol.

Specifically, to avoid nodes from selecting their partners, our protocol relies on random

yet verifiable partnerships. To be efficient it relies on random yet verifiable audits.

To discourage rational nodes from being falsely unresponsive, our protocol handles

omission failures. Finally, to discourage nodes from wrongly suspecting their partners

our protocol associates an extra cost with suspicion messages.

SECTION 3.2

AcT inG

In this section we present the details of AcTinG which implement the principles

previously presented.
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3.2.1 Protocol details

We have presented the principles of AcTinG in the previous section. In this section,

we detail the steps of the protocol.

In a nutshell, AcTinG divides time in rounds. At each round the source disseminates

new updates to a small set of randomly chosen nodes. To get updates, each node initiates,

and maintains partnerships with f other nodes with whom it exchanges updates at each

round. The partners are selected using a pseudo-random number generator function,

i.e., PRNG, seeded deterministically (e.g., with the node public key concatenated with

the round number). At the beginning of a round, each node contacts all of its partners

in order to propose updates to them and to request updates from them. Every Period
rounds, each node updates its set of partners. Each time a node starts a new partnership

with a node, the two nodes audit each others log with a given probability. Specifically,

this audit checks the behavior of the new partner for the last Period rounds. The

membership is managed in a distributed manner by nodes who periodically inform the

source of the arrival and the departure of nodes. Yet, it is the responsibility of the source

to disseminate an updated list of alive nodes every epoch rounds.

The remainder of this section describes the sub protocols constituting AcTinG in detail,

as follows. First, we present the membership protocol (Section 3.2.2), which allows

dealing with new nodes joining the system, nodes leaving it and unresponsive nodes.

Then, we present the partnership management (Section 3.2.3), the audit (Section 3.2.4)

and the update exchange protocols (Section 3.2.5), which allow handling the partner-

ships between nodes auditing their logs and exchanging updates between partners,

respectively.

3.2.2 Membership protocol

The membership protocol handles the arrival and the departure of nodes as well as

the management of the membership list. Our membership protocol is fully distributed,

rational resilient, and handles massive nodes arrival and departure. However, due to the

lack of space we describe in this paper only an overview of this protocol.
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Figure 3.2 – Arrival of a new node.
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Node arrival The arrival of a new node follows the sequence of messages depicted

in figure 3.2. In this diagram, we assume that node pn, which would like to join a given

content dissemination session has installed the AcTinG software. This means that

pn has an empty secure log with the related security primitives. We also assume that

pn knows an entry point in the system, say px, which we call the contact node of pn.

To join a content dissemination session, pn sends a join request to px (step (1) in the

diagram). The latter replies with the list of active nodes of the current epoch (step (2)

in the diagram). Using this list, pn computes its list of new partners using the PRNG

function as described in Section 3.2.3 and contacts each of these nodes to start a new

partnership. As such pn is ready to start receiving the content. At the beginning of

the new epoch, each node, including node px informs the source of the arrival of new

members that have contacted him (step (4)). Using theses messages, the source confirms

to the new members their integration in the system and updates the membership list

(step (5)).
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Figure 3.3 – Handling of an omission failure.

Node departure and omission failures If a node px is expecting a message from

one of its partners py for too long1, it suspects py of omission failure as depicted in the

diagram of Figure 3.3. Specifically, px adds py in its local list of suspected nodes (step

(1) in the figure) and sends a suspicion message to the other partners of py (step (2)).

This message includes the type of message that px is expecting from py. Then, each of

py’s partners pings py (step (3)). If py is alive, it replies to both its partners and px with

the missing message (step (4)). After a given time slot, each of py partners replies to

px with a signed message certifying whether py responded to the ping message or not

(step (5)). Using this message, px either removes py from its list of suspected nodes if

py replied (step (6)) or sends an eviction message to the source including the messages

sent by py partners.

In order to make sure that a rational node will never suspect a correct node in order

to avoid initiating or accepting an interaction with it, we make the cost of sending a

suspicion message higher than the cost of a normal interaction. Hence, unless it is a

real suspicion, a node will never suspect another node instead of initiating or accepting

an interaction with it.

1Delays for node suspicion are configured in an implementation dependent manner
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Figure 3.4 represents how the departure of a node is handled. In this illustration, node

Px tries to interact with node Py which is non responsive, either because it left the

system or because it does not want to answer, or suffer from network issues. Node Px

thus adds Py to its list of suspected nodes (step (1) in the diagram), and signals to the

nodes that Py should interact with that it is not responsive (message (2) in the diagram).

These partners have to ping node Py (message (3) in the diagram), and confirm to

node Px that it is not responsive (message (4) in the diagram). Upon reception of

these messages, node Px can store them, and remove Py from the list of nodes it is

maintaining (step (5) in the diagram).
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Figure 3.4 – Handling of a node departure.

Membership list update Periodically, nodes that served as contact nodes for others

send their list of new nodes to the source node. Furthermore, nodes that hold the

evidence of the departure of one of their partner send this evidence to the source node.

The latter updates the membership list and sends the updated list at the beginning of

each epoch to its partners along with the content. In order to fasten the removal of dead

nodes from the membership list of nodes, an optimization consists of letting the source

disseminate the list of dead nodes at the beginning of each round instead of waiting the

following epoch. As soon as a node receives these incremental updates from the source,

it removes the corresponding nodes from its list of alive nodes, which avoids selecting

them in the case where new partnerships have to be established before the new epoch.

In order to preserve nodes that are participating to a content dissemination session from

the massive arrival of new nodes, which may consume their bandwidth, we adopt the

optimization defined in [23], which allows splitting the load between old nodes and new

nodes. Specifically, this optimization forces new nodes to establish partnerships with

a limited proportion of old nodes and with other nodes that arrived during the same

epoch as themselves.

3.2.3 Partnership management

Each node px has to maintain partnerships with f other nodes, which are selected with

the PRNG function seeded with a deterministically computed seed (e.g., the round

number concatenated with px’s public key) among the non-suspected nodes of the last

membership list. This process is depicted in the diagram of Figure 3.5. If a selected

node is not responding, node px has to propagate a suspicion, and once the suspicion is

confirmed, px is allowed by the source to find a new partner. Every Period rounds, a
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node px breaks the partnerships it initiated with f nodes, without informing its partners,

which know when the partnerships are supposed to come to an end (step (1) in the

diagram). A node having an identifier id will change its partnerships during round r
if (id+ r) mod Period = 0. To initiate a new partnership with a node py, node px
sends an association request to py (step (2) in the diagram).

At the beginning of a partnership, a node px may trigger an in-depth audit of its new

partner py (step (4) in the diagram), by contacting the partners py had in the Period
previous rounds, and asking them to return their own log of the last Period rounds

including the current round (step (5) in the diagram). To reduce the cost of the protocol,

nodes perform these audits in a random manner, i.e., each time they are in a position to

perform an audit, they flip a coin and decide whether they should audit their partner or

not. Nevertheless, to avoid that rational nodes hide behind this randomness to avoid

auditing their partners, we make this randomness verifiable. Towards this purpose, we

use the secure log authenticators, which are signed messages computed from the node’s

log as detailed in Section 3.2.4. These values are unpredictable as they depend on the

current state of a node’s log. Specifically, each time a node px is in a position to perform

an audit of a new partner py, it computes the hash of its public key concatenated with

the public key of py and the round number. The value of this hash modulo 100 gives

a number that px uses to decide whether it should audit or not its new partner. For

instance, if the probability of auditing a node fixed by the protocol is 30%, px audits

py if the result of the modulo function is between 0 and 29. Node px further logs the

authenticators it used to compute the value of this boolean, in order to justify, in future

audits, the reason why it performed or did not perform the audit of py. If the computed

number indicates that the audit must take place, px contacts py partners, and ask for

their logs.
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Figure 3.5 – Establishment of new associations between nodes, which may imply

audits.

3.2.4 Audit protocol

In our protocol, the secure log is used to keep track of the communication a node had

with other nodes in the system. Specifically, each log entry in the log of a node A
corresponds to a message sent (resp. received) by A to (resp. from) another node B.

A log entry ei is of the form ei = (seqnoi, hi, ci) where seqnoi is a monotonically

increasing sequence number, hi is a hash value linked with the previous entries in



3.2. ACTING 55

the log and ci is a type-specific content, which may include the message sent (resp.

received) by A as well as other information such as authenticators (as defined below).

The value of hi is computed as follows: hi = H(hi−1||seqnoi||H(ci)), where h0 = 0,

H is hash function and || stands for concatenation.

Each time a log entry ei is added to the log of a node A, an authenticator αi is generated.

This authenticator, which is a signed message αi = (seqnoi, hi)σ(A), states that A has

a log entry ei with a corresponding hash hi. By sending the authenticator αi to a node

B, A commits to having logged the entry ei and to the content of its log before ei. Any

node that receives αi can use it to inspect ei and all the entries preceding ei in the log of

A. Upon reception of a log, any node is able to recompute the hash values it contains,

according to the content of log entries, and thus to check their validity. In addition, a

log entry for a received message must include a matching authenticator, implying that

a node cannot invent an entry for a message it did not receive. These two properties

make the secure logs tamper-evident and append only.

As described in the partnership management protocol, when node px must audit node

py’s log, it asks py’s partners to return their logs. Upon reception of these logs, node px
verifies:

(i) the consistency of the logs, by recomputing the recursive hash values associated to

log entries,

(ii) the presence of the exchanges py was supposed to initiate,

(iii) that py declared the updates it was supposed to receive from the source, if py was

supposed to interact with the source,

(iv) that the exchanges correspond to a correct execution of the protocol, i.e., that py
proposed to all its partners all the updates that appear in its log, that py requested from

its partners all the updates it was missing, that py served to its partner all the updates

they were requesting and that py logged all the identifiers of the updates it received,

(v) that py suspected all its partners that did not follow a given step of the protocol as

prescribed by the omission failure protocol,

(vi) that py audited all the partners it was supposed to audit, the last time it changed its

partners.

As any other node, the source also maintains partnerships and regularly changes its

partners, i.e., the nodes it serves. The source follows the partnership management and

the updates exchange protocols, except that it does not send any log and it is not audited

by nodes2. This forces the nodes to log the identifiers of the updates they received

from the source, as they are deterministically chosen among the epoch membership list,

which is known by all nodes. Hence, any node can check that the received updates were

correctly declared. As the serving rate of the source is constant, the identifier of the

updates that are released at each round are also known.

2We recall that the source is assumed to be a correct node.



56 CHAPTER 3. ACTING: ACCURATE FREERIDER DETECTION IN GOSSIP

3.2.5 Update exchanges

At the beginning of each round and for the duration of their partnership, two partners,

px and py exchange updates as depicted in Figure 3.6. Specifically, node px (resp. py)

starts the exchange by generating a proposition message containing the identifiers of all

the updates that appear in its log and that did not expire yet. Node px (resp. py) logs

this proposition message in its log and generates the corresponding authenticator. Then,

px (resp. py) sends the proposition message along with the corresponding authenticator

to py. Upon reception of the proposition message, which it logs, node py (resp. px)

selects those updates it is missing and replies to px (resp. py) with an update request.

The update request is logged at the two parties. Finally, px (resp. py) serves the

missing updates, and logs the serve message. After receiving the updates, each partner

terminates the exchange by logging the identifiers of the updates it received, in its

log. The nodes will then propagate the received updates during the following rounds,

because we cannot ensure that nodes will immediately share these updates.
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Figure 3.6 – Update exchanges between nodes.

SECTION 3.3

Proofs

3.3.1 Risk versus gain analysis

The aim of this section is to demonstrate that rational nodes will not deviate from the

AcTinG protocol, because audits will detect deviations with high probability, and

because the estimated gain of collective deviations is low.

First, we evaluate the risk that two colluding nodes would take by deviating, for example

when interacting as predicted by the protocol, but without logging the updates they

receive, or send. This deviation seems to be the most rewarding one for colluding

nodes. We define the risk as the probability that such a deviation would be detected,

and denounced by an audit.
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In the following rounds, this deviation would allow them not to share with correct nodes,

possibly several times, the updates they obtained unofficially, thus to save their upload

bandwidth. However, this strategy will force colluding nodes to receive a second time

the updates they received unofficially. Exchanging the multiple uploads of an update for

one additional download can already be seen as interesting. However, trading upload

bandwidth for download bandwidth, can also be typically considered interesting in

ADSL environments.

We now calculate the probability that a deviation such as we described is discovered

by an audit. If any of the two colluding nodes is audited during the time where the

exchange is contained in their log, they will be discovered. Let us consider a system of

N nodes, where C nodes are part of a single colluding group. A node’s log contains

the entries of the last RTE rounds. A participating node initiates fanout partnerships

with other nodes, which are changed after period rounds. Let Paudit the probability

that a node audit each of its new partners.

When establishing a new partnership, a rational node is not audited if its new partner is

colluding with it (which happens with probability C
N

), or if the new partner does not

realize the audit. In average, each of the two nodes cumulate 2×fanout×RTE
period

partners

during the time the deviation is visible. Finally, we obtain that the risk that a deviation

is detected is equal to

{
1−

(
C

N
+

(
1−

C

N

)
× (1− Paudit)

) 2.fanout.RTE
period

}2

Let us suppose that two colluding nodes exchanged an update, and did not declare it in

their logs. We now want to determine the number of interactions that the rational node

can hope that it will avoid to send it to correct nodes. To do so, we use a program, and

present its code in figure 3.7.

The principle of this program is that during each of the RTE rounds that follow

the round at which the deviation occurred, 2 ∗ fanout interactions happen. Each of

these interactions, has a probability C
N

to involve another incorrect node. When it

is not the case, this other node owns the missing update with a probability equal to

(2∗fanout)round_id, according to a traditional result of gossip. When the rational node

receives the update from a correct node, it will have to share it with its future partners.

From the output of this program, we can compute the proportion of interactions in

which an update will not be sent by rational nodes. To obtain the long term gain, we

have to multiply this proportion by the probability that a rational node meets another

rational node to be able to execute this deviation, which is C
N

, and the proportion of the

bandwidth that is consumed by updates, which is roughly equal to 3
5 .

gain =
C

N
× proportion_saved_sends×

3

5

Computing the risk, and the gain, with the values of the parameters used in the protocol,
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saved_sends = 0

for round_id in 1..RTE do

for association_id in 1..2*fanout do

if random() > C
N

then

if random() < min((2 ∗ fanout)round_id), N)/N then

received_update = true;

else

saved_sends = saved_sends + 1;

end if

end if

end for

if received_update then

break;

end if

end for

return saved_sends

Figure 3.7 – Pseudocode of the program that is used to estimate the number of

time a colluding node avoids to send an update.

we obtain that the risk two colluding nodes take is equal to 60%, and the long term gain

of the associated deviation is equal to 3%. Thus, rational node are exposed with a high

risk each time they execute the deviation, and can only hope for a very small benefit.

Finally, we can say that according to the BAR model, rational nodes will not deviate

from the protocol.

3.3.2 Resilience to (colluding) rational nodes

In this section, we analyze the major steps of the protocol and show that rational,

possibly colluding nodes do not have any interest in deviating from these steps. For

each step, we consider all the possible deviations, and provide the incentives that make

rational nodes follow the protocol.

We present the rational deviations associated to the integration of a new node in the

system, and the incentives that make nodes stick to the protocol.

◦ Fig 3.2 Step 2. To join a content dissemination session, a new node pn sends a

join request to a contact node px (Step 1), which then adds pn to its list of new

nodes.

– Rational deviation. Node px does not add pn to its local list of nodes, thus

avoiding to inform other nodes about the arrival of a new node, saving

resources and increasing the probability for its group of colluders to be

served by other nodes.
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– Incentive. During the future rounds, any node auditing the node pn will see

the identity of px, its contact node, in its log, and ask for the log of px and

check that it informed its partners about the arrival of a new node in the

system. If it is not the case, the node will be evicted.

◦ Fig 3.2 Step 3. Node pn then replies with the list of active nodes of the current

epoch.

– Rational deviation 1. Node px ignores the request that pn sent, and does

not reply with the list of active nodes to node px saving its bandwidth.

– Incentive. If the new node does not receive a reply, it will continue to

send the request periodically, and more and more frequently. As a rational

node wants to preserve its bandwidth, it will always consider join requests

immediately.

– Rational deviation 2. Node px does not send the correct list of alive nodes in

the system (e.g., it could send a truncated list, to hide the nodes it colludes

with).

– Incentive. If the new node is audited in the RTE rounds that follow its

arrival, the log of its contact node will be verified, resulting in the eviction

of the latter if the list of active nodes it sent was not correct.

◦ Fig 3.2 Step 4. At the beginning of the next epoch, node px sends to the source

of the stream the list of new nodes that contacted it. It then logs the acknowledge-

ment of the source to prove that it realized this step.

– Rational deviation. Node px does not send the correct list of new nodes to

the source of the stream, or does not send it at all.

– Incentive. The node pn that is willing to join the session is expecting to

receive a message from the source, confirming its integration in the list

of nodes. If it does not receive this message after some time, it will send

join messages to the contact node more and more frequently, consuming

its resources. Thus a rational contact node will immediately transfer the

source node about the arrival of a node in the system.

We then proceed similarly to prove that the omission failure, and node departure,

handling protocols will be observed.

◦ Fig 3.4 Step 1. If a node px is expecting a message from one of its partners py
for too long, it adds it to its list of suspected nodes.

– Rational deviation. Node px does not add py to the list of suspected nodes.

– Incentive. Audits check that a node sent, and received, all the messages an

association implies, and, if it is not the case, that during the following rounds

the node informed the other nodes about the suspected nodes. Otherwise,

the audited node will be declared incorrect. Thus, as px can not predict

whether it will be audited or not in futures rounds, it will emit the necessary

suspicion messages regarding py.
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◦ Fig 3.4 Step 2. Then, it sends a suspicion message to the other partners of py.

– Rational deviation 1. Nodes px does not send a suspicion message, for

example to protect an accomplice.

– Incentive. Audits check that a node sent, and received, all the messages an

association implies, and, if it is not the case, that suspicion messages were

sent. Otherwise, the audited node will be declared incorrect. Thus, as px
can not predict whether it will be audited or not in futures rounds, it will

emit the necessary suspicion messages regarding py.

– Rational deviation 2. Node px, and the partners of node py, collectively

decide to exclude node px from the system, even though it is correct.

– Incentive. Suspecting a node is made more costly than a normal interaction,

and the expected benefit of excluding a correct node is low, because correct

nodes are a source of updates for other nodes. In addition, the probability

for such a situation to occur is extremely small (1 out of 10 millions, when

10% of the nodes collude).

◦ Fig 3.4 Step 3. Then, each of py’s partners pings py.

– Rational deviation. The partners of node py does not ping it, as the node px
asked them.

– Incentive. If node px does not receive a message from a partner pz of

node py, it will contact the partners of node pz and ask them to obtain the

missing answer from pz . Thus node pz will have to answer, if he wants to

avoid being suspected, and to consume more bandwidth than if it answered

directly to node py. Thus, a rational node will always immediately execute

the ping procedure.

◦ Fig 3.4 Step 4. The partners of py then reply to px with a signed message

certifying whether py replied to the ping message or not.

– Rational deviation. The partners of node py lie saying that it is responding,

either to save bandwidth or to protect it.

– Incentive. Nodes cannot lie because ping messages, and their answers,

contain log entries which testify the time at which the messages were sent

by nodes. Thus, to say that a node is responding, another node needs

to communicate with it, and rational nodes have no way to protect their

partners.

◦ Fig 3.4 Step 5. After having received the confirmation that node py is not

responding, node px removes py from its list of nodes.

– Rational deviation. The node px does not remove py from the list of nodes

in the system, thus avoiding it to be evicted from the system.

– Incentive. The partners of node py sent messages that can not be forged,

and if all of them indicate that the node is not responding, then px would be

evicted if an audit detected that it did not removed py from the list of nodes

in the system.
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◦ Fig 3.3 Step 4. Node py is informed that node px is expecting a given message

m. It then sends this message to node px and to its partners.

– Rational deviation. The node py does not send the message m that was not

received to the partners of node py and to node px.

– Incentive. If the node py does not send the expected message, the suspicion

will not be released, and it will eventually be evicted from the system, as

other nodes will refuse to interact with it.

◦ Fig 3.3 Step 5. The partners of node py confirm to node px that they received the

message from node px, joining to the message the authenticator that node py sent

along with message m.

– Rational deviation. The partners of node py lie to node px, saying that it is

not responding, to evict it from the system.

– Incentive. Is it not clear if this deviation is rational, however, the probability

that such a deviation occurs is small. For example, if nodes maintain 3
partners, and 10% of the audience colludes, then such a deviation can occur

with probability 10−6. If one node replies that node py is responding, and

proves it with the authenticator, then node py will not be evicted from the

system.

◦ Fig 3.3 Step 6. Node px receives the message m it was expecting, and remove py
from its list of suspected nodes.

– Rational deviation. The node px does not remove py from the list of

suspected nodes, aiming at isolating it from other nodes.

– Incentive. Evicting correct nodes does not bring a clear benefit, because

correct nodes are those that propagate updates. In addition, if an audit

occurs, it will appear that the node px is suspecting a node even though

it received messages that proved that the node sent the message it was

supposed to send. If this node does not appear in the node’s log, for example

because it does not want to log it, then the costly suspicion procedure

has to be executed once again, which clearly will degrade the resources

consumption of node px.

In the following, we show why nodes execute the partnership protocol.

◦ Fig 3.5 Step 1. Every Period rounds, node px stops exchanging with its f
partners and deterministically selects f new partners using a pseudo-random

number generator seeded with a deterministically computed seed (e.g., the round

number concatenated with px’s public key).

– Rational deviation 1. Node px tries to establish a new partnership with

nodes whose IDs are other than those computed using the PRNG function,

e.g., to interact with colluders.

– Incentive. A rational node px will never select such nodes as it risks eviction

during the next audit. Indeed, node px can be selected by a correct node,
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say p0, in the future, which will verify whether px effectively selected the

nodes it was supposed to interact with by examining its log. If node p0
detects such a deviation, it will expose px.

– Rational deviation 2. Node px tries to establish less than f partnerships to

save bandwidth.

– Incentive. The same incentive as above holds.

◦ Fig 3.5 Step 3. When node px proposes to start a new partnership to node py, py
checks that px had to contact it by rerunning the PRNG. If the check succeeds,

px and py will exchange during the next round.

– Rational deviation 1. Node py does not reply to the proposition message

sent by px.

– Incentive. If px does not receive a reply after it sent its proposition, it will

suspect py. Not doing so would expose it during the next Period rounds,

and prevent it to interact with any correct node. In order not to be evicted,

py will answer to the partnership request.

– Rational deviation 2. Node py replies without verifying the legitimacy of

px’s request, which could happen if nodes py and px are colluders, and try

to protect themselves.

– Incentive. We distinguish two cases: (a) px is correct, and (b) px is rational

and the verification py has to perform should not pass. If px is correct and

py attests that px has passed the verification without effectively performing

it there is no way to detect that py is behaving rationally. However, as py
does not effectively know whether px is correct or not, py risks eviction

as well as px. Hence, py will prefer to verify whether px was supposed

to contact it or not. Instead, if px is rational and py attests that px passed

the verification without performing it, py risks eviction. Indeed, if one of

the following nodes among those that will be contacted by px or one of

the correct nodes that will contact px during following rounds, say pk, is

correct and finds out that px behaved rationally through an audit, pk could

use the attestations sent by py and which are in px’s log to prove that py
behaved rationally. This will result in the eviction of py. As rational nodes

do not want to be evicted, they do not attest for the correctness of a node

without performing the corresponding verifications, and colluders do not

protect themselves.

◦ Fig 3.5 Step 3, 4. Node px deterministically decides whether to audit py’s log or

not.

– Rational deviation. A node does not audit its partner when it should.

– Incentive. When this node will start new partnerships in future rounds, its

log will possibly be audited. During this audit its future partner recomputes

the boolean that indicates whether the node should have audited its previous

partners or not. If the node did not perform the audits while it was supposed

to do so or did not perform them correctly, it will be exposed by its partner.

As the node cannot predict the occurrence of its future audits, it will audit
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its current partners, and will contact all their own partners to get their logs,

following the results of the deterministic computation it has to perform.

◦ Fig 3.5 Step 5. If the result of the computation implies that px must audit py, the

former contacts all py’s partners and ask for their log.

– Rational deviation. Node px does not contact the right set of nodes to obtain

their logs

– Incentive. The same incentive as above holds.

◦ Fig 3.5 Step 6. The partners of py reply with their logs.

– Rational deviation. Nodes do not reply with their logs, either to save their

bandwidth, or to protect node px from being declared faulty.

– Incentive. A node that does not send its log will be suspected of omission

failure, and will have to handle a suspicion procedure, which is costly, and

will eventually have to send the missing log to delete this suspicion. A

rational node has no interest in refusing to send its log.

◦ Fig 3.5 Step 7. Upon receiving the logs of pj and pi, one of py’s partners, px
checks that the two nodes interacted correctly.

– Rational deviation 1. Upon receiving the logs of pj and pi, px claim that

they are correct without effectively performing the necessary verifications

to save resources.

– Incentive. If px skips some or all the verifications described in the audit

protocol, its risks to be exposed by py or pj future partners that will detect

their misbehavior. As px does not want to take such risk, it will correctly

perform the audit of py and pj’s logs.

– Rational deviation 2. Node px does not denounce node py when it is

discovered faulty to protect it from being evicted from the system.

– Incentive. The same incentive as above holds.

nodes among those that will be contacted by px or one of the correct nodes that will

contact px during following rounds, say pk, is correct and finds out that px behaved

rationally through an audit, pk could use the attestations sent by py and which are in

px’s log to prove that py behaved rationally. This will result in the eviction of py. As

rational nodes do not want to be evicted, they do not attest for the correctness of a

node without performing the corresponding verifications, and colluders do not protect

themselves.

Finally, we present the deviations and the associated incentives concerning the

exchange of updates between nodes.

◦ Fig 3.6 Step 1. Consider node py among the set of partners selected by px. Node

px contacts py and sends it a proposition message containing the updates it owns.

– Rational deviation 1. Node px does not send a proposition message to node

py
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– Incentive. Each correct partner of px expects to receive its proposition at

the beginning of each round, and will thus suspect px if the latter does not

send it. Hence, to avoid being suspected, px always sends a proposition to

its partners.

– Rational deviation 2. Node px sends an invalid proposition message to node

py (e.g., including less updates than what it holds).

– Incentive. Furthermore, the proposition sent by px is necessarily correct

(i.e., includes all the updates that appear in px’s log), otherwise it risks

eviction by its future partners if one of them audits its log.

◦ Fig 3.6 Step 2. Then, py replies with a request message containing the updates it

is missing.

– Rational deviation. Node py formulates an invalid request.

– Incentive. Regarding the formulation of requests by py, the latter risks

immediate eviction if the request is incorrect. Indeed, px would hold a

proof of misbehavior of py, which it would immediately send to the source

of the content dissemination session.

◦ Fig 3.6 Step 3. Finally, px serves the updates requested by py.

– Rational deviation. Node px serves less updates than what node py re-

quested to save resources.

– Incentive. A similar ending would happen to px if it does not serve the

updates expected by py.

◦ Fig 3.6 Step 1, 2, 3.

– Rational deviation. Node px colludes with node py and exchange updates,

but temper with their logs to make other nodes believe they did not, thus

avoiding to exchange updates, and saving their future bandwidth.

– Incentive. If instead, px colludes with its partners in order to exchange up-

dates off the record, the group risks to receive most of the updates a second

time from correct nodes in future exchanges wasting their bandwidth.

updates expected by py.

SECTION 3.4

Evaluation

In this section, we present the performance evaluation of the AcTinG protocol. We

start by introducing our methodology. Then, we compare the impact of colluders on

AcTinG, BAR Gossip, and LiFTinG. We choose BAR Gossip as it is the most robust

rational resilient content dissemination protocol that has been proposed so far and

LiFTinG as it is the only state-of-the-art content dissemination protocol that handles

colluders. We then assess the bandwidth consumption of AcTinG, its performance in

the case of massive node departure and its scalability in terms of memory and bandwidth
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consumption using simulations involving up to a million nodes.

Overall, our evaluation draws the following conclusions. In a real deployment involving

400 nodes and in presence of colluders, correct nodes using AcTinG do not experience

any degradation in the quality of the content they receive while those using BAR Gossip

and LiFTinG experience heavy message loss in presence of colluders independently

from their organization (whether in small or larger groups). On the other hand, we

show that nodes that decide to collude in AcTinG, experience a heavy overhead, which

discourages them from staying in the coalition. Moreover, we show that AcTinG
bandwidth consumption is reasonable and that AcTinG is resilient to massive node

departure. Finally, we show that AcTinG is scalable as simulations involving up to a

million nodes exhibit that both the bandwidth and memory consumptions of AcTinG
exhibit a logarithmic growth in the number of nodes. However, we acknowledge that

the source may become a bottleneck as the number of nodes increase, as it periodically

receive notifications when a node joins, or leave, the system. Solving this issue, is

classically done by using a tracker, i.e., a centralized server that handles membership,

as in the FlightPath protocol [23], which could easily be integrated in our system. The

tracker could even be replicated using classical fault-tolerance techniques (e.g., [66]).

3.4.1 Methodology and parameters setting

To assess the performance of AcTinG, BAR Gossip and LiFTinG, we used them to

implement three video live streaming applications. In these applications, a source node,

selected randomly, diffuses a video stream at a rate of 300 kbps, during 5 minutes, and

proposes each update to 5 random nodes. Updates are then disseminated using either

AcTinG, BAR Gossip or LiFTinG, respectively. In order to provide a fair comparison,

we implemented the three streaming applications in Java using the same code base. We

deployed the three applications in 400 nodes running in one hundred physical machines

of the Grid5000 cluster3, interconnected with a 1Gb/s network that we limited to 1Mb/s.

Each machine is composed of an Intel Xeon L5420 processor clocked at 2.5GHz with

32GB of RAM. In the three applications, to provide further tolerance to message loss

(combined with retransmissions), the source groups packets in windows of 40 packets,

including 4 FEC footnoteFEC stands for Forward Error Correction. coded packets.

The duration of one round is set to one second, and updates are released 10 seconds

before being consumed by the nodes media player. Note that nodes dynamically adapt

the number of their partners according to the size of the membership list: each node

establishes
ln(NbNodes)

2 partnerships that it maintains for a duration of five rounds. For

instance, in the fault free case, with NbNodes = 400, each node has 3 partners. At the

beginning of each partnership, nodes performed audits with a probability of 5%, which,

as we show in Section 3.3.1, allows the system to detect deviations with a probability

of 60% when up to 10% of the audience colludes in a single group. The cryptographic

primitives consisted in a 1024-bit RSA signature and a SHA-1 hash.

3Grid5000: https://www.grid5000.fr/
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3.4.2 Impact of colluders

In this section, we experimentally study the impact of colluders on the BAR Gossip,

LiFTinG, and AcTinG protocols. We implemented colluders from the code base of

correct nodes in each protocol as follows. Colluders exchange unofficially among each

other all the stream updates they received from correct nodes. Furthermore, colluders

execute all the possible undetectable rational deviations that exist in the underlying

protocol. For instance, in BAR Gossip, colluders never take part of the optimistic push

protocol, which allows nodes to altruistically push updates to other nodes. Similarly, in

LiFTinG, colluders do not audit the log of other nodes and do not reply to messages

sent by other nodes asking them to assess the behavior of their previous partners unless

the considered partner is among the group. As a result, correct nodes will be blamed by

their correct auditors. In this situation the system administrator has two choices: (1)

adjust the detection threshold to avoid false positives (by decreasing its value), which

opens the doors to colluders for freeriding or (2) adjust the detection threshold to detect

colluders (by increasing its value), which results in very high values of false positive

accusations. In this experiment, we considered the first situation. A complementary

experiment showed that in the second situation, adjusting the threshold to exclude 20%

of colluders incurred the exclusion of 43% of correct nodes in the system. Finally, in

AcTinG, colluders do not forward updates they received unofficially to their correct

partners unless they received them officially.

We varied the number of colluders, as well as the size of colluding groups. We measure

the percentage of missed updates observed by correct nodes in presence of a proportion

of colluders. We first studied the case in which all colluders belong to the same group.

Results are depicted in Figure 3.8. The X axis presents the proportion of nodes that

collude, while the Y axis presents the percentage of missed updates experienced by

correct nodes in presence of colluders. We notice that correct nodes miss up to 98% of

updates with BAR Gossip and 72% of updates with LiFTinG, whereas they do not miss

any update with AcTinG.

We then studied the impact of spreading colluders in multiple independent groups.

More specifically, we made several experiments in which we distributed 30% of all the

nodes in colluding groups of identical size. We depict the results in Figure 3.9. The

X axis presents the size of colluding groups, while the Y axis presents the percentage

of missed updates observed by correct nodes. We observe that spreading colluders

in different groups has the same impact on the quality of the content downloaded by

correct nodes.

The reason why correct nodes do not observe missed updates when using AcTinG, is

that we designed AcTinG in such a way that colluders will eventually receive all the

updates officially from their correct partners and will thus be obliged to forward them

officially to their correct partners. Hence, engaging in a colluding group only yields

an extra overhead due to the unofficial dissemination of updates among the group. We

have measured this overhead and results are depicted in Table I. From this table we

observe that the overhead due to collusion is of at least 34% of the size of the stream

(case of a group containing only two colluders). In addition, as seen in section 3.3.1,

in a scenario where 10% of nodes collude, and where audits are performed 5% of the
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Figure 3.8 – Proportion of missed updates by correct nodes when a given pro-

portion of the audience collude as a single group.
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Figure 3.9 – Proportion of missed updates by correct nodes when 30% of the

audience is rational, and collude in independent groups of equal sizes.
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time, each deviation will be detected with a probability of 60%. Moreover, exchanging

updates without declaring them will provide at most a gain equal to 3%. Consequently,

nodes in AcTinG have no interest in colluding as they would not observe any increase

in the quality of the stream they get, take a very high risk of being evicted, experience

very low benefit, while suffering a useless waste of bandwidth.

Group size 2 4 8 10 50

Overhead (%) 34.35 51.53 60.12 61.84 67.33

Table I – Overhead of colluders in AcTinG.

3.4.3 Bandwidth consumption

To assess the overhead of AcTinG, we plot in Figure 3.10 the cumulative distribution of

the average bandwidth consumption of nodes. Recall that AcTinG is used to broadcast

a 300kbps. Figure 3.10 shows that AcTinG induces a reasonable overhead (that is

mostly due to the transmission of logs). We also measured the memory consumption of

AcTinG, which is due to the storage of secure logs and authenticators. Our measures

have showed that a node consumes 3MB of memory for each partnership, in the worst

case.
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Figure 3.10 – Fault-free case: Cumulative distribution of average bandwidths.

3.4.4 Resilience to massive node departure

In the case of a massive node departure, the remaining nodes need to quickly replace

their left partners with alive nodes in order not to miss updates. In this experiment,
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we measure the bandwidth consumption and the percentage of missed updates when

60% and 70% of nodes suddenly leave the streaming session. Results are depicted in

Figures 3.11 and 3.12 respectively. Specifically, we observe in Figure 3.11 that the

massive node departure, i.e., which happens after 500 seconds of the beginning of the

experiment, immediately causes a decrease in the average bandwidth consumed by

the remaining nodes, as the latter stop exchanging messages with their left partners.

This decrease (62% and 75% in the case of the departure of 60% and 70% of nodes,

respectively) is followed by an increase (of up to 18% and 27% in the former two cases),

which corresponds to the messages exchanged by nodes to establish new partnerships

(including a given proportion of audits). Finally, we observe that 30 seconds later, the

average bandwidth consumption stabilizes around 430 kbs (13% less than the original

value), which is due to the decrease of the necessary number of partners per node.
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Figure 3.11 – Nodes average bandwidth after a massive departure.

We also compute the percentage of nodes that do not receive a viewable stream4. We

observe in Figure 3.12 that only 2,5% nodes do not receive a viewable stream during

the first second when 60% nodes leave the system, and between 5% and 15% nodes do

not receive a viewable during at most five seconds when 70% nodes leave the system.

3.4.5 Scalability

We performed simulations to evaluate the bandwidth, and the memory consumption, of

AcTinG when the number of nodes increases in the system.

4The stream is not viewable when more than 5% of the streaming windows cannot be displayed because

of missed updates [22]
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Figure 3.12 – Percentage of nodes that do not receive a viewable stream after a

massive departure.

Results depicted in Table II show that both the bandwidth consumption, and the memory

consumption, of AcTinG grow logarithmically with respect to the number of nodes in

the system. Indeed, these values depend linearly on the number of partners a node has,

which grows logarithmically with the system size.

System size Bandwidth consumption Memory usage

(Kbps) (Mb)

100 380.0 6.4

500 436.6 9.5

3,000 511.1 12.7

22,000 603.4 15.9

160,000 713.5 19.1

1,200,000 841.4 22.3

Table II – Average bandwidth and memory usage of AcTinG in function of the

system size.
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SECTION 3.5

Conclusion

A number of gossip-based content dissemination protocols tolerating rational behaviors

have been proposed. A limitation of these protocols is that they do not handle rational

nodes that collude, i.e. that act as a group in order to improve their benefit. The only

exception is the LiFTinG protocol that performs sporadic checks on insecure logs to try

to detect colluding nodes.

We have shown in this chapter that neither LiFTinG nor BAR Gossip, the most robust

rational resilient content dissemination protocol, are effectively resilient to colluders.

We have then presented AcTinG, the first content dissemination protocol that tolerates

rational nodes acting both individually and in collusions, and that guarantees zero false

positive accusations. Performance evaluation combining both a real deployment and

simulations has demonstrated that nodes running AcTinG are able to deliver the entire

content despite the presence of colluders. We have also shown that AcTinG is resilient

to churn, and exhibits very desirable scalability properties with a logarithmic growth of

memory and bandwidth consumption, comparable to standard gossip based protocols.

Our future work includes the study of the applicability of the AcTinG principles to

other types of collaborative applications for the accurate detection of rational (possibly

colluding) nodes.
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In the previous chapters, we identified a kind of rational deviation that had not been stud-

ied in the literature: collective deviations. We then proposed a new protocol, AcTinG,

which is the first one to deter all kind of rational deviations in gossip-based systems.

However, this protection comes at a cost, as nodes have to register all their actions

in logs and periodically share them with other nodes. Nowadays, users of distributed

systems are more and more aware that private information may be collected during

their participation in a protocol, and later studied, or leaked. Users may be reluctant to

give away information about them in a peer-to-peer context, and thus desire to maintain

their privacy.

Protecting the privacy of users in the context of gossip would imply that a node should

not learn more information about other participants than the bare minimum, which it

learns from its interactions. For example, a node should not be able to discover if any

two other nodes exchanged updates, and what updates they exchanged. In addition, a

desirable property is to ensure that it is not possible to determine which content a node

wants to receive. We formalise later in this chapter the privacy properties that a gossip

protocol should enforce.

This chapter is organised as follows. We first recall in section 4.1 the principles of

the gossip paradigm, and present the formalism and an example that we will use

throughout this chapter. We also give requirements that gossip protocols should enforce

to deter selfish behaviours, and those concerning the protection of the users’ privacy.

Section 4.2 details how the existing rational-resilient gossip protocols may leak private

information. Section 4.3 focuses on anonymous communication protocols which are

both accountable and privacy-preserving but suffer from poor performance. Section 4.4

describes some recent works that combined privacy and accountability in more general

situations. Section 4.5 presents some distributed systems that focused on privacy issues.

Section 4.6 concludes this chapter.

SECTION 4.1

Principles of gossip and selfish behaviours

The objective of a peer-to-peer content dissemination system is to reliably distribute

a given content (e.g., a video stream, membership updates) among a set of interested

nodes. Gossip protocols reach this objective by enforcing random exchanges between

nodes in such a way that all nodes receive the whole content with a high probability [56].

Specifically, content dissemination is organised in rounds (whose duration is called the

gossip period). A special node that holds the content to disseminate (also called the

source), generates and periodically sends chunks of this content (also called updates),

to a set of nodes chosen uniformly at random. Then, periodically, each node taking

part in the dissemination is in charge of sharing the updates it receives with f other

randomly selected nodes (f is also called the dissemination fanout).

Figure 4.1 illustrates the gossip-based dissemination of updates, from the point of view

of a node X depicted in the centre of the figure. Specifically, at any given point in

time, node X has a set of fp predecessors {P1, . . . , Pfp} and a set of fs successors
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because they are connected with a particularly good network. By doing so, node X can

skip receiving u1 officially from node P1, which prevents it from forwarding it to S1

and S2.

4.1.2 Requirements against selfish behaviours

In order to protect a gossip-based system from selfish deviations of nodes, and based on

the previous examples, we can intuitively infer three properties, R1, R2 and R3, that

have to be verified. Together, these properties force nodes to receive the updates they

have not yet received (property R1 prevents nodes from exchanging updates outside

the protocol, and avoiding to receive them to avoid to forward them further) and to

correctly forward the content they receive (properties R2 and R3).

R1 Obligation to receive: At a given communication round, a node must receive the

updates it did not receive officially in the previous rounds.

R2 Obligation to forward: At a given communication round, a node must forward

the updates it received to other randomly selected nodes.

R3 Random partnerships: A node predecessors and successors should be selected

uniformly at random.

4.1.3 Accountability solutions

Accountability mechanisms (e.g., PeerReview [29], FullReview [35], AVMs [31]) are

effective solutions to deter faults in distributed systems. These mechanisms have already

been used as incentives for forcing selfish nodes to participate in gossip-based content

sharing protocols (e.g., in AcTinG [5]).

Figure 4.3 shows an accountable gossip protocol in which a node X logs its interactions

with its predecessors and successors in a secure log (depicted in the right part of the

figure). For example, the first line of this log precises that node X received {u1} from

node P1 during round R. Secure logs can either rely on cryptography techniques (e.g.,

recursive hash functions in PeerReview and AVM [29, 31]) or on secure hardware (as

in Trinc [33]) to make them tamper evident and append only. In these systems, each

node X is further assigned a set of monitors (depicted above X in the figure) that

periodically audit its log in order to assess whether the logged entries correspond to

a correct execution of the gossip protocol. For instance, in the figure each monitor

can check that node X has forwarded all the updates it received during round R (i.e.,

{u1, ..., ufp}) to all its successors ( i.e., S1, ..., Sfs) during round R+ 1.

4.1.4 Privacy requirements

A major drawback of accountability mechanisms is that nodes must share their inter-

action logs with their monitors. In gossip-based applications such as content sharing

or live video streaming applications, this allows monitors to learn about nodes inter-

ests and thus possibly infer sensitive information about them. Indeed, various studies

(e.g., [36, 37]) have shown that the consumed media can disclose information about

individuals (e.g., gender, sexual, religious or political preferences). Further to learning
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which can limit the efficiency of the content dissemination, however we did not studied

their impact on the privacy of nodes.

Association with a content. In these two protocols, all nodes have to know the full

membership of a session, which is uniquely associated to a disseminated content. Then,

each node that is part of a session knows that all the other nodes are interested in the

same content. Thus properties P1 and P2 are not enforced in these protocols.

Predictability of interactions. Running these protocols, each participant chooses

the nodes it contacts using a deterministic, yet random, procedure that depends on its

identifier (or its public key) and on the round number. Both information being public all

interactions, either coming from the balanced exchange procedure or the optimistic push

procedure, can be predicted by any peer in the system. However, it is worth mentioning

that the updates that are exchanged between two partners cannot be precisely known by

other nodes. Finally, property P3 is not completely enforced by these protocols.

4.2.2 Audit-based approaches

In this section, we describe several gossip-based protocols that use periodical audits to

verify the correct forwarding of updates in a system. LiFTinG and G2G use verifications

based on secure logs to enforce properties R1, R2, R3 in presence of non collective

rational deviations. However, none of the privacy properties P1, P2, P3 are enforced.

We details the privacy leaks in the following parts of the section.

LiFTinG

LiFTinG [26] (see Section 2.1.2.3 for details) is a protocol that forces nodes to dissem-

inate the updates they receive, using cross-checking procedures and audits to check

how a node forwarded its updates. In chapter 2, we focused on the false-positive and

false-negative detection rates of this protocol, but we study here the mechanisms that

threaten the privacy of interactions. First, all nodes participating in LiFTinG know

that they share the same interest in the content being distributed. Thus, properties

P1 and P2 are not enforced in LiFTinG. We present two kinds of verifications that

aim at detecting selfish nodes, but leak information about nodes in the following, thus

preventing property P3 to be enforced.

Direct cross-checks. The direct cross-checking procedure has been previously illus-

trated in Figure 2.4. After a node p0 sends some updates to a node p1, using the standard

three-phase gossip procedure, it also has to check that p1 forwarded these updates to

other nodes, here p2 and p3, selected randomly among the audience. To permit this,

node p1 must send to node p0 the list of the nodes it contacted. Node p0 can then ask

these nodes to confirm that they receive the updates it sent to node p1. Any node in

the system is then able to discover all the nodes located two hops after itself in the

content dissemination path, and associate them with particular updates. This kind of

verification allows a node to learn the interactions of the node it is checking, and to

which is previously sent some updates. Thus property P3 is not enforced.
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A posteriori verifications. Periodically, each node picks a random node and audits

its history, which is a non cryptographically-secure log. The auditing node verifies the

randomness of the distribution of peers to which the audited node proposed updates. In

addition, the auditing node is able to contact the previous partners listed in the history to

ask for confirmations of the events presented. This could also constitutes an attack, as

anyone can contact any other nodes to ask for information concerning an hypothetical

exchange. Similarly to the previous verification, a node that executes an audit learns in

details all the exchanges of the audited node.

Due to the fact that the session membership is known from all nodes, and to the

verification procedures that detect selfish nodes, LiFTinG does not enforce the properties

P1, P2 and P3.

Give2Get

Give2Get [68] (G2G) uses ideas that are close to those of LiFTinG. While this protocol

is specifically designed for mobile wireless networks it can be used in more general

systems. G2G uses epidemic forwarding (i.e., gossip) to transmit messages among

nodes. While G2G does not explicitly uses audits, nodes check each other. Properties

P1, P2 are not enforced since all nodes participating in this protocol are known to be

interested in the same content.

Forwarding verification. When a node receives a message from another node it has

to send back a signed proof of relay (POR) which is a message that contains the hash

value of the received message, and the identities of the receiver and the sender nodes.

The sender of the message can then use this POR to prove to its predecessors that it

correctly forwarded the message. More precisely, each node has to collect two PORs

for each message it receives (using a fanout of two will limit the scalability of this

protocol, but it can be generalised). This verification prevents property P3 from being

enforced.

In this protocol, the full membership is known to nodes. In addition, the proofs of relays

divulge information about nodes. The predecessors of a node are able to learn which

messages where transmitted to which nodes, i.e., a node can learn where its messages

go two hops after it in the dissemination path. To conclude, properties P1, P2 and P3

are not enforced in G2G.

4.2.3 Virtual currency approach.

Building on the idea of virtual currency, an interesting approach is developed in [38],

where it is shown to provide accountability without compromising privacy in a peer-to-

peer system. This solution requires two trusted entities: i) a bank, which maintain an

account for each user and knows about all transactions in the system; and ii) the arbiter,

which ensures the fair exchange of e-cash for data. The privacy of exchanges is ensured

at the condition that these entities are available and trusted, which is not something

we are ready to assume in a P2P environment. However, at these conditions, selfish

individual nodes may be forced to participate actively in the dissemination of updates.
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Using this approach, trusted entities would prevent properties P1, P2 and P3 from

being enforced.

SECTION 4.3

Anonymous communication protocols

In this section we present several existing anonymous communication protocols that

could be used to create a one-to-all dissemination protocol, the source sending updates

and nodes disseminating and receiving them.

Anonymity is stronger than privacy as it provides the following properties, which were

defined in [69]:

◦ Sender anonymity. It is not possible to determine the sender of any given

message.

◦ Receiver anonymity. It is not possible to identify the destination of any given

message.

◦ Unlinkability. An observer is not able to identify a pair of nodes as communi-

cating with each other.

Thus enforcing anonymity would also enforce the privacy property P3. However, to

obtain the privacy properties P1 and P2, it would be necessary to serve several contents

simultaneously to nodes to hide the interests of nodes. As we will see in Chapter 5,

where we realise a performance evaluation, using anonymous communication protocols

to build a privacy-preserving and rational-resilient content dissemination protocol is

not possible because of their high overhead.

This section begins with a description of the first developed protocols that are not

accountable, and in which selfish nodes may avoid to participate correctly in all steps.

We then present protocols that have been designed to prevent these deviations.

4.3.1 Altruistic relaying

The first anonymous protocols DC-Net [70], and Onion Routing [71] have focused

on enabling the strongest possible anonymity level for the former, and on providing

practical performance for the latter. However, these two protocols take the participation

of nodes for granted. Some anonymous communication systems, like Dissent [39]

and RAC [40], force nodes to correctly execute their role of relay. However, if we

imagine a gossip protocol that uses anonymous communications a node that would be

the destination of a message would correctly receive it, but would still not be forced to

propagate it to other nodes.

In addition, using anonymous communication systems to provide privacy can also

be seen as a performance overkill. For example, for each message sent anonymously,

Dissent v1 [39] forces each node to send messages to all the other nodes. The second ver-

sion of this protocol [41] uses trusted nodes which receive anonymous communication
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requests from untrusted nodes, and run a protocol involving all-to-all communications

between trusted nodes.

DC-Net

The DC-Net [70] protocol relies on the principle of secret sharing, and is the most robust

anonymous communication protocol. For an opponent to break anonymity it is necessary

to control all the nodes in the system. Nodes proceed in rounds. During one round, only

one node is allowed to send a message. If two nodes try to send messages during the

same round a collision occurs and none of the messages is correctly delivered (although

some approaches have introduced the possibility to reserve slots [42, 72]). Nodes

are organised in a structured network and nodes have to forward to their neighbours

the encrypted messages they receive. Nodes apply a XOR-based mechanism on the

messages they receive from their neighbours to decrypt messages. The highest drawback

of DC-Net is its high overhead in terms of communications and computational costs.

At each round, any pair of two nodes in the system needs to exchange messages. Some

protocols have been devised to reduce these overheads. For example, Herbivore [73]

organise nodes into groups to decrease the total number of messages exchanged. In

practice, this protocol is consider to be unusable as soon as there are more than 50 peers

in a session [74].

Onion Routing

The onion routing protocol [71] is probably the most famous anonymous communication

protocol. This is due to the important number of variants of this protocol that have been

implemented, among which Crowds [75], Cashmere [43], Tarzan [44], and TOR [76].

Sending protocol. In this protocol, a node that wants to send a message to another

destination node follows the following steps:

◦ Choose a set of nodes, called the relays, which defines the path that the data will

follow until the destination.

◦ Encrypt the data as a onion, which is a recursively defined layered data structure.

Each onion contains another onion, the identity of the following relay on the path

and may contain cryptographic information (such as the cryptographic algorithm

that is used to cipher data).

Figure 4.4 shows how a node A sends a message anonymously to node B using two

relay nodes R1 and R2. Each relay is able to decrypt the message it receives that

has been previously encrypted using its public key, and finds the identity of the next

destination along with the encrypted data it has to transmit.

Relaying and selfishness. Each node on the path uses its private key to decipher the

onions it receives, and then forward the internal onion to the next relay. For security

concerns, this internal onion is padded to maintain a fixed size. This protocol assumes

that nodes are altruistic, i.e., they follow the protocol even though they have no particular

interest in doing so. A node could drop all the messages it should relay without being

detected.
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Figure 4.4 – Sending of an onion using two relays.

4.3.2 Rational resilient relaying

We describe in this part anonymous communication protocols that force nodes to act as

relays. Theoretically, they could be used to disseminate a content within an audience

of nodes. However, the audience would still be associated to a content (properties P1

and P2 would not be satisfied), and the cost of these protocols is way too important for

practical applications.

Dissent

The first anonymous communication protocol designed to tolerate rational nodes is Dis-

sent [39] (Dining-cryptographers Shuffled-Send Network). This protocol uses DC-Net

as a basis and thus suffers from the same scalability issues (it is not intended to be used

with groups larger than 50 nodes), and adds a double encryption system. When a node

detects the deviation of another node, the execution of a round is stopped and at least

one of the misbehaving nodes is anonymously proved to be faulty, and evicted.

Dissent operates in two stages.

◦ Shuffle phase A set of fixed-length messages, one from each group member,

is permuted and anonymously broadcast to all nodes. This protocol has two

practical limitations: all messages must be of equal length, and the decryption of

messages is serial (i.e., it takes a long time if the number of participants or the

number of messages is important).

◦ Bulk phase. In each round, all group members emit variable length messages

(possibly void messages) to any destination. To do so, they broadcast bit streams

based on pseudorandom seeds distributed via the shuffle phase in such a way that

XORing all the bit streams together allow nodes to obtain a permutation of all

members’ variable length messages.

Dissent v2. The protocol was later modified in [41] to improve its performance. In

this version, trusted servers that run the first version of Dissent are used by nodes which

still benefit from anonymity guarantees. We do not want to make the assumption that

trusted servers are available in general P2P solutions.
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RAC

RAC [40] is a rational resilient anonymous communication protocol that is based on

Onion Routing, and that was designed to scale better than Dissent. In RAC a node that

has to relay a message will broadcast it to all the nodes so that the node from which

it received the onion can check the forwarding. Thus, when receiving a message all

the nodes have to try to decrypt it, and the node that will succeed will have to send

it to all other nodes. This protocol is shown to be a Nash equilibrium in the original

publication.

Fireflies infrastructure. To limit the number of messages to send, and to make this

number independent of the system size, the membership is organised on rings, as is

Fireflies [25] 1. Nodes have a successor and a predecessor on each on these rings. When

a node receives a message from one of its predecessors it will first forward the onion to

its successors, which will prove its reception. Then, it will try to decipher the onion, and

upon success, will also broadcast the internal onion to its successors. If L is the number

of relays used in the onion path, and R is the number of rings, then the propagation of

one message has a cost of L×R×Bcast(N).

Broadcast groups. To avoid that all the messages reach all the nodes the membership

is divided in groups of size G where nodes are organised as previously presented. If

two nodes that belong to the same group want to communicate they use the previous

protocol inside the group they belong to. The cost of the protocol is then reduced to

L × R × Bcast(G). However, when two nodes that are not part of the same group

have to communicate the procedure is different. The source of the message broadcasts

it inside its group, but the smallest onion is made in such a way that it informs the last

relay that it has to forward the message in the group of the destination node (to allow

the reception of the message) and inside its own group (to prove to the source that it did

forward the message). The cost of the protocol is then lower to the previous cost and is

equal to ((L− 1)×R×Bcast(G))+ (R×Bcast(2G)). Simplifying the expression

leads to L×R×Bcast(2 ∗G) which is better than without groups.

Dissent and RAC are anonymous communication protocols that, theoretically, could

be used to disseminate a content in an audience of peers in presence of selfish nodes,

and would enforce properties P1, P2 and P3 if several contents are simultaneously

disseminated. However, Dissent is not able to scale correctly, or would need the

assistance of trusted servers, and the overhead of RAC is too important to disseminate

standard multimedia contents (e.g., musics or videos).

SECTION 4.4

Accountable and privacy preserving approaches

In this section, we introduce existing approaches that would check the correctness of

a node while preserving its privacy. The first possibility is to rely on zero-knowledge

proofs, and the other one, is to use very recent solutions that have been developed by

1see Section 2.1.2.2 for a description of Fireflies
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Haeberlen et al. in several publications. For each solution, we briefly argue why it can

not be applied to gossip.

4.4.1 Zero-knowledge proofs

Classical zero-knowledge proofs [77] (ZKPs) are methods by which one party can prove

to another party that a given statement is true, without revealing any information apart

from the fact that the statement is true. They are difficult to apply to gossip because they

are designed to verify functions with a fixed number of inputs, but in many distributed

systems, both the size and the number of a node’s "inputs" (the messages it has received

from other nodes) are not known. In particular, in gossip-based systems, the quantity of

messages a node receives during a time interval is not predictable. In addition, the high

overhead of general-purpose ZKPs would be prohibitive for many applications.

Another approach is to make nodes compute the expected output of the node that is

checked using secure multi-party computation (MPC) [45], and then check them to the

actual behaviour of the node. But MPC is practical only for very simple functions.

4.4.2 Collaborative verification protocols

We now present some ideas that have been presented by Haeberlen et al. in several

papers [46, 47]. They all focus on the same idea: it is possible in practice using a

particular data structure to control the behaviour of members in distributed applications,

under some assumptions, while preserving their privacy.

Privacy-preserving accountability

In [46], Haeberlen et al. propose an original and clever method that allows nodes to

collaboratively check each other in distributed systems, where the behaviour of nodes

can be checked by other nodes, while preserving their privacy using a data structure

called a Merkle Hash Tree. This proposition works under the assumption that nodes do

not collude.

Merkle Hash Tree. Participating nodes maintain a Merkle Hash Tree, which is a

tree whose leaves represent all the possible states of peers, and the internal nodes are

deterministically computed using a hash function and the value of their sons. Nodes in

the system regularly make public the root hash value of their tree. The interest of this

data structure lies in the fact that it is difficult to find collisions, i.e., create two trees,

or subtrees, whose internal hash values are different but whose root values are equal.

Thus, as nodes

Collaborative verification. Two nodes that interacted have to convince each other

that they are not in a state that is inconsistent with what they already know. To do so,

they send each other the internal values of their hash tree. Basically, all nodes that

interacted with another node will then be able to collectively, but anonymously, check

its Merkle Hash Tree.
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Application. This approach has been applied to a BGP routing system [48]. However

very elegant, we believe that this approach cannot be applied to gossip protocols,

because it is not possible to represent concisely all the possible states of a node. For

example, if a node has to receive X messages, using states to represent what it did

receive would give 2X states. Using a dissemination protocol, the set of states can then

become completely unpractical. However, if an optimisation can be found to represent

the states of a node this approach could become practical.

SECTION 4.5

Preserving privacy in other contexts

In the previous section, we considered content-dissemination systems and studied how

they would preserve, or harm, the privacy of their users. In this section, we present

several P2P protocols that aim at preserving the privacy of their users in other contexts.

4.5.1 Peer-to-peer protocols

Several domain-specific P2P systems have been developed by Kermarrec et al., we

briefly describe them in the following. These solutions cannot be applied to gossip-

based systems.

4.5.1.1 Interest-based social network

GOSSPLE [49] builds an overlay of anonymous nodes depending on their interests.

Using a gossip protocol, nodes periodically send their interest profiles, compute their

distance in terms of interest to other nodes, and update their connections to other nodes.

Nodes can then use their network of acquaintances for various goals, for example to

obtain personalised search results.

Profile anonymity. Each user has a profile which describes its interests. The associ-

ation between users and profiles is hidden. Each node has a proxy, which is another

node of the protocol, which disseminates its profile on its behalf. To send its pro-

file to its proxy, a node has to use a relay which will forward the encrypted profile.

This mechanism protects the system from single adversary nodes, but can expose it to

collusions.

Neighbourhood maintenance. Each node periodically selects its oldest neighbour

and exchange the descriptors, which include profiles represented as Bloom filters, of c
nodes. Each node then recompute the identities of the c nodes that maximise its distance

metric.

The methods used in GOSSPLE could be applied to gossip in the sense that each

node could obtain a set of neighbours sharing similar interests. However, the way a

content would actually be disseminated inside a GOSSPLE overlay is not defined, and

it is not clear if it would preserve the privacy properties P1, P2 and P3. In addition,

selfish behaviours would not be prevented.
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4.5.1.2 Collaborative filtering

Collaborative Filtering enables users who share the same interests, often revealed by

their profiles, to benefit from a content that one of them considered relevant. Such

recommendation techniques are more efficient if the profiles are public, however pre-

serving the privacy of these profiles is also an important concern. The mechanisms

presented in [50] consist in a decentralised protocol which aim at providing nodes the

information they are interested in while preserving the privacy of their profiles.

Interest-based overlay. Nodes maintain an overlay which is constructed using the

profiles of nodes. Nodes maintain a list of neighbours which share similar interests.

Second, information is disseminated using epidemic forwarding as nodes forward the

information they receive and liked to their neighbours. The protocol protects the privacy

of nodes when they transmit their profile to their neighbours and when they receive

posts that should not reveal their interests.

Privacy and obfuscation. Each disseminated item is associated with a profile that

aggregates information from the profiles of users along its dissemination path. This first

allows nodes to decide if any item they receive has chances to be appreciated. Second,

nodes are able to compute the portion of their profile that is the least sensitive one, i.e.,

the one that is shared by a large portion of other users in the system. The amount of

users’ profile that is revealed is a parameter that the system designer can tune.

Random dissemination. Nodes that liked an item may not forward it to their neigh-

bours, and may forward items they are not interested by. An attacker observing the

propagation of items would not be able to establish with certainty if nodes like or dislike

them. However, when a user creates a new item the solution does not provide privacy

to the node that forwarded it to its neighbours.

Similarly to GOSSPLE, it is not clear if disseminating a high-bandwidth content

using collaborative filtering would be efficient in terms of bandwidth. In addition,

it would not preserve the properties R1, R2 and R3 that aim at preventing selfish

behaviours.

4.5.1.3 Micro-blogging dissemination

Micro-blogging is another kind of P2P systems which has emerged as a way to dissemi-

nate information quickly and efficiently. Posts on Twitter and Facebook can be seen as

micro-blogging examples, and are made visible thanks to forwarding procedures (e.g.,

sharing in Facebook, and retweeting in Twitter). Such procedures propagate a post that

a user appreciated to its neighbours. The goals of RIPOSTE [51] is to help interesting

posts to be disseminated in the system and eliminate other posts, while preserving the

privacy of the users’ opinion.

Algorithm’s principles. RIPOSTE is an algorithm that takes as input the opinion

of users about a post (e.g., like/dislike) and as output decides to repost or not. If a

user likes a post, the algorithm will decide to repost with a given probability, and if he
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does not, the post has another slightly smaller probability to be reposted. For each user

and for each post, these two probabilities are computed as a function of the number

of connections of the user, and the extent to which the post has already reached the

connections. An observer thus cannot say if a user really reposted a post, or if the

algorithm made it.

Algorithm details. RIPOSTE uses two real numbers parameters that are used to take

decisions: the spreading factor λ > 1 and the blocking factor 0 < δ < 1. If u is a user

that receives a new post, and s > 0 is the number of its followers that have not yet

received the post. This last number is classically easy to obtain as a user has access

to the post that each of its followers have received. The reposting decision is taken as

follows:

◦ If u likes the post, it is reposted with probability rlike(s) which is equal to λ
s

if

s ≥ λ+ δ, else it is equal to 1− δ(s−δ)
λs

.

◦ If u does not like the post, it is reposted with probability rdis(s) :=
δ
s
.

Privacy and dissemination guarantees. The values of δ and λ determine the level

of privacy that is obtained, and how well appreciated posts will be disseminated. If

q is the probability for a given user to like a post, and q̂ is the same probability after

observing that the post was reposted from u then

q̂ =
q

q + (1− q)δ/λ
.

The closer δ is to λ the better is the privacy, however, ensuring a good dissemination

of interesting posts adds other constraints. Building on the theory of branching pro-

cesses [3] and under some assumptions, there is a popularity threshold p∗ = 1−δ
λ−δ

such

that posts with popularity lower than p∗ spreads to at most a constant factor larger than

the number of followers of the original poster, and posts with larger popularity spreads

to a least some fraction of the network.

Similarly to the previous P2P protocols of this section, RIPOSTE does not prevent

selfish behaviours: nodes could avoid to forward a content they received. In addition,

to enforce properties P1 and P2 it would be necessary to simultaneously disseminate

many contents that nodes would receive, which would not be optimal in terms of

performance.

SECTION 4.6

Summary

In this section, we summarise what has been said in this chapter. First, we develop the

requirements for a gossip-based system that would aim at preserving the privacy of its

users while ensuring that nodes participate in the dissemination of updates. Second, we

explain why existing approaches are not fully satisfactory. Finally, we conclude the

chapter.
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4.6.1 Requirements

In this part, we present the main concerns a system designer should have in mind when

building a content-dissemination protocol based on gossip tolerating individual rational

collusions and preserving the privacy of interactions.

Decentralised solution. We desire to design a gossip based system that does not rely

on any trusted entity, or on a central server. This assumption is standard in P2P systems.

Defence against selfish nodes. Properties R1, R2 and R3 should be enforced against

individual selfish nodes.

Compatibility with gossip. Gossip is particular, interactions between nodes are

random, and the content of exchanges cannot be predicted. Thus, a privacy-preserving

accountable gossip protocol has to take this characteristics into account.

Privacy requirements. Properties P1, P2 and P3 have to be enforced. In particular,

these properties should hold against a global and active attacker, which can control a

collusion of nodes trying to break the privacy.

4.6.2 Summary of existing solutions

We present in table I a summary of the related works. For each work, we indicate if it

satisfies the requirements we identified. We also present the characteristics of the PAG
protocol, which will be presented in the next chapter.
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4.6.3 Conclusion

In this chapter, we have identified the requirements one should respect when building a

privacy-preserving and accountable gossip protocol. Based on these requirements we

have seen that there is currently no solution that could provide both accountability and

privacy in gossip in a practical way. In the next chapter, we will detail PAG, which is

the first protocol to reach this goal.
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As we have seen, there is currently no solution that would protect content-dissemination

systems against selfish nodes and at the same time provide privacy to its users. In this

chapter, we present PAG, the first protocol that possesses these two properties.

In Section 5.1, we present the assumptions we make about the users and the system, and

the architecture of our solution at the level of a session, and at the level of the whole

system. Then, in Section 5.2 we introduce the intuition behind PAG which relies on

the homomorphic properties of an encryption mechanism close to the one used in RSA.

Section 5.3 details the exchanges of messages between nodes in PAG that implement

these mechanisms, explain the modifications needed to use this protocol in practice, and

give more details on the witnessing protocol. Section 5.4 proves the security guarantees

of this protocol using both ProVerif and probabilistic guarantees. Finally, Section 5.5

provides a performance evaluation, and Section 5.6 concludes this chapter.

SECTION 5.1

System model

In this section, we present the assumptions we make for the rest of this chapter.

5.1.1 Communications and cryptographic assumptions

As classically made in gossip-based protocols (e.g., in [22] and [23]) we structure

time using rounds whose duration, also called the gossip period, is assumed to be long

enough for nodes to complete their interactions. Nodes are roughly synchronized, which

allows them to check each others’ periodical exchanges based on the specification of

the protocol.

Nodes are uniquely identified with an integer identifier, for example deterministically

computed using their IP addresses. Further, we assume that nodes can generate prime

numbers, and have access to cryptographic primitives (RSA encryptions and signatures),

which are supposed to be unbreakable. In addition, nodes have a couple of public/private

keys used to generate signatures and encrypt their communications. Classically, we will

denote pk(X) the public key of a node X , {a}p the encryption of a message a using

the key p, and < a >p the signature of a using p.

5.1.2 Gossip sessions

We assume that several gossip sessions disseminating different contents can hold si-

multaneously in the system. Each content is generated by its source, and is signed

with its private key. Updates are propagated along with their signature so that they

can be verified by the nodes upon reception, which prevents data tampering. Nodes in-

terested by a content have to obtain the public key of its source using an external service.

In the illustrations of this document, we represent the interest of nodes, which are kept

private, as a color, e.g., in Figure 5.1, nodes A and C are colored in black and are

assumed to be interested in the same content.
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5.1.3 Nodes behaviors

We consider that nodes can be of several types.

Correct nodes strictly follow the protocol and participate actively in the dissemination

of updates. In particular, the source of each session is assumed to be correct.

Selfish nodes are interested in increasing their benefit and minimizing the cost they

pay for their participation in the protocol, and deviate from the protocol in any way

that would improve their benefit (e.g., reduced bandwidth consumption, reduced CPU

overhead). These nodes would deviate from properties R1, R2, and R3 if allowed to.

We assume that selfish nodes do not collude.

5.1.4 Adversary model

We consider a global and active opponent, which is the strongest possible model of

attacker. Global means that the opponent can monitor and record the traffic on all the

network links. Active means that it can control some nodes in the system and make

them share information or deviate from the protocol (if possible) in order to reduce the

privacy of other nodes. The goal of the opponent is to endanger properties P1, P2 and

P3. The higher the number of nodes that the opponent must control to break a protocol,

the stronger the privacy guaranteed by this protocol. The only limitation of the global

and active opponent is that it is not able to invert encryptions.

SECTION 5.2

PAG Overview

In this section, we present an overview of PAG. We start by presenting how the mem-

bership of the whole accountable and privacy-preserving gossip protocol is maintained

in part 5.2.1. Then, we detail how nodes select their successors in part 5.2.2. We further

present how nodes monitor each other to enforce accountability in part 5.2.3. Finally,

we introduce the cryptographic procedures that preserve privacy against a global and

active opponent in part 5.2.4.

5.2.1 Global membership and monitoring

The role of a membership protocol is to handle the arrival and the departure of nodes, as

well as the distribution of the membership list to nodes. To provide nodes a reasonably

up-to-date view of the membership we rely on FireFlies [25, 63] which is a scalable

Byzantine-resistant membership protocol. Fireflies ensures that the membership is

known by every node in the system with probabilistic guarantees on the delay, and that

unresponsive nodes are detected and evicted by their neighbors. We also use FireFlies

to assign random and live monitors to nodes in order to enforce accountability in gossip.

A new node can be inserted in the system using an access point that is either a tracker,

or an already inserted node whose identity is made public.

Figure 5.1 shows an example of how FireFlies handles nodes membership. In this

figure, nodes are organized on several rings using random permutations. The positions

of a node on the rings, which depend on its identifier, defines the nodes it monitors and
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5.2.3 Enforcing accountability using monitoring

To ensure the accountability properties R1, R2 and R3, we rely on a monitoring

infrastructure. Each node is assigned a set of monitors, which are its successors on the

membership rings of FireFlies. The monitoring relations between nodes are thus known

from every node in the system. To detect the deviations of a node, at least one of its

monitors need to be correct. In some cases, nodes can exhibit some of the messages

they have sent or received to prove their correctness, or that another node deviated from

the specification of the protocol (avoiding it is future work).

To ensure a good dissemination of updates nodes need to have random successors

(property R3), however the randomness of associations must be verifiable. To com-

bine both goals, we rely on random yet deterministic associations. To do that, nodes

use a pseudo-random number generator to determine their successors among the full

membership using a deterministic seed (e.g., obtained from the encryption of the most

recently received updates) that only its monitors can verify. The monitors of a node are

the only nodes in the system that are able to predict, and later verify, its interactions

with other nodes. During the dissemination of updates, a node will typically receive

an update at round R and forward it during round R+ 1. Its monitors are in charge of

checking this forwarding during round R+ 1, which provides property R2. As it will

be presented in Section 5.3, property R1 comes from the fact that nodes cannot avoid

to receive updates they cannot prove to have received in the past.

Figure 5.3 presents a simplified example, in the sense that no signature or encryption

are represented, of how the monitoring infrastructure checks that a node correctly

forwards the updates it receives. Details of the protocol will be presented in section 5.3,

we only give here the intuition of the monitoring process. In this example, node A
receives an update u, and has to forward it to node B during round R. Upon reception

of this update u, node B acknowledges to its monitors A, D and G, the reception

of this update from node A, using the Ack(u,A) message. The monitors of node B
transmit this information to the monitors of node A, namely nodes E, D and F , using

the Confirm(u,A,B) message. Thus, after these messages, the monitors of node A
are able to check that it (i) forwarded the right message, and (ii) correctly chose its

successor. Meanwhile, the monitors of node B have learned that it received the update

u. During the following round, it is their task to check that node B correctly forwards

this update. Finally, the monitoring infrastructure controls the dissemination of updates

at each hop, and finally along the whole dissemination path. A special case occurs

when the source of a content sends its updates to some nodes. In this case, the source

has to inform the monitors of those nodes that they received some updates to forward.

We now briefly explain why nodes have interest in transmitting each kind of message

represented in Figure 5.3. Let us assume that node A received an update u, and that

its monitors are aware of this reception. In this case, A’s monitors expect to receive

a message Confirm(u,A,B) where node B is the successor that node A has to

choose. If they do not receive this message, they would accuse node A of a selfish

deviation (i.e., avoiding to forward an update). If this message is not received, it is

either because node A did not send the update u to node B, or because node B did
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u is given by {u}(e,m) = ue mod m. Let u1 and u2 be two updates. The following

homomorphic property can easily be established:

(5.1) {u1}(e,m) · {u2}(e,m) = {u1 · u2}(e,m)

Let e1 and e2 be two exponents. In addition to the previous property, this encryption

also verifies:

(5.2)
{
{u}(e1,m)

}
(e2,m)

= {u}(e1·e2,m)

It is not possible to inverse the encryption of updates as the value of the modulus m is

smaller than the size of the encrypted content. Any hash function presenting these two

homomorphic properties could be used to check the dissemination of updates, however,

we are not aware of such functions. Instead, we use this hash mechanism, which is

close to the one used in the RSA encryption, but cannot be inversed, and is not costly

when the modulus size is not too high (256 or 512 bits is probably enough in most cases).

Intuition. Figure 5.4 illustrates the intuition of PAG. Nodes A and F are the two

predecessors of node B, and node D is a successor of node B. We consider only 2

predecessors for node B for the sake of simplicity, even though 3 is a minimum to

ensure privacy (for this reason, we use at least 3 successors per node). We only focus

on the reception and forwarding of the updates that node B receives. The same steps

would also apply to the nodes A, F and D to provide a kind of forwarding chain but

are not described for the sake of simplicity.
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Figure 5.4 – Privacy preserving verification of a forwarding of a node B

The set of monitors of node B is made of nodes A, D and G. Let us suppose that

nodes A and F have to respectively send updates u1 and u2 to node B. First, they

would ask node B to send them a prime number. Node B chooses two prime numbers
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p1 and p2 and respectively sends (p1,
∏

j 6=1 pj) and (p2,
∏

j 6=2 pj) (messages 1.) to

nodes A and F . Nodes A and F can then send their two updates to node B (messages

2.), which would be encrypted. Nodes A and F also have to declare (messages 3.)

to the monitors of node B, that they sent some updates to node B whose encryptions

are respectively equal to {u1}(p1,m) and {u2}(p2,m). Later, when node B will have to

forward its updates u1 and u2 to node D, it will join the product
∏

j pj (message 4.).

Node D will be able to acknowledge the reception of u1 and u2 using the encrypted

value {u1 ·u2}(
∏

j pj ,m). The monitors of node B can verify that the following equation

is verified, which proves that B did forward exactly what it received:

(5.3)
(
{u1}(p1,m)

)∏
j 6=1

pj ·
(
{u2}(p2,m)

)∏
j 6=2

pj = {u1 · u2}(
∏

j pj ,m)

Privacy of exchanges. Although incomplete this short example shows the main idea

of the dissemination protocol: the monitors of a node are able to check that what a node

receives is forwarded without learning the actual content, thus preserving the privacy of

the node being monitored. To obtain the content of exchanges it would be necessary

to learn the prime numbers a node chose. With this information the monitors would

decrypt the exchanges a node had with its predecessors, or successors. Predecessors and

monitors of a node receive the product of prime numbers, and are not able to factorize it

efficiently, as it is a notoriously known hard problem. There is currently no polynomial

time algorithm to factorize integers [4], even though no proof of difficulty has been

published.

SECTION 5.3

Design of PAG

We have presented the principles of PAG in the previous sections. In this section, we

detail the steps of the protocol, which has been designed in such a way that selfish

nodes can not deviate from the protocol without providing at least another node with a

proof of misbehavior it can use to evict this node from the system.

5.3.1 Forwarding updates

Two important requirements guided the design of PAG. First, the encryption of updates

must change from one forwarding to the other. Otherwise, a global attacker could follow

the transmission of updates in a system. Second, for performance reasons, it must be

possible to combine the encryption of several updates to reduce the overhead of the

protocol. The use of a classical hash function does not provide these points. To the best

of our knowledge, our protocol is the first to provide both these properties.

Figure 5.5 presents the exchange of messages that occur when a node A has to forward

a set SA of updates to a node B, which already possess the set of updates SB , during

round number R. First, node A asks to node B for a prime number that it will later

use to encrypt the product of the updates in SA (message 1.). For this step, node B has

to wait for all its predecessors to ask for a prime number before answering them. We

note K(R,B) the product of the prime numbers that node B chose during round R to
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receive updates from its predecessors.

In message 2., node B replies with the primary key pj that B must use in a signed and

then encrypted message. It also joins the homomorphic encryption of the updates in

SB using pj (for optimization reasons, it may be possible to encrypt only a subset of

SB). Upon reception of this message, node A can check if the updates in SA are not in

SB , and thus avoid to send them.

In message 3., node A serves in an encrypted, and then signed, message using node

B’s public key the updates in SA \ SB and K(R− 1, A). The value of K(R− 1, A) is

the product of the prime numbers node A used to receive the updates in SA from its

predecessors during round R− 1. Node B has to use it to acknowledge the reception

of the updates in a message encrypted using its public key K(B).

In message 4., node A sends to node B a signed attestation that declares the value of

the encryption of the updates in SA using pj . This message will later be transmitted to

the monitors of node B, which will then check the forwarding of node B based on its

value.

In message 5., which is signed, node B acknowledges the reception of the updates in

SA using the encryption of their product with K(R− 1, A). If necessary, node A can

use this message as a proof that it did forward the right set of updates to node B during

round R.

5.3.2 Encrypting a set of updates

The role of monitors is to check that the node they monitor (i) contact all its successors,

(ii) forward all the updates it received at round R during round R + 1. For this last

verification, monitors have to compute the homomorphic encryption of the product of

all the updates that the node receives during a given round, and check that its successors

during the following round acknowledge this encryption.

Figure 5.6 illustrates the mechanisms that allow the monitors to perform these tasks. At

each round, the monitors of a node expect to receive messages from it, and from the

monitors of its successors. In this figure, the monitors of node B are nodes A, D and

G, while the monitors of its predecessor, node A, are nodes D, E and F .

Monitoring details. When node B receives the set SA of updates from node A, it has

to send two messages to one of its own monitors. The first message (message 6.) is a

copy of the acknowledgement that node B already sent to node A in (message 5. of

Figure 5.5). Message 7., which is signed, contains the attestation that node A sent in

message 4. of Figure 5.5, and the product of the prime numbers that node B used to

receive updates from its other predecessors during round R.

The monitor, here node D, that receives these two messages from node B has to compute
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Figure 5.5 – Propagation of messages inside a session
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the value
{∏

i∈SA
ui

}(
∏

k 6=j pk,m)

(pj ,m)
=

{∏
i∈SA

ui

}
(
∏

k pk,m)
=

{∏
i∈SA

ui

}
(K(R,B),m)

and broadcast it to the other monitors of node B, which are nodes A and G, along with

message 6. To be sure that a monitor correctly computes and forward the encryptions

of updates, a node can inform her other monitors before sending a message to one of

them.

5.3.3 Combining all encryptions

During a round, and after each broadcast, each monitor of node B computes the product

of all the encryption values forwarded by the other monitors of node B. Finally, at the

end of the round, the monitors of node B knows the encryption of the set of updates

that node B received using the product of the prime numbers that node B chose. This

encryption must be acknowledged by the successors of node B during the following

round, allowing its monitor to validate its forwarding.

Suppose that node B received the set of updates SA from node A, and the set of updates

SF from node F during a given round. Let
∏

j pj the product of the prime numbers that

node B used to receive these updates. The monitors of node B obtain the encryption of

the union of SA and SF applying the formula

{SA ∪ SF }(
∏

j pj ,m) = {SA}(
∏

j pj ,m) × {SF }(
∏

j pj ,m)

To allow this verification, the monitor that has been contacted by node B also has to

forward the acknowledgement (message 9.) to the monitors of node A, which are node

D, E and F . The monitors of node A can then verify that node B received the correct

set of updates from node A.

5.3.4 Practical implementation details.

While the main ideas of the protocol have been presented, important details have to be

ruled out before having a practical implementation of a gossip protocol. In this section

we present the important details or optimizations that allow the protocol to become

practical.

Number of monitors per node. To maximize the privacy of exchanges while minimiz-

ing the bandwidth overhead of the protocol, we advise to select the same number of

monitors and successors per node.

Updates encryptions. A node is able to communicate to its predecessors the encryp-

tions of a fraction of the updates it owns, in order to avoid to receive them again.

Determining how many encryptions to send is dependent on the applications, and

more particularly on the updates’ and on the size of their encryptions. In our scenario,

updates were bigger than their encryptions, and the best results in terms of bandwidth

consumptions were obtained when the updates of the last 4 rounds were encrypted and

transmitted.
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Figure 5.6 – Monitoring part of an interaction between two nodes

Simultaneous multiple receptions of an update from several predecessors. While

our protocol limits the possibilities for a node to receive several times a given update, it

can still occur. More particularly, it is possible when a node simultaneously receives

updates from different predecessors. However, to limit bandwidth consumption it is

necessary to forward these updates only once. To do so, when a node sends an update it

also joins to it an integer which describes the number of times it was received by the

sending node during the previous round. This enables the receiving node to accurately

compute the encryption of the set of received updates, and the monitors to match the

encryptions of received messages with the one of forwarded messages.

Allowing updates to disappear. Generally, updates have a date of expiration after

which nodes should not continue to forward them. Determining this expiration delay

is up to the system designer. To allow updates to stop being propagated, when a node

sends updates to another node, it separates the updates in two lists: the first one contains

updates that will expire in the next round, and that should not be forwarded, while

the other one contains updates that have to be forwarded. A small modification of the

messages and monitoring exchanges allow updates to expire. The monitors of a node

would check the propagation of the second list, and still acknowledge the reception of

the first list.

Increasing the size of updates. It is possible to reduce the bandwidth overhead of

our protocol if the size of updates is increased. Indeed, the propagation of updates is
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also appear in the release. In k − PAG, as k contents are distributed in each clus-

ter, it is not possible for an observer to determine which one of the k contents a node

is interested in. Thus, the property privacy P1 is ensured with k-anonymity in k−PAG.

Not being able to determine the list of nodes that are interested in a content is a con-

sequence of the previous privacy property. If the system contains k different contents

and N nodes, it is not possible to determine which repartition of nodes among the Ck
N

possible subsets of k nodes among the N is the right one. Thus property P2 is also

enforced.

It is interesting to study the extreme values of k. If k is equal to S then k-PAG is

identical to PAG. On the contrary, if k equals 1, then property P1 and P2 do not hold,

as the cluster a node is inserted in directly refers to the content it is interested in.

To receive a content, a node must be inserted into the membership list of the cluster that

disseminates the content it is interested in. To do that, it can contact any node of this

cluster in order to be inserted in the cluster’s membership list.

To enforce k-anonymity, the creation of a new k-cluster is done only when an existing

cluster reaches a size equal to 2∗k sessions. At that time, the cluster of size 2∗k is split

into two clusters of size k. As such, at any point in time, the interest of any node in the

system is hidden among at least k − 1 other contents. To meet this objective even at the

beginning of the system, or if at any point in time there are less than k parallel sessions

in the system (i.e., S < k), nodes have to wait for the starting of enough sessions to

enforce k-anonymity. An alternative, which we will investigate in future work, would

be to generate fake gossiping sessions. Finally, if sessions inside a cluster do not have

the same duration, the source nodes of the shortest sessions send garbage data while

waiting for the others to end.

5.4.2 Enforcing P3 under global and active attacks

ProVerif [52] is a well-known automatic cryptographic protocol verifier that uses Horn

clauses to detect possible attacks. Using ProVerif, we modeled the cryptographic mech-

anisms of PAG1 (that were illustrated in Figures 5.5 and 5.6). The aim of using this

experiment is to show that there is no attack on the privacy property P3 that involves

less than f nodes, where f is the number of predecessors, successors and monitors per

node.

We considered the representative situation where a node B receives updates from three

predecessors A1, A2 and A3, and have to forward them to one of its successors C.

Checking that node B correctly forwards the updates it receives also implied to instanti-

ate the monitors of nodes A1, A2, A3, B and C. We modeled the case where f = 3,

because 3 is the smallest value where the protocol can be proved secure. Increasing

the value of f would reinforce the security of the protocol, as the necessary number

1The code is available in appendix and at

https://gist.github.com/anonymous/5d9d542ffa47e1f64a7a
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of colluding nodes sharing information in order to break the privacy would also increase.

We assume that node B is correct, otherwise, its exchanges may not be kept private,

even without exterior attacks. In addition, we consider that the aim of an opponent is to

obtain the value of a prime number that node B chose for one of its predecessor in order

to obtain the detail of the exchange between node B and this node. We also assume

that the attacker has access to the list of updates that node B may have received from

its predecessor. In order to find the updates that B received, once the prime number

used is known, the attacker would have to encrypt any possible combination of updates

using the prime number and see if it is equal to the observation. This attack is not really

practical because the number of subset of a set of size N is equal to 2N , but we choose

not to ignore it. We thus make the assumption that the attacker has an accomplice

that communicates all the updates of the session, or that the attacker receives the content.

We modeled several attack scenarios to assess the privacy property P3. The model of

the protocol can be found in Appendix .1. These scenarios can be grouped under two

cases:

◦ Case (1). The attacker listens to all communications on the network, and actively

tries to break the privacy of exchanges between nodes A1 and B. The attacker

can replay, or inject messages in the network.

◦ Case (2). In addition to the assumptions of case 1., we consider that at most

(f−1) nodes among the monitors or predecessors of a node are part of a coalition.

This case can be instantiated with several configurations (e.g., (f − 2) monitors

and 1 predecessor, (f − 3) monitors and 2 predecessors, etc.) that were all tested

in our configuration.

In case (1), ProVerif proved that no attack exists on the cryptographic procedures of

PAG. Our experiments in case (2) allowed us to confirm that no attacks exist if the

opponent controls less than f nodes. An attack is possible if f nodes collude among the

monitors or predecessors of a node, and ProVerif found it. If the colluding monitors of a

node receive the right messages, and are controlled by the attacker, then the opponent is

able to obtain the private numbers that B generated and thus gain access to the identities

of the updates a node received. As we said, this attack is very costly, but we can not

underestimate it.

5.4.3 Accountability against selfish deviations

If nodes execute correctly their exchanges, as specified by Figure 5.5, then properties

R1, R2 and R3 are enforced. In the following, we briefly explain the incentives that

force a selfish node, say node A, to follow the protocol. Remember that nodes register

the messages they send or receive, and can use these messages to prove their correctness

or that another node deviated.

Random successors. At the beginning of a new round, node A contacts its successors

asking them to answer with a prime number to encrypt the updates it must forward

(message 1). A selfish node will execute this step correctly because the identities of its
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successors are known by its monitors, and they will check that the exchanges take place

(through message 9 of Figure 5.6). Thus, property R3 is enforced by the monitoring

infrastructure. The successors of node A answer with a prime number, and use it

to encrypt some updates they wish to avoid to receive again (message 2). Correctly

following this step is in the interest of selfish nodes as it will minimize the number of

updates they will receive. In addition, a node can not avoid to receive updates it does

not have, which enforces R1.

Serving updates. Node A computes the set of updates that its successor does not have

and send them, along with the identifiers of the updates it should have sent but that its

successor already had (message 3). If a node does not send the right set of updates

to its successors then the verification its monitors will run will fail. Eventually, as its

successors received signed messages that they can exhibit, it will be proved guilty. The

attestation (message 4) that node A sends can be verified by node B, thus a selfish

node will correctly compute its value. In return, the acknowledgement (message 5) that

node B sends can also be verified by node A. This acknowledgement forces node B to

inform its monitors about the updates it received from node A (messages 6 and 7 of

figure 5.6). Finally, if the verifications of node A pass then it means that it forwarded

the right set of updates to the right nodes. After having received these updates, node

B is engaged towards its own monitors to continue the forwarding of updates, which

enforces property R2.

We now detail for each step of the protocol the incentives that encourage selfish nodes

to follow the protocol. For each step of the protocol, we identify the various deviations

that selfish nodes could follow and provide the associated incentive.

◦ Fig 5.5 Step 1. At the beginning of a new round node A sends a KeyRequest

message to each of its successor. Suppose that node A contacts node B during

this step.

– Selfish deviation 1. Node A sends an incorrect message to node B, or does

not choose the right successor.

– Incentive. An incorrect message, or a message sent to the wrong destination

would constitute a proof of misbehavior that node B could held against

node A.

– Selfish deviation 2. Node A does not send any message.

– Incentive. If node A does not send any message to one of its successor

during a round, say node B, its witnesses will not receive any message from

node B, and will want to find out who is guilty.

◦ Fig 5.5 Step 2. Node B replies with a prime number to node A, and the encryption

of some of the updates it already has using the prime number it chose for node A.

– Selfish deviation 1. Node B sends an incorrect number (e.g., not a prime

number) or the encryptions of updates are incorrect.

– Incentive. Node B can verify that the number it received is a prime number,

and denounce node A if the number is not prime. If updates are not correctly
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encrypted, node A will send all the updates it has to propagate. It is not in

the interest of node B to receive updates it already owns.

◦ Fig 5.5 Step 3. Node A computes the set of updates that node B does not have

and thus that it should send, it also computes the indexes of the updates that node

B has. It can then send these information along with the key that node B will

use to acknowledge the reception of updates from node A.

– Rational deviation 1. The key is not correct.

– Incentive. If the key is not correct, the verification that node A will eventu-

ally execute will fail, and node B has a signed message that will prove that

node A is faulty. It is possible to obtain the key that node A used by asking

its predecessors what it is.

– Rational deviation 2. The set of updates and the set of indexes are not

correct.

– Incentive. Once again the verifications will fail and it will be possible for

any node in the session to see that node A did not sent the right set of

updates.

– Rational deviation 3. The updates are modified by node A.

– Incentive. If the updates are modified by node A then the source’s signature

that is propagated with them will not match the content.

◦ Fig 5.5 Step 4. Node A sends an attestation to node B. This message contains the

encryption of the product of all updates that node A sent using the prime number

that node B chose. This encryption is then used by node B’s witnesses to check

the forwarding of these updates.

– Rational deviation The encryption is incorrect.

– Incentive. If the encryption is incorrect node B must denounce it, if it does

not the acknowledgements from node B’s successors will not match with

the attestation, and node B will be denounced.

◦ Fig 5.5 Step 5. Node B sends an acknowledgement to node A using the key that

node A used to forward the updates it received during the previous round.

– Rational deviation 1. It is not the correct set of updates that is encrypted.

– Incentive. If the encryption is incorrect, node A should not accept it. The

combination of the serve message (step 3.) that node B received and the

acknowledgement that node A received would prove that node A is correct

while node B is not.

– Rational deviation 2. It is not the correct key that is used.

– Incentive. The same incentive as above holds.



5.5. PERFORMANCE EVALUATION 113

SECTION 5.5

Performance evaluation

In this section, we present the performance evaluation of PAG. We start by introducing

our methodology and the values of the protocol’s parameters (part 5.5.1). We then

evaluate the proportion of exchanges that an active and global attacker could discover

if it controls more than f nodes in the system (part 5.5.2). We further evaluate the

overhead of our protocol in terms of bandwidth consumption using both simulations and

real code deployments compared to state-of-the art competitors (parts 5.5.3 and 5.5.4)

while varying the values of k in k − PAG, as well as the size of the content being dis-

seminated (part 5.5.5). Finally, we evaluate the cryptographic costs of PAG (part 5.5.6)

as well as the scalability of PAG with respect to the number of users (part 5.5.7).

Overall, our evaluation shows that PAG improves the resilience to active and global

opponents compared to state of the art protocols. Furthermore, it is more costly than

the existing accountable gossip protocols which do not preserve privacy. Yet, contrary

to accountable anonymous communication protocols, its performance is compatible

with streaming live content on commodity Internet connections. Furthermore, its

cryptographic overhead can be handled by modern architectures. Finally, thanks to its

inherited gossip properties, the bandwidth overhead of PAG scales logarithmically

with the number of nodes in the system.

5.5.1 Methodology and Parameter Setting

PAG and its competitors. To assess the performance of PAG compared with other

solutions, we implemented it in Java and used it as a video live streaming application.

In this context, a source node broadcasts a video stream at a fixed rate, during 5 minutes,

and sends each generated update to 3 random nodes. When it is not precized, PAG is

configured with 3 monitors per node. Updates are then disseminated using PAG or one

of the protocols we compare ourselves with. Among these protocols are an accountable

gossip protocol, and two anonymous communications protocols. AcTinG [5] is an

accountable gossip protocol that is not designed to preserve the privacy of nodes as

they maintain a secure log, and audit each others. To give a fair comparison, we also

choose to compare PAG to two anonymous communication protocols. RAC [40] is an

anonymous communication system that forces nodes to relay the messages that other

nodes send. Using it, a source could send a content to all nodes anonymously and

with accountability. We do not study Dissent [39] at it was shown to be even more

costly than RAC in [40]. OR+PR is a combination of the Onion Routing [71] protocol

with PeerReview [29]. This protocol forces nodes to relay the messages they receive.

This second anonymous communication protocol is less costly, and its advantage is

that its throughput does not depend on the size of the membership. Using PeerReview

allows the relaying of messages to be checked. However, it cannot be considered

privacy-preserving as nodes running PeerReview maintain a secure log. Studying

this protocol gives an insight on the cost of an hypothetical ideal protocol that would

combine anonymity with accountability.

Real deployment settings. We deployed PAG on 48 machines of the Grid5000 cluster,
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using 9 instances per machine, thus totaling 432 nodes. The machines were intercon-

nected using a 1Gb/s network. Each machine is composed of an Intel Xeon L5420

processor clocked at 2.5Ghz with 32GB of RAM. To provide further tolerance to

message loss (combined with retransmissions), a source groups packets in windows

of 40 packets, including 4 FEC 2 coded packets. The duration of one round is set

to one second, and updates of 938B are released 10 seconds before being consumed

by the nodes’ media player. The cryptographic primitives consisted in 1024-bit RSA

signatures. The size of the generated prime numbers and of the modulus used in the

homomorphic encryptions are set to 512 bits.

Simulations settings. Our simulations consisted in an implementation of the protocol

in the OMNeT++ [86] simulator, using the same parameters value we used in our

deployment. The simulation code is a C++ version of the one we deployed in the

previous experiments. We also used computations to obtain the scalability of the

protocol and its memory consumption when the number of nodes was too high to be

observable in practice.

5.5.2 Probabilistic study of the impact of coalitions

A coalition of at least f nodes can break the privacy of some interactions of nodes in

the system. We now evaluate the privacy guarantees of PAG in presence of a global

and active attacker. We also compare these guarantees to those of an existing state of

the art protocol, i.e., AcTinG [5].

In AcTinG audits check the secure logs of nodes, which contain the detail of up to

30 interactions, with a probability of 10% whenever a new interaction occurs. The

aim of the global and active attacker we consider is to break the privacy of exchanges

by controlling several nodes. Corrupted monitors reveal the identity of nodes that ex-

change updates. Merging the knowledge of several nodes, it is possible to obtain more

information about users in the system. Apart from learning the identities of partners,

it is possible to discover the details of the interactions of a node if all its predecessors

except at most two and at least one of the monitors of this node collude. This essentially

means that collecting the prime numbers a node used, and observing all its encrypted

interactions is enough to decrypt them. The probability of this situation to happen is

however low enough for the protocol to be practical.

To evaluate this risk, we consider the probability for an exchange between two nodes,

which can be controlled by the attacker, to be discovered by the attacker. Depending

on the size of the coalition, we want to evaluate the probability that the privacy of an

exchange is broken and observed by the attacker. Attacks have to be evaluated in terms

of probabilities because nodes are randomly affected predecessors and successors in

their session, and monitors among the entire membership.

In Figure 5.8, we evaluate the proportion of all exchanges in a session that an attacker,

which controls a variable proportion of the membership, can discover. The ideal privacy

2FEC stands for Forward Error Correction.
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in this case is represented in black, and express the probability that at least one of the

two nodes that interact is corrupted, and divulge the content of the exchange. In case of

a collective attack, increasing the number of monitors, and the fanout of nodes, makes

the privacy guarantees close to ideal. The code that was used to create this figure can

be found in Appendix .2.
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Figure 5.8 – Privacy presence of a global and active attacker controlling a varying

proportion of the membership.

5.5.3 Comparison with an accountable gossip protocol and impact of the

number of contents

We first compare the bandwidth consumption of our protocol to the one of AcTinG [5].

We present in Figure 5.9 the cumulative distribution functions of the bandwidth con-

sumptions of nodes during a 300 Kbps streaming session. In average nodes running

AcTinG consume 460 Kbps, while using PAG they need 1050 Kbps.

The privacy of nodes increases with the number of 300Kbps contents per cluster being

disseminated. This number ranges from 1 to 3, and the associated bandwidths are

respectively equal to 1050, 2075 and 3092 Kbps. This cost is not exactly linear with the

number of session, as some messages (e.g., the encryption of updates) can be factorized

when a node receives several contents.

The biggest part of the cost is due to the forwarding policy: what is received by a node

at round R must be forwarded at round R+1. The same update may be received several

time by a node and then forwarded, and we cannot avoid it currently. AcTinG is less

costly because nodes can refuse updates, and it is controlled using their log during

audits. Increasing the number of monitors does not significantly increase the bandwidth
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Figure 5.9 – Bandwidth consumption of k−PAG with several 300kbps contents

per cluster and 3 monitors per node [sim]

cost of the protocol, and allows a better resilience to collective deviations between

nodes. However, having more monitors than successors/predecessors does not increase

the privacy guarantees.

In Figure 5.10, we measure the average bandwidth consumption of our protocol using 3

monitors, and successors per node. After the initialization of the session, the average

bandwidth consumption of node is established around 1000Kbps.

5.5.4 Comparison with anonymous communication systems

Relying on anonymous communication systems to run a gossip protocol would provide

privacy to nodes, however it would not force nodes to participate actively in the dis-

semination of updates. These protocols are costly and cannot be applied in the exact

same settings we used with PAG and AcTinG. Thus, we designed a second set of

experiments that consisted in determining the maximum video quality that protocols

could provide in function of the network capacity. We present in the first two lines of

Table II the video qualities we considered and the associated payload size.

Table I summarizes the results of our experiments with 1000 nodes. For each network

capacity, ranging from 1.5Mbps to 10Gbps, we study the maximum video quality that

each protocol can provide, and the amount of bandwidth that is used. For example, with

a network of 1.5Mbps AcTinG can provide a 480p video using 1.4Mbps.

As we have seen previously, PAG is more costly than AcTinG which is also account-

able but not privacy preserving. Using 10Mbps network links, PAG can provide at

most a 480p video, consuming 6.9Mbps of bandwidth. In comparison, AcTinG would
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Figure 5.10 – Average bandwidth consumption of nodes running PAG with a

300Kbps payload.

be able to send a 1080p video using 6Mbps of bandwidth. Decreasing the video quality

in exchange for privacy is a tradeoff that users may be willing to take.

However, anonymous communication systems would not provide accountability, and

would be much more costly. The maximum payload that RAC is able to provide using

10Gbps network links is equal to 63kpbs, which is far from the minimum of 300Kbps

that a basic streaming session would require. In comparison, OR+PR is a better solution

which would need at least a 1Gbps network to provide a 1080p video, consuming

103Mbps. In comparison, PAG would send a 1080p video consuming only 31Mbps.
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5.5.5 Impact of updates size

Although we considered 938B updates in the previous experiments, to be fair with the

other solutions, Figure 5.11 shows that using bigger updates can further decrease the

bandwidth consumption of our protocol. This is due to the fact that more content can

be represented under each encryption. For example, nodes propagating 10Kb updates

needed to perform 370 homomorphic encryptions per second, while propagating 100Kb

updates decreased this number to 52 encryptions per second.
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Figure 5.11 – Bandwidth consumption with 1000 nodes and a 300Kbps stream

in function of the size of updates [sim]

5.5.6 Cryptographic costs

Our protocol relies on cryptographic mechanisms, which dominate the CPU cost of

our protocol. To evaluate this cost, we measured the number of RSA encryptions and

the number of homomorphic encryptions per second that each node performs rather

than the CPU load, which depends on the hardware used. We measured the number of

RSA signatures and homomorphic encryptions per second and per node (generated both

from the monitoring and the participation in a session) depending on the video quality.

The results are depicted in Table II. The number of RSA signatures is constant and

equals 33, as it depends on the number of messages generated by the protocol, while

the number of homomorphic encryptions performed depends on the video quality, and

more precisely on the number of 938B updates in which the video is divided. Using

a simple benchmarking tool3, we determined that each core of the machines we used

in our deployment is able to perform 900 RSA-1024 and 4800 RSA-512 encryptions

per second. Thus using a single core for homomorphic encryptions is enough to obtain

a video quality up to 720p using a 512 bits modulus, which would generate 3924

3We used the command openssl speed rsa.
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encryptions per second. If the system size or the video quality desired were bigger it

would be necessary to use more cores to have enough cryptographic power. In addition,

using a 256 bits modulus can also be considered secure enough in many situations, and

it would significantly reduce the cryptographic and bandwidth overhead of the protocol.

As modern machines use several cores, we believe that our protocol can be used by a

wide range of users.

Video quality 144p 240p 360p 480p 720p 1080p

Payload size (Kbps) 80 300 750 1000 2500 4500

RSA signatures 33 33 33 33 33 33

Homomorphic en-

cryptions

133 475 1170 1560 3934 7200

Table II – Number of RSA-1024 signatures and homomorphic encryptions per

second in a system of 1000 nodes [sim]

5.5.7 Scalability

In this experiment we increase the number of nodes in the system and measure the

associated bandwidth consumption. Typically, in a gossip-based system if N is the

number of nodes that are interested in a similar content, then each node has log(N)
successors, and the same number of monitors. The bandwidth scalability of PAG
comes from its gossip nature.

Adapting the number of monitors/successors per node allows the protocol to scale.

It is possible to limit the number of monitors per node, which would decrease the

bandwidth overhead. Making this choice depends on the security guarantees that the

system designer aims, as increasing the number of monitors would increase the privacy

of a node.

Figure 5.12 presents the bandwidth consumption of AcTinG and PAG depending on

the system size when a 300Kbps video stream is disseminated. We do not represent

anonymous communication protocols as RAC is not able to scale correctly (it cannot

provide more than 63Kbps when there are more than a thousand nodes), and OR+PR

would consume a fixed amount of bandwidth independently of the system size (28Mbps

for a 300Kbps video). In these conditions, PAG is able to provide nodes with the full

300Kbps stream, while consuming less bandwidth than anonymous communication

systems. With a million nodes it consumes 2.5Mbps, where AcTinG needs 840Kbps.

SECTION 5.6

Conclusion

A number of gossip-based content dissemination protocols tolerating selfish behaviors

have been proposed in the past. A limitation of these protocols is that they do not
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preserve the privacy of users. On the other side of the spectrum, accountable anonymous

communication protocols are too costly to be used in practice to disseminate multimedia

content. In this chapter, we have presented PAG, the first content dissemination

protocol that uses accountability through a monitoring infrastructure and still preserves

the privacy of users thanks to homomorphic cryptographic procedures. Performance

evaluation combining both a real deployment and simulations has demonstrated that it

has good bandwidth properties and that the privacy of nodes is close to optimal, even

in presence of a global and active attacker. We have also shown that the reasonable

cryptographic overhead of PAG makes it accessible to modern architectures, and that

it exhibits very desirable scalability properties with a logarithmic growth of bandwidth

consumption, comparable to standard gossip based protocols. Future work includes

designing a privacy-preserving mechanism that would decrease the bandwidth overhead

of PAG, reduce the participation of nodes in contents in which they are not interested,

and an accountable eviction procedure that that would avoid correct nodes to exhibit

messages they sent or received.
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Conclusion

Peer-to-peer (P2P) content dissemination systems aim at distributing a given content

(e.g., a video) to a set of interested users. In these systems users may be tempted to

behave selfishly. Indeed, these systems need users that receive a content to share it with

others. In practice, selfish users may try to save their resource (e.g., upload bandwidth),

and may deviate from the protocol. Such deviations endanger the good dissemination

of the content being distributed. These selfish users aim at increasing their benefit

(e.g., they receive the content earlier) while decreasing their participation to the system

(e.g., they contribute less bandwidth to distributing the content). Among the existing

P2P paradigms that can be applied to the dissemination of a content, we focused on

gossip, which is currently the most robust approach. Gossip-based protocols do not

rely on an infrastructure, and consists in organizing random exchanges between nodes.

This randomness helps gossip to tolerate the joins or departures of nodes during the

dissemination of a content. In addition, this paradigm enforces probabilistic guarantees

concerning the efficient dissemination of updates inside a set of nodes. One drawback

of gossip however, is that the size of the system (i.e., the number of users) has to be

known by each user in order to calibrate correctly the exchanges of nodes. This thesis

focused on designing novel mechanisms to prevent selfish behaviors in gossip under

different assumptions.

While the existing gossip protocols correctly prevent individual selfish deviations, we

showed that selfish nodes may collude to lure the mechanisms that aim at detecting

them, or to further increase their benefit. We measured the impact of such collusions in

state-of-the-art protocols, and proved that selfish nodes applying an adequate strategy

are able to increase their benefit and reduce their participation to the dissemination of

a content, while not being detected. We then designed a new gossip protocol, named

AcTinG, specially designed to prevent both individual and collective selfish behaviors.

We showed that AcTinG is able to serve the entire content being disseminated even in

presence of selfish nodes, deviating either individually or collectively. A theoretical

study shows that nodes colluding in AcTinG do not improve their benefit, and do not

perturb the dissemination of contents. Relying on secure logs, AcTinG also guaran-

tees zero false positive detections, and eventually detects selfish nodes. Performance

evaluation combining both a real deployment and simulations has demonstrated that

AcTinG is resilient to churn, and exhibits very desirable scalability properties with a

logarithmic growth of memory and bandwidth consumption, comparable to standard
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gossip based protocols.

However, nodes running AcTinG have to be ready to share their secure logs, which

detail all their exchanges and the content they received or sent. In practice, depending

on the context, users may not be ready to pay such a price, and may avoid to use an ap-

plication that may allow other users to collect information about them. This observation

was the basis of the reflexion that led to PAG, which is the second contribution of this

thesis. We explained that current methods that aim at preventing selfish behaviors leak

information about users of content dissemination systems. We were able to quantify

these leaks in AcTinG, and detail them in the existing protocols. PAG is a gossip

protocol based on novel cryptographic procedures that forces nodes to forward the

content they receive (i.e., forbid selfish behaviors) while preserving the privacy of their

interactions, even in presence of a global and active opponent.

In the second part of this document, we have presented PAG, the first content dis-

semination protocol that uses accountability through a monitoring infrastructure and

still preserves the privacy of users thanks to homomorphic cryptographic procedures.

Performance evaluation combining both a real deployment and simulations has demon-

strated that it possesses good bandwidth properties and that the privacy of nodes is

close to optimal, even in presence of a global and active attacker. We have also shown

that the reasonable cryptographic overhead of PAG makes it accessible to modern

architectures, and that it exhibits very desirable scalability properties with a logarithmic

growth of bandwidth consumption, comparable to standard gossip based protocols.

However, PAG contrary to AcTinG does not tolerate collusions of selfish nodes,

which is currently the price of enforcing privacy.

In the following, we describe some possible improvements of PAG and AcTinG
aiming at obtaining the best from both protocols, and future research directions that, we

believe, could be interesting to follow.

Possible improvements

Efficient dissemination and privacy

We presented PAG, which is a novel gossip protocol that allows nodes to preserve

their privacy using homomorphic cryptographic procedures, and is able to detect if a

node behaves selfishly. The existing gossip protocols allow nodes to collect information

about each others, which may dissuade users to run them. In particular, users that are

interested by the same content may be able to obtain the identities of each other. A

solution we proposed in PAG is to merge several sessions, which would provide a

node with the content it expects but also with some contents it does not desire. Doing

so, it is not possible to identify which particular content interests a user. We believe

that it is possible to maintain the privacy properties of PAG while avoiding to pay

this cost. An approach we are studying at the time of writing is based on probabilities

to preferentially serve nodes with their content of interest, and less with the other

contents. However, work is needed to be fully convinced of its effectiveness. Namely, it
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is necessary to prove that all nodes correctly receive the content they desire, and do not

receive all the other contents, but only a portion of them. We aim at using simulations

first to be convinced of this approach, which will require little effort thanks to the codes

of AcTinG and PAG. Then, we plan to theoretically evaluate the guarantees of this

approach concerning privacy and performance.

Collusions in PAG

We presented AcTinG, which is a gossip protocol that is resistant to collusions of

selfish nodes. Selfish nodes may collude in order to increase their benefit, or to protect

themselves from detection mechanisms. Differently, nodes in PAG are assumed to

be honest-but-curious and not to try to disrupt the system, or to collude. In PAG, we

found that collective attacks may harm the dissemination of updates. For example,

in PAG, when a node A forwards updates to a node B, it has to send to its partner

an attestation that consists in a declaration of the updates that node A forwarded and

that node B will have to forward. In this attestation, it would be possible for node

A to declare less updates than what is really forwarded. Such a deviation would

allow node B to participate less in the dissemination of updates, thus to increase

its benefit. As successors are randomly affected to nodes, our protocol does not

allow nodes to choose their successors, which limit the probability of this deviation to

happen. However, currently it cannot be completely avoided. Combining a resilience to

collective deviations and a protection of users’ privacy would be an interesting result in

the sense that it could be applied to other situations.

Future research directions

Privacy-preserving proofs of misbehavior.

When a node is detected guilty proving its deviation to other nodes may reveal in-

formation about the interactions it had with others. Such procedure is then a leak

of privacy. Often, publications refer to zero-knowledge proofs (ZKPs) to protect the

privacy of interactions while proving that the node is faulty. We are not aware of a

practical method that could be used in gossip, as ZKPs are known to be costly in term

of bandwidth consumption and cryptographic costs. We plan to study more in depth

these mechanisms, and see if it is possible to adapt one of them to gossip.
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Appendix

In this appendix, we present the model of PAG that has been used with ProVerif

to prove that it preserves the privacy of users in presence of individual selfish nodes,

and is resilient to limited-size coalitions. Indeed, if nodes have f successors then an

attacker needs to control at least f very precise nodes to discover the content of an

exchange between two nodes. We then present the code that has been used to evaluate

the theoretical resiliencies of PAG and AcTinG to coalitions. Using probabilities, we

were able to show that PAG ensures a close to ideal security to nodes.

SECTION .1

ProVerif code of PAG

(*
Phases that include the reception of updates from A1, A2, A3

by B,

and the forwarding to C

Send prime numbers X

Message 1: B -> A1: { { p1 }skB }pkA1

Message 2: B -> A2: { { p2 }skB }pkA2

Message 3: B -> A3: { { p3 }skB }pkA3

Send updates X

Message 4: A1 -> B: { { u1, NA1 }skA1 }pkB

Message 5: A2 -> B: { { u2, NA2 }skA2 }pkB

Message 6: A3 -> B: { { u3, NA3 }skA3 }pkB

Attestations X

Message 7: A1 -> B: { { u1 }p1 }skA1

Message 8: A2 -> B: { { u2 }p2 }skA2

Message 9: A3 -> B: { { u3 }p3 }skA3

Forward to C, and obtain an ack X

Message 10: C -> B: { { p4 }skC }pkB

Message 11: B -> C: { { u1, u2, u3, p1.p2.p3 }skB }pkC

Message 12: C -> B: { { u1.u2.u3}p1.p2.p3 }skC

Acks from B to A1, A2, A3 X

Message 13: B -> A1: { {u1}NA1 }skB

Message 14: B -> A2: { {u2}NA2 }skB
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Message 15: B -> A3: { {u3}NA3 }skB

Acks from B to its witness

Message 16: B -> WB: { {u1}NA1 }skB

Message 17: B -> WB: { {u2}NA2 }skB

Message 18: B -> WB: { {u3}NA3 }skB

Attestation from B to its witness

Message 19: B -> WB: { { { u1 }p1 }skA1, p2.p3 }skB

Message 20: B -> WB: { { { u2 }p2 }skA2, p1.p3 }skB

Message 21: B -> WB: { { { u3 }p3 }skA3, p1.p2 }skB

Transfer of ack from WB to WA1, WA2, WA3

Message 22: WB -> WA1: { {u1}NA1 }skB

Message 23: WB -> WA2: { {u2}NA2 }skB

Message 24: WB -> WA3: { {u3}NA3 }skB

Ack from C to its witness X

Message 25: C -> WC: { {u1.u2.u3}p1.p2.p3 }skC

Transfer of ack from WC to WB

Message 26: WC -> WB: { {u1.u2.u3}p1.p2.p3 }skC

*)

free c: channel.

type host.

(*type nonce.*)

type pkey.

type skey.

type int.

type msg.

(* Public key encryption *)

fun pk(skey): pkey.

fun encrypt(bitstring, pkey): bitstring.

reduc forall x: bitstring, y: skey;

decrypt(encrypt(x,pk(y)),y) = x.

fun encryptPrime(bitstring, int): bitstring.

fun product(int, int): int.

(* reduc forall x: int, y: int; divide(product(x,y),y) = x.

*)

fun productUp(bitstring, bitstring): bitstring.

(* reduc forall x: bitstring, y: bitstring;

divideUp(productUp(x,y),y) = x.

*)

fun int_to_bitstring(int): bitstring [data,typeConverter].

fun bitstring_to_int(bitstring): int[data,typeConverter].
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(* Signatures *)

fun spk(skey): pkey.

fun sign(bitstring, skey): bitstring.

reduc forall x: bitstring, y: skey; verif(sign(x,y), pk(y),

x) = true.

reduc forall x: bitstring, y: skey; getmess(sign(x,y)) = x.

(* Secrecy assumptions *)

not attacker(new skA1).

not attacker(new skA2).

not attacker(new skA3).

not attacker(new skB).

not attacker(new skC).

(* host names *)

free A1, A2, A3, B, C, WA1, WA2, WA3, WB, WC: host.

free attestation: msg.

(* Queries *)

free u1, u2, u3, NA1, NA2, NA3: bitstring [private].

query attacker(u1).

(* Role of A1, A2, A3 *)

let processInitiatorA(hostA: host, skA: skey, pkB: pkey, u:

bitstring, NA: bitstring) =

in(c, (=hostA, m : bitstring));

let m1 = decrypt(m, skA) in

let p = getmess(m1) in

if verif(m1, pkB, p) = true then

out(c, (B, encrypt(sign((u, NA), skA), pkB))); (* serve

*)

out(c, (B, sign((attestation, encryptPrime(u,

bitstring_to_int(p))), skA))); (* attestation *)

in(c, (=hostA, m2 : bitstring))

else

0.

(* Role of B *)

let processInitiatorB(skB: skey, pkA1: pkey, pkA2: pkey,

pkA3: pkey, pkC: pkey) =

new p1: int;

new p2: int;

new p3: int;
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out(c, (A1, encrypt( sign(int_to_bitstring(p1), skB),

pkA1) ));

out(c, (A2, encrypt( sign(int_to_bitstring(p2), skB),

pkA2) ));

out(c, (A3, encrypt( sign(int_to_bitstring(p3), skB),

pkA3) ));

(* serve messages *)

in(c, (=B, m4: bitstring)); (* what if the messages arrive

in a different order? or are replayed? *)

in(c, (=B, m5: bitstring));

in(c, (=B, m6: bitstring));

let n4 = decrypt(m4, skB) in

let (u10: bitstring, NA10: int) = getmess(n4) in

let n5 = decrypt(m5, skB) in

let (u20: bitstring, NA20: int) = getmess(n5) in

let n6 = decrypt(m6, skB) in

let (u30: bitstring, NA30: int) = getmess(n6) in

if verif(n4, pkA1, (u10, NA10)) = true && verif(n5, pkA2,

(u20, NA20)) = true && verif(n6, pkA3, (u30, NA30)) =

true then

in(c, (=B, m7: bitstring));

in(c, (=B, m8: bitstring));

in(c, (=B, m9: bitstring));

let (=attestation, n7: bitstring) = getmess(m7) in

let (=attestation, n8: bitstring) = getmess(m8) in

let (=attestation, n9: bitstring) = getmess(m9) in

if verif(m7, pkA1, n7) = true && verif(m8, pkA2, n8) =

true && verif(m9, pkA3, n9) = true then

out(c, (A1, sign(encryptPrime(u10, NA10) , skB)));

out(c, (A2, sign(encryptPrime(u20, NA20) , skB)));

out(c, (A3, sign(encryptPrime(u30, NA30) , skB)));

out(c, (WB, sign(encryptPrime(u10, NA10) , skB)));

out(c, (WB, sign(encryptPrime(u20, NA20) , skB)));

out(c, (WB, sign(encryptPrime(u30, NA30) , skB)));

out(c, (WB, sign((m7, product(p2,p3)), skB)));

out(c, (WB, sign((m8, product(p1,p3)), skB)));

out(c, (WB, sign((m9, product(p1,p2)), skB)));

in(c, (=B, m10: bitstring));

let n10 = decrypt(m10, skB) in

let p4 = getmess(n10) in

if verif(n10, pkC, p4) = true then

out(c, (C, encrypt(sign( (u1, u2, u3,

product(product(p1, p2), p3)), skB) ,pkC)));

in(c, (=B, m12: bitstring))

else

0
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else

0

else

0.

let processInitiatorC(skC: skey, pkB: pkey) =

new p4: int;

out(c, (B, encrypt(sign(int_to_bitstring(p4), skC), pkB)));

in(c, (=C, m11: bitstring));

let n11 = decrypt(m11, skC) in

let (u10: bitstring, u20: bitstring, u30: bitstring, p:

int) = getmess(n11) in

if verif(n11, pkB, (u10, u20, u30, p)) = true then

out(c, (B,

sign(encryptPrime(productUp(u10,productUp(u20,

u30)), p), skC)));

out(c, (WC,

sign(encryptPrime(productUp(u10,productUp(u20,

u30)), p), skC)))

else

0.

let processInitiatorWB(pkB: pkey, pkC: pkey) =

in(c, (=WB, m16: bitstring));

in(c, (=WB, m17: bitstring));

in(c, (=WB, m18: bitstring));

out(c, (WA1, m16));

out(c, (WA2, m17));

out(c, (WA3, m18));

in(c, (=WB, m19: bitstring));

in(c, (=WB, m20: bitstring));

in(c, (=WB, m21: bitstring));

let (n19: bitstring, p23: bitstring) = getmess(m19) in

let (n20: bitstring, p13: bitstring) = getmess(m20) in

let (n21: bitstring, p12: bitstring) = getmess(m21) in

if verif(m19, pkB, (n19, p23)) = true && verif(m20, pkB,

(n20, p13)) = true && verif(m21, pkB, (n21, p12)) =

true then

in(c, (=WB, m26: bitstring));

let n26 = getmess(m26) in

if verif(m26, pkC, n26) = true then

(* TODO: Verification homomorphique *)

0

else

0

else

0.

let processInitiatorWC() =
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in(c, (=WC, m25: bitstring));

out(c, (WB, m25)).

let processInitiatorWA(hostWA: host, pkB: pkey) =

in(c, (=hostWA, m22: bitstring));

let n22 = getmess(m22) in

if verif(m22, pkB, n22) = true then

0

else

0.

(* Start process *)

process

new skA1: skey;

let pkA1 = pk(skA1) in

out(c, pkA1);

new skA2: skey;

let pkA2 = pk(skA2) in

out(c, pkA2);

new skA3: skey;

let pkA3 = pk(skA3) in

out(c, pkA3);

new skB: skey;

let pkB = pk(skB) in

out(c, pkB);

new skC: skey;

let pkC = pk(skC) in

out(c, pkC);

(

(* Launch an unbounded number of sessions of the

initiator *)

(!processInitiatorA(A1, skA1, pkB, u1, NA1)) |

(!processInitiatorA(A2, skA2, pkB, u2, NA2)) |

(!processInitiatorA(A3, skA3, pkB, u3, NA3)) |

(!processInitiatorB(skB, pkA1, pkA2, pkA3, pkC)) |

(!processInitiatorC(skC, pkB)) |

(!processInitiatorWB(pkB, pkC)) |

(!processInitiatorWC()) |

(!processInitiatorWA(WA1, pkB)) |

(!processInitiatorWA(WA2, pkB)) |

(!processInitiatorWA(WA3, pkB))

)

SECTION .2

Probabilistic evaluation of PAG resiliency to collusions

#include <math.h>

#include <stdio.h>

#include <stdlib.h>
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#define ld long double

/* Factorial utility function */

ld fact(ld x) {

ld res = 1.0;

for (ld i = 1.0; i <= x; i++)

res *= i;

return res;

}

/* Binomial coefficient utility function */

ld coefBin(ld k, ld n) {

return fact(n) / (fact(k) * fact(n-k));

}

int main(void) {

FILE *file = fopen("../probaPrivacy.data", "w");

ld n = 1000.0; // Number of nodes in the system

ld paudit = 0.1; // Audit probability in AcTinG

ld RTE = 10.0; // Delay between an update release and

its expiration

ld fActing = 3.0; // Fanout of nodes in AcTinG

ld period = 5.0; // Period with which nodes change their

successors in AcTinG

for (ld p = 0.0; p <= n; p++) {

/* Probability that one of the two partners is an

opponent and makes an audit, which would allow him

to discover the interaction */

ld probaComplexe = 0.0;

ld X = (2.0 * 2.0 * fActing * RTE) / period; /* Total

number of partners of the two nodes */

X = 2*X + pow(X, 2);

for (ld j = 0.0; j <= X; j++) { /* Binomial law on the

number of opponents, with probability that at least

one realizes an audit */

ld tmp = coefBin(j, X) * pow(p/n, j)* pow((n-p)/n,

X-j);

tmp *= (1.0 - (ld) pow(1.0 - paudit, j)); /*
Probability that none of the j nodes makes an

audit */

probaComplexe += tmp;

}

ld probaActing = (ld) (1-pow((n-p)/n, 2.0)) + (ld)

pow((n-p)/n, 2.0) * probaComplexe;
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/* Probability for PAG with 3 successors/witnesses per

node */

ld f = 3.0;

ld pf2 = 0.0; /* f-2 of the predecessors are colluders,

and at least one of the two critical message goes to

a colluding attacker */

ld k = f-2;

pf2 += (coefBin(k, f) * ((ld) pow(p/n, k)) * ((ld)

pow(1-p/n,f-k))) * (1-pow(1-p/n, 2));

k = f-1; /* or f-1 predecessors are attackers */

pf2 += (coefBin(k, f) * ((ld) pow(p/n, k)) * ((ld)

pow(1-p/n,f-k)));

ld privacy3 = (1.0 - (ld) pow(1.0-p/n, 2.0)) + ((ld)

pow(1.0-p/n, 2.0)) * pf2 * (1.0 - (ld) pow(1.0-p/n,

f));

f = 5.0;

pf2 = 0.0; /* f-2 of the predecessors are colluders,

and at least one of the two critical message goes to

a colluding attacker */

k = f-2;

pf2 += (coefBin(k, f) * ((ld) pow(p/n, k)) * ((ld)

pow(1-p/n,f-k))) * (1-pow(1-p/n, 2)); /* f-2

predecessors collude and both critical messages go

to and attacker witness */

k = f-1; /* or f-1 predecessors are attackers */

pf2 += (coefBin(k, f) * ((ld) pow(p/n, k)) * ((ld)

pow(1-p/n,f-k)));

ld privacy5 = (1.0 - (ld) pow((n-p)/n, 2.0)) + ((ld)

pow((n-p)/n, 2.0)) * pf2 * (1.0 - (ld) pow((n-p)/n,

f));

/* one of the two nodes is incorrect, or all the other

predecessors except one are incorrect and there is

at least one incorrect witness (1-all are correct) */

f = 7.0;

pf2 = 0.0; /* f-2 of the predecessors are colluders,

and at least one of the two critical message goes to

a colluding attacker */

k = f-2;

pf2 += (coefBin(k, f) * ((ld) pow(p/n, k)) * ((ld)

pow(1-p/n,f-k))) * (1-pow(1-p/n, 2));

k = f-1; /* or f-1 predecessors are attackers */

pf2 += (coefBin(k, f) * ((ld) pow(p/n, k)) * ((ld)

pow(1-p/n,f-k)));

ld privacy10 = (1.0 - (ld) pow(1.0-p/n, 2.0)) + ((ld)

pow(1.0-p/n, 2.0)) * pf2 * (1.0 - (ld) pow(1.0-p/n,

f));

fprintf(file, "%Lf\t%Lf\t%Lf\t%Lf\t%Lf\t%Lf\n", (ld)

(p/n)*100.0, (ld) (1-pow(1.0-p/n, 2.0))*100.0,

probaActing*100.0, privacy3*100.0, privacy5*100.0,

privacy10*100.0);
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}

fclose(file);

return 0;

}




