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Introduction Générale

Le développement de la technologie laser au cours des dernieres décennies a permis la
génération de pulses ultracourts de I'ordre de la picoseconde et de la femtoseconde [1]
(et méme récemment de 'ordre de l'attoseconde [2-4]). Ceci a mené a la conception de
nombreuses méthodes expérimentales de spectroscopie ultrarapide [5-7]. En d’autres
termes, nous sommes désormais capable de sonder le mouvement des systémes
moléculaires en temps réel et de le contréler (influencer la réactivité avec un pulse laser
optimisé pour atteindre une cible prédéterminée) [8-16]; ce domaine de recherche est
appelé femtochimie (pour les réactions considérés comme ultrarapides de I'ordre de la
femtoseconde). Ahmed Zewail fut le pionnier de I'utilisation de pulses laser ultracourts
pour étudier la dynamique femtoseconde d’états de transition. Il recut le prix Nobel de

Chimie en 1999 pour ses travaux dans le domaine de la spectroscopie ultrarapide [1,17].

L’étude de processus ultrarapides en photochimie a permis I'’émergence de nouvelles
technologies dans des domaines tres hétéroclites tels que : 'élaboration de nouveaux
protocoles de synthése en chimie moléculaire (e.g. réaction de Diels-Alder photoinduite,
photopolymerisation), 'obtention de nouveaux matériaux avec des propriétés optiques
particulieres (e.g. photochromisme, optique non-linéaire), des méthodes d’analyse en
biochimie (e.g. marqueurs fluorescents, des traitements médicaux (e.g. photothérapie).
L’intérét et l'utilisation des processus photoinduits dans certains des domaines
mentionnés précédemment sont décrits en détail dans les introductions des deux
chapitres d’applications portant sur le transfert de proton dans I'état excité du 3-
hydroxychromone et le transfert de charge intramoléculaire photoinduit dans
I'aminobenzonitrile (respectivement Chapter III et IV). Il est donc capital de pouvoir
traiter ce type de réactivité chimique d’'un point de vue théorique et ainsi apporter une
complémentarité aux expérimentateurs afin de pouvoir déterminer avec précision les
mécanismes de ces réactions et, a terme, de les contrdler et/ou d’optimiser les
propriétés physicochimiques des systemes photosensibles (e.g. absorption, émission,
rapports de branchement réactif(s)/produit(s)) dans l'optique de développements

technologiques [18,19].



La photochimie possede des propriétés mécanistiques tous étre explicitées avec des
outils standard de chimie quantique et une dynamique reposant sur les lois de la
mécanique classique telle que la dynamique moléculaire par exemple. Une réaction
photochimique étant une réaction induite par I'absorption d’'un photon par le systeme
moléculaire, la réaction va donc se produire en partie ou en totalité sur un ou plusieurs
états électroniques excités; on va donc devoir utiliser des méthodes de chimie quantique
qui ne sont pas limitées a I'état électronique fondamental (les méthodes utilisées lors de
ce travail de these pour traiter la structure électronique des systemes étudiés sont

explicitées dans le Chapitre I).

De plus, il existe des géométries particulieres ou certains états électroniques sont
proches en énergie, voire dégénérés (i.e. intersections coniques). Dans les régions
proches de ces géométries particulieres, 'approximation de Born-Oppenheimer n’est
plus valide. Le systéme chimique est dans un régime de dynamique appelé non-
adiabatique (la dynamique des noyaux et des électrons se couple dans ces régions, Cf.
Chapitre I). Il est donc nécessaire de traiter le mouvement des noyaux comme évoluant
sur plusieurs surfaces d’énergies potentielles couplées entre elles. Ces couplages non-
adiabatiques permettent des transferts de population non-radiatifs (sans émission de
photon) entre états électroniques de méme spin (conversion interne). Ceci suggere que
I’état électronique excité apres absorption (état initial du point de vue Franck-Condon)
n'est pas nécessairement I'état électronique final de la réaction. Ces transferts de
population non-radiatifs sont plus efficaces dans les régions ou les états électroniques
sont quasi-dégénérés, c’est-a-dire, lorsque le systeme s’approche d’une région
d’intersection conique. Ce point particulier de dégénérescence entres états
électroniques joue donc un réle central dans les processus ultrarapides photoinduits

[20-22].

Lors d'une étude de ce type de processus, I'intersection conique est un point qui se doit
donc d’étre caractérisé et qui peut étre vu qualitativement comme le pendant pour la
photochimie non-adiabatique d’un état de transition pour les processus thermiques.
Cependant ne connaitre que la position et I'énergie de I'intersection conique n’est pas

toujours suffisant pour comprendre et déterminer le mécanisme de la réaction. Le



systéme peut étre soumis a plusieurs chemins réactionnels en compétition. A la
différence de la réactivité thermique, en photochimie non-adiabatique, il ne suit pas
nécessairement le chemin de plus basse énergie. Lors de I'’étude d’'un processus
photochimique ultrarapide, on peut étre amené a devoir considérer le systeme comme
pouvant se délocaliser le long de plusieurs chemins réactionnels couplés (ceci est
observé et discuté dans les chapitres d’applications étudiées lors de ce travail de these
Chapitres III et IV). Ceci montre la nécessité d’étudier ce type de réactivité avec des

outils de dynamique adaptés.

Ceci est moins crucial pour les processus photochimiques dit adiabatiques, qui sont des
processus photoinduits ayant lieu sur un seul état électronique excité considéré comme
isolé (séparation importante en énergie par rapport aux autres états électroniques). On
peut voir ce type de photoreactivité comme étant similaire aux processus thermiques ou
le systeme ne serait pas a I'équilibre dans sont état initial. De plus, comme
I'approximation de Born-Oppenheimer reste valide pour ce type de processus, il est plus
simple de ce point de vue de décrire leur dynamique car I'intégralité de la réactivité se
passe sur la méme surface d’énergie potentielle. Il est courant dans ce cas d’utiliser des
méthodes de type dynamique moléculaire ab initio (les noyaux sont traités comme des
particules classiques évoluant sur un potentiel calculé par une méthode de chimie
quantique). Cependant, lors de ces travaux de thése nous nous sommes principalement

concentrés sur I'étude de processus photochimiques non-adiabatiques.

Le développement de méthodes de dynamique adaptées aux processus non-
adiabatiques dans des systémes moléculaires est en plein essor. Différentes approches,
quantiques, semi-classiques (ou hybrides) coexistent. Nous allons évoquer certaines

d’entre elles dans ce qui suit.

Dans le cas d'une méthode dite semi-classique telle que le « surface hopping » [23], la
dynamique du systeme est décrite par une trajectoire classique. L’énergie potentielle et
la force sont calculées « on-the-fly » (au vol). L’efficacité du processus non-radiatif (donc
non-adiabatique) est obtenue par la probabilité pour le systeme de « sauter » d'un état
électronique a un autres en fonction de la vitesse de la trajectoire, de la différence

d’énergie entre les deux états et de leur couplage. Cette méthode ne permet pas de



rendre compte de la délocalisation quantique du mouvement des noyaux que l'on
devrait en toute rigueur représenter par ce que I'on appelle un paquet d’ondes nucléaire
(fonction d’onde nucléaire dépendante du temps). Ceci caractérise la capacité du
systéme a avoir une probabilité de présence différente et non nulle pour plusieurs
géométries en méme temps. Ainsi, les différentes trajectoires calculées ne sont pas
couplées (elles évoluent indépendamment les unes des autres). Or, le systeme se
délocalise avec une certaine « cohérence », c’est a dire que les trajectoires ne devraient
pas étre indépendantes les unes des autres d'un point de vue quantique. Cependant, une
approche statistique basée sur un grand nombre de trajectoires est utilisée en
échantillonnant les conditions initiales du systeme pour au moins « mimer » I'état

vibrationnel initial dans I'état électronique fondamental (et son énergie de point zéro).

La cohérence quantique peut étre vu comme une «force» qui va influencer la
délocalisation du paquet d’ondes et ses interférences, ce qui peut étre crucial quand, par
exemple, il passe a travers la méme intersection conique plusieurs fois dans un laps de
temps ultracourt. Récemment, des expériences ont suggéré I'existence et I'implication de
cohérence quantique pendant un temps long (de 'ordre de la picoseconde) dans des
processus biologiques [24,25]. Il est donc préférable de pouvoir représenter le caractére

quantique du mouvement des noyaux par un paquet d’'ondes.

L’« ab initio multiple spawning » [26,27] s’affranchit du coté classique et statistique de la
méthode de «surface hopping » en représentant le paquet d’ondes nucléaire par un
ensemble de gaussiennes couplées quantiquement (et dont le nombre augmente quand
une intersection conique est rencontrée) mais qui suivent des trajectoires classiques. La
description du paquet d’'ondes dans cette derniére méthode est donc plus correcte et
plus représentative. On peut la considérer comme un ensemble de trajectoires
classiques couplées quantiquement. La référence suivante dresse une comparaison

entre la méthode « surface hopping » et '« ab initio multiple spawning » [28].

La méthode DD-vMCG (Direct Dynamics variational MultiConfigurational Gaussian)
[29,30] peut étre vue d’une certaine facon comme une extension de '« ab initio multiple
spawning », de part le fait que le paquet d’ondes est aussi décrit comme une collection

de gaussiennes couplées quantiquement (dont le nombre et les largeurs sont fixés dans
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les conditions initiales et ne changent pas au cours du temps dans la plupart des
applications) mais qui vont maintenant évoluer en suivant des «trajectoires
quantiques » (c’est-a-dire que la position et 'impulsion moyennes des gaussiennes sont
obtenues par résolution variationelle de I'équation de Schrodinger dépendante du
temps [31]). Ceci permet donc d’avoir besoin de moins de gaussiennes pour converger le
paquet d’'ondes que dans la méthode précédente (i.e. '« ab-initio multiple spawning »).
Cette méthode prometteuse de dynamique que je considére a mon sens comme étant
une dynamique semi-quantique est a I'’heure actuelle en plein développement. Ce qui la
rend encore limitée dans la taille des systémes est essentiellement d(i a des raisons
techniques comme par exemple la nécessité de calculer des dérivées secondes au centre

de chaque gaussienne et a chaque pas de la dynamique.

Les méthodes de dynamique quantique sur grille ont pour philosophie de décomposer le
paquet d’ondes nucléaire sur une grille de points représentant I'espace des coordonnées
nucléaires. Ceci impose de représenter préalablement les surfaces d’énergie potentielle
sous forme analytique, a I'inverse des trois méthodes précédemment évoquées ou ce
calcul est réalisé « on-the-fly » le long de chaque trajectoire. Le mouvement des noyaux
est obtenu par résolution de I'équation de Schrodinger dépendante du temps. Il n’y a
donc pas d’approximation dans le traitement de la nature quantique des noyaux (tout
comme dans la méthode DD-vMCG). Par ceci, nous entendons que ce type de méthode

est en principe exact a convergence pour un hamiltonien donné.

Cependant, ces types de dynamiques sont difficiles a mettre en ceuvre pour des systémes
moléculaires de grande taille (nombreux degrés de liberté nucléaires). De par le fait
qu’elles coutent cher en termes de temps de calcul (pouvant atteindre plusieurs mois
pour converger le paquet d’'ondes nucléaire initial) mais aussi car il faut dans un
premier temps générer les surfaces d’énergie potentielle et les couplages électroniques
sous forme de fonctions analytiques. De plus, comme nous pourrons le voir au cours de
cette these (Cf. section 2- dans le Chapitre I), selon la méthode de dynamique quantique
choisie, il peut y avoir des contraintes sur la forme mathématique des fonctions qui
composent la représentation matricielle de I’hamiltonien électronique. Ceci peut
s’avérer limitant car, comme déja mentionné, en photochimie la réactivité implique

souvent des paysages énergétiques complexes possédant de nombreux points
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stationnaires (minima, états de transition, intersections coniques) et ce pour plusieurs
états électroniques. A ceci s’ajoute la description des couplages non-adiabatiques qui
comme on le montrera (section 2-1 dans le Chapitre I) n’est pas un probleme trivial dans
un systeme multidimensionnel. Toutes ces difficultés font que la représentation des
hamiltoniens électroniques en photochimie est une tache difficile (plus précisément
I'obtention des parametres définissant les fonctions du modéle a partir de données ab
initio) et devient bien souvent I'étape limitante dans la description quantique de la

dynamique de ce type de systémes.

C’est pourquoi de nombreuses méthodologies sont encore a I’heure actuelle en cours de
développement pour palier a ces difficultés. La premiere stratégie la plus intuitive est de
réduire le nombre de degrés de liberté du systeme en déterminant les modes les plus
importants pour décrire le chemin réactionnel (appelés en général modes actifs dans la
littérature) [32-40]. Cependant, ces modeles ne prennent pas en compte la dissipation
de I'énergie contenue dans ces modes actifs vers le reste des modes, dit inactifs. Par
construction la dissipation vibrationnelle (relaxation vibrationnelle intramoléculaire)
n’est pas décrite correctement. Cependant, ces méthodes se justifient en partie de part le
fait que dans les processus ultrarapides (ordre de la femtoseconde), le systeme n’a pas le
temps de redistribuer totalement son énergie [41,42]. Ce type de modeéles trouve donc
sa place dans la description des systéemes ou il y a vraiment possibilité de faire une
distinction franche entre les coordonnées dites actives et inactives (donc le couplage
entre ces deux groupes de coordonnées se doit d’étre faible par construction).
Cependant, il est judicieux de garder en téte que le passage du paquet d’ondes nucléaire
d’'une surface d’énergie potentielle a une autre a travers une intersection conique est
gouverné par deux directions particulieres qui induisent le transfert de population
électronique (voir Section 2-2 Chapitre I). Il est donc nécessaire qu’elles soient bien
décrites par les modes actifs. Or, puisque la dissipation vibrationnelle du systeme est
sous-estimée, 1'énergie contenue dans les modes actifs est surestimée. On va donc
augmenter artificiellement la probabilité de transfert de population, ce qui va donc mal
décrire la réactivité du systéme (le transfert de population se fera plus rapidement et
plus efficacement) [43]. Dans les cas ou il est nécessaire de prendre en compte cette
dissipation vibrationnelle, il a été montré que I'on pouvait hiérarchiser les différentes

coordonnées pour décrire la dissipation dans une région d’intersection conique a I'aide
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de groupes de trois coordonnées bien spécifiques appelées modes effectifs et dont

I'importance décroit de groupe en groupe [44-47].

La méthodologie développée lors des travaux présentés dans cette these est différente.
Nous avons voulu traiter toutes les dimensions du systeme au méme niveau, c’est a dire
sans avoir a les hiérarchiser ou les séparer en groupes de coordonnées. Les parametres
de nos modeéles sont obtenus analytiquement, nous permettant d’éviter des procédures
de «fit » (parfois non-linéaires) qui sont difficiles a mettre en ceuvre pour décrire des
systémes photochimiques de grande taille et impliquant des déformations géométriques
de grande amplitude. De plus, ce choix a été motivé par la possibilité d’utiliser une
nouvelle méthode de dynamique quantique capable de traiter les systemes chimiques de
grande taille (plus d’'une dizaine d’atomes) ; cette méthode, en cours de développement
a Heidelberg, est appelée ML-MCTDH (Multilayer MultiConfigurational Time-Dependent

Hartree).

Le premier chapitre, Formalism and Methods, propose une bréve description du
formalisme non-adiabatique et des intersections coniques ainsi que des méthodes de
chimie quantique et de dynamique quantique utilisées lors de ces travaux. Le deuxieme
chapitre, Quasidiabatic Model, présente la méthodologie mise en place pour obtenir la
représentation matricielle de ’hamiltonien électronique (surfaces d’énergie potentielle
et couplages électroniques). Les deux derniers chapitres exposent les applications
étudiées et sur lesquelles nous avons appliqué notre méthodologie : le chapitre trois
concerne le transfert de proton dans I’état excité du 3-hydroxychromone et le quatrieme
chapitre porte quant a lui sur le transfert de charge intramoléculaire photoinduit dans

I’aminobenzonitrile.

13



14



Chapter I- Formalism and Methods

The purpose of this chapter is to give general insights into the formalism and methods used

in this thesis.

The first part defines the formal framework of this thesis that is based on concepts that go
beyond the Born-Oppenheimer approximation. This chapter does not have for purpose to
give a full and detailed description of the concepts presented but enough information and
references to understand the applications presented in the second part of this thesis
(Chapter 11l and IV) and the aspects of development presented in the following chapter
(Chapter 1I). The second part of this chapter gives a short description of quantum

chemistry and quantum dynamics methods used in the present work.
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I- Formalism

The wave functions that are solutions of the molecular Schrédinger equation depend on
both the electronic and nuclear degrees of freedom. In most situations, the typical time
and energy scales of the light (electrons) and heavy (nuclei) particles differ by a few
orders of magnitudes. The full problem can thus be split into two steps: first, upon
solving a Schrodinger equation for the electrons with fixed nuclei (quantum chemistry),
then, upon solving a Schrodinger equation for the nuclei in the adiabatic mean field
created by the electrons (quantum dynamics). This is called the Born-Oppenheimer
approximation. This two-step approach can be generalized to a finite set of interacting
electronic states if the so-called non-adiabatic couplings (NAC) among them induced by
the motion of the nuclei (also called vibronic couplings) are taken into account

adequately. Further details are provided in this first part of this chapter.

1- Adiabatic Representation [1,20,48-65]

The formalism used in this thesis excludes relativistic effects such as spin-orbit coupling.
Hence, the motion of the molecular system is governed by the time-dependent

Schrodinger equation,

d —~ Eq.1
ihalqjmo}(t' R)) — Hm01|lpm0](t,fR)> q

The molecular electronic states are defined by the time-dependent molecular wave
function denoted W™°! that depend of the nuclei (defined in space by R, the set of

Cartesian coordinates) and the electrons (coordinates r, implicit when a “ket” notation is

used). The corresponding electrostatic molecular Hamiltonian A™°! reads [65,66],

H™ (R, 1) = T(R) + To(r) + VN_N(R) + Voo (1) + Vy_o(RT) Eq.2
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where T and T, are the kinetic energy operator for nuclei and electrons, respectively.
Vn—n is the Coulomb repulsion between nuclei, V,_, is the Coulomb repulsion between

electrons, and Vy_, is the Coulomb attraction between nuclei and electrons.

Since nuclei are much heavier than electrons, they move more slowly. Hence, one can
consider, as a first approximation, the electrons in a molecular system to be moving in
the field of fixed nuclei. Another consequence is that electrons respond faster than
nuclei to a perturbation. Therefore, it is often an adequate description to consider
electron as following adiabatically the motion of the nuclei that, in turn, move in the
mean field created by the electrons (concept of potential energy surface). Thus, as
already mentioned, the molecular problem can be split in two: first the electronic
problem and then the nuclear problem within the previously defined mean field of the

electrons. This is known as the adiabatic or Born-Oppenheimer approximation.

Hence, within this approximation one first write an electronic Hamiltonian, which
describes the electronic motion with fixed nuclei (thus, the kinetic energy operator of

the nuclei is equal to zero),

A (R, 1) = Te(r) + VNN (R) + Voo (1) + Vy_e(RT) Eq.3

In practice, quantum chemistry methods provide the adiabatic energy, V,, of a given
adiabatic electronic state, @, upon solving the following time-independent Schrédinger
equation for each position of the nuclei (i.e. each value of R), where ¥, is the wave

function of the corresponding electronic eigenstate,

Aelec(R, 1) |¥,; R) = V,(R)|¥,; R) Eq. 4

One can notice that the electronic Hamiltonian and the adiabatic electronic states
depend explicitly on the electronic coordinates and only parametrically on the nuclear
coordinates (the eigenvalues, i.e. the adiabatic energies, only depend on the nuclear

coordinates).
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In order to describe the motion of the nuclei, one must then reintroduce the
corresponding Kinetic energy operator. As will be explained in the next section, this will
induce vibronic non-adiabatic couplings. Considering only one state (which means
neglecting these couplings) is, in effect, the adiabatic or Born-Oppenheimer
approximation, where ,(R) is considered as the potential energy for the nuclei (strictly
speaking, the Born-Oppenheimer approximation does not consider any second-order
diagonal term whereas the adiabatic approximation, sometimes called Born-Huang
approximation, includes them as a non-adiabatic correction; note that this terminology

is not always consistent in the literature).

Photoinduced processes (photochemical and photophysical) often involve vibronic
couplings that are responsible of ultrafast decay processes (typically, internal
conversion, between same-spin electronic states, or intersystem crossing for different
spins) from an excited electronic state to a lower-energy one. In such a situation, the
excess energy given to the molecule through light absorption and electronic excitation is
transformed into vibrational excitation. Chemiluminescence (situation not studied in
this thesis) occurs in the reverse situation, when vibrational excitation (heat) is
transformed into electronic excitation through internal conversion to a higher-energy
electronic state that further relaxes upon light emission. Such processes are governed by
so-called non-adiabatic couplings between the electronic structure and the nuclear
motion that are, by definition, beyond the Born-Oppenheimer (adiabatic) approximation
[1,21,48,67,68]. Their effect becomes significant when the energy difference between
two electronic states is of the same order of magnitude as vibrational energies. As will
be shown below, they even diverge when the energy difference vanishes, i.e.,, when two

electronic states are degenerate at what is called a conical intersection.
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2- Beyond the Born-Oppenheimer Approximation [20,22,69]

2-1. Non-Adiabatic Couplings

The wusual approach for treating a problem beyond the Born-Oppenheimer
approximation consists in choosing a relevant finite set of Born-Oppenheimer
(adiabatic) eigenstates of the electronic Hamiltonian (as defined in the previous
Section), and in considering the non-adiabatic couplings among them explicitly (the
couplings with the remaining irrelevant states are neglected); this is called the group
Born-Oppenheimer approximation. The time-dependent molecular wave packet (made
of more than one nuclear wave functions, by definition, when more than one electronic
states are considered) is expanded in an electronic basis set where the nuclear

expansion coefficients (i.e. 12u¢@) are time-dependent,

W7, R)) = D YR, R) Wi R) Ea.5
a

where a is the label of the adiabatic electronic states within the chosen set and R is still
the set of nuclear coordinates. The factors p2uda(t, R) are considered as coupled
nuclear wave packets while the kets |¥,; R) are the Born-Oppenheimer (adiabatic)
electronic eigenstates that depend parametrically on R, as defined in the previous
section. In practice, and in particular in this thesis, the adiabatic electronic states and
their energies are obtained from quantum chemistry calculations (using methods such
as those presented in Section 1- Chapter I — Eq. 4). For each electronic eigenstate, the
adiabatic potential energy surface is identified to the electronic eigenvalue for all values

of R.
Now, let us consider the nuclear kinetic energy operator (in Cartesian coordinates),

h? 1 02 Eq. 6
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where M, are the atomic nuclear masses (with indices made consistent with respect to
the three coordinates of each nucleus). The molecular Schrédinger equation from Eq. 1
can be recast as a set of coupled equations for the nuclear wave packets, p2ucear (¢, R) =

(‘I’a ; .‘R|‘Pm°l(t, R)) (upon integrating over electronic coordinates only), such that

a .
IS (6 R) = ) [SupT(R) + 8uple(®) + Reg RO ®) -+

B

where the kinetic coupling operator between the a and £ adiabatic electronic states

reads

T\aﬁ(m=—h722M%[ZD (R) 527 +C;ﬁ(az)] Eq.8

and the first- and second-order non-adiabatic couplings are defined as [21,68,70,71]

Eq.9
I —
DLy (R) = (wa,aa| ¥ R),
and
, 02 Eq. 10
Caﬁ(.‘R) = lIJa; .‘R,‘ WWB, R).
These coupling terms simply reflect the action of the second derivative, ajzl ajzl’ on a

product of two functions of R: the nuclear wave packet and the electronic wave
function. Neglecting them yields the Born-Oppenheimer approximation for a given

adiabatic electronic state «, as defined in the previous section,

. . Eq. 11
iR YR (1, R) = [P(R) + V(R (1, R) 1
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2-2. Conical Intersection [22,72,73]

Until now, we have considered the 3N Cartesian coordinates of the nuclei as the set of
parameters that define the geometry of the molecule when solving the electronic
problem (where N is the number of atoms). In fact, only the 3N — 6 internal degrees of
freedom (3N — 5in the collinear case) that define the relative positions of the nuclei
have an effect on the electronic Hamiltonian and its eigenstates and eigenenergies. More
details will be given later about the separation of coordinates into translations, rotations
and internal deformations. For the sake of simplicity, we simply assume here that only a

subset of 3N — 6 (or 3N — 5) internal coordinates is relevant in R.

In this thesis, we will assume that only two electronic states, state 1 and state 2, are
coupled and are energetically well separated from the rest. Thus, we will limit our
discussion to possible intersections of only two electronics states. Nevertheless, in

general, a molecule with N atoms can give rise to up to n-fold intersections (n
degenerate states), where n is the largest integer satisfying(n_l)zﬂ < 3N — 6 [74].

Indeed, recently, intersections of three [75,76] and four [77] electronic states have been

reported.

2-2-1 Two-State Electronic Hamiltonian Matrix

Let us consider a basis set made of a pair of orthonormal electronic states, |®;; R) and
|®,; R), which are assumed to be known and to span the same space as the two
adiabatic eigenstates of interest, |¥;; R) and |¥,; R). The latter can be obtained from a

rotation of the former through a mixing angle ¢y (R) at each R [20,21,62,63,68,78,79],

|¥1; R) = cos px(R) |Py; R) + sin px (R) |P,; R), Eq. 12
|¥,; R) = —sin (PX(:R) |‘512R> + cos px(R) |52F~73>,

The matrix representation of H¢¢¢(R) in this basis set is not necessarily diagonal. If the

states are chosen real-valued, the Hamiltonian matrix is real symmetric,

21



Hll(ga) H12 (R)
Hz1(R)  Hpz(R)

—AH(R) Hyp(R) Eq.13

H(®) = Hyy (R) AH(R)|

]:5(&)1+[

where the following notation is used,

Hyj(R) = (D;; R|Hy(R)|®;; R) Eq. 14
and
S(R) _ Hll(ga) ‘;sz(ﬁR), Eq- 15
H,o,(R)—H;;(R
AH(R) = H22 )2 1R

Hi;(R) = Hy1 (R).

The mixing angle that makes this matrix diagonal can be defined explicitly as

[21,62,63,68,75,78-80],

Hy;(R) Eq. 16

tan 2y (R) = — AH(R)

The minus sign is here to ensure V> > V1. The two adiabatic potential energy surfaces, V1
and V7, for the two states, state 1 and state 2, correspond to the eigenvalues of the two-

state potential energy matrix H(R) of Eq. 13,

V1,2 (fR) =

,(R) + V1 (R) n (Vz ®R -V (fR)> Eq. 17
2 - 2

=SR) + \/[AHCR)]Z + [H1,(R)]?
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2-2-2 Condition for a Conical Intersection

We now consider the situation where the two electronic states are degenerate at some

given geometry, R, [22,55,62,63,68,75].

For R = R, to be the locus of a conical intersection between the pair of adiabatic
electronic states, state 1 and state 2, it must be such that the difference in energy

between these two states is zero, i.e V,(Ry) = V;(Ry), thus,

Vo(Ro) — V3 (Ro) Eq. 19
AV (Ro) = === J[BHRP? + [Hy,(Ro)]? = 0.
This is achieved if and only if both
AH(Rp) = Hy5(Ry) = 0. Eq. 20

The function AV(R) is singular at R, because of the square-root (it cannot be

differentiated:%AV(Ro) is ill-defined). In other words, the shapes of the potential
energy surfaces in the vicinity of Ry show a cusp that cannot be described in terms of
ordinary local derivatives. Hence, the potential energy surface at the crossing point
shows a double cone as illustrated in Fig. 1 (in this figure the conical intersection is

located at the origin of the Cartesian frame).
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state 2 state 2

X

state 1

Fig. 1 Scheme of the double cone of a conical intersection between two potential energy surfaces in a

Cartesian frame: z axis: energy, x and y axes are specific coordinates that will be defined in the following.

As mentioned above, achieving AV(R,) = 0 (the degeneracy of the electronic states)
implies the two following conditions: AH(Ry) = 0 and H,,(R,) = 0. As a consequence,
since H(Ry) = S(Ry)1 is now diagonal (where S(Ry) = V,(Ry) = V1 (Ry) ), both
|®,; Ry) and |D,; Ry) also form a pair of degenerate eigenstates. The mixing angle
@x(Ry) is now arbitrary and can take any value (any linear combination of degenerate

eigenstates is also an eigenstate).

Now, fulfilling these two conditions implies to be able to vary two independent degrees
of freedom among the (3N — 6) internal degrees of freedom. Reciprocally, degeneracy
can be preserved within a subspace of (3N —6) —2 = 3N — 8 internal degrees of
freedom [21,51,68,71,74,78,81,82]. This means that the crossing points are not isolated,
but rater they are all connected along a (3N — 8)-dimensional hyperline, often referred

to as the intersection seam, as illustrated in Fig. 2 [21,63,68,71,83].

The study of the photoinduced intramolecular charge transfer of aminobenzonitrile
presented in this thesis (Chapter IV) and other recent studies have shown that decay
does not always occur near the lowest energy conical intersection (as could be thought
intuitively) but can involve more preferentially some other regions within the seam [84-

87].
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state 2

state 1

Fig. 2 Scheme of a crossing hyperline between state 1 and state 2 along two relevant coordinates X and Y. Z is

the energy.

In addition, if AV(R, ) = 0, the first-order non-adiabatic coupling diverges. Indeed, as
defined in Eq. 9,

Eq.21

(wl,az|aR,HeleC(ga) v,; > <W1,9a|aR,HeleC(ae) v,; >
20V (R) - V,(R) — V1 (R) ’

The numerator can be finite, but the denominator tends to zero when R tends to R,.

The singular behavior of both AV(.‘R) and DI, (R) at Ry can be understood more

intuitively in the spirit of electronic state correlation diagrams: it is due essentially to
the fact that both adiabatic electronic states with their labels 1 and 2 defined from the
energy order (V2 = V1) swap brutally in terms of their “chemical nature” when R varies

such that it goes smoothly across a conical intersection. This will be made clearer below.

Before going further, let us make an important remark: the above equation shows that
the non-adiabatic coupling term becomes large (infinite) when AV (R) becomes small
(zero); in other word, the more the electronic states come close to each other the more

the non-adiabatic coupling term becomes large. Hence, the kinetic energy operator of
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the nuclei can no longer be considered as a small perturbation of the electronic system.
This is the reason why the Born-Oppenheimer approximation breaks down when
approaching regions where electronic states get close in energy. Conical intersections
are thus geometries that are representative of regions where significant probability of
transfer of electronic population can occur through ultrafast radiationless decay. As

such, these points are key for describing non-adiabatic photochemical mechanisms.

2-2-3 Definition of the Conical intersection Branching Space

As first shown by Davidson [61] and Atchity et al. [34, 36], and already mentioned in the
previous section, the space of 3N — 6 internal degrees of freedom can be partitioned
into two subspaces. The first subspace is two-dimensional and spanned by two
collective coordinates (specific combinations of the internal degrees of freedom) along
which degeneracy is lifted to first order. This is called the branching space (or branching
plane) and the expressions of its pair of vectors are given further along this thesis. The
second subspace is locally orthogonal and complementary to the branching space (BS)
and, therefore, has a dimensionality of 3N — 8. In this subspace the degeneracy is

retained and it is referred to as the intersection space or seam.

As degeneracy is lifted to first order from R, within the two-dimensional plane spanned
by the branching space vectors, the local shape of both potential energy surfaces within
this plane is thus a double cone the apex of which is at Ry, which justifies the name
conical intersection. More specifically, the shape is determined from the two conditions
mentioned in the previous section for achieving degeneracy: AH(R,) =0 and
H;,(Ry) = 0. Thus, lifting degeneracy occurs to first order when following the gradients

of AH(R) and H,,(R) at the crossing point.

Let us examine these two gradients in more detail within the formal framework used in
the previous section for a two-state problem. We now assume that we know a specific
pair of orthogonal degenerate eigenstates (for example as the result of an actual
quantum chemistry calculation) and denote them |¥?; Ry)and |¥2; Ry). Any pair of
rotated states with respect to these specific degenerate eigenstates (for any angle 6,,) is

eigenstate as well,
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|1P19122R0> = cos by, |11U10}730> + sin 6y, WIS;-'Ro), Eq. 22

9212, Ry) = — sin Oy, [¥2; Ro) + cos 05 [¥0; Ry).

Now, let us get back to the pair of states |®;; R) and |®,; R) involved in the matrix
H(R). As already mentioned, they are eigenstates when R = Ry. We can thus fix them
such that |®;; Ry) = |W2; Ry) and |D,; Ry) = |¥2; Ry). Note, however, that there is no
reason for them to be eigenstates elsewhere. We now make the hypothesis that |®; R)
and |®,; R) do not vary with R from R, i.e. |®;; R) = |¥2; Ry) and |D,; R) = |¥2; Ry)
for any R (at least to first order). Such states are often referred to as “crude adiabatic”
[88], as they are adiabatic states (eigenstates) for R = R,y but not elsewhere. As a
consequence, in the spirit of the Hellmann-Feynman theorem (extended to a degenerate
situation [89]), one can write the derivatives of AH(R) and H,,(R) at R = R, (defined

in and Eq. 15) from adiabatic derivatives,

0 Eq. 23
i B (Ro) = 2} (Ry) !

Jd -~
W Helec(:RO)

0

0t ) (19| L |98,

2 )

<W§ s Ro

Jd
- Helec(:RO)

d
o Hia(Re) = 2{OP% (Ry) = (¥ Ro| 5

oR!

The two gradient vectors, %AH(.‘RO) (denoted x,o(lz)l) and %le(ﬂlo) (denoted

xlo(n)z)’ are usually called Gradient Difference (GD) and Derivative Coupling (DC). They
span the so-called branching space (or branching plane) over which degeneracy is lifted
to first order in R from R,. In general, these vectors are simply denoted x* and x? in the
literature. Here, we use a subscript 0 to make apparent that they are defined for 8,, = 0
while (12) specifies the labels of the electronic states. Also, note that the plane spanned

by the branching space vectors is sometimes referred to as the g-h plane in the literature

[21,68,71].
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Before going further, let us make an important remark. The working basis set was
chosen as a pair of crude adiabatic states for which 8,, = 0 corresponded by definition
to a specific pair of adiabatic states obtained from an actual calculation, ¥2. Often, this
arbitrary angle occurs to get fixed in practice through symmetry considerations: when
both degenerate states potentially belong to different irreducible representations, then
the GD will be a vector that conserve the symmetry while the DC will be a vector that
breaks the symmetry of the molecule, thus, 8,, becomes determined according to this
additional condition (up to unphysical signs of the states). However, in a general
situation, the value of 8,, can be viewed as a gauge condition that requires an extra
constraint to be determined according to context. In a general situation, the value of 6,,
can be fixed upon imposing H;, (R,.r) = 0 at some reference geometry, R = R,..;, where
the states are not degenerate (for example at a given minimum). This will be reminded

in the following chapter, i.e. Chapter IL

A rigorous treatment of the aspect presented in this section can be derived from a
generalization of the Hellmann-Feynman theorem to degenerate situations [89] or,

similarly, within the framework of degenerate perturbation theory [68].

2-2-4 Conical Intersection Classification

Generally the local topography of a conical intersection (i.e. the shapes of the potential
energy surfaces in the vicinity of the crossing point) can be classified as sloped or
peaked; this nomenclature was proposed by Atchity et al. [90]. Sloped conical
intersections arise when the gradients of the two potential energy surfaces point
approximately in the same direction (often the reactant), as shown by the red arrows in
the left panel of Fig. 3. An actual example of this situation is considered in Chapter IV. On
the other hand, a peaked conical intersection occurs when the gradients of the potential
energy surfaces on both sides of the conical intersection are directed towards different
directions (i.e. species A and species B), such as in the right panel of Fig. 3 and in both

applications presented in Chapter III and IV.

28



state 2

species A species B

Fig. 3 Left panel: scheme of a sloped conical intersection between state 1 and state 2. Right panel: scheme of a

peaked conical intersection between state 1 and state 2.

3- Adiabatic-to-Diabatic Transformation

As already mentioned above, the components of the first-order non-adiabatic coupling
vector, D,z (R) (Eq. 9), diverge when getting close to regions of the potential energy
surfaces where two adiabatic electronic states, @ and £, are getting closer to each other
(i.e. the difference in energy between these two adiabatic electronic states is getting
smaller). As a consequence, although the adiabatic representation is the “practical”
representation of the quantum chemist (the data obtained with quantum chemistry
calculations are in the adiabatic representation), it often happens to be impractical for
quantum dynamics simulations when the effect of a conical intersection and non-
adiabatic couplings are to be considered. Smoother functions, easier to handle
numerically, can be obtained upon considering an alternative electronic basis set called
diabatic. Transformations from adiabatic states to diabatic states are called

diabatizations.

Formally, diabatic states are defined such that the corresponding kinetic coupling
operator, Ka[g (R) (defined in Eq. 8), vanishes. Instead, the electronic Hamiltonian
matrix of Eq. 3 is no longer diagonal, as the diabatic states (further denoted ®;) are not
eigenstates (in contrast with the adiabatic states). The electronic couplings between the

electronic states are now represented by the off-diagonal entries,
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HP*(R) = (04 R|H(R)| ) R). Eq. 24

For this reason, they are called potential couplings, as opposed to the kinetic couplings
that arise in the adiabatic representation. This concept was introduced in 1935 by
Polanyi [91] and Hellmann and Syrkin [92] and further generalised by Smith and Baer
[93,94]. Originally used essentially in the context of inelastic scattering in molecular
physics, diabatic states have gradually become essential tools in non-adiabatic

photochemistry.

As opposed to adiabatic states, diabatic states are not the eigenstates of any electronic
operator in particular. Their definition is not unique and, as shown by Mead and Truhlar
[95], the diabatic criterion (see below), which is a local condition, cannot be achieved
globally (except for a diatom or for the ideal two-state model). In the general case, a
complete (thus infinite) basis set of electronic states is required for integrating the
condition of diabaticity over the whole nuclear coordinates space. However, it is
possible to find states that make the non-adiabatic couplings negligible and with no
significant effect on the dynamics of the molecule; such states are called quasidiabatic

and often referred to as diabatic for simplicity [96-100].
Formally, the diabatic and adiabatic basis sets can be considered both as orthonormal
and spanning the same space at all geometries. They are thus transformed into each
other through a unitary transformation, U(R),

UT(RUR) = UR)UT(R) =1, Eq. 25
such that both Hamiltonian matrices are related through a similarity transformation,

V(R) = UT(R)HP (R)U(R), Eq. 26

where V(R) is diagonal (i.e. the matrix representation of H*'*°(R) in the adiabatic basis

set). In this definition, the columns of U(R) correspond to the components of the

adiabatic states in the diabatic basis set. Daﬁ(.‘R) is the first-order non-adiabatic

30



coupling matrix between states @ and f in the adiabatic basis set and D?}ab (R) the same
quantity between states i and j in the diabatic basis set. For each coordinate R’ the

electronic matrices transform into each other according to

D/(R) = UT(R)D4bI (R)U(R) + UT(R) %U(ﬂa). Eq. 27
The diabatic criterion of Smith and Baer reads
Ddiab(R) ~ 0, Eq.28
so that the unitary transformation, U(R), must fulfill
DI(R) ~ UH(R) —— U(R). Eq. 29
OR!

In the two-state case exposed in the previous section, we had considered a real rotation
through an angle @y (R) between two adiabatic states, |¥;; R) and |¥,; R), and two
states, |®;; R) and |®,; R), not necessarily specified as adiabatic or diabatic. In other
words, the angle ¢y (R) was not further specified. Now, in this situation, the previous

diabatic criterion applied to a unitary transformation chosen as a real rotation through

an angle ¢'(R),
_[cos@'(R) —sing’'(R) Eq. 30
U®R) = sing’'(R) cose'(R) I’
i.e.
|W;; R) = cos @' (R) |D4; R) + sin @' (R) |D,; R), Eq. 31

|¥2; R) = —sin@’(R) [®1; R) + cos @' (R) [Py; R).

yields
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D'(R) ~ —

640’(73)[0 1] Eq. 32
oR! -1 ol

i.e.

dp'(R) Eq. 33
Rl

D{Z(:R) = _D£1(~‘R) ==
Thus, we get |®,; R) and |®,; R) as states that are “as diabatic as possible” if we can

determine ¢'(R) such that its gradient satisfies the previous equation to some extent.

The development of various diabatization formalisms was an active field of research in
the 1980s and has recently become central again with the advent of quantum dynamics
methods able to treat large molecular systems. Many approaches, based on different
criteria, have been proposed to build quasidiabatic states and/or Hamiltonians
[20,73,100-102]. A detailed review of diabatization methods is beyond the scope of this
thesis, thus, we suggest to refer to the following references for more details and

applications [54,73,103-109].

4- Vibronic Coupling Hamiltonian Models

Methods known as diabatizations by Ansatz are based on assuming mathematical
expressions for the functions entering the diabatic Hamiltonian matrix H"(R), Eq. 24,
where each function is defined by a set of parameters. The values of the various
parameters are adjusted through a fitting procedure so that the eigenvalues of HY2P(R),
are as close as possible to the ab-initio (i.e. adiabatic) energies over a sample of relevant
molecular geometries. The functions H{jjiab(:R) must depend as smoothly as possible on
the nuclear coordinates. This ensures indirectly that the states vary as little as possible
with R. Indeed, there is no control over H¢¢(R) (which, in any case, varies smoothly

with R). So, abrupt variations of(dJi;IRmelec(RﬂdDj;R) are to be attributed to large

values of ijiab'l ®) = <(Di; .‘R| % D;; IR), and reciprocally (small couplings in the diabatic

representation yield smooth Hamiltonian functions).
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Note that the non-adiabatic couplings are not explicitly used. However, if the double
cone around a conical intersection is described correctly to first order in the model, the
first-order non-adiabatic coupling at this point will be correct by construction. Indeed,
as already shown, the adiabatic gradient difference and non-adiabatic coupling span the
branching plane. This ensures that the effect of the non-adiabatic couplings will be

treated adequately in regions where they are significant (around conical intersections).

A particular case of diabatization by Ansatz is known as the Vibronic-Coupling
Hamiltonian (VCH) model [20,110-112]. Usually, its entries are expressed as linear
(Linear Vibronic Coupling model - LVC) or quadratic (Quadratic Vibronic Coupling
model - QVC) functions of normal Cartesian coordinates originated from the ground-
state equilibrium geometry (Franck-Condon point). This is the type of approach that we
used in the present work. However, the main originality of the approach that we
developed (detailed in the next chapter - Chapter II) is that we explicitly used analytical
relationships between adiabatic data and diabatic parameters to obtain them
automatically. Therefore, we avoid the numerical fitting procedure that, in some cases,

can occur to be time consuming and a tedious task from a technical perspective.

II- Methods

In this part we present the method used first to calculate the electronic energy of the
system (quantum chemistry methods) such as the multiconfigurational self-consistent
field (MCSCF) or the time-dependent density functional methods that are adapted to
describe the electronic structure of excited states. As well we present the polarizable
continuum model method as we used it in the application on 3-hydroxychromone dyes
to describe the effect of the solvent over the potential energy surfaces. Then, we
describe the method used to describe the quantum motion of the system during the
photoprocess, the multilayer multiconfigurational time-dependent hartree method (ML-
MCTDH), that is currently a method in development and let us run quantum dynamics
calculations of large system (more than tens degrees of freedom) on coupled potential

energy surfaces.
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1- Quantum Chemistry

1-1 The MultiConfigurational Self-Consistent Field Methods

Let us consider a closed-shell system such as Hz. Around its equilibrium geometry, a
Hartree-Fock description is known to be adequate. However, more than one Slater
determinants are required for describing correctly the dissociation of this molecule
when using molecular orbitals. This is known as a lack of left-right static correlation in
the Hartree-Fock description. There are different kinds of static correlation and no strict
definition. Generally speaking, static correlation reflects the necessity to include more
than one Slater determinant to get a qualitatively correct description of the wave
function. Taking this into account is essential for example in situations where electronic
states are close enough to interact significantly with each other or even degenerate such

as at a conical intersection.

The multiconfigurational self-consistent field methods [113-117] express the wave
function as a linear combination of Slater determinants whereby both the coefficients of
each Slater determinant in the expansion and the coefficients of each molecular orbital
(expressed as linear combinations of atomic orbitals) are optimized. When the total
electron spin is specified, the expansion is usually made more compact upon first
combining Slater determinants into so-called configuration-state functions according to
spin symmetry (configuration-state functions are eigenstates of both $? and S, whereas
Slater determinants are eigenfunctions of S, only). In this case, the coefficients that are

optimized are those of the configuration-state functions.

When the molecular orbitals are not optimized but come from a previous calculation,
this type of expansion is known as a configuration interaction. On the other hand, if only
one Slater determinant is used but the molecular orbitals are optimized, one obtains a
Hartree-Fock wave function. In other words, MCSCF methods can be viewed as a

“mixture” of configuration interaction and Hartree-Fock.
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In practice, there are various types of MCSCF approaches, according to the definition and
construction of the space of configurations (either Slater determinants or configuration-
state functions) used in the configuration interaction expansion. They can be selected
“by hand”, which is the original implementation of MCSCF in quantum chemistry
programs but is quite delicate to handle numerically. The most usual implementation of
MCSCF is known as the Complete Active Space SCF (CASSCF) method. Here, the user
must define a number of active electrons and a set of active orbitals that are expected to
have an average occupation number that is significantly different from 0 or 2 in the
wave function. The configuration space is generated by considering all possible
distributions of the active electrons in the active orbitals. The active orbitals are
identified either from a previous Hartree-Fock calculation or from another CASSCF
calculation (for example with a small basis set of at neighboring geometry). The
molecular orbital are thus separated into the three following categories.

(i) The inactive orbitals are optimized but they are kept doubly occupied in all
determinants.

(i)  The active orbitals are optimized and all possible excitations and occupations
are used according to the number of active electrons to obtain the set of
configurations for the MCSCF expansion (the active space).

(iii)  The remaining orbitals are not occupied. As they are not part of the wave
function, they are not optimized.

The choice of active orbitals is user dependent and can be a very tedious task. Often,
chemical intuition helps. See Ref. [115] for a detailed discussion on the choice of an

active space.

MCSCF methods optimize iteratively the orbital and configuration coefficients using a
self-consistent procedure. The configuration coefficients are obtained from a
diagonalization of the electronic Hamiltonian matrix expressed in the configuration
space. As a consequence, MCSCF methods are capable of providing excited states
because several eigenstates and eigenenergies can be obtained. It is thus possible to
determine for which state the orbitals are to be optimized (state specific calculation). In
some situations (in particular for conical intersections) it is better to optimize the
orbitals for a group of states with weights provided by the used (state average

calculation).
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CASSCF calculations are often made with the objective of considering static correlation
in the wave function. In practice, this means that the set of active orbitals is minimal and
chosen so as to yield the smallest number of interacting configurations required to get a
qualitatively correct wave function. For example, a valence active space will provide
qualitatively correct valence states but will not be adapted for a correct description of
ionic states or Rydberg states. In the case of ionic states, the probability of finding a pair
of electrons simultaneously in the same region of space is high, which can produce an
overestimation of the electron repulsion if the wave function is not flexible enough. This
is known as a lack of dynamic correlation. A correct treatment of such a situation
requires considering excitations to a larger number of virtual orbitals. Intuitively, both
electrons will thus be able to be in the same region of space but described by orthogonal
orbitals. In other words, including dynamic correlation corresponds to considering
additional configurations, not necessarily close in energy to the configurations
generated by the active space but still required to get quantitative results. Increasing the
size of the active space is a possibility but not the most usual one. Often, dynamic
correlation is accounted for by using the complete active space with second-order
perturbation theory (e.g. CASPT2) method [118-124]. In this approach, the effect of the
extra configurations (those missing from the configuration space used to calculate the
CASSCF wavefunctions) is calculated from a second-order perturbation theory

treatment.

1-2 The (Time-Dependent) Density Functional Theory [125-131]

The Density Functional Theory (DFT), is an alternative formulation of the electronic
problem that avoids the explicit use of wave functions. In practice, as a method, it
provides the ground state energy of the electronic Hamiltonian from the one-electron
density rather than from the all-electron wave function that is used in HF and post-HF
methods. The one-electron density of a system with N electrons is a function that

depends on the coordinates of a single electron among N (defined in space by the

vector I'). Its physical meaning is the density of probability of finding any of the N

electrons at the position I'. It is obtained upon fixing the position of each electron and

integrating the all-electron density over the coordinates of the remaining N —1
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electrons. As the electrons are indistinguishable, it is in practice calculated by
particularising one given electron (in general the first one) and by multiplying the result

by N, which reads

p(r) = N_[ "'j|lp(n = l',l'z;"',l"zv)|2 dr, -+ dry Eq.34

Hence, in this formalism, the electronic energy will be expressed as a functional of p(r),
denoted E[p], where p(r) depends only on three variables, r, and this for any number of
electrons, N. In contrast, in the wave function formalism we have a (3N)-dimensional
dependence. Therefore, using DFT-based methods gives us access to treating systems

with a large number of electrons such as materials (for example, solid state metals).

The first Hohenberg-Kohn theorem [132] deals with the external potential, v, (T)
(reflecting for one electron the effect of Vy_,, the electrostatic potential between nuclei
and one electron); its contribution to the energy, E[p], is obtained as a unique functional
of p(r): Vy_elpl = [ p(r)vey: (r)dr (integrating over the coordinate of a single electron).
The remaining terms in the electronic Hamiltonian, Eq. 3, are universal for a system of N
electrons: they do not depend on the positions of the nuclei, i.e. are unrelated to the
structure and nature of the molecule (note that we omit here the effect of Vy_p, which is
a constant term that does not affect the wave function or the density and that can be
added at the end of the calculation). In other words, the external potential is the only
term that is “molecule-dependent” in the electronic Hamiltonian. The remaining terms
reflect the effect of T, and V,_,, the kinetic and potential energies of the N interacting
electrons, for a given p(r). Their contributions to the energy are also represented with
unique functionals of p(r): 7,[p] and Vy_.[p]. Hence, the electronic energy is a unique

functional of p(r) and reads

Elp]l = T.lpl + Ve—elpl + Vn_clp] Eq.35
In principle, the electronic energy of the ground state can be obtained variationally.

Unfortunately, the first two terms do not have explicit expressions as functionals of p(r)

in the case of N interacting electrons. To simplify this problem, Kohn-Sham [132,133]
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proposed to obtain p(r) for an N-electrons system from the electron density of one

electron living in a one-body potential (homogenous free electrons gas).

Then, the total electronic energy, E[p], is well defined and all the terms have now an
explicit expression except for the exchange and correlation contributions. In addition,
this one-electron density is expanded as a sum of squared monoelectronic functions
called Kohn-Sham orbitals. Those orbitals are obtained and optimized using a self-
consistent procedure solving the Kohn-Sham monoelectronic equation. The exchange
and correlation contributions to the total electronic energy are obtained with
functionals expressed as Taylor-expansions of the one-electron density at a given point:
the Local Density Approximation (LDA) is the zero order, based only on the value of p(r)
at this point. The Generalized Gradient Approximation (GGA) is the first order, based on
the p(r) and its gradient [134]. Nowadays, it is usual to use hybrid functionals
[135,136], such as B3LYP or PBEO (used to study 3-hydroxychromone dyes in Chapter
III), where the exchange terms is partly based on the same expression as in a HF
calculation and the remaining part comes from a local or semi-local approximation of

the one-electron density (LDA, GGA4, ....), which improves the description.

One should keep in mind that this method is only used to calculate the energy of the
ground state. The most common DFT-based approach to compute the energies of excited
states is the Time-Dependent DFT (TD-DFT) method [137-143]. It essentially is a DFT
treatment with a time-dependent external potential. Now, the external potential is the
electrostatic potential with a small external perturbation that evolves in time. Let us first
picture simply what is an excited state is terms of electronic density. We apply an
external perturbation to a system in its ground state with a given electronic density; this
electronic density is going to oscillate (it gets excited) with respect to this external
perturbation. How the electronic density is going to respond to the external
perturbation defines a new repartition of the electrons in space, hence, a new electronic
density, which involves excited electronic states. Therefore, we will obtain the excitation
energies of these excited electronic states. This general idea is called linear response TD-
DFT and it is a great advantage, as the variation of the system will depend only on the
electronic density of the ground state so that we can simply use all the properties of the

DFT method.
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1-3 The Polarizable Continuum Model Method [144-146]

In order to evaluate the effect of the solvent on the electronic energy of a molecule (i.e.
the potential energy for the nuclei) we used the Polarizable Continuum Model (PCM)

method implemented in Gaussian09 package.

The PCM model is an extension of the Onsager solvation model [147] where the solute is
placed inside a cavity (which can have different shapes, such as spherical, ellipsoidal,
etc.) embedded in a surrounding polarizable dielectric continuum that describes the
solvent implicitly. The solute dipole induces a reaction field felt by the surrounding
medium, which in turn induces a new electric field in the cavity (back reaction field),
which interacts with the solute dipole again; the final resulting interaction is obtained
from a self-consistent process. The interaction between the solvent and the solute is
then represented by a solvent reaction potential introduced into the electronic

Hamiltonian that will be solved with the quantum chemistry method chosen by the user.

For excited state calculations in solution, there is a distinction to make between the
solvent being at equilibrium or not with respect to the geometry and the electronic state
considered in the calculation. The solvent responds in two different ways to changes in
the state of the solute: (i) it polarizes the electron distribution of the solute, which is a
very rapid process (10-13s), (ii) and the solvent molecules reorient themselves, which is
a much slower process (10-12 - 10-8s) [148]. A calculation where the solvent is in its
equilibrium state describes a situation where the solvent had time to fully respond to
the solute. This is adapted to describing a process that is slower than the solvent
relaxation. If the process under study is faster than the solvent relaxation, it is then a
situation where the solvent should be considered in a non-equilibrium state, such as
when calculating a vertical electronic transition energy. Therefore, when computing an
absorption energy in solution, we will use a solvent in its equilibrium state for the
ground state and in a non-equilibrium state for the excited state. To compute the
emission energy, the general idea is the same but reversed: the solvent is in its
equilibrium state for the excited state and in a non-equilibrium state for the ground

state.
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This method is adapted only to describe electrostatic interaction between the solute and
the solvent (i.e. for an aprotic solvent). In other words, one cannot represent
interactions with significant chemical character between molecules of the solute-solvent
supersystem (e.g. hydrogen bonds or, even worse, proton transfers within protic
solvents). This would require an explicit treatment of the solvent molecules surrounding

the solute.

In addition, the PCM model, as it is, does not describe the dynamics of the solvent (as
already mentioned, it is considered in a static state, either at equilibrium or not).
However, if the dynamics of the process under study has a similar time scale as the
solvent relaxation, hence, the dynamics of solvation can play a non-negligible role on the
process dynamics. To achieve this description one would need a time dependent PCM
model and expand it over the whole nuclear grid (i.e. numerical description). This type
of model is not trivial and requires developments that we did not focus on. Note that, in
the application case that we treated with the PCM model to run nuclear dynamics
(aminobenzonitrile; see Chapter [V), it is sensible to assume that the first few
femtoseconds of the photoinduced process are better described with the solvent in the
equilibrium state for the ground state. However, for longer times, this choice becomes
questionable, which is why we also considered the case where the solvent in the

equilibrium state for the excited state.

2- Quantum Dynamics

Quantum dynamics determines the motion of the nuclei using a quantum mechanical
approach to take into account the quantum character of the internuclear degrees of
freedom (in cases where this is relevant), R, when solving the time-dependent

molecular Schrodinger equation (already express in Eq. 1 but to remind),

9 -
ih—[WTl(t, R)) = Al wmel(t, R)) £q. 36

The molecular wave packet, |1Pm°l(t,:R)), can be identified to a single nuclear wave

packet where only one electronic state is involved (Born-Oppenheimer approximation).
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When several electronic states are coupled, |‘Pm°1(t, .‘R)) is expanded into this electronic

basis set at each R with coefficients considered as coupled nuclear wave packets (see

Eq. 5).

Before solving the time-dependent Schrodinger equation, we need to specify the degrees
of freedom that describe the positions of the nuclei in space, which is achieved by the
definition of a set of coordinates. In our case, as discussed in the following, we chose to
work with curvilinear internal coordinates denote Q. Then, one must express the
nuclear Kinetic Energy Operator (KEO) in terms of this set of coordinates and finally
generate the corresponding representation of the electronic Hamiltonian (i.e. a single
potential energy surface within the Born-Oppenheimer approximation or a matrix of

potential energy surfaces and couplings in the non-adiabatic case; see Section 2- Chapter

D).

To solve the time-dependent Schrédinger equation we used the ML-MCTDH method,
presented in the following. This method corresponds to a very compact representation
of the nuclear wave function that makes possible quantum dynamics calculations with

numerous degrees of freedom.

2-1. Coordinates

In classical dynamics, calculations are usually made using Cartesian coordinates. In
contrast, in quantum dynamics, one must carefully choose a set of coordinates adapted
to the process that one wants to describe. This difference is due to the fact that the
trajectory of a particle is represented as a point in classical mechanics, while, in
quantum mechanics, it is a delocalized wave function. i.e. a function that depends on all
nuclear coordinates with more or less correlation according to the choice of coordinates.
Therefore, in classical mechanics, the set of coordinates does not influence the quality of
the description, whereas, in quantum dynamics the number of terms required to express
accurately the wave function depends on the set of coordinate. If the coordinates are

well chosen in the sense that they describe adequately the molecule internal motions,
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with as little coupling (correlation) as possible, hence, one can use a compact expression

of the nuclear wave function.

This is illustrated in the following example with a single electronic state (Born-
Oppenheimer approximation) and two Cartesian nuclear coordinates, x and y. We
consider a two-dimensional harmonic oscillator model centered at the origin of the

framework with f the Hessian matrix. The nuclear Hamiltonian reads
H(x,y) =V(x,y) + T(x,y) Eq.37

— 1 1
7 = _fXXy2 L ZfYYN2 4 XYy
(x,y) Zf * +2f Ry 2mox? 2may?

One can notice in Eq. 37, the presence of a coupling term between the x and y

coordinates in the potential energy, i.e. f*Yxy.

In the case of a symmetric oscillator, f** = f7, the following linear combination of the

previous set of coordinates,

1 Eq.
x' = 5 (x+y) a-38
, 1
y=5&=-y)
diagonalises the f matrix, such that the nuclear Hamiltonian now reads
h? 02 h? 092 Eq. 39

-~ 1 .7 1 [
H 4 ! — _fx'Xx 2 _fyy 2 _ _

One can notice in Eq. 39, that there is no longer any coupling term between the x’ and y’
coordinates, as they are the equivalent to the normal coordinates (the potential energy

is now separable as a sum of two one-dimensional terms).

Let us just make a short parenthesis about normal coordinates [149-151]. Normal
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coordinates are obtained from a rotation of the original set of Cartesian displacements
from a stationary point under the constraint that the potential energy must be separable
to second order (in other words, the mass-weighted Hessian matrix must be
diagonalized). If the previous example were not symmetrical (i.e. f** # f¥”), the
relationship between both sets of coordinates expressed in Eq. 38 would not be
compatible with Eq. 39 (it would not diagonalize the Hessian matrix). However, another
rotation angle could be expressed to provide the correct normal coordinates. In
addition, if we were using curvilinear coordinates [150,152,153], the KEO in Eq. 37
would not be diagonal. Therefore, if one wants to generate the curvilinear normal
coordinates at a reference geometry (usually a minimum), first, we need to diagonalize
the KEO (to generate an intermediate set of curvilinear coordinates), and then, as for
rectilinear normal coordinates, with this intermediate set of curvilinear coordinates, we
could diagonalize the new Hessian matrix to obtain the curvilinear normal coordinates
(this type of coordinates were used for technical reasons during the quantum dynamics

study of 3-HC, see Chapter III).

Often, to solve the time-dependent Schrodinger equation, the nuclear wave packet is
expanded into a basis set made of products of low-dimensional functions. Hence,
removing artificial correlation will imply that fewer basis functions are required to
converge the nuclear wave function. This is the case when using the second set of
coordinates (i.e. X’ and y’), which is more adapted than the first set (i.e. x and y) in the
previous example. In the case of the original set of coordinates, the coupling term in the
potential energy requires more basis functions for the wave packet expression to be

flexible enough to account for the presence of the off-diagonal term (i.e. xy).

Therefore, in quantum dynamics the choice of coordinates is crucial, and allows a
compact representation of the nuclear wave function. This has an impact on the

possibility to run or not quantum dynamics calculations in practice.

The choice of an adequate coordinate system depends on the process under study. In
particular, for molecular systems with large-amplitude motions, normal mode
coordinates are not adequate to describe motions leading far from the equilibrium

position [154]. Therefore, it is often advantageous to describe the molecular system
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with curvilinear coordinates, i.e.,, distances and angles since they describe large-
amplitude motions such as for example torsions in a more natural way; in other words,
they will give a simpler expression of the potential energy surface. Unfortunately, the
use of curvilinear coordinates can lead to very complicated expressions of the KEO
(discussed in Section 2-2 Chapter I), which can be expressed numerically (but exactly)
or analytically. An analytical approach is more practical, as there is no need to compute
the numerical KEO on a grid and then fit the results or make further approximations (for
example by considering Taylor expansions). However, an analytical expression of the
KEO is not always compatible with an “MCTDH format” (see below), where operators
must be written as sums of products of low-dimensional functions. Some specific types
of coordinates allow this condition to be fulfilled, in particular so-called polyspherical
coordinates [155,156], which were used in Chapter III and IV and discussed in the

following.

2-1-1-  Polyspherical Coordinates General Approach

In the framework of the polyspherical approach [154,155,157-161],the choice of an

optimal set of coordinates proceeds in four steps:

(i) Choose a well-adapted vector parameterization for a given molecular system,
i.e, a set of vectors describing the shape of the molecule such as valence,
Jacobi, or Radau vectors. In Fig. 4, we choose a set of vectors (R; and R;)
defined along the chemical bonds between the oxygen and both hydrogens,
so-called valence vectors.

(ii)  Define a frame, so called Body-Fixe (BF) frame with respect to the center of
mass of the system. Its orientation with respect to the Laboratory-Fixed (LF)

frame is determined by three Euler angles («, §, and y).

The BF is defined in a particular way using two vectors such that the zgp axis is
parallel to Ry (this choice is done by the user), and Rz defines the half-plane (xgg ZgF)
with xgg > 0 [162,163]. This is illustrated in Fig. 4 (note that the origin of BF is not
indicated but is at the center of mass). The R4 vector connects the oxygen to Hi. It

defines the zgg axis such that its BF components read (0,0, z; gz > 0). The R, vector
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connects the oxygen to Ha. It defines the half-plane (xgg zgg) with xgg > 0 such that

its BF components read (x, gr > 0,0, z, gg).

The orientation of the BF frame with respect to the LF frame is determined by the
three Euler angles that characterize the overall rotation of the molecular system.
This is achieved in three steps (Fig. 4): first, we rotate with an a € [0; 2] angle the
xpp YLr axes around the zyp axis. This defines a new frame: x’ y’ z’ = z;. In a second
step, we rotate with a § € [0; 1] angle the x’ z’ axes around the y’ axis. This defines
again a new frame: x"” y"” = y',z". In a third and last step, we rotate with a y € [0;

2m] angle the x”’ y"" = y' axes around the z"’ axis. This finally defines the BF frame

no__
XBr,YBF,Z = Zgp.

(iii)  If subsystems are needed, define them. The subsystems approach is discussed
in the following Section.

(iv)  Express the vectors themselves in a well-chosen set of coordinates; in terms
of bond lengths, R, polar angles, 8, azimuthal angles, ¢ (i.e. spherical
coordinates). In our given example, Ry vector is defined in the set of
polyspherical coordinates as R1, B, @, and Rz vector as R, 6, y. The three Euler
angles B, a, and y defined the BF frame, thus, they are not deformation
coordinates as are the two bond lengths R; and R; and the valence angle 6.
One needs at least three vectors to have a ¢ angle that represents an out-of-

plane motion within the molecule, which explains its absence in this example.
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Fig. 4 Definition of the Euler angles defining the orientation of BF with respect to LF in three steps.

2-1-2-  Separation into subsystems

Let us now introduce some subsystems in the polyspherical approach. A subsystem can
be seen as a bunch of vectors attached to an intermediate frame that is embedded into
another frame that is the BF or another intermediate frame and so on [154,155,159].

One can see the subsystem as “multi-layer” strategy to define coordinates.

In order to correctly describe the hierarchy (i.e. layering) between various embedded
subsystems, it is necessary to resort to an extended notation that is explained in details
in [160]. In the following, we will explain the general idea of the subsystem notation
upon applying it to a specific example, i.e. the set of aminobenzonitrile polyspherical

coordinates (used in Chapter IV), depicted in Fig. 5.
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Fig. 5 Set of polyspherical coordinates and subsystems of aminobenzonitrile.

R,(1

One can notice on Fig. 5, that the total system is called Si, which is the BF frame. Within
Sy, there is a first layer of subsystems: S1,1 and Sz,1. In addition, embedded within the Sz 1
subsystem, there is a second layer made of one subsystem: S1,21. One can start to see the
logic behind the notation of the subsystems. S1 will always be the first subsystem (the
system), the first layer will always be S;1 with i the number of the first layer subsystem
(i.e. first, second, etc..) et 1 represent the Si. If there is a second layer of subsystem
embedded in a previous subsystem, hence, the notation will be S;;1 with j the number of
the second layer subsystem, i is the number of the first layer subsystem that posses a

second layer of subsystem and 1 is still the BF frame.

The main advantage of splitting a system into several smaller subsystems is that one can
introduce many different sets of coordinates that may be more adapted to the physics of
the problem than the standard (without subsystems) polyspherical coordinates; in other
words, that gives a higher flexibility in the choice of the set of coordinates. In addition,
parameterization with subsystems allows us to still use direct products of one-
dimensional basis sets while avoiding the singularity problem that will be explained in

the next section. It also leads to a reduced coupling between the parameterizing vectors.

In summary the polyspherical approach can be applied to any set of vector

parameterization and whatever the number of atoms. One of the advantages is the
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possibility to split large systems into several small subsystems. Another crucial
advantage is that this approach gives a general analytical form of the KEO for any set of
polyspherical coordinates, which is adapted to the “MCTDH format” and can be obtained
automatically [153,155,159,160].

2-2. Kinetic Energy Operator

In Cartesian coordinates the KEO is well known and simple to express. However, in
curvilinear coordinates (denoted Q in the following) its expression becomes
complicated [155,162-164]. The general expression of the KEO (for the 3N curvilinear
coordinates: translations, rotations, and deformations; note here that the three
translation coordinates are not curvilinear but the other ones are), 7(Q), and the volume

element, dt, can be expressed as follows:

R hz 3N 3N 9 Eq. 40
TQ) =- > z PKEo 90« G*H(Q) PKEO 7~ aQL + Vextra(Q)

K=1L=1
dt = deeformationthranslationdTrotation = PKEO (QdQ,dQ, ... dQszy

The expression of the KEO requires knowing the expressions of the Cartesian
coordinates (R) as functions of the internal coordinates (Q); in other words one must
compute the contravariant components of the mass-weighted metric tensor (i.e.
GXL(Q)). The volume element of translation is associated to the center of mass of the
molecule and the volume element of rotation is involves the three Euler angles (a, 3, y)
(defined in the previous section). The function pggo(Q) is used to determine the
normalization convention of the wave functions and can be changed for convenient
reasons. It is often restricted to the 3N — 6 deformation coordinates only. When a non-
Euclidian normalization convention is considered (i.e. when pggo(Q) is not equal to the
standard Jacobian determinant of the coordinate transformation), there may appear a
function V2 (Q) called the extrapotential term. The explicit expression of this term

with respect to the normalization convention can be found in Refs. [163,165].
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The contravariant components of the mass-weighted metric tensor can be defined as

GQ =g '(Q Eq. 41
where,
3N Eq. 42
OR! OR! q
Ik (Q) = z M; ( aQ(I?)> ( GQ(LQ)>

M, is the atomic mass associated to the Ith coordinate. One should keep in mind that in a
Cartesian frame each nuclear position is defined in space by three coordinates, hence,
the various masses will appear three times (for three consecutive coordinates). For
example, in a diatomic system AB at a given geometry, nucleus A is located in the
framework by the position vector (X, = R, Y, = R% Z, = R3) and equivalently for
nucleus B (X5 = R*, Yz = R>, Zz = R®). Therefore, the mass associated to the first three
Cartesian coordinates is the same (mass of A) and the same is true for the last three ones

(mass of B). In other words, M; = M, = M3 and M, = M5 = M,.

The calculation of the KEO (in particular of the matrix G(Q)) has been automatized
thanks to the development of the Tnum [165] and Tana [159,160] programs by Dr.
David Lauvergnat and Dr. Mamadou Ndong from the Laboratoire de Chimie Physique
d’Orsay, France. Tnum gives the numerical (but exact) values of the KEO at any point
while Tana gives its analytical expression. A technical comment must be made here: we
never used the total KEO (for the 3N coordinates: translations, rotations, and
deformations) but a restriction of it, where we only took into account the 3N — 6
degrees of freedom describing the deformations (separation of the translations and
rotations) in the matrix G(Q). This separation is rigorous when assuming implicitly that
the total angular momentum is zero (J = 0), which will be the case in all applications

presented in this thesis.

As already mentioned, one of the main advantages of the polyspherical coordinate
approach is that it is compatible with a general analytical expression of the KEO in

“MCTDH format” using Tana. However, the KEO is not the only operator that must be
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expressed to run quantum dynamics calculation. One needs to give an analytical
expression of the potential energy surfaces (Section 2-3 Chapter I) and in the “MCTDH
format” (i.e. sums of products of one-dimensional functions). The methodology we
developed to generate potential energy surfaces automatically is exposed in this thesis.
We sometimes had to change the set of original polyspherical coordinates to generate a
new set from linear combinations of the former. Unfortunately, although this set of
linear combinations of polyspherical coordinates will give an “MCTDH format”
expression of the potential energy surfaces (discussed in Section 2-2 Chapter I), this is

no longer the case for the KEO.

This last point can be illustrated with the following example. Let us consider the Jacobi

coordinates (Q) of H-CN depicted in Fig. 6 [166-168].

C

R2 N R1
H © N

Fig. 6 Jacobi coordinates of H-CN

The deformation KEO with a non-Euclidean normalization convention reads [169],

2 h? 9?2 h? 92 hz( 1 1 )(1 2 . a) Eq.43
Tdeformation(Q) - 2M; OR2 2My OR,Z 2 \M,R,2 + MyR,2) \sind 90 sin6 20

deeformation = dR,dR,sin0d0= pggo(0)dR,;dR,d6

where pgro(6) = sinf. One can notice that the KEO in Eq. 43 is a sum of products of
one-dimensional functions; hence, this is an “MCTDH format” KEO (in practice, for
MCTDH, pgro (Q) must be equal to one, which is achieving when using u = cosf instead

of 8 as a variable).

Symmetrized coordinates are often useful in situations where symmetry can be used to

simplify the expression of the potential energy and of the KEO (there are fewer terms
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because some “couplings” vanish for symmetry reasons). One can also want to consider
linear combinations of coordinates for practical reasons (this will be the case in most
applications treated in this thesis). Unfortunately, this often leads to a non-separable
KEO. In the above example, if we consider the following linear combinations of the
original set of Jacobi coordinates (note that this new set of coordinates may seem absurd

to describe the physics of the problem but it just here to illustrate the above remark),

1 Eq. 44
R* =2 (R +Ry) q

1
R™ = E(R1 —R)

0'=6

the corresponding KEO reads (the new extrapotential term and volume element are also

different, but this is not the point here),

Tdeformation(Q) = Eq. 45
h? 92 h? 92
" 2M,0(R* +R)? 2M,d(R* — R™)?

h2< 1 N 1 )( 1 90 o 6)
2 \M,(R* +R)2 " My(R* — R/ \sine' 90" > 96
+ V,eXtra(Q)-

This expression highlights the non-separability issue resulting from using linear

- . _ 1 1 19 ri)
combinations of coordinates: the last term, (M(R+_R_)2 + M(R+_R_)2) (sine' 597 SN0 55 ),

cannot be expressed as a sum of products of one-dimensional operators, in contrast with
the first two terms. Therefore, this analytical expression of the KEO in this specific set of
coordinates is not “MCTDH compatible” and cannot be used as it is for our quantum

dynamics calculations. In that situation one must use a numerical KEO.

Let us now clarify another practical issue that has already been mentioned about why

subsystems of polyspherical coordinates help avoiding singularities in the KEO. For
example, terms inﬁ (Eq. 43) induce singularities (divergences) when 8 = 0 or r, i.e.

when vectors are parallel to the z axis of the frame in which 6 is defined (BF or any
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subsystem), [159]. Thus, subsystems allow us to change the parameterization of the
polyspherical coordinates and reduce the possibility of occurrence of these singularities.
However, for a large molecule, removing all possible singularities cannot always be
achieved easily. This can be illustrated with the set of polyspherical coordinates used to
study the dynamics of aminobenzonitrile already depicted in Fig. 5 and redepicted in the

Fig. 7 for the sake of clarity. If no subsystem were used (i.e. S1= Spr is the only
subsystem), the R(Zl'l) and R(22,1) vectors would be parallel to the R(ll) vector (that
defines the zpr axis). Therefore, this will create singularities within the deformation
KEO. In order to remove these singularities, two subsystems were created, S1,1 and Sz,1,

where R(Zl‘l) and R(Zz'l)are no longer parallel to the z axes (of their respective subsystem)

defined now by the R(ll’l) and R(12,1) vectors. Nevertheless, one should notice that R(31’1)

and Ril'l) in the S1,1 subsystem are not parallel to R(ll’l) at the equilibrium geometry

(represented in the Fig. 5 and used to compute the metric tensor of the KEO). Hence,
those vectors at this given geometry are not problematic (do not create numerical

singularities). However, during the dynamics of the molecule, one could expect in-plane

bending motion of R(31'1) or Rgl’l), such that those vectors could occur to become

parallel to R(ll’l) (z axis of S1,1), thus producing extra singularities in the KEO (one can

make the same observation in the Sz,1 subsystem).
If so, a zero-approximation of the KEO calculated numerically at a given geometry with

no singularity can be a practical solution that was used in the application cases treated

in this present work.
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Fig. 7 Set of polyspherical coordinates and subsystems of aminobenzonitrile.

R,(1

The numerical approach of the KEO in internal coordinate is well known [165,170-177]
A possible approach for using a numerical KEO procedure consists in expressing the
G(Q) matrix as a Taylor expansion around a given Q (terms can be computed up to
second order with Tnum). In this thesis, we only used a zero-order approximation of
G(Q) (note that it is “MCTDH compatible” by construction). In other words, the G matrix
will be considered constant all over the coordinate grid. This approximation was made
for the reasons mentioned above (linear combinations and singularities) and also to

reduce the number of terms in the KEO. Indeed, in G(Q) up to second order there are

(3N-6)* —-6)?2
4

about terms while only ( terms appear in the zero-order approximation,

which reduces the computation time significantly. This was proved to be a decent

approximation in previous studies [178].

2-3. Solving the Time-Dependent Schrodinger Equation

2-3-1- General Overview

The most direct way to solve the time-dependent Schrédinger equation is to expand the
wave function into a direct-product basis and to solve the resulting equations of motion.

An M-dimensional nuclear wave function, Ip“udear, is hence expanded as,
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Ny Np M Eq. 46
l'bnuclear(Ql’___,QM, t) = z z le,_,,jM(t)l_[)(J(-IIj)(QK)
K=1

j1=1  jm=1

with N the number of basis functions ()(J(-?) per nuclear degree of freedom (Qg) and

C:

in..jy (t) the time-dependent coefficient of each nuclear configuration (a configuration

being one of the M-dimensional products of one-dimensional functions that appear in

this sum).

In order to fully understand the meaning of this equation (and the followings), we will
apply them to a simple example: H20. If we choose a set of valence coordinates (both
bonds lengths, i.e. R1 and Rz, and the valence bending angle, i.e. 8), we have a three-
dimensional nuclear wave function where Q; = R;, Q, = R,, and Q3 = 6 (as already
mentioned, one should remember that technically within the “MCTDH format”, we use

the variable u = cos 6 instead of 0) (see Fig. 8).

O,

Q=R ) :R
272 Q=0 Q=R

H3 H,

Fig. 8 Scheme of the triatomic system used as an illustrative example for this section.

Let us consider two basis functions per dimension. The corresponding 3-dimensional

nuclear wave function of Eq. 46 reads
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Preelear (Qy, Qz, Qs t) Eq. 47
= a2 Q2P Qx5 (@)
+ €112 QD2 P Q)7 (@)
+ Cron (D2 QDX Q)17 (@)
+ €1 (O (@D Q)27 (@)
+ Co1(O5° Q@DxP ()17 (@)
+ C12(O25° @DXP ()17 (Q5)
+ G2 (0257 QDX @)1 Q)

+ (22,2 (t)){gl) (Q1)X§2) (Qz))(é” (Q3)

Each term of the sum is a nuclear configuration multiplied by a time-dependent
coefficient and each configuration is equivalent to a Slater determinant in quantum
chemistry. Hence, Eq. 47 highlights that the nuclear wave function is a linear
combination of all the possible nuclear configurations expanded in a given basis (later
called primitive basis). At this point, a parallel can be made between quantum dynamics
and quantum chemistry: the nuclear wave function written in Eq. 46 (and Eq. 47) is
somewhat equivalent to the full Configuration Interaction (full CI) expansion of an
electronic wave function in a given basis. In this standard method (as in a full CI), the
basis function coefficients (i.e.C;, _ ;,, (t)) are optimized (according to the relevant

variational principle, either time-dependent or time-independent) but not the basis
functions themselves ()(](-II?). Hence, one can rapidly have to use a large amount of basis

functions to converge the nuclear wave function, which limits this approach to small

systems (in general, no more than four atoms).

The solution of the time-dependent Schrédinger equation in a direct-product basis
(primitive basis) scales exponentially (typically as N™ if Ny = N is the number of
primitive basis functions for each degree of freedom). In the MultiConfiguration Time-
Dependent Hartree (MCTDH) method presented in the following, one introduces an
optimal time-dependent basis for each degree of freedom. This new basis can be kept

smaller than the primitive basis, leading to a better scaling of the number of nuclear
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configurations. This feature makes the MCTDH method more efficient than the above-

mentioned standard method.

2-3-2-  (MultiLayer) MultiConfiguration Time-Dependent Hartree

The MCTDH method [31,179-182] has become over the last decade the tool of choice to
accurately describe the dynamics of complex multidimensional quantum mechanical
systems. Many successful applications have been achieved, dealing with molecular
spectroscopy [183-186], photo-isomerization and Intramolecular Vibrational energy
Redistribution (IVR) [187,188], inelastic and reactive scattering [189-192], and

scattering of atoms or molecules at surfaces [190,193,194].

2-3-2-1- MCTDH Wave Function Ansatz

The principle of the MCTDH method is the use of the following wave function Ansatz to
solve the time-dependent Schrédinger equation for a system with M degrees of freedom
described with Qu coordinates. The nuclear wave function is expanded in terms of time-
dependent direct products of orthonormal time-dependent Single Particle Functions

(SPFs), denoted (p](.i), where both the coefficients and the basis functions are optimized

(as in an MCSCF electronic wave function).

Mo T M Eq. 48
pnuclear(Q. 0 1) = Z Z A (1) 1_[ 0% (Qx, D)
ji=1  jm=1 K=1
The SPFs are themselves expanded in terms of primitive basis functions,
Eq. 49

Nk
oD = ) ¢ O x50

vg=1

Therefore, MCTDH can be seen as a two-layer scheme with time-dependent coefficients:

Aj. i, (t) at the top layer, and sets of second layer time-dependent coefficients C](:?]K )
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for each degree of freedom. We usually refer to the one-layer scheme as the standard
method (primitive basis), to the two-layer scheme simply as MCTDH, and to deeper
layering schemes as ML-MCTDH (more details about the latter method are given in the

following).

Let us apply this MCTDH Ansatz, to the previous three-dimensional example. Here, for
the sake of clarity, we consider one SPF basis function per coordinate and keeping two
primitive basis functions per dimensions; this particular situation corresponds to a
single configuration, i.e. to the Time-Dependent Hartree method (TDH) also called the
Time-Dependent SCF method (TDSCF) [195-199] and MCTDH is its multiconfigurational
extension (more than one SPF, which yields more than one configuration). The
corresponding nuclear wave function expanded in the SPF basis reads (note that when
there are more than one SPF basis function the way to handle the coefficients is similar

to Eq.47)
YU (Qy, Qz, Q) = Az (D917 (@1, DL Q2 D91 (s, 0) Eq. 50

The SPFs are in turn expanded in the primitive basis with time-dependent coefficients.

For example, for a two-function basis, we get
917 (010) = ¢ O @) + ¢ ©x5” (@) Eq. 51
912(Q20) = (O (@) + €5 (Ox7 (@)

0P (Qs,6) = 0P () + ¢ 1P (Qs)

The computational gain of MCTDH with respect to the standard method (presented in
the previous section) arises from the expansion orders, ng, being in general smaller than
the size of the primitive basis Ni, which leads to a smaller number of configurations,
hence a smaller number of time-dependent coefficients to be propagated. However, the
total number of time-dependent coefficients is given by [[¥—,ng, and therefore the

computational effort still rises exponentially with the number of degrees of freedom.
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Thus, MCTDH does not eliminate the exponential scaling but reduces the size of the

basis over which the scaling occurs.

The size of the SPF basis can be further reduced by combining the physical coordinates
Q4,...,Qy into logical coordinates (also called combined modes) Q1,..., Q}, such that
each logical coordinate comprises one or several of the physical coordinates, as
Qt = {QlK,...,QdK}. The superscript 1 in the notation represents the layer number of
the combined modes (notation introduced to facilitate the multilayer formulation

expressed in the following).
The MCTDH nuclear wave function with combined modes reads

P Eq. 52
wnuclear(Qll’ o Q},’ t) = z z A1 SGrremip (t) 1_[ QDJ(-;"K) (Qll(. t)
K=1

Ji=1  jp=

(LK)

The time-dependent basis functions ¢; ™ is now multidimensional. Introducing mode

combination implies that the computational effort is transferred from the propagation of

a large vector of Al P(t) coefficients with one-dimensional SPFs, to a shorter vector

151,
of coefficients but multidimensional SPFs. Some experience and knowledge of the
system under study is required to find an efficient mode-combination scheme for the
study. For example, combining modes with similar frequencies is a possible strategy, as

shown by O. Vendrell et al. [200].

The mode-combined SPFs expressed in the primitive basis are given by,

Nig  Nag dg Eq. 53
2;K K,
o0k, t)—z e L. o] [0,
L2 1% i=1

Let us apply this MCTDH Ansatz with combined modes to the previous three-
dimensional example. First, we consider one SPF basis function per combined mode.
They are defined as Qi = {Q;,Q,}and Qi = {Q5}. Q1 and Q2 are combined together as
they are both bond lengths of the triatomic molecule (see Fig. 8) and Q3 represent the
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valence in-plane angle. The corresponding nuclear wave function expanded in the SPF

basis reads
wnuclear (0%,0%,¢t) = A%;11(t)§0§1;1) (04, t)(PP;Z) (R3] Eq. 54

Expressing the SPFs in a two- function primitive basis, we get

o1 6) = AP OxI QX Q) + ¢ZP Ox P (P (@) Ea-55

+ PO QX Q) + ¢ Ox P QP (Q2)

(01, 6) = cZP ). 1P (Q3) + P ). 2P (Q3)

As already mentioned, the MCTDH method can be seen as a two-layer scheme: one layer
of time-dependent SPF functions decomposed directly into a time-independent
primitive basis. The multi-layer MCTDH method, which we present in the following, is an
extension of the combined-mode MCTDH method expressed by Eq. 52 and Eq. 53, which
is capable to propagate the nuclear wave functions of high dimensional systems (more

than ten degrees of freedom) upon adding more time-dependent layers of SPF functions.

2-3-2-2- ML-MCTDH General Principal

In a high-dimensional system one should combine groups of degrees of freedom into
high-dimensional SPFs in order to make the size of the vector of coefficients in Eq. 52
manageable (i.e. to get a wave function propagation that is reasonable in terms of
computation time). However, the combined SPFs are too large to be efficiently
propagated. The ML-MCTDH layering scheme is a very flexible way of dealing with this
issue. One treats the combined mode as a “sub-configuration” involving smaller groups
of logical coordinates. This introduces a new layer of coefficients, whose size is
manageable. The procedure can be repeated over and over until the primitive degrees of

freedom are reached.
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The general mathematical expression of the ML-MCTDH method is very complicated at
first sight due to the flexibility regarding the amount of layers that one can use to
express the nuclear wave function. Here, we will apply directly the general principal of
the ML-MCTDH method to the three-dimensional system that we have used as an
example since the beginning of this section, with one SPF per layer and per combined
mode. This will give a concrete insight into the ML-MCTDH formulation with respect to

the MCTDH Ansatz with combined mode given in Eq. 52 and Eq. 53.
First, we will express the nuclear wave function into a three-layer scheme. In addition
we consider one SPF basis function per combined mode defined as Q} = {Q?, Q%} and

Q3 = {Q3%}. Q%,Q3%, and Q% are the second-layer combined modes. The corresponding

nuclear wave function expanded in the first layer SPF basis functions reads
YU (Q4, 03, 6) = AL (91" (01, D91 (@3, D) Eq. 56

Where the first-layer time-dependent SPFs are expressed into a second layer of time-

dependent SPF basis with one SPF basis function per mode, which reads
§01(1;1)(Q11' t) = A§2111) (®). (pl(z;l) (le’ t). §0§2;2) (QZZ’ t) Eq.57

(PP;Z) (Q%, t) = Ag?izl) ®. (p§2;3) (Q%; t)
This second layer of time-dependent SPF basis is decomposed over the primitive basis
on a third layer with two primitive basis functions per mode. Note that Q%, Q3, and Q3
could, in principle, be second-layer combined modes but in this example they identify to

the physical coordinates: Q3 = {Q,},Q3 = {Q,}, and Q% = {Q;}. Thus, this second layer

expressed in terms of primitive basis functions (third layer) reads
oM 010 = TP OXY @) + 630 (067 (@) £9. 58

0 FP(Q3,0) = c3P OxFP Q) + €Y O ()
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e F¥(Q%,0) = cEP 01 Q1) + ¢ x5 (03)

One can notice in this specific example that in the ML-MCTDH formulation there is one
layer more than in the MCTDH method. However, one must keep in mind that the

number of layers in the ML-MCTDH formulation can be larger than in this example.

Owing to the flexibility of the layering scheme and to the fact that ML-MCTDH wave
functions can be “many-layer deep”, it is convenient to introduce a diagrammatic
notation to represent them, such as in Fig. 9 for our specific example [201]. In this
notation the nuclear wave function is represented by a “tree”. Each node (circle) in the
tree represents a set of vectors of coefficients for SPF basis functions. The final squares

correspond to the primitive basis functions and the physical coordinates.

n,=1

Fig. 9 Tree structure for the MCTDH and ML-MCTDH nuclear wave function of the three-dimensional system
used as example. Left: MCTDH nuclear wave function tree, in which the coordinates are combined (N: refer in
this particular case to the numbers of primitive basis functions and n1 to the numbers of SPF basis functions).
Right: ML-MCTDH tree (n: and nz are the numbers of SPF basis functions and N3 represent the numbers of

primitive basis functions).

As seen on Fig. 9, the ML-MCTDH tree of our three-dimensional system is composed of
two layers of nodes that picture the two layers of time-dependent SPF functions and one
layer of squares for the primitive basis. This representation of the wave function gives:
the number of basis functions used for each mode in each layer and the combination of

modes at each stage. This figure gives a direct insight into the difference between the

61



MCTDH and the ML-MCTDH formulations beyond two layers. While MCTDH will always

have two layers, the number of layers with ML-MCTDH is let to the user choice.

The ML-MCTDH method is helpful when the number of degrees of freedom is large (48
and 39 dimensions in this thesis). However, this raises another issue: choosing the ML-
tree can become a tedious task but it is a key step that can make the calculation possible
or not (in terms of computation time) [200,202,203]. For example, for 3-
hydroxychromone (Chapter III), with the same number of SPF basis functions and the
same set of coordinates, an ML-tree chosen randomly made the relaxation calculation
take 546 hours against 10 hours with a well-chosen ML-tree. However, we did not focus
on automatizing the methodology to optimize the ML-tree. Our strategy was to combine
coordinates that are the most coupled to each other in the ground state; in other words,
we combined coordinates that correspond to large values of the off-diagonal elements in
the ground-state Hessian at the minimum. This analysis “by hand” was helped also with
some physical intuition (for example, avoiding to combine in-plane coordinates with
out-of-plane ones). We chose to use the ground state Hessian in order to reduce the
computation time of the nuclear wave function relaxation (i.e. generation of the initial
wave function). Indeed, the generation of the initial wave function in the ground state
takes more time than propagating it on the reactive potential energy surfaces. This is
due to some technical limitations within the ML-MCTDH code that is currently in
development, such as the impossibility to restart a calculation from a previous nuclear

wave function converged with a different number of SPF basis functions.

One of the other parameters that have to be determined by the user is the number of
SPF basis functions to reach convergence within some tolerance threshold. In the ML-
MCTDH formulation, one must use a large number of SPF basis functions to converge the
initial nuclear wave function [200,204]. However, increasing it will increase the time of
the calculation; for example in 3-hydroxychromone with the same ML-tree and the same
set of coordinates, increasing the number of SPF basis functions by a factor two for each
mode and layer increased the time of the relaxation by a factor 2.5. Relaxing to a very
accurate wave function can easily become too much time consuming. Hence, one must
often make a compromise between computation time and level of convergence for the

initial nuclear wave function. This depends on the purpose of the study. In this thesis, we
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used quantum dynamics calculations to investigate the mechanisms of photochemical
reactions, specifically in non-adiabatic regions (i.e. conical intersection regions). Our
purpose was to obtain relevant information about the nuclear motion (what are the
relevant regions for the mechanism and how fast are they accessed) and about the
transfers of electronic population through internal conversion, but not to compute high-
resolution spectra that require a very accurate description of the vibrational levels of
the molecule. Therefore, the initial wave packet can be less accurate (converged within
10-1-10-2 eV) than for computing an infrared spectrum for example (converged within

10-4-106 eV).
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Chapter II- Quasidiabatic Model

One of the main focuses of this thesis is to develop a systematic methodology, as automatic
as possible, to generate non-adiabatically coupled potential energy surfaces in full
dimensionality to be used in quantum dynamics calculations in order to investigate
photochemical processes in large molecules efficiently and with no reduction of

dimensionality.

The first part of this chapter addresses the formalism of the vibronic coupling Hamiltonian
model and how our analytical potential energy surface models are built from explicit
relationships between the adiabatic data at a regular point and at a conical intersection.
One should notice that some of the underlying formalism has already been presented in the
previous chapter; however, we mention some useful expressions again in the present
chapter for the sake of clarity. The second part is focused on how to map the ab-initio data
with the model parameters. A third part will regard the methodology that we specifically
developed to treat more difficult cases where anharmonicity plays a significant role or

when several conical intersections must be considered together.
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I. Introduction

Our strategy is based on the well-known Vibronic-Coupling Hamiltonian (VCH) model
[20,110-112] that we briefly mentioned in the previous Chapter (Chapter I). We
extended it in a similar fashion to the developments previously carried out in
Montpellier by Loic Joubert-Doriol and Joaquim Jornet-Somoza [205-207].

The originality of the present work is to avoid being dimension (number of nuclear
degrees of freedom) dependent. In other words, we do not want a methodology where
the dimensionality of the system is the limiting step. In contrast, in a fitting procedure
(usually used to obtain the parameters of the model) the number of parameters to be
fitted explodes with the dimensionality of the system (e.g. for a 12-dimensional system
in a two-state problem, if one uses a fourth-order polynomial expression for the PESs
and a linear expression (first-order polynomial expression) for the electronic coupling

the number of parameters required is 1924 [208]).

To achieve this purpose, we established fully analytical relationships between the
Hamiltonian matrices and their derivatives represented in both the quasidiabatic basis
(to be generated for quantum dynamics) and the adiabatic basis (obtained from
quantum chemistry). Therefore, once the required quantum chemistry calculations are
made, the production of the quasidiabatic potential energy surfaces parameters is
automatic and immediate upon using the PAnDA (Potentiel Analytique Diabatique

Adiabatique) program developed during this thesis (Fig. 10).

The philosophy of PAnDA is summarized below in Fig. 10. Further details will be
provided in the section called mapping. The input data are obtained from ab-initio
calculations and transformed into parameters used for building the quasidiabatic
electronic Hamiltonian, which is the output. The data of the conical intersection are
involved in the generation of the gradient of the electronic coupling (1 in Fig. 10) while
the data of the minima and the electronic coupling are used to generate the Hessians of
the quasidiabatic potential energy surfaces (2 in Fig. 10). The description of complicated
shapes of some potential energy surfaces will require modifications of the general
vibronic coupling Hamiltonian model along specific directions (6 and 7 in Fig. 10) and

the definition of additional parameters. The different strategies developed to achieve
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this purpose are detailed further along this section. Then, once all the parameters of the
models are obtained one can generate the analytical expression of the vibronic coupling
Hamiltonian model, i.e. the multidimensional coupled potential energy surfaces to be

used to run quantum dynamics calculations with the ML-MCTDH method.

PAnDA
DATA PARAMETERS ELECTRONIC HAMILTONIAN
- - o off-diagonal °
Coln off-diagonal Potential Potential Coupling
+ Geometries -—9 Coupling Surfaces > Surfaces
+ Branching space gradients H, diab(Q) .
vectors ;\ij ] -
« Energies Po:?ntlal energly
« Reference point SCF o surfaces mode
Minima - procedflre diagonal potential
. Geometries dlagor:_?l pot(:'ntlallenerg energy surfaces
+ Energies su ?es e;smns H;4a5(Q) and
« Hessi " - .
essians i and Hjjdlab(Q)
Modification of the diagonal
3 potential energy surfaces:
Coln directions * Quadratic

* Morse
« Switch
« Symmetric switch

Fig. 10 Scheme of PAnDA philosophy.

II. Vibronic-Coupling Hamiltonian Model

As already defined in the previous chapter, the effective quasidiabatic electronic states
(i.e. @;) used in our Vibronic-Coupling Hamiltonian (VCH) model are assumed real-

valued. The matrix representation of the electronic Hamiltonian in the quasidiabatic

basis set,
HA(Q) = (®;; Q|A'*(Q)| @} Q) Eq. 59

is thus real-valued and symmetric. Here, we specifically use a set of curvilinear

coordinates denoted Q.
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The diagonal potential energy surfaces are approximated by quadratic forms with

minima at Q = Q;; , where by definition the first order (gradient) is zero.

. 1
HI®(Q) = ey +5 ) Q" - QIfI (@ - 0h) 5. 60
M L

The Hessian matrices, f;;, are symmetric with respect to the coordinate indices, M and L.

The off-diagonal Potential Coupling Surfaces (PCS) are considered as linear forms with

zeros at Q = Q;; (crossing geometries),

M

for i # j (note that Qf = Qj and A}] = A})).

Hg-"ab(Q) vanishes when Q — Q;; is perpendicular to A;;, i.e. for all Q that belong to a

ijr
hyperplane containing Q;; and perpendicular to A;;. Additional conditions will be

provided later on.

The quasidiabatic gradients read,

Hd‘ab(Q) Eq. 62
Z £ @ - b
and, fori = j,
diab
HFP(Q Eq. 63
aQM - My
The quasidiabatic second derivatives are constant,
azHﬁiab(Q) oL Eq. 64
aQMaQL
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and, fori = j,
azHid]_iab(Q) _ Eq. 65
aQMoQ*r

1. Adiabatic Data at a Regular Point

The adiabatic electronic states (i.e. ¥, ) are the eigenstates of the electronic Hamiltonian

and thus satisfy
(W RHEC(R)|Wp; R) = Vi (R) S .
where R denote the Cartesian coordinates of the nuclei.

The non-adiabatic coupling vectors are defined as (see Eq. 9)

0 .
Dé[g(:R) = <11Ua}fR| ﬁWﬁﬂR). Eg. 66

In what follows, we assume differentiability of the adiabatic states with respect to the
nuclear coordinates (in particular, we are at a geometry that is not the locus of any
degeneracy, i.e. R # R;), such that the non-adiabatic coupling vectors are regular. The
twofold-degenerate case of a conical intersection between two states will be treated

below in Section 2.

For the sake of clarity, let us recall here the Hellmann-Feynman theorems (diagonal and
off-diagonal) [89] (see Chapter I): the adiabatic gradients and non-adiabatic coupling

vectors satisfy,

Eq. 67
YR

)

W (R) |~ |OHT*(R)
Rl ¥ oOR!

and, for a # f3,
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| dH®'*°(R) Eq. 68

(v R| |qfﬁ;32>

Pes®) = ) v ®

The numerators are called derivative coupling vectors.

Similarly, the adiabatic Hessians read,

02V, (R) | azﬁelecma)lp_ge Eq. 69
ARIOR] ~ \"¥ | aRrIORI |'¥
—2R z [V (R) — Vg (R)| DL s (R)D] (R,
B*a
or, equivalently,
02V, (R) | azﬁele‘:(y*a)qy_g2 Eq. 70
ARIORI — \'¥ | aRrIORI |'¥
aﬁelec(gz) aﬁelec(:R)
e R A R
Vg(R) =V, (R)

B*a

which is a manifestation of what is called second-order Jahn-Teller effect [209-212] (i.e.

the effect of the non-adiabatic coupling on the curvature of the potential energy surface).

2. Adiabatic Data at a Conical Intersection

Let us now consider the case of a conical intersection between two adiabatic potential
energy surface, V,(R) and Vz(R) , at R=R, where V,(Ry) =Vz(Ry) . The
corresponding formalism has been exposed in Chapter I but let us recall here some
relationships that are relevant in the present context. As already mentioned, two

degenerate eigenstates are determined only up to an arbitrary mixing angle 8,54 (and, as

usual, up to an arbitrary complex phase for each, which is irrelevant here). We will

denote them ‘1’;0‘3;720) and wﬁga’*;ﬁ(,) in what follows; they will be assumed real an
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orthogonal. In practice, 6,3 = 0 can be attributed to the states actually calculated in
quantum chemistry, |¥2; R,) and |'z”ﬁ°;:R0). From the latter, we can produce the
gradient-half-difference (GD) vector (tuning mode), 2°®#)1 and the DC vector (coupling

mode), 2°@F)2  Both span the Branching Space (BS), i.e. the plane over which

degeneracy is lifted to first order. If now one considers a pair of rotated states,

0
¥, “B;RO) and ‘I’ﬁgaﬁ;ﬁ()), we get

o

%, BB _ cos 20,5 2) P — sin 20,5 27 *P?, Eq.71
o

%, b2 _ sin 20,5 2P + cos 20,5 22, Eq.72

The GD and DC vectors rotate within this plane through an angle —26,; and are thus
also determined only up to an arbitrary angle in principle. It is to be understood that
these quantities are well defined in practice because actual calculations are based on
well-determined states (those for which we have defined 6,5 = 0). We will show later
that setting a convenient value to this angle can help when generating the quasidiabatic
model from the adiabatic data. Also, note that the GD vector is sometimes defined in the

literature as the actual gradient difference (i.e., not halved).

III. Mapping

In our vibronic coupling Hamiltonian model, we consider two interacting real-valued
quasidiabatic states (1, 2) assumed to form a complete basis set with respect to the two
adiabatic states (So, S1) at any point. Our objective is to map the quasidiabatic
parameters to adiabatic data produced by quantum-chemical calculations (using various
methods such as CASSCF or TD-DFT). To this end, we consider the off-diagonal potential
couplings between pairs of states for which a conical intersection occurs along the
photoreaction coordinate. We make a particular choice of quasidiabatic states: we
assume that they nearly coincide with some particular adiabatic states at three selected

points along the schematic interpolation pathway shown on Fig. 11. (In fact, they are

71



chosen to strictly coincide at the crossing point). This last comment will be enlightened

in the following.

Energy (arbitrary unig

Reaction coordinate (arbitrary unit)

Fig. 11. Scheme illustrating the coincidence of the quasidiabatic and adiabatic representations at a conical
intersection. Dashed lines: adiabatic potential energy surfaces. Plain lines: diagonal quasidiabatic potential

energy surfaces.

1. Parameters and Data
We recall here that the quasidiabatic model is expressed in terms of internal nuclear
coordinates, Q (we will reserve indices M and L for them). Forn = (3N — 6), the number

of quasidiabatic parameters in our model is thus:

- 3nnuclear coordinates: Q¥;, Q%,, Qf,. (n coordinates per particular point we

selected: one particular point per quasidiabatic state and one point for the
conical intersection);
- 2 energies: e;4, €;, (one energy per quasidiabatic states);

- n off-diagonal (coupling) gradient components: A%, (one off-diagonal gradient

per conical intersection);
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n(n+1)

- 2 Hessian components: £, £4L (one Hessian per quasidiabatic states).

Note that there is an irrelevant parameter, as the energy origin is an arbitrary offset

(e.g., e;; = 0).

Our objective is to establish a direct mapping based on the same number of adiabatic
data. A possibility is to use the following adiabatic data obtained from quantum

chemistry calculations:

geometries: R%O)R,Rfo)P,Rfm)X (optimized geometries of both So minima on the
reactant and product sides, and the most relevant So/S1 conical intersection for
the problem under study, respectively);

- energies: Vo (Rg)r), Vo (R(p)p) (of the optimized geometries of the two Sp minima,
reactant and product, respectively);

0(01)1’x10(01)2

- branching space vectors: x, (calculated at the So/Si conical

intersection mentioned above);

Vo (Ror) Vo (Reorp)
oRIoRS ’ ARIOR]

- Hessians: (calculated at the optimized geometries of the

two So minima, reactant and product, respectively).

Note that the BS vectors are calculated with analytic gradient techniques when possible
(this is the case for CASSCF wavefunctions). However, they are not available in all
quantum chemistry methods, for example TD-DFT (used to study 3-HC derivatives in
Chapter III). In the latter situation, we had to develop a numerical method to obtain

them (see Appendix B).

An important remark must be made at this stage. The adiabatic data are produced in
terms of body-frame Cartesian coordinates (indices I and ] below) while the
quasidiabatic parameters correspond to curvilinear coordinates. As already mentioned
in Chapter [, geometries are converted directly by direct numerical evaluation of
Q(R) or R(Q) with the Tnum program. Branching space vectors (with i equals 1 or 2
below) and gradients are transformed from the body-frame Cartesian components into

curvilinear components according to [213],
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3N

. I ' Eq.73
xl(\)/[(aﬁ)l _ z (aR gQQ(A(;B)X)>x10(aﬁ)L
I=1
and,
vQ z” vV (R)\ (OR(Q) Eq. 74
QM L OR! QM

The general transformation for a Hessian evaluated at a non-stationary point reads

V(@) _ N (V®R) (P*R'(Q Eq.75
aQMaQL IZ( oR! )(aQMaQL>
U (VR (9R (@) (IR (Q)
+};(aﬁlaw>( 30" )( 30" )

All these quantities (i.e. geometries, gradients, Hessians) are transformed from body-
fixed frame Cartesian coordinates (indices I and J) to internal coordinates (indices L and
M) with the Tnum program developed by D. Lauvergnat (Laboratoire de Chimie
Physique, Orsay, France) [165].

This leads to

3n coordinates: Q(LO)R, Q(LO)P, Q(LOl)X;

2 energies: (Q(O)R)' Vo (Q(O)P)i

2n BS vector components: xf(m)l, xf(m)z;

0%V, (Qur) 9%Vo (Qoyp)
oQMaQL ’ aQMaql

+1) .. )
- 2 % diagonal Hessian components:

The number of parameters and data is thus identical and from now on we will only work

in terms of internal coordinates.
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Note that there are other potentially available adiabatic data that are not used in this
mapping because the problem would become over-determined and then possibly not

flexible enough to posses a solution. These are:

- 3 energies: V1(Q)r), V1(Q(0)r), Vo (Qo1)x) = V1(Q(o1)x) (adiabatic, i.e. ab-initio,
energies of the first excited state, Sy, at the Sp optimized geometries on the side of
the reactant and on the side of the product, and energy of the conical intersection,
respectively);

v, (Qoyr) Vi (Qeoyp)
QM 7 QM

- 2n gradient components: (non-zero gradients of the first

excited state at the So optimized geometries on the side of the reactant and on the
side of the product, respectively);

- n average gradient components at the conical intersection (to be used in
complement of the gradient difference if one wants to get the individual

gradients at this point).

A few warning remarks must be made at this stage. The quasidiabatic model does not
depend on enough parameters to make sure that these latter quantities will have their
right values, especially in the case of a strongly anharmonic problem such as a ring-
opening process (i.e. large amplitude motion). Getting incorrect energies for the conical
intersection (which is a crucial point of the surface and for the photoreactivity) is
perhaps the biggest issue. We thus implemented a set of strategies that ensure this point
to be treated correctly. They are based on various curvature modification procedures

(upon using Morse, quadratic, or switch functions). This aspect will be developed later
on. Finally, when the crossing point, Q(y,)x, is assumed to be the minimum-energy

conical intersection within its seam, the projections of the gradients out of the branching

0(01)1 0(01)2

space spanned by x and x should vanish. However, the actual gradients

extrapolated from the Hessians at the minima may not fulfill these conditions.

Note that we consider S; energies and gradients unknown except at Q(yq)x- This is in the
case of a peaked conical intersection, such as on Fig. 11. For a sloped conical

intersection, the same type of relationships can be derived, except that R, is changed

for R(;)p (the S1 minimum) and the energy labels are also changed accordingly.
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2. Determination of the Off-Diagonal Parameters.

In this section, we present analytical relationships between the adiabatic basis and the
quasidiabatic basis at the conical intersection geometry. These will determine the off-
diagonal parameters, Q¥ and A, involved in the potential coupling surface, i.e. the off-

diagonal part of the quasidiabatic electronic Hamiltonian.

In what follows, we assume the adiabatic states real-valued. Strict coincidence is forced
by definition between quasidiabatic and adiabatic states (up to a mixing angle) at the
S1/So conical intersection due to the absence of electronic coupling at the degeneracy

point,

7]
|<;b2; Q(o1)x> = |l‘uo 015 Q(01)x> ’

6
|91; Qonyx) = |‘1’1 % Qro1)x)

where 6,; remains to be determined according to some additional constraints discussed

further below.

The degeneracy of both quasidiabatic states sets two relationships:

H{(Qeonx) = H¥*(Qeo1yx)

=€
1
+ Ez z(Q%l)X - Q{Wl)flﬂfL(Q(Lm)X - Qf1)
M L
1
=ey + Ez 2(0%1))( - diz)fzngL(Q(Lm)x - Q%)
M L

hence,

€11 — €z t

N |~

DD (0l — Q)AL (hanyn — 0h) = (Qfhoyy — Q)M (e — Qk2)
M L

0
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and,

Hf;ab (Q(Ol)X) =0,
thus,

D (0l — o) =0
M

A trivial solution for choosing Q% is

inz = Q%nx

0(01)1 0(01)2

The branching space vectors, x and x , are available at the conical-intersection

points (for 6,; = 0 by convention). The off-diagonal gradient can be identified to a

rotated x%01°D2 (see Eq. 63 and Eq. 72)

aI_I{gab(Q(Ol)X) __601(01)2 Eq.76
QM = XM -
i.e.
MM, = sin 260, x4 cos 264, x00M? Eq.77

The rotation angle 6, is fixed by imposing an extra condition on the off-diagonal term:

it has to vanish at some particular reference point, Quonyret  Qonyx such that
 diab — M (oM _ M\ — M (oM _nM -0 Eq.78
5 (Qonyrer) = 12 (Qo1yrer — Q13) = 1 (Q@1yrer — Qlo1yx) = 0.
M M

With the above relationships, this leads to

. 0(01)1 0(01)2 Eq.79
sin 26y, 2(0%1)ref - Q%l)X)XM( " + cos 2001 z(Q%l)ref - Q%nx)xM 1
M M

=0,
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ie.,

sin 20,4, Eq. 80
0(01)2
ZL(Q(Lm)ref - Q(LOl)X)xL( :

2 >’
\[[ZL(Q(LOUFGf - Q(LOl)X)xf(Ol)l] + [ZL(Q(LOl)ref - Q(Lm)x)xf(onz]

0(01)1
ZL(Q(Lm)ref - Q(Lo1)x)xL

2 2
\[[ZL(Q(LOUref - Q%OUX)XS(OIM] + [ZL(Q(Lm)ref - Q%m)x)xg((n)z]

cos 20y, =

Inserting Eq. 80 into Eq. 77 yields

A Eq. 81
0(01)2]_0(01)1 L L 0(01)1]_0(01)2
_ _[ZL(Q(Lm)ref - Q(LOl)X)xL XM + [ZL(Q(Ol)ref - Q(OI)X)XL ]xM

2 2
\[[ZL(Q(LOUref - Q(LOl)X)xg(Ol)l] + [ZL(Q(Lm)ref - Q(Lo1)X)x2(01)2]

The choice of the reference point is arbitrary in principle but occurs to be of prime
importance in practice. However, it is safer to choose it as a point where one wants the
model to be as correct as possible. This is where coincidence is achieved between the
adiabatic and the quasidiabatic representations, such that the mapping procedure is less
approximate at this point. In our model, we will always choose the minimum of one of
the quasidiabatic state as reference points: Q(Ol)ref = Q1) Or Q(Ol)ref = Q(22) because
we consider that the potential electronic coupling should be negligible in those regions.
This choice of reference point will be discussed further along in practical situations, for

the various application cases presented in this work.

We have thus set 2n relationships that determine Q¥ and A}, (Eq. 81) explicitly. Note
that we implemented into the PAnDA program a general treatment for any pair of

electronic states within a set that can be made of more than two states.

An important remark should be made at this stage: our objective is to achieve

coincidence of the quasidiabatic and adiabatic representations at the conical
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intersection; the electronic coupling is set to zero by construction as expected, but there
is no direct control over the behavior of the diagonal elements. This aspect will be

discussed in the last section of the present chapter.

Now that we are able to calculate the off-diagonal part of the quasidiabatic electronic

Hamiltonian let us focus on the diagonal one.

3. Determination of the Diagonal Potential Energy Surface Parameters
In this section, we present analytical relationships up to second order between the
Hamiltonian matrices both in the adiabatic basis and the quasidiabatic basis at the
geometries of the minima. These will determine the diagonal parameters of the potential
energy surfaces (i.e. QM, Q%%, fML, and fML).
Let us consider again the case of a peaked conical intersection. If we assume, as a

starting point, that coincidence is achieved both at the adiabatic ground-state (So)

minimum corresponding to the reactant,

|¢1" Qo) = |l‘U°; Qoyr)

|2 Qo) = |#13 Qe -

and at the adiabatic ground-state (So) minimum corresponding to the product,

|¢2; Qoyp) = |l‘U°; Qe

@15 Q) = |1 Qo)

then the off-diagonal elements satisfy the two following relationships,

Hiz" (Q(O)R) = z 215 (Qloyr — Q1%) =0, £q. 82
M
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H{z" (Q(O)P) = z A1 (Qloyp — Q1%) = 0.
M

The validity of the approximation that adiabatic and quasidiabatic states coincide at the
minima is determined by the extent to which the latter relationships are satisfied. We

may want to use them as constraints to build the quasidiabatic models. Using Qo1yrer tO

rotate A,, conveniently (see previous section) makes it possible to achieve one of the

two conditions but not both. Indeed, there is no reason for Q(O)R’ Q(O)P’ and Q(o1)x to

belong to the same hyperplane orthogonal to A,,, except in cases where symmetry
ensures this (or, of course, by accident). However, making this assumption allows
approximate relationships to be derived for the parameters that remain to be
determined. They can be used as such to build a crude model or may be further refined

by serving as a guess in a self-consistent fitting procedure.

More specifically, let us consider as an example that Quo1yret = Qoyr - Here,
Hiab (Q(O)R) = 0 by construction, and the model should reproduce the adiabatic data

correctly up to second order after diagonalization. However, since, H{® (Q(O)P) * 0,

one does not have as much control over the adiabatic potential at this point. The
quasidiabatic and adiabatic minima will not be coincident if the electronic coupling is
too strong. In the worst-case scenario, we can even get what is called a “hole”, a situation
where the adiabatic minimum obtained after diagonalization is not physical, with a
depth in energy that depends on the magnitude of the off-diagonal term. If such a
problem occurs, it could also mean that the mathematical expression chosen for the

quasidiabatic potential energy surface is not adequate and should be re-investigated.

Coincidence between quasidiabatic and adiabatic potential energy surfaces at both

minima sets 2n + 2 relationships,
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inl = Q%)R;
Qéwz = Q%)P;
€11 = VO(Q(O)R):
€22 = VO(Q(O)P)-

nn+1)

Finally, the quasidiabatic Hessian components satisfy 2 relationships expressed in

Eq. 69 read

ML Eq. 83

_ 9*Vo(Qur)
aQMaQ*
22351

+
1 )
VO(Q(O)P) —Vo (Q(O)R) + §ZM ZL(Q%)R - Q%)P)fZIgL(Q%O)R - Q(LO)P)

ML
22

_ 9°Vo(Qqoye)
QM oQrL

X 22t
1
VO(Q(O)R) - VO(Q(O)P) + EZM ZL(Q%)P - Q%)R)flﬂfL(Q(Lo)P - Q(LO)R)

Such expressions reflect the so-called second order jahn-Teller effect. One can
appreciate that a self-consistent procedure is required from how f* and f;4¢ mutually

depend on each other. We implemented this into the PAnDA program accordingly.

Note, again, that in the case of a sloped conical intersection, we would have Q(y)p in S1. If
so, there would be a minus instead of a plus sign in front of the second term (second-

order Jahn-Teller effect in the upper state).

We have thus set 2 + 2n + 2 @ relationships that determine e; 4, e,,, QM , Q%, fME,

and fM* (Eq. 83) explicitly.

Up to this point we defined a vibronic coupling Hamiltonian model where:
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* The diagonal quasidiabatic potential energy surfaces are expressed as quadratic
expansions centered at the optimized ab-initio geometries of the adiabatic
potential energy surfaces.

* There is an off-diagonal potential coupling surface for each quasidiabatic
electronic state crossing point. We express it as linear expansion centered on the
conical intersection.

* All the quasidiabatic parameters of the vibronic coupling Hamiltonian model are

defined by the ab-initio data.

However, as already mentioned, there is no control over some relevant features: the
energy at the conical intersection, the topography of the cone along the gradient
difference, and the adiabatic electronic state minima. In addition, our quasidiabatic
diagonal potential energy surfaces are harmonic (quadratic expansions based on ab-
initio force constants corrected by the second-order Jahn-Teller effect induced by the
non-adiabatic coupling). After diagonalization, this type of model will induce some
anharmonicity (the adiabatic potential energy surfaces are not quadratic) but will
probably not account for all types of anharmonicity. For example, bond dissociations
often result in Morse-type curves, which is not due to an electronic coupling between
quasidiabatic states. In other words, the quasidiabatic surfaces should already present
this type of shape. In addition, this lack of flexibility may result in a conical intersection
that is not at the right position and/or energy compared to the actual ab-initio one,
whereas we want this condition to be achieved for making sure that the photoprocess is

described adequately.

From now on, we will call intrinsic anharmonicity the difference between the actual
adiabatic potential energy surfaces obtained after the diagonalization of our analytically
parameterized quadratic quasidiabatic vibronic coupling Hamiltonian model (which
already takes into account some small anharmonicity due to non-adiabatic couplings)
and the ab-initio adiabatic potential energy surfaces obtained with quantum chemistry

calculations (Fig. 12).

To be able to get some control over the conical intersection position and energy, we

modified the original vibronic coupling Hamiltonian model presented above with n-
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dimensional functions along specific directions (e.g. from the minimum of the diagonal
quasidiabatic electronic potential energy surface to the corresponding conical
intersection). This strategy is described in the following section. It was first tested on
the photoinduced benzopyran ring-opening process that presents a strong
anharmonicity. The results regarding this application are not presented in this thesis.
Our improved strategy occurred not to be the most suitable in this situation for which a
three-state description should be more adequate. Nevertheless, our models were used
with success to study two others cases such as excited-state proton transfer in 3-
hydroxychromone dyes and ultrafast excited-state intramolecular charge transfer in

aminobenzonitrile derivatives.

Energy (arbitrary unit)

diab
H22

v

Reaction coordinate (arbitrary unit)

Fig. 12. Illustration of the intrinsic anharmonicity problem. Qiz is the energy of the conical intersection
obtained with the quadratic diagonal quasidiabatic potential energy surfaces. Q1)x is the ab-initio energy of

the conical intersection (targeted).
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IV. Description of the Anharmonicity

The purpose of this section is to define the strategy that we implemented to account for
the lack of anharmonicity of the quadratic model and its possible consequence on the
position and/or energy of the crossing point with respect to the ab-initio conical
intersection. To solve this problem, we considered various strategies that change the
curvature along the direction linking a minimum to the crossing point so that the

crossing point occurs at the correct position and energy.

We define jo) the normalized vector between the diagonal quasidiabatic potential
energy surface minimum Q;; (statei = 1 or 2) chosen as a starting point and the conical
intersection Q;; = Q(4p)x (between states i=1or 2 and j =2 or 1) that is to be

targetted (Fig. 12),

R(.l:j) _ Qij - Qii Eq' 84
* ”Qij - Qii ”

Note that i and j could take other values than 1 and 2 in the general case.

The corresponding coordinate for a given point Q along this collective direction (i.e. the
projection of Q — Q;; on jo)) is denoted ei(l.ij) (Fig. 13),

£ = (@- Q)R Eq. 85

where the dot symbol used in the scalar product means implicitly that the left vector is

transposed.
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0Q

® o Q2
Q3 £,,(12)

Fig. 13. Two-dimensional illustration of the projection of a point Q along the direction Rg").

Defining this coordinate will allow the original curvature along the R(ii:j ) direction to be
either changed for a new curvature to reach the actual energy of the conical intersection
or replaced by a coordinate-dependent curvature to also account for intrinsic

anharmonicity.

The first strategy we will present is adapted to harmonic-like systems. The idea is to
keep the quadratic form of the curvature but to change its value in order to constrain the
conical intersection energy. The second strategy uses a Morse potential, which is the
most “natural” function to describe anharmonicity. However, we will highlight the
limitation of such a function to describe coupled potential energy surfaces. The third
strategy is the most flexible one with the use of a switch function and it is proved to be
capable of describing correctly several different systems (Chapter 1V). However, the
drawback of this latter strategy is that it is not directly “MCTDH compatible” in the
@@

original set of coordinates because ¢;”” is now a collective coordinate involved in a
function that is not a simple polynomial. It thus, requires some further modifications
(this aspect is further detailed in the following and applied in Chapter III and 1V). All

these strategies have been implemented into the PAnDA program.
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1. Quadratic Potential

Our first strategy is based on a very simple idea. Along the jo ) direction we remove the

@)

previous quadratic contribution, f;; ", to replace it with a new quadratic contribution,

fu(z), the value of which is chosen to constrain the conical intersection to have the

correct energy at its position (i.e. to match the ab-initio data).

diab i
sz H11d|ab

Energy (arbitrary unit)

v

Reaction coordinate (arbitrary unit)

Fig. 14 Illustration of the quadratic modification strategy. Plain lines: original quadratic curvature. Dashed

lines: quadratic curvature obtained once the modification has been applied.

The quadratic modified diagonal quasidiabatic potential energy surface reads

diab,Quad i 2 Eq. 86
HiR Quadra gy = Hiiab(Q) — fl%) (iN)? fu(lé) z(zl]) q

The one-directional old quadratic curvature that we remove along the jo) direction,

fl( J) is defined as

LR’

) — pln @)
fur =Ry fu- Ry Eq.87
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where the dot symbol used in the scalar product (vector-matrix-vector contraction)

means implicitly that the left vector is transposed (in other words, using matrix product,
this would be expressed as R(ij)Tfil-jo)).

i

7))

To define the one-directional new quadratic curvature, iR that we add along the R

ii
direction, let us consider a one-dimensional quadratic function along this direction (see
Fig. 14). At the conical intersection geometry (Q = Q;; = Q(4p)x), We want the new

quadratic expansion to fulfill the following condition,

. 1 . Eq. 88
i @ q
Va(Quapyx) = H™ (Quapyx) = € + 3 in Qupx — Qi)?

Thus,

FAD _ Va(Q(aﬁ)X) — & Eq. 89
iR =
' (Quapyx — Qi)?

We remind here that Va(Q(aﬁ)X) =Vp (Q(aﬁ)X) and Q,px = Q;j (Where we suppose that
i # jand a # B but do not specify their values to keep the expressions general). To

achieve the same condition for the other state and make sure that both quasidiabatic
; ; ; ; diab — pydiab C

curves cross at the conical intersection, i.e. Hj; (Q(aﬂ)x) = Hj; (Q(aﬁ)x): a similar

procedure is used on the other side. We remind here that H{ijiab(Q(aﬁ)X) = 0 is already

achieved by construction.

Hence, the original harmonic frequencies in the vicinity of the potential energy surface
minima are modified according to the new quadratic curvatures defined in Eq. 89.
Nevertheless, this new curvature may not be “compatible” with the remaining
unmodified Hessian elements. By this, we mean that, once the quasidiabatic vibronic
Hamiltonian gets diagonalized, the nature of the minima can be modified (going from a
minimum to a transition state with a negative curvature) if the constraint on the conical
intersection energy is too strong (i.e. large anharmonicity and/or large distance

between the minimum and the conical intersection).
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To illustrate this, let us take a hypothetical two-dimensional system, where the first
@n

dimension is the modified direction (R;;"’). The Hessian in the original quadratic model

(without curvature modification) at the original minimum reads

& ¢)
C, C

where (1, C2, and C3 have values such that the eigenvalues of the matrix are positive. C1 is

the curvature along the R(iﬁj ) direction from the minimum to the conical intersection.
Then, if we apply the quadratic modification of the curvature as presented in this
section, we will simply modify Ci and the other parameters of the Hessian remain
untouched. Therefore, the eigenvalues of this Hessian will change and could even
become negative, which would then induce a change of nature of the point. This will
happen if this change of curvature is too drastic (i.e. if C; after modification is too
different from its original value; in other words if the intrinsic anharmonicity is too

strong). To avoid this problem, one will need to modify also the cross term involving the

jo) dimension (i.e. C2) with respect to the modification of C.

This quadratic modification of the diagonal quasidiabatic potential energy surface is
adapted to refine the potential in harmonic-like systems, such as aminobenzonitrile or
3-hydroxychromone (Chapter IV and III respectively). Therefore, to improve this first
strategy in order to describe anharmonic systems, the idea is the following. We want to
retain the harmonic frequencies of the diagonal quasidiabatic potential energy surface at
the minimum while still having parameters to control the conical intersection energy.

This is achieved by the following strategy using a Morse potential.
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2. Morse Potential

Along the jo ) direction we now remove the quadratic contribution to replace it with a

Morse function. The Morse modified diagonal quasidiabatic potential energy surface

reads,

2 Eq. 90

: . 1
Hidilab,Morse(Q) — Hidilab(Q) fl%) (U) += . De(”) 1— ’

@ ;

where De;;”" is the parameter that controls the energy of the asymptote (Fig. 15). It is

optimized with the MINI program (developed by D. Lauvergnat) so as to constrain the

conical intersection energy at its position.

Energy (arbitrary unit)

~
r

Reaction coordinate (arbitrary unit)

Fig. 15. Illustration of the Morse potential strategy. Plain lines: original quadratic diagonal quasidiabatic

potential energy surfaces. Dashed lines: Morse diagonal quasidiabatic potential energy surfaces.

The main limitation of the Morse potential to describe coupled potential energy surfaces

is the presence of the asymptote that can create non-physical additional crossings. If so,
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when the energy gap becomes small, the off-diagonal terms start having a strong effect
on the shape of the resulting adiabatic potential energy surfaces, which can even create
non-physical minima (i.e. holes). As shown on Fig. 15, the difference in energy between
the  and « adiabatic potential energies at the minima is lower with the Morse potential

than in the quadratic potential. In addition, since the non-adiabatic coupling is

proportional to ———— (Eq. 68), if the difference in energy between the two
Ve(Q-Ve(Q)

adiabatic states drops too much because of the asymptote, the non-adiabatic coupling

will increase artificially, thus describing the wrong physics.

Therefore, to improve this second strategy, the idea is the following. Again, we want to
retain the harmonic frequencies of the diagonal quasidiabatic potential energy surface
while still having parameters that control the conical intersection energy. However, we
want to avoid an asymptotic behavior. This is achieved by the following strategy using a

switch potential.

3. Switch Potential

Along the R(iﬁj ) direction we now modify the quadratic curvature by modulating it with a
switch function. It is based on a hyperbolic tangent function that allows a smooth

transition between two curves (Fig. 17) and reads

i,0

Fwitch (Ei(iij)) = 2 )

1 + tanh (Cz (Ei(l-ij) — e(ij)» Eq. 91

This function is centered around ei%) and takes values between 0 and 1 asymptotically.

According to the value of C,, the value of this function can be considered as almost zero
@

at ei(iij) = 0 and switches smoothly, most rapidly around ¢; ;, and reaches almost one at

28-(ij)

ii,0 "

Hence,
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Q) _ 1Qapyx — Quill Eq. 92

ii,0 2 ’
The C, parameters control the smoothing level of the function (how fast it changes from
0 to 1). The more it increases the closer the switch function is to a step distribution (Fig.
16). A too large value could thus create some unwanted discontinuity in the final
adiabatic potential energy surfaces. Nevertheless, this parameter can be optimized by
the user (“by hand”) or automatically. Optimizing the value of C, by hand is, of course,
time consuming but an automatic procedure could be tedious to implement and would
involve a constraint that is not clearly defined. None of them correspond to the
philosophy of our methodology (i.e. as little fitting as possible and avoiding the user to
make choices for the values of the parameters). We thus fixed C, = 1, as it proved to be
an adequate value in all the applications presented in this thesis work (note, however,
that working with different values of C, is possible in the current implementation of the

PAnDA program; its value is to be chosen by the user in the input file).

0.8

switch

0.4

0.2

0
5 6 £ii(ij) 7

Fig. 16 Switch function of Eq. 91 centered around 3. Orange: Cz = 1. Purple: C2 = 2.

We use this switch function to vary smoothly from the actual quadratic curvature at the
minimum of a diagonal quasidiabatic potential energy surface to a curvature that is able
to constrain the energy to be equal to the ab-initio one at the conical intersection
@)

geometry (2¢;;,') along the direction jo) linking both points, as shown in Fig. 17.
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Energy (arbitrary unit)

v

Reaction coordinate (arbitrary unit)

Fig. 17. Illustration of the switch potential strategy. Plain lines: original quadratic diagonal quasidiabatic

potential energy surfaces. Dashed lines: switch diagonal quasidiabatic potential energy surfaces.

The switch modified diagonal quasidiabatic potential energy surface reads

121 4

iabSwi i L i )2 Eq.93
H&lab,SWltCh(Q) — Hlpdilab(Q) + Eflf,l}é) <stitch (8-(-U)) —F,ien (0)) ) q

The fl%) parameter is the new curvature that will constrain the conical intersection

energy. It is defined with the same idea as for the quadratic modification expressed in

Eq. 89,

Va(Q(aﬁ)X) — Hlfiiiab,switch(Q(a[g)X) Eq. 94

= H{™ (Qeep)x)

1 o/i: .. L\ 2
@) @) @@
+ Eful}; <stitch (zgiil,{) ) - stitch (0)> (Zgiil,jo )

Hence,
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FOD 2 (Ve (Quagy) = HE™(Quupyx)) Eq. 95
1)

LR
) )
<stitch (Zeul{) ) switch (O)> (28111{) )

This switch contribution is a tool to control the energy (zero order) of the conical

intersection (E(U ) = 263{3) but it must not have an impact on the second derivative

(curvature) of the diagonal quasidiabatic potential energy surface at the minimum
(ei(iij) = 0). In other words, we want to keep our original harmonic frequencies. Hence,
we chose the specific expression of the switch function (Eq. 91) because it was

compatible with fulfilling the following condition,

0H™ " (Qu) _ 07H™ (Qu) Eq. 96
0QMaQ*k 0QMaQ*r

Let us differentiate our switch modified diagonal quasidiabatic potential energy surface

of Eq. 93 to prove that this condition is fulfilled,

aH&iab,Switch (Q) Eq. 97
aQM

@@
aHdlab(Q) “(l]) 0 <stitch (giiU ) — stitch(0)> g(ij)z
~aQM T 2luR Q™ "

£(i)) ) @ 05
i i i
+fl . < switch (8 ! )_ stitch(0)> u] aQM
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9 2 Hgiab'SWitCh (Q)
aQMaQr

aszlab (Q) <)) ik <stitch (Ei(iij)) - FSWitCh (0)> (ij)z
= GQMGQL fuR aQMaQL i

<( 0 <stitch (Si(il])) - stitch (0)> 66(”)
+ f¢ ij) @
ii,R 9L ioogQM

stitch (Si(il])) - stitch (0)> (U) 66(”)
OQM €ii aQL

de (11) 68(”)

+ ff;?( switch (E(U)) sw1tch(0)> aQM aQL

92¢ (lJ)
@ @) @
+ ful}é < switch (8 J ) - stitch (O)> gul] aQMaQL

o
+ f;(l])

If we calculate the second derivative at the minimum, Q = Q;;, we have ei(iii) = 0, such

that all terms but the first one vanish, and Eq. 96 is fulfilled.

However, there are some cases detailed in what follows, where this switch procedure
must be adapted to describe more complicated adiabatic potential energy surfaces, such

as in the two following situations.

(i) In Fig. 18, the conical intersection (Qy,)x) energy is lower than the one of the local

minimum (Q)g) energy in S1 (purple line). This situation was encountered in the
aminobenzonitrile study (Chapter IV). If so, there is a risk that the switch procedure
used to modify the diagonal quasidiabatic function makes it decrease after the conical
intersection geometry, which unavoidably leads to the creation of a non-physical hole on

the adiabatic potential energy surface: this is illustrated on Fig. 19 (blue plain line).
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Energy (arbitrary unit)

Q)r

Reaction coordinate (arbitrary unit)

\ 4

Fig. 18 Illustration of a situation where the conical intersection energy is lower than the one of the adiabatic

minimum in S1.

Reaction coordinate (arbitrary unit)
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-377.53
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Fig. 19 Illustration of the switch+tanh strategy. Plain lines: original quadratic diagonal quasidiabatic potential

energy surfaces. Dashed lines: switch+tanh diagonal quasidiabatic potential energy surface

.2
To avoid this problem, one must replace the ei(i”) term of Eq. 93 by a function that
increases faster, such as a squared hyperbolic tangent (blue dashed line in Fig. 19). Thus,
in that situation the “switch+tanh modified” diagonal quasidiabatic potential energy

surface reads
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Hidiiab,Switch(Q) — Hgiab (Q) Eq_ 98

@@

1 i iy tanh (ng.. )
(i) (ij) il

+ Eful}; (stitch (Eiil] ) - stitch(0)> C3

The C; parameter controls the gradient of the switch contribution. In other words, it
controls how fast the diagonal quasidiabatic potential energy surface goes up in energy
after the conical intersection geometry. We used C; = 1 in our application cases but this

parameter can be defined by the user in the input of PAnDA.

. . . . =(ij
The new curvature to constrain the conical intersection energy f-( /) reads

ii,R

fix = ’ (V“ (Quapyx) = Hgiab(Q(aﬁ)x)) Eq.99

- tanh (zc g.(.if))
@@ 3<ii,0
(stitch (Zgiil,]O ) - stitch (O)> Cs

(ii) In Fig. 20, we can observe the existence of a pair of symmetric conical intersections.
This situation was also encountered in the aminobenzonitrile study. Let us consider that
we have a Czv molecule (a planar molecule for example), where this symmetry is
lowered to the Cs point group by a pyramidalization where a conical intersection occurs.
The pyramidalization is a non-totally symmetric deformation, such that the “up and
down” sides are equivalent. Hence, if the system has a conical intersection at an up-
pyramidalized geometry it also has an equivalent conical intersection at the
corresponding down-pyramidalized geometry (mirror image). Therefore, both
directions must be modified in the exact same way (Fig. 20). This strategy was used to
describe the pair of Cs S1/S2 conical intersections in the aminobenzonitrile system, see

Chapter IV.
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Energy (arbitrary unit)

C, Reaction coordinate (arbitrary unit)
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Fig. 20 Illustration of a situation where there is a pair of symmetric conical intersections.

The symmetric switch function (Fig. 21) reads

stitch,symm (Si(il])) Eq. 100

1 + tanh <Cz (Si(iij) _ 51%))) 1 — tanh <Cz (gi(iij) n g(ij))>

i1,0
= +
2 2
1
0.8
£
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=
2
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| | u_"’
| 1 0.4
| |
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| |
| |
1 1 0.2
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| |
! ! 0
7 -5 3 -1 1 3 5 sii(ij) 7
- sii,o(lj) sii,o(lj)

Fig. 21 Symmetric switch function of Eq. 100 centered around 3 and -3 with C2=1.
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Hence, the switch modified diagonal quasidiabatic potential energy surface and the new

. . . . =(ij
curvature to constrain the conical intersection energy f-( 7

iR read,

H'd'iab,Switch,symm (Q) Eq. 101

2

= H{*(Q)
1. . i 2
@) @) @)
+ Efii,llje (stitch,symm (EiiU ) - stitch,symm (0)> Eiil] ’

F = 2 (V“ (Quapyx) — Hgiab(Q(aﬁ)X)) Eq. 102
(L)

i,R L. LN 2
’ @n @@
(stitch,symm (Zeii,o ) - stitch,symm (0)> (zgii,o )

All these possible variants of switch functions are implemented within the PAnDA
program and work routinely. However, the last case with the symmetric switch function
can be more tedious in practice because it is sensitive to the symmetry of the original
quadratic Hessian. One must “clean” it with respect to the higher symmetry point group
(here C2y) to make sure that the switch modification of the potential energy is
numerically identical on both sides of the minimum. Otherwise, both conical
intersections will not be described in the same way and one of them may become

preferred, thus yielding a non-physical description of the dynamics of the system.

Nevertheless, the major default of this switch strategy is that it is not compatible with
the “MCTDH format”. In other words, the switch function applied along a specific
direction is not separable into a sum of product of one-dimensional functions when
using the original set of coordinates (because of the expression of the hyperbolic
tangent). So, the strategy is to make a change of set of coordinates; an orthogonal
transformation of the original set of coordinate is performed in order to associate a
single coordinate to each jo ) direction (in general, two directions are particularized:
R(1112) and R(2221) ). The remaining linear combinations belong to the orthogonal
complement. In that situation, the expressions of the quasidiabatic potential energies
are now “MCTDH compatible” but the expression of the KEO in this new set of
coordinate is no longer separable (as mentioned in the previous section). Thus, using a

switch strategy requires the use of a numerical expression for the KEO (in our case, a
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zero order approximation, i.e. a constant metric tensor). This transformation of

coordinates is performed automatically with the Tnum program that reads the vectors

jo ) expressed in terms of the original coordinates.

We have presented the various strategies that we developed to extend the vibronic
coupling Hamiltonian model to cases where anharmonicity can be an issue. They are
implemented within the PAnDA program, which provides a quasidiabatic Hamiltonian
matrix into the “MCTDH format” automatically once the required ab-initio calculations
are made (i.e. geometries and Hessians at specific stationary points and geometry and
branching space vectors of relevant conical intersections). Were used such models to
run quantum dynamics with the ML-MCTDH method for two realistic application cases

presented in Chapter IIl and IV.
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Chapter III- HydroxyChromone Dyes

This Chapter is focus on the studied of the excited state proton transfer of
hydroxychromone dyes (i.e. 3-hydroxychromone and 2-thionyl-3-hydroxychromone).

The study of and 2-thionyl-3-hydroxychromone was carried out in close collaboration with
experimentalist the Dr. Thomas Gustavsson (CEA, France) and Prof. Rajan Das (Tata

Institute of Fundamental Research, India) [on going research — paper in preparation].

We have performed a computational study of the photodynamics of 3-HC (quantum
chemistry and quantum dynamics) in the gas phase and of 2T-3HC (quantum chemistry) in

polar and non-polar solvents in order to suggest a rationalization of the experimental

observations.
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I- Introduction

Hydroxychromone dyes, much specifically 3-hydroxychromone (3-HC) (Fig. 22) and its
derivatives, have attracted much interest over the last few years due to their dual
fluorescence. The interplay between two emissions well separated on the
frequency/wavelength domain can be modulated in a very distinct way, not only by
chemical modification but also by changes in their surrounding environment. This
extends dramatically the possibilities in the design of wavelength-ratiometric

fluorescence sensors and probes [217-262].

Fig. 22 Ground state Lewis structure of the 3-hydroxychromone dyes. Enol cis isomer. R = H: 3-HC.

Their remarkable spectral properties make 3-HC derivatives a useful family of
fluorescent sensor of ions [247,248] and electric fields [262] in polymers [250], reverse
micelles [251-253], lipid membranes [221,232,233,254-257], proteins [259], and DNA
[233,246,260,261]. For example, one of the most promising 3-HC derivatives is 2-
thienyl-3-hydroxychromone (2T-3HC) (Fig. 23), as modifying it with deoxyribose allows
its incorporation into oligonucleotides. This makes it a possible sensor of the DNA

microenvironment and DNA-protein interactions site-selectively [246,254,261,262].

Fig. 23 Enol form of 2T-3HC.
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Under the influence of UV light, 3-HC in its enol form (more stable ground-state isomer:
cis, also called N is some references) undergoes an Excited State Proton Transfer
(ESIPT) process in its first excited state to form the keto (tautomer) form, denoted T*,
through a transition state where the transferred hydrogen is midway between both

oxygen centers (Fig. 24) [263].
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Fig. 24 Schematic representation of the ESIPT photoprocess cycle.

Both first excited state isomers (cis* and T*) have absorption bands and fluorescence
bands well-separated. Their positions and intensities are very sensitive to chemical
substitution, solvent polarity, but also to specific interactions such as hydrogen bonding
with the surrounding medium (Fig. 25). This spectral sensitivity was significantly
investigated from the experimental point of view in order to use it to monitor the
physico-chemical properties of the microenvironment both from the positions and the

relative intensities of their two emission bands [217-220,223-239,241-246].
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Fig. 25 (a) UV/Vis spectra of 3-HC dissolved in methylcyclohexane (green), acetonitrile (blue), ethanol
(orange), and neat water at pH 7 (light blue) and pH 13 (red), with concentration varying from 5x107° to
5x10"*mol.L-1. (b) Static fluorescence spectra of 3-HC dissolved (4x10*molL1) in methylcyclohexane,

acetonitrile, and ethanol as well as (5x10~°mol.L-1) in neat water at pH 7 and 13, color-coded as in (a) and
with excitation wavelengths in the respective maxima of band C. The absorption and emission intensities

have been normalized to their respective maxima. From Chevalier et al. (2013) [220].

A recent exhaustive experimental study of 3-HC into several solvents (polar, non-polar,
and protic) by Chevalier et al. (2013) [220] has highlighted a unique behavior of the 3-
HC molecule. The existence of two rate constants for the ESIPT process: a large one
(femtosecond time scale) and a small one (picosecond time scale) irrespectively of the
solvent nature. Into protic solvents, intermolecular solute-solvent interactions such as
hydrogen bonds are present as well as anionic 3-HC molecules. Such interactions slow
down the ESIPT process upon making the hydrogen less available for the proton
transfer. However, they could not demonstrate the origin of the slow ESIPT process into
aprotic polar and non-polar solvents. Nevertheless, they suggest that the trans* isomer

(related to cis* on the first excited state along an out-of-plane motion of the hydrogen
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torsion) could play the role of an intermediate during the ESIPT process, inducing a
delay into the photoreaction, which could explain the slow ESIPT process for 3-HC (Fig.
26). One can notice that a trans* isomer of the tautomer form (T*) exists, but to reach
this isomer, first the system needs to start the ESIPT process and in a second stage to
activate the hydrogen torsion (out-of-plane motion). Therefore, one can expect that the

—trans-T* isomer does not play any major role during the ESIPT process.
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Fig. 26 Schematic representation of the geometries relevant for the ESIPT and cis-trans-isomerizations on the

first excited state.

From a theoretical point of view very few studies were achieved; they were mostly
focused on characterizing the protic solvent effects over spectral properties of some 3-
HC derivatives to rationalize the large Stokes shift observed (defined as the difference
between absorption and emission peak frequencies) [264] and to map the 3-HC direct
ESIPT direction [263,265]. The latter authors optimized the ground state geometries of
the cis and trans isomers. They showed that the cis isomer is the most stable species in
the ground state and that it absorbs to the first excited state unlike the trans isomer. In
addition, the Intrinsic Reaction Coordinate (IRC) of Ash et al. (2011) [263] on the first
excited state highlights a barrierless ESIPT direction, which is consistent with the fast
proton transfer process (femtosecond time scale). This result is a common feature of
ESIPT processes [266-270]. Unfortunately, none of these theoretical studies
investigated the role of the trans isomer on the first exited state and the physico-

chemical effects behind the 3-HC ESIPT slow rate constants (picosecond time scale).
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Part of this project has been conducted in close collaboration with experimentalists: Dr.
Thomas Gustavsson (CEA, France) and Prof. Rajan Das (Tata Institute of Fundamental
Research, India). They studied the time-fluorescence spectroscopy of 2T-3HC in several
solvents. Their preliminary results show that the ESIPT process presents one
fluorescence rate constant (picosecond time scale) in cyclohexane and two rate
constants in polar solvents such as acetonitrile (unpublished results - paper in
preparation). To the best of our knowledge, no theoretical work investigated this
system, thus, we have studied the solvent polarity effect over the ESIPT process on its
first excited state to rationalize experimental observations. 2T-3HC is a derivative of 3-
HC where the substituent R = H is replaced by a thione fragment. Compared to the 3-HC
original compound, 2T-3HC, due to its thione fragment, presents additional degrees of
freedom, the most crucial one being the thione torsion (out-of-plane motion). Moreover,
the thione fragment is not symmetric, thus, the isomers obtained through its torsion are
not equivalent (Fig. 27). Hence, mapping the excited state potential energy surface for

this system is expected to be more intricate than for the 3-HC original compound.

Fig. 27 Ground state structures of the four enol isomers of 2-thienyl-3-hydroxychromone.

3-HC is a prototype system for other derivatives because it is the basic unit of all
flavonoid undergoing an ESIPT process and it is not perturbed by any substituent.
Hence, we will first focus on understanding and characterizing the slow ESIPT process in
3-HC before studying the solvent polarity effect overt the ESIPT process in the 2T-3HC

derivatives.
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First, we mapped the first excited potential energy surface of 3-HC along several
directions: in particular, the ESIPT direction and the hydrogen torsion (linking the cis to
the trans isomers of the enol form). We showed that these two reaction coordinates
occur to involve collective motions delocalized over the two rings and the CO bonds, as
opposed to a simpler picture where only the transferred hydrogen would move around a
rigid skeleton. We were able to optimize and characterize never-documented stationary
points on this potential energy surface, which are connected to the cis-trans
isomerization pathway and to an S1/S2 Coln within the FC region. The existence of such a
Coln has never been discussed before and we suspect it to be, to some extent, the reason
for the delay observed in the 3-HC ESIPT photoprocess upon trapping part of the system
on the second excited state. The investigation of the potential energy surfaces
landscapes provided the information required building a quasidiabatic model for the
coupled potential energy surfaces. Then, we ran quantum dynamics calculations to
demonstrate the non-negligible involvement of the Coln and/or of the trans* isomer

with respect to the ESIPT picosecond time scale rate constant.

We carried out a similar quantum chemistry study for 2T-3HC. However, in this case, we
focused on understanding the solvent polarity effect over the potential energy surface
landscape of the ground state and the first excited state. We highlighted the presence of

two thione-rotamer channels that respond identically to the solvent polarity.

II- Computational Details

The level of theory used in this chapter for the electronic structure calculations is DFT
for the ground state and TD-DFT for the excited states with the PBEO functional [271]
and an extended triple zeta basis set (i.e cc-pVTZ) implemented in the Gaussian09
package. The PBEO functional was chosen because benchmark studies have shown that
it produces excitation energies with an acceptable mean absolute error of 0.14 eV for
some typical organic dyes [272,273]. In addition, it has already been used to study 3-HC
derivatives [264], as it provides a good description of hydrogen bonding (necessary to
describe the intermolecular hydrogen bonding between the two oxygen centers

involved in the ESIPT process) [274]. Several studies compared the efficiency and
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accuracy of TD-DFT with wave function methods (such as CASPT2 or CASSCF for
example) over the description of the excited state involved in the ESIPT photoprocess
[267-270]. They showed a gain of computational cost and a reliable description of the
ESIPT energy profile.

Regarding the description of the Coln, our level of theory may not be the most adequate
[275]. Methods such as MCSCF, which include the static electron correlation required for
an adequate description of a Coln, are out of reach due to the large number of active
electron in our system (19 electron for 3-HC). Nevertheless, the Coln that we found
happens to be between two excited electronic states, which are thus both calculated on
the same footing, with the same method (TD-DFT). This situation is less problematic
than cases where a Coln occurs between the ground state and the first excited state,
since, in that latter case, both electronic states are described at different levels (i.e.
ground state: DFT and excited state: TD-DFT). This is known to often result in a poor
description of the Coln topography in its vicinity, which has been discussed in several
papers in the literature [214-216,275] (this can be viewed as a generalization to TD-
DFT of the Brillouin theorem for multiconfigurationnal wave functions: absence of
interaction between a reference configuration and all related singly-excited
configurations). In brief, the corresponding branching space is one-dimensional instead
of two-dimensional because the electronic coupling is mistreated. Our situation is
different, as both excited states under study are not necessarily related to each other
through single excitations only. In any case, we have observed a normal behavior in the
vicinity of the Coln with a typical cusp and a two-dimensional branching space, as will
be shown in this Chapter. Hence, we can be confident that our level of theory to describe
the Coln is adequate. Note that it was approximately located (i.e. not necessarily the
minimum of the seam), as no Coln optimization algorithm has been implemented yet in
quantum chemistry packages for TD-DFT calculations. However, its direct accessibility

from the Franck-Condon point is likely to make this point relevant.

Another point to make regarding our level of theory is about the solvent effect
description for which we used the PCM model (see Chapter I). In these calculations, the
absorption and emission energies are obtained taking into account the non-equilibrated

solvent effect. In other words, for the absorption, the solvent is in its equilibrium state
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for So but not for S; and the other way around for the emission (a more extensive
discussion about the solvent relaxation effect can be found in Chapter IV). As we are
using an implicit description of the solvent (i.e. the PCM method), no explicit solute-
solvent interaction such as hydrogen bonds is described, thus making the description of
protic solvent effects unreliable. If one wants to investigate such solvent effects
(intermolecular interactions), one needs to include explicit solvent molecule
interactions, which have a significantly high computational cost [264], and possibly use
non-straightforward methods such as QM/MM [276] or ONIOM [277] treatments, thus
making this task even more tedious. Hence, we focused our study only on the effect of
non-polar and polar solvents (mainly electrostatic interactions). In the following, we will

not confront our results with experimental ones obtained into protic solvents.

III- 3-Hydroxychromone

The objective of our study is to rationalize the physical/chemical effects that explain
why two rate constants are observed for the ESIPT process in 3-HC. The ground state
and first excited state potential energy surfaces will be characterized to understand
from a static point of view the connection between the critical points involved in the
photoreactivity of this system. Our study has provided new stationary points in addition
to the four already proposed in the literature (i.e cis, trans, TSgsier and T) [263,264] as
well as the discovery of a Coln in the FC region. We suspect that this crossing between
both excited states (S1: and Sz) may play a significant role on the picosecond time scale
(smaller rate constant) upon trapping the system to some extent. This hypothesis will be
confirmed with non-adiabatic quantum dynamics calculations run on a model of coupled

potential energy surfaces.

In what follows, when using “the hydrogen” with no further specification, we will always

refer to the proton that is being transferred during the ESIPT process.
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1. Potential Energy Surface Landscape

Within the usual FC picture, we consider that, after absorption of UV light, the system is
promoted suddenly to the first excited electronic state. The nuclear wave packet that
starts on the bright electronic state is considered as the vibrational ground state in So
(i.e. electronic ground state). It is centered on the FC geometry (i.e. the optimized
geometry of the ground state). The width of this approximately Gaussian function along
each internal coordinate is a measure of its delocalization. In our case, there is an initial
FC force on the first excited state. Classically, this will lead the system to relax toward
the first excited state cis minimum of the enol form, denoted cis* (Fig. 28) [263,264].
From a quantum point of view, the center of the wave packet will essentially follow the
same initial relaxation direction but its widths will change as it propagates. This
relaxation direction will be called the ESIPT direction, as it further leads to the excited
tautomer (keto form), denoted T* (Fig. 28), as shown below. We now focus on a more

detailed analysis of the shape of the potential energy surface along this ESIPT direction.

.\\
N~
N
SN cis* TScopr*
NS e ESIP
3.84eV 3.87eV '\
N
N
N
N
| S —
3.36eV
4.11eV 3.83eV lz.nev
4¢”.”
v ”_,,—,
Sy ——————————- -

Fig. 28 Scheme of the ground state (black) and the first excited state (red) potential energy curves along the
ESIPT direction. All energies are given in eV. Stationary points energies are given as differences with respect
to the cis ground state energy. Vertical transition energies from cis (absorption) and from cis* and T*

(fluorescence) are also indicated.
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1-1 The ESIPT Direction

One can rationalize the geometry relaxation on the first excited state, from the FC point
(i.e. vertical transition from the ground state global minimum, cis) to the cis* minimum,
upon analyzing the bonding interactions within the singly-occupied orbitals involved in
the first excited state (i.e. single electron excitations from the ground state) (see Fig. 29,

Fig. 30 and Tab. 2).

As already mentioned, the first excited state differs from the ground state mainly by the
excitation of a single electron between two orbitals: m (HOMO) to n* (LUMO) (mm*
electronic state). This implies a change in the bonding pattern of the electron
distribution, hence a change in the geometry of the minimum. There are three possible
types of local interactions between the orbitals of a bond: bonding, non-bonding, anti-
bonding. If the local interaction in a bond goes, for example, from bonding (within the
HOMO) to non-bonding or anti-bonding (within the LUMO), the bond length increases as
it is destabilized, and the other way around if the local interaction goes from anti-
bonding or non-bonding to bonding, etc. All the possible types of excitation
combinations between the HOMO and LUMO orbitals with their effects on the bond
lengths are displayed in Tab. 1. As will be discussed below, ambiguous cases will require

some extra information.

Tab. 1 All possible changes of local bonding patterns from the HOMO to the LUMO orbitals and whether they

stabilize or destabilize the corresponding bond. The respective evolution of the bond length (||I'||) is given.

LUMO Non-Bonding Bonding Anti-Bonding
HOMO
Non-Bonding Stabilization: Destabilization:
||r|| decreases ||r|| increases
Bonding Destabilization: Destabilization:
||r|| increases ||r|| increases
Anti-Bonding Stabilization: Stabilization:
||r|| decreases ||r|| decreases
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Fig. 29 HOMO and LUMO orbitals with their energies at the FC, cis*, and T* geometries.

FC(S,) - cis*

Fig. 30 Upper panel: atoms labels. Lower panel: FC and cis* bond lengths in angstrom.
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Tab. 2 HOMO and LUMO local bonding patterns at the FC geometry. Ar is defined as the bond length difference

between cis* and FC geometries (||rgs — recll)

Bond HOMO interaction =~ LUMO interaction  Ar (A)
C1-C2 Bonding Non-bonding 0.044
C2-C3 Bonding Bonding —0.037
C3-Cs4 Anti-bonding Anti-bonding 0.015
C3-Cs Bonding Anti-bonding 0.016
C4-Cs Bonding Anti-bonding 0.021
Cs5-Cs Anti-bonding Bonding —0.021
Ce-C7 Bonding Anti-bonding 0.045
C7-Cs Non-bonding Bonding —0.023
Cs-09 Non-bonding Anti-bonding 0.046
09-C10 Anti-bonding Anti-bonding —0.022
C10-C1 Bonding Non-bonding 0.019
C1-011 Anti-bonding Non-bonding —0.032
011-Hi13 Bonding Non-bonding 0.045
C2-012 Anti-bonding Anti-bonding 0.019

One can notice in Tab. 2, that the general rule to predict the geometry relaxation works in
all cases where there is a change in the type of local interaction (e.g. bonding to anti-
bonding). However, when the type of interaction for a bond is the same in the HOMO
and LUMO, one could expect negligible geometrical change. This is not what we
observed in our case: several bonds such as Cz-C3, C3-Cs, 09-C10, and C2-O12 experience
deformations. This can be understood upon considering a more subtle effect: the change
of local density around the two atoms of the bond at the FC geometry (see Fig. 31). This
does not necessarily induce a change of type of bonding interaction for a given bond.
The quantity plotted on Fig. 31 represents the electron density difference between the
LUMO and HOMO orbitals. If the electron density increases on the two atoms of the
bond, this means that the interaction type will be exalted once in the excited state. In
other words, the molecular orbital becomes more bonding or more anti-bonding in the
excited state for this bond. For example, the Cz-C3 bond is bonding in the HOMO and

LUMO. However, the local density on this bond increases in the first excited state. This

113



results in a stabilization of the bond (i.e. the bond length decreases), as its molecular
orbital is more bonding in the first excited state. The Cz-C3, C3-C4, O9-C10 and C2-012 bond

evolutions are displayed in Tab. 3.

Fig. 31 Electron density difference between the densities of the LUMO and HOMO orbitals at the FC geometry.

Blue: gain of electron density. Yellow: loss of electron density.

Tab. 3 Local density evolution for each bond between the HOMO and LUMO orbitals in Fig. 31. ¥ Evolution of

the interaction types from the ground state to the first excited state of the specific bond. *‘Corresponding

evolution of the bond length (||l'||).

Bond Local density = Bond type interaction? ||r|| evolution’
C2-C3 Increases More bonding Stabilization: decreases
C3-Ca Increases on Cs More anti-bonding Destabilization: increases
09-C10 | Decreases on Og Less anti-bonding Stabilization: decreases
C2-012 Increases More anti-bonding Destabilization: increases

In addition, Fig. 31 highlights the Charge Transfer (CT) character of the first excited
state with respect to the ground state at the FC geometry. One can notice that the
electron density goes from the O11-H region to the C=012 bond (and to some extent to
the benzene ring). This charge redistribution induces a change in the dipole moment
direction of the first excited state with respect to the ground state (see Fig. 32). In the
ground state, the dipole moment direction is due to the O-C polar bonds because oxygen
atoms are more electronegative than carbon and hydrogen atoms. While on the first

excited state at FC, as already mentioned, the electron density moves from the O11-H
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region to the C=012 bond, which induces a separation of charge. This formally results in
a negative charge on Oz and a positive charge on O11 on the corresponding Lewis
structure (Fig. 32). One can notice that regarding the S; Lewis representation, we focus
on rationalizing the 011-H-~012 / 011-H-O12 fragment, putting aside the electronic
redistribution of the rest of the system. In addition, a single Lewis representation is not
always enough to describe the electronic structure of excited states (this reflects their
multiconfigurational character, more frequent than for typical closed-shell ground
states). Hence, our Lewis interpretation is tentative and could be written in a different
way, such as in Refs. [228,231,234,238,239,244,245,266,278]. One point of discussion
about our Lewis representation is about the formal charge on 011 and O12. At FC the CT
character is characterized by the separation of charge induced by the electronic
redistribution on the first excited state. However, the magnitudes of dipole moments of
the first excited and ground electronic state are similar. This indicates a weak CT
character with respect to the ground state in terms of magnitude. Hence, the formal
charges in our Lewis representation could perhaps be replaced by radicals, with a
different charge redistribution in the remaining of the molecule. In any case, the small
change in the magnitude of the dipole moment is consistent with experimental
observations regarding the absence of shift in the UV/vis absorption spectrum while
increasing the solvent polarity (of aprotic solvent) indicating a weak CT character of 3-

HC [220,226,234].

FC
S,
2.93
O
S, /
H
(0]

Fig. 32 Lewis representations and dipole moments (in Debye) of the FC geometry on So and S1.

115



As already explained, this change of nature of the electronic state induces a longer C=01>
bond and a shorter C-O11 bond at the cis* geometry, as well as a longer O11-H bond and a
shorter O12-H distance (stronger H-bond). This is consistent with cis* being a precursor
for a further ESIPT process. Simply, transferring the proton in the first excited state goes
with removing the formal charges on both 011 and O12. This emphasizes the idea that the
driving force of an ESIPT process is based on the acidity of the proton donor (i.e. its
ability to give the proton losing electron density) and the basicity of the proton acceptor

(ability to accept the proton gaining electron density) [240,266,267,279-282].

This prediction is confirmed by the following observation: once the system relaxes from
FC to the cis* minimum, it goes along the ESIPT direction to form the tautomer (T*)
through an almost barrierless process (0.03 eV) (Fig. 28), which is consistent with an

ultrafast ESIPT process on the femtosecond time scale (larger rate constant).

The absence of a barrier can be understood by analyzing the HOMO and LUMO orbitals
at the cis* and T* geometries (Fig. 29). One can notice that they are very similar in terms
of shape at both points, which means that there is no major electronic reorganization
along the ESIPT coordinate. In other words, this direction does not influence much the
electronic structure of the first excited state, which keeps its original diabatic character
along this direction. Indeed, both the HOMO and LUMO stay essentially the same
antisymmetric orbitals with respect to the molecular plane, i.e. out-of-plane orbitals (m
and m* respectively), whereas the ESIPT coordinate essentially alters the in-plane o
system involved locally in the 011-H~O12 / O1:1+H-O12 fragment during the proton

transfer.

The tautomer (T*) is a fluorescent minimum. In other words, at this geometry, the
system relaxes from the first excited state to the ground state by emission of a photon.
However, no tautomer minimum could be found on the ground state. Again, this can be
rationalized in terms of frontier orbitals. The ground state is a closed-shell system (two
electrons in the HOMO). Then, the total energy depends mainly on the HOMO energy
[283], which is higher in the tautomer (So) than in the cis (So) geometry (Fig. 28 and Fig.
29). The absence of tautomer minimum on the ground state was observed in several

other ESIPT systems such as salicylic acid for example [266,268-270].
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Note that the evolution of the electronic structure of 3-HC during the ESIPT process on
the first excited state has been interpreted by Alexander P. Demchenko et al. (2013)
[266] in terms of Charge Transfer (CT) and Proton Transfer (PT) diabatic states (see Fig.
33). Our results show that the main configuration is essentially the same mmt* along the
ESIPT coordinate. This is not necessarily in contradiction with the previous
interpretation if the coupling, hence the mixing, between the CT and PT states is large at
all points (strongly avoided crossing). If so, this merely is a difference of point of view
with respect to the definition of the diabatic states. In addition, the dominant
configuration is not the only one to be involved in the electronic state, which means that
other configurations could be responsible of the CT/PT mixture. In any case, this
description is interesting, as it explains the occurrence of a small barrier corresponding

to a strongly avoided crossing.

ESIPT

Fig. 33 Scheme of principle of the charge transfer ad porton transfer diabatic states (dashed lines) and S1

adiabatic state (plain line) along the ESIPT coordinate.

Fig. 31 already suggests the existence of a CT character at the FC geometry upon strong
charge redistribution after the excitation of the first excited state. Fig. 29 highlights the

weak electronic reorganization of the m and m* molecular orbitals along the ESIPT
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direction. This means that the CT character at FC and cis* (enol form) is strongly
coupled with the PT character of the keto form (T%*), i.e. the adiabatic mn* electronic
state is strongly shifted with respect to the diabatic CT and PT electronic states, leading
to a barrierless ESIPT process and a weak CT character [266] (see Fig. 33). Those
interpretations are compatible with the evolution of the dipole moment and our
following Lewis representations depicted in Fig. 34. The dipole moments of FC and cis*
are similar, the small difference in magnitude and direction is induced upon geometry
relaxation; hence, one can conclude that cis* geometry is essentially related to the same
CT diabatic electronic state as FC. At T*, the dipole moment is smaller than at cis* and in
another direction. This is compatible with the fact that at T*, the proton get transferred
to neutralize the charge separation. This explains that T* is the global minimum on the

first excited state.

FC-S, cis* T*
2.52D 2.50D
\ o O+
;S —> / _ 1.91D
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FC-S, _293D

0]

/

H
O

Fig. 34 Lewis representations and dipole moments (in Debye) at FC on So and S1, cis*, and T*.

At this point, we have shown that the barrierless potential along the ESIPT direction
could explain the larger rate constant (femtosecond time scale) as characterized in other
ESIPT systems [268-270]. However, nothing has been proposed yet to explain the
smaller rate constant (picosecond time scale). Hence, we have investigated the potential
energy surface along other directions. First, along an in-plane deformation coordinate
(preserving the Cs symmetry) opposite to the ESIPT direction, we were able to locate a
Coln. In other words, the first two excited electronic states (i.e. S1, S2) cross along this
direction, as discussed below. The existence of a such a Coln in other ESIPT systems (i.e.

malonaldehyde,  o-hydroxybenzaldehyde,  7-hydroxy-1-indanone, and  2-(2'-
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hydroxyphenyl)benzothiazole) was suggested by Aquino et al. (2005) [268] but never

fully characterized.

1-2 Description of the S1/Sz Conical Intersection

The S1/S2 Coln that we found is peaked: it connects two lower-energy stationary points
on the first excited state: the cis* minimum and a never documented transition state,
denoted TS>* (Fig. 35). The geometry of the Coln is similar to the FC point and its energy
is only 0.13 eV higher. This makes it potentially accessible by the initial packet when
accounting for its delocalized character in space and for the width of the energy
distribution that reflects light absorption within a Franck-Condon picture. The extent to
which the Coln region is explored will be discussed based on results obtained from

numerical simulations presented in the next section.
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Fig. 35 Scheme of the diabatic and adiabatic potential energies along the ESIPT reaction coordinate. Blue: ntt*
(A”) Red: im* (A’). All energies are given in eV. Stationary points energies are given as differences with

respect to the cis (So) energy.

Characterizing a Coln requires to analyze the electronic structure involved in the

electronic states that cross. Thus, we analyzed the dominant configurations in the
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electronic structures of the first and second excited states at both stationary points (i.e.

TS2* and cis*) directly connected to the Coln.

At the cis* geometry, the dominant configurations in the electronic wave functions of the
first two excited states are similar to the ones at FC and mostly correspond to single
excitations. The first excited state is nt* and the second one is mainly characterized by a
single excitation from the essentially non-bonding orbital localized on the oxygen of the
C=012 bond to the same m* orbital (LUMO). It will thus be referred to as an nm*
electronic state (Fig. 36). At the TS2* geometry, the situation is the opposite: the nm*
electronic state is now the first excited state, while the second excited state is trt* (Fig.

36).

S:l AH

Fig. 36 Singly occupied orbitals at the cis* and TSz* geometry for the first (S1) and second (Sz) excited states.

The symmetries of the orbitals and electronic states refer to the Cs point group.

Visual inspection of Fig. 36 shows that the n, m and ©* orbitals at cis* and TS>* are

essentially the same. Hence, the Coln in Fig. 35 can be rationalized, as illustrated and Fig.
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37, in terms of a correlation diagram showing a crossing between the mn* and nm*

configurations along a direction connecting the cis* and TS>* geometries.

TS,* cis*
%
S, * - —— * S,
//’// \\\\\\ *
S, nm* —— —— Mg,

Fig. 37 Electronic state correlation diagram between TSz* and cis* geometries.

As shown on Fig. 37, there is a crossing between S; and S in terms of their dominant
configurations nm* and mr*. This is confirmed in Tab. 4. Let us make a remark at this
stage. Qualitative interpretations based on relative orbital energies are not always valid.
For example, here, the orbitals of interest are n, , and *. One would have expected the
first excited state to come mainly from a HOMO to LUMO excitation and the second
excited state from a HOMO-1 to LUMO excitation and thus to observe a crossing of the
HOMO and HOMO-1 orbitals but this is not the case. Indeed, this simplistic picture in
terms of orbital energies does not account for electron correlation effects. For example,
electronic repulsion may be too large to estimate the energy of the state simply upon
adding the energies of the occupied orbitals (consider for instance the ground state
configurations of the atoms in the d-block that do not follow the Klechkowski rule). In
addition, a description based on a single-configuration picture is only an approximation.
There is some influence of the other configurations in the state energies. Tab. 4 shows
that the electronic structures (obtained at the TD-DFT level of calculation) of the first
two excited states are mostly, but not fully, mono-configurational. The largest coefficient
(dominant electronic configuration) is about 0.7 at all points for both states. However,
the second coefficient is small but not negligible (about 0.1) and thus characterizes some
electron correlation brought by the corresponding configurations into the electronic

states.

Finally, it should be stressed that we are examining Kohn-Sham (DFT) orbitals. They can

be interpreted in much the same way as Hartree-Fock orbitals in terms of their shape
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[284] but the physical meaning of their energies and of their contributions to the total
energy is unclear (especially for orbitals other than HOMO-LUMO) [285,286]. In our
case, it proved not to be adequate to use Kohn-Sham orbital energies when building an
orbital correlation diagram between the cis* and TS:* geometries. However, the
configuration correlation diagram displayed in Fig. 37 can be trusted as a faithful

representation of the states and how they cross (Fig. 37).

Tab. 4 Summary of the first two excited state main electronic configurations named from their singly

occupied orbitals and their coefficients (absolute values) obtained with the TD-DFT method.

TS2* FC cis*
S1 ntt*: 0.69 mnrt*: 0.69 mrt*: 0.69
nmz*: 0.10 mem2*: 0.10 <01
S2 mnrt*: 0.68 ntt*: 0.69 ntt*: 0.69
mem2*: 0.10 nms*: 0.12 nmz*: 0.12

The Coln is a crossing point between a nt* (A’) and an nm* (A”) electronic state. Using
the different symmetries of the electronic states will be helpful to characterize the Coln
branching space vectors. The symmetry of the dominant configuration, hence of the
singly occupied orbitals, can be used to characterize the symmetry of the electronic state
(the symmetry of the other configurations is, of course, the same than the main one due
to vanishing interactions between configurations of different symmetries). As already
mentioned, at the cis* geometry, the first excited state is mm*. Within the Cs point group,
both orbitals have a” symmetry, then the symmetry of the first excited state is A"QA" =
A'. The second excited state is of ntt* type. The non-bonding orbital on the oxygen has a’
symmetry and m* is a”. Then, the symmetry of the second excited state is A’@A" = A". At
the TS2* geometry, it is the other way around. The first excited state is A” (nt*) and the

second excited state is A’ (mm*) (see Fig. 35 and Fig. 36).

As the excited states have different symmetries (A’ and A”), we are in a situation where
the Coln is said to be induced by symmetry and its branching space is well defined with
respect to symmetry (this, because the gradients and derivative couplings are produced
from adiabatic states that have well defined symmetries) (see Chapter I and II). The

branching space vectors (i.e. gradient difference and derivative coupling) are displayed
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in Fig. 38. Along the gradient difference (x0(23)1) direction, which is A’, the Cs symmetry
is conserved. This direction essentially connects the cis* and the TS;* geometries via the
FC point. It consists in an in-plane deformation mostly localized on the fragment

undergoing the ESIPT process. The derivative coupling (x0(23)2

) breaks the Cs symmetry
of the molecular system and mixes both electronic states (i.e A’‘@A" = A"); it is an out-
of-plane motion involving mainly the hydrogen torsion (as suggested by Aquino et al.
(2005) [268]). Note that TD-DFT calculations do not produce analytic derivative
couplings. The branching space was thus obtained with a numerical method based on
the local shape of the double cone (see Appendix B) [73]. As already mentioned, using
TD-DFT in the present situation, between two excited states, occurred not to suffer from
the usual deficiencies of this method when applied to a crossing between the ground
state and an excited state (for which the crossing is often ill-defined and the coupling

vanishes). We checked that, as expected, both branching space vectors lifted degeneracy

to first order correctly as illustrated in Fig. 39.

"N

Gradient Difference

1
A’ :
e

Derivative Coupling %
A"

Fig. 38 Branching space vectors of the Coln obtained with the numerical procedure. Upper panel: gradient

difference, in-plane vectors. Lower panel: derivative coupling, out-of-plane vectors.
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electronic state blue: nn* electronic state. Lower panel: Scan along the hydrogen torsion from the Coln; plain

line: first excited state (S1); dashed line: second excited state (Sz). Their colors are not uniform to show that

0(23)2

the diabatic electronic states (nn* and nn*) mix along the derivative coupling direction (x -DC). Energies

are given in eV as differences with respect to the global minimum energy on the ground state, i.e. cis (So).

Along the gradient difference (ESIPT direction), as already explained, the Cs symmetry is
conserved. In other words, along the gradient difference, the mn* and nm* electronic
states do not mix. Therefore, along Cs-conserved symmetry directions, the quasidiabatic
electronic Hamiltonian is diagonal (no electronic coupling) leading to a particular case
where the quasidiabatic electronic basis is identical to the adiabatic electronic basis

except for the adiabatic state ordering that swap from on side to the other side of the

124



crossing: the lower-energy state, Sy, is identical to mm™* on the cis* side and to nmt* on the

TS2* side, and the reverse for Sz, as long as Cs symmetry is preserved (see Fig. 37).

The derivative coupling breaks the Cs symmetry and acts essentially along the out-of-
plane hydrogen torsion motion. Tab. 5 displays the main configurations at the Coln (H is
0° out of the molecular plane) and along the derivative coupling (H is * 21° out of the
molecular plane). This illustrates the mixing of the mn* and nm* electronic states (the
quasidiabatic electronic Hamiltonian now is non-diagonal) as the adiabatic electronic

states now show a relevant mixture of configurations while breaking the Cs symmetry.

Tab. 5 Summary of the first two excited state main electronic configurations named from their singly

occupied orbitals and their coefficients (absolute values) at different points along the hydrogen torsion angle.

0° 21°
S1 mrt*: 0.68 ntt*: 0.62
nt*: 0.24
S2 nm*: 0.69 nt*: 0.64
e 0.12 nmt*: 0.23

In addition, one can notice the possible existence of two stationary points when H is *
40° and 100° out of the plane of the molecule with respect to the Coln. One should keep
in mind that the potential energy surface along the hydrogen torsion depicted in Fig. 39
is a rigid scan. In such a case, the geometry parameters are kept constant (except for the
scan-coordinate), hence, what seems to be stationary points on the scan are not
optimized geometries. Therefore, one should expect the out-of-plane hydrogen torsion
angle of the respective optimized geometries to be different from these approximate

values.

Moreover, the symmetry of the derivative coupling (out-of-plane equivalent clockwise
and anticlockwise motions) and its magnitude have as a consequence: the creation of
two symmetric minima (denoted Min.* and Min_-*) on both sides of the aforementioned
TS2* point. These three points define a flat region (barrier of 0.002 eV), with respect to
the hydrogen torsion (transition vector deriving from the derivative coupling) where H

is £21.7° out of the molecular plane at the minima; this is an example of second-order
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Jahn-Teller effect creating a negative curvature at the transition state (Fig. 40). Both
minima around the transition state (i.e. Min.* and Min.*) correspond to the approximate
constrained minima inferred from Fig. 39 where H was +40° out of the molecular plane
with respect to the Coln. The occurrence of three minima around the crossing (cis*,
Min.*, and Min.*) can be seen as a reminiscence of the prototypical threefold Jahn-Teller

Mexican hat (e.g. in the benzene cation [287-291]) to a case with less symmetry.
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Fig. 40 Scheme of the stationary points around the Coln in the branching space frame.

This Coln has thus an impact on the shape of the first excited state potential energy
surface. One can also expect it to have an influence over the photoreactivity of the
molecule, as it is close to the FC region. Indeed, the electronic coupling within the FC
region can momentarily trap part of the system on the second excited state before it
decays back to the first excited state through the funnel in the second excited state
(black circle on Fig. 41). In addition, its presence is the signature that the first excited
state changes from mr* on the cis* side to nm* on the TS;* side. So, even if there is not
enough energy for a significant transfer to the second excited state, an adiabatic process
involving a reaction path that “turns around” the Coln would also result in some
trapping in the S;/nm* state around TS2*, thus on the wrong side with respect to the
ESIPT process (blue circle on Fig. 41). Both mechanisms (respectively non-adiabatic and
adiabatic) will potentially create a delay into the ESIPT rate constant and could be the

origin of the picosecond time scale rate constant.
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Fig. 41 Scheme of the relative positions of several stationary points along two dimensions: a global ESIPT
reaction coordinate and the hydrogen torsion. Black circle: non-adiabatic trapping. Blue circle: diabatic

trapping.

However, one of the hypotheses documented in previous studies to understand this low
rate constant is the existence of a trans* minimum (i.e 180° out-of-plane torsion of the
hydrogen) [220]. Hence, in the following part, we will focus on mapping the potential

energy surface landscape around the cis* to trans* isomerization.

1-3 Study of the cis-trans Isomerization in the First Excited State.

The trans* minimum was found 0.19 eV below the FC point and 0.09 eV higher than cis*.
From an energetic point of view, part of the system can access this region after photo-
excitation, thus inducing a delay into the ESIPT process. So far, it is widely accepted that
this trans* minimum comes from the hydrogen torsion of the cis* minimum through a
single barrier [220,246,263]. In fact, we could not locate any transition state connecting
directly the trans* and cis* minima. However, we did find a pair of never documented
transition states between Min.* and trans*, denoted TS:*, where the H torsion is
+109.43° (note that, as for Min.*, there is a pair of such enantiomeric points, depending
on whether TS:;* is connected to trans* either clockwise or anticlockwise). We thus
propose that the isomerization minimum energy path from cis* to trans* corresponds to
a two-step process that first involves a conversion from cis* to Min:* (going through or
around the Coln) involving mostly in-plane skeletal deformations, followed by the
hydrogen torsion connecting Min:* to trans* (both clockwise and anticlockwise), as

detailed below.
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One can picture the relative positions of these stationary points (TS2*, Min:*, cis*, trans*
and TS:*) on the first excited state along two dimensions as in Fig. 42. One must
overcome a barrier of 0.09 eV to access the trans region from the TSz* region (the flat
double well including TS2* and both Min:*). This result is emphasized by the minimum
energy paths that we determined on the first excited state along the hydrogen torsion

both from the cis* minimum and TS:* geometry as displayed in Fig. 43.
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Fig. 42 Scheme of the relative positions of several stationary points along two dimensions: the ESIPT Cs in-
plane coordinate and the hydrogen torsion (the corresponding energy barriers are indicated near the
arrows). The periodicity of the potential energy along the hydrogen torsion is not shown on this figure for the

sake of clarity.

The minimum energy path from TS2* shows a direct pathway between the TS2* region
and the trans* minimum through TS:*. In contrast, the one from the cis* minimum
shows an energy and geometry discontinuity around +20° along the hydrogen torsion.
In this minimum energy path, the system starts from a minimum (i.e. cis*) and in a first
stage (Fig. 43 and Fig. 44) follows an ascending valley along the hydrogen torsion with
almost no change in the other coordinates (Tab. 6). However, around +20° of the
hydrogen torsion (i.e. at the discontinuity), the system suddenly relaxes several Cs in-
plane coordinates (i.e. C1-Cz, C2-O12, 011-O12) (Fig. 44 stageZ) and changes from the
original valley to a lower valley, which happens to be the aforementioned minimum
energy path going between the TSz* region and the trans* minimum through TS* (Fig.
44 stage3). This is proved by the Cs in-plane coordinates relaxation before and after the

discontinuity displayed in Tab. 6. Before the discontinuity (i.e. B°) the bond lengths are
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typical of the cis* minimum, while they become similar to these of the TS2* point after

the discontinuity (i.e. A°).

In other words, the cis*-trans* isomerization cannot be considered as a one-
dimensional/one-step problem (i.e. hydrogen torsion and single barrier) but should be
described rather with a two-dimensional /two-step mechanism: Cs in-plane deformation
mixed with some hydrogen torsion that makes the system go trough or around the Coln

(first barrier) followed by almost pure hydrogen torsion (second barrier).
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Fig. 43 Minimum energy paths along the hydrogen torsion (in degree °); red: from the cis* minimum; blue:
from the TS:* transition state. Energy difference in eV with respect to the enol global minimum in the ground

state, i.e. cis (So) minimum. B°: Before the discontinuity; A°: after the discontinuity Tab. 6.
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Fig. 44 Scheme of the relative positions of several stationary points along two dimensions: a global Cs in-plane
coordinate and the hydrogen torsion. The three stages are related to the minimum energy paths. The
periodicity of the potential energy along the hydrogen torsion is not shown on this figure for the sake of

clarity.

Tab. 6 Bond lengths in angstrom (A) of cis*, TSz* and both “discontinuity points” along the minimum energy

path from cis* to trans*: B° (before the discontinuity) and A° (after the discontinuity); see Fig. 43.

C1-C2 C2-012 011-012
cis* 1.503 1.251 2.483
B° 1.506 1.248 2.497
A° 1.425 1.314 2.80
TS2* 1.422 1.320 2.797

Unfortunately, the minimum energy path from cis* to trans* does not give us much
information about the surface landscape between cis* and Min:* around the
discontinuity. We suggest the existence of a pair of symmetric transition states on both
sides of the Coln and connecting cis* to Min:* in much the same way as the prototypical
threefold Mexican hat in the benzene cation [287-291] (illustrated in Fig. 45). In such
systems, the electronic coupling induces the existence of three minima connected to
each other by three transitions states on a loop around the Coln, as illustrated in Fig. 45.
Preliminary investigations of the potential energy surface in the suspected region seem
to confirm this hypothesis. However, we have not been able to fully characterize this

hypothetical transition state (TS 1 and TS 3 in Fig. 45) yet because of numerical
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difficulties (or perhaps because there is a more complicated landscape involving some
bifurcation). In any case, if there is such a pair of points (TS 1 and TS 3) between cis*
and Min:*, the minimum energy path that goes from cis* to trans* will still require, first,
to follow a Cs in-plane deformation toward the TS2* region (along with some hydrogen
torsion contribution), which will lead to a pathway going around the Coln; and then to

turn fully along the hydrogen torsion direction.

Fig. 45 Scheme of the Jahn-Teller prototypical three-fold Mexican hat in the benzene cation [287-291]. The

stationary points are named as for 3-HC (see main text) for the sake of clarity.

Let us now focus on the nature of the first two excited states at the trans* minimum.
Again, the first excited state is nmt* (A”) and the second is trt* (A’) (Fig. 46). One can notice
that the trans* minimum has the same electronic structure as TS2*. In other words, from
the TS2* region the electronic structure does not change much in terms of dominant
diabatic state along the hydrogen torsion. However, the second-order Jahn-Teller effect
inducing the double well and the existence of the Min:* minima reflects some mixture of
the diabatic states (i.e. mm* and nmt*) along the hydrogen torsion as a direct consequence
of the electronic coupling around the Coln. One can notice that we are in the same
situation as in the previous section, i.e. Section1-2, while investigating the mixture of
diabatic electronic states along the derivative coupling of the Coln. This mixture of
diabatic electronic states is highlighted in Tab. 7 that displays the main electronic

configurations coefficients along the hydrogen torsion from TS>* to trans*.
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Tab. 7 Summary of the first two excited state main electronic configurations named from their singly

occupied orbitals and their coefficients (absolute values), at different point along the hydrogen torsion

coordinate.
TS2* TS* trans*
S1 ntt*: 0.69 ntt*: 0.64 ntt*: 0.69
e 0.10 nrt*: 0.26 mre*: 0.10
S2 mrt*: 0.68 m*: 0.60 nr*: 0.67
mem2*: 0.10 ntt*: 0.24 ntt*: 0.11

In summary, the diabatic electronic states are not coupled at TSz* for symmetry reasons
(the electronic state are defined within the Cs point group at this point): the adiabatic
states S1 and S; correspond to nm* and mn*, respectively. Further along the path that
goes to trans*, symmetry is lost and they start mixing significantly (for example around
Min:*). S1 and S; finally decouple again at trans* for symmetry reasons (Cs symmetry is
recovered at this point) where they correspond to nm* and nm*, respectively. As both
states are similar in nature and occur with the same energy order at TSz* and trans*, we
can conclude that there is no avoided crossing between them along the isomerization

pathway (i.e. there is no crossing between nm* and nm*).

S1 AH

Fig. 46 Singly occupied orbitals at the trans* geometry for its first excited state.
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Fig. 47 Scheme of the potential energy surfaces along two dimensions: the hydrogen torsion and the ESIPT Cs
in-plane coordinate. Circle: possible regions where parts of the system can be trapped into. The periodicity of

the potential energy along the hydrogen torsion is not shown on this figure for the sake of clarity.

Fig. 47 summarizes in two dimensions (i.e. the ESIPT Cs in-plane deformation and the
out-of-plane hydrogen torsion) the relative positions of all the critical points we located
so far on the first excited state. As already explained, the FC transition occurs within the
Coln region. Thus, we expect some part of the system to follow directly the ESIPT
direction with a rate constant on the femtosecond time scale. The other part of the
system can be trapped momentarily in three different regions: on the second excited
state because of the electronic coupling acting within the FC region (i.e. black circle in
Fig. 47), in the TS2* region through or around the Coln and in the trans* region through
several isomerization pathways (i.e. both blue circles in Fig. 47). To investigate the effect
of the Coln over the photoreactivity we have built a model of coupled potential energy
surfaces and run quantum dynamics calculations, which are presented in the next

section.

Before getting to the quantum dynamics section, let us make a short comment regarding
the cis-trans isomerization of the tautomer form. This non-fluorescent trans minimum of
the tautomer, denoted trans-T* was found 0.48 eV below the FC point and 0.31 eV
higher than T* (see Fig. 48); hence, once the wave packet gets to FC, it has enough
energy in principle to delocalize in the trans-T* region. However, the trans-T* minimum
is not expected to be deep enough (i.e. 0.04 eV hydrogen torsion barrier) to trap the
wave packet and induce a delay within the ESIPT process. Thus, this process will not be

accounted for in the following coupled potential energy surfaces model (note, however,
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that our simulations were run in full dimensionality). In addition, one should not expect
any ESIPT process from trans* to trans-T* as the hydrogen is not ideally oriented for a
direct transfer between both oxygen centers; as illustrated in Fig. 49, such a process
would require first a trans*-cis* isomerization, then the ESIPT process would occur and
be followed by a final T*- trans-T* isomerization. Moreover, this study focuses on the
role of the Coln within the ESIPT process. One of the outlooks of this project is a more

thorough investigation including the cis-trans isomerization of the tautomer.

Hydrogen Torsion
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Fig. 48 Scheme of the potential energy surfaces along two dimensions: the hydrogen torsion and the ESIPT Cs
in-plane coordinate. Arrow: hydrogen torsion barrier. Black: between FC and TSt*. Red: between TSt* and T.
Green: between TSt* and trans-T*. The hydrogen torsion angle of the cis-trans isomerization of the tautomer

form is defined differently with respect to the enol form.
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Fig. 49 Scheme of the various steps required to go from trans* to trans-T*.
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2. Quantum Dynamics

2-1. Set of Coordinates

To describe the nuclear motion in 3-HC, we chose internal coordinates defined with a Z-
matrix. This definition of the internal coordinates is different from the other application
case studied in this thesis (aminobenzonitrile), where we used the polyspherical
coordinate approach. In a set of coordinates defined with a Z-matrix, the first atom is
fixed (A1 in Fig. 50), the second atom is positioned with respect to the first with the
distance between them (Az), the third atom (if there is one) is positioned with a distance
and a valence angle involving the fist two (Az). If there are more than three atoms, each
is positioned with three degrees of freedom involving three atoms among the previous
ones (as A4):

* adistance between two atoms: stretching (Rz,R3,R4);

* avalence angle between three atoms: local in-plane deformation (63, 64);

* adihedral angle between four atoms: local out-of-plane deformation, i.e. torsion

(4).

Z-matrix coordinates are similar to polyspherical coordinates (same types of degrees of
freedom: distances, planar angles, and dihedral angles). The main difference concerns
the definition of the intermediate frames related to the hierarchical description in terms
of system subsystems, subsubsystems, etc. In some cases, Z-matrix coordinates fulfill the
required conditions but not always (because there is no prescription about the group to
which belong the three atoms used to define a new atom). Usually, Z-matrix coordinates
are chosen as valence coordinates (fulfilling the natural connectivity of the molecule)
but this is not compulsory. Dummy atoms can be used to define intermediate points and
axes (often to deal with the indetermination of a dihedral angle when three atoms are
aligned, but also potentially as a way to consider Jacobi vectors rather than valence
vectors only). In our case, we used typical valence coordinates following the

connectivity of the system except for the transferred H, as discussed below.
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The ESIPT process induces a change of connectivity of the transferred H (typical of all

chemical reactions where bonds are broken and formed), as illustrated in Fig. 34 where

H13z goes from 011 in cis* to O1z is T*. For this reason, we defined the position of this

atom with Cartesian coordinates (in the framework defined by the Z-matrix

coordinates). This allows a more balanced description of the hydrogen motion (i.e.

torsions and distances 0-H-0) with respect to the two oxygen centers involved in the

proton transfer. The full Z-matrix definition can be found in Appendix C and the

following figure shows the Cartesian frame used for His.
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Fig. 51 Cartesian frame.

In the following, we present the model of coupled potential energy surfaces that we
developed and used for quantum dynamics calculations to examine the role of the newly
found Coln. Note that the ESIPT process is almost barrierless such that vibrational
motions with low frequencies are likely to play an important role during the dynamics.
This is an example where using all nuclear coordinates could be crucial to describe

vibrational energy redistribution adequately.

All parameters used to build the model were extracted from ab-initio calculations (TD-

DFT/cc-pVTZ) at the four relevant geometries: Qgs, Qcis«» Qrs;, and Qcorn- The three

stationary points were optimized as minima and TS. As no Coln optimization algorithm
at the TD-DFT level is currently available in the Gaussian package, we located the Coln
point as a crossing near the FC point. The corresponding BS vectors (in particular, the
derivative coupling that is not available at the TD-DFT level) were calculated with a

numerical method (see Appendix B).

2-2. Coupled Potential Energy Surfaces Model

2-2-1 General Overview

We represented the coupled potential energy surfaces with a vibronic-coupling

Hamiltonian model, developed during this thesis and addressed in Chapter II, based on
three quasidiabatic states. It consists in a real symmetric matrix H%2P(Q) made of three

diagonal potential energy functions: H42P(Q), H&i2*(Q) and H{1?*(Q), and three off-
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diagonal electronic couplings, H42P(Q), H&i2P(Q) and Hi?P(Q), where Q denotes the set
of nuclear Z-matrix coordinates detailed in the previous section (48-dimensional
vectors). In the FC region the three quasidiabatic states (dashed line in Fig. 52) coincide
with the relevant adiabatic states (plain line in Fig. 52): state 1 (So/GS), state 2 (S1/mm*),
and state 3 (Sz/nm*).

diab

ESIPT

Fig. 52 Schematic representation of the quasidiabatic quadratic expansions around each minimum (dashed

lines) and the corresponding adiabatic ab-initio surfaces (plain lines).

Each diagonal entry, Hﬂiab(Q) is expanded quadratically around a reference geometry,
Q;;, among the relevant stationary points: Qgs = Qcis) Qurn* = Qcis» and Quyr = Qrs; as

depicted in Fig. 52.

The non-adiabatic coupling terms between the ground state and the two excited states
can be neglected, due to the absence of relevant Coln between the ground state and the
excited states. As a consequence, H32P(Q) is chosen such that it corresponds to the
ground state potential energy surface (to second order around the GS minimum), and

the electronic couplings H2P(Q) and Hi2P(Q) are set to zero.
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The quasidiabatic vibronic-coupling Hamiltonian matrix reads as,

| H{lliab (Q) | 0 | 0 Eq.103
HY2P(Q) = 0 Héizfab(Q) Héiéab(Q)
0 HIF*(Q) H{P(Q)

The remaining coupling, H{3"(Q), is expanded linearly around the S2/S1 Coln geometry
(i.e. Qcorn)- Its parameters are obtained using the two vectors of the branching space
that were generated numerically in a previous stage. The cis* minimum is used as a
reference point for setting the value of the arbitrary mixing angle between both
degenerate states so as to satisfy HSi2P(Q;s+)=0. As the quasidiabatic electronic coupling
is zero at this point, coincidence is enforced between the adiabatic minimum obtained
from the model and the quasidiabatic minimum chosen for the model. As the latter was
chosen as the ab-initio cis* minimum, they all coincide by construction. Hence, with this
choice of reference point (i.e. cis* and not TS;*) we ensure an adequate qualitative
description of the investigated regions (i.e. FC region and ESIPT process direction). One
needs to keep in mind that in this study we focus on investigating the effect of the non-
adiabatic couplings within the FC region on the reactivity of the system. In other words,
we want to know if such non-adiabatic couplings are strong enough to trap part of the
wave packet on the second excited state and induce a slower ESIPT process. The TSz*
transition state was not chosen as the reference point because a fine description of the
dynamics in this region is not relevant to our study in a first stage. Thus, the condition
Hggab(QTs;) =0 is not necessarily ensured. Nevertheless, we make the reasonable
approximation that the quasidiabatic electronic couplings are not strong enough at the
TSz* transition state to shift its geometry significantly from the quasidiabatic

representation to the adiabatic representation.

The quasidiabatic curvatures of the diagonal entries, Hﬁiab (Q), were obtained from the
ab-initio ones through a second-order Jahn-Teller procedure. In the TS2* region, as seen
on Fig. 53, the quasidiabatic force constant along the H torsion is positive by
construction (i.e. H$2P(Q) is quadratic and always positive). The second-order Jahn-
Teller effect (due to the non-adiabatic coupling between the first and the second excited

states) is strong enough at this point in our model to make the corresponding adiabatic
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force constant negative and thus induce, as expected, a double well in the surface of the
first excited state, characterized by the presence of both Min:* minima on each side of
TS2*. Indeed, as seen on Fig. 53, in constrast with H3d§ab (Q), the adiabatic curvature on Sy
is negative around the origin. Note that the ab-initio difference in energy between TSz*
and Min:* is very small (around 0.002 eV), which explains why the S1 profile along the

hydrogen torsion seems so flat.
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Fig. 53 Scan along the hydrogen torsion from TS:* (ab-initio geometry) using the vibronic-coupling
Hamiltonian model. Plain line: adiabatic potential - S1; dashed line: diabatic potential - H33. Energies are

given in eV with respect to the global minimum energy on the ground state, i.e. cis (So).

Furthermore, the curvature of the quasidiabatic H$J2"(Q) function along the almost
barrierless TSesipr* direction (i.e. Qcis* — Qrsig ) Was adjusted according to the switch
function modification procedure that we developed and which is presented in Chapter
II. It allows the cis* minimum harmonic frequencies to be conserved while ensuring that
we describe adequately the strong anharmonicity along the ESIPT coordinate until the
transition state (TSgsier™). Up to now, one can notice that we never mentioned the
involvement of the tautomer (T*) minimum into our coupled potential energy surfaces
model. This is because we are not focusing on understanding and investigating the full
proton transfer dynamics, which would require a much more advanced model. However,

if the ESIPT direction is not adequately described from cis* to TSgsier*, the wave packet
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will be trapped artificially within the FC region due to its impossibility to spread along
the reaction coordinate. That would thus falsify our results and interpretations. Tom
summarize, we believe that our model ensures an adequate description of the first
stages of the ESIPT process (i.e. from the absorption at FC to the transition state
TSksipr™). We could have added a complex absorbing potential along the ESIPT direction
(a practical tool used in quantum dynamics calculations to describe dissociative
processes [31]). However, this was not mandatory here, as we focused on the early
stages of the dynamics (< 100 fs), where the wave packet stays mainly localized within

the FC-cis* region.

Another technical point that is investigated in the following regards the validity of our
model for describing the isomerization pathway from TS2* to trans* along the hydrogen

torsion.

2-2-2 Isomerization TSz*-trans*

The H torsion is a symmetric (i.e. up or down) and periodic motion that should, in
principle, involve periodic functions rather than quadratic expansions in the expressions
of the potential energy functions. Nevertheless, using this type of functions will
complicate the formalism on which our model is based, as we should then adapt the
mathematical relationships among all derivatives. In particular, implementing
expressions of the quasidiabatic electronic couplings with periodic functions along this
torsion coordinate would require a fitting procedure of their parameters; in addition the
presence of a second-order Jahn-Teller effect at TS2* adds a difficulty that could be
tedious to recast in terms of periodic functions rather than a second-order expansion.
However, if the wave packet does not have time to overcome the hydrogen torsion
barrier to go from the TS2* region to the trans* minimum (i.e. 0.09 eV) — in other
words, if the wave packet does not spread significantly along the hydrogen torsion
direction to form the trans* species — then an adequate periodic description of this

motion and the description of the trans* region in our model will not be mandatory.

In order to check this hypothesis, we ran a one-dimensional quantum dynamics

simulation along the hydrogen torsion. To this end, we built a one-dimensional potential
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energy surface (for the first excited state) along the hydrogen-torsion coordinate
(dihedral angle denoted B) using a periodic function (i.e. cosine function, Eq. 104). The
corresponding parameters were optimized for the function to go trough the relevant
stationary points along the hydrogen-torsion (i.e. TS2*, Min+*, TS:*, and trans*). Note
that Min.* and TS:* are not displaced only along the hydrogen torsion from TS>*, as seen
on Fig. 47; however, this is a good approximation (99% and 98% overlaps between the
normalized directions of the actual displacements and the hydrogen torsion coordinate).
The obtained one-dimensional potential energy surface along the hydrogen torsion is
depicted on Fig. 54; one can notice a slight shift between the ab-initio and the one-
dimensional model at the relevant stationary points, which is expected to be too small to
have a relevant impact on the wave packet behavior (no more than about 10-3 eV in

terms of energy).

Eip(B) = 3.7429519 * 1073 — 2.3153736 * 107> * cos(B) — 1.6050716 * 103> Eq. 104
x cos(2B) + 1.2737786 * 1073 * cos(3B)
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Fig. 54 One-dimensional potential energy surface along the hydrogen torsion coordinate ().

142



The following one-dimensional wave packet propagation starting at TSz* (Fig. 55) were
achieved using the EIVibRot program developed at the Laboratoire de Chimie Physique,

Orsay, France by David Lauvergnat.
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Fig. 55 One-dimensional wave packet propagation along the hydrogen torsion coordinate over time (wave

packet isodensity contour plot).

Fig. 55 shows the time evolution of the density of probability along the hydrogen torsion
during 250 fs. Initially (i.e. t = 0 fs) the wave packet is center in TS>*, and it oscillate in
time along the hydrogen torsion (“breathing” of the packet). One can notice that the
density of probability stays very close to zero within the trans* region. In other words,
the wave packet does not overcome the 0.09 eV torsion barrier to delocalize along the

TS2*-trans* isomerization pathway.

In conclusion, as the wave packet stays localized within the TS;* region, it will thus not
spread significantly along the hydrogen-torsion, at least during 250 fs. This justifies why
it is not necessary in a first stage to have an adequate description of the entire hydrogen
torsion motion (i.e. using periodic functions). The TS2* region (from 0° to 20°) is thus
the most relevant part of the hydrogen-torsion pathway and a quadratic expansion is

sufficiently accurate within the relevant time scale for the dynamics under study.
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In summary, in our coupled potential energy surfaces model:

* The full ESIPT process is not described (no description of the T* basin).

* The ESIPT direction is described using a switch function modification strategy.

* Our methodology to diabatize the ab-initio Hessian provides an automatic
description of the Min.* minima induced by a second-order Jahn-Teller effect.

* There is no requirement to use a periodic function to describe the full hydrogen
torsion, as the system does not overcome the torsion barrier within a relevant
time scale.

* We focus on investigating the role of the non-adiabatic electronic coupling

induced by the Coln within the FC region.
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Fig. 56 Scheme of the potential energy surface of the first-excited state along two dimensions: the hydrogen

torsion and the ESIPT coordinate. Green box: region of interest. The periodicity of the potential energy along

the hydrogen torsion is not shown on this figure for the sake of clarity.

The green box in Fig. 68 illustrates the region of interest for our coupled potential
energy surfaces model. In the following, we address the comparison between the

coupled potential energy surfaces obtained by our methodology and the ab-initio data.

2-2-3 Comparison of Our Model with Ab-initio Data

Fig. 59 shows the agreement between the ab-initio energies (dashed lines) and the ones
of our vibronic coupling Hamilonian model (plain lines) along the ESIPT direction and
along the hydrogen torsion direction. One can notice that the Coln position in our model

is slightly shifted with respect to the ab-initio Coln position (i.e. the maximal deviation
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for the C1-Cz, C6-C7, Cg-09, O11-H13 bonds, highlighted in green, is around 0.004 A and 0.5
° for the 012-C2-C1 valence angle denote 0; These coordinates are displayed in Fig. 57);
but the strong anharmonicity on the first excited state along the ESIPT direction until

TSesipr™ is reproduced perfectly with respect to the ab-initio data.

There was no direct curvature modification along the Coln direction (i.e. Q¢is* — Qcomn)
but, as already mentioned, we added a curvature modification along the ESIPT direction
(ie. Qcis* — Qrsig pp)- As both directions are not orthogonal, there is an indirect effect
along the Coln direction, which explains the shift of this point. This highlights one of the
limitations of our model: the inability to modify simultaneously curvatures along similar

directions.

C7 Og
C6 CS C10
2,
Cs Cs Cy
C. CO O11
0
O, s

Fig. 57 3-HC molecule.

Nonetheless, on the one hand, as observed on the ABN application case (Chapter 1V), a
slight shift of the Coln position does not have a significant impact on the qualitative
behavior of the quasidiabatic populations. On the other hand, this shift in the Coln
region induces a larger gradient at FC with our model than in the ab-initio data. Hence,
in our dynamics calculations one should expect the wave packet to leave faster the FC
region than in the experimental situation. Therefore, this gradient effect should be
visible while comparing the model and experimental UV absorption spectrum, as

discussed in the following section.

Up to now, we did not discuss the ~0.3-0.5 eV shift of the second excited state between

our model and the ab-initio data along the ESIPT direction when x > 10 (from the cis*
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point toward TSgsipr*). However, this region is not relevant for our study, as we do not
expect the wave packet to have enough energy to delocalize significantly along this
region in the second excited state (i.e. between 0.44-0.9 eV higher than FC). One should
keep in mind that if the second excited state is populated, this will occur through the
S1/S2 peaked Coln, thus, it will be populated through the bottom of the Coln whereas the
Coln gradients are driving the system back to the first excited state. This idea is depicted

in Fig. 58.

Let us now focus on the description of the energy landscape along the hydrogen torsion
(a large component of the derivative coupling). The periodicity of the hydrogen motion
along this specific direction is not reproduced here, as the expressions of our potential
energy surfaces do not take into account the periodicity with respect to the torsion angle
(details are provided in the previous section). On the first excited state, we observe an
apparent minimum around #* 36° in the cut along the hydrogen torsion angle from the
Coln in the ab-initio data, whereas in our model this apparent minimum is around * 18°.
Note that this double-well-type shape around the crossing point occurs in the adiabatic
surfaces but not in the diabatic ones and is thus due to the effect of the off-diagonal
diabatic coupling term. By construction, our model uses the derivative coupling
calculated at the Coln as the gradient of this off-diagonal term. It is thus correct, at least
to first-order. However, the curvatures of the diagonal diabatic entries along such
directions are determined from ab-initio data calculated at the minima. There is thus no
direct control of their influence on the shape of the adiabatic energies obtained after
diagonalization, which is the explanation for the discrepancy observed between the
model and the ab-initio energy profiles. This is a limitation of our procedure that cannot
reproduce the adiabatic curvatures perfectly at all points but rather preferentially
around the minima while the derivative coupling will be correct around the conical
intersection. In any case, the global shape around the conical intersection is quite well
reproduced, as our model displays a pair of apparent minima on S; for relatively small
values of the hydrogen torsion angles, as expected. One should keep in mind that this
type of model is not meant to calculate highly accurate data such as an IR spectrum or a
quantum yield, but rather to appreciate the role of the dark state (crossing the bright
state) during the ESIPT process. This study must be seen as a first step in the

146



construction of a more sophisticated model that should be used to describe the ESIPT

process more quantitatively.

@ AbsorptionatFCons, X>10 o Delocalization from S,-FC to S,/S, Coln X>10

S,

I 1 S,

S,

S,

S,

| Cis*
|

Fig. 58 Simplified picture of the earlier stage of the ESIPT process just after absorption on the first excited
state. 1: absorption at FC on the first excited state. 2: delocalization of the wave packet from the FC region on
the first excited state to the Sz/S1 Coln region. 3: formation of TSz* and cis* from the Szto S1 non-radiative
decay. Note that we will show later on that the initial wavepacket is actually quite delocalized around the

conical intersection.
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Fig. 59 Upper Panel: ESIPT direction along a linear interpolation from FC (x = 0) to TSesiet* (x = 20) through
cis* (x = 10) (equivalent to Pacl (GD)). Energies are given in eV with respect to the ground-state minimum.
Dashed line: ab-initio; plain line: vibronic-coupling Hamiltonian model. Red: nn* electronic state; blue: nm*
electronic state. Lower panel: Scan along the hydrogen torsion from the Coln (ab-initio geometry); plain line:
vibronic -coupling Hamiltonian model; dashed line: ab-initio. Their colors are not uniform to show that the
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diabatic electronic states (nn* and nm*) mix along the derivative coupling direction (x -DC). Energies are

given in eV with respect to the global minimum energy on the ground state, i.e. cis (So).
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We ran quantum dynamics on this coupled potential energy surfaces model and
obtained the corresponding UV absorption spectrum and the evolution of the
quasidiabatic populations over time, which are presented in the following to investigate

the role of the non-adiabatic coupling induced by the Coln within the FC region.

2-3. UV Absorption Spectrum

The UV absorption spectrum was calculated as the Fourier transform of the
autocorrelation function of the wave packet propagated on the previously detailed
coupled potential energy surfaces model (Fig. 60) [31]. Comparing the calculated and
experimental UV absorption spectrum gives a measure of the quality of our model

through its ability to describe the FC region correctly.
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Fig. 60 Calculated UV absorption spectrum (main panel). a) Experimental spectrum from [220] UV/Vis spectra
of 3-HC dissolved in methylcyclohexane (MCH) (green), acetonitrile (CAN) (blue), EtOH (orange), and neat
water at pH 7 (light blue) and pH 13 (red), with concentration varying from 5x10-3 to 5x10-4 M.

Fig. 60 depicts our calculated spectrum and the experimental one (the one of interest is
represented with the green line, as it was obtained in cyclohexane, a non-polar solvent).

The experimental interpretation of the UV absorption spectrum assigns Band C to the
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first excited state absorption and Band A to the third excited state absorption [220]. This

is consistent with our computational results, as shown on

Tab. 8 that displays the oscillator strengths at FC between the ground state and the first
three excited states. Only the first and third excited states absorb a photon within the FC
region (i.e. no-zero oscillator strength between the ground state and the specific excited
state). Note that our spectrum does not reproduce Band A by construction, as we did not
include the description of the third excited state within our model (it is not a relevant

excited state to study the first excited state ESIPT process).

Tab. 8 Oscillator strengths calculated at the TD-DFT/cc-pVTZ level of theory for the first three excited

electronic states.

Excited electronic state Oscillator strength at FC
S1 0.0868
S2 0.0000
S3 0.0028

In addition, Band B is not explained from experimental data neither with ab-initio data
such as oscillator strengths (the second excited state does not absorb at FC). This band
has not been observed among the UV absorption spectrum of other 3-HC dyes such as 3-
hydroxyflavone (3-HF). Nevertheless, the large band we observe in our calculated
spectrum can be decomposed in terms of two Gaussian contributions centered at 327
nm (~3.79 eV) and 299 nm (~4.15 eV). The first peak (327 nm) is the most intense,
which reflects an allowed absorption transition between the ground state and this
excited state (non-zero oscillator strength); moreover, from its position at 327 nm, one
can safely associate this peak to Band C (experimental position: 330 nm), the So to S1
absorption transition. The spectral shift of 3 nm (~0.03 eV) between our calculated and
the experimental bands is small and corresponds to the accuracy limits of the level of
theory used to generate the ab-initio data that we based our model on. The second peak
(299 nm) is, thus, associated to Band B (experimental position: 278 nm). It is to be
interpreted as induced by the vibronic couplings that occur in the Coln region embedded
in the FC region (as observed in other systems such as pyrazine [292,293]). Its position

is more shifted with respect to the experimental spectrum (21 nm shift, ~0.3eV) than for
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Band C. This band is induced by vibronic couplings, which have a large effect around
Coln points. We thus expect it to be sensitive to the position of the Coln point in our
model. One should remember that in our model the Coln position is slightly shifted with
respect to the ab-initio data and we already mentioned that could have a relevant impact

on the UV spectrum but not on the global behavior of the quasidiabatic populations.

To check if the spectral position of Band B is really sensitive to the Coln position, we ran
quantum dynamics calculation on a coupled potential energy surfaces model where we
adjusted the Coln position upon a quadratic modification of the curvature along the
Q.is* — Qcorn direction (Chapter II) (see Fig. 61). One should note that we no longer
describe the energies of the first and second excited states along the ESIPT direction
adequately, as both modifications are not compatible with each other. However, this is
not the purpose of this new model, which is to check the effect of the Coln position over
the UV absorption spectrum. In other words, the relevant region under discussion now

is around FC.
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Fig. 61 ESIPT direction along a linear interpolation from FC (x = 0) to TSesiet™ (x = 20) through cis* (x = 10).
Energies are given in eV with respect to the ground-state minimum. Dashed line: ab-initio; plain line:

vibronic-coupling Hamiltonian model.
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Fig. 62 Calculated UV absorption spectrum using a coupled potential energy surfaces model where only the

Coln position was adjusted.

Fig. 62 shows the UV spectrum obtained with the new model depicted on Fig. 61, where
the Coln position was adjusted. One can notice on this spectrum that we still have two
peaks. They are in the latter case more separated than in the previous spectrum
depicted in Fig. 60. The position of Band C remains globally untouched (330 nm) while
the position of band B is now at 283 nm (16 nm shift with respect to the model where
the Coln is not at the exact ab-initio position), which is closer to the experimental
position.

In summary, Band B (intensity-borrowing vibronic coupling band) is quite sensitive to
the Coln position, which is probably due to its proximity to the FC region, as this affects

the non-adiabatic coupling and the magnitude of the gradient around this region.

A this point, let us make some technical comments regarding the shift of the peak

positions of our calculated spectra with respect to the experimental data.

First, one should keep in mind that our vibronic coupling Hamiltonian is based on gas
phase ab-initio data, while the experiments were carried out in solvents. A non-polar
solvent is not expected to change the potential energy surface landscape drastically, but
higher-order intermolecular interactions (involving polarizability, etc.) can affect the

excited states differently according to their respective dipole moments. In addition, this
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shift can be induced by two other possibilities: as already mentioned, the level of
calculation used to obtain the ab-initio data may not be accurate enough and the initial
wave packet may not be fully converged. Regarding the quantum chemistry level of
theory, we used the TD-DFT method with the cc-pVTZ basis set. Wave function methods
of CASPT2 type would be more adequate than TD-DFT for treating non-adiabatic
process. Unfortunately, they are too much time consuming for such a large system (18
molecular orbitals are to be included within the active space to describe the Coln
region). Regarding the quantum dynamics calculations, we used a development version
of the ML-MCTDH method of the MCTDH Heidelberg package. One of the limitations of
the current implementation is the necessity to dramatically increase the number of SPF
basis functions to converge the initial nuclear wave function. This is a very expensive
process in terms of computation time (see Tab. 9 for an example), which compels the
user to make, most of the time, a compromise between computation time and
convergence accuracy of the nuclear wave function. Here, we increased the number of
SPF basis functions to converge the zero point energy within 10-1- 10-2 eV (i.e. the
order of magnitude for the error expected from accurate ab-initio vertical transitions
energies). Technical details regarding the quantum dynamics calculations (SPF, ML-tree,

etc..) can be found in Appendix C.

Tab. 9 Example of computation times for a 20 fs relaxation on 3-HC ground state. *Number of SPFs per mode
and per layer within the ML-tree in Appendix C. (same ML-tree for both relaxations). Harmonic zero point

energy: 3.64 eV

SPFs* Time (days) Energy (eV)
6 5 3.665
12 31 3.654

Another point to highlight is the necessity for some systems to include the effect of
vibronic couplings when calculating UV absorption spectra (by the use of quantum
chemistry or quantum dynamics calculations). Fig. 63 depicts the UV absorption
spectrum obtained using the Gaussian09 package, which is mostly based on the ab-initio
oscillator strength. As expected, this approach does not describe the shoulder of the UV
absorption spectrum induced by vibronic couplings effects (Band B), since the oscillator

strength between the ground state and the second excited state at FC is zero (only one
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band at 301nm-Band C). In contrast, quantum dynamics calculations, such as ours, are
able to account for vibronic couplings effects (if, of course, they are based on a vibronic
coupling Hamiltonian model). Calculating a correct spectrum can be achieved from
relatively short wave packet propagation but an accurate description of the FC region is
mandatory (this contrasts with studies focused on reactive processes where large-
amplitude motions must be considered, which implies to invest time for building more
sophisticated potential energy models). Finally, let us note there are static methods that

account for vibronic couplings effects upon introducing them as perturbations [294].
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Fig. 63 Calculated UV absorption spectrum with the procedure implemented in the Gaussian09 package
(PBEO/cc-pVTZ level of theory).

To conclude, our coupled potential energy surfaces model (curvature modification to
adjust the energy profile along the ESIPT direction, as depicted in Fig. 59) describes
adequately the experimental UV absorption spectrum with respect to the global shapes
and positions of the bands (note that the intensities of the calculated spectrum are
comparable to the experimental ones only up to an arbitrary scaling factor). Hence, we
considerer that we reproduce adequately for the purpose of our study the FC and Coln

regions (the regions of main interest here).

In the following section, we use these quantum dynamics calculations to analyze the

system evolution during the early stage of the ESIPT process (< 50 fs).
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2-4. Photoreactivity

To investigate the ESIPT process over time, in particular the effects of the non-adiabatic
couplings within the FC region, we used quantum dynamics calculations with the first
quasidiabatic potential energy surfaces described above (based on TD-DFT/cc-pVTZ gas
phase data and with the curvature modification procedure based on a switch function

along the ESIPT direction).

As already mentioned, technical details about the quantum dynamics calculations

presented in the following are given in Appendix C (SPF, ML-tree, primitive basis).

Let us make a technical remark about the set of coordinates before analyzing the
evolution of the quasidiabatic populations. In the previous section we modified our
coupled potential energy surfaces with the use of a switch function that is not “MCTDH
compatible” (see Chapter II for an explanation). Therefore, to fulfill the “MCTDH format”,
and then run quantum dynamics calculations with this method, one must perform linear
combinations of coordinates to distinguish the ESIPT direction as a single coordinate.
Furthermore, to decrease the computation time and the number of SPF basis functions,
we considered the remaining 47 coordinates as normal mode coordinates obtained from
the Hessian matrix (projected out of the ESIPT direction) expressed in terms of the
linear combinations of the original Z-matrix coordinates at the FC geometry, see Fig. 64.

As already explained, the ESIPT coordinate remains untouched.

ESIPT coordinates: untouched

ESIPT direction as a single Remaining space: normal
coordinate modes

—
—

Fig. 64 Summary of the different sets of coordinates used. The relaxation times are based on relaxation of 3-

HC in its ground state during 10 fs. The set of coordinates is different; hence, the ML-tree is different.

Therefore, the number of SPF basis functions (36 per mode and per layer) is not meaningful here.
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The choice of normal mode coordinates is justified as they diagonalize the projected
Hessian at a specific geometry (here FC). Hence, this choice reduces the number of terms
that need to be calculated to generate the initial wave packet. However, one should keep
in mind that normal mode coordinates are different from one stationary point to
another. This means that the normal modes at FC do not diagonalize the cis* or TS:*
Hessians. In other words, this new set of coordinates implies a reduced number of terms
in the ground state Hessian only. This choice was motivated by the need to decrease the

computation time required to generate the initial wave packet.

Fig. 67 depicts the evolution of the quasidiabatic populations over time (50 fs). The red
line is the quasidiabatic population of mm* the state corresponding to the second
quasidiabatic potential energy surface (H32"(Q)), which correlates to the ESIPT side on
the lower adiabatic surface. The blue line is the quasidiabatic population that is
transferred from the second to the third quasidiabatic state nm* (corresponding to
H$i3*(Q)), which correlates with the TS;* side on the lower adiabatic surface. The

frontier between both sides is characterized by the Coln point (see Fig. 66).

Adiabatic populations are not available with the current implementation of ML-MCTDH.
They would tell us how much of the system stays on the lower surface or gets trapped
into the higher adiabatic state. Quasidiabatic populations are a good estimate of the
branching between the ESIPT and the TS2* sides only if the contribution from the higher
adiabatic state stays small. This probably is a valid hypothesis, as we can expect that
only the lower adiabatic state will be populated significantly after a certain time, but

there is no numerical proof to support this.

In addition, it should be noted that the quasidiabatic population is a global result
obtained upon integration over the full space of nuclear coordinates; hence, there is no
possibility to know where exactly the wave packet is located on the quasidiabatic
potential energy surfaces. The quasidiabatic population dynamics on mm* (H&2P(Q))
shown on Fig. 67 does not tell us if the population is around the ESIPT TS (already
transferring the proton) or whether it is still trapped in the Coln region, as pointed out
in Fig. 65. A finer analysis of the dynamics of the system on H3i2P(Q) would require step

distributions to be added along a specific coordinate around specific regions (see
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Chapter IV on ABN for an example of this type of analysis). This analysis is currently

ongoing and will not be presented in this thesis.

~ ———— ——— i —

TS,* cis* TSesipr”

ESIPT

Fig. 65 Scheme to represent the possible positions of the wave packet on the second quasidiabatic potential

energy surface.

We focused on the dynamics only during the first 50 fs and did not extend our
investigation over a longer period of time to study the entire proton transfer process
(i.e. until T*). This is due to our potential energy surface model: as already mentioned,
along the ESIPT coordinate we have a flat potential energy profile that has about the
same energy as TSgsipr™ and we did not use any complex absorbing potential on the
right-hand side of the grid. Thus, the wave packet can bounce against the border of the
grid along this direction (stage 2 Fig. 66) and then come back to the FC region (stage 3),
leading to a non-physical new transfer of population through the S;/S: Coln (stage 4), as
pictured in Fig. 66.

Fig. 66 Scheme to represent the wave packet bouncing on the border of the grid on the right hand side.
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The evolution of the quasidiabatic populations (Fig. 67) shows that from an early stage
(< 5 fs) a non-negligible amount of the system (at least ~27%) is trapped on the third
quasidiabatic potential energy surface. As a first approximation, this means that less
than ~73% of the quasidiabatic population follows directly the ESIPT direction on an
ultrafast time scale (with a rate constant on the femtosecond time scale). The remaining
part of the system (~27% first, then 10% around 50 fs) is momentarily trapped on the
unreactive side, which induces a delay and might be the reason for the second rate

constant on the picosecond time scale.

1 szdiab

o o
] o

o
N

Quasidiabatic population
o o o
» w o

o
w

o
)

diab
H33

°
i

o

. 25 35 40 45 50
Time (fs)

Fig. 67 Evolution of the quasidiabatic populations as functions of time in the gas phase. Red: it* state; blue:

nmt* state. Coupled potential energy surfaces based on PBEO/cc-pVTZ data.

Our quantum dynamics results show a non-negligible transfer of population from the
reactive mmt* state (ESIPT side) to the unreactive state nm* (TS:* side). This is a
quasidiabatic picture. In terms of adiabatic states, this shows that the presence of the
Coln within the FC region has a significant impact on the photoreactivity, either
adiabatically (the system can go to the other side and stay on the lower surface by
turning around the conical intersection) or non-adiabatically (by transferring some
population to the higher adiabatic state). In any case, this appears to be one of the key
points to understand the origin of two different rate constants for the ESIPT process
(femtosecond and picosecond time scales). To be able to have a more thorough analysis

of the ESIPT rate constants, one should go further, for example upon including step
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distributions to investigate the dynamics of the system on mm* (H42P(Q)). Adding a
complex absorbing potential would also help by making possible to increase the

duration of the wave packet propagation.

As a final remark, let us stress that the absorption spectrum presented above had
already shown that the dark nm* state was significantly coupled to the bright m* state.
This is consistent with our investigation of the photoreactivity where the nm* state is
able to trap some of the system, thus inducing a delay in the ESIPT process occurring on

the mtt* state.

IV-  2-Thionyl-3-Hydroxychromone

The 2-Thionyl-3-Hydroxychromone (2T-3HC) study was carried out in collaboration
with experimentalists: Dr Thomas Gustavsson (CEA, France) and Prof. Rajan Das (Tata
Institute of Fundamental Research, India). They studied the time-fluorescence
spectroscopy of 2T-3HC in several solvents. Their preliminary results show that the
ESIPT process presents one fluorescence rate constant (picosecond time scale) in
cyclohexane and two rate constants in polar solvents such as acetonitrile (unpublished

results - paper in preparation).

As several other 3-hydroxychromone dyes, 2T-3HC presents three important reaction
coordinates. One corresponds to the ESIPT process already explained in the 3-HC study.
The other two are out-of-plane coordinates describing the hydrogen torsion (leading to
the trans isomer) and the thione (a) torsion (Fig. 68). They give access to multiple cis
and tautomer conformers (Fig. 69). These various conformers may contribute to some
extent to the experimental observables (i.e. absorption spectrum, fluorescence rate
decay, fluorescence bands, etc...) and on the ESIPT rate constant, which is addressed in
this section. In particular, the role of the different conformers and the effect of the
solvent polarity during the photoreactivity are investigated. We used cyclohexane

(CyHxn) as a non-polar solvent and acetonitrile (MeCN) as a polar solvent within the
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PCM description (Chapter I). For more details regarding the solvent description, see the

previous section, i.e. Section II-.

cis*

Fig. 68 Lewis representations of the stationary points along the ESIPT coordinate. Purple: thione fragment
torsion. Blue: hydrogen torsion. The dihedral angles associated with the hydrogen torsion are defined
differently in the enol (i.e. cis) or the keto (i.e. T) forms due to a change of connectivity between them (this

has already been pointed out in the 3-HC study).

1. Ground State Potential Energy Surface

As explained previously, there are two extra degrees of freedom to be considered in 2T-
3HC in addition to the ESIPT coordinate studied in 3-HC. The torsion angle of the thione
fragment will be denoted a (see Fig. 68). These lead to four enol (“cis”) conformers,
displayed in Fig. 69: the first two have the hydrogen torsion angle at 0° and a = 0 or 180°
(i.e. cis or cis(a)), and the last two have the hydrogen torsion angle at 180° and a = 0 or
180° (i.e. trans or trans(a)). The same is true for the keto (tautomer) minima that are

now four (i.e. T, T(a), trans-T, trans-T(a); see Fig. 69).
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Fig. 69 Enol rotamer optimized minima on the ground state (left panel) and keto rotamer optimized minima
on the first excited state (right panel). All the displayed geometries were obtained into cyclohexane solvent.

The tautomer rotamers do not exist as minima on the ground state.

However, all these enol conformers (rotamers) do not have the same ground state
energies (cis and cis(a) are more stable than trans and trans(a), Tab. 10), thus, their
populations are not equivalent. With a Boltzmann distribution, one can estimate the

populations of the minima:

N,  g;e Ei/ksT Eq. 105
N

= —Z] gje—Ej/kBT

where N; is the population of the ith quantum state among a total population N and g;
represents the degeneracy of that state. As cis and cis(a) have the same energy, they are
considered as one quantum state with a degeneracy of two; the same goes for trans and
trans(a) into acetonitrile (Tab. 10). kp is the Boltzmann constant and T is the
temperature. In our case, we consider room temperature: 298.15 K. In that situation,
only cis and cis(a) are populated (i.e. 0.99 of the population) and both minima absorb on
the first excited state with the same oscillator strength and a similar vertical transition

energy (Tab. 10). Moreover, this result is independent of the solvent polarity.
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Tab. 10 Enol conformer energies, vertical transition energies and oscillator strengths from the ground to the
first excited state. *Relative energies with respect to the global minimum cis in the ground state. All the

energies are given in eV.

Cyclohexane Acetonitrile
So E* E(FC) f51 So E* E(FC) fsl
cis 0 3.50 0.4378 0 3.52 0.4515
cis(a) 0 3.52 0.4311 0 3.54 0.4463
trans 0.41 0.32
trans(a) 0.45 0.32

Hence, at room temperature, we can expect that the absorption spectrum will always
present a single absorption band with, possibly, a shoulder related to the cis and cis(a)
minima (small difference between their vertical transition energies) but no significant
shift due to solvent polarity (results are similar for both solvents). In the following, we
investigate the solvent effect on the first excited state and its consequence over the

ESIPT process and emission properties.

2. First Excited State Potential Energy Surface

2T-3HC has an electronic structure equivalent to 3-HC. Again, the first and the second
excited states are respectively rt* (A” symmetry) and nt* (A’ symmetry) at both FC and
FC(a) geometries (Fig. 70). The thione torsion does not influence the electronic
structure, as seen on Fig. 70, the bounding patterns for the n, m and * orbitals do not
change between FC and FC(a) geometries. In addition, in our case, the solvent polarity
does not influence the excited states electronic structures either, hence, only molecular

orbitals computed into the cyclohexane solvent are displayed in Fig. 70.
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S, nrt* A”

Fig. 70 Singly occupied n, m and ©* orbitals for the first excited state (S1) and the second excited state (Sz) at FC
and FC(a) geometries into cyclohexane. The symmetry of the orbitals and electronic states are given for Cs

point group symmetry.

The first two excited states of 2T-3HC (i.e. mt* and nm*) are similar to the ones of 3-HC.
Hence, one can expect the presence and the non-negligible role of a Coln close to the FC

region as in 3-HC, which will be elucidated in the following.

2-1. S1/S2 Conical Intersection Characterization

As can be expected, there are two equivalent Colns (Coln and Coln(a)) between the first

and the second excited states similar to the ones in 3-HC (Fig. 71).
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Coln(a)

Fig. 71 Coln and Coln(a) geometries obtained in cyclohexane. There is no noticeable difference in acetonitrile.

However, their topography changes from peaked in 3-HC to sloped in 2T-3HC (Fig. 72).
The TS2* and TS:(a)* transition states are now on the second excited state and not on
the first one as in 3-HC (Fig. 72). This change of Coln topography between 3-HC and 2T-
3HC is due to the gain of electron delocalization in T orbitals induced by the thione
fragment. This can be rationalized quite simply in terms of Hiickel theory (Fig. 72). To
highlight this idea, we used the free program called HuLiS developed by Nicolas Goudard
et al. from the University of Aix-Marseille [295-297], which calculates the energy of any
1 system with the Hiickel method. The corresponding energies of the m and m* orbitals
in 3-HC and 2T-3HC are displayed in Fig. 72. One can see that the enhanced
delocalization reduces the energy gap between the m and m* orbitals [295-297], which
in turn stabilizes the energy of the mm* electronic state. The stabilization of m* induces a
stabilization of the ntt* electronic state as well. However, as the n orbital is not altered,
the stabilization of the nm electronic state is lower than that of the ™ electronic state.
As a consequence, this induces a swap in energy between the first two excited electronic

states at the TS2* geometry in 2T-3HC.
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Fig. 72 Upper panel: orbital “correlation diagram” between 3-HC and 2T-3HC and corresponding dominant
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Tab. 11 Energies of the optimized TS:* and TSz(a)* on the second excited state, of Coln and Coln(a), and
energy differences between Coln (Coln(a)) and FC (FC(a)) within cyclohexane and acetonitrile. Energies are

all in eV. The critical point energies are given with respect to the global ground state minimum (cis).

Cyclohexane Acetonitrile
E(S2) TS2* 3.77 3.94
E Coln 4.74 4.97
AE(CoIn-F() 1.24 1.45
E(S2) TS2()* 3.25 3.93
E Coln(a) 4.75 4.88
AE(Coln(a)-FC(a)) 1.26 1.36

From their energies, one cannot expect the Colns in 2T-3HC to play a significant role in
the photo-induced process because they are not accessible from FC (more than 1 eV
higher) (Tab. 11), as opposed to 3-HC. Hence, we will not focus on this region for the rest
of this study, but, instead, we will concentrate on the description of the solvent effect
over the shape of the first excited state potential energy surface along the ESIPT

direction.

2-2. ESIPT Direction

As for the 3-HC study, let us first focus on the geometry relaxation from the FC region

after absorption from the cis and cis(a) ground state minima to the first excited state.

To analyze the geometry relaxation on the first excited state from the FC (or FC(a))
geometry to the cis* (or cis(a)*) minimum, one can conduct the same HOMO/LUMO
analysis as for 3-HC (Fig. 73 and Tab. 12). As said previously, the molecular orbitals do
not change in nature between FC and FC(a) geometries. Therefore, this analysis is
detailed only for the FC/cis* relaxation (the same holds in the FC(a)/cis(a)* case). As
shown on Fig. 73, conclusions are not affected by the solvent polarity. Indeed, as already
mentioned, it does not influence the electronic structure, even if it induces a slight shift
of the cis*(and cis(a)) equilibrium geometries on the first excited state (the variation of

bond lengths is enhanced by the solvent polarity).
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Tab. 12 Nature of the m and m* molecular orbitals at the FC geometry. Ar is defined as the bond length

difference between the cis* and FC geometries (||r.;,. — rrcll)-

Bond T interaction m* interaction Arcynxn (A) | Armecn (A)
Ci-C2 Bonding Bonding 0.032 0.008
C2-C3 Non-bonding Bonding —0.032 —0.023
C3-Cs Non-bonding Anti-bonding 0.014 0.008
C3-Cs Non-bonding Anti-bonding 0.016 0.013
C4-Cs Non-bonding Anti-bonding 0.008 0.009
Cs-Ce Anti-bonding Bonding —0.012 —0.011
Ce-C7 Bonding Anti-bonding 0.026 0.021
C7-Cs Non-bonding Bonding —-0.017 —0.015
Cs-09 Non-bonding Anti-bonding 0.031 0.025
09-C10 Anti-bonding Anti-bonding 0 0.002
C10-C1 Bonding Anti-bonding 0.023 0.040
C1-011 Anti-bonding Non-bonding —0.033 —0.031
011-H13 Bonding Non-bonding 0.044 0.027
C2-012 Anti-bonding Anti-bonding 0.016 0.014
C10-C14 Anti-bonding Bonding —0.030 —0.044
C14-S15 Non-bonding Anti-bonding 0.011 0.022
S15-C1s Non-bonding Anti-bonding 0 0.001
Ci6-C17 Bonding Non-bonding 0.012 0.017
Ci17-Cis Anti-bonding Non-bonding —0.019 —0.021
C18-C14 Bonding Anti-bonding 0.022 0.034

As seen on Tab. 12, C1-C2 and Cz-O12 should not experience much deformation, contrarily

to Si5-Ci6 that should increase. As for 3-HC, Fig. 74 shows the electron density difference

between the m* and  orbitals at the FC geometry. Regarding the Ci-Cz and C2-O12 bonds,

it is trivial to understand their evolution. The C:-C interaction is bonding within the 1

and t* orbitals. Within the m* orbital the local density on C: decreases (yellow). Hence,

this interaction becomes less bonding within the m* orbital. This induces a

destabilization, thus, an increase of the C1-C2 bond length. The same idea goes for the C;-

012 bond. The local density increases (blue) on this bond within the n* orbital. Hence,

the corresponding

interaction becomes
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destabilization, thus, an increase of the C>-O12 bond length. The Si5-Cis bond length
evolution is less trivial to understand. The orbitals go from non-bonding to anti-bonding,
thus, rather than staying identical, the bond length should increase. However, Fig. 74
shows a gain of density on Si5 and a loss of density on C16, which must compensate each
other. Therefore, the anti-bonding orbital becomes so much less anti-bonding that it is
practically a non-bonding interaction, explaining the lack of change in the Si5-C16 bond

length.

Fig. 74 Electron density difference between the density of the m* and m orbitals at the FC geometry in

cyclohexane. Blue: gain of density. Yellow: loss of density.

In addition, as for 3-HC, Fig. 74 highlights the charge transfer (CT) character of the first
excited state with respect to the ground state at the FC geometry. One can notice that the
electron density goes from the O11-H region (and thione ring) to the C=012 bond (and to

some extent to the benzene ring).

As already explained, this change in the nature of the electronic state induces a longer
C=012 bond and a shorter C-O11 bond at the cis*(cis(a)*) geometry, as well as a longer
011-H bond and a shorter O12-H distance (stronger H-bond). This is consistent with
cis*(cis(a)*) being a precursor for a further ESIPT process. Simply, transferring the
proton in the first excited state goes with removing the formal charges on both 011 and
O12. This emphasizes the idea that the driving force of an ESIPT process is based on the
acidity of the proton donor (i.e. its ability to give the proton / losing electron density)
and the basicity of the proton acceptor (ability to accept the proton / gaining electron

density) [240,266,267,279-282].
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This analysis shows that initial relaxation from the FC region is expected to yield the
cis*(cis*(a)) minimum. From there, the system can further explore multiple directions:
direct ESIPT process, hydrogen out-of-plane motion (torsion) or thione fragment out-of-
plane motion (i.e. a torsion). Nevertheless, in both solvents, the energies (see Tab. 13) of
the TSs related to the cis - trans isomerization of the enol forms (cis* and cis(a)) (i.e.
TSu* and TSu(a)*, where H is £90° out of the molecular plane) are higher than the FC
energy (~ 3.5 eV). Hence, the hydrogen torsion (from the enol form) is not expected to

be involved in the first stage of the ESIPT process.

In addition, Fig. 75 shows that, the a (thione) torsion barrier between cis* and cis(a)*
(TS(a)*, where the thione fragment is +90° out of the molecular plane) is 0.3 or 0.4 eV
higher than the FC point (in purple), according to the nature of the solvent. Again, the
solvent polarity does not have much influence on this. In both cases, the height of this
barrier suggests that two independent ESIPT pathways coexist (with no significant
transfer between them): the a = 0° channel and the a = 180° channel, to form two

tautomers, denoted T* and T(a)*.

Now, there is also an a torsion barrier between T* and T(a)*. The energy of TS-T(a)*
(where the thione fragment is £90° out of the molecular plane) is close to the FC energy
in cyclohexane and 0.06 eV lower in acetonitrile. We could thus expect some significant
transfer between both channels in this region, as the barrier is now accessible. However,
the system will go through the enol forms (cis* and cis(a)*) as it proceeds along the
ESIPT pathways,. As these are fluorescent species, one can expect the system to spend
enough time around these minima to redistribute its energy. If so, there may be not
enough energy left along the relevant degrees of freedom once it arrives around T* or
T(a)* to overcome the TS-T(a)* barrier between them (0.67 or 0.73 eV, depending on

the solvent).

The same idea can be applied to the ~ 0.4 - 0.5 eV hydrogen torsion barrier from the
tautomer forms. These TSs are denoted TSu-T* and TSu-T(a)* and are slightly higher
than TSgsipr™ and TSesipr(a)*, see Tab. 13. Therefore, we expect the out-of-plane motion

not to be relevant for the study of the ESIPT process on the first excited state.
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Regarding the thione fragment torsion motion between TSgsiet* and TSesier(a)*, the
presence of a transition state or of a second-order saddle point is not to be discarded but

we have not found any such point yet.

Tab. 13 Energies of the TSs along the hydrogen torsion from the enol form in cyclohexane and acetonitrile.
Energies are given with respect to their respective global minima on the ground state.
Cyclohexane Acetonitrile

TSw* TSu(a)* TSu-T* TSh- TSu* TSu(a)* TSu-T* TSk-

(a)* T(@)*

E 4.11 3.79 3.38 3.37 3.81 3.81 3.18 3.15

(eV)

Fig. 75 highlights that, still independently of the solvent polarity, both enol forms (cis*
and cis(a)*) and tautomer forms (T* and T(a )*) have the same vertical transition
energies from the excited state to the ground state (emission energies — blue and green
arrows). Hence, experimentally, the system should present a single absorption band but
a dual florescence (one emission peak from the enol forms and another one from the
tautomer forms). In addition, the emission energies of the enol and tautomer forms are
slightly shifted (~ 0.05 eV) when increasing the solvent polarity. Our calculations are
thus consistent with the preliminary experimental results (not published yet) gathered
in Tab. 14: one single absorption band and a dual fluorescence that is slightly shifted
when increasing the solvent polarity. Regarding the position of the bands, one can notice
that our calculations reproduce adequately the absorption and the emission related to
the enol forms (cis*) but the emission of the tautomer forms (T*) is shifted by about 0.1 -
0.2 eV with respect to the experimental values. Note that this difference lies within the
range of error on excitation energies of organic dyes benchmarked for the PBEO
functional [272,273]. We thus trust our results to describe adequately the UV/vis

spectral behaviour of 2T-3HC first excited states.
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Tab. 14 Experimental absorption and emission of the enol form (cis*) and the tautomer form (T*) in

cyclohexane and acetonitrile.

Cyclohexane Acetonitrile
Eabsorption 3.49 eV 3.51eV
Eemission Cis* 3.09 eV 3.00 eV
Eemission T* 2.27 eV 2.29 eV

Although our results describe adequately the steady-state experimental studies
(absorption and emission transitions), they cannot explain the reactivity of the 2T-3HC
ESIPT photoprocess because they show no influence of the solvent polarity on the ESIPT
barrier (Fig. 75) whereas experiments show a single ultrafast ESIPT rate constant in

non-polar solvents and two rate constants when increasing the solvent polarity.

TS(a)* . TS(a)*
Cyclohexane 3.92eV Acetonitrile 3.82eV
l \ 0.68eV lﬂ\ 0.73eV

\ TS-T(a)* 3.52eV \
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Fig. 75 Scheme of the first excited state (nmm*) along two dimensions: the ESIPT Cs in-plane coordinate (red)
and the thione fragment out-of-plane motion (purple). Left: in cyclohexane. Right: in acetonitrile. The
optimized stationary point energies are given with respect to the global minimum on So (for each solvent).
The geometries were optimized considering the solvent in its equilibrium state in the PCM model. Energy
differences between stationary points along the ESIPT direction are in red. The thione fragment torsion
barrier is indicated in purple. Emission energies are in blue and green for the enol and tautomer form,
respectively (this choice of color corresponds to the experimental color observed during the fluorescence of
2T-3HC).
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One of the limitations of our calculations regards the approach used to describe the
solvent. A mistreatment of its effect could be the reason of the discrepancy with respect
to some of the experimental observations. Modeling solvent effects in non-adiabatic
phenomena has an additional difficulty given the different time scales of the various
processes undergone by the solute, and the finite relaxation time required by the solvent

to equilibrate with the changing geometry or electronic distribution of the solute.

In this study we chose to consider the ESIPT process slower than the solvent relaxation
(i.e. solvent equilibrated for the first excited state). However, if there is an important CT
character of the electronic state during the ESIPT process (i.e. Si electronic state
composed of two strongly coupled CT and PT diabatic states, as mentioned for 3-HC and
illustrated in Fig. 33), one can expect some impact of the solvent relaxation over the
ESIPT dynamics, as discussed by Demchenko et al. on other 3-HC derivatives [266]. In
other words, the solvent relaxation and subsequent processes that take place on the
excited state, such as internal conversion for example, can proceed on the same time
scale [298,299]. To the best of our knowledge, this latter situation is impossible to
compute with the PCM method currently available [144-146].

Therefore, to account for a different situation than the one presented in this thesis, in a
first place, we should considerer the other extreme case that can be adequately
addressed computationally: when the solvent is equilibrated for the ground state (study
currently on going). This would mean that the ESIPT process is considered faster than
the solvent relaxation. For example, this methodology is used to compute adequate
excitation energies because the vertical transition can be considered as an

instantaneous process.

Also, to explain the experimental observations, one could suggest an alternative ESIPT
process involving the sulfur center of the thione fragment, such as illustrated on Fig. 76.
It could be in competition with the ESIPT process discussed in this thesis. However, we
could not find any Tsu* species corresponding to this hypothetical process on the first
excited state neither in a non-polar or a polar solvent. In addition, for this new ESIPT

process to occur, the system would have to delocalize first along the H-torsion
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coordinate to form the trans(a)* species, whereas it is not-reachable from FC as already

mentioned at the beginning of this Section, see Tab. 13.

trans(a)* Tsul(a)*

Fig. 76 Hypothetical alternative ESIPT process.

Let us now turn to the method used in our calculations. The most serious deficiency of
TD-DFT is arguably the underestimation of charge-transfer excitation energies, which
require the use of a non-local exchange correction [300-302]. Therefore, as we
suggested the existence of a CT character coupled to a PT one, our level of calculation
may not be adapted to describe the whole potential energy landscape. This could be
another explanation of why the ESIPT barriers in 2T-3HC are not affected by the polarity
of the solvent in our calculations. However, the CT character that we suggest is expected
to be weak (strong coupling with the PT, as already mentioned for 3-HC) and occurring
over a short range (donor and acceptor fragments close to each other: mainly localized
around the O12—H13—011 fragment, as illustrated in Fig. 31 and in Fig. 74). In addition,
as already pointed out, our calculations reproduce adequately the excitation energies
with respect to the preliminary experimental results and PBEO has been benchmarked
as a good candidate to describe ESIPT processes in 3-HC derivatives. Therefore, we are
confident that PBEO is capable of describing the potential energy surfaces of 2T-3HC.
However, as a study based on molecular orbitals only is not enough to make definitive
conclusions regarding the nature of the diabatic states (CT, PT) that compose Si, we
suggest completing our study with a valence-bond description that would bring new

insights.
As a final remark, we believe that, in this situation, treating the dynamics of the solvent

relaxation is a key point to describe adequately the effect of the solvent over the

photodynamics.
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V- Conclusion and Outlooks

We have performed a computational study of the photodynamics of 3-HC in the gas
phase and of 2T-3HC in polar and non-polar solvents in order to suggest a
rationalization of the experimental observations: 3-HC presents two ESIPT rates
constant [220] as well as 2T-3HC in a polar solvent (a single ESIPT rate constant for 2T-
3HC in a non-polar solvent). The study of 2T-3HC is part of a collaborative project with
the experimentalists Dr. Thomas Gustavsson (CEA, France) and Prof. Rajan Das (Tata

Institute of Fundamental Research, India) [on going research - paper in preparation].

We have carried out TD-DFT calculations to describe the topography of the potential
energy surface of the first excited state involved in the photoprocess. A new Coln was
characterized between the mn* and the nm* electronic states with a totally planar
geometry (Cs symmetry), along a direction approximately parallel to the relaxation

coordinate from the Franck Condon point to enol minimum (i.e. cis*).

In 3-HC this peaked Coln is in the FC region and the system is expected to go through (or
close by around) this crossing to further achieve cis-trans isomerization of the enol
form. This opens a new channel for an ultrafast population of the nt* state upon internal
conversion. Using full-dimensional models of coupled potential energy surfaces
developed during this Thesis work, first based on TD-DFT energies and geometries, we
have run quantum dynamics simulations with the multilayer version of the
multiconfiguration time-dependent Hartree (ML-MCTDH) method [200]. Our quantum
dynamics calculations clearly indicate that the nm* quasidiabatic electronic state is
populated right after photoexcitation, thus showing that the non-adiabatic coupling
within the FC region is crucial to understand the ESIPT dynamics. This feature is
expected to be even more efficient in polar solvents than in the gas phase due to
different stabilizations of the electronic states according to their dipole moments. This
results in making cis-trans isomerization of the enol form more accessible (ongoing
study that requires a better description of the H torsion within the potential energy
surfaces model). Such computational results are consistent with the recent experimental
observations of Chevalier et al. [220], where the possible involvement of the trans

species is mentioned. These results suggest that the ESIPT process, which is a planar
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motion, is in competition with the cis - trans isomerization of the enol form (out-of-

plane motion).

In contrast, in 2T-3HC this Coln is sloped and not reachable from FC; in other words, it is
expected to be too high in energy to have a relevant impact on the photoprocess. In
addition, our calculations in polar and non-polar solvents could describe the spectral
behavior adequately but not the reactivity (we suspect that the effect of the solvent on
the barrier requires a more sophisticated approach). Therefore, the quantum chemistry
study of 2T-3HC should be extended, possibly with a valence-bond analysis of the nature
of the first excited state to get more details about its CT/PT characters [303]. In
addition, to make totally sure that the method we used is adequate, one may try to run
RASSCF calculations (CASSCF with a reduced rather than complete active space). Then, if
the CT character is significant in the first excited state, this study may have to be
completed with a more adapted method such as RASSCF [304,305] or using TD-DFT
with a non-local exchange correction [300-302]. In addition, one should study the effect
of the solvent polarity with the PCM model when the solvent is equilibrated for the
ground state and not for the excited state (the ESIPT process will then be considered
faster than the solvent relaxation). The key point is to determine if there is an important
deformation of the potential energy landscape while considering different dynamics for
the solvent relaxation. If so, one should thus use a more advanced model of the solvent
dynamics, for example a QM/MM method with an explicit description of the solvent
(hence, explicit solvent relaxation dynamics), such as the strategy developed by Prof. B.
Mennuci et al. [306-309]. Another possible strategy to follow before using a more
complex representation of the solvent dynamics would be to run dynamics calculations
in order to check if the hydrogen and the thione fragment torsions really are irrelevant
motions during the dynamics of the photoprocess. To accomplish this task, one should
not use our model as it is because it should be improved with the implementation of
periodic functions to describe both torsions correctly. However, on-the-fly dynamics
such as DD-vMCG [31,310] or ab-initio molecular dynamics [311-313] may give first
insights.
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Chapter IV- Aminobenzonitrile

intramolecular charge transfer

This Chapter is focus on the studied of the ultrafast intramolecular charge transfer process
of aminobenzonitrile.

It was carried out in close collaboration with the group of Dr. Mar Reguero from the
Universitat Rovira i Vigili in Tarragona, Spain. This group is specialized in CASPT2
calculations on excited states. Pedro J. Castro, as part of his PhD thesis, achieved all the
CASPTZ2 and some of the CASSCF and PCM quantum chemistry calculations on ABN.

The specificity of the present thesis was first to understand the static landscape of the
excited states involve in the photoprocess by the used of quantum chemistry calculations
and, then, build a quasidiabatic Hamiltonian model and run quantum dynamics

calculations.
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I- Introduction and Context

Intramolecular Charge Transfer (ICT) in electron donor-acceptor molecules is a process
of high interest that has given place to a strong debate over the last decades. A large
amount of experimental and theoretical studies have been devoted to this kind of
systems, often focused on the aminobenzonitrile family, and particularly on the parent
system, 4-aminobenzonitrile (ABN) (R=H, Fig. 77), and on its N-dimethyl derivative,
DMABN (R=CH3, Fig. 1); see [314] for an extensive review. The small size and simple
architecture of ABN and DMABN have made them prototype systems for studying
photoinduced ICT phenomena.

Acceptor

Fig. 77 Donor and acceptor parts of the aminobenzonitrile family. R=H:ABN, R=CH3:DMABN.

They are particularly interesting because, despite their similarity, their luminescent
patterns are quite different: while ABN only shows a single (normal) fluorescence band
in any environment, DMABN exhibits normal fluorescence in non polar solvents, but
dual fluorescence in polar ones [314-318] (Fig. 78). This indicates that the different
photochemical behaviors are not due to different characters of the electronic states, but
to changes induced by the polar environment. This dual fluorescence sensitivity to the
environment makes ABN derivatives good candidates as fluorescent probes, chemical

sensors, molecular switches or electrooptical switches [228,319-323].
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Fig. 78 Fluorescence (LE and ICT) and absorption (ABS) spectra of 4-(dimethylamino)-benzonitrile (DMABN)
in (a) acetonitrile (MeCN) and (b) in n-hexane at 25°C. Excitation wavelength: Aexc= 267 nm (from Ref. [317]).

In spite of the large amount of time and effort invested in their study, there is still a very
lively controversy involving these systems [314]. It is well-established that the normal
band is originated from a Locally Excited (LE) electronic state, while the anomalous
band is due to a Charge Transfer (CT) electronic state of high dipole moment that is
stabilized in polar solvent environments. In other words, the intensity and mean
frequency of the charge transfer state emission has been found to depend strongly on

the polarity of the solvent [314,315,318,324-328].

The exact structures of the species responsible of the anomalous band and the
mechanism that populates them are, though, still not clarified questions due to
contradictory arguments, based on both experimental observations and theoretical
calculations, which support different models and hypotheses [314,316-318,324,329-
345].

Mainly, three models are in the lead of the controversy regarding the structure of the
luminescent charge transfer species: the Planar ICT model (PICT) with the amino group
lying in the benzene plane [328,335,336,346] (Fig. 79), the Twisted one (TICT) (Fig. 79),

which involves some charge separation in the charge transfer state resulting from a
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complete decoupling between the amino (donor, see Fig. 77) and benzonitrile (acceptor,
see Fig. 77) moieties by twisting the amino group into a perpendicular position
[324,347,348], and the partially twisted or pretwisted one (pTICT) [340] (Fig. 79),
where the benzene and amino groups are only partially rotated (twisting angle <90°), so
the decoupling between both moieties is not complete. It seems sufficiently proved that
the PICT and TICT species do in fact correspond to two minimum-energy points of the
potential energy surface (PES) of the excited charge transfer state both in ABN and
DMABN, but their role in the fluorescence spectra is less clear. A fourth model, the
rehybridized ICT (RICT) [339] (Fig. 79) is characterized by the rehybridization from sp
to sp? of the cyano-carbon atom. The RICT species corresponds to the minimum energy
structure of the so-called o™ state, where the excitation is localized on the triple bond
of the cyano group. It is nowadays discarded as a luminescent species [338] but there
are still debates on the involvement of the mo* state in the mechanism of the
intramolecular charge transfer process [341,342,349]. Among the arguments against the
RICT model: the calculated v(CN) frequency in the infrared spectra is quite different

from the experimentally observed one, in Ref. [329].
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Fig. 79 Structures of the excited state minima of the aminobenzonitrile family. R=H: ABN, R=CHs: DMABN.

Support for the TICT model was mainly derived from an interpretation of the
photophysical behavior of model compounds in which rotation of the amino group was
hindered, or in which a large twisting angle of the amino group was already present in
the electronic ground state [314]. However, recent experiments have shown that

efficient ICT can be observed in similar molecules forced to be planar: namely, 1-tert-
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butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6) and fluorazene [350] (Fig. 80). This
suggests that the formation of a TICT structure may not be required for excited state
charge transfer in aminobenzonitriles. Furthermore, some authors suggest that the TICT
species is in fact dark (i.e. does not emit) and that the pTICT species is thus the one that
could be responsible for the anomalous fluorescence band [340]. Nevertheless, the
theoretical study of several ABN family molecules by Jodicke et al. [351] highlights the
fact that the excited states behave very differently along the torsion coordinates
depending on ortho substitution by methyl groups on the benzene moiety.

More recently, to explain the observed rise and decay times of fluorescence of ABN
derivatives measured by time-resolved transient absorption spectra, some authors
suggested the involvement of the mo™* state in the mechanism of population of the ICT
luminescent species [352]. Subsequent experiments reinforced this idea [349,353], but
later experimental [342,343] and theoretical [341] studies suggested a different
interpretation of the experimental observations, so the involvement of the mo* state in
the charge transfer mechanism is now doubtful. Therefore, if one wants to clarify the
luminescent charge transfer species controversy, a thorough analysis of the energy
landscapes of the first and second excited electronic states of the various ABN-type
molecules is mandatory. The subtle interplay between the nature of the electronic states
and molecular structures could explain why there is so much contradictory evidences
supporting either TICT, PICT, or pTICT models, and a quantum dynamics study is
required to give new relevant information. Nevertheless, in the present thesis we will
not concentrate on elucidate this PICT/TICT controversy but rather focus on
understanding the early stage of the ICT process and internal conversion between the
LE and CT states, which we believe may also give some new insight into the PICT/TICT

controversy.
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Fig. 80 Fluorescence (LE and ICT) and absorption (ABS) spectra in n-hexane at 25°C of (a) 4-
(dimethylamino)benzonitrile (DMABN), (b) 4-(isopropylmethylamino)-benzonitrile (IMABN), (c) 4-(tert-
butylmethylamino)benzonitrile (tBMABN), and (d) 4-(diisopropylamino)benzonitrile (DIABN). The
fluorescence spectrum of DMABN consists of a single LE emission, whereas IMABN, tBMABN, and DIABN are

dual fluorescent (LE and CT). Excitations were made in the maxima of the absorption spectra. From Ref. [350].

We will now focus on the ICT mechanism. It is well-established that the initial excitation
populates first the second excited electronic state of charge transfer character, i.e., S2-CT
[354]. The subsequent sequence of steps along the LE or CT potential energy surfaces
until the luminescent species are populated is still under discussion. Robb et al. in 2005
proposed the following mechanism [354]. After excitation to the second excited
electronic state, the system relaxes to the Sz-PICT minimum. Along the ring-bending
coordinate the system follows a barrierless pathway to the optimized Si/S: Coln
denoted Coln-Cs. Because of the extended conical intersection seam, ultrafast

nonradiative decay from S; to S; can take place at various torsion angles of the amino
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group leading either to the S1-LE or the S1-TICT geometries (see Fig. 81). Experimental
works suggest initial population of the LE state and later equilibration with a charge

transfer state [317].

Energy

i
A

X, (reaction coordinate)

Fig. 81 Schematic representation of the conical intersection between S1 and Sz in a space that includes one of
the two branching space coordinates (X1,Xz) and the reaction coordinate (mainly the amino group torsion),
and the energy. The green curve shows the non-adiabatic pathway. The blue curve shows the adiabatic

pathway. From Ref. [354].

Park et al. have published a recent paper reporting a study of highly Time-Resolved
Fluorescence Spectra (TRFS) over the whole emission region of DMABN in acetonitrile
[343]. The accurate measurements of this study give information about the dynamics of
the ICT process free from the interferences of the solvent reorganization and vibrational
relaxation dynamics that occur on the same time scale. The experimental techniques
used in that work also give access to an analysis of the ultrafast events that occur within
the first few femtoseconds. From their observations it is concluded that, after
photoexcitation to the second excited electronic state, both the CT and LE states are
populated in less than 30 fs for geometries that are still quasiplanar. A similar ultrafast
interval conversion was also proposed in a previous work by McCamant et al [344,355].
This early internal-conversion process is the main focus of the present Chapter.
Subsequent processes from the initial LE and ICT species leading to the formation of the
ICT specie(s) responsible of the anomalous fluorescence band have been studied

recently by our Spanish collaborators [316].
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Computational studies carried out on ABN and DMABN have shown that the topography
of the potential energy surfaces of the low-lying states of both systems are similar, but
small energetic changes induce a different interplay between the LE and CT species that
leads to different luminescent patterns [316,354]. The initial steps of the
photochemistry, though, are expected to be analogous in both systems, so the
experimental conclusions derived by Park et al. [343] for DMABN, must hold in a

qualitative way also for ABN.

In this collaborative project, we have performed a computational study (quantum
chemistry and quantum dynamics) on ABN in the gas phase and acetonitrile in order to
corroborate or discard the hypothesis of Park et al. [343] and provide further
information about the ultrafast process that populates the LE state almost immediately

after the initial photoexcitation.

We have carried out a preliminary CASSCF(12,11)/cc-pVDZ study to describe the
topography of both coupled potential energy surfaces involved in the initial steps of the
process using the Gaussian 09 package. In this way we have established the paths and
regions of the surfaces that determine the mechanism of the ultrafast process under
study (< 30fs) and highlighted a new photoreactive pathway in agreement with the
experimental results of Park et al. [343]. The energies in these regions have then been
recalculated at the CASPT2 level with the Molcas 7 package to include the effect of
dynamic correlation in the calculations. To treat the conical intersection region with the
CASPT2 method, one must apply the second order perturbation correction to
(quasi)degenerate electronic states. To this end, the Multi-State Complete Active Space
Second Order Perturbation Theory (MS-CASPT2) approach was used. It builds an
effective Hamiltonian between the perturbed electronic states and then diagonalizes the
resulting matrix in order to obtain the resulting perturbed electronic states treated on

the same footing.

The solvent effect was included implicitly within the PCM model (Chapter I). We
developed full-dimensional models of coupled potential energy surfaces, first based on
CASSCF energies and geometries and further refined to match CASPT2 data, both in the

gas phase and in acetonitrile, and used them to run quantum dynamics simulations with
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the multilayer version of the multiconfiguration time-dependent Hartree (ML-MCTDH)
method [200].

II- Quantum Chemistry

To determine the paths and regions involved into the early stage of the ultrafast
intramolecular charge transfer, we analyzed in a first stage the nature of the electronic
states within the FC region and determined the relevant stationary points. In a second
stage, we characterized several Colns. The solvent effect on the photoprocess was

investigated in a third stage.

1. Franck-Condon Region

First, CASSCF/CASPT2 calculations in the gas phase show that light absorption occurs
from a double-well region in the ground-state potential energy surface. The two
equivalent minima, denoted FC-Cs, have a wagged geometry belonging to Cs point-group
symmetry. Both points are connected through a planar Cyy transition state (TS), for
which the transition vector corresponds mainly to the pyramidalization of the amino
group (see Fig. 82). This planar transition state, named FC-Czv, has a small energy
barrier of 0.06eV at the CASPT2 level (see Tab. 15 for CASSCF/CASPT2 energies of the
critical points in the gas phase). The objective of this study is not to consider possible
tunneling in the ground state but what occurs in the excited states. We will thus

consider this FC-Czv TS as an effective average FC point.
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Fig. 82 SA4-CASSCF/cc-pVDZ scan for the ground state along the -NHz pyramidalization coordinate, from FC-
Czv. Energies in eV are given with respect to the FC-Cs global minimum at the SA4-CASSCF/cc-pVDZ level of
theory (note that CASSCF energies are different from the values given in Tab. 15 because SA4 was used here

rather than SA2).
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Tab. 15 Energies in eV and oscillator strengths calculated at the CASSCF(12,11)/cc-pVDZ and CASPT2/cc-
pVDZ levels of theory for various critical points of ABN on the first three electronic states, in the gas phase. *

Energies calculated using SA2-CASSCF(12,11)/cc-pVDZ.** Energies calculated using MS2-CASPT2/cc-pVDZ.

GS LE CT

FC-Cs Ecasscr 0.00 4.79 6.54
Ecaspr2 0.00 4.67 5.44

f / 0.01 0.43

FC-Cav Ecasscr 0.08 4.83 6.38
Ecaspr2 0.06 4.64 5.38

f / 0.01 0.49

LE-Cs Ecasscr 0.20 4.59 6.40
Ecaspr2 0.10 4.42 5.31

f / 0.01 0.39

LE-Cav Ecasscr 0.27 4.64 6.28
Ecaspr2 0.16 4.39 5.27

PICT Ecasscr 0.44 4.89 6.11
Ecaspr2 0.26 4.59 5.15

f / 0.02 0.66

Coln-Cs Ecasscr™ / 5.62 5.62
Ecaspr2™* / 5.03 5.00

Coln-Cay Ecasscr™* / 6.71 6.71
Ecaspr2™* / 5.62 5.61

As aforementioned, the first and the second excited electronic states in the Franck-
Condon (FC) region correspond to the LE and CT states, respectively. Their electronic
characters are determined by their orbital populations, which we represent with the
density difference of the S1 or Sz excited states with respect to the ground state (at FC),
as shown in Fig. 83. The first excited state shows an excitation of the electronic density
delocalized over the whole molecule, mainly on the benzene ring (LE). One can notice
that the electronic density in the excited state is less bonding and tends to relocalize the
Tt system on the carbon atoms of the ring. On the cyano and amino fragments, the change

in the electronic density shows that out-of-plane orbitals are depopulated to the profit of
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in-plane orbitals. The second excited state shows a motion of the electronic density from
the donor fragment (amino group) to the acceptor fragment (the rest of the molecule).
This latter electronic behavior creates a separation of charge, the so-called
intramolecular charge transfer, as illustrated by the large value of the dipole moment of
S2-CT: 11.30 [11.51] D, while it is only 5.02 [5.30] D for S;-LE (CASPT2 [CASSCF] values,
in agreement with already published dipole moment in Ref. [316]).

A) B)
=Pt o ’%‘)
H——T i S
3
H H ;‘f “ JQ’ 4
I “”

Fig. 83 Electron density difference between the total electron density of: A) the first excited state, B) the
second excited state, with respect to the ground state at the FC geometry. Blue: gain of electronic density.

Yellow: loss of electronic density.

The Si-LE potential energy surface also has a double-well shape. The corresponding TS
(LE-Czv) is 0.03eV (CASPT2; 0.01eV, CASSCF) higher than the LE wagged minima, which
are 4.42 eV (dipole: 5.11 [5.40] D) above the ground-state ones (see Fig. 84).
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Fig. 84 SA4-CASSCF/cc-pVDZ scans for the LE excited state along the -NH: pyramidalization coordinate, from
LE-Czv. Energies in eV given with respect to the FC-Cs global minimum at the SA4-CASSCF/cc-pVDZ level of
theory (note that CASSCF energies are different from the values given in Tab. 15 because SA4 was used here
rather than SA2).

The S;-CT potential energy surface shows a flat single well with a planar Czy minimum
denoted PICT, 5.15 eV (dipole: 11.71 [11.91] D) above the ground state FC-Cs minima
(see Fig. 85).

Pyramidalization angle of -NH, at PICT
-40 -30 -20 -10 0 10 20 30 40

Energy (eV)

6.4

Fig. 85 SA4-CASSCF/cc-pVDZ scans for the CT state along the -NHz pyramidalization coordinate, from PICT.
Energies in eV given with respect to the FC-Cs global minimum at the SA4-CASSCF/cc-pVDZ level of theory
(note that CASSCF energies are different from the values given in Tab. 15 because SA4 was used here rather
than SA2).
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The large oscillator strength found for the excitation to Sz-CT from the FC-Czy transition
state, as well as from the FC-Cs wagged minima (i.e. f = 0.4-0.5 at the CASPT2 level; see
Tab. 15), indicates that S; is the most optically active one. The corresponding excitation
energies (4.67 and 5.44 eV in the gas phase for LE and CT respectively; AE(S1-S2) = 0.77
eV) are in reasonable agreement with experimental results (4.72 eV for the maximum of
the absorption band and AE(S1-S2) = 0.59 eV in n-hexadecane) [356]. As seen on Fig. 86,
which depicts the Sz- FC-Cs forces obtained at the CASSCF level, the initial relaxation on
the S;-CT state is governed mainly by an in-plane quinoidal coordinate with
contributions from the out-of-plane motion of the amino group and leads directly to the

region of the PICT species (0.29 eV below the excitation energy).

Fig. 86 Force at the Sz2-FC-Cs point.

2. Conical Intersection Seam

In collaboration with the group of Dr. Mar Reguero, a new conical intersection was
found between the S;-CT state and the Si-LE one for a totally planar geometry (Czy
symmetry), along a direction approximately parallel to the relaxation coordinate from
the Franck Condon point to Sz-CT PICT minimum. This opens a new channel for an
ultrafast population of the Si-LE state upon internal conversion, which could discard the
need for out-of-plane motions or the involvement of the o™ state in the charge transfer

process, at least during its early stages (~10fs).

Has already mentioned, Robb et al. [345,354] have reported a minimum-energy conical

intersection (Coln) point between the S1-LE and S;-CT states, of non-planar Cs geometry
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denoted Coln-Cs with a bent ring and a slightly wagged amino group. There are two
equivalent and symmetric Coln-Cs: one with the bent ring “up” and the other one with a
bent ring “down” (see Fig. 87). Its branching space vectors are mostly made of skeletal
deformations of the phenyl ring coupled with the C-N stretch of the amino group as

depicted in Fig. 88 (CASSCF level).

Coln-C_+ Bent-Ring up Coln-C.- Bent-Ring down

Fig. 87 Optimized geometry at the CASSCF/cc-pVDZ level of theory of the pair of S2/S1 Colns denoted Coln-Cs+
and ColIn-Cs-.

Coln-C,,

Gradient Difference Derivative Coupling

Coln-C,

Gradient Difference

Fig. 88 Gradient differences and derivative couplings at both Colns calculated at the CASSCF level.

In our recent paper [357], we reported a new Coln belonging to Czy point-group

symmetry with a planar geometry, denoted Coln-Czy. This point has been optimized at
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the CASSCF level, but its position and energy slightly shift when recalculating the energy
profiles at the CASPT2 level. The relocated crossing point is 0.16 eV above the energy of
the S»-CT state at the FC-Cs geometry, 0.46 eV above the PICT minimum, and ~0.60 eV
above the Coln-Cs point (see Tab. 15 -CASPT2 level and Fig. 89).

LT(A)
TT~~___PICT 8T
s E=v__ _--—""Coln-C,,
515eV __ -
LE (B,) " 5.61 eV
~N ’/’
\\\ LE-CZV,/’/
4.39 eV
So (A)
\\\\\\ FC-CZV’,/””
0.06 eV

Planar deformation

Fig. 89 Energies of the critical points of C2y symmetry at the CASSCF(12,11)//CASPT2 /cc-pVDZ level of theory.

The irreducible representation of each state is indicated within parentheses.

The initial relaxation that leads from FC-Czy on Sz-CT to the PICT minimum (the force at
the FC-Cyy point is a quinoidal deformation, see Fig. 90) further leads to Coln-Czv (72%
overlap between the gradient at Sz-FC-Czv and the direction from FC to Coln-Czv). In

addition, the gradient difference of this Coln conserves the Czy symmetry (Fig. 88).

Fig. 90 Force at the S2-FC-Czv point.
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This indicates that access to this Coln is favored due to the momentum acquired by the
nuclei during the initial relaxation. This new Coln is thus easily accessible according to
both energetic and geometric criteria, and deactivation through this point is expected to

be ultrafast.

The Coln-Cs point (optimized at the CASSCF level and also relocated at the CASPT2 level)
is ~ 0.60 eV lower than the Coln-Czy point. In collaboration with our Spanish colleagues,
a continuous seam of conical intersection joining these two points and decreasing
monotonically was characterized along a relaxed-interpolated coordinate (optimizing
conical intersections for fixed values of the bending angle defined by the out-of-plane
motion of the carbon atom bonded to the amino group) [357]. This was calculated at the
CASSCF level only because such optimizations are not available at the CASPT2 level.
However, we can safely assume that the landscape does not change qualitatively when
dynamic correlation is included, as proved by the existence of both Coln-Czy and Coln-Cs
relocated points at the CASPT2 level. See Fig. 91, for a schematic representation of the

seam in three dimensions.

Planar Deformatig1

Fig. 91 Scheme of the conical intersection seam along the planar and bent-ring deformation.
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The S:i-LE and S2-CT states have B; and A1 symmetry within the Czy point group,
respectively (using Mulliken’s convention where the x-axis is perpendicular to the

molecular plane, as depicted in Fig. 92).

V4
H
;H\N/
Y

H H

N

Fig. 92 Cartesian frame used in this study (Mulliken’s convention).

The bending deformation that lowers the symmetry to Cs is B1 (out of plane), such that
S1-LE and S2-CT become A” and A’, respectively, with no further coupling. The derivative
coupling is a B2 /A” (B,®A; = B,/A"®A’ = A”) Kekulé-like motion all over the seam
(see Fig. 88). Internal conversion can thus take place at any point along the seam and

implies activation of motions that break the left/right symmetry of the molecule.

However, the topographies of both crossings are different: Coln-Czy is sloped, whereas
Coln-Cs is peaked (see Fig. 93). These characteristics have been determined from the
profiles of the potential energy surfaces of the LE and CT states calculated between the
geometries of the critical points optimized at the CASSCF level displayed in Fig. 93.
Including electron dynamic correlation (CASPT2 calculations) induces an energy shift all
along each surface that is not constant but quite smooth for both, i.e. 0.3-0.5 eV for the
LE and 1.1-1.2 eV for the CT states. This results in a relative stabilization of the CT state
of about 0.7-0.8 eV with respect to the LE state. Consequently, the critical points at the
CASPT?2 level are not located at the same geometries as at the CASSCF level. The shape of
the surfaces is quite similar at both levels, as shown in Fig. 93. In addition, CASPT2
calculations show that the Coln-Czy region is even more accessible from the FC region

compared to CASSCF calculations. In any case, the different topographies of both Coln-Cs
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(i.e. peaked) and Coln-Cay (i.e. sloped) crossings and the fact that the Coln-Cs geometry is
farther from the FC region than the Coln-Czy one, are expected to make the bent
deactivation pathway (through Coln-Cs) occur later than the planar one (through Coln-

Czv) and more in favor of populating the LE minimum.

Interpolation coordinate (arbitrary unit)
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Fig. 93 SA2-CASSCF (plain line) CASSPT2 (dashed line) energy profiles of the CT (red) and LE (blue) states
along the PICT to Coln-Czv interpolation (upper panel) and the PICT to Coln-Cs interpolation (lower panel).
Energies are given in eV with respect to their respective global ground state minima FC-Cs in SA2-CASSCF and

CASPT2.

Describing experimental conditions more accurately requires the solvent environment

to be taken into account. In the following we investigate the solvent effect on the planar
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deactivation pathway. The corresponding study for the bending deactivation pathway

through Coln-Cs is currently ongoing.

3. Investigation of the Solvent Effect on the Planar Deactivation Pathway

We modeled the acetonitrile solvent using the polarizable continuum model (PCM)
approach, chapter I. Modeling solvent effects in non-adiabatic phenomena has an
additional difficulty given the different time scales of the various processes undergone
by the solute, and the finite relaxation time required by the solvent to equilibrate with

the changing geometry or electronic distribution of the solute.

Furthermore, the relaxation and subsequent processes that take place on the excited
state, such as internal conversion for example, can proceed in the same time scale than
the solvent relaxation [298,299]. To the best of our knowledge, this latter situation is
impossible to compute with the PCM method implemented into quantum chemistry

packages such as Gaussian or Molcas.

Therefore, to account for different situations, we will considerer the two extreme cases
that can be adequately addressed computationally:

* The solvent is equilibrated for the ground state. It means that we will considerer
that our process (ICT) is faster than the solvent relaxation (Fig. 94). For example,
this methodology is used to compute adequate excitation energies because the
vertical transition can be considered as an instantaneous process.

* The solvent is equilibrated for the excited state, in our case the charge transfer
state S;-CT, as it is the excited electronic state where the process under study
occurs during the first few femtoseconds (Fig. 94). In that situation the process

under study (ICT) is considered slower than the solvent relaxation.
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Fig. 94 SA2-CASSCF/CASPT2 energy profiles of the CT (red) and LE (blue) states along the PICT to Coln-Czy
interpolation in a polar solvent. Plain line: solvent equilibrated for the CT state. Dashed line: solvent

equilibrated for the ground state. Energy differences are given with respect to the ground-state minimum.

The profiles of the interpolation from PICT to Coln-Czy recalculated at the CASPT2 levels
using both models expressed above are depicted in Fig. 94. They show that the global
shapes of the surfaces are not changed by the solvent relaxation dynamics (i.e. solvent
equilibrated for the ground state or for the charge transfer excited state), although the
charge transfer state is stabilized within a polar environment preferentially due to its

larger dipole moment.

Optimizing a Coln within the PCM approach is not an available technique at the moment.
We thus identified a shifted crossing point by recomputing the energies in the presence
of acetonitrile along a linear interpolation pathway from the PICT point to the Coln-Cay
point obtained in the gas phase (see Fig. 95 for a comparison gas phase against solvent).
Our results show that when the solvent is equilibrated for the CT state, the latter is
stabilized with respect to the LE state by about 0.3 eV (around the PICT minimum) and
when it is equilibrated for the ground state, the CT state is stabilized by about 0.15 eV
with respect to the LE state. This effect is not strong enough to invert the energies and
the PICT minimum still belongs to the second excited electronic state. In addition, the
energy of the Coln-Czy point with respect to the FC point is lower than in the gas phase
(see Tab. 16 for CASPT2 energies of critical points within acetonitrile for different state

equilibrium). This general features are independent of the equilibration of the solvent
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(i.e. equilibrated for the ground state or for the charge transfer electronic state). The
point to emphasize is that when we consider our process to be faster than the solvent
relaxation (i.e. solvent equilibrated for the ground state), the CT state is less stabilized
than the situation where we consider the solvent relaxation to be faster than the
internal conversion of the system (i.e. solvent equilibrated for the CT state) (see Fig. 94).

Therefore, the Coln-Cay is more accessible (around 0.15 eV lower) in the latter situation.

Tab. 16 Energies in eV calculated at the CASPT2/cc-pVDZ level of theory for various critical points of ABN in
acetonitrile. Ecr is the energy when the solvent is equilibrated for the CT electronic state. Esois the energy

when the solvent is equilibrated for the ground state * Energies calculated using MS2-CASPT2 /cc-pVDZ

FC-Cs FC-C2v LE-Cs LE-Cav PICT Coln-Cay
E E E E Ecr Eso Ecr” Eso*

GS 0.00 0.04 0.08 0.12 0.18 | 0.18 0.38 0.38
LE 4.69 4.59 4.42 4.34 453 | 453 479 494
CT 5.24 5.11 5.07 497 489 | 4.74 4.77 4.93
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Fig. 95 SA2-CASSCF energy profiles of the CT (red) and LE (blue) states along the PICT (x=0) to CoIn-Czv
interpolation in the gas phase (plain line) and polar solvent-acetonitrile (dashed line). The solvent is
equilibrated for the CT state (if the solvent were equilibrated for the ground-state the energy of the CT state

would be less shifted down). Energy differences are given with respect to the ground-state minimum.
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In summary, the Coln-C2y point appears closer to the PICT minimum when the effect of
the solvent is considered (0.8-0.9 eV lower in acetonitrile than in the gas phase), and
even more in the situation where the solvent is equilibrated with respect to the CT state.
In other words, the planar deactivation channel should be more accessible in the solvent
than in the gas phase. Furthermore, the case where the process is slower than the
solvent relaxation should be the most efficient one (see Tab. 15 and Tab. 16). However,
the efficiency of the deactivation pathway does not necessary imply the adequate
description of the physics of the solvent effect. A realistic description of the solvent
effect on the CT electronic state might be a middle case between both extreme situations

considered here.

Quantum dynamics calculations were run to confirm our various hypotheses about the
deactivation mechanism and the effect of the solvent. Results are presented in the next

Section.

III- Quantum Dynamics

Quantum dynamics calculations were run in full dimensionality (39 internal degrees of
freedom) with the multilayer version [200] of MCTDH (ML-MCTDH) of the Heidelberg
package [181] (see Chapter I). [200]. The electronic Hamiltonian matrix was expressed
using a vibronic coupling Hamiltonian model [20] that we developed (Chapter II)
whereby quasidiabatic potential energy surfaces and coupling terms are expressed as
quadratic expansions along the nuclear coordinates. Time-resolved electronic
populations were calculated over 100 fs for coupled potential energy surfaces based on
both CASSCF and CASPT2 data. Technical details regarding the quantum dynamics
calculations (SPF, ML-tree, etc..) can be found in Appendix D.
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1. Set of Coordinates

The set of polyspherical coordinates [155,160,358] (see Chapter I) was chosen in a way
that it could describe what was determined to be as the main motions involved in the
process, display in Fig. 96:
1) Quinoidal stretching (motion along the Coln-Czy direction)
2) Symmetric stretching of the allyl-like fragment on the amino side
3) Envelope ring-puckering on the amino side (involved into the bending motion
of the Coln-Cs)
4) Pyramidalisation of the C-atom attached to the amino side (involved into the
bending motion of the Coln-Cs)

5) Torsion and pyramidalization (wagged) of the amino group

1) H H 2) H H
H H
N=— / N=— N/
\, :
H H
H H
3) 4)
L NH; H H \NHz
N=— T Ne——<
H H H H
5) Pyramidalization 5) Torsion
3 H H ¥
N:'—QN'IH N— i :é GEN.\\H
H H \HB H H H

Fig. 96 Main motions involved in the process.

Furthermore, they were selected to correspond to the Z-matrix coordinates used for the
quantum chemistry calculations. Therefore, the polyspherical vectors mainly link atoms
along chemical bonds (valence vectors) except for the ring (see Fig. 97). The vectors of
the ring (R(l), Rgl’l), Rgl’l), Rgz’l), Rgz’l)) enable to define its main deformations in a

symmetrical way (quinoidal stretching, envelope ring-puckering, ...).
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Then, those vectors were regrouped (see Fig. 97) into two subsystems (S1,1 and Sz1) and
a sub-subsystem (S1,2,1). These enable the use of polyspherical parameterization angles,
which correspond to the Z-matrix ones (used to perform quantum chemistry
calculations with an equivalent set of coordinates) and also to avoid the numerical

singularities that occur when a vector is almost parallel to a z-BF axis (as mentioned in

Chapter I).
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Fig. 97 The set of polyspherical coordinates used in the vibronic model and to perform the dynamics.
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The relevant coordinates to describe the main motions are displayed in Tab. 17.
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Tab. 17 The most relevant polyspherical coordinates to describe the intramolecular charge transfer process.

Motions Polyspherical Coordinates
Quinoidal stretching Ril)
Symmetric stretching of the allyl-like fragment on Rgz,n
the amino side
Envelope ring-puckering on the amino side ]/(2’1)
Pyramidalisation of the C-atom attached to the pacRy)

amino group

Torsion and pyramidalisation of the amino group y@Y and (p§1,2,1)

One must notice that R(21,2,1) is used to define the subsubsystem Si,2,1 whereas Rg1,2,1) is
defined within this subsubsystem. This leads to an asymmetrical definition of both H-
atoms motions (Hi2 and Hi3) on the amino group, such that the wagged motion cannot
be described in a symmetrical way. In that situation one should used another set of
coordinates where the H-atoms of the amino group are equivalently defined with

respect to the same Jacobi vector as shown on Fig. 98.

R,(121
R,(121) | Ry121

Fig. 98 Alternative set of polyspherical coordinate for the S121 subsubsystem.

During this study, we mainly focused on understanding the early stages of the ICT
process on the second excited electronic state. As seen previously in the quantum
chemistry part, most of our geometries will be considered within the Czv point group.
This removes the wagging of the amino group wagging from the list of relevant
coordinates. Therefore, the first set of coordinates that we chose should be adequate for

our purpose, but the aforementioned limitation must be kept in mind.
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In the following, we present the model of coupled potential energy surfaces that we
developed to examine the role of the newly-found planar deactivation channel upon
running quantum dynamics calculations. First, the efficiency of the planar deactivation
channel and the solvent effect is investigated. This is followed by a discussion about the

competition between the planar and bent-ring motion deactivation pathways.

All parameters of the model were extracted from ab-initio calculations
(CASSCF(12,11)/cc-pVDZ and CASPT2) at the four relevant geometries: Qgs ,
Qie, Qpicts Qcoin—cyyr aNd Qgomn-—c, (2 two-state-average CASSCF was used at the Coln
only; the minima are from single-state CASSCF calculations). The solvent (acetonitrile)

effect was taken into account with the PCM (polarizable continuum model; see Chapter

D).

2. Planar Deactivation Pathway Model

2-1. In the Gas Phase

We represented the potential energy surfaces and non-adiabatic couplings with a
vibronic-coupling Hamiltonian model, developed during this thesis and expressed in
Chapter II, based on three quasidiabatic states. It consists in a real symmetric matrix
HY(Q)  made of three diagonal potential energy functions:
Hdiab(Q), H$iab(Q) and HP(Q) , and three off-diagonal electronic couplings,
Hdab(Q), Hdiab(Q) and HEiP(Q), where Q denotes the set of nuclear polyspherical
coordinates detailed in the previous section (39-dimensional vector). In the FC region
the three quasidiabatic states coincide with the relevant adiabatic states: state 1 (So/GS),

state 2 (S1/LE), and state 3 (S2/CT) (see Fig. 91 and Fig. 52).

The quasidiabatic vibronic-coupling Hamiltonian reads as

| H{lliab (Q) | 0 | 0 Eq. 106
HY2P(Q) = 0 H?zfab(Q) H?sf)ab(Q)
0 HIF*(Q) HP(Q)
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diab

Each diagonal entry, H;**’(Q) is expanded quadratically around a reference geometry,

Qii, corresponding to the relevant Cav stationary points:

Qcs = Q11, Que = Q22,and Qpjcr = Q33 as in Fig. 52.

FC-C,,

N
. Cd
Planar coordinate

Fig. 99 Schematic representation of the quasidiabatic quadratic expansions around each minimum (dashed

line) based on ab-initio data (adiabatic, plain line).

The off-diagonal coupling terms between the ground state and the other two states can
be neglected, due to the large energy difference between the ground state and the
excited states for all relevant geometries considered here (in particular from FC to the
S2/S1 Coln). In other words, H42P(Q) corresponds to the ground state potential energy

surface, and the electronic couplings H2?(Q) and H{i2P(Q) are set to zero.

The remaining coupling, H$3?(Q), is expanded linearly around the Sz/Si Coln-Cay
geometry (i.e. Qcoin—c,,)- The parameters of this electronic coupling are obtained using
the two vectors of the branching space and the PICT minimum is used as a reference
point for setting the value of the arbitrary mixing angle between both degenerate states
so as to satisfy H$3%(Qpycr)=0, which ensures that the quasidiabatic electronic coupling
does not shift the adiabatic PICT minimum on the potential energy surfaces with the
respect to the quasidiabatic minimum. Qpjct is thus chosen as the minimum optimized
with ab-initio calculations. The LE minimum could have been chosen as an alternative
reference point; however, we are going to analyze the dynamics on the second excited

state through the PICT minimum. Therefore, the most important part of the surface that
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we must describe adequately is the second excited state from FC to the Coln as well as
the Coln topography (i.e. the branching space). In our model, the LE minimum is not the
reference point for setting the value of the arbitrary mixing angle between both
degenerate states, thus, the previous constraint H5i2P(Q£)=0 is not necessarily ensured.
However, we make the reasonable approximation that the quasidiabatic electronic
couplings are not strong enough at the LE minimum to shift the geometry significantly.
This consideration holds for two-state crossing cases such as in ABN or 3-HC (Chapter

D).

diab
ii

The curvatures of the diagonal entries, H (Q), were obtained through a second-order
Jahn-Teller procedure. However, for both excited states, the curvatures along the
directions leading from the minima to the planar Coln (i.e. Qg — Qcoin-c,, and
Qpict — Qcoin-c,y) Were adjusted according to the quadratic modification procedure
developed in Chapter II (whereby harmonic frequencies are modified) to ensure that the
two quasidiabatic potential energy surfaces H$i2?(Q) and H$i?P(Q) cross exactly at the

ab-initio geometry and energy of the Coln-Czv (i.e. Qcom-c,y)-

Fig. 59 shows the agreement between the ab-initio energies and the ones of the vibronic
coupling Hamiltonian model along the Qpict — Qcoin-c,y, direction when using CASSCF
data. The upper panel is the first quadratic curvature model and the lower panel is this
model improved with the quadratic modification of the curvature to correct the Coln
position. One can notice on these figures that the quadratic curvature modification is a
small alteration. In that situation, the Coln energy and position is refined by about 0.2 eV

from the first quadratic model (i.e. without the quadratic modification of the curvature).
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Fig. 100 planar pathway along a linear interpolation from PICT (x = 0) to Coln-Czv (x = 10), in the gas phase.
Energies are given in eV with respect to the ground-state minimum. Dashed line: ab-initio; plain line:
vibronic-coupling Hamiltonian model (Upper panel: quadratic model, lower panel: the model with quadratic
curvature modification). Ab-initio level of theory: CASSCF(12,11)/cc-pVDZ with variable state-average
weights (single-state calculations on each state at x = 0; 0.5:0.5 weights on S1/Sz at x = 10; linear interpolation

in between).

These models of potential energies and couplings were used to run quantum dynamics
simulations. The time evolution of the quasidiabatic populations in both cases (i.e.
quadratic and quadratic with modified curvature) can be considered as almost identical
(the difference between both calculated quasidiabatic populations is about 0.1%). Such a
difference is not relevant enough to be detected graphically, hence, only the time

evolution of the quasidiabatic populations for the model with the modified curvature is
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depicted in Fig. 67. The modification we used to correct the curvature in our
quasidiabatic potential energy surfaces is small enough that it has a negligible impact on
the evolution of the populations. In other words, the exact position of the Coln is
relevant to some extent but a small shift in position or energy will not change the
physical behavior by much. In photochemistry, if one wants to investigate the global
evolution of populations to rationalize a mechanism, an extremely accurate potential
energy surface model is not mandatory, as opposed to those required for spectroscopy

studies for example.
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Fig. 101 Evolution of the quasidiabatic populations as functions of time in the gas phase. Red: CT state; blue:
LE state. Plain line: coupled potential energy surfaces based on CASSCF data (Plain line) and on CASPT2 data
(dashed line).

A more accurate model of coupled potential energy surfaces based on CASPT2 data was
obtained by shifting the geometries and energies to the relevant relocated points (all
minima and crossings). Again, and with the same methodology, the quadratic curvature

was slightly adjusted along the LE/PICT- Coln-Cgy directions (Fig. 102).
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Fig. 102 Planar pathway along a linear interpolation from PICT (x = 0) to Coln-Czv (x = 10), in the gas phase.
Energies are given in eV with respect to the ground-state minimum. Dashed line: ab-initio; plain line:
vibronic-coupling Hamiltonian model ab-initio level of theory: CASSCF(12,11)/CASPT2 /cc-pVDZ with variable
state-average weights (single-state calculations on each state at x = 0; 0.5:0.5 weights on S1/Sz at x = 10; linear

interpolation in between).

The evolution of the quasidiabatic population transferred from the CT state to the LE
state through the Coln-Czy region is depicted in Fig. 102. It shows that internal
conversion starts immediately. Including electron dynamic correlation (CASPT2 data)
only amplifies the conclusions that could be drawn from a less accurate description
based on CASSCF data, which is what we were expecting as Coln-Cay is closer to FC with
CASPT2 data (see Fig. 93). Already at 10 fs, a significant part of the wave packet starts to
be delocalized over the Coln-Czy region where we start to observe some transfer of
population between the first two excited electronic states. A significant ultrafast
radiationless decay from PICT to LE (transfer of population) within the planar channel is
observed: at 100 fs, 30% of the population has already been transferred in the gas
phase.

We expect such conclusions to be reinforced in a polar solvent, as the Coln-Cay is closer
to FC than in the gas phase due to the stabilization of the CT electronic states (0.8-0.9 eV
at the CASPT?2 level) with respect to the LE electronic state. To validate this hypothesis,

the same study was carried out while accounting for the solvent effect.
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2-2. In a Polar Solvent

The methodology to generate the coupled potential energy surfaces taking into account
the solvent effect is the same as the one exposed in the previous section. The only
difference is that we shifted the energies of the critical points (i.e. ground state
minimum, LE and PICT minima, and Coln-Czv) with respect to the solvent effect that we

rationalized previously in the quantum chemistry section.

Fig. 103 shows the agreement between the ab-initio energies and those of the vibronic-
coupling Hamiltonian model (with a quadratic modification to fit the energy and
geometry of the Coln with respect to the ab-initio data) that we developed to account for
the different solvent relaxation time scales (i.e. faster or slower than the ICT process)
along the direction from PICT to Coln-Czv when using CASPT2 data. The LE state is
slightly shifted in our model with respect to the ab-initio data (maximum shift of 0.07
eV). One needs to keep in minds that in our model the curvatures are calculated at the
CASSCF level without inclusion of the solvent effect, thus inducing a shift between the
potential energy surfaces model and the ab-initio data in acetonitrile at the CASPT2
level. However, our present study is focused on understanding the early stages of the
ultrafast process. In other words, we mainly focus our study on the dynamics from FC to

the Coln, i.e. the ICT dynamics on S.
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Fig. 103 Planar pathway along a linear interpolation from PICT (x = 0) to CoIn-Czv (x = 10), in a polar solvent
(upper panel: solvent equilibrated for the CT state; Lower panel: solvent equilibrated for the GS). Energies are
given in eV with respect to the ground-state minimum. Dashed line: ab-initio; plain line: vibronic-coupling
Hamiltonian model Ab-initio level of theory: CASSCF(12,11)/CASPT2/cc-pVDZ with variable 0.5:0.5 state-

average weights.

The corresponding evolutions of quasidiabatic populations are depicted in Fig. 104.
They highlight our previous hypothesis regarding the efficiency of the pathway
depending on the solvent relaxation time scale (i.e. faster or slower than the ICT
process). If the solvent relaxation is slower than the ICT process, as said previously, the
solvent is at its equilibrium state for the CT electronic state. In that situation, the CT
electronic state is more stabilized by the solvent polarity than if the solvent relaxation is
faster than the ICT process (i.e. solvent equilibrated for the GS) (Fig. 103). This induces
the Coln-Cazy to be closer to FC in the first situation than in the latter one (about ~0.15
eV). Hence, as expected, the Coln-Czy gets crossed (inversion of the quasidiabatic
populations in Fig. 104) ~8 fs earlier when the solvent relaxation is slower than the ICT
process (solvent equilibrated for the CT electronic state). However, the dynamics of the
relaxation does not influence the qualitative behavior of the system, the evolutions of
the quasidiabatic populations in both situations are similar with respect to their ~8 fs
shift in time and the final ratio of population transferred is identical (at 100 fs 80% of

the population has been transferred).
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Therefore, we can conclude that in this situation the dynamics of the solvent relaxation
is not a key point to describe the solvent effect over the photodynamics as it does not
have much influence on the behavior of the populations. The adequate description of the
solvent is likely to correspond to a situation between both cases that we addressed in
this thesis where the Coln-Czy gradually shifts down in energy during the dynamics.
However, these types of models are very involved and require a different description of

the solvent depending on the nuclear coordinates and on time.

Quasidiabatic population

0 10 20 30 40 50 60 70 80

90 100
Time (fs)

Fig. 104 Evolution of the quasidiabatic populations as functions of time in a polar solvent. Red/orange: CT
state; blue: LE state. Plain line: solvent relaxation slower than the ICT (solvent equilibrated for the CT).
Dashed line: solvent relaxation faster than the ICT (solvent equilibrated for the GS). Coupled potential energy

surfaces based on CASPT2 /PCM data.

In addition, as expected, the transfer of population along the planar pathway is more
efficient in a polar solvent than in the gas phase, i.e. at 100 fs, an extra 50% of
population has been transferred in a polar solvent compared to the gas phase (Fig. 67
and Fig. 104). One can conclude that the effect of the solvent polarity has a significant
impact over the transfer of population through the Coln-Czy upon an important
stabilization of the CT electronic state with respect to the LE electronic state (from 0.2 to
0.8 eV). However, as already mentioned, the dynamics of the solvent relaxation does not

have such a relevant effect on the physics of the system.
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3. Bent Deactivation Pathway Model

In order to investigate more deeply the planar deactivation channel (around the Coln-
Czv point) and how it may compete with a mechanism involving the ring bending motion
(involved in forming the non-planar Cs Coln, denoted Coln-Cs, that was reported in
previous studies [345,354]) we ran additional quantum dynamics calculations with
coupled potential energy surfaces that describe simultaneously both types of Colns. In
the following, a more complete model of potential energy surfaces is thus proposed,
describing adequately both the planar and bent channels at the CASSCF level in the gas
phase.

3.1. Coupled Potential Energy Surfaces Model

The quadratic vibronic-coupling Hamiltonian model with modified curvature used in the
previous section was built to study the planar deactivation pathway with a correct
description of the Coln-Czv point. However, the energy of the Coln-Cs point is 5.6 €V,
which is 0.6 eV higher than the ab-initio energy (energies given at the CASPT2 level).
Hence, the corresponding bending motion is not described adequately regarding the
photodynamics of the system. To adjust our model, we further added a modification of
the curvature along the bending direction to fit the Coln-Cs ab-initio energy and
geometry. The quasidiabatic electronic coupling defined in the previous section remains
untouched, which is a valid approximation. Indeed, as already pointed out, the
derivative coupling at the Coln-Cv/Cs points is a Bz/A” Kekulé-like motion that breaks
the left/right symmetry of the molecule, and which does not change much all over the
seam (see Fig. 88). Further improving the model would require the derivative coupling
(here, the gradient of the quasidiabatic electronic coupling) to depend explicitly on the

point on the seam.

As previously said, accessing the bent Coln (Coln-Cs) requires to break the Czy symmetry
of the molecule with a non-totally symmetric bending motion of the amino group. In
other words, there is a pair of equivalent bent Colns (i.e. Coln-Cs+ and Coln-Cs-) where

the amino group is bent either up or down with respect to the molecular plane.
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Therefore, to modify the curvature, it is mandatory to use a function that will act
symmetrically with respect to the amino bending direction. As seen on Fig. 105, to reach
both Coln-Cs points from either of the two Czv minima (S2-PICT or Si-LE) the system
must relax along two main deformations: a planar deformation and the amino bending
motion (up or down). From a technical point of view, the bending direction cannot be
defined directly by interpolating between one of the quasidiabatic electronic state
minima and one of the Coln-Cs points. If one modifies the curvature along such a
direction, the other equivalent Coln-Cs point will not be described adequately.
Therefore, the modification of the curvature to fit the energy and geometries of both
Coln-Cs points together must be achieved along a pure bending direction (i.e. a non-
totally symmetric coordinate for which both sides are mirror images of each other). This
approach is easy to implement in our situation, as the Coln-Cs points are mainly
displaced along the bending direction with respect to the central Coln-Czy point or the
two Czy minima (99% overlap between the bending direction and the normalized

displacements from either of the Czy points to the Coln-Cs point).
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Fig. 105 Schematic representation of the CoIln-Cs+, Coln-Cs-, Coln-Czv relative positions with respect to the LE

and PICT minima along the bent-ring and planar deformations.

The bending motion breaks the Czy symmetry into Cs, which results in the Coln-Cs points
to be 0.62 eV lower than the Coln-Czv point. In addition, the potential energy surface
shows significant anharmonicity along this direction (see Fig. 91 and Fig. 93). Hence, to

account for this difficulty, we modified the original vibronic-coupling Hamiltonian
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curvature along the bending direction using a symmetrical switch function (detailed in

Chapter II).

The main difficulty in the description of this deformation is to build a model of coupled
potential energy surfaces that is totally symmetric along this specific direction and will
give exactly the same numerical values of the energies at both Coln-Cs geometries (i.e.
CoIn-Cs+ and Coln-Cs-). To this end, one must “clean” the ab-initio Hessians with respect
to symmetry before using them in our vibronic-coupling Hamiltonian model, meaning
that a “cleaned” Hessian at a Czy geometry must be block-diagonal (in a set of
symmetrized coordinates) with respect to the irreducible representations of the Cay
point group of symmetry, as represented on Fig. 106. This new set of symmetrized
coordinates is obtained upon defining specific linear combinations of the original set of
polyspherical coordinates, such that they now belong to the irreducible representations
of Czv (the corresponding symmetrized coordinates are displayed in Appendix D). We
transformed all relevant data (Hessians, geometries, and branching space vectors) to

this new set of coordinates with the Tnum program [165].
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Fig. 106 Representation of a block diagonal Hessian matrix according to Czv symmetry.

The following figure (Fig. 107) shows a comparison between the ab-initio energies (in
the gas phase at the CASSCF level) and the ones of our final vibronic-coupling

Hamiltonian along the amino group bending direction.
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Fig. 107 Bent-ring pathway along a linear interpolation from PICT (x = 0) to CoIn-Cs+ (x = 10) and CoIn-Cs- (x =
-10), in the gas phase. Energies are given in eV with respect to the ground-state minimum. Dashed line: ab-
initio; plain line: vibronic-coupling Hamiltonian model. Ab-initio level of theory: CASSCF(12,11)/cc-pVDZ with
variable state-average weights (single-state calculations on each state at x = 0; 0.5:0.5 weights on S1/Sz at x =

+10; linear interpolation in between).

In a first place, one can notice that the ab-initio interpolation is not totally smooth. This
is due to a jump in the stage average weights. For most points along this interpolation,
we used smoothly varying state average weights (to describe minima as accurately as
possible and conical intersections with equal weights, i.e. from single state on each state
atx=0to 0.5:0.5 on S1/S2 at x = +10). However, at x = 7, the 0.35:0.35 weights on S1/S>
happened not to converge and 0.4:0.4 weights were used instead (note that such
intermediate data points are presented here only for comparison but were not used as

such for generating our model, based on data at x = 0 and x = £10 only).

As seen on Fig. 107, the barrier along the bending direction is 0.2-0.3 eV higher in our
model than in the ab-initio data at the CASSCF level (0.16 eV barrier). This is a limitation
of the curvature modification procedure. Fortunately, the model barrier occurs to have
about the same height as the ab-initio data at the CASPT2 level (0.25 eV barrier). As seen
above in the quantum chemistry section, including dynamic electron correlation results
in a smooth stabilization of the CT electronic state with respect to the LE state and,

consequently, in Colns being closer to the FC region (without noticeable impact on the
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geometries of the minima). Moreover, the corresponding quantum dynamics
calculations show that, as expected, the transfer of population is enhanced while using a
coupled potential energy surface model based on CASPT2 data. In any case, we can
safely assume that for the bending direction we described fortuitously but fortunately

potential energy surfaces at the CASPT2 level using CASSCF data.

One needs to keep in mind that our quasidiabatic potential energy surfaces are functions
of all the internal nuclear dimensions (i.e. 39 dimensions for ABN). The improved model
(with respect to the bending motion) corresponds thus to a more accurate description
than the original model designed to describe the planar pathway. We can now consider
two specific deactivation channels: the planar and bent pathways (in the full 39-
dimensional space) depicted schematically in two dimensions in the following figure

(Fig. 108). Subsequent quantum dynamics calculations are presented below.

Planar Deformatigl

Fig. 108 Schematic representation of the conical intersection seam along the planar and bent-ring
deformations. The arrows represent the possible deactivation pathways for the system. Yellow: through Coln-

Cs (peaked). Green: through Coln-Czy (sloped).

A technical remark should now be made about the set of coordinates used in the
following dynamics. Up to now, we changed our polyspherical coordinates for

symmetrized coordinates. Nevertheless, the curvature modification we presented here
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was based on switch functions that are not “MCTDH compatible” (not separable as sums
of products of low-dimensional functions). Therefore, to get a separable form for the
quasidiabatic energy surfaces, we used linear combinations of coordinates whereby the
bending and planar directions are treated as two explicit and linearly independent

coordinates.

3.2. Quantum Dynamics

Fig. 109 shows a comparison of the evolution of the quasidiabatic populations obtained
with the original model (plain line) and with the improved model (dashed line) both in
the gas phase and using CASSCF data. In the first case, we describe adequately the planar
deactivation channel only (the Coln-Cs points cannot be reached by construction). In the
second case, we treat both situations on the same footing. As can be observed, both
types of populations behave similarly. However, this result is global and does not
discriminate the relative efficiencies and roles of the different Colns (i.e. Coln-Cs and
Coln-Czy) with respect to the deactivation process. A more detailed analysis is required,

as shown below.
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Fig. 109 Time evolution of the quasidiabatic populations of the LE and CT electronic states in the gas phase.
Coupled potential energy surfaces based on CASSCF data. Plain line: model describing both bent and planar

deactivation pathways. Dashed line: model describing the planar deactivation pathway.
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As already mentioned, in these calculations we used a set of coordinates that are defined
as linear combinations of the original set of polyspherical coordinates. This linear
combination procedure was made in such a way that the PICT minimum and each Coln
(i.e. Coln-Czy and Coin-Cs) belong to a plane spanned by two coordinates: the planar
relaxation and the bent-ring deformation (see Fig. 105 and Fig. 108). Although
calculations were performed in the full 39-dimensional space, we will focus our analysis

of the dynamics results within the frame of these two reaction coordinates.

First, in this two-dimensional frame (see Fig. 105), we can localize each relevant
stationary point on the Sz-CT electronic state and define two regions for analyzing
separately both types of Colns: regions A and B in Fig. 110. These are implemented in
practice as auxiliary operators in the ML-MCTDH operator file in the form of step
distributions along the bent-ring coordinate, centered on each Coln, and of half width
the distance between Coln-Czy and Coln-Cs along the bent-ring coordinate. This defines
two borders, midway between both types of Colns: region B is the union of both
separate regions outside the borders and region A is inside the borders, as displayed in
Fig. 110. This will give us information about how the wave packet spreads on the coupled
potential energy surface over time along this coordinate. The partial populations
obtained inside the regions defined by the step distributions will be called local
quasidiabatic populations (for each specific Coln region) and will be discussed later in

this section.

Let us, in a first place, analyze the delocalization of the initial wave packet at FC (¢t = 0 fs).
At the initial time, the wave packet is already delocalized symmetrically around the FC
point along the bent-ring coordinate, with a typical width that basically corresponds to
the size of region A (the partial norm of the wave packet is equal to one when integrated
over region A only). This suggests that, even if the transfer of population is efficient
within Coln-Cs regions (region B), the system will first tend to transfer population

around the planar Coln region (region A) before further spreading.
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Fig. 110 Position of the Colns and the FC point within the planar and bent-ring coordinate frame. Dashed line

define the two regions used to analyze the wave packet delocalization.

To go further, we analyzed the transfer of local quasidiabatic populations in the various
Coln regions (A and B) to investigate in more details the relative efficiencies of the
different regions for transferring population between both electronic states. The
evolution of the local quasidiabatic populations within the different Coln regions (Fig.
111) shows two sequences. The first sequence is < 20 fs when the transfer of population
occurs in the vicinity of Coln-Czv. This is proved by the local quasidiabatic population in
region A being very similar to the total quasidiabatic population evolution displayed on
Fig. 109 (the population transfer increases around both Coln regions but is still negligible
in region B compared to region A). After 20 fs, the local quasidiabatic population within
the bent-ring Coln region (region B) becomes significant and evolves as a mirror image
of the local quasidiabatic population within the planar Coln region (region A). One can
notice that at the same time the global quasidiabatic populations no longer evolve (plain
line). This indicates that the width of the wave packet has now increased enough for
both regions to be populated and that it oscillates in time (“breathing” of the wave
packet). To summarize, the non-adiabatic transfer of population occurs before 20 fs
almost exclusively along the planar deactivation channel. Once the respective
populations of LE and CT have stabilized, the system keeps spreading in an oscillatory

manner along the bending motion (Fig. 112).
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Fig. 111 Time evolution of the local quasidiabatic populations transferred to the LE state in the gas phase.
Coupled potential energy surfaces based on CASSCF data. Plain line: local population transfer trough region A

(around Coln-Czv); Dashed line: local population transfer trough region B (around both CoIn-Cs+ and CoIn-Cs-).

The black line highlights the two different sequences.
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Fig. 112 Scheme of the conical intersection seam along the planar and bent-ring deformations. Left panel:

typical pathway of the wave packet on the CT state when population is transferred to the LE state; Right

panel: “breathing” of the wave packet transferred to the LE state.

This calculation in the gas phase indicates that the PICT species is populated right after

photoexcitation where it radiationlessly decays to the LE species very early through a
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newly-found, planar Coln. This radiationless decay happens with a minimal contribution
(almost none) of the bending motion. This feature is expected to be even more efficient
in a polar solvent owing to the quantum dynamics results that we obtained when

investigating the solvent effect on the planar deactivation pathways model.

IV- Conclusion and Outlooks

In this study, we have performed a computational study on ABN in the gas phase and
acetonitrile in order to corroborate or discard the hypothesis of Park et al. [343] and
provide further information about the ultrafast process that populates the LE state

almost immediately after the initial photoexcitation.

This work is part of a collaborative project with the group of Dr. Mar Reguero and Pedro
J. Castro from the Universitat Rovira i Vigili in Tarragona, Spain, for most of the quantum
chemistry calculations. We have carried out a CASSCF(12,11)//CASPT2 study to
describe the topography of both coupled potential energy surfaces involved in the initial
steps of the process. A new conical intersection was characterized between the S;-CT
and the Si-LE electronic states with a totally planar geometry (Czv symmetry), along a
direction approximately parallel to the relaxation coordinate from the Franck Condon
point to the Sz-CT minimum (i.e. PICT). This opens a new channel for an ultrafast
population of the LE state upon internal conversion. Using full-dimensional models of
coupled potential energy surfaces developed during this Thesis work, first based on
CASSCF energies and geometries and further refined to match CASPT2 data, both in the
gas phase and in acetonitrile, we have run quantum dynamics simulations with the
multilayer version of the multiconfiguration time-dependent Hartree (ML-MCTDH)
method [200]. Our quantum dynamics calculations clearly indicate that the PICT species
is populated right after photoexcitation where it radiationlessly decays to the LE species
very early through this newly-found, planar Coln thus showing that the bending motion
is not crucial for the radiationless process. This feature is expected to be even more
efficient in polar solvents than in the gas phase due to the strong stabilization of the CT
state, which results in making the Colns closer to the FC region. Such computational

results are consistent with the recent experimental observations of Park et al. [31] on
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the parent system DMABN where the first deactivation step is attributed to quasiplanar
motions inducing ultrafast internal conversion and direct formations of LE in less than

30 fs.

These results suggest that the new planar deactivation channel discards the need for
out-of-plane motions or the involvement of the o™ state in the charge transfer process,

at least during its early stages.

However to be more conclusive we need to improve some aspects of the present
potential energy surfaces model:

* Regarding the bending deactivation pathway, we must be able to adjust the new
curvature parameters (denoted fu(lé) when using a switch function, see Chapter
II), to improve the barrier obtained in our coupled potential energy surfaces
model with respect to the ab-initio data. In other words, we need to modify the
harmonic curvature as in a quadratic curvature modification strategy but without
modifying the nature of the stationary points (minima or transition states).

*  One will need to run the same quantum dynamics calculations with the coupled
potential energy surfaces model that adequately describe the planar and bending
deactivation channels based on ab-initio data calculated at the CASPT2 level and
in a polar solvent. This will corroborate or not our expectations regarding the
role played by the planar Coln on the photoreactivity in the gas phase and in the
presence of a polar solvent. This will possibly discard the necessity of out-of-
plane motions to transfer population from the second to the first excited
electronic states. This task is currently in progress.

* The involvement of the mo* state in the charge transfer process could be
considered upon improving the treatment of the in-plane bending motion of the

cyano fragment. A switch function should be adequate to achieve that purpose.

From a more general point of view one can raise the question about the level of
description of the solvent. In this study, we ran quantum dynamics calculations on
potential energy surfaces that describe the solvent relaxation in two extreme cases: the
solvent relaxation is slower than the ICT process (the solvent is equilibrated for the CT

electronic state) or the solvent relaxation is faster than the ICT process (the solvent is
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equilibrated for the GS). We showed that in our situation the solvent relaxation
dynamics does not influence the physics of the system, as the qualitative behavior of the
population over time is conserved. The adequate description of the solvent must be a
situation between both extreme cases that we addressed in this thesis, where the Coln-
Czv gradually shifts down in energy during the dynamics. However, these types of model
are very involved and require a different description of the solvent depending on the
nuclear coordinates and on time. In addition, as expected, the transfer of population
along the planar pathway is more efficient in a polar solvent than in the gas phase. One
can conclude that the effect of the solvent polarity as a significant impact over the
transfer of population through the Coln-Czy due to a large stabilization of the CT

electronic state with respect to the LE electronic state.

In addition, the description of the amino bent-ring motion is a mix of at least two CT
states (PICT — CT and CT’), which is the reason of the shoulder/barrier of the potential
energy surface along the Coln-Cs direction, as in Fig. 113. The nature of CT’ is still an
open question and participate to the debate of the existence and role of the TICT/pTICT

species.

>

Reaction coordinate

Fig. 113 Scheme of the CT mixed along the reaction coordinate mainly along the amino bent-ring motion.

In that situation, one could use a different Hamiltonian model. Instead of having three
quasidiabatic electronic states to describe three adiabatic electronic states, one could
account for four quasidiabatic electronic states to describe three adiabatic electronic

states, as in Fig. 114. The shoulder could be adjusted upon:
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* Fitting the quasidiabatic electronic coupling parameters on ab-initio data as done
by L. Joubert-Doriol et al. [359] and B. Lasorne et al. [360,361] but only along the
relevant directions (i.e. minima to Colns).

* Finding the Coln between both CT electronic states and determining the
quasidiabatic electronic coupling parameters analytically as developed in this
thesis. However, this is a tedious task (difficulty to localized high-energy Colns
with CASPT2 level of calculations). Furthermore, a thoughtful study about the
nature of CT’ is require, which seams to be one of the most important and
difficult question to answer regarding this system [314].

* In addition, such as in benzopyran [359], one quasidiabatic electronic state

crosses with two others and this creates electronic coupling singularities that we

do not know how to correct yet.

v

Bent-ring deformation

Fig. 114 Schematic representation of the quasidiabatic quadratic expansion around each minimum (dashed
line) to represent the ab-initio data (adiabatic-plain line). Strategy using four diabatic states to represent

three adiabatic states strategy.
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Conclusion Générale et Perspectives

A T'occasion de cette thése nous avons mis en place une méthodologie systématique
pour générer des surfaces d’énergie potentielle couplées sous forme de modeéles
d’hamiltoniens vibroniques. Celle-ci a été appliquée a l'étude de la réactivité de
processus photo-induits a I'aide de simulations utilisant une approche de dynamique
quantique en cours de développement appelée ML-MCTDH spécifiquement dédiée au

traitement des systemes de grande taille.

L’originalité de ce travail de these a été de mettre en place une méthodologie permettant
I'obtention automatique des parametres du modele (base diabatique) a l'aide de
relations analytiques explicites impliquant directement les données obtenues par les
calculs de chimie quantique (représentation adiabatique). Cette stratégie permet ainsi
de s’affranchir de certaines limitations des modeles d’hamiltoniens vibroniques,
notamment concernant la dimensionnalité du probléme. En effet, ce dernier point peut
s’avérer |'étape limitante dans les procédures plus habituelles d’ajustement non linéaire
de parametres (fits). Au contraire, notre méthodologie n’est pas limitée par le nombre de
degrés de liberté du systéme et peut ainsi étre appliquée a I'étude de la réactivité par
dynamique quantique de systémes considérés comme étant de grande taille (i.e. plus
d’'une dizaine de degrés de liberté). Ceci nous a mené a développer le code PAnDA qui
permet de générer automatiquement les surfaces d’énergies potentielles couplées dans
un format adapté a la méthode de dynamique quantique que nous avons utilisée (i.e.

ML-MCTDH).

D’'un point de vue technique, nos modeles s’inspirent des modéles d’hamiltoniens
vibroniques développés par Koppel et al. [20,110-112] dans lesquels les surfaces
d’énergie potentielle en représentation diabatique sont en général exprimées comme
des formes quadratiques (deuxiéme ordre). Cependant, en I'état, de tels modeles sont
limités a la description de processus (quasi)harmoniques. Pour le traitement de cas
moins harmoniques, nous avons étendu cette description et mis en place différentes

stratégies pour modifier le modele diabatique quadratique initial en introduisant une
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certaine part d’anharmonicité. Comme il est visible dans les chapitres d’applications
(Chapter III et IV), les modeles ont été élaborés dans l'optique d’étre facilement
adaptables a la description de différents types de paysages énergétiques, plus ou moins
complexes. Ils ont donc ainsi permis la production dans un temps “raisonnable” d’une
étude prenant en compte toutes les dimensions du systéme et les effets quantiques des
noyaux sur la photo-reactivité du processus non-adiabatique en question. Ces stratégies
sont présentées formellement dans les Chapitres I et II, et appliquées a I'étude de deux
processus photo-induits: le transfert de charge dans I'aminobenzonitrile et le transfert

de proton du 3-hydroxychromone.

L’étude du transfert de charge dans 'aminobenzonitrile a été réalisée en collaboration
avec le groupe du Dr. Mar Reguero et Pedro ]. Castro (Universitat Rovira i Vigili,
Tarragona, Espagne) qui ont réalisé une partie des calculs de chimie quantique. Lors de
cette étude, nous avons mis en place un modele qui a permis la description d'une
“couture” (seam) connectant deux types différents d’intersections coniques entre les
deux mémes états électroniques. D’'un point de vue dynamique, ce type de modeéle nous
a permis de comparer 'efficacité des deux types de chemins photo-réactionnels. Ceci
nous a mené a l'une des conclusions majeures de ce chapitre vis-a-vis de la chimie du
systéme: le chemin réactionnel majoritairement responsable du transfert de population
non-radiatif entre les deux premiers états excités n’est pas le chemin de plus basse
énergie. La dynamique (i.e. description du mouvement des noyaux) est donc un outil

essentiel a la compréhension de la réactivité des processus photo-induits.

Nous avons également étudié l'effet du solvant sur le processus en question. Rappelons
ici que I’état qui absorbe a FC est un état a transfert de charge ; il va donc étre stabilisé
en présence d'un solvant polaire, ce qui va induire une plus grande accessibilité
(énergies plus basses) des intersections coniques au cours de la photo-réaction. Nous
avons pu observer que dans les limites de notre description (solvant implicite décrit
avec la méthode PCM), la présence du solvant accentuait les résultats obtenus en phase
gaz mais que cependant la stabilisation de I’état a transfert de charge n’était pas assez
importante pour modifier la réactivit¢ d'un point de vue qualitatif: l'intersection
conique n’a pas changé de nature et la topographie des surfaces d’énergie potentielle est

restée globalement la méme (et ce, que le solvant soit relaxé ou non sur I’état excité).
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L’étude du transfert de proton photo-induit du 3-hydroxychromone nous a demandé
une analyse préliminaire de chimie quantique, ce qui nous a permis de mettre en
évidence pour la premiere fois I'existence d’une intersection conique dans la région de
FC mais aussi de rationaliser le processus d’isomérisation cis-trans qui s’avere plus
complexe que ce que la littérature pouvait sous-entendre. La question posée lors de
cette étude concernait I'observation expérimentale de deux temps de réaction pour le
transfert de proton. Nous avons pu rationalisé ceci a I'aide de calculs de dynamique
quantique. Nous avons pu montrer que la présence d’une intersection conique dans la
région de FC avait un impact non négligeable sur la réactivité car les couplages non-
adiabatiques entre S; et Sz y sont non négligeables. Ceci va donc induire un retard d’une
partie du systeme qui va partiellement se délocaliser le long de I'isomérisation cis-trans.
En d’autres termes, nos calculs ont montré qu’effectivement l'isomérisation cis-trans
était un chemin en compétition avec le transfert de proton comme le supposait la
littérature. En revanche, ce mécanisme, plus complexe que prévu, implique plus d’états

électroniques que ce qui pouvait étre attendu.

Cependant, le modele d’hamiltonien électronique utilisé pour obtenir ces résultats ne
décrit pas l'isomérisation cis-trans dans sa totalité. En effet, le mouvement associé a
cette isomérisation (torsion de I'’hydrogene) n’est, a I'’heure actuelle, pas décrit dans
notre modéle comme un mouvement périodique mais comme un mouvement lié. Cette
étape nécessite d’adapter les expressions analytiques des parametres du modeéle

diabatique, ce qui est actuellement un travail en cours.

Comme nous venons de le souligner, ces modeéles nécessitent encore un certain nombre
de développements qui s’orientent principalement vers: comme déja suggéré,
I'implémentation de fonctions périodiques et la possibilité de décrire plusieurs
intersections coniques entre des états électroniques différents (la difficulté concerne
I'impossibilité de séparer simplement I’hamiltonien électronique diabatique comme une
série de problemes a deux états indépendants). Ce point permettrait de pouvoir
augmenter le nombre d’état diabatiques pour décrire un méme état adiabatique (Cf.
Conclusion and Outlooks Chapitre IV sur I'aminobenzonitrile) et ainsi de développer une
nouvelle stratégie de description de I'anharmonicité. Ceci pourrait également assurer

une meilleure description locale des intersections coniques et de leurs espaces de
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branchement (branching spaces) et donnerait, en tout état de cause, plus de flexibilité
dans la description des surfaces d’énergie potentielle couplées ayant des topographies

complexes.

Une des perspectives a long terme sur le développement de ce type de méthodologie
serait de pouvoir la combiner avec d’autres méthodes pour continuer a aller vers le
traitement de systémes de plus grande taille et plus complexes (i.e. en interaction forte
avec un environnement intra et/ou intermoléculaire). On peut ainsi concevoir une
stratégie hiérarchisée avec une description précise du systeme et une modélisation plus
approchée de la dynamique cet environnement et de ses effets sur le systéme (par des
méthodes de dynamique quantique utilisant des modes effectifs ou par des méthodes de
dynamique plus approximatives dans le traitement quantique des noyaux du type DD-

vMCG ou « ab initio multiple spawning »).
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Appendix A- Acronyms

2T-3HC: 2-Thienyl-3-HydroxyChromone

3-HC: 3-HydroxyChromone

ABN: AminoBenzoNitrile

BF: Body-Fixed

BS: Branching Space

CASSCF: Complete Active Space Self-Consistent Field
CI: Configuration Interaction

Coln: Conical Intersection

CT: Charge Transfer

CyHxn: CycloHexane

DC: Derivative Coupling

DD-vMCG: Direct Dynamics variational MultiConfigurational Gaussian
DFT: Density Functional Theory

DMABN: Dimethyl-AminoBenzoNitrile

ESIPT: Excited State Proton Transfer

FC: Franck Condon

GD: Gradient Difference

GGA: Generalized Gradient Approximation

GS: Ground State

ICT: Intramolecular Charge Transfer

IRC: Intrinsic Reaction Coordinate

IVR: Intramolecular Vibrational Redistribution

KEO: Kinetic Energy Operator

LDA: Local Density Approximation

LE: Locally Excited

LF: Laboratory-Fixed

LVC: Linear Vibronic Coupling

MCSCF: MultiConfigurational Self-Consistent Field
MCTDH: MultiConfigurational Time-Dependent Hartree
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MeCN: acetonitrile

Min: Minimum

ML-MCTDH: Multilayer MultiConfigurational Time-Dependent Hartree
MS-CASPT2: MultiState Complete Active Space Second Order Perturbation Theory
NAC: Non-Adiabatic Coupling

PCM: Polarizable Continuum Model

PCS: Potential Coupling Surfaces

PES: Potential Energy Surface

PICT: Planar Intramolecular Charge Transfer

pTICT: preTwisted Intramolecular Charge Transfer
PT: Proton Transfer

QVC: Quadratic Vibronic Coupling

RASSCF: Reduced Active Space Self-Consistent Field
RICT: Rehybridized Intramolecular Charge Transfer
SA: State Average

SPF: Single Particle Function

TD-DFT: Time-Dependent Density Functional Theory
TDH: Time-Dependent Hartree

TDSCF: Time-Dependent Self-Consistent Field

TICT: Twisted Intramolecular Charge Transfer

TRFS: Time-Resolved Fluorescence Spectrum

TS: Transition State

VCH: Vibronic Coupling Hamiltonian
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Appendix B- Procedure for Generating
Numerically the Branching Space

Vectors of a Conical Intersection

We tested this approach on 3-HC (see Chapter IIl). Additional benchmarking tests have
been carried out by Benjamin Gonon (PhD student co-supervised by Fabien Gatti in

Montpellier and Stéphane Guérin in Dijon). A paper is in preparation.

Analytic-derivative techniques [362] have been key for progress in quantum-chemistry
methods. However, not all types of derivatives or non-adiabatic couplings have been

implemented yet.

A procedure proposed by Képpel and Schubert in Ref. [363] for a two-dimensional case
is generalized to determine the branching-space vectors from a normal-mode analysis of
the square energy difference around a conical intersection. This approach can prove
vital in two types of situations: when analytic derivatives are not available at all or when

the analytic gradients are available but not the derivative couplings.

The definitions of the branching-space vectors and related quantities have been given in
Chapter L. If R, is the locus of a conical intersection between Si and S, although AV (R)

is not well-behaved around R, AV2(R) is differentiable and satisfies

AV2Z(R,) = 0, Eq. 107
0AVA(Ry) _
Rl
02AV2(Ry) 001 (01)1 001 (011 . B91(01)2  By1(01)2
aRI aRL — 2( 101 xL01 + xl 01 xL01 )

_ 2(x;)(01)1xg(01)1 + x?(01)2x2(01)2)_
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This properties hold at any point of the crossing seam, not only at the minimum-energy
conical intersection. Remarkably, the second derivative is invariant through the
arbitrary mixing angle 8, which reflects again the fact that the branching-space vectors

are defined up to an arbitrary rotation.

The branching-space vectors are involved as first-order terms in the expansion of
AV (R) from R, hence as second-order terms in that of AVZ(R). Higher-order terms will

thus appear only in higher derivatives.
For notation simplicity, we introduce the following notations

= 001 Eq.108

)

Kp

By = &0,

I%I = x1901(01)1 = COS 2901 K; — sin 2901 AI’ Eq' 109
A= x?"l(m)z = sin 20y k; + cos 20, 4;.

62AV2(:R0)

Sxiant | reads (for any

The Hessian matrix of the square energy difference at Ry, F = [

901))
FIL = Z(KI’%L + ZIZL)' Eq. 110

Thus, for any vector v, we get

R Eq.111
z FILVL =2 z ’szL Rf] + 2 zALvL AI'
L L L
Now, if the angle 6,; is chosen such that (ﬁ, X) are made orthogonal,
z /1 =0 Eq. 112

L
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the vectors ¥ and A happen to be two eigenvectors of F with non-vanishing eigenvalues,

o Eq. 113
zF,LKL = 22(&,@ + LAk, = 22 R? | &,
L L L
z FIL/T'L = 2 z(RIKL + ZIZL)ZL = (2 z Z%) Z[.
L L

L

There always exists a value of 8,; that can be used to make (ﬁ, i) orthogonal (it is
obtained upon diagonalizing the overlap matrix between the original (k, 1), see [363]).
This thus proves that diagonalizing F in practice produces a pair of orthogonal
branching-space vectors, the eigenvalues of which are twice their square lengths. The

remaining eigenvectors correspond to almost-zero eigenvalues.

As can be noticed, this problem is formally similar to a normal mode analysis where R
are mass-weighted Cartesian coordinates. However, non-mass-weighted Cartesian
coordinates are equally valid for our purpose and only result in different orthonormality
relationships among vector components. In contrast, curvilinear coordinates would
involve explicit use of the metric tensor and a generalized eigenproblem (see, e.g., Ref.

[364]).
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Appendix C- 3-Hydroxychromone Dyes

Definition of the Z-matrix

His
His Cs Og Hiq
Ce Csg Cio
Cs Cs C;
Hi7 Cy Co O+
Hig O12 His
Atome
C1 Distance Atome
Cz R1 C1 Valence Atome
angle
C3 Rz C2 0, C1 Dihedral Atome
angle
Cs R3 Cs 0, C (O] C1
Cs R4 Csq 05 Cs (OF) C2
Cs Rs Cs 0, Csq P3 Cs
C7 Re Cs 05 Cs Pyq Csq
Cs R7 C7 06 Cs @5 Cs
09 Rs Cs 0, C7 Qe Ce
C1o Rog O9 Og Cs ®7 o
O11 R1o C1 09 Cz2 Pg Cs
O12 R11 C2 010 C1 (O 011
His Ri2 O11 011 C1 P10 C2
Hia Ri3 C1o 012 O9 ®11 Cs
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His Ri4 C; 013 Cs P12 Cs

Hie Ris Ce 014 C7 P13 Cs
H17 Rie Cs 015 Ce P14 C7
His R17 Cs 016 Cs P15 Ce

Quantum Dynamics

Relaxation: 20fs
ZPE: 3.665337 eV
KEO: numerical; zero-order Taylor expansion

Primitive basis: Harmonic Oscillator with 40 primitive basis functions per coordinates.

ML-Tree in the “ML-MCTDH" format :
Label of the layer > number of SPFs for Qi

One must keep in mind that the coordinates used during the dynamics calculations are
linear combination of curvilinear coordinates, and do not have physical meaning anymore.

0>33

# Electronic

1> [el]

# vibrations

1>66
2>66
3>66
4> [Q1 Qus]
4> Q2 Q3]
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3> [Q4 Quo]
2>66
3>66
4>666
5>[Qs Q7]
5>66
6> [Q15 Q9]
6> [Q16 Q19]
5>66
6> [Q1s Q34]
6> [Q10 Q14]
4>666
5>66
6> [Q11 Q13]
6> [Q12 Q6]
5>66
6> [Q17 Qus]
6> [Q20 Qzs]
5>66
6> [Q21 Q2]
6> [Q22 Q24]
3>66
4>666
5>66
6> [Q23 Q27]
6> [Q2s Q33]
5>66
6> [Q29 Q1]
6> [Q30 Qss]
5>66
6> [Q32 Q37]
6> [Q36 Q3]
4>66
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566
6> [Q3s Qa1]
6> [Q42 Q47]
566
6> [Q43 Qa4]
6> [Q4s Qe]
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Appendix D- Aminobenzonitrile

Symmetric Coordinates

V4
H\ /H
N
Y

H

N

H

Cartesian frame used in this study (Mulliken’s convention).

Small variations of the original set of polyspherical coordinates with respect to a flat Cay

reference geometry, AQ = Q — Q, can be symmetrized as follows:

A [Cyy, = €y

A; [Cy, = €]

B4 [C;, = Cy]

B, [C;, = C!]

AR}
AR
AR
AR;' + ARF?
2

ARY!

AR1?
AR
AR

Api' — Ap3t
2

Apit — Ap3?
2

Ap3*!

Ay121 + >

Aa21
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Api" + Ap3’
2
Aps

Api?

Apit + Ap3?
2

sp3

Aa121
Ayll
AV21

AR} — AR}
2
AR?' — AR3!
2
ARY?' — AR}??
2
A6t

ABFt + ABIT
2
ABIT

AB!
AG2t



AR + AR3! AGF' + A3
ARZP1 AG3* i A6z
2
AR*' + AR;*! AB™
2
A6, — AG3! AR*
2
e AB*?!
2
A% + AG;*!
2

In this, we used the convention where (zy) is the molecular plane (||) and (zx) is the
perpendicular plane (l).A, deformations are torsions, B, deformations are in-plane
left-right-breaking motions, and B; deformations are out-of-plane up-down-breaking

motions.

Planar Deactivation Pathway Model

Relaxation: 10 fs

ZPE: 3.153966 eV

KEO: analytic

Primitive basis: Harmonic Oscillator with 40 basis functions per coordinates except for

the following in plane-angles that are expanded in a sinus basis with 80 basis functions

. .pll gLl gLl oLl p21 A21 p121 al21 21 p21 a1l Aol1l 1,21
per coordinates: %, 68,",60."7,0,, %5, 0,7, B4, 0,77,0,7,057,0,7,057,0;

ML-Tree in the “ML-MCTDH" format :
Label of the layer > number of SPFs for Qi

0>33
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# Electronic

1> [el]

# vibrations
1>666
2> [R}]
2>6666
3> [Ry" B
3>66
4>66
5> [Ry" 6,]
5> [y
4>66
566
6> [Rs™ 65
6> [p5"]
566
6> [Re™ 651
6> [¢5"]
3>66
4> [Ry' 6;"]
4> [p37]
3>66
4> [Ry" 6,7
4> [¢;"]
2>6666
3>66
4> [R{ B*]
4> [az'l]
3>66
4>66
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5> [R;" 65']
5> [y*']
4>66
566
6> [R%,Z,l '31,2,1]
6> [a1,2,1]
566
6> 66
7> [R;,Z,l 021,2,1]

7> ]

6>66
7> [Ry*" 6;%]

1,2,1

7> [p37]
3>66

4> [RY" 627)
4> [p"]
3>66
4> [RF* 9.2

4> [p2']

Bent Deactivation Pathway Model

Relaxation: 20 fs
ZPE: 2.580435 eV
KEO: numeric (zero order Taylor expansion)

Primitive basis: Harmonic Oscillator with 40 basis functions per coordinates.

ML-Tree in the “ML-MCTDH" format :
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Label of the layer > number of SPFs for Qi
One must keep in mind that the coordinates used during the dynamics calculations are

linear combination of curvilinear coordinates, and do not have physical meaning anymore.

0>33

# Electronic

1> [el]

# vibrations
1>6666
2>66
3> [Q2 Q3]
3>666
4>66
5> [Qa Qs]
5> [Qs Q7]
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5> [Q10 Qu1]
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5> [Q12 Qi3]
5> [Q14 Qus]
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3> [Q16 Q7]
3> [Q18Q19]
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4> [Qa2s Qz¢]

4> [Q27 Qas]
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4> [Q29 Q30]

4> [Q31 Q32]
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Appendix E- Résumé en Francais

Introduction Générale

Le développement de la technologie laser au cours des dernieres décennies a permis la
génération de pulses ultracourts de I'ordre de la picoseconde et de la femtoseconde [1]
(et méme récemment de 'ordre de l'attoseconde [2-4]). Ceci a mené a la conception de
nombreuses méthodes expérimentales de spectroscopie ultrarapide [5-7]. En d’autres
termes, nous sommes désormais capable de sonder le mouvement des systémes
moléculaires en temps réel et de le contréler (influencer la réactivité avec un pulse laser
optimisé pour atteindre une cible prédéterminée) [8-16]; ce domaine de recherche est
appelé femtochimie (pour les réactions considérés comme ultrarapides de I'ordre de la
femtoseconde). Ahmed Zewail fut le pionnier de I'utilisation de pulses laser ultracourts
pour étudier la dynamique femtoseconde d’états de transition. Il recut le prix Nobel de

Chimie en 1999 pour ses travaux dans le domaine de la spectroscopie ultrarapide [1,17].

L’étude de processus ultrarapides en photochimie a permis I'’émergence de nouvelles
technologies dans des domaines tres hétéroclites tels que : I'élaboration de nouveaux
protocoles de synthese en chimie moléculaire (e.g. réaction de Diels-Alder photoinduite,
photopolymerisation), 'obtention de nouveaux matériaux avec des propriétés optiques
particulieres (e.g. photochromisme, optique non-linéaire), des méthodes d’analyse en
biochimie (e.g. marqueurs fluorescents, des traitements médicaux (e.g. photothérapie).
L’'intérét et l'utilisation des processus photoinduits dans certains des domaines
mentionnés précédemment sont décrits en détail dans les introductions des deux
chapitres d’applications portant sur le transfert de proton dans Il'état excité du 3-
hydroxychromone et le transfert de charge intramoléculaire photoinduit dans
I'aminobenzonitrile (respectivement Chapitres III et IV). Il est donc capital de pouvoir
traiter ce type de réactivité chimique d’'un point de vue théorique et ainsi apporter une
complémentarité aux expérimentateurs afin de pouvoir déterminer avec précision les
mécanismes de ces réactions et, a terme, de les controler et/ou d’optimiser les

propriétés physicochimiques des systemes photosensibles (e.g. absorption, émission,
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rapports de branchement réactif(s)/produit(s)) dans l'optique de développements

technologiques [18,19].

La photochimie possede des propriétés mécanistiques tous étre explicitées avec des
outils standard de chimie quantique et une dynamique reposant sur les lois de la
mécanique classique telle que la dynamique moléculaire par exemple. Une réaction
photochimique étant une réaction induite par I'absorption d’'un photon par le systeme
moléculaire, la réaction va donc se produire en partie ou en totalité sur un ou plusieurs
états électroniques excités; on va donc devoir utiliser des méthodes de chimie quantique
qui ne sont pas limitées a I'état électronique fondamental (les méthodes utilisées lors de
ce travail de these pour traiter la structure électronique des systemes étudiés sont

explicitées dans le Chapitre I).

De plus, il existe des géométries particulieres ou certains états électroniques sont
proches en énergie, voire dégénérés (i.e. intersections coniques). Dans les régions
proches de ces géométries particulieres, I'approximation de Born-Oppenheimer n’est
plus valide. Le systéme chimique est dans un régime de dynamique appelé non-
adiabatique (la dynamique des noyaux et des électrons se couple dans ces régions, Cf.
Chapitre I). Il est donc nécessaire de traiter le mouvement des noyaux comme évoluant
sur plusieurs surfaces d’énergies potentielles couplées entre elles. Ces couplages non-
adiabatiques permettent des transferts de population non-radiatifs (sans émission de
photon) entre états électroniques de méme spin (conversion interne). Ceci suggere que
I’état électronique excité apres absorption (état initial du point de vue Franck-Condon)
n'est pas nécessairement I'état électronique final de la réaction. Ces transferts de
population non-radiatifs sont plus efficaces dans les régions ou les états électroniques
sont quasi-dégénérés, c’est-a-dire, lorsque le systeme s’approche d’une région
d’'intersection conique. Ce point particulier de dégénérescence entres états
électroniques joue donc un réle central dans les processus ultrarapides photoinduits

[20-22].
Lors d'une étude de ce type de processus, I'intersection conique est un point qui se doit

donc d’étre caractérisé et qui peut étre vu qualitativement comme le pendant pour la

photochimie non-adiabatique d’un état de transition pour les processus thermiques.
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Cependant ne connaitre que la position et I'énergie de I'intersection conique n’est pas
toujours suffisant pour comprendre et déterminer le mécanisme de la réaction. Le
systéme peut étre soumis a plusieurs chemins réactionnels en compétition. A la
différence de la réactivité thermique, en photochimie non-adiabatique, il ne suit pas
nécessairement le chemin de plus basse énergie. Lors de I'étude d’'un processus
photochimique ultrarapide, on peut étre amené a devoir considérer le systeme comme
pouvant se délocaliser le long de plusieurs chemins réactionnels couplés (ceci est
observé et discuté dans les chapitres d’applications étudiées lors de ce travail de these
Chapitres III et IV). Ceci montre la nécessité d’étudier ce type de réactivité avec des

outils de dynamique adaptés.

Ceci est moins crucial pour les processus photochimiques dit adiabatiques, qui sont des
processus photoinduits ayant lieu sur un seul état électronique excité considéré comme
isolé (séparation importante en énergie par rapport aux autres états électroniques). On
peut voir ce type de photoreactivité comme étant similaire aux processus thermiques ou
le systeme ne serait pas a l’équilibre dans sont état initial. De plus, comme
I'approximation de Born-Oppenheimer reste valide pour ce type de processus, il est plus
simple de ce point de vue de décrire leur dynamique car I'intégralité de la réactivité se
passe sur la méme surface d’énergie potentielle. Il est courant dans ce cas d’utiliser des
méthodes de type dynamique moléculaire ab initio (les noyaux sont traités comme des
particules classiques évoluant sur un potentiel calculé par une méthode de chimie
quantique). Cependant, lors de ces travaux de these nous nous sommes principalement

concentrés sur I'étude de processus photochimiques non-adiabatiques.

Le développement de méthodes de dynamique adaptées aux processus non-
adiabatiques dans des systémes moléculaires est en plein essor. Différentes approches,
quantiques, semi-classiques (ou hybrides) coexistent. Nous allons évoquer certaines

d’entre elles dans ce qui suit.

Dans le cas d'une méthode dite semi-classique telle que le « surface hopping » [23], la
dynamique du systéme est décrite par une trajectoire classique. L'énergie potentielle et
la force sont calculées « on-the-fly » (au vol). L’efficacité du processus non-radiatif (donc

non-adiabatique) est obtenue par la probabilité pour le systeme de « sauter » d’'un état
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électronique a un autres en fonction de la vitesse de la trajectoire, de la différence
d’énergie entre les deux états et de leur couplage. Cette méthode ne permet pas de
rendre compte de la délocalisation quantique du mouvement des noyaux que l'on
devrait en toute rigueur représenter par ce que I'on appelle un paquet d’ondes nucléaire
(fonction d’onde nucléaire dépendante du temps). Ceci caractérise la capacité du
systéme a avoir une probabilité de présence différente et non nulle pour plusieurs
géométries en méme temps. Ainsi, les différentes trajectoires calculées ne sont pas
couplées (elles évoluent indépendamment les unes des autres). Or, le systeme se
délocalise avec une certaine « cohérence », c’est a dire que les trajectoires ne devraient
pas étre indépendantes les unes des autres d'un point de vue quantique. Cependant, une
approche statistique basée sur un grand nombre de trajectoires est utilisée en
échantillonnant les conditions initiales du systeme pour au moins « mimer » I'état

vibrationnel initial dans I'état électronique fondamental (et son énergie de point zéro).

La cohérence quantique peut étre vu comme une «force» qui va influencer la
délocalisation du paquet d’ondes et ses interférences, ce qui peut étre crucial quand, par
exemple, il passe a travers la méme intersection conique plusieurs fois dans un laps de
temps ultracourt. Récemment, des expériences ont suggéré I'existence et I'implication de
cohérence quantique pendant un temps long (de 'ordre de la picoseconde) dans des
processus biologiques [24,25]. Il est donc préférable de pouvoir représenter le caractéere

quantique du mouvement des noyaux par un paquet d’'ondes.

L’« ab initio multiple spawning » [26,27] s’affranchit du coté classique et statistique de la
méthode de «surface hopping » en représentant le paquet d’ondes nucléaire par un
ensemble de gaussiennes couplées quantiquement (et dont le nombre augmente quand
une intersection conique est rencontrée) mais qui suivent des trajectoires classiques. La
description du paquet d’'ondes dans cette derniére méthode est donc plus correcte et
plus représentative. On peut la considérer comme un ensemble de trajectoires
classiques couplées quantiquement. La référence suivante dresse une comparaison

entre la méthode « surface hopping » et '« ab initio multiple spawning » [28].

La méthode DD-vMCG (Direct Dynamics variational MultiConfigurational Gaussian)

[29,30] peut étre vue d’une certaine facon comme une extension de '« ab initio multiple

250



spawning », de part le fait que le paquet d’ondes est aussi décrit comme une collection
de gaussiennes couplées quantiquement (dont le nombre et les largeurs sont fixés dans
les conditions initiales et ne changent pas au cours du temps dans la plupart des
applications) mais qui vont maintenant évoluer en suivant des «trajectoires
quantiques » (c’est-a-dire que la position et 'impulsion moyennes des gaussiennes sont
obtenues par résolution variationelle de 1'équation de Schrodinger dépendante du
temps [31]). Ceci permet donc d’avoir besoin de moins de gaussiennes pour converger le
paquet d’'ondes que dans la méthode précédente (i.e. '« ab-initio multiple spawning »).
Cette méthode prometteuse de dynamique que je considére a mon sens comme étant
une dynamique semi-quantique est a I'’heure actuelle en plein développement. Ce qui la
rend encore limitée dans la taille des systémes est essentiellement d(i a des raisons
techniques comme par exemple la nécessité de calculer des dérivées secondes au centre

de chaque gaussienne et a chaque pas de la dynamique.

Les méthodes de dynamique quantique sur grille ont pour philosophie de décomposer le
paquet d’ondes nucléaire sur une grille de points représentant 'espace des coordonnées
nucléaires. Ceci impose de représenter préalablement les surfaces d’énergie potentielle
sous forme analytique, a l'inverse des trois méthodes précédemment évoquées ou ce
calcul est réalisé « on-the-fly » le long de chaque trajectoire. Le mouvement des noyaux
est obtenu par résolution de I'équation de Schrodinger dépendante du temps. Il n’y a
donc pas d’approximation dans le traitement de la nature quantique des noyaux (tout
comme dans la méthode DD-vMCG). Par ceci, nous entendons que ce type de méthode

est en principe exact a convergence pour un hamiltonien donné.

Cependant, ces types de dynamiques sont difficiles a mettre en ceuvre pour des systémes
moléculaires de grande taille (nombreux degrés de liberté nucléaires). De par le fait
qu’elles coutent cher en termes de temps de calcul (pouvant atteindre plusieurs mois
pour converger le paquet d’ondes nucléaire initial) mais aussi car il faut dans un
premier temps générer les surfaces d’énergie potentielle et les couplages électroniques
sous forme de fonctions analytiques. De plus, comme nous pourrons le voir au cours de
cette these (Cf. Chapitre I), selon la méthode de dynamique quantique choisie, il peut y
avoir des contraintes sur la forme mathématique des fonctions qui composent la

représentation matricielle de ’hamiltonien électronique. Ceci peut s’avérer limitant car,
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comme déja mentionné, en photochimie la réactivité implique souvent des paysages
énergétiques complexes possédant de nombreux points stationnaires (minima, états de
transition, intersections coniques) et ce pour plusieurs états électroniques. A ceci
s’ajoute la description des couplages non-adiabatiques qui comme on le montrera n’est
pas un probleme trivial dans un systéme multidimensionnel. Toutes ces difficultés font
que la représentation des hamiltoniens électroniques en photochimie est une tache
difficile (plus précisément l'obtention des parametres définissant les fonctions du
modele a partir de données ab initio) et devient bien souvent I'étape limitante dans la

description quantique de la dynamique de ce type de systémes.

C’est pourquoi de nombreuses méthodologies sont encore a I'heure actuelle en cours de
développement pour palier a ces difficultés. La premiere stratégie la plus intuitive est de
réduire le nombre de degrés de liberté du systeme en déterminant les modes les plus
importants pour décrire le chemin réactionnel (appelés en général modes actifs dans la
littérature) [32-40]. Cependant, ces modéles ne prennent pas en compte la dissipation
de I'énergie contenue dans ces modes actifs vers le reste des modes, dit inactifs. Par
construction la dissipation vibrationnelle (relaxation vibrationnelle intramoléculaire)
n’est pas décrite correctement. Cependant, ces méthodes se justifient en partie de part le
fait que dans les processus ultrarapides (ordre de la femtoseconde), le systeme n’a pas le
temps de redistribuer totalement son énergie [41,42]. Ce type de modéles trouve donc
sa place dans la description des systémes ou il y a vraiment possibilité de faire une
distinction franche entre les coordonnées dites actives et inactives (donc le couplage
entre ces deux groupes de coordonnées se doit d’étre faible par construction).
Cependant, il est judicieux de garder en téte que le passage du paquet d’ondes nucléaire
d’'une surface d’énergie potentielle a une autre a travers une intersection conique est
gouverné par deux directions particulieres qui induisent le transfert de population
électronique. Il est donc nécessaire qu’elles soient bien décrites par les modes actifs. Or,
puisque la dissipation vibrationnelle du systeme est sous-estimée, 1'énergie contenue
dans les modes actifs est surestimée. On va donc augmenter artificiellement la
probabilité de transfert de population, ce qui va donc mal décrire la réactivité du
systéeme (le transfert de population se fera plus rapidement et plus efficacement) [43].
Dans les cas ou il est nécessaire de prendre en compte cette dissipation vibrationnelle, il

a été montré que 'on pouvait hiérarchiser les différentes coordonnées pour décrire la
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dissipation dans une région d’intersection conique a l'aide de groupes de trois
coordonnées bien spécifiques appelées modes effectifs et dont I'importance décroit de

groupe en groupe [44-47].

La méthodologie développée lors des travaux présentés dans cette these est différente.
Nous avons voulu traiter toutes les dimensions du systeme au méme niveau, c’est a dire
sans avoir a les hiérarchiser ou les séparer en groupes de coordonnées. Les parameétres
de nos modeéles sont obtenus analytiquement, nous permettant d’éviter des procédures
de «fit » (parfois non-linéaires) qui sont difficiles a mettre en ceuvre pour décrire des
systémes photochimiques de grande taille et impliquant des déformations géométriques
de grande amplitude. De plus, ce choix a été motivé par la possibilité d’utiliser une
nouvelle méthode de dynamique quantique capable de traiter les systemes chimiques de
grande taille (plus d’'une dizaine d’atomes) ; cette méthode, en cours de développement
a Heidelberg, est appelée ML-MCTDH (Multilayer MultiConfigurational Time-Dependent

Hartree).

Le premier chapitre propose une breve description du formalisme non-adiabatique et
des intersections coniques ainsi que des méthodes de chimie quantique et de dynamique
quantique utilisées lors de ces travaux. Le deuxieme chapitre présente la méthodologie
mise en place pour obtenir la représentation matricielle de I'’hamiltonien électronique
(surfaces d’énergie potentielle et couplages électroniques). Les deux derniers chapitres
exposent les applications étudiées et sur lesquelles nous avons appliqué notre
méthodologie : le chapitre trois concerne le transfert de proton dans I'état excité du 3-
hydroxychromone et le quatriéme chapitre porte quant a lui sur le transfert de charge

intramoléculaire photoinduit dans I'aminobenzonitrile.
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Chapitre I- Formalisme et Méthode

Ce Chapitre a pour but d’exposer les principes formels nécessaires a la compréhension
des travaux exposés dans cette these ainsi que les méthodes utilisées dans la production

de résultats numériques.

1- Formalisme

La fonction d’onde qui est solution de I'équation de Schrédinger moléculaire dépend des

degrés de liberté des électrons et des noyaux :

d ~ .
lha |me01(t, R)) — Hm01|lpm01(t, fR)) Eq 114

La dépendance vis-a-vis des coordonnées électroniques est ici sous-entendue (notation
en « kets » ; a I'inverse, elle est explicite vis-a-vis des coordonnées nucléaires, R. Dans la
plupart des situations, le temps typique et I'énergie associés aux particules 1égeres (les
électrons) et les particules lourdes (les noyaux) different de plusieurs ordres de
grandeur. La résolution du probléme moléculaire peut donc étre divisée en deux étapes :
la premiére étape résout I'’équation de Schrodinger indépendante du temps pour les
électrons a noyaux fixes pour un état électronique @ donné (ceci passe par des calculs de

chimie quantique),

H(R)|Wy; R) = Vo (R)|Ws R) Eq. 115
Puis, la seconde étape consiste a résoudre I'’équation de Schrédinger pour les noyaux (ce
qui est obtenu par des calculs de dynamique quantique) dans le champ moyen

adiabatique créé par les électrons, V,(R) . Cette approximation est appelée

I'approximation de Born-Oppenheimer pour un état électronique @ donné.
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On peut généraliser cette approche en deux étapes a un jeu fini d’états électroniques

interagissant entre eux;

|qjmol(t’ fR)) — z lpguclear(t’ fR) |l‘ua; fR) Eq. 116
a

: d 7 n nuclear Eq.117
ih =3 (8, R) = z[aaﬁT(az) + 8agVu(R) + Rog (R (e, ®R) 0

B

ou Kaﬁ est 'opérateur de couplage cinétique.

Le mouvement des noyaux induit des couplages non-adiabatiques, Déﬁ, (aussi appelés

couplages vibroniques) qui s’ecrivent au premier ordre:

0 Eq.118
Dip(R) = (Wa;R|ﬁWB;R>, 1

et qui interviennent dans l'expression de A .

Les processus photoinduits impliquent souvent des couplages vibroniques qui sont
responsables des processus de déclin ultrarapide entre un état électronique vers un état
électronique plus bas en énergie (typiquement, une conversion interne entre états
électroniques de méme spin; on parle de croisement intersystéme entre états
électroniques de spins différents mais le couplage est alors de type spin-orbite). Dans ce
type de situation, I'exces d’énergie qui est donné a la molécule a travers I'absorption de
la lumiere et I'excitation électronique sont transformés en excitation vibrationnelle. Ce
type de processus est gouverné par ce qu'on appelle des couplages non-adiabatiques
entre la structure électronique et le mouvement des noyaux qui sont par définition au
dela de l'approximation Born-Oppenheimer (adiabatique) [1,21,48,67,68]. Ces effets
deviennent importants quand la différence d’énergie entre les deux états électroniques
est du méme ordre de grandeur que I'énergie vibrationnelle. De plus, les couplages non-

adiabatiques divergent quand il y a dégénérescence (intersection conique, voir Fig. 115).
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state 2 state 2

X

state 1

Fig. 115 Schéma du double cone d’une intersection conique entre les énergies de deux états électroniques
dans un repere cartésien. Axe z: énergie, les axes x et y sont des coordonnées spécifiques définies dans la

suite.

Pour cette raison (divergence du couplage non-adiabatique au point de
dégénérescence), il est préférable de travailler dans une nouvelle base de représentation
des états électroniques, appelé base diabatique, qui a pour particularité d’annuler le
couplage cinétique pour le rendre potentiel. En d’autres termes, dans la base diabatique,

I’hamiltonien électronique n’est plus diagonal,

H®(R) = (®;; R|H(R)|D); R). Eq. 119

mais 'opérateur Ka[; est négligeable.

Une intersection conique est donc un point R, ou il y a dégénérescence entre deux états

électroniques de méme spin. La levée de dégénérescence est définie par deux vecteurs

spécifiques:
d Eq.120
i A (Ro) = 2,7 (Ro) !
0. d fTelec 0. 0. d fTelec 0.
lIUZ ) “RO W H (Ro) lluz ) RO - 11,1 ) ‘RO W H (Ro) llul ) RO

2 )
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d J
57 12 (Ro) = xRy = <w{’;ﬂeo a7 1% (Ro) ’z”é’:Ro>-
x,o(lz)1 est la difference des gradients et xI()(12)2 est le gradient du couplage. Ces deux

vecteurs définissent un plan appelé espace de branchement.

Il faut savoir que les intersections coniques ne sont pas des points isolés sur la surface
d’énergie potentielle mais qu’elles sont reliées par ce qu'on appelle une « couture »,

comme illustré dans la Fig. 2, ou la dégénérescence est conservée.

state 2

state 1

X,
Fig. 116 Schéma d’'une couture entre les deux états électroniques :state 1 et state 2 le long de deux

coordonnées judicieuses X et Y, Z étant I'énergie.

Les intersections coniques peuvent étre classifiées en deux types: « sloped » (Fig. 3, a

gauche) et « peaked » (Fig. 3, a droite).

state 2

state 1 state 1

species A species B
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Fig. 117 A gauche: schéma d’une intersection conique « sloped ». A droite: schéma d’une intersection conique

« peaked ».
2- Methodes
2-1. Chimie Quantique

Les méthodes de chimie quantique utilisées lors de ce travail de these, telles que le
CASSCF ou la TD-DFT, ont pour particularité d’étre adaptées a la description des états
électroniques excités. Concernant la représentation du solvant, nous nous somme
limités a un modele de continuum diélectrique appelé PCM qui ne rend pas compte de la
dynamique de relaxation du solvant et n’est pas adapté a la description d’interactions

soluté-solvant fortes de type liaison hydrogene par exemple.

2-2. Dynamique Quantique

Concernant la dynamique quantique, comme nous l'avons déja mentionné dans
I'Introduction Générale, nous avons utilisé une méthode de dynamique, appelée ML-
MCTDH, adaptée a la description de processus non-adiabatiques pour des systémes de
grande taille. Sa force réside dans I'écriture récursive de la fonction d’onde nucléaire
comme une somme de produit de fonction a une dimension ou les coefficients

d’expansion sont dépendants du temps.

La premiere étape lorsque I'on fait de la dynamique quantique sur grille est de devoir
choisir un jeu de coordonnées. Nous avons travaillé en coordonnées curvilignes; ceci
permet ainsi de décrire les mouvements de grande amplitude (comme par exemple des
torsions) d’'une maniere plus adaptée que si I'on utilisait des coordonnées rectilignes (ce
choix de coordonnées permet donc de réduire les couplages dans l'expression du

potentiel).

Cependant en coordonnées curvilignes I'expression de l'operateur énergie cinétique

pour les noyaux n’est plus triviale (par rapport a son expression en coordonnées
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rectilignes, cartésiennes par exemple). Nos opérateurs énergie cinétique des noyaux
sont générés automatiquement dans n’importe quel jeu de coordonnées curvilignes a
I'aide des programmes Tnum (expression numérique) [165] et Tana (expression
analytique) [159,160]. Ces programmes ont été développés par D. Lauvergnat et M.
Ndong du Laboratoire de Chimie Physique d’Orsay, France.

Chapitre Il Modele Quasidiabatique

Un des point principaux de ces travaux de thése est le développement d'une
méthodologie systématique et la plus automatique possible (mise en ceuvre sous la
forme du code PAnDA, i.e. Potentiel Analytique Diabatique Adiabatique) pour générer
des surfaces d’énergie potentielle non-adiabatiques en toutes dimensions et ce afin de
faire des calculs de dynamique quantique dans l'objectif d’étudier des processus

photochimiques dans des molécules de grande taille.

Notre stratégie est fondée sur le modele d’hamiltonien vibronique [20,110-112]. Nous
I'avons étendu d’'une maniére similaire aux développements qui avaient préalablement
été réalisés au sein de I'équipe de Montpellier par Loic Joubert-Doriol et Joaquim Jornet-

Somoza [205-207].

L’originalité de ce travail de these est d’avoir évité d’étre dépendant du nombre de
dimensions du systéme (nombre de degrés de liberté nucléaires). En d’autres termes,
nous voulions éviter une méthodologie ou la dimension du systeme devient la principale
limitation comme cela peut s’avérer le cas dans les procédures de «fit» (méthode
utilisée en général pour obtenir les parametres du modele) ou le nombre de parametres
a «fitter » peut exploser avec la dimensionnalité du probléme ; par exemple, pour un
systéme a 12 dimensions dans un probleme a deux niveaux électroniques, si on utilise
un polynéme d’ordre quatre pour les expression des surfaces d’énergie potentielle et
une expression linéaire pour le couplage électronique, le nombre de parametres

nécessaires est de 1924 [208]).
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Pour pouvoir accomplir cette tache, nous avons mis en place des relations analytiques
entre la matrice hamiltonienne et ses dérivées exprimées dans la base quasidiabatique
d’'une part (utilisée pour les calculs de dynamique quantique) et la base adiabatique
d’autre part (obtenue par les calculs de chimie quantique). Ainsi, une fois les calculs de
chimie quantique nécessaires effectués, l'obtention des parametres du modele
quasidiabatique est automatique et immeédiate avec I'utilisation du programme PAnDA

développé au cours de ce travail de these.

La description de paysages énergétiques complexes a demandé des modifications du
modele original d’hamiltonien vibronique le long de directions spécifiques ainsi que la

définition de parametres additionnels.

Chapitre III Colorants de type 3-HydroxyChromone

Nous avons effectué une étude théorique et computationnelle de la dynamique
photoinduite du 3-HC (3-HydroxyChromone) en phase gaz ainsi que du 2T-3HC en
solvant polaire et non polaire afin de proposer une rationalisation des observations
expérimentales: Le 3-HC et le 2T-3HC (2-Thionyl-3-HydroxyChromone) présentent deux
constantes de réaction pour le processus d’ESIPT (Excited States Intramolecular Proton
Transfer) alors qu’une seule constante de réaction est observée pour le 2T-3HC en
solvant non polaire. L’étude du 2T-3HC fait partie d’'un projet en collaboration avec des
expérimentateurs, Dr. Thomas Gustavsson (CEA, France) et Prof. Rajan Das (Tata

Institute of Fundamental Research, India) [travaux de recherche en cours].

Nous avons fait des calculs de TD-DFT pour décrire la topographie des surfaces
d’énergie potentielle du premier état électronique excité impliqué dans le processus
photoinduit. Nous avons caractérisé une nouvelle intersection conique entre les états
électroniques tmt* et nt* qui est de géométrie plane et de symétrie Cs. Cette intersection
conique a été localisée le long d'une direction approximativement parallele a la
coordonnée de relaxation du point de Franck-Condon (FC) vers le minimum énol (i.e.

cis*).
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Dans le 3-HC l'intersection conique « peaked » est dans la région de FC et on s’attend que
le systéme passe a travers (ou tourne autour) de ce point de croisement pour, dans un
second temps, effectuer I'isomérisation cis-trans de la forme énol. Ceci ouvre donc une

nouvelle voie ultrarapide de conversion interne qui permet de peupler I'état nm*.

En utilisant nos modeles en toutes dimensions de surfaces d’énergie potentielle
couplées s’appuyant sur des énergies et géométries obtenues a I'aide de la méthode TD-
DFT, nous avons réalisé des calculs de dynamique quantique avec la méthode ML-
MCTDH [200]. Nos résultats indiquent clairement que I'état quasidiabatique nm* est
peuplé quasiment instantanément apres la photoexcitation, ce qui montre donc que les
couplages non-adiabatiques dans la région de FC sont cruciaux pour comprendre la
dynamique du processus d’ESIPT. Il est a prévoir que cette caractéristique soit encore
plus marquée en solvant polaire qu’en phase gaz grace a la différence de stabilisation
des états électroniques en fonction de leurs moments dipolaires. L'isomérisation cis-
trans de la forme énol serait plus accessible (cette étude est actuellement en cours et
demandera une meilleure description de la torsion de ’hydrogene dans les modeles de

surfaces d’énergie potentielle).

Nos résultats sont cohérents avec les récentes observations expérimentales de Chevalier
et al. [220], ou I'implication possible de I’espéce trans a été mentionnée. Ceci suggere
que le processus d’ESIPT, impliquant des mouvements se produisant dans le plan de la
molécule soit en compétition avec l'isomérisation cis-trans de la forme énol

(mouvement hors du plan).

Au contraire, dans le 2T-3HC l'intersection conique est « sloped » et n’est pas accessible
depuis le point de FC; en d’autres termes, elle est trop haute en énergie pour avoir un
impact notable sur le processus photoinduit. De plus, nos calculs en solvant polaire et
non polaire ont permis de décrire le comportement spectral mais non la réactivité. Nous
suspectons que les effets du solvant sur la barriere de réaction d’ESIPT demandent une

approche plus sophistiquée que la méthode PCM pour étre décrits correctement.
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Chapitre IV Transfert de Charge Intramoléculaire dans

I’Aminobenzonitrile

Lors de cette étude, nous avons effectué une étude théorique et computationnelle sur
I'aminobenzonitrile (ABN) en phase gaz et dans le solvant acétonitrile afin de corroborer
ou écarter I'hypothese de Park et al. [343] et d’apporter des informations sur la nature
des processus ultrarapides qui peuplent I'état électronique localement excité (LE)

quasiment immédiatement apres la photoexcitation initiale.

Ce travail fait partie d’'un projet collaboratif avec le groupe du Dr. Mar Reguero et Pedro
J. Castro de I'Universitat Rovira i Vigili in Tarragona, Espagne. Nous avons réalisé des
calculs CASSCF(12,11)//CASPT2 afin de décrire la topographie des deux surfaces
d’énergie potentielle couplées impliquées dans les premiéres étapes du processus de
transfert de charge intramoléculaire (ICT). Une nouvelle intersection conique a été
caractérisée entre les états électroniques Sz-CT (transfert de charge) et Si-LE. Cette
intersection conique est totalement plane et de symétrie Cay. Elle a été optimisée le long
d’une direction approximativement paralléle a la coordonnée de relaxation du point de

FC vers le minimum plan de I'état Sz-CT (i.e. PICT).

Ceci ouvre donc une nouvelle voie ultrarapide de population de I'état LE par conversion
interne. En utilisant les modeles en toutes dimensions de surfaces d’énergie potentielle
couplées que nous avons développés lors de ce travail de thése, qui dans un premier
temps on été obtenus a 'aide de données CASSCF et ensuite raffinés a I'aide de données
CASPT2, et ce en phase gaz et dans 'acetonitrile, nous avons ensuite effectué des calculs
de dynamique quantique a l'aide de la méthode ML-MCTDH [200]. Nos résultats nous
ont indiqué que I'espéce PICT se peuple directement aprés photoexcitation, pour ensuite
peupler l'espece LE par déclin non radiatif (sans émission de photon) a travers la
nouvelle intersection conique plane, montrant ainsi l'absence du mouvement de
« bending » dans le processus non radiatif. Il est a prévoir que cette caractéristique soit
encore plus marqué en solvant polaire qu’en phase gaz grace a la forte stabilisation de
I'état a transfert de charge : I'intersection conique va donc étre plus proche de la région

de FC. Nos résultats sont cohérents avec les récentes observations expérimentales de
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Park et al. [31] sur le systéme parent DMABN (diméthyle-ABN) ou la premiere étape de
désactivation est attribuée a un mouvement quasiplan qui va induire une conversion

interne ultrarapide et la formation par voie directe de I’'espece LE en moins de 30 fs.

Ceci suggere que la voie de désactivation a travers la nouvelle intersection conique
plane écarte la nécessité de mouvements hors du plan ou l'implication de I'état
électronique mo* dans le processus de transfert de charge intramoléculaire, au moins

pendant les premiéres étapes de la réactivité.

Conclusion Générale

A T'occasion de cette thése nous avons mis en place une méthodologie systématique
pour générer des surfaces d’énergie potentielle couplées sous forme de modeéles
d’hamiltoniens vibroniques. Celle-ci a été appliquée a I'étude de la réactivité de
processus photo-induits a I'aide de simulations utilisant une approche de dynamique
quantique en cours de développement appelée ML-MCTDH spécifiquement dédiée au

traitement des systemes de grande taille.

L’originalité de ce travail de these a été de mettre en place une méthodologie permettant
I'obtention automatique des parameétres du modele (base diabatique) a l'aide de
relations analytiques explicites impliquant directement les données obtenues par les
calculs de chimie quantique (représentation adiabatique). Cette stratégie permet ainsi
de s’affranchir de certaines limitations des modeéles d’hamiltoniens vibroniques,
notamment concernant la dimensionnalité du probléme. En effet, ce dernier point peut
s’avérer |'étape limitante dans les procédures plus habituelles d’ajustement non linéaire
de parametres (fits). Au contraire, notre méthodologie n’est pas limitée par le nombre de
degrés de liberté du systeme et peut ainsi étre appliquée a I'étude de la réactivité par
dynamique quantique de systémes considérés comme étant de grande taille (i.e. plus
d’une dizaine de degrés de liberté). Ceci nous a mené a développer le code PAnDA qui
permet de générer automatiquement les surfaces d’énergies potentielles couplées dans
un format adapté a la méthode de dynamique quantique que nous avons utilisée (i.e.

ML-MCTDH).
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D’'un point de vue technique, nos modeles s’inspirent des modeles d’hamiltoniens
vibroniques développés par Koppel et al. [20,110-112] dans lesquels les surfaces
d’énergie potentielle en représentation diabatique sont en général exprimées comme
des formes quadratiques (deuxiéme ordre). Cependant, en I'état, de tels modeles sont
limités a la description de processus (quasi)harmoniques. Pour le traitement de cas
moins harmoniques, nous avons étendu cette description et mis en place différentes
stratégies pour modifier le modele diabatique quadratique initial en introduisant une
certaine part d’anharmonicité. Comme il est visible dans les chapitres d’applications
(Chapitres III et IV), les modeles ont été élaborés dans l'optique d’étre facilement
adaptables a la description de différents types de paysages énergétiques, plus ou moins
complexes. IlIs ont donc ainsi permis la production dans un temps “raisonnable” d’une
étude prenant en compte toutes les dimensions du systéme et les effets quantiques des
noyaux sur la photo-reactivité du processus non-adiabatique en question. Ces stratégies
sont présentées formellement dans les Chapitres I et II, et appliquées a I'étude de deux
processus photo-induits: le transfert de charge dans I'aminobenzonitrile et le transfert

de proton du 3-hydroxychromone.

L’étude du transfert de charge dans 'aminobenzonitrile a été réalisée en collaboration
avec le groupe du Dr. Mar Reguero et Pedro ]. Castro (Universitat Rovira i Vigili,
Tarragona, Espagne) qui ont réalisé une partie des calculs de chimie quantique. Lors de
cette étude, nous avons mis en place un modele qui a permis la description d'une
“couture” (seam) connectant deux types différents d’intersections coniques entre les
deux mémes états électroniques. D’'un point de vue dynamique, ce type de modeéle nous
a permis de comparer l'efficacité des deux types de chemins photo-réactionnels. Ceci
nous a mené a l'une des conclusions majeures de ce chapitre vis-a-vis de la chimie du
systéme: le chemin réactionnel majoritairement responsable du transfert de population
non-radiatif entre les deux premiers états excités n’est pas le chemin de plus basse
énergie. La dynamique (i.e. description du mouvement des noyaux) est donc un outil

essentiel a la compréhension de la réactivité des processus photo-induits.

Nous avons également étudié I'effet du solvant sur le processus en question. Rappelons

ici que I'état qui absorbe a FC est un état a transfert de charge ; il va donc étre stabilisé
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en présence d'un solvant polaire, ce qui va induire une plus grande accessibilité
(énergies plus basses) des intersections coniques au cours de la photo-réaction. Nous
avons pu observer que dans les limites de notre description (solvant implicite décrit
avec la méthode PCM), la présence du solvant accentuait les résultats obtenus en phase
gaz mais que cependant la stabilisation de I'état a transfert de charge n’était pas assez
importante pour modifier la réactivit¢ d'un point de vue qualitatif: l'intersection
conique n’a pas de changé de nature et la topographie des surfaces d’énergie potentielle

est restée globalement la méme (et ce, que le solvant soit relaxé ou non sur I’état excité).

L’étude du transfert de proton photo-induit du 3-hydroxychromone nous a demandé
une analyse préliminaire de chimie quantique, ce qui nous a permis de mettre en
évidence pour la premiéere fois I'existence d’une intersection conique dans la région de
FC mais aussi de rationaliser le processus d’isomérisation cis-trans qui s’avere plus
complexe que ce que la littérature pouvait sous-entendre. La question posée lors de
cette étude concernait I'observation expérimentale de deux temps de réaction pour le
transfert de proton. Nous avons pu rationalisé ceci a I'aide de calculs de dynamique
quantique. Nous avons pu montrer que la présence d’une intersection conique dans la
région de FC avait un impact non négligeable sur la réactivité car les couplages non-
adiabatiques entre S; et Sz y sont non négligeables. Ceci va donc induire un retard d’une
partie du systeme qui va partiellement se délocaliser le long de I'isomérisation cis-trans.
En d’autres termes, nos calculs ont montré qu’effectivement l'isomérisation cis-trans
était un chemin en compétition avec le transfert de proton comme le supposait la
littérature. En revanche, ce mécanisme, plus complexe que prévu, implique plus d’états

électroniques que ce qui pouvait étre attendu.

Cependant, le modele d’hamiltonien électronique utilisé pour obtenir ces résultats ne
décrit pas l'isomérisation cis-trans dans sa totalité. En effet, le mouvement associé a
cette isomérisation (torsion de I'’hydrogene) n’est, a '’heure actuelle, pas décrit dans
notre modéle comme un mouvement périodique mais comme un mouvement lié. Cette
étape nécessite d’adapter les expressions analytiques des parametres du modele

diabatique, ce qui est actuellement un travail en cours.

265



Comme nous venons de le souligner, ces modeéles nécessitent encore un certain nombre
de développements qui s’orientent principalement vers: comme déja suggéré,
I'implémentation de fonctions périodiques et la possibilité de décrire plusieurs
intersections coniques entre des états électroniques différents (la difficulté concerne
I'impossibilité de séparer simplement I’hamiltonien électronique diabatique comme une
série de problemes a deux états indépendants). Ce point permettrait de pouvoir
augmenter le nombre d’état diabatiques pour décrire un méme état adiabatique (Cf.
Conclusion and Outlooks Chaptitre IV sur 'aminobenzonitrile) et ainsi de développer une
nouvelle stratégie de description de I'anharmonicité. Ceci pourrait également assurer
une meilleure description locale des intersections coniques et de leurs espaces de
branchement (branching spaces) et donnerait, en tout état de cause, plus de flexibilité
dans la description des surfaces d’énergie potentielle couplées ayant des topographies

complexes.

Une des perspectives a long terme sur le développement de ce type de méthodologie
serait de pouvoir la combiner avec d’autres méthodes pour continuer a aller vers le
traitement de systémes de plus grande taille et plus complexes (i.e. en interaction forte
avec un environnement intra et/ou intermoléculaire). On peut ainsi concevoir une
stratégie hiérarchisée avec une description précise du systeme et une modélisation plus
approchée de la dynamique cet environnement et de ses effets sur le systéme (par des
méthodes de dynamique quantique utilisant des modes effectifs ou par des méthodes de
dynamique plus approximatives dans le traitement quantique des noyaux du type DD-

vMCG ou « ab initio multiple spawning »).
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ABSTRACT: A study combining accurate quantum chemistry and full-dimen-
sional quantum dynamics is presented to confirm the existence of an ultrafast
radiationless decay channel from the charge-transfer state to the locally excited
state in 4-aminobenzonitrile. This intramolecular charge-transfer pathway
proceeds through a newly found planar conical intersection, and it is shown to
be more efficient in the presence of acetonitrile than in the gas phase. Our results

are consistent with recent experimental observations.

Intramolecular charge transfer (ICT) in electron donor—
acceptor molecules is a process of high interest that has
given place to a strong debate over the last decades. A large
amount of experimental and theoretical studies have been
devoted to this kind of systems, often focused on the
aminobenzonitrile family and particularly on the parent system,
4-aminobenzonitrile (ABN), and on its N-dimethyl derivative,
DMABN." The small size and simple architecture of ABN and
DMABN have made them prototype systems for studying ICT
phenomena. They are particularly interesting because, despite
their similarity, their luminescent patterns are quite different;
while ABN only shows the normal fluorescence band in any
environment, DMABN exhibits normal fluorescence in non-
polar solvents but dual fluorescence in polar ones.>® This
indicates that the different photochemical behaviors are not due
to different characters of the electronic states but to changes
induced by the polar environment.

Despite the large amount of time and effort invested in their
study, there is still a very lively controversy involving these
systems. It is well-established that the normal band is originated
from a locally excited (LE) state, while the anomalous band is
due to a charge-transfer (CT) state of high dipole moment that
is stabilized in polar solvent environments. The exact structures
of the species responsible for the anomalous band and the
mechanism that populates them are unclarified questions due
to contradictory arguments based on both experimental
observations and theoretical calculations, which support
different models and hypotheses.

Mainly, three models are in the lead of the controversy
regarding the structure of the luminescent CT species: the
planar ICT model (PICT),* the twisted one (TICT),® and the
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partially twisted or pretwisted one (pTICT).° It seems
sufficiently proved that the PICT and TICT species do in
fact correspond to two minimum-energy points of the potential
energy surface (PES) of the excited CT state in both ABN and
DMABN, but their role in the fluorescence spectra is less clear.
A fourth model, the rehybridized ICT (RICT), is thought to
be a stable species of a mo* excited state but is nowadays
discarded as a luminescent species.

Regarding the ICT mechanism, it is well-established that the
initial excitation populates first the S, state of CT character.
The subsequent sequence of steps along the LE or CT PES
until the luminescent species are populated is still under
discussion. Computational works indicate the existence of a
conical intersection (CI) seam between the LE and CT PES
that allows internal conversion to occur over a large range of
molecular geometries.® Experimental works suggest initial
population of the LE state and later equilibration with a CT
state.” Tt has even been suggested the involvement of the 7o*
state in the early stages of the ICT process,'® but recent works
present arguments to discard this possibility.""** This is in fact
a point that deserves to be clarified.

Park et al. have published a recent paper reporting a study of
highly time-resolved fluorescence spectra (TRES) over the
whole emission region of DMABN in acetonitrile.'® The
precise measurements of this study give information about the
dynamics of the ICT process free from the interferences of the
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Figure 1. SA2-CASSCF energy profiles of the two lowest-energy excited states along the S,/S, CI seam joining CI-C,, and CI-C; (panel a). CASSCF
and CASPT? energy profiles of the CT and LE states along the C,, pathway (panel b) and from PICT to CI-C, (panel c). Gray lines show the
location of the geometries of the critical points optimized at the CASSCF level, used as fixed points for the interpolations.

solvent reorganization and vibrational relaxation dynamics that
occur on the same time scale. The experimental techniques
used in that work also give access to an analysis of the ultrafast
events that occur within the first few femtoseconds. From their
observations, it is concluded that, after photoexcitation to the
S, state, both the CT and LE states are populated in less than
30 fs for geometries that are still quasiplanar. This early internal
conversion process is the main focus of the present Letter.
Subsequent processes from the initial LE and ICT species lead
to the formation of partially twisted and fully twisted ICT
species that give place to the anomalous fluorescence band. A
similar ultrafast interval conversion was also proposed in a
previous work by McCamant et al.'*'*

Computational studies carried out on ABN and DMABN
have shown that the topographies of the PESs of the low-lying
states of both systems are similar, but small energetic changes
induce a different interplay between the LE and CT species that
leads to different luminescent patterns. The initial steps of the
photochemistry, though, are expected to be analogous in both
systems; therefore, the experimental conclusions derived by
Park et al. for DMABN must hold in a qualitative way also for
ABN, at least during the early stages when only quasiplanar
deformations are involved.

In this Letter, we have performed a computational study on
ABN in the gas phase and acetonitrile in order to corroborate
or discard the hypothesis of Park et al. and provide further
information about the ultrafast process that populates the LE
state almost immediately after the initial photoexcitation. We
have carried out a CASSCF(12,11)/cc-pVDZ study to describe
the topography of both coupled PESs involved in the initial
steps of the process using the Gaussian 09 package'® In this
way, we have established the paths and regions of the surfaces
that determine the mechanism of the ultrafast process under
study (<30 fs). The energies of these regions were then
recalculated at the CASPT? level with the Molcas 7 package'”
to include the effect of dynamic correlation in the calculations.
Using full-dimensional models of coupled PESs, first based on
CASSCEF energies and geometries and further refined to match
CASPT?2 data, both in the gas phase and in acetonitrile, we
have run quantum dynamics simulations with the multilayer
version'® of the multiconfiguration time-dependent Hartree'’
(ML-MCTDH) method (computational details are provided in
the Supporting Information (SI)).

A new CI has been characterized between the S,-CT state
and the S;-LE one for totally planar geometries (C,,
symmetry), along a direction approximately parallel to the
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relaxation coordinate from the Franck—Condon (FC) point to
the S,-CT minimum. This opens a new channel for an ultrafast
population of the LE state upon internal conversion, that could
discard the need for out-of-plane motions or the involvement of
the z6* state in the CT process, at least during its early stages.
First, CASSCF/CASPT?2 calculations in the gas phase show
that light absorption occurs from a double-well region in the
ground-state PES. The two equivalent minima, denoted FC-C,
have a wagged geometry belonging to C, point group
symmetry. Both points are connected through a planar C,,
transition state (TS), for which the transition vector
corresponds mainly to the pyramidalization of the amino
group. This planar TS, named FC-C,, has a small energy
barrier of 1.4 kcal-mol™ (0.06 eV; 490 cm™!, CASPT2
energies) (see Tables S1 and S2 in the SI). As aforementioned,
S, and S, in the FC region correspond to the LE and CT states,
respectively. Their electronic characters are determined by their
orbital populations and confirmed with the values of their
dipole moments (5.02 [5.30] D for S;-LE and 11.30 [11.51] D
for S,-CT; CASSCF values within square brackets). The S,-LE
PES also has a double-well shape. The corresponding TS (LE-
C,,) is 1.3 kcal-‘mol™ (0.06 eV; 455 cm™) higher than the LE
wagged minima, which are 101.9 keal'mol™ (4.42 eV; dipole:
5.11 [5.40] D) above the ground-state ones. The S,-CT PES
shows a flat single well with a planar C,, minimum denoted
PICT, 118.8 kcal mol™ (5.15 eV; dipole: 11.71 [11.91] D)
above the ground state FC-C; minima (PES cuts along the
pyramidalization coordinate for the three states are depicted in
Figure S1 of the SI). The large oscillator strength found for the
transition to S,-CT (from the FC-C,, TS as well as from the
FC-C, wagged minima; see Table S1, SI) indicates that this is
the most optically active one. The corresponding excitation
energies (107.8 and 125.5 kcal mol™" in the gas phase for LE
and CT, respectively; AE(S;—S,) = 17.7 kcal mol™) are in
reasonable agreement with experimental results (108.8 kcal
mol ™! maximum of the absorption band and AE(S;-S,) = 13.6
keal mol™ in n-hexadecane).? Initial relaxation on the S,-CT
state (the FC gradient obtained at the CASSCF level depicted
in Figure S2 of the SI) is governed mainly by an in-plane
quinoidal coordinate and leads directly to the PICT species
located 6.7 keal'mol™ (0.29 V) below the excitation energy.
Previous works have reported a minimum-energy CI point
between the S;-LE and S,-CT states®' of nonplanar C,
geometry (CI-C; see Figure S3 of the SI) with a bent ring
and a slightly pyramidalized amino group. Here, we report a
new CI belonging to C,, point group symmetry with a planar

DOI: 10.1021/acs.jpclett.5b00162
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geometry, denoted CI-C,,. This point has been optimized at the
CASSCE level, but its position and energy slightly shift when
recalculating the energy profiles at the CASPT2 level. The
relocated crossing point is 3.8 kcal-mol™ (0.16 eV) above the
energy of the S,-CT state at the FC-C, geometry and 10.5 kcal-
mol™" (0.45 V) above the PICT minimum (see Table S2 for
CASPT?2 energies and Figure S4 for CASSCF results, SI). We
have checked that the initial relaxation that leads from FC-C,,
on S,-CT to the PICT minimum (see Figure S2 of the SI)
further leads to CI-C,,. This indicates that access to this CI is
favored due to the momentum acquired by the nuclei during
initial relaxation. This new CI is thus easily accessible according
to both energetic and geometric criteria, and deactivation
through this point is expected to be ultrafast.

Given that the CI-C, point (optimized at the CASSCF level
and also relocated at the CASPT?2 level) is 14.2 kcal.mol™!
(0.62 eV) lower than the CI-C,, point, it is relevant to
characterize the CI seam that joins these two points. This was
achieved along a relaxed-interpolated coordinate, optimizing
ClIs for fixed values of the bending angle (defined by the out-of-
plane motion of the carbon atom bonded to the amino group).
This was calculated at the CASSCF level only because such
optimizations are not available at the CASPT2 level. However,
we can safely assume that the landscape does not change
qualitatively when dynamic correlation is included, as proved by
the existence of both CI-C,, and CI-C; relocated points at the
CASPT?2 level. Figure la shows that the CASSCF seam is
continuous and decreases monotonically as both points belong
to the same degenerate subspace. The S;-LE and S,-CT states
are B, and A, at the C,, geometries, respectively (using
Mulliken’s convention where the x-axis is perpendicular to the
molecular plane). The bending deformation that lowers the
symmetry to C, is By, such that S;-LE and S,-CT become A"
and A, respectively, with no further coupling. The derivative
coupling is a B,/A” Kekulé-like motion all over the seam (see
Figure S5 of the SI). Internal conversion can thus take place at
any point of the seam and implies activation of motions that
break the left/right symmetry of the molecule. However, the
topographies of both crossings are different; CI-C,, is sloped
(see Figure 1b), whereas CI-C; is peaked (see Figure 1c). These
characteristics have been determined from the profiles of the
PESs of the LE and CT states calculated between the
geometries of the critical points optimized at the CASSCF
level. Including electron dynamic correlation (CASPT2
calculations) induces an energy shift all along each surface
that is not constant but quite smooth for both. This results in
relative stabilization of the CT state with respect to the LE
state. Consequently, the critical points at the CASPT?2 level are
not located at the same geometries as those at the CASSCF
level. The most affected ones are the CIs (see Figure S6 of the
SI for comparison of results). The shape of the surfaces,
though, is quite similar at both levels, as shown in Figure 1b,c.
In addition, CASPT?2 calculations show that the CI-C,, region
is even more accessible from the FC region compared to
CASSCE calculations. In any case, the different topographies of
both CI-C; and CI-C,, crossings and the fact that the CI-C;
geometry is farther from the FC region than the CI-C,, one are
expected to make the bent deactivation pathway though CI-C;
occur later than the planar one through CI-C,, and less in favor
of populating the LE minimum.

Describing experimental conditions more accurately requires
the solvent environment to be taken into account. We modeled
the acetonitrile solvent using the polarizable continuum model
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(PCM) approach. Modeling solvent effects in nonadiabatic
phenomena has an additional difficulty given the different time
scales of the various processes undergone by the solute and the
finite relaxation time required by the solvent to equilibrate with
the changing geometry or electronic distribution of the solute.
To account for different situations, in the PCM model, the
reaction field is partitioned into a fast component, always
equilibrated, and a slow component, only equilibrated for stable
species or slow processes. Vertical transitions are considered
instantaneous; therefore, it is assumed that only the fast
component of the solvent field will be able to equilibrate with
the new electronic distribution of the state reached after the
transition. This is considered as an extreme case (as opposed to
the equilibrated solvent) that can be properly addressed
computationally, and this is the model assumed in this work
to compute excitation energies. On the other hand, the
relaxation and subsequent processes that take place on the
excited state (for example, internal conversion) can proceed on
the same time scale as the solvent reequilibration, which makes
impossible an adequate modeling. Given that we want to study
the evolution of our system along the CT PES populated after
the initial excitation, we have opted for equilibrating the solvent
for this excited state and calculated the LE energies with the fast
component equilibrated for this state but the slow component
equilibrated for the CT state. The profiles of Figure 1b
recalculated at both CASSCF and CASPT2 levels using this
model (see Figure S7 of the SI) show that the global shape of
the surfaces is not changed by the solvent, although the CT
state is stabilized preferentially due to its larger dipole moment.

Optimizing a CI within the PCM approach is not an available
technique at the moment. We thus identified a shifted crossing
point by recomputing the energies in the presence of
acetonitrile along a linear interpolation pathway from the FC
point to the CI-C,, point obtained in the gas phase (see Figure
2). Our results show that the solvent stabilizes the CT state

200

AE (kcal mol-1)
=
[
o

140

120

100
-10 -5 0 5

10
C,, linear interpolation coordinate (arb. unit)

15

Figure 2. C,, pathway along a linear interpolation coordinate Q linking
the FC point (Q = 0) to the CI-C,, point (Q = 10) in the gas phase
(dashed lines) and in acetonitrile (plain lines). Energy differences are
given with respect to the ground-state minimum. Level of theory: SA2-
CASSCF(12,11)/cc-pVDZ.

with respect to the LE state by about S kcal'mol™ (0.2 eV).
This effect is not strong enough to invert the energies, and the
PICT minimum still belongs to the S, state. In addition, the
energy of the CI-C,, point with respect to the FC point is lower
than that in the gas phase.

DOI: 10.1021/acs.jpclett.5b00162
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Consequently, the shifted CI-C,, point appears even closer to
the PICT minimum when the effect of the solvent is
considered. Thus, internal conversion from PICT to LE is
expected to be faster in acetonitrile than that in the gas phase.
To check this hypothesis, quantum dynamics calculations were
run in full dimensionality (39 internal degrees of freedom) with
ML-MCTDH.'"® The electronic Hamiltonian matrix was
expressed using a vibronic coupling Hamiltonian model*
whereby quasidiabatic PESs and coupling terms are expressed
as quadratic expansions along the nuclear coordinates (further
details are provided in the SI). Time-resolved electronic
populations were calculated over 160 fs for coupled PESs
based on CASSCF data and over 70 fs for coupled PESs based
on CASPT2 data. They are depicted in Figures 3 and 4,
respectively, both in the gas phase and in acetonitrile.

0.3
0.2
0.1
0
0 20 40 60 80 100 120 140 160
t/fs

Figure 3. Evolution of the electronic populations (red: CT; green: LE)
as functions of time in the gas phase (dashed lines) and in acetonitrile
(plain lines). Coupled PESs based on CASSCF data.

1

0.9 S

20 30

t/fs

40 50 60 70

Figure 4. Evolution of the electronic populations (red: CT; green: LE)
as functions of time in the gas phase (dashed lines) and in acetonitrile

(plain lines). Coupled PESs based on CASPT2 data.

Figures 3 and 4 show that internal conversion starts
immediately in all situations. Including electron dynamic
correlation (CASPT2 data) only amplifies the conclusions
that could be drawn from a less accurate description based on
CASSCF data. The CI-C,, point is reached very rapidly (after a
few fs), and we observe significant ultrafast radiationless decay
from PICT to LE (transfer of population) within the planar
channel. The solvent makes the transfer of population more
efficient than that in the gas phase; inversion of population

1319

(50%:50%) is observed around 10 fs in acetonitrile, while the
population of LE has only reached 6% in the gas phase
(CASPT2-based results; see Figure 4).

Our calculations for ABN in the gas phase and in a polar
solvent environment clearly indicate that the PICT species is
populated right after photoexcitation where it can radiation-
lessly decay to the LE species very early through a newly found,
planar CL This process is even more efficient in the presence of
acetonitrile than that in the gas phase. Such computational
results are consistent with the recent experimental observations
of Park et al. on the parent system DMABN, where the first
deactivation step is attributed to quasiplanar motions inducing
ultrafast internal conversion and direct formation of LE in less
than 30 fs.
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Table S1. Energies in kcal.mol™ (eV) and oscillator strengths calculated at the CASSCF(12,11)/cc-
pVDZ level of theory for various critical points of ABN in the gas phase.

0.0 (0.00)
110.4 (4.79)
150.8 (6.54)

0.01
0.43

1.8 (0.08)
111.4 (4.83)
147.1 (6.38)

0.01
0.49

4.6 (0.20)
105.8 (4.59)
147.6 (6.40)

0.01
0.39

6.3 (0.27)
106.9 (4.64)
144.9 (6.28)

10.1 (0.44)
112.8 (4.89)
141.0 (6.11)

0.02
0.66

129.6 (5.62)°
129.6 (5.62)°

154.6 (6.71)°
154.7 (6.71)"

’ Energies calculated using SA2-CASSCF(12,11)/cc-pVDZ

level of theory for various critical points of ABN in the gas phase.

Table S2. Energies in kcal.mol™ (eV) and oscillator strengths calculated at the CASPT2/cc-pVDZ

0.0 (0.00)
107.8 (4.67)
125.5 (5.44)

1.4 (0.06)
106.9 (4.64)
124.1 (5.38)

0.01
0.43

0.01
0.49

2.3(0.10)
101.9 (4.42)
122.4 (5.31)

0.01
0.39

3.6 (0.16)
101.2 (4.39)
121.5 (5.27)

6.1(0.26)
105.9 (4.59)
118.8 (5.15)

0.02
0.66

124.8 (5.41)°
107.6 (4.67)°

116.0 (5.03)
115.1 (5.00)

142.4 (6.18)
136.0 (5.90)

129.6 (5.62)
129.3 (5.61)

’ Energies calculated using MS2-CASPT2/cc-pVDZ

T Energy at crossing point geometry at the CASPT2 level (non-optimized)

Table S3.Energies in kcal.mol™ (eV) calculated at the CASPT2/cc-pVDZ level of theory for various
critical points of ABN in acetonitrile.

: Energies calculated using MS2-CASPT2/cc-pVDZ

LE-Cyy PICT Cl-Cay Cl-Cay
0.0 (0.00) 1.0 (0.04) 1.9 (0.08) 2.8(0.12) 4.2(0.18) 39.4 8.8
108.3 (4.69) 106.0 (4.59) 102.0 (4.42) | 100.1(4.34) | 104.6 (4.53) | 140.3 (6.09) | 110.4 (4.79)
120.8 (5.24) 117.9 (5.11) 116.8(5.07) | 114.7(4.97) | 112.8(4.89) | 129.6 (5.62) | 110.0 (4.77)

" Energy at crossing point geometry at the CASPT2 level (non-optimized)
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Figure S2. Qualitative relaxation vector from S,-CT to PICT.
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Figure S5. Gradient-difference and derivative-coupling vectors at both conical intersections.
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Figure S6. Geometries for CI-C,, and PICT at different levels of theory. Variations with respect to
PICT within brackets.
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Figure S7. a) CASSCF and CASPT2 energy profiles of the CT and LE states in acetonitrile
along the C,, pathway. b) CASPT2 profiles of the CT and LE states in the gas phase and
acetonitrile along the C,, pathway. Grey lines show the location of the geometries of the
critical points optimized at the CASSCF level, used as fixed points for the interpolations. The
discontinuities observed in the CASPT2 profiles are due to the inversion of states at
different levels of calculation (CASSCF vs. CASPT2 and vacuum vs. acetonitrile) at those
points.



B. Quantum Dynamics

We represented the PES and non-adiabatic couplings with a vibronic-coupling Hamiltonian model
(1) based on three quasidiabatic states. It consists in a real symmetric matrix H(Q) made of three
diagonal potential energy functions: H,1(Q), H»2(Q), and H;3(Q), and three off-diagonal electronic
couplings, H:,(Q), H13(Q), and Hy(Q), where Q denotes the set of nuclear coordinates. In the
Franck-Condon region the three quasidiabatic states coincide with the relevant adiabatic states:
state 1 (So/GS), state 2 (Si/LE), and state 3 (S,/CT). Each diagonal entry, H;(Q), is expanded
quadratically around a reference geometry, Q. corresponding to the relevant C,, stationary
points: Qgs :Qref,11: Qe :Qref,ZZI and Qpicr :Qref,33-

The non-adiabatic coupling terms between S, and the two other states can be neglected. In other
words, H1;(Q) corresponds to the SyPES, and the electronic couplings H1,(Q), H13(Q) are set to zero.
The remaining coupling, H,3(Q), is expanded linearly around Qg, the geometry of the C,, conical
intersection between S; and S,. Its parameters are obtained using the two vectors of the branching
space and the PICT minimum is used as a reference point for setting the value of the arbitrary
mixing angle between both degenerate states so as to satisfy Hp3(Qpicr) = 0.

The curvatures of the diagonal entries, H;{Q), were obtained through a second-order Jahn-Teller
procedure (whereby the difference between adiabatic and quasidiabatic second derivatives is
considered as a second-order effect of the non-adiabatic coupling). However, the curvatures along
the two directions Q;¢-Qc and Qpcr-Qc were slightly adjusted to make sure that the two diabatic
PES H,,(Q)and Hs3(Q) cross exactly at Q¢ and do so with the right energy.

The following figure (Fig. S8) shows the agreement between the ab initio energies and the ones of
the vibronic model along theQp cr-Q direction when using CASSCF data.
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Figure S8. C,, pathway along a linear interpolation coordinate Q linking thePICT point (Q = 0) to the
CI-C,, point (Q = 10), in the gas phase. Energy differences are given with respect to the ground-
state minimum. Dashed lines: ab initio; plain lines: vibronic model. Ab initio level of theory:
CASSCF(12,11)/cc-pVDZ with variable SA weights (single-state calculations on each state at Q = 0;
0.5:0.5 weights on S;/S, at Q = 10; linear interpolation in between).

All parameters of the model were extracted from ab initio calculations (CASSCF(12,11)/cc-pVDZ) at
the four relevant geometries, Qgs, Qie, Qpicr, and Qg (SA2 was used at the conical intersection
only). The solvent (acetonitrile) effect was taken into account with the PCM (polarizable
continuum model). It is important to note that the C,y LE stationary point is not a minimum but a
planar transition state. However, the negative curvature associated to the imaginary frequency is
very small (flat surface), and within our propagation time (160 fs), this did not cause any trouble
during the wavepacket propagation.

A more accurate model of coupled PES (based on CASPT2 data) was further obtained by shifting
the geometries and energies of the relevant relocated points (minima and crossings). Again, the
curvature was slightly adjusted along the linear interpolation coordinate to make sure that the
curves along this direction go through the relevant points (Fig. S9).
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Figure S9. Same as Figure S8 but based on CASPT2 data.

In quantum dynamics, the selection of an optimal set of coordinates is a crucial step. Indeed, this
enables to minimize considerably the couplings in the potential energy between the modes and



thus to reduce the computational resources (CPU time and memory). In the present study, we
used a set of polyspherical coordinates with several subsystems (in red, blue,and pink) (2,3,4).
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Figure S9.Polyspherical coordinates used in the vibronic model and to perform the dynamics.

These coordinates were carefully selected to describe the relevant motions involved in the
photoprocess. In particular, the quinoidal stretching and the symmetric CC stretching on the
amino side are represented with a combination of the norms of several vectors (Ris, Ri3, and Ry)
and the norm of Rg, respectively.

The kinetic energy operator (KEO) required to perform the dynamics was obtained numerically
and exactly with the Tnum program (5). In addition, we assumed a constant metric tensor
(calculated at the ground-state geometry). This approximation enables to preserve the main
features of the KEO and to considerably reduce the number of terms in the Hamiltonian operator.

Finally, the quantum dynamics calculations were performed with the multilayer version (6) of
MCTDH (ML-MCTDH) of the Heidelberg package (7). Indeed, this approach gives access to dealing
with a large number of degrees of freedom with a highly compact and flexible basis set. Our
system, with 39 coordinates, was described with an eight-layer wavefunction, and, for each layer,
6 single-particle functions (SPF) were used except for the last layer. As usual, we used the discrete
variable representation (DVR) for the primitive basis sets (last layer) with (i) 40 DVR grid points for
the harmonic-oscillator basis sets associated with the distances (vector norms) and the out-of-



plane angles; (ii) 80 DVR grid points for the sine basis sets associated with the in-plane angles.The
vibrational ground state on Sy was obtained with the relaxation approach implemented in ML-
MCTDH.
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Titre : Etude de processus photochimiques par une approche couplant chimie quantique et
dynamique quantique
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Résumé : Ces derniéres années, les progrés des techniques expérimentales combinées avec les
simulations théoriques ont donné acces a 1’étude et au contrdle des réactions photochimiques dans des
systtmes moléculaires de grande taille. Ceci permet d’envisager de nouvelles applications
technologiques. Par exemple, les molécules de la famille du 3-hydroxychromone et de
I’aminobenzonitrile sont des types de systemes ol les spectres de fluorescence vont présenter des
différences importantes selon 1’environnement du systéme et en fonction des substituants utilisés. Ce
type de propriété est crucial dans le domaine des matériaux organiques, afin de pouvoir comprendre,
prédire et élaborer des matériaux qui présentent des propriétés optiques spécifiques tels que les
marqueurs fluorescents dans le domaine médical par exemple.

Notre stratégie pour étudier la réactivité photochimique a été la suivante : * Explorer les surfaces
d’énergie potentielle et optimiser les points spécifiques avec des calculs de chimie quantique ; nous
avons utilisé des méthodes CASSCF/CASPT?2 et TD-DFT (états fondamental et excités) et ’approche
PCM pour décrire implicitement les effets de solvant. * Génération des surfaces d’énergie potentielle
exprimées sous forme de fonctions analytiques de toutes les coordonnées nucléaires (modele
vibronique quasidiabatique). * Résolution de 1’équation de Schrodinger dépendante du temps pour les
noyaux et pour les états électroniques couplés a I’aide de la méthode de dynamique quantique
multilayer multiconfiguration time-dependent Hartree (ML-MCTDH).

Title: Study of photoinduced processes with an approach combining quantum chemistry and quantum
dynamics methods

Keywords: Non-adiabatic photochemistry, conical intersections, vibronic models

Abstract: Over the last decades, progress in experimental techniques combined with theoretical
simulations has given access to studying and controlling the photochemical reactivity of large
molecular systems with numerous technological applications. Derivatives of the 3-hydroxychromone
and aminobenzonitrile molecules are examples where different fluorescence patterns are observed,
depending on the solvent or on the substituents. Such properties are crucial in the field of organic
materials to understand, predict, and design materials with specific optical properties such as
fluorescent markers.

Our strategy to study photochemical reactivity is summarized as follows: * Exploring the potential
energy surfaces and optimizing specific points with quantum chemistry calculations; these were run
with the CASSCF/CASPT2 and TD-DFT methods (ground and excited states) and the solvent effect
was described implicitly with the PCM approach. * Generating the full-dimensional potential energy
surfaces as analytical functions of the nuclear coordinates (quasidiabatic vibronic model). * Solving
the time-dependent Schrdédinger equation for the nuclei and the coupled electronic states with the
multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) quantum dynamics method.
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