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Introduction

La plupart des contrôleurs avancés ont besoin d'une bonne connaissance du modèle dynamique du robot pour leur mise en oeuvre. Le modèle dynamique du robot peut être développé selon la méthode de Newton-Euler ou la méthode de Lagrange. Il décrit la dynamique du système en termes de position, vitesse, l'accélération et force ou couple, ainsi que des paramètres dynamiques. Les paramètres dynamiques sont des constantes comme la masse, l'inertie, les moments d'inertie, les paramètres de frottement de chaque articulation du robot, et le moment d'inertie global des éléments composant la chaîne cinématique du réducteur. Puisque les paramètres dynamiques sont inconnus, ils doivent d'être identifiés avant l'opération. De nombreux paramètres ne sont pas mesurables directement et doivent donc être identifiées à partir de mesures sur le robot en fonctionnement. Donc, la procédure d'identification des paramètres dynamiques est nécessaire. Dans la littérature, plusieurs méthodes ont été proposées pour résoudre ce problème, basée sur l'utilisation les 3 modèles:

• modèle dynamique (Canudas de [START_REF] Canudas De Wit | Robot parameter identification via sequential hybrid estimation algorithm[END_REF][START_REF] Gautier | Identification of robots dynamics[END_REF][START_REF] Gautier | DIDIM: A new method for the dynamic identification of robots from only torque data[END_REF]Gautier et al., , 2013;;Gautier and Khalil, 1990;[START_REF] Gautier | Identification of the dynamic parameters of a closed loop robot[END_REF][START_REF] Gautier | Dynamic identification of a 6 dof robot without joint position data[END_REF][START_REF] Hollerbach | Model Identification[END_REF][START_REF] Khalil | Modeling, identification and control of robots[END_REF]Khosla et al., 1985;[START_REF] Khalil | OpenSYMORO: An open-source software package for Symbolic Modelling of Robots[END_REF];

• modèle d'énergie (Gautier, 1996;[START_REF] Gautier | On the identification of the inertial parameters of robots[END_REF]);

• modèle de puissance (Gautier, 1997).

L'objectif de cette thèse est de développer de nouvelles techniques en identification des paramètres dynamiques des robots et de les comparer avec les techniques existantes. Nous proposons de nouvelles techniques sur deux aspects: reformuler le modèle du robot en utilisant les fonctions modulatrices; appliquer les différentiateurs de Jacobi développés récemment pour résoudre le 1 problème de dérivation et analyser leur propriétés de filtrage dans le domaine fréquentiel.

Fonctions modulatrices en identification

Soit l ∈ N * , T ∈ R * + , et g une fonction satisfaisant des propriétés suivantes:

(P 1 ) : g ∈ C l ([t a , t b ]);

(P 2 ) : g (i) (t a ) = g (i) (t b ) = 0, pour i = 0, 1, ..., l -1;

(1) avec C l ([t a , t b ]) l'ensemble des fonctions qui sont l-fois continûment dérivable sur la fenêtre de temps [t a , t b ] avec l ∈ N * . La fonction g définit une fonction modulatrice d'ordre l sur [t a , t b ].

Les fonctions modulatrices peuvent être utilisées pour l'identification. Supposons que x (d) est d'ordre d, avec x la variable d'observation et s est un nombre entier. On peut faire diminuer l'ordre de la dérivée x (d) grâce aux fonctions modulatrices. Par exemple, soit g une fonction modulatrice d'ordre l définie sur l'intervalle [0, T ], avec l ≥ d. On multiplie g par x (d) et on intègre par partie le produit g sur la fenêtre de temps [0, T ]. Ce qui permette les dérivées de x vers les dérivées de g, qui sont analytiquement connues. (d) x.

∫ T 0 gx (d) = - ∫ T 0 ġx (d-1) = • • • = (-1) d ∫ T 0 g
(2)

Analyse dans le domaine fréquentiel

Les intégrales (2) sont des intégrales de convolution correspondant à un filtrage qui peut être analysé dans le domaine fréquentiel.

Dans [START_REF] Chen | Digital fractional order Savitzky-Golay differentiator[END_REF][START_REF] Collado | Analyse fréquentielle des dérivateurs algébriques[END_REF], les auteurs analysent également la propriété de différenciation dans le domaine fréquentiel. Le calcul pratique de ∫ gx se fait sous la forme d'une convolution numérique avec une période d'échantillonnage T s , et conduit à une version discrète sous la forme ∑ N i=1 g [i]x [i]. De cette façon, la convolution avec les fonctions modulatrices peut être analysée comme un filtre à réponse impulsionnelle finie (FIR) dont les coefficients sont les valeurs g(t).

Les fonctions proposées g ℓ (t) sont des fonctions modulatrices d'ordre K sur l'intervalle [0, T ], avec K l'ordre maximum de dérivation de x à calcule. Les fonctions g(t) satisfont les deux conditions aux limites: g

(i) ℓ (0) = 0, et g (i)
ℓ (T ) = 0, quand i = 0, 1, . . . , K -1.

On étude 4 types de fonctions modulatrices:

(1) Les fonctions modulatrices sinusoïdales (SMF): la valeur de la fonction sinusoïdale atteint 0 à chaque demi-période, et on propose g ℓ (t) = sin ℓ ( π T t), avec ℓ ∈ R.

(2) Les fonctions modulatrices de Jacobi (JMF): ce groupe de fonctions est une combinaison de polynômes de Jacobi qui vaut 0 au début et à la fin de l'intervalle [0, T ]. Il faut faire attention à ce que l'ordre des fonctions modulatrices soit supérieur à K -1 et on propose g ℓ (t) = t ℓ 1 (t -T ) ℓ 2 , avec ℓ 1 , ℓ 2 ∈ R et ℓ 1 , ℓ 2 > K -1.

(3) Les fonctions modulatrices de Fourier (FMF): la fonction exponentielle e ix = cos x + i sin x est une fonction périodique qui atteint 1 à chaque période.

Grâce à cette propriété, on peut écrire les fonctions modulatrices de Fourier sous la forme g ℓ (t) = e -iαℓ (e -i 2π T t -1) K , où α est paramètre de réglage et ℓ ∈ R. (4) Les fonctions modulatrices de Harley (HMF): elles sont basées la méthode de Shinbrot et Pearson Fourier fonctions modulatrices, ce groupe de fonctions est donné par :

g ℓ (t) = ∑ n j=0 (-1) j       n j     
 cas((n + ℓj)ω 0 t), où ℓ = 0, ±1, ±2, . . . est entier, ω 0 = 2π T est la résolution fréquentielle et cas(x) = cos x + sin x. Les 4 types de fonctions modulatrices sont analysées d'un point de vue filtrage en calculant la forme discrète de la convolution dans laquelle les valeurs de g ℓ (t)ĺéchantillonnée à la période de T s , sont les coefficients d'un FIR. Par exemple, les diagramme de Bode en amplitude Fig.

(1) représentent la réponse fréquentielle de FIR définie pour le calcul de la dérivée seconde avec les 4 types de fonctions modulatrices.

Identification en utilisant les fonctions modulatrices et le modèle de puissance

Les fonctions modulatrices peuvent être appliquées à l'identification des paramètres dynamiques des robots, sous la forme d'une convolution avec le modèle de puissance du robot. Rappelons le modèle de puissance (3) d'un robot avec n articulations:

qT Γ m = d dt (H) + qT [diag( q)F v + diag(sign( q)F s + Γ off ].
(3) où q, q sont des vecteurs de la position et de la vitesse, de dimension (n × 1), Γ m est le couple de moteur, H est l'énergie totale du robot, H(q, q) = E(q, q + U(q) est la somme de l'énergie cinétique de l'articulation E et de l'énergie potentielle U . H et linéaire par rapport aux parametres inertials K de robot. H(q, q) = h(q, q)K, les coefficients de h définissent les fonctions d'énergie. F vj , F sj sont les coefficients de frottement visqueux et de Coulomb de l'articulation j, Γ of f j est un paramètre d'offset (Gautier et al., 2013).

On intègre par partie, l'équation (3) pondérée par des fonctions modulatrices de premier ordre g sur l'intervalle [t a , t b ] et :

∫ t b t a g qT Γ m dt = - ∫ t b t a ġhKdt + ∫ t b t a g qT diag( q)F v dt + ∫ t b t a tg qT diag(sign( q))F s dt + ∫ t b t a g qT Γ off dt. (4)
Cette équation scalaire correspond aux modèle d'énergie pondéré par g, ce qui évite le calcul numérique de la dérivée d'ordre 2.

Les fonctions modulatrices sont bien adaptées à ce modèle, puisque nous connaissons l'expression analytique de l'énergie h et les dérivées des fonctions modulatrices. En calculant (4) par différentes fonctions modulatrices g ℓ .

On obtient un système linéaire surdéterminé de n × n t × n m équations: Y E = W E (q, q, q)X + ρ E ,

(5) où n t est le nombre d'intervalles de temps, n m est le nombre de fonctions modulatrices, ρ E est le bruit, Y E et W E sont respectivement le vecteur et la matrice d'observation, qui sont définis comme:

Y E =                         t b1 ∫ t a1 g 1 qT Γ m . . . t bn t ∫ t an t g n e qT Γ m                         , W E =                         - t b1 ∫ t a1
ġ1 h(q, q)

. . .

-

t bn t ∫ t an t
ġn e h(q, q)

                        . ( 6 
)
Le système (5) est résolu en utilisant des techniques de moindres carrés.

Differentiateur de Jacobi

Les différentiateurs numériques introduits dans cette partie sont basés sur des méthodes algébriques. Ils sont d'abord proposés par Fliess et Sira-Ramírez dans un article récent [START_REF] Fliess | Questioning some paradigms of signal processing via concrete examples[END_REF][START_REF] Fliess | An algebraic framework for linear identification[END_REF].

Ces différentiateurs algébriques sont divisés en deux classes: les différentiateurs basés sur des modèles et les différentiateurs sans modèle. Les premiers (Fliess and Sira-Ramrez, 2004;[START_REF] Tian | Fast state estimation in linear time-varying systems: an algebraic approach[END_REF]. ont été principalement utilisés pour les systèmes linéaires. Ils ont été étendus aux différentiateurs sans modèle, qui peuvent être utilisés pour les systèmes non linéaires et divers problèmes en traitement du signal. Le premier facteur de différentiation sans modèle a été introduit dans [START_REF] Fliess | Compression différentielle de transitoires bruités[END_REF] en appliquant la méthode algébrique de développement tronqué en série de Taylor du signal à différentier. Puis, deux différentiateurs sans modèle ont été étudiés dans [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF](Mboup et al., , 2009a)). En outre, il a été montré que le différentiateur causal peut également être obtenu en projetant le signal sur la base orthogonale de Jacobi. Ensuite, il a été significativement amélioré en admettant un retard choisi par le concepteur [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF](Mboup et al., , 2009a)). Dans (Liu et al., 2011c), un différenciateur central de Jacobi a été proposé, pour une utilisation hors ligne.

Les différentiateurs de Jacobi présentent les avantages suivants: leur calcul par une intégrale définie sur une fenêtre glissante dans le cas continu, leur comportement de filtre passe-bande et correspond à une convolution dans le cas discrèt. En outre, le caractère passe-bande dans les hautes fréquences qui est robuste par rapport aux bruits [START_REF] Fliess | Analyse non standard du bruit[END_REF]. Une étude théorique démontre que les erreurs sont des fonctions fortement non linéaires des paramètres de conception et que les erreurs sont limitées. D'autre part, quelques travaux expérimentaux montrent la relation entre les erreurs et les paramètres de conception (Liu et al., 2009a(Liu et al., , 2011a(Liu et al., , 2012a)). Cependant, il n'existe pas encore de méthode efficace de conception en différentiateur de Jacobi, car les paramètres sont fortement couplés. Pour résoudre ce problème, j'ai proposé une écriture du différentiateur Jacobi sous la forme d'un FIR, ce qui permet d'analyser son comportement fréquentiel et fournit un outil de conception.

On présente ici les différentiateurs causaux de Jacobi, utilisés aussi pour les différentiateurs centrales de Jacobi. Soit une mesure bruitée x ϖ : I → R, x ϖ (t) = x(t) + ϖ(t), où I est un interval ouvert de temps fini R + , x ∈ C n (I) avec n ∈ N, et ϖ est un bruit. L'objectif est d'estimer la dérivée d'ordre n de x en utilisant x ϖ . On applique les polynômes de Jacobi pour calculer le développement série orthogonale pour estimer la n i me dérivée, [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF](Mboup et al., , 2009a)). D'abord, pour tout t 0 ∈ I , on introduit D t 0 := {t ∈ R * + ; t 0t ∈ I}. La définition du polynôme d'ordre i décalé sur l'intervalle [0, 1] est (voir dans (Abramowitz et al., 1965) pp. 774-775), où µ, κ ∈] -1, +∞[:

P (µ,κ) i (τ) = i ∑ j=0 ( i + µ j )( i + κ i -j ) (τ -1) i-j τ j . (7) Définissons sur L 2 ([0, 1]) un produit scalaire ⟨•, •⟩ (0,1) µ,κ avec la fonction de poids ŵµ,κ (τ) = (1 -τ) µ τ κ , notons ∀ g 1 , g 2 ∈ C[0, 1], ⟨ g 1 , g 2 ⟩ (0,1) µ,κ = ∫ 1 0 ŵµ,κ (τ)g 1 (τ)g 2 (τ)dτ. ( 8 
)
Et la norme associée au polynôme orthogonaux décalé de Jacobi d'ordre i est donnée par: Gamma (voir (Abramowitz et al., 1965) 

∥P (µ,κ) i ∥ 2 µ,κ = 1 2i+µ+κ+1 Γ(µ+i+1)Γ(κ+i+1) Γ(µ+κ+i+1)Γ(i+1) , où Γ(n) est la fonction
p. 255), avec Γ(n) = (n -1)!.
Le calcu sous la forme d'un différentiateur causal de Jacobi est présenté en détail dans (Liu et al., 2012a). Ici, nous donnons l'expression continue analytique du différentiateur causal de Jacobi, qui calcule la n i me dérivée à l'instant Comparaisons des méthodes d'identificaiton des paramètres dynamiques des robot7

t 0 , ∀ξ ∈ [0, 1], ∀t 0 ∈ I, D (n) κ,µ,T ,q x(t 0 -T ξ) = 1 (-T ) n ∫ 1 0 Q κ,µ,n,q,ξ (τ) x(t 0 -T τ)dτ, (9) avec µ, κ ∈] -1, +∞[, C κ,µ,n,i = (µ + κ + 2n + 2i + 1)Γ(κ + µ + 2n + i + 1)Γ(n + i + 1) Γ(κ + n + i + 1)Γ(µ + n + i + 1) , ( 10 
) Q κ,µ,n,q,ξ (τ) = ŵµ,κ (τ) q ∑ i=0 C κ,µ,n,i P (µ+n,κ+n) i (ξ)P (µ,κ) n+i (τ). ( 11 
)
Enfin, nous remplaçons x dans (9) par x ϖ pour obtenir D

(n)

κ,µ,T ,q x ϖ (t 0 -T ξ) dans le cas bruité.

L'idée de ce différentiateur est d'utiliser une fenêtre d'intégration glissante pour estimer la valeur de x (n) pour chaque t 0 ∈ I par D (n) κ,µ,T ,q x(t 0 -T ξ) avec la valeur fixée ξ ∈ [0, 1], l'optimisation de ξ est donnée dans ( [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF](Mboup et al., , 2009a))). Si ξ 0, alors on a un retard de T ξ.

Il dépend d'un ensemble de paramètres:

• κ, µ ∈] -1, +∞[: les paramètres du polynômes de Jacobi,

• q ∈ N: l'ordre du développement de la série Jacobi tronqué,

• T ∈ D t 0 : la longueur de la fenêtre glissante d'intégration,

• ξ ∈ [0, 1]: le paramètre de retard T ξ.

L'analyse fréquentielle permet de caractériser le comportement du différentiateurs de Jacobi dans Fig. (2). On compare à un filtre FIR et à un filtre passe-bande composé d'un filtre passe-bas de Butterworth, suivi d'une dérivée par différence. Les résultats montrent que le différentiateur causal de Jacobi présente une phase linéaire au voisinage de la fréquence de coupure avec une propriété de filtrage passe bas en hautes fréquences intéressantes.

Comparaisons des méthodes d'identificaiton des paramètres dynamiques des robot

Dans le tableau (1), on rappelle les différentes techniques d'identification en robotique.

Une étude comparative des méthodes d'identification est réalisée sur un prototype de robot SCARA sans gravité à deux articulation à entraînement direct développé au laboratoire (IRCCyN) [START_REF] Presse | Identification des paramètres dynamiques des robots[END_REF] comme indiqué sur Fig. (3). Le modèle dynamique dépend de 4 paramètres inertiels minimaux, et de 4 paramètres de frottement:

X = [ZZ 1R , ZZ 2 , LMX 2 , LMY 2 , F v1 , F s1 , F v2 , F s2 ], (12) 
avec

ZZ 1R = ZZ 1 + M 2 L 2 .

Résultats d'identification

Pour étudier les erreurs systématiques dues à la distorsion des différentes filtres, on simule le modèle du robot sans bruit avec la valeurs de X en unités SI : X = [3.5 0.06 0.15 0.1 0.3 0.4 0.2 0.12]. Les résultats sont présentés dans la Fig 

Conclusion

Ce travail concerne l'identification des paramètres dynamiques des robots. Les contributions suivantes ont été réalisées:

• Proposition d'un modèle de puissance avec fonctions modulatrices qui évite la dérivation numérique des fonctions d'énergie.

• Analyser dans le domaine fréquentiel des fonctions modulatrices, qui a permis de sélectionner les fonctions modulatrices de filtre passe-bande adapté à l'identification.

• introduction les différentiateurs de Jacobi et analyser pour la première fois, dans le domaine fréquentiel pour qualifier et quantifier leurs propriétés de filtrage. La majeur de la thèse a permis de comparer les differentiateurs de Jacobi en terme de distorsion et d'établissement des bruits hautes fréquences.

• comparaison entre les modèles différents d'identification, dynamic, de puissance d'énergie, des différentiateurs, des techniques de moindre carré pour l'identification des robots.

Un problème important dans l'identification des paramètres dynamiques des robots est de diminuer au maximum l'influence du bruit dans la dérivation des signaux. Dans ce travail, nous proposons des méthodes basées sur des techniques algébriques: utiliser le modèle de puissance avec les fonctions modulatrices ce qui supprime le calcul de l'accélération et le calcul de la dérivée des fonctions d'énergie; appliquer les différentiateurs de Jacobi pour obtenir une bonne estimation des dérivées d'ordre 2.

Les travaux futurs concernent une validation sur des robots plus complexes, qui ont un comportement non-linéaire accentué avec un grand nombre de paramètres, ce qui entraîne des difficultés pour l'identification. A robot is a mechanical or virtual artificial agent, usually an electro mechanical machine that is guided by a computer program or electronic circuitry. As a word, robot is drawn from an old Church Slavonic word, robota, for "servitude," "forced labor" or "drudgery." The word, which also has cognates in German, Russian, Polish and Czech, was a product of the central European system of serfdom by which a tenants rent was paid for in forced labor or service.

The first robot can be tracked back to the 4th century BC, when a wooden, mechanical steam-operated bird called The Pigeon was created by the Greek mathematician Archytas. While the research into the functionality and potential uses of robots did not grow substantially until the 20th century. Especially, fully autonomous robots only appeared in the second half of the 20th century and the robotics subject keeps prosperity and development. More recently, "robots" and the derived term "robotics" have come to represent the most modern engineering technologies for a myriad of functions ranging from artificial intelligence experiments and building automobiles to performing delicate surgical procedures.

Robotics are crossing disciplines of mechanical engineering, electrical engineering and computer science that deals with the design, construction, operation and application of robots, as well as the computer systems for their control, sensory feedback and information processing.

With the fast development of robot theory, people gradually became aware of the geometry and dynamic descriptions of the robot, with better and better precision in building mathematical model. Consequently, most of the advanced robot control schemes are proposed with application of the robot model, especially the robot dynamic models, in order to adjust the controller and the increase the control precision. Such control schemes include: computed torque control; predictive control; passivity control; adaptive control.

It requires a good knowledge of the robot dynamic model before implementation. Robot dynamic model can be developed from Newton-Euler method or Lagrange method. It describes the system dynamics in terms of current states, 13
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Figure 6 -Development of robots such as position, velocity, acceleration and force/torque, as well the dynamic parameters. The dynamic parameters are constant at each instant and include the mass, inertia, first moments, joint friction for each robot link, and moment of inertia of the rotor and transmission system of actuators. As the key elements of the robot model, they need to be recognized before operation. However, for some of them, it is not likely to implement a measurement by the existing technology. Thus, the identification procedure is necessary and as a long-standing subject in the robotics.

In this work, we investigate the robot identification issue. The aim is to identify robot's dynamic parameters via a measurement of robot trajectory and torque/force information. Various identification methods have been developed based on different robot models, differentiation approaches, numerical tools, sensor feedback information or cross validation using closed loop simulation. Illustrating results are obtained in the past decades, while there still exist some challenges in the differentiation problem. In robot applications, the obtained measurements are usually noisy, which makes the derivative estimation process be ill-posed in the sense that a small error in measurement can induce a large error in the computed derivatives, specially for high order derivatives. The poor performance of reconstructing derivatives from the noisy measurement will directly induce some bias in the identification matrix, which results in huge errors in the identification results. Moreover, the highly nonlinear property of the robot systems and its large number of dynamic parameters also bring in difficulty in identification. Therefore, more researches and studies should be carried out in this area.

The Project-team Non-A has developed a group of algebraic differentiators, called Jacobi differentiators. They provide the solution as an explicit integral formulae associated with finite signal information within a sliding integration time window. Because of their integration structure, they behave as nature filtering process and are robust to corrupt noises. Compared to other differentiators, Jacobi differentiators can be implemented immediately without prefiltering of the noisy signal due to their integral structure.

Meanwhile based on the algebraic conception, it is possible to transform the high order differential equation into lower order one. Associated with the modulating functions, the differential equation is rewritten in a simple expression which could eliminate certain high order terms by using some annihilating integral operator. The robot identification model can also apply this technique in order to avoid the terms with joint acceleration, which is usually badly estimated.

Objective of the thesis

The main objective of this thesis is to develop new techniques in robot dynamic parameters identification methods and compare them with the existing techniques. We propose new approaches in two aspects : reformulate the robot model using both the algebraic method and modulating functions; apply the newly developed Jacobi differentiators in robot differentiation problem and analyse the filtering property in frequency domain. In the end, we discuss if the detailed identification model is needed for control and based on the algebraic method, a simple and fast response adaptive controller is designed.

Outline of the thesis

Chapter 1 gives an overview of the existing approaches for serial robot identification process. The principle of the identification procedure is based on the analysis of the 'input/output' behavior of the robot following some planned motion and on estimating the parameters value by minimizing the difference between a function of the real robot variables and its mathematical model. According to the models, the most widely applied approach is based on robot explicit dynamic model, requiring the joint force/torque, position, velocity and acceleration information. The other models such as robot energy model and robot power model require only the joint force/torque, position and velocity information. However they need an additional derivative operation on the implicit expression of velocity. As the dynamic parameters are linear with respect to the models above, most of the identification processes form an overdetermined system by a sequence of measurements and obtain the optimal solution using the least-square techniques. Besides, a parallel scheme to identify robot dynamic parameters by minimizing the output error from a closed loop simulation is presented.

Chapter 2 investigates the new identification method. It starts from an algebraic point of view, by which the order of differential equation can decrease using some annihilating operator. Based on this technique, the robot power model is transformed to an energy equation, that does not consider the acceleration variables and the implicit derivative operation. In this sense, the identification model avoids using the inaccurate acceleration information and introduce less errors in the results. Meanwhile, the modulating functions are implemented during the process. We will analyse their magnitude-frequency response and show that they have a low-pass filtering property for certain groups of the modulating functions.

Chapter 3 discusses the differentiation problem in robot identification issues. The principle and analysis of the causal and central Jacobi differentiators are introduced. As well, their frequency domain properties are analysed via a finite impulse response (FIR) filter point of view, indicating clearly their differentiation performance. Comparisons with other differentiators are made both in time domain and frequency domain.

Chapter 4 presents mainly the identification results in simulation and application of different approaches, in order to give a clear understanding of the advantages and draw-backs for each methodology. To be more specific, four different identification models (dynamic, power, energy identification models, modulating functions with power model approach), two differentiators (Jacobi differentiators and central difference with Butterworth filter) and three least square techniques (Ordinary, Weighted, Iterative least squares techniques) are compared.

Chapter 5 studies from the control aspect, some new ultra local robot model, which represents well the robot dynamics. Here "ultra local" means on a small time window. An adaptive controller is proposed so that by estimating the states of the simplified model, the corrupt changes of the robot are detected and updated within a short time window, which offers better dynamic performance of the control scheme. Moreover, the estimation model jumps over the traditional differentiation problem in robotics, and only needs the joint force/torque and position information. In the 2-DOF (degrees of freedom) planar robot simulation test, the estimation window is reduced to 0.1 second in presence of noise.

Finally, the thesis is completed with some conclusion and perspectives.

Chapter1

Overview of the robot identification problem

Accurate dynamic models of robots are required in most advanced control schemes formulated in recent literature (Khatib, 1987;[START_REF] Piltan | PUMA-560 Robot Manipulator Position Computed Torque Control Methods Using MATLAB/SIMULINK and Their Integration into Graduate Nonlinear Control and MATLAB Courses[END_REF][START_REF] Slotine | On the adaptive control of robot manipulators[END_REF]. The precision, performance, stability and robustness of these schemes depend on, to a large extent, the accuracy of the dynamic parameters. Adaptive and robust control scheme can tolerate some error in the dynamic parameters, while other schemes designed to achieve perfect feedback linearization, such as computed torque control, assuming precise knowledge of the dynamic parameters. In this sense, the precise determination of the dynamic parameters is useful to most schemes and is crucial to some others. Furthermore, the dynamic parameters are necessary to simulate the robot dynamics.

However, accurate values of the dynamic parameters are typically unknown, even to the robot manufactures, and the measurement for some of them are practically not accessible. Thus, the indirect identification approaches are considered through the analysis of the 'input/output' behavior of the robot following some planned motion and on estimating the parameters value by minimizing the difference between a function of the real robot variables and its mathematical model. The identification problem turns out to be an optimization question which searches for the correct robot model with proper dynamic parameters.

The following parts present the principle of identification procedures and the related various techniques. According to the inputs that the identification model needs, there exists three robot identification models:

• robot dynamic model (Canudas de [START_REF] Canudas De Wit | Robot parameter identification via sequential hybrid estimation algorithm[END_REF][START_REF] Gautier | Identification of robots dynamics[END_REF][START_REF] Gautier | DIDIM: A new method for the dynamic identification of robots from only torque data[END_REF]Gautier et al., , 2013;;Gautier and Khalil, 1990;Gautier, Khalil, and Re-19 strepo, 1995;[START_REF] Gautier | Dynamic identification of a 6 dof robot without joint position data[END_REF][START_REF] Hollerbach | Model Identification[END_REF][START_REF] Khalil | Modeling, identification and control of robots[END_REF]Khosla et al., 1985;[START_REF] Khalil | OpenSYMORO: An open-source software package for Symbolic Modelling of Robots[END_REF];

• robot energy model (Gautier, 1996;[START_REF] Gautier | On the identification of the inertial parameters of robots[END_REF];

• robot power model (Gautier, 1997).

The robot dynamic model is the most widely implemented identification model. It establishes the dynamic equations at individual point along the trajectory. The advantages of this model include that it is easy to create the dynamic equations and it has a good excitation in the identification regression matrix, which means the regression always has a solution. By contrast, the dynamic model contains the acceleration variables, which are usually inaccurate computation using the position measurement. While the robot energy model and power model avoid using the acceleration data. Instead, the energy model applies an integral operation on the robot power equation and the power model make use of the differential equation of the energy part. In the following, we will present these identification process. Note that for the rest part of the thesis, we denote the bold mathematical symbols for the vectors or matrix.

Inverse dynamic identification model with LS

Inverse dynamic identification model with LS method, also named IDIM-LS, is the most applied identification model for robot identification. In order to construct it, first we need to deduce the inverse dynamic model. The dynamics of a rigid robot composed of n moving links calculates the motor torque vector Γ m as a function of the state variables and their derivatives. It can be deduced from the following Lagrangian formulation:

Γ m = d dt ( ∂L ∂ q) - ∂L ∂q + Γ f , (1.1)
where q, q are the (n × 1) vectors of generalized joint positions and velocities, L is the Lagrangian of the system defined as the difference between the kinetic energy E(q, q) and the potential energy U (q). E = 1 2 qT M(q) q, where M(q) is the (n × n) robot inertia matrix. Γ f is the friction torque which is usually modelled at non zero velocity as Γ f j = F sj sign( qj ) + F vj qj + Γ of f j , where qj is the velocity of joint j, sign(x) denotes the sign function. F vj , F sj are the viscous and Coulomb friction coefficients of joint j, Γ of f j is an offset parameter which is the dis-symmetry of the Coulomb friction with respect to the sign of the velocity and is due to the current amplifier offset which supplies the motor (Gautier et al., 2013).

Develop Eq. (1.1) by replacing L with E -U , and it becomes the inverse dynamic model:

Γ m = M(q) q + C(q, q) q + Q(q) + Γ f , (1.2)
where q is the n × 1 vector of joint acceleration, M(q) is the n × n symmetric and positive definite inertia matrix, C(q, q) q is the n × 1 vector of Coriolis and centrifugal torques, Q(q) is the n × 1 vector of gravity torques.

The inverse dynamic model is linear with respect to a set of standard dynamic parameters X s , because E, U and Γ f are linear with respect to the dynamic parameters (Gautier, 1990). Thus, the model (1.2) can be rewritten as:

Γ m = D s (q, q, q)X s = N s ∑ i=1 D si X si , (1.3)
where N s is the total number of the dynamic standard parameters, D s is a n×N s matrix, and D si is the i th column of D s , X si is the i th element of X s . X s is the vector of standard dynamic parameters:

X s = [ X 1 s T X 2 s T • • • X n s T ] , with X j s T
is the dynamic parameters of joint and link j:

X j s = [XX j XY j XZ j Y Y j Y Z j ZZ j MX j MY j MZ j M j IA j F vj F sj Γ of f j ] T ,
where XX j XY j XZ j Y Y j Y Z j ZZ j are the six components of the inertia matrix of link j; MX j MY j MZ j are the three components of the first moments; M j is the mass of link j, IA j is the total inertia moment for rotor actuator and gears of actuator j; F vj , F sj , Γ of f j are the viscous, Coulomb and offset friction parameters of joint j.

According to (Gautier and Khalil, 1990;[START_REF] Mayeda | Base parameters of manipulator dynamic models[END_REF], the set of standard dynamic parameters can be simplified into a set of base inertial parameters, which are the minimum parameters that can be used to describe the robot dynamics. These base parameters are obtained from the standard inertial dynamic parameters by eliminating those that have no effect on the dynamic model and by regrouping those in linear relations. In (Gautier, 1991), symbolic and numerical solutions are presented for any open or closed chain robot ma-nipulator to get a minimal dynamic model:

Γ m = D(q, q, q)X, (1.4)
where X is the N b × 1 vector of base parameters.

1.1.1 Case study: the 2R scara planar prototype robot of IRC-

CyN

To illustrate the construction of robot dynamic model, here we present a two joint scara planar robot, called 2R robot for short. As shown in Fig. 1.1, the robot geometry is described in table (1.1) using the modified Denavit and Hartenberg notation (DHM) method, with

• j denotes the j th joint,

• σ j denotes the type of joint, 0 for revolute joint, 1 for prismatic joint,

• α j is the angle between z j-1 and z j about x j-1 ,

• d j is the distance between z j-1 and z j along x j-1 ,

• θ j is the angle between x j-1 and x j about z j ,

• r j is the distance between x j-1 and x j along z j ,

• q 1 and q 2 are joint position for joint 1 and joint 2 respectively,

• L is the length of the first robot link, L 2 is the length of the second robot link. Notice the special geometric configuration and apply the regrouping rule (Gautier, 1990) on the 2R robot, and it can be concluded as: 

j σ α d θ r 0 0 0 0 q 1 0 1 0 0 L q 2 0
XX j XY j XZ j Y Y j Y Z j ZZ j MX j MY j MZ j M j IA j Table 1.2 -Standard inertia parameters of 2R scara planar robot
• joint 1 and joint 2 are direct drive so that the link 1 and 2 are attached to the rotors of motor 1 and 2. Then, the inertia moment ZZ 1 and ZZ 2 are the inertia moment of links plus the inertia moment of rotors IA 1 and IA 2 respectively, so that in the following IA j = 0;

• joint 2 is revolute: Y Y 2 , MZ 2 , M 2 can be regrouped with other dynamic parameters of link 2 and 1;

• the axe of joint 2 is parallel to that of joint 1 : XX 2 , XY 2 , XZ 2 , Y Z 2 can be eliminated;

• joint 1 is revolute, and the axe is along the gravity direction: only the inertia parameter ZZ 1 is considered;

• for joint 1, ZZ 1 is grouped with M 2 using the following relation

ZZ 1R = ZZ 1 + M 2 L 2 .
It is shown in table 1.3 that there exist five base inertia parameters for 2R scara planar robot.

j XX j XY j XZ j Y Y j Y Z j ZZ j MX j MY j MZ j M j IA j 1 0 0 0 0 0 ZZ 1R 0 0 0 0 0 2 0 0 0 0 0 ZZ 2 MX 2 MY 2 0 0 0 Table 1.3 -Base parameters of 2R direct drive scara planar robot
In order to compute the Lagrangian formulation, we need to calculate the kinetic energy E(q, q) and the potential energy U (q). Because the robot is moving in a horizontal plan, the potential energy keeps constant, which means the n × 1 vector of gravity torques Q(q) is null. The kinetic energy calculates from the following relation

E = 1 2 ZZ 2 ( q1 + q2 ) 2 + 1 2 ZZ 1R q2
1 +LMX 2 q1 cos(q 2 )( q1 + q2 ) -LMY 2 q1 sin(q 2 )( q1 + q2 ).

(1.5)

The symmetric (2 × 2) inertia matrix M(q) can be deduced from the kinetic energy E = 1 2 qT M(q) q.

(1.6)

From equation 1.5 and 1.6 we can calculate

M(1, 1) = ZZ 1R + ZZ 2 + 2LMX 2 cos(q 2 ) -2LMY 2 sin(q 2 ), M(1, 2) = ZZ 2 + LMX 2 cos(q 2 ) -LMY 2 sin(q 2 ), M(2, 1) = M(1, 2), M(2, 2) = ZZ 2 .
(1.7)

The n×n matrix of Coriolis and centrifugal torques C(q, q) comes from M(q) and E, which is given as

C(i, j) = n ∑ k=1 c i,jk qk , c i,jk = 1 2 [ ∂M(i, j) ∂q k + ∂M(i, k) ∂q j - ∂M(j, k) ∂q i ] .
(1.8)

After calculation, we have the explicit form

C(1, 1) = -q2 (LMY 2 cos(q 2 ) + LMX 2 sin(q 2 )), C(1, 2) = -( q1 + q2 )(LMY 2 cos(q 2 ) + LMX 2 sin(q 2 )), C(2, 1) = q1 (LMY 2 cos(q 2 ) + LMX 2 sin(q 2 ))
C(2, 2) = 0.

(1.9)

For friction, because it has two links, the friction torque can be given as

Γ f (1) = F v1 q1 + F s1 sign( q1 ) + Γ of f 1 , Γ f (2) = F v2 q2 + F s2 sign( q2 ) + Γ of f 2 . (1.10)
In all, we have the explicit expression of M(q), C(q, q), Q(q) and Γ f , which are all elements of the robot dynamic model. Moreover, because the link length L is unknown and it appears together with MX 2 and MY 2 , thus we can group it into LMX 2 and LMY 2 , where LMX 2 = L × MX 2 , LMY 2 = L × MY 2 . Finally, the base dynamic parameters of the 2R scara planar robot can be presented as

X 2R = [ZZ 1R , ZZ 2 , LMX 2 , LMY 2 , F v1 , F s1 , Γ of f 1 , F v2 , F s2 , Γ of f 2 ],
(1.11)

Corresponding to the mathematical model, the experimental works are carried out a two joints planar direct drive prototype robot manufactured in the laboratory (IRCCyN) [START_REF] Presse | Identification des paramètres dynamiques des robots[END_REF] The robot is directly driven by two DC permanent magnet motors supplied by PWM choppers. Recall the base dynamic parameters (1.11) of the 2R scara planar robot model, while in the prototype case we assume (the effect of friction offset parameter Γ of f are negligible) the dynamic model depends on eight minimal dynamic parameters, including four friction parameters:

X = [ZZ 1R , ZZ 2 , LMX 2 , LMY 2 , F v1 , F s1 , F v2 , F s2 ],
(1.12)

with

ZZ 1R = ZZ 1 + M 2 L 2 .
The robot motion is driven by a PD controller with a reference of a successive point to point trajectories using the 5 th order polynomial trajectory generator. The joint position q and torque Γ m are collected at a 100 Hz sampling rate, where each torque Γ m is calculated as

Γ mj = G T j V T j ,
with G T j the drive chain gain which is considered as a constant in the frequency range of the robot dynamics. This trajectory has been calculated in order to obtain a good condition number (see in 1.1.4) of the observation matrix (Cond(W ) = 290).

IDIM-LS

The inverse dynamic identification model is based on the measured or estimated data of Γ m , q, q, q, which are collected during robot tracking of reference trajectories.

The principle is to establish the identification model (1.4) at a sufficient number of samples t i , with i = 1, . . . , n s , satisfying n × n s ≫ N b , in order to get an over-determined linear system of n × n s equations:

Y = W(q, q, q)X + ρ, (1.13)
where ρ is a noise, Y and W are the vector of torques and the observation matrix, respectively, which are defined as follows:

Y =             Γ m (1) . . . Γ m (n s )             , W =             D(1) . . . D(n s )             . (1.14)
Take the 2R scara planar prototype robot referred in (1.1.1) for example, at each sampling instant, we build the dynamic equivalence equation: (1.15) where

Γ m = D(q, q, q)X,
Γ m =       Γ m1 Γ m2     
 , and Γ m1 , Γ m2 are joint torques respectively, D(q, q, q) is a n × N b observation matrix, which has the following expression 2, 3) = q1 cos(q 2 ) + q1 q1 sin(q 2 ), D(2, 4) = -q1 sin(q 2 ) + q1 q1 cos(q 2 ),

D(1, 1) = q1 , D(1, 2) = q1 + q2 , D(1, 3) = (2 q1 + q2 ) cos(q 2 ) -q2 ( q2 + 2 q1 ) sin(q 2 ), D(1, 4) = -(2 q1 + q2 ) sin(q 2 ) -q2 ( q2 + 2 q1 ) cos(q 2 ), D(1, 5) = q1 , D(1, 6) = sign( q1 ), D(1, 7) = 0, D(1, 8) = 0, D(2, 1) = 0, D(2, 2) = q1 + q2 , D(
D(2, 5) = 0, D(2, 6) = 0, D(2, 7) = q2 , D(2, 8) = sign( q2 ).
(1.16)

(1.17)

Identifiability of the dynamic parameters

The dynamic parameters are divided into three groups: fully identifiable, identifiable in linear combinations and completely unidentifiable. Consequently, the observation matrix W corresponding to this set of dynamic parameters could be rank deficient, with the fact that some columns of W are linearly dependent with respect to whatever q, q, q. In order to obtain a unique solution, a set of independent identifiable parameters, called base dynamic parameters or minimum dynamic parameters, need to be determined. The selection of base or minimum dynamic parameters will regroup those are linearly dependent and will eliminate those who have no effect on the dynamic model.

In [START_REF] Khalil | Modeling, identification and control of robots[END_REF], the authors present both the symbolic methods and numerical methods to determine the base dynamic parameters. Furthermore, a robotic software named SYMORO+ developed by laboratory IRC-CyN is proposed to resolve base dynamic parameters, and it has been opensource since 2014 [START_REF] Khalil | OpenSYMORO: An open-source software package for Symbolic Modelling of Robots[END_REF] 1 . Actually, the determination of the base dynamic parameters is a prerequisite for identification procedure. It should be noted that the grouped values can be directly computed from the identification model, and reconstruct the robot dynamics with these grouped parameters. 

Excitation of the trajectory

The trajectory used in the identification should be carefully selected, in order to improve the least-squares estimation performance, such as convergence rate and the noise immunity. Some techniques are applied to choose the optimal trajectory, namely persistently exciting trajectory.

Persistently excitation condition (PE condition) A function ω : R + → R n is persistently excitating if there exist T , δ 1 ,δ 2 > 0 such that (1.18) holds for all t ≥ 0, where I n is the identity matrix of order n. This criterion can be applied to verify if the trajectory is well excited. As stated in [START_REF] Antonelli | A systematic procedure for the identification of dynamic parameters of robot manipulators[END_REF]Gautier and Khalil, 1992), two schemes are usually used:

δ 1 I n ≤ ∫ t+T t ω(τ) T ω(τ)dτ ≤ δ 2 I n ,
• calculation of a trajectory satisfying some optimization criteria [START_REF] Gautier | Extended Kalman filtering and weighted least squares dynamic identification of robot[END_REF]Gautier and Khalil, 1992;[START_REF] Presse | New criteria of exciting trajectories for robot identification[END_REF][START_REF] Swevers | Optimal robot excitation and identification[END_REF][START_REF] Swevers | Dynamic model identification for industrial robots[END_REF];

• utilization of the sequential sets of special motions, where each motion will excite certain dynamic parameters. As certain parameters are already identified with respect to the global problem, the exciting trajectory is easier to find.

Physically, finding this constraint is equivalent to finding an optimal trajectory that can excite most the identified parameters. Several criteria have been proposed in literature [START_REF] Presse | New criteria of exciting trajectories for robot identification[END_REF][START_REF] Siciliano | Springer handbook of robotics[END_REF]. For example, here we minimize the condition number and maximizing the smallest singular value of the observation matrix W as in [START_REF] Antonelli | A systematic procedure for the identification of dynamic parameters of robot manipulators[END_REF]. Since the optimum trajectory will be executed on the manipulator, parameterizing the optimal trajectory is also an important step. Two most common types are the quintic polynomial trajectory [START_REF] Antonelli | A systematic procedure for the identification of dynamic parameters of robot manipulators[END_REF] and periodic trajectory [START_REF] Swevers | Dynamic model identification for industrial robots[END_REF]. The former is suitable for most of industrial manipulators which only accepts simple velocity command while the later targets the open-architecture controller which allows user to program an arbitrary trajectory. Here we consider the periodic trajectory as formulated in equation 1.19, which can be parameterized as a sum of finite Fourier series:

q i (t) = q i0 + N ∑ j=1 [a ij sin(jω f t) -b ij cos(jω f t)], (1.19) qi (t) = N ∑ j=1 [a ij jω f cos(jω f t) + b ij jω f sin(jω f t)], (1.20) qi (t) = N ∑ j=1 [-a ij (jω f ) 2 sin(jω f t) + b ij (jω f ) 2 cos(jω f t)],
(1.21)

where i denotes the i th robot joint, ω f is the fundamental frequency of the excitation trajectory and should not excite the un-modelled dynamics of the manipulator. Then, the problem of finding the optimal trajectory becomes determining the coefficients q i0 , a ij , b ij which minimize the following cost function [START_REF] Presse | New criteria of exciting trajectories for robot identification[END_REF]:

f (q i (t)) = λ 1 cond(W) + λ 2 1 σ min (W) , (1.22)
where the scalar λ 1 and λ 2 represent the relative weights between the condition number of the observation matrix cond(W) and inverse of the minimum singular value 1 σ min (W) . Note that the condition number of the observation matrix2 is defined as

cond(W) = σ max (W) σ min (W) . (1.23)
The condition number measures how change in input is propagated to change in output. It has the following relation

∥∆X∥ ∥X∥ ≤ con(W) ∥∆W∥ ∥W∥ .
(1.24)

1.1.5 Data processing for the inverse dynamic identification model

In real application, the measurements or estimations of Γ m , q, q, q are corrupted with noise. Thus, the matrices Y and W are perturbed and the LS solution leads to a bias estimation. Because the matrix W(q, q, q) are highly non linear, it is not possible to get the analytical expression of the bias and the variance. To tackle this problem, two filtering processes should be applied:

• data filtering to decrease noise effect,

• closed loop identification for the tracking the persistently excited trajectories.

(q, q, q) must be pre-filtered by a low-pass filter F q (s), with s the derivative operator in order to eliminate high frequency noise. Usually, q, q are processed using the product sF q and s 2 F q on the position respectively. In practice, this process can be carried out using a central difference algorithm to obtain the time derivative. The optimal filter F q (s) should have a flat amplitude response without phase shift in the range [0 ω c ], where the cutoff frequency ω c > (10 × ω dyn ), with ω dyn is the bandwidth of the joint position closed loop (Gautier, 1997). Meanwhile, the torque Γ m is perturbed by high frequency torque ripple from joint drive chain in the closed loop control. Hence, it has to be filtered. Then, Γ m and D(q f q , qf q , qf q ) are both filtered and down-sampled through a decimate filter composed of a low-pass filter F p (s), where its cutoff frequency ω f p is approximated by 5 × ω dyn . The decimate rate n d can be calculated with

n d = ω c
2ω f p for a FIR filter and n d = 0.8 × ω c 2ω f p for an IIR filter, where ω c is the control rate.

Then, the new filtered linear system is obtained:

Y fp = W fp (q fq , qfq , qfq )X + ρ fp . (1.25)
Finally, we solve the LS problem via:

X = W + fp (q fq , qfq , qfq )Y fp .
(1.26)

Resolution of the inverse dynamic identification model

The identification handbooks provide a large variety of deterministic and stochastic methods to estimate X from the previous system of equations. Most of the schemes solves X by the maximum likelihood approach [START_REF] Ogata | Maximum likelihood identification of a dynamic robot model: Implementation issues[END_REF][START_REF] Swevers | Optimal robot excitation and identification[END_REF] or the least squares (LS) methods. To our knowledge, good experimental results have been obtained by ordinary LS methods, such as those based on the SVD (singular value decomposition) or QR decomposition.

The LS methods minimize the Euclidean length of the residual vector X = min ∥WX -Y∥, which obtains the optimal solution X = W + Y, where

W + = (W T W + ) -1 W T is the pseudo-inverse matrix of W. If W is of full rank, the
LS solution X is unique. The rank deficiency of W can come from two aspects:

• structural rank deficiency which is solved by considering the minimal set of parameters;

• data rank deficiency due to a bad choice of noisy samples (q, q), which needs to satisfy the persistently excitation condition by a good planning of trajectories [START_REF] Presse | New criteria of exciting trajectories for robot identification[END_REF].

It should be noted that the LS estimation is biased because the observation matrix W is random, and because W and ρ are realization of random and correlated variables. Furthermore, the elements of the matrix W are nonlinear functions in q, q and q, which leads one to assume some statistical properties of the noise in order to evaluate the quality of the estimation process (bias and standard deviation). In the following, we give some variables to verify the accuracy of the values obtained using appropriate validation procedures.

Standard deviations σ Xi are estimated using classical and simple results from statistics, assuming the matrix W to be a deterministic one, and ρ is assumed to be a vector of unobserved zero mean independent identically distributed (iid) biases, with a standard deviation σ ρ such that C ρρ = E(ρ T ρ) = σ 2 ρ I r , where E is the expectation operator. The variance-covariance matrix of the estimation error and standard deviations can be calculated by ( [START_REF] Larminat | Automatique des systèmes linéaires : Tome 2: identification[END_REF]:

C X X = E[(X -X)(X -X) T ] = σ 2 ρ (W T W) -1 , where σ Xi = √ C X Xii is the diagonal coefficient of C X X.
This interpretation has been proposed by Raucent [START_REF] Raucent | Identification des paramètres dynamiques des robots manipulateurs[END_REF]), but we should be careful with the results obtained because the corresponding assumptions are not verified.

An unbiased estimation of σ ρ is used to get the relative standard deviation σ Xri by the expression:

σ2 ρ = ||Y -W X|| 2 r -c , %σ Xri = 100 × σ Xi Xi ,
where r is the total number of equations and c is the number of unknown parameters.

The relative standard deviation can be used as a criterion to measure the quality of the identification value for each parameters. For example, if the relative standard deviation of a parameters is greater than ten times the minimum relative standard deviation value, this parameter can be regarded as poorly identified.

Numerical tools and evaluation

The solution to the LS problem Y = WX + ρ mainly depends on the quality of the observation matrix W, the rank and condition number.

The condition number of the observation matrix is an effective tool to give a good prediction of the observability of the parameters [START_REF] Driels | Significance of observation strategy on the design of robot calibration experiments[END_REF]. The optimal identification configuration provide a a condition number of the observation matrix close to 1. As a results, the condition number can be regarded as a criterion to optimize the reference trajectory in order to well excite the observability.

For decomposition of the observation matrix, there exist two methods associated with the LS techniques:

• Singular Value Decomposition (SVD) [START_REF] Maciejewski | The singular value decomposition: Computation and applications to robotics[END_REF],

• QR decomposition [START_REF] Golub | Matrix computations[END_REF]. This two methods work well and can deal with rank deficient case.

Meanwhile, with different LS techniques, we can obtain different optimal solutions. In this work, we mainly focus on the three approaches:

• Ordinary LS (OLS),

• Weighted LS (WLS),

• Iterative LS (ILS) [START_REF] Fong | LSMR: An iterative algorithm for sparse least-squares problems[END_REF][START_REF] Paige | LSQR: An algorithm for sparse linear equations and sparse least squares[END_REF].

The OLS technique is the most widely applied one, which is the optimal linear unbiased estimator when the errors are of homogeneous variance and uncorrelated. The WLS technique is an improvement of the OLS, which by adding weight coefficients to different region, it has focusing accuracy at reliable region and discount the imprecision at the unreliable region. The ILS is a technique more reliable when the observation matrix is ill-conditioned. The numerical techniques discussed above will be presented in appendix.

Energy model identification

The dynamic model identification is obligatory to access the joint acceleration data, whose estimation value usually has relatively larger error compared to the estimation of joint position and velocity. In order to avoid this, the energy model is proposed first in (Gautier, 1990), which states that the total mechanical energy applied to the robot is equal to the sum of penitential and kinetic energy contained in the system. This model has several advantages:

• the dynamic parameters are linear with respect to the model, and the corresponding base dynamic parameters are the same as those of the dynamic model;

• the computation of the observation matrix is easier than dynamic model;

• the optimization for the exciting trajectory is easier than for the dynamic model.

Denote the total energy of the system also termed Hamiltonian by H = E(q, q) + U (q). According to the energy theory, we have the following relation:

dH = (Γ m -Γ f ) T qdt.
(1.27)

The energy version comes from the integration of 1.27

∫ t b t a (Γ m -Γ f ) T qdt = H(t b ) -H(t a ) = ∆H, (1.28)
where t a , t b are time instants. Furthermore, the energy item H can be reformulated as:

H = [h 1 . . . h n ]             K 1 . . . K n             = hK, (1.29) 
where K j is the vector of the base parameters of link j, and h j is the vector of energy functions.

Meanwhile, the friction torque Γ f is linear in friction parameters. Hence, the energy equation is linear in the dynamic parameters and it yields the energy identification model:

∫ t b t a Γ m T qdt = [∆h ∆f v ∆f s ∆γ off ]                  K F v F s Γ off                  , (1.30) with ∆h = h(t b ) -h(t a ), ∆f vj = ∫ t b t a qj 2 dt, ∆f sj = ∫ t b t a qj sign( qj )dt, ∆γ of f j = ∫ t b t a qj dt, ∆f v = [∆f v1 . . . ∆f vn ], ∆f s = [∆f s1 . . . ∆f sn ], ∆γ of f = [∆γ of f 1 . . . ∆γ of f n ].
Collecting the corresponding (Γ m , q, q) at a sufficient number of intervals [t a(i) , t b(i) ], we obtain a linear overdetermined system of r equations with respect to the base dynamic parameters. Similar to the dynamic model, the energy identification model writes as: (1.31) where

Y e (Γ m , q) = W e (q, q)X + ρ e ,
Y e =             y e (1) . . . y e (r)             , W e =             ∆h(1) ∆f v (1) ∆f s (1) ∆γ off (1) . . . . . . . . . . . . ∆h(r) ∆f v (r) ∆f s (r) ∆γ off (r)             , ∆h(i) = h[(q, q) b (i) ] -h[(q, q) a (i) ], y(i) = ∫ t b(i) t a(i) Γ m T qdt, (q, q) a (i) = [q(t a(i) ), q(t a(i) )], (q, q) b (i) = [q(t b(i) ), q(t b(i) )].
From the 1.31, the identification for X is a least squares problem.

It should be noticed that this formulation needs a lower resampling of the energy function h at times t a (i), t b (i). More precisely the function h calculated at the acquisition rate ω c (or control rate) must be low-pass filtered with F p (s) in order to avoid aliasing. So it is easier and natural to define the sampling times t a (i) and t b (i) from the decimate procedure with the ratio n d , which results in choosing t a (i) and t b (i) with a constant value t b (i)t a (i) = n d * 2π/ω c . And the parallel decimate procedure F p (s) is applied on the energy model (Gautier, 1996(Gautier, , 1997)).

To illustrate the procedure, we construct the energy model on the 2R scara planar robot. Recall the kinetic energy E(q, q) in equation 1.5, since the potential energy U (q) is constant in this case, the Hamiltonian energy equals to kinetic energy

H = 1 2 ZZ 2 ( q1 + q2 ) 2 + 1 2 ZZ 1R q2 1 +LMX 2 q1 cos(q 2 )( q1 + q2 )-LMY 2 q1 sin(q 2 )( q1 + q2 ).
(1.32) With the same base parameters X 2R , it is easy to specify the energy identification model 1.31 with

W e (i, 1) = 1 2 q2 1 | t b (i) t a (i) , W e (i, 2) = 1 2 ( q1 + q2 ) 2 | t b (i) ta (i) , W e (i, 3) = cos(q 2 ) q1 ( q1 + q2 ) | t b (i) t a (i) , W e (i, 4) = -sin(q 2 ) q1 ( q1 + q2 ) | t b (i) t a (i) , 1.3. Power model identification W e (i, 5) = ∫ t b (i) t a (i) q1 2 dt, W e (i, 6) = ∫ t b (i) t a (i) q1 sign( q1 )dt, W e (i, 7) = ∫ t b (i) t a (i) q2 2 dt, W e (i, 8) = ∫ t b (i) t a (i) q2 sign( q2 )dt, Y e (i) = ∫ t b (i) t a (i) (Γ m1 q1 + Γ m2 q2 )dt.

Power model identification

The robot power model also does not consider the joint acceleration data. Compared to robot energy model, it is more robust with respect to low-frequency noise. As shown in energy model, the integration appeared in equation 1.30 is actually infinite-gain filter at zero frequency. This causes an offset due to the small low-frequency errors, which can produce a large error. Instead, the power model use the differential equation form in order to overcome this problem. The power of the system at instant t writes as:

qT Γ m = d dt (H) + qT [diag( q)F v + diag(sign( q)F s + Γ off ].
(1.33)

Since H = hK, the power model estimates the dynamic parameters

X = [K, F v , F s , Γ off ] in a linear equation: Y p (Γ m , q) = W p (q, q)X + ρ p , (1.34)
where

Y p =             y p (1) . . . y p (r)             , W p =             d dt (h(1)) W 2p (1) W 3p (1) W 4p (1) . . . . . . . . . . . . d dt (h(r)) W 2p (r) W 3p (r) W 4p (r)             , y p (i) qT (i)Γ m (i), W 2p (i) = qT (i)diag( q(i)), W 3p (i) = qT (i)diag(sign( q(i))), W 4p (i) = qT (i).
As we did for the filtered dynamic model, we process the columns Y, X 2p , X 3p and X 4p using a low-pass filter F p (s), while the columns of h are filtered by sF p (s). In practice, this process can be carried out using a central difference algorithm to obtain the time derivative of h, then, by using a decimation process F p (s) to filter all the model. Sufficient numbers of sampling data are needed in order to obtain a linear overdetermined system of r equations with respect to the base dynamic parameters. More precisely, with a 2R scara planar robot, we have

W p (i, 1) = d dt ( 1 2 q2 1 (i)), W p (i, 2) = d dt ( 1 2 ( q1 (i) + q2 (i)) 2 ), W p (i, 3) = d dt (cos(q 2 ) q1 (i)( q1 (i) + q2 (i))), W p (i, 4) = d dt (-sin(q 2 (i)) q1 (i)( q1 (i) + q2 (i))), W p (i, 5) = q1 (i) 2 , W p (i, 6) = q1 (i)sign( q1 (i)), W p (i, 7) = q2 2 (i), W p (i, 8) = q2 (i)sign( q2 (i)), Y p (i) = Γ m1 (i) q1 (i) + Γ m2 (i) q2 (i).
1.4 Closed-loop output error identification (CLOE)

In (Gautier et al., 2013), the authors propose a new approach called DIDIM (Direct and Inverse Dynamic Identification Models technique), which requires only the joint force/torque measurement. It is a closed-loop output error method where the usual joint position output in CLOE method is replaced by the joint force/torque. It is based on a closed-loop simulation of the robot using the direct dynamic model, the same structure of the control law, and the same reference trajectory for both the actual and the simulated robot. And the optimization is to minimize the 2-norm of the error between the actual force/torque and the simulated force/torque.

The identification scheme is illustrated in Fig.

(1.4). Tracking the reference trajectory (q , qr , qr ), the actual closed loop of robot produces the force/torque τ. The simulated closed loop robot implements the same control law to get the output force/torque τ ddm , with joint position feedback q ddm computed from the direct dynamic model. Finally, the output error are minimized by optimizing the model dynamic parameters. This is a nonlinear least-squares problem which is dramatically simplified using the inverse dynamic model to obtain an analytical expression of the simulated force/torque. Compared to the inverse dynamic identification model (IDIM) procedure, first of all, DIDIM has the advantage that it is still robust with respect to low sampling rate measurement. And DIDIM does not need well tuned band-pass filtering to calculate the velocity and acceleration. While IDIM will behave poor because of the amplitude distortion in the estimation of q, q, with a central difference of q which is sampled at too low frequency. 

Payload Identification

When a payload is fixed on the terminal link of the robot, the robot dynamics is actual a combination of the payload dynamics and robot dynamics without charge. In order to identify the payload dynamics, there exist four approaches based on robot dynamic model, which are specified in [START_REF] Khalil | Identification of the payload inertial parameters of industrial manipulators[END_REF]:

• identify the payload with dynamic parameters estimated without payload;

• identify globally both the robot parameters and the payload;

• compare the difference of dynamic parameters of robot identified without and with payload;

• use the difference between the joint torques before and after loading the robot on the same trajectory.

To have a conception on payload identification, we explain the first method mentioned above. Assume that X is already identified when the robot is without payload. By developing the dynamic model of the robot with payload, the identification model becomes as:

Y T = W E (q, q, q)X + W L (q, q, q)X L + ρ, (1.35)
where Y T : vector of force/torque when robot is with payload, W E : the observation matrix of robot dynamic parameters without payload, X : the base dynamic parameters of the robot without payload, X L : the 10 × 1 vector of the inertial parameters of the payload, W L : the observation matrix corresponding to the load inertial parameters.

Thus, the load inertial parameters are estimated from (1.35) via:

XL = (W L ) + (Y T -WX).
(1.36)

Problems in robot identification

Previously, we present different identification models, where the regressors give the unique and accurate solution in presence of no disturbances. While in real applications, there always exist some errors in the sampling and filtering procedures. As known, a small noise in the measurement can induce large error in the derivatives, especially for high order derivatives. Thus, the joint velocity and acceleration can be inaccurately estimated if the noise component is not well filtered. Besides, the robot identification model are highly nonlinear with respect to the joint position, velocity and acceleration, so that the small error part can be amplified and cause large bias in the final results.

In order to obstacle this problem, intuitively we need to avoid using the derivatives containing large noise or provide the derivation with more precision. Starting from this point, in chapter 2 we will present the identification method based on power model and modulating functions, which allows the elimination of the joint acceleration term, the guaranty of the rank efficiency of the observation matrix and the low-pass filtering effect on the observation matrix; in chapter 3, we will emphasize the differentiation techniques and discuss the newly developed algebraic Jacobi differentiators, by analysing their frequency magnitude response.

Chapter 2

Robot identification using power model and modulating functions

In order to avoid using noisy computation of acceleration data, the energy model and power model are considered as approaches to describe the robot dynamics for identification purpose. However the energy model computes one scalar equation from a period of time, thus in some sense it will lose some diversity in information of the observation matrix and in consequence decrease the identifiability. The power model applies a derivative operation on the energy terms and in fact it still contains the second order derivation.

Inspired by algebraic method, modulating functions are combined with robot power model to replace the derivative operator in the power model by an integral. In [START_REF] Co | System identification using modulating functions and fast Fourier transforms[END_REF][START_REF] Daniel-Berhe | Bilinear continuous-time systems identification via Hartley-based modulating functions[END_REF][START_REF] Preisig | Theory and application of the modulating function methodI. Review and theory of the method and theory of the spline-type modulating functions[END_REF], authors also applied modulating functions in system identification. Integration with modulating functions can decrease the order of a differential system and is in nature a filtering process. These make this transformation interesting in several applications, in particular for parameter identification propose.

There are several advantages of modulating functions: first it avoids the computation of acceleration; then it replaces the derivative operation by an integration operation with modulating functions, which have a nature low-pass filtering; lastly by selecting different parametrization of modulating functions and choosing different integral intervals, the identifiability property can be recovered.

For years many authors have focused on the choice of different modulating functions types because they have different performances with respect to noise. They are looking for certain kind of modulating functions which is adapted in particular application. Several groups are listed here, such as sinusoid modu-lating functions, polynomial modulating functions, Hermite functions [START_REF] Jordan | A modulating-function method for online fault detection (machinery health monitoring)[END_REF], Fourier modulating functions [START_REF] Pearson | On the identification of polynomial input-output differential systems[END_REF], Hartley modulating functions [START_REF] Unbehauen | Identification of continuous-time systems: a tutorial[END_REF], [START_REF] Fedele | A recursive scheme for frequency estimation using the modulating functions method[END_REF] and spline-type functions [START_REF] Fedele | A power electrical signal tracking strategy based on the modulating functions method[END_REF].

In the following part, we will introduce the modulating functions and their applications on decreasing the order of differential equations. Furthermore, analysis on frequency magnitude response is done with respect to different groups of modulating functions, so that certain groups are chosen for the identification procedure. At the end, two robot identification applications are carried out with this type of identification model.

Modulating functions

Let l ∈ N * , T ∈ R * + , and g be a function satisfying the following properties:

(P 1 ) : g ∈ C l ([t a , t b ]); (P 2 ) : g (i) (t a ) = 0, f or i = 0, 1, ..., l -1; (P 3 ) : g (i) (t b ) = 0, f or i = 0, 1, ..., l -1, (2.1)
where C l ([t a , t b ]) refers to the set of functions being l-times continuously differentiable on [t a , t b ] with l ∈ N * . Then g is called l th order modulating function

on [t a , t b ].
Modulating functions transform a differential expression into a sequence of algebraic equations using noisy data signals. Their filtering property makes this method interesting in several real processes.

For example, assume that a relation has variable x (s) of differential order s, where x is the observe variable. We would like to use only the observed variable and have to change the relation involving x (s) "descending" its order of derivation. For this, we choose g a l th order modulating function on time interval [0, T ] where l ≥ s. Multiply g with x (s) and multi-integrate them on [0, T ]. By partial integration, the variable x (s) decreases its order to x and modulating function g increases its order to g (s) which is analytically known. s) x.

∫ T 0 gx (s) = - ∫ T 0 ġx (s-1) = • • • = (-1) s ∫ T 0 g (
(2.2)

Studies of modulating functions

From the above example, the modulating functions allows to transform a differential expression into a sequence of algebraic equations. Moreover, the modulating functions method annihilates the effects of initial conditions and allows the direct use of noisy data signals [START_REF] Co | Batch scheme recursive parameter estimation of continuous-time systems using the modulating functions method[END_REF]. From the filtering aspect modulating functions have low pass filtering property. These features make the modulating functions method desirable for use in several real processes.

Frequency Analysis

Frequency domain property of a modulating function can be analysed considering the integration operator as a filtering process. In [START_REF] Chen | Digital fractional order Savitzky-Golay differentiator[END_REF][START_REF] Collado | Analyse fréquentielle des dérivateurs algébriques[END_REF], the authors also analyze the differentiator frequency domain property. In real computation, the numerical convolution ∫ gx is actually a discrete operation with at sampling time interval T s, which calculates the sum of discrete points of a signal x associated with the modulating function g. In discrete version it writes as

∑ N i=1 g[i]x[i] with interval T s.
In this way the modulating functions can be discretized as a list of weighting coefficients. Moreover these weighting coefficients can be regarded as coefficients of a finite impulse response (FIR) filter with respect to a discrete system with sampling time T s. By studying the frequency domain behavior of the FIR filter, we can extend the results to integration effect with modulating functions. In the following part we look at several modulating functions and discuss their filtering property in order to give some clue in the choice for applications.

The proposed functions g ℓ (t) are K order modulating functions on interval [0, T ], with K the order desired to decrease. They satisfy the two-point boundary conditions, g (i) ℓ (0) = 0, and g

(i) ℓ (T ) = 0, when i = 0, 1, . . . , K -1.
(1) Sinusoid based modulating functions (SMF): the sinusoid function value reaches 0 per half period, according to this property, propose g ℓ (t) = sin ℓ ( π T t), with ℓ ∈ R.

(2) Jacobi modulating functions (JMF): this group of functions are a combination of Jacobi polynomials which equal to 0 at each end of interval. Remember the order of each polynomial is larger than K -1 and propose g ℓ (t

) = t ℓ 1 (t -T ) ℓ 2 , with ℓ 1 , ℓ 2 ∈ R and ℓ 1 , ℓ 2 > K -1.
(3) Fourier modulating functions (FMF): as known complex exponential function e ix = cos x + i sin x is a periodic function which reaches 1 per period.

Based on this, the fourier modulating functions can be written as g ℓ (t) = e -iαℓ (e -i 2π T t -1) K , where α is a tuning parameter and ℓ ∈ R.

(4) Harley modulating functions (HMF): based on Shinbrot's method of moment functionals and Pearson Fourier modulating functions, this group of modulating functions are given:

g ℓ (t) = ∑ n j=0 (-1) j       n j       cas((n + ℓ -j)ω 0 t), where ℓ = 0, ±1, ±2, . . . is integer, ω 0 = 2π
T is the resolving frequency, cas(x) = cos x + sin x. The integration effect with modulating functions can be analysed via FIR filtering point of view. Suppose the system sampling time is T s and extract modulating function value g ℓ (i) every T s second as the coefficient of FIR filter. Then use bode plot to get the frequency contribution to magnitude of the modulating function. For example, take into account the second order derivatives of modulating functions, with system sampling time 1 millisecond, time window 0.1 second, and draw their bode plots.

From figure (2.1), the frequency-magnitude response shows that for the groups of JMF and SMF, the filtering property of modulating functions are similar as band-pass filter, because the high frequency component of the signal contributes in a attenuation way to output and frequency higher than 150 Hz is considered to be cut off, as well at low frequency there is attenuation. When noise occurs at high frequency part of the signal, computation of integration using these modulating functions is robust to noise. From another aspect, the discrete version of a definite integral is the product of integrators with time step on the time interval [t a , t b ]. Because the time step is of low frequency, the integral is also low-pass.

While for the groups of FMF and HMF, the band-pass area occurs at high frequency. It turns out that they enlarge the high frequency contribution to integration. Especially HMF can be regarded as a high pass FIR filter because it attenuates greatly the low frequency contribution to magnitude. This property makes these two groups of modulating functions not suitable in normal applications. In the next section, the estimation process considers only the groups of JMF and SMF modulating functions.

In conclusion, integration with modulating functions is an effective approach to decrease the order of input model. As well it has certain filtering property. Compared to filter techniques, it is causal and it has no phase shift because it calculates a scalar. The integration coefficients can be computed off-line so that it can be implemented easily and instantly for on-line applications. These advantages make modulating functions method interesting, but still it has drawback such as it has less excitation in the identifiability compared to the method treating each points of the interval as an independent equation, because the modulating function approach combines all into one scalar.

Configuration Choice

Integration with modulating functions is actually a band-pass filtering procedure. If the sampling time is fixed, the effect depends on two choices: the type of modulating functions and the integration time window.

We have discussed in the previous section, how are the inherent properties of different modulating functions. Indeed, they are all pass-band filter and their pass band locates in different area under same situation.

In other aspect, it should be noticed that if we enlarge the time window of integration, which means more sampling points, the band-pass area will be shifted to lower frequency, meanwhile the magnitude response will be increased. This can be easily understood as time window enlarges, the integration value increases.

From the above, we can make strategy how to tune the configuration for the purpose of filtering. Assume sampling time is already known, the first step is to fix the type of modulating functions to be used. If the cut-off frequency is low, we choose JMF and SMF. The second step is fix the integration time window, which need to be instructed by drawing and analysing the magnitude bode plot. The principle is that the pass band shift to lower frequency as integration time window increases.

An introducing example with one joint robot with gravity effect

Let us consider a simple one joint robot model with gravity torque and with current position q driven by a torque τ. Its classical dynamic model is given by: ZZ q + F v q + MXsin( q) = τ.

(2.3) Divide equation (2.3) by the constant ZZ, then we have the equation of a pendulum: q + α q + β sin(q) = γτ, (2.4)

with α = F v ZZ , β = MX ZZ , γ = 1 ZZ .
The purpose is to recover on-line the three dynamic parameters α, β, γ described in this model only by using the measured position and the known applied torque. The estimation is carried out with modulating-like functions. At time instant t, the estimation make use of the data from time interval [t -T , t], where T is the time window length. Consider a modulating-like function g

ℓ (v) = (v-t+T ) ℓ ℓ!
, which has the property that ġℓ (v) = g ℓ-1 (v) and g ℓ is null at time t -T . Multiply (2.4) by g ℓ (v) and perform an integration by part on interval [t -T , t], it leads to the following relation:

g ℓ (t) q(t) -g ℓ-1 (t)q(t) + α [ g ℓ (t)q(t) - ∫ t t-T g ℓ-1 (t)q(t)dt ] +β ∫ t t-T g ℓ (t) sin(q(t))dt -γ ∫ t t-T g ℓ (t)γ(t)dt = - ∫ t t-T g ℓ-2 (t)q(t)dt. (2.5)
Take X p = [ q(t)+αq(t), q(t), α, β, γ] T as unknown, thus it requires at least 5 equations to find them. And it can be noticed that this relation (2.5) is a scalar equation. Thus it need additional data to form multi-equations, which can be realized by replacing ℓ by a sequence of N p elements of ℓ i where ℓ i ∈ R and ℓ i ≥ 2. After setting a sequence of ℓ i the list of equations are expressed as:

A(t, q, τ)                       q(t) + αq(t) q(t) α β γ                       = B(t, q), (2.6)
where A(t, q, τ) is a N p × 5 observation matrix and the i-th line of A(t, q, τ) is given by

[ g ℓ i (t), -g ℓ i -1 (t), - ∫ t t-T g ℓ i -1 (t)q(t)dt, ∫ t t-T g ℓ i (t) sin(q(t))dt, - ∫ t t-T g ℓ i (t)γ(t)dt ] = A i (t, q, τ) (2.7)
and the i-th element of vector B(t, q) is given by B

i (t, q) = - ∫ t t-T g ℓ i -2 (t)q(t)dt.
This forms the general over-determined linear system AX p = B, which can be resolved by least square approaches. Tests are done in simulation, the measured signal q(t i ) is simulated as a composition of an additive white Gaussian noise ω(t i ) and the current trajectory q(t i ). The noise level is described as uniform distributed noise of signal to noise ratio 30 dB (SNR, i.e. SNR = 10 log 10 ( (b) Estimated q in 18 seconds Figure 2.2 -Estimation when q is of SNR= 30dB, with ℓ = 2+ i 100 , i = 1, 2, ..., 1800 and T=4s 0.0572 and 0.05333. Meanwhile the observed pendulum velocity fits quit well the reference one. The advantages of this method include: all estimations come from only the position and torque data, as well the state velocity is observed; the estimation is carried out without pre-filtering of the noisy position nor torque data. This is because that integration associated this special kind of modulatinglike functions has a nature effect of filtering property, which makes the implementation simpler.

∑ | q(t i )| ∑ |ω(t i )| )). Take ℓ = 2 + i 100 , i = 1, 2, ...,
In conclusion, for pendulum case we utilize the measured angle position from a certain time window to estimate not only the dynamic parameters, but also the angle velocity and filtered joint position at time t. The estimation gives good result with a time window of 4 seconds. With a large sequence of ℓ, the estimator forms an over-determined observation matrix and can be solved by least square techniques. Meanwhile results show that this estimator is robust with respect to noise. But the drawback of this method lies on the fact that the estimation is out of precision before it acquires enough sampling data.

An introducing example with one joint robot without gravity effect

Consider a simple one revolute joint robot described by:

ZZ q + F v q + F c sign( q) = τ, (2.8)
where ZZ (kg • m 2 ) is the inertial parameter, F v (N/(m/s)) and F c (N) are the viscous and Coulomb friction parameters respectively.

The purpose is to recover in real time the three dynamic parameters ZZ, F v , F c described in this model only by using the measured angular position q and the known applied torque. At time instant t, the estimation make use of the data from time interval [t -T , t], where T is the time window length. Consider a second order combination of Jacobi modulating functions g ℓ (v)

g ℓ1 (v) = ( v -t + T T ) ℓ ( v -t T ) ℓ , g ℓ2 (v) = ( v -t + T T ) ℓ ( v -t T ) ℓ+1 , g ℓ3 (v) = ( v -t + T T ) ℓ ( v -t T ) ℓ+2 , (2.9)
where v ∈ [t -T , t] and ℓ = {ℓ ∈ N|ℓ = 10, 11, . . . , 20}. Multiplying (2.8) by the combination of modulating functions g ℓ (v) and perform an integration by part on interval [t -T , t] and its half interval, it gives

ZZ ∫ t t-T g ℓ-2 (t)q(t)dt -F v ∫ t t-T g ℓ-1 (t)q(t)dt + F c ∫ t t-T g ℓ (t)sign( q)dt = ∫ t t-T g ℓ (t)τdt.
(2.10) Take X p = [ZZ, F v , F c ] T as unknown, thus it requires at least 3 equations to find them. Notice that this relation is a scalar equation, and by replacing ℓ by a sequence of integers ℓ i . After developing a sequence of N 1R elements ℓ i , a list of equations are expressed as:

A(t, q, q)[ZZ, F v , F c ] = B(t, τ),
(2.11)

where A(t, q, q) is of dimension N 1R × 3 and the i-th line of A(t, q, q) is given by

A i (t, q, q) = [ ∫ t t-T g ℓ i -2 (t)q(t)dt, - ∫ t t-T g ℓ i -1 (t)q(t)dt, ∫ t t-T g ℓ i (t)sign( q)dt],
and the i-th element of vector B(t, τ) is given by B(t, τ) = ∫ t t-T g ℓ i (t)τdt. A simulation test is carried out with measurement in joint position and torque associated with a normally disturbed random noise whose signal to noise ratio (SNR) is 30 dB. In the off-line identification case, the data are collected with sampling time T s = 1 millisecond. Because the modulating function with power model identification method turns vector equations into scalar equations, in that sense the observation loses some information. In order to ensure the full rank and good condition number of the observation matrix, the estimation time window length should be set relatively long, here we set T est = 20 seconds. The inverse dynamic identification model with LS technique method (IDIM-LS) is applied to make a comparison. In the both identification model, the joint position are pre-filtered using a fourth order low-pass Butterworth filter with cut-off frequency at 2 Hz. The joint velocity and acceleration are computed from the filtered joint position by means of Euler central difference algorithm of the low-pass filtered position. The Euler central difference is the finite difference method. Assume a discrete signal sequence

[x[1], • • • , x[i], • • • , x[N ]],
with sampling time T samp , the first order derivative is obtained with Euler central difference

ẋ[1] = x[2] -x[1] T samp , ẋ[i] = x[i + 1] -x[i -1] 2T samp , 1 < i < N ẋ[N ] = x[N ] -x[N -1] T samp .
(2.12)

In dynamic identification model, the data are down-sampled through a decimate filter at 10 Hz. The estimation results are obtained with the same reference trajectory and several identifications are processed off-line with time window T est = 20 seconds. The average value and variance with respect to real value are shown in table (2.1).

In conclusion, for one joint robot case we utilize only the measured joint position and the computed joint velocity from a certain time window to estimate the dynamic parameters. The estimation gives good off-line identification result with respect to noise. With a large sequence of ℓ, the estimator forms an over-determined observation matrix and can be solved by least square techniques. Compared to IDIM-LS, the modulating approach has good or even better performance in off-line identification. The drawback of this method lies on the fact that the condition number of the observation matrix is relatively larger than that of IDIM-LS method, and the sampling rate should not be too low in order to reduce the integration error.

General case

The idea of solving this kind of differential system is to increase the order of input value by partial integration with modulating functions. For a general system

N t ∑ i=0 α i f i (θ, θ (1) , ..., θ (n) ) = γ, (2.13)
where N t is the number of terms, n is the highest order of derivative of θ, α i are constant parameters, θ (i) is i-th order of derivative of θ and f i is a general function. Now suppose a family of modulating functions g ℓ (v) satisfying

g (i) ℓ (0) = g (i) ℓ (t) = 0, i ≤ n. (2.14)
Then, multiply g ℓ (v) with the general system formulation and do integration on the interval [0, t]. When the function f i (θ, θ (1) , ..., θ (n) ) is analytically integrable, one can perform integration by part according to partial integration theory using (2.14)

∫ t 0 α i g ℓ f i (θ, θ (1) , ..., θ (n) )dv = - ∫ t 0 α i g (1) ℓ f [1] i (θ, θ (1) , ..., θ (n-1) )dv, (2.15)
where f

[1] i (θ, θ (1) , ..., θ (n-1) ) is the analytical form of first time integral function of f i (θ, θ (1) , ..., θ (n) ).

In a similar way, if f i (θ, θ (1) , ..., θ (n) ) is K times integrable, the highest order derivative of θ can be degraded to (n -K)-th order, which avoids using noisy high order derivatives. With this method, there is no need to access high order values and it can be numerically more precise, thus gives better estimation result. Finally in the K times integrable case, (2.15) can be written as a counterpart of

∫ t 0 α i g ℓ f i (θ, θ (1) , ..., θ (n) )dv = (-1) k ∫ t 0 α i g (k) ℓ f [k] i (θ, θ (1) , ..., θ (n-k) )dv. (2.16)

Identification with modulating functions and power model

Recall the robot power model (1.33):

qT Γ m = d dt (H) + qT [diag( q)F v + diag(sign( q)F s + Γ off ].
(2.17)

Integrate both sides of equation (1.33) with a first order modulating function g on the time interval [t a , t b ] and apply integration by part which leads to:

∫ t t-T g qT Γ m dt = - ∫ t t-T ġhKdt + ∫ t t-T g qT diag( q)F v dt + ∫ t t-T g qT diag(sign( q))F s dt + ∫ t t-T g qT Γ off dt. (2.18)
This equation presents an energy balance and is a scalar equation. The modulating functions are well adapted in this model, because we know the analytical expression of the energy part h and the derivatives of the modulating functions. In order to identify multi-unknowns, we need to construct more equations whose number is equal to or larger than that of the base dynamic parameters. The construction process is considered as choices of different modulating functions g and with different parametrization.

With the above procedures, we obtain an over-determined linear system of n × n t × n m equations similar as (1.13):

Y E = W E (q, q, q)X + ρ E , (2.19)
where n t is the number of intervals, n m is the number of the modulating func-56CHAPTER 2. Robot identification using power model and modulating functions tions, ρ E is the noise, Y E and W E are the vector of integrals and the observation matrix, respectively, which are defined as follows:

Y E =                         t b1 ∫ t a1 g 1 qT Γ m . . . t bn t ∫ t an t g n e qT Γ m                         , W E =                         - t b1 ∫ t a1
ġ1 h(q, q)

. . .

-

t bn t ∫ t an t ġn e h(q, q)                         .
(2.20)

The system (2.19) can be solved using the different LS techniques which are discussed in appendix.

Simulation on 2R robot

This simulation part utilizes the robot model described in chapter (1.1.1). There are eight minimal dynamic parameters X and recall (1.12)

X = [ZZ 1R , ZZ 2 , LMX 2 , LMY 2 , F v1 , F s1 , F v2 , F s2 ],
The simulation tests are running with value X which is all in SI Units: X = [3.5 0.06 0.12 0.005 0.05 0.5 0.01 0.1]. And the sampling rate ω c = 2π×100 rad/s. In off-line identification, the estimation time window T est is set to be 20 seconds. A reference trajectory is selected using a fifth order polynomial trajectory.

We can see that the estimated friction parameters are more disturbed, because F v q is small in value in the robot model, and F s is not well excited with polynomial trajectory, instead it can be excited with trapezoid velocity in the trajectory. Meanwhile, it is because the friction parameters are in term with velocity data whose estimation has more bias with respect to real value. For example, the viscous friction parameters correspond to term q2 , where the errors are in the order of noise square and have great influence on these parameters.

To carry out the estimation, apply the same combination of Jacobi modulating functions g ℓ (v) described in (2.9), with v ∈ [t -T , t] and ℓ = {ℓ ∈ N|ℓ = 10, 11, . . . , 20}. Here we use QR factorization method to solve the least square problem. Notice that similar as the decimate procedure composed of a lowpass filter F p (s) in the IDIM-LS technique, the modulating function with power model approach also needs a lower resampling procedure. As discussed in (Gautier, 1997), the decimate rate n d = 0.8 × ω c 2ω f p for an IIR filter. Here, we take n d = 10.

As discussed in chapter (1.2), the selection of definite integration time inter-val [t a (i), t b (i)] is actually a decimate procedure with the ratio n d , which results in choosing t a (i) and t b (i) with a constant value t b (i)t a (i) = n d * 2π/ω c . In the same way, the decimate procedure F p (s) is applied on the modulating function with power model approach. With n e = 5000 samples and sampling rate ω c = 2π × 100 rad/s, t b (i)t a (i) = 0.1s.

The joint position and torque data are pre-filtered using a forward-backward Butterworth with a cutoff frequency ω f q = 0.8 ω c /2 5 . Then, the joint velocity is computed using Euler central difference algorithm.

In order show the systematic error caused by the modulating functions with power model approach and the filtering procedure, we carry out the simulation without noise in the measurement. The results are shown in table (2.2), where real parameters values X, the identified values X and the relative standard deviation σ Xri % are presented. The results prove that modulating functions with power model has small systematic error. 

Parameters

Identification on 2R prototype robot

The experimental work is done on the two revolute joints planar prototype robot described in chapter (1.1.1). The joint position q and the current reference V T (the control input) are collected at a 100 Hz sample rate. The measurement joint position is shown in Similar as the simulation, the modulating functions chooses a combination of Jacobi modulating functions g ℓ (v) described in (2.9), with v ∈ [t -T , t] and ℓ = {ℓ ∈ N|ℓ = 10, 11, . . . , 20}. The decimate procedure composed of a low-pass filter power model approach, the selection of definite integration time interval [t a (i), t b (i)] can be chosen as t b (i)t a (i) = 0.5s, taking the filtering purpose and the numbers of points in integration with modulating functions into a compromise.

The joint position and torque data are pre-filtered using a 12 order forwardbackward Butterworth with a cutoff frequency ω f q = 0.8 ω c /2 5 . Then, the joint velocity is computed using Euler central difference algorithm.

Once the identification model is built, the estimation of minimal dynamic parameters X is solved by OLS method. Standard deviations σ Xi are estimated using classical and simple results from statistics, considering the matrix W to be a deterministic one, and ρ to be a zero mean additive independent noise, with standard deviation σ ρ that C ρρ = E(ρ T ρ) = σ 2 ρ I r , where E is the expectation operator. The variance-covariance matrix of the estimation error and standard deviations can be calculated by:

C X X = E[( X -X)( X -X) T ] = σ 2 ρ (W T W) -1 , where σ 2 Xi = C X Xii , the diagonal coefficient of C X X.
An unbiased estimation of σ ρ is used to get the relative standard deviation σ Xri by the expression: where r is the total number of equations and c is the number of unknown parameters.

σ2 ρ = ||Y -W X|| 2 r -c , %σ Xri = 100 × σ Xi Xi ,
To make the results more clear, a comparison is done with IDIM-OLS technique on the same trajectory, and the identification results are shown in table(2.3). Because the numbers of equations are different, the comparison in the residue norm ∥Y -W X∥ is meaningless. Instead, we compare in the relative residue norm ∥Y -W X∥ ∥Y ∥ , where the modulating functions with power model approach has better relative residue norm than IDIM-OLS method. Meanwhile, according to the relative standard deviation σ Xri % results, the results obtained by the modulating functions with power model are better than those of IDIM-OLS method. Thus, we can conclude that the modulating functions with power model approach behaves better than IDIM-OLS method in this 2R prototype scara robot case.

Simulation of payload dynamic parameters on 4R robot

The 4R robot model are constructed in the modified Denavit and Hartenberg notation (DHM) frame described in table (2.4), and the direct dynamic model and inverse dynamic model are computed using the software SYMORO introduced in chapter (1.1.3).

We consider the payload identification from the power point of view, with 

j σ α d θ r 0 0 0 0 q 1 0 1 0 -π 2 0 q 2 0 2 0 0 L2 q 3 0 3 0 0 L3 q 4 0
Table 2.4 -DHM configuration of 4R scara planar robot application of the modulating functions. Assume the robot dynamic parameters are already identified before loading. Then the robot power model has an additional term of the payload energy :

qT Γ m = d dt (H) + d dt (H p ) + qT [diag( q)F v + diag(sign( q)F s + Γ off ], (2.21)
where d dt (H p ) is the Hamiltonian energy of the payload. In a similar way, integrate both sides of equation (1.33) with a first order modulating function g on the time interval [t a , t b ] and apply integration by part which leads to:

∫ t t-T ġh p X p dt = - ∫ t t-T g qT Γ m dt - ∫ t t-T ġhKdt + ∫ t t-T g qT diag( q)F v dt + ∫ t t-T g qT diag(sign( q))F s dt + ∫ t t-T g qT Γ off dt, (2.22)
moreover, h p is the vector of energy functions corresponding to payload, X p is the payload dynamic parameters.

This gives linear formulation of the identification model, because X p is constant. And it only depends on the joint force/torque, position and velocity information, which is more practical to implement.

The simulations are running with a four revolute joints robot model , assuming that the dynamic parameters of the robot X have already been identified without carrying a payload. When a payload is fixed on the terminal link of the robot, we assume that the payload has influence on the last joint link and causes the variation of the dynamic parameters of last joint by:

∆X = [∆XX ∆XY ∆XZ ∆Y Y ∆Y Z ∆ZZ ∆MX ∆MY ∆MZ ∆M].
δX = needs to be identified in order to update the controller. In simulation, we assume that ∆X = [0.2, 0.3, 0.2, 0.2, 0.1, 0.3, 0.1, 0.5, 0.4, 2], which is all in SI Units.

With known robot dynamic parameters, the robot is installed with the unknown payload at instant t = 0. The robot is driven by a computed torque PID controller with the known robot dynamic parameters. The robot motion follows a successive point to point reference trajectory using a classical 5 th order polynomial trajectory generator.

The measurements of joint position is the superposition of real joint position and a normally disturbed random noise whose signal to noise ratio (SNR) is 30 dB, with sampling time T s = 1 millisecond. The off-line estimation time window length T est for identification of the payload dynamics is set as 10 seconds, in order to ensure good rank and condition number of the observation matrix.

As discussed in subsection (2.2.1), we implement the sinusoid based and Jacobi polynomial based modulating functions because they have better attenuation on the high frequency noise. The Jacobi modulating functions g ℓ (v) described in (2.9), with v ∈ [t -T , t] and ℓ = {ℓ ∈ N|ℓ = 10, 11, . . . , 20}. The sinusoid based modulating functions are

g ℓ (v) = sin ℓ ( π T (v -t + T )
)

, with ℓ = {ℓ ∈ N|ℓ = 10, 11, . . . , 20}.

The integrals definite are selected in simulation with T = n d * 2π/ω c . We set the sampling frequency ω c = 1000 Hz and n d = 10, thus the definite integral length T = 0.01s.

The joint velocity is computed using Euler central difference from the filtered joint position q. The filter is a eighth order forward-backward Butterworth filter with cutoff frquency 2.5 Hz. The joint torque is also filtered with 

Conclusion

The modulating function approach is an extension of the robot energy identification method. Compared to the energy model, the integration with different groups of modulating function will ensure the condition number and rank efficiency of the observation matrix. Compared to robot dynamic model, the terms containing joint acceleration disappear because of the integration, so that only joint position, velocity and joint force/torque are required. Once the joint velocities are well estimated, this modulating function with power model method can give a good estimation of dynamic parameters. While the friction parameters are difficult to estimate because they are less important in the model and sensitive to noise. In the end, several simulation tests show that the identification model with power model and modulating functions is an efficient identification approach. And the experimental identification on the 2R prototype robot shows that the modulating functions with power model method has better precision than IDIM-OLS method.

In the fourth chapter, comparisons are done among all robot identification models. It will prove that the modulating functions with robot power model method is a robust identification approach.

Chapter 3

Differentiation in parameters identification of robots

Introduction

The robot identification issues have been widely studied in the past decades, but there still exist several open questions. One of them concerns with estimating the derivatives of an unknown signal from its discrete, potentially using noisy measurement. The numerical differentiation is ill-posed in the sense that a small error in the measurement can produce a large error in the estimated derivatives, specially in the case of high order derivatives. Therefore, various numerical methods have been developed to obtain stable algorithms which are robust against additive noises. They mainly fall into the following categories:

• the finite difference methods (Khan et al., 2000;[START_REF] Qu | A new approach to numerical differentiation and integration[END_REF][START_REF] Rahul | One-sided finite-difference approximations suitable for use with Richardson extrapolation[END_REF][START_REF] Ramm | On stable numerical differentiation[END_REF],

• the Savitzky Golay methods [START_REF] Barak | Smoothing and Differentiation by an Adaptive-Degree Polynomial Filter[END_REF][START_REF] Diop | Interpolation and Numerical Differentiation for Observer Design[END_REF]Gorry, 1990a;Savitzky et al., 1964a) • the wavelet differentiation methods [START_REF] Diop | On numerical differentiation algorithms for nonlinear estimation[END_REF]Leung et al., 1998;[START_REF] Nie | Approximate derivative calculated by using continuous wavelet transform[END_REF][START_REF] Shao | A general approach to derivative calculation using wavelet transform[END_REF][START_REF] Shao | A novel method to calculate the approximate derivative photoacoustic spectrum using continuous wavelet transform[END_REF] • the Fourier transform methods [START_REF] Dou | A wavelet-Galerkin method for high order numerical differentiation[END_REF][START_REF] Fu | Wavelets and high order numerical differentiation[END_REF][START_REF] Kauppinen | Fourier transforms in the computation of self-deconvoluted and first-order derivative spectra of overlapped band contours[END_REF][START_REF] Qian | A modified method for high order numerical derivatives[END_REF][START_REF] Qian | Fourier truncation method for high order numerical derivatives[END_REF][START_REF] Yang | A perturbation method for numerical differentiation[END_REF] • the mollification methods [START_REF] Hao | Regularization of a non-characteristic Cauchy problem for a parabolic equation[END_REF][START_REF] Murio | Discrete mollification and automatic numerical differentiation[END_REF][START_REF] Murio | The Mollification Method and the Numerical Solution of Ill-Posed Problems[END_REF],
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• the Tikhonov regularization methods [START_REF] Cullum | Numerical differentiation and regularization[END_REF][START_REF] Hanke | Inverse problems light: numerical differentiation[END_REF][START_REF] Nakamura | Numerical differentiation for the second order derivatives of functions of two variables[END_REF][START_REF] Wang | A numerical differentiation method and its application to reconstruction of discontinuity[END_REF][START_REF] Wei | Reconstruction of numerical derivatives from scattered noisy data[END_REF],

• the algebraic methods (Liu et al., 2009b(Liu et al., , 2011b(Liu et al., ,d, 2012a;;[START_REF] Mboup | Parameter estimation via differential algebra and operational calculus[END_REF]Mboup et al., 2009b),

• the differentiation by integration methods (Lanczos, 1956;[START_REF] Rangarajana | Lanczos' generalized derivative for higher orders[END_REF][START_REF] Wang | Numerical differentiation for high orders by an integration method[END_REF], i.e. using the Lanczos generalized derivatives.

• observer design in the control literature [START_REF] Chitour | Time-varying high-gain observers for numerical differentiation[END_REF]Levant, 1998Levant, , 2003;;[START_REF] Polyakov | Homogeneous differentiator design using implicit lyapunov function method[END_REF].

The numerical differentiators discussed in this chapter are based on algebraic methods. They are rooted in a recent algebraic parametric method introduced by Fliess and Sira-Ramírez [START_REF] Fliess | Questioning some paradigms of signal processing via concrete examples[END_REF][START_REF] Fliess | An algebraic framework for linear identification[END_REF]. These algebraic differentiators are divided into two classes: model-based differentiators and model-free differentiators. The formers were obtained by applying the algebraic method to a differential equation which defines a class of linear systems (Fliess and Sira-Ramrez, 2004;[START_REF] Tian | Fast state estimation in linear time-varying systems: an algebraic approach[END_REF]. Hence, they were mainly used for linear systems. However they have been extended to the model-free differentiators, which can be used for nonlinear systems and various problem in signal processing. The first model-free differentiator was introduced in [START_REF] Fliess | Compression différentielle de transitoires bruités[END_REF]) by applying the algebraic method to the truncated Taylor series expansion of the signal to differentiate. Then, two model-free differentiators were studied in [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF](Mboup et al., , 2009a)), where the so-called Jacobi differentiator is the most used. Moreover, it was shown that the causal Jacobi differentiator can also be obtained by taking the truncated Jacobi orthogonal series expansion of the signal to be differentiated. Then, it was significantly improved by admitting a known time delay chosen by the designer [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF](Mboup et al., , 2009a)). In (Liu et al., 2011c), a central Jacobi differentiator was proposed, which is devoted to off-line applications.

The Jacobi differentiator is a non-asymptotic differentiator and has the following advantages. First it is given by an integral formula in the continuous case, which can be considered as a low-pass filter and corresponds to a convolution in the discrete case. Thus, estimations at different instants can be obtained using a sliding integration window of finite length. Moreover it shows robust properties with respect to corrupting noises [START_REF] Fliess | Analyse non standard du bruit[END_REF]. Regarding to error analysis of Jacobi differentiator, theoretical works have been done to demonstrate that the errors are highly nonlinear functions of the designing parameters and the errors are bounded. As well some experimental works show the relation between the error and the designing parameters (Liu et al., 2009a(Liu et al., , 2011a(Liu et al., , 2012a)). However there does not exist yet an effective approach to design the Jacobi differentiator because the parameters are highly coupled. To investigate, this chapter will consider from a FIR filter point of view, to show the cut-off property of the Jacobi differentiator regarding to magnitude frequency response.

In this section, we will construct high order precise numerical derivative differentiators of a smooth functions from an algebraic framework. For this, we consider two cases. In the first case, we use the sampling data given before the point at which the derivative value we want to estimate. The such obtained estimator is called causal differentiator. In the second case, the point at which the derivative value we want to estimate is the middle point of the time window used for data. Hence, we get central differentiator, used for off-line purpose.

A motivating example

The classical numerical differentiation methods, generated from an interpolating polynomial (see [START_REF] Anderssen | A stable finite difference ansatz for higher order differentiation of non-exact data[END_REF][START_REF] Brown | Analysis of algorithms for velocity estimation from discrete position versus time data[END_REF]) or a leastsquares polynomial (see (Gorry, 1990b;Savitzky et al., 1964b)), is used to approximate a function, the derivatives of which we want to estimate. Then, the derivatives of this polynomial is closely linked to the coefficients of this polynomial. From these, in the recent papers [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF](Mboup et al., , 2009a)), a new algebraic parametric differentiation method is presented where an elimination technique such as the one introduced in [START_REF] Herceg | On a numerical differentiation[END_REF] was used to calculate the effective coefficients.

We begin with a simple example to demonstrate the principle of algebraic parametric technique. Let p(t) = a 0 + a 1 t be a first order polynomial defined on R + , where a 0 and a 1 are unknown. The aim is to calculate the first order derivative of p(t), through an elimination technique on the operational domain. Applying the Laplace transform to t α , α ∈ R, the operational expression writes as p = a 0 s + a 1 s 2 , where p is the Laplace transform of p(t). Then, by multiplying both sides by s, we get s p = a 0 + a 1 s . Thus, we can annihilate the polynomial coefficient a 0 by deriving with respect to s:

s p(1) + p = - 1 s 2 a 1 . (3.1)
As in (3.1), it only remains p and a 1 in the operational domain. It is necessary to return to time domain in order to calculate a 1 by using knowledge of p(t).

Considering that the inverse Laplace transform of s p(1) contains the derivative of p which is unknown, we need multiply both sides of (3.1) by s -2 , in order to construct the correct inverse Laplace form. Finally, we obtain the analytical solution of a 1 which only depends on p(t):

a 1 = 3! t 3 ∫ t 0 (2τ -t)p(τ)dτ, t > 0. (3.2)
From the previous computations, we define the following differential operator:

Π 0,0 = 1 s 2 • d ds • s, (3.3)
which allows to annihilate the lower order coefficient a 0 and calculate the derivative by an integral. From these property, we call such differentiator integral annihilator, and this method differentiation by integration. In practice, this kind of differentiator is actually a band-pass filtering procedure, where its differentiation property annihilates the low frequency contribution and the integration by definite integrals is in nature low-pass filtering, thus only band frequency is passed.

We can extend the previous polynomial function to higher order straightforwardly. Inspired by this, we can estimate derivatives of a given smooth function, by taking a suitable truncated Taylor series expansion around a given instant and by applying some integration technique to annihilate the undesired coefficients. In the following part, we present in detail the recently developed Jacobi differentiators.

Causal Jacobi differentiator

Consider a noisy measurement x ϖ : I → R, x ϖ (t) = x(t) + ϖ(t), where I is a finite time open interval of R + , x ∈ C n (I) with n ∈ N, and ϖ is an additive corrupting noise. The objective is to estimate the n th order derivative of x using x ϖ . Contrary to [START_REF] Rangarajana | Lanczos' generalized derivative for higher orders[END_REF] where the n th order Legendre polynomials were used, we apply the Jacobi polynomials to get the truncated Jacobi orthogonal series to estimate the n th order derivative, which were introduced in [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF](Mboup et al., , 2009a)).

First, for any t 0 ∈ I , we introduce the set D t 0 := {t ∈ R * + ; t 0t ∈ I}. Define the i th order shifted Jacobi orthogonal polynomial on interval [0, 1] as follows (see (Abramowitz et al., 1965) pp. 774-775), with parameters µ, κ ∈] -1, +∞[:

P (µ,κ) i (τ) = i ∑ j=0 ( i + µ j )( i + κ i -j ) (τ -1) i-j τ j . (3.4) Define the L 2 ([0, 1]) scalar product ⟨•, •⟩ (0,1)
µ,κ with the associated weight function ŵµ,κ (τ

) = (1 -τ) µ τ κ , let us denote ∀ g 1 , g 2 ∈ C[0, 1], ⟨ g 1 , g 2 ⟩ (0,1) µ,κ = ∫ 1 0 ŵµ,κ (τ)g 1 (τ)g 2 (τ)dτ. (3.5)
Hence the associated norm for the i th order shifted Jacobi orthogonal polynomial is given as:

∥P (µ,κ) i ∥ 2 µ,κ = 1 2i+µ+κ+1 Γ(µ+i+1)Γ(κ+i+1) Γ(µ+κ+i+1)Γ(i+1)
, where Γ(n) is the classical Gamma function (see (Abramowitz et al., 1965) p. 255), with Γ(n) = (n -1)!.

The derivation of causal Jacobi differentiator is discussed in detail in (Liu et al., 2012a), and a general demonstration are done in appendix A.2. Here, we give the analytical continuous expression of the causal Jacobi differentiator, which calculates the n th derivative at instant t 0 , ∀ξ ∈ [0, 1], ∀t 0 ∈ I ,

D (n) κ,µ,T ,q x(t 0 -T ξ) = 1 (-T ) n ∫ 1 0 Q κ,µ,n,q,ξ (τ) x(t 0 -T τ)dτ, (3.6) with µ, κ ∈] -1, +∞[, C κ,µ,n,i = (µ + κ + 2n + 2i + 1)Γ(κ + µ + 2n + i + 1)Γ(n + i + 1) Γ(κ + n + i + 1)Γ(µ + n + i + 1) , (3.7) Q κ,µ,n,q,ξ (τ) = ŵµ,κ (τ) q ∑ i=0 C κ,µ,n,i P (µ+n,κ+n) i (ξ)P (µ,κ) n+i (τ). (3.8)
Finally, we substitute x in (3.6) by x ϖ so as to obtain the causal Jacobi differentiator D (n) κ,µ,T ,q x ϖ (t 0 -T ξ) in noisy case. Different from the existing polynomial approaches, the idea of the causal Jacobi differentiator is to use a sliding integration window to estimate the value of x (n) at each t 0 ∈ I by D (n) κ,µ,T ,q x(t 0 -T ξ) with a fixed value of ξ ∈ [0, 1]1 (see [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF](Mboup et al., , 2009a))). If ξ 0, then it produces a delay of value T ξ.

It is clear that for each t 0 ∈ I, the causal Jacobi differentiator D (n) κ,µ,T ,q x ϖ (t 0 -T ξ) depends on a set of design parameters, except for the order of the desired derivative n:

• κ, µ ∈] -1, +∞[: the parameters of Jacobi polynomials,

• q ∈ N: the order of truncated Jacobi series expansion,

• T ∈ D t 0 : the length of the sliding integration window,

• ξ ∈ [0, 1]: the parameter of time-delay T ξ.

Error Analysis in Time Domain

The estimation error of the causal Jacobi differentiator can be decomposed in the continuous case as follows:

D (n) κ,µ,T ,q x ϖ (t 0 -T ξ) -x (n) (t 0 ) = ( D (n) κ,µ,T ,q x(t 0 ) -x (n) (t 0 -T ξ) ) + ( D (n) κ,µ,T ,q x ϖ (t 0 -T ξ) -D (n) κ,µ,T ,q x(t 0 -T ξ) ) + ( D (n) κ,µ,T ,q x(t 0 -T ξ) -D (n) κ,µ,T ,q x(t 0 )
) = e R n (t 0 ; κ, µ, T , q) + e ϖ (t 0 ; n, κ, µ, T , q) + e h (t 0 ; n, κ, µ, T , q).

(3.9) 1) Noise error contributions e ϖ (t 0 ; n, κ, µ, T , q): in continuous case, consider the noise errors due to the two following categories of noises.

• Integrable noises: In this case the noise is assumed to be a bounded and integrable function on I, which can be divided into two parts [START_REF] Fliess | Questioning some paradigms of signal processing via concrete examples[END_REF]: the first part is a (n-1) th order polynomial, considered as a structured perturbation, and the seconded part is a high frequency perturbation, considered as an unstructured noise.

An error bound based on the integral formula given in (3.6) was proposed in (Liu, 2011) (p. 90) for this kind of noise errors. Moreover, it was shown that the Jacobi differentiator D (n) κ,µ,T ,q x ϖ (t 0 -T ξ) can eliminate a (n-1) th order structured perturbation.

• Non-independent stochastic process noises: consider in this case a class of continuous stochastic processes with finite second moments, whose mean value function and covariance kernel are continuous functions [START_REF] Parzen | Stochastic processes[END_REF], such as Brownian motion and Poisson process.

Since a stochastic process usually is not bounded, the Bienaymé-Chebyshev inequality was used to give error bounds by calculating the mean value and the variance of the associated noise error (Liu et al., 2011a).

2) Truncated term error e R n (t 0 ; κ, µ, T , q): Using the Taylor series expansion of x at t 0 , an error bound for the amplitude error was provided in (Liu et al., 2012b), where the (n + q + 1) th order derivative of x was assumed to be bounded on I.

3) Delay error e h (t 0 ; n, κ, µ, T , q): Instead of giving an error bound for the delay error, existing studies were based on how to chose ξ and on how to reduce the delay T ξ if ξ 0.

• On the one hand, according to (Mboup et al., 2009a), we can take ξ = ξ

(n) κ,µ,q in D (n)
κ,µ,T ,q x ϖ (t 0 -T ξ), where ξ (n) κ,µ,q is the smallest root of P (µ+n,κ+n) q+1

. This choice of ξ significantly improved the Jacobi differentiator by admitting the time-delay T ξ. Indeed, it was shown in (Mboup et al., 2009a) that e h (t 0 ; n, κ, µ, T , q, ξ (n) κ,µ,q ) < e h (t 0 ; n, κ, µ, T , q + 1, 0) < e h (t 0 ; n, κ, µ, T , q, 0).

• On the other hand, ξ (n) κ,µ,q depends on three design parameters. The influence of q is given by the classical orthogonal polynomial theory. The influence of κ and µ was studied in (Liu et al., 2011a).

• Another choice of ξ is to take ξ = 0.5 (this case corresponds to the central Jacobi differentiator, see (Liu, 2011;Liu et al., 2011c)). It is the optimal value of ξ which minimizes the noise error contribution. However, the time-delay is equal to 0.5T . Hence, this case is only considered for off-line applications.

Finally, by numerically2 calculating the noise error bound, the amplitude error bound and the time-delay, we can know their behaviors with respect to different design parameters. Then, we can deduce the influence of these design parameters on each source of errors. We summarize the obtained results in Table (3.1) (see (Liu, 2011;Liu et al., 2011a) for more details), where the notations a ↑, b ↗ and c ↘ mean that if we increase the value for the parameter a then the error b increases and the error c decreases. Consequently, it is interesting to take negative values of κ to reduce both the truncated term error and the noise error contribution (see (Liu et al., 2011a) for more details).

Meanwhile, in discrete case, the integral formula of the causal Jacobi differentiator should be approximated by taking a numerical integration method, which implies a numerical error. Compared to Simpson's integration rule, it indicates the trapezoidal integration rule is the optimal numerical integration method to reduce the noise error contribution. In the following part, we consider in discrete case and study the frequency domain property.

Frequency Domain Analysis

Inspired by [START_REF] Chen | Digital fractional order Savitzky-Golay differentiator[END_REF], we investigate the frequency response. Seen from equation (3.6), the causal Jacobi differentiator is a combination of integrals with measurement in [t 0 -T , t 0 ]. The discrete version Jacobi differentiator

Noise error Truncated error Time-delay

κ ↑ ↗ ↗ ↗ µ ↑ ↗ ↘ ↘ q ↑ ↗ ↘ ↘ T ↑ ↘ ↗ ↗ Table 3.1 -Influence of design parameters on D (n) κ,µ,T ,q x(t 0 -T ξ (n) κ,µ,q ) in continuous case.
writes as the sum of a list of weighting coefficients associated with measurement. In this sense, the Jacobi differentiator can be seen as a FIR filter applied to a discrete system with sampling time T s . By studying the frequency domain behavior of the FIR filter, we can investigate the filtering and differential properties of the Jacobi differentiator. After extracting the weighting coefficients, we can draw the bode plot of Jacobi differentiator, as a digital filter with sampling time T s .

Given a signal that is the sum of three sinusoidal waves with amplitude 1 and frequency 4 Hz, 9 Hz, 15 Hz respectively. To get the second order derivative, the causal Jacobi differentiator is applied, with comparison of two on-line approaches: Euler causal difference with a traditional FIR filter and a forward Butterworth filter.

FIR filters can be designed as a linear-phase filter (but they do not have to be), where their coefficients are symmetrical around the centre coefficient (Mc-Clellan et al., 1973). Linear-phase means all frequency components are shifted in time by the same amount, where no distortion happens with frequency during the filtering process. When the order of linear-phase FIR filter is N f , the

delay T ∆FI R = N f -1
2F s , where F s is the sampling frequency. Butterworth filter is an IIR filter and referred to as a maximally flat magnitude filter. It is widely used in off-line case with a zero phase forward-backward filtering process. So comparison with Butterworth filter technique is interesting.

We simulate the measurement of the signal by superimposing an uniformly distributed random noise of amplitude 0.3 and a sinusoidal noise of amplitude 0.2 with frequency 200 Hz on the signal. The sampling frequency is 1 millisecond. To derive such a signal, the causal Jacobi differentiator is set with κ = 2, µ = 2, q = 2 and the sliding integration window T = 0.054 second. In this configuration, the causal Jacobi differentiator causes a delay of T ∆causal = T ξ = 0.0189s. Allowing the same amount of delay as causal Jacobi differentiator, N f = 38.8 but the FIR filter order N f should be integer thus set N f = 39, with cutoff frequency at 25 Hz. A well tuned forward Butterworth fil-ter configuration is of order 4 with cutoff frequency at 25 Hz. Then the filtered data is derived by Euler causal difference with transfer function H(z) = 1-z -2 2T s . In the middle figure, the causal Jacobi differentiator and causal difference with linear phase FIR filter are applied allowing the same amount delay analytically known. While the causal difference with Butterworth filter does not guarantee the linear phase property. The original acceleration with black line is computed without noise using the analytical form. As well, in the third figure, the estimations are shifted to right time line in order to compare. The results show that causal Jacobi differentiator is better than FIR filter, and presents a good precision similar to the Butterworth forward filter with Euler causal difference approaches. They are robust to different noises.

The frequency domain analysis is shown in Fig. (3.2). In Fig ( 3.2(a)) the magnitude frequency response plot, the FIR filter with Euler causal difference method has the fastest descent in the beginning of the unwanted frequency, but in high frequency part the magnitude response is not attenuated. The Butterworth filter with Euler causal difference method forward has the smoothest descent and cuts off completely the high frequency component. Comparatively the causal Jacobi differentor has an intermediate behavior, because it has better descending rate than FIR filter method and less attenuation in high frequency part than Butterworth forward filter method. From Fig ( 3.2(b)) the phase fre- quency response, the causal Jacobi differentiator presents a good linear-phase property as FIR filter method. The FIR filter method and causal Jacobi differentiator allows quite the same amount of delay, which is indicated in figure that they have the similar slope of curve. Compared to FIR filter, causal Jacobi differentiator can induce delay in smaller scale such as 0.1 millisecond. While the forward Butterworth filter method has a phase distortion, which makes it less interesting in on-line case.

To investigate influence of parametrization in causal Jacobi differentiator, we analyse in the bode plot as shown in of κ can ensure the low frequency response close to 0. As κ increases, the descending behaviors of the causal Jacobi differentiators vary. It can be found that around κ = 0.94, it has a fast descending of magnitude frequency response. Besides, the cutoff point is slightly pushed to higher frequency when κ increase.

2) µ is related to descending rate in the high frequency part. When µ increase, high frequency response descends faster but low frequency response will increase largely. As µ goes up, similarly the cutoff point slightly moves to higher frequency.

3) q affects the truncated term error. When q increase, the cutoff frequency area largely moves to higher frequency but it causes bias in low frequency response. In most cases, q = 2 is the best trade-off condition. 4) T is the sliding integration window and when the sampling time T s is fixed. When sampling time is fixed, it represents the points required for causal Jacobi differentiator. As T increase, the cutoff frequency largely moves to lower frequency and it presents a robust differentiator property at low frequency.

Conclusion: compared to the time domain error analysis given in table

(3.1), the frequency domain analysis gives the corresponding explications. As µ, q increase, the cutoff point of causal Jacobi differentiator moves to higher frequency, which means it estimates with more frequency component, for one part, it should enlarge the high frequency noise error; for other part, more frequency components in the truncated expansion of original signal are utilized so that the truncated error should be decreased. By contrast, as T increases, the situation is opposite. For µ, q, T , the frequency domain analysis fits well with time domain analysis.

While for κ, the effect is not obvious because as κ goes up, the behaviors in frequency domain vary without monotony and their behaviors are similar (as shown in Fig. (3.3(a))). From the figure, there should be an optimal κ, and we can conclude that κ has small influence on differentiator performance.

From the previous analysis, the causal Jacobi differentiator is regarded as a low-pass differentiator. The low-pass property is inherent because it considers the signal as a certain order polynomial in a small time window and uses the truncations to estimate the derivatives. Compared to other online differentiators, its frequency magnitude response performance behaves less robust but it has good linearity in phase and the exact time delay T ξ can be analytically computed.

Central Jacobi Differentiator

The central Jacobi differentiator can be regarded as a special case of the causal Jacobi differentiator by admitting ξ = 0.5. Recall the causal Jacobi differentiator (3.6):

D (n) κ,µ,T ,q x(t 0 -T ξ) = 1 (-T ) n ∫ 1 0 Q κ,µ,n,q,ξ (ξ) x(t 0 -T τ)dτ. When ξ = 0.5, D (n)
κ,µ,T ,q x(t 0 -0.5T ) estimates the n th order derivatives at instant t 0 -0.5T , using the data collected from the interval [t 0 -T , t 0 ]. Replace t 0 by t 0 + 0.5T , and it becomes the central Jacobi differentiator:

D (n) κ,µ,T ,q x(t 0 ) = 1 (-T ) n ∫ 1 0 Q κ,µ,n,q,0.5 (τ) x(t 0 + 0.5T -T τ)dτ, (3.10)
which estimates the n th order derivatives at instant t 0 , with a symmetric sampling of causal and anti-causal data from the interval [t 0 -T 2 , t 0 + T 2 ].

Another access to central Jacobi differentiator

In the above, we discuss how to get central Jacobi differentiator with obtained causal Jacobi differentiator. Here, we consider from a base of central Jacobi orthogonal polynomial, to prove the validity of the central Jacobi differentiator.

First introduce the central Jacobi orthogonal polynomial defined on [-1, 1] as follows: (see (Abramowitz et al., 1965)):

P (µ,κ) i (τ) = i ∑ j=0 ( i + µ j )( i + κ i -j ) ( τ -1 2 ) i-j ( τ + 1 2 ) j , (3.11) with µ, κ ∈] -1, +∞[. Let us denote ⟨•, •⟩ (-1,1) µ,κ as a L 2 ([-1, 1]) scalar product with the associated weight function w µ,κ (τ) = (1-τ) µ (1+τ) κ . Then, we have ∀ g 1 , g 2 ∈ C[-1, 1], ⟨ g 1 , g 2 ⟩ (-1,1) µ,κ = ∫ 1 -1 w µ,κ (τ)g 1 (τ)g 2 (τ)dτ. (3.12)
And the associated norm is given as:

∥P (µ,κ) i ∥ 2 µ,κ = 2 µ+κ+1 2i + µ + κ + 1 Γ(µ + i + 1)Γ(κ + i + 1) Γ(µ + κ + i + 1)Γ(i + 1) . (3.13)
For any t 0 ∈ I, introduce the set κ,µ,h,q x(t 0 ) can be formulated using the above notations (for more details a general demonstration are listed in appendix A.3).

D ′ t 0 = {t ∈ R * + |[t 0 -t, t 0 + t] ∈ I},
D (n) κ,µ,h,q x(t 0 ) = 1 h n ∫ 1 -1 O κ,µ,n,q (τ) x(t 0 + hτ)dτ, (3.14)
where 2h is entire sliding time window,

ρ n,κ,µ (τ) = 2 -(n+κ+µ+1) n!Γ(2n + κ + µ + 2) Γ(n + κ + 1)Γ(n + µ + 1) , (3.15) O κ,µ,n,q (τ) = q ∑ i=0 P µ+n,κ+n i (0) i ∑ j=0 (-1) i+j ( i j ) 2i + κ + µ + 2n + 1 i + κ + µ + 2n + 1 ρ n,κ+i-j,µ+j (τ).
(3.16)

Finally, x is substituted in (3.14) by x ϖ in order to obtain the central Jacobi differentiator D (n) κ,µ,h,q x ϖ (t 0 ) in noisy case. Because the the central Jacobi differentiator depends on the causal and anti-causal data, so the the length of the sliding integration window of central Jacobi differentiator T = 2h. Similarly the central Jacobi differentiator depends on the same design parameters as causal Jacobi differentiator.

• κ, µ ∈] -1, +∞[: the parameters of Jacobi polynomials,

• q ∈ N: the order of truncated Jacobi series expansion,

• h ∈ D t 0 : half length of the sliding integration window.

Error Analysis in Time Domain

The estimation error of the central Jacobi differentiator can be decomposed in continuous case as follows:

D (n) κ,µ,h,q x ϖ (t 0 ) -x (n) (t 0 ) = ( D (n) κ,µ,h,q x -x (n) (t 0 ) ) + ( D (n) κ,µ,h,q x ϖ (t 0 ) -D (n) κ,µ,h,q x(t 0 ) ) = e ϖ (t 0 ; n, κ, µ, h, q) + e R n (t 0 ; κ, µ, h, q).
(3.17) where e ϖ (t 0 ; n, κ, µ, h, q) and e R n (t 0 ; κ, µ, h, q) refer to the noise error contribution and the truncated term error respectively. Corresponding error bounds have been provided in (Liu et al., 2011c). Finally, by numerically calculating these error bounds, their behaviors with respect to different design parameters can be known. Then, the influence of these design parameters on each source of errors can be deduced. The obtained results are summarized in Table (3.2) (see (Liu, 2011;Liu et al., 2011c) for more details). According to Table (3.2), the design parameters' influence on different errors is not the same. Thus, a compromise among these parameters should be taken.

Noise error contribution Truncated error

κ ↑ ↗ ↘ µ ↑ ↗ ↘ q ↑ ↗ ↘ h ↑ ↘ ↗ Table 3.2 -Influence of design parameters on D (n)
κ,µ,h,q x(t 0 ) in continuous case.

Error Analysis in Frequency Domain

The central Jacobi differentiator can also be considered as a FIR filter. After extracting the weighting coefficients, we can draw its magnitude frequency response plot, as a digital filter with sampling time T s . Central Jacobi differentiator utilizes the non-causal data which means it is off-line differentiator.

Given the same signal mentioned in causal Jacobi case, the central Jacobi differentiator is applied to get the second order derivative. To compare, the Euler central difference methods with a forward-backward Butterworth filter are discussed. The forward-backward Butterworth filter is a zero phase IIR filter and referred to as a maximally flat magnitude filter. It is widely used in various applications so comparison with Butterworth filter technique is interesting.

In the noise-free case, both differentiators get the precise estimation. With noise case, we simulate the measurement of the signal by superimposing together on the signal a normally distributed random noise of amplitude 0.2, a 200 Hz high frequency sinusoidal wave of amplitude 0.2 and a Poisson distributed random noise with mean parameter λ = 0.1 of amplitude 0.2. The sampling frequency is 1 millisecond. In order to estimate the derivatives of the original signal , the central Jacobi differentiator is applied by taking κ = µ = 12, q = 6 and the sliding integration window T = 0.21 second. A well tuned forward Butterworth filter configuration is of order 6 with cutoff frequency at 25 Hz. The forward-backward process is done by adding poles in the denominator of transfer function with negative values.

The estimation errors in velocity and acceleration are shown in Fig. 3 seen that the estimation errors for the central Jacobi differentiator is larger at the beginning and the end, because there is not enough data for the estimation.

In frequency domain, the magnitude bode plots of second order derivative are shown in Fig. 3.5. The black line presents the ideal case with transfer function H(s) = s 2 in continuous time. The Jacobi differentiator and Euler differentiation with Butterworth filter are in discrete case. Notice the cutoff frequency of Butterworth filter is at 25 Hz. Under 15 Hz, the magnitude frequency response follows quite well the ideal curve for both Jacobi differentiator and Butterworth method. Above 15 Hz, the magnitude frequency response begins to descend rapidly, especially for the Jacobi differentiator. This means that the Jacobi differentiator has a better cutoff property and the unexpected frequency is attenuated quickly to 0 magnitude response. From the phase bode plot shown in Fig. (3.6), both differentiators have the good phase linear-phase property at low frequency. Above the cutoff frequency 25 Hz, central Jacobi differentiator has several jumps of 180 degrees in phase, and has disturbance in high frequency above 100 Hz, where the magnitude response is much attenuated so that the phase distortion does not make much influence. The distortion may come from numerical error when calculating the coefficients of central Jacobi differentiator.

From the magnitude bode plot, we can analyze in 1) κ = µ, these parameters are chosen to be identical because this configuration reduce the truncated term error (Liu et al., 2011c). They have two aspects of influence. When the value increases, the descending period will be short-ened and the unwanted frequency-magnitude response drops fast to 0; on the other hand it will affect the numerical integration error, which mainly causes a bias at 0 Hz frequency-magnitude response.

2) q affects the truncated term error. When q increase, at low frequency part the magnitude response remains the same but at high frequency part, the cutoff frequency increase and the drop rate of descending period remains the same. This means the functioning area is enlarged.

3) T is the sliding integration window and when the sampling time T s is fixed, it represents the points taken for Jacobi differentiator. When T increase, the cutoff frequency will move to lower frequency and the numerical integration error is reduced, which presents a robust differentiator property at low frequency.

Conclusion: the frequency domain analysis corresponds well with time domain error analysis described in table (3.2). For parameters κ = µ,q, as their values increase, the cutoff point moves to high frequency, which indicates noise error will enlarge and truncated error decreases. In the opposite way, it works with parameter T .

From the previous analysis, the Jacobi differentiator is regarded as a lowpass differentiator. The low-pass property is inherent because it considers the signal as a certain order polynomial in a small time window and uses the truncations to estimate the derivatives. From an empirical point of view, the Jacobi differentiation functioning frequency is less than 10% of the sampling frequency. Compared to Euler central differentiation with Butterworth filter, it requires more data thus it is more robust with respect to noise, and its descending period is shorter.

In practice, there are several parameters to tune, which make the regulation difficult to apply. Here we give a general rule to select these parameters. As causal and central Jacobi are similar, we discuss the central case. From the discussion above, κ, µ, q, T all have influence on the filtering property. First, q is easier to choose according to the order of derivative we want to compute. For example, q = 2 if we want acceleration. Second, it is a good choice to select κ = µ and fix the value. Normally, the value can be chosen within ] -1, 10[. Then, last we select the time window T , which is more important, because it has direct influence on the pass frequency of the Jacobi differentiator. The analyse can be done by drawing bode plot. 

Dynamic parameters identification of 2R robot

In this part, we apply the causal and central Jacobi differentiators in robot identification issue. Here the IDIM-LS model is implemented. First we consider the simulation test. The simulation tests use the 2R robot model described in chapter (1.1.1), without considering the friction offset parameter Γ of f . The eight minimal dynamic parameters X are

X = [ZZ 1R ZZ 2 LMX 2 LMY 2 F v1 F s1 F v2 F s2 ].

Iterative learning identification and computed torque control

Iterative learning control is an efficient method to compensate the variation of system dynamics during the operation. Lots of researches are dedicated to this subject, such as in [START_REF] Bao | A learning scheme for the parameter identification of robot dynamics[END_REF][START_REF] Bristow | A survey of iterative learning control[END_REF][START_REF] Bukkems | Learning-based identification and iterative learning control of direct-drive robots[END_REF][START_REF] Wang | Survey on iterative learning control, repetitive control, and run-to-run control[END_REF]. Moreover, in recent literature [START_REF] Gautier | Iterative learning identification and computed torque control of robots[END_REF] presented the structure of iterative learning identification and computed torque control (IDIM-ILIC) in robot issues, where the computed torque control uses a proportional-Derivative (PD) controller and the IDIM is calculated with noise-free data from the trajectory generator. With noise-free data, it avoids using the noisy derivatives of the actual joint position measurement.

Here, we consider the iterative estimation of the robot dynamic parameters and apply IDIM-ILIC in on-line application, where the robot dynamic parameters are periodically calculated over a moving time window to update the inverse dynamic model of the computed torque controller. And different from [START_REF] Gautier | Iterative learning identification and computed torque control of robots[END_REF], we implement a Proportional-Integral-Derivative control for errors in the controller and IDIM is calculated from measurements.

The IDIM-ILIC scheme is shown in Fig. (3.8). The feedback velocity qcomputed is obtained using the backward difference algorithm of the measured joint position q m easure, in order to ensure real time feedback.

The CTC computes the force/torque control input τ, which is defined such that: τ = M(q measure )w + N(q measure , qderivative ), (3.18)

where q measure is the measurement of robot joint position, qderivative is the joint velocity calculated from joint position measurement, M(q measure ) is the estimation of symmetric and positive definite inertia matrix, and N(q measure , qderivative )

Backward difference - + + + + - + + ∫ i K p K d K e e e ɺ
CTC with IDM

w 1 ( , , ) k r r IDM q q w X + ɺ τ Robot DifferenƟator IteraƟve esƟmaƟon 1 ˆmin || || k X X Y WX + = - 1 ˆk X + τ computed q ɺ measure q measure q e ∫ ref q ref q ɺ ref q ɺɺ , , measure derivative derivative q q q ɺ ɺɺ ref q ref q ɺ Figure 3.8 -IDIM-ILIC scheme
is the estimations of the Coriolis, centrifugal and gravity force/torque,

N(q measure , qderivative ) = C(q measure , qderivative ) qderivative + Q(q measure ) + Γ f
The control input w is dominated by the desired reference acceleration, plus a Proportional-Integral-Derivative control input of errors, where

w = qref + K p e + K d ė + K i ∫ e,
with e = q ref -q measure and ė = qrefqderivative . K p , K i , K d are positive diagonal matrices of proportional, integral and derivative gains.

Then, the closed-loop system response is determined by the following error equation:

M(q measure )(ë + K p e + K d ė + K i ∫ e)
= M(q measure ) qderivative + N(q measure , qderivative )

-M(q measure ) qderivative -N(q measure , qderivative ), (3.19) with ë = qref -qderivative .
Assume the right part of the equation is 0, which means without modelling error nor error on the measurement or parameter value, the error equation (3.19) becomes

ë + K p e + K d ė + K i ∫ e = 0. (3.20)
The solution e is the free response of a third order differential equation if we take the derivative operation on (3.20):

e (3) + K d ë + K p ė + K i e = 0. (3.21)
The method for selection of gains are presented in appendix (A.4). The error dynamics depend on the tuning gains. Usually, these gains are selected high enough to get fast dynamics and good robustness to error modelling. While unfortunately, the perfect model assumption is implausible in practice. In fact, the values of parameters are not perfectly known and there are always small errors in the model. Thus, the assumption that right part of (3.19) tends 0 may not hold.

As specified in [START_REF] Gautier | Iterative learning identification and computed torque control of robots[END_REF], for strong nonlinear system such as robots, it is impossible to analyse the errors effects. However, we can make some well founded approximations. As shown in (Gautier et al., 2013), the crucial component for the right part is M(q measure ) qderivative -M(q measure ) q. For the vectors of centrifugal and friction force/torque N and N can be considered as a perturbation. Then, in order to show the error e is bounded, we consider in the one degree of freedom case, where there is only one parameter M, which leads to:

e (3) + K d ë + K p ė + K i e = (α -1) qderivative , withα = M M . (3.22)
Thus, with α close to 1, with proper gains and because qderivative is bounded, e is bounded. Consequently, we need a robust identification of the inertia parameters and accurate modelling.

On-line Identification

The simulation runs with X all in SI Units: X = [3.5 0.06 0.12 0.005 0.05 0.5 0.01 0.1] . The on-line dynamic parameters identification is implemented with IDIM-ILIC, 2R robot simulation model and causal Jacobi differentiator. Here, the gains are selected identical for both joints with K p1 = 49, K p2 = 580, K d1 = 31, K d2 = 46, K i1 = 30, K i2 = 3000 (see appendix A.4). The reference trajectory is composed of a successive point to point trajectories using a classical 5 th order polynomial trajectory generator. The simulation is noise free in the measure-ment. The IDIM-LS is carried out every 3 seconds with estimation time window T est = 4.5s, where the estimation window should be large in order to ensure good excitation in the observation matrix and get robust estimation. For the previous 4.5 seconds the dynamic parameters initial condition is set as ZZ 1R = 1, ZZ 2 = 0.5 and the others equal to 0. The feedback velocity is calculated using two steps backward difference of the current measured position.

With causal Jacobi differentiator, the parametrization are chosen as κ = 0.94, µ = 0, q = 2 and T = 0.1s for estimating joint position and torque with delay 0.035s, T = 0.5s for estimating joint velocity with delay 0.183s, T = 0.9s for estimating joint acceleration with delay 0.339s. The joint position, velocity, acceleration and torque are shifted to the same time-line using the known time delay. In During the robot motion, for the first 6 second, the robot is driven with initial condition, where the controller induces larger error; while aftre 6 second, the estimation are carried out and the tracking error in joint position is less than 0.02 radians and the estimation error is less than 0.05. 

Non stationary inertial parameter

This part simulates the abrupt change of inertial parameter. The initial dynamic parameters are set to be the same values as those in the previous section. At instant t = 9s, ZZ 1R changes from 3.9 to 8. The online estimation result is shown in Fig. ()3.12). Notice that from t = 9s to t = 14s, there exists a delay of estimation time window T before getting the correction estimation. This delay 

Offline Identification

The experimental work is done on the two revolute joints planar prototype robot described in chapter (1.1.1). Recall the filtering procedure in chapter (1.1.5), the joint position and torque are pre-filtered to eliminate high frequency noise differentiation. In order to get the filtered q, q and q, set κ = µ = 2, q = 2 and T = 0.16s for filtering joint position and torque, T = 0.24s for estimating joint velocity, T = 0.28s for estimating joint acceleration with central Jacobi differentiator. For comparison, also use a low-pass Butterworth filter to eliminate the noise, whose cutoff frequency ω f q > 10 × ω dyn according to the rule of thumb (Gautier, 1996), then apply the Euler central difference algorithm to obtain the time derivative. For the decimate procedure with low-pass filter F p (s), the decimate ratio n d can be calculated with n d = ω c 2ω f p for a FIR filter and n d = 0.8× ω c 2ω f p for an IIR filter, where ω c is the control rate. Take ω c = 100×ω dyn and ω F p = 5 × ω dyn , which gives a value of n d around 10 for decimation. Then, by using matlab function we implement the decimation on all the model. In Actually compared to central difference with Butterworth filter approach, the Jacobi differentiator method presents a better precision in identification results on error norm and relative error norm. When the trajectory is not of high frequency, the central Jacobi differentiator is a robust differentiator to get high order derivatives.

Dynamic parameters identification of EMPS

In the previous section, we discussed the application of causal and central Jacobi differentiators on the 2R scara planar robot. To extend, we look for their applications on an EMPS (which is a high-precision linear Electro-Mechanical Positioning System). In (Alexandre Janot et al., 2011), the authors presented several identification approaches and applied central difference associated with low-pass Butterworth filter technique to obtain the derivatives of EMPS, meanwhile a decimate procedure is implemented on all the models. This application deals with the estimation of high order derivatives, which can be 3 th or 4 th order, using measured position data. In this sense, it is a good test to examine the robustness of differentiators. Thus, we implement the central Jacobi differentiator during the identification procedure and compare it with the approaches of difference using forward-backward Butterworth filter. In this part, we first introduce the EMPS model and the identification methods, then carry out the 

Presentation of EMPS

An EMPS machine is presented in Fig. (3.15). It is a standard configuration of a drive system for prismatic joint of robots or machine tools. It is connected to a dSPACE digital control system for easy control and data acquisition using Matlab and Simulink software. The system is composed of several main components:

• A Maxon DC motor equipped with an incremental encoder. This DC motor is position controlled with a PD controller.

• A Star high-precision low-friction ball screw drive positioning unit. An incremental encoder at its extremity supplies information about the angular position of the screw. -A load in translation.

• An accelerometer placed on the load supplies information about the load acceleration.

A brief configuration is presented in Fig. (3.16).

Figure 3.16 -EMPS components

All variables and parameters are given in ISO units on the load side.

Inverse dynamic model of EMPS

When the connection between the motor and the load is fixed, we can express the system dynamics in (3.23) with one inertia parameter and frictions. The inverse dynamic model describes the motor torque by function of the state and derivatives as

τ 1 = ZZ 1R q1 + F v1R q1 + F s1R sign( q1 ), (3.23) 
where q 1 , q1 , q1 are respectively the motor position, velocity and acceleration; τ 1 is the motor torque; ZZ 1R is the total inertia, F v1R and F s1R are the total viscous and Coulomb friction parameters.

When the connection is flexible, the mechanical system can be modelled with two inertias, a spring and a structural damping, as shown in Fig. (3.17). The inverse dynamic model can be obtained from the Newton-Euler equations [START_REF] Khalil | Modeling, identification and control of robots[END_REF]:

τ 1 = ZZ 1 q1 + F v1 q1 + F s1 sign( q1 ) -K 12 q 2 + F of f , 0 = ZZ 2 q12 + F v2 q12 + F s2 sign( q12 ) + K 12 q 2 , (3.24)
where q 1 , q1 , q1 , τ 1 are the same as in the fixed case; q 12 , q12 , q12 are respectively the load position, velocity and acceleration; q 2 , q2 , q2 are respectively the elastic relative position velocity and acceleration, with q 12 = q 1 + q 2 , q12 = q1 + q2 , q12 = q1 + q2 ; ZZ 1 is the motor inertia, F v1 and F s1 are respectively the viscous and Coulomb motor friction parameters; ZZ 2 is the load inertia, F v2 and F s2 are respectively the viscous and Coulomb load friction parameters; K 12 is the stiffness and F of f is offset coefficient. Moreover, the flexible inverse dynamic

1 O 2 O 2 x 2 z 1 z 1 x 12 K x z 12 q 1 q 2 q Figure 3
.17 -EMPS modeling and DHM frames model can be formulated as

Γ = M(q) q + C(q, q) q + Kq + B, (3.25) with q 
=       q 1 q 2       , q =       q1 q2       , q =       q1 q2       , Γ =       τ 1 0       , M(q) =       ZZ 1 0 0 ZZ 2       , N(q, q) =       F v1 q1 + F s1 sign( q1 ) F v2 q12 + F s2 sign( q12 )       , K =       K 12 -K 12 -K 12 K 12       , B =       F of f 0       .
Then, the dynamic model can be rewritten as a linear relation with respect to the dynamic parameters as follows:

Γ = D STD X STD , ( 3.26) 
with 8 parameters to be identified called standard parameters

X STD = [ ZZ 1 , F v1 , F s1 , K 12 , F of f , ZZ 2 , F v2 , F s2 ] T , D STD =       q1 q1 sign( q1 ) -q 2 1 0 0 0 0 0 0 q 2 0 q12 q12 sign( q12 )       .
Moreover, the direct dynamic model of EMPS is described by: M(q) q = Γ -C(q, q) q -Kq -B.

(3.27)

Identification model using motor and load positions

This is the idealistic case, where we have access to joint position measurement and motor torque. Thus, the minimal model corresponds to the standard model is given in (3.26) as:

D 1 = D STD , X 1 = X STD and Γ 1 = Γ.
(3.28)

Identification model with only motor position and torque

This is the common case in the industrial application where only motor position and torque are known. The flexible load position q 2 need to be expressed in terms of q 1 and its derivatives. We remove F v2 and F s2 from the inverse dynamic model because F v2 is poorly identified and F s2 is not linear function. Then, the rewritten inverse dynamic model is given as:

τ 1 = ZZ 1 q1 + F v1 q1 + F s1 sign( q1 ) -K 12 q 2 + F of f , (3.29) 0 = ZZ 2 q12 + +K 12 q 2 . (3.30)
We can resolve q 2 , q2 and q2 in function of motor position q 1 from equation (3.29):

q 2 = 1 ZZ 2 ( -τ 1 + ZZ 1 q1 + F v1 q1 + F s1 sign( q1 ) + F of f ) q2 = 1 ZZ 2 ( -τ1 + ZZ 1 q (3) 1 + F v1 q1 ) , sign( q1 ) is not dif f erentiable q2 = 1 ZZ 2 ( -τ1 + ZZ 1 q (4) 1 + F v1 q
(3) 1

) .

(3.31)

Rewrite equation (3.30) using the above expressions:

0 = ZZ 1 q1 + ZZ 2 ( -τ1 K 12 + ZZ 1 K 12 q (4) 1 + F v1 K 12 q
(3) 1

)

+ K 12 ( τ 1 K 12 + ZZ 1 K 12 q1 + F v1 K 12 q1 + F s1 K 12 sign( q1 ) + F of f K 12
) .

(3.32)

Then we have:

Γ 2 = τ 1 , D 2 = ( -τ1 q (4) 1 q (3) 1 q1 q1 sign( q1 ) 1
) ,

X 2 = (o 1 o 2 o 3 o 4 o 5 o 6 o 7 ) T . (3.33) with o 1 = ZZ 2 K 12 , o 2 ZZ 1 • ZZ 2 K 12 , o 3 = ZZ 2 • F v1 K 12 , o 4 = (ZZ 1 + ZZ 2 ), o 5 = F v1 , o 6 = F s1 , o 7 = F of f .
Finally, the dynamic parameters are calculated from the complete form:

ZZ 1 = o 2 /o 1 , ZZ 2 = o 4 -ZZ 1 , (3.34) F v1 = o 5 , F s1 = o 6 , (3.35) K 12 = ZZ 2 /o 1 , F of f = o 7 .
(3.36)

We will apply the OLS technique on the two identification model, where derivatives are computed by central Jacobi differentiator, as well as central difference associated forward-backward Butterworth filter in order to make a comparison.

Data acquisition

The comparison is carried out in the differentiator part. On one hand, time derivatives are estimated using the central Jacobi differentiator; on the other hand, time derivatives are estimated by means of a band pass filtering of the position. This band-pass filtering is obtained with the product of a low-pass forward-backward Butterworth filter and from a derivative filter obtained by Euler central difference algorithm, which in all denotes no phase shift. The magnitude of the frequency response is given by:

|H(jω)| = 1 (1 + ( jω ω butter ) 2n butter ) , (3.37)
where n butter is the filter order and ω butter is the cutoff frequency of the filter. n butter is fixed according to the maximum derivatives order in the identification model. The cutoff frequency ω butter of the low-pass filter must be chosen to avoid any magnitude distortion on the filtered signals in the range [0, ω dyn ] defined by the dynamics to be identified. More details about filtering can be found in [START_REF] Pham | Accelerometer based identification of mechanical systems[END_REF][START_REF] Pham | Identification of joint stiffness with bandpass filtering[END_REF].

To eliminate high frequency noises and torque ripples, a parallel decimation is performed on all identification model. This low-pass decimate filter resamples each signal at a lower rate. It keeps one sample over d n because no information is contained in the range [ω dyn , ω s /2], where ω s is sampling frequency. Details about data decimation can be found in (Gautier, 1997).

Motor and load positions are measured by means of high precision encoders working in quadrature count mode and with an accuracy of 100000 counts per revolution. The sample acquisition frequency for joint position and current reference (drive force) is 1 kHz. We calculate the motor torque using the relation: (3.38) where v τ is the current reference of the amplifier current loop, and G τ is the gain of the joint drive chain, which is taken as a constant in the frequency range of the robot because of the large bandwidth (700 Hz) of the current loop.

τ 1 = G τ v τ ,
The first natural frequency, is of 30 Hz. This was verified with appropriate mechanical experiments such as blocked output test (see [START_REF] Janot | Modeling and identification of a 3 DOF haptic interface[END_REF]). The cutoff frequency of the Butterworth filter is fixed at 60s Hz and the decimate ratio n d = 10. It should be noticed in the region where the reference trajectory reaches the pulse, the data is not considered.

The system is position controlled with a PD controller, the bandwidth of the closed loop is tuned at 30 Hz to identify the dynamic parameters. Exciting trajectories consist of trapezoidal velocity with pulses, such that trapezoidal velocity excites very well inertia and friction parameters while pulses excite flexibility. We have condition number of observation matrix is around 30, implying that the dynamic parameters are well excited and can be identified (Gautier and Khalil, 1992;[START_REF] Presse | New criteria of exciting trajectories for robot identification[END_REF] with a good accuracy.

Experimental Validation

• identification model using motor and load positions: with the model described in (3.26), the maximum derivative order is 2. According to [START_REF] Pham | Identification of joint stiffness with bandpass filtering[END_REF], the order of Butterworth filter n butter = 4, which is a combination of an order 4 forward Butterworth filter and and order 4 backward one. For central Jacobi differentiator, we take µ = κ = 2 and q = 2, for the estimation time window, we take 0.1s, 0.2s, 0.24s for derivatives of order 0, 1, 2 respectively. With the same reference trajectory and configuration as first identification method, we solve the LS problem Y = W X + ρ. Estimated value, standard deviation σ X, relative standard deviation σ Xr , relative norm of the residue

∥(Y -W X est )∥ ∥Y ∥
are shown in table (3.4). Cross tests validations have been performed. They consist in simulating the EMPS with the identified values and in integrating the direct dynamic model (3.27). In Fig. (3.18), we can see for both methods, the estimated torque follows closely the measured one. 3.4 -Results with identification model using motor and load positions in (3.33), the maximum derivative order is 4. According to [START_REF] Pham | Identification of joint stiffness with bandpass filtering[END_REF], the order of Butterworth filter n butter = 6. For central Jacobi differentiator, we take µ = κ = 2 and q = 2; for the joint position, 2, 3, 4 order derivatives, we take sliding time window of 0.1s, 0.2s, 0.24s, 0.4s, 0.52s respectively; for the first, second order derivatives of torque, we take sliding time window of 0.16s, 0.32s respectively. Estimated value, standard deviation σ X, relative standard deviation σ Xr , relative norm of the residue

∥(Y -W X est )∥ ∥Y ∥
are shown in table (3.5). After resolution, the identified model parameters are given in table (3.6). The cross validation is also given in Fig. (3.19). It can be found from the results, that the identification results using central Jacobi have smaller relative norm of the residue compared to that using difference with Butterworth filter. This means that the simulated force fits better to the real one.

Central Jacobi

Difference + Butterworth Parameters X 2σ X σ Xr % X 2σ X σ Xr % o 1
4.59 10 -5 6.82 10 -7 0.74 4.53 10 -5 6.98 10 -7 0.77 o 2 3.12 10 -3 3.39 10 -5 0.54 3.17 10 -3 3.57 10 -5 0.56 o 3 -2.20 10 -2 3.74 10 -3 8.50 -2.60 10 -2 3.90 10 

Comparison between two identification model with EMPS

The errors force with cross validation of these two identification methods are presented in Fig. (3.20). From the figure, we can see the identification models using motor and load positions have relatively more errors in cross validation than those using only motor position and torque. Comparing only the factor relative norm of the residue

∥(Y -W X est )∥ ∥Y ∥
, the identification model using only motor position and torque with central Jacobi differentiators presents the smallest values, which means the model is well built and the parameters are well identified to correspond the real measurement.

Meanwhile, we can see that with the same identification model, the one us- -5.84 -5.84

Table 3.6 -Identified parameters with identification model using motor position and torque ing central Jacobi differentiators has small residue with cross validation. This proves the robustness of the central Jacobi differentiators in off-line applications.

In conclusion, the central Jacobi differentiator is an efficient off-line high order derivatives differentiator. Compared to central difference with Butterworth filter, it has the same or even better performance with proper parametrization. Tests on simulation and EMPS prove that it can be applied in real application.

Conclusion

In this chapter, the recently developed Jacobi differentiators are analysed in both time domain and frequency domain. The frequency domain property corresponds well with time domain analysis. The important fact is that via the frequency analysis, we can evaluate the Jacobi differentiator performance from the bode plot, which for the first time brings to the user a criterion or measurement to design the differentiator. Furthermore, by the frequency analysis, Jacobi differentiator is able to make a comparison with the other differentiators, such as difference with filtered data approaches.

Jacobi differentiators are in nature a low-pass differentiators and comparisons are done to prove that Jacobi differentiators presents accuracy with good linear phase property. Meanwhile in discrete case, the computation of Jacobi differentiators always induce a numerical error when dealing with integration, which causes bias dealing with low frequency signal. Thus, the elimination of deviation is necessary. In the end, several robotic identification tests are done with Jacobi differentiators, which show their performances in applications. It should be noticed that different numerical decomposition tools, such as inverse, pseudo-inverse, QR factorization or SVD decomposition, can make difference when the observation matrix is of rank deficiency or near singularity. When the observation matrix has full rank and have good condition number, their performances are the same in precision of results. Thus, here we do not compare them. For the other techniques, we show in this chapter the comparison of the corresponding identification results. In the following table (4.1), we conclude the existing identification methods. Four robot identification model: in the following part, we will apply four identification model: dynamic identification model, energy identification model, power identification model, identification based on modulating functions with power model. The implementation procedures are discussed in chapter 1.

Three least square techniques: in each identification model, we will apply different LS techniques: OLS, WLS, ILS (see appendix).

Two differentiators: the central difference with forward-backward Butterworth filter is a zero phase off-line differentiator, which is widely used in various applications; the central Jacobi differentiator is a recently developed algebraic differentiator which is robust to noise and also applied off-line. Thus, the comparison between these two differentiators are interesting.

.

Tests on 2R scara planar robot

Simulation tests are carried out at sampling rate ω c = 2π × 100 rad/s, using the robot model described in chapter (1.1.1), without considering the friction offset parameter Γ of f . There are eight base dynamic parameters to be identified:

X = [ZZ 1R ZZ 2 LMX 2 LMY 2 F v1 F s1 F v2 F s2 ],
using the measured joint position and torque. The simulation tests are running with value X all in SI Units: X = [3.5 0.06 0.15 0.1 0.3 0.4 0.2 0.12]. The reference trajectory is generated point to point using a classic 5 th order polynomial trajectory generator, where a successive 30 points are chosen within interval [-π, π], which offers au total n e = 5000 sampling points.

Simulation for 2R robot identification

The following tests are carried with the same condition. OLS, ILS are implemented in every cases. For ILS, the regularizing parameter λ = 0.001, the stopping error tolerance is 10 -8 and maximum iteration is 10 8 times.

WLS is applied only with dynamic identification model, because other models have only one dimensional information that cannot be weighted. WLS technique is applied so that certain regions of the observation are valued more important or less important in the regression, according to their deviation. Here, weights are given to dynamic equations for each joint respectively, where their value is the inverse of the standard deviation σ j ρ . with j the joint number. We can regroup the dynamic identification model (1.15) by putting the terms concerning the same torque together, and it is easily obtained in the form

            Γ m1 . . . Γ mn             =             D 11 . . . D 1N b . . . . . . . . . D n1 . . . D nN b             X, (4.1)
where Γ mj is the N s ×1 torque observation for joint j, D ji is the N s ×1 observation element of parameter X i in the torque dynamic equation of joint j. Then, we can calculate the standard deviation

σ j ρ = ∥Y j -ΦX j ∥ √ r -c , ( 4.2) 
where

Y j =             Γ mj (1) . . . Γ mj (n s )             , Φ j =             D j1 (1) . . . D jN b (1) . . . . . . . . . D j1 (n s ) . . . D jN b (n s )            
with r is the total number of equations, c is the number of unknown parameters, n s is the number of sampling points.

Then, the weights 1

σ j ρ
are adding to the corresponding part in (4.1), then the dynamic identification model becomes

              1 σ 1 ρ Γ m1 . . . 1 σ n ρ Γ mn               =               1 σ 1 ρ D 11 1 σ 1 ρ . . . 1 σ 1 ρ D 1N b . . . . . . . . . 1 σ n ρ D n1 . . . 1 σ n ρ D nN b               X. (4.3)
Considering the band-pass filtering, the Euler difference algorithm with forward-backward Butterworth filter is of order 12 with cutoff frequency ω f q = 0.8 ω c /2 5 = 8 Hz, where the forward or backward Butterworth filter is the same order 6 with opposite poles in the transfer function. The joint position and torque data are pre-filtered, then the joint velocity and acceleration are computed using Euler central difference algorithm.

For the selection of band-pass filtering using the central Jacobi differentiator, the cutoff frequency should be regulated at 8 Hz as the Butterworth filter. As mentioned in chapter 3, we can analyse the central Jacobi differentiator in frequency domain, and the cutoff property is easily shown. For tuning the parameters, we fix κ = µ = 2, q = 2, then the only parameters tunable is the time window T . After several plots, we choose the best T as shown in Fig. (4.1) and set T = 0.16s for filtering joint position and torque, T = 0.24s for joint velocity and T = 0.28s for joint acceleration. From the analysis in chapter 3, if we increase the estimation time window, the cutoff frequency will move to low frequency. It should be noticed that there are bad estimation of the derivatives in the beginning and the end of the trajectory. In case the wrong estimation, we remove the estimation of the first and last 2s.

Then, for IDIM-LS, power identification model, a low-pass filtering decimate procedure is implemented with decimate ratio n d = 10.

Definite integrals [t a , t b ] are considered in the robot energy identification model and modulating function using power identification model. The rules for selection of integrals are presented in chapter (1.2), where the decimate procedure with the ratio n d is equivalent to integration definite with t b (i)t a (i) = n d * 2π/ω c . Because the sampling frequency ω c = 2π × 100 rad/s and n d is set to 10, thus the definite integral t b (i)t a (i) = 0.01s. While for modulating function using power identification model, the definite integral [t a , t b ] can be selected larger because modulating functions with integration change the filtering property. Thus, we test two type of integrals for modulating function using power identification model, the first with t b (i)t a (i) = 0.01s, and the second with t b (i)t a (i) = 0.5 plus t b (i)t a (i) = 1.

In the modulating function based approach, we implement the Jacobi modulating functions described in (2.9) with ℓ = {ℓ ∈ N|ℓ = 10, 11, . . . , 20} and sinusoid based modulating functions g ℓ (t) = sin ℓ ( π T t

) with ℓ = {ℓ ∈ N|ℓ = 10, 11, . . . , 20} . In the following part, we present the simulation results.

Filtering systematic error

First we carry out the simulation test without considering the measurement noise, in order to investigate the systematic error due to the filtering implementation. The results are shown in table (4.2) with band-pass filter of central difference with Butterworth filter, and in table (4.3) with the central Jacobi differentiator. In order to see the systematic error for each parameter, we define e Xir % = 100 × | Xi-Xi Xi |. The conclusion can be drawn in two aspects:

• comparing the band-pass filters, we find that the central Jacobi differentiator approach obtains smaller systematic error than those of the band-pass filter of central difference with Butterworth filter;

• comparing the identification model, form the relative error | X- X X |%, we see that energy identification model has the smallest systematic error, as 

Identification results on 2R prototype robot

In this part, the experimental data are acquired from a 2R scara planar prototype robot manufactured in the laboratory (IRCCyN) described in chapter (1.1.1). The joint position q and the current reference V T (the control input) are collected at a 100 Hz sample rate while the robot is tracking a fifth order polynomial trajectory. This trajectory has been calculated in order to obtain a good condition number. This means that it is an exciting trajectory taking the whole trajectory all over at the time of the test. All methods are performed using the same joint position q and torque Γ m , where each torque Γ m is calculated 1 1 with t b (i)t a (i) = 0.01s, 2 with t b (i)t a (i) = 0.5 plus t b (i)t a (i) = 1. 

Γ mj = G T j V T j ,
where G T j is the drive chain gain which is considered as a constant in the frequency range of the robot dynamics. The measurement joint position is shown in Fig.

(2.4) and the motor torques are presented in Fig. (2.5). Note that all the identification methods are implemented with the same data.

Similarly as in the simulation, the joint position and torque data are prefiltered using a 12 order forward-backward Butterworth with a cutoff frequency ω f q = 0.8 ω c /2 5 = 2π × 8 rad/s or 8 Hz. Then, the joint velocity and acceleration are computed using Euler central difference algorithm.

To compare, the central Jacobi differentiator is with configuration that κ = µ = 2, q = 2 and T = 0.16s for filtering joint position and torque, T = 0.24s for joint velocity and T = 0.28s for joint acceleration. Notice that in case the bad estimation in the beginning and the end due to the lack of information, we remove the related data for the first and last 2s.

For dynamic and power identification model, the data are down-sampled through a decimate filter at 4 Hz, with decimate rate n d = 10, in order to avoid aliasing (Gautier, 1997). For energy identification model and the modulating functions with power model approach, the procedure equivalent to decimate procedure is implemented, so that the integrals are selected with t b (i)t a (i) = n d * 2π/ω c . Because the sampling frequency ω c = 2 * pi × 100 rad/s and n d is set to 10, thus the definite integral t b (i)t a (i) = 0.01s. While we try a second configuration t b (i)t a (i) = 0.5s plus t b (i)t a (i) = 1s for modulating functions with power model approach, because integrals associated with modulating functions can change the low-pass filtering property.

In the modulating function based approach, we implement again the Jacobi modulating functions described in (2.9) with ℓ = {ℓ ∈ N|ℓ = 10, 11, . . . , 20} and sinusoid based modulating functions g ℓ (t) = sin ℓ ( π T t

) with ℓ = {ℓ ∈ N|ℓ = 10, 11, . . . , 20}.

Finally, identification results are listed in table (4.4, 4.5, 4.6, 4.7, 4.8), 4.9.

Since the real values of dynamic parameters of the prototype robot are unknown, we list the results with residue norm ∥Y -W X∥, relative residue norm

∥Y -W X∥ ∥Y ∥ , root mean square of residue ∥Y -W X∥ ∥ √ r-c∥ , maximum relative residue norm max( (Y -W X) j Y j
), and their condition numbers. Among them, the relative residue norm ∥Y -W X∥ ∥Y ∥ represent more the model error.

It should be noticed that ILS technique has the same precision with OLS technique, thus here we do not list the results. From the results, the IDIM-OLS and power identification model have the better condition number for the observation matrix. Compared to inertia parameters, the friction parameters are less identified, since their values are small and their relative standard deviation σ Xr % are relatively large. This come from the fact that viscous friction parameters are small and have little influence on the dynamic model; and Coulomb friction parameters need to be excited with trapezoid velocity in the trajectory.

Conclusion can be drawn as :

Firstly, modulating functions using power model method with definite integral t b (i)t a (i) = 0.5s, 1s has very small relative standard deviation σ Xr % for each dynamic parameters, and small relative residue norm ∥Y -W X∥ ∥Y ∥ . Although its condition number is relative lager, it can be regarded as the best identification method. When with definite integral t b (i)t a (i) = 0.01s, the relative residue norm ∥Y -W X∥ ∥Y ∥ becomes large. In general, for modulating functions using power model method, the relative standard deviation is much improved than the other methods, especially in the inertia dynamic parameters. In this sense, it is the best identification methods among all the techniques. Secondly, although not as good as the modulating functions using power model method, the IDIM-WLS obtains also small relative residue norm ∥Y -W X∥ ∥Y ∥ , but the relative standard deviation σ Xr % of each parameters are higher. Considering these two elements, IDIM-WLS is the good solution.

While the energy and power identification model also presents small relative residue norm, its relative standard deviations ∥Y -W X∥ ∥Y ∥ are high than IDIM-WLS. And IDIM-OLS has the worst performance except that IDIM-OLS has the best condition number of the observation matrix.

For differentiators, the results using central Jacobi differentiator are relatively better than using central difference with Butterworth filter, or at least they are similar. The results show central Jacobi differentiator is a robust offline differentiator.

So, with the prototype 2R scara planar robot, the experimental works prove that: modulating function with power model ≥ IDIM-WLS ≥ power identification model ≥ energy identification model ≥ IDIM-OLS .

Conclusion

From the comparison of different identification techniques, we have the following conclusion:

• comparing the identification models, the modulating function with power model method and IDIM-WLS are the best solution; secondly the power model and energy identification model; while IDIM-OLS has largest error in the relative standard deviation ∥Y -W X∥ ∥Y ∥ ; • comparing the differentiators, the central Jacobi differentiator is a robust offline differentiator, which has the better or same performance than band-pass filtering of central difference with Butterworth filter approach;

• comparing the LS techniques, WLS offers better solution than OLS and ILS, but WLS only can be applied in IDIM and power identification model, besides, OLS and ILS have the same solution when the observation matrix has full rank. Chapter 5

Simplified model with real time estimation

In all the questions discussed above, the accurate dynamic models are needed for control issue. While some inconveniences come with the accurate identification:

• it requires modelling the robot dynamics and identifying the unknown parameters in the model, which is an extra work;

• the building of dynamic models are theoretical and there always exist some bias compared to the ideal case, resulting in inaccuracy;

• in order to accurately identify of the parameters, identification procedures are usually carried out over a long time window, and need a sufficient information from the sampling data, in this sense, the traditional identification approaches respond not fast enough to corrupt change of the system dynamics.

From control point of view, we can compromise between the estimation accuracy for the system dynamics and the estimation time. In order to get fast response with respect to corrupt dynamic changes, here we proposes a real time estimation iterative learning structure for robot manipulators without knowing the dynamic model of the system, as well it is robust to corrupt payload change and initial conditions. The interesting point of this method is that it estimate the parameters in short time window. It considers a simplified model to describe the robot dynamics, instead of the explicit dynamic model, commonly used for the simplicity of identification model. The simplification allows to reduce the number of parameters to be updated. Moreover the simplified model should represent the current system dynamics, which can be ensured by a real time estimation of the model states. In this case, the corrupt change of payload will be detected within short time window such as 0.1 second, and the system dynamics will be adjusted quickly to real values. Modulating functions techniques are also applied in the real time estimation process, to decrease the order of input via integration by part method, which avoids using joint velocities and accelerations. Based on filtering property of modulating functions, groups of modulating functions are selected in order to eliminate the high frequency noise influence. In the end, simulation results on a two degrees of freedom planar robot prove the efficiency of the control structure.

Introduction

Iterative learning control is an efficient method for on-line robot application. Lots of researches are dedicated to this iterative learning subject, such as in [START_REF] Bao | A learning scheme for the parameter identification of robot dynamics[END_REF][START_REF] Bristow | A survey of iterative learning control[END_REF][START_REF] Bukkems | Learning-based identification and iterative learning control of direct-drive robots[END_REF][START_REF] Wang | Survey on iterative learning control, repetitive control, and run-to-run control[END_REF]. In recent literature [START_REF] Gautier | Iterative learning identification and computed torque control of robots[END_REF] presented the structure of iterative learning identification and computed torque control (IDIM-ILIC) in robot issues. It estimates or adjusts on-line the dynamic parameter values and constructs the computed torque with the updated parameters. However these methods are somehow based on the awareness of robot model and the identification of the model parameters, which is complex and hard to implement in real time. Starting from an algebraic point of view, we proposed an extremely simplified model to represent the manipulator's dynamics, where the model parameters are time-varying. The number of parameters to be updated in this model is small. This gives simplicity to robot model and advantages in parameters updating process, because with simpler structure, it requires less time consumption to get robust estimation. The validity of the simplified model is ensured by real time parameters estimation, where the timevarying parameters are approximated as constant or linear varying component in short time interval, according to their dynamics. The reconstruction of system dynamics is ensured once the estimation time is reduced to 0.1s as it is tested in simulation of sampling frequency 100 Hz, so that it allows the estimation responds quickly to the dynamics variation and makes the iterative learning control robust to corrupt change and initial conditions.

In the estimation process we utilize modulating function approach to avoid using joint velocities and accelerations. Commonly these two derivatives are computed from joint position, which causes problem in robot identification process because small error in measurement can induce large error in the computed derivatives, specially for high order derivatives. Thus it is better to use only joint position. The modulating function property plays an important role in reducing the order of inputs in the estimation model as in (Liu, Laleg-Kirati, et al., 2013). The modulating function identification theories are proposed in several literatures, while in robotics identification field, the modulating function identification application is new and can be found in [START_REF] Guo | On-line robot dynamic identification based on power model, modulating functions and causal Jacobi estimator[END_REF]. There exist all kinds of modulating functions, we will study their filtering property and select certain groups of modulating functions which have low-pass filtering property. This chapter is organized as follows: section 2 deduces the simplified robot model from the robot explicit dynamic model and presents the design of the adaptive controller; section 3 gives precise description on real time estimation of model parameters using modulating functions; in section 4 simulation is carried out with a two degrees of freedom planar robot model, the simulation result shows that the adaptive control structure has good tracking precision and is robust to high frequency noise, corrupt change of system dynamics and initial conditions; and in last section it comes to a conclusion.

Simplified model and iterative learning control

In this section, we first provide the rigid-body dynamic model of manipulator and change it to a simplified model with time-varying parameters. Then an iterative learning controller is designed for this model.

Recall thee general form of the inverse dynamic model (1.2): τ = M(q) q + C(q, q) q + Q(q) + τ f , The analytical expression of the inverse dynamic model is complex and the unknown dynamic parameters are numerous. This brings difficulty to estimation because it need rich measurements to well identify each value of the parameters, where some of them usually are coupled and need long time to identify. Here, we propose a simplified model with fewer parameters to reconstruct system dynamics: τ = M(t) q + N(t), (5.1)

where M(t) = M(q(t)) is a n × n symmetric and positive definite inertia matrix, and N(t) is a n × 1 vector contains other components of the manipulator dynam-ics. The simplicity holds under condition that model parameters M(t) and N(t) are considered time-varying.

Controller design

Given the reference trajectories q ref (t), qref (t) and qref (t) of position, velocity and acceleration respectively, without knowing the robot model, derive an adaptive control law for the actuator torques, and a real time estimation scheme for the adaptive components, such that the manipulator joint position q(t) precisely tracks q ref (t) after an initial adaptation process. In order to design such a controller, we use the following controller:

τ = M(t) ( qref -λ d ė -λ p e -λ i ∫ T 0 e ) + N(t), (5.2) 
with proper gains λ p , λ i and λ d (diagonal matrix, see chapter (A.4)), it is sufficient to asymptotically stabilize the tracking error e = qq ref for the system modelled by (5.1).

At instant t, we can replace the computed motor torque τ in equation ( 5 (5.5)

The asymptotically stability and convergence rate of tracking error e can be ensured and are tunable by selecting the gains (see appendix A.4) λ p , λ i and λ d .

M(t) and N(t) should be estimated as M and N within small time interval, which will be discussed in the next section. This control scheme is easy to implement for robot manipulators without knowing the dynamic model of the robot, and simplicity in the model contributes to realize real time estimation.

In return real time estimation offers quick response to variation of system dynamics as well as the initial conditions. 

Real time estimation

According to the model description (5.1), the conventional estimation approach needs the joint torques τ and accelerations q. Usually τ are calculated from the current reference of the amplifier current loop and the gain of each joint drive chain. And q are computed from discrete joint position measurement via robot sensor, whose sampling rate must be large enough to avoid high frequency noise aliasing the bandwidth of the joint position closed loop, see (Gautier, 1996). But reconstruction of high order derivatives from noisy data is long standing problem because noise component will be enlarged exponentially with increasing order during the numerical computation. Above all, we propose a modulating functions based structure regarding to the simplified model, where only the joint position data is needed in the estimation process. Meanwhile, the integration with definite integrals is actual a low-pass filtering, which attenuates the high frequency noise influence.

Estimation model

Recall the simplified model (5.1). To update the parameters we need to discretize them. Regarding to small time window, we assume that M(t) and N(t) are approximated as a constant M and a linear relation N = N 0 + N 1 t. More precisely, the inertia matrix M(t) is a function of q which can be considered constant in short time interval; while the vector N(t) is a quadratic functions of q and q whose variation cannot be ignored even in small time interval. In this case it can be treated as linear component. Thus the model rewrites as:

τ = M q + N 0 + N 1 t.
(5.6)

In this case these parameters can be update in real time to reconstruct system dynamics. The number of parameters is greatly reduced so that for a n-link manipulator, the simplified model contains n 2 +5n 2 parameters. With respect to the 2R scara planar robot, the simplified model contains 7 parameters to identify, while the IDIM contains 8 minimal parameters.

Then, modulating functions are applied to decrease the order of input variables. Let g be a k th order modulating function on [0, T ] where k ≥ 2. Multiply g with acceleration q and integrate on [0, T ]. By partial integration, input q decrease its order to position input q and modulating function g increase to g

which is analytically known (because g(0) = g(T ) = ġ(0) = ġ(T ) = 0). Recall the property (5.7):

∫ T 0 g q = ∫ T 0 ġ q = ∫ T 0 gq.
Multiply equation (5.6) by modulating function g and integrate on [0, T ], using equation (5.7) we formulate the estimation model as:

∫ T 0 gτ = M ∫ T 0 gq + N 0 ∫ T 0 g + N 1 ∫ T 0 gt (5.7)
Notice that equation (5.7) contains n equations. To solve the unknowns it need additional data from multi-equations whose number must not be smaller than that of the unknowns. This can be realized by adding a variable ℓ to modulating function g where ℓ ∈ R, and a combination of different group of modulating functions. With enough sequence of ℓ, the estimator forms an overdetermined observation matrix and it can be solved by least square techniques. Finally we get the linear estimation model

∫ T 0 g ℓ τ = [∫ T 0 gℓ q ∫ T 0 g ℓ ∫ T 0 g ℓ t ] [ M N 0 N 1 ] .
(5.8)

These scalar equations give an overdetermined system which is linear with respect to unknown parameters X s = [M N 0 N 1 ], or can be expressed as B = AX s . This kind of problem can be solved by minimizing the Euclidian length of the residual vector min X s ||AX s -B||, which gives a unique optimal Xs as solution.

There exists a lot of least square (LS) techniques such as OLS, WLS, ILS and so on, and we apply the OLS.

Simulation

This simulation part utilizes the robot model described in chapter (1.1.1), without considering the friction offset parameter Γ of f . Thus, there are eight minimal dynamic parameters X and recall (1.12)

X = [ZZ 1R , ZZ 2 , LMX 2 , LMY 2 , F v1 , F s1 , F v2 , F s2 ].
The simulation tests are running with value X which is all in SI Units: X = [3.5 0.06 0.12 0.005 0.05 0.5 0.01 0.1].

Recall the robot energy model in chapter (1.2) and the we calculate each component as:

H(1, 1) = ZZ 1R + ZZ 2 + 2(C2LMX 2 -S2LMY 2 ), H(1, 2) = ZZ 2 + (C2LMX 2 -S2LMY 2), H(2, 2) = ZZ 2 , C(1, 1) = -q2 (C2LMY 2 + S2LMX 2 ), C(1, 2) = -( q1 + q2 )(C2LMY 2 + S2LMX 2 ), C(2, 1) = q1 (C2LMY 2 + S2LMX 2 ), C(2, 2) = 0, Q = 0, τ f (1) = F V 1 q1 + F C1 sign( q1 ), τ f (2) = F V 2 q1 + F C2 sign( q2 ),
with C1 = cos(q 1 ) and C2 = cos(q 2 ).

Consider the simplified robot model (5.1), we have

M(t) = H(q), N(t) = C(q, q) q + Q(q) + τ f .
And M and N are to be estimated at instant t which is approximately equal to the value of M(t) and N(t). The simulation task is to track the desired trajectories using the proposed adaptive control and real time estimation associated with JMF modulating functions. The modulating set is a combination of JMF g ℓ (v):

g ℓ1 (v) = ( v -t + T T ) ℓ ( v -t T ) ℓ , g ℓ2 (v) = ( v -t + T T ) ℓ ( v -t T ) ℓ+1 ,
(5.9)

where v ∈ [t -T , t] and ℓ = {ℓ ∈ N|ℓ = 10, 11, . . . , 30} for JMF.

The trajectories are defined from point to point and between each two points the joint position, velocity, acceleration trajectories are planned as high order polynomials, which can offer good excitation. The simulation sampling frequency is 1000 Hz. First we investigate the noise free case in the simulation.

The gains are selected with λ p1 = 49, λ p2 = 580, λ d1 = 31, λ d2 = 46, λ i1 = 30, λ i2 = 3000 (see appendix A.4). In the feedback loop, the joint position feedback considers the current joint position measurement; the joint velocity feedback is computed using one step backward difference algorithm with the joint position measurement; the integration feedback is the integration of the error position. In order to test the controller, we update M and N by their real value and we show the reference trajectories for joint position and velocity in Fig ( 5.2) and the computed torque in Fig. (5.3). The tracking error is less than 6 • 10 -1 radiance from the simulation.

Simulation results with real time estimation

In the estimation process we bound the estimation increase step in order to attenuate the influence the wrong estimation due to the ill excitation at some points. We use QR factorization method to solve the least square problem. The estimation time window can be as small as 0.1s with adaptation frequency of 100 Hz, because the computation is small and can be implemented real time.

Using the above configuration, the simulation results are good with tracking error less than 0.02. And estimation value of M and N are floating around the real value. The estimation time is 0.1 second so that the time varying parameters M(t) and N (t) can be estimated. From the Fig. (5.7) it can be found that M is quasi constant but N is varying fast with respect to estimation window. The estimated N are reconstructed from two estimation N 0 and N 1 . The proposed simplified model which consider M is constant and N = N 0 + N 1 t is a linear component is reasonable from this result and it can be extended to common manipulator applications because most of their trajectories dynamic properties are similar as those in this case. The computed torque using the estimation of M and N is given in Fig.

(5.4).

Results Robust To Variation Payload

In real applications, sometimes the payload changes during the manipulator operation. Adjusting them on-line is necessary for robust control. This iterative learning adaptive controller is a solution to variation of system dynamics, and in our case the real time estimation ensures the quick response to corrupt In simulation, at instant t = 2s, ZZ 1R changes from 3.5 to 5, and at instant t = 5s, ZZ 1R changes from 5 to 4. This can simulate the corrupt change of payload. Apply the adaptive control, and result is good with tracking error less than 0.02. The estimation of M can be found in Fig. (5.8). Notice that there is a delay of about 0.5s before getting the correct estimation of M. This delay is caused by the bounded estimation increase step and the estimation window 0.1s, as well it needs some time to recover from variation of system dynamics to re-estimate the changed parameter. During this transition period, the estimated parameters are varying smoothly to the correct value. The computed torque is shown in Fig. (5.5).

However, the real time estimation depends on the reference trajectory dy- • reducing the dynamics of the reference trajectory by ten times, by regulating the maximum velocity and maximum acceleration;

• increasing the dynamics of the reference trajectory by ten times.

When the reference trajectory dynamics reduce, the robot motion becomes slower locally, which means M(t) and N (t) is varying slowly. In this case, small time estimation window does not offer advantages because trivial trajectory contains less information for estimation. Thus, in this case, the estimation window is enlarged two times in order to have a good estimation.

When the reference trajectory dynamics increase, it is more difficult to apply the real time estimation, because of the conflict between the requisition for enough sampling data and the estimation time window. In this case, the esti- mation time window should be reduced in order to ensure the assumption that M is constant and N is a linear segment locally in the estimation window. But with less sampling data, the estimation is hard to implemented.

Simulation with noise

We simulate the measured joint position and joint torques with high frequency normally distributed random noise (low frequency part is filtered), the signal to noise ratio is 30dB. Notice that we apply the modulating functions based approach without pre-filtering of the measurement. In this case, the noise influence in the feedback derivative and in the estimation part are non-negligible so that with the previous configuration of gains, the controller obtains large bias in the tracking error. In order to overcome this, we select high gains for the error regulation: with ω 1 = ω 2 = 20 rad/s, ξ 1 = ξ 2 = 0.8, T 1 = T 2 = 30 s -1 , which gives λ p1 = λ p2 = 1360, λ d1 = λ d2 = 62, λ i1 = λ i2 = 12000. The estimated parameters and tracking error are given in Fig. (5.9), where the tracking error is bounded less than 0.04 radiance. The computed torque is shown in Fig. (5.6), where there exist more disturbance in the computed torque.

Conclusion

We propose an iterative learning control structure associated with a robust real time estimation module for robot manipulator tracking task. The robot IDIM is replaced by a simplified differential model, which reduces largely the number of parameters to be estimated and decreases the complexity of estimation process. With the simple structure, the estimation time is sharply reduced which means it can be real time estimation and it responds faster to variation of system dynamics. Meanwhile modulating function approach is considered in estimation process. Modulating functions allow to decrease the order of model input via integration. This can avoid the numerical computation of high order derivatives of measured signal, where noise usually induces large error in derivatives calculation. Finally, only the joint position and joint torque are needed in the estimation . The contribution to investigate the frequency domain response of different modulating functions is discussed in chapter 2. The selected modulating functions have a low pass filtering property. This gives simplicity to estimation module because it is not necessary to pre-process the signal to filter the noise component. And compared to to common filter, the modulating function approach needs only the causal data and calculates a scalar without considering phase shift.

But it should be noticed that the modulating function method will lower the identifiability of the parameters because it loses excitation by combining vectors to scalar. And when noise is aliased with signal, modulating functions is sensitive to noise and usually enlarge the noise contribution. For future, experimental work should be carried out on robot manipulator and test should be applied on robot with more links. At the same time, different approaches should be investigated in the real time estimation process in order to deal with more kinds of noise.

At the end, the simulation results show that the estimation can be done in short time and the tracking error is small with respect to the corrupt change in the dynamic parameters.

However, there exist some limits of this method:

• First, because it reconstruct the local system dynamics, thus the data acquisition frequency should be high enough in order to ensure the identifiability of the real time estimation. In the simulation case, we set sampling frequency of 1000 Hz, which offers 100 sampling data within the estimation time window 0.1s, which is good for estimation. While in practice, when system sampling frequency is low which means with less data, this estimation procedure is lack of accuracy.

• Second, the real time estimation procedure relies on the reference trajectory dynamics, where the estimation time window should be properly selected according to the reference trajectory dynamics. For example, if the bandwidth of the reference trajectory is high, the estimation time window should be reduced in order to satisfy the local assumption that M is constant, N is linear segment, which gives difficulty to estimation procedure; instead, if the bandwidth is low, the estimation time window can be selected larger because trivial data can not offer good estimation.

• Third, for complex mechanical systems, some parameters of the simplified model become un-identifiable, with increase of the dimension of M and N .

• Fourth, the computed torques are not as smooth as those generated with off-line identified parameters.

Though it has some drawbacks, this method is still interesting because the system dynamics are reconstructed in short time interval without large numerical computation nor joint velocity and acceleration data. Besides, this approach can be extended to a method to detect system changes. • propose the modulating functions with power model approach on robot identification;

• analyse the frequency domain property of integration with modulating function in order to select good groups of modulating functions for identification use;

• introduce the Jacobi differentiators and for the first time, analyse in frequency domain to understand their filtering properties, thus evaluation and comparisons with other differentiators are possible;

• make comparisons among different identification model, differentiators, LS techniques for robot identification issues and draw conclusion;

• from the simplified model of robot manipulator, we estimate the states in real time using modulating functions approach for adaptation of states in the controller.

In chapter 1, it reviews in detail the robot IDIM, energy and power identification models. In chapter 2, a new identification method is proposed as modulating functions with power model approach. This methods identify the dynamic parameters without considering the joint acceleration data. It integrates the power model with modulating functions, and apply integration by part which can turn the derivative operation into an integration operation according to the property of modulating functions. It is a similar approach to energy identification model, while the variations of the modulating functions in this method offers better rank efficiency and condition number of the observation matrix. As well, the integration effect with modulating functions are investigated in frequency domain so that certain groups of modulating functions 131 are selected with low-pass filtering property for identification use. Comparisons are done on a 2R prototype scara planar robot with IDIM-OLS method, the modulating functions with power model identification proves better precision.

In chapter 3, we introduce the Jacobi differentiators. Analysis in both time domain and frequency domain present the influences of each parameter. Especially, analysis in frequency domain indicate the cutoff property of the differentiator, which make the design of Jacobi differentiators possible. In nature, Jacobi differentiators are low-pass differentiators because of its integration operation. Both the causal and central Jacobi differentiators keep good linear phase property at low frequency. Then, the Jacobi differentiators are applied on the 2R prototype scara planar robot and the EMPS for identification tests. The results show that they are robust differentiators and can be adopted in applications.

In chapter 4, we compare the identification approaches in three aspects: robot identification model, differentiation methods, LS techniques. The tests are done with 2R scara planar robot simulation model and prototype robot. The following conclusions are arrived: comparing the identification models, the modulating function with power model and IDIM-WLS method are the best solution, while energy and power identification model also presents good performance, then IDIM-OLS has relatively larger errors; comparing the differentiators, the central Jacobi differentiator is a robust off-line differentiator, which has the same or better performance than central difference with Butterworth filter approach, it should be noticed that both methods are a band-pass filtering procedure; comparing the LS techniques, WLS offers better solution than OLS and ILS, but WLS only can be applied in IDIM and power identification model, besides, OLS and ILS have the same solution when the observation matrix has full rank.

In chapter 5, we simplified the robot manipulator model and estimate directly its states in a short time window of 0.1s. The observation use the modulating functions approaches, where only the joint position and torque data are required. The estimation is fast so that it can represent the system dynamics and update them in the controller. In the end, the simulation results show that this control structure presents good estimation of model parameters and tracking precision.

In all, the robot identification problems exist for long time and the most important thing is how to eliminate the noise influence. In this work, we propose some methods based on the algebraic set : use the modulating functions with power model approach to remove the noisy computation of acceleration; and apply the Jacobi differentiators in order to get robust estimation of high order derivatives.

Prospective

The robot identification issues are widely discussed and the identification procedures are necessary in practice for applications. Thus, it is important to associate the identification method with real application. While this work proposes some solutions based on algebraic point of views, and discusses the applications on simple mechanical systems. It is more theoretical work and need to be adapted to robot application.

For future work, interests are listed as:

• the inherent properties of noise should be studied corresponding to real application;

• extend and apply these algebraic methods on complex robot systems to test the performance;

• study the case where insufficient excitation is presented;

• reduce the time window and increase the precision for identification.
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A.1.2 Weighted LS

The weighted least squares (WLS) is an improvement of the OLS method. OLS is actually the maximum likelihood estimator under assumption of homoscedasticity, where the regression curve is measured the same precision everywhere, or in other word the disturbances ρ have constant variance. However when treating the heteroskedastic problem, where the magnitude of the ρ is not constant, OLS is no longer the maximum likelihood estimate and no longer efficient. Instead the WLS techinique is implemented. Assume that we have explicit knowledge of different variance disturbances ρ i ∼ N(0, σ 2 i ), the weights sequence can be reconstructed such that ω i = 1

σ 2 i , ∀i.
It indicates that we assign different weight to each observation, so that observations with smaller σ 2 i are treated as more important. Compared to OLS, it minimizes the weighted sum of the squares:

WLS( X) = n s ∑ i=1 ω i (B i -(AX) i ) 2 .
(A.3)

In fact, WLS includes OLS as a special case where all the weight coefficients ω i = 1. We can solve it by the same algebraic method used in OLS method. The optimization problem has known solution which is better understood in matrix form. The WLS solution is written as WLS( X) = (A T WA) -1 A T WB, (A.4)

where W is diagonal (n s × n s ) matrix with W i,i = ω i , ∀i.

The WLS method has two advantages regarding to OLS approach:

• Focusing accuracy;

• Discounting of imprecision.

We may predict the response for certain values of input, if we give the points big weights near the reliable region and points elsewhere smaller weights, the regression will pulled towards matching the data in the reliable region. On other words, it concerns more about the fitting well where the noise is small, and expect to fit poorly where the noise is big.

A.1.3 Iterative LS

Here we refer an iterative method LSMR [START_REF] Fong | LSMR: An iterative algorithm for sparse least-squares problems[END_REF] for solving linear systems Y = WX. The LSMR is based on the Golub-kahan bidiagonalization process. It is analytically equivalent to the MINRES method applied to the normal equation W T WX = W T Y, so that the quantities ∥W T r k ∥ are monotonically decreasing (where r k = YWX k is the residual for the current iterate X k ). It is observed that ∥r k ∥ also decreases monotonically, so that compared to LSQR [START_REF] Paige | LSQR: An algorithm for sparse linear equations and sparse least squares[END_REF] (for which only ∥r k ∥ is monotonic) it is safer to terminate LSMR early.

In order to solve the LS problem Y = WX, we have

W T WX = W T Y, R T Q T QRX = R T Q T Y, R T RX = R T Q T Y, (Q T Q = I) RX = Q T Y.
(A.9)

Finally, we solve R T RX = R T Q T Y which has a smaller cost for computation (compared to other factorization such as Cholesky factorization).

A.2 Causal Jacobi differentiator

Continuing with the definitions in section 3.2, let us recall two useful formula [START_REF] Szegö | Orthogonal polynomials[END_REF] Let x is a smooth function belong to C n (I). Now we define the q th order truncated Jacobi orthogonal series expansion of the n th order derivative x (n) (t 0 -T ξ) by the following operator: ∀ t 0 ∈ I D (n) κ,µ,T ,q x(t 0 -T ξ) = We also define the (q + n) th order truncated Jacobi orthogonal series expansion of x(t 0 -T ξ) by the following: ∀ t 0 ∈ I D (0) κ,µ,T ,q x(t 0 -T ξ) = κ,µ,T ,q x(t 0 -T ξ) is actually a polynomial which approximates the function x(t 0 -T ξ). In the next part, we will demonstrate that D (n) κ,µ,T ,q x(t 0 -T ξ) is in fact related to the n th order derivative of D (0) κ,µ,T ,q x(t 0 -T ξ), which functions as causal Jacobi differentiator. Remark 1. In order to compute ρ n,µ,κ , we should calculate P (µ,κ) n whose computational complexity is O(n 2 ). Hence, the computational effort of ρ n,µ,κ is O(n 2 ).

Proof. By taking the Taylor expansion of x, we obtain for any t 0 ∈ I h that there exists θ ∈]t 0h, t 0 + h[ such that x(t 0 + hτ) = x(t 0 ) + hτx ′ (t 0 ) + • • • + h n τ n n! x (n) (t 0 ) + h n+1 τ n+1 (n + 1)! x (n+1) (θ). (A.23) Substituting (A.23) in (A.22), we deduce from the classical orthogonal proper-ties of the Jacobi polynomials (see [START_REF] Szegö | Orthogonal polynomials[END_REF]) that ρ n,µ,κ (τ) x(t 0 + hτ)dτ = x (n) (t 0 ) + O(h).

Hence, this proof is completed.

In fact, we have taken an n th order truncation in the Taylor expansion of x in Proposition (1) where n is the order of the estimated derivative. Thus, we call these estimators minimal estimators (see [START_REF] Mboup | A revised look at numerical differentiation with an application to nonlinear feedback control[END_REF](Mboup et al., , 2009a))).

Recall the central Rodrigues formula with central Jacobi orthogonal polynomial (see [START_REF] Szegö | Orthogonal polynomials[END_REF]) 

P (µ,

  the robot identification problem 1.1 Inverse dynamic identification model with LS . . . . . . . . . . 1.1.1 Case study: the 2R scara planar prototype robot of IRC-CyN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.2 IDIM-LS . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.3 Identifiability of the dynamic parameters . . . . . . . . 1.1.4 Excitation of the trajectory . . . . . . . . . . . . . . . . . 1.1.5 Data processing for the inverse dynamic identification model 31 1.1.6 Resolution of the inverse dynamic identification model 1.1.7 Numerical tools and evaluation . . . . . . . . . . . . . . 1.2 Energy model identification . . . . . . . . . . . . . . . . . . . . 1.3 Power model identification . . . . . . . . . . . . . . . . . . . . . 1.4 Closed-loop output error identification (CLOE) . . . . . . . . . 1.5 Payload Identification . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Problems in robot identification . . . . . . . . . . . . . . . . . . xix xx Contents 2 Robot identification using power model and modulating functions 2.1 Modulating functions . . . .

  3.4 Dynamic parameters identification of 2R robot . . . . . . . . . 3.4.1 Iterative learning identification and computed torque control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4.2 On-line Identification . . . . . . . . . . . . . . . . . . . . 3.4.3 Non stationary inertial parameter . . . . . . . . . . . . . 3.4.4 Offline Identification . . . . . . . . . . . . . . . . . . . . 3.5 Dynamic parameters identification of EMPS . . . . . . . . . . . 3.5.1 Presentation of EMPS . . . . . . . . . . . . . . . . . . . . 3.5.2 Inverse dynamic model of EMPS . . . . . . . . . . . . . 3.5.3 Identification model using motor and load positions . . 3.5.4 Identification model with only motor position and torque 3.5.5 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . 3.5.6 Experimental Validation . . . . . . . . . . . . . . . . . . 3.5.7 Comparison between two identification model with EMPS 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Comparison of different identification techniques 4.1 Tests on 2R scara planar robot . . . . . . . . . . . . . . . . . . . 4.1.1 Simulation for 2R robot identification . . . . . . . . . . 4.1.2 Filtering systematic error . . . . . . . . . . . . . . . . . . 4.1.3 Identification results on 2R prototype robot . . . . . . . List of Tables 1 méthodes pour l'identification des paramètres dynamiques des robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Modified Denavit and Hartenberg notation presentation of 2R scara planar robot . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Standard inertia parameters of 2R scara planar robot . . . . . . 1.3 Base parameters of 2R direct drive scara planar robot . . . . . . 2.1 Identification results of 1R robot using IDIM-LS and modulating functions identification approaches . . . . . . . . . . . . . . . . 2.2 Systematic error in simulation using modulating functions with power model approach . . . . . . . . . . . . . . . . . . . . . . . 2.3 Comparison between IDIM-OLS and modulating function using power model method, 2R prototype robot . . . . . . . . . . . . 2.4 DHM configuration of 4R scara planar robot . . . . . . . . . . . 2.5 Comparison between IDIM-OLS and modulating functions identification approaches . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Influence of design parameters on D(n) κ,µ,T ,q x(t 0 -T ξ (n) κ,µ,q ) in continuous case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Influence of design parameters on D (n) κ,µ,h,q x(t 0 ) in continuous case. 3.3 Comparison of experimental identification with 2R prototype robot, IDIM-OLS . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Results with identification model using motor and load positions 3.5 Results with identification model using motor position and torque 97 3.6 Identified parameters with identification model using motor position and torque . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Different identification approaches . . . . . . . . . . . . . . . . 4.2 Filtering systematic error of central difference with Butterworth filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Filtering systematic error of central Jacobi differentiator . . . . 4.4 Results with IDIM-OLS, 2R prototype robot . . . . . . . . . . . 4.5 Results with IDIM-WLS, 2R prototype robot . . . . . . . .

2. 1

 1 Bode plot of second order derivatives of modulating functions when ℓ = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Estimation when q is of SNR= 30dB, with ℓ = 2+ i 100 , i = 1, 2, ..., 1800 and T=4s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Zoomed estimation when q is of SNR= 30dB, with ℓ = 2 + i 100 , i = 1, 2, ..., 1800 and T=4s . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Measured joint position of 2R prototype scara planar robot . . 2.5 Joint torque of 2R prototype scara planar robot . . . . . . . . . 2.6 Measurement with normally disturbed random noise of SNR=30dB 62 3.1 Estimated acceleration with causal Jacobi differentiators . . . . 3.2 Bode plot of second order causal Jacobi differentiators . . . . . 3.3 Causal Jacobi differentiator parameters influence on bode plot when T s = 0.001s . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Derivative errors in velocity and acceleration with central Jacobi differentiator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Bode magnitude plot of second order central Jacobi differentiators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6 Phase response of second order central Jacobi differentiators . 3.7 Central Jacobi differentiator parameters influence on bode plot when T s = 0.001s . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.8 IDIM-ILIC scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 3.9 IDIM-ILIC identification results . . . . . . . . . . . . . . . . . . 3.10 IDIM-ILIC tracking error with simulation . . . . . . . . . . . . IDIM-ILIC computed torque with simulation . . . . . . . . . . 88 3.12 Estimation in ZZ 1R , ZZ 2 , LMX 2 , LMY 2 with variation of ZZ 1R 89 3.13 IDIM-ILIC tracking error with simulation and variation of ZZ 1R 89 3.14 2R prototype robot trajectory and estimation of velocities, acceleration of q 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.15 EMPS prototype system . . . . . . . . . . . . . . . . . . . . . . . 91 3.16 EMPS components . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.17 EMPS modeling and DHM frames . . . . . . . . . . . . . . . . . 93 3.18 Cross validation with identification model using motor and load positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.19 Cross validation with identification model using only motor position and torque . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 3.20 Cross validation error with two identification model . . . . . . 101 4.1 Bode plot cutoff frequency at 8 Hz of band-pass filtering for posiiton, velocity and acceleration . . . . . . . . . . . . . . . . . . . 107

Figure 1 -

 1 Figure 1 -Diagramme de Bode du filtre FIR correspondant à la dérivation d'ordre 2 par fonctions modulatrices avec ℓ = 10
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 2 Figure 2 -Comparaison des réponses fréquentielles du différentiateur causal de Jacobi et des filtres classiques

Figure 3 -

 3 Figure 3 -2R scara planar prototype robot (Lab IRCCyN)

  Figure 5 -Comparaison

  Figure 1.1 -DHM frame of 2R scara planar robot

  as shown in Fig. (1.2), without gravity effect. The description of geometry is the same as in Fig. (1.1) and table (1.1).
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  Figure 1.3 -SYMORO+ software

Figure

  Figure 1.4 -DIDIM identification scheme

  Figure 2.1 -Bode plot of second order derivatives of modulating functions when ℓ = 10

  Figure2.3 -Zoomed estimation when q is of SNR= 30dB, with ℓ = 2 + i 100 , i = 1, 2, ..., 1800 and T=4s

  Fig. (2.4) and the motor torques are presented in Fig. (2.5).
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 2 Figure 2.4 -Measured joint position of 2R prototype scara planar robot
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 2 Figure 2.5 -Joint torque of 2R prototype scara planar robot

  Figure 2.6 -Measurement with normally disturbed random noise of SNR=30dB
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 31 Figure 3.1 -Estimated acceleration with causal Jacobi differentiators

  Figure 3.2 -Bode plot of second order causal Jacobi differentiators
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 3 Figure 3.3 -Causal Jacobi differentiator parameters influence on bode plot when T s = 0.001s

  and suppose h ∈ D ′ t 0 . Let x still be a smooth function in C n (I). According to (Liu et al., 2011c), the central Jacobi differentiator D (n)

Figure

  Figure 3.4 -Derivative errors in velocity and acceleration with central Jacobi differentiator

  Fig. (3.7) the influence of parametrization in central Jacobi differentiator.

  Figure 3.7 -Central Jacobi differentiator parameters influence on bode plot when T s = 0.001s

  Fig. (3.9) it shows the identification results. From the simulation results, the IDIM-LS keeps robustness after the first period of sampling. Tracking error is shown in Fig. (3.10), as well the computed torque is shown in Fig. (3.11).

  Figure 3.9 -IDIM-ILIC identification results

Figure 3

 3 Figure 3.10 -IDIM-ILIC tracking error with simulation

Figure 3 Figure 3

 33 Figure3.12 -Estimation in ZZ 1R , ZZ 2 , LMX 2 , LMY 2 with variation of ZZ 1R

  Fig. (3.14) it shows the velocity and acceleration estimation of the real trajectory.Identification results given in table (3.3) are quite similar for both methods.
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 3 Figure 3.14 -2R prototype robot trajectory and estimation of velocities, acceleration of q 1
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 3 Figure 3.15 -EMPS prototype system

  Figure 3.18 -Cross validation with identification model using motor and load positions

  Figure 3.19 -Cross validation with identification model using only motor position and torque

  Figure 4.1 -Bode plot cutoff frequency at 8 Hz of band-pass filtering for posiiton, velocity and acceleration

  .2) by robot model (5.1), and it deduces a state equation for tracking error e M(t) ( ë + λ d ė + λ p e + λ i t) is always invertible (positive definite), the state equation becomes ë + λ d ė + λ p e + λ i 5.4) with respect to time and we get a third order differential equation e (3) + λ d ë + λ p ė + λ i e = 0.
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 5 Figure 5.1 -Structure of iterative learning controller with real time estimation

  Figure 5.2 -Reference trajectory
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 55 Figure 5.3 -Computed torque with updation of accurate M and N
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 5 Figure 5.5 -Computed torque when ZZ 1R varies

  Figure 5.7 -Estimated parameters and tracking error in normal tracking task

Lemma 1 .

 1 Let xi ∈ C[0, 1], then we have ∀ t 0 ∈ I D (n)κ,µ,T ,q x(t 0 -T ξ) κ,µ,T ,q x(t 0 -T ξ)].(A.14) Proof of Lemma 1. Applying n times derivations to (A.13) and according to(+ κ + 2n + i + 1) Γ(µ + κ + n + i + 1) P (µ+n,κ+n) i (ξ). (A.15)Then apply the Rodrigues formula given in (A.10) and take n integration by part, the result gives⟨ P (µ+n,κ+n) i (•), x (n) (t 0 -T •) + κ + 2n + i + 1) Γ(µ + κ + n + i + 1). developing (A.18) with (A.15), we have the analytical continuous form of the causal Jacobi differentiator, which calculates the n th derivative at instant t 0 , ∀ξ ∈ [0, 1], ∀t 0 ∈ Iµ,n,q,ξ (τ) x(t 0 -T τ)dτ,(A.19) with µ, κ ∈] -1, +∞[, C κ,µ,n,i = (µ + κ + 2n + 2i + 1)Γ(κ + µ + 2n + i + 1)Γ(n + i + 1) Γ(κ + n + i + 1)Γ(µ + n + i + 1) , (A.20) Q κ,µ,n,q,ξ (τ) = ŵµ,κ (τ) Let x still be a smooth function in C n (I), then a family of central estimators of x (n) can be given as follows ∀t 0 ∈ I, D µ,κ (τ) x(t 0 + hτ)dτ, ,(A.22) whereρ n,µ,κ (τ) = 2 -(n+µ+κ+1) n! B(n + µ + 1, n + κ + 1) P (µ,κ) n (τ) w µ,κ (τ) , B(n + µ + 1, n + κ + 1) = Γ(n + µ + 1) Γ(n + κ + 1) Γ(2n + µ + κ + 2) .Moreover, we have D (n)h,µ,κ x(t 0 ) = x (n) (t 0 ) + O(h).

  Let x ∈ C n (I), then the minimal estimators of x (t 0 ) given in Proposition (1) can be also written as follows ∀t 0 ∈ I h , D By using the central Rodrigues formula in (A.22) and applying n times integrations by parts we getD n [w µ+n,κ+n (τ)] x(t 0 + hτ) dτ = 2 -(2n+µ+κ+1) B(n + µ + 1, n + κ +1) using P (µ+n,κ+n) 0 (t) ≡ 1 and ∥P (µ+n,κ+n) 0 ∥ 2 µ+n,κ+n = 2 2n+µ+κ+1 B(n + µ + 1, n + κ + 1), we can valid the equation (A.27).
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Table 1 -

 1 

	Modèle d'identification	Différentiateurs	Moindre carré
	Modèle dynamique (IDIM)	différence & Butterworth	OLS 1
	Modèle de puissance	différentiateurs centrale de Jacobi	WLS 2
	Modèle d'énergie		
	Modèle de puissance avec		
	fonctions modulatrices		

. (4). L'erreur systématique sur chaque paramètre, est calculée avec e Xir % = 100 × méthodes pour l'identification des paramètres dynamiques des robots

Table 1

 1 

	.1 -Modified Denavit and Hartenberg notation presentation of 2R scara
	planar robot
	Before regrouped into base parameters, there exist 11 standard inertia pa-
	rameters for each joint, such as in table (1.2):

  1800 and sliding time window length T = 4 second.The estimation result is shown inFig (2.2,2.3). The average estimation of dynamic parameters α, β, γ are 1.966, 3.0572 and 1.4666, with errors 0.034,

		3.5								Reference α
										Estimated α
	Estimated parameters	1.5 2 2.5 3								Reference β Estimated β Reference γ Estimated γ
		4 1	6	8	10	12	14	16	18	20	22
						Time (s)			
				(a) Estimated parameters in 18 seconds	
		4								
	Joint velocity(rad/s)	-2 0 2								
										Reference
										Estimated
		4 -4	6	8	10	12	14		16	18	20
						Time (s)			

table (

 ( 

	2.5).				
		[t a , t b ] with configuration Z 1	
	Parameters	Real	Modulating IDIM-OLS IDIM+M
	∆XX	0.2000	0.2137	0.1961	0.2138
	∆XY	0.3000	0.2992	0.3118	0.2991
	∆XZ	0.2000	0.2534	0.2078	0.2474
	∆Y Y	0.2000	0.1656	0.2199	0.1757
	∆Y Z	0.1000	0.0898	0.1085	0.0923
	∆ZZ	0.3000	0.2434	0.2905	0.2494
	∆MX	0.1000	0.0566	0.0953	0.0635
	∆MY	0.5000	0.4713	0.4854	0.4739
	∆MZ	0.4000	0.3796	0.4003	0.3824
	∆M	2.0000	2.0085	1.9862	2.0069
	Table 2.5 -Comparison between IDIM-OLS and modulating functions identi-
	fication approaches				

  .4.The result shows that central Jacobi differentiator can be accurate and robust as Euler central differentiation with a well tuned Butterworth filter. It can be

										Noisy
										Real
				2					
		Position	0					
				-2					
				0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
								Time (s)		Central Jacobi
										BW+Difference
				40					
		Error velocity	-20 0 20					
			0 -40	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
								Time (s)		Central Jacobi
	Error Acceleration	0 -2000 0 2000	0.1	0.2	0.3	0.4	0.5	0.6	0.7 BW+Difference 0.8
								Time (s)	

•

  Identification model using motor position and torque: with the model described

		Central Jacobi	Difference + Butterworth
	Parameters	X	2σ X σ Xr %	X	2σ X	σ Xr %
	ZZ 1R	71.4	0.46	0.32	72.0	0.46	0.32
	F v1	72.3	2.78	1.93	96.8	2.86	1.48
	F s1	8.70	0.27	1.56	8.83	0.28	1.56
	ZZ 2	34.4	0.43	0.63	34.1	0.43	0.64
	F v2	89.7	0.26	1.26	100	2.32	1.16
	F s2 K 12	10.8 7.52 10 5 8750 0.58 0.22 1.02	10.6 7.45 10 5 8790 0.22	1.03 0.59
	F of f ∥(Y -W X est )∥ ∥Y ∥	0.01 0.0591 number of equations= 4734 0.70 0.125 -7.09	0.01 0.0597	0.70
	Table						

Table 3 .

 3 5 -Results with identification model using motor position and torque

	-3 7.49

  )

	P i (µ,κ)	(τ) ŵµ,κ (τ) =	(-1) i i!	d i dτ i [ ŵµ+i,κ+i (τ)] the Rodrigues f ormula, (A.10)
	d dτ	P i (µ,κ)	(τ) = (i + µ + κ + 1)P i-1 (µ+1,κ+1)	(τ)	(A.11)

https://github.com/symoro/symoro.

The optimization problem consists of determining the trajectory, which provides a condition number of W that is close to 1;

According to(Mboup et al., 

2009a), an optimal value of ξ is given, we discuss in chapter (3.2.1)

It is very difficult to analytically study the behavior of each error bound due to their complex expressions.
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Appendix

A.1 Least squares techniques

Seen from the above identification models, the robot identification problems turn out to be a regression question in the linear form B = AX + ρ, where X is the (N b × 1) base dynamic parameters to be identified, A is the (n s × N b ) observation matrix, B is the (n s × 1) vector of output data, and ρ is assumed to be (n s × N b ) vector of unobserved zero mean independent identically distributed (iid) disturbances with ρ i ∼ N(0, σ 2 ). Different mathematical tools have been developed to solve the LS problems, including the ordinary LS, weighted LS, iterative LS techniques. And methods are proposed to decompose the observation matrix, such as SVD and QR decomposition.

A.1.1 Ordinary LS

In statistics, ordinary least squares (OLS), or called linear least squares, is the basic method for estimating the unknown parameters in a linear regression model. The OLS estimator is consistent when the regressors are exogenous and linearly independent, on other word the regressors should have full column rank. It is the optimal linear unbiased estimator when the errors are of homogeneous variance and are uncorrelated. Under these conditions, the method of OLS provides minimum-variance mean-unbiased estimation when the errors have finite variances. It minimizes the 2-norm Euclidean length of the residual vector:

The optimal solution is given in the matrix form:

SVD decomposition

The singular value decomposition (SVD) is a factorization of a real or complex matrix. For a (m ×n) real or complex matrix M, it has a factorization of the form M = U ∑ V ⋆ , where U is a (m × m) real or complex unitary matrix, ∑ is a (m × n) rectangle diagonal matrix with non-negative real numbers on the diagonal and V ⋆ is a (n × n) real or complex unitary matrix (V ⋆ is the conjugate transpose of V). In particular, the diagonals of ∑ ii are called the singular values of M. In LS problems, SVD are applied when computing the pseudoinverse for the following threes aspects • to see if the observation matrix is singular;

• even if not singular, the singular values are used to compute condition number, which tells how stable the solution will be;

• set singular value 1

ii is near 0, for the purpose to avoid bad inverse.

A.1.5 QR factorization

The QR factorization is a decomposition of a (m × n) matrix W into a product

, where R is a (n × n) upper triangular matrix. QR decomposition is often used to solve the linear least squares problem, and is the basis for a particular eigenvalue algorithm, the QR algorithm.

We can consider the Gram-Schmidt procedure, with the vectors to be considered in the process as columns of the matrix W. That is,

where ∥∥ is the L 2 norm.

From the above, the resulting QR decomposition is

It is shown in Proposition (2) that the minimal estimators of x (n) (t 0 ) given in Proposition (1) are equal to the value of the 0 order truncated Jacobi orthogonal series expansion of x (n) (t 0 + hξ) at ξ = 0. Let us assume that x ∈ C n (I), then we define now the q th (q ∈ N) order truncated Jacobi orthogonal series of x (n) (t 0 +hξ) by the following operator

(A.30) Take ξ = 0 in (A.30), we obtain a family of estimators of x (n) (t 0 ) with

To better explain our method, let us recall some well known facts. We consider the subspace of C 0 ([-1, 1]), defined by

Equipped with the inner product ⟨•, •⟩ µ+n,κ+n , H q is clearly a reproducing kernel Hilbert space [START_REF] Aronszajn | Theory of reproducing kernels[END_REF], with the reproducing kernel

The reproducing property implies that for any function

where

h,µ,κ,q x(t 0 + h•) stands for the orthogonal projection of x (n) (t 0 + h•) on H q . Thus, the differentiators given in (A.31) can be obtained by taking ξ = 0.

Then the affine differentiators of x (n) , which is the central Jacobi differentiators, can be rewritten as (Liu et al., 2011c):

(A.36)

A.4 Gains selection for third order error equation

For a high order linear differential equation with constant coefficient such as:

it has a general solution in the form

where y 1 , y 2 , . . . , y n-1 , y n , are the n linearly independent solutions of the equation.

A general solution of this equation can be found by solving the differential equation's characteristic equation:

This is a polynomial equation of degree n, therefore it has n real or complex roots. And the solutions can be given in the following law:

• 1: if r is a distinct real root, then y = exp rt is a solution;

• 2: if r = λ ± µi are distinct complex conjugate roots, then, y = exp λt cos µt and y = exp λt sin µt are solutions;

• 3: if r is a real root appearing k times, then y = te rt , y = t 2 e rt , y = t k-1 e rt ,. . . , and y = e rt are all solutions;

• 4: if r = λ ± µi are complex conjugate roots each appears k times, then y = exp λt cos µt, and y = exp λt sin µt, y = t exp λt cos µt, and y = t exp λt sin µt, y = t 2 exp λt cos µt, and y 2 = t exp λt sin µt, . . . y = t k-1 exp λt cos µt, and y = t k-1 exp λt sin µt are all solutions.

Recall that the closed-loop system response of each joint j is determined by the following third order linear differential error equation (3.21):

The aim is to ensure the error e converges exponentially to 0, which requires that the roots of characteristic equation have negative real part. First look at the characteristic equation:

We can rewrite the characteristic equation into the product of a second order system and a first order system:

Where, the poles of the second order system is determined by the damping coefficient ξ j and the natural frequency ω j ; the pole of the first order system is determined by the coefficient T j . All the poles should be on the left side of the s-plane in order to keep the error converge. After combining the characteristic equations of (A.41), we can obtain the gains:

We can tune the settling time by the choice of ω j , ξ j and T j following: for the second order system, the settling time t sj is around 3 ξ j ω j ; for the first order system, the settling time t sj is around 3 T j [START_REF] Ogata | Maximum likelihood identification of a dynamic robot model: Implementation issues[END_REF]. In (Gautier et al., 2013), the authors present the way to get the desired natural frequency ω di bandwidth of the controller for this prototype robot: ω di is chosen according to the driving capacity without saturation of the joint drive. In the field of motion control, it is known that the bandwidth of the velocity and position closed-loop are limited by the electro-mechanical cutoff frequency ω EM of the open-loop transfer function between the velocity and the voltage control of the electrical motor, including the case of current controlled motor

where K τj is the electromagnetic motor torque constant and R Aj is the motor armature resistance. Based on this, the full bandwidth of the prototype scara robot are given in (Gautier et al., 2013) with ω 1 = 1 rad/s and ω 2 = 10 rad/s. Then, we select the damping coefficient ξ 1 = ξ 2 = 0.8, and the pole for the first order system T 1 = T 2 = 30 s -1 . Finally we get the gains K p1 = 49, K p2 = 580, K d1 = 31, K d2 = 46, K i1 = 30, K i2 = 3000. Mots-clefs : identification de robot, fonctions modulatrices, différentiateur de Jacobi, analyse fréquentielle, commande de robot Titre en anglais : Online identification and control of robots using algebraic differentiators Résumé en anglais : This thesis discusses the identification issues of the robot dynamic parameters.

Starting with the well-known inverse dynamic identification model, power and energy identification models for robots, it extends the identification model from an energy point of view, by integrating modulating functions with robot power model. This new identification model avoids the computation of acceleration data. As well, the integration procedures are analyzed in frequency domain so that certain groups of modulating functions are selected in order to offer a good low-pass filtering property. Then, a recently developed high order algebraic differentiator is proposed and studied, named Jacobi differentiators. The analysis are done in both the time domain and in the frequency domain, which gives a clear clue about the differentiator filtering property and about how to select the differentiator parameters. Comparisons among different identification models, differentiators, least square techniques are presented and conclusions are drawn in the robot identification issues.

Mots-clefs : robot identification, modulating functions, Jacobi differentiators, frequency analysis, control of robot