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Résumé 

Dans la première partie de cette thèse, nous 
considérons plusieurs problèmes d'estimation de 
paramètre de dimension finie pour les séquences de 
Markov dans l'asymptotique des grands échantillons. Le 
comportement asymptotique des estimateurs bayésiens 
et les estimateurs obtenus par la méthode des moments 
sont décrits. Nous montrons que sous les conditions de 
régularité ces estimateurs sont consistants et 
asymptotiquement normaux et que l'estimateur 
bayésien est asymptotiquement efficace. Les 
estimateur-processus du maximum de vraisemblance 
un-pas et deux-pas sont étudiés. Ces estimateurs nous 
permettent de construire des estimateurs 
asymptotiquement efficaces sur la base de certains 
estimateurs préliminaires, par exemple, les estimateurs 
obtenus par la méthode des moments ou l'estimateur de 
Bayes et la structure de l'estimateur du maximum de 
vraisemblance un-pas. Nous proposons notamment des 
processus autorégressifs non linéaires comme exemple 
et nous illustrons les propriétés de ces estimateurs à 
l'aide de simulations numériques. Dans la deuxième 
partie, nous donnons les applications de processus de 
Markov en économie de la santé. Nous comparons les 
modèles de Markov homogènes et non-homogènes 
pour l'analyse coût-efficacité de l'utilisation de 
pansements transparents contenant un gel de gluconate 
de chlorhexidine par rapport aux pansements 
transparents standard. Le pansement antimicrobien 
protège les accès vasculaire centrale  et réduit le risque 
de bactériémies liées aux cathéters. L'impact de 
l'approche de modélisation sur la décision d'adopter des 
pansements antimicrobiens pour les patients gravement 
malades est discuté. 

Mots clés 
Séquences de Markov, Estimation de paramètre, 
Estimation-processus du maximum de vraisemblance 
un-pas, Estimateur de Bayes, Economie de la santé, 
Analyse coût-efficacité, Bactériémies liées aux cathéters

Abstract 

In the first part of this dissertation we consider several 
problems of finite-dimensional parameter estimation for 
Markov sequences in the asymptotics of large samples. 
The asymptotic behavior of the Bayesian estimators and 
the estimators of the method of moments are described. 
It is shown that under regularity conditions these 
estimators are consistent and asymptotically normal. 
We show that the Bayesian estimator is asymptotically 
efficient. The one-step and two-step maximum likelihood 
estimator-processes are studied. These estimators 
allow us to construct the asymptotically efficient 
estimators based on some preliminary estimators, say, 
the estimators of the method of moments or Bayes 
estimator and the one-step maximum likelihood 
estimator structure. We propose particular non-linear 
autoregressive processes as examples and we illustrate 
the properties of these estimators with the help of 
numerical simulations. In the second part we give the 
applications of Markov processes in health economics. 
We compare homogeneous and non-homogeneous 
Markov models for cost-effectiveness analysis of routine 
use of transparent dressings containing a chlorhexidine 
gluconate gel pad versus standard transparent 
dressings. The antimicrobial dressing protects central 
vascular accesses reducing the risk of catheter-related 
bloodstream infections.  The impact of the modeling 
approach on the decision of adopting antimicrobial 
dressings for critically-ill patients is discussed. 

Key Words 
Markov sequences, Parameter estimation, One-step 
maximum likelihood estimator-process, Bayesian 
estimator, Health economics, Cost-effectiveness 
analysis, Catheter-related bloodstream infection 
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Marina Kleptsyna, Prof. Säıd Hamadène for their assistance and great interest in
this topic.

I am also grateful to all the members of ”Probability and Statistics” laboratory
and the Department of Mathematics at the University of Maine for providing me
with all the necessary facilities for the research.

I would like to acknowledge Dr. Maria Palka-Santini for her expert medical
explications concerning the application part of my research.

Finally, I appreciate the financial support from Statésia. Also this work was
done under partial financial support of the grant of RSF number 14-49-00079.

And last, but not least, I would like to thank my family for encouraging me
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Introduction

Cette thèse est consacrée aux problèmes de l’estimation des paramètres de sé-
quences de Markov et l’utilisation des modèles de Markov dans le domaine de
l’économie de la santé. Elle est donc composée de deux parties.

La première est dédiée aux problèmes de l’estimation des paramètres multi-
dimensionnels de séquences de Markov Xn = (X0, X1, . . . , Xn) présentées sous
la forme de processus autorégressif non linéaire d’ordre 1. Pour ce modèle, nous
décrivons le comportement asymptotique de plusieurs types d’estimateurs. Nous
montrons la consistance et la normalité asymptotique des estimateurs bayésiens
et des estimateurs obtenus par la méthode des moments. Le principal résultat de
la première partie est la construction des estimateur-processus du maximum de
vraisemblance un-pas et deux-pas (one and two-step MLE-processes). Les résul-
tats sont illustrés par des simulations numériques, qui confirment l’applicabilité de
ces méthodes.

La deuxième partie est dédiée aux problèmes d’application des modèles de Mar-
kov dans le domaine médico-économique. Le but de cette partie est d’évaluer le
rapport coût-efficacité de l’utilisation de pansements transparents contenant un gel
de gluconate de chlorhexidine chez les patients gravement malades en se concen-
trant sur la perspective de l’unité de soins intensifs. Pour mesurer l’impact sur les
résultats d’analyse coût-efficacité, deux approches de modélisation ont été considé-
rées : le modèle de Markov homogène et le modèle de Markov non-homogène. Ces
deux approches différentes sont fondées sur les châınes de Markov d’ordre 1, qui
est une suite de variables aléatoires Xn = (X0, X1, . . . , Xn). Elle prend ses valeurs
dans l’espace dénombrable d’états prédéfinis et les probabilités de transition entre
ces états dépendent de la matrice de transition.

Nous abordons ensuite en détail le contenu de ces deux parties.

Dans le premier chapitre nous considérons plusieurs problèmes de l’estimation
des paramètres de dimension finie pour les séquences de Markov dans l’asymp-

1



Introduction 2

totique de grands échantillons. Supposons que π (ϑ,Xj−1, Xj) est une densité de
transition qui dépend d’un paramètre inconnu ϑ ∈ Θ ⊂ Rd.

Le modèle considéré est une série temporelle non linéaire (Xj)j≥0 qui est décrit
par l’équation

Xj = S (ϑ,Xj−1) + εj, j = 1, 2, . . . ,

où les variables aléatoires (εj)j≥1 sont i.i.d. avec une fonction de densité régulière
g (x). La fonction S (ϑ, x) est supposée être connue et régulière par rapport à
ϑ ∈ Θ ⊂ Rd, où Θ est un ensemble ouvert, borné et convexe.

Le processus (Xj)j≥0 a la densité de transition

π (ϑ, x, x′) = g (x′ − S (ϑ, x)) .

Nous sommes intéressés par les deux méthodes d’estimation des paramètres. Le
comportement asymptotique des estimateurs bayésiens ϑ̃n et les estimateurs obte-
nus par la méthode des moments ϑ̄n sont décrits. Sous les conditions de régularité
nous montrons que ces estimateurs sont consistants et asymptotiquement normaux

√
n
(

ϑ̃n − ϑ
)

⇒ N
(

0, I (ϑ)−1) ,

√
n
(

ϑ̄n − ϑ
)

⇒ N (0,B (ϑ)) ,

où I (ϑ) est une matrice d’information de Fisher et B (ϑ) est une matrice de cova-
riance.

L’étude des estimateurs bayésiens dans un certain sens est une suite de travail
de Varakin et Veretennikov (2002). Ils ont décrit les propriétés asymptotiques de
l’estimateur du maximum de vraisemblance dans le cas unidimensionnel (d = 1) à
l’aide du résultat général d’Ibragimov et Hasminskii (1981).

Nous avons montré que dans le cas régulier l’estimateur bayésien possède les
mêmes propriétés asymptotiques que l’estimateur du maximum de vraisemblance.

Ensuite nous étudions l’estimateur obtenu par la méthode des moments. Dans le
cas régulier il est consistant et asymptotiquement normal, mais avec la covariance
limite non optimale.

Les résultats obtenus dans ce chapitre sont illustrés par plusieurs exemples
numériques. Nous avons étudié l’exemple de Varakin et Veretennikov (2002), où
l’estimateur du maximum de vraisemblance peut être représenté sous la forme
explicite. Ensuite, nous avons étudié les deux autres modèles non-linéaires qui
vont servir pour la suite dans la construction des estimateurs du maximum de
vraisemblance un-pas et deux-pas.
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Dans le deuxième chapitre, les estimateurs du maximum de vraisemblance un-
pas et deux-pas sont étudiés. Ces estimateurs sont récemment introduits par Y.
Kutoyants pour les processus de diffusion ergodiques. Les estimateurs du maximum
de vraisemblance un-pas et deux-pas nous permettent de construire des estimateurs
asymptotiquement efficaces sur la base de certains estimateurs préliminaires, par
exemple, les estimateurs obtenus par la méthode des moments ou l’estimateur de
Bayes et la structure de l’estimateur du maximum de vraisemblance un-pas.

L’estimation du maximum de vraisemblance un-pas se fait en deux étapes. Pre-
mièrement, nous fixons une période d’apprentissage XN = (X0, X1, . . . , XN) des
observations Xn = (X0, . . . , Xn), où N =

[

nδ
]

(N est une partie entière de nδ) et
nous estimons le paramètre inconnu par les observations dans l’intervalle d’appren-
tissage. Le choix du paramètre δ < 1 va être discuté. Cette période d’apprentissage
correspond à une partie d’observations relativement courte.

Ensuite nous utilisons l’idée d’estimateur du maximum de vraisemblance un-
pas pour construire un estimateur-processus ϑ⋆

n =
(

ϑ⋆
k,n, k = N + 1, . . . , n

)

qui est
asymptotiquement équivalent à l’estimateur du maximum de vraisemblance.

Introduisons en premier lieu la variable s ∈ (τδ, 1], où τδ = n−1+δ → 0 et
k = [sn]. Nous pouvons écrire ϑ⋆

k,n = ϑ⋆
s,n et considérer l’estimateur-processus

ϑ⋆
n =

(

ϑ⋆
s,n, s ∈ (τδ, 1]

)

. Notre but est ainsi de construire l’estimateur-processus ϑ⋆
n

qui est asymptotiquement optimal pour toutes s ∈ (τδ, 1].

L’estimateur du maximum de vraisemblance un-pas peut être calculé avec la
procédure suivante :

ϑ∗
s,n = ϑ̄N +

1√
k
I
(

ϑ̄N

)−1
∆k(ϑ̄N , X

k
N),

où

∆k(ϑ,X
k
N) =

1√
k

k
∑

j=N+1

ℓ̇(ϑ,Xj−1, Xj),

est une fonction-score et k = [sn] → ∞.

Sous les conditions de régularité nous montrons que
√
k(ϑ∗

s,n − ϑ) =⇒ N
(

0, I (ϑ)−1) .

Donc l’estimateur-processus ϑ⋆
n =

(

ϑ⋆
s,n, τδ < s ≤ 1

)

pour toutes s ∈ (τδ, 1] est
asymptotiquement normal avec la matrice de covariance asymptotiquement opti-
male.
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Pour avoir une période d’apprentissage plus courte, nous introduisons un esti-
mateur intermédiaire en plus et l’estimateur du maximum de vraisemblance deux-
pas ϑ⋆⋆

s,n =
(

ϑ⋆⋆
k,n, k = N + 1, . . . , n

)

. Cette procédure nous conduit à l’estimateur-
processus qui est aussi asymptotiquement efficace.

L’estimation du maximum de vraisemblance deux-pas se fait en trois étapes.
Premièrement, à la base des observations XN = (X0, X1, . . . , XN) nous obtenons
l’estimateur préliminaire ϑN,1 qui est asymptotiquement normal. Ensuite, nous
introduisons le second estimateur préliminaire

ϑ̄k,2 = ϑ̄N,1 +
1√
k
I
(

ϑ̄N,1

)−1
∆k(ϑ̄N,1, X

k),

où ∆k(ϑ,X
k) est la fonction-score définie ci-dessus.

L’estimateur-processus du maximum de vraisemblance deux-pas ϑ⋆⋆
s,n =

(

ϑ⋆⋆
k,n

)

,
où k = N + 1, . . . , n nous construisons en utilisant ce deuxième estimateur préli-
minaire :

ϑ⋆⋆
s,n = ϑ̄k,2 +

1√
k
I
(

ϑ̄k,2

)−1
∆k(ϑ̄k,2, X

k).

Sous les conditions de régularité nous montrons que l’estimateur-processus ϑ⋆⋆
s,n

est asymptotiquement normal

√
k(ϑ⋆⋆

s,n − ϑ) =⇒ N
(

0, I (ϑ)−1)

et sa matrice de covariance est asymptotiquement optimale.

L’avantage principal des estimateur-processus du maximum de vraisemblance
un-pas et deux-pas est qu’ils sont asymptotiquement efficaces pour chaque s et
en même temps facile à calculer. Notons que l’estimateur-processus ϑ⋆

k,n peut être
écrit dans la forme récurrente :

ϑ⋆
k+1,n =

k

k + 1
ϑ⋆
k,n +

1

k + 1
ϑ̄N +

1

k + 1
I
(

ϑ̄N

)−1
ℓ̇
(

ϑ̄N , Xk, Xk+1

)

.

Pour illustrer les résultats de ce chapitre, nous proposons des processus autoré-
gressifs non-linéaires comme les modèles d’observations. Les estimateur-processus
du maximum de vraisemblance un-pas et deux-pas sont obtenus dans les deux
exemples avec les simulations numériques. Dans le premier cas nous considérons
un estimateur du maximum de vraisemblance comme l’estimateur préliminaire et
nous cherchons à l’améliorer à l’aide de la procédure du maximum de vraisemblance
un-pas. Dans le deuxième cas nous proposons l’estimateur obtenu par la méthode
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des moments comme l’estimateur préliminaire et nous cherchons à l’améliorer à
l’aide de la procédure du maximum de vraisemblance un-pas et deux-pas.

Dans le troisième chapitre, nous considérons les applications de processus de
Markov en économie de la santé. L’intérêt médical de ce travail est la gestion des
patients gravement malades qui ont eu l’insertion des cathéters intravasculaires
(cathéters veineux centraux et cathéters artériels) dans l’unité de soins intensifs.
L’insertion des cathéters intravasculaires peut conduire à des complications infec-
tieuses graves, y compris les bactériémies liées aux cathéters, car ils sont une porte
d’entrée pertinente pour les micro-organismes dans la circulation sanguine. C’est
une complication relativement fréquente (1-5 épisodes / 1000 jours-cathéter) et
potentiellement mortelle observée chez les patients gravement malades dans les
unités de soins intensifs.

Nous comparons les modèles de Markov homogène et non-homogène de l’ana-
lyse coût-efficacité de l’utilisation de pansements transparents contenant un gel de
gluconate de chlorhexidine par rapport aux pansements transparents standard. Le
pansement antimicrobien protège les accès vasculaire centraux et réduit le risque
de bactériémies liées aux cathéters. Les deux modèles simulent les différentes tra-
jectoires observables de la santé des patients relative au risque de contracter une
infection liée aux cathéters et évaluent l’incertitude autour des estimations des
essais cliniques.

Dans le modèle de Markov homogène nous considérons l’ensemble de 6 états de
santé de patients E = (E1, E2, . . . , E6) :

E1 = {Aucune infection liée aux cathéters} ;
E2 = {Infection liée aux cathéters};
E3 = {Dermatite de contact};
E4 = {Changement du pansement};
E5 = {Décharge};
E6 = {Décès} .

Dans le modèle de Markov non-homogène nous considérons 8 états de santé de
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patients E = (E1, E2, . . . , E8) :

E1 = {Insertion d’un premier cathéter, aucune infection liée aux cathéters};
E2 = {Insertion d’un nouvel cathéter, aucune infection liée aux cathéters};
E3 = {Infection liée aux cathéters sans l’insertion d’un nouvel cathéter};
E4 = {Infection liée aux cathéters avec l’insertion d’un nouvel cathéter};
E5 = {Dermatite de contact};
E6 = {Changement du pansement};
E7 = {Décharge};
E8 = {Décès} .

Les états Décharge et Décès sont les états absorbants. Nous considérons l’en-
semble de probabilités Θ = (π(El, Em))6×6 ou Θ = (π(El, Em))8×8 comme les
matrices de transition inconnues. Les estimateurs de ces matrices π̂(El, Em) sont
été obtenus à l’aide de base de données en vie réelle. La matrice de probabilités de
transition peut être considérée comme le paramètre multidimensionnel provenant
de cette base de données. Et tous les calculs sont fait à partir de ces estimateurs
de probabilités de transition π̂(El, Em).

Ces nouveaux modèles sont profondément différents de toutes les évaluations
économiques antérieures de pansements antimicrobiens concernant la prévention
des infections liées aux cathéters. Ces évaluations ont utilisé des modèles d’arbre
décisionnel représentant les choix thérapeutiques.

L’impact de l’approche de modélisation sur la décision d’adopter des pansements
antimicrobiens pour les patients gravement malades est discuté.

Les résultats de ces chapitres ont fait l’objet de publications et présentations
orales.

Les articles :

1. Motrunich, A. On parameter estimation for Markov sequences. Soumis, 2015.

2. Kutoyants, Y.A. and Motrunich, A. On multi-step MLE-process for Markov
sequences. Soumis à Metrika. (Accepté pour publication avec les modifica-
tions légères) 2015.

3. Maunoury, F., Motrunich, A., Palka-Santini, M., Bernatchez, S.F., Ruckly,
S., Timsit, J.F. Cost-effectiveness analysis of a transparent antimicrobial
dressing for managing central venous and arterial catheters in intensive care
unit. PLoS ONE 2015 ; 10(6) : e0130439. doi :10.1371/journal.pone.0130439.
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Les posters et présentations orales :

1. On parameter estimation for Markov sequences. Asymptotical Statistics of
Stochastic Processes. Workshop : S.A.P.S. X, Le Mans, 2015.

2. Modeling cost-effectiveness of antimicrobial dressing for preventing catheter-
related bloodstream infection : homogeneous vs non- homogeneous Markov
approaches. International Society for Pharmacoeconomics and Outcomes Re-
search (ISPOR), 17th Annual European Congress, Amsterdam, 2014.

3. Cost-effectiveness analysis of an antimicrobial transparent dressing for pro-
tecting central vascular accesses in critically ill patients versus standard
transparent dressing in France : A comparison of two modeling approaches :
Decision-tree versus non-homogeneous Markov model. International Society
for Pharmacoeconomics and Outcomes Research (ISPOR), 17th Annual Eu-
ropean Congress, Amsterdam, 2014.

4. Non-homogeneous cost-effectiveness modeling of a new CHG-dressing for pre-
venting catheter-related bloodstream infections for patients in intensive care
units. International Society for Pharmacoeconomics and Outcomes Research
(ISPOR), 16th Annual European Congress, Dublin, 2013.

5. Cost-effectiveness of the TLC-NOSF dressing in venous leg ulcers. Inter-
national Society for Pharmacoeconomics and Outcomes Research (ISPOR),
15th Annual European Congress, Berlin, 2012.
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Chapter 1

On Parameter Estimation for

Markov Sequences

1.1 Introduction

We consider the problem of parameter estimation in the case of observations of
Markov sequence Xn = (X0, X1, X2, . . . , Xn). We suppose that the transitional
density π (ϑ,Xj−1, Xj) depends on some unknown finite-dimensional parameter θ
and we study the properties of the estimators of this parameter in the asymptotic of
large samples (n → ∞). It is known that under regularity conditions the maximum
likelihood estimator (MLE) ϑ̂n is consistent, asymptotically normal

√
N
(

ϑ̂N − ϑ
)

⇒ N
(

0, I (ϑ)−1)

and asymptotically efficient (see, [13], [17]). Here I (ϑ) is Fisher information ma-
trix.

In our work we are interested by two methods of the parameter estimation. The
first one is Bayesian and the second is the method of moments. In both cases we
show that the corresponding estimators are consistent and asymptotically normal.

The model of observations is a nonlinear time series (Xj)j≥0 satisfying the re-
lation

Xj = S (ϑ,Xj−1) + εj, j = 1, 2, . . . (1.1)

and the initial value X0 is given too. The random variables (εj)j≥1 are i.i.d.
with smooth density function g (·). The process (Xj)j≥0 has a transition density

π (ϑ, x, x′) = g (x′ − S (ϑ, x)) .

9
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It depends on the parameter ϑ and defines the probability of reaching the state
x′ after sojourning in the state x. The parameter ϑ takes its values in some open
bounded set Θ ⊂ Rd.

We consider two estimators. The first one is constructed following Bayesian
approach, i.e., we suppose that the unknown parameter is a random variable with
known prior density p (ϑ) , ϑ ∈ Θ. For the simplicity of exposition we take the
quadratic loss function W (u) = |u|2 and therefore the Bayesian estimator (BE)
ϑ̃n is the conditional expectation ϑ̃n = E (ϑ|Xn). It has the representation

ϑ̃n =

(∫

Θ

p (θ)V (θ,Xn) dθ

)−1 ∫

Θ

θp (θ)V (θ,Xn) dθ,

where the likelihood function

V (ϑ,Xn) = π0(X0)
n
∏

j=1

π(θ,Xj−1, Xj), ϑ ∈ Θ. (1.2)

Here π0 (x) is the density of the initial value X0.

We suppose in this work that the process (Xj)j≥0 is geometrically mixing and
has invariant distribution with the density π∗ (ϑ, x). For simplicity of exposition
we put π0 (x) = π∗ (ϑ, x). In this case the process (Xj)j≥0 is stationary.

(H) The function π (ϑ, x, x′) is two times continuously differentiable in ϑ and
the derivative of the function

ℓ (ϑ, x, x′) = ln π (ϑ, x, x′)

has polynomial majorants. Moreover we suppose that the invariant density has
polynomially decreasing tails, such that the moments of the corresponding func-
tions used in the proof exist.

Of course, this means that the functions g (·) ∈ C2 and S (·, ·) ∈ C2
ϑ with the

corresponding conditions on their derivatives.

Our work is a continuation of the work by Varakin and Veretennikov [17], where
the asymptotic properties of the MLE of the one-dimensional parameter ϑ are
described with the help of the general results by Ibragimov and Hasminskii [3].

We suppose that all conditions of regularity imposed on the function f (ϑ, x, x′)
in [17] and providing the ergodicity, the existence of the unique invariant measure
π∗ (ϑ, x, x′) satisfying the mentioned above condition on the tails hold. The con-
ditions of Theorem 1 in [17] are supposed to be fulfilled too. Moreover, our proofs
of the asymptotic properties of the likelihood ratio process (Lemmas 1-3) follow
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the main steps of the corresponding proofs in [17]. The only difference is in the
dimension of the unknown parameter.

We have the law of large numbers with rate: for any p > 0

Eϑ

∣

∣

∣

∣

∣

1

n

n
∑

j=1

[h (ϑ,Xj)− Eϑh (Xj)]

∣

∣

∣

∣

∣

p

≤ C

np/2
. (1.3)

These regularity conditions allow us, for example, differentiate w.r.t. ϑ under
sign of mathematical expectation. The Fisher information matrix is

I(ϑ) = E∗
ϑ

[

ℓ̇ (ϑ,X0, X1) ℓ̇ (ϑ,X0, X1)
T
]

,

where the dot means the derivation w.r.t. ϑ and Tmeans the transpose of a matrix.
The mathematical expectation here is w.r.t. the invariant measure π∗ (ϑ, ·).

We suppose that this matrix is uniformly in ϑ ∈ Θ non-degenerate and bounded

0 < inf
ϑ∈Θ

inf
|λ|=1

λT
I(ϑ)λ, (1.4)

sup
ϑ∈Θ

sup
|λ|=1

λT
I(ϑ)λ < ∞. (1.5)

Here λ ∈ Rd.

The maximum likelihood estimator we introduce as usual by the equation

V (ϑ̂n, X
n) = sup

ϑ∈Θ
V (ϑ,Xn). (1.6)

If this equation has more than one solution then we can take any of them as the
MLE.

We introduce as well the log-likelihood ratio function

L(ϑ,Xn) = ln π∗(ϑ,X0) +
n
∑

j=1

ln π(ϑ,Xj−1, Xj). (1.7)

It is known that under the regularity conditions the MLE has the following
properties

1. It is consistent (here and throughout this work consistent means consistent
in probability): ϑ̂n −→ ϑ.
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2. Asymptotically normal:

√
n(ϑ̂n − ϑ) =⇒ N (0, I(ϑ)−1), (1.8)

where I(ϑ) is the Fisher information matrix (defined above).

3. Asymptotically efficient, i.e., it satisfies the relation: for all ϑ0 ∈ Θ

lim
δ→0

lim
n→∞

sup
|ϑ−ϑ0|<δ

EϑW
(√

n
(

ϑ̂n − ϑ
))

= EW
(

I(ϑ0)
−1/2ζ

)

. (1.9)

The same time for all estimators ϑn the following Hajek-Le Cam’s type lower
bound

lim
δ→0

lim
n→∞

sup
|ϑ−ϑ0|<δ

EϑW
(√

n (ϑn − ϑ)
)

≥ EW
(

I(ϑ0)
−1/2ζ

)

(1.10)

holds [18].

Here W (u) = |u|p , u ∈ Rd with p > 0 is a loss function (see, e.g., [3]) and ζ
is a Gaussian vector ζ ∼ N (0, J), J is a unit d× d matrix.

The proofs of these properties can be found in [13](properties 1 and 2) and in [17]
(property 3) in the one-dimensional case (d = 1). See [16] for the discussions of
related works. Note that there one can find the study of the properties of another
well studied estimator called conditional least square estimator.

Our goal is to show that the Bayesian estimator has the same asymptotic prop-
erties.

The second estimator studied in this work is the estimator of the method of
moments (EMM) ϑ̄n. Recall that these estimators (under regularity conditions)
are consistent and asymptotically normal, but their limit covariance function is
different of the inverse Fisher information matrix and therefore these estimators
are not asymptotically efficient.

Nevertheless the study of these estimators can be interesting because the con-
struction of them can be more simple than that of the MLE or BE. Moreover,
we show in the forthcoming work [9] that using these estimators and multi-step
procedure it is possible to obtain estimators asymptotically equivalent to MLE
and BE (see [8] where this construction is discussed in details for some models of
stochastic processes).

This is the first part of the study devoted to the construction of multi-step
MLE-processes for Markov sequences [9]. The studied here two estimators are
supposed to be used in the next work as preliminary estimators. The goal is to
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propose an estimator-process ϑ⋆
j,n, j = N, . . . , n, which can be easily calculated

for all N ≤ j ≤ n with N = nδ, δ < 1 and which has asymptotically optimal
properties.

1.2 Motivation

Suppose we have some discrete-time random process (in economics, in medicine,
etc.) that we can describe with a well-known autoregressive model (AR) :

AR(1) : Xj+1 = ϑXj + εj+1, j = 1, 2, . . .

or

AR(p) : Xj+1 =

p
∑

l=1

ϑlXj−l + εj+1, j = 1, 2, . . . .

Here ϑl are the parameters of the model and εj is white Gaussian noise, i. e.,
Eεj = 0,Eε2j = σ2,Eεjεi = 0, i 6= j .

There are many ways to estimate these parameters. Recall some results of the
methods of maximum likelihood estimator, Bayes estimator and estimator method
of moments.

Maximum Likelihood Estimator

Let us denote ϑ̂n the maximum likelihood estimator of the true value ϑ. Recall
the definition of this estimator

V (ϑ̂n, X
n) = sup

ϑ∈Θ
V (ϑ,Xn). (1.11)

If εj are i.i.d. r.v.’s N (0, σ2) and we have the AR(1) model then the MLE is easy
to calculate:

ϑ̂n =

∑n−1
j=1 Xj+1Xj
∑n−1

j=1 X
2
j

.

The properties of MLE follow from the representation:

√
n(ϑ̂n − ϑ) =

1√
n

∑n−1
j=1 Xjεj+1

1
n

∑n−1
j=1 X

2
j

=⇒ N
(

0, 1− ϑ2
)

.
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This limit follows from the law of large numbers

1

n

n−1
∑

j=1

X2
j −→ EϑX

2
1 =

σ2

1− ϑ2

and from the Central Limit Theorem

1√
n

n−1
∑

j=1

Xjεj+1 =⇒ N
(

0,
σ4

1− ϑ2

)

.

The Fisher information in this problem is

I (ϑ) =
1

1− ϑ2

and therefore the MLE is asymptotically efficient.

Hajek-Le Cam’s lower bound

The asymptotic efficiency is understood in the following way. For all estimators
ϑn and all ϑ0 ∈ Θ we have

lim
δ→0

lim
n→∞

sup
|ϑ−ϑ0|<δ

EϑW
(√

n (ϑn − ϑ)
)

≥ EW
(

I(ϑ0)
−1/2ζ

)

. (1.12)

This is Hajek-Le Cam’s lower bound on the risks of all estimators, which is
valid under regularity conditions for any statistical model. Here W (u) is some
loss function and ζ ∈ N (0, J).

It is known that for the AR(1) model with |ϑ| < 1 the MLE ϑ̂n is asymptotically
efficient, i.e., it satisfies the relation: for all ϑ0 ∈ Θ

lim
δ→0

lim
n→∞

sup
|ϑ−ϑ0|<δ

EϑW
(√

n
(

ϑ̂n − ϑ
))

= EW
(

I(ϑ0)
−1/2ζ

)

.

Bayes Estimator

In our work we will study the BE that can be calculated much easier than the
MLE in some cases. Note that in the regular cases the asymptotic properties of
the BE and MLE are equivalent [3].
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Suppose that the unknown parameter ϑ is a random vector with the density a

priory p (ϑ) , ϑ ∈ Θ.

Then the BE ϑ̃n is calculated as follows

ϑ̃n =

∫

Θ
ϑp (ϑ)V (ϑ,Xn) dϑ

∫

Θ
p (ϑ)V (ϑ,Xn) dϑ

. (1.13)

This estimator under regularity conditions is consistent, asymptotically normal

√
n
(

ϑ̃n − ϑ
)

=⇒ N
(

0, I (ϑ)−1)

and asymptotically efficient [3].

Suppose that we observe the AR(1) model, where the unknown parameter ϑ ∈
[α, β] and −1 < α < β < 1 is a r. v. with the prior density p (ϑ) , ϑ ∈ [α, β]. From
(1.13), the BE ϑ̃n has the following representation:

ϑ̃n =

∫ β

α
ϑp (ϑ) exp

(

− 1
2σ2

∑n
j=1(Xj − ϑXj−1)

2
)

dϑ

∫ β

α
p (ϑ) exp

(

− 1
2σ2

∑n
j=1(Xj − ϑXj−1)2

)

dϑ
.

We have

√
n
(

ϑ̃n − ϑ
)

=⇒ N
(

0, 1− ϑ2
)

.

Estimator of the Method of Moments

Let us consider the same example as previously. Suppose that we have the
observations Xn of AR (1). Then by the law of large numbers

1

n

n
∑

j=1

X2
j −→ σ2

1− ϑ2
.

Hence the estimator of the method of moments is

ϑ̄n =

√

√

√

√

(

1− σ2

1
n

∑n
j=1 X

2
j

)

+

−→ ϑ.
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Here A+ = max (A, 0). Usually the limit variance of the EMM is greater than
that of the MLE or BE, but in some problems the calculation of this estimator can
be easier and its use by this reason can be preferable.

Recall the definition of EMM. Suppose that we have some autoregressive time
series

Xj+1 = S (ϑ,Xj) + εj+1, j = 0, 1, 2, . . .

with invariant density function π∗ (ϑ, x).

Let us take such function q (x) that the limit function m (ϑ) defined by the
relation

1

n

n
∑

j=1

q (Xj) −→ m (ϑ) =

∫

q (x) π∗ (ϑ, x) dx

is strictly monotone, i.e., the equation m (ϑ) = t has a unique solution ϑ = h (t).
Then we define the EMM

ϑ̄n = h

(

1

n

n
∑

j=1

q (Xj)

)

−→ h (m (ϑ)) = ϑ.

This estimator is asymptotically normal
√
n
(

ϑ̄n − ϑ
)

=⇒ N (0, D (ϑ))

with some covariant matrix D (ϑ).

1.3 Bayes estimator

Suppose that we observe the time series (1.1), where the unknown parameter
ϑ ∈ Θ is a random vector with the prior density p (ϑ) , ϑ ∈ Θ. The function p (·)
is continuous, bounded and positive. We are interested by the behavior of Bayes
estimator for the quadratic loss function, which has the following representation:

ϑ̃n =

∫

Θ
ϑp (ϑ)V (ϑ,Xn) dϑ

∫

Θ
p (ϑ)V (ϑ,Xn) dϑ

.

Recall that as usual in the regular cases the asymptotic properties of the BE
are equivalent to the properties of the MLE [3].
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Theorem 1 Let the conditions of regularity be fulfilled. Then the BE ϑ̃n is con-

sistent, asymptotically normal

√
n(ϑ̂n − ϑ0) =⇒ N(0, I(ϑ0)

−1) (1.14)

and asymptotically efficient for the polynomial loss functions.

Proof. We have to check the conditions H1-H4 of the Theorem 3.2.1 in [3], but
first we recall the main steps of the proof. Note that we follow the main steps of
the proof given in [17], where just changed the dimension of the parameter ϑ.

Let us introduce the normalized likelihood ratio function

Zn(u) =
V (ϑ0 +

u√
n
, Xn)

V (ϑ0, Xn)
, u ∈ Un, (1.15)

where the set

Un =

{

u : ϑ = ϑ0 +
u√
n
∈ Θ

}

.

Note that for the BE we have the relations (below ϑu = ϑ0 +
u√
n
)

ϑ̃n =

∫

Un

(

ϑ0 +
u√
n

)

p (ϑu)V
(

ϑ0 +
u√
n
, Xn

)

du

∫

Un
p (ϑu)V

(

ϑ0 +
u√
n
, Xn

)

du

= ϑ0 +
1√
n

∫

Un
u p (ϑu)

V
(

ϑ0+
u√
n
,Xn

)

V (ϑ0,Xn)
du

∫

Un
p (ϑu)

V
(

ϑ0+
u√
n
,Xn

)

V (ϑ0,Xn)
du

= ϑ0 +
1√
n

∫

Un
u p (ϑu)Zn(u) du

∫

Un
p (ϑu)Zn(u) du

.

Hence

√
n
(

ϑ̃n − ϑ0

)

=

∫

Un
u p (ϑu)Zn(u) du

∫

Un
p (ϑu)Zn(u) du

.

Let n → ∞, then from continuity of the function p (ϑu) at the point ϑ0 it
follows that p (ϑu) → p (ϑ0). Suppose that we already proved that the process
Zn (u) , u ∈ Un converges in distribution to the random process

Z (u) = exp

{

〈u,∆(ϑ0)〉 −
1

2
uT

I(ϑ0)u

}

, u ∈ Rd,
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where the vector ∆ (ϑ0) ∼ N (0, I(ϑ0)) (we denote 〈·, ·〉 the scalar product in
Rd and ‖·‖ is the related norm) and that we can justify the convergence of the
corresponding integrals.

Then

√
n
(

ϑ̃n − ϑ0

)

=⇒
∫

Rd uZ(u) du
∫

Rd Z(u) du
.

Further, denote v = I(ϑ0)
1/2u and ∆̃ = I(ϑ0)

−1/2∆(ϑ0).

Using these notations we can write

〈u,∆(ϑ0)〉 −
1

2
uT

I(ϑ0)u = 〈v, ∆̃〉 − |v|2
2

= −1

2

∥

∥

∥v − ∆̃
∥

∥

∥

2

+
1

2
‖∆‖2

and
∫

Rd

uZ(u) du = I(ϑ0)
−1∆(ϑ0)

∫

Rd

Z(u) du

+ I(ϑ0)
−1/2

∫

Rd

(

v − ∆̃
)

exp

{

−1

2

∥

∥

∥
v − ∆̃

∥

∥

∥

2
}

dv e−
‖∆̃‖2

2

= I(ϑ0)
−1∆(ϑ0)

∫

Rd

Z(u) du.

Hence

√
n
(

ϑ̃n − ϑ0

)

=⇒ I(ϑ0)
−1∆(ϑ0) ∼ N

(

0, I(ϑ0)
−1
)

and we obtain the asymptotic normality of the estimator. This convergence to-
gether with the uniform integrability of Mn provides the convergence of moments.

For example, if we show that for some p > 0

sup
ϑ0∈Θ

Eϑ0

∥

∥

∥

√
n
(

ϑ̃n − ϑ0

)∥

∥

∥

p′

< C. (1.16)

Then for any p < p′ we have the convergence of the moments

lim
n→∞

Eϑ0

∥

∥

∥

√
n
(

ϑ̃n − ϑ0

)∥

∥

∥

p

−→ Eϑ0

∥

∥I(ϑ0)
−1∆(ϑ0)

∥

∥

p
.

To verify the convergence

Mn =

∫

Un
u p (ϑu)Zn(u) du

∫

Un
p (ϑu)Zn(u) du

=⇒
∫

Rd uZ(u) du
∫

Rd Z(u) du
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we have to prove

∫

Un

u p (ϑu)Zn(u) du =⇒ p (ϑ0)

∫

Rd

uZ(u) du,

∫

Un

p (ϑu)Zn(u) du =⇒ p (ϑ0)

∫

Rd

Z(u) du

and for some m ≥ p′ + 2 the estimate

Pϑ0

{

‖Mn‖ ≥ 1

Nm

}

≤ C

Nm
. (1.17)

As it was shown by Ibragimov and Hasminskii [3], the conditions H1−H4 allow
to justify these limits and the estimate (1.17).

The next lemma provides the verification of H1.

Lemma 1 Let the conditions of regularity be fulfilled, then we have the represen-

tation

Zn (u) = exp

{

〈u,∆n (ϑ0, X
n)〉 − 1

2
uT

I(ϑ0)u+ rn

}

, (1.18)

where rn → 0 and

∆n (ϑ0, X
n) =

1√
n

n
∑

j=1

ℓ̇ (ϑ0, Xj−1, Xj) =⇒ ∆(ϑ0) ∼ N (0, I(ϑ0)) . (1.19)

Proof. The representation (1.18)-(1.19) is known as local asymptotical normality

(LAN) of the family of measures corresponding to this model of observations (see,
e.g., [14], [15], [6], [17]).

Below we use the expansions ln (1 + x) = x− x2

2
+O (x3) and

π(ϑ0 +
u√
n
,Xj−1, Xj) = π(ϑ0, Xj−1, Xj) +

1√
n
〈u, π̇(ϑ̃, Xj−1, Xj)〉.
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We have

lnZn(u) =
n
∑

j=1

ln
π(ϑ0 +

u√
n
, Xj−1, Xj)

π(ϑ0, Xj−1, Xj)

=
n
∑

j=1

ln

(

π(ϑ0, Xj−1, Xj) +
1√
n
〈u, π̇(ϑ̃, Xj−1, Xj)〉

π(ϑ0, Xj−1, Xj)

)

=
n
∑

j=1

ln

(

1 +
〈u, π̇(ϑ̃, Xj−1, Xj)〉
π(ϑ0, Xj−1, Xj)

1√
n

)

= 〈u, 1√
n

n
∑

j=1

π̇(ϑ̃, Xj−1, Xj)

π(ϑ0, Xj−1, Xj)
〉

− uT

n
∑

j=1

π̇(ϑ̃, Xj−1, Xj)π̇(ϑ̃, Xj−1, Xj)

2nπ(ϑ0, Xj−1, Xj)T
u+ o(1)

= 〈u, 1√
n

n
∑

j=1

ℓ̇(ϑ0, Xj−1, Xj)〉

− uT
1

2n

n
∑

j=1

ℓ̇(ϑ0, Xj−1, Xj)ℓ̇(ϑ0, Xj−1, Xj)
Tu+ o(1)

= 〈u,∆n (ϑ0, X
n)〉 − uT

1

2n

n
∑

j=1

ℓ̇(ϑ0, Xj−1, Xj)ℓ̇(ϑ0, Xj−1, Xj)
Tu+ o(1).

Here and in the sequence o(1) means convergence to zero in probability. By the
central limit theorem

∆n (ϑ0, X
n) =

1√
n

n
∑

j=1

ℓ̇(ϑ0, Xj−1, Xj) =⇒ ∆(ϑ0) ∼ N (0, I(ϑ0))

and by the law of large numbers

1

n

n
∑

j=1

ℓ̇(ϑ0, Xj−1, Xj)ℓ̇(ϑ0, Xj−1, Xj)
T −→ I(ϑ0).

Lemma 2 Let the conditions of regularity be fulfilled. Then there exists the con-
stant C > 0 such that

Eϑ0 |Zn(u2)
1/2 − Zn(u1)

1/2|2 ≤ C|u2 − u1|2.

Proof. Following Lemma 3.1.1 in [3] we can write (below us = u1 + s(u2 − u1))
that
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Zn(u2)
1/2 − Zn(u1)

1/2

=
1

2
√
n

∫ 1

0

Z1/2
n (us)

n
∑

j=1

〈ℓ̇
(

ϑ0 +
us√
n
,Xj−1, Xj

)

, (u2 − u1)〉ds.

Hence

Eϑ0 |Zn(u2)
1/2 − Zn(u1)

1/2|2

≤ 1

4n

∫ 1

0

Eϑ0Zn (us)

(

n
∑

j=1

〈ℓ̇
(

ϑ0 +
us√
n
,Xj−1, Xj

)

, (u2 − u1)〉
)2

ds

≤ 1

4n

∫ 1

0

Eϑus

(

n
∑

j=1

〈ℓ̇
(

ϑ0 +
us√
n
,Xj−1, Xj

)

, (u2 − u1)〉
)2

ds

=
n
∑

i,j=1

(u2 − u1)

4n

∫ 1

0

Eϑus
ℓ̇ (ϑus , Xj−1, Xj) ℓ̇ (ϑus , Xi−1, Xi)

T ds (u2 − u1)

=
1

4
(u2 − u1)

T

∫ 1

0

I (ϑus) ds (u2 − u1) ≤ C ‖u2 − u1‖2 ,

because the information matrix satisfies (1.4).

Lemma 3 Let the condition of regularity be fulfilled. Then for any q > 0 there

exist constant Bq such that

Eϑ0(Zn(u)
1/2) ≤ Bq

|u|q . (1.20)

Proof. First we follow the proof of the Theorem 1 in [17] and write

Eϑ0,xZn (u)
1
2 ≤ exp

(

−c |u|2
)

+
Ck

(1 + n)k
.

We have u =
√
n (ϑ− ϑ0). Hence

|u| ≤ √
nD (Θ) , D(Θ) = sup

ϑ1,ϑ2∈Θ
|ϑ1 − ϑ2| .

Further

n ≥ |u|2

D (Θ)2k
,

Ck

(1 + n)k
≤ CkD (Θ)2

|u|2k
=

Bq

|u|q .
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with some constant Bq > 0.

Therefore the conditions H1-H4 of the Theorem 3.2.1 in [3] are fulfilled and
according to this theorem the BE has the mentioned in Theorem 1 properties.

1.4 Method of moments

The properties of the estimators constructed by the method of moments are well-
known. Nevertheless we recall here the conditions of the asymptotic normality and
convergence of moments because in the forthcoming work these estimators will be
used as preliminary in the construction of the asymptotically efficient estimators
using the one-step and two-step MLE procedures [9].

Let q (x) be a such vector-function that the function

m(ϑ) = Eϑ q(X) =

∫

g (x) π∗ (ϑ, x) dx

admits a unique solution for all ϑ ∈ Θ of the equation

m(ϑ) = t, t ∈ Rd.

To have this property we introduce the condition of
Identifiability: For any ν > 0 and any ϑ0 we have

κ (ν) = inf
|ϑ−ϑ0|>ν

|m (ϑ)−m (ϑ0)| > 0.

Note that if this condition is not fulfilled then the consistent estimation of the
parameter ϑ with such q (·) is impossible and we have to seek another function
q (·). Indeed, if for some ν > 0 we have κ (ν) = 0 then it follows that there exists
at least one ϑ1 such that m (ϑ1) = m (ϑ0) and ϑ1 6= ϑ0. For example, the condition
of Identifiability is fulfilled in one-dimensional case d = 1 if the function m (ϑ) is
strictly monotone.

Moreover we suppose that this solution ϑ can be written as ϑ = h (t), where
h (·) ∈ Rd is some smooth vector-function.

Recall that π∗ (ϑ, x) is the one-dimensional invariant density and we denote its
distribution function as Π∗ (ϑ, x).
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The solution ϑ = m−1(t) = h(t) we write as

ϑ = h

(∫

q (x) dΠ∗ (ϑ, x)

)

.

Let us introduce the empirical distribution function

Π̂∗
n (x) =

1

n

n
∑

j=1

1I{Xj<x}.

Now the estimator of the method of moments (EMM) ϑ̄n we obtain by substitution
Π̂∗

n (·) on the place of Π∗ (ϑ, x). This yields

ϑ̄n = h

(∫

q (x) dΠ̂∗
n (x)

)

= h

(

1

n

n
∑

j=1

q (Xj)

)

.

The calculation of EMM can be simpler than that of the MLE or BE, but its
limit covariance B (ϑ) in

√
n
(

ϑ̄n − ϑ
)

=⇒ N (0,B (ϑ))

is usually greater than that of the MLE: B (ϑ) ≥ I (ϑ)−1 . This means that B (ϑ)−
I (ϑ)−1 is positive definite.

Remind that by the central limit theorem for stationary strongly mixing se-
quences ξj = q (Xj)− Eϑq (Xj) we have

1√
n

n
∑

j=1

ξj =⇒ N (0,D (ϑ)) ,

where the covariance matrix

D (ϑ) = Eϑ ξ0ξ
T

0 + 2
∞
∑

j=1

Eϑ ξ0ξ
T

j .

Introduce as well the matrix

M (ϑ) = ṁ (ϑ) ṁ (ϑ)T

and suppose that it is uniformly nondegenerate

inf
ϑ∈Θ

inf
|λ|=1

λTM (ϑ)λ > 0. (1.21)

To verify the convergence of moments we need one technical lemma.
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Lemma 4 Under regularity conditions for any L > 0 and m > there exist a

constant C > 0 such that

Pϑ0

{∣

∣

√
n
(

ϑ̄n − ϑ0

)∣

∣ > L
}

≤ C

Lm
. (1.22)

Proof. We can write

Pϑ0

{∣

∣

√
n
(

ϑ̄n − ϑ0

)∣

∣ > L
}

= Pϑ0

{

inf
|ϑ−ϑ0|<Ln−1/2

|m̄n −m (ϑ)| > inf
|ϑ−ϑ0|≥Ln−1/2

|m̄n −m (ϑ)|
}

≤ Pϑ0

{

inf
|ϑ−ϑ0|<Ln−1/2

(|m̄n −m (ϑ0)|+ |m (ϑ0)−m (ϑ)|)

> inf
|ϑ−ϑ0|≥Ln−1/2

(|m (ϑ0)−m (ϑ)| − |m̄n −m (ϑ0)|)
}

≤ Pϑ0

{

|m̄n −m (ϑ0)| > κ
(

Ln−1/2
)}

.

For the function |m (ϑ)−m (ϑ0)| we can obtain two estimates. The first local
estimate is

|m (ϑ)−m (ϑ0)|2 =
∣

∣

∣
〈ṁ(ϑ̃), (ϑ− ϑ0)〉

∣

∣

∣

2

= (ϑ− ϑ0)
T ṁ(ϑ̃)ṁ(ϑ̃)T (ϑ− ϑ0)

≥ κ |ϑ− ϑ0|2

for |ϑ− ϑ0| ≤ ν sufficiently small ν. Remind that the matrix M(ϑ̃) = ṁ(ϑ̃)ṁ(ϑ̃)T

is uniformly nondegenerate (1.21).

Outside of the circle |ϑ− ϑ0| ≤ ν we have

|m (ϑ)−m (ϑ0)| ≥ κ (ν) ≥ κ (ν)
|ϑ− ϑ0|
D (ϑ)

,

where we denoted D (ϑ) the diameter of the set Θ.

Therefore we have the following estimate for all ϑ ∈ Θ

|m (ϑ)−m (ϑ0)| ≥ κ̄ |ϑ− ϑ0| (1.23)

with some constant κ̄ > 0.

This estimate allows us to write

Pϑ0

{

|m̄n −m (ϑ0)| > κ
(

Ln−1/2
)}

≤ Pϑ0

{

|m̄n −m (ϑ0)| > κ̄ Ln−1/2
}

≤ κ̄−mnm/2Eϑ0 |m̄n −m (ϑ0)|m L−m ≤ C

Lm
,
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because we suppose that the moments converge (1.3).

Let us denote

B (ϑ) = h′ (m (ϑ))T D (ϑ)T D (ϑ)h′ (m (ϑ)) .

Theorem 2 Let the conditions of regularity be fulfilled, then the EMM ϑ̄n is con-

sistent, asymptotically normal

√
n
(

ϑ̄n − ϑ0

)

=⇒ N (0,B (ϑ0)) (1.24)

and we have the convergence of moments: for all p > 0

lim
n→∞

n
p
2Eϑ0

∣

∣ϑ̄n − ϑ0

∣

∣

p
= Eϑ0 |ζ (ϑ0)|p , (1.25)

where ζ ∼ N (0,B (ϑ0)).

Proof. The consistency follows immediately from the estimate (1.22) as follows:
for any ν > 0 we have

Pϑ0

{∣

∣ϑ̄n − ϑ0

∣

∣ > ν
}

≤ C

νmnm/2
−→ 0.

From the law of large numbers and continuity of the function h (·) we obtain
the consistency of this estimator

m̄n =
1

n

n
∑

j=1

q (Xj) −→ Eϑ q(X), ϑ̄n −→ h (m (ϑ)) = ϑ.

To verify the asymptotic normality of this estimator first note that by the central
limit theorem for Markov sequences we have

1√
n

n
∑

j=1

[q (Xj)− Eϑ q(X)] =⇒ N (0,D (ϑ)) .

Hence, if we suppose that the function h (·) is continuously differentiable at the
point m (ϑ) then by Taylor’s expansion we obtain

ϑ̄n = h

(

m (ϑ) +
1√
n

1√
n

n
∑

j=1

[q (Xj)− Eϑ q(X)]

)

= h

(

m (ϑ) +
ηn√
n

)

= h (m (ϑ)) + h′ (m (ϑ))
ηn√
n
+ o (1) = ϑ+ h′ (m (ϑ))

ηn√
n
+ o (1) .
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Here h′ (m (ϑ)) is d× d matrix.

Therefore

√
n
(

ϑ̄n − ϑ
)

= h′ (m (ϑ)) ηn + o (1)

and

√
n
(

ϑ̄n − ϑ
)

=⇒ N (0,B (ϑ)) .

To prove the convergence of moments (1.25) it is sufficient to verify that the
family of random variables is uniformly integrable: for any p > 0 there exists a
constant C > 0 such that

np/2Eϑ0

∣

∣ϑ̄n − ϑ0

∣

∣

p ≤ C. (1.26)

Let us denote

Gn (u) = Pϑ0

{√
n
∣

∣ϑ̄n − ϑ0

∣

∣ < u
}

and take m = p+ 1. We have

np/2Eϑ0

∣

∣ϑ̄n − ϑ0

∣

∣

p
=

∫ ∞

0

up dGn (u)

=

∫ L

0

up dGn (u)−
∫ ∞

L

up d [1−Gn (u)]

≤ C1 + Lp + p

∫ ∞

L

up−1 [1−Gn (u)] du

≤ C1 + Lp +

∫ ∞

L

up−1 C

um
du ≤ C1 + Lp +

C

L
≤ C.

Hence the condition (1.26) is fulfilled and we have the convergence of moments.

1.5 Examples

In this section we introduce three different examples and we studied the behavior
of the parameter estimators in each case. In the next chapter examples 2 and 3
will be used to illustrate the one and two-step MLE-processes.
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1.5.1 Example 1

This first example was formulated in the work [17].

Xn+1 = Xn − (2 + ϑ)
sgn(Xn) ln(1 + |Xn|)

1 + |Xn|
+ εn+1, ϑ ∈ (−1,+1), (1.27)

εn ∼ N (0, 1), i.i.d.

This example is one for which the general theorem 2 (MLE asymptotic minimax
efficiency) of [17] works.

We can not obtain analytical expression for the invariant density that is why
we use the kernel type density estimation. Let us estimate the invariant density
of observations of Markov sequence Xn = (X1, X2, . . . , Xn) with the help of kernel
density estimation which is a non-parametric method.

f̂n(x) =
1

nhn

n
∑

j=1

K(
Xj − x

hn

),

where hn is the step and K is the symmetric kernel that satisfy the following
conditions:

K(x) ≥ 0,
∫

R

K(x) dx = 1,
∫

R

xK(x) dx = 0,
∫

R

x2K(x) dx < ∞.

For the estimation of f̂n(x) we need to chose the smoothing kernel to be used.
This may be, for example, gaussian, rectangular, triangular, epanechnikov, etc.

The classic example of K is the gaussian kernel:

K(x) =
1√
2π

e−
x2

2 ✶[−∞;+∞].

We use the function density to perform kernel density estimation in R. We can
show that for the large samples there is no difference of the type of smoothing
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Figure 1.1: Kernel density estimation for small samples

kernel to be used. However, for the small size samples the choice of type of the
kernel could be more important. On the Figure 1.1 we draw the density estimation
for the sample of n = 100 observations.

And the Figure 1.2 represent the density estimation for the sample of n = 10000
observations. Here we see that all type of smoothing kernel give the same result.
Therefore, below we will use the Gaussian kernel by default.

Next on the Figure 1.3 we present the kernel density estimation (with Gaussian
smoothing) for different ϑ ∈ (−1,+1) in the case of large samples.

The next step is to calculate the maximum-likelihood estimator (MLE).

Let us denote from equation (1.27)

A(Xj−1) =
sgn(Xj−1) ln(1 + |Xj−1|)

1 + |Xj−1|
(1.28)
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Figure 1.2: Kernel density estimation for large samples

the part of (1.27) that does not depend on parameter ϑ.

Considering (1.28) we can write the equation (1.27) in the following form

Xj = Xj−1 − (2 + ϑ)A(Xj−1) + εj, ϑ ∈ (−1,+1). (1.29)

Let us consider the likelihood function for our example

V (ϑ,Xn) =
n
∏

j=1

f(ϑ,Xj−1, Xj), ϑ ∈ (−1,+1),

where

f(ϑ,Xj−1, Xj) =
1√
2π

e−
1
2
[Xj−(Xj−1−(2+ϑ)A(Xj−1)]

2

is the density function of Xn.
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Figure 1.3: Kernel density estimation for different theta

And the log-likelihood ratio function is

Ln(ϑ,X
n) =

n
∑

j=1

−1

2
[Xj − (Xj−1 − (2 + ϑ)A(Xj−1)]

2

=
n
∑

j=1

ℓ(ϑ,Xj−1, Xj).
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The partial derivative of the log-likelihood ratio function with respect to ϑ is

∂L

∂ϑ
=

n
∑

j=1

ℓ̇(ϑ,Xj−1, Xj)

=
1

2
2

n
∑

j=1

[Xj − (Xj−1 − (2 + ϑ)A(Xj−1))]A(Xj−1)

=
n
∑

j=1

[Xj −Xj−1 − 2A(Xj−1)− ϑA(Xj−1)]A(Xj−1).

We need to find ϑ for which

∂L

∂ϑ
= 0.

n
∑

j=1

[Xj −Xj−1 − 2A(Xj−1)]A(Xj−1) = ϑ
n
∑

j=1

A(Xj−1)
2.

So the maximum-likelihood estimator

ϑ̂MLE =

∑n
j=1[Xj −Xj−1 − 2A(Xj−1)]A(Xj−1)

∑n
j=1 A(Xj−1)2

.

With the help of R we draw the distribution of log-likelihood ratio function
Ln(ϑ,X

n) and we find its maximum. We compare the results for n = 1000 and
n = 100000.

On the Figures 1.4 and 1.5 we present the distribution of log-likelihood ratio
function Ln(ϑ,X

n) where n = 1000 and n = 100000. The red line is the true value
of the parameter and the dotted line is the maximum-likelihood estimator for this
parameter.

For the large samples we observe that the estimation of the parameter ϑ̂MLE is
very close to it true value.

1.5.2 Example 2

In our first example taking from the work of Varakin A.B., Veretennikov A.Yu.
(2002) [17] we have shown that ϑ̂MLE has an explicit expression. That’s why we
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Figure 1.4: Log-likelihood function for 1 000 observations and ϑ = 0.25

would not use this example to illustrate the construction of the one-step MLE-
process.

Therefore let us introduce another example for which the problem of MLE
calculation is evident.

We propose to study the Markov sequence Xn = (X1, X2, . . . , Xn) defined as

Xn+1 =
(Xn)

2

1 + ϑ | Xn | + εn+1, ϑ ∈ (2, 5), (1.30)

εn ∼ N (0, 1), i.i.d.

This example is one for which the general theorem 2 (MLE asymptotic minimax
efficiency) of [17] works.

Let us estimate the invariant density of observations of Markov sequence Xn =
(X1, X2, . . . , Xn) with the help of kernel density estimation we have already done
in previous example.

f̂n(x) =
1

nhn

n
∑

j=1

K(
Xj − x

hn

),
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Figure 1.5: Log-likelihood function for 100 000 observations and ϑ = 0.25

where hn is the step and K is the symmetric kernel that satisfy the conditions
indicated in example 1.

We use the function density to perform kernel density estimation in R. We can
show that for the large samples there is no difference of the type of smoothing
kernel to be used.

On the Figure 1.6 we draw the density estimation for the sample of n = 10000
observations.

As in the previous example, the next step is to calculate the maximum-likelihood
estimator (MLE).

Let f(ϑ,Xj−1, Xj) be the density function of Markov sequence Xn defined in
(1.30)

f(ϑ,Xj−1, Xj) =
1√
2π

e
− 1

2

[

Xj−
(Xj−1)

2

1+ϑ|Xj−1|

]2

. (1.31)

Let us consider the likelihood function for our example

V (ϑ,Xn) =
n
∏

j=1

f(ϑ,Xj−1, Xj), ϑ ∈ (2, 5).
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Figure 1.6: Density for Markov sequence

And the log-likelihood ratio function is

Ln(ϑ,X
n) =

n
∑

j=1

(

−1

2
ln 2π − 1

2

[

Xj −
(Xj−1)

2

1 + ϑ | Xj−1 |

]2
)

=
n
∑

j=1

ℓ(ϑ,Xj−1, Xj).

The partial derivative of the log-likelihood ratio function with respect to ϑ is

∂L

∂ϑ
=

n
∑

j=1

ℓ̇(ϑ,Xj−1, Xj)

=
n
∑

j=1

| Xj−1 |3
(1 + ϑ | Xj−1 |)2

(

−Xj +
(Xj−1)

2

1 + ϑ | Xj−1 |

)

.

We need to find ϑ for which

∂L

∂ϑ
= 0.
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With the help of R we draw the distribution of log-likelihood ratio function
Ln(ϑ,X

n) and we find its maximum. We compare the results for n = 1000 and
n = 10000 .

On the Figure 1.7 we present the distribution of log-likelihood ratio function
Ln(ϑ,X

n) where n = 1000. The red line is the true value of the parameter and
the dotted line is the maximum-likelihood estimator for this parameter.
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Figure 1.7: Log-likelihood function for 1 000 observations and ϑ = 2.5

On the Figure 1.8 we present the distribution of log-likelihood ratio function
Ln(ϑ,X

n) where n = 10000. The red line is the true value of the parameter and
the dotted line is the maximum-likelihood estimator for this parameter.

For the large samples we observe that the estimation of the parameter ϑ̂MLE is
very close to it true value.

In the following section we will use this example for constructing the one-step
MLE-process.

Let us consider another example for which there is no explicit MLE expression.
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Figure 1.8: Log-likelihood function for 10 000 observations and ϑ = 2.5

1.5.3 Example 3

Let us consider the following model of observations

Xj+1 = Xj + 3
ϑ−Xj

1 + (Xj − ϑ)2
+ εj+1, j = 0, 1, . . . , n− 1,

where (εj)j≥1 are i.i.d. standard Gaussian random variables. The unknown pa-
rameter ϑ ∈ Θ = (−1, 1). The initial value X0 is given.

The time series (Xj)j≥1 has ergodic properties with the density of invariant
distribution presented on the 1.9. The vertical line represents the true value of
parameter.

It is easy to see that ϑ is the shift parameter. Indeed, we have

Xj+1 − ϑ = Xj − ϑ+ 3
ϑ−Xj

1 + (Xj − ϑ)2
+ εj+1

and if we put Yj = Xj − ϑ then

Yj+1 = Yj − 3
Yj

1 + Y 2
j

+ εj+1.
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Figure 1.9: Gaussian kernel density for 100 000 observations

The invariant distribution of Yj does not depend on ϑ.

The Fisher information does not depend on ϑ because ϑ is a shift parameter,
i.e., I (ϑ) = I.

We have

ℓ (ϑ, x, x′) = ln π(ϑ, x, x′) = −1

2

(

x′ − x− 3
ϑ− x

1 + (ϑ− x)2

)2

− 1

2
ln 2π

and

ℓ̇ (ϑ, x, x′) = 3

(

x′ − x− 3
ϑ− x

1 + (ϑ− x)2

)

1− (ϑ− x)2

(1 + (ϑ− x)2)2
.

Therefore the Fisher information has the representation

I = 9Eϑ





(

Xj+1 −Xj − 3
ϑ−Xj

1 + (ϑ−Xj)
2

)2

×
(

1− (ϑ−Xj)
2

(1 + (ϑ−Xj)2)
2

)2




= 9Eϑ (εj+1)
2 × Eϑ

(

1− (ϑ−Xj)
2

(1 + (ϑ−Xj)2)
2

)2

= 9Eϑ=0

(

1− ζ20

(1 + ζ20 )
2

)2

.
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It can be approximated as follows

In =
1

n

n
∑

j=1

(

1−X2
j

(

1 +X2
j

)2

)2

.

Numerical simulations with n = 1000 gives us the value I1000 = 2.134 and
I1000

−1 = 0.4686.

Before studying the limit variances of estimator of the method of moments
and Bayes estimator let us represent on the Figure 1.10 the three estimators of
parameter ϑ for n = 1000.
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Figure 1.10: Three estimators of theta

Here we used continuous line for drawing the true value of our parameter which
is ϑ0 = 0.5, dash line for Bayes estimator ϑ̃ = 0.4765, dotted line for estimator of
the method of moments ϑ̄ = 0.4163 and dash-dotted line for maximum-likelihood
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estimator ϑ̂ = 0.5146. Both BE and MLE are quite close to the true value ϑ0 and
the EMM gives us the worst estimation of the parameter.

Bayesian estimator.

Let us take the uniform prior distribution p (ϑ) = 1
2
1I{|ϑ|≤1} and calculate the

Bayes estimator

ϑ̃n =

∫ 1

−1
ϑ V (ϑ,Xn) dϑ

∫ 1

−1
V (ϑ,Xn) dϑ

.

The true value is ϑ = 0, 5. Denote ũn =
√
n
(

ϑ̃n − ϑ
)

.

We know that
√
n
(

ϑ̃n − ϑ
)

=⇒ N
(

0, I−1
)

.

Numerical simulations with n = 1000 repeated 1000 times give us the data ũ1000,l =√
1000

(

ϑ̃1000,l − ϑ
)

, l = 1, . . . , 1000 and allow to calculate the empirical variance

1

1000

1000
∑

l=1

(ũ1000,l)
2 = 0.482

which is in accordance with the waited value I−1 = 0.4686.

Estimator of the method of moments.

As ϑ is the shift parameter we can take the estimator of the method of moments
as follows

ϑ̄n =
1

n

n
∑

j=1

Xj.

The numerical simulations of ū1000,l =
√
1000

(

ϑ̄1000,l − ϑ
)

, l = 1, . . . , 1000 yields
the value

Bn =
1

1000

1000
∑

l=1

(ū1000,l)
2 = 1.208.

We see that the limit variance of the EMM is greater than that of the BE. Note
that both estimators are used in the work [9] as preliminary for the construction
of the asymptotically efficient estimator-processes.
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Chapter 2

On Multi-step MLE-process for

Markov Sequences

2.1 Introduction

This chapter is devoted to the problem of finite-dimensional parameter estimation
in the case of observations of Markov sequence in the asymptotics of large samples.

Suppose we observe the process Xn = (X0, X1, X2, . . . , Xn). For simplicity of
exposition we take as a model of observations a nonlinear time series satisfying the
relation

Xj = S (ϑ,Xj−1) + εj, j = 1, 2, . . . (2.1)

and the initial value X0 is given too. The random variables (εj)j≥1 are i.i.d. with
some known smooth density function g (x). The function S (ϑ, x) is supposed to
be known and smooth with respect to ϑ.

Our goal is to construct a sequence (we say process) of estimators ϑ⋆
n = (ϑk,n),

where k = N + 1, N + 2, . . . , n and N ≪ n. By the first N + 1 observations
XN = (X0, X1, . . . , XN) we estimate the parameter ϑ and the obtained preliminary

estimator ϑ̄N we use in the construction of the estimator process ϑ⋆
n.

This construction is based on the modification of the well-known one-step max-
imum likelihood estimator (MLE) procedure introduced by Le Cam in 1956 [11].
In the proofs we follow the similar work [8] devoted to parameter estimation in the
case of ergodic diffusion process.

As the initial estimator is constructed by a relatively small number of observa-
tions N ∼ nδ with δ < 1 the rate of convergence of the preliminary estimator is

41
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√
N ∼ nδ/2 √

N
(

ϑ̄N − ϑ
)

⇒ N (0,D (ϑ))

and we have to improve this rate up to the optimal
√
n and to improve the limit

variance up to the optimal.

Note that the idea to improve the rate of convergence of preliminary estimator
using the Newton-Raphson procedure was realized by Kamatani and Uchida [5] in
the different situation. They considered the problem of parameter estimation by
the discrete time observations of the diffusion process in the asymptotics of the
observations of high frequency , i.e., they supposed that the step of discretization
tends to zero.

Another particularity of the presented work is the following. We propose a
sequence of estimators, which can be easily calculated and the same time it has
the same asymptotic properties as the asymptotically efficient MLE. This means
that these estimators are asymptotically normal and that its limit variance is the
inverse Fisher information matrix.

The properties of the parameter estimators for nonlinear time series and Markov
sequences, of course, are well-known. Let us mention here the works by Roussas
[14], Ogata and Inagaki [13], Varakin and Veretennikov [17]). More about statisti-
cal problems for time series can be found in the monographs by Veretennikov [18],
Taniguchi and Kakizawa [16], Fan and Yao [4], and the references therein.

Note that we take the time series (2.1) just for simplicity of expositions. The
proposed results can be generalized on the more general Markov sequences de-
fined by their transition density if we suppose that this density satisfies to the
corresponding regularity conditions.

The process (Xj)j≥0 has a transition density

π (ϑ, x, x′) = g (x′ − S (ϑ, x)) .

It depends on the parameter θ and defines the probability of reaching the state
x′ after sojourning in the state x. The parameter ϑ takes its values in some open
bounded set Θ ⊂ Rd.

We suppose that the time series (Xj)j≥1 is geometrically mixing, has invariant
distribution with the density function π∗ (ϑ, x) and for simplicity of exposition we
put π0 (x) = π∗ (ϑ, x). In this case the process (Xj)j≥0 is stationary.

The construction of the one-step MLE-process in this work is done in two steps.
On the first step we estimate the unknown parameter by the observations XN =
(X0, X1, . . . , XN) on the learning interval j ∈ [0, N ]. As preliminary estimator we
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can take the MLE, Bayes estimator (BE), estimator of the method of moments
(EMM) or any other estimator, which is consistent and asymptotically normal.

Let us recall some of them. The MLE estimator is defined as follows. Introduce
the likelihood function

V (ϑ,Xn) = π0(X0)
n
∏

j=1

π(θ,Xj−1, Xj), ϑ ∈ Θ, (2.2)

where π0 (x) is the density of the initial value X0.

The maximum likelihood estimator we introduce as usual by the equation

V (ϑ̂n, X
n) = sup

ϑ∈Θ
V (ϑ,Xn). (2.3)

If this equation has many solutions then we can take any of them as the MLE.

It is known that under the regularity conditions the MLE is consistent, asymp-
totically normal: √

n(ϑ̂n − ϑ) =⇒ N (0, I(ϑ)−1), (2.4)

where I(ϑ) is the Fisher information matrix

I(ϑ) = E∗
ϑ

[

ℓ̇ (ϑ,X0, X1) ℓ̇ (ϑ,X0, X1)
T
]

,

where ℓ (ϑ, x, x′) = ln π (ϑ, x, x′), the dot means the derivation w.r.t. ϑ and T

means the transpose of a matrix. The mathematical expectation here is w.r.t. the
invariant measure π∗ (ϑ, ·).

As π (ϑ, x, x′) = g (x′ − S (ϑ, x)) we can write

I(ϑ) = E∗
ϑ

[

ġ (Xj − S (ϑ,Xj−1)) ġ (Xj − S (ϑ,Xj−1))
T
]

= E∗
ϑ

[

ġ (Xj − S (ϑ,Xj−1)) ġ (Xj − S (ϑ,Xj−1))
T

g (Xj − S (ϑ,Xj−1))
2

]

= E

(

g′ (ε)

g (ε)

)2

E∗
ϑ

[

Ṡ (ϑ, ξ) Ṡ (ϑ, ξ)T
]

= Ig E
∗
ϑ

[

Ṡ (ϑ, ξ) Ṡ (ϑ, ξ)T
]

,

where we used the equality Xj − S (ϑ,Xj−1) = εj and denoted

Ig =

∫

g′ (x)2

g (x)
dx.
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Moreover the MLE is asymptotically efficient. There are several definitions of
the asymptotically efficient estimators. One of them is the following : an estimator
ϑ∗
n is called asymptotically efficient if it satisfies the relation: for all ϑ0 ∈ Θ

lim
δ→0

lim
n→∞

sup
|ϑ−ϑ0|<δ

EϑW
(√

n (ϑ∗
n − ϑ)

)

= EW
(

I(ϑ0)
−1/2ζ

)

. (2.5)

Here W (u) , u ∈ Rd is a loss function satisfying the usual conditions. Note that it
can be bounded, polynomial W (u) = |u|p , u ∈ Rd with p > 0 or other (see, e.g.,
[3]) and ζ is a Gaussian vector ζ ∼ N (0, J), J is a unit d× d matrix. Remind that
for all for all estimators ϑ̄n the following Hajek-Le Cam’s type lower bound

lim
δ→0

lim
n→∞

sup
|ϑ−ϑ0|<δ

EϑW
(√

n
(

ϑ̄n − ϑ
))

≥ EW
(

I(ϑ0)
−1/2ζ

)

(2.6)

holds (see, e.g. [3]). That is why (2.5) indeed defines the asymptotically efficient
estimator.

Note that these properties of the MLE were established in several works. We
mention here [13] and [17] (in the one-dimensional case d = 1).

As preliminary estimator we can use as well the BE. Recall its definition and
properties. Suppose that the unknown parameter ϑ ∈ Θ is a random vector with
the prior density p (ϑ) , ϑ ∈ Θ. The function p (·) is continuous, bounded and
positive.

The Bayes estimator for the quadratic loss function has the following represen-
tation:

ϑ̃n =

∫

Θ
ϑp (ϑ)V (ϑ,Xn) dϑ

∫

Θ
p (ϑ)V (ϑ,Xn) dϑ

.

This estimator under regularity conditions is consistent, asymptotically normal

√
n(ϑ̂n − ϑ0) =⇒ N(0, I(ϑ0)

−1) (2.7)

and asymptotically efficient for the polynomial loss functions. For the proof see
[12].

Recall also the properties of the estimator of the method of moments. Suppose
that the vector-function q (x) ∈ Rd is such that the system of equations

m (ϑ) = t, ϑ ∈ Θ,

where

m (ϑ) = E∗
ϑq (ξ)
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has a unique solution ϑ = ϑ (t).

Introduce the function h (t) inverse to the function m (ϑ), i.e., ϑ = m−1 (t) =
h (t). Then the EMM is defined as follows

ϑ̄n = h

(

1

n

n
∑

j=1

q (Xj)

)

.

It is known that under regularity conditions this estimator is consistent, asymp-
totically normal

√
n
(

ϑ̄n − ϑ
)

=⇒ N (0,C (ϑ)) ,

where C (ϑ) is some matrix. Moreover the moments of the EMM converge too (see
[12]).

In this work we use the score-function which can be calculated as follows. We
introduce the log-likelihood ratio function

L(ϑ,Xn) = ln π∗(ϑ,X0) +
n
∑

j=1

ln π(ϑ,Xj−1, Xj). (2.8)

The normalized vector score-function

∆n (ϑ,X
n) =

1√
n

∂L(ϑ,Xn)

∂ϑ

=
1√
n

n
∑

j=1

g′ (Xj − S (ϑ,Xj−1))

g (Xj − S (ϑ,Xj−1))
Ṡ (ϑ,Xj−1) .

If we denote the true value ϑ = ϑ0, then we have

∆n (ϑ0, X
n) =

1√
n

n
∑

j=1

g′ (εj)

g (εj)
Ṡ (ϑ,Xj−1) .

Note that (i < j)

Eϑ

(

g′ (εi)

g (εi)

g′ (εj)

g (εj)
Ṡ (ϑ,Xi−1) Ṡ (ϑ,Xj−1)

T

)

= Eϑ

(

g′ (εi)

g (εi)
Ṡ (ϑ,Xi−1) Eϑ

(

g′ (εj)

g (εj)
Ṡ (ϑ,Xj−1)

T

∣

∣

∣

∣

Fj−1

))

= 0,

because

Eϑ

(

g′ (εj)

g (εj)
Ṡ (ϑ,Xj−1)

T

∣

∣

∣

∣

Fj−1

)

= E

(

g′ (εj)

g (εj)

)

Eϑ

(

Ṡ (ϑ,Xj−1)
T

∣

∣

∣Fj−1

)
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and

E

(

g′ (εj)

g (εj)

)

=

∫ ∞

−∞
g′ (x) dx = 0.

Therefore by the central limit theorem

∆n (ϑ0, X
n) =⇒ N (0, I (ϑ0)) ,

where the Fisher information matrix

I (ϑ0) = Ig Eϑ

(

Ṡ (ϑ, ξ) Ṡ (ϑ, ξ)T
)

.

2.2 Main result

Suppose that we have a Markov sequence Xn = (Xj)j=0,n with the transition
density π (·) depending on some unknown finite-dimensional parameter ϑ ∈ Θ.
The set Θ ⊂ Rd is open, bounded.

Our goal is to construct on-line recurrent estimator of this parameter. Therefore
we need for each j to have an estimator ϑ∗

j,n with good properties, i.e., this estimator
can be easily calculated and the same time it has to be asymptotically optimal in
some sense. We call such sequence of estimators ϑ∗

j,n, j = 1, . . . , n estimator-

process.

We propose a construction of such estimator in two steps. We slightly change
the statement of the problem. Introduce the learning part XN = (X0, X1, . . . , XN)
of observations Xn = (X0, X1, . . . , Xn), where N =

[

nδ
]

(N is the integer part of
nδ) and the parameter δ < 1 will be chosen later.

Throughout the entire paper we suppose that the following Regularity conditions
are fulfilled.

1. The time series (Xj)j≥0 is geometrically mixing with the density of invariant

law π∗ (ϑ, x) and such that the law of large numbers

1

n

n
∑

j=1

h (Xj) −→ Eϑh (ξ) ≡
∫

h (x) π∗ (ϑ, x) dx
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and the central limit theorem

1√
n

n
∑

j=1

[h (Xj)− Eϑh (ξ)] =⇒ N
(

0, σ (ϑ)2
)

hold. Here we suppose that the function h (·) is quadratically integrable w.r.t.
the invariant measure and σ (ϑ)2 < ∞ is the corresponding limit variance.

2. The preliminary estimator ϑ̄N is consistent and asymptotically normal
√
N
(

ϑ̄N − ϑ
)

=⇒ N (0,B (ϑ))

with some covariance matrix B (ϑ).

3. The function S (·, ·) ∈ C3
ϑ, the density g (·) > 0 and g (·) ∈ C3.

4. The function ℓ (ϑ, x, x′) = ln π (ϑ, x, x′) ∈ C3
ϑ and its derivatives uniformly

on ϑ are majorated by absolutely integrable functions, i.e.,

sup
ϑ∈Θ

∥

∥

∥

∥

∂iℓ (ϑ, x, x′)

∂ϑi

∥

∥

∥

∥

≤ Ri (x, x
′) , i = 1, 2, 3,

where Eϑ |Ri (Xj−1, Xj)|2 < C.

5. The information matrix I (ϑ) is uniformly in ϑ ∈ Θ non-degenerate and
bounded

0 < inf
ϑ∈Θ

inf
|λ|=1

λT
I(ϑ)λ, sup

ϑ∈Θ
sup
|λ|=1

λT
I(ϑ)λ < ∞. (2.9)

Here λ ∈ Rd.

Note that as preliminary estimator ϑ̄N we can take the MLE, the BE or the
EMM. All of them have the required properties (under additional regularity con-
ditions, which we do not mention here). The details can be found in [13], [17],
[12] or any other work describing their properties. The conditions 3-4 allow us
differentiate the function ℓ (ϑ, x, x′) with respect to ϑ and by condition 5 these
derivatives have bounded moments.

We construct the one-step MLE-process ϑ⋆
k,n, k = N + 1, . . . , n as follows. In-

troduce the variable s ∈ (τδ, 1], where τδ = n−1+δ → 0 and put k = [sn], where [a]
means the integer part of a. Let us write ϑ⋆

k,n = ϑ⋆
s,n and consider the estimator-

process ϑ⋆
n =

(

ϑ⋆
s,n, s ∈ (τδ, 1]

)

.
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Our goal is to construct an estimator process ϑ⋆
n asymptotically optimal for all

s ∈ (τδ, 1]. Recall that the MLE ϑ̂s,n constructed by the first k = [sn] observations
is asymptotically efficient and for example,

√
sn
(

ϑ̂s,n − θ
)

=⇒ N
(

0, I (ϑ)−1) , s ∈ [δ, 1] .

Note that to solve the equation

sup
ϑ∈Θ

V
(

ϑ,X [sn]
)

= V
(

ϑ̂s,n, X
[sn]
)

for all s ∈ (τδ, 1] is computationally rather difficult problem, except some partic-
ular examples. Therefore it is better to seek another estimators, which have the
same property to be asymptotically efficient for all s ∈ (τδ, 1]) and which can be
calculated in more simple way.

We consider two different situations depending on the length of the learning
interval [0, N ]. If N = nδ with 1

2
< δ < 1 then we construct the one-step MLE-

process and if we take the preliminary interval shorter, i.e., N = nδ with 1
4
< δ ≤ 1

2
,

then we introduce an intermediate estimator and only after that we can construct
the two-step MLE-process. Therefore we consider below these two situations sep-
arately.

2.2.1 One-step maximum likelihood estimator-process

We proceed as follows. Let us fix s ∈ (τδ, 1] and slightly modify the vector score-
function

∆k(ϑ,X
k
N) =

1√
k

k
∑

j=N+1

ℓ̇(ϑ,Xj−1, Xj),

where k = [sn] → ∞. Introduce the one-step MLE

ϑ∗
s,n = ϑ̄N +

1√
k
I
(

ϑ̄N

)−1
∆k(ϑ̄N , X

k
N).

Here and below for simplicity of notation this writing means that N is the
integer part of nδ.
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Theorem 3 Suppose that the conditions of regularity are fulfilled, then
√
k(ϑ∗

s,n − ϑ) =⇒ N
(

0, I (ϑ)−1) . (2.10)

Proof. We can write
√
k(ϑ∗

s,n − ϑ) =
√
k(ϑN − ϑ) + I

(

ϑ̄N

)−1
∆k(ϑ̄N , X

k
N)

=
√
k(ϑN − ϑ) + I(ϑ̄N)

−1∆k(ϑ,X
k
N)

+ I(ϑ̄N)
−1 [∆k(ϑ̄, X

k
N)−∆k(ϑ,X

k
N)
]

.

We have

∆k(ϑ̄, X
k
N)−∆k(ϑ,X

k
N) =

∫ 1

0

〈(ϑ̄N − ϑ), ∆̇k(ϑ+ v
(

ϑ̄N − ϑ
)

, Xk
N)〉 dv.

Hence (below ϑv = ϑ+ v
(

ϑ̄N − ϑ
)

)

√
k(ϑN − ϑ) + I(ϑ̄N)

−1
[

∆k(ϑ̄, X
k
N)−∆k(ϑ,X

k
N)
]

=
√
k(ϑN − ϑ)I(ϑ̄N)

−1

[

I(ϑ̄N) +
1√
k

∫ 1

0

∆̇k(ϑv, X
k
N) dv

]

.

Further

I(ϑ̄N) +
1√
k

∫ 1

0

∆̇k(ϑv, X
k
N) dv = I(ϑ) +

1√
k
∆̇k(ϑ,X

k
0 )−

1√
k
∆̇k(ϑ,X

N−1
0 )

+ I(ϑ̄N)− I(ϑ) +
1√
k

∫ 1

0

[

∆̇k(ϑv, X
k
N)− ∆̇k(ϑ,X

k
N)
]

dv

=
1

k

k
∑

j=1

[

ℓ̈ (ϑ,Xj−1, Xj) + I(ϑ)
]

+O

(

N

k

)

+O
(

n− δ
2

)

,

because

1√
k
∆̇k(ϑ,X

N−1
0 ) =

1

k

N−1
∑

j=1

ℓ̈ (ϑ,Xj−1, Xj) = O

(

N

k

)

= O
(

n−1+δ
)

,

I(ϑ̄N)− I(ϑ) = O
(

ϑ̄N − ϑ
)

= O
(

n− δ
2

)

and

1√
k

∫ 1

0

[

∆̇k(ϑv, X
k
N)− ∆̇k(ϑ,X

k
N)
]

dv = O
(

ϑ̄N − ϑ
)

= O
(

n− δ
2

)

.
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By the central limit theorem we have

1√
k

k
∑

j=1

[

ℓ̈(ϑ,Xj−1, Xj) + I(ϑ)
]

=⇒ N (0,C (ϑ))

with some matrix C (ϑ). Remind that Eϑℓ̈(ϑ,Xj−1, Xj) = −I(ϑ).

Therefore

√
k(ϑ∗

s,n − ϑ) = I(ϑ̄N)
−1∆k(ϑ,X

k
N)

+ n
δ
2 (ϑN − ϑ)

[

n
1−δ
2 O

(

n− 1
2

)

+ n
1−δ
2 O

(

n−1+δ
)

+ n
1−δ
2 O

(

n− δ
2

)]

= I(ϑ)−1∆k(ϑ,X
k
0 ) + o (1) =⇒ N

(

0, I(ϑ)−1) ,

where we used once more the central limit theorem

1√
k

k
∑

j=1

ℓ̇ (ϑ,Xj−1, Xj) =⇒ N (0, I(ϑ)) .

Therefore the one-step MLE-process ϑ⋆
n =

(

ϑ⋆
s,n, τδ < s ≤ 1

)

for all s ∈ (τδ, 1] is
asymptotically normal (2.10) with asymptotically efficient covariance matrix.

2.2.2 Two-step maximum likelihood estimator-process

The choice of the learning period of observations N =
[

nδ
]

with δ ∈ (1/2, 1)
allows us to construct an estimator process for the values s ∈ (τδ, 1] only. It can
be interesting to see if it is possible to take more short learning interval. Our goal
is to show that the learning period can be N =

[

nδ
]

with δ ∈ (1/4, 1/2]. Below
we follow the construction which was already realized in [8] in the case of ergodic
diffusion process.

Suppose that N =
[

nδ
]

with δ ∈ (1/4, 1/2). The asymptotically efficient esti-
mator we construct in three steps. By the first N observations as before we obtain
the preliminary estimator ϑ̄N which is asymptotically normal with the rate

√
N ,

i.e.,

n
δ
2

(

ϑ̄N,1 − ϑ
)

=⇒ N (0,B (ϑ)) .

This can be the same estimator as in the preceding case. It can be, for example,
the EMM, BE or MLE.
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The two-step MLE-process ϑ⋆⋆
n =

(

ϑ⋆⋆
k,n, k = N + 1, . . . , n

)

we construct as fol-

lows. Fix some s ∈ (τδ, 1], τδ = n−1+δ and introduce the second preliminary
estimator-process (below k = [sn])

ϑ̄k,2 = ϑ̄N,1 +
1√
k
I
(

ϑ̄N,1

)−1
∆k(ϑ̄N,1, X

k), (2.11)

where

∆k(ϑ,X
k) =

1√
k

k
∑

j=1

ℓ̇ (ϑ,Xj−1, Xj) .

Then we show that the random sequence n1/4+ε
(

ϑ̄k,2 − ϑ
)

with some ε > 0 is
bounded in probability (tight).

Finally, using this estimator-process and the one-step procedure of the Theorem
3 we obtain asymptotically efficient estimator

ϑ⋆⋆
k = ϑ̄k,2 +

1√
k
I
(

ϑ̄k,2

)−1
∆k(ϑ̄k,2, X

k). (2.12)

In the next theorem we realize this program.

Theorem 4 Suppose that the conditions of regularity are fulfilled, then the esti-
mator ϑ⋆

n defined (2.11) and (2.12) is asymptotically normal

√
k(ϑ⋆⋆

n − ϑ) =⇒ N
(

0, I (ϑ)−1) .

Proof. The only thing to proof is the tightness of the sequence of random
vectors n1/4+ε

(

ϑ̄k,2 − ϑ
)

, because if it is tight, then the proof of Theorem 4 follows
from the Theorem 3. Let us fix some ε > 0.

For the estimator-process ϑ̄k,2 defined by (2.11) we can write

n
1
4
+ε
(

ϑ̄k,2 − ϑ
)

= n
1
4
+ε
(

ϑ̄N − ϑ
)

+
n

1
4
+ε

√
k
I
(

ϑ̄N

)−1
∆k(ϑ̄N , X

k)

= n
1
4
+ε
(

ϑ̄N − ϑ
)

+
n

1
4
+ε

√
k
I
(

ϑ̄N

)−1
∆k(ϑ,X

k)

+
n

1
4
+ε

√
k
I
(

ϑ̄N

)−1 (
ϑ̄N − ϑ

)

∆̇k(ϑ̃k, X
k).
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Note that ∆k(ϑ,X
k) is asymptotically normal and therefore

n
1
4
+ε

√
k
I
(

ϑ̄N

)−1
∆k(ϑ,X

k) −→ 0,

because n
1
4
+εk− 1

2 → 0. Further

n
1
4
+ε
(

ϑ̄N − ϑ
)

+
n

1
4
+ε

√
k
I
(

ϑ̄N

)−1 (
ϑ̄N − ϑ

)

∆̇k(ϑ̃k, X
k)

= n
1
8
+ δ

2

(

ϑ̄N − ϑ
)

Rn,

where

Rn = n
1
8
+ε− δ

2

[

J+ I
(

ϑ̄N,1

)−1 1

k

k
∑

j=1

ℓ̈
(

ϑ̃, Xj−1, Xj

)

]

.

We have by the law of large numbers

1

k

k
∑

j=1

ℓ̈ (ϑ,Xj−1, Xj) −→ −I (ϑ) .

From the regularity conditions it follows that
∣

∣

∣
I
(

ϑ̄N,1

)−1 − I (ϑ)−1
∣

∣

∣
≤ C

∣

∣ϑ̄N,1 − ϑ
∣

∣ ,
∣

∣

∣∆̇k(ϑ̃k, X
k)− ∆̇k(ϑk, X

k)
∣

∣

∣ ≤ C
∣

∣ϑ̄N,1 − ϑ
∣

∣ .

Therefore we verified the tightness of the sequence n
1
4
+ε
(

ϑ̄k,2 − ϑ
)

. Now the proof
of the Theorem 4 follows from the proof of the Theorem 3.

2.3 Examples

We consider below two examples. Both of them was already discussed in the
previous chapter in the context of the study of the Bayesian estimators and the
estimators of the method of moments. In the first example we construct the prelim-
inary MLE and the one-step MLE-process. In the second example we construct the
preliminary EMM, the second preliminary estimator-process and then the two-step
MLE-process.
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2.3.1 Example 1. MLE as preliminary estimator

Let us consider the problem of the construction of the one-step MLE-process in
the case of observations Xn = (X0, X1, . . . , Xn) of the time series

Xj =
(Xj−1)

2

1 + ϑ | Xj−1 |
+ εj, ϑ ∈ (2, 5), (2.13)

where (εj)j≥1 ∼ N (0, 1).

Note that for this model the conditions of the Theorem 2 of the work [17] can
be verified. The time series has ergodic properties. The density of invariant law
we estimate with the help of kernel-type estimator:

π̂n(x) =
1

nhn

n
∑

j=1

K

(

Xj − x

hn

)

,

where the width hn = n−1/5 and K (·) is the gaussian kernel:

K(x) =
1√
2π

e−
x2

2 .

The estimator of the invariant density in the case n = 105 and ϑ = 2, 5. could
be found in the previous example-section.

First we define the MLE constructed on the learning sequenceXN = (X0, X1, . . . , XN).
For the conditional density function π(ϑ,Xj−1, Xj) of the Markov sequence (2.13),
we have the representation

π(ϑ,Xj−1, Xj) =
1√
2π

e
− 1

2

[

Xj−
(Xj−1)

2

1+ϑ|Xj−1|

]2

. (2.14)

Hence the likelihood function is

V (ϑ,XN) = π0 (X0)
N
∏

j=1

π(ϑ,Xj−1, Xj), ϑ ∈ (2, 5).

And the log-likelihood ratio function is

LN(ϑ,X
N) = ln π0 (X0) +

N
∑

j=1

(

−1

2
ln 2π − 1

2

[

Xj −
(Xj−1)

2

1 + ϑ | Xj−1 |

]2
)

= ln π0 (X0) +
N
∑

j=1

ℓ(ϑ,Xj−1, Xj).
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On the Figure 2.1 we present the result of simulations of this log-likelihood ratio
function LN(ϑ,X

n), where N = n3/4 ∼ 5623. The continuous vertical line corre-
sponds to the true value ϑ0 = 2.5 of the parameter and the vertical dotted line
corresponds to the maximum-likelihood estimator ϑ̂N .

To find the MLE we have to solve the maximum likelihood equation

∂L

∂ϑ
=

N
∑

j=1

ℓ̇ (ϑ,Xj−1, Xj) = 0, ϑ ∈ (2, 5) ,

which has the following form

N
∑

j=1

| Xj−1 |3
(1 + ϑ | Xj−1 |)2

(

−Xj +
(Xj−1)

2

1 + ϑ | Xj−1 |

)

= 0, ϑ ∈ (2, 5) .

2.0 2.5 3.0 3.5 4.0 4.5 5.0

−
1

4
5

4
−

1
4

5
2

−
1

4
5

0
−

1
4

4
8

−
1

4
4

6
−

1
4

4
4

−
1

4
4

2

th

L

True value of theta

Estimator of theta

Figure 2.1: Log-likelihood function for 1 000 observations

Further we construct the one-step MLE-process ϑ⋆
n =

(

ϑ⋆
k,n, N + 1 ≤ k ≤ n

)

based on this preliminary estimator ϑ̂N as follows.
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The normalized score-function is

∆k(ϑ,X
k) =

1√
k

k
∑

j=1

| Xj−1 |3
(1 + ϑ | Xj−1 |)2

(

−Xj +
(Xj−1)

2

1 + ϑ | Xj−1 |

)

,

where N + 1 ≤ k ≤ n. Finally the one-step MLE-process that has the following
representation

ϑ⋆
k,n = ϑ̂N +

1

Ik(ϑ̂N)k

k
∑

j=1

| Xj−1 |3
(1 + ϑ̂N | Xj−1 |)2

(

−Xj +
(Xj−1)

2

1 + ϑ̂N | Xj−1 |

)

,

where N + 1 ≤ k ≤ n and Ik(ϑ̂N) = 0.001 is the Fisher information calculated as
follows

Ik(ϑ̂N) = −1

k

k
∑

j=1

ℓ̈
(

ϑ̂N , Xj−1, Xj

)

.

More detailed analysis shows that with such definition of the empirical Fisher in-
formation the main result of this work Theorem 2 is valid. Therefore the estimator-
process ϑ⋆

n is asymptotically normal and asymptotically efficient.

The realization of the simulated one-step MLE-process for n = 105 is shown on
the Figure 2.2. We can see that the initial estimator ϑ̂N is far from the true value
and that the trajectory of one-step MLE-process approaches to the true value.

2.3.2 Example 2. EMM as preliminary estimator

Let us consider another example, where it will be much more easy to take the
EMM as preliminary one. Our goal is to illustrate the convergence of the one-step
MLE-process when the initial estimator is not asymptotically efficient. It be can,
for example, the EMM which has“bad” rate and “bad” limit variance.

Introduce the time series

Xj = Xj−1 + 3
ϑ−Xj−1

1 + (Xj−1 − ϑ)2
+ εj, j = 1, . . . , n, (2.15)

where (εj)j≥1 are i.i.d. standard Gaussian random variables. The unknown pa-
rameter ϑ ∈ Θ = (−1, 1). The initial value X0 is supposed to be given too.
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Figure 2.2: One-step MLE-process for 100 000 observations

Note that this example was already used in the work [12] and in the previous
chapter to illustrate the properties of the BE and EMM.

This process has ergodic properties and its invariant density can be estimated
as in the Example 1 with the help of the kernel-type estimator. The result of such
estimation can be found in [12] and in the previous example-section.

In this example our goal is to two estimator-processes: one-step and two-step.
Our goal is to construct the estimator-processes ϑ⋆

n and ϑ⋆⋆
n , which are asymptot-

ically equivalent to the MLE and therefore are asymptotically efficient. The same
time their calculation is much more simple than that of the MLE.

We start with the one-step MLE-process. As described before we construct this
estimator in two steps. First we need to calculate a consistent preliminary estima-
tor ϑ̄N by the initial observations X1, . . . , XN , where N = nδ with δ ∈ (1

2
, 1). As

preliminary we can take the MLE, BE or EMM. Note that the unknown parameter
for this model of observations is the shift parameter and that the invariant density
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function is symmetric with respect to ϑ. Hence we can take the EMM

ϑ̄N =
1

N

N
∑

j=1

Xj −→ ϑ, N = n3/4.

Of course, the limit variance of the EMM ϑ̄N is greater than that of the BE, but
this estimator is much more easier to calculate.

The score-function process is

∆k(ϑ,X
k) =

1√
k

k
∑

j=1

ℓ̇ (ϑ,Xj−1, Xj) , N + 1 ≤ k ≤ n,

where

ℓ̇ (ϑ, x, x′) =− 1

2
2

(

x′ − x− 3
ϑ− x

1 + (ϑ− x)2

)

×

3
1 + (ϑ− x)2 − (ϑ− x) 2 (ϑ− x)

(1 + (ϑ− x)2)2
=

3

(

x′ − x− 3
ϑ− x

1 + (ϑ− x)2

)

1− (ϑ− x)2

(1 + (ϑ− x)2)2
.

Therefore we can calculate the one-step MLE-process as follows

ϑ⋆
k,n = ϑ̄N +

1

Ik

√
k
∆k(ϑ̄N , X

k)

= ϑ̄N +
3

Ikk

k
∑

j=1

(

Xj −Xj−1 − 3
ϑ−Xj−1

1 + (ϑ−Xj−1)
2

)

1− (ϑ−Xj−1)
2

(1 + (ϑ−Xj−1)2)
2 .

Here N + 1 ≤ k ≤ n Ik is the empirical Fisher information. Its calculation in
this example can be found in [12]. Note that I (ϑ) = I as usual with the shift
parameter.

Remind that by the Theorem 2 this estimator asymptotically normal .

The simulated one-step MLE-processes are shown on the Figure 2.3 and 2.4 for
n = 1000 and n = 10000.

On the Figure 2.3 the preliminary EMM ϑ̄N = 0.45 that is quite close to the
true value of parameter ϑ = 0.5. We obtain this estimator based on the learning
interval of N = 178 observations. And we can observe the estimator-process
ϑ⋆
n =

(

ϑ⋆
k,n, k = N + 1; . . . , n

)

that tends to the true value.
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Figure 2.3: One-step MLE-process for n=1 000

On the Figure 2.4 the preliminary EMM ϑ̄N = 0.56 that is quite close to the
true value ϑ = 0.5. We obtain this estimator based on the learning interval of
N = 1000 observations. And we can observe the sequence of estimators ϑ⋆

n =
(

ϑ⋆
k,n, k = N + 1; . . . , n

)

that tends to the true value.

Let us illustrate the two-step MLE-process. Now we take N = n3/8.

We consider two cases: one with n = 1000 observations and the second with
n = 10000 observations.

On the Figure 2.5 the preliminary EMM ϑ̄N = 0.4 that is quite far from the
true value ϑ = 0.5. We obtain this estimator based on the learning interval of
N = 10003/8 ≈ 13 observations. Then we obtain the second preliminary estimator-
process ϑ⋆

n =
(

ϑ⋆
k,n, k = N + 1; . . . , n

)

(continuous line) and see that it tends to
the true value. The two-step MLE-process ϑ⋆⋆

n (dashed line) is closer to the true
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Figure 2.4: One-step MLE-process for n=10 000

value and as well tends to the true value.

On the Figure 2.6 the preliminary EMM ϑ̄N = 0.54 that is quite close to
the true value ϑ = 0.5. We obtain this estimator based on the learning interval
of N = 100003/8 ≈ 32 observations. Then we obtain the second preliminary
estimator-process ϑ⋆

n =
(

ϑ⋆
k,n, k = N + 1; . . . , n

)

(continuous line) and see that it
tends to the true value. The two-step MLE-process ϑ⋆⋆

n (dashed line) is closer to
the true value and as well tends to the true value.
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Figure 2.5: Second preliminary and two-step MLE-processes for n=1 000 and
ϑ = 0.5

2.4 Discussion

Two-step MLE-process allows us to estimate the parameter θ for the values k
satisfying the condition n1/4 < k ≤ n]. If we need a shorter learning interval, say,
[

1, nδ
]

with δ ∈ (1
8
, 1
4
], then we have to study the three-step MLE-process, i.e., we

use a preliminary estimator ϑ̄N and two estimator-processes like (2.11).

Note that the proposed one-step MLE-process can be written in the recurrent
form.
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Figure 2.6: Second preliminary and two-step MLE-processes for n=10 000 and
ϑ = 0.5

Indeed, the estimator ϑ⋆
k,n we can represent in the following way

ϑ⋆
k+1,n = ϑ̄N +

1√
k + 1

I
(

ϑ̄N

)−1
∆k+1

(

ϑ̄N , X
k+1
)

= ϑ̄N +
1

k + 1
I
(

ϑ̄N

)−1

[

k
∑

j=1

ℓ̇
(

ϑ̄N , Xj−1, Xj

)

+ ℓ̇
(

ϑ̄N , Xk, Xk+1

)

]

=
k

k + 1

[

ϑ̄N +
1

k
I
(

ϑ̄N

)−1
k
∑

j=1

ℓ̇
(

ϑ̄N , Xj−1, Xj

)

]

+
1

k + 1
ϑ̄N

+
1

k + 1
I
(

ϑ̄N

)−1
ℓ̇
(

ϑ̄N , Xk, Xk+1

)

=
k

k + 1
ϑ⋆
k,n +

1

k + 1
ϑ̄N +

1

k + 1
I
(

ϑ̄N

)−1
ℓ̇
(

ϑ̄N , Xk, Xk+1

)

.
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The obtained presentation

ϑ⋆
k+1,n =

k

k + 1
ϑ⋆
k,n +

1

k + 1
ϑ̄N +

1

k + 1
I
(

ϑ̄N

)−1
ℓ̇
(

ϑ̄N , Xk, Xk+1

)

allows us to calculate ϑ⋆
k+1,n using the values ϑ̄N , ϑ

⋆
k,n and observations Xk, Xk+1

only.

The similar structure can be obtained for the two-step MLE-process too. Note
that this is not a particular case of the well-known algorithms of stochastic ap-
proximation (see, for example the works of Duflo Random Iterative Models).



Chapter 3 

On applications of Markov chains in 
health economics 

3.1 Introduction 

The management of critically ill patients is strongly dependent of intravascular 
catheters, most of them being central venous catheters (CVC) and arterial catheters. 
However, intravascular catheters can lead to serious infectious complications 
including Catheter-Related Bloodstream infections (CRBSIs) [19], [20] as they are a 
relevant entry door allowing microorganisms into the bloodstream [21]. CRBSI is still 
a frequent (1-5 episodes/1000 catheter-days) and life-threatening complication 
observed in critically ill patients (ICU) [22], [23], [24], [25], [26] even though in the 
last years different strategies have been proven to efficiently reduce its risk. 

The patient's own skin flora is very likely the most important source of catheter 
colonization and infection for central venous catheters in place for 10 days or less, and 
responsible for 60% of CRBSIs [27], [28]. The skin flora microorganisms more often 
causing CRBSI, Staphylococcus aureus and S. epidermidis) [29], [30], [31], will 
regrow after skin antisepsis [32] and colonize the outer surface of the catheters [33]. 
CR-BSIs frequently trigger sepsis which causes a great deal of morbidity and deaths, 
and increases health care costs [58], [44].  

A large proportion of the CR-BSIs are preventable through careful control of the 
factors responsible for colonization of intravascular catheters by microorganisms [34], 
[35]. Several interventions based on better education, training and staffing [36] or on 
the implementation on evidenced-based bundles of care [37], [38] were proven to be 
able to reducing the CRBSI rates. Also, the use of CHG antiseptic solutions for 

63 
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prepping the skin before the central line insertion and bathing or cleansing the patients 
during their ICU stay have a positive impact in preventing CRBSIs [39], [40], [41]. 
Implementation of more sophisticated technologies, as catheters impregnated with 
antiseptics and antibiotics, also contribute to further reduce the risk of CRBSIs [42]. 
 
Antimicrobial catheter dressings are one of the available medical technologies 
designed to prevent skin flora re-growth and, as a consequence, to reduce the incidence 
of CR-BSIs. The use of a CHG-containing antimicrobial sponge at the catheter 
insertion site significantly reduced the CRBSI rate in Intensive Care Unit (ICU) 
population in France [43], even when the baseline was already low (below 2 
episodes/1000 catheter-days). More recently, the clinical efficacy of a novel 
transparent CHG-containing catheter dressing, combining antimicrobial activity and 
transparency for easy visual observation of the insertion site, has been also evaluated 
by the same team, in a French multicenter randomized controlled trial [44]. In this 
study, the impact of the antimicrobial transparent dressing on reducing the CRBSI rate 
was also highly statistically significant. 
 
Subsequently, two multi-state models were constructed. A homogeneous (H-MCMC) 
and non-homogeneous Markov Model with Markov Chain Monte Carlo simulation 
(NH-MCMC) models have been developed [50], based on individual patient data 
collected during the French RCT [77]. The methods and results of these two 
approaches are discussed and compared. 
 
The aim of these works, focusing on the ICU perspective, was to evaluate the cost-
effectiveness of routine use of the CHG-containing dressings in critically ill patients. 
The both models attempted to simulate the various observable health trajectories of 
ICU patients regarding the risk of acquiring CRBSIs and to evaluate all the uncertainty 
around the estimations of the RCT. These new models are profoundly different from 
all previous economical evaluations of antimicrobial dressings for intravascular access 
related to the prevention of CRBSI [45], [46], [47]. Those evaluations used decision-
tree models representing the therapeutic choices (antimicrobial vs. non-antimicrobial 
dressings) and the incidence of catheter-related infections as clinical outcome.  
 
The results of this chapter have been the subject of several publications and oral 
presentations. The principal article named “Cost-effectiveness analysis of a 
transparent antimicrobial dressing for managing central venous and arterial catheters 
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in intensive care units” [48] was submitted and accepted for the publication in PLOS 
ONE journal of science and medicine (the latest impact factor: 3.534).  
 
Besides, several posters and presentations were closely linked with this topic. The 
posters were presented during the International Society for Pharmacoeconomics and 
Outcomes Research (ISPOR) annuals conferences (2012-2014) and the corresponding 
abstracts were published in Value in Health: 

1. Non-homogeneous cost-effectiveness modeling of a new CHG-dressing for 
preventing catheter-related bloodstream infections for patients in intensive 
care units [49]. 

2. Cost-Effectiveness of the TLC-NOSF Dressing in Venous Leg Ulcers [50]. 
3. Modeling cost-effectiveness of antimicrobial dressings for preventing 

catheter-related bloodstream infection: homogeneous vs. non-homogeneous 
Markov approaches [51]. 

4. Cost-effectiveness analysis of an antimicrobial transparent dressing for 
protecting central vascular accesses in critically ill patients versus standard 
transparent dressings in France: A comparison of two modeling approaches: 
Decision-Tree versus Non-Homogeneous Markov Model (NHMM) [52]. 
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3.2 Healthcare decision-making 
 

3.2.1 Medical interest 
 

Catheter-related bloodstream infections (CRBSIs) are associated with attributable 
mortality rates of up to 11.5% and additional length of stay in the intensive care unit 
(ICU) of up to 12 days [53], [54]. The universally accepted method for minimizing 
CRBSIs is a bundle of care combining maximal sterile barrier precautions for 
insertion, an appropriate antiseptic solution for skin antisepsis and line access, 
preferential subclavian catheterization, and immediate removal of unnecessary 
catheters [55], [56]. 
 
Combining this catheter-care bundle with continuous quality improvement programs 
can decrease the CRBSI rate below 2 per 1,000 CVC-days [57], [58]. In Europe, the 
incidence of CRBSIs ranges from 1 to 3.1 per 1,000 patient-days [59] and according 
to the French surveillance network, less than one CRBSI occurred per 1,000 CVC-
days in 2010 [60]. However, rates below 2 per 1,000 CVC-days are difficult to achieve 
in all ICUs [61], [62] and in the long term [63]. 
 
Most organisms responsible for short-term CRBSIs originate from the insertion site 
[64]. It was demonstrated previously that the risk of developing CRBSIs can be 
dramatically reduced (60% decrease) by the systematic use of a new antimicrobial 
transparent dressing [44] containing a Chlorhexidine Gluconate (CHG) gel even 
though bundles of care are appropriately followed and CRBSI level is lower than 1.5 
per 1,000 catheter-days in the control group. 
 
The purpose of this work is to evaluate the advantages of the routine use of the new 
CHG dressing to secure central lines of patients in ICU from a medico-economic 
viewpoint compared to non-antimicrobial transparent dressings, in settings where 
bundles of care practices are appropriately followed and where incidence of infection 
is already low (1.5 per 1,000 catheter-days). Both medical and economic criteria are 
embedded into a decision-analytic model to support the choice of the best dressing 
strategy from an ICU perspective. 
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3.2.2 Health economic context 
  

The main question of the health economics we can formulate as follows: 

- What is the additional cost required to obtain a supplementary benefits of 
a therapeutic intervention or treatment? 

- How much should society spend to increase the life expectancy for one 
year? 

These questions are crucial because they emphasize the fact that resources are limited. 
In health system it is necessary to consider the both medical and economic variables 
in terms of efficacy and in terms of expected cost.  
 
The health economic evaluation provides explicit information on the costs and 
consequences of different interventions (health products or technologies, therapeutic 
sequences, screening programs, etc.) to improve decision-making and to promote 
efficient resource use. It is intended to facilitate the public decisions about resource 
allocation. The countries with a National Health Service or National health insurance 
generally leave the political authorities to decide on new drugs, new therapies and 
medical devices to be covered by the plan. It is clear that the innovative product with 
the proven therapeutic benefits, often associated with the reducing the risk of 
premature death to a certain population at risk, induces the extra cost (additional 
expenses) compared to existing products. 
 

3.2.3 Cost-effectiveness analysis 
 

The cost-effectiveness analysis (CEA) is a method of medico-economic evaluation to 
assess the costs and medical benefits for the various medical technologies, therapeutic 
sequences or concurrent clinical strategies. Generally, CEA is used to compare a 
therapeutic innovation with the most widely used current strategy. 
 
The general rule in solving a problem of medical and economic decision is simple. 
The decision should be made taking into account two factors: in terms of efficiency 
and in terms of cost. Medical and budgetary approaches are opposed to each other 
naturally. Physicians think in terms of the expected medical service or in terms of 
efficiency. Managers try to minimize the expected expenditure. 
 
The efficiency criterion is a way to bring together these two terms. In CEA the goal is 
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to calculate the incremental cost-effectiveness ratio (ICER). The ICER means that the 
additional cost generated by the new product is rewarded with medical effect. 
 ���� =

���������� ��������������� �������� =
����� �� ���������� − ���� �� ��������������� �� ���������� − ������ �� ��������� . 

 
The substitution or replacement of a strategy by another leads to the difference in cost 
and the difference in efficiency. By calculating ICERs, we can classify the different 
strategies with respect to another based on the efficiency criterion. Obviously, the best 
strategy is the one that is the least expensive and that is most effective. On the other 
side, the strategy is dominated by another if it is more expensive and less effective or 
equally effective but more expensive. 
 
It should not be considered in any way that the medical and economic assessment is 
limited to simple calculation of the ICER. The real challenge for the evaluation is to 
incorporate into the model the proposed uncertainty concerning this calculation. 
 
And finally, if the cost-effectiveness of a strategy is proven, the positive or negative 
consequences of the decision can be assessed on the budget of a payer structure. To 
analyze these budgetary consequences, a budget impact analysis (BIA) should be 
proposed by the health economists. By cons, there is no sense in BIA if the differential 
cost-effectiveness ratio is not favourable to the innovative strategy. 
 
The objective of this medico-economic study is to demonstrate the advantages for 
patient of the routine use of CHG dressing for central lines in intensive care unit (ICU) 
patients, compared to non-antimicrobial dressings, related to the prevention of 
catheter-related bloodstream infections. The demonstration will take in consideration 
both medical and economic criteria and will be founded on an analytic decision model 
(multi-state homogeneous and non-homogeneous Markov models). The model 
outcomes will support the choice of the best dressing strategy based on a retro-
prospective cost-effectiveness analysis (the transition probabilities are estimated from 
the real-life individual database). 
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3.3 Presentation of database 
 

3.3.1 Data Collection 
 

The main data source was the database assembling all patient data collected during the 
RCT [44]. This multicentre randomized-controlled study compared the impact of the 
antimicrobial CHG dressing (referred in the current dissertation as CHG dressings) 
and of non-antimicrobial transparent dressings (referred as non-CHG dressings) on 
the rate of catheter related infections.  
 
The main objective of the RCT transposed in this cost-effectiveness analysis was to 
determine if the use of the new transparent CHG dressing decreased CRBSI rates. The 
RCT was not blinded to the investigators or ICU staff due to the obvious visual 
differences between the dressings, but was blinded to the microbiologists processing 
the skin and catheter cultures and to the committee adjudicating on the CRBSI cases. 
The two groups receiving different types of non-antimicrobial transparent dressings in 
the RCT were pooled together as “non-antimicrobial transparent dressings” for the 
purpose of the modeling presented in this work. 

 

3.3.2 Study Population 
 

The multicentre RCT [44] enrolled adult patients (>18 years) admitted to 12 French 
ICUs in seven universities and four general hospitals, from 31 May 2010 to 29 July 
2011, and expected to require intravascular catheterization for 48 hours. Patients with 
known allergies to chlorhexidine or transparent dressings were excluded. Of 2,054 
screened patients with at least one catheter, 1,898 could be enrolled in the study and 
1,879 were assessable for the intention-to-treat analysis, for a total of 4,163 catheters 
and 34,339 catheter-days. Patients and catheters characteristics are reported in the next 
sections.  
 
Due to a short time horizon (30 days), the patient characteristics such as age and the 
proportion of males/females were not incorporated in the model. However, the 
analysis of adjustment on covariates between the subgroups was conducted in order to 
ensure the comparability between two strategies (see section 3.3.4 and 3.3.5). 
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3.3.3 Study Catheters 
 

In the RCT, all central venous catheters inserted at subclavian, jugular and femoral 
veins, as well as arterial catheters inserted at radial and femoral arteries for a given 
patient, were managed according to the randomized dressing assignment. Pulmonary 
arterial, hemodialysis, and peripherally-inserted venous catheters and catheters 
inserted before ICU admission were excluded from the study. All study centers 
followed French recommendations for catheter insertion and care, which are similar 
to Center for Disease Control (CDC) recommendations [65]. 
 

3.3.4 Additional ICU Length of Stay (LOS) due to CR-BSI 
 

The analyses presented in this work were conducted on the “Global” population, 
comprising patients who, during their ICU stay remained alive, died or discharged 
from the ICU. The “global” patient is the main statistical unit of the study (see section 
Results of cost-effectiveness analysis).  
 
In order to assess the impact of CR-BSI on extending ICU LOS, a subgroup analysis 
was performed within the “Global” population, comparing patients having developed 
a CR-BSI during the ICU stay with those not having developed a CR-BSI. The 
comparison was made through independent non-homogeneous MCMC simulations 
for each dressing strategy. These NH-MCMC simulations were based on observed 
patient data, collected during the Dressing 2 clinical study. In this study, all patients 
were randomly assigned to one of the two dressing strategies, what allow us to assume 
comparability of the groups. 
 
Discussing further on the comparability of these two subgroups, we can present two 
additional adjustments. 
 
First, a “natural” adjustment, which is linked to the main statistical unit of our 
modeling which is the “global” patient was considered. It means that the probability 
of developing a CR-BSI in the “Global population”, that corresponds to the clinical 
trial population, follows the same plausible statistical distribution law (due to the 
randomization).  
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The statistical analysis for all confounding covariates, such as age, sex, severity 
(SOFA score), duration of catheterization, number of dressing change per day, shows 
the comparability between these subgroups (see section 3.3.5). 
 
A further adjustment from NH-MCMC simulation was performed, considering 
covariates which could impact mainly the values linked to the cost-effectiveness 
results. The rate of catheter change and the number of additional ICU days due to 
CRBSI in each dressing strategy were taken into account. 
 
 

3.3.5 Adjustments on covariates between the subgroups 
 

A statistical analysis for all confounding covariates, such as age, sex, Sequential Organ 
Failure Assessment severity score (SOFA, a score predicting ICU mortality based on 
lab results and clinical data [66]), duration of catheterization, number of dressing 
change per day, was performed in order to demonstrate the comparability between the 
subgroups (see Table 1). Four subgroups of patients (CHG/CRBSI, CHG/No-CRBSI, 
Non-CHG/CRBSI, Non-CHG/No-CRBSI) were compared with these covariates. 
Mann-Whitney tests between subgroups were performed. 
 
Table 1. Comparability of subgroups on covariates 

Dressing group 
CHG * 
Mean (std) 

Non-CHG ** 
Mean (std) 

Comparison 
p-value ⱡ 

SOFA score (severity)    

 CRBSI 7.89 (4.08) 10.29 (3.39) 0.1459 

 No CRBSI 8.17 (3.76) 8.17 (3.83) 0.8737 

Age (years)    

 CRBSI 58.78 (13.73) 62.57 (19.08) 0.5262 

 No CRBSI 61.97 (15.71) 62.17 (16.42) 0.6043 

Number of males    

 CRBSI 5 (55.56%) 12 (57.14%) 1.0000 

 No CRBSI 630 (68.11%) 603 (65.97%) 0.3460 

Catheterization time (days)    

 CRBSI 39.67 (22.58) 28.43 (31.56) 0.0984 

 No CRBSI 11.01 (11.52) 10.92 (11.01) 0.9934 

Number of dressings per day    

 CRBSI 0.59 (0.29) 0.73 (0.37) 0.2675 

 No CRBSI 0.67 (0.52) 0.65 (0.58) 0.2653 
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* CHG group frequencies: 9 patients with CRBSI, 925 patients without CRBSI 

** Non-CHG group frequencies: 21 patients with CRBSI, 914 patients without CRBSI 

ⱡ The results (p value) of Mann-Whitney tests on these covariates between subgroups show no 

statistically significant difference if p>0.05 (at a 0.05 level) 

CHG: chlorhexidine gluconate; SOFA: Sequential Organ Failure Assessment; CRBSI: catheter-related 

bloodstream infection 

 

The results of Mann-Whitney tests on these covariates between subgroups (CRBSI/No 
CRBSI) show no statistically significant difference at the 0.05 level. 
 

3.3.6 Main Assumptions 
 

1. In the cases where the "Discharge" state was reported, and a CRBSI was 
observed for this patient up to two days after the event, the infection was 
considered to occur the day of discharge from the ICU. 

2. The transitional probability from the health state "Contact Dermatitis" to 
“Dressing Gauze and Tape” state was considered the same for both groups. By 
entering to the “Dressing Gauze and Tape” the patient followed probabilities 
of transition corresponding to the non-CHG dressings arm. 

3. The cost of CRBSI is independent from the outcome (survival or death or 
discharge). 

4. Catheter colonization with or without CRBSIs was considered as having 
negligible diagnosis costs and was excluded from the model for not being 
considered as a “health state” per se. 

5. The costs related to replacement of a catheter suspected to be colonized (and 
causing CRBSI) were comprised in one of the health states including the need 
for a new central line. The cost per ICU day was considered as identical for 
each dressing group. The cost of a gauze and tape dressing is identical in both 
groups. 

6. Health states including CRBSIs were assumed to last a single day because it 
was not technically possible to identify the termination of a CRBSI in the 
patient database. However, the costs of treating the complete episode, as well 
as the total costs associated with the extra length of stay due to the CRBSI 
were accounted on the day when the CRBSI was diagnosed. 

7. With the current knowledge of publicly available data sources, there is no 
direct CR-BSI related risk of dying. 
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3.4 Medico-economic evaluation using Markov models 
 

The use of Markov model is specially required in following cases: 

- clinical trials have insufficient periods of follow-up to assess the impact of 
therapy in the long-term. The Markov model extrapolates from trial results 
in terms of transitions and rates for all comparators and estimates the cost-
effectiveness of new interventions over a life-time horizon; 

- to determine the influence of uncertainty surrounding input parameters. It 
can be achieved using several univariate and multivariate analyses (as 
deterministic and probabilistic sensitivity analysis where the values for 
parameter estimates vary within the uncertainty distributions that best 
reflect the nature of each specific parameter); 

- when needed an accurate representation of the evaluated clinical structure 
by modeling repetitive events and time dependence of probabilities. 

 

3.4.1 Markov homogeneous model 
 

Markov models consider the patients in a discrete state of health, and the events 
represent the transition from one state to another. Such type of model permits a more 
accurate representation of the evaluated clinical structure by modeling repetitive 
events and time dependence of probabilities (see: time-inhomogeneous Markov 
Chains). 
 

In this section we will consider the discrete-time Markov chain �(�) =

(�0,�1, …  ��), where �(�) is the health state in time �. In the following 
epidemiological applications the state space is discrete.  The Markov property states 
that the conditional probability distribution for the system at the next step depends 
only upon the present state, not on the sequence of events that preceded it (it is so 
called memoryless property). 
 

A random process X possesses the Markov property, and is called a Markov Chain, if  

P(Xn+1 = j | X0 = i0,  X1 = i1,… , Xn = in )= P(Xn+1 = j | Xn = in)  

depends only on  in and j, not on any past values.  
 
Time-homogeneous Markov chains are processes where 

P(Xn+1 = j | Xn = in )= P(Xn = j | Xn-1 = in) 

http://en.wikipedia.org/wiki/Conditional_probability_distribution
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for all n. It implies that the probability of the transition is independent of n or the 
probability of the transition is the same after each step. 

Markov models have limitations that must be overcome as models become more 
sophisticated, especially when dealing with time-dependent probabilities of transitions 
and different states of disease. 

3.4.1.1 Study design 

The adopted modeling approach complies with the guidelines of French National 
Authority for Health (Haute Autorité de Santé - HAS) [67]. The 30-day ICU-time 
homogeneous Markov model [68], [69] structure was based on observed data of a 
multicentre RCT [44], conducted by the Grenoble University Hospital - CHU 
Grenoble. The model has been programmed using Visual Basic Application with 
the Excel® 2007 software. This model consists of six health states described in 
Table 2. 

Table 2. Health states for H-MCMC model defined from a multicentre randomized controlled 

trial

Health States Definition 

1. No CRBSI / No new CT
needed 

Insertion of a first catheter, no diagnosed CRBSI and no 
contact dermatitis 

2. CRBSI / No new CT
needed 

CRBSI diagnosed without neither contact dermatitis nor 
the need for inserting a new catheter 

3. Contact dermatitis No diagnosed CRBSI, and no need for new catheter 
inserted but occurrence of contact dermatitis  

4. Dressing Gauze and Tape Change to an alternative dressing strategy (gauze and
tape) due to contact dermatitis 

5. Discharge Patient leaves the ICU alive 

6. Death Patient dies during the ICU stay 

CRBSI: Catheter-related Bloodstream Infections; CT Catheter: Central venous or radial / femoral 

arterial 

The statistical unit of the study is the ICU patient within a time horizon of 30 days 
(discharged alive from the ICU, alive but still at the ICU, or deceased during the ICU 
stay). Patient data from the multicentre RCT [44], comparing the CHG dressing to 
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non-antimicrobial transparent dressings, were translated into a patient transition 
matrix among the different possible health states, for both the antimicrobial and non-
antimicrobial dressings groups. This transitional matrix was used to perform 
homogeneous Markov-Chain Monte Carlo (H-MCMC) simulations [70] representing 
the observed daily evolution of patients in ICU. 1,000 Monte Carlo simulations of 
1,000 patients were used for probabilistic sensitivity analysis and 95% confidence 
intervals (CI) calculations. 

3.4.1.2 Model structure 

Markov models consider patients in a discrete state of health [71], [72], [73], [74], 
and events representing the transition from one health state to another. This type of 
modeling can take into account iterative occurrences for each Markov state. The 
Markov property refers to the fact that the conditional probability distribution of future 
states of the health depends only upon the present state, not on the sequence of events 
that preceded it. 

The hypothesis of this homogeneous model is that the transition probabilities do not 
change with time spending in ICU. This assumption is very strong and therefore the 
non-homogeneous model was developed (section 3.4.2). 

Building up the transition matrix 

The overall percentages of patient in each health state per comparator as reported in 
the RCT database [44] were transformed to 1-day (cycle length) transition 
probabilities. Each patient will be in one of the six health states described in Table 2 
at each day in ICU. 

3.4.1.3 Healthcare resource use and costs 

Costs used within the model reflect the ICU perspective in France and consist of 
following components: 

• drug acquisition costs,

• cost of treating the adverse events ,

• direct costs of treating the CR-BSI,

• costs due to ICU stay.
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Base case input parameters considered in the cost analysis 

The base case analysis is the most representative case of the real life, considering 
French ICU settings, and depending on expert opinions, literature, and RCTs.  
The main input parameters considered in the cost analysis are the following: 

• Dressing costs per day: CHG dressing which is 20 times more expensive than
non-antimicrobial transparent film and 60 times costly than gauze and tape.

• Cost of treating contact dermatitis (mean/episode): catheter removal, 23.62 €
[75]; four gauze and tape dressings, 0.24 €; catheter insertion, 94.87 €.

• Direct cost of treating CRBSI (mean/episode) [75]: 580.26 €.

• Cost per ICU [76]: 1,265.93 €/day.

• Additional ICU Length of stay (LOS) due to CRBSI: 9.33 days (NH-MCMC
calculation).

• Cost of added ICU LOS due to CRBSI: 11,811.13 € (NH-MCMC calculation).

• Overall cost of one CRBSI (direct cost of treating one CRBSI plus cost of
additional ICU LOS due to CRBSI): 12,391.40 € (calculation).

Direct costs for the treatment of CRBSIs were obtained from a micro-costing 
study[75]. ICU costs were based on an observational (real life) study [76] that 
assessed all resources consumed during a patient day in the ICU. This 
twenty-four hours multicentre prospective medico-economic study provides a 
complete overview and estimation of the actual average cost for medical and 
surgical ICUs in different hospital types in France: Hospitals (CH), University 
Hospitals (CHU) and Regional Hospitals (CHR). Twenty-two ICUs were selected 
randomly and all costs for 109 patients were estimated. For patients with CRBSI, 
an additional cost [77] due to an extra ICU length of stay (LOS) was calculated (see 
next section). 

Main Assumptions Used for the Cost Analysis 

• The cost of CR-BSI is independent from the outcome (survival or death or
discharge). For the analysis the main statistical unit is the “global” (survival or
death or discharge) patient;

• Catheter colonization with or without CR-BSI had no costs (after the diagnosis)
or adverse outcomes (colonization has been initially excluded from the model
because it’s not a “health-state”. The costs for diagnosis are negligible
compared to costs related to additional LOS. The costs related to replace a
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catheter suspected to be colonized (and causing CR-BSI) will be absorbed in 
the health-states CT new (the dressing arm with NO CHG); 

• The estimated cost per ICU day at the Grenoble University Hospital is identical
in each Dressing Group;

• The G+T (gauze and tape) cost for CHG-group is identical to No-CHG group.

Costs items for each Markov state 

Table 3 reportes the costs included in the analysis for each Markov state. 

Table 3. Costs items for each Markov state 

Main 
costs 

Detailed 
costs 

no CR-
BSI/ no 
CT new 

CR-BSI/ 
no CT 
new 

Contact 
dermatitis 

Dressing 
G&T 

Death Discharge 

Cost of 
dressings 

X X X X 

Cost of 
treating 
contact 
dermatitis 

X 

Four 
standard 
dressings 

X 

Removal 
of the 
catheter 

X 

Insertion 
of a new 
catheter 

X 

Cost of 
treatment 
of CR-BSI 

X 

Additional  
ICU -LOS 

X 
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Costs per Markov state per patient 

The calculation of the cost for each Markov state per patient was done as follows 
(using the base case input parameters listed above): 

• Dressing costs (including time needed per dressing, number of nurses 
involved, and materials used [75]) and cost per ICU day [76] were taken 
into account for health states 1-6;

• Cost of treating contact dermatitis [75] – (including catheter removal, 
four alternative dressings, and insertion of a new catheter) was taken 
into account only for health state 5;

• Cost of treatment of CRBSI [75] and additional ICU-LOS due 
to CRBSI [44], [75] were taken into account for health states 2.

The costs per patient for each health state were calculated in both CHG and No-CHG 
dressing and presented in Table 4. 

Table 4. Costs per Markov state per patient from the base case scenario 

 Markov State 
Costs for 1 patient CHG, 

Euro 2013 

Costs for 1 patient No-CHG, 

Euro 2013 

No CRBSI/noCTnew 1,268 1,266 

CRBSI/noCTnew 13,659 13,657 

Contact dermatitis 1,387 1,385 

Dressing G+T 1,266 1,266 

Discharge 0 0 

Death 0 0 

3.4.1.4 Results of cost-effectiveness analysis 

The results presented below are from the base case scenario of the cost-effectiveness 
modeling. The structure follows the next principal sections: 

• Base case scenario results for 1,000 H-MCMC of 1,000 patients
CHG group

• Base case scenario results for 1,000 H-MCMC of 1,000 patients
No-CHG group

The results showed in Tables 5 and 6 refer to the base case scenario of the cost-
effectiveness modeling. The main difference between CHG group and Non-CHG 
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group are based on % of states 3 and 4, e.g. number of CRBSIs. A ratio of 1 to 4.67 is 
observed for the average number of CRBSIs between dressing groups.  The number 
of ICU-days, the number of days before discharging and the number of days before 
dying are comparable in the two groups. 

Table 5. Mean number of CRBSI for 1,000 patients in each dressing group – Horizon: 30-

days ICU 

Stat. CHG group (1) No-CHG group (2) Diff. (1-2) 

Number of CRBSI 1.8 8.42 -6.62 

CRBSI occurred for almost 2 and 9 patients in each CHG and non-CHG groups 
respectively (considering 1,000 patients in each group).  

The table 6 shows the cost result for the average patient in each dressing group.  

Table 6. Mean Cost for 1 patient in each dressing group – Horizon: 30-days ICU 

Stat. CHG group (1) No-CHG group (2) Diff. Cost (1-2) 

Mean cost            € 21,748                € 21,803              € -  55 

The statistical significance of this result will be discussed in Sensitivity analyses 
section. 

3.4.1.5 Sensitivity analyses 

Sensitivity analyses are performed to vary each parameter of the model in order to 
determine what levels will result in a change of preference for the therapeutic strategy. 
This is a way to test the boundaries of the model and identify the main parameters 
driving cost differences. 

One-way Sensitivity Analysis 

For the one-way sensitivity analysis/tornado diagram, we varied the parameters under 
the base-case assumptions. The resulting tornado diagram is shown in Figure 1-3. 
Results are most sensitive to the additional ICU LOS due to CRBSI, CHG dressing 
cost, dressing change schedule, CRBSI, death and discharge rate changes. 
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Figure 1. One-way Sensitivity Analysis: Mean cost difference per global patient between CHG 

and No-CHG strategies, in euros; part 1. 

Figure 2. One-way Sensitivity Analysis: Mean cost difference per global patient between CHG 

and No-CHG strategies, in euros; part 2. 
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Figure 3. One-way Sensitivity Analysis: Mean cost difference per global patient between CHG 

and No-CHG strategies, in euros; part 3. 

Probabilistic Sensitivity Analysis (PSA) 

A probabilistic sensitivity analysis [78] was performed with 1,000 homogeneous 
MCMC simulations of 1,000 patients for both CHG dressing and non-CHG dressing 
groups. Each group of 1,000 patients depicts an average patient representing all 
patients for each dressing group studied in the RCT [44]. The method used was the 
Gibbs sampling [79], a commonly used Markov Chain Monte Carlo algorithm. It 
allowed to retrace 106 health trajectories (1000*1000 patients for each dressing 
strategy), based on the probabilities observed in the RCT [44] day-after-day (during 
30 days) for each patient to change from one health-state to another. Repeating the 
algorithm 1,000 times allows the calculation of 95% confidence intervals for the cost-
effectiveness criterion (here, number of CRBSI avoided and cost per patient).  

The health states including CRBSI (CRBSI/No new catheter and CRBSI/new catheter) 
as rare events for both strategies are in the area of low probabilities. On the other hand, 
the “discharge” and “death” states as frequent events for both strategies are in the area 

http://en.wikipedia.org/wiki/Algorithm
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of high probabilities. This corresponds to the reality observed in the RCT (higher 
frequency of discharge and death than CRBSI). 

The CHG-dressing prevents 6.5 infections / 1,000 patients (95% CI: [-12.57; -0.43]) 
as estimated via probabilistic cost-effectiveness sensitivity analysis in the proposed 
CEA. The mean adjusted cost per “global” patient is € 21,770 (95% CI: 
[€20,925; €22,616]) for the CHG-dressing group and €21,819(95% CI: [€20,935; 
€22,704]) for the reference dressing. Mean cost difference per “global” patient is 
€-49: (95% CI: [€-1,252; €1,153]) (See Table 7 and Table 8).  

Table 7. Mean Number of CR-BSI for 1,000 patients in each dressing group – Horizon: 30-days 

ICU – 1,000 MCMC simulations of 1,000 patients 

Stat. CHG group (1) No-CHG group (2) 
Diff. Effectiveness 

(1-2) 

Mean 1.8 8.30 -6.50 

Lower 95%CI 0 2.77 -12.57 

Upper 95%CI 4.44 13.83 -0.43 

We can see that the difference of CRBSI events between the strategies is statistically 
significant at the 0.05-level. 

Table 8. Mean Cost for 1 patient in each dressing group – Horizon: 30-days ICU – 1,000 

MCMC simulations of 1,000 patients 

Stat. CHG group (1) No-CHG group (2) Diff. Cost (1-2) 

Mean            €21,770                €21,819              €-49 

Lower 95%CI            €20,925                €20,935             €-1,252 

Upper 95%CI            €22,616                €22,704           €1,153 

So the difference of costs between the strategies is not statistically significant at the 
0.05-level. 

The PSA cost-effectiveness plan (Figure 4) describes the effectiveness difference on 
the x-axis and the cost difference on the y-axis between the two groups of dressings, 
for 1,000 H-MCMC simulations of 1,000 patients in each group. The (0,0)-point 
indicates the reference dressing strategy (Non-CHG group). All the points observed 
on the graph represent the incremental cost-effectiveness ratio (ICER) of CHG-
dressing strategy versus reference dressing. This PSA supports the decision to adopt 
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CHG dressing for critically ill patients since the strategy is 97.95% more effective 
than the comparator at the same cost per patient in the intensive care unit. The mean 
ICER calculated from the PSA and defined as the cost per patient treated with 
chlorhexidine dressing to prevent one patient experiencing a CRBSI, is €12,094. 

Figure 4. Cost-effectiveness results for the probabilistic sensitivity analysis using 1,000 

homogeneous Markov-Chain Monte Carlo simulations of 1,000 patients. 

3.4.2 Markov non-homogeneous model 

In non-homogeneous case the Markov property is still unchanged. We can state that 

P(Xn+1 = j | X1 = i1 , X2 = i2 ,… , Xn = in )= P(Xn+1 = j | Xn = in)  

depends only on  in, j and n. It means that the probability of the transition depends on 
n (time) or the probability of the transition changes after each step. 
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3.4.2.1 Study design 

The adopted modeling approach complies with the guidelines of French National 
Authority for Health (Haute Autorité de Santé - HAS) [67]. The 30-day ICU-time non-
homogeneous Markov model [68], [69] structure was based on observed data of a 
multicentre RCT [44], conducted by the Grenoble University Hospital - CHU 
Grenoble. The model has been programmed using Visual Basic Application with the 
Excel® 2007 software. This model consists of eight health states described in Table 
9: four states combining either occurrence, or no occurrence of CRBSI, and the need, 
or no need, of a new central line (CT); one state for contact dermatitis; one for 
changing to an alternative dressing (gauze and tape) in case of dermatitis, and two 
absorbing states (death and discharge of the ICU). 

Table 9. Health states for NH-MCMC model defined from a multicentre randomized controlled 

trial 

Health States Definition 

1. No CRBSI / No new CT
needed 

Insertion of a first catheter, no diagnosed CRBSI and no 
contact dermatitis 

2. No CRBSI / new CT
needed* 

No diagnosed CRBSI, no contact dermatitis and a new 
catheter inserted (not as a replacement) 

3. CRBSI / No new CT
needed 

CRBSI diagnosed without neither contact dermatitis nor 
the need for inserting a new catheter 

4. CRBSIs / new CT
needed* 

CRBSI diagnosed without contact dermatitis but the need 
for inserting a new catheter 

5. Contact dermatitis No diagnosed CRBSI, and no need for new catheter 
inserted but occurrence of contact dermatitis  

6. Dressing Gauze and
Tape 

Change to an alternative dressing strategy (gauze and tape) 

7. Discharge Patient leaves the ICU alive 

8. Death Patient dies during the ICU stay 

* New CT needed can mean either the replacement of the existing catheter, or the need for an

additional catheter at a new site. 

CRBSI: Catheter-related Bloodstream Infections; CT Catheter: Central venous or radial / femoral 

arterial 

The statistical unit of the study is the ICU patient within a time horizon of 30 days 
(discharged alive from the ICU, alive but still at the ICU, or deceased during the ICU 
stay). Patient data from the multicentre RCT [44], comparing the CHG dressing to 
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non-antimicrobial transparent dressings, were translated into a daily patient transition 
matrix among the different possible health states, for both the antimicrobial and non-
antimicrobial dressings groups. The transition matrixes were used to perform non-
homogeneous Markov-Chain Monte Carlo (NH-MCMC) simulations [70] 
representing the observed daily evolution of patients in ICU. 1,000 Monte Carlo 
simulations of 1,000 patients were used for probabilistic sensitivity analysis and 95% 
confidence intervals (CI) calculations. 

The final health outcome of the cost-effectiveness analysis is the number of CRBSIs 
avoided and the cost-effectiveness criterion is the cost per patient with CRBSI avoided 
resulting from chlorhexidine dressing use. 

3.4.2.2 Model structure 

Markov models consider patients in a discrete state of health [71], [72], [73], and 
events representing the transition from one health state to another. This type of model 
allows an accurate representation of the evaluated clinical structure by modeling 
repetitive events and time dependence of probabilities (time-nonhomogeneous 
Markov Chains). The Markov property refers to the fact that the conditional 
probability distribution of future states of the health depends only upon the present 
state, not on the sequence of events that preceded it. 

In a non-homogeneous modeling approach, the transition probability from one state to 
the next will change with time, as observed in real life of patients in ICU. The 
probability of changing from one state to the other can be assembled into a transition 
matrix. 

Building up the transition matrix 

A transition matrix for each day in the ICU was built based on transition probabilities 
reported in the RCT database [44]. Each patient will be in one of the eight health states 
described in Table 9 at each day in ICU. 

The possible transitions among health states from one day to the next are represented 
in the Markov diagram (see figure below) was censored beyond 30 days. The current 
model comprises a time horizon of 30 days in ICU, each day corresponding to 1 
Markov cycle.  
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Figure 5. The structure of the Markov Model showing the possible transition between health 

states from one Markov cycle to the next cycle. 

The model structure (see Figure 5) is somewhat based on that published by the 
independent assessments for managing the CR-BSI. However, more detailed levels 
are added looking at the “day to day” individual data during the ICU stay. In the 
Markov model there is no CR-BSI related death state as no evidence was found to 
support this direct elevated risk of dying. 

Unlike the published model, an attempt has been to segregate the rather heterogeneous 
“day to day” patient health state in CR-BSI control. 
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3.4.2.3 Healthcare resource use and costs 

Costs used within the model reflect the ICU perspective in France and consist of 
following components: 

• drug acquisition costs,

• cost of treating the adverse events ,

• direct costs of treating the CR-BSI,

• costs due to ICU stay,

• cost per catheter change.

Base case input parameters considered in the cost analysis 

The base case analysis is the most representative case of the real life, considering 
French ICU settings, and depending on expert opinions, literature, and RCTs.  
The main input parameters considered in the cost analysis are the following: 

• Dressing costs per day: CHG dressing which is 20 times more expensive than
non-antimicrobial transparent film and 60 times costly than gauze and tape.

• Cost of treating contact dermatitis (mean/episode): catheter removal, 24€ 
[75]; four gauze and tape dressings, 0.24 €; catheter insertion, 94.87 €.

• Direct cost of treating CRBSI (mean/episode)[75]: 580.26 €.

• Cost per ICU [76]: 1,265.93 €/day.

• Additional ICU Length of stay (LOS) due to CRBSI: 9.33 days (NH-MCMC
calculation).

• Cost of added ICU LOS due to CRBSI: 11,811.13 € (NH-MCMC calculation).

• Cost per catheter change (venous + arterial: 50/50 %) [75]: 94.97 €

• Overall cost of one CRBSI (direct cost of treating one CRBSI plus cost of
additional ICU LOS due to CRBSI): 12,391.40 € (calculation).

Direct costs for the treatment of CRBSIs were obtained from a micro-costing 
study. ICU costs were based on an observational (real life) study [76] that assessed all 
resources consumed during a patient day in the ICU. This twenty-four hours 
multicentre prospective medico-economic study provides a complete overview and 
estimation of the actual average cost for medical and surgical ICUs in different 
hospital types in France: Hospitals (CH), University Hospitals (CHU) and Regional 
Hospitals (CHR). Twenty-two ICUs were selected randomly and all costs for 
109 patients were 
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estimated. For patients with CRBSI, an additional cost [77] due to an extra ICU length 
of stay (LOS) was calculated (see next section). 

Main Assumptions Used for the Cost Analysis 

• The cost of CR-BSI is independent from the outcome (survival or death or
discharge). For the analysis the main statistical unit is the “global” (survival or
death or discharge) patient;

• Catheter colonization with or without CR-BSI had no costs (after the diagnosis)
or adverse outcomes (colonization has been initially excluded from the model
because it’s not a “health-state”. The costs for diagnosis are negligible
compared to costs related to additional LOS. The costs related to replace a
catheter suspected to be colonized (and causing CR-BSI) will be absorbed in
the health-states CT new (the dressing arm with NO CHG);

• The estimated cost per ICU day at the Grenoble University Hospital is identical
in each Dressing Group;

• The G+T (gauze and tape) cost for CHG-group is identical to No-CHG group.

Costs items for each Markov state 

Table 10 reportes the costs included in the analysis for each Markov state. 

Table 10. Costs items for each Markov state 

Main costs Detailed 

costs / Data 

Provider 

no CR-

BSI/ no 

CT new 

no CR-

BSI/ CT 

new 

CR-BSI/ 

no CT 

new 

CR-

BSI/ 

CT new 

Contact 

dermatiti

s 

Death Disch

arge 

Cost of 

dressings 

CHU 

Grenoble 
X X X X X 

Time needed 

per dressing 
X X X X X 

Number of 
nurses 

involved 

X X X X X 

Material used X X X X X 

Cost of 

treating 

contact 

dermatitis 

CHU 

Grenoble/ 

Dressing 1/ 

Schwebel 

2012 

X 



Chapter 3. On applications of Markov chains in health economics 89 

Four G+T X 

Removal of 

the catheter 
X 

Insertion of a 

new catheter 
X 

Cost of 

treatment 

of CR-BSI 

CHU 

Grenoble/ 

Dressing 1/ 

Schwebel 

2012 

X X 

Additional  

ICU -LOS 

due to CR-

BSI 

Dressing 2/ 

Statésia 
X X 

Cost per 

ICU day 

Garrigues 

2010 
X X X X X 

VM 

(mechanica

l 

ventilation) 

CHU 

Grenoble/Sch

webel 2012 

X X X X X 

Inotrope 

CHU 

Grenoble/Sch

webel 2012 

X X X X X 

Hemodialy

sis 

CHU 

Grenoble/Sch

webel 2012 

X X X X X 

Hemofiltrat

ion 

CHU 

Grenoble/Sch

webel 2012 

X X X X X 

Forfait 

journalier 

REA 

CHU 

Grenoble/Sch

webel 2012 

X X X X X 

Cost per 

catheter 

change 

(Venous, 
arterial) 

Schwebel 

2012 

X X 
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The calculation of the cost for each Markov state per patient was done as follows 
(using the base case input parameters listed above): 

• Dressing costs (including time needed per dressing, number of nurses 
involved, and materials used [75]) and cost per ICU day [76] were taken 
into account for health states 1-6;

• Cost of treating contact dermatitis [75] – (including catheter removal, 
four alternative dressings, and insertion of a new catheter) was taken 
into account only for health state 5;

• Cost of treatment of CRBSI [75] and additional ICU-LOS due 
to CRBSI [44], [75] were taken into account for health states 3 and 4;

• Cost per catheter change (venous, arterial) [75] was taken into account 
for health states 2 and 4.

The costs per patient for each health state were calculated in both CHG and No-CHG 
dressing and presented in Table 11. 

Table 11. Costs per Markov state per patient from the base case scenario 

Costs for 1 patient CHG, 

Euro 2013 

Costs for 1 patient No-

CHG, Euro 2013 

NoAE/noCRBSI/noCTnew 1,270 1,266 
NoAE/noCRBSI/CTnew 1,364 1,361 
NoAE/CRBSI/noCTnew 13,661 13,658 
NoAE/CRBSI/CTnew 13,756 13,752 
Contact dermatitis 1,388 1,385 
Dressing G+T 1,266 1,266 
Discharge 0 0 
Death 0 0 

3.4.2.4 Results of cost-effectiveness analysis 

The results presented below are from the base case scenario of the cost-effectiveness 
modeling. The structure follows the next principal sections: 

• Base case scenario results for 1,000 NH-MCMC of 1,000 patients CHG
group

• Base case scenario results for 1,000 NH-MCMC of 1,000 patients No-
CHG group

Costs per Markov state per patient 
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• Number of events for each state for 1,000 NH-MCMC of 1,000 patients
CHG group – Time Horizon: 30-days ICU

• Number of events for each state for 1,000 NH-MCMC of 1,000 patients
No-CHG group – Time Horizon: 30-days ICU

The results showed in Tables 12-16 refer to the base case scenario of the cost-
effectiveness modeling. Tables 12 and 13 show that the main difference between CHG 
group and Non-CHG group are based on % of states 3 and 4, e.g. CRBSIs. A ratio of 
1 to 5 is observed for the average number of CRBSIs between dressing groups.  The 
number of ICU-days, the number of days before discharging and the number of days 
before dying are comparable in the two groups. 

Table 12. Base case scenario results for 1,000 NH-MCMC of 1,000 patients CHG group 

Statistics Mean 
Lower 

95%CI 
Upper 

95%CI 

State 2 No AE/no CRBSI/CT new 27.82% 24.18% 31.45% 

State 3 No AE/CRBSIs/no CT new 0.00% 0.00% 0.00% 

State 4 No AE/CRBSIs/CT new 0.31% 0.00% 6.48% 

State 5 AE/no CRBSI/no CT new 2.88% 1.46% 4.30% 

Number of  ICU-days 12.91 12.30 13.52 

Number of days before State 7 Discharge 18.74 18.05 19.43 

Number of days before State 8 Death 25.17 24.49 25.85 

Table 13.  Base case scenario results for 1,000 NH-MCMC of 1,000 patients Non-CHG group 

Statistics Mean 
Lower 

95%CI 
Upper 

95%CI 

State 2 No AE/no CRBSI/CT new 25.16% 21.88% 28.44% 

State 3 No AE/CRBSIs/no CT new 0.53% 0.07% 0.98% 

State 4 No AE/CRBSIs/CT new 0.95% 0.33% 1.57% 

State 5 AE/no CRBSI/no CT new 1.27% 0.44% 2.09% 

Number of  ICU-days 12.72 12.12 13.32 

Number of days before State 7 Discharge 18.43 17.72 19.16 

Number of days before State 8 Death 25.28 24.64 25.92 

CRBSI occurred for 3 and 14 patients in each CHG and non-CHG groups respectively 
(1,000 patients in each group; Tables 12 and 13). This difference was highly 
statistically significant as indicated by the non-overlapping 95% confidence intervals 
(see Figure 6).  
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Figure 6. Number of CRBSIs for 1,000 patients in each dressing group (results for the first 100 

of the 1,000 simulations). 

The percentage of patients in the two absorbing states, coded as 7 (discharge from 
ICU) and 8 (death), is comparable in both groups of dressings, (see Table 14, Table 
15 and Figure 7). 

Table 14.  Percentage of events for absorbing states for 1,000 NH-MCMC of 1,000 patients 

CHG group – Time Horizon: 30-days ICU 

Statistics % of  State 7 (ICU Discharge) % of State 8 (Death) 

Mean 60.41% 26.37% 

Lower 95%CI 57.44% 23.47% 

Upper 95%CI 63.38% 29.27% 

Table 15. Percentage of events for absorbing states for 1,000 NH-MCMC of 1,000 patients Non-

CHG group – Time Horizon: 30-days ICU 

Statistics % of  State 7 (ICU Discharge) % of State 8 (Death) 

Mean 61.34% 27.07% 

Lower 95%CI 58.28% 24.24% 

Upper 95%CI 64.41% 29.90% 
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Figure 7. Percentage of discharged or dead patients in each dressing group. 

Considering a defined global average patient cohort, the average cost per patient per 
ICU-day decreases with time due to the increasing percentage of discharged or dead 
patients during the ICU stay (the cost for a discharged or dead patient is considered as 
zero in the model). The curves are showing the average cost considering an initial 
population of defined sized (Figure 8). 

Figure 8. Cost per patient per ICU-day for each dressing group. 
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Table 16 shows the cost results for the average patient in each dressing group.  

Table 16. Mean Cost for one patient in each dressing group. Time Horizon: 30-days ICU – 1,000 

NH-MCMC simulations of 1,000 patients  

Groups /Statistics Mean Lower 95%CI Upper 95%CI 

ALL PATIENTS 

CHG (1) €16,461 €15,659 €17,265 

Non-CHG (2) €16,320     €15,538 €17,103 

Diff. Cost (1-2) €141 €-975 €1,258 

PATIENTS with CRBSI in ICU 

CHG (1) €39,071 €17,384 €60,758 

Non-CHG (2) €41,424 €36,213 €46,635 

Diff. Cost (1-2) €-2,353 €-24,984 €20,277 

PATIENTS without CRBSI 

CHG (1) €16,385 €15,584 €17,186 

Non-CHG (2) €15,946 €15,177 €16,715 

Diff. Cost (1-2) €439 €-664 €1,542 

For a 30-day time horizon in ICU, the mean cost per patient for CHG group was of 
€16,461, versus €16,320 for the non-CHG strategy. The mean cost per patient with 
CRBSI was of €39,071 and €41,424 in CHG and non-CHG dressing groups while the 
mean cost per patient without CRBSI was of €16,385 and €15,946 in CHG and non-
CHG dressing groups, respectively (see Table 16). Subgroup analyses supported by 
the comparability test compared the average total costs for patients with CRBSI versus 
patients without CRBSI for each study group (CHG and Non-CHG dressings). This 
comparison revealed no significant differences in costs among the subgroups (Table 
16). Figure 9 shows the non-overlapping 95% confidence intervals for each dressing 
strategy.  
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Figure 9. Mean cost per patient in each dressing group (results for the first 100 of the 1,000 

simulations). 

3.4.2.5 Sensitivity analyses 

Sensitivity analyses are performed to vary each parameter of the model in order to 
determine what levels will result in a change of preference for the therapeutic strategy. 
This is a way to test the boundaries of the model and identify the main parameters 
driving cost differences. 

One-way Sensitivity Analysis 

One-way sensitivity analyses were performed varying the main input parameters 
(additional ICU LOS due to CRBSI (days), CHG Dressing cost, number of CHG 
dressing per day, number of Non-CHG dressing per day, and cost per ICU day) of the 
model around the base case assumptions. 

A tornado diagram (Figure 10) shows the variation in the mean cost difference 
between the CHG and non-CHG strategies around the one calculated for the base-case 
(€141). The model was most sensitive to the variation of the number of extra ICU LOS 
due to CRBSIs. The cost difference varied of approximately €370, when accounting 
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from a single extra ICU day (cost difference of €251) to 26 extra ICU days (cost 
difference of €-115). The next three influential parameters were the CHG-dressing 
cost, the interval for dressing change, and the cost per ICU-day. However, the 
variation in the cost differences obtained by changing these parameters was less 
pronounced (differences between upper and lower limits of 88, 85 and €83, 
respectively). 

Figure 10. Tornado diagram for the one-way sensitivity analysis. 

Probabilistic Sensitivity Analysis (PSA) 

A probabilistic sensitivity analysis [78] was performed with 1,000 non-homogeneous 
MCMC simulations of 1,000 patients for both CHG dressing and non-CHG dressing 
groups. Each group of 1,000 patients depicts an average patient representing all 
patients for each dressing group studied in the RCT [44]. The method used was the 
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Gibbs sampling [79], a commonly used Markov Chain Monte Carlo algorithm. It 
allowed to retrace 106 health trajectories (1000*1000 patients for each dressing 
strategy), based on the probabilities observed in the RCT [44] day-after-day (during 
30 days) for each patient to change from one health-state to another. Repeating the 
algorithm 1,000 times allows the calculation of 95% confidence intervals for the cost-
effectiveness criterion (here, number of CRBSI avoided and cost per patient).  

The health states including CRBSI (CRBSI/No new catheter and CRBSI/new catheter) 
as rare events for both strategies are in the area of low probabilities. On the other hand, 
the “discharge” and “death” states as frequent events for both strategies are in the area 
of high probabilities. This corresponds to the reality observed in the RCT (higher 
frequency of discharge and death than CRBSI). 

The PSA cost-effectiveness plan (Figure 11) describes the effectiveness difference on 
the x-axis and the cost difference on the y-axis between the two groups of dressings, 
for 1,000 NH-MCMC simulations of 1,000 patients in each group. The (0,0)-point 
indicates the reference dressing strategy (Non-CHG group). All the points observed 
on the graph represent the incremental cost-effectiveness ratio (ICER) of CHG-
dressing strategy versus reference dressing. This PSA supports the decision to adopt 
CHG dressing for critically ill patients since the strategy is 99.8% more effective than 
the comparator at the same cost per patient in the intensive care unit. The mean ICER 
calculated from the PSA and defined as the cost per patient treated with chlorhexidine 
dressing to prevent one patient experiencing a CRBSI, is €12,046. 

http://en.wikipedia.org/wiki/Algorithm
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Figure 11. Cost-effectiveness results for the probabilistic sensitivity analysis using 1,000 non-

homogeneous Markov-Chain Monte Carlo simulations of 1,000 patients. 

Convergence of MCMC 

A large number of methods of convergence diagnostic methods for Markov Chain 
Monte Carlo algorithm (MCMC) is available in the literature [80], [81], [82].  

To illustrate the convergence of MCMC consider that we will estimate only the 
cumulative number of patients that develop a CR-BSI during 30 days in the ICU using 
CHG dressing. This event correspond to the rarest event represented in our study. Note 
that the true value of this parameter is 3 patients for 934. The convergence of all other 
events in our work could be treated in the same way. 

In order to reduce the possibility of bias due to the effect of starting values for Markov 
Chains and “burn in” period we conducted a Monte Carlo simulations of 1,000 
replicates, each with N=1,000 individuals (1,000,000 individuals overall). 

Here we cannot perform just one long run of single chain as the convergence times are 
not available [83], [84]. The option is to take several shorter runs of a number of 
independent chains and form a sample from these observations [85]. In the database 
the number of patients in CHG and No-CHG group was 934 and 935. So the choice 
of sampler for Markov Chain that is 1,000 patients is coherent. The number of 
independent replications to be run should be estimated.  
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We propose to run several chains in parallel and to estimate the parameter of interest 
(see Figure 12 and Figure 13). The convergence can be achieved when the estimations 
of parameter from the individual chains become indistinguishable. We can see that 
had we only 100 or 500 iterations of our Markov chain we might easily underestimate 
or overestimate the occurrence of CR-BSI event. Based on 1,000 iterations the 
estimator of our parameter converge to the true value. By continuing the number of 
replications beyond 1,000 (in graphs 2,000 and 5,000 iterations) we can be reasonably 
certain that convergence of our Markov chain was achieved after 1,000 iterations. 

Figure 12. Convergence of Markov Chain 
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Figure 13. Mixing of Markov Chains 

Incremental net monetary benefit 

The average incremental net monetary benefit (iNMB) of €344 per patient induced by 
a daily CHG dressing use in patients resident in intensive care units was calculated, 
(Table 17).  

Table 17. Incremental net monetary benefit (iNMB) for 1 patient induced by CHG use – 

Horizon: 30-days ICU – 1,000 NH-MCMC simulations of 1,000 patients 

Statistics (iNMB) Cost-effective, if positive sign 

Mean €344.88 

Lower 95%CI €-883.01 

Upper 95%CI €1,572.77 

The iNMB  is calculated from the difference between the cost induced by CHG 
dressing use (mean cost CHG patient – mean cost Non-CHG patient) and the cost 
averted by CHG use (differential of effectiveness per patient x mean cost per CRBSI 
Non-CHG patient). If mean cost per CRBSI Non-CHG patient is considered as the 
current willingness to pay (WTP) for treating one patient with CRBSI, the incremental 
net monetary benefit of CHG dessing use for the ICU is as follow: 

���� = ∆ ������������� ∗ ��� −  ∆ ����. 
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If the “incremental net monetary benefit” is positive, this indicates that the assessed 
technology is cost-effective.    

3.4.3 Comparison of two models. Discussion 

In this work, we performed the two approaches homogeneous and non-homogeneous 
Markov models.  

The first homogeneous (time-independent) approach which is closely associated with 
the non-homogeneous Markov model developed after. In each dressing strategy 
(CHG, No-CHG), homogeneous MCMC simulations were performed to estimate the 
cost-effectiveness results. This homogeneous Markov chain Monte Carlo (H-MCMC) 
simulation was carried out with the statistical unit which is described in this study 
report as “global patient”. The “global patient” is closest to the observed “ICU 
patient’s health trajectories”, he could be alive, discharged or dead during his ICU 
stay.  

The CHG-dressing prevents 6.5 infections / 1,000 patients (95% CI: [0.43; 12.57]) as 
estimated via probabilistic cost-effectiveness sensitivity analysis in the proposed 
CEA. The mean adjusted cost per “global” patient is €21,770 (95% CI: [€20,925; 
€22,616]) for the CHG-dressing group and €21,819 (95% CI: [€20,935; €22,704]) 
for the reference dressing. Mean cost difference per “global” patient is €-49:
(95% CI: [€-1,252; €1,153]).  

The second model that we performed is a non-homogeneous Markov model which is 
very linked to the Dressing 2 individual observed data. This time-dependent transition 
model allows simulating, with a high goodness of fit, the “health trajectory” of 
individuals observed in the Dressing 2 study.  

The CHG-dressing prevents 11.75 infections /1,000 patients (95% CI: [3.85;19.64], 
number needed to treat = 85) as estimated via probabilistic cost-
effectiveness sensitivity analysis. The mean adjusted cost per “global” patient is € 
16,462 (95% CI: [€15,659; €17,265]) for the CHG-dressing group and €16,320  
(95% CI: [€15,538; €17,103]) for the reference dressing. Mean cost difference per 
“global” patient is +€141 (95% CI: [€-975; €1,258] and mean net saving per patient 
is €-344.88 (95% CI: [€-1,572.77; €883.01]). 
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Mean net saving is calculated as follow: Cost induced – Cost averted = (Mean 
cost CHG patient – Mean cost No-CHG patient) – (mean effectiveness 
difference per patient x mean cost per CR-BSI No-CHG patient).  

This non-homogeneous Markov Chain Monte Carlo (NH-MCMC) simulation was 
carried out with the statistical unit which is described in this study report as “global 
patient”. Therefore, to take into account the “all causes death” state in our modeling 
decreases the effectiveness of the assessed new CHG-dressing because of the death 
rate is very important in ICU setting. Indeed, the NH-MCMC simulation on the 
“global patient” estimated 7 No-CHG died patients and 9 No-CHG discharged patients 
more than in the CHG group.  As these two states are the “absorbent” states of the 
model, their cost are zero. As a consequence, our results could be considered as a 
“conservative” scenario. 

For taking into account this matter, we performed a NH-MCMC simulation subgroup 
analysis with alive patients only. The effectiveness result is -9.44 /1,000 patients (95% 
CI: [-16.58; -2.29]) CR-BSI averted; cost difference per alive patient is +€618.43 
(95% CI: [€-725.16; €1,962.01]) and mean net over cost per alive patient is +€226.39 
(95% CI: [€-1,215.32; €1,668.11]), comparatively to the No-CHG group. This result 
is based on the fact that mortality is higher in the No-CHG group (see the 
results above) and this outcome is considered as zero-cost absorbing state. 
Therefore, we could achieve another NH-MCMC simulation subgroup analysis with 
patients neither dead nor discharged, but, in this sample, no CRBSI event was 
recorded. 

In each Dressing Strategy (CHG, No-CHG), a non-homogeneous MCMC simulation 
was performed for a subgroup analysis: “Global” patients with CR-BSI versus 
“Global” patients without CR-BSI. These NH-MCMC simulations were based on 
observed patient data, collected during the Dressing 2 clinical study. In this study, 
all patients were randomly assigned to one of the two dressing strategies, what 
allow us to assume comparability of the groups. 

Discussing further on the comparability of these two subgroups, we can present two 
additional adjustments. 

First, a “natural” adjustment, linked to the main statistical unit of our modeling which 
is the “global” patient was considered. The probability of developing a CR-BSI in the 
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“Global population”, that corresponding to the clinical trial population, follows the 
same plausible statistical distribution law (due to the randomization). 

The statistical analysis for all confounding covariates, such as age, sex, severity 
(SOFA score), duration of catheterization, number of dressing change per day, shows 
the comparability between these subgroups. Nevertheless, a potential limit of the 
model can come from the covariates which are not available in the database. Such 
variables as smoking status, obesity, diabete, etc. could induce the important bias.  

A further adjustment from NH-MCMC simulation was performed, considering 
covariates which could impact mainly the values closely linked to the cost-
effectiveness results. The rate of catheter change and the number of additional ICU 
days due to CRBSI in each dressing strategy were taken into account.   

Comparison of two approaches 

The difference in clinical outcomes between each dressing strategies was statistically 
significant with both models while cost differences were not. The PSA with the NH-
MCMC resulted in 11.8 infections avoided per 1,000 patients (95%CI:[ 3.85; 19.64]) 
and a mean extra cost of €141 per patient (95%CI: [€-975; €1,258]) when using 
antimicrobial dressing. The PSA with the H-MCMC resulted in 6.45 infections 
avoided per 1,000 patients (95%CI: [0.15; 12.75]) and the mean extra cost of €252 per 
patient (95%CI:[€-924; €1,428]). 

Comparing the results of two models the effectiveness result of CHG is lower than in 
No-CHG dressings in the first model. In the H-MCMC model the costs difference is 
in favor of CHG dressing because the base case scenario eliminates all the differences 
between the strategies that correspond to the death and discharge health states for ICU 
patients. In the non-homogeneous model a “conservative” scenario was considered. 
The NH-MCMC simulation on the “global patient” estimated 7 No-CHG died patients 
and 9 No-CHG discharged patients more than in the CHG group.   

Nevertheless it is still possible to enter the different rates as the inputs in the 
homogeneous model. Thus, the principal limit of this study is the time-independence 
of the Markov process that means that we have accepted the same transition 
probabilities over the time spending in ICU. 
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According to the base case scenario, the CHG-dressing significantly more efficacious 
to prevent CRBSI when compared to the reference dressing for the ICU patients, 
contributes to preserve patients’ health capital at the same cost for the ICU.  

The antimicrobial dressings are consistently more efficacious in preventing CRBSIs 
whatever the model used. The H-MCMC is less sensitive to simulate the real life of 
the ICU patients. Regardless the model approach chosen the antimicrobial strategy is 
more efficacious than the comparator, but its probability of being cost-effective is 
comparatively reduced with the H-MCMC. Time dependent approach (NH-MCMC) 
seems to be better adapted to model rare events as CRBSIs. 
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