
HAL Id: tel-01260319
https://theses.hal.science/tel-01260319

Submitted on 21 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward more realism and robustness in global
illumination
Adrien Gruson

To cite this version:
Adrien Gruson. Toward more realism and robustness in global illumination. Graphics [cs.GR]. Uni-
versité Rennes 1, 2015. English. �NNT : 2015REN1S059�. �tel-01260319�

https://theses.hal.science/tel-01260319
https://hal.archives-ouvertes.fr

ANNÉE 2015

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L’UNIVERSITÉ DE RENNES 1

Mention : Informatique

Ecole doctorale MATISSE
présentée par

Adrien Gruson

préparée à l’unité de recherche UMR 6074 IRISA

et au centre IRISA - Rennes Bretagne Atlantique
ISTIC

Toward more Realism

and Robustness in

Global Illumination

Thèse soutenue à Rennes

le 6 Juillet 2015

devant le jury composé de :

Tamy BOUBEKEUR
Professeur à Télécom ParisTech / rapporteur

Elmar EISEMANN
Professeur à TU Delft / rapporteur

Luce MORIN
Professeur à INSA Rennes / examinateur

Jaroslav KŘIVÁNEK
Maître de Conférences à Charles Univ./examinateur

Kadi BOUATOUCH
Professeur à Univ. de Rennes 1 / directeur de thèse

Rémi COZOT
Maître de Conférences à Univ. de Rennes 1 / co-
directeur de thèse

Abstract

Using computer generated images has grown up for several years. For example, such
images are used in the entertainment industry to produce contents (films, video
games) or to preview future projects/prototypes. Generated images have several
levels of realism. In this PhD, we focus on the generation of photo-realistic images
by using physically based rendering processes.

Such images are often generated to achieve an artistic aim (atmosphere, aesthet-
ics, information, etc.). To do so, the artist has several aspects to manage: the 3D
scene itself and all the parameters used at the different steps necessary for generating
images (rendering process, post production steps, etc.). The creation of computer
graphics generated images can be a difficult and time consuming process. The aim
of this thesis is to help the artist achieve his goals.

In the first part of this PhD, we focus on improving the rendering step. This step
is responsible for the image generation by taking as input the 3D scene and several
other parameters (number of samples, type of rendering technique, etc.). The aim
of our work is to accelerate or make more robust this step so that it is easier for the
artist to use.

In that perspective, we propose a new rendering algorithm that renders partici-
pating media on GPU. This algorithm is fast enough to make visualisation almost
interactive. However, it only supports participating media, which limits its usage.

This is why we design a more general rendering algorithm that can handle a
vast variety of 3D scenes. This rendering algorithm is robust and progressive (mak-
ing preview of the final image possible). To achieve this, our technique improves
(stochastic) progressive photon mapping (SPPM) by adding participating media
support. Moreover, we use Metropolis sampling procedure to be able to get high
efficiency on complex 3D scenes.

With this new algorithm, we have a robust general rendering algorithm. However,
it still shares disadvantages with Metropolis sampling procedure: bad repartition of
the relative error on the image plane. To address this issue, we propose a new
importance function that distributes this error better. We propose two practical
versions of this importance function for SPPM: an image-based formulation and a
spatial one. Moreover, we use replica exchange and multiple importance sampling
(MIS) to make this technique as robust as possible.

The second part of the thesis focuses on assisted tools for the artist. For example,
we propose a new way to estimate the reference illuminant in 3D scenes. Then, this
illuminant can be used to make white balancing or style-transfer during the post
processing step. Another example of our work lies in the possibility of automatizing
some lighting configurations in 3D scenes. Indeed, the lighting is important for
the final image appearance. However, it is difficult for the artist to find adequate

1

Abstract

parameters to configure the lighting. We propose a new algorithm that takes as an
input the artist’s intention (aesthetics). Then, the algorithm optimizes and finds
the light sources configuration (size and flux) that matches the artist’s wishes.

2

Acknowledgements

First of all, I would like to thank my two supervisors: Kadi Bouatouch and
Rémi Cozot. Each of them helped me on their different areas of expertise. I would
especially like to thank Kadi for his time and attention. I know that I am not patient
and easy-going (at times) but you were always positive and helped me a lot.

I would also like to thank my co-authors/research partners: Jaroslav, Mickaël,
Vincent, Charly, Ajit and Sumant. Special thanks to Jaroslav and Mickaël. Jaroslav,
thanks for your time and all you taught me about research (I’m sorry I was helpless
respecting deadlines). Moreover, I have enjoyed your perfectionism that pushed me
beyond my limits. Mickaël, thanks to you too: you are more than a colleague, you
are a friend. Thanks for your collaboration (almost on all my research projects) and
your patience (contrary to me).

Many thanks as well to the FRVSense group (Ricardo, Billal, Matis, Hristina,
Ronan, Mahmoud, Christian and Maryse). More globally, I also want to thank the
graphics community and the people from the research lab.

Finally, I would like to thank all my relatives and close friends: François for
the beers and the SC2 team game sessions (except that you still have a very weak
level). These helped me relax! Thanks to my parents for their love, support, and
for showing me that working is important. A special thank to Mathilde for her
unconditional support and love throughout these four years.

3

Contents

List of figures 7

List of tables 11

1 Introduction 13

1 Summary of the contributions . 15
2 Publications . 15

I Background on Global Illumination 17

2 Mathematical and Physical models 21

1 Radiometric quantities . 23
2 Surface interaction . 24
3 Volume interaction . 26

3 Monte Carlo solutions 31

1 General formulation . 31
2 Importance sampling . 32

2.1 General framework . 32
2.2 Multiple distributions . 33

3 Practical aspects . 35
3.1 Direct rendering . 36
3.2 Indirect rendering with unbiased estimator 38

3.2.1 Path tracing . 40
3.2.2 Light tracing . 41
3.2.3 Bidirectional Path tracing 42

3.3 Indirect rendering with biased estimator 44
3.3.1 Photon mapping . 46
3.3.2 Progressive photon mapping 47

3.4 Combining biased and unbiased estimators 49
3.5 Discussion . 51

4 Markov Chain Monte Carlo 53

1 Introduction . 53
2 Overview of the MLT algorithm . 53
3 Practical aspect . 56

3.1 State domain and mutations . 56

4

CONTENTS

3.2 Importance functions . 61
3.3 Other mathematical tools . 63

II Efficient and robust rendering techniques 67

5 Light propagation maps on GPU 71

1 Previous works . 71
2 Fattal’s algorithm . 73
3 New Method: Parallel and Scalable LPM 77

3.1 Parallelization . 77
3.2 Streaming . 78

4 Implementation and Results . 80
5 Conclusions & Further works . 83

6 Progressive volume photon tracing 85

1 Related work . 86
2 Background . 87
3 Overview . 89
4 Implementation details . 90

4.1 Preprocessing step . 90
4.2 Visibility-driven Photon shooting step 92

4.2.1 Radiance update . 92
4.3 Collecting statistics . 93

4.3.1 Image update . 93
4.3.2 Radius update . 94

5 Results . 94
6 Conclusion . 96

7 A spatial importance function for MLT 101

1 Related Work . 102
2 Overview . 104
3 Importance Function . 104
4 Algorithm . 108

4.1 Importance function calculation 108
4.2 Spatial region definition and refinement 110
4.3 Algorithm Overview . 111
4.4 Sampling form the importance function 112

5 Results . 113
6 Limitations and Discussion . 118
7 Conclusions and Future Work . 118

III Computer-aided global illumination techniques for
artists 121

8 Eye-centred color adaptation in global illumination 125

5

CONTENTS

1 Introduction . 125
2 Chromatic Adaptation . 126
3 Related works . 127
4 Our color adaptation method . 129

4.1 Generalization of chromatic adaptation 129
4.2 Eye-centered estimate of the adaptation color 129

5 Results . 133
5.1 Standard tests cases . 133
5.2 Complex tests cases . 134
5.3 Sequence tests cases . 135

6 Conclusion . 136

9 Automatic aesthetics-based lighting design with global il-
lumination 139

1 Introduction . 139
2 Related Works . 140

2.1 Image-based methods . 140
2.2 Global Methods . 141
2.3 Discussion . 142

3 Overview of the approach . 143
4 Approaching an aesthetics with function minimization 145

4.1 Objective function . 145
4.1.1 fmeanObj and fmeanBack 146
4.1.2 fvarObj and fvarBack 146
4.1.3 fgrad . 146
4.1.4 fhist . 147

4.2 Free variables . 148
4.3 Optimization . 149

5 Results . 151
6 Future improvements . 154
7 Conclusion . 156

10Conclusion 157

1 Future work . 157

Bibliography 177

6

List of Figures

1.1 The different steps to produce computer generated images 13

2.1 Measure transformation from surface domain to solid angle 22
2.2 Reflective material (BRDF) or transmissive material (BTDF) 24
2.3 Veach path formulation. 26
2.4 Different interaction between the light and the participating media. . . . 27
2.5 Participating media interaction: single and multiple scattering. 28

3.1 CDF usage to sample proportional to the PDF 33
3.2 Graphical explanation of the difference between the efficiencies of differ-

ent sampling strategies for computing direct lighting. 37
3.3 Rendered images with different sampling strategies for computing direct

lighting. 38
3.4 Rendered images with MIS for computing direct lighting. 39
3.5 The different rendered images in case of direct or indirect rendering. . . . 39
3.6 Primitive and explicit light source connection path tracing. 40
3.7 Comparison between path tracing and light tracing. 41
3.8 The different paths possibility when using BDPT. 42
3.9 Comparison between path tracing, light tracing and BDPT 43
3.10 Schematic explanation on the photon mapping / directional relaxation

robustness. 45
3.11 Comparison of BDPT and photon mapping 45
3.12 Knaus and Zwicker approach for progressive photon mapping. 48
3.13 Comparison between BDPT, SPPM and VCM. 50

4.1 Veach’s mutations for path MLT. 57
4.2 Manifold exploration for path MLT . 58
4.3 Kelemen MLT using primary sample space. 59
4.4 Different results for the same MLT process using different importance

functions. 62
4.5 Chen et al. article [CWY11] importance function for SPPM. 63

5.1 Errors due to the DOM discretization: false scattering and ray effect. . . 74
5.2 LPM principe over a 2D domain. 74
5.3 Ray traversal over the 2D domain. 75
5.4 Parallelization issue when we put one thread per ray. 77
5.5 Solution used to run LPM over a GPU. 78
5.6 Streaming slice approach for the GPU implementation. 80
5.7 Synchronisation issue between different CUDA blocks. 81

7

LIST OF FIGURES

5.8 Memory requirement for a 25 propagation directions, 6 storage directions
(U and I). Comparison between streamed or not approach. 82

5.9 Summary of the speedup between the original CPU algorithm and our
implementation on 2 GPUs. 82

5.10 Results of two 1283 participating medium lit by an environmental map. . 83

6.1 Different ways to gather photons: ray marching, BRE and our method. . 86
6.2 Different possible view rays in a scene (reflected by glossy object). 91
6.3 Example of a beam Kd-tree building for a set of beams. 91
6.4 Plots of the RMSE for "breakfast hall" and "dragon smokes" scene. . . . 96
6.5 Results obtained for the "dragon smokes" scene. 97
6.6 Results obtained for the breakfast hall scene (courtesy of Greg Zaal). . . 98
6.7 Results obtained for the kitchen scene (courtesy of Jay-Artist). 99

7.1 The importance function Î(Gk) for a measurement point. 110
7.2 The spatial regions used for the spatial based importance function. . . . 111
7.3 Relative error distribution in dinner hall for different techniques. 114
7.4 Comparison of our method utilizing imaged based importance function

and spatial based importance function. 115
7.5 Comparison of our method using only two Markov chains and using all

three Markov chains. 115
7.6 Comparison of our method without and with utilization of multiple im-

portance sampling. 116
7.7 Result for our technique in simple scenes compare to SPPM. 116
7.8 Comparison matrix between VSPPM [HJ11], Vorba et al.[VKŠ+14] and

our method. 117
7.9 Example of style transfer. 123

8.1 Global illumination rendering with and without chromatic adaptation. . . 125
8.2 The 2 steps of the chromatic adaptation process. 127
8.3 Architecture overview of our chromatic adaptation process. 131
8.4 Results in the Wilkie’s test cases. 134
8.5 Chromatic adaptation results when a red spotlight partially lits a white

statue. 135
8.6 Chromaticity diagram for RGB color space for Map of a 2 room scene

and 3 view frustrums. 135
8.7 Spatial coherency of the adaptation color estimate in the case of 2 room

scene. 136
8.8 Results in map of a 3 room scene and camera trajectory. 137
8.9 Spatio-temporel coherency issue during a video sequence. 138
8.10 Scene addressing transmission through a glass. 138

9.1 In our technique (Automated aesthetics-based lighting design), we will
mainly address two target aesthetics: High-key and Low-key aesthetics. . 139

9.2 Our framework of our technique. 144
9.3 Signature cumulated histograms . 147
9.4 Influence of the light parameters on the rendering. 148

8

LIST OF FIGURES

9.5 Optimization of our algorithm for the two different aestetics in teapot
scene. 149

9.6 Example of computation of minimal distance. 150
9.7 Results in Girl and Creature scenes. 153
9.8 Results in Fruit basket scene. 154
9.9 Evolution of the objective function during the optimization process. . . . 155

10.1 Les différentes étapes de génération d’une image de synthèse. Plusieurs
étapes sont répétées jusqu’a ce que l’artiste atteigne le style d’image visée.159

10.2 Les différentes façons de construire un chemin de lumière. 161

9

List of Tables

6.1 Definition of quantities used in PVPT chapter. 88
6.2 Scene configuration and rendering parameters. 95

9.1 Configurations and weights used for the target function. 152
9.2 Final values for the teapot scene. 152
9.3 Final values, fhist and fq values for the Girl and the Creature scenes

(fig. 9.7). 154
9.4 Final values for the Fruit Basket. 155

11

1Introduction

Computer generated images can achieve different levels of realism. In this thesis,
we focus on photorealistic images obtained with the help of physics laws related to
light propagation. However, these images are generated to meet an artist’s aesthetic
objective. One way to achieve this goal is to let the artist play with the different
input parameters at his/her disposal (green boxes, fig. 1.1): the 3D scene itself and
all the parameters needed during the different rendering steps (green boxes, fig. 1.1).
Specifically, a 3D scene consists of: a virtual camera, a set of light sources, different
3D objects as well as the associated materials defining their appearance. A material
describes how light is changed when it interacts with an object. All these variables
(3D scene configuration and all other parameters) make it difficult for the artist
to produce images that match his/her intent. A common solution is to use a time
consuming trial-error process (fig. 1.1).

Description
Rendering
Algorithm

3D Scene Rendered
Image

Post
Production

Final
Image

Parameters Parameters

Try/Error loops
Figure 1.1 – The different steps to produce computer generated images. All these
steps have several inputs (orange boxes) and generate images as output. However,
the variety of parameters makes it difficult for the artist to generate an image that
matches his/her intent. So, several iterations are required to generate an acceptable
image.

The motivations of this PhD work is to simplify the artist’s workflow. For that,
we have focused on 2 main topics:

1. development of new rendering techniques that are more robust and faster.
Robustness is needed so that the used rendering technique achieves good per-
formances in all possible 3D scenes. As a consequence, the artist can use the
same rendering technique for all his/her projects (which reduces potential er-
rors of configuration). Moreover, a fast feedback to the user (i.e. progressive
rendering) is required so that the user does not wait for the result for a long

13

CHAPTER 1. INTRODUCTION

time. However, when using progressive rendering a preview must be consistent
with the final image quality.

2. development of new tools dedicated to the artist, for example a technique
that automates a redundant task allowing saving time for the artist. Another
example is a technique that extracts useful information that can be used during
the post production step.

Organization of the dissertation

This manuscript is decomposed into three main parts:

1. Part 1 – Background on GI: physically-based rendering using physics laws
to simulate light/matter interactions. In this part, we will introduce the math-
ematical model used for physically-based rendering (Chapter 2). Then, we de-
fine Monte Carlo estimator used to evaluate the rendering equation (Chapter
3). Finally, we will introduce Monte Carlo Markov Chain (MCMC) that uses
a Metropolis algorithm to render complex 3D scenes in terms of geometry,
visibility and light/matter interactions (Chapter 4).

2. Part 2 – Efficient and robust rendering techniques: First, we will
present our new GPU algorithm to render participating media (Chapter 5).
This algorithm allows almost interactive visualization for single and multiple
scattering. Second, we will show how we have extended (stochastic) progres-
sive photon mapping (SPPM) to handle participating media, placed in a 3D
scene, together with their interaction with the scene’s objects (Chapter 6).
This technique is slower than the first one but is more general and robust.
Indeed, it is able to handle any type of 3D scenes: different kinds of material,
scene complexity, etc. Third, we will propose a new importance function for
Metropolis-based rendering techniques that better distributes the relative er-
ror (Chapter 7). While the SPPM algorithm is robust as it uses Metropolis
sampling procedure, it still has a major drawback: the error of the estimator is
not evenly distributed over the image plane. Our new importance function ad-
dresses this issue by proposing two practical implementations: an image-based
importance function and a spatial one.

3. Part 3 – Computer-aided GI techniques for the artist: This part con-
tains the description of two methods aiming at helping the artist in his creation
process. First, we will present our new method to estimate the main illuminant
color for a 3D scene (Chapter 8). To do that, we estimate the lighting (aver-
age irradiance) arriving at the observer. This illuminant can be used during
a post-production step to apply color transformations (white balancing, color
transfer, style transfer, etc.). Second, we will present a new method to deter-
mine the lighting setup for a 3D scene (light source size and flux) (Chapter
9). Our technique takes as input the user intent and uses it to find a lighting
configuration (setup) that matches the artist’s desire.

14

1. SUMMARY OF THE CONTRIBUTIONS

For the reader For a reader familiar with global illumination, the chapters 1 and
2 can be skipped. Moreover, if the reader has a good background about metropolis
rendering technique, the chapter 3 can be also skipped. The first three chapters
do not bring any new contribution, they only help understanding the next chapters
corresponding to our contributions.

1 Summary of the contributions

The work presented in this thesis brings the following contributions to the computer
graphics field:

� a new rendering algorithm for participating media implemented on GPU;

� a visibility guided metropolis algorithm for photon mapping inside participat-
ing media;

� a new importance function for Metropolis rendering to evenly distribute the
relative error of the estimator,

� a robust estimation of the reference illuminant in a 3D scene,

� a flexible automatic technique for determining the lighting setup to target a
specific aesthetics desired by an artist.

2 Publications

Most of the work presented in this thesis is published in the following papers:

� A. Gruson, A. Hakke Patil, R. Cozot, K. Bouatouch and S. Pattanaik, "Light
Propagation Maps on Parallel Graphics Architectures", Eurographics Sympo-
sium on Parallel Graphics and Visualization, 2012

� C. Collin, M. Ribardiere, A. Gruson, R. Cozot, S. Pattanaik and K. Boua-
touch, "Visibility-driven progressive volume photon tracing", CGI 2013 and
The Visual Computer: International Journal of Computer Graphics - Volume
29, Issue 9

� A. Gruson, R. Ribardiere, R. Cozot and K. Bouatouch, "Rendu Progressif
basé Metropolis-Hasting dans des scènes à topologies multiples", AFIG 2014
and REFIG Vol. 8

� A. Gruson, R. Ribardiere and R. Cozot, "Eye-Centred Color Adaptation in
Global Illumination", Pacific Graphics 2013 and Computer Graphics Forum,
Volume 32 (2013), Number 7

� V. Leon, A. Gruson, R. Cozot and K. Bouatouch, "Automatic Aesthetics-
based Lighting Design with Global Illumination", Pacific Graphics (Short pa-
per), 2014

15

Part I

Background on Global
Illumination

17

Introduction

In this part, we will summarize all the technical and mathematical details needed to
produce realistic computer generated images. In particular, we will focus on phys-
ically based rendering. In physically based rendering, a physical model describes
the interaction between light and the different elements of a 3D environment, often
composed of:

1. light sources;

2. surfaces or/and volumes that interact with light stemming from light sources
(reflection, refraction, scattering, absorption, etc.);

3. a virtual camera which represents the viewer.

Actually, light can be expressed by a flux emitted by light sources that progres-
sively reaches an energy equilibrium. However, the speed of light is so fast that
the energy equilibrium is reached instantly. The aim of physically based rendering
techniques is to evaluate this equilibrium numerically so as to compute a final image.
This equilibrium can be expressed as an integral equation. In practice, generating
an image consists in finding light paths that start from light sources, interact sev-
eral times with the scene, and finally reach the camera. However, determining these
light paths is difficult because of the complexity of the different light interactions.
In chapter 2, we will present the physical models used to describe the different light
interactions.

The set of possible light paths is infinite, an approximation is then needed.
One solution is to use Monte Carlo methods that randomly create light paths in the
scene (chapter 3). Then, the solution is to average the contributions of the randomly
sampled paths to produce an image. This solution is elegant and can provide high
quality images. However, the efficient creation of valid light paths is crucial when
it comes to produce noiseless images. This generation can be difficult in a complex
3D environment with complex materials or difficult visibility.

Intensive research has been done to build efficient strategies to construct valid
paths. Some of them are targeted to handle special scenes or certain light phenom-
ena, others combine several techniques to handle different kinds of phenomena. At
the end, the rendering technique can be difficult to implement and not easy for use
(e.g. a lot of parameters). One simple solution is to extract some knowledge about
the scene by using some previous sample paths. This solution is often built upon a
Markov Chain model and uses the Metropolis-Hasting algorithm [MRR+53, Has70]
to efficiency produce light paths (chapter 4).

19

2
Mathematical and Physical models

Light propagates in a 3D space Light can reach (from an incoming direction)
or leave (in an outgoing direction) a surface. It can also be emitted, reflected, scat-
tered or absorbed by taking into account incident/outgoing directions. So, for this
reason, before going into the definitions of physically light quantities (radiometric
quantities), we first review some mathematical concepts in the 3D space. Indeed,
light propagation can be expressed in the direction domain (direction of scattering)
or in the surface domain. In this section, we will review the surface and direction
domain formulations and their associated measures to use them in the rest of the
manuscript. Then, we will show how to move on from one domain to another.

Surface domain In a 3D environment, we assume that the scene geometry con-
sists of a finite set of surfaces in R

3. The union of all the surfaces is denoted M.
Its measure is denoted dA(~x) at the surface point ~x. Moreover, each surface point
has an associated normal ~n(~x) (written ~n for simplicity) that describes the surface
orientation in a 3D space.

Directional domain This domain is important because, in physically based ren-
dering, a lot of sampling decisions are taken in it. Each direction is represented by
a normalized vector ~ω ∈ R

3. The domain of direction originating from a surface
point ~x can be divided in two parts. First, we can define the space of the upper
hemispheres:

Ω+ = {~ω : |~ω| = 1, ~ω · ~n ≥ 0} (2.1)

Second, the other part of the sphere (the lower hemisphere) is defined as:

Ω− = {~ω : |~ω| = 1, ~ω · ~n ≤ 0} (2.2)

In general, in computer graphics, we are often interested only in the upper hemi-
sphere that receives incoming light (except in volume rendering where the notion
of normal is absent, to this end the domain of direction is the total sphere). For
simplicity, in the rest of the manuscript, we will use Ω for the space of direction.
Moreover, we have the equality:

cos θ = ~ω · ~n (2.3)

where the angle θ is the polar angle between the direction ~ω and a surface normal
~n. For simplicity, we use an absolute operator in order not to take into account the
orientation of these two vectors.

In the directional domain, the measure is a solid angle and is denoted dσ(~ω) for
a given direction ~ω. A solid angle is the equivalent in 3D of an angle defined in a
2D space. Solid angles are expressed in steradians.

21

CHAPTER 2. MATHEMATICAL AND PHYSICAL MODELS

~n ~ω

dσ(~ω)

dA(~x)

θ

dA⊥~ω (~x)

dσ⊥~x (~ω)

~n(~x)
~ω

dσ(~ω)

dA(~x)

dA(~y)

~x

~y

~n(~y)

(a) (b)
Figure 2.1 – (a) The different projections possible for different measures defined
in the surface (in green) or directional (in red) spaces. (b) Surface dA(y) subtended
by solid angle dσ(~ω). With measure transformation, it is possible to express the
solid angle dσ(~ω) by using dA(y) (see eq. (2.6)).

Projection and domain transformation Each measure (in the surface (dA)
or in the directional (dσ) domain) is equivalent to a measure after projection. For
example, to project a solid angle onto a surface, we use the polar angle θ between
the direction ~ω and the normal ~n:

dσ⊥~x (~ω) = cos θdσ(~ω) (2.4)

And the inverse process is possible, to project a surface onto a solid angle:

dA⊥~ω (~x) = cos θdA(~x) (2.5)

These two projection operations are shown in fig. 2.1 (a). In some part of the
manuscript, we will express the integral problem in the projected solid angle domain.
To express this domain, we will use the symbol Ω⊥.

Moreover, if we want to combine different models expressed in different spaces,
we need to express them in the same space. This situation occurs often in rendering
where some decisions are made in the directional domain and others in the surface
domain. However, it is possible to change the measure from the directional to the
surface domain, by transformation from the solid angle ~ω to the projected point ~y:

dσ⊥~x (~ω) =
dσ⊥~x (~ω)
dA(~y)

dA(~y) = G(~x↔~y)dA(~y) (2.6)

where G(~x↔~y) is the geometry factor that corresponds to the Jacobian relating solid
angle to area. This factor is expressed as:

G(~x↔~y) =
|~n(~x) · ~ω| × |~n(~y) · ~ω|

||~x− ~y||2 V (~x↔~y) (2.7)

Note the apparition of the term V (~x↔~y) which expresses the visibility between ~x
and ~y. In physically based rendering, different decisions are expressed in different
domains (direction or surface).

22

1. RADIOMETRIC QUANTITIES

1 Radiometric quantities

Light is an electromagnetic radiation and it could be measured with physical quan-
tities called radiometric quantities. Moreover, by using these quantities correctly,
we come up naturally to the rendering equation that is used in rendering. This
equation expresses the light transport problem as an integral evaluation problem.

Flux (or radiant power), notated Φ, is the fundamental quantity which expresses
the total light energy Q received or emitted per unit of time:

Φ =
dQ
dt
.

The unit is watt (W). This quantity will be fundamental as all the next quantities
are derived from it.

Irradiance notated E, is the flux received per unit surface area:

E(~x) =
dΦ

dA(~x)
. (2.8)

The unit is Watt per square meter (W ·m−2). A relation between this quantity and
the flux is given by:

Φ =
∫

S
E(~x)dA(~x). (2.9)

where S is a surface. Note that the same quantity exists for emission and is named
radiosity or emittance.

Radiance notated L, is the flux emitted by a surface, per unit project area, per
unit solid angle. The radiance emitted at the point ~x into the direction ~ω will be
notated L(~x→~ω).

For emitted radiance, the differential expression (see fig. 2.1) is:

L(~x→~ω) =
d2Φ

dσ(~ω)dA(~x) cos θ
. (2.10)

where d2Φ is the differential flux of the light emitted at point ~x, θ is the angle
between the normal ~n and the direction ~ω. This quantity is important because it
expresses the light as we perceive it (from a surface into a direction). The radiance
is independent of the distance. Moreover, there exists some relationship between
radiosity and emitted radiance (eqs. (2.4) and (2.5)):

L(~x→~ω) =
dE(~x→~ω)

dσ⊥~x (~ω)
(2.11)

There also exists a notion of incident radiance. It is the radiance incident from
a direction ~ω at a point ~x. It will be denoted L(~x←~ω). In this case, the differential
flux comes from another surface.

23

CHAPTER 2. MATHEMATICAL AND PHYSICAL MODELS

Luminance is a photometric value that is equivalent to radiance (radiometric
value). Luminance is equal to radiance up to a factor that is the human eye response.
This is why, in the rest of the manuscript, we will use both of them to refer to the
same quantity.

2 Surface interaction

BRDF

BTDF

Diffuse Glossy Dirac

Diffuse Glossy

Rough Smooth
ROUGHNESS

Dirac

Reflection Reflection Reflection

Transmission Transmission Transmission

Figure 2.2 – In general there are two main types of material for the surfaces:
Reflective material (BRDF) or transmissive material (BTDF). Transmission obeys
Snell’s law. Moreover, for these two types, different interactions are possible: Dif-
fuse, Glossy and Dirac. These interactions depend on the roughness of the surface.
Diffuse interaction concerns an extremely rough surface. On the contrary, a com-
pletely smooth surface creates one single light reflection.

Now that we have defined the physical quantities of light, let us see how light
interacts with surfaces. To do that, we describe how radiometric quantities change
with this interaction. Different surface interactions are possible and summarized in
fig. 2.2. All these interactions are handled by a general model named BSDF (bidirec-
tional scattering distribution function). This model includes two light phenomena:
reflection and transmission. BSDF is approximated by several mathematical models
[TS67, ON94, WMLT07]. For more information, the reader can refer to the PBRT
book [PH10]. Moreover, note that BSDF models make an approximation: the in-
coming position and the outgoing position of light are the same. A more general
model is expressed by a BSSRDF model [JMLH01]. However, for simplicity, we will
focus our presentation only on BSDF model, termed fr. Moreover, to be physically
correct, a BSDF model needs to meet two important constraints:

1. Helmholtz reciprocity principle: for every pair of direction ~ωi and ~ωo, we have
fr(~x, ~ωi→~ωo) = fr(~x, ~ωo→~ωi)

2. Energy conservation: for all the directions ~ωo, the total energy of light reflected
must meet the following constraint:

∫

Ω⊥

fr(~x, ~ωi→~ωo)dσ⊥~x (~ωi) ≤ 1.

24

2. SURFACE INTERACTION

A BRDF is expressed as (we use eq. (2.11) for quantity change) a luminance
change of the luminance coming from ~ωi toward ~ωo:

fr(~x, ~ωi→~ωo) =
dL(~x→~ωo)
dE(~x←~ωi)

=
dL(~x→ωo)

L(~x←~ωi)dσ⊥~x (~ωi)
. (2.12)

where ~ωi is the incident direction, ~ωo is the outgoing direction and L(~x→~ωo) the
incident radiance at point ~x. We can integrate this equation and express the outgoing
radiance in the direction ~ωo:

dL(~x→~ωo) = fr(~x, ~ωi→~ωo)L(~x←~ωi)dσ⊥~x (~ωi)

L(~x→~ωo) =
∫

Ω⊥

fr(~x, ~ωi→~ωo)L(~x←~ωi)dσ⊥~x (~ωi). (2.13)

In physically based rendering, we need to compute the outgoing radiance of a
surface viewed through the camera. It is possible to express it using eq. 2.13. To
do that, we need to include the light source emission Le, which gives the rendering
equation [Kaj86]:

L(~x→~ωo) = Le(~x→~ωo) +
∫

Ω⊥

fr(~x, ~ωi→~ωo)L(~x←~ωi)dσ⊥~x (~ωi) (2.14)

where L(~x→~ωo) is the luminance viewed by the camera and L(~x←~ωi) the incident
radiance. Note that in the integral, the incident radiance L(~x←~ωi) is unknown. To
estimate it, we need to cast a ray from the position ~x in the direction ~ωi. At the
intersection point, we need to evaluate again the same integral. This amounts to a
recursive evaluation of this integral. By applying measure changes using eq. (2.6),
the rendering equation can be expressed in the surface domain M as:

L(~x→~ωo) = Le(~x→~ωo) +
∫

M
fr(~x, (~x− ~y)→~ωo)L(~x←~y)G(~x↔~y)dA(~y) (2.15)

where the incident direction is replaced ~ωi = (~x − ~y) and L(~x←~y) the incident
radiance emitted by the point ~y. Note that a visibility term is included inside the
geometry factor.

Previous formula only mention about radiance computation. However, a com-
puter generated image is a 2D array of pixel. Each pixel is oversampled into points
~x′ (i.e. to solve the aliasing problem or to reduce noise), which corresponds to a set
of view rays, each of them passing through a point ~x′. These rays may intersect the
scene at a point ~x. At each point ~x, the reflected radiance L(~x→~x′) needs to be
evaluated. To compute the radiance viewed from a pixel j, an integration over this
pixel is needed:

Ij =
∫

M×M
W (j)

e (~x′→~x)L(~x′→~x)G(~x′↔~x)dA(~x′)dA(~x) (2.16)

where ~x lies on the pixels in the image space and W (j)
e (~x→~x′) represents the emitted

camera importance for the pixel j. For example, this term includes the filtering
operation done on the pixel side.

To evaluate the equation 2.15, it is difficult to generate paths of different lengths
efficiently. Indeed, light can bounce multiple times before it reaches the camera.

25

CHAPTER 2. MATHEMATICAL AND PHYSICAL MODELS

In the model, this is shown in eq. (2.15) where L is on the two expression side. A
general formulation was introduced by Veach [Vea97]. It uses the surface domain to
define the rendering equation problem for a given pixel j:

Ij =
∫

P

fj(x)dµ(x), (2.17)

where P is the path space, x = ~x0~x1 · · · ~xk a path defined by k vertices and dµ(x)
the measure. The measure is the product of measures in the surface domain for each
~xi:

dµ(x) =
k∏

l

dA(~x0). (2.18)

The contribution function f(x) can be expressed as the product of the BSDF, the
emission of the light sources and the sensor response:

fj(x) = Le(~x0→~x1)T (x)W j
e (~xk−1→~xk) (2.19)

T (x) = G(~x0↔~x1)
k−1∏

i=1

fr(~xi−1→~xi→~xi+1)G(~xi↔~xi+1) (2.20)

where W j
e (~xk−1→~xk) is the sensor response and T (x) the throughput of the given

path that includes the geometry factor and the BSDF values. An overview of this
formulation is given in fig. 2.3.

~xk~x0

~x1 ~xk−1

G(~x
0↔~x

1)Le(~x0→~x1)

fr(~x0→~x1→~x2) fr(~xk−2→~xk−1→~xk)

G(~xk−
1↔~x

k)
W j

e (~xk−1→~xk)

S

Figure 2.3 – Throughput figure of one path using Veach formulation.

However, the path integral includes all the possible length paths. One possibility
is to split different path lengths to get different integrals:

Ij =
∞∑

k=1

∫ k+1

M
fj(x0 . . . xk)dA(x0) . . . dA(xk) (2.21)

These different integrals over surfaces (eq. (2.21)) need to be evaluated. They
are restricted to surface interaction only. However, light can interact with more
complex objects such as smoke, liquid, called participating media. These phenomena
introduce light volume interactions, which we need to take into account and add to
our mathematical formulation.

3 Volume interaction

Volume interactions are due to participating media (such as smoke, fire, clouds, ice,
dust, etc.) that interact with light. Participating media are important for realism

26

3. VOLUME INTERACTION

in the film industry. However, integrating such media is computationally expen-
sive. Indeed, their integration domain has one more dimension than surfaces. The
intersection between a ray and media is a line and not a point (fig. 2.5). Interac-
tion can occur at each point associated with this intersection line, which makes the
computation expensive.

emission absorption out scattering in scattering
Figure 2.4 – Different interaction between the light and the participating media.

In such media, different light interactions can occur (fig. 2.4):

� Absorption and out-scattering: called also extinction, these two phenomena
are responsible for the energy lost inside the media.

� In scattering: is the light scattered in the view direction. Indeed, at each point
in the media, light can come from every direction and be partially scattered
in the view direction.

� Emission: self emission (i.e. light source) in the view direction in a media such
as fire.

All theses interactions are expressed by the radiative transfer equation (RTE)
[Sub60]. This equation expresses the change of light at a position ~y inside the
volume and in the direction ~ω:

dL(~y→~ω)
d~y

= σa(~y)Le(~y→~ω) + σs(~y)Li(~y→~ω)− σt(~y)L(~y→~ω) (2.22)

where Le is the self-emitted radiance and Li the luminance due to the incident
luminance that scatters into ~ωi. Moreover, σa(~y) is the absorption coefficient at the
position ~y, σs(~y) the scattering coefficient and σt(~y) = σs(~y) + σa(~y) the extinction
coefficient. For homogeneous media, these coefficients remain constant at each point.
Otherwise the media are called heterogeneous. Incident light Li at the position ~y
includes all the possible incoming directions:

Li(~y→~ω) =
∫

Ω
ρ(~y, ~ωi→~ω)L(~y←~ωi)dσ(~ωi) (2.23)

where, Ω is the sphere domain and ρ(~y, ~ωi→~ω) is the phase function that is similar
to the BSDF describing the proportion of radiance coming from the direction ~ωi

and reflected in the direction ~ω. Moreover, similarly to the coefficients, the phase
function can vary or not inside the media. There exists different models of phase
function. For more information, the reader can refer to the book of Engel et al.
[HKRs+06].

27

CHAPTER 2. MATHEMATICAL AND PHYSICAL MODELS

~x ~xe ~xs ~x0~y

L(~y→~x)

Multiple scatteringSingle scattering

L(~x0→~x)

S

Figure 2.5 – The incident luminance inside the participating media can bounce
only once (single scattering) or multiple times (multiple scattering).

However, we need to express the RTE (eq. (2.22)) in an integral form to be able
to evaluate it (section 3). For example, we want to evaluate the total energy received
by a viewer L(~x←~ω) from the position ~x in the direction ~ω. To do that, we need to
integrate the light interactions along the line between the intersection of the view ray
and the medium. For this purpose, we define an entry point ~xe and an exit point ~xs.
Then, we integrate the light interactions over the line using the RTE (eq. (2.22)).
Moreover, we have, if it is the case, to take into account the back surface at the
position ~x0. All these considerations are shown in fig. 2.5 and expressed as:

L(~x←~ω) =
∫ ~xs

~xe

τ(~xe↔~y)σa(~y)Le(~y→~ω)d~y

+

∫ ~xs

~xe

τ(~xe↔~y)σs(~y)
[∫

Ω
ρ(~y, ~ωi→~ω)L(~y←~ωi)dσ(~ωi)

]
d~y (2.24)

+ τ(~xe↔~xs)L(~x0→~ω)

where τ(~xe↔~y) = e−β(~xe→~y) is the transmittance that represents physically the
amount of distance in the medium before the light scatters and β is the optical
thickness. The higher the value, the more the volume is opaque.

β(~xe→~y) =
∫ ~y

~xe

σt(~y)d~y

Now that we have defined the volume interaction as an integral problem, we
want to express it in the path domain. It is totally possible to generalize the path
framework, introduced by Veach [Vea97], to include participating media by changing

28

3. VOLUME INTERACTION

the throughput formulation:

T (x) =
k−1∏

i=j

f(~xi)G(~xi↔~xi+1)Vatt(~xi↔~xi+1) (2.25)

f(~xi) =

{
fr(~xi−1→~xi→~xi+1) when ~xi is on a surface
ρ(~xi−1→~xi→~xi+1) when ~xi is in a medium

(2.26)

G(~x↔~y) =
Dx(~x)Dy(~y)
||~x− ~y||2 (2.27)

Vatt(~x↔~y) = τ(~x↔~y)V (~x↔~y) (2.28)

where Dx(~x) is the projection operation that is a cosine term if ~x is on a surface
and 1 if ~x is in the medium. Vatt is the attenuated visibility term that includes the
regular visibility term V (~x↔~y) extracted from the geometric term and multiplied
by the transmittance of the medium. Note that if there is no medium between ~x
and ~y the transmittance value is equal to 1.

29

3
Monte Carlo solutions

In the previous chapter, we have defined physically based rendering as a problem
of integral evaluation (eq. (2.21)). In this section, we will detail how to evaluate this
integral efficiently. Several approaches are possible. Monte Carlo based approaches
are good candidates to solve this problem because of their simplicity and flexibility.

For these reasons, we will detail this approach in the following sections. First, we
will review the general formulation of the Monte Carlo estimator and its properties.
Second, we will present some improvements such as importance sampling or mul-
tiple importance sampling. Finally, we will show how to use it in physically based
rendering.

1 General formulation

Before giving the Monte Carlo estimator, we need to define some mathematical basis.
The expected value Ep[f(x)

p(x)
], where p(x) is the probability density function (pdf), is

equal to the integral value of a function f(x) over a domain Ω:
∫

Ω
f(x)dx =

∫

Ω

f(x)
p(x)

p(x)dx = Ep[
f(x)
p(x)

] (3.1)

The Monte Carlo estimator is an estimate of the expected value. However, to
compute the integral of f(x), the Monte Carlo estimates the expected value of
f(x)/p(x). Given a set of N uniform random variables xi ∈ Ω, the Monte Carlo
estimator FN gives:

Ep[
f(x)
p(x)

] ≈ FN =
1
N

N∑

i=1

f(xi)
p(xi)

(3.2)

where p(xi) is the probability to generate xi. The simplest density probability is
the uniform density. When using the Monte Carlo approach, the pdf p(x) must
be different from zero for all x where |f(x) > 0|. Note that, for uniform pdf, this
condition is always fulfilled.

For Monte Carlo, variance corresponds to the estimation error. The aim is to
reduce this variance as much as possible. The variance of the estimator FN is defined
as:

V [FN] = E
[
(FN)2

]
− E[FN]2 (3.3)

Estimator properties A Monte Carlo estimator FN is consistent if it converges
to the correct solution with an infinite number of samples. This can be expressed
by the following formula:

limN→∞Prob[(FN −
∫
f(x)dx) = 0] = 1 (3.4)

31

CHAPTER 3. MONTE CARLO SOLUTIONS

A Monte Carlo estimator FN is unbiased if the expected value of the estimate is
equal to the correct solution:

∫
f(x)dx− E[FN] = 0 (3.5)

Note that an unbiased estimator is not automatically consistent. Indeed, some
rendering algorithms use a pre-computation step to evaluate some values. For ex-
ample, these values can be the overall brightness of the image plane, etc. These
values are then used by an unbiased rendering algorithm. However, as these values
are not refined, the resulting algorithm can get unbiased but non-consistent.

Infinite dimension of integration In the eq. (2.21), a path can bounce a large
number of times. However, fixing a maximum number of bounces (dimension of
the integral) makes the estimator biased. One solution is to use a Russian roulette
approach that will put a probability q to stop the path. However, the throughput of
the path needs to be scaled by the probability to continue a divided by 1− q. This
technique makes the estimator unbiased:

E[I] = (1− q)
(
E[I]
1− q

)
+ q = E[I] (3.6)

This technique can increase variance of the estimator but keeps it unbiased.

Samples placement To increase the efficiency of a Monte Carlo estimator, we
need to reduce its variance using sampling strategies such as:

� Stratified sampling: it covers the domain of integration better. The idea of this
technique is to partition the domain and run a different Monte Carlo estimator
for each stratum. The final estimator is a weighted sum of the estimates over
all the domains.

� Importance sampling: use a pdf p proportional to the integrand. Indeed, the
function f(x)/p(x) will be more flattened than f(x). This technique reduces
variance and is often used in global illumination.

Note that this list is not exhaustive. Different variance reduction techniques can
be combined to achieve lower variance. In physically based rendering, importance
sampling is a common technique to reduce the variance. This approach is presented
in detail in the next section.

2 Importance sampling

2.1 General framework

The key idea is to choose a pdf p proportional to the integrand f . The more the
shape of the pdf is similar to the function, the more the variance is reduced. The

32

2. IMPORTANCE SAMPLING

extreme case corresponds to a pdf proportional to the function, i.e. c · p(x) = f(x),
where c is a constant. In this special case, the variance of the estimator is zero:

1
N
V [
f(x)
p(x)

] =
1
N
V [

1
c
] = 0

However, this is not feasible in practice. The main reason is because the constant
factor (which is unknown) is equal to:

c =
1

∫
Ω f(x)dx

that is exactly the integral we are trying to evaluate. Moreover, we need to generate
samples with the pdf proportional to f(X), which could be an issue. For instance,
in physically based rendering, the integrand (eq. (2.21)) is a product of several
terms. Some terms are unknown (i.e. the incident radiance), which makes harder
the determination of the CDF (cumulative distribution function used to sample
proportional to a pdf (fig. 3.1)).

u1

u2

Probability distribution
function

Cumulative distribution
function

p(x) P (x)

x x

P (x)

x

P−1(u1) P−1(u2)

1

Integration

Figure 3.1 – CDF is computed by integrating a PDF. Then, we project uniform
samples (u1 and u2) using the inverse CDF. The projected samples are distributed
proportionally to the PDF.

Bad importance sampling (shapes of p(x) and f(x) are very different) could lead
to variance higher than that obtained with uniform sampling. Determining a pdf
p(x) (for a good importance sampling) for a high dimension integration domain is a
difficult task. One solution is to create this pdf p(x) using different pdf pi(x). Each
one defined on a sub-domain.

2.2 Multiple distributions

Constructing p(x) using several pdf to sample the function f(x) may be a good idea
at first glance. But the problem is how to use the different sample distributions to
get a lower variance. Indeed, averaging over the different sampling strategies can
lead to an extra variance (proof in eq. (3.8)). One elegant solution is to combine the

33

CHAPTER 3. MONTE CARLO SOLUTIONS

different estimators with a Multiple Importance Sampling estimator. This estimator
is defined as follows:

F =
n∑

i=1

1
ni

ni∑

j=1

wi(xi,j)
f(xi,j)
pi(xi,j)

, (3.7)

where n is the number of sampling strategies and ni is the number of samples
allocated to each strategy. xi,j is the jth sample from the distribution pi. Each
sample is assigned a weight wi. In other words, this formula is the weighted sum of
the different estimators f(xi,j)/pi(xi,j). To obtain an unbiased estimator, the weighting
function wi must meet two conditions:

1.
n∑

i=1
wi(x) = 1 for f(x) 6= 0,

2. wi(x) = 0 whenever pi(x) = 0

These conditions imply that the set of the sampling techniques need to sample where
f(x) 6= 0. However, one sampling technique pi does not need to sample the whole
domain, but only one sub-domain.

Now, we need to discuss the choice of the weighting function wi. Indeed, suppose
that we have three pdf p1, p2 and p3, and only one sample is taken for each one.
This leads to the following estimator:

F = w1
f(x1,1)
p1(x1,1)

+ w2
f(x2,1)
p2(x2,1)

+ w3
f(x3,1)
p3(x3,1)

. (3.8)

If the weighting function is constant and one sampling strategy is bad, then F will
have variance as well, since:

V [F] = w1V [F1] + w2V [F2] + w3V [F3]

Different weighting strategies are discussed by Veach [Vea97]. One possible
weighting strategy is the power heuristic:

wi(x) =
(nipi(x))β

∑
k(nkpk(x))β

(3.9)

In case of β = 1, we have another weighting strategy called balance heuristic. The
idea behind these heuristics is to assign a bigger weight to the sampling strategy with
higher probability. Using the formulation of the balance heuristic, we can rewrite
the global estimator as:

F =
n∑

i=1

1
ni

ni∑

j=1

(
nipi(xi,j)∑
k nkpk(xi,j)

)
f(xi,j)
pi(xi,j)

=
n∑

i=1

ni∑

j=1

f(xi,j)∑
k nkpk(xi,j)

=
1
N

n∑

i=1

ni∑

j=1

f(xi,j)∑
k ckpk(xi,j)

where ck = nk/N. We can see that this formulation clearly expresses a Monte Carlo
estimator accounting for several pdf.

34

3. PRACTICAL ASPECTS

Conclusion We have seen in this section how to use Monte Carlo estimator to
evaluate the integral. Multiple importance sampling proved to be an efficient way
for reducing the variance of the Monte Carlo estimator. This technique is commonly
used in physically based rendering. However, we still need to define the set of
sampling strategies. In the next subsection, we will discuss the different uses of the
Monte Carlo estimator in rendering.

3 Practical aspects

In this section, we present the different ways of using Monte Carlo to solve the light
transport equation (expressed in section 2). As we have seen in the previous section,
the pdf p(x) needs to mimic the integrand to reduce the variance of the estimator.
In rendering, the variance is perceptible as noise in the rendered image. To produce
high quality images, this noise has to be below a certain threshold in order not to
be perceptible by the user.

To build the pdf p(x), different strategies are possible in physically based ren-
dering. The aim of rendering is to find contributive light paths that connect to the
camera. To introduce different sampling strategies, first we introduce a sub-problem
in light transport equation that is direct rendering. This problem considers one
light bounce only. Due to low dimensionality, this problem is easy to solve with
Monte Carlo. It is easy to understand the different sampling strategies and their
respective performances. So, at the beginning of this section, we describe a practical
implementation for direct rendering. This implementation uses all the techniques
described in the Monte Carlo section (importance sampling, multiple importance
sampling).

Then, we focus on physically based rendering with several light bounces. We
present classical unbiased estimators to evaluate the light transport equation (eq. (2.21)):
path tracing, light tracing and bidirectional path tracing. Moreover, we discuss their
respective advantage/drawback compared the other rendering techniques.

All unbiased techniques get inefficient for certain sampling scenarios. An example
of these scenarios corresponds to the situation where the light integrand domain
reduces to a small path domain. For example, this is the case when a light caustic
is viewed through a smooth mirror. To address this issue, we introduce biased
rendering techniques that are more robust than unbiased ones.

The convergence rate (variance decreases with the number of samples) is dif-
ferent for these two classes of techniques. Unbiased techniques have often better
convergence rate than biased ones. On the other hand, biased techniques are more
robust to evaluate the path space. Recent research focuses on combining these two
classes of techniques. We review them at the end of this section.

Note that in this section, we will consider mainly the surface integration (without
participating media). However, in some parts of this section, some methods will be
evoked when it comes to render participating media.

35

CHAPTER 3. MONTE CARLO SOLUTIONS

3.1 Direct rendering

Direct rendering problem can be reduced to a visibility problem. It amounts to
determine the visibility between the light sources and the surfaces viewed through
the camera. Only one light bounce is considered. We can express the problem using
the directional domain (similar to eq. (2.14)) but we restrict the incoming radiance
to the radiance Le() emitted from the light source and arriving at point ~x:

L(~x→~ωo) =
∫

Ω⊥

fr(~x, ~ωi→~ωo)Le(~x←~ωi)dσ⊥~x (ωi), (3.10)

where ~x is a point on a surface viewed through the camera and ~ωo is the view
direction. Moreover, we have restricted the incident radiance Le(~x←~ωi) to the
radiance emitted from the light sources.

The integrand is equal to the product of two terms: the BSDF fr and the incident
direct lighting Le,i. As we have seen before, constructing a sampling strategy that
includes the two terms is challenging. However, it is possible to construct a sampling
strategy by considering only one term: sampling according to the BSDF or sampling
according to the radiance of the light source.

Sampling according to the BSDF To sample the BSDF, the incident direction
~ωi is randomly sampled according to a PDF p(~ωi). This PDF is proportional to the
BSDF value:

p(~ωi) ∝ fr(~x, ~ωi, ~ωo),

where p is expressed using projected solid angles. In practice, to render an image,
we first trace a ray from the camera through a given pixel. This ray may intersect
the 3D scene at a point ~x. Then we choose an incident potential light direction ~ωo

according to the BSDF and we trace a ray from the point ~x in this direction. For an
intersection point ~x′, we evaluate the emitted radiance Le(~x←~x′). For this sampling
strategy, the Monte Carlo estimator is:

L(~x→~ωo) ≈
1
N

N∑

j=1

fr(~x, ~ωj→~ωo)Le,i(~x←~ωj)
p(~ωj)

, (3.11)

where N is the number of samples. Note that this sampling strategy does not
take into account the incident radiance from the light sources, so only one term of
eq. (3.10) is considered.

Sampling according to the emitted radiance To be able to sample the light
sources, we need to express the eq. (3.10) in the surface domain using the domain
transformation expressed in eq. (2.6):

L(~x→~x′) =
∫

Ml

fr(~y→~x→~x′)Le(~x←~y)G(~x↔~y)dA(~y). (3.12)

whereMl is the surface domain of the light sources and ~y a point on a light source.
In practice, this strategy starts similarly to the previous one. First, we trace a ray

36

3. PRACTICAL ASPECTS

from the camera through a given pixel (at position ~x′). This ray may intersect the
3D scene at a point ~x. Then we randomly sample a position on the light source ~y
and evaluate the visibility to ~x. If ~x is visible from ~y, then we evaluate the BSDF
value fr(~y→~x→~x′). For this sampling strategy, the Monte Carlo estimator is:

L(~x→~ωo) ≈
1
N

N∑

j=1

Le(~x←~yj)G(~x↔~yj)
p(~yj)

fr(~yj→~x→~x′) (3.13)

where p(~yj) is the pdf used to sample a point ~yj on the light source surfaces and N
the number of samples.

S S

(a)

Large light sources
Smooth BSDF

(b)

Small light sources
Rought BSDF

Figure 3.2 – This figure explains the difference between the efficiencies of the
sampling procedures graphically. The two sampling technique are shown: red dots
represent the BSDF samples while the blue dots the light source samples. Green
domain expresses the directional contributive direction domain. In this particular
domain, the BSDF and the incident luminance are non zero. (a) BSDF sampling
performs better than emitter sampling. Indeed, emitter samples are non contributive
due to the BSDF value. (b) Emitter sampling performs better than BSDF sampling.

Discussion Figure 3.3 shows the results of the different sampling strategies in a
simple scene [Vea97]. In this scene, we have four light sources with different sizes
and colors. Moreover, there are four rectangles with different BSDF roughness. The
BSDF is smoother when a rectangle is far away from the camera.

In this scene, the different sampling strategies generate a noise, the level of which
varies over the image. BSDF sampling gets better for smooth BSDF. Indeed, in the
directional space, the BSDF has a smaller space than the light source (fig. 3.2, case
(a)). In this case, light sampling can find a valid path but with a zero BSDF value.
On the other hand, with a small light source or a non directional BSDF there is
less chance to hit a light source after a bounce according to the BSDF (fig. 3.2, case
(b)). In conclusion, the two strategies correspond to different sampling scenarios
(light source size, BSDF roughness). By combining them one can get a more robust
sampling strategy called: Multiple Importance Sampling (MIS).

Multiple importance sampling In section 2.2, we have presented the multiple
importance sampling estimator that turns out to be robust but computationally

37

CHAPTER 3. MONTE CARLO SOLUTIONS

(a) BSDF sampling (b) Emitter sampling

Figure 3.3 – Images rendered with different sampling strategies. If we exclude the
diffuse background, we can observe that the two sampling strategies are comple-
mentary.

expensive. Indeed, for each sample, we need to evaluate the pi(x) for all the sampling
strategies. However, this extra computation is negligible compared to the ray tracing
operation.

To be able to combine the two strategies with MIS, we need to express them in
the same domain. Indeed, the BSDF sampling p(~ωi) is expressed according to pro-
jected solid angle and the light source sampling is expressed in the surface domain.
One possibility is to express all of them in the surface domain using the following
transformation (based on eq. (2.6)):

p(~y) = p(~ωi)G(~x↔~y) (3.14)

where ~ωi is the solid angle associated with the direction ~x→~y.
Figure 3.4 shows a result obtained with multiple importance sampling. Note that

the same number of samples is used for producing the images of fig. 3.3. Moreover,
without extra knowledge, we have used the power heuristic (eq. (3.9), β = 2) with an
equal number of samples for each sampling strategy. In other words, each sampling
procedure (BSDF or emitter) received twice fewer samples. Assigning the same
number of samples to each strategy could generate additional noise (i.e. on the
diffuse background). The reason is, in regions where only one sampling strategy
works (pdf proportional to the integrand), this strategy receives fewer samples than
without MIS. Recent research has been done to have a better weighting scheme
[PBPP11]. Moreover, in this sub-section, we have only presented two sampling
techniques (BSDF and emitter). More sampling strategies are possible. For more
information, the reader can refer to Shirley et al. article [SWZ96].

3.2 Indirect rendering with unbiased estimator

Unlike direct rendering, physically based rendering accounts for multiple light bounces.
Light paths composed of more than one light bounce are called indirect paths. Cre-
ating an efficient sampling strategy to sample these paths is challenging. Figure 3.5
shows how indirect lighting is important for scene perception.

38

3. PRACTICAL ASPECTS

(a) Combined sampling (b) Relative contribution

Figure 3.4 – On the left: The combined results using multiple importance sampling
with balance heuristic. These results have less overall variance than previous results.
In areas where only one strategy works, there is extra noise. This is because it uses
twice fewer samples than the previous rendered images. On the right: the relative
weighted contribution of each sampling technique shown with false colors. Blue
color means that the light sampling is more efficient than BSDF sampling. On the
contrary, red color means that BSDF sampling is better. Green color means that
the two strategies perform equivalently.

(a) Direct rendering (b) Indirect rendering (c) Combination of the
two

Figure 3.5 – In this figure, we show the different rendered images in case of direct
or indirect rendering. In the direct rendered image, several shadows are due to the
light position. This component has discontinuities and some parts of the scene do
not receive any lighting. The indirect component is relatively smooth and quite
constant in the scene. This rendering generates more noise than the direct one
because of the difficulty of computation. The combination of both produces an
image of better quality.

Computing the indirect lighting component can be time consuming. Moreover, a
rendering algorithm needs to find a path (of several interactions) that connects the
camera to a light source. This kind of path is often called contributive paths. There
are several reasons why a path is not contributive: zero BSDF value, visibility
problem, etc. There exists several techniques to build these contributive paths.
All these techniques have their drawbacks and advantages. For this reason, we
rapidly present hereafter different techniques that efficiently build such paths: path

39

CHAPTER 3. MONTE CARLO SOLUTIONS

tracing, light tracing and bidirectional path tracing. We also show how much multiple
importance sampling is crucial for robust rendering technique.

3.2.1 Path tracing

Path tracing is often used in rendering engines (Arnold renderer, Cycles, Octane
renderer, PRMan, etc.). It builds a light path from the camera to the light sources
incrementally. At the beginning, for each pixel, a number of paths are traced to
evaluate the incoming lighting (eq. (2.16)). This algorithm makes possible to control
the sampling rate for each pixel. This is a desirable property because controlling
the variance allows to control the noise level in the produced image. By equally
sampling all the pixels, the algorithm spreads the variance smoothly in the image
space. This is important for producing noiseless images until a certain threshold,
because the human visual system can perceive the noise.

After throwing the primary ray from the camera and finding the first intersection
point, two different path tracing techniques can be used. In the first one, named
primitive path tracing, a ray continues to bounce until it hits a light source. This is
similar to BSDF sampling for direct rendering because it only relies on this strategy.
So, this estimator shares the same drawback than direct rendering with only BSDF
sampling. In case of a small light source, this estimator will have a high variance.

The second way to implement a path tracing is to use explicit light connection.
Similarly to the primitive path tracing, new vertices (path nodes) are generated
according to the BSDF. But, at each intersection point, the direct component is
evaluated using an emitter sampling technique. Note that when MIS is not used,
the fact of hitting randomly a light source (by the bouncing procedure) does not
make a contribution. This is because we cannot have two ways of sampling the same
component (direct) without combining them.

S S

Primitive path tracing Path tracing with
explicit light source connection

Figure 3.6 – The two ways of implementing path tracing. On the left: primitive
path tracing will bounce until it randomly hits a light source. On the right: the
technique will use explicit source light connections. Each new vertices is connected
to a randomly sampled point in the light source. A ray is traced to check the
visibility between this point and the new vertex.

These two techniques are described in fig. 3.6. In the same spirit as direct
rendering, we have two different sampling strategies. In the same way, we can use

40

3. PRACTICAL ASPECTS

multiple importance sampling to combine them.

3.2.2 Light tracing

Unlike path tracing, Light tracing builds a contributive path from the light sources
to the camera. To do that, this technique starts by randomly sampling a point
on the light sources as well as an outgoing direction. A new ray is traced in this
direction and the process is repeated iteratively. Moreover, similarly to path tracing,
there are two ways of building such a path.

The first technique, called primitive light tracing, keeps on tracing new rays until
reaching the camera. This technique relies only on BSDF sampling and can be
inefficient. This method fails if a path does not hit the camera. This is because a
pinhole camera model is often used.

The second solution, more elegant, is light tracing with explicit connection to
the camera. Similarly to the primitive technique, light bounces according to the
BSDF. Each intersection point is projected into the image plane. For this operation,
visibility needs to be evaluated by a ray tracing operation. If the point is visible,
then the contribution of the current path is accumulated.

(a) Path tracing (b) Light tracing

Figure 3.7 – In this scene, a glass dragon is lighted by a spot light. Because the
spot light is not intersected by any ray, path tracing technique is not able to render
caustics. Except for this component, path tracing technique achieves good results.
For the same number of samples, light tracing can create images with less noise.
Moreover, light tracing makes it possible to render caustics. However, light tracing
fails to render the dragon material because the dirac produced on its BSDF makes
the connection to the camera impossible.

These two strategies can be combined with multiple importance sampling. How-
ever, intrinsically this technique suffers from a big issue: no control of the sampling
rate in the image space is offered. The paths are created proportionally to the light-
ing, so, a dark area in the image space receives fewer samples. At the end, the
noise is not well distributed, and dark areas remains noisy. However, this rendering
method is not useless because of the efficiency of sampling certain sets of paths such
as light caustics created by small light sources. Figure 3.7 shows the results obtained
with path tracing and light tracing in this case.

41

CHAPTER 3. MONTE CARLO SOLUTIONS

3.2.3 Bidirectional Path tracing

We can observe that the two above rendering techniques are complementary. More-
over, for each of these techniques, a multiple importance sampling scheme is used
to combine different paths. So, the question is: is it possible to use MIS to combine
these two rendering techniques? Note that these two strategies do not cover all the
possible paths. For example, there are 5 different ways of building a path of two
bounces (fig. 3.8). More generally, a path with k bounces can be built according to
k + 3 different ways.

(0) Primitive PT (1) PT with explicit connection

S S S

(2) Explicit connection

S S

(3) LT with explicit connection (4) Primitive LT

Figure 3.8 – This figure enumerates the different ways to build a path with two
light bounces. Note that path and light tracing (described previously) is a subset
of BDPT. Moreover, the number before the technique name is the number of light
path vertices. The middle technique (2 light vertices) is a new one where there is
an explicit connection between the two interaction points.

This rendering technique of building all the sets of paths is called bidirectional
path tracing (BDPT). This approach was proposed by Lafortune et al. [LW93] for
the original idea. Veach et al. [VG95] added an optimal weighting strategy based
on MIS space later on. In practice, BDPT constructs two different paths, one
originating from the camera, the other from the light. These paths are constructed
incrementally, similar to path tracing or light tracing. Each time a new vertex (path
node) is sampled, an explicit connection between these two paths is performed. In
a non-optimized version of BDPT, only one connection is made between the end
vertices of the two paths. In an optimized version of BDPT, the new sampled vertex
of one path type (camera or light) is connected to all the vertices of the other path.
This makes it possible to reuse all the previous sampled vertices efficiently and to
build more paths with fewer rays.

Moreover, each time a connection is possible, we need to evaluate the weight used
in MIS. This is done by computing the pdf of all possible ways of constructing this
path. These pdf can be computed efficiently using a recursive formula. Moreover,

42

3. PRACTICAL ASPECTS

this computation is negligible compared to the ray tracing operation.
At the end, the intensive usage of multiple importance sampling makes BDPT

robust. In case of simple interior scenes, BDPT can provide better results than the
previous described techniques. This is due to its ability to sample strong indirect
lighting paths efficiently. Some results are shown in fig. 3.9. More optimization tools
are given in Veach’s thesis [Vea97].

(a) Path tracing (b) Light tracing

(c) Bidirectional path tracing (60 spp)

Figure 3.9 – In this figure, we compare BDPT and the two other techniques for the
same rendering time. In this scene, there is strong indirect lighting. With explicit
connection, BDPT can render the scene rapidly. Path tracing has more samples per
pixel, but doesn’t have this sampling technique. This lack results to more noise in
the path tracing rendered image.

Discussion All the previous described techniques sample the path domain. These
techniques are unbiased because no approximation is made when sampling the path
space. This space is a high dimensional space, a small part of which represents the
contributive paths. Indeed, a large part of this space is not contributive because of
surface occlusion or zero BSDF values.

However, some parts of the contributive path domain can be very small. In
extreme cases, this can lead to a point in the path domain. This point represents a
certain class of light paths: non-separable light paths. Unbiased techniques are not
able to sample this type of path.

43

CHAPTER 3. MONTE CARLO SOLUTIONS

This issue can be addressed by extending the contributive path domain. This is
done by allowing the creation of physically impossible light paths. For example, this
can be done by allowing the connection of two neighbour vertices lying on the same
surface. This operation would blur the integrand domain and make it possible to
sample non-separable light paths. But, with this operation, the estimator will have
a bias. Different biased rendering techniques exist and will be described in the next
sub-section.

3.3 Indirect rendering with biased estimator

Contrary to an unbiased estimator, a biased estimator entails a systematic error on
the estimate value. The bias B(FN) of an estimator FN is expressed as:

B(FN) =
∫
f(x)dx− E[FN]

If B(FN) = 0, the estimator is unbiased. There are several biased estimators. But
here, we will only focus on biased rendering techniques more robust than path-based
techniques (path tracing, light tracing, BDPT, etc.). This excludes, for example,
virtual point light techniques using clamping.

One famous biased rendering technique is photon mapping [Jen01]. It consists of
two steps:

1. Photon shooting step: Similarly to light tracing, light paths are emitted from
the light sources. For each light path, there are several intersection points
with the 3D scene (path node). For each intersection, if the surface is rough
enough (diffuse), then a photon is created. Several sets of data are assigned to
a photon: incident direction, position and flux. Then, this photon is stored in
a spatial data structure, named photon map, which is used in the next step.

2. Rendering step: Rays are traced from the camera. At each interaction point
(path node), if the surface is rough enough, a request is sent to the photon
map to gather photons close to the interaction point. Using these photons,
the incident radiance at the interaction point is estimated. For a surface not
sufficiently rough, the camera path continues to bounce similarly to the path
tracing technique.

Figure 3.10 shows an example of a difficult scene setting (a lot of smooth materials
and small light sources). In this scene, BDPT is inefficient because it cannot connect
two points (due to the specular material). However, photon mapping is able to create
contributive paths. Note that this gathering process makes it possible to reuse
several light paths. This possibility is really important for rendering performance.
To underline the robustness of the photon mapping against BDPT, a rendering result
is shown in fig. 3.11.

However, photon mapping has several limitations. First, a lot of photons are
necessary to produce a noiseless image. Several improvements have been proposed
to produce better images with the same amount of photons [Jen95, Chr03]. How-
ever, increasing the number of photons to generate noiseless images gets impractical

44

3. PRACTICAL ASPECTS

S

S S

D
S

S S

D

S

S S

D

Bidirectional Path tracing Photon mapping

Directional relaxation

Figure 3.10 – Schematic explanation on the photon mapping robustness. In case
of smooth interactions (Surfaces denoted S) and only a diffuse one (Surface denoted
D), BDPT cannot connect two vertices due to the BSDF of S. With the gathering
procedure, photon mapping is able to build several contributive paths (green dots
represent the photons). Directional relaxation makes possible the connection, by
modifying the smooth BSDF (green cone). However, in this latter technique, it is
not possible to reuse several light paths.

(a) BDPT (b) Photon mapping

Figure 3.11 – This scene has several settings that makes BDPT inefficient: light
sources are included in a glass probe and there is a lot of specular BSDF. This
makes inefficient the explicit connection of two sampled vertices. As a result, photon
mapping can sample efficiently certain parts of a domain for which BDPT completely
fails.

because of the memory limitation. This last issue can be addressed by a multi-pass
approach. All these improvements will be discussed in the following sections.

The photon mapping technique relies on a spatial relaxation. Similar techniques,
named Directional relaxation [KD13b, BIOP13], use the same principle but ex-
pressed in the directional domain. These techniques change the BSDF expression to

45

CHAPTER 3. MONTE CARLO SOLUTIONS

expend it to a non zero value domain. This type of technique has several advantages
(compared to photon mapping): it does not need to store photons and enables con-
nections between two smooth surfaces. However, their main drawback is the lack of
light path reuse because these techniques do not use a gathering procedure.

3.3.1 Photon mapping

The photon mapping approach [Jen01] is based on density estimation expressed in
the surface space. To be able to recover the photon mapping formula, let us recall
the rendering equation (eq. (2.14) without self emission) :

Lr(~x→~ω) =
∫

Ω
fr(x, ~ω′→~ω)Li(~x←~ω′)dσ⊥~x (~ω′) (3.15)

By rewriting the incident radiance (eq. (2.10)) to make appear the incident flux,
we get:

Lr(~x→~ω) =
∫

Ω
fr(x, ~ω′→~ω)

d2Φ(~x, ~ω′)
dσ⊥~x (~ω′)dA(~x)

dσ⊥~x (~ω′)

Lr(~x→~ω) =
∫

Ω
fr(x, ~ω′→~ω)

d2Φ(~x, ~ω′)
dA(~x)

(3.16)

The incoming flux Φ is approximated by the set of photons gathered using the
photon map. Each photon represents a proportion ∆φp(~ωp) of the total emitted flux.
By using photons near ~x, we obtain the following estimator:

Lr(~x→~ω) ≈
n∑

p=1

fr(~x, ~ωp→~ω)
∆φp(~ωp)

∆A
, (3.17)

where n is the number of photons gathered near ~x, ∆φp the flux carried by a photon
and ~ωp its incident direction. However, this formula is only expressed in a local
domain. To express this estimator with the total set of emitted photons, we use
a density kernel with a given support. ∆A expresses the support of the photon
density kernel. Moreover, photon mapping assumes that the neighbourhood of ~x is
a flat surface (for the kernel normalization factor). By doing that, we can rewrite
the estimator as:

Lr(~x, ~ω) ≈ 1
M

M∑

p=1

kr(~x− ~xp)ψp, (3.18)

where M is the total number of emitted photons, kr the kernel used to accumulate
the photons and ψp the photon contribution. This contribution includes the flux
carried by the photon times the BSDF value. In case of constant kernel with a fixed
radius r, we have:

Lr(~x, ~ω) ≈ 1
πr2M

M∑

p=1

ψp (3.19)

The photon mapping estimator is prone to different sources of errors (variance
or bias). First, if the flat surface condition is not met (in corner) the estimator
will underestimate the right value. Second, if not enough photons are gathered (in

46

3. PRACTICAL ASPECTS

the kernel), the incident flux estimate has a high variance. This variance will be
analysed in the next sub-section.

In the rendering step, the photon map is used to estimate the reflected radiance.
However, using the photon map directly can result in a very noisy rendering. Final
gathering uses the photon map only to compute indirect lighting. This is done
by integrating along all the incoming directions at the points resulting from the
intersection between view rays and the scene. For each incident direction, a ray
is traced and may intersect the 3D scene. At the intersection point, a density
estimation is performed. Final gathering can produce high quality images. However,
this approach is costly because it requires a lot of photon map queries.

This technique is not consistent. Indeed, for consistency, we need to be able to
shoot an infinite number of photons, which requires an infinite memory to store the
photons, which is not feasible. Progressive schemes have been developed to address
this issue. We will present these approaches in the following sub-section.

3.3.2 Progressive photon mapping

To address the memory issue, progressive photon mapping (PPM) has been pro-
posed by Hachisuka et al. [HOJ08]. The authors proposed an extended version of
this algorithm: stochastic progressive photon mapping (SPPM) [HJ09]. In this last
technique, several photon shooting steps are achieved to produce different photon
maps. Then, for each pixel, a primary ray is traced, it intersects the scene at a
certain position. This intersection is denoted gather point. For each gather point,
the photon map is used to estimate the reflected radiance (eq. (3.18)).

Knaus and Zwicker [KZ11] have developed a cleaner framework than PPM/SPPM.
So, for this reason, we will use their mathematical framework to explain how PPM/SPPM
works. Then, we will underline the difference between their technique and the tech-
niques proposed by Hachisuka et al.

In their article [KZ11], Knaus and Zwicker propose an expression of the photon
mapper error ǫ(~x, r) for a given position ~x and a kernel radius r. For simplicity, they
use the assumption that the probability density of the photons pl is constant within
the support of the kernel kr. Their aim is to study the expectation and the variance
of the photon mapper error (ǫ(~x, r)). After several developments, they come up with
the expression of the variance of this error:

Var[ǫ(~x, r)] ≈ Var[ψ] + E[ψ]2)pl(x)
M r2

∫

M
kr(~x− ~y)dA(~y), (3.20)

where Var[ψ] and E[ψ] are the variance and the expectation of photon’s contribu-
tions. This above formula shows that the variance of the error decreases linearly with
the number of photons M . Moreover, they express the expectation of the photon
mapper error as:

E[ǫ(~x, r)] = r2E[ψ]τ, (3.21)

where τ is a constant related to the photon distribution. This last formula shows
that the expectation of this error decreases proportionally to the square scale of the
kernel.

47

CHAPTER 3. MONTE CARLO SOLUTIONS

In their technique, the different passes (photon shooting and rendering step) are
independent. Each rendering step produces an image Ij obtained by averaging all
the previous ones (I0, ..., Ij−1). In this case, Knaus and Zwicker propose to study
the cumulated error when the different rendering passes are averaged:

ǭK =
1
K

K∑

j=1

ǫj, (3.22)

where ǫj is the error for the jth rendering pass. They prove that the expectation
and the variance of this accumulated error have the following expressions:

Var[ǭK] =
1
K2

K∑

j=1

Var[ǫj] (3.23)

E[ǭK] =
1
K

K∑

j=1

E[ǫj] (3.24)

where Var[ǫj] and E[ǫj] are given in eqs. (3.20) and (3.21). The aim of the authors
is to find a mathematical formulation such that when K→∞, the cumulated error
tends towards 0:

Var[ǭK]→0 and E[ǭK]→0

If these two conditions are met, their estimator is consistent. This is achieved by
choosing the following kernel radius reduction formula:

r2
j+1

r2
j

=
Var[ǫj]

Var[ǫj+1]
=
j + α

j + 1
(3.25)

where α ∈]0, 1[is a user parameter and rj+1 is a radius used during the photon’s
gathering.

Radius
Initialisation

r0 Photon
Shooting

Rendering
using rj

Average
Results

Final imagePMj Ij

I0, ..., Ij

Figure 3.12 – The global framework of Knaus and Zwicker’s technique. First,
the initial kernel radius r0 is computed. Then, at each pass of their algorithm, the
algorithm produces a photon map PMj and uses it to produce an image Ij . The
images Ij are averaged to produce the final image.

In practice, their algorithm works as follows (fig. 3.12). First, an initial radius
r0 is computed (global radius, ray differential, ... etc.). At each pass, a photon map
PMj is created. This photon map PMj is used to generate an image Ij using the
kernel radius rj (eq. (3.25)). Then, this image Ij together with all previous rendered
images I0, ..., Ij−1 are averaged to get the final result. The good algorithmic property
of their approach is that each pass is independent from the others. This makes
possible the parallelization of their algorithm on a cluster of computers.

48

3. PRACTICAL ASPECTS

The main difference between Knaus and Zwicker’s and Hachisuka’s works is the
problem statement. Knaus and Zwicker make the hypothesis of constant probability
to sample contributive paths for a given gather point. Therefore, they use the
same rate reduction for all the radii (associated with the pixels). Hachisuka derives
the same formula (eq. (3.25)) but makes the hypothesis of constant photon density
within the radius. By doing that, he express the radius rate reduction depending on
local pixel statistics:

r2
j+1(P)
r2

j (P)
=
Nj(P) + αMj(Gj)
Nj(P) +Mj(Gj)

, (3.26)

where P is a pixel and Gj the associated gather point, Mj(Gj) the number of photons

gathered at the gather point during the jth iteration, and Nj(P) =
j−1∑
l=1

Mj(Gj). It

is possible to adapt the radius reduction rate for different pixels. This possibility
entails an additional memory cost. Indeed, for each pixel, we need to store several
statistics:

� the radius scale rj(P);

� the number of cumulated numbers of gathered photons Nj(P);

� the unormalized flux ψj(P) (in Hachisuka, the final image is not an average
over all produced images but a weighting sum).

Other statistics can be assigned to a pixel. Kaplanyan et al. [KD13a] propose to
store a derivative information about the photon density. With this additional infor-
mation, they are able to choose the quasi optimal radius reduction rate adaptively.
This makes the algorithm converge faster. Note that the information assigned to the
pixels is updated using the information of the previous passes. This makes difficult
the parallelization of the algorithm on a cluster of computers.

Finally, with these techniques, two different gathering photon strategies are pos-
sible. In the classical one, for each gather point, the photon map is queried to
gather the neighbouring photons. In the second one, the gather points are stored
in a spatial data structure. Then, during the photon shooting step, for each pho-
ton, this spatial data structure is traversed to find neighbouring gather points. For
each found gather point, the contribution of the photon is computed and cumulated.
These two solutions are valid and their performance relies on the ratio of the number
of photons shot per pass to the number of generated gather points. However, the
second solution has another advantage. Indeed, its makes it possible to know if a
given light path is contributive or not during the shooting process. One of the works
done in this thesis was to find an efficient data structure for gather points within
participating media. This work will be presented in chapter 6.

3.4 Combining biased and unbiased estimators

In the two previous sections, we have presented two main rendering techniques:
BDPT and SPPM. These two techniques are not expressed within the same mathe-
matical framework. Indeed, BDPT is expressed within the path integral framework

49

CHAPTER 3. MONTE CARLO SOLUTIONS

while photon mapping within the density estimation framework. However, these two
rendering techniques are complementary:

� SPPM is more robust than BDPT in scenes containing a lot of smooth mate-
rials. Moreover, the possibility to reuse several light paths during the density
estimation makes SPPM more efficient.

� BDPT relies on multiple importance sampling (MIS) to build a good sampling
strategy. This method is more efficient than SPPM to compute the direct and
the diffuse interactions, because it allows to connect two distant points, which
is not possible with SPPM (density estimation needs the two path vertices to
be close to each other). Moreover, BDPT has a partial control on the sampling
rate in the image space. So, except the lack of robustness for handling smooth
materials, BDPT has a better convergence rate than SPPM.

Recent works [GKDS12, HPJ12] studied the possibility to combine BDPT and
SPPM using MIS. The major issue solved in these works was the differencies in the
mathematical framework used. Indeed, to use MIS, the two techniques need to be
expressed in the same framework. For example, Georgiev et al. [GKDS12] chose to
express the photon mapping framework in the path integral one. Some results from
this paper are shown in fig. 3.13.

BDPT (30 min.)

SPPM (30 min.) Combined (30 min)

Figure 3.13 – On the left: a comparison between BDPT and SPPM. For the
same computation time, these two techniques perform differently in the image space.
BDPT performs better in all cases except for the caustics viewed through the mirror.
On the right: the combined techniques achieved lower variance when using MIS.
These images are courtesy from Georgiev’s article [GKDS12]

In the same spirit, Krivanek et al. [KGH+14] use the same approach to combine
different estimators in participating media rendering. However, they combine 4
different rendering techniques.

50

3. PRACTICAL ASPECTS

3.5 Discussion

Up to now, we have focused on the different path space sampling techniques: path
tracing, light tracing, BDPT, photon mapping and SPPM. These techniques use
different Monte Carlo estimators to achieve lower variance. However, there exists
other ways to speedup the rendering algorithms.

For example, some works have been interested in real-time global illumination
techniques. A recent state of the art [RDGK12] summarizes all the recent research
aiming at real-time performance. One of these techniques is virtual point light (VPL)
[Kel97] based method which is a GPU friendly version of a subset of BDPT. Indeed,
VPL-based techniques use the GPU raster operation to evaluate the visibility in the
connection operation. However, to get artefact-free images, a large amount of VPL
is necessary. This problem of computing visibility over a large set of lights is also
known as many light source problem. In order to achieve real-time performance,
several solutions are possible. The first one is to reduce the cost of the visibility
evaluation by using some approximations [RGK+08]. The second is to use a specific
technique to cluster the VPLs: matrix row sampling [HPB07], light-cuts techniques
[WFA+05, WABG06, WKB12].

Another category of techniques to speed up the rendering are caching techniques.
These techniques are similar to photon mapping techniques but they store more
information about the rendering. They allow to reuse information already stored into
a set of records. Caching techniques store indirect lighting information into records.
Similarly to photon mapping, these records are inserted into a spatial data structure.
At each intersection point, between a view ray and the scene, the illumination is
computed by interpolating the lighting stored in the neighbouring records using
gradient information. A lot of improvements of this type of technique have been
proposed: different BSDF handlings [WRC88, KGPB05], different record shapes
[RCB11] or different interpolation schemes / gradient [WH92, JZJ08b, SJJ12].

Moreover, caching techniques can be used to cache other sampling information.
One recent work [VKŠ+14] uses the caching technique to store an explicit knowledge
of the incident radiance (or importance) distribution. Its aim at constructing a pdf
that matches the shape of the integrand. This technique produces good results (low
variance) but still has issues in corners due to the caching technique. Moreover,
this technique is complex to implement, we will see in the next chapter a simpler
technique to automatically construct the pdf implicitly.

51

4Markov Chain Monte Carlo

1 Introduction

In the previous chapter, we have presented different global illumination techniques.
These techniques often rely on local path sampling strategies and use importance
sampling to reduce the variance. The aim of these different techniques is to get a
density function the closest as possible to the integrand. However, building such a
density function is challenging and complex.

Another way to sample the path space is to use Metropolis-based algorithms
[MRR+53]. These algorithms have the ability to easily construct a density function
proportional to an importance function I defined by the user. This importance
function does not need to be normalized and can be any function different from zero
especially when the integrand value is non-zero. Metropolis techniques are based
on a Markov Chain process and generate a sequence of samples proportional to the
importance function.

In computer graphics, Metropolis-based techniques are called "Metropolis Light
Transport" techniques (MLT). We have dedicated a chapter to this technique because
several contributions in the manuscript are based on MLT. So, in this chapter, we
will give a quick overview of the MLT techniques and discuss their differences and
their strengths.

2 Overview of the MLT algorithm

Veach et al. [VG97] were the first to apply Metropolis algorithm in the computer
graphics field. The aim of MLT methods is to generate more contributive paths
compared to classical Monte Carlo approaches in scenes with complex visibility.
Each path x (as defined in the previous chapter) or X is defined by a sequence of
~x0, ~x1 · · · ~xk points on the scene surfaces or inside a participating media (see chap-
ter 2). The aim of the Metropolis algorithm is to generate a sequence of paths
X0, X1, · · ·XN proportional to an importance function I1. Each path of this se-
quence is a state of the Markov chain. Those states are distributed proportionally
to the importance function according to the pdf p(X)

p(X) =
I(X)
b

(4.1)

1Note that this is true only if the Markov chain reaches the stationary distribution (the mutation
does not change the state distribution). However, for simplicity reason we will omit this detail for
the rest of this chapter. For more information, the reader can refer to Veach PhD thesis [Vea97]

53

CHAPTER 4. MARKOV CHAIN MONTE CARLO

where X is a state of the Markov chain, b the normalization factor of the importance
function and p(X) the pdf proportional to the importance function. The normal-
ization factor is not necessary during the Metropolis process. However, it is needed
to express the probability density function of the samples generated by MLT. The
expression of the normalization factor b is:

b =
∫

P

I(x)dµ(x) (4.2)

where P is the path space, also called the Markov chain space (or domain).
Metropolis algorithm is based on a random walk. At each step of the random

walk, the algorithm generates a proposed path Y by applying a random mutation
to the path Xi−1, also called the current state. To be able to generate the sequence
of paths X0, X1, · · ·XN with a distribution proportional to the importance function,
each proposal has a chance to be rejected. If the proposal is accepted, the next state
Xi will be equal to the proposal Y . If the proposal is rejected, the next state Xi will
be equal to the current state Xi−1. Metropolis algorithm is Markov chain process
because the next state Xi generation depends only on Xi−1.

Algorithm 1 Metropolis Light Transport

1: X0 ← InitialPath()
2: for i = 1...N do
3: Y ← Mutate(Xi−1)
4: a← AcceptProb(Xi−1→Y)
5: if a > rand(0, 1) then
6: Xi ← Y
7: else
8: Xi ← Xi−1

9: end if
10: RecordSample(Xi)
11: end for

Algorithm 1 summarizes the MLT algorithm. At the beginning of the algorithm
(line 1, algorithm 1), we need to select the initial state X0 of the random walk.
This initial state needs to be chosen as proportional to the importance function I
to avoid start-up bias2. However, the value of this importance function is unknown
over the path domain. The solution, proposed by Veach et al. [VG97], is to generate
a collection of random paths X0,1, · · ·X0,K where K is the number of paths. For
each path, we evaluate the importance function value I(X0,k) and pick one of them
proportional to its importance value. The selected path is used to initialize the
random walk. This technique is similar to the re-sampling procedure [TCE05] used
in global illumination.

Once the initial state is selected, the random walk starts and, at each step,
a proposed path Y is generated (line 3, algorithm 1). This proposed path Y is

2At the early stage of the random walk, the sequence of samples depends on the initial state
choice. However, this bias vanishes after a certain amount of steps because the Markov chain
"forgets" the initial state.

54

2. OVERVIEW OF THE MLT ALGORITHM

generated by applying a mutation to the previous state Xi−1. The probability of the
mutation to generate the proposed Y is equal to T(Xi−1→Y), where T defines the
mutation. This mutation can be randomly selected among a collection of mutation
operations. The most important things is that this set of mutations needs to be
ergodic. This property means that the random walk requires a non-zero probability
to visit a state with a non-zero importance function value. If this property is not
respected, the rendering can be false and some contributions may be missing (due
to a lack of exploration).

Once the proposal path Y is generated, we need to compute the probability to
accept this proposal (line 4, algorithm 1). We use the formulation from Peskun
[Pes73] giving the acceptance probability

a(Xi−1→Y) =
I(Y) · T(Xi−1→Y)

I(Xi−1) · T(Y→Xi−1)
(4.3)

to accept the proposal Y when the current state is Xi−1.
After computing this probability, we use it to make a random decision to accept

or not the proposal (line 5 to line 9, algorithm 1) as the new state Xi. Then, we
add the contribution of the new state Xi to the pixels (line 10, algorithm 1).

Problem statement In classical Monte Carlo rendering algorithms, we use differ-
ent estimators for each pixel j. By doing this, we can control the number of samples
for each pixel and control the variance. However, to be efficient, MLT needs long
random walk in the state domain. So, it is not possible to use different chains for
each pixel.

To be able to render an entire image with only one chain, we change the path
contribution fj to a pixel j and decompose it in two terms:

fj(x) = hj(x)f(x) (4.4)

where hj is the filtering function attached to the pixel j and f is the path contri-
bution. MLT techniques explore all the path space and we filter the contribution of
the Markov chain using hj. At the end, the final image can be computed with the
following estimator:

Ij =
1
N

N∑

i=0

hj(Xi)f(Xi)
p(Xi)

(4.5)

where X0, X1, · · ·XN is the sequence of paths used for all the pixels. We can rewrite
the previous formula using eq. (4.1) as:

Ij =
b

N

N∑

i=0

hj(Xi)f(Xi)
I(Xi)

(4.6)

where I(Xi) is the importance function value for the state Xi and b is the normal-
ization factor used to scale the final rendered image.

55

CHAPTER 4. MARKOV CHAIN MONTE CARLO

Discussion Note that the MLT sampling advantage (explore the domain locally)
could introduce a disadvantage in term of convergence speed. Indeed, the samples
(states) could be correlated. Independent samples in Monte Carlo guarantee that
the standard deviation σ is equal to σp/

√
N with N samples and σp is the standard

deviation when considering the samples independent.

σ ≤ σp ·
√

1 + 2
∑N

k=1 R(k)
N

(4.7)

where R(k) is the upper bound of the correlation between I(Xi) and I(Xi+1). Thus,
a too high correlation during the paths generation increases the variance: in this
case, the acceptance ratio is too high (too small mutations) or too small (risk to
stay in the same state of the Markov Chain). The acceptance ratio is the ratio of
mutated states that entail a change of state in the Markov Chain.

3 Practical aspect

In the previous section, we have described the general metropolis algorithm. In
computer graphics, several different Metropolis light transport methods (MLT) have
been proposed. Each of these techniques introduces several changes on:

� State space or Markov chain domain: in computer graphics, several domains
are possible. We will describe each of them and discuss their strengths and
drawbacks.

� Mutations: several mutations are possible to generate a proposal. These mu-
tations are related to the chosen state space. This is why we will present the
state space and the mutations in the same subsection.

� Importance function: its choice is important to the rendering algorithm. Sev-
eral choices are possible and will be discussed hereafter.

� Rendering technique: the choice of the rendering technique will have an impact
on above points. We will give an overview of the different rendering techniques.

3.1 State domain and mutations

Path domain Veach et al. [VG97] propose to use the path space directly. This
means that each state of the Markov chain will represent a path x with vertices
~x0, ~x1 · · · ~xk. Each vertex defines the path geometry (position, direction, BSDF,
etc.). Mutation on path domain uses these sets of information to determine an
efficient mutation strategy. Moreover, a mutation can only change a part of the
path, which makes this technique computationally efficient.

However, all these strengths comes with a major drawback: the complexity. In-
deed, Veach et al. proposed a MLT algorithm with a BDPT. Some light phenomenon
are difficult to sample. Veach et al. proposed to use the following set of mutations
(see fig. 4.1):

56

3. PRACTICAL ASPECT

S

(a) Bidirectional mutation

S

(b) Lens perturbation

S

S

D

S

(c) Caustic perturbation

D

S

S

S

(e) Multi-chain perturbation
Figure 4.1 – All the possible mutations from Veach et al. [VG97] technique.
Some of the mutations are specialized to sample specific light path structures. New
parts generated by the mutations are shown in green. Characters "S" and "D" mean
specular or diffuse surfaces.

� Bidirectional mutation: this mutation is responsible for large changes to the
path, such as modifying its length. First, the subpath to delete is chosen
with some probability. Then, a new subpath is generated randomly by adding
vertices to the camera and the light paths. Note that the mutations have
some probability to delete the path completely and regenerate a new one.
This property is important because it makes the set of mutations ergodic.

� Lens and caustic perturbations: these mutations are more specific. Indeed,
they will be responsible for the path regeneration from the camera (lens per-
turbation) or the light sources (caustic perturbation). This is done by regen-
erating only specular vertices by changing the original path direction.

� Multi-chain perturbation: This mutation can be seen as a generalization of the
two above perturbations. This perturbation is designed to handle (D|L)DS+DS+E
paths.

Then, for each current state Xi−1, a mutation operation needs to be chosen. We
select one of them randomly. However, if a mutation (lens, caustic or multi-chain
perturbation) requirement over path structure is not met, this mutation has zero
probability to be picked.

However, the previously described set of mutations is not sufficient when paths
have several specular chains. Moreover, the path changes due to these perturbations
(lens, caustic and multi-chain) cannot create a mutated path without changing one
of the end points (on the light or on the camera). This can be an issue when, for
example, a light source is highly directional (in case of sun light).

To address this issue, Jackob et al. [JM12] have proposed a more complex muta-
tion called "Manifold exploration" (fig. 4.2). Their technique is capable of generating
a new path with the same end points3. To do it, they take advantage of the half

3Note that more complex paths with several specular successive bounces are handled as well.

57

CHAPTER 4. MARKOV CHAIN MONTE CARLO

S

S

D

S

Figure 4.2 – "Manifold Exploration", the mutation proposed Jackob et al. [JM12].
The mutation takes advantage to the half vector constraint (orange vectors) due to
specular reflection to create a sub-space and use it to explore the sub-space. The
mutation works as follows: first a new sub-part of the path is generated (green plain
line) by path tracing. Then, a Newton method generates the rest of the path (green
dotted line) by using the half vector constraint. At the end, a new path is generated
with the same end points, which is not the case of the multi-chain perturbation.

space constraint on the path vertex. Indeed, for specular interaction, the half vec-
tor needs to be aligned with the normal of the surface, which restricts the space of
possibilities. By using this constraint, the authors express a sub-space (manifold)
and use Newton method to explore this sub-space.

Half-vector domain Kaplanyan et al. [KHD14] have proposed an improvement
of Manifold Exploration (ME) for glossy surfaces. Indeed, in ME, glossy surfaces can
be also handled by using a special trick. The trick is to consider all glossy surfaces
as "specular" by fixing the half vector value. However, to be able to explore the
glossy lobe, one of this half vector is perturbed. The problem of this trick is that
the mutation does not explore the path space well and creates correlated samples.

Kaplayan et al. want to solve this issue by creating a mutation strategy that
perturbs all the half vectors at a time. To do this, the authors propose a new
path space named "half-vector space". In this space, the path is expressed as two
endpoints and halfway vectors.

Then, the authors use this new space for designing a new mutation. This muta-
tion consists of two steps:

1. perturb half-vectors;

2. find a new path: this is done similarly to ME. However, the new space is not
compatible with ray tracing. So, the technique transforms the path from the
new space to the old one to trace it.

At the end, the path proposed by this technique undergoes more changes than
Manifold exploration. Note that, if the path contains only specular interactions, this
technique is similar to Manifold exploration. However, this new mutation strategy
has additional strengths such as:

� Importance-sampling all BSDFs: this technique takes advantage of the fact
that a lot of BSDF models are based on the half vector formulation. This makes

58

3. PRACTICAL ASPECT

possible importance sampling of BSDF by making the half-vector perturbation
proportional to the half vector distribution.

� Stratification: the technique also makes it possible to change one of the end
point for stratification purpose.

xi

y1,2

3,4,5

6,7,8

S

Path space Primary sample
space

p(xi)

Figure 4.3 – The idea of Kelemen et al. [KSKAC02] is to use the mapping between
random numbers (in primary sample space) and the path space. Indeed, a random
number vector xi (numbers 1, 2, .., 8 in the figure represent the indices of the gener-
ated random numbers in the primary space) is used as a Markov state. Kelemen et
al. propose a MLT algorithm that only perturbs the random number vector xi to
get y and uses this new vector to trace a new path (in green).

Primary sample domain In the previous MLT techniques, a geometric domain
(path or half-vector) was used for the Markov chain. This domain gives full informa-
tion about the path geometry and allows to design a specific mutation. However, this
entails a complex mutation function. As a consequence, those methods are complex
to implement and can be inefficient when all the path configurations (depending of
geometry and BSDF settings) cannot be handled.

To address this issue, Kelemen et al. [KSKAC02] proposed a more simple MLT
technique based on the primary sample domain. This technique, named "primary
space samples MLT" (called also PSSMLT) uses random numbers as Markov chain
state. Indeed, in Monte Carlo rendering, the light paths are generated using a
stochastic process. This process generates random samples that are used to create
a random path. So, there is a mapping between the random number space and
the path space. This mapping and the designed mutations are used to perturb the
random number values (fig. 4.3).

More precisely, in global illumination, we try to solve the following equation:

Φj =
∫

P

fj(x)dµ(x), (4.8)

where fj is the contribution of the path x.
Where MLT uses the primary sample space, we need to change the integral space:

Φj =
∫

U
fj(p−1(u)) · |dp

−1(u)
du

|du (4.9)

59

CHAPTER 4. MARKOV CHAIN MONTE CARLO

where U is the primary sample space, u an random number vector and p−1 the sam-
pling technique that takes the random number vector and produces the associated
path. However, in this case, the Jacobian is equal to:

|dP
−1(u)
du

| = 1
p(u)

(4.10)

where p(u) is the pdf to construct the path x.
Working on the primary sample space makes the design of mutations simple. In

this case, two mutations are proposed:

� "small step" mutation: we make a small perturbation of the random number
value. The aim of this mutation is to create a path that is slightly modified
so as to explore the domain locally.

� "large step" mutation: the problem of the previous mutation is that we are
not sure to have ergodicity (due to the limited range). Moreover, in global
illumination, it is very likely that light-paths of non-zero importance form
island in the path space. So, the authors proposed another mutation, called
"large step" mutation, to ensure ergodicity. This mutation amounts to create
new random values from a uniform distribution. This allows the algorithm not
to be trap inside peaks of the importance function.

A probability plarge is used to choose one of the mutations. This probability tells us
about the chance to pick the "large step" mutation or not.

Note that PSSMLT is plug-able with any path construction techniques (path
tracing, BDPT, photon mapping, etc.). However, in complex rendering techniques,
such BDPT, several strategies are possible to build a path. However, by just playing
with random number values, the algorithm does not have control on the choice of how
to build a complete path. Hachisuka et al. [HKD14] solve this issue by proposing
a MLT algorithm close to PSSMLT. In their technique, a state is defined by its
random number vector and a number that depending on a path building strategy.
When a mutation is invoked, random numbers are perturbed as well as the path
strategy number.

Discussion We have presented different sampling domains for MLT. Apart from
the half-vector space used only for designing a mutation operation, there are two
main spaces:

� Primary sample space: by only mutating random numbers, PSSMLT is easy to
plug into different integration techniques (path tracing, BDPT, SPPM... etc.).
Indeed, this method can be used as a black box that produces random numbers.
This property makes this MLT process quite robust. However, this technique
cannot generate precise knowledge about the current state of the random walk
and cannot apply special mutation. Moreover, in this technique, we need to
rebuild the path from scratch to evaluate the importance function. Finally,
PSSMLT will share the same limitation as the integration technique used. For
example, if the integration technique cannot handle some path configuration

60

3. PRACTICAL ASPECT

(like path tracing techniques with SDS interactions), PSSMLT will not be able
to explore it efficiently.

� Path domain: in this domain, the MLT process has access to a lot of informa-
tion, which makes an efficient mutation scheme possible. Moreover, mutations
require to recompute only a part of the mutated path, which makes this tech-
nique very efficient. However, the problem of this domain is the variety of the
situations that are difficult to handle well with a set of mutations. This is
why this technique is less robust than PSSMLT (in case of robust integration
technique, like photon mapping).

Note that in the path domain, we did not cover all the mutations. Indeed, differ-
ent authors have proposed new mutations depending on the integration technique.
For example, Fan et al. [FCL+05] proposed a special MLT algorithm in case of
Photon mapping with final gathering. Another example is the work of Segovia et al.
[SIP07] who designed a special MLT algorithm for VPL rendering technique. They
used another Metropolis algorithm named Multi-try metropolis [LLW00].

Moreover, in this section, we did not cover all the possible Markov chain domains
used in computer graphics. For example, we did not talk about the work of Cline
et al. [CTE05] that consists in expressing the MLT algorithm as an energy flow
problem. By doing so, the authors make it possible to use smaller Markov chains and
relax the ergodicity requirement. Finally, Lehtinen et al. [LKL+13] have proposed
a rendering system that computes only the image gradient. Then, they use the
gradient information to reconstruct the 2D image.

3.2 Importance functions

Importance functions are used by MLT to determine which domain is more important
to sample. It is a scalar function but its expression may vary from a method to
another. Indeed, the importance function does not need to be normalized. The only
requirement is that this function needs to be evaluated in all parts of the Markov
Chain domain and be non zero when the path contribution is non zero. Moreover,
the expression of the importance function depends on the rendering technique (path
tracing, photon mapping, etc.).

Path based rendering techniques In the case of global illumination, Veach et
al. [VG97] and Kelemen et al. [KSKAC02] use an importance function I(X) based
on the radiance reaching the image plane. Some problems occur when using this
importance function. Indeed, the Metropolis-Hasting algorithm distributes samples
proportionally to the radiance distribution, that is to say low radiance zones receive
few samples. To solve this issue, Veach [Vea97] first proposes to only focus on
the computation of indirect illumination (the direct component is computed with
a classical Monte Carlo method). Second, the expected values of the acceptance
probability is used to account for the contribution of the rejected state of the pixels.
This technique is also called "waste recycle" in the mathematical literature.

Veach et al. [VG97] also propose a two-step Metropolis sampling. In a first step,
the algorithm computes the radiance reaching the image plane with a low resolution

61

CHAPTER 4. MARKOV CHAIN MONTE CARLO

Figure 4.4 – Different results for the same MLT process using different importance
functions. On the top row: the rendered image. On the bottom row: the sampling
rate on the image plane. This figure stems from Hoberock et al. article [HH10].

image. This estimation is then used as an inverse importance function, as:

I(X) =
f(X)
f0(X)

(4.11)

where f0(X) is radiance due to state X for the low resolution and computed at the
first step. f(X) is the contribution of state X for full resolution. However, this
solution is very parameter sensitive and the first estimation could be not precise and
create a bad importance function (which will create worst images compare to those
only using the luminance as importance function).

Hoberock et al. [HH10] generalize this approach with a multistep algorithm by
increasing the rendering resolution iteratively. Their technique does not require any
user parameters and produce good results.

Moreover, in the same paper, Hoberock et al. [HH10] propose a perceptual
importance function. This importance function uses the threadhold versus intensity
rules to determine the proportion of samples needed to achieve less noisy images.
To be able to do that, they design an iterative process that estimates the Markov
Chain variance over an image region. A rendering example using all these importance
functions is shown in fig. 4.4.

Photon mapping rendering techniques In the case of progressive photon map-
ping, Hachisuka et al. [HJ11] define the importance function as the visibility function
of photons (1 if the photon is visible else 0). A binary function allows simplifications
in the Metropolis-Hasting parameters. Moreover, the photons coming from the uni-
form distribution are already distributed proportionally to the importance function.
This avoid the problem of start up bias.

Note that, in photon mapping, the photons are naturally distributed propor-
tionally to light flux. So, this importance function only distributes the photons
proportionally to their flux only on visible surfaces. The extension to participating
media is discussed in chapter 6.

Chen et al. [CWY11] propose another importance function to get the same
density of photons over visible surfaces. This importance function is based on the

62

3. PRACTICAL ASPECT

Figure 4.5 – From left to right: the initial photon density, the filtered initial density
and the inverse of the second one. The rightmost image shows the importance used.
Image steming from Chen et al. article [CWY11]

inverse density of photons. This density is estimated during some precomputation
steps before the Metropolois sampling. In this precomputation steps, several filtering
operations are needed to remove spikes in the importance function (fig. 4.5). In
chapter 7, we will introduce more general importance function formulas trying to
equalize the relative error.

Discussion Compared to classical Monte carlo rendering techniques, MLT tech-
niques do not ensure stratification over the image space. However, the formulation
of the importance function controls the amount of samples received on the image
plane. In general, importance functions are defined in the image space, except for
photon mapping, for which importance functions are expressed in the 3D space (over
the gather point).

3.3 Other mathematical tools

In the previous sections, we discussed different aspects related to MLT such as:
the Markov chain domain, mutations and importance functions. However, other
mathematical concepts have been applied in MLT rendering algorithm. In this
section, we provide details of some of these concepts.

Automatically tuning parameters The problem of MLT is the number of pa-
rameters. Indeed, this number can be high because each mutation has its own
parameters. Those values are crucial for rendering efficiency. Indeed, some of these
parameters have a strong influence on the acceptance rate (which is related to the
sample correlation).

Each Markov Chain has to explore the state space through mutations. However,
the mutation size is crucial for the exploration efficiency. Indeed, a small mutation
size induces a high correlation ratio and, conversely, a big mutation size creates rejec-
tions in the acceptance function. A mathematical solution called Adaptive MCMC
[AT08] allows to control this mutation size by introducing a new Markov Chain

θt+1 = θt +H(t, θi, Xt, ..., X1) (4.12)

where θt+1 is the new mutation size and H the variation function of the mutation
size. For the algorithm to be convergent, the variation function must converge to 0:

limt→∞H(t, θt, ...) = 0 (4.13)

63

CHAPTER 4. MARKOV CHAIN MONTE CARLO

Hachisuka et al. [HJ11] exploit this function to converge to an optimal accep-
tance ratio A∗ = 23.4% [R+11]. Indeed, the mutation size is directly related to the
acceptance ratio. Controlling this acceptance ratio allows to control the mutation
size.

Zsolnai et al. [ZSK13] have proposed an automatic method to compute plarge

for PSSMLT. In their work, they derived an adaptive formula based on large step
mutation performances.

Genetic algorithms can also be used to tune the mutation size. Lai et al.
[LFCD07] have proposed a rendering process based on this idea. Their algorithms
can automatically select a good mutation size in a set of possible values.

Annealing and Replica exchange In case of spiky importance functions, a
Markov chain has some difficulties to explore the state domain. It is the case of
path tracing techniques, where specular or glossy interactions may trap the Markov
chain. To solve this issue, the constraint on the importance function is relaxed, which
makes the importance function flatter. However, to converge to the right solution,
the function needs to converge to its "true" importance function. In the mathematics
literature, this process is referred to as "Annealing" procedure. This technique has
been used by Kaplanyan et al. [KD13b] to relax the directional restriction from
specular BSDFs or point light sources.

Another approach is to use several importance functions. Each importance func-
tion will be ordered by levels: the first level will be the flattest function and the
highest level will be the right function. With each of these importance functions,
a Markov Chain is associated. However, it is possible to mix the samples from all
these functions by using a Replica Exchange procedure. Replica Exchange procedure
exchanges the current state of two different importance functions. In order to obey
the Metropolis-Hasting rules, the probability to change these two states is equal to:

r(X,Z) =
IX(Z)IZ(X)
IX(X)IZ(Z)

(4.14)

where r(X,Z) is the probability to swap the two current states 4. This approach
has been used by Kitaoka et al. [KKK09] in computer graphics. In their work, the
authors use 4 different levels.

Hachisuka et al. [HJ11] use the replica exchange for a visbility importance func-
tion. They use two importance functions: one constant over the domain and another
one on the photon visibility. The first importance function is responsible for uniform
sampling. This chain is equivalent to "large step" mutations in PSSMLT [KSKAC02].
But, this approach is more elegant when it comes to use uniform samples to estimate
the normalization factor.

Connection to MIS Note that it is possible to combine different estimates using
MIS. For example, it is possible to combine the contribution of different Markov
chains (associated with different importance functions, different state domains).

4Note that more close the ratio is to 1, more there is state exchange. This is the reason why
this exchange is only produced over two close levels

64

3. PRACTICAL ASPECT

This is the case in the work of Kitaoka et al’s [KKK09] where the 4 different level
contributions are mixed using MIS. Another application of MIS in MLT is in Kele-
men et al. [KSKAC02] work. Indeed, they combine MLT contributions with uniform
samples generated by the "large step" mutation.

65

Part II

Efficient and robust rendering
techniques

67

Introduction

In this part, our new rendering techniques are detailed. First, we will present
rendering techniques that support participating media. Developing efficient render-
ing techniques, which compute multiple light interactions within such media, is a
difficult task. Several methods presented in the previous chapters (path tracing,
bidirectional path tracing, photon mapping, etc.) handle naturally the participating
media. However, these rendering techniques do not take advantage of the higher in-
tegration dimension brought by the computation entailed when rendering participat-
ing media. Moreover, there are several ways to improve the efficiency of a rendering
algorithm: using dedicated materials (GPU) or more advanced mathematical tech-
niques/models. In chapter 5, we will present our GPU algorithm based on Fattal’s
[Fat09] CPU method. Indeed, his technique has been designed to run only on CPU.
We have brought several modifications to this method to make it massively multi-
threaded (for running on GPU). Moreover, to overcome the memory constraint due
to GPU limitation, we propose a streaming algorithm that streams the participating
media during the computation.

However, this technique makes several assumptions: small number of lighting
directions and the participating media do not contain any objects of the scene. These
assumptions make this technique limited in practice. In chapter 6, to overcome
these limitations, we will present a second technique, which is more general and
runs on CPU, but may handle any type of interactions within the 3D scene. We
propose a new data structure to store camera paths that interact with the media.
This new data structure is organized similarly to a KD-tree structure. This makes
possible to efficiently query the visibility of a photon or a light beam. Moreover, we
use this visibility information to drive the path sampling thanks to a Metropolis-
based algorithm which allows to render complex scenes in terms of visibility and
light/matter interactions.

The human visual system is sensitive to relative differences in luminance but light
transport simulation algorithms, based on Metropolis sampling, produce results with
a non-uniform relative error distribution. To solve this problem, we propose an im-
portance function, for Metropolis photon tracing, that ensures a good stratification
sampling of photons, leading to pixel radiance estimated with equal relative error
(chapter 7). We propose a hierarchical scheme for a progressive construction of
the importance function from paths sampled during the rendering. Unlike previous
works that defined an importance function in the image plane, our method operates
in the 3D space (defined on spatial regions). This allows to take advantage of illu-
mination coherence to compute robust estimates of the importance function while
adapting to geometry discontinuities. We apply our photon tracing algorithm to
progressive photon mapping and show that it considerably outperforms alternative

69

Introduction

approaches in terms of image quality.

70

5
Light propagation maps on GPU

Volume interactions in participating media (presented in chapter 2, section 3,
page 26) are computationally intensive. This is due to all possible light interactions
(scattering, emission and absorption) that occur at every point inside the medium.
These interactions are modeled by the RTE (Radiative Transfer Equation, eq. (2.22))
[Sub60] and different Monte Carlo methods are used to solve this equation. Some
of them are specially designed to cope with the high integration dimension (when
compared to surface rendering) [JZJ08a, JNT+11, NNDJ12a]. However, in case of a
walkthrough, these techniques are view-dependent and need to perform from scratch
new computations for each frame.

Irradiance/radiance caching could be an efficient rendering technique well suited
for walkthrough. Indeed, if the lighting is constant, the created records can be used
for all the frame during the walkthrough. However, with this kind of technique the
creation of the cache cannot be easily parallelized.

Discrete Ordinate Methods (DOM) [SH01] rely on the discretization of the 3D
and direction spaces to handle the different light interactions with participating me-
dia. Using this discretization, DOM techniques solve the radiative transfer equation
iteratively by simulating local interactions. These methods are computationally ex-
pensive. However with this discretization, this type of method is well suited for
an implementation on GPU. One of these methods proposed by Fattal [Fat09] re-
sorts to Light Propagation Maps (LPM) to compute efficiently local interactions. It
reduces the artifacts inherent in the DOM-based techniques. However, because of
the various constraints imposed by a GPU (for e.g.: parallel execution, branching
condition, etc.), the LPM approach as proposed by Fattal cannot be directly ported
to GPU.

In this chapter, we will present a GPU implementation of Fattal’s technique. Us-
ing a novel data organization, we transform the LPM approach to make it amenable
to GPU implementation. Moreover, with a novel streaming mechanism, we make
the resulting algorithm scalable and hence capable of processing volumes of any size
on a GPU regradless of its memory capability. Our method is fast and scalable.
We report more than 20× speed improvement by using our method as compared to
Fattal’s original method. Using our approach we are able to render 64 × 64 × 64
dynamic volumes with multiple scattering of light at interactive speed for complex
lighting. We are also able to render participating media of any size regardless of the
memory capacity of the GPU.

1 Previous works

There are several categories of numerical techniques to solve the RTE equation
(Monte Carlo, DOM techniques, etc.). We have rapidly presented some of them in

71

CHAPTER 5. LIGHT PROPAGATION MAPS ON GPU

the previous chapters. For a better overview, the reader can refer to [CPCP+05,
PPS97] for a survey on participating media rendering techniques. Two main ap-
proaches, handling multiple scattering, are either deterministic or stochastic (Monte
Carlo). In this chapter, we focus only on deterministic methods and particularly on
the Discrete Ordinate Methods (DOM) [SH01].

Discrete Ordinate Methods These methods rely on the discretization of 3D
and direction spaces. They solve the RTE iteratively through local interactions.
However, the DOM techniques suffer from artifacts named false scattering and ray
effect (fig. 5.1). Several techniques have been proposed to reduce these shortcomings.
For example, the technique proposed by Languenou et al. [LBC94] uses ray casting
to solve the boundary conditions and to compute single scattering. Then, they use
local interactions between voxels to compute the multiple scattering component.
Fattal proposed another approach [Fat09], based on a fine sampling of the light
propagation directions and a coarse sampling of the radiance stored at each voxel.
We will explain that method in more detail in section 2.

GPU-based algorithms Zhou et al. [ZRL+08] developed a technique achieving
real-time animated smoke rendering including multiple scattering. Their approach is
based on the decomposition of the input smoke animation into a sequence of points
with a radial basis function and a residual field. They use low ordered spherical
harmonics to store the lighting information. They handle real-time manipulation of
viewpoint, smoke attribute and lighting. But they cannot achieve fast smoke simu-
lation due to the high preprocessing time needed to build their data representation.

Multiple scattering can also be approximated by diffusion equation [Ish78] which
consists of a 2 coefficient spherical harmonic expansion of the radiance field. This
method was introduced in computer graphics by Stam [Sta95]. Bernabei et. al
[BHPB+12] implemented a parallel lattice-boltzmann [GRWS04] solution of the dif-
fusion equation for rendering heterogeneous refractive media. Szirmay-Kalos et. al
[SKLU+09] accelerated the iterative solution to the diffusion equation by making an
initial guess based on a homogeneous medium assumption. This method has been
further extended in [SKLU+11]. Wang et. al [WWH+10] also implemented a parallel
solution to diffusion equation however they used a tetrahedral mesh instead of cubic
grids for representing the volume, allowing to render arbitrarily shaped objects.

Englhardt et al. [ENSD12] presented a stochastic method based on instant ra-
diosity. The authors use VPL (Virtual Point Light) to compute single scattering
and multiple scattering as well. However, to avoid the singularity in the geometry
factor, they need to clamp the VPL contribution. The problem of this solution is
that some energy gets lost. To address this issue, the authors proposed to apply
an approximate compensation bias step to correct the clamping and to get good
looking results. Their technique is fast and can allow a surface to contribute to the
radiance of the participating medium.

72

2. FATTAL’S ALGORITHM

2 Fattal’s algorithm

We recall here, the radiative transport equation (RTE) which models all the light
interactions with a participating media (section 3, page 27). Light can be absorbed
and/or scattered at every point in the volume:

dL(~y→~ω)
d~y

= σa(~y)Le(~y→~ω)− (σa(~y) + σs(~y))L(~y→~ω) + σs(~y)Li(~y→~ω) (5.1)

where L(~y→~ω) is the radiance (W · m−2 · sr−1) leaving a point ~y in direction ~ω.
Le(~y→~ω) is the self-emitted radiance, and is zero for non self-emitting media. σa(~y)
and σs(~y) are the absorption and scattering coefficients that characterize the volume.
The right most term Li(~y→~ω) corresponds to multiple scattering where all the
incoming directions are scattered in direction ~ω. This term is used to integrate all
the incoming radiance from direction ~ωi, times the phase function ρ(~y, ~ωi→~ω)1:

Li(~y→~ω) =
∫

Ω
ρ(~y, ~ωi→~ω)L(~y←~ωi)dσ(~ωi) (5.2)

In [Fat09], Fattal proposed Light Propagation Map as a solution to the RTE equa-
tion. This method falls into the category of Discrete Ordinates Methods (DOM).
This type of techniques relies on the discretization of two domains:

1. Spatial domain D: it characterizes the volume. The discretization splits the
domain into a set of voxels. Each voxel has spatial indices x, y, z and it is
denoted Cxyz. This set of voxels partitions of the space as

⋃
Cxyz = D. More-

over, the scattering and absorption coefficients are constant in the voxel and
will be denoted σs(Cxyz) and σa(Cxyz) respectively.

2. Direction domain Ω: the unit sphere Ω around the center of the voxel is
sudivided into a set of directions Ωd. The union of the solid angles around the
sampled directions is equal to Ω:

⋃ |Ωd| = Ω

The goal of this DOM technique is to approximate the radiance L(~y→~ω) (Eq. 5.3)
by an average scattered radiance Ld

xyz in each voxel Cxyz and for the set of directions
Ωd:

Ld
xyz ≈

σs(Cxyz)
V d

xyz

∫

Cxyz

∫

Ωd

(∫

S2
L(~y←~ωi)ρ(~y, ~ωi→~ω)dσ(~ωi)

)
dσ(~ω)d~y (5.3)

where Ld
xyz is the radiance in the voxel xyz along the direction Ωd. V d

xyz = ∆V |Ωd|
is the product of the volume of the voxel Cxyz and |Ωd| the solid angle. In this
representation, the emission, absorption and scattering coefficients are assumed to
be constant in each voxel.

1In the rest of the chapter, the normalization of 4π is integrated to the phase function. This is
not the case in the original Fattal’s paper where the author performs an explicit division by this
normalization factor.

73

CHAPTER 5. LIGHT PROPAGATION MAPS ON GPU

(a) False scattering (b) Ray effect

Figure 5.1 – Because of the discretization, DOM techniques can be source of two
artifacts: false scattering and ray effect. (a) False scattering makes impossible to
maintain a sharp profile of a light beam. (b) Ray effect occurs when one cansee the
discretization of directions. These problems are reduced in the Fattal’s approach.

The main problem with the DOM techniques is that they suffer from two main
shortcomings, namely false scattering and ray effect (fig. 5.1). The common solution
to reduce these two artifacts is to increase the space and direction discretization
resolutions. However, this approach requires huge amount of memory and hence
limits the method practically.

Figure 5.2 – The unit sphere Ω is discretized into a set of m or n directions Ωi. For
each voxel, Fattal computes the scattered radiance for m directions with m << n, n
being the number of propagation directions. An LPM is an array of point elements,
each emitting light in n directions sampling the solid angle 4π

6 of the sphere Ω.

To overcome this problem, Fattal proposes a two-level sampling: a fine sampling
of 3D space and direction for the light propagation and a coarse sampling for stor-
age. To reduce the memory capacity during the propagation step, Fattal uses an
iterative approach by subdividing the direction domain. To this end, he uses 2D ray
maps called light propagation maps (LPM) which have a high spatial resolution and
represent a subset of the finely sampled propagation directions (fig. 5.2). At each
iteration, 6 LPM are needed to propagate the light for each face of the medium.
Starting with a face of the coarse grid, this 2D map propagates step by step in one
voxel plane at a time and the propagation results are stored at the center of the

74

2. FATTAL’S ALGORITHM

voxels. So, the LPM is basically a high resolution 2D array, each of its element (r, s)
stores a set of rays originating at (r, s) and having directions sampled from the unit
sphere Ω.

The propagation process must compute the interaction between the currently
propagated LPM and the volume. For the first propagation, the energy carried
by each ray is initialized with the boundary conditions. The boundary conditions
correspond to the incoming radiance arriving at the volume boundary. Then the
rays are propagated along their directions using ray marching. When a ray leaves
the medium at the boundary point A (before reaching the opposite face), then a new
ray of the same direction with zero radiance is generated from an opposite point B
as shown in fig. 5.3. The aim is to have the same number of rays in each part of the
volume.

A

B

L
i,0

r,s

L
i,1

r,s

L
i,2

r,s

L
i,3

r,s

L
i,4

r,s

L
i,5

r,s

L
i,6

r,s

L
i,3

r,s

Opposite

Face

Figure 5.3 – Li,t
r,s is the ray radiance at the (r,s) element of the LPM, i the ray

direction defined by Ωi and t the number of the voxel traversed by the ray. Given
a direction, the ray can leave the medium at a point A. In this case, we need to
create new ray at the point B to cover the whole domain.

Now let us give more details on the Fattal’s approach. Let Li,t
r,s be the radiance

of a ray originating at a point (r,s) of the LPM in direction Ωi at the pth propagation
step from all the faces back and forth, t being the intersection number of the ray
with the faces of the current traversed voxel. Let the voxel (x,y,z) be the tth voxel
encountered by the ray. The radiance Li,t

r,s leaving the tth voxel is given by

Li,t
r,s = Li,t−1

r,s e−△lq ·σt(Cxyz)/ωn
z

︸ ︷︷ ︸
energy lost due to extinction

+Ud,p
xyz ×

(1− e−△lq ·σt(Cxyz)/ωn
z)

σt(Cxyz)
︸ ︷︷ ︸

energy gained due to scattering

(5.4)

where Ud,p
xyz is the stored unscattered radiance for direction d (equal to the closest

propagation direction i), p is the pth propagation (scattering order), △lq the dis-
tance traversed by the ray in the voxel and σt(Cxyz) the extinction coefficient in the
traversed voxel.

Given a propagation direction, when a ray adds its radiance contribution to
the currently traversed voxel, this contribution must be scattered into all directions.
Fattal stores the current scattering contribution in a variable named U that is used in
future propagation steps. As we mentioned earlier, Fattal chooses different sampling
frequencies for I and U but for the reason of clarity, in the rest of this chapter we

75

CHAPTER 5. LIGHT PROPAGATION MAPS ON GPU

will assume that they are the same. U and I are updated as:

R = (V d
xyz)−1Ar,sF

i,dLi,t
r,s(1− e−△lq ·σs(Cxyz))/ωn

z)

Ld
xyz = R (Eq.5.3) (5.5)

Ud
xyz = R,

where Ar,s is the area of the (r,s) LPM sample. F i,d is phase function precomputed
value equal to:

F i,d =
∫

Ωi

∫

Ωd
ρ(ω, ω′)dωdω′ (5.6)

where superscripts i and d are for the propagation direction and storage direction
respectively, "d” being the direction closest to the direction represented by "i".

Recall that one iteration represents the light propagation from each element (r, s)
of the LPMs. It corresponds to one scattering while multiple iterations correspond
to multiple scattering. Fattal proposes to terminate the iteration process when the
unscattered light is low in every voxel. I and U are initialized with self-emission
radiance (if any) of each voxel. Moreover in pratice, we keep only two U buffers, the
(p− 1)th and the pth U buffers and use a swap mechanism to reuse them.

Fattal’s method is summarized by Algorithm 1.

Algorithm 2 Fattal’s original algorithm
// p is iteration number (scattering order)
Initialize pprev to 0, the index of the previous iteration
Initialize Ud,pprev

xyz and Id
xyz with medium emitted light

while maxxyz |Ud,pprev
xyz | < ǫ && p>0 do

// Initialisation U buffer of the pcur
th iteration

pcur = (pprev + 1)%2 // Current iteration index
Initialize Ud,pcur

xyz to 0
for each LPM do

for each propagation direction i do
for each element (r,s) of the current map do

if p == 0 then
Initialize Li,0

r,s with the boundary conditions
else

Set Li,0
r,s to 0

end if
for each intersected voxel t do

Update the ray radiance Li,t
r,s from Ud,pprev

xyz (Eq. 5.4)
Update Ud,pcur

xyz and Id
xyz (Eq. 5.5)

end for
end for

end for
end for
pprev = pcur

end while

76

3. NEW METHOD: PARALLEL AND SCALABLE LPM

3 New Method: Parallel and Scalable LPM

3.1 Parallelization

A simple strategy to parallelize Fattal’s algorithm would be to assign a computation
thread to each ray of the LPM. However, multiple rays affect the values stored in a
voxel (see Fig. 5.4). So, this creates a synchronization problem. It may be possible
to create synchronization barriers on the writable information and continue with
the original simple approach. However, the algorithm will be less efficient because
the latency, needed for the synchronization, will be significant as compared to the
computation time.

In CUDA2, updating the I and U voxel values could be performed using atomic
operations on data of floating point type. However, using atomic operations has a
significant cost because of the branching condition and the multiple global memory
transactions (rather than cache accesses as in our approach thanks to data locality),
as shown in Fig. 5.9.

t0

t0

t1

t1

t2

t2
t3

t3

t0

t0

t0

t1

t1

t1

t1
t2

t2

t2

t3

t3

t3

t3

t4

t4

t4

t5

t5

t5

Figure 5.4 – On the left, we have the original Fattal’s algorithm where we put one
thread per ray (represented with different colors). The problem is that it produces
synchronization problem for writing into the grey voxel. On the right, we only
propagate rays having the same direction, thus guarantee only one ray write per
voxel.

We address this synchronization related problem by dividing the original propa-
gation step into two steps (illustrated in fig. 5.5):

1. Propagation step: we group together all the rays of same propagation direction.
Thus we guarantee that each voxel is traversed by only one ray at a time. So
we create a temporary buffer to store the radiance brought by a ray when it
goes through a voxel.

2. Collecting step: we use all the temporary buffers to update the Ud,p
xyz and Id

xyz

values. In order to simplify the discussion, we assume that the LPM spatial
resolution is the same as the volume face spatial resolution.

2 CUDA version used to develop this project was 4.X. So performance assumptions/comments
on atomic operations and streaming process are based on this CUDA version.

77

CHAPTER 5. LIGHT PROPAGATION MAPS ON GPU

Figure 5.5 – Summary of the GPU algorithm. Each Block in the propagation
step manages one temporary buffer. Then, in the collecting step, each voxel reads
temporary buffers to update I and U.

We create two GPU kernels: one for the propagation step and the other for the
collecting step. One propagation step corresponds to one LPM propagation and
requires propagation of multiple blocks. Each block corresponds to all the elements
of the LPM and to only one propagation direction. There are as many blocks as
directions. We assign a thread to each element (r,s) of the LPM. In this way, there
is no execution divergence between threads in the same block. The role of a thread
is to trace a ray with origin (r,s) and direction i and to compute its contribution to
the traversed voxels. This contribution is stored into a temporary buffer. The ray
contribution can be expressed as:

T i
xyz+ = Li,t

r,s(1− e−△lq ·σs(Cxyz)/ωn
z), (5.7)

where T i
xyz is the temporary buffer value for the direction i in the voxel (x, y, z).

As for the collecting step, we create only one block representing all the volume
(the whole participating medium). Each thread of this block is assigned to one voxel.
It collects the result of the propagation step for all the directions.

3.2 Streaming

Memory limitation of GPUs severely restricts the size of volume we can handle at
a time. Particularly, to run Algorithm 2 on a 2563 volume with 25 propagation
directions per one LPM face requires 3.8 GB memory. Maximum memory available
on most of the GPUs is much less than this size. A solution is to stream portions
of the volume to the GPU.

To this end, we split the volume V into sub-volumes Bijk defined as

Bijk = {Cxyz| x ∈ [i×Nsub, (i+ 1)×Nsub],
y ∈ [j ×Nsub, (j + 1)×Nsub],
z ∈ [k ×Nsub, (k + 1)×Nsub], }

78

3. NEW METHOD: PARALLEL AND SCALABLE LPM

Algorithm 3 Our algorithm implemented with CUDA. Orange color is used to
underline specific CUDA instructions.

Initialize pprev to 0, the index of the previous iteration
Initialize Ud,pprev

xyz and Id
xyz with self emitted radiance if any // p = iteration number

for p ∈ [0, Niterations[do
// Initialisation U buffer of the pcur

th iteration
pcur = (pprev + 1)%2 // Current iteration index
Initialize Ud,pcur

xyz to 0
for each LPM do

parallel for each blocks i do
parallel for each thread (r,s) do

Create ray and initialize Li,0
r,s

for each intersected voxel t
Compute Li,t

r,s from Ud,pprev
xyz (Eq. 5.4)

Store ray contribution into T i
xyz (Eq. 5.7)

end for
end for

end for
end for
Synchronize_blocks()
// Collecting step
parallel for each voxels (xyz) do

for each direction i
Update Ud,pcur

xyz and Id
xyz with T i

xyz (Eq. 5.5)
end for

end for
pprev = pcur

end for

where Cxyz is a voxel at the spatial position (x,y,z) and Nsub the size of a sub-
volume such that

⋃
Bijk = V . Then we group together sub-volumes into slices.

This grouping is based on the orientation of the LPM face. For example, for an
LPM face perpendicular to the Z axis, we group together sub-volumes into a slice
Sl = {Bijk|i ∈ [0, Imax], j ∈ [0, Jmax], k = l}. In this way, the propagation iteration
consists of Zmax

Nsub
steps where Zmax is the maximum value of coordinate z. Instead of

applying Algorithm 2 to the whole volume, we apply it to one slice at a time. That
means propagation and collection for one slice must complete before the next slice
is processed by the GPU. The radiance propagated from the LPM through a slice is
stored at the outgoing face of the slice and this stored radiance is in turn propagated
through the next slice, and so on.

The subdivision into sub-volumes make efficient transfer of slices from the CPU
memory to the GPU memory as explained in the next section.

CUDA offers concurrent kernels execution and concurrent data transfers on mod-
ern GPU. We exploit this mechanism by creating two streams: one to manage the
GPU-CPU transfer, another to compute the multiple scattering solution for one en-

79

CHAPTER 5. LIGHT PROPAGATION MAPS ON GPU

S0

S2

S3

U0
d,p+1

 I0
d

TempRays

U1
d,p

U1
d,p+1

I1
d

CPU

U2
d,p

 I2
d

Download

Upload

Compute

Use

S1

U2
d,p+1

Temporary

buffers

Use

GPU BlocksGPU Memory

Figure 5.6 – Si is the ith slice with Ui and Ii the associated data. TempRays is the
buffer which stores the radiance at the outgoing face of the previous slice S0. This
radiance is propagated within slice S1 and finally deposited at the outgoing face
of slice S1. We use two streams represented by green and blue arrows. The green
stream is in charge of upload/download data from the GPU memory to the CPU.
The blue stream is in charge of the computation of the multiple scattering solution
for the slice S1. The orange buffers are the buffers that are kept in the GPU. Recall
that d is the direction number and p the propagation iteration number.

tire slice (Fig 5.6). A stream is a FIFO queue of tasks. The role of the computation
stream is to estimate the scattered light within slice Si, while the transfer stream is
in charge of downloading from the GPU the data (I,U) computed for the previous
slice Si−1. The computation and transfer streams run in parallel. As soon as the
transfer stream completes downloading, its starts uploading the necessary data (I,U)
for the next slice Si+1.

In case our solution cannot fit the GPU memory, we split the slice into sub-slices
and we stream each sub-slice to the GPU.

4 Implementation and Results

We used CUDA to implement our algorithm. We think that implementing it with
OpenCL would be straightforward. We used two graphics cards: GTX 560M with
4 multiprocessors and 2 GB of memory, and GTX 580 with 16 multiprocessors and
1.5 GB of memory. We also implemented the original sequential version of Fattal’s
algorithm on a CPU i7 -2630QM running at 2GHz.

In our implementation, the user can specify the number of propagation directions
for one LPM. Moreover, in case of isotropic phase function, the average radiance I
is expressed for 1 direction while the unscattered radiance U is computed for 6
directions. However, in case of anisotropic phase function, the user can specify the
number of directions for I and U.

The complexity of our algorithm is equal to 2spn3, where s is the scattering order,
p the number of propagation directions and n3 the number of voxels. Regarding the
memory occupation, the complexity in bytes is equal to 4∗nbSpect∗((1+2U+I)n3+
pn2 + pn3) without streaming and 4 ∗nbSpect ∗ ((1 + 2U + I)Sn2 +Spn2 + pn2) with
streaming. U and I are the number of unscattered radiance directions and average

80

4. IMPLEMENTATION AND RESULTS

radiance directions respectively. S is the slice width along the propagation direction
and nbSpect the number of wavelengths (RGB in our case).

LP
M

Block B1

Block B2

Block B3

Block B4

R1

R2

R3

R4

1
2

Figure 5.7 – Each block Bi is in charge of propagating rays from a subset Ri of
elements (r,s) of a LPM. The rays of same directions at the border of the subset
Ri and originating from two contiguous subset Ri may traverse at the same time a
same voxel (for example rays 1 and 2).

In order to guarantee only one thread per voxel, all the rays of same direction
managed by a same block have to be synchronized whenever they leave their current
voxel (Fig. 5.4). This is made possible by using a "__syncthreads()" instruction in
their respective threads.

Note that the number of threads in one block is limited due to the number of
registers available on a multiprocessor. This is why we reduce the size of a block
by bringing down the resolution of one coordinate (r or s) of LPM, which increases
the number of blocks for one propagation direction. Consequently, as several blocks
may propagate light in a same direction, a voxel, lying at the frontier between two
contiguous subsets Ri and R(i+1) of elements (r,s) of the current LPM, may be
traversed by at least two rays, one coming from Ri and another from R(i+1) (Fig.
5.7). Each subset Ri is assigned one block Bi. Once again, to guarantee only one
thread per voxel, we launch in parallel blocks B2i then blocks B(2i+1). In this way,
we avoid to launch contiguous blocks.

In case the LPM resolution is N times higher than that of the voxel grid, to avoid
the synchronization problem (due to the traversal of a same voxel by multiples rays)
we divide the LPM into N smaller sub-LPM Sli and propagate each Sli one after
the other.

Using 16× 16× 16 voxels per sub-volume and 16× 16 sub-volumes per slice, the
memory needed by our algorithm is far below the available GPU memory (Fig. 5.8).

Furthermore, we use pinned memory as a buffer zone to speedup the data transfer
between the CPU and the GPU. When the resulting data are downloaded from the
GPU to the CPU, only one transaction is necessary to transfer all the data to the
pinned memory. Next, we use memcpy operation to update sub-volumes on the
CPU memory. Uploading the data onto the GPU memory is performed similarly.

For a volume of 643 voxels, 25 propagation directions and 3 bounce multiple
scattering, our algorithm takes 417 milliseconds while the Fattal’s algorithm running

81

CHAPTER 5. LIGHT PROPAGATION MAPS ON GPU

8

16

32

64

128

256

512

1024

2048

4096

0 256 512 768 1024

M
em

or
y

ne
ed

ed
 (M

B)

Volume Size

No Streaming

Streaming

Figure 5.8 – GPU memory requirement for a 25 propagation directions, 6 storage
directions (U and I). For the streamed technique, the memory bound of the GPU
exceeded. Note that without streaming it is impossible to apply the algorithm on
volume sizes larger than 2563. For the streaming based technique we are far below
the available amount of GPU memory. We must point out the fact that the memory
requirement of streaming technique increases with volume size (at a much slower
rate though).

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300

Sp
ee

du
p

Volume Size

GTX 560M

GTX 580

GTX 560M Atomic

GTX 580 Atomic

Figure 5.9 – Summary of the speedup between the original CPU algorithm and
our implementation on 2 GPUs: GTX 560M and GTX 580. The green and red plots
have been obtained with our parallel approach, while the blue and purple ones with
atomic operations. We can observe that the obtained speedup increases with the
volume size. This is due to the fact that a large number of blocks are created during
the propagation step, which makes the GPU computing resources more and more
busy. Note the efficiency of our approach compared to an atomic operation-based
version.

on the CPU takes 47 seconds. We see in Fig. 5.9 that the speedup grows with the
volume resolution. This can be explained by the fact that the more the blocks, the
better is the balancing of the multiprocessors loads. Examples of rendered images
are given in fig. 5.10. Other results are shown in the additional materials. To validate
our GPU-based parallel algorithm, we have computed the RMSE error between the
CPU-based solution and our method. We found an RMSE of about 0.005.

82

5. CONCLUSIONS & FURTHER WORKS

Figure 5.10 – Results of two 1283 participating medium lit by an environmental
map. It took approximatively 2300 ms to compute 3 scattering orders with 25
propagation directions.

5 Conclusions & Further works

We propose a novel parallel algorithm to render participating media with multiple
scattering. It is a parallel version of Fattal’s algorithm. Compared to CPU-based
Fattal’s algorithm, we obtain a speedup of 1 to 2 orders of magnitude. Our algorithm
is capable of interactively rendering volumes of 643 voxels. We propose a novel
streaming technique based on the concept of sub-volumes, slices, and sub-slices to
handle any large size volume.

As future work, our approach could use a hierarchical representation of partic-
ipating media to handle huge volumes more efficiently. Moreover, a compression
approach would allow to reduce the time needed for transferring data from the CPU
to the GPU and vice versa. Finally, it would be interesting to extend our approach
to handle solid objects inside participating media.

Acknowledgement

The material in this chapter is, in part, a reproduction of the material published in:
Adrien Gruson, Ajit Hakke Patil, Rémi Cozot, Kadi Bouatouch and Sumanta N Pat-
tanaik “Light Propagation Maps on Parallel Graphics Architectures”, EGPGV 2012
[GPC+12]. This work was partially supported by US National Science Foundation
grant IIS-1064427.

Since then, several other papers have been published to address participating me-
dia rendering. For example, Hakke-Patil et al. [HPBC+13] have proposed a parallel
implementation of the DOM technique proposed by Languenou et al. [LBC94]. In
their article, they compare their technique to our method. Their technique allows to
obtain a less significant gain when an environment map is used. However, it handles
strong directional lighting more efficiently.

Weber et al. [WKSD13] use the instant radiosity technique together with Adap-
tive Volumetric Shadow Maps (AVSMs) [SVLL10]. Their technique is completely
implemented with DirectX. To achieve interactive performance, the authors used
only a small number of VPL place adaptively. Moreover, to handle changes in the
transfer function, they use a progressive VPL update scheme.

83

CHAPTER 5. LIGHT PROPAGATION MAPS ON GPU

Elek et al. [ERDS14a, ERDS14b] propose a technique that combines VPLs and
DOM techniques. Their technique decomposes lighting into virtual directional light
sources and VPLs. The contribution of these virtual light sources are propagated
using independent discrete propagation volumes.

84

6Progressive volume photon tracing

In this chapter, we will present a novel approach to volume rendering based on
progressive photon mapping. Rendering participating media (volume data) with
multiple scattering in a reasonable time is still a challenge. In the previous chapter,
we have presented a GPU-based method faster than Monte Carlo methods. However,
this technique suffers from several limitations: no handling of objects inside the
participating media, no lighting interaction between a medium and its environment
etc. Consequently, it cannot be used for complex scenes.

In order to overcome these issues, we propose a new rendering method based
on progressive photon mapping (already presented in section 3.3, page 44). Recall
that a photon mapping technique [Jen01] consists of two passes. In the first pass,
a number of photons are shot, then stored in a Kd-tree data structure. During the
second pass, rays are traced from the camera, and at each intersection point on an
enough smooth BSDF, we use the photon map to approximate the incident radiance.
This technique has been first applied to surfaces, then extended to participating
media (Volume Photon Mapping [JC98]). In this chapter, we will focus on photon
mapping-based techniques used to render participating media.

As this kind of technique is very demanding in terms of memory storage, a pro-
gressive scheme has been proposed [HOJ08, HJ09, KZ11] to cope with this problem.
Moreover, when rendering participating media, the integration domain has one more
dimension than for surface rendering. By taking advantage of this extra dimension,
some techniques propose an efficient Monte Carlo estimator. In addition, to ren-
der participating media, the transmittance need to be evaluated by ray marching.
However, this operation is costly and needs to be avoided as much as possible.

The goal of our new technique is to propose a novel approach to progressive pho-
ton mapping for scenes containing both surfaces and volume objects. Our method
allows to handle scenes made up of glossy, specular and refractive objects as well
as homogeneous and heterogeneous participating media. By making use of two Kd-
trees (built in a preprocessing step) to store view beams (camera rays intersecting
the medium) and gather points (camera rays intersecting the surfaces). These data
structures are independent of the complexity of the scene in terms of number of
objects and light sources and they depend only on the image resolution. Moreover,
we take advantage of these data structures to drive the photon shooting process by
considering the photon visibility as an importance function (similarly to [HJ11]). Fi-
nally, we demonstrate that our method can be easily combined with the most recent
particle tracing approaches such as [JNT+11] and that it speeds up the rendering
process in case of complex lighting1.

1by "complex lighting", we mean all scenes where it is difficult to find a contributive light path.

85

CHAPTER 6. PROGRESSIVE VOLUME PHOTON TRACING

The next section provides information about the related works while section 2
gives a technical background on photon mapping techniques for participating media
rendering. An overview of our approach is given in section 3, while details on our
method are presented in section 4. Finally, results are given in section 5 before
concluding.

1 Related work

The first method based on photon mapping and coping with participating media is
Volume Photon Mapping [JC98]. It allows to simulate interactions between photons
and participating media and to build a volume photon map. However, its costly
rendering step consists in casting a ray from the camera through the volume and in
using ray marching to gather the photons (stored in the photon map) close to the
ray to compute their contributions (fig. 6.1a). Volume photon mapping yields good
results but it suffers from the same limitations as those of surface Photon Mapping:
a huge number of photons is needed to render complex scenes. As a large number of
photons requires a lot of memory, the rendering quality is limited by the available
memory of the used computer. Moreover, ray marching, needed to retrieve nearby
photons and media parameters, is very expensive. The smaller the ray marching
steps, the better the results, but also the longer the rendering. So, Volume Photon
Mapping has two limitations: high computation time and large memory requirement.

The Beam Radiance Estimate [JZJ08a] method is one way to reduce the rendering
time. In this method, each photon has an influence area which is a disk of variable
radius depending on the photons density (fig. 6.1b). An isolated photon is assigned
a large radius while a smaller one is assigned to photons that are close to each other.
To estimate the radiance of a ray cast from the camera, all the photons, within
a distance from the ray that is smaller than their radius, are considered. This
method speeds up the rendering process and also adapts to the density distribution
within the volume and to the lighting conditions. When rendering scenes with
sparse photon distribution, the Beam Radiance Estimate gives better results than
the usual ray marching but remains costly when used for complex scenes. Indeed,
the contribution of a ray needs the traversal of a hierarchy of spheres which takes
time for a high number of photons. Moreover, this technique is also limited to the
memory available on the computer.

(a) Volume Photon
Mapping

(b) Beam Radiance Es-
timate

(c) Our method

Figure 6.1 – Different ways to gather photons (points representation, for other
presentations see the related work section). Regular ray marching (a) may take into
account several time a same photon whereas Beam Radiance Estimate (b) and our
method (c) gathers all photons once and for all.

(Stochastic) Progressive Photon Mapping [HOJ08, HJ09] (PPM or SPPM), ad-

86

2. BACKGROUND

dresses the memory limitation problem. It is a progressive rendering method con-
sisting in computing a noisy image that is improved after each pass. At each pass,
only a limited number of photons are emitted then discarded when running the next
pass. Therefore, only the photons emitted at the current pass are saved in memory.
To each visible point (aka gather point) is assigned a disk, and only the photons
within this disk are used to compute the radiance at this point. The radius of a disk
decreases after each pass to reduce the bias of this method. A Probabilistic Approach
[KZ11] (APA) of photon mapping is also a progressive method that handles scenes
containing participating media. It allows to render many noisy images of a same
scene that are merged to get a final image. Their approach is more general than
SPPM but less adaptive to the local photon density.

Another interesting approach, called Progressive Photon Beams [JNT+11] (PPB),
is close to ours but proceeds differently. It consists in shooting photon beams (instead
of photons) from the light sources and storing them in a BVH data structure. For
radiance estimation, the visible photon beams are decomposed into those that are
handled using GPU through rasterization, and those handled by the CPU ray tracer.

Another volume rendering method [NNDJ12b] relies on VPLs (Virtual Point
Light) [Kel97]. The method considers the light paths as VRLs (Virtual Ray Lights)
rather than photon beams. Some improvements of this method have been proposed
in [NNDJ12a]. This is an interesting method that proceeds differently from our
approach.

Discussion: While the above methods provide good results, they still suffer from
efficient sampling issue. All the above related techniques use local path construction
to build light paths. However, this strategy can fail in case of difficult visibility from
the light sources. In our approach, storing view beams in a Kd-tree allows to extend
to participating media the robust adaptive photon tracing approach proposed by
Hachisuka and Jensen [HJ11]. These authors employ the photon path visibility as an
importance function to better sample the path space. They also use adaptive Markov
Chain Monte Carlo to determine the best mutations strategies. In addition, their
approach relies on the replica Exchange Monte Carlo to avoid that path sampling
gets stuck at local peaks of the target function (Already discuss in chapter 4).

2 Background

The radiance reaching a point inside a participating medium is computed by solving
the radiative transfer equation [Sub60] (already presented in section 3, page 27).
Given a ray starting at a point ~xe and going through the medium until a point ~xs,
the RTE provides the radiance at ~x in direction ~ω as follows :

L(~x←~ω) = τ(~xe↔~xs)L(~x0→~ω)
︸ ︷︷ ︸

Ls(~x←~ω)

(6.1)

+

∫ ~xs

~xe

τ(~xe↔~y)σs(~y)Li(~y←~ω)d~y
︸ ︷︷ ︸

Lm(~x←~ω)

,

87

CHAPTER 6. PROGRESSIVE VOLUME PHOTON TRACING

Table 6.1 – Definition of quantities used in this chapter

Symbol Description

P
hy

si
ca

l
pa

ra
m

s Φi, ~xi, ~ωi Flux, position and incoming direction of photon i.
σa(~x), σs(~x), σt(~x) Absorption, scattering and extinction coefficient at

the position ~x.
τ(~x↔~x′) Transmittance between the points ~x and ~x′.
ρ(~x, ~ω′→~ω) Normalized phase function if ~x is inside a medium.
fr(~x, ~ω′→~ω) BRDF if ~x is on a surface.

ks(d, r), kv(d, r) Density kernel for the surfaces and the volume. r
is the support of the kernel.

A
lg

or
it

hm
ic

va
lu

es
/p

ar
am

et
er

s

P Pixel used to attach rendering data.
Gj,Bj Gather point and collection of beams attached to

the pixel P during the jth iteration
Ls(Gj), Lm(Bj) Radiance at a surface visible point or in a medium

beam respectively.
Ls(P), Lm(P) Cumulative radiance at a visible point or a beam

at the current iteration only.
Ns(P) Number of contributive photons to the pixel P

since the beginning of the rendering.
Ms(Gj) Number of contributive photons to the gather

point Gj at the jth iteration only.
rs,j(P), rm,j(P) Radius of a disk associated with a visible point or

of a beam in the jth iteration.
α User parameter to control the convergence rate.

where ~x0 is the back surface point and Li(~y←~ω) =
∫

Ω ρ(~y, ~ωi→~ω)L(~y←~ωi)dσ(~ωi) the
incoming radiance at ~y and scattered in the direction ~ω. Other terms are defined
in table 6.1. For the sake of clarity, equation 6.1 doesn’t take into account the
radiance self-emitted by the medium which is straightforward to compute. We split
this equation into two terms: Ls, radiance coming from the back surface, and Lm,
radiance from scattering event in the medium. In the classical approach [JC98], two
different sets of photons are used: one for surface estimation and one for volume
estimation (we assume here to use the same amount of photon Nphoton for the two
sets).

Ls can be computed using density estimation as in classical Photon Mapping
[Jen01] and is attenuated by the medium:

Ls(~x←~ω) ≈ τ(~x↔ ~x0)
Nphoton

Nphoton∑

i=0

ks(~xi − ~x0, r)fr(~xi, ~ωi→~ω)|~n · ~ωi|Φi, (6.2)

where r is the kernel support used during the density estimation.
With the set of volume photons, Lm can be expressed similarly to Beam Radiance

Estimate method [JZJ08a]:

Lm(~x←~ω) ≈ 1
Nphoton

Nphoton∑

i=0

kv(~xi − ~x′i, r)τ(~x↔ ~x′i)σs(~x′i)p(~xi, ~ωi→~ω)Φi, (6.3)

88

3. OVERVIEW

where ~xi the photon position and ~x′i the projection of the photon position ~xi on
the view ray. Moreover, contrary to [JZJ08a], the radius r is not adapted for each
volumetric photons.

3 Overview

Our method is depicted by the global algorithm 4. We have made the choice (ex-
plained later) to use a splatting operation of the photon contribution during the light
tracing. So, we need to store the camera paths (volume and surface interactions)
into data structures and use them during the photon generation.

At each iteration, a preprocessing step is performed and detailed in section 4.1.
First, new camera paths are generated (TraceCameraPaths in algorithm 4).
Then, with these new paths, we build different hierarchies (BuildHierachies in
algorithm 4). For rendering surfaces, our method assigns a disk2 to every visible
point lying on a surface. For volumes, we use beams rather than disks. To each ray
of a camera path, cast through a pixel and traversing a medium, we assign a cylinder.
This cylinder is called beam from now on. These beams get reflected/refracted if
the associated ray hits a surface not enough smooth (i.e. specular or fine glossy
surface). We build a beam Kd-tree whose leaves are the resulting beams. When a
ray hits an enough smooth surface, the resulting hit point is registered and assigned
a disk-shaped influence zone. We build another Kd-tree, called gather point Kd-tree,
whose leaves are those hit points. As the results of camera path generation, we may
have one gather point Gj and a collection of beams Bj for each pixel P .

Then, for the photon shooting step, two different sets of photons are shot. When-
ever one of those photons interacts with a volume (or a surface), the top-down traver-
sal of the associated Kd-tree leads to beams (or gather points), which allows to add
photon contribution on impacted beams (or gather points) (SplatPhotonContribution

function). Then, the photon is discarded instead of stored in a photon map. Fur-
ther details are given about these updates in section 4.2.1. To be more efficient, ev-
ery photons are sampled using Metropolis approach (TraceLightPathVisibility

function), to better sample the contributive light path domain, similarly to [HJ11].
Once all the photons have been shot, we need to update the pixel radiance by

collecting contributions received by associated gather point Gj and beam collection
Bj (UpdateRadiance function). Moreover, to have a consistent estimator, we
need to decrease the associated gather point (or beam) radius at each iteration
(UpdateRadii function). Like in APA [KZ11], we use a same radius rm,j for all the
beams. As regards the surface radii, their value depends on the used estimator. If
we use (like for beams) the APA estimator, a global radius rs,j is assigned to all the
gather points. Otherwise, if we use the SPPM estimator, different radii are assigned
to the gather points. In our implementation, we have chosen to use SPPM estimator
for surface component. These steps are described in sections 4.3.1 and 4.3.2.

In Volume Photon Mapping, once the photon map is built a ray is cast through
each pixel and a costly ray marching (or a Beam Radiance Estimate) is used to
determine the relevant photons used to compute the radiance associated with the ray.

2the radius of the disk is equal to the support of the current surface kernel

89

CHAPTER 6. PROGRESSIVE VOLUME PHOTON TRACING

Rather, in our approach as soon as a photon interacts with a medium, it is assigned
to one or more beams by going down the beam Kd-Tree, and its contribution to the
scene is computed straightaway. This assignment operation spares the use of ray
marching (fig. 6.1).

Algorithm 4 main()

1: for int i = 1 to nbPass do
2: // Step 1: Preprocess
3: TraceCameraPaths()
4: BuildHierachies()
5:

6: // Step 2: Visibility-driven Photon shooting step
7: for space in {surface,volume} do
8: for int i = 1 to nbPhoton do
9: TraceLightPathVisibility()

10: SplatPhotonContribution()
11: end for
12: end for
13:

14: // Step 3: Collect statistics
15: UpdateRadiance()
16: UpdateRadii()
17: end for

On the one hand, the use of a beam Kd-Tree makes faster the estimation of the
radiance assigned to each beam. On the other hand, photon assignment requires the
traversal of this hierarchy which takes time. Overall, our hierarchy-based approach
is far faster than ray marching as seen in the results section.

4 Implementation details

For clarity purpose, this section consider only photons. Other particles model (beams
[JNT+11]) will show in section 5.

4.1 Preprocessing step

Before starting any rendering we need to initialize all the needed data structures. A
view ray, traced from the viewpoint through a pixel (going through the participating
media or not), is repeatedly reflected if the surface is not enough smooth. When the
view ray crosses a medium it is assigned a cylinder beam. At the end, a camera path
is composed of a surface end point Gj (called gather point) and a collection of cylin-
der beams Bj (fig. 6.2). This collection contains all the line segments of the camera
path which intersect a medium. We note this collection Bj = {Bj,1, . . . , Bj,nbB}
where nbB is the number of beams. When computing the ray paths, the final in-
tersection point with sufficient smooth surface, called gather point, are registered to

90

4. IMPLEMENTATION DETAILS

Specular

objects

Figure 6.2 – Different possible view rays in a scene. The rays going through the
medium are assigned beams (in green), and gather points (in red) are created on
sufficient smooth surfaces.

Specular

(a) Creation of the
view beams

(b) Splitting planes (c) Final tree

Figure 6.3 – Example of a beam Kd-tree building for a set of beams (a). Only the
supporting rays are used in the tree (b). Some leaves (c) contains several beams,
and beams crossing splitting planes are duplicated in the tree.

compute a gather point Kd-tree as explained hereafter. Moreover, for all beams and
gather points, we store the total transmittance value Tr of the camera path before
creating it. For example, a gather point will store the total transmittance value of
the camera path.

Once the path tracing has been completed, we obtain for all the pixels, a set of
beams and a set of gather points. These two data structures are computed in one
single pass. We build a Kd-tree from the gather points and a beam Kd-tree from
the beams. Each gather point P is assigned a disk of a radius rs,j(P). This radius
is computed using ray differential and locally adapted by the photon density (this
is explained later). A photon within this disk contributes to the associated gather
point. A photon contributes to a beam if it lies in its associated cylinder with a
radius rm,j(P). This radius is the same for all the beams.

Recall that the radii associated with disks and beams decrease after each ren-
dering pass. The gather point Kd-tree is constructed using a classical way using a
SAH Kd-tree based on the gather point influence zone.

The beam Kd-tree however is created following the method from Havran et al.
[HBS04], a beam being represented by a line segment supported by its associated ray
(beam axis). The endpoints of this line segment are those of the beam (fig. 6.3b).
The first step of building the beam tree is to find the axis-aligned bounding box of
all the beam segments, which represents the root of the tree. Then, a splitting plane
is chosen along the largest axis of that bounding box. All the beam segments on
one side of that plane are assigned to one child, and the beams crossing this plane
are assigned to both children. The splitting operation is recursively repeated until
one of the stopping criteria is met (fig. 6.3c):

91

CHAPTER 6. PROGRESSIVE VOLUME PHOTON TRACING

� The number of beams in the current node is below a threshold (typically 32
in our implementation).

� The depth of the current node reaches a maximum value (between 20 and 30
for our scenes).

Each beam is assigned a data structure which contains a pointer to the associated
beam computed in the preprocessing step. To compute the contribution of a photon
to the beams, the beam Kd-tree is traversed top-down. For each node, If a photon
is located on one side of the associated splitting plane and its orthogonal distance to
this plane is larger the global beam radius rm,j(P), then the associated sub-tree is
traversed, otherwise we traverse the two subtrees. For each leaf node reached by the
traversal, we compute the contribution of the photon to the beams corresponding
to the beam segments within this leaf. Moreover, to avoid multiple contributions of
the same photon to a given beam, we use its projection on the the beam segment.
Indeed, if the projected point for a given beam is outside the leaf bounding box, the
photon does not contribute to this beam.

4.2 Visibility-driven Photon shooting step

The photons are shot from the light sources using the method presented in [HJ11].
When a photon enters a participating medium, the hierarchy is traversed top-down,
and its contribution is brought to the leaf beams containing it. When it hits a
surface, we compute its contribution to the gather points by a top-down traversal of
the gather point Kd-tree. In this way, as soon as a photon contributes to a gather
point or a beam, its contribution is accumulated and the photon is discarded.

We use the photon visibility information as an importance functions (chapter 4)
for the Metropolis sampling process. Unlike in Hachisuka et al. [HJ11] technique
which handles only surface interactions with one Markov Chain, we use two different
Markov Chains, one for the surfaces and another for the participating media. These
two Markov chains are independent. For the second Markov Chain, we use the beam
visibility as the importance function.

Moreover, we use also Adaptive MCMC to find optimal mutation size auto-
matically. In our case, we also use two independent Adaptive MCMC to tune the
mutation size for participating media or surface rendering. Indeed, these two com-
ponent dimensions can be different, which leads to two different optimal mutation
sizes.

On top of that, similarly Hachisuka et al. work [HJ11], we use replica exchange
to avoid to get stuck inside importance function peaks. Moreover, we use uniform
chains to compute the two normalization factors: bs,j for the surface chain and bv,i

for the volume chain.

4.2.1 Radiance update

When a photon hits a surface, we compute its contribution to the gather points
(nodes of the view Kd-tree whose disk contains the photon) by a top-down traversal
of the gather point Kd-tree. In this way, as soon as a photon contributes to a

92

4. IMPLEMENTATION DETAILS

gather point or a beam, it is discarded. The radiance of this latter is updated using
eq. (6.2):

Ls(Gj)+ = Tr(Gj) · ks(~xi − ~gj, rs,j(P)) · τ(~x↔~xs) · fr(~xi, ~ωi→~ω) · |~n · ~ωi| · Φi (6.4)

where ~gj is the position of the gather point Gj and Tr(Gj) is the total transmittance
carried by the camera path before the gather point Gj. In our current implementa-
tion, we use a constant kernel ks(~xi − ~gj, rs,j(P)).

When a photon lies in a beam Bj,k, it participates in the update of the cumulative
radiance Lm of the beam attached to a collection Bj using eq. (6.3):

Lm(Bj)+ = Tr(Bj,k) ·kv(~xi−~x′i, ·rm,j(P)) · τ(~x↔~x′i) ·σs(~x′i) ·p(~xi, ~ωi→~ω) ·Φi, (6.5)

where ~x′i is the projection of ~x onto the axis of the beam Bj,k.
In case of heterogeneous medium, for a reason of efficiency each beam data

structure stores a lookup table of the transmittance along the beam axis to quickly
determine the transmittance τ(~x↔~x′).

4.3 Collecting statistics

Once a sufficient number of photons have been shot for the current pass (iteration),
the resulting image can be updated. This step consists in updating the radiances
attached to the pixel P : Ls(P) from the surface and Lm(P) from the participating
media. Moreover, we also update the radius values for the next iteration.

4.3.1 Image update

In our method, we have chosen the APA estimator for beams. However, to one
pixel P corresponds a collection of beams Bj whose contributions yield the radiance
Lm(Bj). Note that if the camera path does not cross any participating medium
Lm(Bj) = 0. The beam radiances associated with the pixel P are updated by
averaging over the different iterations:

Lm(P) =
Lm(P) · (j − 1) + bv,i · Lm(Bj)

Nv

j
(6.6)

where Nv is the number of photon used for the volume rendering and bv,i is the
normalization factor. This equation is valid for the update of surface radiance if
APA estimator is used for surfaces. In our implementation, it is not the case and
the SPPM estimator is used for surfaces. The unnormalized accumulated surface
radiance is computed as

L̃s,j(P) = (L̃s,j−1(P) + bs,i · Ls(Gj)) ·
Ns(P) + αMs(Gj)
Ns(P) +Ms(Gj)

(6.7)

where bs,i is the normalisation factor. And the final surface radiance for the pixel P
for the iteration j is finally computed as

Ls(P) =
L̃s,j(P)

π · rs,j(P)2 ·Ne

(6.8)

93

CHAPTER 6. PROGRESSIVE VOLUME PHOTON TRACING

where Ne is the total number of paths emitted for surface rendering.
Finally, the final radiance for a given pixel P is equal to:

L(P) = Ls(P) + Lm(P) (6.9)

4.3.2 Radius update

Finally, in order to achieve convergence, we need to update the global radius assigned
to beams as explained in [KZ11]:

rm,j(P) = rm,j−1(P) · 3

√
j + α

j + 1
, (6.10)

where j is the number of the current iteration.
For the surfaces, the radius reduction formula depends on the choice of the esti-

mator (APA or SPPM). In our method, we chose the SPPM estimator for surfaces,
so the surface radius update is:

rs,j(P) = rs,j−1(P) ·
√√√√Ns(P) + αMs(Gj)

Ns(P) +Ms(Gj)
(6.11)

Moreover, for the surface radius, we modulate the radius by using ray differential.

5 Results

In this section we show some results obtained with our method using different shoot-
ing techniques (without and with metropolis optimisation) and different kinds of par-
ticle such as photon or photon beams. In this way, we demonstrate that, although
our method has been designed for photon tracing, it has been easily extended to
photon beam tracing. We compared our method with PPB, which is the most re-
lated method, and APA which is another interesting approach, easy to implement
since it is just a loop consisting in running a classical volume photon mapping. We
use the following notations concerning different variants of our method:

PPT our approach where photons are traced from the light sources

PPBT our approach where photon beams are traced

PPT_metro our approach with photon tracing and Metropolis

PPBT_metro our approach with photon beam tracing and Metropolis

We have implemented our methods as well as APA and PPB using the Mitsuba
renderer framework [Jak10]. The different parameters used for each scene are given
in table 6.2 (α = 0.7 for all the methods). The results have been obtained on
a computer supplied with two 2.4 GHz Intel Xeon E5645 CPU (12 cores). Each
method is executed in a multi-threading context to use the 12 cores of the computer.
Finally, for each scene, one reference image has been generated using path tracing.
We compare the methods in terms of convergence speed.

94

5. RESULTS

polygons resolution # VP # PB # SP time
Dragon smokes 100k 768x768 50k 5k 100k 1h.
Breakfast hall 1600k 1080x1920 100k 10k 100k 10h.
Kitchen 250k 720x1280 100k 10k 500k 10h.

Table 6.2 – Rendering parameters: each method is stopped at the same rendering
time (rightmost column). # VP = number of volume photons shot per pass in APA
and PPT; # PB = number of photons beams in PPB and PPBT; # SP = number
of surface photons shot per pass.

In the dragon smokes scene (shown in fig. 6.5), as the lighting conditions are quite
simple the metropolis optimisation is not really useful (except for the smoke which
covers a small part of the scene). Indeed, the majority of the photon paths are visible,
so few of them need mutation. However, as shown in fig. 6.4, our method (with
different variants) performs as well as APA or PPB. In the two next scenes, breakfast
hall and kitchen (figs. 6.6 and 6.7), the lighting conditions are more complex. In
the breakfast scene, light goes through the windows and the hall is filled with a
homogeneous medium. The outside is represented by a horizontal large plane a small
part of which is visible through the windows. This scene is challenging for Metropolis
as well as for uniform sampling based methods. Indeed, for gather points lying
outside, replica exchange builds a lot of useless paths that mutate outdoors while
they are less contributive to the final image. This is why PPT without Metropolis
performs as well as PPT_metro in the beginning of the progressive process (fig. 6.4).
We will present a solution of this problem in the next chapter. As shown in this
figure, our method PPT_metro converges faster than APA and PPB. The kitchen
scene is lighted, through the double-glazed window, by a clear sky and the sunlight.
The kitchen is filled with a heterogeneous medium. In fig. 6.7, we show results
obtained with different methods. We can see that Metropolis gives better visual
results.

Discussion and future works All the six presented methods suffer from the
limitation of photon mapping. This limitation is a starting bias highly depending
on the initial parameters (initial radii, number of photons, α, etc.)

Our experiments showed that AMCMC (Adaptive Markov Chain Monte Carlo)
converges toward a small mutation size. This is why we initialize AMCMC with a
mutation size smaller than the one proposed in [HJ11] (0.1 gives good results). An
interesting future work is to propose a better adaptive process to converge faster
toward an optimal mutation size. Finally, using only visibility as an importance
sampling function can fail in some cases. Indeed, visible photon paths may have
a weak contribution to the final image (due to glossyness or transmittance in the
volume). Finding a new importance sampling function which takes into account
these cases is a challenge. A new importance function will be proposed in the next
chapter.

95

CHAPTER 6. PROGRESSIVE VOLUME PHOTON TRACING

Figure 6.4 – Plots of the RMSE (between a reference image generated using path
tracing and all the methods) as a function of time.

6 Conclusion

We have proposed a global illumination method that handles scenes containing sur-
face objects of any material and participating media (homogeneous and heteroge-
neous). The method computes two data structures in a preprocessing step: gather
point Kd-tree and beam Kd-tree. No photon maps, nor volume photon maps are
stored in memory. Moreover, the beams that are not visible from the viewpoint
are not computed. To increase efficiency, our method uses Metropolis and visibility
information to guide the photon shooting process. The results have shown that our
approach converges faster to the same solution (image of a given RMSE) than the
one obtained with APA [KZ11] and with the CPU version of PPB [JNT+11]. Even
though our method has been implemented on the CPU, the obtained results demon-
strate that our approach is fast. Another interesting feature of our method is that
it could be easily transformed from progressive to interactive. More precisely, the
user can set the number of photons to a very high value (this is possible since the
photons are not stored), launch the programme, interrupt it whenever he wants to
display a resulting image, then restart it to get a better image, and so on.

Acknowledgements

The material in this chapter is, in part, a reproduction of the material published in
Charly Collin, Mickael Ribardiere, Adrien Gruson, Remi Cozot and Kadi Bouatouch
"Visibility-driven progressive volume photon tracing", CGI 2013 [CRG+13]. Charly
Collin was supported in part by NSF grant IIS-1064427.

In this project, I was principally involved in the Metropolis part of the algorithm.
Indeed, the idea of this paper were to extend the progressive photon mapping to par-
ticipating media. However, during the project, several other methods was published
[JNT+11, KZ11, NNDJ12b]. So, we exploited the fact that our technique provides
the visibility information during the photon shooting process to build a metropolis
sampling. With this enhancement, the technique is able to sample difficult visibility
scenes where other methods fail.

96

6. CONCLUSION

1 min. 30 min. 1 h. RMSE (x 15) 1 h.
A

P
A

P
P

B
P

P
T

P
P

B
T

P
P

T
_

M
et

ro
P

P
B

T
_

M
et

ro

Figure 6.5 – Results obtained for the "dragon smokes" scene. The rightmost
column shows the RMSE in false colors.

97

CHAPTER 6. PROGRESSIVE VOLUME PHOTON TRACING

APA PPB PPT

PPBT PPT_Metro PPBT_Metro

30
m

in
.

2
h.

10
h.

R
M

SE
10

h.
30

m
in

.
2

h.
10

h.
R

M
SE

10
h.

Figure 6.6 – Results obtained for the breakfast hall scene (courtesy of Greg Zaal).

98

6. CONCLUSION

APA PPB PPT

PPBT PPT_Metro PPBT_Metro

30
m

in
.

1
h.

5
h.

10
h.

30
m

in
.

1
h.

5
h.

10
h.

Figure 6.7 – Results obtained for the kitchen scene (courtesy of Jay-Artist).

99

7A spatial importance function for

MLT

The recent widespread adoption of Monte Carlo light transport simulation in the
practice of realistic rendering has revealed a number of limitations of the existing
algorithms. One of the most pressing issues is their low efficiency in scenes with
complex visibility, where just a small fraction of emitted light contributes to the
image, and often only after multiple interactions with surfaces. Such scenes are
difficult especially for the popular photon density estimation and other bidirectional
algorithms [GKDS12, HPJ12]. While those methods often excel at dealing with
complex light transport, a good sampling strategy for subpaths originating from the
light sources is critical to their success. Indeed, when the sampling of light subpaths
is blind to the camera location, most calculation effort may end up being wasted on
processing paths that make no image contribution [HJ11, VKŠ+14].

Our work focuses on improving light subpath sampling for photon density esti-
mation. Specifically, we use Metropolis sampling to guide light subpaths toward the
camera. While some previous work has taken this route [FCL+05, CWY11, HJ11],
the existing algorithms usually result in a highly non-uniform distribution of the
generated paths vertices, or “photons”, and in turn also of the image error. This is
undesirable since a few high-error regions force the rendering calculation to continue
for a long time.

To address this problem, we derive an importance function (or, target function)
for the Metropolis sampler that provably equalizes the relative error over a number
of radiance measurements. By using our importance function for Metropolis light
subpath sampling, the generated path vertices cover the regions of interest more
evenly and, in turn, yield a uniform relative error distribution. Equalizing relative,
as opposed to absolute, error is desirable when the estimates are directly displayed,
because the human visual system is sensitive to relative differences in luminance.

We develop a hierarchical scheme for progressive construction of the impor-
tance function from paths generated during rendering. Unlike in previous work,
where an importance function for Metropolis Light Transport was defined in image
space [Vea97, HH10], we define ours over scene surfaces. This allows us to better
exploit illumination coherence for a robust estimation of the importance function
while adapting to geometric discontinuities. To sample from this importance func-
tion, we develop a replica exchange Metropolis sampler following multiple Markov
chains. We show that our light subpath sampling algorithm produces a significant
improvement in image quality when applied in progressive photon mapping [HJ09].
Our main contributions are:

101

CHAPTER 7. A SPATIAL IMPORTANCE FUNCTION FOR MLT

� A derivation of an importance function that provably ensures equal distribu-
tion of relative error among a number of Monte Carlo estimators that share a
common set of samples.

� Application of this importance function to light subpath tracing in photon
density estimation.

� A scheme for estimating the importance function progressively during render-
ing based on a spatial hierarchy.

1 Related Work

We review light transport simulation algorithms designed to handle scenes with
difficult visibility, with a focus on approaches based on Metropolis sampling.

Metropolis Light Transport (MLT). MLT [VG97] was the first use of the
Metropolis-Hastings (MH) algorithm [Has70] in light transport simulation. A ma-
jor advantage of the MH algorithm is its ability to generate samples (light paths)
proportionately to an arbitrary scalar importance function (a.k.a. target function),
which may include the – otherwise difficult-to-sample – path visibility. That is to
say, it never produces paths blocked by geometry as valid samples. This unique
feature makes MLT and related methods well suited to rendering occluded scenes.
Yet, Vorba et al. [VKŠ+14] have demonstrated some important limitations of the
current MLT-based solutions.

Veach and Guibas [VG97] use as the importance function the luminance value
of the pixel contribution of a full transport path. A well-known problem of this
importance function is a low number of paths contributing to dim image regions,
resulting in their large relative error. Veach addressed this issue with his two-stage
MLT [Vea97] where a low-resolution image is first rendered and the inverse of the
pixel values is then used to rescale the original importance function for the actual
rendering. The idea is that if all pixels receive the same expected number of samples,
relative error will be equalized. We provide a formal justification and a generalization
of this idea suitable to our photon tracing approach.

Hoberock and Hart [HH10] point out some important deficiencies of two-stage
MLT that may, in fact, deteriorate the image quality compared to plain MLT. They
propose a multi-stage MLT algorithm, where an estimate of the rendered image is
continually refined during rendering and used to progressively update the importance
function. Our work is based on a similar idea but we define our importance function
over scene surfaces so that we can better benefit from illumination coherence.

In gradient-domain MLT [LKL+13], gradient of path contributions is used as
the importance function so that image discontinuities are better explored than flat
areas. Multiplexed MLT [HKD14] uses an importance function given by the path
contribution modulated by the multiple importance sampling weight [Vea97] of the
technique used to generate the path. That way, appropriate techniques are selected
more often.

102

1. RELATED WORK

The Metropolis-Hastings algorithm generates a Markov chain of samples (in our
case paths), where a new sample is generated by a mutation of the current one.
Intricate path mutation strategies have been devised to help the MLT algorithm
deal with complex light transport, such as specular-diffuse-specular interactions.
But even the most advanced mutation strategies known to date [JM12, KHD14]
may still fail to converge to the desired result in an acceptable time [VKŠ+14].

Metropolis sampling in photon density estimation. Unlike MLT and the
derived algorithms, photon density estimation handles complex specular-diffuse-
specular transport gracefully thanks to its inherent subpath reuse and regulariza-
tion properties [KD13b]. In combination with other bidirectional path sampling
strategies, it makes for algorithms robust to various lighting and material set-
tings [GKDS12, HPJ12, KGH+14]. It is for this reason that we choose photon
density estimation as the basis of our approach.

As discussed in the introduction, a good sampling strategy for subpaths originat-
ing from light sources is critical to a good performance of photon density estimation,
and ours is not the first work to apply Metropolis-Hastings sampling to generate
those light subpaths. Fan et al. [FCL+05] runs the original MLT algorithm and uses
selected vertices of the sampled paths as photons. More closely related are the works
of Hachisuka and Jensen [HJ11] and Chen et al. [CWY11]. Both algorithms are de-
signed for use in stochastic progressive photon mapping [HJ09] and their purpose is
to guide the light subpaths toward a set of measurement points distributed on scene
surfaces. Our work follows this general scheme. The two methods differ mostly by
the importance function for the Metropolis-Hastings sampler. Hachisuka and Jensen
use the path visibility, that is, a binary variable indicating whether or not the path
contributes to any of the measurement points. Chen et al. modulate the visibility by
a somewhat arbitrary function constructed from local photon density estimated in a
pilot photon tracing pass. A major shortcoming of those methods is their tendency
to generate paths that lead to a highly varying error of radiance estimates at the
measurement points. Our proposed importance function also incorporates the path
visibility but we modulate it to ensure a uniform relative error distribution.

Hachisuka and Jensen [HJ11] also introduce some important optimizations of
the Metropolis-Hastings sampler itself, such as adaptive mutation size [AT08] and
replica exchange [Nea96, KKK09] that we adopt and extend in our work.

Local path sampling. Metropolis sampling is not the only approach to guide light
subpaths toward the camera. Another option is to devise suitable local sampling
pdfs for constructing light subpaths vertex-by-vertex. Those pdfs can be constructed
adaptively based on the observed contributions of previously generated paths [?],
or using directional density estimation from importance particles distributed in the
scene in a preprocessing phase [PP98, BRDC12]. We compare our results to a recent
work from the latter category [VKŠ+14] in Section 5.

103

CHAPTER 7. A SPATIAL IMPORTANCE FUNCTION FOR MLT

2 Overview

The objective of our work is to develop a photon tracing algorithm that produces
uniform relative error of radiance estimates on a set of measurement points dis-
tributed on scene surfaces. This goal is motivated by the sensitivity of the human
visual system to relative, rather than absolute, luminance deviations. We build
on the works of Hachisuka and Jensen [HJ11] and Chen et al. [CWY11], where
the Metropolis-Hastings algorithm generates samples in the primary-sample spaceU
[KSKAC02], which are then transformed into the path space Ω to produce actual
light subpaths. We achieve the desired uniform error distribution by importance
sampling in the primary-sample spaceusing a suitably defined scalar importance
function Î : U → R. Our contributions consist in providing a formal derivation of
the importance function (Sec. 3) and developing a practical and robust algorithm for
estimating and sampling from this importance function in the course of rendering
(Sec. 4). The rest of this section provides an overview of our approach.

Our importance function (IF) is given by the inverse of the expected number of
photons contributing to each measurement point. Such an IF is unknown at the
outset and computing it is as hard as rendering the image itself. For this reason, we
progressively refine estimates of the IF during the rendering process. This is done
by collecting and maintaining suitable statistics from the generated path vertices
(photons) over a set of spatial regions.

The estimated IF is subject to variance, especially in early stages of calculation.
To obtain robust estimates despite this variance, we initially average the statistics
used to calculate the IF over large regions. The regions are refined as the calculation
progresses and the variance of their statistics decreases. This process progressively
improves our approximation of the ideal IF.

A distinguishing feature of our approach is that the IF is defined over the spa-
tial regions organized in a spatial hierarchy. This allows us to take advantage of
illumination coherence in the regions while adapting to geometric discontinuities.
We show that in our setting this is an important improvement over calculating the
importance function in the image plane [Vea97, HH10].

Excessive sample correlation could result from using the basic Metropolis algo-
rithm to sample from our IF because of its multimodal shape and relatively high
dynamic range. To ensure good exploration without “getting trapped” in the IF
modes, we design a replica-exchange Metropolis algorithm following multiple paral-
lel Markov chains.

We apply our photon tracing algorithm in stochastic progressive photon map-
ping [HJ09] and we show that it outperforms existing photon tracing algorithms in
terms of image quality by a large margin (Sec. 5).

3 Importance Function

This section discusses the importance function itself; a rendering algorithm based
on this function is then described in Sec. 4.

104

3. IMPORTANCE FUNCTION

Problem statement. Our goal is to calculate a number of radiance measurements,
that is, integrals of the form

Rk =
∫

Ω
hk(x̄)f(x̄)dµ(x̄), (7.1)

where x̄ ∈ Ω is a light transport path and hk(x̄)f(x̄) is the measurement contribution
of that path. The function f(x̄), common to all the measurements, is given by
the product of the emitted radiance at the first path vertex, scattering terms at
the interior vertices, and geometry and visibility terms for the path edges [Vea97].
The function hk(x̄), which is specific to each measurement, specifies the kind of
measurement taken.

We consider photon tracing in the context of stochastic progressive photon map-
ping [HJ09], so the measurements Rk are radiance estimates at a number of mea-
surement points Gk on scene surfaces. These are created by tracing paths from the
camera until a sufficiently diffuse surface is encountered, where a measurement point
is then deposited. In this setting, the functions hk(x̄) are given by the product of
the density estimation kernel and the BRDF at the measurement points.

A simplifying assumption we make for the derivation below is disregarding the
BRDF dependence: we assume that hk(x̄) is only the density estimation kernel. As
a result, our importance function does not adapt to the BRDF and measurement
points on glossy surfaces will have higher error than those on diffuse ones. General-
izing our derivation to directionally dependent BRDFs is left for future work.

With this formulation, our goal is to construct estimators 〈Rk〉 of the measure-
ments, so that their relative error, that is, their normalized standard deviation (NSD)
nsd(〈Rk〉) =

√
var(〈Rk〉)/R2

k, is the same for all k. We achieve this by importance
sampling in the primary-sample spaceusing a suitable importance function.

Light transport in primary-sample space. We use Metropolis-Hastings sam-
pling in the primary-sample space U =

∑∞
i=1[0, 1)i [KSKAC02], where the measure-

ments Rk are given as

Rk =
∫

U
ĥk(ū)f̂(ū)

∣∣∣∣∣
dµ(x̄)

dū

∣∣∣∣∣ dū =
∫

U

ĥk(ū)f̂(ū)
p̂(ū)

dū. (7.2)

The mapping x̄ = P−1(ū), ū ∈ U from the primary-sample spaceto the path space is
given by the inverse cdfof the probability distribution used for importance sampling
on the path space. The corresponding path pdfp is the product of local pdfs for
light emission sampling, BRDF sampling, and Russian roulette, used to generate
the path vertices from a vector of “random numbers” ū. Here we have introduced
the notation ĥk(ū) = hk(P−1(ū)), and similarly for f̂ and p̂. We use the same
convention also for other functions, notably the importance function Î.

Equalizing relative error. Veach [Vea97] argues that equal relative error of pixel
measurements in MLT can be achieved by making the expected number of contri-
butions to each measurement the same. We provide a more formal derivation and
a generalization of this result below. We derive an importance function in the

105

CHAPTER 7. A SPATIAL IMPORTANCE FUNCTION FOR MLT

primary-sample space, Î : U → R, that ensures uniform relative error in a more
general setting, and we show that this goal is achieved by equalizing the number of
contributions only under a specific set of assumptions.

Our importance function can be intuitively understood as compensating for the
non-uniform mapping between the primary-sample spaceand the paths space, and
also for the non-uniform size of the density estimation kernels at the measurement
points. The varying kernel size stems from the usual practice where it is determined
by the projected pixel area.

Importance function derivation. Going back to Eq. 7.2, all the measurements
Rk can be estimated simultaneously using Monte Carlo quadrature with a single,
shared set of samples, in our case light subpaths. To ensure uniform relative error
across the measurements, we employ importance sampling in the primary-sample
spaceby using random variables U from the pdfq̂(ū) = Î(ū)/b with b =

∫
Î(ū)dū.

That is, the pdfq̂ is a normalized version of the importance function Î that we seek to
derive. This yields a classic one-sample Monte Carlo estimator of the measurements
Rk:

〈Rk〉 =
ĥk(U)f̂(U)/p̂(U)

q̂(U)
(7.3)

We now derive the pdfq̂ such that the relative error given by nsd(〈Rk〉) =√
var(〈Rk〉)/R2

k is the same for estimators of all the measurements Rk. To simplify

the derivation, let us assume that the functions ĥk have disjoint supports (i.e. they
are non-zero at different parts of the domain), and that the pdfq̂ is constant in the
support of the individual ĥk’s, i.e. q̂(ū) = q̂k for ū ∈ supp(ĥk). The variance of 〈Rk〉
is given by var(〈Rk〉) = E[〈Rk〉2]−R2

k, and under the above assumptions, the second
moment becomes

E[〈Rk〉2] =
1
q̂k

∫

supp(ĥk)

[
ĥk(ū)f̂(ū)/p̂(ū)

]2
dū

︸ ︷︷ ︸
E[〈Rk〉

2
uni

]

. (7.4)

That is, E[〈Rk〉2] is equal to a rescaled version of E[〈Rk〉2uni], the second moment of
the MC estimator that uses uniform sampling on the primary-sample space. The
NSD can now be written as

nsd(〈Rk〉) =

√√√√ 1
q̂k

E[〈Rk〉2uni]
R2

k

− 1. (7.5)

This equation implies that to make the NSD of all the estimators equal, it is sufficient
to set

q̂k =
1
b

E[〈Rk〉2uni]
R2

k

=
Îk

b
(7.6)

Recall that the normalization constant b ensures that q̂ integrates to one as a whole.
With this definition of q̂k, we have nsd(〈Rk〉) =

√
b− 1, so the NSD is indeed equal

for all k.

106

3. IMPORTANCE FUNCTION

Let us summarize this result. Under the assumption that individual integrands
in Eq. 7.2 do not overlap (i.e. have disjoint support), relative error can be evenly
distributed among estimators of the individual measurements, Eq. 7.3, by using
importance sampling in the primary-sample spacewith an importance function I
that is constant in the support of the individual integrals and is given by Eq. 7.6.

A similar derivation with an equivalent result can be carried out directly in
the path space, without resorting to the primary-sample space. We choose the
above derivation because it allows to clearly tease apart importance sampling in the
primary-sample space(the pdfq̂ = Î/b proportional to the importance function Î)
from importance sampling in the path space (the pdfp).

Application to photon tracing. We now use the general result in Eq. 7.6 to
write the importance function for sampling light subpaths in progressive photon
mapping. Recall that the functions hk are the density estimation kernels at the
measurement points. We assume piece-wise constant kernels, i.e., hk(ū) = 1/sk,
with sk = πr2

k, for ū such that the last vertex of the corresponding path x̄ =
P−1(ū) is within the radius rk from the measurement point Gk, and hk(ū) = 0
otherwise. Furthermore, with good path space importance sampling we can assume
that the pdfp in Eq. 7.2 is approximately proportional to the contribution function,
i.e. p̂(ū) ≈ f̂(ū)/c. With those assumptions, the second moment E[〈Rk〉2uni] given
by Eq. 7.4 becomes equal to c2/s2

k

∫
supp(ĥk)dū and R2

k = (c/sk

∫
supp(ĥk)dū)2. Eq. 7.6

then simplifies to

Îk =
1

P
uni
k

with P
uni
k =

∫

supp(ĥk)
dū (7.7)

By writing the above integral for P
uni
k directly in the path space, we get P

uni
k =∫

supp(hk) p(x̄) dµ(x̄). This means that Puni
k is the total probability that a path gener-

ated by uniform sampling in the primary-sample space will make a non-zero contri-
bution to the estimate at the point Gk. The net result of sampling in the primary-
sample spaceproportionately to an importance function given by the inverse of Puni

k

(Eq. 7.7) is that all measurement points get an equal probability of receiving a non-
zero contribution. In other words, relative error is equalized by equalizing the number
of contributions.

Discussion. The above result is in line with the argument that Veach [Vea97]
made in the context of MLT. While our derivation might appear as a lengthy way
of arriving at this result, its value lies in clearly identifying all the assumptions,
while also deriving the more general result in Eq. 7.6. Let us point out that without
assuming “ideal” importance sampling in the path space (i.e. when p̂(ū) 6= f̂(ū)/c),
no direct relation between the relative error and number of contributions exist.
Eq. 7.6 gives the importance function in such a case. Nonetheless, in our algorithm,
described in the next section, we rely on the importance function given by Eq. 7.7.

107

CHAPTER 7. A SPATIAL IMPORTANCE FUNCTION FOR MLT

4 Algorithm

In this section, we develop a practical algorithm for estimating and sampling from
our importance function (IF) in the course of rendering. The algorithm works in
iterations and refines the IF estimates as it progresses. Iteration i uses the IF Îi for
path sampling, while collecting statistics that will be used to calculate an updated
IF Îi+1 for the next iteration. In this way, the importance function approaches the
ideal IF given by Eq. 7.7.

To calculate the IF according to Eq. 7.7, we need to estimate the probability
P

uni
k for each measurement point Gk. The estimates of Puni

k need to be carried over
from one iteration to another so that their variance can eventually vanish. This
is complicated by the fact that each iteration uses a new, independently generated
set of measurement points. Stochastic progressive photon mapping [HJ09] solves
this by maintaining statistics associated with image pixels. We adopt the idea of
statistics maintained over the iterations. A major departure of our approach consists
in associating those statistics to spatial regions C, as opposed to pixels. We refer to
an importance function calculated using the statistics from the spatial regions as a
spatial importance function. The spatial IF is more robust to illumination changes
caused by geometry discontinuities because it averages statistics over compact spatial
regions, where illumination can be expected to show coherence.

4.1 Importance function calculation

To calculate the importance function, we associate with each spatial region C a
statistic κ(C) that persists over the iterations and is continually updated. This
statistic maintains a running estimate of the probability P

uni
k averaged over the

measurement points Gk that have so far been generated in this region.
Let us start with the estimation of the probability P

uni
k =

∫
supp(ĥk)dū (Eq. 7.7)

for a single measurement point. We use the paths generated in iteration i to eval-
uate a statistic ψi(Gk) for each measurement point Gk. This statistic serves as a
Monte Carlo estimate of the probability P

uni
k . If we used uniform sampling in the

primary-sample space, this could be calculated as a fraction of paths that make a
non-zero contribution to Gk. However, this would be a bad estimator because such
paths are extremely rare in scenes that we consider. Luckily, we can obtain a more
accurate estimate by using paths sampled by the Metropolis sampler from our cur-
rent estimate of the importance function Îi. Using those paths, the statistic ψi(Gk)
is calculated as

ψi(Gk) =
1
N

∑

ūj∈S

1

Îi(ūj)/bi

(7.8)

where N is the number of paths sampled in each iteration and the sum runs over
paths that fall into the support of the kernel at Gk, i.e. S = {ūj | P−1(ūj) ∈
supp(hk)}. The normalization by bi =

∫
Ii(ū)ū is carried out at the end of the

iteration because bi is not known earlier.
To estimate the overall probability P

uni for a region C, we sum ψi(Gk) over all

108

4. ALGORITHM

measurement points contained by that region:

ψi(C) =
∑

Gk∈C

ψi(Gk). (7.9)

Finally, the value of the κ statistic for the next iteration is calculated

κi+1(C) = [κi(C) + ψi(C)]
si+1(C)
si(C)

. (7.10)

Here si(C) is the sum of the kernel sizes sk at the measurement points contained by
the region C in iteration i:

si(C) =
∑

Gk∈C

sk. (7.11)

Two components of the importance function. We could use the inverse of
the κ statistic to define a piece-wise constant importance function over the entire
space. However, this would be a rough estimate of the ideal IF. We show how to
take advantage of the region statistics without forcing the IF to be constant in each
of them. This provides a more accurate IF approximation.

We use the fact that the probability P
uni
k at any measurement point can be

approximated as a product of local area density of path vertices Duni(Gk) (under
uniform sampling in the primary-sample space) and the kernel size sk. Since the
kernel sizes sk are known, they can be factored out in the IF calculation and provide
the desired modulation within each region.

The local density Duni(Gk) at any measurement point is approximated by the
average density Duni(C) over the spatial region containing Gk. At iteration i, the
average density in a region can be calculated from the κ statistic of that region as

Duni
i (C) =

1
Ni(C)

κi(C)
si(C)

, (7.12)

where Ni(C) is the number of iterations in which the region C contained at least
one measurement point.

Importance for a measurement point. We could now calculate the IF at any
measurement point Îi(Gk) as the inverse of Duni(Gk)sk. However, both the local
density Duni(Gk) and the kernel size sk can have a high dynamic range. Using them
directly could result in an IF that would be difficult to explore for the Metropolis
algorithm. For this reason, we compress the dynamic range of both the inverse
density and the inverse kernel size. The final formula for the IF at a measurement
point Gk then reads:

Îi(Gk) =

ǫ1

1
Duni

i (C(Gk))

maxl{D
uni
i (Cl)}

+ ǫ1

︸ ︷︷ ︸
average density in region

·

ǫ2

1
sk

maxl{sl}
+ ǫ2

︸ ︷︷ ︸
kernel size at meas. point

(7.13)

Here we have used a shortcut C(Gk) to denote the region that contains the
measurement point Gk. Division by the maxima is used to normalize the range of the

109

CHAPTER 7. A SPATIAL IMPORTANCE FUNCTION FOR MLT

b)Inverse density c)Inverse kernel sizea)Importance

*=

H
ig

h
L

o
w

Figure 7.1 – The importance function Î(Gk) for a measurement point (a) is given
by the product of two components: the inverse of the average photon density in
the spatial region that contains the measurement point (b), and the inverse of the
density estimation kernel size at that point (c). The images show the importance
for measurement points associated with the image pixels.

respective quantities: maxl{Duni
i (Cl)} is the maximum of all the region densities and

similarly, maxl{sl} is the maximum kernel size over all measurement points. Both
those maxima consider only regions and measurement points in the current iteration.
The parameters ǫ1 and ǫ2 ensure that the range of the respective component of the
importance function remains within the interval [ǫ/(1+ǫ), 1], where ǫ ∈ {ǫ1, ǫ2}. We
use ǫ1 = ǫ2 = 10−4 in all our results. Fig. 7.1 illustrates the two components of the
importance function.

Importance for a full path. To compute the importance function Ii(x̄) of an
entire light subpath x̄, we take the maximum of the IF values for the measurement
points K impacted by the path vertices:

Ii(x̄) = max
k∈K
{Îi(Gk)}, (7.14)

Taking the maximum is motivated by the preference for exploring difficult regions.

4.2 Spatial region definition and refinement

Statistics in small spatial regions could be subject to high variance, especially in the
early stages of calculation. As a result, the estimated importance function could
contain some artificial spikes that would negatively affect its ability to equalize
error. We adopt a natural solution where variance in the early iterations is reduced
by averaging the statistics over larger spatial regions. The regions are then refined
as the calculation progresses.

To define the spatial regions C, we build a spatial hierarchy (a kD-tree in our
case) prior to rendering, as shown in Fig. 7.2. Each node of this structure corresponds
to one spatial region with its associated statistic κ(C). The set of regions used to
define the importance function Îi in iteration i is given by a cut through the tree.

Region refinement strategy. We refine the spatial regions C as the rendering
progresses so as to improve the accuracy with which we model the ideal importance
function. We base our region refinement policy on a simple argument about the
expected variance of the regions’ κ statistics. The goal is to avoid using regions
with a high variance of their κ statistic, otherwise our IF would be inaccurate and
possibly counterproductive.

110

4. ALGORITHM

KD Tree 3D Domain
C1 C2 C3 C4

C5 C6

C1 C1

C5

C6

C1
C2

C3 C4

Figure 7.2 – The spatial regions used to maintain the statistics for importance
function estimation are defined by the nodes of a spatial hierarchy constructed prior
to rendering. For any given algorithm iteration, the current set of regions is given
by a cut of the tree.

Since κ is given by a weighted sum of Monte Carlo estimators ψi (Eq. 7.8 and 7.9),
its variance is inversely proportional to the number of photons that the corresponding
region receives. We construct our hierarchy such that each node receives about half
the photon count of its parent, and thus has about twice the parent’s variance. As a
result, to avoid increasing variance, the number of iterations for each next refinement
must at least double. While this simple scheme worked well in our tests it could
be improved by using an adaptive refinement strategy based on actual, rather than
expected, variance estimates in the regions.

Hierarchy construction. As mentioned above, our goal is that a region associ-
ated with a hierarchy node receives about half the number of photons of its par-
ent. To construct such a hierarchy, we exploit the fact that our importance function
equalizes the number of photons received by the individual measurement points. The
hierarchy construction starts by distributing a pilot batch of measurement points in
the scene. We then construct the hierarchy in a top-down manner in such a way
that after a split both children have about the same number of measurement points:
in other words, we use the median-split rule.

Image-based importance function. So far, we have considered that a region
is a part of the 3D space. We could define an image-based importance function by
changing the notion of what a “region” means. For an image-based IF, a region is
a part of the image plane: a measurement point belongs to that region if it was
generated by tracing a path through a pixel in the region. The region hierarchy is
then a regular kD-tree in the 2D image space. An image-based IF defined in this way
is closely related to the multi-stage MLT algorithm of Hoberock and Hart [HH10].
We show in our results that our new spatial definition yields an importance function
that better equalizes image error.

4.3 Algorithm Overview

Alg. 5 provides an overview of our algorithm. Only steps related to importance
function calculation are shown. Steps necessary for image rendering are similar as
in regular stochastic progressive photon mapping [HJ09].

Before the rendering, we build the hierarchy of regions (line 1). The algorithm
then proceeds in iterations, each of which starts by distributing a new set of mea-

111

CHAPTER 7. A SPATIAL IMPORTANCE FUNCTION FOR MLT

surement points by tracing camera subpaths through image pixels (line 4). After
that, we calculate the average density Duni

i (C) for all regions (line 5), which allows us
to evaluate the importance function for all the measurement points (line 6). We now
run our Metropolis algorithm, described in Sec. 4.4, that samples photon paths using
the importance function Îi while updating the statistic ψi(Gk) for the measurement
points (line 9). After the path sampling has finished, we gather the measurement
point statistics and calculate the statistic κi+1(C) for all regions (line 12). Note that
the multiplication by si+1(C) in Eq. 7.10 is carried out at the beginning of the next
iteration, when this value is known. In the final step, we evaluate our refinement
criterion and possibly subdivide the hierarchy (line 13).

Algorithm 5 Overview of our algorithm.

1: ConstructRegionHierarchy()
2: for i = 0 . . . Niter − 1 do
3: // Step 1: Initialization
4: DistributeMeasurementPts()
5: UpdateRegionDensity() ⊲ Eq. 7.12
6: AssignImportanceToMP() ⊲ Eq. 7.13
7:

8: // Step 2: Photon tracing
9: RunMetropolisPathSampling() ⊲ Eq. 7.8

10:

11: // Step 3: Statistics update
12: UpdateRegionStatistics() ⊲ Eq. 7.10
13: RefineClusters()
14: end for

4.4 Sampling form the importance function

We conclude the algorithm description by presenting the variant of the Metropolis
algorithm that we use for sampling from our importance function. As we show
in Fig. 7.1, the importance function has a relatively high dynamic range and could
have several modes. Such functions are hard to explore via basic Metropolis sampling
because the generated Markov chain tends to get trapped in the modes and produce
highly correlated samples. To ensure good exploration, we employ a replica-exchange
Metropolis algorithm [Nea96, KKK09, HJ11]. A general idea of replica-exchange
Metropolis is to follow several Markov chains in parallel with a probabilistic exchange
of states between any two chains. Using “tempered” importance functions for some
of the chains ensures good exploration with low correlation even if one chain follows
a function with a complex shape.

We build upon the work of Hachisuka and Jensen [HJ11] and we refer to that
paper for more details. Our design features three chains. The first chain uses
uniform, independent proposals and a constant importance function. This chain
behaves in the same manner as in Hachisuka and Jensen’s work. The second chain
uses as its importance function the inverse of the kernel size (the second factor in

112

5. RESULTS

Eq. 7.13, see also Fig. 7.1). Finally, the third chain follows our complete importance
function given by Eq. 7.13. Symmetric mutations in the primary-sample spacewith
adaptive mutation size are used for chains two and three [HJ11].

There are two major advantages to using this three-chain design over a sim-
pler one that only combines uniform sampling with sampling from our importance
function. The first benefit, as already discussed, is less sample correlation. A no
less important advantage is a more robust calculation of the normalization factor
bi =

∫
Ii(ū)ū. While this integral can be easily estimated by using paths from

the first chain, the estimate often suffers from a high variance because of the com-
plex shape of our importance function. We instead calculate the normalization
factor by using samples from one chain to estimate the normalization of the next
chain [KKK09]. This approach provides a substantially more stable estimates.

Finally, our three-chain algorithm samples paths from several different distri-
butions given by the respective target functions. To use all those samples while
minimizing the variance of the result, we combine them using Multiple Importance
Sampling [Vea97].

5 Results

In Figure 7.8 we compare the results of stochastic progressive photon mapping
(SPPM) with three different methods for sampling photon paths: our method,
Hachisuka and Jensen [HJ11] and the on-line learning of Vorba et al. [VKŠ+14]. We
implemented the methods in the Mitsuba renderer [Jak10]. They share the same
code for distributing and looking-up the measurement points, the photon search ra-
dius is initialized using ray differentials to approximately the projected pixel size,
and the radius reduction parameter is set to 1. We emit 10 million photons paths
per iteration for all the methods. All the scenes were rendered for one hour at a
resolution 960×540 on 2 x Intel(R) Xeon(R) CPU E5640 @ 2.67GHz using 8 logical
threads.

Since we use photon mapping to render all images, we left out all the purely
specular paths. These paths can be easily rendered by brute-force Monte Carlo
path-tracing.

In the Dinner hall scene in Figure 7.8 only the room that is far from the camera
is strongly illuminated. This pose a problem for existing algorithms as they do not
distribute light samples efficiently between bright and visually important dim parts
of the scene. Our method clearly outperforms the state-of-the-art algorithms.

The Villa interior scene is illuminated by a strong sunlight, however, parts of
the scene are very dark thanks to the complex visibility of the scene. Both our
competitors succeed in removing noise from brightly illuminated areas, but retain
lots of error in the dimmer parts of the image. Our algorithm on the other hand
ensures that image error is reduced equally in the whole image as can be clearly seen
from the normalized standard deviation (NSD) graph.

Finally, in the Canyon scene the light arrives from only small set of directions
through holes between the rocks. Although the light doesn’t have too travel through
glass as in the two previous scenes, the visibility remains very difficult. Our method

113

CHAPTER 7. A SPATIAL IMPORTANCE FUNCTION FOR MLT

delivers almost noise-free image, which can’t be told about our competitors.

Relative error and number of contributions. The objective of our method
is to equalize relative error. The top row of Figure 7.3 shows that our method
indeed achieves this goal. We can see that unlike in the methods of Hachisuka
and Jensen [HJ11] and Vorba et al. [VKŠ+14], our relative error images are almost
constant. In the bottom row, we confirm that the relative error is proportional to
the number of contributions received by the measurement points.

Algorithm components. We now illustrate the impact of the various components
of our approach on the image quality. We start by demonstrating in Figure 7.4
the advantage of our spatial definition of the importance function over a simple
image-based approach. Figure 7.5 demonstrates that without our 3-chain replica
exchange approach, the algorithm is not able to explore the state space well and
produces outlier pixel values due to the Markov chain “getting stuck”. In addition,
the normalization factor in the simple 2-chain approach is noisy, which can lead to
visible brightness difference in the images. Finally, Figure 7.6 shows how combining
samples from the different Markov chains using MIS reduces noise compared to a
simple averaging.

Performance in simple scenes. Advanced photon tracing methods such as ours
are not needed in simple scenes where most of the paths generated by uniform sam-
pling in primary-sample spacecontribute to the image. While our method has some
computational overhead and slightly increased variance due to sample correlation,
we shown in Figure 7.7 shows that even in those cases, our method does not signif-
icantly impair performance compared to plain SPPM.

a)Our method b)Hachisuka&Jensen c)Vorba et al.

R
e

la
ti
v
e

 e
rr

o
r

#
 c

o
n

tr
ib

u
ti
n

g
 p

a
th

s

HighLow

Figure 7.3 – Top row: Our method produces uniform distribution of relative
error across the image plane (a). Error distribution is highly non-uniform in the
images generated with the methods of Hachisuka and Jensen [2011] (b) and Vorba et
al. [2014] (c). Bottom row shows the average number of contributions received by the
measurement points. We see that the relative error is indeed directly proportional
to this quantity.

114

5. RESULTS

image-based IF spatial IF

image-based IF - error spatial IF - error

Figure 7.4 – Comparison of our method utilizing imaged based importance function
(left) and spatial based importance function (right). The bottom row shows relative
error of the upper row images. Using spatial based importance function removes
rectangular artifacts, which are present when imaged based importance function is
used.

2-chain 3-chain

Figure 7.5 – Comparison of our method using only two Markov chains (left) and
using all three Markov chains (right). Adding one extra Markov chain into our
algorithm limits the possibility of “getting stuck” in one state. This helps to remove
both fireflies and noise from the image.

115

CHAPTER 7. A SPATIAL IMPORTANCE FUNCTION FOR MLT

Non-MIS MIS

Figure 7.6 – Comparison of our method without (left) and with (right) utilization
of multiple importance sampling (MIS). MIS is used to weigh the different Markov
chains in our 3-chain algorithm. Using MIS helps to reduce noise and bright spots
in the generated images.

SPPM Our method

Figure 7.7 – Our method does not significantly impair the performance of plain
SPPM in simple scenes, where most of the paths generated by uniform sampling in
the primary-sample spacecontribute to the image. To generate those images, we ran
SPPM and our method for 5 minutes.

116

5. RESULTS

Reference 1

Our method 4H & J [2011] 3

Vorba et al. [2014] 2

1) 2)

3) 4)

102 103

Time(s)

100

10-1

NSDRMSE

10-1

102 103

Time(s)

1) 2)

3) 4)

EV+3 EV+3

EV+3 EV+3

EV+3 EV+3

EV+3 EV+3

Reference 1

Our method 4H & J [2011] 3

Vorba et al. [2014] 2

1) 2)

3) 4)

102 103

Time(s)

100

10-1

NSDRMSE

10-1

102 103

Time(s)

1) 2)

3) 4)

EV+1 EV+1

EV+1 EV+1

EV+1 EV+1

EV+1 EV+1

Reference 1

Our method 4H & J [2011] 3

Vorba et al. [2014] 2

1) 2)

3) 4)

102 103

Time(s)

100

10-1

NSDRMSE

10-1

102 103

Time(s)

1) 2)

3) 4)

EV+1 EV+1

EV+1 EV+1

EV+2 EV+2

EV+2 EV+2

Figure 7.8 – In this figure we compare three different approaches to photon map-
ping including our method, method of Hachisuka and Jensen [HJ11] (b) and Vorba
et al. [VKŠ+14] (c). We provide equal time comparison (1 hour). To make the dif-
ferences between the algorithms more visible we change the brightness of the insets
positioned on the left side (the exact change in exposure is shown inside each inset).
For each image we also show its root mean square error (RMSE) and normalized
standard deviation (NSD) over time in log-log plots. We also display spatial impor-
tance function associated with our method (displayed at upper left corner of each
image generated by our algorithm).

117

CHAPTER 7. A SPATIAL IMPORTANCE FUNCTION FOR MLT

6 Limitations and Discussion

In our current implementation, statistics from differently illuminated parts of the
scene, such as interior and exterior, can be averaged in one spatial region. This could
negatively affect the ability of the resulting importance function to equalize error.
Considering surface orientation or using a spatial subdivision that better aligns with
the scene geometry to define the regions would alleviate this problem.

We currently calculate an independent estimate of the normalization factor in
each rendering iteration, which can only be done by sampling a relatively high
number of photon paths per iteration. Devising a truly progressive normalization
factor estimate would enable running a higher number of “smaller” iterations, thus
improving sampling of effects on camera subpaths such as glossy reflections.

The objective of equalizing relative error is well suited when the individual
measurements are directly related to the resulting pixel values, as in progressive
photon mapping. However, this criterion is certainly not optimal when the light
subpaths are used in a more complex way, such as in combined bidirectional algo-
rithms [GKDS12, HPJ12]. It would be interesting to investigate suitable sampling
distributions that would equalize relative pixel error in such algorithms.

We have focused solely on the primary-sample space importance function. But Vorba
et al. [VKŠ+14] have shown that the path space importance sampling itself (i.e. the
pdfp̂ in Eq. 7.2) can be altered to guide more paths toward the camera. It would
be interesting to see if a combination of the two approaches could further improve
the results. Note that in this case, the photon “flux” (i.e. the ratio f̂/p̂ in Eq. 7.2)
would not be roughly equal and, as a result, equalizing the number of contributions
to the measurements would no longer produce uniform error. Instead, our general
result in Eq. 7.6 would be a suitable basis for calculating the primary-sample space
importance function.

7 Conclusions and Future Work

We have presented a spatial importance function for Metropolis photon tracing along
with a robust scheme for calculating the function during rendering. Its objective is to
equalize the relative error of a number of radiance measurements estimated using a
shared set of photon paths. We have identified the assumptions under which this goal
can be achieved by making the number of contributions to each measurement equal.
But our derivation also exposes a more general form of the importance function with
potential application in advanced importance sampling schemes.

Additionally, we have proposed an approach for progressive refinement of the
importance function estimates in the course of rendering. Our spatial, as opposed to
image-based, definition of the importance function provides an important advantage
in this calculation. Finally, we developed a replica-exchange Metropolis algorithm
that can sample from the importance function without excessive sample correlation.
With this approach we have been able to demonstrate good results in scenes with
difficult visibility and high luminance range, that are difficult for the existing photon

118

7. CONCLUSIONS AND FUTURE WORK

tracing methods.

Acknowledgments

The Mirror Ballsscene is courtesy of Toshiya Hachisuka and the Doorscene is cour-
tesy of Jaakko Lehtinen. The work was supported by Charles University in Prague,
project GA UK No 1362413, by the grant SVV2014260103, and by the Czech Science
Foundation grant P202-13-26189S.

At the early stage of this project, the idea has been submitted to a french work-
shop: A. Gruson, R. Ribardiere, R. Cozot and K. Bouatouch, "Rendu Progressif
basé Metropolis-Hasting dans des scènes à contextes topologiques multiples", RE-
FIG, 2014. However, this is different compared to the technique presented in this
chapter. First, the spatial subdivision was manually performed (resulting in a set of
3D cells, each cell is called spatial context). Second, we used visibility-based impor-
tance function similarly to Hachisuka et al [HJ11]. Each spatial context is assigned a
different "local" importance function with its own Markov chain. This way, different
AMCMC [AT08] processes are used to learn optimal mutation sizes. However, this
approach suffers from noise appearing at the borders between spatial contexts. For
this reason, we left out this approach and proposed the method presented in this
chapter.

119

Part III

Computer-aided global
illumination techniques for artists

121

Introduction

In the previous part of the manuscript, we have presented some rendering tech-
niques we have designed and implemented. Remember that the output of a rendering
technique is an image with a certain aesthetics. The aim of the artist is to ensure
that the desired aesthetics matches his/her intent. To change the image aesthetics,
the artist must:

� change the 3D scene (light position, materials used, etc.) and recompute the
image.

� or apply, in a post-production step, image-based transformations such as color
transformation, color transfer, blur addition, compositing, etc. For example,
in fig. 7.9, the final output has been modified through a style transfer.

In this part, we will focus on some techniques used by the artist so that the final
image matches his/her intent.

Style
Transfer

Input image

Reference

Result

Figure 7.9 – Example of style transfer technique. The input image is an image
generated using a rendering algorithm. The artist provides a reference image that
matches his/her intent. The algorithm takes these two inputs and transfers the
style of the reference image to the input image (color transfer). To perform this
color transfer, additional information is needed such as the main illuminant color
[NKB14].

First, we will present a new technique to estimate the main illuminant color for
a 3D scene (chapter 8). This illuminant can be that of the light source color or
the indirect lighting. It can be used during a post-processing step to apply color
transformations (white balancing, style transfer (fig. 7.9), etc.). In our method, we
evaluate this illuminant by computing the amount of light received by the observer.
We proceed as follows. We put, at the camera position, a virtual hemispherical
surface that is white and perfectly diffuse. This hemisphere will mimic the human
eye. Then, we estimate the main illuminant color by averaging the light flux arriving

123

Introduction

at this hemisphere (average irradiance). Compared to the technique from Wilkie et
Weidlich [WW09], our technique provides better results.

Second, we will present a technique that optimizes the lighting setup (light source
size and flux) in a 3D scene (chapter 9). For that, as input, the artist describes his
desired aesthetics by providing several target values (image style, mean luminance
on the main object, etc.). Then, these values are used to define an objective func-
tion. This function is optimized to determine the proper lighting configuration (light
source size and flux) that allows to generate an image that matches the desired aes-
thetics.

124

8Eye-centred color adaptation in

global illumination

Figure 8.1 – Global illumination rendering without Chromatic Adaptation (left),
with Chromatic Adaptation (middle), carpet’s color comparison (right).

1 Introduction

Color adaptation also named color constancy is one of the main ability of the human
visual system (HVS) [Fai05]. It makes us perceive colors as constant even though the
illumination conditions change. For example we perceive the same white color for
a white shirt outdoors at midday or indoors under tungsten lights. From a physics
point of view, the white shirt color illuminated by the midday sun is quite physically
white, but it becomes physically orange under tungsten lights. This shows that the
color perception of human beings is not only determined by the spectral distribution
of light.

Global illumination rendering engines [PH10] physically simulate light transport
to compute the pixel colors. But due to chromatic adaptation, these colors are not
those that a human perceives. Neumann et al. [NCNS03] have pointed out that
global illumination images have to undergo chromatic adaptation to recover the
perceived color. The effect of color adaptation is demonstrated in fig. 8.1.

Chromatic adaptation strongly depends on the used adaptation color (white bal-
ancing). Estimating this adaptation color in case of virtual scenes could appear
simple as the geometry, the material appearance as well as the light sources are
known data. But, as shown later on, the existing approaches do not provide con-
vincing results for complex lighting conditions (high color variation of light and
material). Designing a method to efficiently estimate the adaptation color is still
challenging.

125

CHAPTER 8. EYE-CENTRED COLOR ADAPTATION IN GLOBAL ILLUMINATION

In this chapter, we propose a new color adaptation method well suited to global
illumination. We consider the eye (viewpoint) as a hemispherical sensor around the
eye. The adaptation color is computed as the average irradiance color over this
sensor. In this way, flickering artefacts are avoided in case of walkthrough unlike
the existing approaches. Moreover, unlike other existing methods, our approach is
not limited to the view frustrum, as it considers the illumination from all the scene.
Experiments have shown that our method outperforms the state of the art methods.
The main advantages of our method are:

� the obtained results are faithful to reality,

� temporal coherence in case of animation,

� easy plug-in in existing global illumination renderers.

The chapter is structured as follows. Section 2 provides a brief overview on
chromatic adaptation, while section 3 reviews the related works. Section 4 provides
details on our adaptation color method. Some results are presented in section 5.
Finally section 6 concludes the chapter.

2 Chromatic Adaptation

In his book [Fai05], Fairchild compares different chromatic adaptation models. Most
of the chromatic adaptation models rely on Von Kries’ hypothesis which consid-
ers that each photoreceptor (L,M, S) adapts linearly independently of each other
[VK70]:

La

Ma

Sa

 =

1/LW 0 0
0 1/MW 0
0 0 1/SW

L
M
S

 (8.1)

where L,M ,S are the initial cone responses, La,Ma,Sa the adapted cone signals and
Lw,Mw,Sw the adaptation color, also called illuminant color or white color.

Some improvements have been brought to the Von Kries transform such as non
linear adaptations [BW92, CW95, NTS81, Gut91] and degree of adaptation[Bre87,
Fai91b, Fai91a]. For example, the chromatic adaptation model [CIE98] modifies the
Von Kries transform using an exponential non linearity added to the short wave-
length stimuli as well as a parameter D that specifies the degree of adaptation:

Ra = [D(1/RW) + (1−D)]R
Ga = [D(1/GW) + (1−D)]G
Ba = [D(1/Bp

W) + (1−D)]Bp

p = (BW/1.0)0.00834

D = F

1− 1[

1+2L
1/4

A +
L2

A
300

]

(8.2)

126

3. RELATED WORKS

In summary, the chromatic adaptation models provide the perceived color xa of
a stimulus x under given lighting conditions xW (adaptation color). These models
can be expressed as a function of two variables x and xW :

xa = CAT (x, xW) (8.3)

Consequently, chromatic adaptation consists of two steps: estimate the adaptation
color from the scene or image, then perform the chromatic adaptation transform
(see fig. 8.2). The results of chromatic adaptation strongly depends on the accuracy
of the adaptation color.

Raw Image

Step 2:
xA = CAT(x,xW)

Chromatic Adaptation
Transform

Adapted Image

Step 1: Adaptation
Color Estimate

x

xw

Figure 8.2 – The 2 steps of the chromatic adaptation process.

3 Related works

In the computer vision field, several methods have been proposed to estimate the
adaptation color. They are classified according to three main approaches [TTP08]:

1. physics-based (dichromatric models, maxRGB [Lan77], grey-world [Buc80]),

2. statistical (gamut mapping [FHT06], bayesian [GRB+08]),

3. high level methods (high level visual information) [CFB02, VdWSV07].

A comparison of these methods can be found in [Hor06].
Most of the statistical and high level approaches allow to estimate the adapta-

tion color from a set of given illuminants: artificial lighting (tungsten, fluorescent,
halogen, etc.), natural lighting (midday sun, rising sun, sunset, cloudy, etc.). Un-
fortunately, in the context of global illumination these data are not available.

The Grey-World method [Buc80] assumes that the average reflectance in a scene
is achromatic, i.e. grey. Then, the color adaptation is computed as the average color
of the whole image.

When the image contains large uniformly colored surfaces, the assumption of
a Grey-World fails. That is why Weijer et al. [GGW10] proposed a more robust
algorithm called Grey-Edge. They use the average of the gaussian derivative of the
pixel colors to estimate the adaptation color.

127

CHAPTER 8. EYE-CENTRED COLOR ADAPTATION IN GLOBAL ILLUMINATION

The MaxRGB [Lan77], dichromatic [YCK05] and Retinex [LM71, MPS09, MPS10]
methods assume that the brightest pixels correspond to specular reflection of the
light sources. Thereby the maximum RGB pixel is used as the adaptation color.

In [FT04, GGW10], it is shown that the above adaptation methods perform
similarly. However these methods fail for some test cases such as the one called
"world of one reflectance" [RB07]. This test case corresponds to two kinds of scene:
(1) a grey world lighted with a colored light and (2) the same world with colored
objects lit with a white light. Without chromatic adaptation, the images of the two
worlds captured with a camera are the same. However they are actually different
when seen by a human viewer.

Color Appearance Model (CAM) [KR09, MFH+02, KJF07] are based on chro-
matic adaptation. The purpose of the CAM models is to compute the color appear-
ance (brightness, lightness, hue, saturation, chroma and colorfullness) of each pixel of
an image. They include a local chromatic adaptation step. For each pixel the adap-
tation color is computed using either a gaussian low-pass filter [MFH+02, KJF07] or
an interpolation between a given achromatic white and the geometric mean of the
pixel neighbourhood [RPK+12]. To our knowledge, only few authors address the
chromatic adaptation problem in the context of global illumination.

Greg Ward et al. [WEV02] assume that most scenes contain a single dominant
illuminant. In this case, they use the main illuminant color as the adaptation color.
When a scene does not contain any dominant illuminant, this method can not be
used.

Neumann et al. [NCNS03] define the adaptation color as the weighted average
of the irradiances of the white surfaces. A white surface close to the camera axis
is assigned a higher weight. When a scene does not contain any white surface, this
method can not be applied. The authors mentioned that their approach provides
unnatural results when the white surfaces are lit with different colors.

Wilkie and Weidlich [WW09] propose a method that overcomes the limitations
of the above mentioned approaches. Their method is capable of handling complex
lightings conditions. It proceeds as follows. First, it uses a global illumination al-
gorithm to compute and store the incident illumination over all the surfaces. Next,
the surface BRDFs are replaced by an achromatic reflectance, then multiplyied by
the incident illumination to get a new image. The pixels of this image are assigned
a weight depending on the associated BRDF. The adaptation color is the weighted
average of the pixel colors. The value of the weight is maximum if the pixel cor-
responds to a white surface. However, this approach suffers from two limitations.
First, as their adaptation color estimate depends on the color of the viewed sur-
faces and the associated weights, even a small camera displacement can entail high
variations of the adaptation color estimate, as detailed later on. This first limita-
tion will be called, from now on, spatio-temporal incoherence. Second, assigning a
high weight to white surfaces overestimates their color at the detriment of global
illumination.

To sum up, the existing methods suffer from spatio-temporal incoherence because
the adaptation color estimate is limited to the field of view. In addition, they provide
images that do not look real. The reason is that, when calculating the average color,
they (1) assign too high weights to the white surfaces, which favours the color of

128

4. OUR COLOR ADAPTATION METHOD

these surfaces at the detriment of the global illumination color, and (2) assign the
same weight to close and faraway objects (to/from the camera).

4 Our color adaptation method

4.1 Generalization of chromatic adaptation

The basic assumption of chromatic adaptation is that an object is perceived as white
whatever the illuminant conditions. The physical color of a white point of a diffuse
surface is the color of the irradiance at this point. If we generalize the chromatic
adaptation assumption to any diffuse surface, then the perceived radiance color
La(~y) of a point ~y is the intrinsic reflectance ρ(~y) of the surface. The physical
radiance L(~y) = [LL, LM , LS] of a point ~y of a diffuse surface with a reflectance
ρ(~y) = [ρL, ρM , ρS] and an irradiance E(~y) is given by:

L(~y) =
1
π
E(~y)ρ(~y) (8.4)

where:

[E(~y)] =

EL(~y) 0 0

0 EM(~y) 0
0 0 ES(~y)

 (8.5)

Equation (8.1) can be rewritten as:

La(~y) = ρ(~y) =
1
π

1/LW 0 0
0 1/MW 0
0 0 1/SW

 [E(~y)] ρ(~y) (8.6)

Then, the adaptation radiance xW (~y) has the same color as the irradiance ones:

xW (~y) =
1
π

EL(~y)
EM(~y)
ES(~y)

 (8.7)

4.2 Eye-centered estimate of the adaptation color

As a single global adaptation color is required for the whole image, the adaptation
color is usually computed as the weighted average irradiance ([NCNS03]) or radiance
([WW09]) of the white surfaces within the field of view. In our opinion, the main
issues of existing methods stem from the weighting average operation and from the
space from which is computed the average values (view frustum or all the 3D space
containing the camera). First, the averaging operation assigns a higher weight to the
white surfaces. Consequently, the average value overestimates the direct lighting on
these white surfaces, which underestimates the indirect lighting color. For example
if the scene contains a red spotlight that only lights the only white object within
the scene, then the direct lighting due to the red spotlight is overestimated, which

129

CHAPTER 8. EYE-CENTRED COLOR ADAPTATION IN GLOBAL ILLUMINATION

makes the adapted image look unnatural (fig. 8.5). Equation (8.7) shows that there
is no reason to assign a higher weight to the color of white surfaces. Second the
previous methods do not take into account the distance to the surfaces from the
camera when assigning weights since they assign them the same weight. Third,
performing an averaging operation only for surfaces lying in the field of view, is not
sufficient. Indeed, a small displacement of the camera can result in a high change in
the adaptation color. This happens especially when a white surface enters or leaves
the field of view.

According to Von Kries hypothesis [VK70] that considers that the photoreceptor
are adapted independently of one another, we assume that the adaptation color is the
lighting color at the eye location as everyday experience shows that the chromatic
adaptation is sensitive to the observer position rather than to the direction he looks
at. When the observer is in a room, even tough he sees the illuminant color of
another room, he discounts only the illuminant color of the room in which he is
located. In other words, the adaptation color depends only on the illuminant color
of the room containing the observer.

We also make the assumption that all the directions of lighting arriving at the
observer (view angle of 180 degrees) contribute uniformly to its perceived radiance.
This means that the chromatic adaptation phenomenon would be sensitive to lighting
even when coming from outside the field of view of the camera. This can be explained
by the fact that the human eye has an approximately hemispherical field of vision.

Then the chromatic adaptation phenomenon can be modeled by a hemispherical
sensor located around the eye. This sensor has an isotropic sensitivity and measures
the average color of light arriving at its surface. From a mathematical point of
view, it means that the adaptation color xeye

W is the average value of the irradiance
colors on a virtual hemisphere located at the eye position and aligned with the gaze
direction (fig. 8.3 (a)):

xeye
W =

1
2πr2

∫

SΩ

E(~x)dA(~x) (8.8)

where E(~x) is the irradiance at a point ~x on the hemisphere SΩ of radius r.
The irradiance E(~x) is computed as:

E(~x) =
∫

Ω
Li(~x←~ωi)|~n~x · ~ωi|dσ(~ωi) (8.9)

where Li(~x←~ωi) is the incident luminance of direction direction ~ωi at point ~x, and
~n~x the normal vector at ~x.

Our new approach has the following main characteristics:

1. the adaptation color is based on the average irradiance at the eye location
rather than on the radiance colors in the field of view, more importance is
then given to objects close to the eye,

2. the adaptation color does not focus on the irradiance or radiance color of white
surfaces, consequently it does not overestimate local lighting,

3. the adaptation color estimate is not limited to the field of view, it is then more
robust to camera displacements.

130

4. OUR COLOR ADAPTATION METHOD

S 1

S 2

~x1
~ω1

~y1

~x2 ~ω2

~y2

x xw

(a) (b)

Figure 8.3 – (a) Architecture overview of our chromatic adaptation process. (b)
Irradiance color average on virtual hemisphere as color adptation (hemispherical
sensor).

The rendering engine computes the average irradiance color over the virtual hemi-
sphere (fig. 8.3 (b)), then the color adaptation transform (CAT) is applied to recover
the perceived colors. We use the CIE linear chromatic adaptation transform, called
CAT02 [MFH+02], to perform the chromatic adaptation:

Xa

Ya

Za

 = M−1

02

Ra

Ga

Ba

 ,

R
G
B

 = M02

X
Y
Z

 (8.10)

Ra =
(

RO

Reye
W
D + (1−D)

)
R

Ga =
(

GO

Geye
W
D + (1−D)

)
G

Ba =
(

BO

Beye
W
D + (1−D)

)
B

(8.11)

where xa = [Xa, Ya, Za] is the adapted color, [R0, G0, B0] the white reference illu-
minant (D65), [Reye

W , Geye
W , Beye

W] our adaptation color, D is the degree of adaptation
and M02 the color space transform matrix used in CAT02.

In our current implementation, we use the Mitsuba physically based renderer
[Jak10] and its path tracing integrator1. In order to estimate the average irradi-
ance over the hemisphere (eq. (8.8)), we split the radiance into direct and indirect
components to get Li(~x←~ωi) = Le(~x←~ωi) + Lind(~x←~ωi), which leads to:

xeye
W =

1
2πr2

SΩ

(φdirect + φind) (8.12)

1Other integration methods (light tracing, BDPT) can be choose.

131

CHAPTER 8. EYE-CENTRED COLOR ADAPTATION IN GLOBAL ILLUMINATION

with:

φdirect =
∫

SΩ

∫

S
Le(~y→~x)G(~x↔~y)dA(~y)dA(~x) (8.13)

φind =
∫

SΩ

∫

Ω
Lind(~x←~ωi)|~n~xi

· ~ωi|dσ(~ωi)dA(~x) (8.14)

where S is all the surfaces comprising the scene. For direct lighting (estimator for
section 4.2) we use a simple sampling method by taking a point ~yi on the light source
with the probability Pa(~yi) and compute its contribution2:

φdirect =
1
N

N∑

i=1

Le(~yi→~xi)G(~yi↔~xi)V (~yi↔~xi)
Pa(~yi)Pa(~xi)

(8.15)

where ~xi is a sample on the hemisphere with the probability Pa(~xi), Le(~yi→~xi) the
emitted radiance from ~yi to ~xi, G(~yi↔~xi) the geometry factor and V (~yi↔~xi) the
visibility term.

For indirect lighting computation, we can use a well known stochastic ray tracing
technique by taking a point on the hemisphere ~xi and a random incident direction
~ωi with the probability Pσ(~xi→~ωi):

φind =
1
N

N∑

i=1

Lpath(~xi, ~ωi)|~n~xi
· ~ωi|

Pa(~xi)Pσ(~xi, ~ωi)
(8.16)

where Lpath is a radiance computed by a path tracer using multiples bounces.
Moreover, the evaluation of the estimators (eqs. (8.15) and (8.16)) is time con-

suming and depend on the number of samples N . However, the cost of these evalua-
tions is negligible when considering the cost of the global illumination computation
for the whole image. Indeed, in our experiments, we used 0.1% of the total samples
count used to render an image.

Our adaptation color operation can also be done using commercial global illu-
mination engines which are not open source. In this case, we proceed the following
way : (1) we render the 3D scene in which we add a little diffuse white hemisphere
located at the camera position just ahead the front clipping plane, (2) we add on
orthographic camera looking at the hemisphere, (3) we render an image of the hemi-
sphere and compute the average radiance Lav over the hemisphere, (4) finally the
average irradiance (πLav) color gives the adaptation color. This implementation
works well because adding a small hemisphere does not change significantly the
rendering solution.

Our eye-centered estimate of color adaptation gives the expected results (see
section 5) in the classic test cases, these results are similar to those obtained with the
Wilkie and Weidlich’s method. But for scenes with complex lighting our approach
provides images that look more natural compared to [WW09].

2Note that here no multiple importance sampling is used. However, it is possible to use MIS
for the direct estimator as shown in section 3.1.

132

5. RESULTS

5 Results

First, we used the benchmark cases listed in [WW09] for color adaptation: direct
lighting, world of one reflectance and indirect lighting. In these test cases there
is only one illuminant and their corresponding results are known (section 5.1). In
addition, we added more complex test cases (section 5.2). By complexity we mean:
high irradiance color variations (when the camera moves from one room to another,
spotlight), several illuminants with different colors. In these latter cases, the ex-
pected results are not available. Therefore we can only discuss if the adapted image
looks natural. Finally we also show results for walkthrough (section 5.3).

For each case, we provide three images. The first one, called raw image, does
not undergo chromatic adaptation, while the two other ones result from chromatic
adaptation using the method presented in [WW09] and our approach. As Wilkie’s
method is the most recent and most efficient for color adaptation in the context of
global illumination, we compare it to our approach through different test cases. In
Wilkie’s method, the parameter w which controls the influence of the "white object
information" is set to the value 2 (optimal value according to the authors). In our
method, the degree of adaptation D (eq. (8.11)) is set to 1 in order to compute a
complete adaptation as in Wilkie’s method. From now on, Wilkie’s method will be
called WCAM, which stands for W ilkie Color Adaptation Method.

5.1 Standard tests cases

The first standard test case consists of a white Cornell box with an orange light
source (see fig. 8.4, scene 1). In this case Wilkie’s method and ours provide the
same adaptation color which corresponds to the expected one.

The second test case is the worlds of one reflectance: White World-Orange Light
and Orange World-White Light. Wilkie’s method and ours give the expected adap-
tation colors. The actual object reflectances are recovered in both cases (see fig. 8.4,
scenes 2 and 3).

The third case consists of a Cornell box with a diffuse green floor (see fig. 8.4,
scene 4). The light source color is white. Due to indirect illumination, a green
lighting component is clearly noticeable on the raw image. WCAM overestimates
this green component, hence the facing wall above the color checker appears slightly
purple: (hue=292, saturation=5%). With our adaptation color, the same pixel is
still a little bit green: (hue=132, saturation=2%), which looks more natural.

As in all the above test cases, the illuminant color is almost uniform within the
scene, WCAM and our method provide the same color adaptation. Indeed, as the
illuminant color is the same from all the object’s scene, computing the adaptation
color within either the field of view or a 180 degree frustum lead to the same re-
sult. Even for a moderate variation of irradiance color in the scene, our method
outperforms WCAM, as seen in fig. 8.4.

133

CHAPTER 8. EYE-CENTRED COLOR ADAPTATION IN GLOBAL ILLUMINATION

Color light source WWOL OWWL Indirect lighting

R
aw

im
ag

es
W

ilk
ie

et
al

.
O

ur
m

et
ho

d

Scene 1 Scene 2 Scene 3 Scene 4

Figure 8.4 – Results in the Wilkie’s test cases. 4 different scenes is shown. The
first row correspond to the raw image (not corrected), the second row correspond
to WCAM and the third row correspond to our adaptation color

5.2 Complex tests cases

The first complex test case consists of a room containing a white Buddha statue lit
by a red lightspot and a main white light source located on the ceiling (see fig. 8.5).
WCAM computes a red adaptation color because the white statue is partially lit by
a red spotlight. Consequently, after chromatic adaptation, the part of the statue lit
by the spotlight gets a white color while the part takes a blue color, which looks
unnatural. Instead, our method provides a result that looks more natural. The
second test case consists of a scene made of two rooms (fig. 8.6). The first one is
lit with four orange light sources while the second is lit with four blue ones. We
computed three images (fig. 8.7). In the first one (red view frustum), the second
room is not visible. In the second image (green view frustum), both rooms are
visible. In the third image (blue view frustum), only the second room is visible
while the camera lies in the first room.

In this case, WCAM computes three different adaptation colors because it con-
siders only the visible objects to compute the adaptation color. Regarding our
method, it also computes three adaptation colors which are very close to each other
(fig. 8.7). This can be explained by the fact that our approach is sensitive to where

134

5. RESULTS

Wilkie et al. Our method

Raw image

Figure 8.5 – Chromatic adaptation results when a red spotlight partially lits a
white statue, raw image (up), using WCAM (botoom left), using our adaptation
color (bottom right).

W
ilkie

et
al.

O
ur

m
ethod

(a) Scene configuration (b) Estimates
Figure 8.6 – (a) Map of a 2 room scene and 3 view frustrums (red, blue, green).
(b) Chromaticity diagram for RGB color space. The small circles represent the
adaptation colors for the 3 frustums, obtained with WCAM (top) and our method
(bottom). The circle color (red, green, blue) corresponds to the frustum.

the camera is located rather than the visible surfaces. These results shows that lacks
spatio-temporal coherency.

5.3 Sequence tests cases

We tested our algorithm on video sequences to demonstrate its ability to meet the
constraint of spatio-temporal coherency. The video sequence shown in this chapter

135

CHAPTER 8. EYE-CENTRED COLOR ADAPTATION IN GLOBAL ILLUMINATION

RAW Wilkie et al. Our method

C
am

1
C

am
2

C
am

3

Figure 8.7 – Spatial coherency of the adaptation color estimate in the case of 2
room scene. raw image(left), using WCAM (middle), using our method (right)

is a walkthrough into a scene composed of three rooms with different illuminant
colors (fig. 8.8 (a)). The camera starts in a room lit with a white light, then goes
through another room lit with an orange light,to finally reach a room lit with a blue
light.

Figure 8.8 (b) shows the adaptation color for each frame of the sequence. Unlike
WCAM, our method provides a smooth variation of the adaptation color. Note that
the WCAM results in a sudden change of the adaptation colors, especially at the
beginning of the sequence ((1) insert box in fig. 8.8 (b)). In addition, the WCAM
adapts too early to the illuminant color of the third room ((2) green insert in figure
fig. 8.8 (b))

The sudden change in the adaptation color in WCAM occurs between frames 5
and 10 (fig. 8.9). The rendered image does not change so much between these frames.
Only the specular reflection of one light source on the bench (red insert in fig. 8.9,
middle) changes significantly, which highly changes the adaptation color. The reason
is that WCAM adapts mostly to this specular reflection while our method adapts
to the average irradiance color over the hemispherical sensor. The video sequence is
provided as an additional material. Other results is shown in fig. 8.10.

6 Conclusion

We have proposed a simple, accurate and spatio-temporally coherent method to au-
tomatically estimate the adaptation color for chromatic adaptation in the context
of global illumination. Our adaptation color is computed as the average of irradi-
ance color over a virtual hemispherical sensor centred at the camera location and
aligned with the camera axis. First, we have demonstrated that our algorithm out-

136

6. CONCLUSION

O
urs

W
ilkie

et
al.

(b) Adaptation Color

Fram
es

0
240

(a) Camera path
Figure 8.8 – (a) Map of a 3 room scene and camera trajectory. (b) Adaptation
colors for each frame of the video sequence with WCAM (left), with our method
(right)

performs the state of the art methods especially when the illuminant color varies
in a scene. Second, as our method is spatio-temporally coherent, it can be used in
video sequences. Third, it can be easily implemented using an open or closed source
rendering engine.

Future work would extend the use of hemispherical sensor to tone mapping (also
called light adaptation) video sequences, thanks to the spatio-temporal coherence
property of the hemispherical sensor. Another research avenue is to propose an
alternative (other norms) to just averaging the irradiance color to compute the
adaptation color.

Acknowledgements

The material in this chapter is, in part, a reproduction of the material published in
Adrien Gruson, Mickael Ribardiere and Remi Cozot "Eye-Centred Color Adaptation
in Global Illumination", Pacific Graphics 2013 [GRC13].

137

CHAPTER 8. EYE-CENTRED COLOR ADAPTATION IN GLOBAL ILLUMINATION

Raw Wilkie et al. Our method

Fr
am

e
5

Fr
am

e
10

Figure 8.9 – Video sequence. Spatio-temporel coherency issue between frame 5
(up) and 10 (bottom), raw image (left), WCAM (middle) with specular highlight
changing the estimate and ours (right).

Raw Wilkie et al. Our method

Figure 8.10 – Scene addressing transmission through a glass. On the right side
of the top images, there is a red cylindrical glass containing objects (Ant, White
cubic sugar). The camera is outside the glass. The same scene is rendered from
inside the glass (bottom row of images). This case is similar to Wilkie’s test called
"Transmissions colors". In the first row, the adaptation color estimated with WCAM

method has a higher red color value due to the caustic on the white sheet of paper.
As for the second row, the sensor is inside the red glass, the incoming illuminant is
red, which gives the same result for the two methods.

138

9Automatic aesthetics-based lighting

design with global illumination

High-Key aesthetic Low-Key aestheticInitial config.

Figure 9.1 – Given an initial scene configuration, the aim of the technique presented
in this chapter, is to produce different targeted aesthetics. In this technique, we will
mainly address two target aesthetics: High-key and Low-key aesthetics.

1 Introduction

In computer graphics, global illumination rendering methods take into account mul-
tiple phenomena such as reflection, refraction and scattering. However, because of
these numerous phenomena, it is difficult to know beforehand what the resulting
image will look like. Lighting plays an important role in the appearance of a scene
and a change in the configuration of light sources can lead to different aesthetics
in the final rendered image. For instance, we would like an object of a scene to be
bright, with a lot of contrast, while the background should be dark and uniform.
Answering such specifications can represent a time-consuming and tedious effort if
performed through a trial-and-error process.

To obtain a satisfying result automatically, the user has to express his intent
by providing a set of target values as properties of the final image. The goal is to
change iteratively the parameters of the 3D scene to fit the user intent. A lot of
parameters of the scene can be taken into account. Among these are:

� Position, size, flux of the light sources,

� Reflectance of the materials,

� Distribution of the objects in the scene.

139

CHAPTER 9. AUTOMATIC AESTHETICS-BASED LIGHTING DESIGN WITH GLOBAL
ILLUMINATION

Methods used to compute lighting parameters to fit a given set of constraints are
called inverse lighting methods. An example can be found in the work of Shacked
et al. [SL01], where an objective function is minimized in order to make an image
of a 3D object easy to understand. Our approach is more general, as our objective
function accounts for target parameters defined to express the intent of the user: it
expresses the distance between the current lighting design and the desired result.
This function is minimized to find the optimal set of parameters.

In this chapter, we will mainly address two target aesthetics used in films and
photography: high-key and low-key pictures as shown in fig. 9.1. High-key and
low-key aesthetics focus on one object of the scene, called henceforth main object.
High-key images are bright, do not have too much contrast, nor feature dark shadows
cast by the main object. Low-key images have a darker tone, their contour lines are
highlighted and the background is usually black. They also feature high values of
contrast.

We designed a new inverse lighting framework. Given a set of target parameters
provided by the user, we set up a platform that can render a scene with global
illumination techniques and allow to minimize the objective function to find the
desired parameters (light source size, flux, reflectance) to meet the user’s intent.

In our case, we use two light sources: a key-light and a fill-light. The key-light
is the main light source in the scene. It is used to light the main object. The fill-
light is used to control the shadows cast by the main object. The key-light sets the
main direction of lighting, and the fill-light lights the main object from a side angle
relative to the key-light.

2 Related Works

Finding a light configuration that produces an image with the desired characteristics
is an ill-posed problem. It was first introduced as inverse-lighting problem by Kawai
et al. [KPC93]. Inverse-lighting methods allow us to compute an ideal lighting con-
figuration for the 3D scene, given a lighting specification. This lighting specification
is considered as a target that represents the desired result.

Inverse-lighting methods differ by the type of target they use, the optimization
process, but also by the parameters they tune. In the rest of this section, we will
distinguish two categories of inverse-lighting methods: image-based and global meth-
ods. For more details, the reader can refer to the survey on inverse-lighting problems
by Patow and Pueyo [PP03].

2.1 Image-based methods

Inverse-lighting in the context of radiosity has been discussed by Schoeneman et al.
[SDS+93]. The user provides a target radiosity vector Ψ, which elements are the
desired radiosity of each patch of the scene, by painting on an image of the scene
with a brush. The goal of this method is to find the emittance of each light source
in the scene. The radiosity equation is solved for each light source independently.
When considering each light source at the same time, the radiosity vector Ψ̂ can

140

2. RELATED WORKS

be defined as a linear combination of the radiosity vectors Φi obtained for the light
source i:

Ψ̂ =
n∑

i=1

wiΦi (9.1)

In order to find the contribution factor wi of each light source, the objective
function ||Ψ − Ψ̂|| has to be minimized using a least-square method. Light source
positions and orientations are fixed, and only their emittance is automatically com-
puted. Moreover, the user has to provide the target image using the painting inter-
face, which can be a time-consuming task.

The SAIL model presented by Zupko and El-Nasr [ZEN09] does not use an image
of the scene as a target. Instead, the provided target is an image of an illuminated
sphere. The target image is thus independent of the scene. However, generating
and understanding such an image can be a difficult task for the user, as the simple
geometry of the sphere may only allow a coarse specification of the lighting goals.
The method discussed by Zupko and El-Nasr [ZEN09] uses a configuration consisting
of two light sources (key light and fill light). It computes a parameter set (key-to-fill
ratio, orientation and position of the key light) that minimizes the distance between
two vectors of appearance metrics : one vector computed on the illuminated sphere
and another computed on the image of the 3D scene.

The main difficulty in a model such as SAIL is to provide an image of an illumi-
nated sphere that communicates the desired lighting configuration. Instead of using
a target image, the methods presented in the next sub-section use a set of target
values that better characterize the desired configuration.

2.2 Global Methods

The methods in this category do not use an image as a target. Instead, they use a set
of target values for descriptors that describe an image’s aesthetics. These methods
proceed by minimizing an objective function, often a linear combination of several
terms.

Kawai et al. [KPC93] use a linear combination of three terms that measure
the mean brightness, non-uniformity and peripheral characteristics of the lighting
of the scene. The weight assigned to each of these terms is specified by the user so
that he can construct his own constraint. The optimization variables can be light
source direction, surface element radiosity, reflectivity or emissivity. The objective
function is minimized iteratively using the Broyden-Fletcher-Goldfarb-Shanno non-
linear optimization method (BFGS) [PW00].

Fernandez et al. [FB14] introduce an efficient way to solve a radiosity-based
inverse lighting problem. Desired values for the mean and variance of the radiosity
values are provided, and an optimization operation is performed. Many other exist-
ing works use radiosity-based rendering methods to optimize the placement of light
sources in architectural settings [CSFN11, CdAS12, FB12].

The method introduced by Shacked and Lichinski [SL01] computes the lighting
configuration that is optimized for understanding the shape and fine details on the
scene’s objects. It uses an objective function fq that is a linear combination of terms

141

CHAPTER 9. AUTOMATIC AESTHETICS-BASED LIGHTING DESIGN WITH GLOBAL
ILLUMINATION

defined as follows:

fq =
∑

s∈S

wsfs (9.2)

S = [mean, var, hist, grad, edge, dir]

The terms fs are listed below:

� fmean measures the distance between the mean luminance and a target value;

� fvar measures the distance between the luminance variance and a target value;

� fhist measures the distance between the luminance histogram and an equalized
histogram;

� fgrad measures the magnitude of gradients;

� fedge evaluates the appearance of edges;

� fdir measures the elevation of light sources (this term is optional).

The method used in the approach mentioned above for rendering is not physically
accurate: it relies on diffuse and specular intensity values for point light sources.
These two values are considered as variables to be optimized, along with the direction
of the point light sources (θi, φi). Optimization is performed iteratively using a
gradient descent method.

In the following section, we will discuss the above presented methods, and present
the different properties our method should have.

2.3 Discussion

Providing a target image [SDS+93, ZEN09], with some possible different parametri-
sation, is a time-consuming process, and although the result may feature the right
highlighted areas, it may not communicate the aesthetics expected by the user.

The work presented by Shacked and Lichinski [SL01] uses an objective function to
communicate the shape of the main object as well as possible. The object is isolated
on a uniform background and is not considered as part of the scene. Also, the
rendering method used is not physically correct as it only use OpenGL rendering,
hence it does not account for indirect lighting. The objective function is made
of several terms that only depend on parameters computed from an image of the
scene, together with an optional constraint for light direction. It is then minimized
to provide an optimal set of parameters (orientation of light sources, specular and
diffuse intensities).

However, this method has been designed to improve the understanding of 3D
shapes. The goal of our work is to cover a broader range of aesthetics. The user
should be able to control the lighting design process through target values used by
the objective function. As we are working in the context of global illumination, the
lighting design process will have to account for multiple reflections. Our approach
should be generic enough so that it does not rely on a specific global illumination

142

3. OVERVIEW OF THE APPROACH

rendering algorithm. The solution should also provide flexibility in terms of nature
of light sources, whereas only point lights are considered by Shacked and Lichinski
[SL01]. In particular, we are interested in studying the influence of the size of the
light sources on the final result.

Like Shacked and Lichinski [SL01], we specify a main object for the scene to
evaluate the aesthetics properly. This is analogous to photography where an isolated
subject is considered. The rest of the image that does not represent this main object
is considered as a background. Contrary to Shacked et al., we do not consider objects
on a uniform background, but we consider them as part of a complete scene, and
the appearance of the background contributes to the overall aesthetics.

The objective functions are usually defined for a single purpose, such as in
Shacked and Lichinski [SL01] where the goal is to make the final image easy to
understand. However, we want to have a broader range of possibilities. Using our
method, the user can express his aesthetics intent by defining target parameters.
Thus, our objective function is completely configurable: it is made of several terms,
each one taking into account a target value. These different terms are computed
using the luminance values on the image. Many image descriptors have been con-
sidered for describing image aesthetics using a learned classifier [DJLW06, DOB11].
However, as we are mainly interested in light-based aesthetics, we do not consider
composition or color-appearance, and we focus on luminance values. In the next
section, we will introduce our approach for defining the objective function and for
designing the optimization process. Our contributions to inverse-lighting consist in:

� describing different aesthetics;

� considering both object and background appearances;

� taking indirect lighting into account;

� handling area light source parameters.

3 Overview of the approach

This section details the different steps of our method (fig. 9.2). Then, in section 4.1
we will give further details on the free variables, the evaluation of the objective
function and the optimization process.

Our goal is to allow the user modify the aesthetics of a scene by changing the
appearance of the main object and the background. In order to make it feasible, our
method takes as input (orange box in fig. 9.2):

� the 3D scene description which specifies the object, the materials’ properties,
the lights’ position and the camera’s position;

� the free parameters x whose values have to be determined automatically;

� the target values which describe the desired aesthetics. These target values
are constant and have to be set before running the optimization process. We
will detail them later on.

143

CHAPTER 9. AUTOMATIC AESTHETICS-BASED LIGHTING DESIGN WITH GLOBAL
ILLUMINATION

Y
es

Precomputation Free Params: x

3D Scene

Rendering

Target

Main

Compute

Converged ?

Optimization

- Init. val.: x0

- Bounds: β
- Eps. : ǫ

Object

Values

eval. Gradient Fq

ǫ β x0

No
xi

Final Values
xopti

xi

Opti. Loop

I
Def.

Figure 9.2 – Our framework. Green boxes represent the different processings of
our algorithm. Orange boxes represent the value provided by the user. Red box is
the result of our algorithm.

Before running the optimization process, we automatically find initial values x0 in
a pre-processing step. Moreover, to run the optimization, we need to specify for each
free parameter its bounding values β and gradient evaluation step ǫ. Furthermore,
to evaluate the aesthetics of the scene using the objective function, we have to
differentiate the different zones of the image by defining a mask image (“Image
Map” step in fig. 9.2). This mask image will indicates whether a pixel corresponds
to the main object or to the background.

The optimization loop (gray box in fig. 9.2) is used to find a set of parameters
that minimize the objective function. At each iteration, the scene is rendered using
a global illumination technique. Then new values of the parameters to be optimized
are computed. The choice of the rendering method does not have an influence on the
overall framework, as computing the objective function only requires the luminance
image. Methods such as radiosity, path tracing or photon mapping can be used,
without compromising the overall framework1. Using the previously computed image
I and the image map, the objective function fq is evaluated. The objective function
fq is computed as a linear combination of terms:

fq =
∑

s∈S

wsfs (9.3)

S = [meanBack,meanObj, varBack, varObj, grad, hist]

Each term in fq takes into account a target value. The main difference between
1However, less noise there is in the rendered results, more stable the optimisation is. Moreover,

biased methods can leads to not optimal setup if a non-biased method is used for rendering the
final image settings.

144

4. APPROACHING AN AESTHETICS WITH FUNCTION MINIMIZATION

our objective function and the one used by Shacked and Lichinski [SL01] is that all
the terms we use can be configured by the user. The terms of the objective function
are normalized distances from a user-provided value and a value computed on a
specific zone of the image:

� fmeanBack and fmeanObj: the mean luminance of the background and the object
respectively;

� fvarBack and fvarObj: the luminance’s variance on the background and the
object respectively;

� fgrad: the gradient value over the principal object of the scene;

� fhist: the normalized luminance histogram of the image.

Then, the optimization algorithm computes gradient values using ǫ values and
decide with some criteria to continue the optimization process or not. At the end,
the algorithm will return final values xopti.

In our approach, in contrast to Shacked and Lichinski [SL01], the target values
are not computed from the scene, but are directly provided by the user. By doing so,
we allow the field of attainable aesthetics to be broader. For instance, in the method
proposed by Shacked and Lichinski [SL01], the lighting aesthetics that makes shapes
more difficult to understand would be penalized, whereas in our approach, if the user
gives such a specification this type of aesthetics would be possible.

4 Approaching an aesthetics with function minimiza-

tion

The goal of our method is to automatically design a lighting configuration that
brings a target aesthetics to the scene in the context of global illumination. In our
context, we want to obtain an image with a certain aesthetics, not necessarily the
most understandable one, and we want the user to have control on the aesthetics
of the scene using target values for image descriptors. Furthermore, in the context
of global illumination, the range of attainable aesthetics is wider than when only
considering direct illumination. Within that goal, as we want our approach to be as
generic as possible, any rendering method can be used and any kind of light source
can be considered.

In the next subsections, we will introduce the different terms of the objective
function used for the minimization process (section 4.1). Then, we will list the
different free variables that the algorithm can tune automatically (section 4.2) . Fi-
nally, we will describe the optimization process and the automatic pre-computation
step (section 4.3).

4.1 Objective function

The objective function (section 3) is a linear combination of several terms. Each
term is defined as a distance between a value (mean luminance, variance, gradient

145

CHAPTER 9. AUTOMATIC AESTHETICS-BASED LIGHTING DESIGN WITH GLOBAL
ILLUMINATION

amplitude) computed on a rendered luminance image I and a target value provided
by the user. Each terms defines a distance in [0, 1]. The different terms of the
objective function are detailed in the following subsections.

4.1.1 fmeanObj and fmeanBack

These two terms control the mean pixel luminance value on the object and on the
background respectively. We use two different terms for the object and for the
background as the mean luminance values for the foreground and the background
are characteristics of high key and low key images. In terms of aesthetics, these
term control the overall brightness of the object and the background. The target
values tmeanObj and tmeanBack are mean luminance values, defined in [0, 1]. The terms
fmeanObj and fmeanBack are computed as follows:

fmeanObj =
|l̄(object)− tmeanObj|

max(tmeanObj, 1− tmeanObj)
(9.4)

fmeanBack =
|l̄(background)− tmeanBack|
max(tmeanBack, 1− tmeanBack)

(9.5)

where l̄(object) and l̄(background) are the mean luminance over object pixels and
background pixels respectively, computed using a global illumination algorithm.

4.1.2 fvarObj and fvarBack

These two terms measure the distance between a target value and the standard
deviation of the luminance values of the main object’s pixels and the background’s
pixels respectively. Here again, we distinguish between background and object pixels
to control how smooth the background and the object appear. The expressions for
the terms fvarObj and fvarBack are given below:

fvarObj =
|σ(object)− tvarObj|

max(tvarObj, 1− tvarObj)
(9.6)

fvarBack =
|σ(background)− tvarBack|
max(tvarBack, 1− tvarBack)

(9.7)

where σ(object) and σ(background) are the luminance standard deviation over the
main object’s pixels and the background’s pixels respectively. We use a different
normalization from that of Shacked et al. as they use an additional factor for the
target value when the objects in the scene contains a wide range of reflectances
[SL01].

4.1.3 fgrad

The gradient term fgrad is used to control the shading gradient on the object’s
surface. If the target value is high, then the shape of the object will appear more
pronounced. A low value will make the contours more subtle. Using a pair of Sobel
filters, we compute two gradient images Gx = A⋆ I and Gy = AT ⋆ I. We obtain for

146

4. APPROACHING AN AESTHETICS WITH FUNCTION MINIMIZATION

each pixel pi,j the gradient vector ∇li,j = (Gx(i, j), Gy(i, j)). The average shading
gradient norm is then computed as follows:

g(object) =

√√√√ 1
Nobj

∑

pi,j∈object

|∇li,j|2 (9.8)

where object is the set of pixels marked as object’s pixels in the image mask, and
Nobj the number of these pixels. The final term fgrad is defined as:

fgrad =
|g(object)− tgrad|
max(tgrad, 1− tgrad)

(9.9)

4.1.4 fhist

As explained in the work of Martin et al. [MFSG08], luminance histograms must
be used with other descriptors to express an image’s aesthetics. However, Sicre
[Sic13] uses supervised learning on well known aesthetics (such as high key, low
key, and medium key images), therefore a signature histogram can be extracted
for each class. We use these signature histograms as target that will be compared
with the luminance image’s histogram. The signatures are represented as cumulated
histograms in fig. 9.3. These signature are obtained by averaging each histogram bin
over a set of low-key images (fig. 9.3a) and high-key images (fig. 9.3b) respectively.

(a) Low-key signature (b) High-key signature

Figure 9.3 – Signature cumulated histograms

Minimizing the objective function makes the image’s histogram closer to the
target histogram. The fmean and fvar terms have an influence on the value of the
term fhist. However, fhist describes the complete luminance distribution and does
not provide any spatial information, whereas fmean and fvar evaluate statistics for
distinct areas of the image, hence these terms are more complementary than they
are redundant.

This term is evaluated as the Matsusita distance between two discrete distribu-
tions [CS02], defined as follows:

D(p, q) =

√√√√
b−1∑

i=0

(
√
pi −
√
qi)2 (9.10)

147

CHAPTER 9. AUTOMATIC AESTHETICS-BASED LIGHTING DESIGN WITH GLOBAL
ILLUMINATION

where b is the number of bin in the cumulated histogram, pi and qi is the i − th
cumulated value of the signature histogram and the image’s histogram. For proper
normalization, the final term is:

fhist = D(p, q) ·
√√√√

b−1∑

i=0

max(qi, 1− qi) (9.11)

As explained in [CS02], this D(p, q) possess all the properties of a metric. fhist = 0
implies that the target image and the rendered image have the same luminance
histograms. However, this histogram metric is really simple and does not account
for distribution translations. Another histogram metric is left for future work 2.

4.2 Free variables

(a) Size influence (b) Flux influence

Small Size Big Size Big FluxSmall Flux

Figure 9.4 – Influence of the light parameters on the rendering. (a) With a constant
size, the flux controls the light’s contribution. (b) With a constant flux, the size
controls the shadows strength.

The output of our algorithm is a set of lighting parameters values that minimizes
the objective function. A point light can be defined using a 3D position and a
luminance value. An area light source has a size that also influences the lighting of
the scene. As shown in fig. 9.4, the radius of the area light and the flux can change
the aesthetics of the rendered image. However, changing its size does not have the
same impact as changing the flux on the objective function’s value. This could cause
a problem in the optimization process as the gradient on the size variables will be
low and provide few information. Instead of using the flux, we use the self-emitted
luminance which introduces correlation between this value and the scale of the light
source. Indeed, for an isotropic area light source, the luminous flux is:

Φ = π · A · S · Le (9.12)

where A is the original light area without scaling, S is the scaling factor (which
allows to modify the size of the light source) and Le is the self-emitted luminance of
the source.

Moreover, the scene setup itself influences the space of achievable aesthetics.
For example, a bright material assigned to the background makes it impossible to

2Indeed, a histogram metric with translation is for now an issue for the optimization algorithm.
However, finding a good histogram metric and a compatible optimization algorithm is an interesting
way to improve our results.

148

4. APPROACHING AN AESTHETICS WITH FUNCTION MINIMIZATION

(a) Initial
image with
x0

(b) High key
target

(c) Low key
target

(d) High key
target with
background
modification

(e) Low key
target with
background
modification

Figure 9.5 – Optimization of our algorithm for the two different aestetics. In the
default setup, the background is bright and the algorithm converges to a High Key
image (fig. 9.9b). On the contrary, this background makes it impossible to reach a
Low Key setup (fig. 9.5c). By considering the background albedo as free variable
we can reach the two different aesthestics (figs. 9.5d and 9.5e).

obtain a low-key image (fig. 9.5). To overcome this problem, we propose to the user
an option to change the material properties for all background objects. This is done
by modulating the V channel of the HSV material’s color.

4.3 Optimization

The optimization step uses the L-BFGS-B algorithm [ZBLN97]. It is a memory lim-
ited implementation of the BFGS algorithm used by Kawai et al. [KPC93] that takes
into account additional constraints such as bound parameters. During the optimiza-
tion process, the objective function is minimized. The algorithm uses a gradient
descent technique to minimize the objective function. However, our objective func-
tion does not have an analytic expression. Partial derivatives are approximated
numerically by evaluating the objective function for consecutive steps for each free
variable.

However, the free variables have different orders of magnitude and need to be
bounded. As such, for estimating the gradient, a proper order of magnitude of
epsilon needs to be chosen. A too small value may produce no significant change
in the image. A too large value of epsilon may compromise the minimization. The
parameters themselves are scaled so that they have similar order of magnitude.
Thus, the gradient is comparable for each free variable. The initial values x0 for the
free variables are important for the optimization: if we start from a position where
only one light source contributes to the scene lighting, the optimization could only
modify that light source and fall into a local minimum. Moreover, the free variables
have to be bounded, because of physical properties or geometrical considerations.
These questions will be addressed in the following paragraphs. The bound values
are found automatically during the step called “precomputation step” in fig. 9.2.

Bounds: In the optimization process, some free variables have to be bounded.
Indeed, the self-emitted luminance is considered to be strictly positive, but it does
not have any upper boundary. Moreover, the bounding values for the V channel

149

CHAPTER 9. AUTOMATIC AESTHETICS-BASED LIGHTING DESIGN WITH GLOBAL
ILLUMINATION

modulation of the HSV background’s albedo are [0.1, 10]. The scale of the area light
source is strictly positive. However, we have to make sure that the light source does
not collide with:

� the main object’s surface viewed from the camera;

� the camera frustrum;

� and optionally, with all objects of the scene.

We need to compute the minimal distance from a light source to the above mentioned
of objects (camera frustrum, scene surfaces ... etc.). However, as we dispose of the
scene geometry, we can either cast random rays or change the light source size to
estimate this minimal distance. Then, this minimal distance is used to determine the
maximum scaling factor of the light source allowed during the optimization process.

In practice, two different techniques are used to compute this minimal distance
for each light source (fig. 9.6):

� Minimal Object distance: we generate a ray originating at the center of mass
of a light source toward a randomly sampled point p on this light source. Then
we compute the distance between p and the first intersection between the ray
and the surface’s scene. This process is repeated by choosing other points p.
The minimum value of the resulting distances is the minimal object distance.

� Minimal Frustrum distance: we increase the light source size until its gets
visible. If the light source gets visible, after a dichotomic search, we determine
the highest light source size for which the light source is not visible.

S1

S2

S1

S2

(a) Object distance (b) Frustrum distance
Figure 9.6 – Example of scene with two spherical light sources S1 and S2. The
two strategies to compute the light source’s size bound: (a) distance to all objects
(optional) and (b) distance to the camera’s frustrum. The red ray shows the minimal
distance for each light source.

Initial values: In order to compute the initial value for the free variables associ-
ated with the light sources (self-emitted luminance and size). However, these two
types of variable have some correlation with the final image brightness (see sec-
tion 4.2). So, to determine the initial values of those variables, we first initialize the

150

5. RESULTS

light source size by a deterministic procedure. Them, we use this size to find the
self-emitted luminance by a simple optimization process3.

The aim of this initialisation is that each light source brings a minimal contri-
bution. In practice, we proceed as follows:

1. Scaling of the light source: we set the light source size as half the radius of
the object’s bounding sphere. If this size is bigger than the computed upper
bounds, we reduce it to have a valid size.

2. Self-emitted luminance of the light source: we fix the light source size and
change only the self-emitted luminance. We modify the self-emitted lumiance
so that the mean luminance value of the image is equal to 0.5/nlight where
nlight is the number of light sources.

Steps and scaling: Steps (used by the gradient descent for each variable) are
computed as 10% of the initial values. The free variable values are scaled automat-
ically before the optimization process, so that they have all comparable orders of
magnitude.

Discussion: Because the terms of the objective function may collide, all the target
values are not necessary attainable: for instance, as explained in section 4.1.4, fmean,
fvar and fhist are strongly correlated. Moreover, because the optimization algorithm
is based on gradient descent, it is possible that the algorithm gets stuck at a local-
minimum. However, with the automatic computation of initial values and gradient
steps, we try to prevent local minima and speed-up the optimization process. To
compute the different statistics on pixel luminance, we use floating point luminance
values ranging from 0 to 1. Floating point precision usage is important to prevent
any imprecision on gradient evaluations because of image quantization.

5 Results

The method described above as been implemented in Python using the LBFGS-
B [ZBLN97] optimization method, implemented using scipy [sci13], numpy and
openCV for image processing [num13, ope13]. The rendering step has been per-
formed with the Mitsuba rendering platform [Jak10]. To speed-up the optimization
process, all the intermediate images have a lower resolution than the final one. This
helps speeding-up the optimization. Our implementation has been applied to dif-
ferent scenes with different target values to obtain an optimal lighting configuration
that corresponds to a desired aesthetics. This section highlights some of the results
we obtained using this method.

Table 9.1 presents the two sets of target values and the weights used in the
objective function. These two configuration will be used for all our scenes. The
High-key configuration “HK” will target a bright background and low variance on

3Note that if the rendering engine can have HDR image output, the self-emitted luminance for
each light sources can be straightforwardly deduced.

151

CHAPTER 9. AUTOMATIC AESTHETICS-BASED LIGHTING DESIGN WITH GLOBAL
ILLUMINATION

the object. We use a High-key histogram signature. The Low-key configuration
“LK” will target a bright object and a dark background to get contrast. Moreover,
the variance on the object should be high, because we want bright and dark areas on
the main object. The signature is a Low-key histogram signature. For the weights
of the objective function, we use the same weights for the background and the main
object. We use a bigger weighting value for the histogram term fhist as it describes
the image globally.

function term HK LK weight
tmeanObj 0.47 0.47 0.5
tmeanBack 0.78 0.04 0.5
tvarObj 0.24 0.63 0.4
tvarBack 0.17 0.04 0.4
tgrad 0.39 0.39 0.2
thist high low 1.0

Table 9.1 – Configurations and weights used for the target function.

fig. 9.5 shows a teapot inside an white box. There are two spherical light sources
in the scene, the key-light is behind the camera and the fill-light is behind the teapot.
The two light sources are aligned. We use photon mapping with final gathering for
the rendering. We speed-up the rendering by using radiance caching. Table 9.2
shows the final values produced by our algorithm for the teapot scene. The Low-key
configuration (fig. 9.5c) failed because of the bright background and diffuse inter-
reflections. When considering the background albedo as a free variable, we can get
a satisfying Low-key image (fig. 9.5e). This is visible in the table 9.2 where all the
final values, except the variance on the object vvarObj, are closer to the target values
(table 9.1). This problem with the variance on the object is due to the light sources
emplacement where light sources are aligned with the camera. The two High-key
results (figs. 9.5d and 9.9b) still have shadows cast by the object on the bottom of
the box. However, as shown in table 9.2, the final values are close to the target
values provided in table 9.1.

without back. with back.
final value HK LK HK LK
vmeanObj 0.44 0.03 0.42 0.46
vmeanBack 0.83 0.03 0.78 0.10
vvarObj 0.14 0.01 0.13 0.13
vvarBack 0.19 0.01 0.20 0.03
vgrad 0.47 0.03 0.44 0.48
fhist 0.102 0.110 0.092 0.188
fq 0.240 1.066 0.266 0.555

Table 9.2 – Final values for the teapot scene (fig. 9.5), fhist and fq values.

Figure 9.7 shows the result of our method for two different scenes: on the left,
the Girl scene with two planar light sources and a key-light close to the object; on
the right, the Creature scene, with a planar light source behind the camera and two

152

5. RESULTS

In
it

H
K

L
K

Figure 9.7 – Girl (left column) and Creature (right column) scenes. First row: ini-
tial configuration of the scene. Second row: optimization for a High-key aesthetics.
Third row: optimization for a Low-key aesthetics.

spherical light sources in the background. These two scenes have been rendered
using path tracing. As the background area in this scene is very large, we use two
sources to light it.

As we can see in the second and third rows of fig. 9.7, we can reach two different
aesthetics with the same scene. Final values for the Girl and the Creature scenes
are shown in table 9.3. In the former scene with HK configuration, we obtain a
bright background with low variance and a low variance on the object. In the LK
configuration, we obtain a dark background with low variance and a high variance on
the object, which generates contrast. For the Creature scene with HK configuration,
we still have shadows on the background as the background is large and difficult to
fill completely. Detailed plots are shown in fig. 9.9. In the LK configuration, we can
see a high contrast on the main object, and a dark background.

Figure 9.8 shows the results with a more complex scene and the results are
summed up in table 9.4. This scene is rendered with a bidirectional technique. This
shows the flexibility of our method. Three different light sources are optimized at
once. However, the glossy and uneven background surface makes it difficult to reach
Low-key and High-key aesthetics. In both cases, the variance of the background has
to be low, which is difficult to get with glossy reflections. In the case of the Low-key
image with the background albedo considered as a free variable, as the albedo of
the background is reduced, reflection from the object’s glossy surfaces are reduced,
therefore the background appears less glossy. Final values are presented in table 9.4.
Another complex background setting is shown in fig. 9.1 with two light sources and
without using some tuning of the background’s albedo.

The influence of the rendering process on variance has to be taken into account.
Indeed, Monte Carlo estimator provides a robust estimation of the fmeanObj and

153

CHAPTER 9. AUTOMATIC AESTHETICS-BASED LIGHTING DESIGN WITH GLOBAL
ILLUMINATION

Girl Creature
final value HK LK HK LK
vmeanObj 0.47 0.45 0.45 0.44
vmeanBack 0.82 0.18 0.78 0.13
vvarObj 0.21 0.33 0.23 0.25
vvarBack 0.13 0.06 0.21 0.11
vgrad 0.51 0.46 0.50 0.50
fhist 0.137 0.278 0.187 0.184
fq 0.284 0.609 0.308 0.529

timing (sec.) 569 810 718 467

Table 9.3 – Final values, fhist and fq values for the Girl and the Creature scenes
(fig. 9.7).

Init.

LK

LK Back.HK Back.

HK

Mask

Figure 9.8 – Fruit basket scene. First row: the image map and the initial image.
Second row: The HK and LK results without changing the background. Third
row: The HK and LK with the background albedo as free variable of the objective
function.

fmeanBack values. However, the other terms of the objective function, such as vari-
ance, are more sensitive to noise due to the Monte Carlo based rendering process.
To overcome this problem, we choose settings to minimize noise. An automated
solution is left for future works.

6 Future improvements

Our method can be further improved to provide even more flexibility for express-
ing the desired image aesthetics. For example, the style is only given by a set of
parameters (variance on the main object, etc.) defined by the user. In the future,
these parameters could be determined by using a target image in a similar fashion
to color transfer applications. Other parameters can be extracted from the input
image (light direction, light color, etc.) and used to build a more faithful objective
function. User study of our technique, versus manual tweaking, needs to be con-

154

6. FUTURE IMPROVEMENTS

without back. with back.
final value HK LK HK LK
vmeanObj 0.52 0.46 0.70 0.46
vmeanBack 0.41 0.16 0.68 0.07
vvarObj 0.27 0.25 0.23 0.27
vvarBack 0.29 0.15 0.30 0.06
vgrad 0.58 0.52 0.74 0.54
fhist 0.241 0.197 0.079 0.125
fq 0.618 0.602 0.456 0.419

Table 9.4 – Final values for the Fruit Basket (fig. 9.8, second row), fhist and fq

values with and without considering the background albedo as free variable of the
objective function.

0 10 20 30 40 50 60 70
Fq eval.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fq
 v

al
ue

(a) fq

0 10 20 30 40 50 60 70
Fq eval.

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Fq

 v
al

ue
fmeanObj

fmeanBack

fvarObj

fvarBack

fgrad

fhist

(b) objective function’s terms

Figure 9.9 – The leftmost figure shows the value of the objective function for
each evaluation step of the optimization process. The plot takes into account the
evaluations needed for computing gradients using finite difference method. The
rightmost figure shows the values of the different terms of the objective function.

ducted to properly evaluate our technique in terms of quality, easiness and speed.
In general, describing and controlling the desired aesthetics needs further research.

The optimization procedure can be improved. Indeed, gradients are computed by
finite differences by restarting the rendering for each evaluation. However, gradient
computation can be automatically embedded in the used rendering technique, which
could speed up the optimization operation (up to 5 times).

Moreover, we know that some free variables have a specific impact on the ren-
dering as shown in fig. 9.4. A multi objective optimization algorithm could be more
robust and find the optimal configuration faster.

More complex lighting configurations need to be studied. However, wrong light
positions can prevent the technique from reaching a correct minimization. In our
current technique, the position of the lamps are fixed. The reason for this is that
the searching space for the light orientations is too large. Parametrizing lighting
position could be an elegant solution to find light orientations automatically.

155

CHAPTER 9. AUTOMATIC AESTHETICS-BASED LIGHTING DESIGN WITH GLOBAL
ILLUMINATION

7 Conclusion

This chapter presented a new method for inverse rendering that accounts for target
parameters given by the user to specify a desired image aesthetics. These target
parameters are used to parametrize an objective function that is then minimized
iteratively. After each iteration, new values for the free variable of the scene (in our
case, scale and luminance of the light sources, material of the background) are set
up, and the objective function is evaluated again.

We tested our approach with two classic photographic styles (high-key and low-
key) and we obtained good results that convey the desired aesthetics, as specified by
the target parameters. In the objective function, we use simple luminance metrics.
It could be interesting to investigate the use of higher level metrics such as saliency
that would bring a higher correlation with the perception of the user.

Acknowledgements

The different scenes can be downloaded at blendswap.com. Girl is by Sharon. Crea-
ture is by Kevin Hays. Fruit basket is by Andrew Price.

The material in this chapter is, in part, a reproduction of the material pub-
lished in Vincent Leon, Adrien Gruson, Remi Cozot and Kadi Bouatouch "Auto-
matic Aesthetics-based Lighting Design with Global Illumination", Pacific Graphics
2014 [LGCB14], Short paper track.

156

10Conclusion

In this thesis, we focus on helping the artist to generate a computer generated im-
age that matches his/her intent. To achieve this, we have presented a background on
physically-based rendering and introduced Monte Carlo and Metropolis techniques.

First, we have focused on improving the rendering step. To this end, we have
proposed several new algorithms such as:

� a new accelerated rendering algorithm to render participating media. This
algorithm use GPU to achieve fast computation.

� extension of SPPM [HJ09] to handle participating media. In this technique,
we have also used Metropolis algorithm to be robust and efficient in case of
complex scenes.

� a new importance function that better distributes the relative error over the
image plane. We got a better convergence rate with a perceptual metric that
helps the artist to better visualize the final result. This technique does not
need any pre-computation and is automatic.

Second, we have proposed several other techniques to help the artist to extract
useful information or automatized redundant tasks:

� a new way to estimate the reference illuminant in 3D scenes. This technique
outperforms previous techniques.

� an automatic technique to setup the lighting (light source size and flux) to
achieve a desired aesthetics.

We hope that all these proposed techniques go one step further to make computer
graphics generated images more friendly to the artist.

1 Future work

Rendering step Rendering step is computationally intensive and high quality
images need a long time to be generated. For consumer computers, mixed CPU-
GPU rendering algorithm can be a good solution to get higher efficiency. Indeed,
GPU is really powerful but needs regular and coherent computation to be efficient.
So, the idea will be to split the evaluation of the rendering equation into parts:
the GPU will take care of the coherent computation (direct contribution, diffuse
bounces, etc.) and the CPU will take care of the rest (incoherent paths, rare event
sampling, etc.).

157

CHAPTER 10. CONCLUSION

Metropolis light transport (MLT) techniques are a good candidate for complex
scene rendering. However, they cannot be used for now in production due to local
exploration behavior. Indeed, the Markov Chain can slowly visit the path space.
A consequence, this creates wrong brightness levels in some parts of the image. To
reduce this problem, Metropolis algorithm needs more stratification and fast chain
mixing. A possible combination with classical Monte Carlo rendering techniques can
be a solution to the problem.

Regarding our new importance function, we have only shown its application to
photon mapping rendering techniques. Photon mapping is a robust rendering tech-
nique. However it has a major drawback: its bad convergence speed. Extensions to
support vertex connection and merging (VCM) [GKDS12, HPJ12] with our impor-
tance function will be an important improvement in terms of quality. A combination
in the same spirit as Hachisuka et al. [HKD14] needs to be studied.

Primary sample space (PSS) [KSKAC02] and path space MLT [VG97] have their
own strength/weakness. PSSMLT is more robust but less computationally efficient
than path space MLT. An interesting option will to mix these two MLT techniques.
Moreover, PSSMLT can be more efficient using blocking random number update
(to be able to reuse some parts of the path). Mutations parameters (size) need to
be automatically adapted using AMCMC [AT08] or genetic algorithms [LFCD07].
Getting better local adaptability for mutation size will improve MLT performance.

In this thesis, we have focused more on image rendering. However, dedicated
rendering algorithms for animation (several coherent rendered images) generation
need to be deeper studied. Indeed, we have seen that the supplementary dimension
needed for participating media helps find more efficient rendering techniques. In the
same idea, we have planned to study how MLT algorithms can take advantage of
the additional temporal dimension.

In general, efficiency and robustness are of high importance for rendering algo-
rithms. However, we need to keep in mind that such algorithms will be used by an
artist. We need to try to reduce the number of parameters needed for this step.

Tools for the artist Additional tools are developed to help the artist in his/her
creation process. For example, some tools initialize some parameters automatically
to get as output an image close to his intent. Then, the artist only needs to focus
on the creation details.

For that, the tools need to be as fast as possible (faster if the artist sets the
parameters manually). For example, the technique from the last chapter need to be
optimized to be practical. This can be done by using a specific rendering method.
Moreover, a graphics interface needs to be developed to make possible to the artist
to refine his original intent.

More general configurations need to be supported. For example, the number of
light sources, their positions and color need to be taken into account.

158

Résumé en Français

1 Introduction

L’utilisation de l’image de synthèse (image générée par un ordinateur) est de
plus en plus répandue dans l’industrie. Par exemple, elle est utilisée dans l’industrie
du divertissement pour produire du contenu comme des films ou des jeux video, ou
encore, dans le cadre de la prévisualation de projets/prototypes (architectures, etc.).

L’image générée peut être d’un niveau de réalisme varié. Dans cette thèse, nous
allons nous intéresser aux images photoréalistes. Ce type d’image est produit en se
basant sur les lois de la physique qui régissent la propagation de la lumière.

la scène 3D
Moteur
de rendu

Description de Image
Rendue

Post
Production

Image
Finale

Paramètres Paramètres

boucles essais/erreurs
Figure 10.1 – Les différentes étapes de génération d’une image de synthèse.
Plusieurs étapes sont répétées jusqu’a ce que l’artiste atteigne le style d’image visée.

Le plus souvent, l’utilisateur (par exemple, un artiste) produit une image de
synthèse pour atteindre un but donné (esthétique, ambiance, informations, etc.).
Pour ce faire, l’utilisateur peut jouer sur les différents paramètres d’entrée (les boîtes
oranges dans fig. 10.1), tels que la scène 3D et les paramètres utilisateur, à chaque
étape de génération. Plus précisement, une scène 3D contient une caméra virtuelle,
un ensemble de sources de lumière et plusieurs objets interagissant avec la lumière.
Chaque objet possède des paramètres qui décrivent la manière dont l’objet influence
la propagation de la lumière. Par ailleurs, les différentes étapes pour atteindre
l’image finale (les boîtes vertes dans fig. 10.1) dépendent d’un certain nombre de
paramètres qui peuvent être plus ou moins parlants pour l’utilisateur. Pour toutes
ces raisons, il est difficile pour un utilisateur d’obtenir directement le résultat voulu
sans passer par plusieurs étapes d’essais/erreurs (fig. 10.1). Le but de cette thèse
est d’apporter des solutions/amélorations à l’utilisateur pour faciliter le processus
de création d’images.

159

Résumé en Français

2 Algorithmes de rendu photoréalistes

Avant de rentrer dans le vif du sujet, nous allons présentrer les algorithmes de
rendu photoréalistes. Le but de ces méthodes est de trouver l’ensemble des chemins
de lumière (respectant les lois de la physique) qui contribuent à l’image vue depuis
la caméra. Pour ce faire, chaque chemin doit connecter une source de lumière à
la caméra en rebondissant, ou non, sur différents objets de la scène 3D. A chaque
rebond, la valeur et la direction du flux lumineux transporté changent en fonction
du matériau de l’objet touché.

Veach [Vea97] a proposé un cadre mathématique pour exprimer ces chemins
(chapitre 2). Son cadre modélise uniquement les interactions lumineuses de surface
à surface. Le but de l’algorithme de rendu est d’évaluer l’équation de rendu [Kaj86] :

Ij =
∫

P

fj(x)dµ(x), (10.1)

où Ij est la luminance au pixel j, P l’espace des chemins, x un chemin de lumière
de longueur k et composé des sommets x0, ...xk. La fonction de contribution fj au
pixel j peut s’exprimer comme :

fj(x) = Le(~x0→~x1)T (x)W j
e (~xk−1→~xk) (10.2)

T (x) = G(~x0↔~x1)
k−1∏

i=1

fr(~xi−1→~xi→~xi+1)G(~xi↔~xi+1) (10.3)

où Le(~x0→~x1) est la luminance de la source de lumière et W j
e (~xk−1→~xk) la fonction

de filtrage au pixel j. Par ailleurs, T (x), l’atténuation du chemin x, est un produit
des interactions lumineuses avec les matériaux fr(~xi−1→~xi→~xi+1) et des facteurs
géométriques G.

Il existe d’autres objets non surfaciques qui interagissent avec la lumière. C’est
le cas des milieux participatifs (fumée, feu, nuage, etc.), où chaque point du vol-
ume peut émettre, absorber ou diffuser la lumière. Prendre en compte ce genre
de phénomènes lumineux est difficile car très coûteux. En effet, l’intégration ne se
fait plus uniquement sur certains points de la scène (surfaces) mais en tout point
de la scène (volume). Cependant, il est possible d’étendre le cadre mathématique
de Veach pour pouvoir prendre toutes ces interactions lumineuse en compte (fin
chapitre 2).

L’évaluation de l’équation de rendu est coûteuse. Pour rendre cette évaluation
efficace, il existe plusieurs possibilités comme :

1. utiliser un materiel dédié / rapide : normalement, les algorithmes de
rendu sont mis en œuvre sur CPU1. Cependant, la carte graphique (GPU2)
possède une puissance de calcul qui dépasse celle des CPU. En effet, cette
puissance brute est due à l’utilisation massive du calcul parallèle. Cependant,
comme les CPU et les GPU ont des architectures différentes, il faut repenser
les algorithmes de rendu CPU pour qu’ils puissent s’exécuter efficacement sur
GPU.

1Central process unit : le processeur de l’ordinateur responsable des calculs généraux
2Graphics process unit : unité de calcul dédiée à l’affichage et aux calculs 2D/3D.

160

2. ALGORITHMES DE RENDU PHOTORÉALISTES

2. utiliser un outil/modèle mathématique plus évolué : pour une scène
3D quelquonque, il est difficile de trouver l’ensemble des chemins contribu-
tifs. Cependant, en utilisant des modèles ou des propriétés mathèmatiques, il
est possible d’améliorer l’efficacité et la robustesse des algorithmes de rendu.
Par exemple, au cours du processus de rendu, l’algorithme peut extraire de
l’information sur la scène et l’utiliser pour concentrer le travail dans les zones
intéressantes de la scène 3D.

Plus particulièrement, les estimateurs de Monte Carlo sont souvent utilisés dans
les algorithmes de rendu. Ce type d’algorithme est basé sur un processus stochas-
tique qui crée des chemins de façon aléatoire. Cependant, pour avoir un temps de
calcul raisonnable, ce type d’algorithme utilise un échantillonnage par importance.
Cette technique consiste à répartir les échantillions dans les zones intéressantes à
calculer.

S S

S S

Tracé de chemin Tracé de lumière

Tracé birdirectionel Photon mapping

Figure 10.2 – Les différentes façons de construire un chemin de lumière.

Dans la pratique, cela se traduit par différentes façons de construire des chemins
(fig. 10.2, abordé dans le chapitre 3 de la thèse). Par exemple, cela pourrait consister
à créer un chemin partant de la caméra jusqu’à ce qu’il touche une source de lumière.
Le but est de trouver une façon de construire les chemins pour faciliter l’exploration
du processus aléatoire.

Cependant, se limiter strictement aux lois de la physique peut poser problème.
En effet, certains phénomènes lumieux induisent des contraintes dans la construction
d’un chemin (surface spéculaire, lampe directionnelle, etc.). Ces contraintes rendent
difficile l’échantillionnage de l’espace de chemins de façon efficace. Une approache
courante, appelée photon mapping, consiste à relaxer les contraintes physiques pour
agrandir virtuellement l’ensemble des chemins contributifs. Dans la pratique, cela
se traduit par la possiblité de connecter deux chemins différents s’ils ont un sommet
proche spatialement. Cela permet de rendre les algorthimes de rendu plus robustes
au détriment d’un biais3.

3Le biais est dû au fait que l’on considère des chemins de lumière valides alors qu’ils ne le sont
pas. Cela se traduit par une luminance différente dans certaines parties de l’image.

161

Résumé en Français

3 Motivations

Les motivations de ce travail de thèse ont pour objectif de simplifier le travail
de l’artiste dans son processus de création. Pour cela, nous nous sommes concentrés
sur 2 points principaux :

1. développer des techniques de rendu rapides ou/et robustes pour des
scènes 3D générales. Il est important que la technique soit assez rapide pour
donner un aperçu à l’artiste afin qu’il puisse rectifier sa scène 3D au plus vite.
Cependant, il est important que cette visualisation rapide/intermédiaire soit
fidèle au rendu final4.

2. développer des techniques pour extraire des informations utiles ou
automatiser certaines tâches redondantes. Le but étant de réduire le plus
possible les boucles essais/erreurs en simplifiant la recherche des paramètres
corrects pour que l’utilisateur atteigne son but.

4 Sommaire des contributions

4.1 Méthode de rendu

Chapitre 5 : Calcul des interactions dans des milieux participatifs sur
GPU. Les interactions lumineuses dans un milieu participatif sont complexes et
consomatrices en temps de calcul. Calculer ces phénomènes lumineux, de façon
interactive, reste un défi. Les méthodes de type DOM permettent de calculer une
solution indépendante du point de vue. Ces techniques sont coûteuses en mémoire et
en temps de calcul car elles discrétisent l’espace des directions et le volume. Fattal
[Fat09] a proposé une méthode de ce type permettant de réduire le temps de calcul
et l’espace mémoire. Cependant, sa solution n’est adaptée qu’à une mise en œuvre
sur CPU.

Dans ce chapitre, nous proposons une implémentation GPU de l’algorithme de
Fattal. En réorganisant l’algorithme original, il est possible de le rendre massivement
parallèle tout en évitant des synchronisations entre les différents calculs. Cependant,
ce type d’algorithme reste gourmand en mémoire et peut poser un problème sur
GPU où la mémoire est limitée. Pour résoudre ce problème, nous proposons une
méthode de streaming des informations qui nous permette de ne plus être limité par
la mémoire du GPU.

Chapitre 6 : Rendu progressif basé photon mapping prenant en compte
les milieux participatifs. Le problème avec la technique précédente est qu’elle
ne gère pas les interactions surface-volume. Pour lever cette limitation, une solution
moins rapide mais plus générale consiste à utiliser un estimateur de Monte Carlo.
Hachisuka et al. [HJ09] ont proposé une méthode de rendu progressive basée sur le

4On entend par rendu final un processus de rendu de plusieurs minutes/heures pour générer
une image de haute qualité.

162

4. SOMMAIRE DES CONTRIBUTIONS

photon mapping (SPPM). Cependant, leur technique ne permet pas de prendre en
compte les milieux participatifs. Zwicker et al. [KZ11] ont proposé une solution à
ce problème en généralisant la méthode SPPM. Pour cela, ils effectuent de multiples
rendus bruités et moyennent les valeurs calculées pour produire un rendu de haute
qualité.

Dans le même temps, Hachisuka et al. [HJ11] ont proposé une amélioration de
SPPM (VSPPM) en utilisant l’algorithme de Metropolis-Hasting [MRR+53, Has70]
(chapitre 4). Cet algorithme permet de répartir automatiquement les échantillons
dans les zones intéressantes de l’espace des chemins. Cependant, cette amélioration
ne permet toujours pas de prendre en compte les milieux participatifs.

Dans ce chapitre, nous proposons d’étendre VSPPM aux milieux participatifs.
Cette nouvelle méthode permet de faire des rendus de façon robuste et efficace d’une
scène quelquonque. Par ailleurs, nous réutilisons l’algorithme de Metropolis pour
pouvoir guider les photons vers les zones intéressantes. Pour cela, nous proposons
une structure de données qui permettent de stocker les chemins venant de la caméra
sous forme de faisceaux.

Chapitre 7 : Distribution de l’erreur relative avec les méthodes de Metropo-
lis. Les méthodes basées sur Metropolis-Hasting permettent d’échantillionner de
façon efficace l’espace des chemins dans une scène complexe. Pour ce faire, ces méth-
odes utilisent une fonction d’importance qui permette de spécifier l’importance des
zones à échantillionner. Le choix de cette fonction est relativement libre et plusieurs
ont été proposées dans le cadre du rendu photoréaliste [VG97, HH10].

Le problème actuel de ces méthodes est la mauvaise distribution d’erreur sur le
plan image. En effet, dans le cadre d’un estimateur de Monte Carlo classique, le
même nombre d’échantillons est généré pour chaque pixel. Cependant, ce n’est pas
le cas des algorithmes de Metropolis car le processus échantillonne tout le plan image
en une seule fois. Il est donc difficile de contrôler la répartition des échantillons sur
le plan image et donc de répartir l’erreur.

Dans ce chapitre, nous proposons d’utiliser une fonction d’importance qui aura
pour rôle de distribuer l’erreur relative sur le plan image. Nous montrons l’efficacité
de l’utilisation de cette fonction d’importance dans le cadre du photon mapping
progressif et la comparons à differents travaux. Par ailleurs, nous proposons deux
fonctions d’importance concrètes : une formulée dans le plan image et l’autre dans
l’espace 3D. De plus, pour une meilleure robustesse, nous proposons l’utilisation du
MIS et du Replica exchange pour permettre à l’algorithme d’être efficace même pour
des scènes simples. Enfin, nous utilisons un processus adaptatif pour paramétrer
automatiquement la technique de rendu. Le but étant de réduire le plus possible le
nombre de paramètres utilisateur.

4.2 Outils d’aide à l’artiste

Chapitre 8 : Calcul de l’illuminant de référence dans le cadre de la syn-
thèse d’image. L’illuminant de référence est la couleur moyenne reçue par un
objet diffus blanc. Cet illuminant peut venir des sources de lumière comme des in-
teractions lumineuses avec des objets colorés. Cet illuminant aura un grand impact

163

Résumé en Français

sur la perception du résultat final.
Par exemple, la connaissance de cet illuminant va permettre de convertir l’image

générée par le moteur de rendu dans un espace de couleur neutre (ce processus est
appelé aussi balance des blancs). Cet espace neutre va nous permettre d’effectuer
des transformations de couleurs. Par ailleurs, à la fin de ces transformations, il
est possible de revenir dans l’illuminant de référence. Par exemple, l’illuminant de
référence est utilisé par certains algorithmes de transfert de style [NKB14].

Il existe deux catégories d’algorithme pour estimer l’illuminant de référence. La
première est consiste à l’estimer uniquement dans l’espace image [TTP08] (par ex-
emple pour la photographie). La deuxième l’estime dans l’espace 3D, ce qui est
possible uniquement si l’on a accès à cette dernière. C’est le cas de la technique de
Wilkie et Weidlich [WW09] qui permet de surpasser les techniques 2D.

Dans ce chapitre, nous proposons une nouvelle méthode d’estimation de l’illuminant
de reférence dans une scène 3D. Dans notre technique, nous proposons d’utiliser
l’illumination incidente à l’observateur comme illuminant de référence. Pour ce
faire, nous utilisons une boule blanche virtuelle placée à la position de la caméra
qui représente l’œil de l’observateur et nous calculons la luminance incidente. Pour
cela, nous utilisons un simple estimateur de Monte Carlo.

Pour évaluer notre technique, nous nous comparons avec la méthode de Wilkie
et Weidlich [WW09] dans le cadre de la balance des blancs. Nous montrons que
notre technique permet d’avoir de meilleurs résultats. Par ailleurs, notre technique
est relativement stable temporellement pour permettre son utilisation dans le cas
d’un déplacementt dans la scène.

Chapitre 9 : Détermination automatique de l’éclairage d’une scène 3D.
L’éclairage d’une scène 3D est un élément important dans l’esthétique de l’image
finale. Cependant, il est difficile pour un artiste de trouver les bons paramètres
d’éclairage. En effet, ces paramètres sont multiples comme :

� le nombre de sources de lumière et leur type (surfacique, directionelle, etc.) ;

� chaque source peut aussi avoir ses propres paramètres (taille, flux, etc.).

Shacked et Lichinski [SL01] ont proposé une méthode automatique de place-
ment de lampes ponctuelles pour un objet 3D. Leur but étant d’optimiser l’éclairage
pour rendre plus compréhensible les formes de l’objet. Pour cela, ils ont proposé
d’optimiser une fonction objectif. Cette fonction est ensuite utilisée pour déterminer
automatiquement les paramètres de l’éclairage.

Dans ce chapitre, nous proposons une méthode pour optimiser l’éclairage pour
atteindre une certaine esthétique. Pour ce faire, nous définisons une nouvelle fonc-
tion objectif qui va modéliser cette esthétique. Avec cette fonction objectif, notre
technique va optimiser certains paramètres des sources de lumière (taille et flux).
Cependant, contrairement à Shacked, nous ne changeons pas la position des lampes.

De plus, nous montrons des résultats pour plusieurs scènes 3D et pour différentes
esthétiques. Nous utilisons un algorithme de rendu photoréaliste pour permettre de
prendre en compte l’ensemble des phénomènes lumineux.

164

Bibliography

[AT08] Christophe Andrieu and Johannes Thoms. A tutorial on adaptive
mcmc. Statistics and Computing, 18(4):343–373, 2008. 63, 103, 119,
158

[BHPB+12] Daniele Bernabei, Ajit Hakke-Patil, Francesco Banterle, Marco Di
Benedetto, Fabio Ganovelli, Sumanta Pattanaik, and Roberto
Scopigno. A parallel architecture for interactively rendering scatter-
ing and refraction effects. IEEE Computer Graphics and Applications,
32:34–43, 2012. 72

[BIOP13] Guillaume Bouchard, Jean-Claude Iehl, Victor Ostromoukhov, and
Pierre Poulin. Improving robustness of monte-carlo global illumination
with directional regularization. In SIGGRAPH Asia 2013 Technical
Briefs, page 22. ACM, 2013. 45

[BRDC12] Thomas Bashford-Rogers, Kurt Debattista, and Alan Chalmers. A
significance cache for accelerating global illumination. In Computer
Graphics Forum, volume 31, pages 1837–1851. Wiley Online Library,
2012. 103

[Bre87] E. J. Brenenam. Corresponding chromaticities for different states of
adaptation to complex visual fields. Journal of the Optical Society of
America A, 4:1115–1129, 1987. 126

[Buc80] G.. Buchsbaum. A spatial processor model for object colour perception.
Journal of the Franklin Institute, 310, 1980. 127

[BW92] D.H. Brainard and B.A. Wandell. asymmetric color matching : how
color appearance depends on the illuminant. Journal of the Optical
Society of America A, 9:1433–1448, 1992. 126

[CdAS12] Francesc Castro, Esteve del Acebo, and Mateu Sbert. Energy-saving
light positioning using heuristic search. Eng. Appl. Artif. Intell.,
25(3):566–582, April 2012. 141

[CFB02] V. Cardei, B. Funt, and K. Barnard. Estimating the scene illumination
chromaticity using a neural network. Journal of the Optical Society of
America, 19(12), 2002. 127

[Chr03] Per H. Christensen. Adjoints and importance in rendering: An
overview. Visualization and Computer Graphics, IEEE Transactions
on, 9(3):329–340, 2003. 44

165

BIBLIOGRAPHY

[CIE98] CIE. The CIE 1997 Interim Colour Appearance Model. John Wiley
and sons, Ltd, 1998. 126

[CPCP+05] E. Cerezo, F. Perez-Cazorla, X. Pueyo, F. Seron, and F. Sillion. A sur-
vey on participating media rendering techniques. the Visual Computer,
2005. 72

[CRG+13] Charly Collin, Mickaël Ribardière, Adrien Gruson, Rémi Cozot,
Sumanta Pattanaik, and Kadi Bouatouch. Visibility-driven progressive
volume photon tracing. The Visual Computer, 29(9):849–859, 2013. 96

[CS02] Sung-Hyuk Cha and Sargur N. Srihari. On measuring the distance
between histograms. Pattern Recognition, 35(6):1355 – 1370, 2002. 147,
148

[CSFN11] Fabiano Cassol, Paulo Smith Schneider, Francis H.R. FranÃğa, and
AntÃťnio J. Silva Neto. Multi-objective optimization as a new approach
to illumination design of interior spaces. Building and Environment,
46(2):331–338, 2011. 141

[CTE05] David Cline, Justin Talbot, and Parris Egbert. Energy redistribution
path tracing. ACM Transactions on Graphics (TOG), 24(3):1186–1195,
2005. 61

[CW95] E. J. Chichilnisky and B. A. Wandell. Photoreceptor sensitivity changes
explain color appearance shifts induced by large uniform backgrounds
in dichoptic matching. Vision Research, 53:239–254, 1995. 126

[CWY11] Jiating Chen, Bin Wang, and Jun-Hai Yong. Improved stochastic
progressive photon mapping with metropolis sampling. In Computer
Graphics Forum, volume 30, pages 1205–1213. Wiley Online Library,
2011. 7, 62, 63, 101, 103, 104

[DJLW06] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Ze Wang. Studying
aesthetics in photographic images using a computational approach. In
ECCV (3), pages 288–301, 2006. 143

[DOB11] S. Dhar, V. Ordonez, and T.L. Berg. High level describable attributes
for predicting aesthetics and interestingness. In Computer Vision and
Pattern Recognition (CVPR), pages 1657–1664, 2011. 143

[ENSD12] Thomas Engelhardt, Jan Novák, Thorsten-W. Schmidt, and Carsten
Dachsbacher. Approximate bias compensation for rendering scenes with
heterogeneous participating media. Computer Graphics Forum (Pro-
ceedings of Pacific Graphics 2012), 31(7):2145–2154, 2012. 72

[ERDS14a] Oskar Elek, Tobias Ritschel, Carsten Dachsbacher, and Hans-Peter Sei-
del. Interactive light scattering with principal-ordinate propagation. In
Proceedings of Graphics Interface, Montreal/Quebec/Canada, 2014. 84

166

BIBLIOGRAPHY

[ERDS14b] Oskar Elek, Tobias Ritschel, Carsten Dachsbacher, and Hans-Peter Sei-
del. Principal-ordinates propagation for real-time rendering of partici-
pating media. Computers & Graphics, 45, 2014. 84

[Fai91a] M. D. Fairchild. Formulation and testing of an incomplete-chromatic-
adaptation model. Color Research Application, 16:243–250, 1991. 126

[Fai91b] M. D. Fairchild. A model of incomplete chromatic adaptation. In the
22nd Session of the CIE, pages 33–34. CIE, 1991. 126

[Fai05] Mark D. Fairchild. Color Appearance Model, Second edition. John
Wiley and sons, Ltd, 2005. 125, 126

[Fat09] Raanan Fattal. Participating media illumination using light propaga-
tion maps. ACM Trans. Graph., 28(1):1–11, 2009. 69, 71, 72, 73, 162

[FB12] Eduardo Fernández and Gonzalo Besuievsky. Technical section: Inverse
lighting design for interior buildings integrating natural and artificial
sources. Comput. Graph., 36(8):1096–1108, December 2012. 141

[FB14] Eduardo Fernández and Gonzalo Besuievsky. Efficient inverse lighting:
A statistical approach. Automation in Construction, 37(1):48–57, 2014.
141

[FCL+05] Shaohua Fan, Stephen Chenney, Yu-chi Lai, et al. Metropolis photon
sampling with optional user guidance. Rendering Techniques, 5:127–
138, 2005. 61, 101, 103

[FHT06] G. D. Finlayson, S. D. Hordley, and I. Tastl. Gamut constrained illu-
minant estimation. Int. J. Comput. Vision, 67(1):93–109, 2006. 127

[FT04] Graham D. Finlayson and Elisabetta Trezzi. Shades of gray and colour
constancy. In Color Imaging Conference, pages 37–41, 2004. 128

[GGW10] Arjan Gijsenij, Theo Gevers, and Joost Weijer. Generalized gamut
mapping using image derivative structures for color constancy. Int. J.
Comput. Vision, 86(2-3):127–139, 2010. 127, 128

[GKDS12] Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp
Slusallek. Light transport simulation with vertex connection and merg-
ing. ACM Trans. Graph., 31(6):192:1–192:10, November 2012. 50, 101,
103, 118, 158

[GPC+12] Adrien Gruson, Ajit Hakke Patil, Rémi Cozot, Kadi Bouatouch, and
Sumanta N Pattanaik. Light propagation maps on parallel graphics
architectures. In EGPGV, pages 81–88, 2012. 83

[GRB+08] P.V. Gehler, C. Rother, A. Blake, T. Minka, and T. Sharp. Bayesian
color constancy revisited. pages 1–8, June 2008. 127

167

BIBLIOGRAPHY

[GRC13] Adrien Gruson, Mickaël Ribardière, and Rémi Cozot. Eye-centered
color adaptation in global illumination. In Computer Graphics Forum,
volume 32, pages 111–120. Wiley Online Library, 2013. 137

[GRWS04] Robert Geist, Karl Rasche, James Westall, and Robert J. Schalkoff.
Lattice-boltzmann lighting. In Alexander Keller and Henrik Wann
Jensen, editors, Proceedings of the 15th Eurographics Workshop on Ren-
dering Techniques, NorkÃűping, Sweden, June 21-23, 2004, pages 355–
362. Eurographics Association, 2004. 72

[Gut91] SL. Guth. Model for color vision and light adaptation. Journal of the
Optical Society of America A, 8:976–993, 1991. 126

[Has70] W Keith Hastings. Monte carlo sampling methods using markov chains
and their applications. Biometrika, 57(1):97–109, 1970. 19, 102, 163

[HBS04] Vlastimil Havran, Jiří Bittner, and Hans-Peter Seidel. Ray maps for
global illumination. In ACM SIGGRAPH 2004 Sketches, SIGGRAPH
’04, pages 77–, New York, NY, USA, 2004. ACM. 91

[HH10] Jared Hoberock and John C Hart. Arbitrary importance functions for
metropolis light transport. In Computer Graphics Forum, volume 29,
pages 1993–2003. Wiley Online Library, 2010. 62, 101, 102, 104, 111,
163

[HJ09] Toshiya Hachisuka and Henrik Wann Jensen. Stochastic progressive
photon mapping. In ACM Transactions on Graphics (TOG), volume 28,
page 141. ACM, 2009. 47, 85, 86, 101, 103, 104, 105, 108, 111, 157, 162

[HJ11] Toshiya Hachisuka and Henrik Wann Jensen. Robust adaptive photon
tracing using photon path visibility. ACM Trans. Graph., 30(5):114:1–
114:11, October 2011. 8, 62, 64, 85, 87, 89, 92, 95, 101, 103, 104, 112,
113, 114, 117, 119, 163

[HKD14] Toshiya Hachisuka, Anton S Kaplanyan, and Carsten Dachsbacher.
Multiplexed metropolis light transport. ACM Transactions on Graphics
(TOG), 33(4):100, 2014. 60, 102, 158

[HKRs+06] Markus Hadwiger, Joe M. Kniss, Christof Rezk-salama, Daniel
Weiskopf, and Klaus Engel. Real-time Volume Graphics. A. K. Pe-
ters, Ltd., Natick, MA, USA, 2006. 27

[HOJ08] Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. Progressive
photon mapping. ACM Trans. Graph., 27:130:1–130:8, December 2008.
47, 85, 86

[Hor06] S. D. Hordley. Scene illuminant estimation: past, present, and future.
Color Research and Application, 31(4):303–314, 2006. 127

168

BIBLIOGRAPHY

[HPB07] Miloš Hašan, Fabio Pellacini, and Kavita Bala. Matrix row-column
sampling for the many-light problem. In ACM Transactions on Graph-
ics (TOG), volume 26, page 26. ACM, 2007. 51

[HPBC+13] Ajit Hakke-Patil, Daniele Bernabei, Chaly Collins, Ke Chen, Sumanta
Pattanaik, and Fabio Ganovelli. Parallel mdom for light transport
in participating media. In Spring Conference on Computer Graphics,
pages 131–138. ACM, 2013. 83

[HPJ12] Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. A
path space extension for robust light transport simulation. ACM Trans.
Graph., 31(6):191:1–191:10, November 2012. 50, 101, 103, 118, 158

[Ish78] Akira Ishimaru. Wave propagation and scattering in random media.
Academic Press, New York, 1978. 72

[Jak10] Wenzel Jakob. Mitsuba renderer, 2010. http://www.mitsuba-
renderer.org. 94, 113, 131, 151

[JC98] Henrik Wann Jensen and Per H. Christensen. Efficient simulation of
light transport in scences with participating media using photon maps.
In Proceedings of the 25th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’98, pages 311–320, New York, NY,
USA, 1998. ACM. 85, 86, 88

[Jen95] Henrik Wann Jensen. Importance driven path tracing using the photon
map. In Rendering TechniquesâĂŹ 95, pages 326–335. Springer, 1995.
44

[Jen01] Henrik Wann Jensen. Realistic image synthesis using photon mapping.
A. K. Peters, Ltd., Natick, MA, USA, 2001. 44, 46, 85, 88

[JM12] Wenzel Jakob and Steve Marschner. Manifold exploration: a markov
chain monte carlo technique for rendering scenes with difficult specular
transport. ACM Transactions on Graphics (TOG), 31(4):58, 2012. 57,
58, 103

[JMLH01] Henrik Wann Jensen, Stephen R Marschner, Marc Levoy, and Pat Han-
rahan. A practical model for subsurface light transport. In Proceedings
of the 28th annual conference on Computer graphics and interactive
techniques, pages 511–518. ACM, 2001. 24

[JNT+11] Wojciech Jarosz, Derek Nowrouzezahrai, Robert Thomas, Peter-Pike
Sloan, and Matthias Zwicker. Progressive photon beams. ACM Trans-
actions on Graphics (Proceedings of ACM SIGGRAPH Asia 2011),
30(6), December 2011. 71, 85, 87, 90, 96

[JZJ08a] Wojciech Jarosz, Matthias Zwicker, and Henrik Wann Jensen. The
beam radiance estimate for volumetric photon mapping. Computer
Graphics Forum (Proceedings of Eurographics 2008), 27(2):557–566,
April 2008. 71, 86, 88, 89

169

BIBLIOGRAPHY

[JZJ08b] Wojciech Jarosz, Matthias Zwicker, and Henrik Wann Jensen. Irradi-
ance gradients in the presence of participating media and occlusions. In
Computer Graphics Forum, volume 27, pages 1087–1096. Wiley Online
Library, 2008. 51

[Kaj86] James T. Kajiya. The rendering equation. SIGGRAPH Comput.
Graph., 20(4):143–150, August 1986. 25, 160

[KD13a] Anton S Kaplanyan and Carsten Dachsbacher. Adaptive progressive
photon mapping. ACM Transactions on Graphics (TOG), 32(2):16,
2013. 49

[KD13b] Anton S Kaplanyan and Carsten Dachsbacher. Path space regular-
ization for holistic and robust light transport. In Computer Graphics
Forum, volume 32, pages 63–72. Wiley Online Library, 2013. 45, 64,
103

[Kel97] Alexander Keller. Instant radiosity. In Proceedings of the 24th
annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’97, pages 49–56, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co. 51, 87

[KGH+14] Jaroslav KrivâĂŹanek, Iliyan Georgiev, Toshiya Hachisuka, Petr
V’evoda, Martin Sik, Derek Nowrouzezahrai, and Wojciech Jarosz. Uni-
fying points, beams, and paths in volumetric light transport simulation.
ACM Trans. Graph., 33(4):1âĂŞ13, August 2014. 50, 103

[KGPB05] Jaroslav Krivanek, Pascal Gautron, Sumanta Pattanaik, and Kadi
Bouatouch. Radiance caching for efficient global illumination compu-
tation. Visualization and Computer Graphics, IEEE Transactions on,
11(5):550–561, 2005. 51

[KHD14] Anton S Kaplanyan, Johannes Hanika, and Carsten Dachsbacher.
The natural-constraint representation of the path space for efficient
light transport simulation. ACM Transactions on Graphics (TOG),
33(4):102, 2014. 58, 103

[KJF07] J. Kuang, G. M. Johnson, and M. D. Fairchild. icam06: A refined
image appearance model for hdr image rendering. Journal of Visual
Communication, 2007. 128

[KKK09] Shinya Kitaoka, Yoshifumi Kitamura, and Fumio Kishino. Replica ex-
change light transport. In Computer Graphics Forum, volume 28, pages
2330–2342. Wiley Online Library, 2009. 64, 65, 103, 112, 113

[KPC93] John K. Kawai, James S. Painter, and Michael F. Cohen. Radioptimiza-
tion: goal based rendering. In Proceedings of the 20th annual conference
on Computer graphics and interactive techniques, SIGGRAPH, pages
147–154, 1993. 140, 141, 149

170

BIBLIOGRAPHY

[KR09] Timo Kunkel and Erik Reinhard. A neurophysiology-inspired steady-
state color appearance model. Journal of the Optical Society of America
A, 26(4):776–782, April 2009. 128

[KSKAC02] Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc
Csonka. A simple and robust mutation strategy for the metropolis
light transport algorithm. In Computer Graphics Forum, volume 21,
pages 531–540. Wiley Online Library, 2002. 59, 61, 64, 65, 104, 105,
158

[KZ11] Claude Knaus and Matthias Zwicker. Progressive photon mapping: A
probabilistic approach. ACM Trans. Graph., 30:25:1–25:13, May 2011.
47, 85, 87, 89, 94, 96, 163

[Lan77] E. H. Land. The retinex theory of color vision. Scientic American,
237(6):108–120, 1977. 127, 128

[LBC94] E. Languenou, K. Bouatouch, and M. Chelle. Global illumination in
presence of participating media with general properties. Proceedings du
5th Eurographics Workshop on Rendering, 1994. 72, 83

[LFCD07] Yu-Chi Lai, Shao Hua Fan, Stephen Chenney, and Charcle Dyer. Pho-
torealistic image rendering with population monte carlo energy redis-
tribution. In Proceedings of the 18th Eurographics conference on Ren-
dering Techniques, pages 287–295. Eurographics Association, 2007. 64,
158

[LGCB14] V Léon, A Gruson, R Cozot, and K Bouatouch. Automatic aesthetics-
based lighting design with global illumination. 2014. 156

[LKL+13] Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Du-
rand, and Timo Aila. Gradient-domain metropolis light transport.
ACM Transactions on Graphics (TOG), 32(4):95, 2013. 61, 102

[LLW00] Jun S Liu, Faming Liang, and Wing Hung Wong. The multiple-try
method and local optimization in metropolis sampling. Journal of the
American Statistical Association, 95(449):121–134, 2000. 61

[LM71] EDWIN H. LAND and JOHN J. McCANN. Lightness and retinex
theory. J. Opt. Soc. Am., 61(1):1–11, Jan 1971. 128

[LW93] Eric P Lafortune and Yves D Willems. Bi-directional path tracing. In
Proceedings of CompuGraphics, volume 93, pages 145–153, 1993. 42

[MFH+02] Y. N. Morone, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Lou,
and T. Newman. The ciecam02 color appearance model. In In Color
Imaging Conference (2002), IS&T, pages 23–27. Society for Imaging
Science and Technology, 2002. 128, 131

171

BIBLIOGRAPHY

[MFSG08] Miguel Martin, Roland Fleming, Olga Sorkine, and Diego Gutierrez.
Understanding exposure for reverse tone mapping. In Congreso Espanol
de Informática Gráfica, pages 189–198, 2008. 147

[MPS09] Jean-Michel Morel, Ana B. Petro, and Catalina Sbert. Fast implemen-
tation of color constancy algorithms. In Proc. SPIE 7241, Color Imag-
ing XIV: Displaying, Processing, Hardcopy, and Applications, 724106
(January 19, 2009), 2009. 128

[MPS10] Jean Michel Morel, Ana Belén Petro, and Catalina Sbert. A pde formal-
ization of retinex theory. Trans. Img. Proc., 19(11):2825–2837, Novem-
ber 2010. 128

[MRR+53] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth,
Augusta H Teller, and Edward Teller. Equation of state calculations by
fast computing machines. The journal of chemical physics, 21(6):1087–
1092, 1953. 19, 53, 163

[NCNS03] Laszlo Neumann, Francesc Castro, Attila Neumann, and Mateu Sbert.
Color appearance in multispectral radiosity. In G. Renner L. Szirmay-
Kalos, editor, Proceedings on the 2nd Hungarian Computergraphics and
Geometry Conference, pages 183–194, 2003. 125, 128, 129

[Nea96] Radford M Neal. Sampling from multimodal distributions using tem-
pered transitions. Statistics and computing, 6(4):353–366, 1996. 103,
112

[NKB14] RMH Nguyen, SJ Kim, and MS Brown. Illuminant aware gamut-based
color transfer. In Computer Graphics Forum, volume 33, pages 319–328.
Wiley Online Library, 2014. 123, 164

[NNDJ12a] Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech
Jarosz. Progressive virtual beam lights. Computer Graphics Forum
(Proceedings of EGSR 2012), 31(4), June 2012. 71, 87

[NNDJ12b] Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech
Jarosz. Virtual ray lights for rendering scenes with participating me-
dia. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH
2012), 31(4), July 2012. 87, 96

[NTS81] Y. Nayatani, K. Takahama, and H. Sobagaki. Formulation of anonlinear
model of chromatic adaptation. Color Research Application, 6:161–171,
1981. 126

[num13] Numpy 1.6.2. http://www.numpy.org/, 2013. [Online; accessed May
2013]. 151

[ON94] Michael Oren and Shree K Nayar. Generalization of lambert’s re-
flectance model. In Proceedings of the 21st annual conference on Com-
puter graphics and interactive techniques, pages 239–246. ACM, 1994.
24

172

http://www.numpy.org/

BIBLIOGRAPHY

[ope13] Opencv 2.4.4. http://www.opencv.org/, 2013. [Online; accessed May
2013]. 151

[PBPP11] Anthony Pajot, Loic Barthe, Mathias Paulin, and Pierre Poulin. Repre-
sentativity for robust and adaptive multiple importance sampling. Visu-
alization and Computer Graphics, IEEE Transactions on, 17(8):1108–
1121, 2011. 38

[Pes73] Peter H Peskun. Optimum monte-carlo sampling using markov chains.
Biometrika, 60(3):607–612, 1973. 55

[PH10] Matt Pharr and Greg Humphreys. Physically Based Rendering, Second
Edition: From Theory To Implementation. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2nd edition, 2010. 24, 125

[PP98] Ingmar Peter and Georg Pietrek. Importance driven construction of
photon maps. Springer, 1998. 103

[PP03] Gustavo Patow and Xavier Pueyo. A survey of inverse rendering prob-
lems. Computer Graphics Forum, 22(4):663–687, 2003. 140

[PPS97] Frederic Pérez, Xavier Pueyo, and François X. Sillion. Global illumina-
tion techniques for the simulation of participating media. Proceedings
of the Eurographics Workshop on Rendering Techniques ’97, 1997. 72

[PW00] Panos Y Papalambros and Douglass J Wilde. Principles of optimal
design: modeling and computation. Cambridge university press, 2000.
141

[R+11] Jeffrey S Rosenthal et al. Optimal proposal distributions and adaptive
mcmc. Handbook of Markov Chain Monte Carlo, pages 93–112, 2011.
64

[RB07] Alexa I. Ruppertsberg and Marina Bloj. Reflecting on a room of one
reflectance. Journal of Vision, 7(13):–, 2007. 128

[RCB11] Mickaël Ribardière, Samuel Carré, and Kadi Bouatouch. Adaptive
records for irradiance caching. In Computer Graphics Forum, vol-
ume 30, pages 1603–1616. Wiley Online Library, 2011. 51

[RDGK12] Tobias Ritschel, Carsten Dachsbacher, Thorsten Grosch, and Jan
Kautz. The state of the art in interactive global illumination. In
Computer Graphics Forum, volume 31, pages 160–188. Wiley Online
Library, 2012. 51

[RGK+08] Tobias Ritschel, Thorsten Grosch, Min H Kim, H-P Seidel, Carsten
Dachsbacher, and Jan Kautz. Imperfect shadow maps for efficient com-
putation of indirect illumination. In ACM Transactions on Graphics
(TOG), volume 27, page 129. ACM, 2008. 51

173

http://www.opencv.org/

BIBLIOGRAPHY

[RPK+12] Erik Reinhard, Tania Pouli, Timo Kunkel, Ben Long, Anders Ballestad,
and Gerwin Damberg. Calibrated image appearance reproduction.
ACM Trans. Graph., 31(6):201:1–201:11, November 2012. 128

[sci13] Scipy 0.12.0. http://www.scipy.org/, 2013. [Online; accessed May
2013]. 151

[SDS+93] Chris Schoeneman, Julie Dorsey, Brian Smits, James Arvo, and Donald
Greenberg. Painting with light. In Proceedings of the 20th annual con-
ference on Computer graphics and interactive techniques, SIGGRAPH,
pages 143–146, 1993. 140, 142

[SH01] R. Siegel and J. R. Howell. Thermal Radiation Heat Transfer, 4th
Revised edition. Taylor & Francis Inc, 2001. 71, 72

[Sic13] Julien Sicre. Classifying images by light aesthetics. PhD thesis, IRISA
Rennes Bretagne Atlantique, équipe FRVSense, 2013. 147

[SIP07] Benjamin Segovia, Jean Claude Iehl, and Bernard Péroche. Metropolis
instant radiosity. In Computer Graphics Forum, volume 26, pages 425–
434. Wiley Online Library, 2007. 61

[SJJ12] Jorge Schwarzhaupt, Henrik Wann Jensen, and Wojciech Jarosz. Prac-
tical hessian-based error control for irradiance caching. ACM Transac-
tions on Graphics (TOG), 31(6):193, 2012. 51

[SKLU+09] LÃąszlÃş Szirmay-Kalos, Gabor Liktor, TamÃąs Umenhoffer, BalÃązs
TÃşth, Shree Kumar, and Glenn Lupton. Parallel solution to the radia-
tive transport. In Kurt Debattista, Daniel Weiskopf, and JoÃčo Comba,
editors, EGPGV, pages 95–102. Eurographics Association, 2009. 72

[SKLU+11] Laszlo Szirmay-Kalos, Gabor Liktor, Tamas Umenhoffer, Balazs Toth,
Shree Kumar, and Glenn Lupton. Parallel iteration to the radiative
transport in inhomogeneous media with bootstrapping. IEEE Transac-
tions on Visualization and Computer Graphics, 17(2):146–158, Febru-
ary 2011. 72

[SL01] Ram Shacked and Dani Lischinski. Automatic lighting design using a
perceptual quality metric. Computer Graphics Forum, 20:2001, 2001.
140, 141, 142, 143, 145, 146, 164

[Sta95] Jos Stam. Multiple scattering as a diffusion process. In In Eurographics
Rendering Workshop, pages 41–50, 1995. 72

[Sub60] Chandrasekhar Subrahmanyan. Radiative Transfer. Dover Publica-
tions, 1960. 27, 71, 87

[SVLL10] Marco Salvi, Kiril Vidimče, Andrew Lauritzen, and Aaron Lefohn.
Adaptive volumetric shadow maps. In Computer Graphics Forum, vol-
ume 29, pages 1289–1296. Wiley Online Library, 2010. 83

174

http://www.scipy.org/

BIBLIOGRAPHY

[SWZ96] Peter Shirley, Changyaw Wang, and Kurt Zimmerman. Monte carlo
techniques for direct lighting calculations. ACM Transactions on
Graphics (TOG), 15(1):1–36, 1996. 38

[TCE05] Justin F. Talbot, David Cline, and Parris Egbert. Importance resam-
pling for global illumination. In Proceedings of the Sixteenth Euro-
graphics Conference on Rendering Techniques, EGSR ’05, pages 139–
146, Aire-la-Ville, Switzerland, Switzerland, 2005. Eurographics Asso-
ciation. 54

[TS67] Kenneth E Torrance and Ephraim M Sparrow. Theory for off-specular
reflection from roughened surfaces. JOSA, 57(9):1105–1112, 1967. 24

[TTP08] Alain Tremeau, Shoji Tominaga, and Konstantinos N. Plataniotis.
Color in image and video processing: Most recent trends and future
research directions. EURASIP Journal on Image and Video Process-
ing, 2008, 2008. 127, 164

[VdWSV07] Joost Van de Weijer, Cordelia Schmid, and Jakob Verbeek. Using high-
level visual information for color constancy. In IEEE Conference on
Computer Vision (ICCV), 2007. 127

[Vea97] Eric Veach. Robust Monte Carlo methods for light transport simulation.
PhD thesis, Stanford University, 1997. 26, 28, 34, 37, 43, 53, 61, 101,
102, 104, 105, 107, 113, 160

[VG95] Eric Veach and Leonidas Guibas. Bidirectional estimators for light
transport. In Photorealistic Rendering Techniques, pages 145–167.
Springer, 1995. 42

[VG97] Eric Veach and Leonidas J Guibas. Metropolis light transport. In
Proceedings of the 24th annual conference on Computer graphics and
interactive techniques, pages 65–76. ACM Press/Addison-Wesley Pub-
lishing Co., 1997. 53, 54, 56, 57, 61, 102, 158, 163

[VK70] J. Von Kries. Chromatic adaptation, pages 109–119. MIT Press, 1970.
126, 130

[VKŠ+14] Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav
Křivánek. On-line learning of parametric mixture models for light trans-
port simulation. ACM Transactions on Graphics (TOG), 33(4):101,
2014. 8, 51, 101, 102, 103, 113, 114, 117, 118

[WABG06] Bruce Walter, Adam Arbree, Kavita Bala, and Donald P Greenberg.
Multidimensional lightcuts. In ACM Transactions on Graphics (TOG),
volume 25, pages 1081–1088. ACM, 2006. 51

[WEV02] Greg Ward and Elena Eydelberg-Vileshin. Picture perfect rgb rendering
using spectral prefiltering and sharp color primaries. In EGRW ’02:
Proceedings of the 13th Eurographics workshop on Rendering, pages

175

BIBLIOGRAPHY

117–124, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics
Association. 128

[WFA+05] Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala,
Michael Donikian, and Donald P Greenberg. Lightcuts: a scalable
approach to illumination. In ACM Transactions on Graphics (TOG),
volume 24, pages 1098–1107. ACM, 2005. 51

[WH92] Gregory J Ward and Paul Heckbert. Irradiance gradients. In Third
Eurographics Workshop on Rendering, volume 8598, 1992. 51

[WKB12] Bruce Walter, Pramook Khungurn, and Kavita Bala. Bidirectional
lightcuts. ACM Transactions on Graphics (TOG), 31(4):59, 2012. 51

[WKSD13] Christoph Weber, Anton Kaplanyan, Marc Stamminger, and Carsten
Dachsbacher. Interactive direct volume rendering with many-light
methods and transmittance caching. In VMV, pages 195–202, 2013.
83

[WMLT07] Bruce Walter, Stephen R Marschner, Hongsong Li, and Kenneth E Tor-
rance. Microfacet models for refraction through rough surfaces. In Pro-
ceedings of the 18th Eurographics conference on Rendering Techniques,
pages 195–206. Eurographics Association, 2007. 24

[WRC88] Gregory J Ward, Francis M Rubinstein, and Robert D Clear. A ray
tracing solution for diffuse interreflection. ACM SIGGRAPH Computer
Graphics, 22(4):85–92, 1988. 51

[WW09] A. Wilkie and A. Weidlich. A robust illumination estimate for chro-
matic adaptation in rendered images. In Eurographics Symposium on
Rendering 2009, 2009. 124, 128, 129, 132, 133, 164

[WWH+10] Yajun Wang, Jiaping Wang, Nicolas Holzschuch, Kartic Subr, Jun-
Hai Yong, and Baining Guo. Real-time rendering of heterogeneous
translucent objects with arbitrary shapes. Computer Graphics Forum
(Proceedings of Eurographics 2010), 2010. 72

[YCK05] Kuk-Jin Yoon, Yoo Jin Chofi, and In-So Kweon. Dichromatic-based
color constancy using dichromatic slope and dichromatic line space.
In Image Processing, 2005. ICIP 2005. IEEE International Conference
on, volume 3, pages III–960–3, 2005. 128

[ZBLN97] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Al-
gorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-
constrained optimization. ACM Trans. Math. Softw., 23(4):550–560,
December 1997. 149, 151

[ZEN09] Joseph Zupko and Magy Seif El-Nasr. System for automated interactive
lighting (sail). In Proceedings of the 4th International Conference on
Foundations of Digital Games, FDG ’09, pages 223–230, New York,
NY, USA, 2009. ACM. 141, 142

176

BIBLIOGRAPHY

[ZRL+08] K. Zhou, Z. Ren, S. Lin, H. Bao, B. Guo, and H-Y. Shum. Real-time
smoke rendering using compensated ray marching. ACM Trans. Graph.,
27(3):36, 2008. 72

[ZSK13] Károly Zsolnai and László Szirmay-Kalos. Automatic parameter con-
trol for metropolis light transport. In Eurographics 2013 Short Papers,
pages 53–56. Eurographics Association, 2013. 64

177

ANNEXE 2 (Modèle dernière page de thèse)
 VU : VU :

 Le Directeur de Thèse Le Responsable de l'École Doctorale
 (Nom et Prénom)

 VU pour autorisation de soutenance

 Rennes, le

Le Président de l'Université de Rennes 1

 Guy CATHELINEAU

 VU après soutenance pour autorisation de publication :

 Le Président de Jury,
 (Nom et Prénom)

BIBLIOGRAPHY

179

	List of figures
	List of tables
	Introduction
	Summary of the contributions
	Publications

	I Background on Global Illumination
	Mathematical and Physical models
	Radiometric quantities
	Surface interaction
	Volume interaction

	Monte Carlo solutions
	General formulation
	Importance sampling
	General framework
	Multiple distributions

	Practical aspects
	Direct rendering
	Indirect rendering with unbiased estimator
	Path tracing
	Light tracing
	Bidirectional Path tracing

	Indirect rendering with biased estimator
	Photon mapping
	Progressive photon mapping

	Combining biased and unbiased estimators
	Discussion

	Markov Chain Monte Carlo
	Introduction
	Overview of the MLT algorithm
	Practical aspect
	State domain and mutations
	Importance functions
	Other mathematical tools

	II Efficient and robust rendering techniques
	Light propagation maps on GPU
	Previous works
	Fattal's algorithm
	New Method: Parallel and Scalable LPM
	Parallelization
	Streaming

	Implementation and Results
	Conclusions & Further works

	Progressive volume photon tracing
	Related work
	Background
	Overview
	Implementation details
	Preprocessing step
	Visibility-driven Photon shooting step
	Radiance update

	Collecting statistics
	Image update
	Radius update

	Results
	Conclusion

	A spatial importance function for MLT
	Related Work
	Overview
	Importance Function
	Algorithm
	Importance function calculation
	Spatial region definition and refinement
	Algorithm Overview
	Sampling form the importance function

	Results
	Limitations and Discussion
	Conclusions and Future Work

	III Computer-aided global illumination techniques for artists
	Eye-centred color adaptation in global illumination
	Introduction
	Chromatic Adaptation
	Related works
	Our color adaptation method
	Generalization of chromatic adaptation
	Eye-centered estimate of the adaptation color

	Results
	Standard tests cases
	Complex tests cases
	Sequence tests cases

	Conclusion

	Automatic aesthetics-based lighting design with global illumination
	Introduction
	Related Works
	Image-based methods
	Global Methods
	Discussion

	Overview of the approach
	Approaching an aesthetics with function minimization
	Objective function
	fmeanObj and fmeanBack
	fvarObj and fvarBack
	fgrad
	fhist

	Free variables
	Optimization

	Results
	Future improvements
	Conclusion

	Conclusion
	Future work

	Bibliography

