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The Heavy Machine Context

Construction sites are always considered as a high risk working environment. People who work near heavy machines are constantly at risk of being struck by machines or their components. Accidents between machines and people represent a significant part to construction health and safety hazards. Well trained operators as well as protection equipment are e ective ways to reduce injuries and deaths; it is however di cult to remove altogether these hazards. In many cases, accidents are caused by experienced operators due to the lack of vision, especially on machines of large size. Drivers are required to keep watching all around their vehicle and fulfill their productive task.

All manipulations on a usually complex machine need a lot of attention. The most experienced and watchful driver may not notice that some people are working in the vicinity of a machine, especially in blind angles. Without the help of e cient detection devices, safety is very di cult to maintain.

Due to their large di erent functionalities and shapes (see Fig. information about the investigations of accidents from the EPICEA database 2 , in the period starting from 1997 to 2008 for France. From 2157 accident cases of all kinds, there are about 15% caused by collisions between machines and people (Fig. 1.2a).

Although, the number of accidents caused by excavators is high, it is not the most dangerous type of machines even if it represents up to 70% of all a ective machines in construction (Fig. 1.2). Indeed, graders with a very few numbers of a ective machines cause up to 4% of the accidents. It is therefore the most dangerous machine followed by dump trucks. The problem of these types of machine lies in the limited visibility of the driver, which will be addressed later in chapter 2.

If we go further into details, accidents often happen with machines in movement (69%), especially in backward motion (42%). In static working circumstances, most of the time accidents are caused by movements of the arms of the excavators (19%) and the remaining 1% happens during wheels turning (see Fig. 1.3).

Later on, the National Institute for Occupational Safety and Health (NIOSH) published another report on safety hazards in construction sites in USA [ Stephens 13]. During the period 2003-2010, 962 workers were killed while working at construction sites. 87% of these deaths were to workers working on site at the time of the incident and the remaining 13% were to people passing through the construction site. Workers on site were primarily killed when struck by moving equipment, followed by fall from moving equipment, and collisions between machines when the victims were operating inside.

2 EPICEA is a data base on working accidents, made by collaboration between CNAMTS (Caisse nationale de l'assurance maladie), CRAM (les Caisses régionales d'assurance maladie) and INRS (Institut national de recherche et de sécurité) since 1988. Incidents caused by moving equipments accounted for 76% of fatal injuries. These data once again confirm the remarks that the incidents caused by moving equipment take the majority.

People Detection Systems

In view of these worrying statistics, e orts have been made to improve the safety for people working around heavy machines. There are society concerns as it has direct impact in terms of casualties, economic and societal costs. As part of the actions leaded by the CETIM, the need for an intelligent safety system for heavy machines have been identified for construction equipment. A meeting in January 2013 was organized by the CETIM and its subscribers to gather the opinions from di erent heavy machines manufacturers. They all show strong interests in such issue. More important, innovations and developments associated to the topic are scientifically interesting. In the literature, there exist 3 radically di erent approaches:

• Infrastructure design enhancements: Construction sites design to improve safety, fix or moving surveillance cameras systems to predict risks of collisions.

• Passive safety systems, involving vehicle design: The physical parts of the vehicle are optimized in order to minimize impact severity.

• Active safety system based on Pedestrian Detection System (PDS).

The active safety system has many advantages compare to others. The infrastructure design approach [Hwang , Kunimatsu 06, Soungho 09] is adapted to large scale work (big buildings, roads, bridges etc.), but it is not suitable for small scale daily works such as: maintenance, trucks moving outside the construction site, rescue, public working on streets, etc. Passive safety systems have known improvements. Some examples of this research direction often referred to as improving safety through design by accommodating the pedestrian's head in the case of a crash [Koch 03, Crandall 02]. These approaches were popular and show promising results for automobiles but the application for heavy machines meets various practical problems because of their various sizes and complicated shapes. Moreover, this passive approach is useful in reducing severity of the accident to a certain limit but it is not the radical solution.

To better prevent than cure, active safety solutions took the lead recently. Research has moved toward intelligent systems which are able to predict dangerous situations and anticipate the accidents. They are referred as advanced driver assistance systems (ADAS), in the sense that they help the driver by providing warnings, assistance to take decisions and even taking automatic evasive actions in extreme cases. Nowadays we are familiar with ADAS in automobiles. For example, the first adaptive cruise control (ACC) system, which keeps a constant distance to the front vehicle by slowing or accelerating the host one, were introduced in high-end cars in the late 1990s3 . Lane Departure warning systems, which can warn the driver when the vehicle moves out of its driving lane, was first included in trucks in 2000 [IVsource 00].

Pedestrian Detection Systems (PDSs) are a particular type of ADAS. A PDS is capable of detecting both static and moving people in the surroundings of the vehicle in order to provide information to the driver. In some cases, it can perform overriding braking actions if needed.

Pedestrian detection is a research area that arose more than a decade ago. It gained a lot of attention thanks to their applicability in safety systems for the industry. Most of the techniques and methods come from areas of robotics, computer vision for autonomous navigation, and machine learning. Applications based on PDSs are popular in the context of intelligence vehicles. In fact, PDSs on automobile have known important progresses in the last decade [Enzweiler 11a, Felzenszwalb 10, Dalal 05].

Although the problematic is similar, the context of heavy machines have it owns characteristics and requirements. In the automobile field, cars need to stop if there is an obstacle, no matter if it is a pedestrian or any other object. The task of recognizing people is more important for heavy machines where the main requirement is human's safety. Besides, cars often operate at a higher speed. While it is important for the system on automobile to be able to detect people at far distances, heavy machines need a larger field-of-view (FOV) to cover the nearby area. Construction machines often have a complicated shape and large size, which can also benefit from the large FOV.

Also in the context of automobile, the assumption of the existence of a dominant plane is reasonable because most of roads are locally flat. Such a hypothesis is important to detect obstacles and region of interest (ROI) in view frames. This hypothesis is, however, not always true for the heavy machinery environments. . This is an essential di erence between the two applications.

To this end, most of the vision safety systems dedicated to heavy machine do not include recognition functions. For example: Caterpillar Electronics and Electrical Systems developed a machine-mounted closed-circuit vision system devoted to rugged applications and environments -the "Work area vision system" (WAVS). This system uses cameras in order to cover blind spot locations of large machines. It has been proven reliable against vibrations, pressure washing and adverse environmental conditions. Cameras are sealed with cover that can withstand high pressure wash and immersion and internal heater for removal of condensation, snow and ice [Electronics 08]. Caterpillar further demonstrates commitment to mining safely with "Integrated Object Detection System". It combines cameras, radar, and alarms to notify the operator of the presence of an object close to the machine but not in the operator's field of vision. A display screen in the cab provides visual confirmation of the objects detected by radar, which enables the operator to make informed decisions when moving a mining machine [Cat 09] (see Fig. 1.4).

The system has been built to be integrated within Caterpillar large mining trucks For heavy mobile mining equipment, the system provides full 360 ¶ object detection that continuously identifies potential high-risk scenarios in all directions. When a risk scenario is detected, the camera view switches to the direction of the vehicle at risk and provides a warning of the pending danger to the operator. The two-way-alarm feature provides operators of other vehicles a warning to take appropriate action. The AMT CAS supports programmable "risk zones" to adapt to multiple mining equipments.

Other elements apart from machines can be equipped with a transceiver alerting drivers of heavy mobile equipment, such as people and other non-moving obstacle. The system does not depend on any external infrastructure for operation as a safety device and the range is up to 150m surrounding each vehicle [Adv 07]. The combination of RFID technology and camera appears to be a smart choice to prevent collisions. The only limit is the exterior people and vehicles without the tags that are excluded from the protection.

Problem Statement

The People Detection Systems' Generic Framework

Notwithstanding many years of progress, there are still unresolved issues of people detection and recognition in construction environment. In this thesis, we are mainly concerned about what the system sees with the help of di erent perception sensors, and how we can extract useful information for robust people detection from these multimodality sensors. Image-based systems are the most popular approaches to detect people so far. However, recent approaches tend to integrate more information, from other sensor technologies [Gandhi 07, Broggi 09, Geronimo 10a]. After considerations, we proposed a system using range (Lidar) and vision-based (camera fisheye) sensors.

Deeper discussions about the system will be presented in chapter 2. The system follows a PDS generic framework of 5 conceptual modules (Fig. 1.5). • Preprocessing module: Raw sensor data need to be prepared for subsequent stages. The processes associated with this module are: sensor parameters adjustments, laser-camera calibration, data synchronization, filtering and distortions rectification.

• Candidate generation module: Here, the scene is analyzed to avoid as many background regions as possible. The entities of interest are extracted and fed to the classification module. Many approaches do not contain a specific segmentation module but use a simple thorough scanning method (e.g., sliding window) in both space and scale. Pedestrian size constraints and the flat-world-assumption, which refers to the aspect ratio, size and position of the person is often arbitrary fixed [ Gerónimo 07].

• Feature extraction and classification module: Learning and recognizing human's forms from images data is a typical recognition problem where the lack of explicit models leads to the use of machine learning techniques. This module receives a list of candidates likely to contain a person, extracts features and classifies them with the aim of balancing false alarms and miss detections.

• Fusion and tracking module: The candidates classified as people are verified and refined using fusion rules or methods. The tracking module follows the detected people along time with several purposes, such as avoiding spurious false detections, predict the next pedestrian position and direction, to be robust to occlusions.

• Applications module. Higher level decisions and reactions are made using results from the previous modules, such as trigger the alarm, automatic brakes etc.

The applications module represents a complete area of research, which includes not only driver monitoring and vehicle control but also psychological issues, human-machineinteraction and so on. In the scope of this thesis, we are interested only in solving the perception part of the PDS system.

Challenges

Challenges faced by a people detection system for heavy machines knotty and they come from two main sources: the sensors and the context.

a -People Detection using Cameras

Compared to other sensors such as GPS, inertial or distance sensors (radar, laser, ultrasonic), the cameras o er the greatest amount of information and, because of their versatility, allow to achieve both high-level contextual and low-level geometrical information about the observed scene, and this at a high speed and with a low cost. These are, again, passive sensors that consume little energy and are easily miniaturized. However, their use is not so simple and poses a number of theoretical issues related to how this sensor perceives its environment since, the image formation is a lossy process in which a three-dimensional scene is projected onto a two-dimensional image plane. Since the camera data is sometimes incomplete and often noisy, the detection system must find the most essential characteristics of the appearance to distinguish objects classes.

The deformation, the viewpoint, and the lighting conditions can dramatically change the shape and the appearance of an object in an image. Together, these factors produce numerous variations.

• Light variation: Under di erent lighting conditions, an identical scene captured by an imaging sensor can lead to very di erent results. It is a classic problem using visual sensor, and there is no radical solution but it can be improved by preprocessing methods to extract image features that can be invariant to changes in illumination conditions.

• Deformation: The deformation of a 3D object can cause a dramatic change in the projected 2D appearance of the object. At a conceptual level, a person composed of a large number of rigid parts, linked together through non-rigid connections. A person "deforms" when body parts change their relative positions.

Given that people can change postures, wear di erent clothes, carry di erent objects, the appearance variability is very high (Fig. 1.6). A successful object detection system must be able to recognize objects across a wide range of deformations.

• Viewpoint: The person's appearance may change significantly when the camera's viewpoint is altered. Small changes in viewpoint can be approximated as deformations. Larger viewpoint changes, however, often result into almost no shape similarity.

• Occlusion: A person can be partially or fully occluded by di erent obstacles in the scene. The occlusion in an image sequence might be compensated by recognition algorithms and by tracking methods. A lot of e orts have been made

but at the best of ours knowledge, this problem is still unsolved. 

b -The Heavy Machine Context

Harsh working conditions make the required performance of PDS systems for heavy machine quite demanding in terms of system reaction time and robustness (i.e., false alarms versus miss detections). Misses should be avoided, but too many false alarms may easily cause the system to become a nuisance to the driver.

• Computational complexity: Often, detection and recognition algorithm have a high computational complexity. The system consists of di erent sequential steps. Delay from the first instant when data collected from sensors until the last decision made, must respect the constraint of time. With such a complex system with dependencies between di erent layers, it can be a challenge. Fortunately, heavy machines in general do not operate at a high speed. Working rate of the system at some results per second can be considered as enough.

• Dynamic working environments: Given that not only the pedestrians move but also the sensors mounted on the machine do, the scenes are very dynamic.

Pedestrians shall be identified in outdoor scenarios, that is, they shall be detected in a cluttered background (urban, construction areas are more complex than highways) under di erent illumination and weather conditions (dust, windy, rainy, various humidity and changes of temperature) that add variability to the quality of the sensed information (e.g., shadows and poor contrast in the visible spectrum). The challenges stated in subsection 1.3.2 is pushed to its limit by the harsh working condition.

• Variety Unlike automobile situations, shapes and functionalities of heavy machines evolve very fast. Finding the best configuration of sensors for an optimized perception field-of-view is a tricky question which requires understanding about sensor characteristic, machines operation habit and accident statistic. We take advantage of the very wide FOV of fisheye cameras to cover blind angles in the context of heavy machines. These advantages come with a price of some degradation in detection performance of PDSs, mostly caused by the distortions.

Contributions and Organization of the Thesis

In this thesis, we started with an objective of building a PDS to improve the safety for people working around heavy machines. We approach the problem of people detection from a global viewpoint with clear needs, challenges and opportunities. Instead of focusing on improving specific tasks as it is frequent presented in the literature, our research approaches the topic from a more global perspective with many open possibilities. A thorough analysis of the context is essential to build an adapted system configuration. Existing methods for feature selection, classification, detection, fusion and tracking among others, were conveniently adapted and modified to solve the problem of pedestrian detection in construction environment. The contributions and the organization of this dissertation can be resumed in three essential points:

• Chapter 2 serves as a prologue to our pedestrian detection problem. Practical issues such as: sensors' characteristics, system configuration, sensor calibration, evaluation protocols are discussed. We present a prototype system mounted onboard a vehicle which has been used to acquire data and testing some of the proposed techniques along the thesis. It is not a complete detection system since it is not running in real time, but we aim to give a feeling of the current possibilities of the PDS concept. Since the configuration and the context have very specific characteristics, a novel dedicated dataset has been created with the CETIM. This dataset, called heavy machine dataset, contains data from a Laser-scanner and 2 cameras mounted on a heavy machine.

• Chapters 3 and 4 focus on quantifying the influences of distortions in fisheye images on people detection algorithms. The HOG and DPM approaches among others are studied and evaluated taking account the strong distortion of fisheye images. From those analyses, two solutions to compensate the influences of distortion are proposed, namely the mix-training-dataset and the adaptive-DPM.

• In chapter 5, taking advantage of the multi-sensors system, we present a robust multi-views invariant regions of interest (ROIs) projection from Lidar to fisheye camera. This projection method allows us to build a sequential Lidar/camera fusion PDS that improves significantly the robustness of our proposed system.. 

The Sensor System

In order to increase the safety during operations, ADAS on heavy machines require accurate, pertinent and reliable information about the vehicle's surrounding. Since the environment is often complex and each sensor has a limited perception, singlesensor based solutions usually do not give satisfying solutions. In order to bypass these limitations, we propose to study a multiple sensing strategy to obtain an augmented field-of-view and redundant important perception information.

E ective Sensor Range

The injuries severity of people in accidents increases with the crashing vehicle's speed.

E ectively, a small speed reduction can reduce significantly the consequence of a crash. either at long or short distance, is then much more helpful than passively protecting the person during the impact. The relation between vehicle speed and the injuries is a classical topic of research in the automobile sector but the results are also very informative in the context of heavy machines. The breaking distance has been computed using the equation

v 2
2G(f ±s) where v is the initial speed, G is the gravity acceleration (9.8m/s 2 ), f is the friction coe cient (range from 0.5 to 1, depend on weather, tires, etc.) and s is the road slope. In this example, baseline values f = 0.7 and s = 0 have been used (see Fig. 2 ). This range conforms to the stopping distance of cars in rural conditions.

Heavy machines have two main operation modes: they stay nearly static in working circumstances or move from one to another working position. In the first case, a very wide FOV is desired to cover blind angles. In the latter case, the speed limitation depends on the machine's category but it is always lower than for automobiles. For example in Europe, the construction machines' maximum speed on public road is 25km/h. The high risk distance computed by Eq. 2.1 in unassisted driving case is about 11m where the D pr ¥ 7m. As a result, we define the High Risk Area of heavy machines from 0 to 7m (see Fig. 2.3). Compared to other perception sensors such as GPS, inertial or distance sensors (radar, Lidar, ultrasonic), the cameras o er the greatest amount of information and, because of their versatility, allow to achieve both high-level contextual and low-level geometrical information about the observed scene, and this is at high speed and low cost. These are, again, passive sensors that consume little energy and are easily miniaturized. An image is represented by a bi-dimensional array where each element (pixel) takes value over a discrete brightness range (typically 0 to 255 for 8bit quantization).

Proposed Sensors Combination

We are interested essentially in the problem of people recognition by their appearance so the camera is the obvious choice. Cameras typically cover a 45°horizontal field-of-view.

There exists also special optics (so-called fisheye) that can cover up to 180°horizontal field-of-view, and the catadioptric camera (also called omnidirectional camera) that In this work, we choose to use fisheye camera as the main sensor of the PDS because of numerous absolute advantages compared to other sensor types. Actually, very wide angle vision system is very popular. There are wide ranges of example in the nature.

Defensive animals, typically many herbivores, have a large field-of-view (more than 300 ¶ ) to survey the area around to be vigilance to attackers. Migratory birds have a large field-of-view for localization through landmarks and for following the horizon, which has inspired to aerial robot navigation [Demonceaux 06, Scaramuzza 08]. In the robotic field, wide angle vision is popular used in autonomous navigation because it gives more discriminate results and more robustness to changes in the environment [Mei 07, Bazin 10]. In our case, the use of fisheye optic enhances the field-of-view of the camera and also keep the system less sensitive to vibrations [Fermüller 98] , which is perfectly suitable for the context of heavy machines.

The use of cameras is however, not so simple and poses a number of theoretical issues related to how this sensor perceives its environment. One drawback of this technology is its reliability. Since images are created by the exposition of the photosensitive CMOS/CCD sensor, vision systems are drastically sensitive to light condition changes (weather, dynamic content of the observed scene, light sources, etc.). For now, most of vision systems applied to construction machines safety do not have integrated recognition functions. For example, Caterpillar develops an "Integrated object detection system" on their machines which is claimed to work on very harsh conditions. To summarize, it is an obstacle detection system using a radar with a camera assistance. Stereo vision systems have also some drawbacks, such as a heavy computation cost for disparity map, and a limited detection area due to the necessity of cameras overlapping. Because dense range information is not essential, range sensors like ultrasonic, Lidar or radar, are more suitable. In practice, the most used range sensor type on heavy machines is the ultrasonic. It is often used as a modality to detect obstacles. The ultrasonic sensors are very useful to estimate the presence and the distance of objects at close range. It is possible to get the object position through overlap detections, as done in the Greensight ultrasonic detection system from Groeneveld5 (see Fig. 2.7).

The system is designed to be robust to the context of heavy machines but the results of the position of obstacles are not so precise. Moreover, to get an equivalent FOV to the fisheye image, the system will become very cumbersome. In this work, we choose to use the single layer-Lidar to take advantage of the precise measurements given by the Lidar to avoid the problem of uncertainty in the determination the position of obstacles. Lidar sensors are also compact and the processing load is lighter than other sensor types.

Sensors Positions on Heavy Machines

The Lidar and the camera required for our system are installed on a rigid platform on the frontal part of the machine, and the camera is set above the Lidar, as depicted in Fig. 2.16. Tab. 2.6 resumes the main characteristics of the two sensors. Based on the survey of accidents caused by heavy machines presented in section 1.1, the system requirements and sensors configuration can be known in advance. The statistic shows that the danger is highly dependent on the action taken by the machine and its direction. Accidents rarely happen on the sides of the machines, except for "rotatingbase machines", such as excavators. The back and the front of a machine in motion are then the most dangerous parts.

The detailed diagrams of the visualizing areas around various construction vehicles and equipment (commonly referred to as blind area diagrams) are illustrated in Fig. 2.9.

The reader can refer to Appendix B for blind area diagrams for others machine types.

In general, the blind area covers at least 2m in front and behind the machines. In many cases, this blind zones range can reach 10m. The areas close to the machines, are at the same time the most dangerous areas and constitute also the blind areas for the drivers.

Based on the previous observations related to dangerous areas, fisheye cameras mounted at the back and in front of the machines, can fulfill most of the requirements. For that purpose, we defined two positions for the fisheye camera denoted by index 1 and 2 in Fig. 2.10 which give two di erent sensors configurations of the system:

• Configuration 1: The two sensors (camera and Lidar) are at position 1. In this configuration, the sensors are kept at a low position (height h = 110cm) and are mostly parallel to the ground plane. This is the most commonly used configuration in ADAS because the appearance of the person on the image is relatively the same at any position in the FOV of the camera. This advantage is not preserved in fisheye images since the object appearance are distorted depending on its distance and its angle to the camera. A quantitative analysis of this distortion phenomenon is presented in section 4.2.2.

• Configuration 2: The fisheye camera is mounted at position 2 (height H = 210cm, at the forks level), looking down with an angle of precisely 30 ¶ . The Lidar is at the same position as in configuration 1. The high position of the camera is commonly used in the context of heavy machines. The reasons are related to obtaining a better coverage of blind angles around the machine and to avoid collisions that can damage the sensors. In our case, it gives an additional advantage in observing the whole people appearance at a very close range, even when the persons can touch the machine. The main drawback is the complicated transformation of the person's appearance obtained on the fisheye images. Let us assume that the Lidar is always parallel to the ground, which is usually the case for most of the range sensors used on the heavy machines. In the target application, this constraint will be broken whenever the heavy machine is moving on a non-flat ground, or simply due to large vehicle vibrations with respect to the ground. In practice, these artifacts are minor with the use of a fisheye camera. A way to avoid this constraint is to use a multi-layers Lidar, along with a method to track the vehicle pitch [Hrovat 04, Gerónimo 06, Bawaqneh 11, Loomis 12].

In the same way, the multi-sensors system can also be mounted at the back of the machine. With the same sensors' height and angle, we assume that the sensors data coming from the front of the machine moving forward is equivalent to the data issued by the sensors mounted at the back of the machine moving backward, and vice-versa.

In practice, Position at the back is both more useful and easier to maintenance. For safety reasons, the sensors are mounted in front of the machine in all of our data sequences.

Sensor Calibration

A calibration process is a prerequisite for any computer vision task that requires accurate geometric measurements from a given scene. It is hence a fundamental and very important task because cameras rarely follow the ideal pinhole model, in particular due to distortions e ects caused by the lens elements. The calibration process can be decomposed into finding the internal (intrinsic) camera parameters and external (extrinsic) parameters.

The external calibration parameters are the position and orientation (rigid body transformation) of the sensors relative to a given coordinate system [Hartley 03]. This rigid body transformation allows to reproject the points from the range sensor coordinate frame to the camera coordinate frame. Most of the existing algorithms for extrinsic calibration of Lidar-camera systems require that the calibration targets are placed in the field-of-view of the two sensors. Many methods proposed in the past decade, use special calibration targets. The most common calibration targets used is a planar checkerboard pattern (see Fig. 2.11), also called a chessboard. It was first used by Zhang et al.

[ Zhang 04] to extrinsically calibrate a single layer laser scanner and a monocular camera system. This was probably the first published method that addressed the problem of extrinsic calibration of Lidar/camera sensors in a robotics context. Thereafter, several modifications of Zhang's method have been proposed. The authors of [Mei 06] reported a similar algorithm for the calibration of a 2D laser range finder and an omnidirectional camera for both visible and invisible lasers. In these works, the constraints between the laser points on the chessboard and the normal of the calibration plane estimated in the camera reference frame are used to estimate the transformation parameters by minimizing a specific cost function based on points' reprojection error. There exist also methods that do not require any special targets but which rely upon extraction of some features (e.g. edges, lines, or corners) from the camera and Lidar data, either manually or automatically [Scaramuzza 07, Moghadam 13, Napier 13]. These automatic feature extraction methods are generally not as robust as target-based approaches and require manual supervision to achieve small calibration errors.

Based on the need of our system, the methodology adopted by [Mei 06] to calibrate the Lidar-camera setup is the most adapted. It consists in three fundamental steps while all parameters are assumed to stay constant during the experimental dataset acquisition:

• Acquisition of a synchronized set of laser scans and images (more than fifteen).

The checkerboard pattern is placed in the overlapping FOV of the two sensors so that it is observable in the data obtained from both sensors. (see Fig. 2.12)

• Camera intrinsic parameters estimation. The internal parameters of the camera represent the way that sensors sample the scene. Mei and Rives [ Mei 06] proposed four calibration steps to initialize the unknown parameters, make the associations between the grid points and their reprojection in the image and finally run the cost minimization:

-Initialization of the principal point p 0 = (u 0 , v 0 ) as the center of the image. -Estimation of the generalized focal length " (assuming " = " x = " y ) thanks to have at least three points belonging to a non-radial line image (see Fig.

2.12a)

-For each image, four edge points of each grid are selected (see Fig. • Lidar-camera coordinate transformation matrix (extrinsic parameters) estimation (see Tab. 2.2). It is important to notice that the auto-calibration between a camera and a laser range finder is impossible from a single image in the general case. 

Rotation matrix

C R L = S W W W W W W W U 1 0 0 0 1 0 0 0 1 T X X X X X X X V Rotation matrix C R L = S W W W W W W W U 0.9976 0 ≠0.0698 0.0370 0.8480 0.5286 0.0592 ≠0.5299 0.8460 T X X X X X X X V Translation vector C T L = [0; 50; 0] Translation vector C T L = [0; 850; 380]
Table 2.2: Extrinsic camera parameters.

The Heavy Machine Dataset

The datasets take a very important role in the development of an objects detection algorithm. Indeed, a well-defined dataset is not only useful for evaluating the approach but it also takes part in the training process to improve the performance of the objects detector. In contrast to other areas, such as face detection or document analysis, people detection lacks of well-established datasets and benchmarking protocols. Public datasets are necessary for evaluating algorithms with di erent example sets, taken at di erent places under di erent environmental conditions, but specifically from di erent research groups (which adds extra variability). There are some specific requirements that a people dataset should fulfill that can be summarized in the following points:

• Topic significance: It is important that the data is as similar as possible to the final application. This means that people must be present approximately at the same potential positions in practice, the sensors be mounted at a realistic height and angle from the ground, in similar contexts and background.

• Quantity: Given the variability of the target, the number of examples must be high.

• Resolution: The range of people's sizes in the image is often large due to perspective e ects and variable distances. Given that algorithms can either make use of the resized or the original image size (depending on the classifier), it is desirable to make both approaches available. By providing this data to researchers, one can get a well-defined set in both cases avoiding having to reconstruct them.

• Sequence: Cropped samples are useful for the object classification module, but in order to benchmark the whole system, fully annotated video sequences are required. Continuous image sequence also contains helpful information about the accident scenarios. To the best of our knowledge, there are no other available datasets that provide at the same time, synchronized fisheye images and Lidar data in the context of heavy machines environments. Moreover, this context has some special features, such as the outdoor changing light conditions, the strong vibrations coming from the engine, and the brutal shocks that might make the detection process much harder. There is essential need for a new dataset in order to identify conditions under which current detectors may fail. We will focus our e orts to solve these di cult cases. 

HIMA [Heimonen 10] 7928 - 2444 - - - - - X X X -2010 Caltech [Dollár 11] 120000 - 61000 - - - - 230000 X X X -2011
Table 2.3: Summary of some current pedestrian datasets. Some information are not provided, for example in HIMA dataset, training and testing set are not defined and separated by the author. Image sequences and annotation information are provided and used as will. As said earlier, our system consists of one fisheye camera (Point Grey Firefly MV USB2.0), one conventional camera (Sony PlayStation Eye for PS3) and one rangesensor (Lidar Hokuyo UTM-30LX-EW) (see Fig. 2.14). The two sensors configurations have been presented in section 2.1.2. The sampling frequency is 10Hz for both cameras and 40Hz for the Lidar. The middleware Pacpus is used to manage the data acquisition process. Pacpus is a software framework used on the Intelligent Vehicles (IV) experimental platform of the Heudiasyc Laboratory6 . This middleware provides a wide range of acquisition functionalities but the most useful part for a perception system is the data synchronization kernel. We used it to handle data from the di erent sensors in real time and to save them to the hard disk drive (HDD). The data are timestamped so they can be replayed. At the same time, the collected data are available on a shared memory area, which is accessible from other processing threads. Our detection system can read the data in this area and do all the processing without any influences on the acquisition thread. The replay module can read data from the storage and rewrite it on the shared memory. The Pacpus framework is very convenient for both building the dataset and testing the algorithms. It takes the role of a middleware between the detection algorithms (software) and the sensors (hardware) (see Fig. Each sensor used within Pacpus needs a specific driver, called a Plugin, to be able to communicate with the other modules of the platform. In our case, the three sensors plugins were developed. An online visualization tool, for both captured images and range data has been also developed to verify online the acquisition quality. Collecting images usually produces a heavy data flow. One raw 8-bits black and white image at VGA resolution (640 ◊ 480 pixels) take about 307Kb of storage space. The acquisition speed is then limited by the HDD writing speed. The writing process can also be disturbed by the machines vibrations if the HDD is not a solid state driver. We en- countered the problem of corrupted image streams at the beginning of the acquisitions but it was bypassed by using a large memory bu er. To ensure the quality of these data sequences, acquisition frequencies should be kept below 15Hz for the camera and 40Hz for the Lidar. Our multi-sensors system is mounted and tested on a telescopic forklift, namely a Bobcat-TL470, as shown in Fig. 2.16 (a professional driver has been recruited to operate the machine during the experiments). A mounting bracket was prepared to adapt the configuration of the sensors system to the machine (see Fig. 2.17). The experiments were made in CETIM at Senlis with help from the sta of the Mechatronics, power transmissions and sensors department.

To produce the dataset, the experiments are divided into 7 scenarios for each configuration. All of the scenarios are predefined and took place under security control. The scenarios, defined within the experiments, aim to simulate frequently meet situations on a construction site. People wore di erent kind of clothes, including helmet, reflective vests and civil clothes. Di erent situations of occlusions were also simulated.

The fisheye images are partially annotated and used for testing purpose. The annotations for the ground truth of these image sequences are done using the labeling tool of Dollár et al. [Dollár 11]. This tool requires drawing a bounding box around objects in some key-frames and provides linear interpolation to infer the bounding boxes of the same object in intermediate frames. The objects can be labeled, in our case as:

"person", "person_sitting" and "occluded". In the evaluation, only "person" label are considered for instance. The label "person_sitting" might be useful in considering the problem of the people detection at di erent postures. Tab. 2.4 summarizes the main characteristics of the image sequences used in our tests. These sequences are extracted from bigger datasets detailed in appendix A.

The Evaluation Method

In an object detection framework, there are di erent metrics to evaluate the performance. In this subsection, the evaluation method adopted in our work is presented as the reference to the experimental results in the following chapters. The common procedure to evaluate binary classifiers is to select a training set and a testing set containing both positive and negative samples. A typical curve like the Receiver Operating Characteristic (ROC) using the number of true positive (T P ), false negative (F N), true negative (T N) and false positive (F P ) of the testing set to compute the corresponding rates:

• The True Positive Rate (or Sensitivity or Recall or Hit rate) T P R = T P T N+F P : It relates to the number of detected candidates with the total number of positive candidates.

• False Positive Rate (or Specificity) F P R = F P T N+F P : It relates to the misclassified detected candidates (false detections or false alarms) with the total number of negatives candidates.

To obtain the ROC curves, the F P R is plotted on the x-axis and the T P R on the y-axis. A perfect classifier would have T P R = 1 and F P R = 0, placing the performance point at the top-left corner of the ROC curve. This curve has been used in a large number of papers [Munder 06, Gerónimo 07, Wojek 09, Dollár 11,Park 10]. This is possible when all the measurements are well defined. In the case of people classification, a common procedure is to work with cropped images that contain or not, person appearance randomly cropped as positive (Fig. 2.18a) and negative samples (Fig. 2.18b).

However, in many cases, the dataset only provide random-size images, with or without people inside, as test samples [ Dalal 05] (see Fig. in PASCAL challenges [ Everingham 07] where the overlap criterion between the two bounding box A and B is defined as

t = A fl B A fi B > t 0 (2.2)
where t 0 is a given threshold (see Fig. 2.20). A value of t 0 = 0.5 which states that their area of overlap must exceed 50%, is considered as reasonable and is commonly used. Otherwise, the detection is marked F P . We are more interested in the detection performance than the localization accuracy. In fact, for higher threshold values, the detector performance degrades rapidly and the objective of the curves is closer to the localization accuracy of the detector.

In this case, the 2 axis used to plot the ROC curve are T P R and false positives per image (F P P I). The curve shall be read in a more global manner than in the image-based in the sense that, the preferred F P P I working range will depend on the requirements for the given system. We used this curve throughout the thesis and we focus on the MR value when the F P R is in the range 10 ≠2 to 10 0 F P P I. The log-average miss-rate is used to summarize the detector performances. The log-average miss-rate is computed by averaging missrate at nine F P P I rates evenly spaced in log-space in the range 10 ≠2 to 10 0 . When curves are somewhat linear in this range, the log-average miss-rate is similar to the performance at 10 ≠1 FPPI [Hussein 09, Dollár 11]. The miss-rate at 10 ≠1 F P P I is used for curves that end before reaching 10 0 F P P I rate. The displayed legend entries are ordered by log-average miss-rate from the worst to the best one. This condition is likely to represent that most of the spurious false positives are eliminated. Only bounding boxes with a height of more than 50 pixels, are considered in the evaluation. Each detected bounding box may be matched once with the ground truth and redundant detections are considered as F P . Along this thesis, we will use this plot to measure the performances of the di erent proposed algorithms.

Conclusions

In this chapter, we focused on analyzing the requirements of the ADAS system for heavy machines. Through di erent surveys on accident cases, blind area diagrams, safety breaking distance of moving vehicle, we define a high risk area around machines. Based on additional research on their characteristics, a system configuration of a monocular fisheye camera and a Lidar has been proposed. Although the sensing technology is constantly evolving, we believe that our choice gives a good compromise to this specific context in term of robustness and performances. A dataset based on this configuration has been developed, satisfying both research requirements and practical issues. Because there are di erent ways of evaluating the PDS's performances, we also took this opportunity to recall the consistent protocol used throughout this thesis.

All the results listed above are important for the development of our PDS as they help us to focus to 2 scientific questions: how to improve the people detection performances using image with strong distortions and how to e ciently handle the Lidar with the camera in the PDS. The following chapters are dedicated to answer these questions. 

People Detection using Vision

Humans have the impressive ability to both learn new objects and to recognize them by using only vision. With the development of computers and robotics, objects recognition problems in computer vision have attracted more and more attentions in the development of intelligent systems. As stated previously in section 1.3, the ability to recognize people in ADAS for heavy machines, is crucial and the use of camera as the principal sensor is essential. There exist many studies on pedestrian detection using cameras, with applications in the field of robotics, advanced human interfaces, automotive safety, intelligent vehicles and so on. The following subsections provide a review of the recent works from both academic research and in the industry sector.

Academic Research Works

Detecting people in images is a problem with a long history, dating back to [Papageorgiou 00, Gavrila 01]. Gavrila et al. [Gavrila 01] wrote the first article that surveys state of art works on pedestrian detection, focused on intelligent vehicles applications. Since then, several evolutions in di erent aspects helped people detection algorithms to become much more reliable. Recent survey papers [Enzweiler 09, Geronimo 10a, Dollár 11] cover the recent e orts and research programs dealing with the problem of pedestrian detection. We attempt to briefly present some important works, organized into di erent aspects: image features, learning algorithm and part-based approaches, to cover the main topics that we will address through this thesis.

a -Image Features

The first action to improve the detection is to work on the image features. Additional cues often tent to have better performance in some restricted conditions.

Gavrila et al. [Enzweiler 11b] emphasized on the importance of the depth and motion to improve the pedestrian detection in the context of automobile. In this work, multiple classifiers on intensity, depth and motion features are trained and combined by using a neural network. Using depth and motion as additional cues in a component-based approach, reduced false positives up to four times at a constant detection rates. In [ Wang 09] and [ Sun 12], the authors proposed to combine HOG and Local Binary Pattern (LBP) to e ectively include texture information in the detection. Walk et al.

[ Walk 10] combined HOG features with self-similarity features related to color channels as well as motion features in order to better integrate spatial and temporal information.

While HOG is undoubtedly the most used image feature in people detection problem, it is hard to a rm which one are the best additional features. To the best of our knowledge, we could not find any work on image features used in people detection that can really handle radial distortions. As a result and without loss of generality, we adopted HOG as the principal features in our work. Further details and discussions about HOG features will be provide in sub-section 3.2.1. The search for a suitable features combination is always useful and we keep it in future works.

b -Classification Algorithm

The classification algorithms have an important role in the PDS system. It receives a list of ROIs that are likely to contain a pedestrian and classify them as pedestrian or non-pedestrian with the goal of minimizing the number of false positives and false negatives based on the features presented above. The PDSs inherits the developments of learning algorithms both in terms of detection performances and practical implementations.

Because of the real-time detection constraints, three classifiers are used almost exclusively, although other approaches also show promise results:

• with local receptive fields.

These classifiers have di erent advantages and drawbacks but they perform equally well in term of detection performances in most of the benchmarks [Geronimo 10a, Dollár 11]. There are no empirical evidences that one particular type of classifiers performs better than the others in people detection. In [ Wojek 08], the author stated that given enough features, Adaboost and SVM perform roughly identically. Similarly, it is not clear if non-linear kernels are better than linear kernel classifiers.

In the scope of this thesis, we are interested in how to adapt the training in the classification process to take into account the distortions, not in modifying the classification algorithm itself. The SVM classifier was used throughout our works because of its light computation charge and e ectiveness. One other practical reason is related to the use of deformable parts model approach in our proposition, where the Latent-SVM classifier was first used. The linear SVM can be considered as a special case of Latent-SVM classifier where the latent variables are predefined. It means that we can use the same classifier tools for training and detection di erent detectors. Comparisons between detection algorithms are hence more convenient, more objective and more accurate.

c -Part-based Approaches

Single model people detection approaches as stated above, have limitations in detecting people with strong deformations and in di erent postures. A typical solution proposed to solve this issue is the part-based approaches which combines the classification of di erent parts of the body instead of classifying the entire candidate as a single entity.

In 

Industrial Solutions

Besides the academic researches on people detection, automobile manufactures pay also a lot of attentions in safety solutions for pedestrian. As a result, there exist now commercialized options for ADAS in some high end cars from Volvo analysis. It is reported that both static and moving pedestrians can be detected up to a range of 30m using VGA resolution images and an 36 ¶ vertical field of view. In this condition, the image of a 1.7m height person at 30m is only 30 pixels high. To enable classification of very small image figures, some approaches are irrelevant. As a result, the part-based classification approaches [ Shashua 04], first used in Mobileye system were abandoned. A holistic full body approach was found to be more suitable.

Mobileye uses optical flow analysis, in order to distinguish the laterally moving objects from their background. As the vehicle moves forward, background optical flow is always expanding toward the image boundaries. The optical flow is a strong evidence of the existence of a moving object, which might be a crossing pedestrian.

In the context of heavy machines, and to the best of our knowledge, the Blaxtair System from the Arcure company is the only vision-based safety system for heavy machines available on the market. While the technical details are not publicly available, the patent submitted on the Blaxtair System [ Patrick 11] implies a framework which is illustrated in Fig. 3.2. This framework is based on the work published by Enzweiler et al.

[Enzweiler 11a] at Daimler Research & Development. Obstacles are detected using a depth map segmentation, computed from stereoscopic images. To reduce the complexity and the computational resources, the recognition algorithm is applied only on one of the 2D images and only in the ROIs. These ROIs are defined using positions of obstacles detected above the dominant plane (ie. the ground plane). The road is detected by an extended V-disparity algorithm [Soquet 07]. This approach avoids data fusion at the recognition level. A tracking algorithm might be used to improve the robustness of the detection. A "Color mode" is also suggested for a better detection of the people wearing a safety vest. In low quality lighting conditions, this operating mode will activate a flash when the camera captures an image. The safety vests, which are made of high reflector material, will be easily detected. The patent is in form of a synthesis of concepts and examples. Interesting possibilities based on available resent researches on pedestrian detection for automobile [Gavrila 07, Rohrbach 09, Hattori 09] were presented but the detailed algorithm is not clearly described and the final prototype is not available for evaluation.

Chapter Outline

In the scope of this thesis, we will focus on two dominant visual-based person detection approaches: Dalal and Triggs' HOG [ Dalal 05] and Felzenszwalb's DPM [ Felzenszwalb 10].

We will recall and discuss essential details of these two approaches (see Tab. 3.1) in order to point out their advantages and drawbacks in relation to the context of people detection in fisheye images. The analysis will concentrate on finding solutions for the challenges of the system stated before in section 1.3. 

Image Features Extraction Methods

The Histogram of Oriented Gradients Features

The HOG feature is a SIFT-inspired feature [Lowe 04] that rely on evaluating local gradient orientations on a dense rectangular grid developed by Dalal et al. [ Dalal 05] in 2005. The idea is to divide the incoming window into small "cells" forming a grid.

Cells are grouped in bigger spatial regions R called "blocks" (see Fig. 3.3).

The HOG features computation begins with an image filtering over the 3 RGB channels (in color images) with the following derivative filter kernels:

Y ] [ d x = Ë ≠1 0 1 È d y = Ë ≠1 0 1 È T (3.1)
Let us call I the 2D matrix of the image gray-scale level, G X = I ú d x and G Y = I ú d y are then the matrix of gradient in horizontal and vertical directions where ú is the convolution operator. The gradient magnitude at pixel (x, y) is then r(x, y)

= Ò G X 2 (x, y) + G Y 2 (x, y
) and the orientation is given by ◊(x, y) = arctan Gy(x,y) Gx(x,y) . For each pixel, the color channel with the largest gradient magnitude is used to define ◊ and r at each pixel.

Each pixel within a cell casts a weighted vote for an orientation based histogram for the values found in the gradient computation. Let Ê be the number of gradient orientations.

The cells are square and the histogram orientations are evenly spread over [0°, 180˚] in contrast insensitive (Eq. 3.3) and over [≠180 ¶ , 180˚] in contrast sensitive (Eq. 3.2) features. . We use the notation u(i, j) (U(i, j)) for a vector (matrix) obtained at the cell (i, j) in the image.

Breaking down the image in to dense grid of cells can help the feature to be invariant to small deformations and reduces the size of a feature map. The feature vector at a cell c( x k , y k ) is the sum of the pixel-level features in that cell (see Fig. 3.3). The feature vector at a cell c(i, j) is then normalized to define the final feature vector attached to each block. There exist di erent block normalization methods. In [ Dalal 05], four types are evaluated as described in table 3.2. Overlapping cells between adjacent blocks are used so one cell belongs to 4 blocks around it (see Fig. 3.4).

The HOG feature map is computed by concatenating the result of the normalized cellbased feature map c with respect to each normalization factor N k "," , also called gradient energy of the block. N k "," is the k ≠ norm (k = 1 or 2) of cells, defined as cell after normalization and is thus a 36-dimensional vector, where each 9 dimensions corresponds to one normalization block (Eq. 3.5). The 36-dimensional HOG feature h(i, j) can be rewritten under the form of an 4 ◊ 9 matrix H.

N k "," = Îc(i, j)Î k + Îc(i + ", j)Î k + Îc(i, j + ")Î k + Îc(i + ", j + ")Î k (3.4)
H(i, j) = Q c c c c c c a h(i, j) ≠1,≠1 h(i, j) +1,≠1 h(i, j) +1,+1 h(i, j) ≠1,+1 R d d d d d d b = Q c c c c c c a c(i, j)/N ≠1,≠1 (i, j) c(i, j)/N +1,≠1 (i, j) c(i, j)/N +1,+1 (i, j) c(i, j)/N ≠1,+1 (i, j) R d d d d d d b (3.5)
The experimental results in [Dalal 06b] highlight that the most important cues are head, shoulder and leg silhouettes. Moreover, the overlapping blocks just outside the person's contour provide a significant amount of contextual information that is important for recognition.

Since 2005, some other modified versions of HOG have been proposed. The most used as substitute for the original HOG was proposed in [ Zhu 06]. The approach attempts to accelerate the algorithm by applying integral histogram method [ Porikli 05]. In computing the histogram of each cell, pixel magnitude is added directly to the nearest pixels orientation round (B(x, y)) without interpolation. This simplification does have minor negative influence on the detection performances but it is often ignored.

Normalization method Equation

L2 ≠ norm h(i, j) ae c(i,j) Ô N 2 "," +e 2 L2 ≠ Hys h(i, j) ae c(i,j) Ô N 2 "," +e 2
with h(i, j) limited to 0.2 like in [ Lowe 04] 

L1 ≠ norm h(i, j) ae c(i,j) N 1 "," +e 2 L1 ≠ sqrt h(i, j) ae Ú c(i,j) N 1 "," +e 2

The Dimensionality Reduced HOG

The features used in the DPM [Felzenszwalb 10] approach are a derived version of HOG. In this approach, the authors use the Principal Component Analysis (PCA) to justify the dimension reduction the HOG vector. We call it reduced-HOG feature to distinguished from the classical HOG feature [ Dalal 05], denoted as conventional-HOG.

Most of the parameters of the reduced-HOG are the same as the conventional-HOG.

One cell includes 8 ◊ 8 pixels, one block includes 4 cells and the number of angular bins of the vector gradient is 9. HOG vectors computation at cell level is intensively used in the detection process. The PCA projections require computation resources which strongly slow down the detection. For that reason, instead of using the PCA another simplified method of projection to reduce the dimension of HOG vectors has been proposed (see Fig. 3.5). The reduced vector includes 9 dimensions that correspond to 9 angular-bins and 4 dimensions that reflect the overall gradient energy in the di erent areas around the cell c(i, j).

Let W = {U 1 , ..., U 9 } t {V 1 , ..., V 4 } where U k (i, j) = Y _ ] _ [ 1 if j = k 0 otherwise V k (i, j) = Y _ ]
_ [

1 if i = k 0 otherwise (3.6)
The 13-dimensional feature is defined by taking the dot product of H with each U k and V k defined in Eq. 3.6. The dot product with V k is equal to the sum over the 4 normalizations for each fixed orientation. On the other hand, the dot product with U k gives the sum over 9 orientations for a fixed normalization (see Fig3.5). This projection conserve the histogram of orientation gradient of the image cell inside 9-dimensional vector and the gradient energy of 4 neighbor blocks inside 4-dimensional vector.

The 9 bins in the HOG vector are normally contrast-insensitive (see Eq. 3.3). Felzenszwalb et al. [Felzenszwalb 10] suggest empirically that the detection performance on some object categories can be improved using contrast-sensitive features (see Eq. 3.2), while other categories benefits from contrast-insensitive information [Dalal 06a]. Therefore they suggested to use both of them in a 31-dimensional feature vector (9 bins contrast-insensitive+18 bins contrast-insensitive+4 gradient energy).

Discussions

Nearly all recent detectors use some forms of the oriented gradient histograms features because it has been well designed to catch essential characteristic of people appearance while being flexible to small local deformations and light variations. Changes in gain, both globally and locally, are removed through normalization. The e ects of nonlinear transformations are reduced by working with gradient orientations and clipping strong gradient magnitudes.

The HOG features can be computed based on di erent "cell" forms, e.g. square, rectangular or circle. However, the cells are always organized in a regular grid make it vulnerable to rotation and strong distortion of the deformations of the person's appearance. Indeed, small deformations can be compensated by using the discrete orientation bins inside each cell but the distortions at larger scale have great influence on the spatial relation of cells' positions.

We are also interested in the dimensionality-reduced-HOG features by their light weight and the combination of contrast-sensitive together with contrast-insensitive HOG. The additional information about the contrast "direction" in HOG features might have positive influence on the detection performances in some particular context.

While HOG features have been used and tested widely in perspective images, to the best of our knowledge there is no literature about the HOG feature design for fisheye images. In the next chapter, we count on the classifier to take into account the typical spatial relation of distorted appearance of the person and we propose a mix-trainingdataset approach in subsection 4.3.

Detection Methods

The Sliding Window Paradigm

The sliding-window is the simplest candidate region generation method that is widely B Extract feature from resized image.

5:

B Scan the image in the x and y axes using window size (d w , d h ) and proportional step( x, y). The number of candidate at scale S i is

( Iw S i ≠dw)( I h S i ≠d h ) x⇧ y 6:
B Add new candidate's feature vector c i to the feature map (x)

The feature vectors are fed into a SVM classifier to construct the model. The appearance model used in our system is composed of linear filters that are applied to dense feature maps . A feature map is a two-dimensional array of feature vectors computed on a dense grid of image locations (typically 8 ◊ 8 in HOG). Intuitively, each feature vector describes a small image patch. The score of the detector can be considered as a scalar product between the feature map (x) and a parameter vector -:

f -(x) = -. (x) (3.7)
where -represents the hyperplanes that separate the two classes, defined through the training process. The scalar product -. (x) gives the margin between a sample x to the hyperplanes. The response map in Fig. 3.7 represent this margin on a dense grid of image locations.

According to recent surveys [Dollár 11, Enzweiler 09], HOG with SVM is still one of the best pedestrian detection framework.

The Deformable Parts Model Approach

The idea of deformable parts model has been firs presented in [Felzenszwalb 05], enriched and completed by Felzenszwalb et al. in [Felzenszwalb 08,Felzenszwalb 10].

The idea behind the deformable part model is to represent an object model using a lower-resolution "root" template f 0 , and a set of spatially flexible higher-resolution "part" template p

i = (f i , v i , d i )
. Each part captures local appearance properties of an object, and the deformations are characterized by the deformation costs. Intuitively, the anchor is the preferable position of i th -part with respect to the model. From that anchor, the deformation-cost is calculated by a quadratic equation characterized by 4 coe cients in d i . The DPM approach employs the sliding window paradigm. The root filter f 0 and di erent part filter f i are applied all over the image to detect at the same time the whole body respond and each part. In the part-based model, each sample x is scored where the latent variable z = (p 1 , ..., p n ) with p i = (x i , y i , l i ) is the specification of the i th configuration part at the position x i , y i and scale l i . The purpose of the training process in the latent SVM process is also to learn the vector of model parameters -= (f 0 , p 1 , ..., p n , b) where f 0 represents the root filter model and p i = (f i , v i , d i ) corresponds to the parameters of the di erent parts. f i is denoted as the filter model of part i, v i is the anchor position of i th -part in the image frame and d i is the deformation features, a 4D-vector of coe cients, that correspond to x, y, x 2 , y 2 . The "root" filter f 0 alone is equivalent to the vector -in Eq. 3.7 and the process is similar to the sliding window method.

In the training process, a set of labeled examples is denoted as D = [(x 1 , t 1 ), ..., (x n , t n )] where t i oe ≠1, 1 and x i specifies a HOG feature pyramid J(x i ) together with a range z(x i ) of valid positions for the root and part filters. For the positive examples, both the part locations and the exact location of the root filter is considered as latent variables. As proven in The vector -can be obtained by optimizing the following objective function

L D (-) = 1 2 ||-|| 2 + C n ÿ i=1 max (0, 1 ≠ y i .f -(x i )) (3.9)
where max(0, 1≠y i .f -(x i )) is the standard hinge loss and the constant C controls the relative weight of the regularization term. When the latent domains Z(x i ) is restricted to a single value, f -become linear in -. The linear SVM can be considered as a special case of latent SVM.

Once the vectoris defined, the score of one object hypothesis can be computed as [Felzenszwalb 10]:

score(p 1 , ..., p n ) = n ÿ i=0 f i ."(J, p i ) ≠ n ÿ i=1 d i ." d (dx i , dy i ) + b (3.10)
where "(J, p i ) denotes the vector obtained by concatenating the feature vectors in the format of i th -part filter. The vector (dx i , dy i ) = (x i , y i ) ≠ (⁄(x 0 , y 0 ) + v i ) gives the displacement if the i th -part relative to its anchor position and the deformation features are typically " d (dx, dy) = (dx, dy, dx 2 , dy 2 ). Fig. 3.8 illustrates the final result of deformable part model.

Discussions

Our problem of people detection in fisheye images share the same motivations with the DPM approach in the sense that we want the model to be able to take into account the deformation of people appearance. For that purpose, the DPM approach sacrifices the computation resource for a more flexible model by using excessively the sliding window paradigm to detect di erent body parts and recombine them by a matching deformable cost function. The method does not require manual annotations of body parts in order to train the model, which is very thoughtful. The DPM approach can properly handle the distortion in fisheye image. We believe however, that by integrating the particular characteristics of the deformation of people appearance in fisheye images, we can get even better performances. In the next chapter, we will anticipate the deformable cost function Eq. 3.10 to include the radial distortion.

Conclusion

Through years of development, the people detection algorithms with monocular camera are reaching its performance peak. It is confirmed by di erent surveys that the framework of people detection algorithm using the histogram of gradient based features and machine learning is very e ective. We do not have intention to reinvent the wheel by modifying this popular framework. Instead, our e orts are spent on adapting it to take into account the strong distortions of fisheye images. Although there exist promising variants and recent better monocular people detection methods, we are particularly interested in describing the HOG features and the DPM approach because of their flexible characteristics to the deformations. Han 12], the candidate regions of interest are generated by the sliding windows method (as explained in subsection 3.3.1). This chapter describes our proposed people detection algorithm for the context of heavy machines. The choice of using fisheye cameras for the ADAS in the context of heavy machines will be justified. Using the analysis of the geometrical distortions in fisheye images and their influences on people appearances in section 4.2, we propose two adaptive solutions. Details and evaluations of these solutions are presented in sections 4.3 and 4.4.

The Fisheye Image Context

Geometrical distortions in images can be ignored if they are low. Actually, in most of the optic systems, this phenomenon is not critical. Fisheye images are special because the strong radial distortions are visibly noticeable and the performances of detection algorithms can be strongly a ected. In this section, we describe the fisheye camera measurement model and use it to quantify the influences of distortions on the performances of the people detection algorithm.

The Fisheye Camera Measurement Model

Most of the cameras can be modeled using a perspective imaging model composed with an optical system focusing the light on the image sensor. A perspective camera covers typically 45 ¶ of horizontal field of view. An important characteristic of perspective cameras is that the rectilinearity of the scene is preserved. Straight lines in the scene are presented as straight lines on the image. This characteristic is very important and useful in many processes, including objects recognition. Fisheye cameras can be modeled by perspective projection but with noticeable geometric distortions. While these distortions may be artistically interesting, it is important to remove them in most of computer vision applications. Optical distortion compensation methods have been used in practice by a combination of lens. However, the amount of distortions that can be corrected by lenses is physically limited by the refractive, reflective, and transmissive characteristics of the materials from which they are made [ Bogner 95]. A post-processing correction is necessary for lens with a FOV over 110 ¶ in order to remove the distortions. Two assumptions are made in most of the distortion models [ Hughes 10]:

• The displacement function along the radial distance is a monotonically increasing function: It ensures that one point on the scene is mapped to at most one point on the image plane.

• The distortion function is approximately linear near the principal point (or image center) which is the intersection of the optical axis and the image plane, presented as point p 0 in Fig 4 .1.

The real point C P in the camera coordinate frame can be represented as C P = (R, ◊, ") T in spherical coordinates and as C P = (X, Y, Z) T in Cartesian coordinates, where ◊ is the angle outward from the optical axis and " is the angle of rotation around the optical axis (see Fig. 4.1):

Y _ _ _ ] _ _ _ [ R = Ô X 2 + Y 2 + Z 2 ◊ = cos ≠1 R Z " = tan ≠1 Y X (4.1)
On the image plane of the camera, the projection point p of the world point C P is function of (r, ") where r = Ô u 2 + v 2 is the distance from point p to the principal point p 0 = (u 0 , v 0 ) T of the image. In Cartesian coordinates, p = (u, v) T = (r cos ", r sin ") T . The relation between C P and p, depends on the optic characteristics, that can be parameterized by r. In a perspective camera model, the distortion free projection gives r = r u = " tan ≠1 ◊. In non-perspective camera, r d = Ô ũ2 + ṽ2 denotes the radial distance. r d is defined di erently, and depends on the optical model (see Fig 4 .2):

r d = f (◊) = h(r u ) = g ≠1 (r u ) (4.2)
Camera manufactures often try to design their lens to fit some standard projection function. Tab 4.1 and Fig. 4.3 provide information about some of the commonly used fisheye projection models presented in [Miyamoto 64].

The relation between a 3D point and its projection on non-perspective camera (as in Eq. 4.2) can also be approximate using non-linear functions. These approaches are independent from the underlying mapping functions implied by the model and are often used in calibration. Table 4.2 summarizes some of the non-linear models for radial distortions. Because it is impossible to produce a lens that perfectly fit a projection function, non-linear models are more suitable to describe the lens distortions [ Mei 06].

There are also hybrid approaches that use polynomial elements with the linear projection model. For example, an expansion of the equidistant projection function can be written as:

r d = " arctan A r u " B + A 1 r 3 u + A 2 r 5 u + A 3 r 7 u (4.3)
with A 1 , A 2 , A 3 are determined through calibration. In practice, the distortions in fisheye images can be approximated as a pinhole camera with extra distortions components. The projected undistorted point on the image sensor is represented as

p = Q a u v R b = Q a " x X Z " y Y Z R b (4.4)
In matrix form and using homogeneous coordinates we have

p = Q c c c a " x 0 u 0 0 " y v 0 0 0 1 R d d d b Q c c c a 1 0 0 0 0 1 0 0 0 0 1 0 R d d d b C P = K.I. C P (4.5)
In the case of a fisheye camera, the position of the distorted point on the image is given by [ Heikkila 97]:

p = Q a ũ ṽ R b = p + "p + p 0 (4.6)
where

"p = A "u "v B = A "u (r) + "u (t) "v (r) + "v (t) B (4.7)
is the approximated distortions. The geometric distortions include two major components: radial and tangential components. Radial distortions cause image points to be translated by a proportional amount to their radial distance from the optical center.

Tangential distortions (or decentering distortions) are generally less significant than radial distortions and are mainly originated from the misalignment of the lens elements [Fitzgibbon 01]. The variables "u (r) , "v (r) represent the radial distortions and "u (t) , "v (t) are the tangential distortions along the two image axes.

Among di erent distortion models, the standard polynomial model [ Hughes 09] is commonly used. In this thesis, we choose a third degree polynomial model:

Q a "u (r) "v (r) R b = Q a ũ(k 1 r 2 d + k 2 r 4 d + k 3 r 6 d ) ṽ(k 1 r 2 d + k 2 r 4 d + k 3 r 6 d ) R b (4.8) Q a "u (t) "v (t) R b = Q a 2p 1 ũṽ + p 2 (r 2 d + 2ũ 2 ) p 1 (r 2 d + 2ṽ 2 ) + 2p 2 ũṽ R b (4.9)
In short, from the real point C P in the camera coordinate frame to the point p on the distorted image, we have

p = K.I. C P + Q a ũ(k 1 r 2 d + k 2 r 4 d + k 3 r 6 d ) ṽ(k 1 r 2 d + k 2 r 4 d + k 3 r 6 d ) R b + Q a 2p 1 ũṽ + p 2 (r 2 d + 2ũ 2 ) p 1 (r 2 d + 2ṽ 2 ) + 2p 2 ũṽ R b + p 0 (4.10)
The geometric parameters to be determined in the calibration process are : the focal length " x , " y (often assumed to be equal), the position of the principal point p 0 and distortion coe cients (k 1 , k 2 , k 3 , p 1 , p 2 ). In general, the principal point is not exactly at the center of the sensor and the focal length of the lens has limited accuracy. The calibration method used in the system has been reviewed earlier in subsection 2.1.4 as a part of the sensor configuration process of the system.

People's Appearance Distortion Analysis

As shown in Fig. 4.2, the distortions in fisheye images are not identical over all spatial area. The consequence is that it particularly a ects the detection at close range and at the image boundaries. The measurements of the geometric distortions of fisheye images and how it a ects the detection performances are not well studied in the literature.

In Fig. 4.4, we illustrate these distortions in function of the relative position between a hypothesis person and the fisheye camera. Within this analysis, the flat-worldassumption is used in order to convert a rectangular R of size W ◊ H corresponds to a person on 2D image space. We assume H = 1.70m and the width is defined as a ratio of the height W = H/2 = 0.85m. This assumption has been widely used in the literature, mostly for automotive applications [Broggi 09, Gerónimo 10b, Enzweiler 11a, Ponsa 14]. It proposes that the person in the camera frame is on the ground in front of the vehicle, and that the geometry of the road and its position with respect to the camera does not change. Let d R be the distant from the hypothesis rectangular around the person to the camera, we have can approximately calculate its projection area on the fisheye image as The center point C P R of a person in the coordinate of the camera is projected on the image plane following the descriptions in section 4.2.1. The distortion of an image point is computed relatively to the center point as "p R ≠ "p ij . The mean square error (MSE) of all projection points belonging to the rectangular R is: 

MSEC P R = q ("p R ≠ "p ij ) 2 w.h i, j oe R (4.12)
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With the people average height H = 1.7m, the minimum distance of the person that is full visible on image can be computed as show that the distortion of a person at a distance higher than 2m, between 0 ¶ and 30 ¶ can be ignored. The most interesting range to be considered is therefore between 30 ¶ and 60 ¶ where the distortions do not depend much on the depth distance but only on the radial angle. We can briefly say that the di erence between fisheye and perspective images lies in regions A and B (see Fig. 4.6). These areas are important in our system due to the fact that they superpose the danger area of heavy machines (see Fig. 2.3). The conclusion of this analysis is important because it help us to refine the objective of the proposed approaches. 

d = H 2 tan ( V F OV 2 ) (4.14)

Warping Fisheye Images

Given calibration information on a camera system, it is possible to remove distortions and to apply any image operator in a local perspective plane. Warping fisheye images into a local perspective image is the direct way to avoid non-perspective deformations.

The process, called image undistortion, compensates the e ect of lens distortions. It take about 60ms to warp an image at the VGA resolution (640◊480) 1 , which cannot be ignored in real-time applications. Unfortunately, besides adding computational load, this approach also creates undesirable e ects. Indeed, the non-uniform compression of the image structures (stretching e ect) is a consequence of the wide-angle lens mechanism. There are more details about the scene on the center than on the borders of the image. In other words, the image sampling frequency decreases proportionally with the distance to the image center. The image rectification process warps the distorted wide-angle image into a local perspective plane.

As a result, the boundaries of a rectified image will contain vacant pixels (see Fig. 4.7).

These pixels are not directly mapped from the original image but often deduced from the neighbor pixels during an interpolation process [Yu 03, Fernandes 97].

The choice of the interpolation method used for distortion correction can a ect the texture properties of the resulting image. Basically, image processing operators are directly and uniformly applied on the whole rectified image without consideration of these non-uniform degradations. The advantages of the fisheye camera lie at the large FOV, so these boundaries areas are very important. For that reason, we investigated a set of well-known interpolation methods: • Nearest-neighbor interpolation: The value for a vacant pixel is assigned by the value of the nearest neighboring pixel. This interpolation scheme is the simplest but introducing artificial high frequency content (aliasing).

• Bilinear interpolation: The value for some pixel is computed by taking the weighted average of the pixels in a 2 ◊ 2 neighborhood. Compared to nearestneighbor interpolation, this method gets visually better results.

• Bicubic interpolation: It is similar to bilinear interpolation but uses a 4 ◊ 4 pixel neighborhood for the computation of the weighted average. While being computationally more complex, it performs better at preserving edges.

• Lanczos resampling [Duchon 79]: This method gives good compromise between the reduction of aliasing, ringing artifacts and the preservation of sharp edges.

Figure 4.8 shows the distortion correction results produced by the di erent interpolation methods. We observe that in the center region the lines of the checkerboard pattern are rectified accurately but near the image borders, the results are slightly di erent between interpolation methods. The strongest artifacts are in the case of the nearest-neighbor interpolation, while the other methods produce visually better results. The di erences between the bilinear and the bicubic interpolation are di cult to see. The Lanczos interpolation is visually very similar to the bicubic interpolation but produces ringing artifacts. Considering the compromise between computation cost and result, the bilinear interpolation is the best option.

The interpolation process in general has negative e ects to image quality, which impacts the detection process, especially at the image boundaries. Danillidis [ Daniilidis 02] and Bulow [Bülow 04] are two of the first researchers who argued that the warping of wide-angle images in general, should be avoided in all image processing tasks.

This conclusion was also supported by experimental results in the specific case of the Gaussian filter. Instead of warping image to a perspective plane, there is another trend in the adaptation of classical image processing operations such as filter, edge detection, SIFT and so on, to spherical space to handle non-perspective images [Hansen 08, Hansen 10, Lourenço 12].

Later on, other researchers also experimentally approved this conclusion [Liedlgruber 11, Gadermayr 13] for segmentation processes on medical images. Here, we also attempt to verify these negative e ects in the problem of people detection.

To the best of our knowledge, there have been few works exploiting fisheye cameras for people detection without explicit warping. Our research objective is to improve the robustness of people detection applied directly to the fisheye image with the presence of strong distortions. The following sections focus on describing our two proposed approaches. Constraints like light variation, appearance deformation and viewpoint changes are challenging and have to be handled. Besides, there are two other important requirements that are always respected in the development of our system:

• Generic: The people detection algorithm should be generic in the sense that it could be adapted to all wide angles camera optics with known distortions.

• Computation complexity: The heavy machine application induces real-time performances so the computation load should be as low as possible.

The Mix-training-dataset Approach

As discussed in the previous chapter, despite that the HOG features and the sliding window paradigm have good people detection performances, they are not designed to cope with strong distortions coming from fisheye images. The regular grid of the HOG feature, the rigid window and regular step of sliding window approach are not harmonic with the irregular characteristic of the distortion fields in fisheye image.

In this section, we choose to keep using these two methods and focus on enhancing the training flow chart of the classification module. We assume that the supervised classifier (SVM in this case) can recognize distorted pedestrian appearance when it is trained with distorted sample images. The direct approach to solve the problem of distortion is to divide the field-of-view of the camera into sub-regions, function of the angles and the distances.

To be able to apply on di erent camera optics, distorted sample images are generated from perspective samples using a distortions simulation process (described in subsection 4.3.1). Detail of the methods and experimental results will be presented respectively in subsection 4.3.2 and 4.3.3.

Distortions Simulation

Our proposed approach requires the training samples to be separated into sub classes, proportional to the amount of distortions. Wide-angle optics are very di erent from one to another. Therefore, if a training dataset is built using one specific optic, it is not usable with the others. Because the building process of training and testing datasets require a significant amount of time and resources, it will not be very practical.

Respecting the generic condition stated at the beginning of this chapter, we propose to artificially deform existing perspective image datasets, in order to simulate wide-angle camera images. Given an approximate size (W ◊ H) of a person and its center position in the camera frame, a distorted appearance can be computed using the camera projection equation (Eq. 4.10) and a given distortion model (Eq. 4.1). The algorithm is described in Algo.

Y _ ] _ [ X = X R Y = (H 0 ≠ H) + j H h Z = Z R ≠ W 2 + i W w with i oe [0, w] j oe [0, h]
4.1 and examples of distortion simulations are illustrated in Fig. 4.9.

As proposed earlier, we choose to use the bilinear interpolation method in all interpolation processes, which involves in resizing and projecting points steps in Algo. 4.1.

There is a trade-o between the image quality and the amount of distortions added to the training examples. The reason is similar to the case of warping the image to perspective plane, and this process also need to fill missing pixels by interpolation. This degradation of image quality is correlated to the amount of distortions introduced and it a ects the detector performances. In practice, the image samples loose most details when the simulation angle is superior to 60 ¶ . The phenomenon will be deeper analyzed in the experimental results of subsection 4.3.3. It is worth mentioning that during the distortion process, we use padding pixels to widen the original sample to cover the black area around distorted sample (see Fig. • Duplicate boundary image conditions: G(x) = G(0) with x Ø 0.

• Mirror boundary image conditions: G(x) = G(≠x) with x Ø 0.

• Mirror-inverted boundary image conditions:

G(x) = G(≠x) + G(0) with x Ø 0.
Experiments have been done to determine which replicated function give the best results. They will be presented later in subsection 4.3.3.

Proposed People Detection Approach

Using distorted image samples generated by the method mentioned above (subsection 4.3.1), we propose two people detection frameworks for fisheye images. To this end, the angles = [≠45°, 0°, 45°] and the distance D = 1.5m were chosen to represent the critical areas A and B in the FOV, as shown in subsection 4.2.2. In both cases, we needs a classifier fusion mechanism at the overlapping areas, here zones 2 and 3, as shown in Fig. 4.12a. The winner-takes-all approach is adopted in our work for simplicity and computational reasons

Experiments and Evaluations

First, we intent to evaluate our proposed multi-angles approaches. Then, we will verify the remarks about people detection problem on rectified fisheye images. Finally, di erent border replicate functions, used in distortions simulation process, will be compared. All experiments use the data from our heavy machine dataset at configuration 1, presented in subsection 2.2 and appendix A.

a -Performances of Di erent Detection Approaches

The first experiment involves the conventional-HOG detector, the multi-angles de- The multi-angles approach that was trained with only distorted images give the worst performances. The degradation of the image quality during the rectification process a ects remarkably the performance of the detection. One can notice however that our proposition to train the SVM classifier with the mix dataset of distorted and nondistorted images, gives better results. annotation on a region of 240 ◊ 480 pixels. By sliding this region horizontally across the image, we want to experimentally show the e ects of the distortion rate on the people detection. The results are better at the center than at the boundaries of the images, which is correlated to the amount of distortions. The curves are not symmetric because people do not evenly appear across images in the test sequences. For the multi-angles detector, the performances are the same at all angles but it is hard to conclude something because the log-average miss-rate is over 95%, which is considered as total failure. In Fig. 4.13, the conventional-HOG detector applied on rectified fisheye images was also included in the comparison. The results are worse than applying the conventional-HOG directly on the original fisheye images. Fig. 4.16a and 4.16b show an example situation when the warping approach fails. In the rectified images, lines on the floor and ceiling are straightened as expected but there are aliasing and blur at the image borders. Moreover, the person's position is relatively close to the center of the image. There are not much distortions but it already has an important influence on the recognition result. Rectifying distortions might work with a small amount of distortions but it is not adapted to fisheye optics where the field-of-view is too large. The result is coherent with the conclusion from subsection 4.2.3 and once again, confirms that warping fisheye images to perspective planes should be avoid in the detection process.

b -Detection Results on Rectified Fisheye Images

c -Border E ects

To analyze the e ects of the distortion process, we are interested in visualizing HOG vectors represented on a 2D plane. Vondrick et al. [Vondrick 13] provided a trainable approach tool to reconstruct the original image from HOG vector, called inverses-HOG. Two examples of distortion process applied on people appearance are shown in Fig. 4.18. The 2D interpretation of HOG feature vectors and the inverses-HOG are also provided. • Only the values at the center of the HOG maps are preserved during the distortion process.

• The direction and intensity of all vectors at the border are changed.

Fig. 4.17 show the same HOG features visualization calculated from an original distorted image. From a raw observation, it is not easy to find an outstanding di erence.

The inverses-HOG result of artificial distorted samples (see Fig. 4.18c and 4.18d) and give no hint of a human form. Head, shoulders and leg silhouettes are fading, in contrast to the original distorted fisheye sample (see Fig. 4.17). All the details and sharpness of these samples are lost because of the artifacts produced by the interpolation step. 

Discussions

In this section, a novel approach to improve the performances of people detection on fish-eye images has been proposed. We also verified that the warping process is not a suitable solution to handle distortions on fisheye images. On the other hand, it has been demonstrated by the result of the experiments that enriching the training dataset can handle the distortions on the people's appearance. Such approach has the advantage of being generic as it can be adapted to all camera optics with known distortions. The detection performances are only hold back by the trade-o between the image quality and the amount of distortions added to the training examples.

Adaptive-DPM Approach

In the previous section, the experimental results have shown that modifying the training flow chart led to a reasonable improvement of the detection performances in fisheye images. We must acknowledge, however, that fitting the training samples to the model it not the radical solution to handle the deformation of people appearance. It is hard to bypass the trade-o between the amount of distortions introduced in the sample images and their quality. Indeed, it turns back to the classic problem of interpolation.

Next, we consider solving the problem from a di erent point of view. The detection model finally needs to be adaptive to the radial distortion in fisheye image.

The Adaptive-DPM model

By observing the appearance of a person in fisheye images, we can express 2 remarks:

• The distortions of a person in wide-angle images are not identical over all the image area. It particularly a ects the person at close range and at the image boundaries.

• The distortions of the body's parts are minor compared to the full-body appearance.

Starting from these observations and our understanding of the DPM (described in subsection 3.3.2), we propose the following:

• Since the DPM approach has good performances on people detection on perspective images, it should have equally good performance in detecting the person at long distances in fisheye images.

• In the extreme cases, when people are staying very close and at the borders of the camera field of view, we will have low response of the root-filters f 0 but equally high responses on part-filters f i . We could therefore adjust the deformation features d i and v i in the matching deformable cost function of the DPM approach (see Eq. 3.10) to adapt the deformable part model to the radial distortions. This adaptation will depend on the position of the object in the FOV of the camera.

It is worth mentioning that the radial distortions have minor e ects on small local regions and compensated by the HOG features. Once the anchor positions v i are well defined, the deformation features d i are thus no more sensitive to distortions.

The second assumption has been developed into an adaptive-DPM approach where we relocate the anchor positions of each part directly in the deformation model. Given the height h c of the camera, an approximate size (W ◊ H) of a person, its position is at angle ◊ and its distance d to the camera, the center point of the person is given by

P c = Q c c c a X c Y c Z c R d d d b = Q c c c a d sin ◊ H ≠ h c d cos ◊ R d d d b (4.15)
Let the center point p i of the i th part in the model on a perspective image be defined as

p i = p c + v i .
Given a trained DPM model with the root filter of size (w ◊ h), the center position p i of each part can be converted into a 3D position as

P i = P c + v i Q c c c a W/w H/h 1 R d d d b (4.16) 
Both points P c and P i can be projected on fisheye images using the camera projection equation (Eq. 4.10) and a given distortion model as pc and pi (see subsection 4.2.1). The distortions of the fisheye optics can therefore be taken into account by estimating the displacement of each part relatively to the root part. Let us define ṽi = pi ≠ pc . Then, the score of one object hypothesis (Eq. 3.10) in the adaptive model will have

(dx i , dy i ) = (x i , y i ) ≠ (⁄(x c , y c ) + v i + ṽi ).
This gives the displacement if the i th part relative to its anchor position. The displacement of each part ṽi depends on the position of the person in the camera coordinate frame so it evolves in function of the position of the root filter and the scale in the feature pyramid. Fig. 4.22 illustrates the corresponding positions of the i th ≠part's anchor of the model at di erent angles and distances to the camera. In case of our 180 ¶ fisheye camera, there are practically no changes in the model when the hypothesis object's distance is farther than 3m from the camera.

In the implementation, let s i,l (x, y) = f i . (x, y, l) the response of part filter f i at a point p = (x, y) of scale l. For each part filter, a generalize distance transform is defined as:

e i,l (p) = max dx,dy [s i,l (x + dx, y + dy) ≠ d i • " d (dx, dy)] (4.17)
This transformation spreads high filter scores of the part to nearby locations, by taking into account the deformation cost d i ." d (dx, dy) where " d (dx, dy) = (dx, dy, dx 2 , dy 2 ). e i,l (p) represents the best response core of the i th ≠part in the local region (x±dx, y±dy) around the point p at scale l.

The overall score at a specific root location r = (x r , y r ) and scale l is then

Score(x r , y r , l) = s r,l (x r , y r ) + n ÿ i=1 e i,l≠⁄ (p) + b (4.18)
where ⁄ is the number of di erent scale between the root filter and its part filters. In the normal case p = ⁄(x r , y r ) + v i with v i is the anchor position of i th ≠part. With presence of distortions, p = ⁄(x R , y R ) + v i + ṽi . For each root position r at a scale l, we have one specific value of ṽi , which can be computed o ine and saved into look-up tables. 

Experiments and Evaluations

This experimental subsection is served to verify di erent assumptions and propositions that we made in this section, which is mostly turning around the DPM and the adaptive-DPM approaches. Besides, the interesting characteristics of the dimensionalreduced-HOG features and the mix-training-dataset are all so analyzed using the DPM approach.

a -Conventional-HOG and Dimensional-reduced-HOG Features Comparison

In terms of computational cost, the reduction of the feature vector dimension slightly improves the speed of the DPM. From 36 to 32-dimentional vector, the gain is not significant. Indeed, an average execution time measured on 100 images show a time gain of about 8% (At VGA resolution on a PC without any specific acceleration).

In Fig. 4.23, while the conventional-HOG feature works better with Inria and Inria-mix training dataset, the reduced-HOG features seem to work better when fisheye images are used for training. The combination of contrast-insensitive and contrast-sensitive features does not give any benefits in the general case. Contrast-sensitive features may be helpful when the object-to-background contrast does not change significantly. This is the case for example, when the background color is always darker than the people reflective-vest. 

b -Training Dataset Influences

The first experiment involves the DPM approach trained with 3 di erent datasets: Inria, Inria-mix and Fisheye Dataset. The di erences between the model trained with Inria and Inria-mix is not visually noticeable (see Fig. 4.24) but there are improvements in the performances (see Fig. 4.25a). This result conforms with the conclusions of subsection 4.3. Enriching the training dataset can help to handle the distortions on the people's appearance, even in the DPM approach. As stated above, this process has the drawback of introducing missing pixels that are filled by interpolation. This phenomenon is proportional to the amount of distortions and it has negative e ects on the detector performances. The results of the Inria-mix detector in this experiment are the best that we can obtain from the mix-training-dataset approach. The degradation of the image quality during the distortion process a ects remarkably the performance of the detection. The model trained with 100% of distorted samples gives an unrecognizable person model and in the experiments, the detector does not obtain any good detections.

In the perspective camera model, the HOG responses are strong on the person silhouette, especially the head, shoulders and legs [Dalal 06a]. Based on this observation, the DPM defines the anchor position of parts at the high response region of the root filter. In the case of the fisheye detector model, although we can recognize the silhouette contours of a person. , there are very little correlation between the root filters of the perspective and fisheye models. The learned spatial model with anchors' posi- tions defined by the root filter is thus di erent. It is important to notice also that the correlation between human body parts and the model parts is not clear anymore.

It is worth mentioning that in the case of the fisheye detector, training and test images are extracted from the same dataset. The images were captured with the same camera and configuration. All these conditions improve the performance of the fisheye detector. Taking into account these remarks, we still believe that the classifier can learn to adapt to radial distortions. 

c -The Adaptive-DPM Approach

Here, instead of enriching the perspective training dataset by simulating fisheye distortions, we directly take into account the distortions in the detection model. The result shown in Fig. 4.25b highlights improvement in performances. Our proposed adaptive model shows clear advantage in extreme cases. In fact, even in the most extreme case, the dislocation of part's anchor ṽi is smaller than 40% of the root filter's size while the distortion cost is calculated in the local region up to 80% root filter's size around the anchor point. When the response of the part-filter f i is high, the value will be propagated far enough to take the part contribution in the model. Relocating the anchor position is useful in di cult cases when a weak filter response appears. An illustrative example is shown in Fig. 4.26.

Discussions

The results not only give evidences that the adaptive-DPM approach help improving detections in fisheye images, but also confirm other observations. The dimensionalreduced-HOG features can actually conserve HOG features' essential information but the combination of contrast-sensitive and contrast-insensitive does not shows clear advantages on our testing dataset. Our proposition of the mix-training-dataset is valid with DPM-based approaches. One of the reasons may come from the fact that the DPM approach uses essentially the HOG-SVM framework, on which mix-training-dataset have already been proven to be e ective (see section 4.3). 

Conclusions

Fisheye images contain significant distortions and their impact on the people recognition performances is undeniable. In this chapter, we have investigated and quantified those impacts both theoretically and experimentally. Based on the state of the art of people detection approaches, we improved progressively the performances of the vision-based PDS system in fisheye images. First, we proposed di erent training and detecting flow charts by including artificially distorted samples in the training dataset. We demonstrated that enriching the training dataset can help to handle the distortions on the people's appearance. While the HOG features can handle local small deformations, the classifier trained with distorted samples, can tolerate the deformations of the appearance caused by radial distortions. One more limitation come from the fact that there is a trade-o between the image quality and the amount of distortions added to

the training examples. This result is valid only when the distortions are minor.

These limitations led us to decide to adapt a sophisticated model of deformable parts in detection. It turned out that the deformable models can handle very well the strong radial distortions, thanks to its multiple small parts detectors which are less sensitive to distortions and constitutes a flexible connection model. We believe that it is possible to build an adaptive-DPM detector which can solve the problem of object detection in all kinds of non-conventional cameras with known calibration information by modifying the connection model. There is no contradiction between our two propositions because the adaptive-DPM approach can also profit from the mix-training-dataset flow chart. The combination of the two propositions gives the best results on fisheye images.

Comparing to the objective system, some drawbacks can be stated here:

• Real-time performances: The high performance of the DPM-based approach in the PDS. We will first present a literature review of Lidar-only and Lidar-camera PDS in the next subsection. Section 5.2 describes our proposed sequential Lidarbased architecture for the multi-sensors PDS. The results of multiple experiments and discussions are presented later in section 5.3. Gidel 10] is performed using a multi-layer Lidar. The method uses a non parametric kernel-density-based estimation of pedestrian position of each laser plane. The results of the pedestrian estimations are then fused according to the four planes and temporal filtering of each object is finally achieved by a stochastic recursive Bayesian framework (particle filter). The experimental results in an urban environment are promising: a miss rate less than 10% at 0.34 F P P I is obtained.

Related Works

To obtain better performances, there was a trend, arose about a decade ago, which and [Broggi 09] uses Lidar to provide a list of ROIs in which a pedestrian may appear, while the camera is employed to classify potential pedestrians in the ROIs. In that work, a Bayesian framework is used as the fusion rule. Oliveira et al. [Oliveira 10b] fuse Lidar and camera data using a "decentralized approach" where data from each sensor are processed independently and the final decision is obtained by fusion rules.

Since long time ago, Lidar sensors have been very useful to detect obstacles but di cult to use for complex object recognition From the literature review, we can say that the Lidar is more appropriate in a role of an secondary sensor to improve the detection speed and the robustness of the PDS system. It fulfills exactly what we need for our vision-based PDS.

Problem Statements

Basically, the final fusion system is expected to achieve better detection performances than the single based sensors systems or, at least, the solution should be less complex.

In section 2.1 we have already addressed some practical problems of the fusion system, including the collection and synchronization of sensor data. The processing of these multi-modal data, however, faces di erent issues that we will discuss here. In the scope of this thesis, we are interested in a specific combination of fisheye camera and Lidar information and highlight 3 points:

• How to e ciently fuse heterogeneous data sources? Di erent sensors are sensitive to di erent physical phenomena. As a result, the data is represented by heterogeneous physical units and data structures. Besides, sensors may share the same coordinates system but they often work at very disparate temporal and spatial resolutions.

• How to identify the inconsistencies? Any observation may have various uncertainties, e.g missing measurements, thermal noise, calibration imprecision etc. The fact that each data type has its own characteristic implies that the new uncertainties cannot (or should not) be treated as in the uni-modal system.

Conflicting, contradicting or inconsistent data are some of the problems that occur only in the presence of multiple data sources.

• How to choose the data fusion architecture? Choosing an appropriate architecture is a widely open question because few information is known about the underlying relationships between the di erent modalities. Fusion of multiple data sources can be done at the raw-data level or at a higher abstraction level, after certain simplification and processing steps. Also, we can choose between parallel processing for each modality, followed by a decision-making step or sequentially processing, where one (or more) modality(ies) are used to constrain another.

We will try to find properly answers to these questions in the following sections.

The Multi-sensors People Detection System

Fusing Lidar and camera information at the raw-data level is too di cult and not encouraged because of their heterogeneous nature. For that reason we choose to use a mid-level representation as the spatial position of the object of interest, forming a common space to synchronize with the temporal and spatial information. A robust spatial transformation between the two data spaces is then required.

The sliding-window method in vision-based PDS, is the simplest candidate generation approach [Dalal 05] that makes the bridge between feature extraction and classification modules by scanning the entire image at di erent scales. One of the key problems of this method is the huge amount of negative candidates which are potentially false alarms. Rather than applying sliding-window detection techniques over the whole image, we propose to use a range sensor (here a Lidar) to roughly localize all potential obstacles inside the field-of-view of the camera. The amount of negative candidates can then be significantly reduced. In this section, we present the whole process starting from the Lidar data segmentation, through obstacles definition, coordinate frame transformation and ROIs localization. 1. Sensors stage: This module includes a set of data processing tasks to decrease the complexity and the processing time for subsequent stages.

2. Preprocessing stage: The Lidar-based system acting as primary object detection.

The segmentation module outputs a set of segments obtained by a range-data segmentation method as projected as ROIs on the camera frame as presented in subsection 5.2.1 and 5.2.2.

3. Recognition stage: Inside each ROI, a classification method is used in the form of a multi-scale sliding-window which is shifted in position and size for searching people.

Lidar Data Segmentation

The Lidar coordinate system origin point is defined as the laser emitting point. The directions X l , Y l , Z l are defined and shown in Fig. 
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The goal of our system is to localize an obstacle and to classify it as a "person" or a "non-person". The Lidar data segmentation process is the primary stage for obstacle detection. Raw Lidar cloud points give dense range information of a 2D horizontal layer. A single 2D scan is a sequence of N S laser measurements S = {(◊ l , d l ) | l = 1, . . . , N S } where p l = (◊ l , d l ) denotes the polar coordinates of the l th scan point. This raw information is not necessary convenient for obstacle position determination. It can be observed in Fig. 5.3a and 5.3c that most of the Lidar points are out of the distance of interest. An obstacle is characterized by a cluster of Lidar points that we call a segment. A segment is composed by a set of laser-points sharing similar spatial properties. A given segment is defined by the set S k : k < N S . In general, the segmentation is defined as the process of separating foreground objects from the background in the sensor measurement space. The key step is to detect the breakpoint, characterized by a discontinuity between two consecutive laser points, which represents, possibly, an object boundary. The most used segmentation methods for Lidar data is the distance-based methods. In Algo. 5.1 we describe step by step the segmentation algorithm. In practice, we are interested only in the centroid point

L C k = (◊ C k , d C k
) and the size D k of the cluster S k . In the rest of the manuscript, we assume that the size of a cluster is represented as the Euclidean distance between its endpoints

D k = Ò d 2 b k + d 2 b k +n k + 2.d b k +n k .d b k cos (◊ b k +n k ≠ ◊ b k ) (5.2)
In the implementation of the system, some other processing are performed:

• Filtering of "isolated" points (outliers rejection scheme) • Removing points above a maximum distance of interest: Although the maximum range of the Hokuyo Lidar used in our experiments can reach 30m , the maximum distance is arbitrary defined as r max = 10m. This range satisfies the requirement of the PDS on heavy machines (as explained in 2.1.1). It also conforms with the maximum e ective range of the vision-based detection algorithm, which is limited to 6m.

• E ective FOV determination: This process removes points that are not inside the camera FOV.

While these processes are simple, they are useful to keep the system neat by ignoring useless potential obstacles and saving up computation charge in posterior modules.

Adaptive ROIs Projection on the Image Frame

The rigid body transformation between the Lidar L and the camera C frames is denoted as C [R, t] L where C R L is the rotation matrix and C t L is the translation vector. A point L p in the Lidar frame is projected into the camera frame as:

C p = C R L • L p + C t L (5.
3)

The extrinsic parameters C [R, t] L can be obtained through the calibration process presented in [Fremont 12] or deduced from direct measurements. In the second case

C R L = R X ◊ R Y ◊ R Z (5.4)
where
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( X, Y, Z) are the angle di erence of X, Y and Z axis of the two sensors. In the proposed approach, we do not use the geometric characteristic of the cluster as a cue to recognize the obstacle. Only the cluster size helps to determine the size of the ROI in the fisheye image. Deduced from the Eq. 4.11, we have:

ROI_width = D k .F rame_width." y d C k .Sensor_width (5.6)
For any configuration of the Lidar/Camera sensors, one Lidar cluster defines one ROI = (c k , ROI_width, µ). This is very convenient for an image-based people detection algorithm and the requirement of a rotation invariant method is not necessary anymore.

Experiments and Evaluations

In terms of computational cost, as expected, the combination of a Lidar with a fisheye camera improves significantly the speed of the people detection system. While the complexity of the obstacles detection in Lidar data and in the ROIs projection states are always the same, the speed of the people detection by DPM approach depends directly on the area of the ROIs. As a result, we noticed a speed factor of about 20 for the detection time, measured using 300 images at VGA resolution on a desktop computer without any specific hardware acceleration. It is worth mentioning that the motions of heavy machines are normally much slower than automobiles and a detection frequency of 10Hz can be considered as enough. The optimization of the detection speed is kept in perspective but the feasibility is certain.

In the next subsection, we are more interested in comparing the detection performance of the proposed approaches. Di erent experiments have been done with 3 detectors: the HOG of Dalal et Triggs [ Dalal 05], the adaptive-DPM approach (proposed in chapter 4) and the adaptive-DPM approach used in combination with the Lidar data segmentation. We evaluated their detection performances in three aspects: sensor configurations, person-machine distances and states of the machine.

Sensor Configurations

Because the people detection algorithm is strongly variant to camera view point, it is more reasonable to divide the dataset into 2 configurations, according to the dataset's description presented in section 2.2. As demonstrated in section 4.4, the ROC curves in Fig. Actually, the sliding window detection method requires multiple overlapping detections to be merged based on hypotheses that a robust detector should give a strong positive response even if the detection window is slightly o -center or o -scale on the object.

As suggested in [ Dalal 05] and used in numerous other people detection system, we use non-maximum suppression for the fusion of overlapping detections. The final bounding box result depends on multiple primary overlapped bounding boxes as output of the classification. The fusion method takes into account the detection scores, overlapping areas and the relative scale. We show a raw detection result of the adaptive-DPM in Fig. 5.6. We notice that the positive responses of the detector spread over an area ROIs corresponding to obstacles are rotated before launching the visual recognition.

In this favorable case, the DPM approach performs really better.

We can see this e ect even clearer in the Log-average of miss-rate curves along the horizontal axis in Fig. 5.7b. The detection performances of the Lidar-DPM detector is especially good on the left hand side of the images. The Fig. 5.7c and 5.7d, extracted from the heavy machine dataset captures the advantages of the Lidar-camera PDS.

While the vision-only approach cannot detect a rotated person in fisheye image, the location information provided by the Lidar can help to correct this rotation before detecting the person inside the ROIs.

The evaluation along the x axis in Fig. 5.7b has interesting characteristic around x = 400 pixels, which is near the image center. Here, the multi-sensors detector performs worse than the adaptive-DPM detector despite the fact that they both use the same vision-based people detection algorithm.

The only reason for this degradation must come from the region of interest. Our opinion is that the background area around the person may be not large enough and the ROIs should be enlarger to assure the proper functioning of the detection algorithm. done by:

Distances Analysis

d = H. F rame_width." y h.Sensor_width (5.7)
The results in Fig. 5.8 reveal that most of the miss detections are due to the low resolution of the appearance on image when the person is far away from the optic (over 5m). The log-average miss-rate reduces as the detection scale increases. We noticed also that the di erence of performances between HOG and DPM changes along the scale axis: from about 10% at small scale to 20% when they are at their peak performances at 380 pixels height (distance of about 1m). We can explain that result as:

• The adaptive-DPM approach can benefit better the high resolution of the people appearance at close range.

• The adaptive-DPM approach is less influenced by the deformation of the people appearance caused by radial distortions at close range.

Both explanations conform with our conclusions about the adaptation of DPM approach for people detection on fisheye images.

At very close range, both HOG and DPM are under the stronger influences of the rotating appearance in configuration 2. That is the reason why the performances decrease for the bounding box with height superior than 380 pixels. In the same condition, the Lidar-DPM multi-sensors detector keeps performing even better at bigger image scale.

In section 4.2.2, our objective was to improve the people detection at very close range and at angles between 30°and 60°. To this end, we can say that the Lidar-Camera PDS satisfies these objectives. There exist, however, some extreme cases where the fisheye camera gives a close top-view figure of the person (see Fig. 5.9). In that case, the ROI given by the Lidar is correct but the DPM detector cannot recognize the person.

These specific problems can be solve by defining a mixture-model system as proposed in [Munder 08, Felzenszwalb 10, Divvala 12]. The approaches use di erent dedicated trained models in function of the postures and the positions of the person.

Machine States

From the same detection results, we evaluated the performances of the three detectors according to another criterion. The results are divided into three operation states of the machine: static, moving forward and turning. These operation states are illustrated by the scenarios diagram used in our experiments (see Fig. 5.10).

Fig. 5.11a shows the evaluation results when the machine is static, which corresponds to scenarios 1 and 2 in the heavy machine dataset. Similarly, the evaluation results of the machine moving forward (scenario 3) and moving in circle (scenario 5) are shown in Fig. 5.11b and Fig. 5.11c (see appendix A). These results conform with the overall conclusions: the performances of all three detectors are always better at the image center than on the borders. Moreover, the adaptive-DPM detector always gets better results than the HOG detector but worse than the multi-sensors detector. All three detectors perform best in static cases and worse when the machine moving in circle.

The result is logic because the people detection problem in dynamic scene, especially in circular motion, is more di cult than in static background.

There are some exceptions when the adaptive-DPM works better than the multi-sensors detector. It appears in all three scenarios but always near the image center. We can conclude that the phenomenon is not related to the operation taken by the machine.

The reason might be related to the size of ROIs projected on the image as explained in subsection 5.3.1.

Conclusions

In conclusion, the adaptive-DPM approach shows very good performances in detecting and recognizing people in fisheye images, however it requires high computation cost and is not invariant to rotations of the person's appearance. We therefore proposed a multi-sensors system that consists of a fisheye camera and a Lidar in order to bypass these limitations. The experimental results are promising both in term of processing speed and performances. In term of performance, the negative e ects of distortions at the image borders and at close ranges in fisheye images to our system is clearly reduced. The miss-rate at around 10 ≠1 FPPI attends 30% or even lower in many image sequences. We also bring the detection speed closer to the real-time requirement in the multi-sensors PDS.

The fusion architecture and the Lidar data segmentation algorithm used in our system are sequential and very simple. In the future, we plan to integrate an object tracking algorithm to improve the quality of the Lidar segmentation and to solve the occlusion problems during the people detection phase. Chapter 6 Conclusions

Synthesis

People detection systems are no doubt the key technology to reduce the number of accidents in construction environments caused by heavy machines. People detection is by no means an easy task, given the di culties such systems encounter: people's appearance deformation, real-time detection of moving targets in uncontrolled outdoor scenarios, etc. In our opinion, the research e orts on PDS were too focused on automobile applications and left out the safety in construction sites. Fortunately, the two contexts share several fundamental characteristics. Our scientific contributions lie at the evaluation of state-of-the-art people detection approaches and proposition of adaptations to the context of heavy machines.

An important part of the work presented in this thesis is dedicated to the analysis of the context of the application. Through di erent surveys on accident cases, blind area diagrams, safety braking distance of moving vehicle, we define a high risk area around the machines. It appear to be particularly dangerous in the area from 0 to 7m in front and behind the machine. It is not a coincidence that this area is similar to the blind area of many heavy machines since a lot of accidents in construction sites can be blamed to the poor visibility.

Based on additional research on the characteristic of di erent sensors, a system consists of a monocular fisheye camera and a Lidar have been proposed. The use of the fisheye camera in our PDS has a valuable advantage of a very wide field-of-view to cover the blind areas of the machines. Yet, fisheye images contain significant distortions and their negative impacts on the people recognition performances are undeniable. In this thesis, we have investigated and quantified those impacts both theoretically and experimentally. It turned out that people at the image boundaries and at very close range to the camera su er the most influences of the distortions.

Based on the state of the art of people detection approaches, we improved progressively the performances of the vision-based PDS system in fisheye images. Our propositions are inspired by the two state-of-the-art people detection approaches: the Histogram of Oriented Gradient and the Deformable Parts Model. We believe that HOG and DPM can be modified to adapt to fisheye images' properties.

To handle the fisheye distortions, we proposed to modify the training and detecting flow charts by including artificially distorted samples in the training dataset. It was demonstrated that enriching the training dataset can help to handle the distortions on the people's appearance. We must acknowledge, however, that fitting the training samples to the model it not the radical solution to handle the deformations of people appearance. It is hard to bypass the trade-o between the amount of distortions introduced in the sample images and their quality. These limitations led us to decide to adapt the DPM approach to solve the problem. It turned out that the deformable models can be modified to be even better adapted to the strong distortion of the fisheye images. Such approach has a drawback of the high computation cost and complexity.

For that reason, we also attempted to e ciently integrate the Lidar sensor into the PDS. A sequential Lidar-based fusion architecture is used, which address directly to the problem of reducing the false detection and computation cost in vision-based-only system.

We have also solicited the help from the industrial partners to build a specific dataset which take into account the characteristics and the dangerous use cases on construction sites. This dataset can be divided following the two configurations of the sensors. In the first one, the sensors are kept at a low position (height h = 110cm) and are mostly parallel to the ground plane. This is the most commonly used configuration in ADAS.

In the second one, the fisheye camera is mounted at a high position (height H = 210cm), looking down with an angle of precisely 30 ¶ . The high position of the camera is convenient for heavy machines because we can avoid collisions that can damage the sensors and obtain a better coverage of blind angles around the machine. The results are promising, both in term of processing speed and performances. Especially in the second configuration, we get less than 30% miss detections at 10 ≠2 FPPI because the negative e ects of distortions and rotations in fisheye images are well handled.

Perspectives

Extensions to the Current Work

Although ADAS and particularly PDS, is a young research area, its presence on future vehicles is not a question of "if" but "when". The pursuit for a perfect PDS is a long term goal but the development of a PDS that works under restricted conditions is already feasible. The research possibilities are so numerous and diverse.

• Real-time performances: Although a very strong emphasis in time consumption and computational resource requirements is made along the thesis, we do not spend e orts on real-time optimizations. Despite that all proposed approaches satisfy the conditions that they are adding computation charge to the online detection, to this end the cadence of our prototype PDS only reaches 0.5 frames per second (FPS). Knowing that the require speed of PDS for automobile application is about 30 F P S and for heavy machines is about 10 F P S. To the best of our knowledge, without any algorithmic modification, this speed can be reduce significantly through parallel computing solutions. For example, the DPM approaches parallelized on quad core CPU can be reduced more than 10 times. Embedded systems or GPGPU solutions dedicated to signal processing can easily handle the real-time performances of such system.

• Tracking: The most likely next objective of the PDS system would be a trackingby-detection multi-sensors system. The tracking module to following detected pedestrians over time is often used in PDS system as it serves several purposes. At the same time, this module helps avoiding false detections and predicting future pedestrians positions, thus avoiding lost targets due to occlusions. There are many sources of uncertainty for the object locations, e.g., measurement noise, dynamic background and significant occlusions. False positives and missing detections usually happen and make tracking-by-detection a tricky problem.

• Postures: We have prepared the heavy machine dataset to take into account di erent postures of the person working on construction site. These specific problems can be solve by defining a mixture-model system as proposed in [Munder 08, Felzenszwalb 10, Divvala 12]. The approaches use di erent dedicated trained model in function of the postures and the position of the person.

• Evaluation: The performances of our adaptive approaches show promising results on di erent image sequences and scenarios. However only one camera has been used throughout all experiments. We have not extended the test of the adaptive approaches to other non-perspective optics (e.g. omnidirectional cameras). Our prototype PDS stay at a demonstration level. The di erence between a laboratory prototype system and commercialized one lie at the validation conditions. The PDS needs to be mounted on di erent heavy machine types and validated by more experimentation.

Longer Term Developments

Di erent research topics were covered in this thesis, such as: multi-sensors data acquisition, Lidar data preprocessing and filtering, binary classification, Lidar and camera calibration, feature extraction, sample selection, information fusion and decision making. Yet, there are other interesting aspects that are left unexplored. Pointing out some of these aspects can help to provide a better focus for future works

• We did not concentrate on improving the state of the art classification algorithm.

In fact, any advance in the classification algorithms is useful and in most of the cases it will fit the proposals and conclusions of this thesis. In the literature, comparisons of machine learning algorithm applied to the problem of people detection have been addressed many times. There are contradiction conclusions because of the non-compliance in testing dataset or evaluation methods.

• Our PDS system is limited at the perception and detection level. Human machine interface is another interesting research area that was not included in this thesis.

In our opinion, the heavy machines context is interesting for researchers with expertise in driver behavior.

• We use the "multi-sensors" term through this thesis but only two sensors have been used. The choice was made in considering di erent practical constraints.

With the fast development of sensing technology, other options for sensor, such as multi-layers Lidar, Velodyne1 , high resolution cameras, stereovision, etc, will become more accessible. Those sensors can indeed provide rich and useful information for recognition and detection but at higher cost. 

A.2.2 Scenario 2

Nb of people

A.3 Remarks Problems encountered

Camera fish-eye There was direct sun light some time during the day. The camera fish-eye could not auto-adjust to capture good images. The camera fish-eye is designed to work indoor and the dynamic range of the sensor are more close to low-light condition. Moreover, fish-eye lens are more likely to be sensitive to highlight than shadow.We tried to adjust manually but it is at the limit.

Camera PS3 It does not work normally at low-light condition. The system works fine during almost all of the sequences except which took place after sunset. The low light condition make the image very noisy at first and then we don't get data from the sensor at the frequency expected. Some potential sources of the problem have been examined but there haven't been a final conclusion:

• Connection:

-Permuting the cable Extended USB cable with other sensors -Change di erent USB input on the PC -Problem not solved

• Temperature: The system was tested at di erent place indoor and outdoor (from about 1°C to 15°C). There is not any relevant behavior of the problem correspond to the temperature.

• Memory leak inside Pacpus driver for camera PS3: there is no memory leak.The memory stay stable during all the acquisitions.

• We doubt that the problem come from bugs from the API of camera PS31 , which is provide by a third party developer company. We cannot verify -Try to change the acquisition frequency of the camera. There are 3 options allowed by the API: 15Hz, 30Hz 60Hz. For most of the time, the camera is set to work at 30Hz.

-The problem maybe cause by the time exposure of each frame exceed the time allowed by the data transmit frequency, which is normally restricted automatically inside the driver of the camera.
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  1.1), accidents caused by heavy machines are various. From the IRNS document 1 [Marsot 08], we obtained
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 11 Figure 1.1: Example of common types of heavy machines.
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 12 Figure 1.2: Report accidents by types of machines: (a) Partition by number of accidents. (b) Partition by number of machines.
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 13 Figure 1.3: Report on causes of accidents by operations.
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 14 Figure 1.4: Cat Electronics' camera system for heavy machines: (a) The work area vision system (b)The integrated object detection system.
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 15 Figure 1.5: A general architecture proposed for an on-board pedestrian detection system. The diagram is a simplification that covers most of the PDS structure.
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 16 Figure 1.6: Example of appearance deformation from VIPeR dataset [Gray 08].
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 222 Fig. 2.1 illustrates potential of PDS systems from an automobile example [Geronimo 10a]. The typical scenario is a vehicle moving at 50km/h. The total stopping distance D tc is the sum of the perception-reaction distance D pr and the braking distance D br .
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 23 Figure 2.3: Typical risk areas of a heavy machine.
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 24 Figure 2.4: Example of accident cause by an excavator.

  provide a coverage of a hemisphere field-of-view in a single image. Sample images of these vision sensors are shown in Fig.2.5. It is worth mentioning that images obtained from catadioptric cameras are have low resolution at the border areas and have a central blind spot. These constraints have to be taken into account in the processing task.
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 25 Figure 2.5: Examples of di erent camera optics.
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 27 Figure 2.7: Greensight ultrasonic detection system from Groeneveld (image from the product datasheet). The camera is turned on when ultrasonic sensor detects an object. The object position is obtained through (a) The ultrasonic sensors include 6 emitters and 6 receptors on each side of the machine. ((b) Mounting example on the machine: 1.Control box, 2.Ultrasonic sensors, 3.Interface monitor, 4.Additional sensors, 5.The camera, 6. Alarm sirens.
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 28 Figure 2.8: Sensors used in our system: The Lidar Hokuyo UTM-30LX (a) and its horizontal field-of-view(b). The camera PointGrey Firefly MV (c) and its example image (d).
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 29 Figure 2.9: Diagrams of the visualizing areas in L110E Volvo loaders (images from NIOSH): (a)The machine (b) Ground level diagrams (c) 900mm level diagrams (d) 1500mm level diagrams (image from [Pratt 01]).
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 210 Figure 2.10: Sensor configurations map. Sensor heights are h = 110cm and H = 210cm respectively.

Figure 2 . 11 :Figure 2 . 12 :

 211212 Figure 2.11: Typical target-based calibration setup for a camera and a 3D Lidar using a planar checkerboard pattern.
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  2.12b), the extrinsic parameters can be estimated (see Fig.2.12c) The final calibration step consists in the minimization of the global reprojection error (using for example the Levenberg-Marquardt algorithm[Moré 78]). Typically, in the case of a fisheye camera, the intrinsic parameters include the focal length ", the position of the principal point p 0 and the vector of lens distortion coe cients k c . All the intrinsic numerical values are summarized in Tab. 2.1.

  photographs and from the Internet. The variety of scenarios ranges from typical city streets to mountain landscapes. Between 2007 and 2009, there appeared some papers presenting datasets to support new techniques. The dataset of ETH Zurich[Ess 07] is collected to evaluate the approach called "cognitive feedback" which use of pedestrian location hypotheses together with depth cues to estimate the ground plane. Another dataset created by the Darmstadt University of Technologies (named TUD) [Wojek 09] was used to compare between di erent image features and classification methods in real time applications. The only available dataset in the context of heavy machine is the HIMA (Human In work Machine Area [Heimonen 10]). Detailed information of the state-of-the-art datasets are provided in Tab. 2.3 using the pedestrian datasets summary presented in [Geronimo 10a,Dollár 11]. In Fig.2.13, some positive examples are extracted from di erent datasets are shown.

Figure 2 . 13 :

 213 Figure 2.13: Positive examples from di erent pedestrian datasets: (a)Daimler [Enzweiler 09]. (b) NICTA [Overett 08]. (c) INRIA[Dalal 05]. (d) Our heavy machine dataset.

  2.15).

Figure 2 . 14 :

 214 Figure 2.14: Illustration of the wide FOV advantage in covering blind angles in heavy machine. The perspective camera is not able to detect very close objects. (a) View of 75 ¶ taken from the Sony PS3Eye camera. (b) View of 180 ¶ taken from the Point Grey Firefly MV fisheye camera..

Figure 2 . 15 :

 215 Figure 2.15: Architecture of the acquisition system.

Figure 2 . 16 :

 216 Figure 2.16: The telescopic forklift Bobcat TL470: Real images of the acquisition system setup in the configuration 1.

Figure 2 . 17 :

 217 Figure 2.17: The designed support used to install the sensors system: (a) Global view. (b) Detail of the support for LIDAR (position 1). (c) Details of the support for fisheye camera at 30°(position 2).

  2.18c). In this case, the False Positives Per Window (F P P W ) is used equivalently to the F P R but leave open the number of test negatives because the non-person-candidates are not well defined. This performance measure called window-based evaluation, leads to a ROC in which the axes are T P R and F P P W .It is more interesting to evaluate the classification performances in the context of sequential frames rather than on isolated examples. Thus, an alternative evaluation method which does not use cropped sample images was proposed. It makes use of an overlap measure between the ground truth annotation and the detected window (see Fig.2.19). The detection system takes a frame and returns bounding boxes

Figure 2 . 18 :

 218 Figure 2.18: Test samples extracted from our heavy machine dataset: A positive (a) and a negative (b) cropped person appearance sample. (c) Negative person appearance sample in window-based evaluation.

Figure 2 . 19 :

 219 Figure 2.19: Test sample of overlap-based evaluation for PDS.

Figure 2 . 20 :

 220 Figure 2.20: The overlap criterion: A represents the detected window and B the annotated window.

  The ones used in recognition algorithms are various but Haar and HOG features gather most attentions in the community. Papageorgiouet al. [Papageorgiou 00] introduced the Haar features used in the training of a classifier with quadratic Support Vector Machine (SVM). Haar features are computed using the pixel di erence between two rectangular areas in di erent configurations, which can be seen as a derivative function at a large scale. Later Viola and Jones [Viola 05] proposed Haar-like features, which consists of the original Haar features plus two similar features (see Fig. 3.1).

Figure 3 . 1 :

 31 Figure 3.1: Haar features (a ≠ c) and Haar-like features (a ≠ e) (figure from [Viola 05]).

  [Mohan 01], the authors used quadratic SVM to independently classify four human parts (head, legs, right and left arms). The classification results of these parts are combined using another linear SVM with the data vector represents the presence or not of parts in the designated area of the 128 ◊ 64 pixels window. In [Shashua 04], the authors used thirteen overlapping parts. The training set is divided into 9 clusters according to changes in pose and illumination conditions, resulting in 9 ◊ 13 = 117 classifiers. The outputs of the classifiers are fed as weak rules to an AdaBoost classifier that sets the final classification rule. Dollár et al. [Dollár 08] proposed the Multiple Components Learning using Haar, gradient magnitude and orientation features. The part-based approach became popular since Felzenszwalb et al. [Felzenszwalb 08, Felzenszwalb 10] proposed the deformable part model (DPM) which sums the classification score of the candidate regions of interest and di erent dynamic parts, taking into account the deformation cost of the appearance. The idea motivated other DPM-based variant approaches, such as the multi-resolution DPM proposed in [Park 10, Yan 13].

Figure 3 . 2 :

 32 Figure 3.2: The Blaxtair system's framework in patent [Patrick 11]: Stereo cameras are used to calculate the disparity map. From this map, obstacles can be detected with the hypothesis of a dominant plane. The position of these obstacles are then located on the 2D image and recognized by an algorithm based on feature extraction and classification.

  Contrast sensitive : B(x, y) = Ê◊(x, y) 2fi mod Ê (3.2) Contrast insensitive : B(x, y) = Ê◊(x, y) fi mod Ê (3.3) Concretely, each pixel magnitude is added to the corresponding pixels orientation B(x, y) by using trilinear interpolation, i.e votes are interpolated along neighboring cells and neighboring orientation bins. A dense grid of square "cells" is defined as an image region of size k > 0 and accumulates pixel-level features to obtain a cell-based feature map c(i, j) with 0 AE i AE image width≠1 k and 0 AE j AE image height≠1 k

Figure 3 . 3 :

 33 Figure 3.3: An illustration of voting process in Histogram of Oriented Gradients: The whole image window is divided into cells. Each pixel within the cell casts a weighted vote for an orientation based histogram channel for the values found in the gradient computation. The cells are squared and the histogram channels are evenly spread over 0 to 180˚(unsigned). Cells are grouped in to blocks of 2x2 cells and the histogram of cells are combined and normalized into the histogram of block.

Figure 3 . 4 :

 34 Figure 3.4: The HOG-based features computation process: Normalization blocks around one cell in HOG.

Figure 3 . 5 :

 35 Figure 3.5: Transformation projection to reduce dimension of the reduced-HOG

used in PDS [Papageorgiou 00 ,B

 00 Dalal 06a, Mosberger 13, Ponsa 14, Silberstein 14]. It makes the bridge between feature extraction and classification modules by scanning the entire image in both space and scales. The detection window has a size of d w ◊ d h pixels, including about 20% of background margin around the person. The feature vector size is then Ê dw•d h k 2 where Ê is the number of orientation bins. The algorithm is formalized in Algo.3.1 and illustrated in Fig. 3.6. Algorithm 3.1 Sliding window paradigm Input: -The spatial sliding position steps ( x, y) -The scale step s stride -The minimum windows size (d w , d h ) -The original image I of size (I w , I h ) Output: -(x): the feature map 1: I Initialization • The smallest scale: S 1 = 1 • The largest scale: S N = min ( Iw dw , I h d h ) • The number of scales: N = log(S N /S 1 ) log( s) + 1 • S i = i(S N ≠S 1 ) N 2: I For each S i oe {S 1 , ..., S N } 3: Resize image to scale S i 4:

Figure 3 . 6 :

 36 Figure 3.6: Sliding window at scale S i .

Figure 3 . 7 :

 37 Figure 3.7: The people detection process at one scale

Figure 3 . 8 :

 38 Figure 3.8: Detection process at one scale in the deformable part model approach [Felzenszwalb 10]. The responses of root and parts filters are combined to yield a final score for each root location [Felzenszwalb 10].
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 41 Figure 4.1: Spherical coordinates used in fisheye cameras.

Figure 4 . 2 :Table 4 . 1 :

 4241 Figure 4.2: Mapping functions between an image with distortions and a rectified image.

Figure 4 . 3 :

 43 Figure 4.3: Fisheye projection models (images from [Hughes 10]): (a) Equidistance. (b) Equisolid. (c) Orthographic. (d) Stereographic.

(Field of view model r d= 1

 1 Coe cient beyond the 5th order are negligible)The fisheye transform (FET) [Basu 95]r d = s.ln(1 + ⁄r u ) r u = e r ds ≠1 ⁄ (s: scalar and ⁄: control the distortion)Êc arctan(2r u tan( Êc 2 )) r u = tan(r d Êc) 2 tan(Êc/2)(Ê c is the field of view of the camera)

  .F rame width."y d R .Sensor width w = W.F rame width."y d R .Sensor width(4.11) 

Figure 4 . 4 :

 44 Figure 4.4: Mean-square-error of appearance on the fisheye image versus the relative position of a person to the camera.

Figure 4 . 5 :

 45 Figure 4.5: Field of view.

Figure 4 . 6 :

 46 Figure 4.6: Regions on the fisheye camera's FOV. In zones A and B, people appearance have significant distortion. In zone C, the distortion is not noticeable. In zone D, people are not fully visible on the image.

Figure 4 . 7 :

 47 Figure 4.7: An example of stretching e ect in undistortion procedure: (a) The original fisheye image. (b) Illustration of the shifts applied to distorted pixels (dots) to obtain corrected pixel positions (squares) during the distortion correction. (c) The undistorted result image with vacant pixels (visible as black lines) [Hughes 10].

Figure 4 . 8 :

 48 Figure 4.8: Comparison of the di erent interpolation methods illustrated by a checkerboard pattern. The red rectangles in (a) and (b) indicate the position of the patches used for (c)-(f) (image from [Gadermayr 13]).
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 41 Distortion process Input: -Height of the camera H 0 and average real size of a person W ◊ H -Sample image of person at resolution a ◊ b -Position C P R = (X R , Y R , Z R ) T Output: -Distorted image corresponding to position C P R at resolution a ◊ b 1: I Compute size of the image of the person by Eq. 4.6 2: I Resize sample image to resolution w ◊ h (see Eq. 4.11) 3: I Each pixel p = (i, j) from sample image corresponds to a real point P = (X, Y, Z) where

4 :

 4 I Project all points P on the image as described in subsection 4.2.1 5: I Crop and resize to original size a ◊ b

Figure 4 . 9 :

 49 Figure 4.9: Example of artificial distorted images and their corresponding positions on the fisheye camera's FOV. The sample image are similated at ≠45 ¶ , 0°and 45°at the distance of 1.2m.

Figure 4 . 10 :

 410 Figure 4.10: Distortion functions.

Figure 4 . 11 :

 411 Figure 4.11: Examples of pixel values in the padding zone.

Figure 4 . 12 :Fig. 4 .

 4124 Figure 4.12: Flow chart of the proposed detection approaches: (a) The multi-angles approach. (b) The mix-training-dataset approach.

  tector (denoted by Full-distorted) and the mix-training-dataset detectors at di erent percentage of distorted images (denoted by Mix-model). We plot the miss-rate versus FPPI (lower curves indicate better performances) and use the log-average miss-rate as explained in details in subsection 2.3 to summarize the detector performance. Fig. 4.13 shows the full image evaluation of all the detectors. Fig. 4.14 summarizes the performances of the detectors versus the percentage of distorted images in training dataset.

Figure 4 . 13 :

 413 Figure 4.13: Results of di erent detectors trained with di erent percentage of distorted samples on fisheye test sequences.

Figure 4 . 14 :

 414 Figure 4.14: Log-average miss-rate versus the percentage of distorted image in training dataset.

Figure 4 . 15 :

 415 Figure 4.15: Evaluation of the detection performance along the horizontal axis of fisheye images. Di erent detectors trained with di erent percentages of distorted images are compared.

Fig. 4 .

 4 Fig. 4.15 shows the performances of all detectors in function of the horizontal position of a person on the fisheye images. Detection results are compared to the ground truth

Figure 4 .

 4 Figure 4.16: A situation when people detection method works better on original fisheye image (a) than rectified image (b).

Figure 4 . 17 :Figure 4 . 18 :

 417418 Figure 4.17: Visualization of HOG features in an original distorted image sample captured by a fisheye camera.

Figure 4 . 19 :

 419 Figure 4.19: Visualization of HOG features from di erent border extension methods: (a) Original image. (b) Mirror extension. (c) Mirror-inverted extension. (d) Duplicate extension.

Figure 4 . 20 :

 420 Figure 4.20: Visualization of HOG features using di erent border extension methods after the distortions simulation process: (a) Original image. (b) Mirror extension. (c) Mirrorinverted extension. (d) Duplicate extension.

Figure 4 .

 4 Figure 4.21: ROC curves of the mix-training-dataset approach with 50% distorted training dataset, using di erent padding functions.

Figure 4 .

 4 Figure 4.22: Illustration of adapted deformable part model to fisheye FOV.

  Figure 4.23: Detection performances of the dimensional-reduced-HOG versus the conventional-HOG using (a) the root-filter only and (b) using the DPM approach.

Figure 4 . 24 :

 424 Figure 4.24: Visualization of DPM models trained with di erent datasets. From left to right: Inria, Inria-mix, Inria-full-distorted and Fisheye. (a) The coarse root-filter. (b) All the higher resolution part-filters superposed on the root-filter. (c) The spatial model of the location of each part relative to the root.

Figure 4 . 25 :

 425 Figure 4.25: Detection performance of the DPM approach trained with di erent datasets (a) and the adaptive-DPM approach (b).

Figure 4 . 26 :

 426 Figure 4.26: Examples of detection results with (a) the DPM approach and (b) the adaptive-DPM approach.

  combines 2D Lidar with camera to solve the person detection problem. It was immediately proven to be very e ective. Both papers of [Szarvas 06, Mahlisch 06] proposed to use the Lidar to define ROIs on image frames to restrict the detection areas. The difference lies at the classifiers; one used Haar-like features and Adaboost classifier while the other used the convolutional neural network. Douillard et al. [Douillard 07] used the range information provided by the Lidar during the classification to deal with the problem of object scale variations in the images. The systems proposed in [Spinello 08]
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 51 Figure 5.1: The Lidar-based sensor data fusion architecture.

Fig. 5 .

 5 Fig. 5.1 shows the proposed Lidar-based sensor fusion architecture used within our system:

Figure 5 . 2 :

 52 Figure 5.2: Lidar coordinate.
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 515 Distance-based segmentation methods Input: -S: set of Lidar range points; -N S : number of points in S; -: specific threshold Output: -S: set of segments; 1: I Segment begin index k b = 1; 2: I for k = 1; k < (N S ≠ 1); k + 1 do 3: Compute the di erence of distance D between p k and p k+1 : D = d k+1 ≠d k ; 4: B if D > then a break-point is detected; Segment end index k e = k; 6: B S Ω S i = {(◊ m , d m ) | m = k b , ..., k e } form the segment; 7: Segment begin index k b = k e ; Each obstacle is characterized by a cluster of Lidar points. A segment S k is obtained by a convolution operation of the points in S with a kernel mask [≠1, 1] as proposed in [Premebida 07]. Those points whose the distances to neighbor points smaller than a given threshold , belong to the same segment. A cluster S k can be expressed as S k = {(◊ m , d m ) | m = b k , ..., b k + n k } where n k and b k are respectively the number of points and the initial scan point of the cluster S k . Now, an obstacle is represented as a cluster S k in the Lidar frame. An example of segments of segment S 1 and S 2 extracted from a scan S is shown in Fig. 5.3(a)(b)(c). We call the set of segments obtained by the segmentation stage as S : S k ™ S. It will be later used as inputs for the feature extraction and classification layer as objects of interest.

Figure 5 . 3 :

 53 Figure 5.3: Processing steps in the Lidar-based PDS. (a) Raw Lidar-points in the polar coordinates. (b) Points are filtered by distance and grouped. Lidar-points outside the ROI and Clusters of small size are discarded. (c) 2 segments correspond to 2 obstacles in the FOV (d) Projection of the points on the image frame using calibration information described in subsection 2.1.4 (e) Adaptive ROIs projection on the camera frame. (f) The final result of Lidar-based PDS, described in subsection 5.2.2.

Figure 5 . 4 :

 54 Figure 5.4: Computation of the ROI's angle on image

Figure 5 . 5 :

 55 Figure 5.5: Detection performances comparison between the vision-based only approaches and the Lidar-fisheye camera PDS in configuration 1: (a) ROC curves. (b) Comparison of the Log-average of miss-rate along the horizontal axis. The images (c) and (d) illustrate the case when Lidar data help to eliminate the false detection of the DPM detector. The blue boxes represent the ROIs on image, defined by the Lidar segmentation. The red bounding boxes are the final detection results.

Fig. 5 .

 5 Fig. 5.5b shows the performances of all the three detectors in function of the horizontal position of a person in the fisheye images. The evaluation process is similar to what we presented in subsection 4.3.3 where detection results are compared to the ground truth annotation on a region of 240 ◊ 480 pixels. By sliding this region horizontally across the image we want to experimentally compare the e ects of the distortion rate on the three people detectors. As expected, the Lidar-DPM detector has the best performance at any angles. The improvement of performances is not very clear when we integratethe Lidar in to the system. This result implies that the adaptive-DPM alone is already rather good at limiting the false detection rate.

Figure 5 . 6 :

 56 Figure 5.6: Raw detection result from adaptive-DPM.

Figure 5 . 8 :

 58 Figure 5.8: Detection performances comparison between the vision-based only approaches and the Lidar-fisheye camera PDS at di erent distances.

Figure 5 . 9 :

 59 Figure 5.9: Extreme case where the DPM apprach fails.

Figure 5 . 10 :

 510 Figure 5.10: Diagram of the scenarios in the heavy machine dataset which illustrate the operation state of the machine: machine static (a), machine moving forward (b) and machine turning (c)(d).

Figure 5 . 11 :

 511 Figure 5.11: Detection performances comparison between the vision-based only approaches and the Lidar-fisheye camera PDS in di erent state of the machine: (a) The machine is static (b) The machine is turning (c) The machine is moving forward. The ROC curves are on the right figures and the comparisons of the Log-average of miss-rate along the horizontal axis are.in the left figures.

  All 4 people stay at 6 m from the machine All people Helmet and and begin to reach toward the machine. The space standing yellow vest between 2 people is about 1m. All people walk until and pass by the machine and then split into 2 groups of walk 2 people (P1+2 and P3+4 in Fig.A.2a) and move to 2 sides. normally Phase 2: 2 groups walk in zigzag and cross each other as shown in Fig.A.2b

4 MovingTable A. 5 :Figure A. 4 :

 454 Figure A.4: Diagram of the scenario 5
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  Synthesis and limitations of the proposed approaches together with directions and future works are also discussed in the conclusion chapter. Parts of the work presented in this thesis have been published in the following conferences articles:

	Chapter 2
	The Proposed Multi-sensors System

• Bui, M. T.; Frémont, V.; Boukerroui, D. & Letort, P. People Detection in Heavy Machines Applications, IEEE International Conference on Cybernetics and Intelligent Systems, 2013. • Bui, M. T.; Frémont, V.; Boukerroui, D. & Letort, P. Deformable Parts Model for People Detection in Heavy Machines Applications, IEEE International Conference on Control, Automation, Robotics and Vision, 2014. • Bui, M. T.; Frémont, V.; Boukerroui, D. & Letort, P. Multi-sensors people detection system for heavy machines, IEEE International Conference on Intelligent Transportation Systems, 2014. Contents 2.1 The Sensor System . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 E ective Sensor Range . . . . . . . . . . . . . . . . . . . . . 13 2.1.2 Proposed Sensors Combination . . . . . . . . . . . . . . . . . 15 2.1.3 Sensors Positions on Heavy Machines . . . . . . . . . . . . . 20 2.1.4 Sensor Calibration . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 The Heavy Machine Dataset . . . . . . . . . . . . . . . . .

Figure 2.1: Comparison

  of high risk area in unassisted and assisted driving. Without assistance (top), a pedestrian is likely to su er severe harm if he or she stays at less than 25m distance. With assistance (bottom), the reaction time is reduced to 100ms or less [Gavrila 04,Shashua 04]. Beside providing warnings to the driver in a reduced time, they can also control di erent security actions like airbags or brakes. Hence, the distance where pedestrians can be severely damaged is significantly reduced (about 15m).

	While a person has less than 50% chance of surviving to impacts at 45km/h, there is 90
	chance of surviving to crashes at 30km/h or below [Ashton 83, Triggs 82]. As argued
	in the introduction chapter, actively detecting the risk of crash before the impact,

  Once an obstacle is detected, cameras are turned on and images of the obstacle are shown to the driver [Cat 09]. Similar systems are proposed by other manufacturers like Motec 2 , Orlaco 3 , and Waeco 4 for the most popular. Range information of the scene is valuable and can be obtained by di erent ways. By means of vision, it is possible to use special Time-of-Flight (ToF) cameras or stereo vision system [Hartley 03]. ToF cameras constitute new sensor technology which is currently not appropriate for heavy machines applications especially in term of price.

		Camera		Lidar
	Parameter	Description/Value Parameter	Description/value
	Manufacturer	PointGrey	Manufacturer	HOKUYO
	Model	Firefly MV	Model	UTM-30LX
	FOV	190 ¶	Layers	1 layer
	Sensor type Resolution Frequency	CMOS 752 ◊ 480 60 F P S	FOV Range accuracy Angle resolution	≠135 ¶ to 135 ¶ (see Fig. 2.8) ±30mm 0.25 ¶
	Focal lenth	3mm	Scan frequency	40Hz
	Lens		Range	0.1 to 30m
		Figure 2.6: Multi-sensors system characteristics.

Point Grey Firefly MV Sony PlayStation Eye for PS3 Focal length

  

" = [443.21; 443.07] " = [1166.05; 1140.70] Principal point p 0 = [321.77; 234.43] p 0 = [318.72; 237.08] Distortion coe cients k c = [≠0.177; 0.157; 6.963.10 ≠4 ; 0.002; 0] k c = [≠0.099; ≠0.006; 0.004; ≠0.001; 0.000]

Table 2
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	Configuration 1	Configuration 2

.1: Intrinsic camera parameters.

Testing dataset Number of sequences Positive images Positive samples

  

	Configuration 1	7	5747	13045
	Configuration 2	4	3570	9148

Table 2 . 4 :

 24 The testing dataset statistics. One positive images contains one or many people. Each instant of people appear in an image is considered as one positive sample

  Neural networks [Bishop 95]: Di erent layers of neurons (many di erent configurations are possible) provide a non-linear decision. Raw data is often used, i.e., no explicit feature extraction process is needed. It has been used in [Szarvas 05] with intensity images, in [Zhang 07] with gradient magnitude and in[Munder 06] 

	[Wojek 08] with shape context.
	• AdaBoost [Freund 95]: This classifier family constructs a strong classifier by
	weighting and summing weak classifiers in an iterative manner. Each new classi-

SVM [Vapnik 95, Joachims 99]: This kind of classifier helps to finds a decision boundary by maximizing the margin between the classes. It has been used in [Tian 05] with intensity images, [Papageorgiou 00, Mohan 01, Andreone 05] with Haar features, [Dalal 05, Felzenszwalb 10, Levi 13] with HOG, with Edgelet, fier focuses on misclassified instances. Boosting methods can be combined with any classifier to find the weak rules (e.g., with SVM in [Zhu 06]). It has been used in [Viola 05, Gerónimo 07] with Haar features, [Wojek 08, Park 13] with HOG and shape context.

•

  1 and Mercedes since 2012 2 . The ADAS systems are often developed by automotive suppliers, such as Continental 3 and Valeo 4 . Beside other functionalities, these ADAS systems always emphasize on the pedestrian detection ability, following the Euro New Car Assessment Program (NCAP) recommendations. The Mobileye's pedestrian detection is one of the first commercialized mono-camera automotive PDS, in 2009. Later on in mid-2010, Mobileye launched an application of full emergency braking for Collision Mitigation with pedestrians on the Volvo S60 and V60 vehicles. The system uses pattern recognition and classifiers with an optical flow

Table 3 .

 3 

1: Reference people detection approach.
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 32 Block normalization methods in HOG features computation process: h(i, j) is the non-normalized vector containing all histograms in a given block, e is a small constant (whose value will not influence the results) to avoid infinite value of h(i, j). These 4 normalization equations perform equally well.

Table 4 . 2 :

 42 Non-linear fisheye radial distortion models.

  Application of 2D Lidar in ADAS varies from detection, tracking, collision warning, recognizing to higher level decision systems. We are only interested in the Lidar-based systems for people detection and recognition.Back to 2001, a system to detect, classify and to track a set of objects was proposed in [Dietmayer 01]. Basic segmentation and classification methods were presented together with the linear discrete Kalman filter (KF). In [Mendes 04] people are modeled as a freemoving Lidar segments that can be tracked by KF and classified using a majority-vote multi-hypothesis approach. This is the first work from the researching group at university of Coimbra on detection and tracking objects using Lidar. In [Premebida 06] the authors used a multi-model Gaussian mixture model (GMM) classifier on a set of laser-based features to recognize multiple object classes, include pedestrians. Recently, the Lidar-based pedestrian detection presented in [Premebida 09, Oliveira 10a] is accomplished by means of featureless approach. They also inferred context-aware relations of object parts.

	In another research axis, the system proposed in [Fuerstenberg 02] focused on solv-
	ing practical issues of a Lidar-based automotive application such as data association
	uncertainties, segmentation errors, time-processing and memory limitations. Other
	work in [Zhao 09] attempt to estimate the ego-vehicle localization and objects speed
	and use them for the pedestrian classification. A set of features are used to model
	the pedestrian-likelihood. A maximum a posteriori estimation (MAP) is used as the
	classifier, where the prior was obtained using supervised training process. Later on,
	people detection in [

  5.2. The raw Lidar data is a 3D point cloud. A single 2D scan is a sequence of N S laser measurements S = {(◊ l , d l ) | l = 1, . . . , N S } where (◊ l , d l ) denotes the polar coordinates of the l th scan point. It can be converted into Cartesian coordinate as S = {(d l cos ◊ l , d l sin ◊

l ) | l = 1, ..., N S } or L

  5.5a show that the adaptive-DPM approach has better performances than the HOG detector in people detection on fisheye images thanks to the flexible model of the deformable parts. Introducing a Lidar in a multi-sensors system apparently helps improving event more the detection results by eliminating false detections in regions where it is impossible to have an obstacle. The Lidar measurements are generally precise and robust in outdoor environment, compared to other range-sensors such as ultrasonic sensor, radar or rangefinder[Rosell Polo 09, 

	Kelley 07].

Table A .2: Scenario 2 descriptions (a) Phase 1 (b) Phase 2 Figure A.2: Diagram of the scenario 2 A.2.4 Scenario 4

 A 

	Nb of people	Machine state	Details	Postures	Clothes
			Exactly like	Person 1: Lower body occluded Helmet and
			scenario 2 (Sec.A.2.2)	Person 2: Torso occluded	yellow vest
	4	Stopped	Some parts of the body Person 3: Higher body occluded	
			of people are	(face included)	
			occluded.	Person 4: fully visible	
			Table A.4: Scenario 4 descriptions	
	A.2.5 Scenario 5		
	Nb of people	Machine state	Details	Postures	Clothes

Institut national de recherche et de sécurité. www.inrs.fr

Nissan Cima 1998; Toyota Celcior 1997; Lexus LS430 1996; Mercedes-Benz S, E, CLS, SL, CL, M, GL, CLK 1998; etc.

models 785, 789, 793 and 797

A vision-based PDS for automobile.

http://www.motecgmbh.de

http://www.orlaco.com/Documentation.htm

http://www.waeco.com/fr/produits/4544.php

http://www.groeneveld.nl/index.php?id=76&productid=139

see http://www.hds.utc.fr/pacpus

Measured on a Windows 64-bit PC (CPU inter core i5

2.5Ghz), by using the library OpenCV 2.4.

http://velodynelidar.com/lidar/hdlpressroom/inthenews.aspx

http://codelaboratories.com/downloads/

http://www.cdc.gov/niosh/topics/highwayworkzones/BAD/

(a) Graders -Cat 12G. (b) Rear Dump Trucks -VOLVO A40D.
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The Adaptive People Detection System for Fisheye Images comes with a high computation cost and complexity.

• Multiple view-points: The DPM approach using the sliding windows detection method that needs to scan all over the image to detect the person. Moreover, it is not invariant to the rotation of the person's appearance on image. This drawback is critical in fisheye images. For example, it might not be suitable to detect people in images from a camera that looks down from high positions.

• Occlusion: Although the DPM approach has a certain flexibility that can handle partial-occlusion cases, we did not spend e orts on analyzing and evaluating it.

Now we count on the help of the multi-sensors PDS in the next chapter to handle these problems.

which is larger than the ROIs defined by the Lidar. As a result, the final bounding box of the adaptive-DPM detector is larger than the one given by the fusion system. Fig. 5.7a shows the performances of the Lidar-Camera system compare to the Cameraonly approach in configuration 2. People staying on the sides of the sensors are at the same time strongly distorted and rotated. Vision-based person detection methods which are not designed to take into account these deformations, give very poor performances. The system's miss detection rate reaches 95% over the range of FPPI between 10 ≠2 and 1, which could be considered as a total failure. With the help of the Lidar, the Appendix A

Dataset

A.1 Detail of the experiments

The experiments took place during 2 days, 17 Dec and 18 Dec 2013 in CETIM at Senlis with help from the sta of the Mechatronics, power transmissions and sensors department. All the installation and calibration of the system as mentioned in section 2.1.4, had been done the day before. The experiments are divided into 4 setups and there are 6 scenarios. Because of some incidents during the experiments (explained in section A.3), there might be some sequences that have the same setup and scenarios.

We tried our best to cover all missing information. The first three setups correspond to 3 configurations of the system as defined in section 2.2. The last setup aims to collect the data at very poorly lighting conditions and it had been done during and after the sunset (About 17h UTC+1). In this setup, sensors were mounted as configuration 1 or 2. The main source of light in this situation comes from the headlights of the machine. The reflective vest shows very clearly the di erences in this situation. The following section describes in detail the scenarios that we have prepared. Some additional sequences have been done as a result of discussions that we had with the driver of the machine during the experiments. They will be briefly describe in section A.2.7. More remarks noted during each data sequence are then shown in tables in section A.3. 

A.2 The scenarios

A.2.1 Scenario 1

Nb of people

Construction equipment visibility

In this appendix, you will find detailed diagrams to assist in visualizing the areas around various construction vehicles and equipment that are unable to be seen from the operator's position. These areas are commonly referred to as Blind Areas. For each construction vehicle, three di erent Blind Area Diagrams are available to represent the ability of the operator to see an object at three di erent elevations: ground level, 900 mm (3'), and 1500 mm (4' 11"). The 900 mm plane represents the average height of a channelizing device, e.g. construction barrels that are commonly used in road construction. The 1500 mm plane corresponds to average height of a person. This information on blind areas primarily for safety personnel and instructors is provided