
HAL Id: tel-01260339
https://theses.hal.science/tel-01260339

Submitted on 22 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Atom chips for metrology
Ramon Szmuk

To cite this version:
Ramon Szmuk. Atom chips for metrology. Quantum Physics [quant-ph]. Université Pierre et Marie
Curie - Paris VI, 2015. English. �NNT : 2015PA066089�. �tel-01260339�

https://theses.hal.science/tel-01260339
https://hal.archives-ouvertes.fr
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Solaro, Adèle Hilico, Marc Antoine-Buchet, Olivier Gaubron, Eric Chea, Baptiste

Chupin and Edouard Richard. I would also like to thank my family for supporting

me throughout my thesis and for coming to my defense in Paris all the way from

Israel. My parents Nitza and Peter Szmuk, my sister Lital and my wife’s parents

Yuri and Liodmila Katsman.

Lastly I would like to thank the number one encouraging and stabilising force in

my life, my amazing wife and best friend Ira who joined me in this Parisian adventure

and showed me nothing but unconditional love throughout. I am incredibly lucky to

have such a partner in my life and I hope the rest of our journey will be as awesome

as it has been up to now. I dedicate this thesis to you and I promise to do the dishes

more often.

4



Abstract

This thesis covers two main subjects: the evaluation of the stability of a Trapped

Atom Clock on a Chip (TACC) and the expansion of this technology towards cre-

ating an atom interferometer on the same chip. The combination of a clock and an

interferometer on the same chip constitutes the basis for the realization of atom-based

integrated inertial navigation units. TACC has been built with the aim of realizing

a compact high stability clock. Previous work installed the clock operation and dis-

covered, among others, very long coherence times, which allow Ramsey interrogation

up to 5 s – a prerequisite for high stability operation. I present the first thorough

evaluation of the clock stability. Together with my predecessor we have demonstrated

relative frequency fluctuations of 5.8 · 10−13 at 1 s integrating down to 6 · 10−15 at 30

000 s. This performance outruns the best commercial clocks by almost one order of

magnitude and is competitive with the best compact atomic clocks under develop-

ment. In particular, this long-term stability is reached by two other compact clocks

only. Jointly we have investigated 7 contributions to the clock frequency noise, which

I analyze in detail. The sum of all contributions explains the measured frequency

fluctuations and confirms that all major noise sources have been identified. The fre-

quency (in)stability is dominated by atom temperature fluctuations and magnetic

field fluctuations followed by the local oscillator noise via the Dick effect. The analy-

sis allows me to propose improvements of a future 2nd generation set-up, which has

the potential to reach a stability of 10−13 at 1s equivalent to the well-known hydrogen

maser, but in a much smaller set-up.

The second part of this thesis aims to expand the versatility of our atom chip

to create an atom interferometer. I have studied various interferometer schemes

using microwave dressed potentials and implemented these to the set-up. The first

scheme, following work by P. Treutlein et al., involves displacing one of the clock

states vertically during a Ramsey clock sequence thereby allowing the measurement of

potential gradients by exploiting the differential frequency shift accumulated between

the two states. Ramsey fringes where recorded for different durations of the splitting,
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resulting in a clear signal of the wavepacket separation. The relative velocity of the

combining wavepackets is observed as optical fringes. A new method for estimating

the wavepacket separation is developed.

The second scheme uses microwave dressing to generate a double well potential

in one of the clock states and a single well in the other - a configuration suggested in

the thesis of P. Treutlein. Starting in the single well, a π-pulse on the clock transition

constitutes the beam splitter and leads to a spatial separation for the same internal

state. Such a scheme has the advantage over the first that it is insensitive from

clock shifts. Furthermore it has the advantage over other existing schemes because it

does not require dynamical variation of the populated potential which induces cloud

excitations as the potential goes through the quartic point. Implementation of this

scheme has to respect the particularities of our chip, notably the vertical gradient of

the evanescent microwave field. This is overcome by the use of two frequency dressing.

I demonstrate that the potentials of both clock states can be modified independently.

Varying the differential detuning, I optimized the transfer between the single and

double well potential. The splitting distance is characterized as a function of dressing

power and detuning as well as the dynamics of the split atom clouds.
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Résumé

Cette thèse porte sur deux sujets principaux: l’évaluation de la stabilité d’une

horloge sur microcircuit utilisant des atomes piégés (Trapped Atom Clock on a Chip

- TACC) et l’extension de cette technologie vers la réalisation d’un interféromètre

atomique sur la même puce. La combinaison d’une horloge et un interféromètre sur

la même puce constitue la base pour la réalisation de capteurs inertiels intégrés pour

la navigation. TACC a été construit dans le but de réaliser une horloge compacte de

grande stabilité. Des travaux antérieurs ont installé le fonctionnement de l’horloge et

ont découvert, entre autres, des temps de cohérence très longues, qui permettent une

interrogation Ramsey jusqu’à 5 s, une condition préalable pour le fonctionnement à

grande stabilité. Je présente ici la première évaluation approfondie de la stabilité de

l’horloge. Avec mon prédécesseur, nous avons démontré les fluctuations de fréquences

relatives de 5.8 10-13 à 1 s intégrant jusqu’à 6 10-15 à 30000 s. Cette performance

dépasse les meilleures horloges commerciales de près d’un ordre de magnitude et

est en concurrence avec les meilleures horloges atomiques compactes en cours de

développement. En particulier, cette stabilité à long terme est atteinte par seulement

deux autres horloges compactes. Nous avons étudié sept contributions au bruit de

fréquence de l’horloge, qui je analyse en détail. La somme de toutes les contributions

explique les fluctuations de fréquence mesurées et confirme que toutes les sources

majeures de bruit ont été identifiés. La stabilité de fréquence est dominée par les

fluctuations de la température des atomes et du champs magnétique suivis par le

bruit de l’oscillateur local via l’effet Dick. L’analyse me permet de proposer des

améliorations d’une futur génération du set-up, qui pourra atteindre une stabilité de

1 10-13 à 1s, équivalente à celle d’un maser à hydrogène, mais dans un dispositif plus

compact. La deuxième partie de cette thèse vise à étendre la polyvalence de notre

puce atomique pour créer un interféromètre atomique. J’ai étudié divers régimes

d’interféromètres en utilisant des potentiels habillés par microondes et je lesai mis en

place. Le premier régime, suite des travaux de P. Treutlein et al., consiste à déplacer

l’un des états d’horloge verticalement pendant une séquence d’horloge Ramsey. Ceci
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permet la mesure de gradients de potentiel en exploitant la fréquence différentielle

entre les deux états. Des franges de Ramsey etaientt enregistrés pour différents durées

de la scission résultant en un signal clair de la séparation des paquets d’onde. En

recombinaison, la vitesse relative des paquets d’ondes est observée via des franges

optiques. Une nouvelle méthode d’estimation de la séparation de paquet d’ondes

est développée. Le second régime utilise des champs microondes pour générer un

potentiel de double puits dans l’un des états d’horloge et un seul puits dans l’autre

- une configuration suggéré dans la thèse de P. Treutlein. À partir du seul puits,

un pulse π sur la transition d’horloge constitue la séparatrice de l’interféromètre et

conduit une séparation spatiale tout en préservant le même état interne pour les

deux bras de l’interféromètre. Un tel système a l’avantage sur le premièr qu’il est

insensible aux déplacements de la fréquence d’horloge. De plus, il porte des avantages

sur les autres systèmes existants car il ne nécessite pas de variation dynamique du

potentiel peuplé qui induit des excitations du nuage d’atomes quand le potentiel

passe par le point quartique. Notre mise en œuvre expérimentale a du respecter les

particularités de notre puce, notamment le gradient vertical du champ de microondes.

Il est surmonté par l’utilisation de deux fréquences. Je montre que les potentiels

des deux états d’horloge peuvent être modifiés indépendamment. La variation du

désaccord différentiel a été utilisé pour optimiser le transfert entre le simple puits et

le double puits. La distance de séparation est caractérisée en fonction de la puissance

d’habillage et du désaccord ainsi que la dynamique des nuages atomiques séparés.

8



Contents

1 Introduction 11

2 Clock frequency stability 17

2.1 Atomic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Experimental Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Stability Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Noise Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Detection and Quantum Projection Noise . . . . . . . . . . . . 27

2.4.2 Local oscillator noise . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.3 Fluctuations of the atomic frequency . . . . . . . . . . . . . . 34

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Towards an atom chip atom interferometer 45

3.1 Review of atom interferometers . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 A basic framework for comparing the sensitivity of atom inter-

ferometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.2 Free fall atom interferometers . . . . . . . . . . . . . . . . . . 48

3.1.3 Confined atom interferometers . . . . . . . . . . . . . . . . . . 51

3.1.4 Microwave dressed potentials and our proposed interferometer

scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 General considerations . . . . . . . . . . . . . . . . . . . . . . 61

3.2.2 Transfer between a single and a double well . . . . . . . . . . 62

9



3.2.3 The dressed state picture in the microwave regime . . . . . . . 64

3.3 Measurement of the microwave dressed potential . . . . . . . . . . . . 85

3.3.1 Measurement of the microwave mode shape with cold atoms . 85

3.3.2 Extracting the dressing parameters . . . . . . . . . . . . . . . 86

3.3.3 Experimental results confirming our characterization . . . . . 87

3.4 Results: state selective single well potentials . . . . . . . . . . . . . . 89

3.4.1 Internal and external coherence . . . . . . . . . . . . . . . . . 92

3.4.2 Wavepacket separation from phase gradients . . . . . . . . . . 95

3.5 Results: state selective double well potentials . . . . . . . . . . . . . . 97

3.5.1 Characterization of the double well potential . . . . . . . . . . 98

3.5.2 High Rabi frequency transfer . . . . . . . . . . . . . . . . . . 99

3.5.3 Dynamics in the double well potential . . . . . . . . . . . . . 101

3.5.4 Low Rabi frequency transfer . . . . . . . . . . . . . . . . . . . 104

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4 Conclusion 113

A The spectral analysis of fluctuations 117

A.1 Unit conversion of the Power Spectral density . . . . . . . . . . . . . 122

10



Chapter 1

Introduction

The purpose of this work is to demonstrate the feasibility of using magnetically

trapped atoms on atom chips [53, 99] for the realisation of a compact atomic sen-

sor.

During the first part of my thesis I have finalized the characterization of the sta-

bility of our trapped atomic clock on a chip (TACC). I have performed measurements

on the local oscillator noise and have estimated its contribution to the instability

via the Dick effect. I have also analyzed the noise contributions of temperature and

magnetic field fluctuations and have incorporated this analysis, together with that

of my predecessors, into a complete noise budget that accounts for all the observed

noise.

The second part of the thesis involved the development of a new interferometer

scheme using state selective MW dressed potentials. Here I have performed a theoret-

ical and experimental study of this new scheme and have participated in the analysis

of the results. In particular, I have implemented two frequency dressing of the clock

states in order to cancel their relative vertical displacement (originating from the

vertical gradient of the MW field), increasing their overlap and allowing the transfer

of atoms between the two states.

I will start by putting my work into context with two short introductory sec-

tions discussing compact clocks and interferometers and continue with the respective

chapters detailing my work.
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Trapped atom clock on a chip (TACC)

Atomic clocks form the backbone of technologies requiring precise frequency refer-

ences. The most known example is that of the Global Navigation Satellite Sys-

tem (GNSS), where a network of satellites, with on board atomic clocks, distributes

a reference clock signal that allows for sub-meter positioning of receivers on the

ground [42]. Applications such as Very Long Baseline Interferometry (VLBI) [32,87],

Geodesy [118], pulsar astronomy [123], space gravity and climate surveys [113] and

the test of fundamental physics [44,103] also require very stable frequency references.

To date, atomic clocks give by far the best performance and have long surpassed

classical devices [13].

The workhorse of modern atomic clocks is the atomic fountain, operating today

at the mid 10−16 level [91] but with a large footprint, usually occupying a whole room

and requiring skilled personnel to operate. They are thus unsuitable for embedding in

a satellite or for standard commercial use. Commercial atomic clocks available today,

such as the industry standard Symmetricom 5071A [3] offer modest performances

on the order of 5 · 10−121/
√
τ , but with a much reduced package size of about 30 l.

Smaller integrated Rubidium oscillators with package sizes on the order of 100-500 ml

exist, but with a further reduction in performance reaching the low 10−11 level [1,2,5].

The present state of the art thus offer two alternatives, either large and cumber-

some devices which perform on the 10−16 level or below, or sub-liter scale devices

that perform at four or five orders of magnitude below these levels and which no

longer outperform state of the art commercial quartz oscillators at short and medium

range integration times [108]. The current technological situation then demands a

compact frequency references that does not perform substantially worse than their

large laboratory counterparts.

Figure 1-1 shows the short and long term stability of several selected oscillators,

it focuses on compact clocks and shows a few commercial compact solutions and a

typical fountain clock for reference. There is an evident gap in this list of frequency

standards, clocks which perform on the 10−13 level with a package size of a few liters
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Figure 1-1: A comparison of various clocks at short (1s) and long (1day) integration
times. The list is comprised of: 171Yb clock (JPL) [67], Symmetricom SA.45s [4],
laser pumped Rb clock (Neuchatel) [10], pulsed optically pumped rubidium clock
(INRIM) [84], CPT clock at SYRTE [35], mercury ion clock at JPL [95], HORACE
clock at SYRTE [46], microwave cavity rubidium clock at LTF and LEMA [120], and
our clock TACC (SYRTE).

are few, the mercury ion clock at JPL and the laser pumped rubidium clock from

Neuchatel are the only compact clocks known to the author that exhibit both short

and long term stabilities comparable to the ones available from modern hydrogen

masers. A word must be said about the reported system sizes in figure 1-1. In the

figure we have equated the clock size with that of the physics package disregarding
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the contributions from the electronics, laser, vacuum and other subsystems. This

was done in order not to get into speculations about the possible miniaturization of

the various subsystems. In addition, when one discusses miniature clock devices the

contribution of these subsystems to the overall volume of the system becomes much

more important and in fact eventually dominates the total size. Laser systems for

atom cooling and trapping have been succesfully miniaturized to occupy a single 19

inch rack (such as in systems constructed by muQuans, Sodern or AOSense to name a

just a few companies). Current supplies used in atom chip devices currently occupy a

single 19 inch rack for each current source but we envisage that further miniaturization

is possible or alternatively the use of permanent magnet atom chips [116] can be used

to provide magnetic fields used for the trapping of atoms. Microwave sources have

also been succesfully miniaturized [77] and currently occupy a volume of a few liters

without affecting their performance. We thus feel confident that eventually an atom

chip experiment such as ours could eventually be fitted inside a setup with a total

size of a few tens of liters.

The atomic clock implementation described in this manuscript, termed the Trapped

Atomic Clock on a Chip (TACC) [75] exhibits a short term stability of 5.8 · 10−13 at

one second and integrates to the 10−15 level in 3 ·104 seconds and shows great promise

for compact atomic clocks. The long interrogation times as well as the high number

of atoms, provide narrow linewidths and a high signal-to-noise ratio.

Constructing a performing compact atomic clock is an important achievement

with immediate applications. In the context of navigation, a precise on board atomic

clocks will allow a faster acquisition of a GNSS signal and will require only 3 satellites

(instead of a minimum of 4) to operate, rendering the navigation system more robust

[69]. On board the satellites, more precise clocks will improve on the positioning

precision [42]. Also, precise and compact atomic clocks which integrate to the 10−15

level promise a revolution in deep space navigation. Today, radiometric tracking

of spacecrafts rely on two-way radiometry, simply because the on board clocks of

current vehicles are not sufficiently precise to resolve the Doppler frequency shift used

for Doppler tracking. By incorporating clocks which integrate to 10−15 in one day or
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less, a large reduction of dead time can be achieved by using one-way radiometry. One

way Doppler tracking with such clocks will improve the knowledge of the trajectory

to a point that will allow for autonomous navigation of spacecrafts in deep space [45].

Trapped atom interferometer on a chip (TAIC)

Besides atomic clocks, other types of atomic sensors have been investigated. Atomic

gyroscopes and accelerometers where first demonstrated more than twenty years

ago [70, 102] and since then many groups have been working on improving their

performance. They now equal or surpass their best classical counterparts in the field

of rotation [43] and acceleration sensing [39].

Current atomic inertial sensors use freely evolving atoms during the measure-

ment period which is at present the best known technique for high performance mea-

surements but requires large devices, unfavorable in terms of size and integration,

restricting their application to very specialized scientific experiments.

Several groups have demonstrated interferometers [15,112], magnetic field sensors

[131, 133] and plans for a gyroscope [55] on an atom chip. Being able to integrate

high precision accelerometers, gyroscopes and magnetometers together with an atomic

clock on one chip will open the way for cold atom based position navigation and timing

(PNT) devices [50] capable of autonomous navigation independent of GNSS satellites

which have inherent vulnerabilities such as Electro-Magnetic Interference (EMI) and

satellite signal blockage.

We propose in this manuscript a new interferometer scheme which is in principle

sensitive to acceleration using state selective MW dressed potentials which offers

several advantages over previous proposals. We will show the basic building blocks

of the scheme and demonstrate that coherence is maintained during operation. We

will discuss the future improvements required to render the scheme fully operational

and will give some estimates for its projected capabilities.
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Chapter 2

Clock frequency stability

Atomic clocks are behind many everyday tasks such as synchronisation of telecommu-

nication networks and satellite-aided navigation. Fundamental science, too, benefits

from the performance of atomic clocks. Finest tests of founding theories become pos-

sible through referencing to ”perfect” frequency standards [17,92] and primary clocks

themselves test general relativity and the standard model [59,76,134].

The performance of atomic clocks has made a big leap by the use of laser cooling

[26, 29, 94]. It has led to the development of atomic fountain clocks [28, 72] which

have overcome all major technical noise sources and have reached a stability limited

by fundamental physics properties only [110], i.e. a quantum projection noise limited

detection and a Fourier limited linewidth. In fact, the fountain geometry, where the

atoms are launched upwards, is chosen to gain a factor 2 on the interrogation time

and thus linewidth without increasing the apparatus size. Atomic fountain clocks are

today’s primary standards [135].

Current research on atomic clocks aims at numerous purposes and applications.

The development of clocks interrogating an optical transition [37] is at one extremity

and will probably lead to a new definition of the SI second. Actually, the most stable

optical clock reaches 3.4× 10−16τ−1/2 [13]. On the other extreme is the invention of

miniaturised atomic clocks such as the 16 mm3 ”chip scale atomic clock” (CSAC)

using thermal vapor and showing a stability of 4 × 10−11 at 1 s [73]. It has now

become a commercial product. Between these two extremes lies the need for litre-
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sized atomic clocks with a stability similar to the traditional hydrogen maser (∼ 10−13

at 1 s) to serve in embarked ground and space missions [42, 45, 113]. Among the

candidates [10,35,46,84,95,120], trapped ion clocks have shown the best stability so

far combined with an impressively compact physics package [96].

Here, we present a similar but complementary approach based on neutral atoms

trapped on an atom chip. Our ”Trapped Atom Clock on a Chip” (TACC) employs

laser cooling and evaporative cooling to reach ultra-cold temperatures where neutral

atoms can be held in a magnetic trap. Having demonstrated several tens of seconds

coherence time sustained by spin self-rephasing [19, 38] we here present 100 mHz

linewidth on the hyperfine transition in 87Rb with 85% contrast and investigate the

clock stability. The fractional frequency (in)stability reaches 5.8 × 10−13τ−1/2 inte-

grating down to 6×10−15 at 30 000 s. We identify and analyse all mayor contributions

to the frequency (in)stability. The compact set-up is realised through the atom chip

technology [99,104,127], which is now widely used for the study of ultra-cold gases and

Bose-Einstein condensates [61]. Interesting regimes such as low dimensional quantum

gases are reached [48, 63]. Other experiments strive for the realisation of quantum

information processors [111,126]. The realisation of atom interferometers on an atom

chip [15,55,112,129] is strongly appealing for surface probing [88] or inertial naviga-

tion purposes [55]. Thus, an on-chip high stability atomic clock not only provides an

excellent candidate for demanding timing applications, it also takes a pioneering role

among the broad range of atom chip experiments, demonstrating that experimental

parameters can be mastered to the fundamental physics limit.

2.1 Atomic System

Our TACC, interrogates the hyperfine transition of 87Rb. A two photon drive couples

the magnetically trappable states |1〉 ≡ |F = 1,mF = −1〉 and |2〉 ≡ |F = 2,mF = 1〉,

whose transition frequency exhibits a minimum in magnetic field near Bm = 3.23 G

[62, 82]. This 2nd order dependence strongly reduces the clock frequency sensitivity

on magnetic field fluctuations and atoms with different trajectories within the trap
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still experience similar Zeeman shifts. Furthermore, by tuning the magnetic field

at the trap bottom, the inhomogeneity from the negative collisional shift can be

compensated to give a quasi position-invariant overall shift [104]. Under these ideal

conditions we have observed coherence times of 58±12 s [38] confirming the possibility

to create a high stability clock.

2.2 Experimental Apparatus

All experimental steps, atom cooling, interrogation and detection, take place in a

4 × 4 × 5 cm3 glass cell where one cell wall is replaced by the atom chip (see figure

2-2). A 25 l/s ion pump connected via standard vacuum components evacuates the

cell to a pressure of 1− 2× 10−9 torr. The cell is surrounded by a 10× 10× 15 cm3

cage of Helmholtz coils. A 30 cm diameter optical table holds the coil cage as well

as all beam expanders necessary for cooling and detection and is surrounded by two

layers of magnetic shielding.

The timing sequence starts with a mirror MOT [98] loading ∼ 3 × 106 atoms

in 4 s from the background vapor. The MOT magnetic field is generated by one

of the coils and a U-shaped copper structure placed behind the atom chip [132].

Compressing the MOT followed by a 3 ms optical molasses cool the atoms to ∼ 20µK.

The cloud is then optically pumped to the |1〉 state and transferred to the magnetic

trap. It is gradually compressed to perform RF evaporation, which takes ∼ 3 s. A

1 s decompression ramp transfers the atoms to the final interrogation trap with trap

frequencies (ωx, ωy, ωz) = 2π × (2.7, 92, 74) Hz located 350 µm above the surface. It

is formed by two currents on the chip and two currents in two pairs of Helmholtz

coils, which are supplied by homebuilt highly stable current supplies with relative

(in)stability < 10−5 at 3 A [101]. The final atom number is 2 − 4 × 104 and their

temperature ∼ 80 nK. The density is thus with n̄ ≈ 1.5 × 1011 atoms/cm3 so low

that the onset of Bose-Einstein condensation would occur at 5 nK. The trap lifetime

γ−1 = 6.9 s is limited by background gas collisions.

The clock transition is interrogated via two-photon (microwave + radiofrequency)
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Figure 2-1: The two clock states |1,�1〉 and |2, 1〉 are coupled via a 2-photon transi-
tion, MW+RF, where the microwave is tuned ≈ 500 kHz above the |1,�1〉 → |2, 0〉
transition.

coupling (see fig 2-1), where the microwave is detuned 500 kHz above the |1〉 to

|F = 2,mF = 0〉 transition. The microwave originates from the evanescent field of a

three-wire coplanar waveguide on the atom chip [75]. The close proximity of the atoms

allows to reach single photon Rabi frequencies of a few kHz with only moderate power

(∼ 0 dBm). The waveguide furthermore avoids the use of a bulky microwave cavity.

The microwave signal is generated by a homebuilt synthesiser which multiplies a

100 MHz reference signal derived from a commercial hydrogen maser to the microwave

frequency without degradation of the maser phase noise [97]. The actual phase noise

is detailed in section 2.4.2. The RF signal of ∼ 2 MHz comes from a commercial DDS

which supplies a ”standard” wire parallel to the waveguide. The two-photon Rabi

frequency is 3.2 Hz so that a π/2 pulse takes 77.65 ms.

Detection is performed via absorption imaging. A strongly saturating beam [100]

is imaged onto a back illuminated, high quantum efficiency CCD camera with frame

transfer. 20 µs illumination without and with repumper 5.5 ms and 8.5 ms after trap

release probes the F=2 and F=1 atoms independently. Numerical frame recomposi-

tion [89] generates the respective reference images and largely reduces optical fringes.
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The number of atoms in each state N1,2 is extracted by summing the pixel counts

from a state selective detection image. The transition probability is calculated as

P = N1/(N1 +N2) accounting for total atom number fluctuations. The actual detec-

tion noise is discussed in section 2.4.1. The total time of one experimental cycle is

16 s including the TR = 5 s Ramsey time.

Figure 2-2: Our experimental setup. a. The atom chip has two layers, the science
chip (24× 28× 0.25 mm3) is glued on top of a base chip (38× 45.5× 0.8 mm3) and
coated with a dielectric layer which is reflective for 780 nm radiation. The double
layer chip constitutes one of the facets of the vacuum cell (b) which is a commercial
Pyrex spectroscopy cell (35× 35× 32.5 mm3) [8] treated with anti reflection coating
on the outside facets. The cell is embedded in a 10× 10× 15 cm3 cage of Helmholtz
coils (c) and a 30 cm diameter optical table holds the coil cage as well as all beam
expanders necessary for cooling and detection and is surrounded by two layers of
magnetic shielding. We reach vacuum levels in the low 10�9 mbar. The core physics
package is around 50 ml in volume and is thus a promising technology for the creation
of compact atomic sensors.
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Figure 2-3: Typical Ramsey fringes recorded at TR = 5 s scanning the local oscillator
detuning. Each point corresponds to a single experimental realisation. One identifies
the Fourier limited linewdith of 100 mHz and the very good contrast of 85%.

.

2.3 Stability Measurement

Prior to any stability measurement we record the typical Ramsey fringes. We repeat

the experimental cycle while scanning νLO = νMW + νRF over ∼ 3 fringes. Doing

so for various Ramsey times TR allows to identify the central fringe corresponding

to the atomic frequency. Figure 2-3 shows typical fringes for TR = 5 s, where each

point corresponds to a single shot. One recognises the Fourier limited linewidth of

100 mHz corresponding to a ∼ 1011 quality factor. The contrast is remarkably 85%

even after a 5 seconds integration. A sinusoidal fit gives the slope at the fringe half

height dP/dν = 13.4/Hz, which is used in the following stability evaluation to convert

the detected transition probability into frequency.

Evaluation of the clock stability implies repeating the experimental cycle several
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thousand times. The clock is free-running, i.e. we measure the transition probability

at each cycle, but we do not feedback to the interrogation frequency νLO. Only,

an alternation in successive shots from a small fixed negative to positive detuning

(±50 mHz) probes the left and right half-height of the central fringe. The difference

in P between two shots gives the variation of the central frequency independent

from detection or microwave power drifts. In the longest run, we have repeated the

frequency measurement over 18 hours.

The measured frequency data is traced in figure 2-4 versus time. Besides shot-

to-shot fluctuations one identifies important long-term variations. Correction of the

data with the atom number (by a procedure we will detail in the next chapter) results

in substantial improvement (figure 2-4(b)). Figure 2-5 shows the Allan standard

deviation [7] of the uncorrected and corrected data. The first data point occurs at

τ = 16 s corresponding to the cycle time. Up to 100 s the frequency fluctuations follow

a white noise behaviour characterised by the typical τ−1/2 scaling. The uncorrected

data follows 7.9× 10−13τ−1/2, the corrected data 5.8× 10−13τ−1/2. At τ ≈ 1000 s, the

fluctuations are above the white noise behaviour but decrease again at τ > 104 s to

almost join the initial white noise extrapolation. This behaviour of the Allan standard

deviation is characteristic for an oscillation at a few 103 s half-period. Indeed, this

oscillation is visible in the raw data in figure 2-4. Table 2.1 gives a list of identified

contributions to the clock frequency noise. Treating them as statistically independent

and summing their squares gives a shot-to-shot frequency fluctuation of 5.9 × 10−13

at 1 s identical to the measured stability. We have thus identified all dominant noise

sources giving a solid basis for future improvements. In the following we will discuss

each noise contribution in detail.
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Figure 2-4: Normalized frequency deviation when repeating the clock measurement
over 18 h. Before the correction with the atom number (above) and after the correc-
tion (below). Blue dots are single shots, red dots represent an average of 10 shots.
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Figure 2-5: Allan deviation of the clock stability with (blue line) and without (pink
line) atom number correction. The quantum projection noise and the local oscillator
noise contributions are given as a reference.

.
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Contribution Amplitude σy@1s

Measured, without correction 7.9× 10−13

Measured, after correction 5.8× 10−13

Temperature fluctuations 3.8× 10−13

Magnetic field fluctuations 2.6× 10−13

Local oscillator 2.7× 10−13

Quantum projection 1.5× 10−13

Correction 1.3× 10−13

Symmetric losses 1.1× 10−13

Detection 0.9× 10−13

Total Estimate 5.9× 10−13

Table 2.1: TACC Noise Budget. Temperature fluctuations comprise the largest noise
contribution followed by magnetic field fluctuations and local oscillator noise. In-
creasing tof we could improve our estimation of the temperature and use it to correct
for its fluctuations. Sacrificing the detection noise might be a good tradeoff as it is
the lowest contribution to the noise budget.

2.4 Noise Analysis

In a passive atomic clock, electromagnetic radiation generated from an external local

oscillator (LO) interacts with an atomic transition (fig. 2-6) . The atomic transition

frequency is probed by means of spectroscopy. The detected transition probability

is used to correct νLO such that it represents the atomic frequency. The so steered

LO signal is the useful clock output ready for cycle counting and synchronisation of

secondary devices. When concerned with the stability of the output frequency, we

have to analyse the noise of each element within this feed-back loop, i.e.

1. fluctuations of the atomic transition frequency induced by interactions between

the atoms themselves or with the environment,

2. noise from imperfect detection,
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Figure 2-6: Schematics of the clock operation loop. A local oscillator (LO) interro-
gates the atomic transition via Ramsey spectroscopy. The detuning of the LO from
the atomic transition is obtained from detecting the relative occupation of the two
states. The result is fed back to the LO to lock the output signal to the atomic transi-
tion. In the scheme we show the various noise sources as they appear in the sequence.
Temperature, magnetic and atom losses fluctuations affect the atomic transition di-
rectly whereas the quantum projection and detection noises affect the detection of the
relative population. The LO noise degrades the stability due to an aliasing process
known as the Dick effect.

3. uncorrected fluctuations of the LO frequency known as Dick effect.

We now analyse these three noise types for our clock. We begin by describing the

most intuitive contribution (2. detection noise) and finish by the most subtle (1.

fluctuations of the atomic frequency).

2.4.1 Detection and Quantum Projection Noise

The clock frequency is deduced from absorption imaging of the atom cloud in each

clock state. N1 and N2 are obtained by summing the camera pixels over a square

region corresponding to 3 times the cloud width. Photon shot noise and optical

fringes lead to ghost atoms σdet that add to the true atom number. Analysing blank
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images, we confirm that σ2
det increases as the number of integrated pixels and that

optical fringes have efficiently been suppressed [89]. However, the scaling has led to

the choice of short times-of-flight where the atoms occupy fewer pixels 1. Supposing

the same remaining σdet for both states we get for the transition probability noise

σP,det = 2−1/2σdetN
−1 with N = N1 +N2.

Another degradation σP,lf may occur if the efficiency varies between the |1〉 and

|2〉 detection. As the two are separated by a 3 ms delay, this may arise from laser

frequency fluctuations. It induces a direct error on P and is independent from the

atom number.

Quantum projection noise is a third cause for fluctuations in P . This fundamental

noise arises from the fact that the detection projects the atomic superposition state

onto the pure clock states. Before detection, the atom is in a near-to-equal superposi-

tion of |1〉 and |2〉. The projection then can result in either pure state with equal prob-

ability giving σQPN = 1/2 for one atom. Running the clock with N (non-entangled)

atoms is equivalent to N successive measurement resulting in σP,QPN = 1/(2
√
N) at

1 shot.

We quantify the three noise types from an independent measurement: Only the

first π/2 pulse is applied and P is immediately detected. The measurement is repeated

for various atom numbers and σP (N) is extracted. In addition to the above three noise

sources, this procedure is sensitive to fluctuations of the Rabi frequency σP,Rf which

also give N -independent P fluctuations. They can not be distinguished from σP,lf ,

however, as we will show below, this noise is negligible. Figure 2-7 shows the measured

σP at one shot versus N . Considering the noise sources statistically independent, we

fit the data by σ2
P = σ2

det/N
2 + 1/4N + σ2

P,lf+Rf and find σdet = 59 atoms and

σP,lf+Rf < 10−4. σdet is equivalent to an average of ≈ 0.06atoms/pixel reaching

almost single atom detectivity for our very typical absorption imaging system. The

low σlf+Rf proves an excellent microwave power stability which may be of use in other

experiments, in particular quantum information processing.

During the stability measurement of figure 2-4 we detect about 20 000 atoms which

1The minimum time-of-flight is given by the onset of optical diffraction at high optical density.
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is equivalent to σy,QPN = 1.5 × 10−13τ−1/2. Here we have used the spectroscopic

response based on the true contrast C as measured in figure 2-3.
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Figure 2-7: Characterization of the detection noise. The Allan deviation at one shot
is plotted as a function of the total atom number. We fit the data with the quadratic
sum of the detection noise σNi , the quantum projection noise 1

2
√
N

and the Rabi
frequency noise σP2,Rabi. The fit gives σNi = 59 atoms and a negligible value for
σP2,Rabi smaller than 10−4.

2.4.2 Local oscillator noise

The stability evaluation gives the LO frequency compared to the atomic frequency

with one point per cycle. The cyclic operation constitutes periodic sampling of the

LO frequency fluctuations and it is well-known from numerical data acquisition, that

periodic sampling leads to aliasing. It folds high Fourier frequency LO noise close

to multiples of the sampling frequency T−1
C back to low frequency variations, which

degrade the clock stability. Thus even high Fourier frequency noise can degrade the

clock signal. The degradation is all the more important as the dead time is long and

the duty cycle d = TR/TC is low.

This stability degradation σy,Dick is known as the Dick effect. It is best calculated
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using the sensitivity function g(t) [109]. During dead-time g = 0 whereas during TR,

when the atomic coherence |ψ〉 = 2�1/2(|1〉+eiφ |2〉) is fully established g = 1. During

the first Ramsey pulse, when the coherence builds up, g increases for a square pulse

as sin Ωt and decreases symmetrically for the second pulse (see Fig. 2-8). Then the

Figure 2-8: The sensitivity funcion g(t). During the dead time g = 0 whereas during
TR the atomic coherence is fully established and g = 1. During the Ramsey pulse
with length τP the coherence builds up and g increases as sin Ωt.

interrogation outcome is

δν =

∫ TC/2
�TC/2

(νat(t)� νLO(t)) g(t) dt∫ TC/2
�TC/2

g(t) dt
(2.1)

with

g(t) =



a sin Ω(TR/2 + τp + t) �τp � TR/2 ≤ t ≤ �TR/2

a sin Ωτp �TR/2 ≤ t ≤ TR/2

a sin Ω(TR/2 + τp � t) TR/2 ≤ t ≤ TR/2 + τp

0 otherwise

(2.2)

Typically Ωτp = π/2 and, for operation at the fringe half height, a = sin ∆mTR =

1. (The sensitivity function is easily understood by visualising the trajectory of a

spin 1/2 on the Bloch sphere.) Due to the periodicity of g(t) it is convenient to use

30



its Fourier transform

gm =
1

TC

∫ TC/2

−TC/2
g(t) cos(2πm t/TC)dt. (2.3)

Using Sfy (f), the power spectral density of the LO noise, the contribution to the

clock stability becomes the sum over all harmonics gm [109]

σ2
y,Dick(τ) =

1

τ

∞∑
m=1

(
gm
g0

)2

Sfy (m/TC) (2.4)

The (gm/g0)2 are shown as points in figure 2-10 for our conditions. The contribution

of the first few harmonics is clearly the strongest, but higher harmonics may well

contribute when all summed up.

To find the Dick effect for our clock we divide the local oscillator into two princi-

pal components: the 100 MHz reference signal derived from the hydrogen maser and

the frequency multiplication chain generating the 6.8 GHz interrogation signal. We

characterise each independently by measuring the phase noise spectrum Sφ(f). The

fractional frequency noise Sfy (f) used in eqn 2.4 is obtain from a simple differentia-

tion as Sfy (f) = f2

ν20
Sφ(f) where ν0 is the transition frequency(See appendix A for a

derivation).

We characterize the frequency multiplication chain by comparing it to a second

similar model also constructed in-house. The two chains are locked to a common

100 MHz reference and their phase difference at 6.8 GHz is measured as a DC signal

using a phase detector and a SR760 FFT spectrum analyzer. The measured signal

is divided by
√

2 assuming equal noise contributions from the two chains. The beat

is performed at 6.8 GHz and values are scaled to 100 MHz by subtracting 36.7 dB.

The phase noise spectrum is shown in figure 2-9. It features a 1/f behaviour up to

f = 10 Hz and reaches a phase flicker floor of -150 dB rad2/Hz at 1 kHz. The peak

at f = 200 Hz is due to the phase lock inside the chain of a 100 MHz quartz to the

reference signal.

The 100 MHz reference signal is generated by a 100 MHz quartz locked to a
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5 MHz quartz locked with a bandwidth of 40 mHz to an active hydrogen maser

(VCH-1003M). We measure this reference signal by beating it against a 100 MHz

signal derived from a cryogenic sapphire oscillator (CSO) [81] which is itself locked

to the maser derived reference signal but with a time constant of ∼ 1000 s. This

being much longer than our cycle time, we can, for our purposes, consider the two as

free running. The CSO is known from prior analysis [24] to be at least 10 dB lower

in phase noise than the reference signal for Fourier frequencies higher than 0.1 Hz,

thus the measured noise can be attributed to the reference signal for the region of the

spectrum where our clock is sensitive to LO noise (1/TC and above). The phase noise

spectrum is also shown in figure 2-9. Several maxima characteristic of the several

phase locks in the systems can be identified. At low Fourier frequencies, the 100 MHz

noise is clearly above the chain noise. At high frequencies both have equivalent phase

noise. For all frequencies, both are well above the noise floor of our measurement

system. The noise of the reference signal being dominant at the scale of our cycle

time, we neglect the chain noise in the following.

Combining the noise spectra with the sensitivity function Fourier coefficients one

realises that Fourier frequencies in the mHz range play a considerable role, but their

precise measurement is challenging as they are subject to temperature drifts in the

analysis instruments. In order to verify the noise spectrum we use data from the

atomic fountain clock FO1 exceptionally running with the 100 MHz reference sig-

nal rather than the usual CSO. FO1’s frequency stability usually being in the low

10−14τ−1/2, here the stability is entirely dominated by the reference signal noise. Us-

ing the fountain cycle of 1.36 s and Ramsey time of 0.53 s we predict its frequency

stability from the spectrum of figure 2-10 and find perfect agreement with an actual

stability measurement (figure 2-11). Furthermore, to simulate the much longer cycle

time of TACC and resulting sensitivity at sub-Hz Fourier frequencies, we select only

every 12th point from the fountain data and compare the stability with the Dick

effect prediction. Again we find perfect agreement giving us confidence in the phase

noise characterisation of the 100 MHz reference signal.

Using equation 2.4 with the TACC Ramsey and cycle time, we estimate the Dick
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Figure 2-9: Phase noise power spectral density (PSD) of the Quartz filtered Maser
reference (red) was obtained by beating it at 100MHz with the output of a cryogenic
sapphire oscillator using a low noise mixer (PD-121) followed by a low pass filter.
The PSD of our synthesizer chain (black) was measured by beating it with a similar
chain from another group and was divided by

√
2 assuming equal noise contributions

from the two chains. The measurement was performed with both chains locked to the
same 100MHz reference and then beat by mixing the outputs at 6.8GHz. The noise
level was then shifted by �10 ∗ log10(6.8 ∗ 109/100 ∗ 106) ≈ �36.7dB to be compared
with the noise level of the Quartz filtered Maser which was performed at 100 MHz.
The noise floor of the mixer is shown in blue. The noise of the 100 MHz reference
signal dominates and we will neglect the added noise from the chain in the following.

effect contribution to be σy,Dick = 2.7× 10�13τ�1/2. Thus, the Dick effect represents

the third biggest contribution to the noise budget (table 2.1). This is due to the

important dead time and the long cycle time which folds-in the LO noise spectrum

where it is strongest. Improvement is possible, first of all, through reduction of the

dead time, currently dominated by the 4 s MOT loading phase and the 3 s evaporation

cooling stage. Options for faster loading include pre-cooling in a 2D MOT. Utilization

of a better local oscillator like the cryogenic sapphire oscillator seems obvious but

defies the compact design. Alternatively, generation of low phase noise microwaves
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Figure 2-10: Same data as in figure 2-9 now expressed as relative frequency fluctua-

tions using Sy =
(
f
f0

)2

Sφ. Shown are also the Dick effect coefficients
(
gm
g0

)2

for our

cycle time of TC = 16 s and Ramsey time TR = 5 s. The lower harmonics give the
strongest contribution in the Dick effect calculation.

from an ultra-stable laser with femtosecond comb has been demonstrated by several

groups and on-going projects aim at miniaturisation of such systems. If a quartz local

oscillator remains the preferred choice, possibly motivated by cost, non-destructive

detection constitutes a promising approach for high duty cycle [12,130].

2.4.3 Fluctuations of the atomic frequency

Atom number fluctuation

Having characterised the fluctuations of the LO frequency, we now turn to fluctuations

of the atomic frequency. We begin by atom number fluctuations. Due to the trap

confinement and the ultra-cold temperature, the atom density in TACC is 4 orders

of magnitude higher than what is typically found in a fountain clock. Thus atom-

atom interactions are strong and their effect on the atomic frequency must be taken

into account even though 87Rb presents a substantially lower collisional shift than

the standard 133Cs. Indeed, when plotting the measured clock frequency against the

detected atom number N = N1 + N2, which fluctuates by 2-3% at 1 shot, we find a

strong correlation (figure 2-12). The distribution is compatible with a linear fit with
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Figure 2-11: The Allan deviation of the fountain (blue line) running with the 100
MHz reference signal as its local oscillator and the Dick effect estimation (red) based
on the PSD measurements in fig 2-10. The black line was generated by taking the
same data as for the blue but taking a sub-sample consisting of every 12th point, thus
creating a virtual measurement with a cycle time of 16.5 seconds which is close to our
cycle time of 16 seconds. It allows us to test our PSD measurements and Dick effect
calculations for a similar system. The good agreement validates our estimate.

slope k = −2.7 µHz/atom. In order to compare this value with a theoretical estimate

we use the mean field approach and the s-wave scattering lengths aij which depend

on the atomic states only [62].

∆νC =
2~
m
n(~r) ((a22 − a11) + θ(2a12 − a11 − a22)) (2.5)

n(~r) is the position dependent density and a11 = 100.44a0, a22 = 95.47a0, a12 =

98.09a0 with a0 = 0.529×10−10 m are the scattering lengths [62]. We assume perfect

π/2 pulses and so θ ≡ (N1 − N2)/N = 0. Integrating over the Maxwell-Boltzmann
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Figure 2-12: Correlation between the atom number and the measured atomic fre-
quency for the data in figure 2-4. Fitting this with a linear regression we get a slope
of k = −2.7× 10−6Hz/atom. This allows us to correct for atom number fluctuations
during the experimental run. We obtain the same value from theory [62] assum-
ing a cloud temparature of T = 80 nK which agrees with independent temperature
measurements.

density distribution 2 we get

∆νC = N × −~(a11 − a22)
√
mωxωyωz

4(πkBT )3/2
(2.6)

We must furthermore consider that the atom number decays during the TR = 5 s

since the trap life time is γ−1 = 6.9 s. We thus replace N by its temporal average.

N =
1

TR

∫ TR

0

Nie
−γtdt

= Ni
1− e−γTR
γTR

= Nf
eγTR − 1

γTR

≈ 1.47 Nf

(2.7)

where Ni and Nf are the initial and final atom numbers. Note that Nf is the actually

detected atom number. Using T = 80 nK, which is compatible with an independent

2 For our conditions kBT/~ωx,y,z > 20 and the ensemble can be treated as non-degenerate.
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measurement, we recover the experimental collisional shift of k = −2.7 µHz/(detected

atom). It is equivalent to an overall collisional shift of ∆νC = −54 mHz for Nf =

20 000.

Using k and the number of atoms detected at each shot we can correct the clock

frequency for fluctuations. The corrected frequency is given in figure 2-4 (b) showing a

noticeable improvement in the short-term and long term stability over the uncorrected

data (fig 2-4(a)). Equivalently, the Allan deviation indicates a clock stability of

5.8 × 10−13τ−1/2 at short term as compared to 7.9 × 10−13τ−1/2 for the uncorrected

data. At long term the improvement is even more pronounced changing from 6 ×

10−14 to 8 × 10−15 at 16 000 s. Atom number corrections are performed in atomic

fountain clocks, too, but rather with the aim of evaluating the accuracy [41]. There

the atom number is deliberately varied, typically by a factor 2, and the stability

degraded. In TACC the natural fluctuations are sufficient to find the collisional shift

coefficient. Furthermore, our measurement shows perfect agreement with theory so

that the theoretical coefficient can be used from the first shot on, without the need

for post-treatment.

Limitations to the atom number correction While we have demonstrated the

efficiency of the atom number correction, the procedure has imperfections for two

reasons: The first, of technical origin, are fluctuations in the atom number detectivity

as evaluated in section 2.4.1. The second arises from the fact that atom loss from the

trap is a statistical process and the exact moment when an atom is lost is unknown.

For the first, we get σy,correction = ν−1
0 |k|

√
2σN,det

√
TC
τ

= 1.3× 10−13τ−1/2 This value

is well below the measured clock stability, but may become important when other

noise sources are eliminated. It can be improved by better detection, in particular

at shorter time-of-flight where the cloud occupies fewer camera pixels, or reduction

of the atom density. The second cause, the statistical nature of atom loss, translates

into fluctuations that in principle cannot be corrected. If an atom is lost immediately

after the first π/2 pulse it has almost no contribution to the collisional shift. On the

contrary, if it is lost just before the second pulse, it contributes fully, but the detected
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Nf is the same. Only in the limit of infinite atom number, would this fluctuation

disappear. To estimate this contribution we consider a cloud with Ni initial atoms. At

time t, the probability for a given atom to still be trapped is e−γt and the probability

to have left the trap is 1− e−γt. Given Ni, the probability P to have Nt atoms at t is

proportional to e−Ntγt (1− e−γt)Ni−Nt and to the number of possible combinations:

P (Nt given Ni) =
Ni!

Nt!(Ni −Nt)!
e−Ntγt(1− e−γt)Ni−Nt (2.8)

The sum of this binomial distribution over all 0 ≤ Nt ≤ Ni is by definition normalised

to 1. However, we are interested in the opposite case: since we detect the final atom

number Nf at t = TR, we search the probability of finding Nt given Nf .

P (Nt given Nf ) = A
Nt!

Nf !(Nt −Nf )!
e−Nfγt(1− e−γt)Nt−Nf (2.9)

The binomial distribution is formally the same as (2.8) after replacing Nt → Nf

and Ni → Nt, but now normalisation sums over 0 ≤ Nt < ∞ and thus A = e−γt.

Calculation of the resulting frequency fluctuations sums over all Nt and integrates

(2.9) over time (see 2.6). To do so it is convenient to approximate the binomial

distribution by the Gaussian

P (Nt given Nf ) = A (2πη)−1/2 e−(Nf−η(1−e−γt)−1)2/2η (2.10)

with η = Nte
−γt(1− e−γt) to obtain the analytic formula

σy,losses =
k

νatγTR

√
Nfe−2γTR (1− 2γTRe−γTR − e−2γTR) (2.11)

For our parameters σy,losses = 1.1 × 10−13τ−1/2. This can only be improved by in-

creasing the trap lifetime well beyond the Ramsey time. For our set-up, this implies

better vacuum with lower background pressure. Alternatively one can perform a

non-destructive measurement of the initial atom number [74,80].
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Magnetic Field and Temperature Fluctuations

We have analysed the effect of atom number fluctuations on the clock frequency. Two

other experimental parameters strongly affect the frequency: the temperature and the

magnetic field. Their influence can be evaluated by measuring the clock stability for

different magnetic fields at the trap center. We begin by modelling the dependence

of the clock frequency.

We operate our clock near the magic field Bm ≈ 3.23 G for which the transition

frequency has a minimum of -4497.31 Hz with respect to the field free transition [62].

∆νB = b(B(~r)−Bm)2 (2.12)

with b ≈ 431 Hz/G2. For atoms trapped in a harmonic potential in the presence of

gravity, the Zeeman shift becomes position dependent

∆νB =
2m2

µ2
B

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2 − 2gz + δB
µB
m

)2

(2.13)

with δB ≡ B(~r = 0)− Bm and g the gravitational acceleration. Using the Maxwell-

Boltzmann distribution the ensemble averaged Zeeman shift is [104].

∆νB =
b

µ2
B

(
4g2mkBT

ω2
z

+ 15k2
BT

2 + 6µBδBkBT + δB2µ2
B

)
(2.14)

Differentiation with respect to δB leads to the effective magic field

δBB
0 =

−3kBT

µB
(2.15)

where the ensemble averaged frequency is independent from magnetic field fluctua-

tions. For T = 80 nK, δBB
0 = −3.6 mG is close to the field of maximum contrast

δBc ≈ −35 mG such that the fringe contrast is still 85% (figure 2-13). If δB 6= δBB
0

is chosen the clock frequency fluctuations due to magnetic field fluctuations are

σy,B =
∂∆νB
∂B

× σB = 2b
∣∣δBB

0 − δB
∣∣σB (2.16)
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We will use this dependence to measure σB.

Temperature fluctuations affect the range of magnetic fields probed by the atoms

(2.14) and the atom density, i.e. the collisional shift (2.7). Differentiation of both

with respect to temperature also leads to an extremum, where the clock frequency is

insensitive to temperature fluctuations. The extremum puts a concurrent condition

on the magnetic field with

δBT
0 = −

15kBT + 2g2m
ω2
z

3µB

− ~(a11 − a22)(eγTR − 1)
√
mNfµBωxωyωz

16π3/2b(kBT )5/2γTR

(2.17)

For our conditions, δBB
0 = −3.6 mG and δBT

0 = −79 mG are not identical but close

and centered around δBc. We will see in the following that a compromise can be

found where the combined effect of magnetic field and temperature fluctuations is

minimised. If δB 6= δBT
0 is chosen, the clock frequency fluctuations due to tempera-

ture fluctuations are

σy,T =
6bkB
µB

∣∣δBT
0 − δB

∣∣σT (2.18)

thus varying δB allows to measure σT , too.

We determine σB and σT experimentally by repeating several stability measure-

ments for different δB over a range of 200 mG around Bm where the contrast is

above 60% allowing good stability measurements (fig 2-13). The stability at one

shot is shown in figure 2-14. One identifies a clear minimum of the (in)stability at

δB ≈ −40 mG, which is a compromise between the two optimal points δBT
0 and

δBB
0 . This means, that both magnetic field and temperature fluctuations are present

with roughly equal weight. We model the data with a quadratic sum of all so far

discussed noise sources. Those independent from δB give a constant offset. σy,B and

σy,T are fitted by adjusting σB and σT . We find relative temperature fluctuations of

σT = 0.55% at 1 shot and magnetic field fluctuations at 1 shot of σB = 18µG or

6 × 10−6 relative to 3.2 G. Both noise sources being of technical origin, the results

demonstrate our exceptional control of the experimental apparatus. The relative mag-
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Figure 2-13: Fringe contrast and clock frequency for various bias fields. Red dashed
line indicates the magic field as found by the minimum clock frequency, the maximum
of contrast is offset −35 mG from the magic field.

netic field stability is compatible with the measured relative current stability of our

current supplies [101]. The atom temperature fluctuations appear small compared

to standard experiments where evaporative cooling is used. This may again be due

to the exceptional magnetic field stability; the atom temperature is determined by

the magnetic field at the trap bottom during evaporative cooling and the subsequent

opening of the magnetic trap. At all stages, the current control is the most crucial.

Using equations 2.16 and 2.18 the magnetic field and temperature fluctuations

translate into a frequency noise of σy,B = 2.6×10−13τ−1/2 and σy,T = 3.8×10−13τ−1/2,

respectively, for the conditions of figure 2-4. The comparison in table 2.1 shows, that

these two are the main sources of frequency instability. Our current supplies may

be improved, e.g. by locking to low noise current transducers which can have a

relative stability better than 10−6. If the magnetic field fluctuations can be reduced,
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the temperature fluctuations may also reduce. Even if the two are uncorrelated,

small σB would allow to operate nearer to the sweet spot δBT
0 where temperature

fluctuations have a smaller effect. We can thus expect to reduce their contribution to

σy,B+T ≈ 10−13τ−1/2.

Impossibility to correct temperature from images As we image the atom

cloud at each shot, we could in principle extract the atom temperature from the cloud

width after time-of-flight. This analysis gives shot-to-shot fluctuations of σT/T =

2 − 4%, which is much bigger than the 0.55% deduced previously. We therefore

conclude that the determination of the cloud width is overshadowed by a significant

statistical error. Increasing the time-of-flight, which would reduce this error, would

increase the detection noise which is dominated by the number of pixels onto which

the cloud is imaged.

Figure 2-14: Clock stability at 1 shot for various magnetic fields at the trap bottom
offset from the magic field 3.23 G. One observes a clear optimum of the clock sta-
bility at -35 mG. Fitting with the model described in the text allows to identify the
temperature and magnetic field fluctuations.
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2.5 Conclusion

We have build and characterised a compact atomic clock using magnetically trapped

atoms on an atom chip. The clock stability reaches 5.8× 10−13 at 1 s and integrates

to 6×10−15 in less than 10 hours. This outperforms commercial clocks by almost one

order of magnitude and is competitive with the best compact atomic clocks under

development.

After correction for atom number fluctuations, variations of the atom temperature

and magnetic field are the dominant causes of the clock instability followed by the

local oscillator noise. The magnetic field stability may be improved by additional

current sensing and feedback. This would allow to operate nearer to the second sweet

spot where the clock frequency is independent from temperature fluctuations. The

local oscillator noise takes an important role, because the clock duty cycle is < 30%.

We are now in the process of designing a second version of this clock, incorporating

fast atom loading and non-destructive atom detection. We thereby expect to reduce

all technical noises below the quantum projection noise and to reach a short term

stability near 10−13τ−1/2.

43



44



Chapter 3

Towards an atom chip atom

interferometer

3.1 Review of atom interferometers

Atomic interferometers use the interference of matter waves in order to make precise

measurements of phase. In an atom interferometer, a matter wave source is coher-

ently split into two paths which later recombine to produce an interference pattern.

The phase difference deduced from such a pattern is a measure of the path length

difference, resulting in the measurement of distances, rotations or accelerations with

a precision often equivalent or better than optical devices [33, 54]. Atom interferom-

eters can also be coupled to a larger variety of forces the measurement of which is

hardly attainable with laser sources. Gravity in particular, can be precisely measured

using atom interferometers as we will later discuss in detail, something which cannot

be done with light waves.

The observation of interference fringes from atoms had to wait until the early 90’s

when a Young double slit experiment was performed with metastable Helium atoms

diffracting from two slits in a gold foil [21]. The challenge of building interferometers

with atoms lies in the difficulty of creating coherent beam splitters and mirrors for

the atomic de-Broglie waves. Neutral atoms do not carry an electric charge and so

cannot be manipulated with electric fields. They also cannot be easily diffracted from
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gratings like neutron. Thus the road to atom interferometers has been paved by the

development of coherent atom-optics elements.

3.1.1 A basic framework for comparing the sensitivity of

atom interferometers

Although atom interferometers vary greatly in the schemes they employ for the separa-

tion and recombination of wavepackets, what is common to all is that their sensitivity

is governed by the differential phase accumulated by the two paths. In order to be

able to compare different kinds of interferometers, we will derive a figure of merit for

a general interferometer. We consider the situation immediately after the splitting

process, so that the external fields are constant in time and the wavepacket is as-

sumed to be isolated. In such a system the time evolution operator of the quantum

mechanical wavefunction |ψ(t) > can be written as:

U(t) = e−
ı
~Ht (3.1)

Inducing the evolution:

|ψ(t) >= U(t)|ψ(0) > (3.2)

Where H is the Hamiltonian of the system, or the ”generator” of the time evo-

lution. The phase accumulated by the state |ψ(t) >i is then simply φi = 1
~Hit and

the relative phase accumulated between two wavefunctions at two different points in

space x1 and x2 during a period dt is:

dφ(x1, x2) =
dt

~
(H(x1)−H(x2)) (3.3)

In order to compare the sensitivity of various interferometers, we assume the

Hamiltonian to contain only a linear spatial gradient, H = H0 + αx , which is not

common to both wavefunctions and write:

dφ =
∆xdt

~
× α (3.4)
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Since interferometers have in general a spatial separation that evolves with time,

the total accumulated phase during an interferometric sequence of length T is:

∆φ =

∫ T

0

α

~
∆x(t)dt =

α

~
χ (3.5)

Following a suggestion by Burke et al. [20] we have defined the figure of merit χ =∫ T
0

∆x(t)dt = ~∆φ
α

which characterizes the sensitivity of a general interferometer to a

spatial gradient α. For many interferometers additional pulses are applied during the

sequence [71,124] but since they are all phase coherent we can treat the propagation

in a piecewise manner.

Atom interferometers can either use atoms in free fall or in a trapped configuration.

In the free-fall configuration, the atoms are launched or released in a long vacuum

chamber and allowed to free-fall. Using laser pulses, a differential momentum is

coherently imparted on the two states causing a gradual separation in space. After

an evolution time T , an opposing momentum kick is applied reversing the direction

of separation and causing the wavepackets to recombine after a time 2T thus closing

the interferometer. In trapped atom interferometers, the wavefunctions are held in

a harmonic confining potential which is then deformed to form a double well with

a certain splitting distance between the two minima. The wavefunctions are then

allowed to accumulate a phase during a period T after which the barrier is lowered and

the wavefunctions recombine to close the interferometer. As we will later see, some

interferometers place different paths in different internal states [71] thus resulting

in an H0 which is path dependent. However, this kind of internal state labelling is

done such that both paths spend the same amount of time in each internal state,

thus cancelling this contribution. Finally, at first sight this picture does not apply

to free falling atoms as in an inertial frame they don’t experience any gradients.

Nevertheless [122] treats the gravitational gradient as a perturbation and integrates

its contribution along the unperturbed paths. This treatment shows that the relative

phase shift actually originates from the phase imprinted by the laser light on the

atoms as a result of the three light pulses and in the end yields the same expression

47



of equation 3.5. We will now review in more detail the various interferometer schemes

and compare their characteristics, where the performances will be compared on the

basis of the figure of merit χ.

3.1.2 Free fall atom interferometers

Following a suggestion by Bordé [16], Kasevich and Chu [71] created an interferom-

eter which incorporated internal state labeling and a Ramsey type scheme with an

echo pulse in order to measure gravity. In this scheme, known as Ramsey-Bordé

interferometry, Kasevich and Chu used counterpropagating Raman beams in order

to impart momentum and spatially split the two paths. Besides imparting momen-

tum the Raman pulse is also a π/2 pulse for the internal states, thus transferring

an atom initially prepared in the |F, k >= |1, 0 > state into the superposition state

|1, 0 >→ 1/
√

2(|1, 0 > +|2, 2~k) where k is the wavevector of one of the Raman

beams. After a time of flight T a π pulse is applied, acting as a mirror to reflect the

two paths back towards each other. As they recombine another π/2 pulse is applied

in order to close the interferometer (see Figure 3-1).

If the two paths have at the end of the interferometer sequence a zero relative

phase the second π/2 pulse will simply complete the first and transfer all atoms to

the |2 > state, if the atoms are π out of phase, all atoms will be transferred to

the |1 > state. Thus the relative phase between the two paths is imprinted on the

population imbalance between the two states and can be read out by counting the

number of atoms in each state just like in an atomic clock. The phase difference

between the two paths in such a scheme is insensitive to the initial atom velocity

and scales as ∆φ = 2kαT 2. In order to extend the integration time, atoms can be

launched upwards in a fountain trajectory, reaching the maximum splitting distance

at the apex. This scaling can also be interpreted in the following way, the relative

distance of the two paths is given by ∆z(t) = 2~k
M
∗ t where 2~k

M
is the relative velocity

separating the two clouds and t the separation time. Immediately following the first

splitting pulse the paths separate for a time T resulting in an integrated splitting

distance of χT =
∫ T

0
∆z(t)dt = ~k

M
T 2. After the mirror pulse the paths follow a
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Figure 3-1: Operation of a free-fall atom interferometer. At t0 a cloud of ultracold
atoms is prepared and a π/2 pulse is applied inducing the transition: |1, 0 >→
1/
√

2(|1, 0 > +|2, 2~k) and imparting momentum to half of the wavefunction. At
t0 + T a second pulse acts as a mirror causing the paths to converge. At t0 + 2T the
final π/2 pulse is applied and the different paths interfere. The pulses are performed
via Raman transitions. Figure taken from [78].

symmetric trajectory yielding a figure of merit twice as big: χ2T = 2χT = 2~k
M
T 2

from which we get the original expression for the phase shift. The expression for the

sensitivity of free falling interferometers makes it clear that in order to increase the

sensitivity one can either increase the size of the interferometer (thereby allowing for

a longer interrogation time) or increase the number of momentum kicks imparted on

the wavepacket [25, 85].

The most sensitive free fall gravimeter using Raman beams was demonstrated in

Kasevich’s group by Dickerson et al. [39] where by using a 10 meter vacuum chamber

they were capable of extending the interferometer time to 2T = 2.3 s and split the

wavepacket by 1.4 cm. They used Rubidium atoms where k = 2π/780 nm yielding

a figure of merit of χ = 15.6 mm · s. The associated phase shift is thus ∆φ =

2.1× 108 rad. Their system exhibits a phase noise of 1.4 mrad thus demonstrating a

sensitivity to acceleration of δφ/∆φ = 6.7×10�12 g in one shot. Today this represents

the most sensitive atom interferometer ever built.

Another possibility is to increase the amount of momentum difference between

49



the two interferometer paths. Giltner et al. [57] used Bragg diffraction (without

state labeling) from a standing wave optical lattice in order to impart several ~k of

momentum difference (up to 6~k). The standing wave lattice acts as a thick grating

on which the atomic wavepacket scatters. The diffraction criterion requires that an

atom absorbs n photons from one beam and reemits them into the other one, thereby

absorbing the momentum of 2n photons. The recoil energy difference has to be

compensated by the relative detuning of the two laser beams ∆f = (k)2/mπ so that

tuning the relative frequency selects the order of the Bragg diffraction. By setting

the length of the pulse one can tune the transfer probability, thereby creating a 50/50

beamsplitter. By increasing the lattice power and improving on the wavefront quality

Muller et al. [85] managed to diffract an atomic beam of cesium to the 12th order,

thereby imparting 24 ~k photon momenta. The visibility of the fringes disappeared

after about T = 100 ms, leading to a figure of merit of χ = 0.85 mm · s and an

accumulated phase difference of about ∆φ = 24kgT 2 ≈ 1.7×107 rad. In a subsequent

experiment, by using a sequence of Bragg diffractions, Chiow et al. [25] demonstrated

the largest momentum splitting to date, with 102~k photon momenta separation.

However, due to noise from wave front distortion and population loss the integration

time was on the order of only 10 ms, resulting in an accumulated phase of only ∆φ ≈

8 × 105 rad. The contrast in such Bragg diffraction experiments is usually greatly

reduced due to inefficiencies of the Bragg splitting, aberrations in the wavefront and

the thermal motion of the atoms which results in the smearing of the phase over the

atomic ensemble. Additionally, phase noise is high due to vibrations of the laboratory

frame in which the phase is stabilized.

A multitude of schemes exist nowadays which use free fall atom interferometry

for the most precise metrological measurements. Compared to the large 10 m free

fall interferometer, smaller setups exist which allow for gravity surveys in remote

places [49] while still maintaining a 10−9 g sensitivity after 100 seconds of integration

time. This performance is comparable to the best falling cube gravimeter [86] but

does not suffer from the high wear and slow integration rate (which is required to re-

duce vibrations) of such devices. The use of a dual cloud atom interferometer allows
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the measurement of gravity gradients [83, 117]. Measurements of the gravitational

constant with an atomic interferometer [51, 105] produce the best known value of G

to date with a standard error on the 10−4 level, an impressive achievement consid-

ering the weakness of the interaction (G ≈ 6.7 × 10−11 N · (m/kg)2). Other inertial

forces are measured with impressive sensitivity. Gyrometers exploit the Sagnac effect

which accumulates a phase due to the area enclosed between the arms of the inter-

ferometer [43, 56]. The state of the art today being on the 10−10 rad · s−1 · Hz−1/2

level [60]. Compact 3-axis gyroscope units [121] were also constructed with a sensitiv-

ity of 8.5×10−8 rad ·s−1 ·Hz−1/2 and a volume of less than 125 liters. Purely scientific

applications are plentiful, from the testing of general relativity [40] and gravitational

wave detection [58] to the determination of the fine structure constant [17].

3.1.3 Confined atom interferometers

As previously discussed, the sensitivity of free fall interferometers is limited by the

apparatus size. In order to obtain large phase shifts while maintaining a compact

system, wave packets can be confined by trapping potentials in order to overcome

gravity. With the advent of laser cooling, optical molasses and evaporative cooling

techniques, atoms can now be trapped and prepared in their momentum ground

state reaching Bose-Einstein condensation, thus creating a source with a very narrow

momentum distribution.

A distinction is made between trapped and guided interferometers. In trapped

atom interferometers the wavepacket is confined in all three directions by an harmonic

trap and the beam splitter is implemented by deforming the trapping potential into

a double well configuration. The wavepacket is split in space, held for a period of

time and then recombined in order to measure the relative phase accumulated in the

two wells. In guided atom interferometers the wavepacket is confined in only two

directions while allowing it to propagate along the waveguide. The beam splitter

is implemented by either bifurcating the waveguide into two adjacent guides [36] or

by splitting the wavepacket by laser pulses collinear with the waveguide axis [129],

similar to the methods developed for free falling interferometers.
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Guided atom interferometers

Early attempts with guided atom interferometers focused on splitting BECs using

Y-shaped wire waveguides fabricated on atom chips [22, 23, 36], but were only able

to physically split a cloud of thermal atoms without observing interference fringes.

The more common method today is to use a combination of magnetic trapping and

light induced beam splitters: Wang et al. demonstrated a Michelson interferometer

(symmetrical splitting) on an atom chip [129] by trapping a BEC in a magnetic

waveguide and then splitting it with a pulse of a standing wave optical lattice aligned

parallel to the magnetic waveguide axis. The pulse couples atoms into the |p =

±2~k > states (Raman-Nath regime) splitting the clouds in opposing directions.

After some propagation time a Bragg pulse is applied in order to reverse the direction

of propagation. The interferometer is then closed with a recombination pulse when

the clouds overlap. With such a method Wang et al. managed to split the condensate

by 120µm but could obtain a contrast of only 20% after 10 ms. They attributed the

loss of contrast to inhomogeneities of the trapping potential and interaction processes.

Horikoshi et al. [66] performed a similar scheme but in a Mach-Zehnder configuration

(asymmetrical splitting) using Bragg pulses to impart 2~k momenta to half of the

condensate but were able to preserve coherence for only a few ms. One way to

compensate for asymmetries is to use ”free oscillating” interferometers [65, 68]. In

such a scheme the atoms are held in a three dimensional trap having one shallow axis

and the atoms are split with a standing wave pulse, the trap curvature then guides the

atoms back towards each other instead of applying a mirror pulse. The interferometer

is closed with the final pulse after each cloud has performed a full oscillation. This

scheme greatly increases the coherence time. Burke et al. [20] have demonstrated

arm separations of 1.7 mm and an integration time of 0.9 s with ≈ 30% contrast.

Horikoshi et al. [65] also observed increased coherence times using this method and

demonstrated that the phase becomes stable by increasing the longitudinal trapping

frequency ω, indicating that the fluctuations are due to low-frequency external noise,

such as mechanical vibrations of the experiment. However, it must be noted that such
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a freely oscillating ”double-8” scheme cannot be used to measure potential gradients,

since both paths of the interferometer probe the same regions of space. In a ring

shaped trap such a method would be sensitive to rotations via the Sagnac effect and

could be exploited to build an atomic gyroscope [55].

We take these experiments as a proof of concept for the capabilities of trapped

atom interferometers. Assuming the randomness of the phase can be controlled by

better vibration stabilization systems, a separation of 1.7mm and an integration time

of 0.9 s in such a configuration gives a figure of merit of χ = 1.6 mm · s, which is only

an order of magnitude less than the large free fall interferometer used by Kasevich but

in a much smaller setup. This point is encouraging and stimulates further research

on trapped atom interferometers.

Trapped atom interferometers

We now turn our attention to trapped atom interferometers, where the wavepacket

is coherently split by modifying the trapping potential. In free and guided atom

interferometry, atoms are separated by imparting momentum quanta on the atoms,

which after a time evolution translate into a spatial separation. This allows very

precise and stable splitting since the transferred momentum is fixed. In trapped

atom interferometers, the coherent separation is done directly in position space by

deforming the shape of the trapping potential. This depends on macroscopic field

sources which cannot be controlled on the individual quanta level. Additionally,

the splitting process must be adiabatic so as not to induce excitations of the trapped

wavepacket, thus the interaction times are longer and the mechanism more susceptible

to inhomogeneities which cause decoherence. Meeting these challenges is however

worthwhile, since as we previously saw trapped atom configurations can lead to very

high sensitivities with compact setups due to the long interrogation times and large

splitting distances.

Double well potentials were initially attempted by using multiple wire configura-

tions on an atom chip [47, 52]. They initially demonstrated interference fringes [115]

but with a random phase, indicating that the splitting process did not preserve a
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common phase between the two condensates. In 2005, the first phase coherent double

well potential was demonstrated by Schumm et al. [112] which used adiabatic RF

dressed state potentials [31, 64, 79, 137] in order to deform the shape of a magnetic

trap on an atom chip. The RF field originating from one of the chip wires coupled

the various Zeeman sublevels of the magnetically trapped atoms. The coupling mixes

the magnetic moment of the trapped atoms (low field seekers) with that of untrapped

states having opposite magnetic dipole moments (high field seekers) for which the

trapping potential minimum is instead a potential hill. This coupling resulted in an

effective potential given by the superposition of the trapped and anti-trapped po-

tentials experienced by the different Zeeman sub levels. In such a way, a potential

maximum originating from the mixing in of the anti-trapped states is ”grown” in the

center of the harmonic potential and transforms the trap into a double well. The first

attempt by Schumm et al. displayed modest performances, with a maximum splitting

distance of less than 5µm and a coherence time on the order of 2ms, resulting in a

figure of merit of appoximatley χ ≈ 10−5 mm · s.

An issue with RF dressed state interferometry is the estimation of the spatial

shape of the dressing field. Baumgartner et al. [11] demonstrated a measurement

with a 10% error bar using an RF induced double well potential, far from current

state of the art free falling interferometers. They estimate that they could reduce the

error of such a device to the 1% level but that beyond that the spatial inhomogeneity

of the RF field strength will introduce systematic errors since the trap bottom in the

two different positions will have an offset which will cause the accuracy of the gravity

estimate to be limited by the estimation of the RF field distribution. On the positive

side, trapped atom interferometers are ideal for probing short range potentials and

are capable of scanning fields with a spatial resolution on the µm scale, something

which is unattainable with free fall interferometers. Ockeloen et al. [88] recently

demonstrated a measurement of near field magnetic fields on an atom chip and shows

promise in that direction.

Finally, dressed state potentials can be also generated with microwave fields where

instead of coupling different Zeeman sublevels, the microwave dressing couples dif-
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ferent hyperfine states and can thus generate state dependent potentials. Microwave

dressed state potentials have been demonstrated more than 20 years ago [6, 119] by

using atoms in the far field of a microwave source. However, due to the relatively

large wavelength (4.4 cm for Rubidium), the far field gradients are very weak. In [119]

for example, 0.5MW of power was circulated in a cavity without even being able to

hold the atoms against gravity. In contrast, atom chips allow atoms to be trapped in

the near field of wires (d � λMW ) which can be fabricated on the chip in the form

of a transmission line. Such near field potentials exhibit much larger gradients. In

our system for example, we trap atoms about 50µm above the surface of a coplanar

waveguide so that even by dressing the atoms with a large detuning of 0.5MHz we

can still create gradients comparable to that of gravity with a power of only 25mW.

For a dressing with a detuning of 0.5 MHz from the |1,−1〉 → |2,−1 > transition for

example, it allows us to displace the |1,−1〉 state along z by 11.7µm without forming

a double well. It thus becomes interesting to explore the possibility of using the near

field interaction of a CPW in order to create a beam splitter for atoms.

Bohi et al. [15] used microwave dressed 87Rb atoms and demonstrated an interfer-

ometer with a splitting distance of 4.3 µm and could resolve fringes with a controlled

phase after 8.5 ms and after 17 ms with a random phase, resulting in a figure of merit

on the order of χ ≈ 7 × 10−5 mm · s. The work of Bohi et al. did not use a double

well configuration, instead they state selectively shifted one of the two clock states of

87Rb within a Ramsey sequence, measuring the relative phase shift of the two states.

In the next sections, we propose a scheme using microwave dressed state double well

potential, a first of its kind in atom interferometry.

Possible sensitivities of trapped atom interferometers

We will now extrapolate possible sensitivities of trapped atom interferometers based

on the performances of previous experiments. Given that coherence times of trapped

atoms on the order of one minute have been demonstrated [19, 38] (although not in

an interferometric scheme) and that separation distances of 1.7mm [20] were already

shown, we can envisage a possible trapped atom interferometer with a figure of merit
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on the order of χ ≈ 10 mm·s which is on the same order of magnitude as the large free

fall interferometer demonstrated by the Kasevich group (with χ = 15.6 mm · s). Thus

it seems in principle possible to reach sensitivities comparable and even superior to

large scale interferometers with compact trapped atom setups. Turning more modest,

if we consider a coherence time of 1 second and a splitting distance of ≈ 100 µm we

can still reach a figure of merit on the order of χ ≈ 0.1 mm ·s, allowing a sensitivity of

10−9 g by assuming a phase noise of 1 mrad on the detection system. Said differently,

this represents a precision of ≈ 0.7 µGal at one shot. Assuming a sequence 10 seconds

long and a system integrating as white noise this corresponds to a sensitivity of

≈ 2µGal
√

Hz which is an order of magnitude better than state of the art absolute

gravimeters using a falling corner cube architecture [86] and which display a sensitivity

of ≈ 15µGal
√

Hz.

3.1.4 Microwave dressed potentials and our proposed inter-

ferometer scheme

One major problem of current trapped atom interferometers is related to the dynam-

ical deformation of the trapping potential. As the barrier is increased, the energy of

the first excited state progressively approaches that of the ground state until they

eventually become degenerate. Thus, an ideally adiabatic transfer cannot be reached

even for long ramping times [115] since at a certain point the transfer will excite higher

vibrational states. Populating several vibrational states is detrimental, since each vi-

brational level has a different energy, and thus a different rate of phase accumulation

causing a reduction of contrast. Abruptly changing the trapping potential will on the

other hand induce mechanical perturbations of the condensates with dissipation or

coupling to internal excitation modes [90] which would also result in an unpredictable

relative phase between the two condensates. An alternative option [114] is to prepare

two condensates in a double well potential with the barrier lower than the chemical

potential thus allowing the two condensates to lock their phase. The barrier can then

be raised further in order to fully separate the condensates. Another direction is to
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prepare two condensates in different positions and then imprint on them a phase from

an external field. Saba et al. [107] demonstrated this principle by scattering light from

two condensates prepared at different positions.

In this chapter we present a new scheme for double well interferometry which

overcomes these problems by using a new kind of fast and robust beam splitter. We

elaborate a proposal by Philipp Treutlein [125] who suggested microwave dressing to

create a single and a double well potential depending on the internal state. The idea

(see Fig. 3-2) is to create a state selective double well potential in an unpopulated

state and then transfer an ensemble of atoms to this split potential with a π pulse.

Such a scheme has the distinctive advantage that it does not require the dynamical

variation of the trapping potential in order to populate a double-well and is thus

expected to greatly reduce the excitation of the condensate.

Figure 3-2: Scheme of the proposed interferometer. At first (a), a BEC is prepared
in the ground state of the |1,�1〉 state. Then (b), the trap in the |2,�1 > state is
dressed to form a double well and a π pulse transfers the atoms from |1,�1〉 to |2, 1〉
(c). After a Ramsey time TR, a second π pulse closes the interferometer sequence and
the relative phase between the two wells is read (d) from the relative occupation of
the two hyperfine states.

Such a scheme offers several advantages:

1. The issues associated with passing through a quartic potential are eliminated since

the generation of the double well is done when the state is unpopulated. The atoms

are transferred to an already formed double well without inducing excitations due to

the ramping of the barrier.

2. The atoms are split in the same internal state, making the accumulated relative
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phase insensitive to level shifts.

3. The relative phase accumulation starts when the π pulse ends. While the transfer

pulse is active, the two wells are coupled through the single well state and thus do

not develop a relative phase. This means that the phase evolution starts at a well

defined moment facilitating the analysis.

4. Our scheme shares the advantages of Ramsey type trapped atom interferometers,

namely the possible large interrogation times allowed by the trapping potential and

the simplified phase readout in the form of relative atom number counting between

the two states.

In order to implement a state dependent double well potential we employ a mi-

crowave dressing scheme on the magnetically trapped clock states of 87Rb |1,−1〉 and

|2, 1〉 (see figure 3-3 and figure 3-4). In such a way we are able to form a double well

potential for just the |2, 1〉 state by coupling the |2, 1〉 → |1, 1 > transition with the

microwave field originating from the coplanar waveguide (CPW) on our atom chip.

The coplanar waveguide is a structure made of three parallel wires fabricated on our

atom chip. This structure forms a microwave mode which (as we will later see) allows

for a strong coupling with atoms trapped directly above the central wire. Since the

atoms are trapped in a magnetic trap with a field at the trap bottom of B0 ≈ 3G,

the Zeeman splitting creates a detuning of at least 7MHz between the |2, 1〉 dressing

and any transition coupling the |1,−1〉 state with the |2 > manifold, thus this state

is virtually unmodified and remains trapped in the initial harmonic trap.
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Figure 3-3: Level scheme for the proposed interferometer. We dress the |1,�1〉 state
with a π transition coupling it to the |2,�1〉 state with a blue detuning of ∆1. The
|2, 1〉 state is also dressed via a π transition to the |1, 1〉 state with a detuning �∆2.
Even though the dressing detuning are closer to resonance with the π transition,
other σ polarizations couple as well. The dressing is seen to be asymmetric as the
|1,�1〉 state has an additional σ� transition coupling it to |2,�2〉 for which there is
no counterpart for the |2, 1〉 state. We will later see how this asymmetry is beneficial
in creating a double well potential for the |2, 1〉 state while keeping the |1,�1〉 state
in a single well potential and at the same vertical position. This ensures a good
wavefunction overlap and allows the transfer of atoms between the two states.
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Figure 3-4: Schematics of the chip first layer (a) and the microwave and static fields
employed for the formation of a double well potential (b). A zoom at the center of
the chip shows the three wires which form the microwave coplanar waveguide. The
central wire of the CPW is used, in addition, to carry the stationary current for the
generation of the magnetic trap. In (b) we show the schematics of the two layer
chip with the main fields for the realization of the microwave dressed double well
potentials. The currents I1 and I2 flow in dedicated wires in the first and second
layer of the chip respectively and contribute together with the Ioffe magnetic field
BIoffe and bias field Bbias to the formation of the static magnetic trap where the
atoms are kept. Due to the action of the microwave a double well is created along
the longitudinal axis of the trap (y-axis) for the two states |1,�1〉 and |2, 1〉 when the
microwave frequency is tuned close to the π-polarization driven transition as shown
in figure 3-3.
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3.2 Theory

3.2.1 General considerations

The double well potential exploits the spatial dependence of the Rabi frequency, which

can be written as:

Ω0 =

√
3

16

µB
~
|BMW |~eMW · ~etrap

Ωπ =
√

Ω2
0 + ∆2

(3.6)

Where Ω0 and Ωπ are the bare and generalized Rabi frequencies , |BMW | is the mi-

crowave field amplitude, ~eMW , ~etrap the unit vectors of the microwave and static trap

respectively and ∆ the detuning. The Rabi frequency has a spatial dependence orig-

inating from 3 terms:

1. The detuning is position dependent due to the Zeeman effect induced by the trap

∆ = ∆0 + µB
~ (|Bs(~r)| −B0). Bs is the trap field, B0 the field at the trap center.

2. The microwave polarization depends on the projection of the microwave on the

static field (~eMW ·~etrap) and thus depends on the variation of the direction of the trap

and microwave fields.

3. The microwave field amplitude |BMW | has a spatial variation given by the field

distribution of the CPW.

The first effect has the smallest contribution since the detuning at the center of

the trap ∆0 is in our case set to be much larger than the trap frequencies which are

on the order of a few kHz at most. Bringing the dressing closer to resonance will

cause Landau-Zener transitions to other states [128] which in our case are untrapped

and will thus lead to losses. We observe in our system losses at a detuning smaller

than 30 kHz where at a 10 kHz detuning we loose all atoms.

The second option is the dominant one for our configuration and is also the basis of

the first RF dressed double well experiment by Schumm et al. [112]. The coupling of

the microwave field to the atoms depends on the relative orientation of the two fields.
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In the case of π polarization, it is the component of the microwave field parallel to the

static magnetic field in the trap (Ωπ ∝ | ~BMW · ~Bs|) while in the case of σ transitions

it is the perpendicular component (Ωσ ∝ | ~BMW × ~Bs|). There are then two extreme

variants of this method, either the microwave field is quasi-constant and the trap field

rotates with position (such as in [112]) or the static field is quasi-constant and the

dressing field orientation rotates which is the case for our configuration.

The third effect, the variation of the microwave amplitude, has a smaller con-

tribution than that of the field orientation for microwave sources originating from

straight wires. To realize why, we look at a plot of the absolute field equipotential

lines next to those of only the y and z components (see Fig. 3-5) for a single straight

current carrying wire. In the case where the quantization axis in the trap is oriented

mainly along the y axis (such as in our case), the y and z components are the ones

contributing to the π and σ polarizations respectively. It is easily visible that for

fields generated by wires the gradients and curvatures of the individual components

are stronger than those of the total field amplitude. This arguments can fail when

adding several wires as in the case of our CPW, but for static traps positioned directly

above the central CPW wire, and for deformations of the trap smaller than the CPW

wires separation, the gradients and curvatures are mainly due to the central wire and

our graphical explanation survives.

3.2.2 Transfer between a single and a double well

An additional issue concerns the transfer pulse. The requirement for a coherent

transfer between the ground state of the single well trap in the |1,−1〉 state and the

double well potential in the |2, 1〉 state sets some bounds for the Rabi frequency of

the transfer pulse Ωtransfer. In order to be able to transfer to the ground states of

the double well, the transfer pulse needs to be able to spectrally resolve the energy

levels of the double well potential, thus setting an upper limit for the Rabi frequency,

requiring Ωtransfer < ωho where ωho is the trap frequency at the bottom of the double

well potential. On the other hand, for our state |2, 1〉 the lifetime is limited by losses

due to spin exchange collisions where the process |2, 1〉 + |2, 1〉 → |2, 0 > +|2, 2 >
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Figure 3-5: Equipotential lines of the total field |BMW | (black), By (Blue) and Bz

(Red) above a straight wire collinear with the x axis and passing through (y,z)=(0,0).
The curvatures of the y and z components are seen to be stronger indicating that
inhomogeneities of the polarization play a greater role than those of the amplitude
when wires are used as sources for the dressing field.

occurs and atoms end up in either an untrapped state or one where they experience a

different static and dressed potential, in either case removing their contribution from

the signal. The lifetime depends on the density of the cloud and although we work

with relatively shallow traps where (ωx, ωy, ωz) ≈ 2π(150, 90, 120)Hz the lifetime is

still on the order of only 300 ms. We thus require a pulse length on the order of 100ms

so that following the first transfer pulse, the Ramsey time and the final recombination

pulse the signal will not be severely attenuated. As the dressing increases, the trap

frequency along the y axis will reduce and eventually reach 20-40 Hz. This means

that (2− 4)× Ωtransfer ≈ ωy which is at the limit of resolving the sidebands.
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An additional constraint is set by interactions in the condensate shifting the

resonance frequency during transfer. Depending on the ratio between the interac-

tion energy and the Rabi frequency Λ = U/Ωtransfer, with U = 2~
m
n̄(a11 − a22 +

f(2a12 − a11 − a22)) where aij are the scattering lengths, n̄ the mean density and

f = (n1− n2)/(n1 + n2) the relative occupation, different regimes are expected [136].

For Λ < 1 we are in the Rabi regime where the linear coupling is governing the time

evolution and single-particle coherence is preserved [18]. For Λ > 1 we enter the

Josephson regime and for Λ > 2 self-trapping modes appear. Then, the atom transfer

within internal states is progressively inhibited and also single-particle coherence is

gradually lost [18, 27]. An ideal coherent atom transfer would thus require Λ < 2

and preferably Λ ≤ 1. As the sideband resolving requirements set an upper limit

on Ωtransfer, Λ ≤ 1 is fulfilled only for small enough interaction energies U. These

are achievable in current experiments, for example, with the use of Feshbach reso-

nances [136] or via the reduction of the density by the use of even shallower traps.

Another possibility is to chirp the Rabi pulse in order to compensate for the effects

of the interparticle interactions.

3.2.3 The dressed state picture in the microwave regime

We will now develop the Hamiltonian for the interaction of a 87Rb atom in the hy-

perfine ground state with a microwave field. This work is based on the thesis of P.

Treutlein [127] and is adapted to our particular characteristics.

The Hamiltonian of our system has three parts, that of an atom trapped in a

magnetic field ĤA, the microwave field ĤF and the interaction between the atom and

the field ĤAF :

Ĥ = ĤA + ĤF + ĤAF (3.7)

For the description of a 87Rb atom in the hyperfine split ground state we start

with the Breit-Rabi Hamiltonian and neglect the interaction of the static magnetic

field with the nuclear angular momentum as it is three orders of magnitude smaller
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(gI/gJ ≈ 10−3) than the orbital angular momentum:

ĤA = AhfsI · J + µBB(gJJz + gIIz) ≈ Ahfs · I · J + µBgJBzJz (3.8)

Since µBB � ~ωhfs (the Larmor frequency for our trapping field is 2-4 MHz

whereas the hyperfine transition is 6.8 GHz) we can treat the magnetic field as a per-

turbation and take the eigenstates |F,mF > of the unperturbed (B = 0) Hamiltonian

and eigenenergies to first order (as done in standard perturbation theory):

EF,mF ≈ (F − 1)~ωhfs + (F − 3

2
)mFµBB (3.9)

Where F=I+J is the total angular momentum and where F=1 (F=2) for the lower

(upper) hyperfine state. The atomic Hamiltonian provides us with 8 states, three for

the F = 1 manifold of the hyperfine ground state and five for the F = 2 manifold.

The microwave field Hamiltonian is simply given by:

ĤF = ~ω(a†a+ 1/2) (3.10)

With eigenstates |n > and eigenenergies En = ~ω(n + 1/2). The photon number

originating from the field Hamiltonian is however not fixed resulting in an infinitely

large Hilbert space. At this point we assume the weak coupling limit, where the

Rabi frequency of the microwave driving is much smaller than the splitting of these

levels (also known as the Jaynes-Cummings model) and will later perform the rotating

wave approximation to remove these higher order terms. We will also assume that the

detuning of the microwave signal is small in comparison with the hyperfine splitting.

We thus limit ourselves to the case where the number of excitation quanta is conserved

and focus on the subset of the Hilbert space containing only 8 states:

K(n) = |F = 1,mF = −1, 0, 1 > |n+ 1 >, |F = 2,mF = −2,−1, 0, 1, 2 > |n >

(3.11)
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The labeling ”n” here is superfluous, since the overall energy of the total field

(~ωn) has no effect on the dynamics and will be removed from the following calcu-

lations. It’s just here to make it explicit that the number of quanta are conserved

in our system, that if a photon is taken from the field it transforms into an atomic

excitation and if an excitation is taken from an atom it goes to the field. See Figure

3-6.

Figure 3-6: Level scheme of the bare states with microwave dressing. Taken from
Philipp Treutlein thesis.

We now define the detuning ∆0 = ω�ωhfs with respect to the resonance at B = 0

and write:

ĤA + ĤF =
∑
m2

(�1

2
~∆0 + ~ωLm2)|2,m2 > |n >< n| < 2,m2|

+
∑
m1

(
1

2
~∆0 � ~ωLm1)|1,m1 > |n+ 1 >< n+ 1| < 1,m1|

(3.12)

Where ωL = µB
2~ |B| is the Larmor frequency and where we have removed the total

field energy (~ωn) and one common excitation quanta (~ω) so that an atom in the

|F = 1,mF > |n+ 1 > and one in |F = 2,m2 > |n > are seen as being offset by just

the detuning ∆0 and the relative Zeeman splitting ~ωL(m2 + m1) as seen in figure
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3-6).

The atom-field coupling is given by the coupling of the atom’s angular momentum

to the magnetic field of the microwave signal:

ĤAF = µB(gJJ + gII) · B̂MW ≈ µBgJB̂MW · J (3.13)

Where we again neglected the coupling to the nuclear spin and where B̂MW is the

quantized field operator in the Schrödinger picture given by [127]:

B̂MW =
BMW

2
√
n̄

(εMWa+ ε∗MWa
†) (3.14)

With BMW the classical field amplitude, ε the polarization vector, a† and a the

raising and lowering operators for the field and n̄ the mean number of photons.

We now calculate the expectation values for this Hamiltonian between the 8 states

discussed:

1

2
~Ω2,m2

1,m1
≡< n| < 2,m2|ĤAF |1,m1 > |n+ 1 >=

< n| < 2,m2|µBgJ
BMW

2
√
n̄

(εa+ ε∗a†) · J |1,m1 > |n+ 1 >=

1

2
µBgJBMW

< n|a|n+ 1 >√
n̄

< 2,m2|ε · J |1,m1 >

≈ µBBMW < 2,m2|ε · J |1,m1 >

(3.15)

Where we defined the Rabi frequency Ω2,m2

1,m1
between the two states |F = 1,mF =

m1 > and |F = 2,mF = m2 > and took < n|a|n+ 1 >≈
√
n̄ since for n� 1 we have

√
n+ 1 ≈

√
n. We also made the replacement gJ = 2.

We decompose the < 2,m2|ε · J |1,m1 > term as following:

ε · J = εxJx + εyJy + εzJz

=
1

2
(εx − ıεy)J+ +

1

2
(εx + ıεy)J− + εzJz

= ε+J+ + ε−J− + επJz

(3.16)
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The values of the J matrix elements are the Clebsch-Gordan coefficients multiplied

by the polarization vector of the atom quantization axis. The orientation of the

quantization axis, which determines the axis z over which Jz is defined, is in principle

position dependent. As the atoms move in the trapping potential the orientation of

the quantization axis follows the field lines of the trap. The polarization vectors of the

dressing field εx,εy and εz are also position dependent as the microwave field mode is

not homogeneous as we have previously discussed. We will show in the next chapter

in detail how this term contributes the majority of the deformation of the trapping

potential due to the dressing field.

In the end we get for the Hamiltonian of the total reduced 8-level system:

Ĥ =

~



1
2∆0+ωL 0 0 0 0 0 0 0

0 1
2∆0 0 0 0 0 0 0

0 0 1
2∆0−ωL 0 0 0 0 0

0 0 0 − 1
2∆0−2ωL 0 0 0 0

0 0 0 0 0− 1
2∆0−ωL 0 0 0

0 0 0 0 0 0− 1
2∆0 0 0

0 0 0 0 0 0 − 1
2∆0+ωL 0

0 0 0 0 0 0 0 − 1
2∆0+2ωL



+



0 0 0 −
√

3
4ε−J− −

√
3
16επJπ

√
1
8ε+J+ 0 0

0 0 0 0 −
√

3
8ε−J− −

√
1
4επJπ

√
3
8ε+J+ 0

0 0 0 0 0 −
√

1
8ε−J− −

√
3
16επJπ

√
3
4ε+J+

−
√

3
4ε−J− 0 0 0 0 0 0 0

−
√

3
16επJπ −

√
3
8ε−J− 0 0 0 0 0 0√

1
8ε+J+ −

√
1
4επJπ −

√
1
8ε−J− 0 0 0 0 0

0
√

3
8ε+J+ −

√
3
16επJπ 0 0 0 0 0

0 0
√

3
4ε+J+ 0 0 0 0 0


(3.17)

The diagonalization of the complete Hamiltonian is required only when dressing

with high power (compared to the Zeeman splitting). In our scheme however (Ω <

200kHz� ωL ≈ 2.3MHz) and we will thus use a simple two level model as described
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in the next section.

The two level approximation

The Rabi frequencies applied in our experiment are on the order of a few tens of kHz,

and are thus much smaller than the Zeeman splitting. We thus have |Ω2,m2

1,m1
| � ωL

and can assume the AC Zeeman effect shifts only the pair of states being coupled via

the microwave field and does not affect neighboring levels. Therefore we can treat

the microwave dressed potential pairwise and analyze the system as a two level one.

For a two level atom, the energy splitting between the two bare states is simply the

generalized Rabi frequency (coherent Rabi splitting) and is given by [30]:

∆E(BMW ) = E+ − E− ≈ ~
√
|Ω2,m2

1,m1
|2 + |∆2,m2

1,m1
|2 (3.18)

Where the + (-) refers to the upper (lower) dressed state. The contribution of

the microwave field to the shift of a single level is obtained by subtracting the shift

occurring at zero microwave amplitude, we get:

V ±MW =
1

2
(∆E(BMW )−∆E(0)) = ±~

2

(√
|Ω2,m2

1,m1
|2 + |∆2,m2

1,m1
|2 − |∆2,m2

1,m1
|
)

(3.19)

Where we have divided by two to account for the shift of just one level (the shift

is symmetric for both states).

The potential including all polarizations

In our system, the microwave coplanar waveguide generates a polarization vector ~εMW

with a mixture of circular and linear polarizations. Thus, for a large microwave field

amplitude the two level description begins to fail, and we will need to consider the

couplings to all three transitions. For the microwave amplitudes required to create a

double well, these extra polarization contributions are important and we will later see

how they cause an asymmetry in the dressing of the two clock states. We will add the

contributions of the additional σ polarizations to the potential without diagonalizing
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the full Hamiltonian, thus neglecting coherent processes. This is justified since the

contribution from these states to the total wavefunction is of order Ωσ/∆σ � 1 [127].

And we work in a situation where the dressing field is closest to the resonance of

the π transition and so is detuned by ∆σ = ∆π ± ωL ≈ 2MHz from the relevant

levels. Furthermore, the Rabi frequency of the σ transitions is proportional to the

microwave field component perpendicular to the quantization axis, and so in the center

of the trap, where both fields are almost parallel, the Rabi frequency is reduced to

Ωσ ≈ 100kHz even for powers strong enough to create a double well. We thus have

∆2
σ ≈ 100× Ω2

σ so that we can approximate the potential by:

Vσ =
~
2

(√
Ω2
σ + ∆2

σ − |∆σ|
)
≈ ~Ω2

σ

4∆σ

(3.20)

We will thus write the total potential for the |1,−1〉 state as:

V =
~
2

(√
Ω2
π + ∆2

π −∆0π +
Ω2
σ−

2∆σ−
−

Ω2
σ+

2|∆σ+|

)
−mgz (3.21)

Besides the contribution from the σ− transition, this potential is identical for both

clock states, assuming every blue detuned microwave for the |1,−1〉 state is replaced

with a red detuned field for the |2, 1〉 state. For the |2, 1〉 state however, the expression

involving Ωσ− must be removed as there is no coupling to the non existent |1, 2 >

state. We will later see how this causes an asymmetry in the dressing and to the

formation of a double well for the |2, 1〉 state while |1,−1〉 remains a single well.

The microwave field modes

We will now describe the microwave mode shape by decomposing the coplanar waveg-

uide into a set of three wires. The field of an infinitely long current carrying wire of

width s collinear with the x axis is given by [127]:
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~Bwire(y, z) =

By

Bz

 =

 �µ0I
2πs

[
arctan ( s/2�y

z
)� arctan (�s/2�y

z
)
]

�µ0I
2πs

1
2

[ln ((s/2� y)2 + z2)� ln ((s/2 + y)2 + z2)]


(3.22)

Since we will always work well within the near-field region λMW � z ≈ 50µm

we can derive the microwave field amplitude from Biot-Savart law. Using this basic

wire field 3.22 we define the field of a microwave coplanar waveguide (CPW) as being

composed of a central wire carrying current IMW and two adjacent wires with a

current of �1
2
IMW and a spacing of w:

~BCPW (y, z) = ~Bwire(y, z)�
1

2
~Bwire(y � w, z)�

1

2
~Bwire(y + w, z) (3.23)

This wire configuration produces the field mode seen in figure 3-7.

Figure 3-7: The coplanar waveguide mode shape for an arbitrary current IMW . Shown
is the amplitude of the total field (left) and the two projections on the y (center) and
z (right) axes. At y=0 the amplitude and y-projection have ∂y = 0 and exhibit a
curvature ∂2

y 6= 0 the latter allows the creation of a double well potential. The CPW
spacing is in our case w = 175µm and all wires have a width s = 50µm.

Analytical expressions for the dressing potential

For our trapping configuration, where the quantization axis is oriented along the y

axis and placed directly above the central CPW wire, the Rabi frequencies can be
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written in the following form:

Ωπ = Cπ
µB
~
| ~BMW · ~es| =

√
3

16

µB
~
|BMW | cosφs cos (θMW − θs)

Ωσ+ = Cσ+

µB
~

1

2
| ~BMW × ~es| =

√
1

32

µB
~
|BMW |

√
cos2 φs sin2 (θMW − θs) + sin2 φs

Ωσ− = Cσ−
µB
~

1

2
| ~BMW × ~es| =

√
3

16

µB
~
|BMW |

√
cos2 φs sin2 (θMW − θs) + sin2 φs

(3.24)

where the Ci are the Clebsch-Gordan coefficients, ~BMW the microwave field, ~es a unit

vector pointing in the direction of the static magnetic field, θMW the angle on the

y-z plane of the microwave field, θs the angle on the y-z plane of the static magnetic

field and φs the angle of the static magnetic field on the x-y plane. The factor 1/2

appearing in front of the σ polarization components is due to the decomposition of

the circular polarizations done in equation 3.16.

The detunings can be written as:

∆π = ∆0 +
µB
~

(|B| −B0)

∆σ+ = ∆0 +
µB
~

(
1

2
|B| −B0

)
∆σ− = ∆0 +

µB
~

(
3

2
|B| −B0

) (3.25)

where B0 is the field at the bottom of the trap where the detuning is ∆0. This neglects

second order corrections to the trapping potential an assumes the Zeeman splitting is

the same for both states. Given that such corrections are on the order of a few kHz,

and that ∆0 is always above 50kHz such an approximation is reasonable.

At the center of the trap, directly above the central CPW wire the mode of the

microwave field has an extremum along the y axis for all polarizations thus cancelling

the gradient along y. Additionally, the mode is homogeneous along the x axis resulting

in a much simplified form for the dressing at the center of the trap. We will thus treat

the displacement and formation of a double well along the line (x, y, z) = (0, 0, z) = rz

which passes through the trap center on the x-y plane. At the position of the trap
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directly above the central CPW wire the microwave field is oriented along the y axis

and is thus almost perfectly collinear with the quantization axis. Also, the minimum

of the trap (shifted by gravity) is located for our trap less than a micron away from

the center of the quadrupole field and thus the static field along x is nearly cancelled,

only by considerably pushing the trap away from its minimum along the z axis will

this contribution become important. We thus write:

cos(θMW − θs) cos(φs)|rz = cos(φs)|rz ≈ 1 (3.26)

Since z0 ≈ 50µm and w = 175µm, the central CPW wire is about 3.5 times closer

to the atoms than the ground plane wires and is situated exactly below them such

that its field is almost fully collinear with the quantization axis as we have discussed.

Thus it provides about 90% of the field amplitude allowing us to take only the central

wire into account and write for the Rabi frequency:

Ωπ =

√
3

16

µB
~
~BMW · ~es ≈

√
3

16

µB
~
|BMW | =√

3
16
IMWµ0µB

~πs
· arctan

s

2(z0 + δzMW )

(3.27)

Where z0 ≈ 50µm is the position of the undressed trap and δzMW is the displace-

ment due to the microwave field.

The low power and large detuning limit

In order to obtain analytical expressions that will allow us to better understand the

dressing configuration we will here make the following approximations:

1. We will take the low power limit and neglect the contribution from the σ po-

larizations

2. We assume the detuning is much larger than the Rabi frequency ∆ � Ωπ and

larger than the trapping frequencies ∆� ωtrap
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3. We assume that since the Rabi frequency is low it induces only small displacements

δzMW

z0
� 1

4. Since the displacement is small and the detuning large, we assume the Zeeman shift

due to the trap to be negligible in comparison to the detuning and write ∆ ≈ ∆0.

5. We treat all three CPW wires only for the zero order term where we take the

contribution of the ground wires to second order in w/s, for higher order terms their

contribution becomes negligible and we will consider only the central wire.

6. Since the displacement is small we assume that we are still in the region where the

static trap can be considered harmonic and thus the trap frequencies ωx, ωy and ωz

are assumed to be independent of the displacement δzMW .

Taking these approximations into account we develop the total potential to second

order around the point (0, 0, z0 + δzMW ):

V ≈ 1

2
m
(
ω2
xx

2 + ω2
yy

2 + ω2
zζ

2
)

+

3µ2
0µ

2
B

64π2s2

I2
MW

~∆0

(
(arctan

s

2z0

− 1

2

z0s

w2 + z2
0

)2 −
4s arctan s

2z0

s2 + 4z2
0

ζ +
4s(s+ 4z0 arctan s

2z0
)

(s2 + 4z2
0)2

(ζ2 − y2)

)
(3.28)

Where ζ = z − (z0 + δMW ). Gravity enters only through z0 = g
ω2
z

and we have

omitted the energy offset −1
2
m g2

ω2
z
. In this expression we see that the microwave

dressing has a gradient only along the z axis. As we discussed, it does not exhibit

gradients in the x-y plane at the position of the trap directly above the central CPW

wire. Furthermore, the curvature along the x axis is only due to the static trap

curvature (the microwave field itself has no inhomogeneity along x). This effect is

three orders of magnitude smaller than the curvatures for the y and z and is thus

neglected. For a detuning of 500kHz this approximation gives reasonable results up

to a dressing of about 10dBm. For such detunings the formation of a double well

occurs only at much higher powers and so this expression is not suitable for the

study of double well potentials and in that respect all we take from it is the fact that

the dressing contributes a negative curvature along the y axis which scales like the
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current squared I2
MW . For the full treatment of the formation of the double we will use

numerical simulations when the analytical expressions will become too cumbersome.

zero order - the frequency shift

Our approximation for the zero order gives the frequency shift of the dressed state:

1

h
V (0, 0, z0) ≈ 1

h

3µ2
0µ

2
B

64π2s2

I2
MW

~∆0

(arctan
s

2z0

− 1

2

z0s

w2 + z2
0

)2 ≈ 2×106PmW
∆f0

kHz

mW
Hz (3.29)

Assuming a 50 Ω impedance and where PmW is the power in miliwatts and ∆f0 the

detuning in kHz. So for example, for a power of 1mW and a detuning of 500kHz

we will get a frequency shift of about 4kHz. Plugging δzMW = 0 overestimates the

frequency shift as the displacement would be towards regions of lower microwave

power (for our detuning).

first order - the displacement

In order to find a simple analytical expression for the displacement along the z axis

we will take equation 3.28 to first order in δzMW and find the value of δzMW which

cancels the gradient along z:

δzMW ≈
3µ2

0µ
2
B

∆016π2~
· I

2
MW

mω2
z

arctan( s
2z0

)

s(s2 + 4z2
0)

(3.30)

We see that we can easily tune the displacement state selectively by choosing an

appropriate detuning, we will use this fact later on when we will show how we tune

the wavefunction overlap between the two states in the interferometer scheme.

In figure 3-8 we see our approximation next to a numerical calculation of the full

dressing potential which takes into account the contributions from all polarizations.

We see that for a 500kHz detuning and for powers less than about 5dBm it gives

a good approximation but starts to overestimate when reaching a displacement of

about 2 µm. The graph also shows the power needed to form a double well for the

|2, 1〉 state with a detuning of 50kHz.
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Figure 3-8: Displacement of the trap center along the z-axis due to a microwave dress-
ing with ∆0 = 2π50kHz and ∆0 = 2π500kHz. Since the displacement of both states
is nearly identical on this scale (see figure 3-9) we only give the |1,�1〉 displacement.
The approximation (in black) is calculated for a detuning of 500kHz and gives the
correct displacement only for powers lower than about 5dBm. It overestimates the
shift for higher powers as it does not take into account the reduction of the Rabi
frequency due to the displacement along z taking the cloud farther away from the
chip. Secondly, farther away from the chip an increase of the angle φs reduces the
coupling of the π polarization. The vertical line shows the power needed to form a
double well for a detuning of 50kHz for the |2, 1〉 state.

Figure 3-9 shows the relative displacement between the two states (δz2�δz1) along

the z-axis for identical but opposite detunings ∆1 = �∆2 = ∆0. The |2, 1〉 state is

pushed further by about 10nm for powers required to form a double well. The reason

for the discrepancy is the contribution from the σ� polarization which does not exist

for the |2, 1〉 state. Since the undressed trap minimum is positioned close to the

center of the quadrupole creating the transverse confinement, any displacement along

z will increase the contribution of the x-component of the quantization axis due to the

quadrupole field. This then increases the contribution from the σ polarizations (which

couple to the x component of the quantization axis) creating a positive gradient along

z.
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Figure 3-9: Differential displacement along the z-axis of the |1,�1〉 and |2, 1〉 state for
∆0 = 2π50kHz and ∆0 = 2π500kHz. The |2, 1〉 state is pushed further by about 10nm
for powers needed to form a double well. This discrepancy is due to the contribution
from the σ� polarization which does not exist for the |2, 1〉 state.

Second order - deformation of the trap

Changing the transverse trapping frequencies

We find an expression for the curvature along the z axis (∂2
z ) by taking the dressing

potential to second order in δzMW and write:

∂2
zV ≈ mω2

z(1 +
3µ2

0µ
2
B(s+ 4z0 arctan s

2z0
)

8~π2(s2 + 4z2
0)2

I2
MW

mω2
z∆0

) (3.31)

We see that the effective trapping frequency ωz is increased linearly with the

dressing power as the curvature of the microwave field adds to that of the static trap.

This expression neglects the fact that, as we push away the trap from the chip, the

field gradients due to the trapping wires reduce, thus reducing the trap frequencies.

We however notice that, since the dimple wire creating the transverse confinement is

wider (125µm for the dimple Vs. s = 50µm for the CPW wires) and since it is placed

on the bottom chip which is ≈ 400µm bellow the CPW, it’s gradients are lower for
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the same currents. At the position of the new trap the currents in the CPW and

dimple are such that the dressing gradient equals that of the static trap since the

trap is at equilibrium. Therefore the dressing field contributes the majority of the

curvature for the total potential. The more the trap is pushed, the more the dressing

curvature becomes dominant over that of the static trap.

In the case of the x-axis trap frequency, the microwave curvature is negligible and

thus the trap frequency reduces as the trap gets pushed away from the chip.

Figure 3-10: The trap frequencies for the x and z axes calculated for the two states.
The trap frequencies are calculated for a dressing detuning of 50kHz.

Figure 3-10 shows the calculated trap frequencies along the x and z axes for the

two states. The simple approximation derived in 3.31 is not shown since for this low

detuning the approximation is poor.

The formation of a double well

In equation 3.28 of the previous section we saw that the dressing field adds to the po-

tential a term proportional to �y2 which reduces the curvature of the total potential.

The dressing term originates from the curvature of the microwave field amplitude and

polarization and is scaled by the current squared I2
MW . On the other hand, the static

trapping potential contributes a positive curvature term in the form of the harmonic
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trapping potential 1
2
mω2

yy
2. Thus, as the power of the microwave field is increased,

the total curvature of the potential decreases until it reaches a quartic potential. By

increasing the power beyond this point a double well is formed as can be seen in

Figure 3-11.

Figure 3-11: The potential for the undressed |1,�1〉 state and the dressed |2, 1〉 state
for a red detuning of 50kHz from the |2, 1〉 → |1, 1 > transition. Similar potentials
will emerge for the |1,�1〉 state if we will replace the frequency of the dressing to
be blue detuned to the |1,�1〉 → |2,�1 > transition. Without any dressing the
trapping potentials of both states are nearly identical as the Ioffe field is close to the
magic field. When the power of the dressing is low (6dBm), the negative curvature
added is not sufficient to fully compensate the static trap potential and the trap
frequency is simply reduced. At a certain power (6.85dBm in this case) the microwave
curvature completely compensates the static trap and the potential minimum is flat
or ”quartic”. At higher powers (8dBm) a double well is formed as the total curvature
becomes negative at the center of the trap.

Also, as the dressing pushes the atoms farther away from the chip, the static

trap along the splitting axis is reduced since the gradients of the trapping wires are

reduced farther away from the chip. The simple model developed in 3.28 will however

not suffice to characterize the effect of the dressing since we will need to describe

the potential for high dressing powers where most of the approximations performed

will not hold. We will thus derive analytical expression until they will become too

cumbersome and then resort to numerics for the full analysis of the problem.

Taking the potential in 3.21 and differentiating it with respect to y, we get the
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following expression for the curvature of the trap:

∂2
yV =

1√
Ω2
π

∆2
π

+ 1

(
~

4∆π

∂2
yΩ

2
π +mω2

y

)
− ~

4|∆σ+|
∂2
yΩ

2
σ+ +

~
4∆σ−

∂2
yΩ

2
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1√
Ω2
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(3.32)

Where we made use of 3.24 and 3.25 and where we have neglected second order

terms in φs and took the approximation ∆0 � ∆Z writing for the detunings of the

σ polarizations: |∆σ+| ≈ |∆σ−| ≈ ∆Z where ∆Z is the Zeeman splitting in rad/sec.

Here ωy is understood to be dependent on δzMW and not a static value since as

we previously said the static trap frequency is reduced as it is being pushed away

from the chip. The curvature of the microwave amplitude ∂2
y |BMW | is negative (as

can be seen in figure 3-7) and so contributes to the formation of the double well

potential by reducing the effective trap frequency. The term (∂yθMW − ∂yθs)2 is the

largest contribution of the dressing field to the curvature along y (see Figure 3-12)

and contains contributions from all polarizations. The contribution from the rotation

of the static trap field ∂yθs is negligible for our trap and the whole polarization

effect can be seen as due to the rotation of the microwave field orientation ∂yθMW .

Although the σ polarizations have a smaller coupling at the center of the trap, their

curvatures are larger by the same amount (see Figure 3-7 for example, and compare

the y and z components curvatures at the center of the trap). Their contributions are

reduced only due to the ratio Ωπ/∆Z without the additional scaling due to φs. For a

dressing field of 8dBm and a detuning of 50kHz for example, we get Ωπ/∆Z ≈ 0.07

and the σ− polarization reduces the variation due to the polarization by 7%. The

difference in the power needed to form the double well for the two states (the power

mismatch) is on the order of 1dBm for equal but opposite detunings. This difference,

although small, is fundamental to our scheme as it allows us to create a double well
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Figure 3-12: All contributions to the curvatures of the dressed potential at y=0

expressed in terms of the trap frequency (ωy
2π

= 1
2π

√
1
m
∂2
yV ) and where we flipped

the sign of the microwave contributions. The simulation is done for an identical
detuning |∆1| = |∆2| = 50 kHz for both states. The black line shows the static trap
contribution which is reduced as the trap is pushed away from the chip. The blue
line show the contribution of the dressing field for |1,�1〉. At the point where they
meet (≈ 8dBm) the total curvature is zero and the potential is quartic. For higher
powers the double well starts to form. The red line shows the contribution of the
dressing field for the |2, 1〉 state, which due to the absence of the σ� contribution
starts to form a double well for lower powers (as indicated by the vertical line). The
light blue line shows the |1,�1〉 dressing without the term ∂yθs which is the static
field rotation. This line is almost identical to the full curvature of the dressing and
demonstrates that this contribution is negligible. The light blue dashed line shows
the dressing without the ∂2

y |BMW | term which is the contribution from the microwave
amplitude. It shows that although such a contribution is not negligible, it is 3 times
less important than the contribution from the polarization term due to the microwave
field orientation ∂yθMW .

in |2, 1〉 state while preserving a single well in |1,�1〉. It also helps overcome the

reduction of the wavefunction overlap along the z direction. This difference means

that by dressing both states with identical powers and detunings we can displace

them by nearly the same amount (as seen by Figure 3-9), recovering the overlap but

still forming a double well for the |2, 1〉 state. The fact that the power mismatch is

small is also advantageous, since although we would like the |1,�1〉 state to remain
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in a harmonic trap, it is beneficial to have its trapping frequency along the splitting

axis reduce, increasing the cloud size so that it better overlaps with the double well

potential in the |2, 1〉 state.

Imperfections

An asymmetry of the microwave mode or a displacement of the static trap along

the splitting axis (both incorporated in the calculations of 3-12) will increase the z

component of the microwave field at the center of the trap, leading to an increased

coupling of the σ polarizations and thus to an increased power mismatch. One can

also tune the mismatch by changing the Ioffe field. By reducing the Ioffe field the

Zeeman splitting will decrease, increasing the Ωπ/∆Z term and leading to an enhanced

contribution of the σ− polarization. Changing the Zeeman splitting away from the

magic field is of no consequence for our scheme since in any case the interferometer

splitting occurs in the same internal state. Increasing the dressing detuning will also

increase the power mismatch since for larger detunings the splitting will occur at

higher powers thus increasing Ωπ/∆Z .

We will now analyze the characteristics of the double well potential including the

barrier height, the splitting distance and the trap frequencies at the bottom of the

double well potential and will then go on to measure the microwave field generated

by our coplanar waveguide.

Barrier height

As the power is increased beyond the critical power for the formation of the double

well, the barrier height between the two wells increases. The barrier should be raised

beyond the chemical potential of each of the wells so that tunneling between the two

wells is suppressed and the split condensates will be able to accumulate a relative

phase. Figure 3-13 shows the barrier height as a function of power for the dressing of

the two states. The chemical potential for the |2, 1〉 state is also plotted as a reference.

The barrier height crosses the chemical potential for an increase of 0.2dBm beyond

the quartic potential point which is still less than what is required to form a quartic
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potential for the |1,�1〉 state indicating that we can transfer atoms to a fully split

double well potential and still maintain a harmonic potential in the |1,�1〉 state and

wavefunction overlap along the z axis.

Figure 3-13: Barrier height of the double well potential for a dressing detuning |∆1| =
|∆2| = 50 kHz. The |2, 1〉 state becomes a double well ≈ 1 dB before the |1,�1〉 state.
The dashed line shows the chemical potential for 4000 atoms.

Splitting distance

In figure 3-14 we plot the distance between the two wells as a function of power for

a detuning of 50kHz. We see that we can create a splitting of ≈ 150µm for the

moderate power of less than 50mW. We also see that for the power required to cross

the chemical potential, the splitting distance for the double well in the |2, 1〉 state

is ≈ 15µm, for this power the harmonic potential in the |1,�1〉 state has a trap

frequency ωy ≈ 2π10Hz and a Thomas-Fermi radius of ≈ 20µm (for 4000 atoms) thus

reaching the position of the two wells.

Trap frequencies

In figure 3-15 we plot the trap frequencies vs. power. It is interesting to notice that

there is a power for which both states have the same trap frequencies for the harmonic
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Figure 3-14: Splitting distance of the double well as a function of power for a detuning
of 50kHz for the two states.

trap of the |1,�1〉 state and the double well trap in the |2, 1〉 state.

Figure 3-15: The y trap frequency for a detuning of 50kHz for the two states. For
powers lower than those required to form a double well, the single trap frequency is
plotted. For higher powers the trap frequency at the bottom of the double well is
shown. Just above the formation of the double well for the |2, 1〉 state the double well
frequency and the single well frequency can be made identical.
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3.3 Measurement of the microwave dressed poten-

tial

In the previous section we analyzed the dressing potential using the mathematical

form of a perfect CPW mode. In reality however as we will see, the CPW mode is

asymmetric due to parasitic couplings from adjacent wires or the back plane chip. In

order to characterize the microwave mode we employ a method developed in by the

Treutlein group in Basel [14]. We use ultracold atoms from our optical molasses and

apply the microwave field from our CPW to couple the two hyperfine ground states.

By driving Rabi oscillations and imaging only the F=2 states we are able to deduce

the spatial distribution of the Rabi frequency from which we are able to deduce the

current distribution in the waveguide wires.

3.3.1 Measurement of the microwave mode shape with cold

atoms

We prepare a cloud of 87Rb atoms via a magneto-optical trap followed by a 3 ms

stage of optical molasses thereby cooling the atoms to 10µK. We then apply an

optical pumping pulse to transfer the atoms in the |1,−1〉 state. We then launch the

atoms towards the chip using a magnetic gradient and as the atoms approach the

chip a homogeneous field is switched on to provide a quantization axis that lifts the

degeneracy of the Zeeman sublevels, allowing us to couple only one polarization at

a time. Then a 20 dBm microwave pulse on resonance with one of the transitions is

switched on abruptly for a varying amount of time inducing Rabi oscillations. The

atoms are imaged by a laser pulse on resonance with the |2 >→ |3′ > state thus

enabling a state selective detection allowing us to measure the Rabi oscillations for

each point in the image. Such an image is shown in 3-16 where the microwave was

turned on for a period of 100µs. By scanning the pulse length, the Rabi frequency

for each pixel can be deduced as seen in figure 3-17. We perform such a measurement

for each of the three polarization (σ−, π and σ+) by changing the frequency of the
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microwave source to be on resonance with the appropriate transition.

Figure 3-16: Absorption image of a 10 µK 87Rb cloud undergoing Rabi oscillations.
The chip is positioned parallel to the y axis at z=0 with the CPW collinear with the
x axis. Here a homogeneous bias field oriented along the y axis is switched on at a
value of 3G, after which a microwave field on resonance with the π transition is turned
on for a period of 100µs before the atoms are imaged. By performing a succession of
such images with a varying pulse duration the Rabi frequency can be reconstructed
for each pixel.

3.3.2 Extracting the dressing parameters

After measuring the spatial distribution of the Rabi frequency we fit the data with a

model of the CPW with three free parameters, the three currents in the three CPW

wires. In our initial theoretical treatment we assumed a symmetric mode, here we

allow these parameters to change in order to account for the evident asymmetry of

the mode (see Fig. 3-16) which is seen to lean to the left. Figure 3-18 shows the

fitting procedure on a cross section of the Rabi frequency measurements for all three

polarizations.

The mismatch seen farther away from the center of the mode is due to coupling

to adjacent wires but does not affect the estimate of the splitting up to a splitting

86



Figure 3-17: Spatial distribution of the Rabi frequency for the π transition as re-
composed from images like that in figure 3-16. The trap is positioned at (y,z)=(0,0).
The number of atoms detected in F=2 (top) for the pixel positioned (y,z)=(0,0.2)mm
from the trap position are fit with a sinusoidal function to extract the Rabi frequency.
The same is done for all pixels giving the spatial distribution of the Rabi frequency
(bottom). The color bar gives a scale for the Rabi frequency in Hz.

distance of ≈ 150µm. The fitting (seen in figure 3-18) gives a loss of 2.3 dB with

respect to the synthesizer output and a current 10% higher in the left ground wire

with a return current 5% lower than input indicating possible losses to adjacent wires.

3.3.3 Experimental results confirming our characterization

Taking the fitted mode shape we estimate the frequency shift induced on the cloud

by the dressing at low power of only the |1,�1〉 state. Figure 3-19 shows the result

vs. the detuning of the microwave dressing the |1,�1〉 transition. Each point in the

graph was taken by performing a Ramsey measurement on the clock transition while

the dressing of ≈ 0 dBm was turned on. The dressing field detuning was then scanned

across the resonances of the |1,�1〉 → |2,�2 > and |1,�1〉 → |2,�1 > transitions.

87



Figure 3-18: On resonance Rabi frequency distribution above the waveguide for σ�

(left), π (center) and σ+ (right) polarizations. The graphs give the cross section
positioned z=0.18 mm from the position of the trap (marked by white dotted lines
in the insets). We fit (solid red lines) the microwave mode (using equation 3.22)
with three independent currents in the CPW. The fitting gives a loss of 2.3dB with
respect to the synthesizer output and a current 10% higher in the left ground wire.
The return current is found to be 5% lower than input indicating possible losses to
adjacent wires. We checked for consistency on several cross section positions and
found a good agreement.

The simulation which incorporates the fitted microwave mode shape is shown as a

solid line.

In order to fit the simulation to this measurement, we allowed 2 free parameter:

the attenuation of the microwave field was reduced by≈ 1dB in order to accommodate

the data. This scaling is reasonable given that measurements were taken a few months

apart and the fact that the microwave power was observed to fluctuate by a fraction

of a dB on a weekly basis and would fluctuate by up to 2dB when disconnecting

and reconnecting cables on the path from the synthesizer to the CPW. Secondly, the
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position of the trap from the center of the mode was shifted by 3 microns in order

to accommodate the bump at the resonance with the |1,−1〉 → |2,−2 > transition.

Without such a shift we could perfectly recover the other features but could not

replicate the bump. Such a small shift is reasonable considering that a displacement

of the y coils relative to the central CPW wire by one mm would shift the trap

center by ≈ 10µm. The displacement augments the contribution of the σ− coupling

since by displacing the trap from directly above the CPW central wire the microwave

field obtains a component along z which is transverse to the static trap field, thus

enhancing the coupling to σ transitions at the center of the trap.

Figure 3-19: Shift of the clock frequency measured by Ramsey spectroscopy when
dressing the |1,−1〉 state. The dressing power is ≈ 0dBm. The dressing detuning
is given with respect to the |1,−1〉 → |2,−1〉 transition. The theory curve fits well
after adjusting the attenuation of the microwave signal by ≈ 1 dB relative to the
value found in our analysis of the microwave mode shape (figure 3-18).

3.4 Results: state selective single well potentials

Before presenting experimental results on the double well potential we dress only

|1,−1〉 and use the z-gradient of the dressing to create an interferometer where |1,−1〉

is shifted with respect to |2, 1〉 to spatially separate the two. Following the idea of

Treutlein [125] and Böhi et al. [15] we enclose the microwave dressing of the |1,−1〉
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state in between the two Ramsey π/2 pulses of a clock measurement, thereby leaving

the |2, 1〉 state to act as a reference for the measurement of the |1,−1〉 frequency shift.

In such a scheme, similar to a Ramsy-Bordé interferometer, we reversibly entangle

the internal and external states of the atoms and read the resulting frequency shift

from the relative population of the two clock states. In Fig. 3-20 the main idea of the

experiment is shown. We start by applying a π/2 pulse from a horn antenna, thereby

placing the atoms in a superposition of the two clock states (|1,−1〉 → 1√
2
(|1,−1〉+

|2, 1〉). Immediately following the first pulse we switch on the microwave dressing

within 50 µs, sufficiently slow compared to the Larmor frequency but much faster

than the trap frequencies so that the |1,−1〉 state experiences a sudden displacement

of the trapping potential and starts to oscillate in the trap. After a varying amount

of time we switch off the microwave and apply the second π/2 pulse to close the

interferometer. The two-photon transition in our Ramsey sequence is calibrated to

be on resonance when the states are undressed, thus the frequency of the Ramsey

fringes is due only to the shift of the |1,−1〉 state just like in the measurement

performed in figure 3-19.

We dress the |1,−1〉 state with a power of −0.6dBm and a detuning of +382kHz

for the π transition creating a nominal displacement of 0.6µm along the z axis. After

the |1,−1〉 state oscillates half a period the atoms reach the opposing side of the

dressed trap with a separation of 1.2µm. Even at this maximum splitting the two

wavefunction are not completely separated as they have a Thomas-Fermi radius of

3µm (N=4000).

The Ramsey fringes in the time domain seen in Fig. 3-20 have a frequency of

2kHz and exhibit a modulation of the contrast due to the varying overlap between

the two states. When the dressing is stopped, the interferometer is immediately

closed leaving the |1,−1〉 state at a position based on the phase of its oscillation in

the dressed trap. The overlap with the |2, 1〉 state will then oscillate with the trap

frequency (ωz = 2π 125 Hz) leading to the observed modulation of the contrast.

The total frequency shift is mainly composed of the AC Zeeman shift induced by

the microwave potential; at the new trap position, the Zeeman shift for the static po-
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Figure 3-20: Ramsey fringes in the presence of a microwave dressing for the |1,�1〉
state. The Ramsey sequence with microwave dressing is depicted on the left (taken
from [15]). A 50ms long π/2 pulse is followed by microwave dressing which is switched
on within 50µs and induces a displacement along z of the |1,�1〉 state. After a varying
Ramsey time the microwave field is turned off and a second π/2 pulse is immediately
applied to close the interferometer. The resulting Ramsey fringe contrast is modulated
by the trap frequency of the dressed potential (ωz = 2π 125 Hz).

tential contributes only ∆ft = 1
2
mωzδz

2 ≈ 35Hz out of the total 2 kHz. Unlike in the

experiment of Böhi et al., we displace the atoms vertically and are thus in principle

sensitive to gravity with an associated frequency shift of mg = 2kHz/µm. The exper-

iment shown in 3-20 has then an average gravity induced shift of mg∆z ≈ 1.3kHz.

However, as we saw in equation 3.28 gravity does not enter into the expression of

the frequency shift directly since it is exactly cancelled out by the harmonic trapping

potential. Thus any displacement from the equilibrium point z0 = g/ω2
z will induce

a frequency shift only due to the trapping potential, whereby g only sets z0. A way

to work around this difficulty was proposed in the work of Baumgartner et. al. [11]

discussed previously, where by performing spectroscopy on the Zeeman sublevels one

can separate the electromagnetic contribution from that of gravity. The transfer of a

trapped state to an untrapped state occurs in the position of the trapped wavefunc-

tion and thus both states have a common gravity term thus allowing one to measure

only the contribution from the magnetic (static + dressing) fields. In our scheme for

example, one could measure the frequency shift of the |1,�1〉 state relative to the
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untrapped |1, 0 > or |2, 0 > states via RF or microwave spectroscopy and subtract

from it the shift of the |1,−1〉 → |2, 1〉 transition. The difference between the two

will give the contribution of gravity mgδz.

In any case, whether one wishes to measure gravity or any other field distribution

using such a scheme, the precision of the measurement will depend on the exact esti-

mation of the displacement δz. We would thus like to extract the exact displacement,

along all axes directly from the data without the need to resort to simulations of the

potentials. The separation between two interfering wavefunctions can be extracted

either directly from the image of the clouds or from the fringe spacing of the resulting

interference signal. In the next sections we will propose a new method which elabo-

rates on the fringe spacing technique by using a homodyne measurement to extract

the spatial phase gradients from a Ramsey measurement.

3.4.1 Internal and external coherence

Up to now we have only discussed the time variation of the internal state coherence i.e.

the probability to find atoms in the |2, 1〉 state (Ramsey fringes) which only required

us to count the number of atoms in each state. We will now analyze the external

coherence taking the images of the atom clouds from which we will extract important

information about the dynamics of the split wavepacket. When the wavepackets are

recombined with a certain separation, the spatial gradient of the relative phase causes

spatial interference fringes in addition to the internal state Ramsey oscillations.

We analyze this situation by writing the total wavefunction in the following way

[93]:

Ψ(r̂, t) =
√
N1ψ1(r̂, t)eiφ(t) +

√
N2ψ2(r̂, t) (3.33)

Where ψ1 and ψ2 are the single particle wavefunctions of the states |1,−1〉 and

|2, 1〉, N1 and N2 their atom numbers and φ(t) a relative phase between the two states.
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When detecting the atom clouds we get for the density:

n(r̂, t) = |Ψ(r̂, t)|2 = N1|ψ1|2 +N2|ψ2|2 + 2
√
N1N2<(ψ1ψ

∗
2e
iφ(t)) (3.34)

where < denotes the real part of the product of the two wavefunctions. The

interference pattern after release from the trap and following a tTOF expansion time

will be given by [34]:

2
√
N1N2<(ψ1ψ

∗
2e
iφ(t)) ≈ A(r, t) cos(

m · d · x
~tTOF

+ φ(t)) = A(r, t) cos(
m · d · x
~tTOF

+ ∆Rt)

(3.35)

Where A(r, t) is the envelope of the expanding condensates representing the over-

lap, d the wavefunction separation at tTOF the time of detection, x the detection po-

sition, φ(t) the homogeneous phase associated with the Ramsey oscillations (φ(t) =

∆Rt) with ∆R the detuning between the Ramsey pulse and the energy spacing be-

tween the two states. The first term in the cosine is equivalent to a Young’s double

slit experiment with a slit separation d where the spatial phase associated with the

relative motion of the two condensates produces spatial fringes [9]. When the two

condensates occupy the same spatial position, d vanishes and we recover the simple

Ramsey oscillations. Alternatively, when the two condensates are released with a

separation d, a phase gradient is superimposed on the common phase of the atoms.

Some details of the theory given here should be elaborated upon. Reference [34]

from which equaiton 3.35 is taken discusses the interference of two BEC’s in the same

internal state. In our case, the two wavefunctions interfere after a Ramsey sequence

and can thus be in any general superposion of the two internal states. This how-

ever does not pose a problem since interference can occur between identical coherent

superposition states. As long as the interferometer sequence (Ramsey sequence) is

properly closed (the two paths are indistinguishable) spatial interference can occur

and the use of equation 3.35 is allowed. The term m·d·x
~tTOF

which describes the spatial

phase gradient contribution originates from the relative velocity of the two interfering
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paths. After the release from the trap, two interfering paths spaced by d have a rel-

ative velocity both due to the expansion of the clouds and due to any center of mass

relative velocity they might have had in the trap. After an expansion time tTOF the

two paths interfere at point x, the phase gradient is extracted and the total relative

velocity (expansion+center of mass velocity) is deduced. Since the expansion time

tTOF is known, the initial separation d can be extracted.

Figure 3-21: Spatial distribution of Ramsey fringes. The sequence was taken with a
dressing of 0dBm, a detuning of 382kHz and a dressing power ramp of 10ms. Immedi-
atley after the second π/2 pulse we release the trap and detect both states after 15ms
of time-of-flight (a). We superimpose the images of |1,�1〉 and |2, 1〉 and calculate
the P2 for each pixel (b). In order to find the best overlap of the frames we calculate
the correlation between the images and find the relative offset which produces the
largest anti-correlation. We get such an image for every Ramsey time providing us
with a film of the P2 dynamics. In (c) we plot the Ramsey sequence for three different
pixels horizontally separated by 15.8µm (which is the spacing of 3 pixels) around the
central pixel at (y,z)=(0,0). We see that the decrease in contrast of the total P2 is
also due to a phase shift in the oscillations at different positions in the cloud due to
the appearance of a spatial phase gradient which then reduces the contrast for the
whole ensemble.
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The appearance of spatial fringes introduces an additional reduction of contrast

in addition to the reduced overlap. We analyze this reduction with a simple 1 dimen-

sional toy model where we take the shape of the overlap function to be a Gaussian

envelope A(x) = A0
1√
2πσ

e−
x2

2σ2

For each shot of the Ramsey experiment, the count of atoms in one of the states

will be given by a spatial integration of the density, or:

∫ ∞
−∞

A(x) cos(
mdx

~tTOF
+ωt)dx =

∫ ∞
−∞

A0
1√
2πσ

e−
x2

2σ2 cos(
mdx

~tTOF
+ωt)dx = A0e

− 1
2

( dmσ
tTOF ~ )2

cos(ωt)

(3.36)

We see that the contrast decays like e−d
2

regardless of the contribution from

the overlap (which is encoded in A0 and σ). As the separation between the two

wavepackets d becomes larger, the spatial oscillations become stronger and more

fringes appear in the image. At the limit of large d, the spatial fringes will integrate

to zero and the oscillating term in equation 3.34 will vanish. The average population

in each shot will then be 50% and the Ramsey oscillation will not be visible.

The correlation between the internal and external coherence can be seen in figure

3-21 (c) which shows the Ramsey fringes for three pixels displaced by 15.8µm (=3

pixels). As the wavepackets separate, the Ramsey signal for adjacent pixels is phase

shifted by the corresponding term md∆x
~tTOF

where ∆x (= 15.8 µm) is the separation

between the two pixels. This phase shift results in a reduced contrast when all pixels

are summed up.

3.4.2 Wavepacket separation from phase gradients

Further exploiting the phase information encoded in each pixel, we take the spatial

P2 images and generate a map of the relative phase from which we can accurately

obtain the spatial separation at tTOF by fitting the phase gradients. In figure 3-22

we take the images of a Ramsey experiment and using a running interval 0.5 ms long

[t-0.25 ms,t+0.25 ms] we extract the phase of the Ramsey oscillation for each pixel.

In such a way we get a phase map of the interference pattern from which we fit the
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Figure 3-22: The wavepacket separation at tTOF = 15 ms deduced from the phase
gradients. In (a) we see three examples of the spatial P2 images for three different
times TR = (2.3, 4.8, 7.3 ms). For each such image we take the central 7x7 pixels
region (white rectangles) and find for each pixel the phase of the Ramsey signal from
the P2 oscillations. To do so we take a time interval 0.5ms long ([t-0.25ms,t+0.25ms])
which is slightly longer than the average Ramsey period of 0.4ms so that we always
fit at least one full oscillation. We then construct a spatial map of the phase relative
to the central pixel (b) and fit a tilted plane to find the phase gradients along y and
z. By using equation 3.37 we extract the wavepacket separation along the two axes
(c). At t=4.8ms for example, the displacement is maximal for the z axis and 0 for
the y axis, this is represented on the spatial phase distribution by a gradient which
is fully along z. The oscillation along z is approx. 140Hz while the oscillation along
y is a beat of the oscillation along the x (ωx = 2π166 Hz) and y (ωy = 2π88 Hz) axes
indicating that the imaging plane is tilted relative to the orientation of the trap.

phase gradients along the two axes (φ(y, z) = φ0 + ∂yφ · y + ∂zφ · z). From the phase

gradients we can then extract the wavepacket separation using:
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di = ∂iφ×
tTOF~
m

(3.37)

Where di and ∂iφ are the wavepacket separation after time-of-flight and phase

gradient along the direction i (=y,z). In figure 3-22 we see the extracted wavepacket

separation as a function of time. The separation signal of the z axis shows a clear

oscillation at a frequency of 140 Hz which is close to ωz. The separation along the

y axis contains contributions from the x axis oscillation at ωx = 2π166 Hz and that

along y with ωy = 2π88 Hz indicating that the imaging axis has a tilt relative to

the trap axis. We observe a maximal separation of 1.2 µm along the z axis. This

matches our simulation as we have estimated a displacement of the trap minimum

of δzMW = 0.6 µm generating a maximal displacement of 2δz as the atoms reach the

opposing turning point at the other side of the trap (see fig. 3-20).

The low noise characteristic of our method is seen by the low standard deviation

of the extracted signal. On the z axis oscillations we get a root mean square noise on

the distance estimation of ≈ 70 nm which is almost two orders of magnitude smaller

than the the 5.23µm pixel size.

3.5 Results: state selective double well potentials

In this section we present results on the population of the double well potential formed

in the |2, 1〉 state from atoms trapped in a single well potential in the |1,−1〉 state.

After the characterization of the potentials we present results from two regimes char-

acterized by different transfer Rabi frequencies:

1. Rabi frequencies larger than any trap frequency Ωtransfer ≈ 5ωx where ωx is the

highest trap frequency

2. Rabi frequencies smaller than any trap frequency Ωtransfer ≈ 0.5ωy where ωy is the

smallest trap frequency
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3.5.1 Characterization of the double well potential

We begin by characterizing the formation of a state selective double well. Figure

3-23 shows the atoms in F=2 and F=1 after 8 and 11 ms time-of-flight respectively

(we have chosen a convention where the image is turned to the side and gravity

points to the left). The trap was dressed with a power of 10.5 dBm and a detuning

∆1 = −∆2 = 52 kHz. A π/2 pulse was driven on the clock transition to populate

both potentials. One observes that the F=1 cloud originates from a single well and

that the F=2 cloud is split into two along the horizontal axis (of the lab frame) with

a splitting distance of 50 µm in this image.

F=1 F=2

40 μm

Figure 3-23: Absorption image of the atoms in F=2 and F=1 after 8 and 11 ms time-
of-flight respectively. Gravity in this image points to the left. The two states where
dressed with a power of 10.5 dBm and an equal detuning of ∆1 = −∆2 = 52 kHz
followed by a π/2 pulse on the clock transition to equally populate the two states. One
observes that the F=1 cloud originates from a single well and that the F=2 cloud is
split into two indicating the presence of a double well potential. The splitting distance
for the |2, 1〉 state is in this image 50 µm.

In order to determine the in-situ splitting distance, we record time-of-flight images
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like the one in figure 3-23 for various hold times in the trap spanning a few trap

periods. We dress the two states with a detuning of ∆1 = �∆2 = 382 kHz and

various powers. The central position is then extracted from the fit of the oscillation.

Figure 3-24 shows the results together with our previously calibrated simulation. The

agreement with theory is good and is limited by uncertainties in the static magnetic

field distribution generated by the coils. For high power of 15 dBm and above, we

also observe the formation of a double well potential for the F=1 state showing our

ability to form several versatile combinations: two single wells; a single and a double

well; and two double wells.

Figure 3-24: In situ double well splitting distance, measurement and simulation for
a dressing detuning of ∆1 = �∆2 = 382 kHz and various dressing powers. To
extrapolate the in situ splitting distance we record time-of-flight images for various
hold times in the trap spanning a few trap periods and extract the central position
from a fit to the oscillation. Shown are splitting distances up to 140 µm. The data
agree well with a prediction from our theoretical model calibrated by the field mapping
in Fig 3-18.

3.5.2 High Rabi frequency transfer

Being able to create and control the state selective single and double well potentials,

we now investigate the transfer between them. First, we apply 2-photon Rabi fre-

99



quencies (∼ 200 Hz) which are much faster than the trap frequency along the splitting

direction ωy so that the atoms are quasi at stand-still during the transfer. Therefore,

for the duration of the transfer pulse, the two wavefunctions have identical spatial

extension and the difference in interaction energy is only given by the difference in

scattering lengths U = 2~
m
n̄(a22−a11−f(2a12−a11−a22)) where f = (n1−n2)/(n1+n2)

goes from -1 to +1. For a typical number of 2000 atoms in our trap, the variation of

the interaction energy (the difference between f=-1 and f=1) is 1.5 Hz. The interac-

tion energy is thus much smaller than the Rabi frequency and all atoms are spectrally

coupled.

Figure 3-25: Rabi flopping between a single and double well for a Rabi frequency of
Ωtransfer = 2π 215 Hz. The dressing power is 11.2 dBm and the detuning 52 kHz
causing a double well to form only for the |2, 1〉 state. We are in the regime where
Ωtransfer dominates all other timescales (ωy and internal interactions are smaller than
Ωtransfer) so that the transfer can be seen as quasi-instantaneous with respect to the
atoms motion. This allows almost full contrast on the first flop but for times longer
than 2 ms the the two wavefunctions begin to separate as the atoms start to roll down
in the double well potential, reducing the overlap and subsequently the contrast of
the Rabi flopping.

In figure 3-25 we see Rabi flopping between F=1 and F=2 for a dressing power of

11.2 dBm and a detuning of ∆1 = −∆2 = 52 kHz creating a double well only for the

|2, 1〉 state. The atoms are transferred from the single well to the top of the barrier of
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the double well with a Rabi frequency Ωtransfer = 2π 215 Hz ≈ 5× ωy. The contrast

on the first π flop is high (∼ 90 %) while for times longer than 2 ms, the F=2 clouds

start to ”roll” down the barrier and move away from the F=1 wavefunction, reducing

the overlap and Rabi flopping contrast.

Figure 3-26: Evolution of the F=2 and F=1 atoms in the dressed potential. The
dressing power is 10 dBm and the detuning 52 kHz. At t=0 a 10ms 2-photon pulse
transfers ∼ 50% of the atoms to F=2. The atoms are then held in the dressed
potential for a variable time before being imaged with 16 ms time-of-flight. Images
like that in fig. 3-23 are integrated along the z axis over 5 pixels around the cloud
center. The resulting line scans are plotted against the hold time in the trap. The
F=2 and F=1 state have been displaced vertically for better visibility. One observes
a clear splitting of the F=2 atoms as they roll down from the center of the barrier
into the two wells and perform a full oscillation. A second oscillation is damped
probably due to collisions as the two clouds recombine. The rolling period is slightly
different for the left (71 ms) and right (100 ms) wells, indicating asymmetries in the
dressing microwave mode shape. The minima of the two wells is also asymmetrical
and normally leads to the population of only the right well. In order to balance the
two minima we apply a ≈ 40G/m static field gradient along the splitting axis from a
pair of anti-Helmholtz coils.

3.5.3 Dynamics in the double well potential

This ”rolling” dynamics can be observed by varying the hold time in the trap after

a short transfer pulse. Images like in figure 3-23 are integrated over 5 pixels along
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the z axis around the cloud center. The resulting line scans are then plotted against

the hold time in the trap. Figure 3-26 shows such a film. The dressing power is

10 dBm with ∆1 = −∆2 = 52 kHz. While the F=1 atoms remain steady in a

single well potential, the F=2 atoms roll down from the center of the barrier into

the double well and come back to the central position after a period of 71 ms for

the left well (top arm in the figure) and 100 ms for the right. The different periods

indicate asymmetries in the dressing microwave mode shape confirmed by our Rabi

frequency mapping (figure 3-18). The depth of the two wells is also asymmetric and

normally leads to the population of only the right well. In order to balance the two

minima we here apply a ≈ 40 G/m static field gradient along the splitting axis from

a pair of anti-Helmholtz coils. At the point of recombination one expects to observe

fringes in the F=2 atom density. In figure 3-26 we see horizontal lines above and

below the main atomic cloud, in particular in F=1, but we attribute these to optical

fringes created in the imaging beam by diffraction from the dense atom cloud. Their

high reproducibility excludes their interpretation as fringes in the atom density. The

absence of atomic fringes can have several causes:

1. The fringe period is too small to be resolved. Indeed, the optical resolution of

our imaging system is such that we could identify only a single interference fringe

within the size of the cloud. But, since the two wells have slightly different oscillation

periods, the two clouds meet with a relative velocity producing small period fringes.

2. The left and right clouds are not coherent or coherence is lost during the rolling.

3. a phase diffusion mechanism destroys any coherence by the time the two clouds

meet again.

A clear interpretation cannot be given at this point.

Unable to identify spatial interferences in the atom density, we attempted to

detect an interference signal in the population difference between |1,−1〉 and |2, 1〉.

At t=0, a 1.2 ms long π/2 pulse transfers half the population to the |2, 1〉 state and

the two states are allowed to evolve for a varying time in the trap before applying

a second π/2 pulse and imaging. This sequence realizes our original interferometer

idea. In figure 3-27 we show the absorption images for such a sequence for a detuning
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Figure 3-27: Ramsey sequence for high Rabi frequency transfer. The data was ob-
tained similarly to the measurement in figure 3-26 but with a second π/2 pulse
(Ωtransfer = 2π208Hz) at the end of the holding time thus creating a Ramsey se-
quence. The data was taken for a dressing detuning of 85 kHz and 4 different dressing
powers below (10,10.5) dBm and above (10.8,11.2) dBm the threshold for the forma-
tion of the double well in F=2 (10.7 dBm for this detuning). For the lowest powers
one sees the clear oscillation of the population between the two states as is expected
from a Ramsey type clock measurement (both potentials quasi identical). For 10.8
and 11.2 dBm a clear ”rolling” out motion is observed in F=2. The second pulse
also transfers the split atoms back to F=1. Even for the biggest separation, coher-
ence with the F=1 state is preserved indicated by the oscillating populations. The
contrast is particularly good at the recombination time, when the F=2 atoms recover
the initial position. Whether we observe oscillations at a second period which could
indicate interference between the left and right paths requires further investigation.

of ∆1 = �∆2 = 85kHz and various dressing powers. For a power of 10 and 10.5 dBm,

not yet sufficient to form a double well (it forms for this detuning at 10.7 dBm), we see

standard Ramsey oscillations between the two states just like in a clock measurement.

This shows that coherence is preserved between the two dressed states. For higher

powers (10.8 and 11.2 dBm) the double well in the |2, 1〉 has formed and the atoms

oscillate in the double well. Initially, as the F=2 atoms start to roll off the barrier,

they still overlap with the |1,�1〉 state and the second π/2 pulse is able to transfer

them to the same position in the |1,�1〉 state. For longer times, the F=2 atoms have
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moved outwards and the second pulse transfers them back to highly excited states

of the F=1 potential, making also the F=1 cloud wider. Coherence between F=1

and F=2 is preserved for all powers observed as oscillation of the relative population,

but it is not clear, whether a second oscillation period can be extracted which could

indicate interference between the left and right double well. This needs a refined

analysis of the data.

3.5.4 Low Rabi frequency transfer

In the previous fast Rabi frequency regime, the difficulty of identifying interference

fringes between the left and right arm may be due to the relative motion of the atoms.

In order to avoid this motion, we have tried to reach the sideband resolved regime,

where the transfer pulse couples F=1 atoms to the vibrational ground state of the

double well.

When attempting to populate the ground state of the double well, we must ensure

that we populate only one vibrational state for each axis. As we discussed before, the

σ− transition |1,−1〉 → |2,−2〉 does not have a counterpart for the |2, 1〉 state and

thus causes an asymmetry in the trap frequencies and vertical positions of the two

states. The overlap along the vertical axis can however be easily tuned by individually

choosing the detuning of the two tones (|∆1| 6= |∆2|).

In order to ensure good wavefunction overlap in the z direction we perform Rabi

spectroscopy of the trap sideband at a dressing power of 11.2 dBm and detuning

of 52 kHz where only the F=2 is a double well. We vary the differential detuning

δ1 = |∆1|−|∆2| in order to shift the F=1 potential with respect to that of F=2. Figure

3-28 shows the spectra for 4 different values δ1 = (−9,−3, 3, 10) kHz. For each curve,

beside the main resonance, one identifies a blue detuned sideband offset by 130 Hz

corresponding to ωz. The height of the sideband varies with δ1. For δ1 = 3 kHz

it disappears, indicating perfect overlap, such that the potentials are quasi identical

for the z motion and thus different vibrational states are orthogonal. The lack of a

sideband corresponding to ωx ≈ 160 Hz indicates that the overlap along the x axis

is maintained as well. In passing we note the absence of the red sideband, indicating
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Figure 3-28: Optimizing the wavefunctions overlap along z between the single and
double well potentials. The graphs shows Rabi spectroscopy for various differential
dressing detunings δ1 = |∆1| � |∆2| where |∆2| = 52 kHz and a dressing power of
11.2 dBm creasing a double well only for the |2, 1〉 state. The blue line represents a
detuning of δ1 = �9 kHz, the black line corresponds to δ1 = �3 kHz, the red line
to δ1 = 3 kHz and the purple to δ1 = 10 kHz. The arrows point to the sideband
at ωz ≈ 130 Hz. A difference in the vertical position of the two clouds leads to
the appearance of sidebands on the transfer pulse. The best wavefunction overlap
for the two clouds along the vertical direction is found for δ1 = 3 kHz where the
sideband is eliminated. There the good overlap causes different vibrational states to
be orthogonal. The absence of a sideband corresponding to the trap frequency along
x (ωx ≈ 160 Hz) indicates that the overlap along this axis is also maintained

that indeed we start from the ground state.

After having found the detuning which maximizes the overlap along the x and z

axes, we set out to find the optimal pulse which will allow us to transfer atoms to the

ground state of the double well. The length of the pulse is bound by two timescales:

it cannot be longer than the lifetime in the |2, 1〉 state which we have measured to be

around 300 ms and it must be sufficiently spectrally broad compared to the variation
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Figure 3-29: Slow Rabi flopping for various dressing powers. The measurement was
taken with a common dressing detuning of ∆1 = �∆2 = 400 kHz and a transfer pulse
power calibrated to produce a π pulse in 45 ms between the undressed potentials.
For these detunings the double well is formed at 14 dBm. For each dressing power,
the 2-photon frequency is tuned to maximize transfer. The lowest trap frequency is
ωy ≈ 2×Ωtransfer. For the dressing powers of 9, 11 and 13 dBm, the Rabi oscillations
start out with a single period but eventually excite higher vibrational states along the
y axis causing a modulation of the Rabi oscillations by ωy = 2π40 Hz. At 15 dBm
the transfer is to a double well potential where the overlap between the two states
is strongly reduced due to the displacement of the double well minima along the y
axis, causing the breakdown of the flopping. With increasing dressing the interaction
energy difference increases up to a few hundred Hz since the two states are now
separated and the interaction energy becomes dependent on the density distribution
in each state. The pulse then leaves the linear coupling regime and the transfer
between internal states saturates.

of the interaction energy (which shifts the clock transition) so that we remain in the

linear transfer regime.

In figure 3-29 we show Rabi oscillations for various dressing powers with a transfer

pulse calibrated to π in 45 ms between the undressed potentials. The dressing detun-

ing in these measurements is 400 kHz for which the double well is formed at around

14 dBm. For each dressing power, the 2-photon frequency is tuned to the maximum

of the spectrum. For lower powers (9, 11 and 13 dBm) the transfer is between two
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single wells with a longitudinal trap frequency of around 20-40 Hz. Since the F=1

and F=2 potential differ the transfer also couples to higher vibrational states of the

F=2 potential seen as modulation by ωy of the Rabi flopping. However, at low power,

the overlap between F=1 and F=2 is still good meaning that each state interacts in

a similar way with itself and with the other state so that the change in interaction

energy during the pulse depends mainly on the scattering lengths difference, which

for 87Rb and our atom densities is small (1-2 Hz) compared to the pulse length, plac-

ing us safely in the linear coupling regime. When transferring to a double well (15

dBm) the overlap is attenuated by the splitting distance as the ground states of the

double well are displaced from the F=1 harmonic potential. The interaction energy

then varies by ≈ 500 Hz during the pulse. The transition is thus shifted out of reso-

nance with the LO and the transfer will be progressively inhibited [18, 27]. In order

to circumvent this problem the pulse would need to be chirped in order to keep it on

resonance with the transition. This could be done in future investigations.

Despite the incomplete transfer into the double well potential, we record Rabi

spectra to look for the vibrational levels in the double well. Resolving the vibrational

levels is the first criterion for selectively addressing the ground state. In the end we

were not able to spectrally resolve the individual levels in the double well and could

only transfer atoms to a superposition of vibrational states. In figure 3-30 we show

Rabi spectroscopy between the |1,−1〉 and |2, 1〉 states for a dressing detuning of 85

kHz and various powers. The 2-photon detuning is plotted relative to the frequency

corresponding to the central peak. We notice that as the dressing power increases,

the spectrum of the transfer broadens and a low frequency tail forms at 10.25 dBm

for which a double well has probably formed. We cannot identify individual lines

which could correspond to the vibrational levels. In order to increase our spectral

resolution, we repeat the high power spectrum with a 500ms long transfer pulse and

fine scanning. Figure 3-31 gives a spectroscopy run for 650 atoms a dressing power

of 11 dBm and detuning of 85 kHz. The spectrum has the same form of a clear

maximum with high frequency cut-off and a low frequency tail. However, even with

the fine sampling it is difficult to identify individual lines. From simulations of the
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vibrational levels of a single particle in a double well potential we have indications

that the spectrum peak corresponds to population of the first state above the barrier

and the tail to states within each double well. The spectroscopy cannot resolve these

lines; we believe this is due to the fact that the left and right trap frequencies in

the double well are not identical (as we saw in figure 3-26), thus creating a forest of

tightly spaced lines which require even longer pulses to fully resolve.

Figure 3-30: The transfer probability vs. the 2-photon frequency for increasing dress-
ing power with a dressing detuning of 85 kHz. The transfer pulse was 55 ms long.
The plotted 2-photon detuning was offset around the central peak for each graph for
better comparison. We notice that as the dressing power increases, the spectrum of
the transfer pulse broadens and a low frequency tail forms at 10.25 dBm for which a
double well has probably formed.
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Figure 3-31: Rabi spectroscopy between a single well in the |1,�1〉 state and a double
well in the |2, 1〉 state. The dressing power is 11 dBm with a detuning of 85 kHz
and a transfer pulse 500 ms long. From simulations of the vibrational levels of a
single particle in a double well potential we have indications that the spectrum peak
corresponds to population of the first couple of states above the barrier and the low
frequency tail to states within each double well. Unfortunately the spectrum does
not allow to identify individual frequencies corresponding to the vibrational levels in
the double well potential.
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3.6 Conclusion

In this chapter we have proposed a new interferometer scheme based on microwave

dressed potentials preparing a double well in just one of the hyperfine states of 87Rb.

The main feature of our proposal is the use of a transfer pulse to populate a double

well initially prepared in a different internal state. Such a scheme circumvents the

need to dynamically vary the trapping potential which leads to excitations of the

condensate and to loss of coherence.

We were successful in creating a double well potential for the |2, 1〉 state while

keeping the |1,−1〉 state in a single well. We could control the splitting distance

and wavefunctions overlap in the transverse directions. We were also able to transfer

atoms from a single to a double well. We observed that coherence between the two

states is preserved for ∼ 50 ms even though they were both dressed with an effective

Rabi frequency of Ωdressing ≈ 2π40 kHz which generated very different potentials for

the two states.

We have demonstrated that the two tone dressing method allows us to maintain

a good wavefunction overlap between the two states as it allows us to tune their

relative displacement by choosing different detunings for the two dressing tones. An

asymmetry in the dressing, caused by the coupling of the |1,−1〉 state to |2,−2〉 made

it possible to form a double well just for the |2, 1〉 state while maintaining a good

vertical overlap.

We have used a spectrally broad pulse which transferred atoms to the top of the

barrier causing the atoms to roll in the two wells and recombine after one oscilla-

tion period. We have not observed clear interference fringes between the two clouds,

possibly due to asymmetries in the microwave mode shape which resulted in an asym-

metric double well potential and a relative velocity between the two clouds as they

recombined. This relative velocity might have then caused a fringe separation below

our imaging resolution. The long oscillation period and the large kinetic energy im-

parted on the atoms could also have caused the atoms to decohere by the time the

clouds recombined (after ∼ 80 ms).
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The second approach was more gentle and constituted in the attempt of trans-

ferring the atoms to the one vibrational state of the double well, ideally the ground

state, hopefully producing a well defined relative phase between the two wells. Up to

now, we were unable to observe an interference signal for these measurements as well.

There are several issues which we believe prevented us from observing interference in

this regime, we will summarize them in what follows and offer possible solutions that

could open the way to a successful implementation of our scheme in the future.

Interactions induced level shifts

The interaction energy for our parameters changes by several hundred Hz when trans-

ferring from a single to a double well. The reduction in overlap between the F=1 and

F=2 wavefunctions and the different densities in the two states cause the interaction

energy to depend on the relative population. Thus as atoms are transferred from

the single to the double well, the transition frequency increases and the LO becomes

out of resonance eventually inhibiting the transfer. We suggested using Feshbach

resonances or shallower traps in order to minimize the effect of interactions on the

transition frequency but the simplest method would seem to be applying a chirp to

the transfer pulse. We are currently working on estimating the correct chirping pro-

file for various traps and simulations suggest we should be able to keep the pulse on

resonance in such a way.

Asymmetry of the double well

The asymmetric microwave mode in our system generates an asymmetric double well

with different trap frequencies for the left and right well (14 and 10 Hz respectively).

Since these frequencies are close to one another, the Rabi spectrum exhibits a forest

of interlaced lines which require very long pulses to individually resolve (see fig. 3-31).

We believe the cause of the asymmetry to be a parasitic capacitive and/or inductive

coupling to adjacent wires on the chip which could be alleviated by either producing

a new chip with a larger separations between the wires or simply by adjusting the

impedance of the two adjacent wires in order to symmetrize the coupling. Since all we
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are interested in is a symmetric microwave mode and not necessarily the elimination

of stray currents, the last option seems feasible.

Coupling to higher vibrational states - overlap and detuning

The ground state of |1,−1〉 should ideally have the largest overlap with the ground

state of the |2, 1〉 double well and all other vibrational levels should be sufficiently

detuned so as not to be coupled by the transfer pulse. However, for our shallow trap

frequencies (ωy ≈ 20 − 40 Hz) and large splitting distances (≈ 30 µm), the overlap

with higher vibrational states of |2, 1〉 is typically larger. Additionally, the spacing

of the vibrational levels is too small to compensate for the increased overlap caus-

ing the transfer pulse to populate higher vibrational states preferentially. Through

simulations we have concluded that the solution to these problems is to work with a

tighter trap along the splitting axis, with ωy ≈ 100 Hz for the trap frequencies in the

double well. For such trap frequencies we find that the detuning of higher vibrational

states will be sufficient to suppress their population. Also, starting from a tighter

trap one can create smaller splitting distances for the double well since the rotation

of the trap field becomes non-negligible for trap frequencies on the order of 1 kHz

and contributes to the curvature of the dressing field as in the work of Schumm et

al. [112]. Smaller splittings will thus allow for a better overlap with the single well

potential making the transfer pulses possibly more efficient.

Although the full interferometer scheme has not yet been achieved, we have demon-

strated the basic building blocks of the method and have suggested ways to overcome

the various difficulties. We believe that additional efforts will be fruitful and hope to

demonstrate the full interferometer cycle in the near future.
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Chapter 4

Conclusion

We have demonstrated an atomic clock with a stability of 5.8× 10−13 at one second

which integrates to the 10−15 level in less than a day. We have shown that the clock

stability is limited by shot to shot cloud temperature and magnetic field fluctuations.

We saw that the sensitivity to these two sources of noise can be cancelled by offsetting

the bias field from the magic field value. Unfortunately the offset value is different

for the magnetic and temperature fluctuations so that the sensitivity to both effects

cannot be simultaneously cancelled. Reducing one noise source however, will reduce

the system sensitivity to both as the minimum field could then be set nearer to the

optimum point of the other. We discussed the possibility of increasing the time-

of-flight in order to detect larger clouds and thus improve our estimation of the

temperature, allowing us to correct for these fluctuations as we do for the atom

number.

In the next generation of the experiment we plan to actively stabilize the current

supplies by a feedback from a high precision transducer which performs on the 10−6

level, thus gaining an order of magnitude improvement on the magnetic fluctuations.

We will also incorporate a 2D-MOT in order to implement a fast atom loading and

a lower background pressure. This will increase the atom number and lifetime while

reducing the cycle time. This upgrade will allow us to use longer Ramsey interrogation

periods increasing the sensitivity. The higher atom number will allow us to improve on

the quantum projection and detection noise while the better vacuum will reduce the
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contribution from the symmetric losses noise. The shorter loading times and longer

Ramsey times will increase the duty cycle reducing the Dick effect contribution. By

implementing these steps we hope to reach the 1× 10−13 level at one second at which

point our clock will reach the precision of the best hydrogen masers available today.

In the second part of this work we have made the preliminary steps towards

implementing an atom interferometer on the same atom chip. We have proposed a

new interferometer scheme where atoms are transferred between two different internal

states from a single to a double well. We have demonstrated such potentials by using

state selective MW dressing and succeeded in transferring atoms between the two

potentials, a feat which required the dressing of both states with two frequencies in

order to match their vertical displacement and allow coupling. Although we where

able to show coherence between the two internal states we are not able at this point

to identify interference between the left and right wells. We have identified several

issues that prevented us from reaching this goal. Interaction induced level shifts

demand that the transfer pulse be chirped in order to keep it on resonance with the

clock transition. We have found that the vibrational levels in the double well are

too closely spaced and thus do not allow the transfer pulse to spectrally resolve the

ground state with a pulse length shorter than the lifetime. The states where also

not sufficiently detuned so as to hinder any transition to higher vibrational levels.

Overcoming these difficulties by using tighter trap frequencies, a calibrated MW field

and a chirped transfer pulse will possibly allow the generation of an interferometer

with an arm separation of ≈ 200 µm which we where able to demonstrate. Assuming

a modest coherence time of 50 ms, such an interferometer will have a figure of merit

on the order of χ ≈ 0.01 mm·s placing it on par with current falling cube gravimeters.

We have thus demonstrated the possibility of integrating two different sensors,

an atomic clock and an atom interferometer on the same atom chip. The narrow

linewidth shown in the atomic clock implementation can in principle be used to

measure other physical quantities (e.g. acceleration) and demonstrates the suitability

of the atom chip technology for demanding metrological applications including inertial

navigation.
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A future generation of our system could thus provide a solution for integrated

inertial navigation units.
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Appendix A

The spectral analysis of

fluctuations

We present in this appendix a basic treatment of the mathematical formulation of

fluctuations and derive some results which are used throughout the text.

We start by describing a general signal as:

V (t) = V0(t) · cos(ω0t+ φ(t)) (A.1)

We describe the noise on the amplitude and phase of the signal by writing:

V (t) = V0 · (1 +α(t)) · cos(ω0t+φ(t)) = V0 · (1 +α(t)) · cos(ω0t+

∫ t

0

∆ω(t′)dt′) (A.2)

Where we assume the oscillator is locked to a reference and has reached equilib-

rium, so that both α(t) and φ(t) should be regarded as small fluctuations around

0.

Since the phase φ(t) fluctuates around a zero mean value we turn our focus to

the second moment of the fluctuation - the variance or power of the noise. The

variance characterizes a noise process completely only if the process is stationary,

ergodic and Gaussian since the highest non-zero moment of a Gaussian noise is the

variance. We ensure stationarity and ergodicity by averaging over time and over

117



different realizations of the same experiment. Even if the probability density of the

individual processes from which the noise originates are not Gaussian a Gaussian

amplitude distribution can always be assumed for a large number of degrees of freedom

due to the central limit theorem. Such an assumption is justified in our case as the

noise originates from the fluctuation of a large number of electrons in the circuit. If

in addition, the individual noise sources are uncorrelated then the noise is said to be

white but Gaussian noise does not necessarily imply white noise (a common mistake)

and you can have 1/f Gaussian noise for example. A Gaussian noise simply means

that the amplitude distribution of the noise is Gaussian but says nothing about the

spectrum.

We consider that the variance of the phase has reached equilibrium:

< φ2(t) >= σ2
φ (A.3)

Since a noise source is by definition time dependent (it fluctuates), a full analysis

will have to investigate the spectrum of this Gaussian envelope. If the phase was a

periodic signal we could write

φ(t) =
∞∑
n=1

an cos(nω0t) +
∞∑
n=1

bn sin(nω0t) (A.4)

Where we have already substracted the mean value a0 (since φ(t) is the fluctuation

of phase from the mean value) and:

an =
2

T

∫ T

0

φ(t) cos(nω0t)dtbn =
2

T

∫ T

0

φ(t) sin(nω0t)dt (A.5)

But since φ(t) is a random function of time, then the coefficients a and b would

themselves be statistical in nature. To apply the concept of periodicity to such a

function, we must take the measurement time T to be infinite which amounts to

taking ω0 → 0, in this limit we can take the ensemble average of equation A.5 and

get:
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< an >=< bn >= 0 (A.6)

However, by taking the ensemble average of equation A.4 squared, we obtain:

< φ2(t) >=
∑
n

1

2
< a2

n >+
∑
n

1

2
< b2

n > =
∑
n

1

2

[
< a2

n > + < b2
n >
]

= σ2
φ (A.7)

Now, since the phases are random, we have for all n, < a2
n >=< b2

n > so we can

write:

< φ2(t) >=
∑
n

< a2
n > =

∫ ∞
0

S(f)df (A.8)

Where S(f) is called the power spectral density (or PSD) of the random process

and it represents the frequency dependence of the fluctuations. The PSD gives the

contribution of each frequency component to the total variance:

< a2
n >= S(nf0)∆(nf0) (A.9)

The units of PSD S(f) are the power of the noise source within a 1 Hz bandwidth

centered around a frequency f (see Fig. A-1).

The usage of the word “power” is used in the sense that energy can be defined

as the integral of the square of a signal (and using Parserval’s theorem it is also the

integral of the square of the Fourier transform of the signal), in case the signal is the

voltage applied on a 1 Ohm resistor, the units of energy are Joule and the power is

actually in Watt’s. For any other signal, one needs to apply a proper scaling to reach

actual SI units and this is very rarely done. Usually one simply uses the units of the

fluctuating variable squared per Hz, so for phase fluctuations the units are in rad2

Hz
or

dB rad2

Hz
or when we are interested in the standard deviation, we take the square root

of the variance and have the weird units of rad√
Hz

.

Using equation A.5 we can write the expression for < a2
n > directly:
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Figure A-1: The Power Spectral Density is defined as the average power in Watt
in a 1 Hz bandwidth centered around the frequency f . It is calculated using an
infinitesimally narrow averaging region to remove effects of slope, the average power

is then: S(f) ≡ P (f) = limB→0
1
B

∫ f+B/2

f−B/2 S(f ′)df ′ and the integral over all frequencies

is the total power: P =
∫∞

0
S(f)df . Taken from [106].

< a2
n >=

4

T 2

∫ T

0

∫ T

0

< φ(t1)φ(t2) > cos(
2πnt1
T

) cos(
2πnt2
T

)dt1dt2 (A.10)

Changing to the variables X = 1
2
(t1 + t2) and τ = t2 − t1 we get:

< a2
n >=

2

T 2

∫ T

X=0

∫ ∞
τ=−∞

< φ(t1)φ(τ + t1) >

[
cos(

2πnτ

T
) + cos(

4πnX

T
)

]
dXdτ

(A.11)

Where we kept the t1 in the integral since it is understood that the interval T over

which the measurement is performed is much larger than the duration over which the

phase variable φ(t) is periodic (since this is a randomly fluctuating variable, which has

no “memory” of past results) so t1 can in the limit T → ∞ be considered constant.

Such systems are also called stationary, they are symmetric to a time translation.

Now, the second part of the integral vanishes on integration over X and the first

part gives:

< a2
n >=

4

T

∫ ∞
0

R(τ) cos(
2πnτ

T
)dτ (A.12)
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Where R(τ) is the autocorrelation function:

R(τ) =< φ(t)φ(t+ τ) > (A.13)

Comparing with (A.9) we finally get:

S(f) = 4

∫ ∞
0

R(τ) cos(2πfτ)dτ (A.14)

And the inverse equation is:

R(τ) =

∫ ∞
0

S(f) cos(2πfτ)dτ (A.15)

Equations A.14 and A.15 constitute the theorem of Wiener and Khintchin and

are the basis of noise measurements.

For τ = 0 we get:

R(0) =

∫ ∞
0

S(f)df =< φ2(t) >= σ2
φ (A.16)

In the literature you often see (particularly in a theoretical context) the use of the

two-sided power spectral density, defined as:

SII(f) =

∫ ∞
−∞

R(τ)e−i2πftdt (A.17)

Using the complex function basis eiωt which requires SII to be a complex quantity

that extends also to negative frequencies, the inverse equation is then:

R(τ) =
1

2π

∫ ∞
−∞

SII(f)ei2πft (A.18)

And the autocorrelation and two-sided PSD are a Fourier transform pair which

facilitates calculations. For example, The PSD of a white noise source (completely

uncorrelated) can be easily calculated by noticing that for a white source the auto-

correlation function is simply a delta function times the variance:
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SWhite(f) = 2

∫ ∞
−∞

R(τ)e−iωtdt

= 2

∫ ∞
−∞

lim
T→inf

1

T

∫ T
2

−T
2

φ(t)φ(t+ τ)dte−iωtdt

= 2

∫ ∞
−∞

σ2δ(t)e−iωtdt = 2σ2

(A.19)

One must remember however, that when the oscillating field is a scalar, the nega-

tive frequencies and complex part of SII(f) in such a calculation are a mathematical

artifact and have no physical meaning whatsoever. As we have seen, the derivation

can be done without any reference to negative frequencies or complex numbers. When

the two-sided PSD is used, the negative frequencies convey no information and the

relationship between the real PSD and the two-sided kind is:

S(f) = 2SII(f), for f > 0

S(f) = 0, otherwise
(A.20)

A meaning to negative frequencies can only be made in the case of vector observ-

ables that have a sense of rotation. Then, a clockwise rotation is associated with

negative frequencies and a counter-clockwise rotation with positive frequencies. In

our case, φ(t) is a scalar, and there is no meaning to it’s direction of oscillation.

A.1 Unit conversion of the Power Spectral density

Up to now we were discussing the fluctuation of the phase variable, in case we want

to use the frequency fluctuation, we simply notice that the frequency is the derivative

of the phase and write for the frequency PSD:
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Sω(f) = 4

∫ ∞
0

< ˙φ(t) ˙φ(t+ τ) > cos(2πfτ)dτ = 4π2f 24

∫ ∞
0

< φ(t)φ(t+τ) > cos(2πfτ)dτ = 4π2f 2Sφ(f)

(A.21)

Since inside the cosine transform the time derivative maps into a multiplication

by 2πf . We then get for the PSD of the angular frequency:

Sf (f) =
1

4π2
Sω(f) = f 2Sφ(f) (A.22)

The fractional frequency (the frequency relative to the carrier y = f
f0

) PSD is

then:

Sy(f) =

(
f

f0

)2

Sφ(f) (A.23)

Where in our case f0 = 6.834GHz.

Usually the PSD is given in dB units, writing:

SdBφ(f) = 10 log(
Sφ(f)

1 rad
2

Hz

) (A.24)

Relative to the power in 1 rad
2

Hz
(this is why the actual energy in Watt is never

used)

Or in dBc, which is usually said to define the fluctuations relative to the power of

the carrier, but it is simply defined by as:

L(f) =
1

2
Sφ(f)

dBc = 10 log10(L(f)) = 10 log10(
1

2
Sφ(f))

= 10 log10(
1

2
) + 10 log10(Sφ) = −3.0103 + dBSφ

(A.25)
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ground operation at best sensitivity of the mobile LNE-SYRTE cold atom

gravimeter. arXiv preprint arXiv:1404.6722, 2014.

[50] Raymond Filler, Steven Ganop, Paul Olson, Stanley Sokolowski, and William

Fischer. Positioning, navigation and timing: the foundation of command and

control. Technical report, DTIC Document, 2004.

130



[51] JB Fixler, GT Foster, JM McGuirk, and MA Kasevich. Atom interferometer

measurement of the Newtonian constant of gravity. Science, 315(5808):74–77,

2007.
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[54] Maurice Françon. Optical interferometry. In Neutron interferometry. 1979.

[55] Carlos L Garrido Alzar, Wenhua Yan, and Arnaud Landragin. Towards high

sensitivity rotation sensing using an atom chip. In High Intensity Lasers and

High Field Phenomena, pages JT2A–10. Optical Society of America, 2012.

[56] A Gauguet, Benjamin Canuel, Thomas Lévèque, Walid Chaibi, and Arnaud
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Mann, S Chang, Andre N Luiten, and Christophe Salomon. Quantum projec-

tion noise in an atomic fountain: A high stability cesium frequency standard.

Physical Review Letters, 82(23):4619, 1999.

[111] Jörg Schmiedmayer, Ron Folman, and Tommaso Calarco. Quantum information

processing with neutral atoms on an atom chip. Journal of Modern Optics,

49(8):1375–1388, 2002.

[112] T Schumm, S Hofferberth, L Mauritz Andersson, S Wildermuth, S Groth, I Bar-
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mayer, and I Bar-Joseph. Sensing electric and magnetic fields with Bose-

Einstein condensates. Applied physics letters, 88(26):264103, 2006.

139
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