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Abstract
The family of aircraft essentially consists of two classes of systems: fixed-wing and VTOL (Vertical Take-Off and

Landing) aircraft. Due to their streamline shapes inducing high lift/drag ratio, fixed-wing airplanes are efficient in
cruising flight. However, most of them require runways or catapult/net systems for take-off and landing. As for VTOL
aircraft, thanks to their hover ability, they are particularly suitable for many applications including observation and
structures inspection, but their efficiency in horizontal flight is generally mediocre. There is therefore an interest in
designing so-called “convertible” vehicles, that combine the advantages of these two types of aircraft: efficient cruising
flight and VTOL capability. This thesis is devoted to the conception, modeling, and control of such a convertible
mini-UAV (Unmanned Aerial Vehicle).

The main contributions of this work are threefold. Firstly, we design a novel UAV structure by adding to each side
of a quadrotor one wing that can rotate around an axis belonging to the propellers’ plane. Our prototype has many
advantages over existing convertible structures: simple mechanical concept since inspired by a classical quadrotor,
flexibility for selecting different components (wings, propellers) and payload placement, flexibility for the control
design, etc. Secondly, we provide an energy modeling of this type of convertible UAVs, taking into account their
characteristics as compared to full-scale helicopters (large variation of aerodynamic forces, performance degradation
at low Reynolds number, etc.). This modeling relies on momentum and blade element theories for the propellers and
an aerodynamic coefficient model for full range of angle of attack for the wings. The ultimate objective is to optimize
the wings’ inclination with respect to the propellers’ plane so as to achieve energy-efficient flight. In addition, the
impact of various parameters (choice of propellers, wings’ area, mass of UAV) is analyzed. The energy modeling
provides useful guidelines for UAV presizing and control design - which is also the third contribution of this thesis.
The degrees of freedom of the wings permit the decoupling between propellers and wings’ orientations. This greatly
enhances the control flexibility as compared to traditional aircraft. Relying on this feature, several control approaches
are proposed. In particular, using a specific geometrical design, we show that an efficient control of our UAV can
be obtained without air-velocity measurements. This strategy is well suited to small aerial vehicles for which such
measurements are difficult to acquire. Simulation results confirm the soundness of our control design even in the
presence of strong and varying wind.

En route to validate the theory, a mechanical prototype of the UAV was constructed in our laboratory and
preliminary flight tests were performed. This is reported in the last chapter of the thesis.
Keywords: VTOL UAV, Convertible UAV, Energy Modeling, Aerodynamics, Feedback Control

Résumé
La famille des véhicules aériens est essentiellement constituée de deux classes de systèmes: les voilures-fixes et les

systèmes à décollage et atterrissage vertical (VTOL en anglais, pour “Vertical Take-Off and Landing”). En raison
de leur forme profilée, induisant un rapport portance/traînée élevé, les voilures-fixes ont l’avantage d’une bonne
efficacité énergétique. Cependant, la plupart d’entre eux nécessitent des pistes ou des systèmes catapulte/filet pour
le décollage et l’atterrissage. Quant aux VTOL, grâce à leur capacité au vol stationnaire, ils sont particulièrement
bien adaptés aux applications d’observation et d’inspection de structures, mais leur efficacité énergétique en vol “de
croisière” est généralement médiocre. Il y a donc un intérêt à concevoir des véhicules appelés “convertibles”, qui
combinent les avantages de ces deux types de structures : bonne efficacité énergétique en vol de croisière et capacité
au vol stationnaire. Cette thèse est consacrée à la conception, la modélisation et la commande d’un tel mini-drone
convertible.

Les principales contributions de ce travail comportent trois volets. Tout d’abord, nous concevons une nouvelle
structure de drone en ajoutant de chaque côté d’un quadrirotor une aile qui peut pivoter autour d’un axe appartenant
au plan des hélices. Notre prototype a de nombreux avantages par rapport aux structures convertibles existantes:
conception mécanique simple car dérivée d’un quadrirotor classique, flexibilité pour le montage de différents composants
(ailes, hélices) et le placement de la charge utile, flexibilité de la conception de commande, etc. Deuxièmement, nous
proposons une modélisation énergétique de ce type de drone convertible, en tenant compte de ses caractéristiques par
rapport aux hélicoptères avec pilote à bord (grande variation des forces aérodynamiques, dégradation des performances
à faible nombre de Reynolds, etc.). Cette modélisation s’appuie sur les théories de la quantité de mouvement et de
l’élément de pale pour les hélices et un modèle de coefficient aérodynamique couvrant la gamme complète des angles
d’attaque pour les ailes. L’objectif ultime est d’optimiser l’inclinaison des ailes par rapport au plan des hélices
afin d’obtenir la meilleure efficacité énergétique. En outre, l’impact de divers paramètres (choix des hélices, des
aile(s), masse de drone) est analysé. La modélisation énergétique fournit des informations utiles pour la conception
mécanique et la conception de la commande; ce dernier aspect constituant la troisième contribution de cette thèse.
Les degrés de liberté des ailes permettent le découplage entre les orientations des hélices et celle des ailes. Cela
augmente considérablement les possibilités de contrôle par rapport aux aéronefs traditionnels. S’appuyant sur cette
caractéristique, plusieurs approches de contrôle sont proposées. En particulier, en utilisant une conception géométrique
spécifique, nous montrons qu’un contrôle efficace peut être obtenu sans mesures de la vitesse air. Cette stratégie est
bien adaptée aux petits véhicules aériens pour lesquels ces mesures sont difficiles à acquérir. Les résultats de simulation
confortent cette stratégie de contrôle, même en présence de vent fort et variable.

Afin de valider la théorie, un prototype mécanique du drone a été construit dans notre laboratoire et des essais en
vol préliminaires ont été effectués. Ces aspects sont décrits dans le dernier chapitre de la thèse.
Mots-clés: Véhicule à décollage et atterrissage vertical, Drone convertible, Modélisation énergétique, Aérody-
namique, Commande par retour d’état
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Nomenclature

Abbreviations

nD n-dimensional, e.g. 2D: two-dimensional, 3D: three-dimensional

CAN Controller Area Network

CoM Center of Mass

DoF Degree of Freedom

ESC Electronic Speed Controller

GPS Global Positioning System

I2C Inter-Integrated Circuit

IDE Integrated Development Environment

IMU Inertial Measurement Unit

PID Proportional Integral Derivative

PPM Pulse Position Modulation

PVTOL Planar Vertical Take-Off and Landing

PWM Pulse Width Modulation

RC Radio Control

ROS Robot Operating System

RPM Revolution per minute

SPI Serial Peripheral Interface

UAV Unmanned Aerial Vehicle

USB Universal Serial Bus

VTOL Vertical Take-Off and Landing

Frames and Matrices

S( · ) Skew-symmetric matrix for cross product S(u)v = u× v,∀u, v ∈ R3

B = {G; i; j;k} Body frame



E = {M, iΨ, jΨ,kΨ} Frame attached to a blade element

I = {O; i0; j0;k0} Inertial frame

R Rotation matrix from frame B to frame I

Symbols

α Angle of attack of the wing

α0(Re) Angle where the stall zone starts for the airfoil at Reynolds number Re

α0ref Angle where the stall zone starts for the airfoil at reference Reynolds num-
ber Reref

αe Angle of attack at equilibrium

αP Blade element angle of attack

β1, β2, β3 Blade aerodynamic constants, see Eq. (2.61)

η = Re3 Thrust direction unit vector in inertial frame I

ηP = Ja
C
′
T

C
′
P

Propeller efficiency

γ = R>e3 Gravitational vector’s direction in body frame B

κQ Constant to relate propeller torque Q with its rotational speed $

κT Constant to relate propeller thrust T with its rotational speed $

µ Inclination angle between the wing and the propellers’ plane

µvis Air viscosity

ν = −va Air flow velocity

νD Downstream wake velocity

νind Induced velocity

νind,0 Induced velocity at hover

νT = $R Rotor tip velocity

ϕ Inflow angle to the propeller blade

Ψ Azimuthal angle

ρ Air density

Σ Wing(s) area

Σpara Parasite drag effective area

Θ Any minimal parametrization of SO(3) around the identity matrix (e.g.,
the vector of Euler angles θ1: roll, θ2: pitch, θ3: yaw)



θ UAV’s orientation angle in 2D representation, equivalent to θ1 in 3D rep-
resentation

θP Mean pitch angle of the propeller blade at 75% radius

θ1, θ2, θ3 Three parametrization Euler angles of SO(3) around axes i0, j0,k0 to pass
from frame I to B

$ Propeller rotor angular speed

a Blade lift curve slope

A = πR2 Area swept by the propeller blades

aν , kav
2/(mg) Ratio of aerodynamic force and the gravity force

as = R>(v̇ − ge3) UAV specific acceleration in the body frame B

b0, b1, b2 Blade drag coefficient constants

c Wing chord length

c1 Drag constant

c2 Average lift constant

c2T High lift constant

cD(α,Re) Wing drag coefficient

CDP (αP ) Blade drag coefficient at angle of attack αP

CH ,
H

1
2ρAν

2
T

Drag coefficient for in-plane H force

cL(α,Re) Wing lift coefficient

CL0 Blade lift coefficient at zero angle of attack

CLP (αP ) Blade lift coefficient at angle of attack αP

CLt Blade lift coefficient at angle of attack θP

CP ,
P

1
2ρAν

3
T

Propeller power coefficient

cP Chord of the propeller blade at 75% radius

C
′
P =

π4

8
CP Scaled propeller power coefficient

cpara Parasite drag coefficient

CQ ,
Q

1
2ρARν

2
T

Propeller torque coefficient

CT ,
T

1
2ρAν

2
T

Propeller thrust coefficient



C
′
T =

π3

8
CT Scaled propeller thrust coefficient

d Distance between the wing pivot and the aerodynamic center of the wing

dA Distance between the wing pivot and wing’s CoM

dD Drag force on the blade element

dH In-plane drag force on the blade element

dL Lift force on the blade element

dQ Torque on the blade element around the propeller axis

dT Thrust force on the blade element

E Specific energy consumption

e1, e2, e3 Vectors of the canonical basis of R3

Fa Aerodynamic forces acting on the wing(s)

FM Figure of Merit

g Gravity constant

GR Glide Ratio

H In-plane drag force on the propeller

J Moment of inertia of the UAV

JA Moment of inertia of the wing

JB Moment of inertia of the UAV structure except the wing

ka =
1

2
ρΣ Characteristic constant for the wing

kpara =
1

2
ρΣpara Parasite characteristic constant

L Distance between the wing pivot and UAV’s CoM

l Distance between UAV’s CoM and each propeller center

m Mass of the UAV

mA Mass of the wing

mB Mass of the UAV structure except the wing

MFLOW Air mass flow along the wake

N Number of propellers on the UAV

NP Number of blades in a propeller

P Propeller power



p∞ Atmospheric static pressure

pl Atmospheric pressure below the propeller disk

pu Atmospheric pressure above the propeller disk

Q Torque acting on the propeller around its axis

R Propeller radius

r Distance from the blade element to the rotor hub

r̄ = r/R Ratio of distance from the blade element to the rotor hub over the propeller
radius

Re Reynolds number

Reexp Exponential scaling constant for Reynolds number

Reref Reference Reynolds number

s = NP cPR/A Solidity of the propeller

T Thrust force generated by the propeller

U Total flow velocity over the blade section

UP Velocity component perpendicular to the rotor plane

UT Velocity component normal to the blade span in the rotor plane

va UAV linear air-velocity

vr UAV reference velocity





List of Figures

1 3D SolidWorks model of our convertible mini-UAV . . . . . . . . . . . . . . . . . 3

1.1 Main components of a fixed-wing airplane (Airbus A380) . . . . . . . . . . . . . . 6
1.2 Control surfaces and their effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Overview of airplane control with control surfaces, control axes, and types of stability 7
1.4 Lift and drag forces acting on wings and the adverse yaw due to deflection of ailerons 8
1.5 Airplane mechanical control system and hydromechanical control system . . . . . 8
1.6 Non-exhaustive overview list of different types of VTOL concept . . . . . . . . . 9
1.7 Main components of a helicopter . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8 Schematic diagram of main rotor hub with collective and cyclic pitch control . . . 11
1.9 Tail rotor anti-torque to compensate for the torque . . . . . . . . . . . . . . . . . 13
1.10 De Bothezat Quadrotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.11 Some examples of mini quadrotors . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.12 Quadrotor control for different cases . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.13 Bell Boeing V22 Osprey tilt-rotor in transition and its flight envelope . . . . . . . 15
1.14 Wingcopter tilt-rotor mini-UAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.15 Tilt-rotor schematic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.16 Tilt-wing Vertol VZ-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.17 CAD model of a quad tilt-wing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.18 Quadshot tilt-body mini-UAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.19 Tail-sitter XFY Pogo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.20 Hover Eye ducted-fan tail-sitter UAV . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.21 Comparison between helicopter and quadrotor disk areas for same footprint . . . 20
1.22 Y4 Triangular Quadrotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.23 Robinson R44 helicopter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.24 Specific energy consumption plotted against the speed . . . . . . . . . . . . . . . 22
1.25 Comparison of the required powers for different VTOL aerial vehicles . . . . . . . 23

2.1 2D Model of the UAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 Vortex field generated by a Bell Boeing V22 Osprey tilt-rotor . . . . . . . . . . . 29
2.3 Actuator disk streamtube in hover flight . . . . . . . . . . . . . . . . . . . . . . . 31
2.4 Actuator disk streamtube in axial flight . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Momentum theory results in axial flight . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Rotor flow in vortex ring state and turbulent wake state . . . . . . . . . . . . . . 34
2.7 Actuator disk streamtube in forward flight . . . . . . . . . . . . . . . . . . . . . . 34
2.8 Velocity components in the propeller plane . . . . . . . . . . . . . . . . . . . . . . 36
2.9 Force components on a blade element . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.10 Power variation in forward flight . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.11 Radial distribution of the inflow and the swirl velocities of the hovering propeller 42



2.12 Comparison of scaled static thrust coefficients of APC SlowFlyer 11×4.7 propeller
versus angular speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.13 APC SlowFlyer 11× 4.7 UIUC data of scaled thrust and power coefficient versus
axial advance ratio at different angular speeds . . . . . . . . . . . . . . . . . . . . 45

2.14 Comparison of scaled thrust/power coefficients and efficiency of the propeller APC
SlowFlyer 11× 4.7 versus the axial advance ratio . . . . . . . . . . . . . . . . . . 47

2.15 2D Model of the convertible UAV with inclined wing . . . . . . . . . . . . . . . . 48
2.16 The lift and drag coefficients versus the angle of attack of the airfoil NACA0018

at different Reynolds numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.17 The sigmoid function at α0 = α0ref = 12◦ and Re = 160000 . . . . . . . . . . . . 50
2.18 The measured and modeled lift and drag coefficients versus the angle of attack at

Re = 160000 for NACA0018 airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.19 The measured and modeled lift coefficients versus the angle of attack at Re =

80000 for NACA0018 airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.20 The configuration in five cases for |va| = 10 m/s . . . . . . . . . . . . . . . . . . 52
2.21 The configuration in five cases for |va| = 18 m/s . . . . . . . . . . . . . . . . . . 52
2.22 The power comparison versus the speed . . . . . . . . . . . . . . . . . . . . . . . 53
2.23 The percentage of power saving versus the speed . . . . . . . . . . . . . . . . . . 53
2.24 The horizontal and vertical aerodynamic forces versus the speed . . . . . . . . . . 54
2.25 The total thrust force on all propellers versus the speed . . . . . . . . . . . . . . 54
2.26 The total in-plane drag H force on all propellers versus the speed . . . . . . . . . 54
2.27 The UAV’s orientation angle θ versus the speed . . . . . . . . . . . . . . . . . . . 55
2.28 The wing(s) inclination angle µ versus the speed . . . . . . . . . . . . . . . . . . 55
2.29 The angle of attack α versus the speed . . . . . . . . . . . . . . . . . . . . . . . . 56
2.30 The rotor angular velocity versus the UAV’s orientation angle θ . . . . . . . . . . 56
2.31 The rotor angular velocity versus the speed . . . . . . . . . . . . . . . . . . . . . 56
2.32 Case 2: power versus angle µ at two different speeds . . . . . . . . . . . . . . . . 57
2.33 Percentage of power saving w.r.t. Case 5 for different propellers . . . . . . . . . . 57
2.34 Percentage of power saving w.r.t. Case 5 for different wing(s) area . . . . . . . . 58
2.35 Percentage of power saving w.r.t. Case 5 for different UAV’s mass . . . . . . . . . 58

3.1 Diagram of fixed-wing and VTOL aerial vehicles . . . . . . . . . . . . . . . . . . 60
3.2 Equilibria pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 3D convertible UAV model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4 Simplified convertible UAV model in cruising flight . . . . . . . . . . . . . . . . . 71
3.5 Teleoperation simulation with attitude and altitude control . . . . . . . . . . . . 78
3.6 Wind speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.7 Reference altitude versus UAV altitude (teleoperation with wind simulation) . . . 79
3.8 UAV’s pitch angle (teleoperation with wind simulation) . . . . . . . . . . . . . . 79
3.9 Angles of attack of the wings (teleoperation with wind simulation) . . . . . . . . 79
3.10 The average power consumption since t = 0 (teleoperation with wind simulation) 80
3.11 2D simplified model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.12 The model decoupled into the main body and the wing . . . . . . . . . . . . . . . 81
3.13 Comparison of desired angle of attack and optimal angle of attack versus the

airspeed at different direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.14 Power comparison in horizontal, descending, and ascending forward flight . . . . 86
3.15 Reference altitude versus UAV altitude (second control design) . . . . . . . . . . 87
3.16 UAV’s pitch angle (second control design) . . . . . . . . . . . . . . . . . . . . . . 87



3.17 Angle of attack of the wing (second control design) . . . . . . . . . . . . . . . . . 88
3.18 The average power consumption since t = 0 (second control design) . . . . . . . . 88
3.19 Wind speed components, which are superposition of wind shear model, Dryden

wind turbulence model, and discrete wind gust. . . . . . . . . . . . . . . . . . . . 88
3.20 Reference altitude versus UAV altitude (simulation with a different wind model) 88
3.21 UAV’s pitch angle (simulation with a different wind model) . . . . . . . . . . . . 89
3.22 The average power consumption since t = 0 (simulation with a different wind model) 89
3.23 Reference speed and UAV speed (velocity tracking simulation) . . . . . . . . . . . 92
3.24 UAV’s pitch angle (velocity tracking simulation) . . . . . . . . . . . . . . . . . . . 92
3.25 Comparison of wing reference angle of attack and angle of attack (velocity tracking

simulation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.26 Aerodynamic torque and estimated torque (velocity tracking simulation) . . . . . 93
3.27 The average power consumption since t = 0 (velocity tracking simulation) . . . . 93
3.28 Wind speed (velocity tracking simulation) . . . . . . . . . . . . . . . . . . . . . . 94
3.29 Reference speed and UAV speed (velocity tracking simulation with wind) . . . . . 94
3.30 Propeller downwash along its axis direction . . . . . . . . . . . . . . . . . . . . . 95
3.31 Reference speed and UAV speed (velocity tracking simulation with propellers’

downwash on wing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.32 UAV’s pitch angle (velocity tracking simulation with propellers’ downwash on wing) 96
3.33 Wing angle of attack (velocity tracking simulation with propellers’ downwash on

wing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.34 Aerodynamic torque and estimated torque (velocity tracking simulation with pro-

pellers’ downwash on wing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.35 Propeller rotational speed (velocity tracking simulation with propellers’ downwash

on wing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.36 The average power consumption since t = 0 (velocity tracking simulation with

propellers’ downwash on wing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.37 Wing angle of attack (velocity tracking simulation with aerodynamic torque com-

pensation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.38 Aerodynamic torque and estimated torque (velocity tracking simulation with aero-

dynamic torque compensation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.39 Propeller rotational speed (velocity tracking simulation with aerodynamic torque

compensation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.40 The average power consumption since t = 0 (velocity tracking simulation with

aerodynamic torque compensation) . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.1 Convertible UAV prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2 The wings after fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3 System architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4 Quanton flight controller board . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.5 Motor mounting on the UAV frame . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.6 Autoquad ESC32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.7 Graupner E-prop 13 × 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.8 ODroid-XU onboard computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.9 GPS module Ublox NEO-6M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.10 Mass distribution of our convertible UAV . . . . . . . . . . . . . . . . . . . . . . 111
4.11 Top-view schematic of our convertible UAV . . . . . . . . . . . . . . . . . . . . . 111
4.12 View of wing servo and IMU during the test . . . . . . . . . . . . . . . . . . . . . 112



4.13 First component of angular velocity measured by UAV gyro . . . . . . . . . . . . 113
4.14 Comparison between UAV’s pitch angle estimation, UAV’s pitch angle measure-

ment by accelerometer, and wing pitch measurement by wing accelerometer . . . 113
4.15 Wing pitch angle (inclination angle w.r.t the ground) estimated by wing accelerom-

eter measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.16 Reference attitude (from joystick) versus UAV attitude estimated from IMU (first

experiment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.17 Reference angular velocity versus UAV angular velocity estimated from IMU (first

experiment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.18 Reference control thrust/torque versus UAV thrust/torque reconstructed from an-

gular speed of rotors (first experiment) . . . . . . . . . . . . . . . . . . . . . . . . 119
4.19 Roll angle and angular velocity after offset correction (first experiment) . . . . . 120
4.20 Total current intensity and total power of the motors (first experiment) . . . . . 120
4.21 GMB5010 wing motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.22 New wing motors installed on our convertible UAV . . . . . . . . . . . . . . . . . 121
4.23 Reference attitude (from joystick) versus UAV attitude estimated from IMU (sec-

ond experiment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.24 Reference angular velocity versus UAV angular velocity estimated from IMU (sec-

ond experiment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B.1 Schematic of test bench for thrust measurement . . . . . . . . . . . . . . . . . . . 138
B.2 Schematic of test bench for torque measurement . . . . . . . . . . . . . . . . . . . 138
B.3 Experimental setup of our static test bench for torque measurement . . . . . . . 138



List of Tables

1.1 Equivalent disk loading, ideal induced velocity, and ideal power loading compari-
son of different aerial vehicles and rockets . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Main characteristics of motor T-4008 KV600 . . . . . . . . . . . . . . . . . . . . . 105
4.2 Comparison between three ESCs . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3 ESC communication comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 107





Introduction

Unmanned Aerial Vehicles (UAVs) are becoming omnipresent in military, industries, and academia
around the world. UAVs first appeared in the military as remote-control aircraft,1 and nowadays
they are increasingly popular in the battlefield for diverse missions such as real-time video re-
connaissance, surveillance, electronic decoys and jammers, air-to-ground and air-to-air attacks,
etc. [2, Chap. 2]. The expansion of the UAV market in recent years, however, mainly concerns the
civil domain with small multi-rotor systems that can be easily deployed for various applications
such as aerial video shooting for the media industry, inspection of plants, electricity networks,
railways, etc. This fast-growing UAV industry impacts the global economy. According to Teal
Group (tealgroup.com), worldwide UAV Market will total $91 billion in the next ten years.
Based on the report in 2013 by AUVSI, 70,000 new jobs in the UAV sector will be created by
2017 in the USA (auvsi.org). Presently, progress in embarked electronics, light-weight cameras,
and wireless communication has now made UAV technology affordable for general use. Indeed,
myriad prototypes, especially small UAVs, have been constructed in the last two decades. One
can mention some examples: fixed-wing UAVs such as the BATCAM [3] or the Trimble UX5
(trimble.com); helicopters such as the Raptor 90 [4] or the coaxial PetiteLion [5]; quadrotors
such as the X4-flyer [6], the OS4 [7], or the experimental platform STARMAC II [8].

These UAVs are traditionally classified into fixed-wing and Vertical Take-Off & Landing
(VTOL). For fixed-wing UAVs, the flight is primarily based on the use of the aerodynamic lift on
the wings to compensate for the weight of the vehicle and the thrust to cancel the drag induced
by air movement. Due to their streamlined shapes, inducing a high lift-to-drag ratio, these
aerial vehicles have the advantage of energy efficiency. The disadvantage, however, is the need of
runways for take-off and landing. As for VTOL UAVs, thanks to their ability to hover, they are
particularly suitable for applications like observation and inspection of structures (power lines,
bridges, etc.), but their efficiency in cruising flight is generally poor.

For many applications, however, both capacities of vertical take-off and efficient cruising
flight are required. For example, a typical scenario requires the UAV to inspect an electricity
pylon/wind turbine, and then to fly rapidly for examining another pylon/turbine that is hundreds
meters away from the initial position. Clearly, fixed-wing UAVs are unsuitable for these types
of missions whereas VTOL UAVs are not very efficient in the cruising flight phase. Given the
requirements of these missions, convertible UAVs that have both the abilities of VTOL and
efficient cruising flight, become interesting alternatives to both fixed-wing and VTOL UAVs. In
fact, convertible aerial vehicles are not new. Throughout the late 1950s and early 1960s, the U.S.
military began to examine the most effective approach to improve the speed of VTOL prototypes
that include tilt-rotors, tilt-jets, tilt-wings, tilt-ducts, tail-sitters, and deflected thrust systems
(see the website of the Smithsonian Air and Space Museum). However, these manned prototypes
suffered from mechanical complexity, and some other specific problems like high angle of attack

1After World War I, three Standard E-1 fighter aircraft were converted as remote-control prototypes [1, p.
854].

http://www.tealgroup.com/index.php/about-teal-group-corporation/press-releases/118-2014-uav-press-release
http://www.auvsi.org/econreport
http://uas.trimble.com/trimble-uas
http://airandspace.si.edu/collections/artifact.cfm?object=nasm_A19650279000
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stall in transition phases (e.g. tilt-wings), pilots’ awkward sitting position (e.g. tail-sitters),
etc. Till date, the arguably most successful convertible full-scale aircraft are tilt-rotors, e.g. Bell
Boeing V22 Osprey. These types of convertible aerial vehicles, nevertheless, are designed not to
sustain hover flight for a long time but to change quickly to forward flight mode.

Unmanned aerial vehicles usually possess less mechanical complexity and less payload con-
straints than manned vehicles with similar sizes. These facts, coupled with the improvement in
efficiency of electrical motors and recent minimization of electronic components, have rekindled
the interest in small convertible prototypes, as exemplified by the tail-sitters HoverEye [9] and
Hediasyc [10], the tilt-rotor Wingcopter (wingcopter.com), the tilt-body Quadshot (transition-
robotics.com), the tilt-body biplane quadrotor from University of Maryland [11], or the tilt-wing
from Aachen University [12].

The objective of this work is to design, model, and control a new convertible UAV here
proposed.

Simple mechanical concept:

The idea starts from a classical structure of quadrotor. The principal advantage of quadrotors
is the simplicity of conception, as compared to helicopters which for a long time have been
dominating the class of full-scale VTOL aerial vehicles. Our proposed structure, represented by
figure 1, consists in adding to a quadrotor structure two wings that have axes very close to the
propellers’ plane, and that are joined with the quadrotor by several bars. Moreover, each wing is
connected with the structure by a pivot articulation. This articulation is actuated, for example
by one or several servo-motor(s), as represented in figure 1, in order to modify the wing pitch
angle with respect to the propellers’ plane. Another advantage of this structure is its flexibility.
Indeed, we can easily replace the wings by different wings (in terms of profile or chord length for
instance), without impacting the rest of the structure, knowing that different wings are more or
less adapted to flight conditions, flight velocity, and payload.

Motivations for this structure:

• Autonomy for high speed flight: As mentioned above, one severe limitation of classical
VTOL structures including quadrotor is their low energy efficiency. The addition of the
wings to the quadrotor structure improves the energy efficiency in high speed cruising flight,
while keeping the system’s capacity for stationary flight.

• Flexibility for control design: The articulations of the wings provide the control for their
inclination angles. This offers a grand flexibility for the control of the convertible aerial
vehicle. Specifically, in cruising flight, the UAV’s pitch angle can be controlled by either
modifying the propeller thrust force, or the inclination angle of the wings, or both at the
same time. The fact that the wings’ pitch angles can be completely decoupled from the
UAV’s pitch angle is also an important aspect from the control point of view. This will be
explained later in the thesis.

• Flexibility for the placement of payload: This type of UAV is typically utilized for inspection
and surveillance tasks. For these goals, the UAV is required to embark some payload (e.g.
a camera). Since inspired by a classical quadrotor structure, the proposed UAV is endowed
with the same flexibility of payload placement, which is not generally the case for other
structures with multi-rotors and wings.

Throughout this thesis, we attempt to find the right balance between simple design and
accurate enough modeling to capture the physical behaviors of the system. For example, in aero-
dynamic modeling of propellers, analytical calculations based on momentum and blade element

http://www.wingcopter.com/
transition-robotics.com
transition-robotics.com
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Figure 1: 3D SolidWorks model of our convertible mini-UAV

theories are favored over sophisticated computational fluid dynamics (CFD) numerical analysis.
In addition, whenever sufficient to present the principal ideas, we focus on the planar (i.e. two-
dimensional) movements of the UAV, which comprise the most common operating trajectories
such as hover, VTOL, and forward cruising flight.

This work has been carried out during my Ph.D. at the Institut des Systèmes Intelligents et
de Robotique (ISIR), Université Pierre et Marie Curie (UPMC). My research was funded by the
Chaire d’excellence en Robotique RTE2-UPMC . This manuscript is organized in four chapters:

• Chapter 1 - A Short Introduction to Aerial Vehicles: This chapter introduces the
main types of aerial vehicles, thereby provides the readers with basic information on the
principal components of fixed-wing, VTOL, and convertible aircraft. At the same time, this
chapter describes how the force and torque controls are generated in these aerial vehicles.
Finally, we recall some performance indicators, which characterize the efficiency of each
type of aerial vehicles in important flight phases such as hover or cruising flight.

• Chapter 2 - Energy Modeling: This chapter concerns the energy modeling approach
for aerial vehicles with coplanar propellers and wing(s). The ultimate goal is to optimize
the wings’ inclination with respect to the propellers’ plane so as to achieve energy-efficient
flight. Standard momentum and blade element theories are the main ingredients for model-
ing of propeller aerodynamics. In order to obtain simple closed-form expressions, modeling
simplifications are made and an eight-parameter-analytical model is proposed. The model
parameters are identified from the experimental data reported in the literature. As for
the wings, a simple NACA profile is selected and an approximate model of lift and drag
coefficients over the entire flight domain is defined. Based on these models, the calculation

2The French company Réseau de transport d’électricité
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of energy consumption reduces to solving a minimization problem in two variables. As
an application, we compare the energy consumption of different UAV structures in the
horizontal-flight range of [0, 20] m/s. Concerning UAV design, the impact of various pa-
rameters (choice of propellers, wing(s) area, mass of UAV) is analyzed. This chapter also
provides useful guidelines for the control design.

• Chapter 3 - Control Design: Before detailing the control design of our convertible UAV,
a brief review of the control techniques for fixed-wing, VTOL, and convertible aerial vehicles
in the literature is presented. Next, three approaches to the control design of our convertible
system are introduced. The objective is to develop control strategies with minimal sensor
suite. The first approach concerns teleoperation without velocity measurement. In this case
only the Inertial Measurement Unit (IMU) (gyrometer, accelerometer) and barometer data
are used for the control design. The second approach makes use of the same measurements.
However, we consider the presence of strong varying wind that cannot be directly measured.
The proposed solution relies on a slightly modified mechanical design and a spring-damper
feedback control. By taking advantage of the additional degrees of freedom of the wings, we
show that efficient control of the vehicle can be obtained without air-velocity measurements.
This proposed strategy is particularly suited to small UAVs for which such measurements
are difficult to obtain. Finally, the third approach benefits from velocity measurements in
addition to the IMU data. The effect of propellers’ downwash on the wings is analyzed,
and a simple torque compensation strategy is proposed to reduce this undesirable effect.
Simulation results support these above control strategies.

• Chapter 4 - Conception and Preliminary Experiments: This chapter presents
the mechanical prototype of our convertible UAV. The fabrication process of the UAV is
briefly described. The system architecture consists of a high level control and a low level
control. Most of the components in these levels are described in detail. Finally, we present
the experiments conducted on the platform and discuss the results.

Some of the results reported in this thesis have been published in research papers. The
principal parts of chapter 2 appeared in [13, 14]. The second control approach in chapter 3 can
be found in [15].



Chapter 1

A Short Introduction to Aerial Vehicles

1.1 Aerial Vehicles Introduction

Ever since the Wright brothers made the first flight by means of a vehicle heavier than air in 1903,
many aerial vehicles have been constructed and developed with the aim to fly farther, faster,
and more efficiently. The family of aerial vehicles can be roughly divided into three main classes:
fixed-wing aircraft, Vertical Take-Off and Landing (VTOL) aircraft, and convertible aircraft.1

We will discuss each class in detail.

1.1.1 Fixed-Wing Aircraft

A fixed-wing aircraft uses its wings to generate lift force to compensate for the weight of the
vehicle. The thrust force generated by the aircraft engines compensates for the drag force acting
on the aircraft body. Since the lift force is normally much larger than the drag force, fixed-wing
aircraft is energy efficient. Figure 1.1 shows the principal components of the aircraft.

• The fuselage is the central main body of the aircraft.

• The wings are airfoils which mainly provide the lift force. The principal movable surfaces
on the wings are ailerons, which are shown in figure 1.2.

• The empennage is the tail group that consists of stabilizers, elevators, and rudders.

• The powerplant is an assembling group of turbines and propellers to generate the thrust
force.

The aircraft is controlled precisely thanks to its control surfaces: elevator, aileron, and rudder
(figure 1.2). The movements of these surfaces change the airflow and pressure distribution on
the wings and tail, thereby modifying the aircraft three-dimensional orientations: roll, pitch,
and yaw. Figure 1.3 illustrates these orientations with associated axes and conventional types
of stability. The elevators help balancing the aircraft since the latter is traditionally nose-heavy.
In addition, the elevators are used for pitch control. The ailerons usually locate on the wings,
one on each side. Moving the pilot control stick to the left causes the right aileron to deflect
downward and the left aileron to deflect upward, as shown in figure 1.4. The downward deflection

1This classification is not perfect, since one can always find some counter-examples. Indeed, some high thrust-
to-weight ratio fixed-wing aircraft can take off vertically, e.g. indoor single-propeller airplanes [16,17], so that they
can be considered convertibles. In this thesis, fixed-wing aircraft refer to airplanes with fixed wing(s) uniquely
designed for horizontal flight mode. In addition, this thesis does not consider flapping-wing prototypes.
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Main wings
Fuselage

Empennage Powerplant

Figure 1.1: Main components of a fixed-wing airplane (Airbus A380, adapted image from
Wikipedia)

of the right aileron increases the effective camber of the wing, thereby increasing the lift on the
right wing. The reverse effect is produced on the left wing, decreasing its lift. The difference in
the lift on the two wings causes the airplane to roll to the left. In addition, a secondary effect of
aileron deflections is that the drag force on the right wing is greater than the one on the left wing.
Consequently, an adverse yaw is produced as shown in figure 1.4. This effect is counteracted by
the rudder. At this point, we call for a few remarks on airplane control:

• The control action of control surfaces depends on the aircraft speed. At low speed, the
aerodynamic pressure on the control surfaces is low, hence larger control inputs, i.e. larger
control surface angle deflections are required. By contrast, at high speed, the forces acting
on the surfaces (proportional to the square of speed) are high even at small deflection of
the control surfaces.

• The rotational and translational movements of the airplane are coupled, e.g. if an airplane
inclines nose down, it flies forward at the same time and vice versa. This is due to the
underactuated nature of standard airplanes: for six DoFs parameterizing the airplane posi-
tion/orientation in space, there are only four independent control inputs: thrust intensity,
elevator, aileron, and rudder deflections.

In the early days of aviation, mechanical systems with pulleys, linkages, etc. were used to control
the airplane (figure 1.5(a)). These systems were often heavy and complex. To overcome these
shortcomings, they were replaced by hydromechanical designs (figure 1.5(b)). These designs
usually consisted of mechanical circuits and hydraulic circuits. Nowadays, with the advancement
of electronics and computers, most airplanes are controlled by digital signals.

1.1.2 Vertical Take-Off and Landing (VTOL) Aircraft

VTOL aircraft, as its name implies, can take off or land vertically. It also has the ability to
hover. There are many different types of VTOL aircraft as shown in figure 1.62. Generally,
VTOL design requires answering three basic questions [21]

2Note that convertible aircraft belong to a subset of VTOL aircraft. Therefore in figure 1.6, convertible aircraft
like Bell Boeing V22 Osprey or Boeing X-50 are presented. They will be discussed in more detail in section 1.1.3.

http://en.wikipedia.org/wiki/Airbus_A380
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Figure 1.2: Control surfaces and their effects (aerospaceweb.org and [18])

Figure 1.3: Overview of airplane control with control surfaces, control axes, and types of stability
[19]

http://www.aerospaceweb.org/question/design/q0101.shtml
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Figure 1.4: Lift and drag forces acting on wings and the adverse yaw due to deflection of ailerons
[19]

(a) (b)

Figure 1.5: Airplane (a) mechanical control system and (b) hydromechanical control system [19]



1.1. Aerial Vehicles Introduction 9

Figure 1.6: Non-exhaustive overview list of different types of VTOL concepts [20]
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1. How to generate and regulate the thrust force?

2. How to generate the torques to control the VTOL orientation in three-dimensional space?

3. How to counter parasite torques generated by drag forces?

Due to the flexibility of designing mechanisms and the diversity of VTOL applications, there
are countless VTOL prototypes built over the years. For these prototypes, the thrust force is
generally generated by one or several main rotor(s). Following [20], VTOL aircraft can be roughly
classified into five categories:

1. “Tilt Blade Tip-Path-Plane” is the most common category, which includes classical heli-
copters. The control torque for roll and pitch is obtained by changing the blade angle of
attack over the rotor disk, thereby changing the lift distribution over this disk. The counter
torque (yaw control) can be obtained in different ways: using one tail rotor like SA 365N
Dauphin, two tail rotors like MD XV-1, contra-rotating main rotors like Kamov KA 52,
intermeshing counter-rotating rotors like Kaman Kmax, air flow generated from a fan like
MD 900.

2. “Tilt-Body”: most tilt-body vehicles are multi-rotor systems (quadrotor, tandem, etc.)
and roll/pitch control torque is achieved by generating different lift forces on the different
rotors. For tail-sitter, torque control is accomplished by changing the orientations of control
surfaces. In general, tilt-body usually use contra-rotating or counter-rotating rotors for
counter-torque and yaw control.

3. “Tilt-Rotor/Tilt-Wing”: for tilt-rotor the torque control is effectuated by tilting one or
more rotors. As for tilt-wing aircraft, the torque control is achieved by tilting the whole
wing together with the rotors.

4. “Rotor ↔ Wing”: the rotors can function as wings and vice versa. For example, in Boeing
X-50 prototype , the rotor could be stopped in flight and could act as a fixed wing. In the
other example, Boeing DiscRotor could retract the blades at high speed to reduce the drag
force.

5. “Different Lift/Propulsion”: the aircraft use different devices for lift (e.g. main rotors) or
propulsion (e.g. turbofan, turbo propellers)

In general, VTOL aerial vehicles come in various sizes and shapes, but most of them share
the same components. Keeping in mind this fact, two common VTOL aerial vehicles, classical
helicopter and quadrotor, are presented next.

a) Classical helicopter

Figure 1.7 shows the main components of a helicopter including the fuselage, the thrust-
generated rotor system, and the anti-torque tail rotor. First of all, we focus on a very important
component of a helicopter, the so-called swashplate/spider mechanism, as illustrated in figure 1.8.
The blade pitch is applied via a bar projecting from the bearing housing known as pitch horn.
The pitch horn is connected to its own individual track rod by a swivel bearing and vertical
movement of the track rod will cause the change in blade angle of attack. The lower end of the
track rod is connected to a spider (or rotating star) which is constrained to rotate with the rotor.
The spider is kept in the same plane with a swashplate (which does not rotate with the rotor)
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Figure 1.7: Main components of a helicopter [22]

Figure 1.8: Schematic diagram of main rotor hub with collective and cyclic pitch control [23,
Chap. 6]
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via spherical bearing. The position and orientation of the swashplate are determined by three
actuators, or jacks, connecting it to the top of the fuselage. If the actuators move in unison
(figure 1.8 Collective plate), the spider and swashplate move up or down together, thereby all
the blades have the same change in pitch angle. This action is called collective pitch control. If
the actuator move unequally (figure 1.8 Cyclic pitch) then the rotation plane of the spider and
swashplate combination is altered and cyclic pitch control is achieved [23].

Apart from collective and cyclic pitch controls, the other two major control components in a
helicopter are antitorque control and throttle control. All these control modes are discussed in a
global manner as follows:

• Collective pitch and throttle control: As shown above, the collective control changes the
pitch angle of main rotor blades simultaneously. Modifying the pitch angle of the blades
causes a change in drag force, which affects the rotor rotational speed. In order to maintain
a constant rotor rotational speed, which is essential for helicopter operations, a proportional
change in power is required. This is accomplished with the throttle control. For example,
as the pilot raises the collective stick, blade pitch angle increases, drag increases, rotor
rotational speed decreases, and engine power needs to be increased to maintain the same
rotational speed. To relieve the pilot from the difficult task of controlling both collective and
engine power at the same time, usually a mechanical connection is established between the
collective level and engine throttle. When the collective level is raised, the engine throttle
is automatically increased by internal mechanical linkages.

• Cyclic pitch control: The cyclic pitch control changes the rotor disk orientation as shown
above. Since the total blade lift force is essentially perpendicular to the main rotor disk
plane (more precisely, the tip-path plane), the direction of the total thrust force changes. By
application of Newton’s law, the equilibrium orientation of the whole helicopter is modified,
thereby allowing the helicopter to fly in any desired direction: forward, rearward, left, or
right.

• Anti-torque control: The rotation of the main rotor causes an opposing torque acting on
the helicopter fuselage. There are many ways to counteract this torque: tail rotor, contra-
rotating or counter-rotating rotors, NOTAR system, etc. By far, the most popular way is
using a tail rotor - a small propeller mounted at helicopter tail generating thrust force to
compensate for the torque as in figure 1.9.

b) Quadrotor

Quadrotor is a multirotor VTOL aerial vehicles propelled by four rotors. The history of
quadrotor dates back to the early twentieth century with various attempts like the Breguet-
Richet Gyroplane (1907), the Oehmichen No.2 (1920), and the Flying Octopus by De Bothezat
(1922, see figure 1.10). These early prototypes had serious limitations in terms of control and
especially endurance. The aforementioned Flying Octopus could remain airborne for only 2 min-
utes 45 seconds. Recently, quadrotor designs have become popular for many UAV applications,
including inspection and surveillance. There are several advantages of quadrotors over similar-
scaled helicopters. First, standard quadrotors are mechanically less complex than helicopters due
to the absence of the sophisticated rotor hub. This greatly simplifies the design and maintenance
of the quadrotor. Second, the use of four small-diameter rotors (usually) allows quadrotors to
possess less kinetic energy during flight as compared to helicopters. Hence, they are safer to
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Figure 1.9: Tail rotor anti-torque to compensate for the torque (adapted image from [22, Chap.
3])

interact with. Finally, they are small, low cost, and can be built in large quantity. These advan-
tages have motivated in recent years the development of swarms of quadrotors for cooperative
works [24–26]. The principal disadvantage of quadrotors is their poor energy performance as
compared to helicopters with similar sizes and weights (see section 1.2).

Some examples of mini-quadrotors are shown in figure 1.11 and their simple control principles
are illustrated in figure 1.12. A standard quadrotor has two pairs of counter-rotating rotors.
The first and the third rotors rotate clockwise whereas the second and the fourth rotors rotate
anticlockwise. In practice, most quadrotors are symmetric around their center of mass (CoM), i.e.
the distances between each rotor to the quadrotor CoM are all equal). The thrust is controlled
by modifying the rotational velocity of the rotors. As a rotor spins around its axis, an opposing
torque (due to propeller blades aerodynamic drag) is generated around the rotor axis. In hovering
or in vertical climb/descent (figure 1.12(a)), all rotors spin at the same speed. Due to the counter-
rotating nature of the two rotor pairs and the aforementioned symmetric property, the net torque
on the quadrotor is zero, thereby no yaw motion is generated. Roll and pitch control can be
achieved by increasing the speed of one rotor and decreasing that of the diagonally opposite
rotor. For example, in figure 1.12(b), a forward pitch-down movement is generated by increasing
the third rotor speed while decreasing the first rotor speed. The yaw control is achieved by the
difference between the torques between a pair of opposite rotors and the remaining pair. For
instance, in figure 1.12(c), a counterclockwise yaw movement is generated by increasing the first
and the third rotor speeds while decreasing the second and the fourth rotor speeds.

As in the case of fixed-wing airplanes, VTOL aerial vehicles are usually underactuated. For
example, the standard quadrotor has four independent control inputs (four propellers spinning
velocity) versus six DoFs parameterizing the quadrotor position/orientation in space. Due to this
limited mobility, some studies, e.g. [27,28] add more DoFs to classical quadrotor by using tilting
propellers. These configurations improve the versatility of quadrotor, i.e. it can track additional
trajectories that are not possible with standard quadrotor, at the expense of more complexity in
mechanical design.
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Figure 1.10: De Bothezat Quadrotor (source: Edison National Historic archive)

(a) (b)

Figure 1.11: Some examples of mini quadrotors: (a) Parrot AR.Drone 2.0 (parrot.com) and (b)
Our ISIR Prototype
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Figure 1.12: Quadrotor control for different cases: (a) hover or vertical climb/descent, (b) pitch
down, and (c) counterclockwise yaw. The thickness of yellow arrow is proportional to rotor
rotational velocity. The red arrow represents the movement direction of the quadrotor.

http://ardrone2.parrot.com
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Figure 1.13: Bell Boeing V22 Osprey tilt-rotor in transition from hover to cruising flight and its
flight envelope [31])

1.1.3 Convertible Aircraft

In this thesis, the term “convertible aircraft” refers to aircraft with wings that have the capacity
of hover flight. There are many types of convertible aircraft as shown in figure 1.6: differ-
ent lift/propulsion (compound helicopter), rotor-wing, tilt-rotor/tilt-wing, and tilt-body. The
compound helicopters rely on dedicate lift or propulsion actuators. These aerial vehicles suffer
from performance loss in cruising flight due to the drag on the large rotor(s). As for rotor-wing
convertibles, they are difficult to control. The stoppable rotor Boeing X-50 is retired from de-
velopment due to a flaw in design and testing crashes [29]. In this section, we will focus on
tilt-rotor/tilt-wing and tilt-body aerial vehicles, which are increasingly popular in unmanned
applications. The most common small convertible UAV configuration is a set of propellers and
wing(s), where the relative orientation of the propellers with respect to wing(s) might change.

1.1.3.1 Tilt-Rotor/Tilt-Wing

The convertible aircraft of the type tilt-rotor like the one in figure 1.13 has two rotors, making
vertical taking off and landing possible like helicopters. In addition, in cruising flight, the rotors
can be rotated forward by nearly 90◦ to fly similar to the fixed-wing airplane. This convertible
ability increases the tilt-rotor flight envelope to cover both helicopter and airplane regimes as
illustrated in figure 1.13. However, the main disadvantage of tilt-rotors is the poor performance
in hover caused by relatively small rotor diameters and large rotor mast. As an example for tilt-
rotor mini-UAV, Wingcopter (figure 1.14) has four rotors and behaves like a quadrotor in hover
mode. These rotors can be tilted simultaneously into cruising mode. A schematic model of tilt-
rotor can be viewed in figure 1.15. The two rotors rotate in opposite directions, thereby canceling
the reactive torques in order to keep the UAV stable. Altitude control is achieved by varying the
rotational velocities of both rotors simultaneously. Modifying differently the speeds of the two
rotors leads to roll control. Pitch control is performed by tilting the rotors simultaneously to the
front, which also provides forward motion. For yaw control, the tilt angles of the right and left
rotors are changed in opposite directions [30].

Concerning tilt-wing aircraft, Vertol VZ-2A in figure 1.16 was the first of this type to suc-
cessfully perform the transition from vertical to horizontal flight. The aircraft can pivot entire
wing upwards, along with its lifting propellers. As compared to tilt-rotor aircraft, this tilt-wing
model has an advantage of only one mechanically tilting part. However, the latter have several
drawbacks. First, high angle of attack of the wing may give rise to the stall phenomenon during
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Figure 1.14: Wingcopter tilt-rotor mini-UAV (wingcopter.com)

Figure 1.15: Tilt-rotor schematic model, adapted from [30]

http://www.wingcopter.com/
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Figure 1.16: Tilt-wing Vertol VZ-2 (1957, Smithsonian Air
and Space Museum)

Figure 1.17: CAD model of a quad tilt-wing
in three modes: (a) cruising flight (b) tran-
sition flight (c) vertical flight [33]

transition phase3, leading to the loss of stability. Second, the aircraft is difficult to control when
flying in gusty condition due to the large surface of the wing. Finally, this model requires addi-
tional control in helicopter mode, since there is no cyclic control but only auxiliary-thrust devices.
Due to these disadvantages, the tilt-wing prototypes were discontinued (see the Smithsonian Air
and Space Museum website).

In recent years, inspired by the rapid development of small UAVs, notably quadrotors, some
hybrid prototypes (combining features of quadrotor and tilt-wing) have been developed, e.g. the
quad tilt-wing SUAVI in figure 1.17 [33] or the QTW McArt2 by Japan Aerospace Exploration
Agency [34].

3Although due to the downwash of the propellers on the wing, the angle of attack of the wing is reduced, i.e.
stall is delayed at higher angle of attack [32].

http://airandspace.si.edu/collections/artifact.cfm?object=nasm_A19650279000
http://airandspace.si.edu/collections/artifact.cfm?object=nasm_A19650279000
http://airandspace.si.edu/collections/artifact.cfm?object=nasm_A19650279000
http://airandspace.si.edu/collections/artifact.cfm?object=nasm_A19650279000
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Figure 1.18: Quadshot tilt-body mini-UAV (transition-robotics.com)

1.1.3.2 Tilt-Body

Tilt-body convertible requires the body aircraft to rotate during the transition fly. In addition,
the rotor hubs are rigidly attached to the aircraft body. For example, the Quadshot UAV in
figure 1.18 is the hybrid model with a slender wing and four rotors. In VTOL mode, this UAV
works like a quadrotor. During transition flight, the thrust forces from two back rotors are larger
than the thrust force from two front rotors, making the whole UAV tilting forward into cruising
mode. The disadvantage of this model is that the four rotors are fixed on UAV body. Hence
tilt-body has less flexibility to find optimal configuration to minimize the energy consumption
or to control as compared to UAVs that can change the relative orientation of propellers w.r.t
UAV main body like Wingcopter.

A special kind of tilt-body aircraft is the so-called tail-sitter due to the ability to take off and
land on its tail. An early prototype was the Convair Pogo in 1954 as depicted in figure 1.19. The
thrust generation was effectuated by a pair of three-bladed contra-rotating propellers. The main
motivation for tail-sitter aircraft was their ability to perform VTOL from/to a limited surface,
e.g. on a small warship. However, the inherent problem with this model was the difficulty
for a pilot in the uncomfortable sitting position to land the aircraft. By contrast, unmanned
systems do not suffer the above problem. An example of modern tail-sitter UAV is the HoverEye
in figure 1.20. It is a ducted-fan UAV with two contra-rotating rotors to generate the thrust.
Torque control is achieved by a set of governor surfaces that can change the tilting angles to
deflect the propellers’ downwash (see figure 1.20). Another example of small prototype is the
tail-sitter SUPAERO VTOL MAV [35]. The propulsion system consists of two coaxial contra-
rotating motors-propellers. Wind tunnel testing in that study has demonstrated a small loss
of thrust in the contra-rotating system as compared to a single motor-propeller. However, the
maximum residue torque for the contra-rotating system is about ten times lower than the torque
measured on the single motor-propeller system.

1.2 Aerial Vehicle Performance

The aerial vehicle performance is largely determined by the power calculation over a range of flight
conditions. This calculation may then be translated into quantities such as climb rate, ceiling,
range, optimal speed, and maximum speed. These quantities define the operational capability of
aerial vehicles. To quantify the performance of aerial vehicles, various indicators are used: disk
loading and power loading in hover flight; glide ratio and specific energy consumption ratio in

transition-robotics.com
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Figure 1.19: Tail-sitter XFY Pogo
(1954, source: Wikipedia) Figure 1.20: Hover Eye ducted-fan tail-sitter UAV [9]

cruising flight. In this section, we also present some simple energy performance comparisons of
different fixed wing, VTOL, and convertible aerial vehicles.

1.2.1 Hover Performance

Aerial vehicles hover efficiency is usually characterized by the power loading, defined by amount
of thrust generated per required unit power. In addition, a related parameter frequently used
in helicopter analysis is the disk loading, defined as thrust on one square meter of rotor. It can
be shown that the power loading is inversely proportional to the disk loading (see Eq. (2.17)).
Vertical lift aircraft that have a low disk loading will require low power (i.e., they have high
power loading) and will tend to be more efficient [36, Sec. 2.3]. Table 1.1 shows that helicopters
are the most efficient aerial vehicles in hover.

Aerospace vehicle
designation

Aerospace vehicle type Equivalent
disc loading
(N/m2)

Ideal induced
velocity
(m/s)

Ideal power
loading
(N/kW)

Robinson R44 Modern utility helicopter 140 7.6 132.3
Westland Lynx Utility helicopter 364 12.2 82.0
Mil Mi-10k Crane helicopter 388 12.6 79.4
Sikorsky S64A Crane helicopter 496 14.2 70.3
Sikorsky CH-53E Heavy helicopter 718 17.1 58.5
Bell V22 Osprey Tilt rotor 1161 21.8 45.9
Hiller-Ryan
XC-142

Tilt wing 2387 31.2 32.1

Ryan XV5A Fan lift 16823 82.8 12.1
Harrier GR3 Jet lift 114403 216 4.6
Space shuttle Rocket 465479 436 2.3
Saturn V F1 Rocket 2964912 1087 0.9

Table 1.1: Equivalent disk loading, ideal induced velocity, and ideal power loading comparison
of different aerial vehicles and rockets [23]

To proceed with hover performance, comparison between helicopter and quadrotor efficiency

http://en.wikipedia.org/wiki/Convair_XFY-1_Pogo
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Figure 1.21: Comparison between helicopter and quadrotor disk areas for same footprint

will be discussed. Although the first manned quadrotors appeared in early twentieth century
(see section 1.1.2), they were not popular as compared to helicopters. One of the main reasons is
that quadrotors (usually) have lower endurance as compared to helicopters with similar weight
and footprint. Indeed, from figure 1.21, the disk area of helicopter is:

Aheli = πR2
1

For quadrotors, there is usually a gap between adjacent propellers to avoid aerodynamic inter-
ference. The quadrotor propeller radius is usually smaller than half of helicopter disk radius
A2 < A1/2. The disk area of quadrotor is:

Aquad = 4πR2
2 < 4π(R1/2)

2 = πR2
1 = Aheli

The above formula proves that the total disk area of the quadrotor is smaller than the helicopter.
Hence, with the same total thrust, the disk loading of the quadrotor is higher than the helicopter.
Consequently a standard quadrotor is usually less efficient than a helicopter with the same
footprint and mass. [37] performs similar analysis and suggests that traditional helicopter (even
with 15% loss due to tail rotor) is 25% more efficient than a standard quadrotor.

In practice, when evaluating the performance of aerial vehicles, one must take into account
the effect of Reynolds number and the flow interaction between different components. These are
even more important concerning small UAVs, since the effects of low Reynolds number degrade
significantly the performance of the propellers [38].

In order to improve the performance of quadrotor, Driessens and Pounds [37] presents a
prototype with a single fixed-pitch main rotor and three small rotors that provide both counter-
torque and maneuvering control (figure 1.22). They report a hover performance improvement of
15% over a classic prototype with the same mass and footprint.

1.2.2 Cruising Performance

Cruising performance of aerial vehicles is often characterized by indicators like glide ratio or
specific energy consumption. Glide ratio is the ratio of lift force over drag force on an aircraft:

GR =
Lift
Drag

(1.1)
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Figure 1.22: Y4 Triangular Quadrotor [37]

Figure 1.23: Robinson R44 helicopter (robinsonheli.com)

High value of GR is desirable. For example, a Boeing 747 has glide ratio of 17.7 in cruising flight.
That means if all the engines of the airplane are turned off, it is able to glide forward 17.7 km
when it descends 1 km. By contrast, the helicopter Robinson Raven II like the one in figure 1.23
has glide ratio of only 4.5, which is four times smaller than that of a Boeing 747. To characterize
further the energy efficiency of an aircraft, the specific energy consumption is used:

E =
P

WV
(1.2)

where P is the power, W is the weight of the aircraft and V > 0 is the speed. E registers
energy consumption per meter traveled for each newton of gross weight. A small E is desirable.
As an example, a Boeing 747 weighs W = 3 × 106 N during mid-flight at cruising speed of
V = 250 m/s. It is powered by 45 MW engines. Hence, the specific energy consumption ratio
E is 0.06 [39]. Unlike the case of fixed-wing aircraft where the thrust compensates the drag
force only, the thrust force on VTOL aircraft has to compensate both the vehicle’s weight and
the drag force. Therefore, the energy performance of VTOL aircraft in cruising fly is generally
poor. For example, the Robinson Raven II helicopter weighs W = 11 kN at cruising speed
V = 55 m/s and is powered by 183 kW engines (source: robinsonheli.com). Hence, the specific
energy consumption ratio E is 0.29, which is five times more than that of a Boeing 747.

Figure 1.24 demonstrates the specific energy consumption of various aircraft, automobiles,
trains, birds, etc. against the speed. The most striking feature of figure 1.24 is that helicopters
have the highest E. Although modern helicopters like the aforementioned Robinson Raven II

http://www.robinsonheli.com/
http://www.robinsonheli.com/


22 Chapter 1. A Short Introduction to Aerial Vehicles

Figure 1.24: Specific energy consumption plotted against the speed [39]

should place more to the right for increasing cruising speed and slightly below for improving E,
they still perform worse than even automobiles in energy scale. We can take another example
of a small quadrotor like the one described in the article by Aleksandrov and Penkov [40]. It
has dimensions 500 mm × 500 mm × 90 mm and the weight is 1.4 kg. Its battery capacity is
4900mAh at 11.1 V and the power of all four motors is 130 W. At V = 5 m/s, we can calculate
E = 1.8. High specific energy consumption explains why this quadrotor can stay in the air for
only 15 min. This limits the duration of a typical mission.

Focusing now on VTOL aerial vehicles, figure 1.25 compares required power for four different
aerial vehicles with the same mass [20]. For fair comparison, the rotor solidity (the ratio of total
blade area over rotor area, defined in Eq. (2.70)) in all configurations are kept the same (see [20]):
the helicopter has one rotor with four blades; the coaxial has two rotors with two blades each;
the tandem has identical rotors as the coaxial but separated; the tilt-rotor has two smaller rotors
but with three blades. At low speed, the tandem spends the least power thanks to its two large
separated rotors. The coaxial, also with two rotors, is less efficient than the tandem but still
spend less energy than the traditional helicopter. The tilt-rotor spends the most power since
it suffers from loss due to the smaller rotors producing downwash on wings. When the speed



1.3. Chapter Summary 23

Figure 1.25: Comparison of the required powers for the equivalent helicopter, coaxial, tandem,
and tilt-rotor at International Standard Atmosphere at sea level [20]

.

increases (especially from 60 to 120 km/h), the power curve of the tilt-rotor rapidly approaches
the one of the tandem, since the interference of the two rotors becomes negligible. At high speed,
the tilt-rotor in its airplane mode is the most efficient while the rest suffers high parasite drag,
especially the tandem. The coaxial with the drag penalty due to big rotor mast is less efficient
than the helicopter.

1.3 Chapter Summary

A short introduction to aerial vehicles was presented in this chapter. Although there are many
different types of aerial vehicles, they can be classified into three main classes: fixed-wing, VTOL,
and convertible. For each class, a brief overview of its components, including control components
was presented. Any aerial vehicle has its advantages and disadvantages. Helicopters have the best
hover efficiency thanks to their small disk loading, but their cruising performance is mediocre.
Fixed-wing aircraft are efficient in cruising flight but they require long runway or catapult/net
system for take-off and landing. Convertible aerial vehicles possess the advantages of both fixed-
wing and VTOL aircraft, but they usually have additional mechanical complexity. Nonetheless,
convertibles have a great potential. Starting from 1950s, countless different manned convertible
experimental prototypes have been built. Although not all of these were successful, important
lessons have been learned along the route. In the last few decades, the development of digital
computers and the minimization of electronic components paved the way for small unmanned
aerial systems. Some manned aerial prototypes that were not so successful in the past become
popular in unmanned systems thanks to the simplicity of the latter. The quadrotor along with
some small convertible UAVs are good examples of this trend. In addition, the flexibility of
unmanned systems allows many new and innovative convertible configurations. However, there
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are some challenges associated with small prototypes. Firstly, the effects at small Reynolds
number can degrade significantly the performance of these systems. Secondly, according to
square-cube law, small UAVs tend to be highly sensitive to turbulence [41]. The next chapter
will focus on energy modeling of these small UAVs.



Chapter 2

Energy Modeling

The previous chapter shows that many convertible UAV configurations consist of a set of pro-
pellers and one or several wings where the relative orientation of the wing(s) w.r.t. the propellers’
plane may change. Since the prototype that we have developed also belongs to these configura-
tions, this thesis focuses on such systems, in particular in this chapter, their energy modeling. To
our knowledge, there are few works on the energy modeling of convertible UAVs in the available
literature, despite the fact that energy efficiency is the main incentive for using these systems in
place of more classical structures. There is little doubt that convertible UAVs constructors have
developed dedicated models, but those are not available in general publications. There exists of
course a large literature on the modeling of helicopters [23, 42–44]. In these references, momen-
tum and blade element theories are the main ingredients for propeller modeling and these tools
can be used for the modeling of convertible UAVs as well. The case of small convertible UAVs
needs to be specifically addressed, however, due to particular characteristics of these systems.
First of all, lift forces acting on the wings of a convertible vehicle can be important and must be
taken into account in the analysis since they modify substantially the thrust necessary to sustain
the vehicle’s weight and impact on the vehicle’s orientation. By contrast, energy evaluation for
helicopters typically assumes that the propellers must sustain the vehicle’s weight. Secondly, we
are interested here by fixed-pitch propellers so that modifications of the thrust are accomplished
by changing the main rotor’s rotational velocity. This contrasts with the case of helicopters.
For example, Newman [23] presents the procedure to calculate the energy of helicopters while
assuming that the propeller’s velocity (blade tip velocity) is constant. Furthermore, the power
decomposition in terms of induced power, profile power, and parasite power is always used for
helicopters but its justification for convertible vehicles is not clear due to the aforementioned
large variations of thrust and vehicle orientation. Finally, one must also account for a degra-
dation in performance of propellers at low Reynolds number compared to larger propellers for
full-scale aircraft, as mentioned by Brandt and Selig [38]. Having identified the special character-
istics of small convertible UAVs, our approach to energy modeling of these systems is presented
in the following sections 2.1-2.3. Based on this modeling, a comparison between different UAV
configurations is proposed in section 2.4.

To conclude this short introduction, let us finally mention that more accurate models can
be obtained by applying more elaborate (but also much more complex) methods than those
used here. This thesis is not an aerodynamics thesis. The objectives of the modeling here
developed are twofold: first, to easily allow one to evaluate the energy consumption in terms of
the geometrical and mechanical characteristics of the structure so as to facilitate presizing [20],
and next to provide useful information for the control design.
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Figure 2.1: 2D Model of the UAV

2.1 Overview of the Modeling Approach

Before detailing the calculations to model the energy consumption, we provide in this section
an overview of the modeling approach. In view of the diversity of existing structures, it is not
possible to provide a modeling directly pertinent to any specific system. Our objective is to
provide a modeling approach applicable to most of them. We start from two observations:

1. Most convertible UAVs, and especially the prototype we have built, are composed of a set of
coplanar propellers and one (or several coplanar) wing(s). Of course, it is not difficult to find
exceptions. For example, on many tilt-rotor systems, rotors can be inclined independently,
so that the propellers are no longer coplanar. In most flight phases like hover flight or
cruising flight along straight lines, however, the propellers are indeed coplanar.

2. In agreement with the existing literature, the main scenario of interest is the evaluation of
the energy consumption on motion at constant linear velocity (possibly zero).

Based on these observations, we consider a VTOL-UAV composed of a set of N coplanar pro-
pellers of same size and characteristics and a main body including wing(s), as depicted in vertical
projection on the left part of figure 2.1. The following notation is used:1

• I = {O, i0, j0,k0} is an inertial frame with k0 pointing downward. This choice is consistent
with the common use of NED (North-East-Down) frames in aeronautics.

• B = {G, i, j,k} denotes a body frame with G the vehicle’s center of mass (CoM) and
{i, j,k} coinciding with {i0, j0,k0} when the vehicle is in hover. The plane (G, i, j) also
coincides with the propellers’ plane.

• va denotes the linear air-velocity of the UAV and the vector of coordinates of va in I is
denoted as va, i.e. va = va,1i0 + va,2j0 + va,3k0.

Assumptions: We focus on a 2D motion2 in the plane (O, j0, k0) = (G, j,k) spanned by the
gravity vector and the UAV’s linear velocity vector. It is assumed that the vehicle moves at
zero angular velocity and constant linear velocity. It is also assumed that all aerodynamic forces
acting on the UAV (i.e. forces acting either on the propellers or on the main body) are tangent
to the motion plane (O, j0, k0). This requires, in particular, the wind velocity to be parallel

1Throughout this thesis, bold letters are used for vectors in Euclidean space whereas ordinary letters are used
for coordinates of these vectors in a basis.

2This work can be extended to the general 3D case, for example to take into account lateral forces induced by
a non-zero side-slip angle, at the expense of a more complicated modeling.
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to the plane (O, j0, k0). Finally, it is assumed that the pitch moment due to asymmetric flow
around the propellers in cruising flight is zero (see section 2.2.5).

From these assumptions, the vehicle’s orientation is fully determined by the angle θ between
k0 and k.

The following forces, orthogonal to i0, act on the vehicle (see the right part of figure 2.1):

• The vehicle’s weight W = mg k0 with m the vehicle’s mass and g the gravity constant;

• The aerodynamic force Fa = Fa,2 j0 + Fa,3 k0 acting on the vehicle’s main body;

• The thrust forces Ti = −Ti k (i = 1, · · · , N) acting on the propellers, with Ti ≥ 0 the
intensities of these forces;

• The in-plane forces Hi = Hi j (i = 1, · · · , N) acting on the propellers, with Hi the
coordinates along j of these forces.

Since the vehicle moves at constant linear velocity, Newton’s law implies that the following two
relations are satisfied:

N∑
i=1

Ti = (mg + Fa,3) cos θ − Fa,2 sin θ (2.1)

N∑
i=1

Hi = −Fa,2 cos θ − (mg + Fa,3) sin θ (2.2)

In order to satisfy the assumption of motion with zero angular velocity, the moment of
external forces must also be zero. On a multi-rotor system this is typically achieved by a proper
choice of Ti, consistent with Eq. (2.1). For simplicity we assume that this property is satisfied
with Ti = T, ∀i, i.e. all propellers deliver the same thrust. This is usually satisfied with a good
degree of accuracy for a well-built quadrotor. Then, Eq. (2.1) and Eq. (2.2) reduce to:

T =
1

N

[
(mg + Fa,3) cos θ − Fa,2 sin θ

]
(2.3)

H =
1

N

[
− Fa,2 cos θ − (mg + Fa,3) sin θ

]
(2.4)

with T and H the respective thrust and in-plane force intensities on each propeller.
The approach used to model the energy consumption proceeds as follows.

1. Analytical modeling of aerodynamic forces: Using momentum and blade element
theories, analytical models of T,H, and the torque Q needed to drive each propeller are
derived: 

T = fT (θ, va, $, νind)
H = fH(θ, va, $, νind)
Q = fQ(θ, va, $, νind)

(2.5)

where $ is the propeller rotational speed and the so-called “induced velocity” νind is the
solution of an implicit analytic equation:

fν(θ, va, T, νind) = 0 (2.6)

Aerodynamic forces acting on the vehicle’s main body are defined as:

Fa = fa(θ, va) (2.7)
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where the function fa will be specified further. Note that, by assuming Fa does not depend
on $ and νind, we implicitly neglect interactions between the flow induced by the propellers
and the flow over the wing(s). This assumption needs to be justified (or relaxed) on a case
by case basis, depending on the vehicle’s structure.

2. Determination of the orientation equilibrium and propellers’ speed: Using the
fact that the function fT is invertible with respect to $ ≥ 0, $ can be expressed as a
function of θ, va, T , and νind:

$ = f$(θ, va, T, νind) (2.8)

where the function f$ is obtained by inversion of fT with respect to $. From Eq. (2.5),
(2.7), and (2.8), Eq. (2.3) and Eq. (2.4) can be written as:

T=
1

N

[Ä
mg + fa,3(θ, va)

ä
cos θ − fa,2(θ, va) sin θ

]
(2.9)

fH
(
θ, va, f$(θ, va, T, νind), νind

)
=

1

N

[
− fa,2(θ, va) cos θ −

Ä
mg + fa,3(θ, va)

ä
sin θ

]
(2.10)

Replacing T in Eq. (2.6) and Eq. (2.10) by the right-hand side of Eq. (2.9), given the air
velocity va one obtains two implicit equations in two unknowns θ and νind. This system
of equations is solved numerically to obtain the equilibrium orientation θ and the induced
velocity νind. The value of T is then given by Eq. (2.9) and the propeller speed $ by
Eq. (2.8).

3. Energy consumption: The torque Q is obtained directly from Eq. (2.5). This allows one
to compute the power P = NQ$ and subsequently the energy consumption.

Before proceeding with the details, a few remarks are necessary.

i) The proposed approach can be simplified by neglecting the in-plane force H which are
typically small w.r.t. the aerodynamic forces acting on the wing(s). This corresponds to
setting H = 0 in Eq. (2.4) (i.e. fH = 0 in Eq. (2.10)). Then, θ is first determined by
numerically solving Eq. (2.10) and νind is determined next from Eq. (2.6) using expression
Eq. (2.9) for T . In this way solving a system of two equations in two unknowns is reduced
to solving independently two systems of one equation in one unknown.

ii) Concerning Step 2, there may exist several solutions (θ, νind) to Eq. (2.10). In particular,
even when the in-plane force H is neglected, strong lift forces and the associated stall
phenomenon can lead to several equilibrium orientations for a given airspeed va [45]. We
will come back to this issue in a next chapter. In practice, being essentially interested in
optimizing the energy consumption, only the equilibrium orientation associated with the
minimum energy consumption is of interest.

2.2 Propeller Modeling

Propeller modeling for aerial vehicles is usually based on classical theories like momentum theory
and blade element theory. These theories utilize fundamental equations of aerodynamics to
construct analytical equations. In order to model more precisely the propeller and the flow
interaction between components of the system, an advanced theory named vortex theory is
employed to realistically take into account the vortex field generated by moving airfoils (an
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example of a vortex field created by a VTOL aircraft is shown in figure 2.2). In vortex theory,
each rotor blade is modeled by single vortices or vorticity surfaces. This opens possibilities for
studying the time-average and instantaneous flow fields generated by the propeller [42]. However,
the price of vortex theory is high computational complexity, which usually does not justify the
small increase of accuracy in practical modeling. The detailed discussion of vortex theory is
beyond the scope of this thesis. Interested readers can refer to numerous available references
on the subject [42–44]. Coming back to momentum and blade element theories, application to
propeller modeling is now recalled.

Figure 2.2: Vortex field generated by a Bell Boeing V22 Osprey tilt-rotor flying over the ocean
(courtesy of Ted Carlson / Check Six on time.com)

2.2.1 Recalls on Momentum Theory

Momentum theory or actuator disk theory is a classical analysis to estimate the rotor performance
based on overall flow velocites and the total thrust and power. Momentum theory applies the
fundamental conservation law of fluid mechanics (conservation of mass, momentum, and energy).
It was developed for marine propellers by W. J. M. Rankine in 1865 and R. E. Froude in 1885,
and later extended in the twentieth century for airplane propellers [44]. This theory is based on
several assumptions (see [23, Chap. 3]):

1. The propeller has an infinite number of blades.

2. The propeller is modeled by a constant pressure difference across its disk.

3. The air downwash velocity through the propeller area is constant across the disk.

4. The vertical velocity is continuous through the disk.

5. There is no swirl in the wake (see the discussion in section 2.2.5).

6. The airflow is divided into two non-interacting regions, namely that which passes through
the propeller disk and that which is external to the disk.

These are simplifying assumptions, but it is recognized in the literature that they lead to a good
approximation of many characteristic quantities associated with a propeller.

http://content.time.com/time/magazine/article/0,9171,1666282,00.html
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2.2.1.1 Hover Flight

Consider a propeller in hover. The actuator disk is depicted on figure 2.3. The symbols pu and
pl denote respectively the atmospheric pressures above and below the propeller disk. The atmo-
spheric static pressure is p∞. Due to the rotation of the propeller blades, the air is accelerated
through the rotor disk with velocity νind = νindk, νind ≥ 0, called induced velocity.3 The velocity
in the wake, far downstream, is denoted as νD = νDk, νD ≥ 0. The propeller thrust is given by:

T = (pl − pu)A (2.11)

where A is the area swept by the propeller blades.

Energy conservation equates the work done by the rotor to the rate of change of energy in the
fluid. As an integration form of energy conservation law for the fluid, Bernoulli’s equation can
be applied above and below the propeller disk:

p∞ = pu +
1

2
ρν2

ind

p∞ +
1

2
ρν2
D = pl +

1

2
ρν2

ind

(2.12)

where ρ is the air density. Equation (2.11) and Eq. (2.12) yield:

T =
1

2
ρAν2

D (2.13)

By conservation of mass, the mass flux4 is constant all along the wake and equal to the mass
flow through the propeller disk per unit time:

MFLOW = ρAνind (2.14)

In addition, conservation of momentum law dictates that the propeller thrust is equal to the rate
of change of axial momentum of the air per unit time:

T = MFLOWνD = ρAνindνD (2.15)

From Eq. (2.13) and Eq. (2.15), we have νD = 2νind i.e. the fluid velocity at the wake is double
the induced velocity at the actuator disk. Substituting this into Eq. (2.13) and rearranging gives:

νind =

 
T

2ρA
(2.16)

Having relating the induced velocity with the thrust and physical parameters A and ρ, we can
now characterize the hover performance by the power loading - which is thrust generated per
unit of power (in this case, induced power):

T

P
=

1

νind
=

 
2ρ

T/A
(2.17)

In order to hover efficiently, the ideal power loading T/P needs to be large, and by consequence
small disk loading T/A is required. In addition, the Figure of Merit (FM) compares the perfor-
mance of an ideal rotor to the actual rotor:

FM =
Pideal

P
=
Tνind

P
(2.18)

3We use without distinction the term “induced velocity” for the vector νind and its coordinate νind along k.
4The mass flux is defined here as the amount of fluid mass per unit time. Hence, its unit is kg/s.
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Figure 2.3: Actuator disk streamtube in hover flight (adapted from [23, p. 28 Fig. 3.1])
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Figure 2.4: Actuator disk streamtube in axial flight, when the total flow through propeller disk
is (a) downward and (b) upward (adapted from [23, Chap. 4])

The ideal Figure of Merit is FM = 1, when the entire mechanical power is converted to produce
thrust. The Figure of Merit is lower for real rotor because of power loss for blade drag, parasite
drag, friction, etc. For full-size helicopter rotors, the maximum Figure of Merit is typically
FM = 0.75 to 0.80 [44, p. 36].

2.2.1.2 Axial Flight

Assume that the propeller is flying vertically so that its shaft direction is aligned with k0 (i.e.
k ≡ k0) with (air-)velocity va. The flow velocity is ν = −va where ν = νk. We classify axial
flight in two cases depending on the direction of the total flow (νind + ν) through the propeller
disk: downward flow in the direction of k in figure 2.4(a) and upward flow opposite direction of
k in figure 2.4(b). The first case corresponds to a propeller in climb ν > 0 or in descend with
slow rate ν < 0 and |ν| is small (so that |ν| ≤ νind). The second case corresponds to a propeller
in high speed descent with ν < 0 and |ν| > νind.

We consider in detail the axial flight equations when propeller disk flow is downward as in
figure 2.4(a). Bernoulli equation is applied above and below the propeller disk as in the hover
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case: 
p∞ +

1

2
ρν2 = pu +

1

2
ρ(νind + ν)2

p∞ +
1

2
ρ(νD + ν)2 = pl +

1

2
ρ(νind + ν)2

(2.19)

The propeller thrust is obtained:

T =
1

2
ρA(νD + 2ν)νD (2.20)

The mass flux is:
MFLOW = ρA(νind + ν) (2.21)

In addition, conservation of momentum law yields:

T = MFLOW(νD + ν − ν) = ρA(νind + ν)νD (2.22)

From Eq. (2.20) and Eq. (2.22), we deduce νD = 2νind as in the hover case. Substituting this
into Eq. (2.22) and rearranging gives:

ν2
ind + ννind −

T

2ρA
= ν2

ind + ννind − ν2
ind,0 = 0 (2.23)

where νind,0 =

 
T

2ρA
is the induced velocity at hover, as in Eq. (2.16).

Consider the case when propeller flow is upward as figure 2.4(b). The analysis is similar
to the downward case above, except that now the free stream velocity is directed upward, and
therefore the wake is above the rotor disk. We can easily obtain:

ν2
ind + ννind + ν2

ind,0 = 0 (2.24)

Equation (2.23) gives one positive induced velocity solution which is plotted as the curve ABC
in figure 2.5. Equation (2.24) gives two positive solutions of induced velocity: one solution
corresponds to the dashed curve DE, and one solution corresponds to the solid curve EF. The
dashed portions of the curves are branches of the solution that do not correspond to the real
physical behavior of the rotor wake. The line ν + νind = 0 is where the total flow through the
actuator disk changes sign, which separates the downward case from the upward case in our
current classifications. The line ν + 2νind = 0 is where the flow in the far wake changes sign.
The lines ν = 0, ν + νind = 0, and ν + 2νind = 0 divide the non-negative half-plane (νind ≥ 0)
into four regions: normal working state (climb and hover), vortex ring state, turbulent wake
state, and windmill brake state. Momentum theory can only predict the normal working state
and windmill brake state. For vortex ring state and turbulent wake state, vortex theory or
experimental results need to be invoked to quantify the behavior of the propeller [23,44]. As an
example, figure 2.6(a) shows the flow in vortex ring state. As the propeller descends, there is
no longer clearly defined slipstream. That is because the downwash by the propeller meets the
upwash air by the descending movement of the propeller. The flow recirculation occurs with high
turbulence. As the descending speed increases, the recirculation extends from the tip regions
to envelop the whole of the rotor disk. The limit of vortex ring state and turbulent wake state
occurs when the net flow through the rotor disk is zero (ν + νind = 0). This is the basis of ideal
autorotation when the induced power is zero. Therefore, this condition permits helicopters to
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Figure 2.5: Momentum theory results in axial flight (adapted from [44, Fig. 3-2])

land even if the main engines have failed (see [23, Chap. 7] for more information). Figure 2.6(b)
sketches the flow around the propeller in turbulent wake state, so-called because of the flow
similar to the turbulent wake of a bluff body. The flow is rather turbulent but there is much less
recirculation through the actuator disk since the flow velocity at the disk is upward.

Finally, it is worth noting that in most references on helicopters in the literature [23,42–44],
axial flights are often classified into two cases according to the direction of the propeller velocity:
climb or descent. In climb case, the induced velocity equation (e.g. [23, Eq. (4.17)]) gives
a solution that belongs to the descent case. Such classifications, albeit commonly used and
seemingly simple at first glance, are confusing.

2.2.1.3 Forward Flight

Assume now that the propeller is flying forward at (air-)velocity va. The diagram of the flow
streamtube is illustrated in figure 2.7. The flow velocity is ν = −va. The vector ν is decomposed
along the vectors j and k attached to the propeller: ν = ν2j + ν3k. The velocity intensity of
the total flow across the disk is thus:

ν ′ =
»
ν2

2 + (ν3 + νind)2 (2.25)

Based on momentum considerations (i.e. assuming that, as in hover flight, the wake velocity is
νD = 2νind), Glauert [43] proposed to express the thrust intensity as:

T = 2ρAν ′νind (2.26)

Note that Eq. (2.26) reduces to the momentum Eq. (2.16) in hover flight. In forward flight with
νind << |ν|, it is the same as for the induced velocity of an elliptically loaded wing. Indeed,
fixed-wing theory shows that the induced velocity on a circular wing moving with velocity ν
is [46]:

νind =
T

2ρAν
(2.27)

Equation (2.27) is precisely Eq. (2.26) when ν ′ =
»
ν2

2 + (ν3 + νind)2 ≈ ν at high speed flight.
In addition, results from the method of Mangle and Squire’s induced velocity calculation, wind
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(a) (b)

Figure 2.6: Rotor flow in (a) vortex ring state and (b) turbulent wake state [44, Chap. 3]
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Figure 2.7: Actuator disk streamtube in forward flight(adapted from [23, p. 64 Fig. 5.1])
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tunnel experiments, and flight tests (see [43, Chap. 3]) confirm the validity of Glauert’s formula.
From Eq. (2.25) and Eq. (2.26):

νind −
T

2ρA

1»
ν2

2 + (ν3 + νind)2
= 0 (2.28)

or equivalently,
νind

»
ν2

2 + (ν3 + νind)2 − ν2
ind,0 = 0 (2.29)

A special case of Eq. (2.29) is when ν = ν3, i.e. the propeller is in axial flight:

νind|ν + νind| − ν2
ind,0 = 0 (2.30)

If ν + νind ≥ 0, Eq. (2.30) is the same as Eq. (2.23): the propeller is in normal working state
(climb or hover) or in vortex ring state. If ν + νind < 0, Eq. (2.30) is the same as Eq. (2.24):
the propeller is descending in turbulent wake state or windmill brake state. We can conclude
that Eq. (2.29) is the general momentum theory equation to find the induced velocity at any
air-velocity of the propeller (except in vortex ring state or turbulent wake state for which the
momentum theory assumptions are not satisfied).

Expressing ν in terms of va and θ, i.e.

ν2 = −(va,2 cos θ + va,3 sin θ) , ν3 = va,2 sin θ − va,3 cos θ

it follows from Eq. (2.28) that Eq. (2.6) is satisfied with:

fν(θ, va, T, νind) = νind −
T

2ρA

1»
|va|2 + ν2

ind + 2νind(va,2 sin θ − va,3 cos θ)
(2.31)

2.2.2 Recalls on Blade Element Theory

Momentum theory provides the analysis of the propeller as an actuator disk with an infinite
number of blades. Hence, it is insufficient to take into account the propeller blade geometry
and aerodynamics. To fill these gaps, blade element theory is often applied to further the
understanding of propeller forces and energy. As its name implies, this theory considers that a
propeller blade is composed of a spanwise collection of elements. Each element is considered as
a small airfoil of infinitesimal width (2D). The air flow around each element generates lift and
drag forces on this element. The propeller forces acting on the propeller as a whole are obtained
by the spanwise integration of the aerodynamic forces on the blade elements. Figure 2.8 shows
the flow components in the propeller plane. Let E = {M, iΨ, jΨ,kΨ} denote a frame attached to
the blade element at M (at distance r from the rotor hub) and defined by the following relations:

iΨ = cos Ψi+ sin Ψj, jΨ = − sin Ψi+ cos Ψj, kΨ = k

The flow velocity ν2j parallel to the propeller plane can be decomposed in two terms: a chord-wise
component and a span-wise component, i.e. ν2j = ν2 sin ΨiΨ + ν2 cos ΨjΨ. These components
will account for the in-plane drag forces. To non-dimensionalize the equations, the following
notation is used with the rotor tip speed νT = $R:

ν̄ =
ν

νT
(2.32)

ν̄2 =
ν2

νT
(2.33)

ν̄3 =
ν3

νT
(2.34)

ν̄3,ind =
ν3 + νind

νT
(2.35)
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Figure 2.8: Velocity components in the propeller plane (adapted from [23, p. 68 Fig. 5.3])
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Figure 2.9: Force components on a blade element (adapted from [23, p. 68 Fig. 5.4])

Consider now the blade element depicted on figure 2.9. It is a proper small airfoil. The flow
velocity U in the blade element’s plane can be decomposed as U = UT +UP with UT = UT iΨ,
UP = UPkΨ, and ®

UT = �r + ν2 sinΨ = νT (r̄ + ν̄2 sinΨ)
UP = νT ν̄3,ind

(2.36)

where r̄ = r/R is the normalized radius station on the blade. The norm of the total flow velocity
in the plane of the blade element is then given by

|U | =
»
U2
T + U2

P

= νT
√
(r̄ + ν̄2 sinΨ)2 + ν̄23,ind (2.37)

The inflow angle, i.e. the angle between U and UT , is expressed by the following equation:

ϕ(r̄) = atan2 (ν̄3,ind, r̄ + ν̄2 sinΨ) (2.38)
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The angle of incidence is the difference between the pitch angle θP (r̄) and the inflow angle:

αP (r̄) = θP (r̄)− ϕ(r̄) (2.39)

The elementary lift force on the blade element is:

dL =
1

2
ρcP (r̄)drCLP (αP , r̄)|U |U⊥ (2.40)

with cP (r̄) the blade’s chord at radius r, dr the infinitesimal blade element’s width, CLP (αP , r̄)
the lift coefficient of the blade element, and U⊥ the vector obtained by rotating anticlockwise
the vector U by 90◦ in the plane (M, iΨ,kΨ), i.e.

U⊥ = UP iΨ − UTkΨ

The elementary drag force on the blade element is:

dD =
1

2
ρcP (r̄)drCDP (αP , r̄)|U |U (2.41)

where CDP (αP , r̄) is the drag coefficient of the blade element. In general case, there is a elemen-
tary moment on the blade element. This moment is ignored in our modeling. Discussion of the
moment effects is given in section 2.2.5.

The sum of the lift force dL and drag force dD can be decomposed along the thrust direction
and the in-plane direction normal to the blade span, i.e.

dL+ dD = dT + dH

where, by identification,®
dT = −dTkΨ

dH = dHiΨ
with

®
dT = dL cosϕ− dD sinϕ
dH = dL sinϕ+ dD cosϕ

and


dL =

1

2
ρcP (r̄)drCLP (αP , r̄)|U |2

dD =
1

2
ρcP (r̄)drCDP (αP , r̄)|U |2

(2.42)
The torque acting around the rotor axis is the cross product of the distance vector r = rjΨ and
the in-plane force dH:

dQ = r × dH = −rdHkΨ = −rdHk = −dQk (2.43)

The mean values for the forces and torque are found by integration around the total azimuthal
angle and along the blade length, i.e.

T =
NP

2π

∫ R

0

∫ 2π

0
dT , H =

NP

2π

∫ R

0

∫ 2π

0
dH , Q =

NP

2π

∫ R

0

∫ 2π

0
dQ (2.44)

with NP the number of blades in a propeller. Gathering all the equations above, one finally
obtains the following: (see appendix A for details)

T=
NP

4π
ρR

∫ 1

0

∫ 2π

0
|U |2cP (r̄)

[
CLP (αP , r̄) cosϕ− CDP (αP , r̄) sinϕ

]
dΨdr̄ (2.45)

H=
NP

4π
ρR

∫ 1

0

∫ 2π

0
|U |2cP (r̄)

[
CLP (αP , r̄) sinϕ+ CDP (αP , r̄) cosϕ

]
sin Ψ dΨdr̄ (2.46)

Q=
NP

4π
ρR2

∫ 1

0

∫ 2π

0
|U |2cP (r̄)

[
CLP (αP , r̄) sinϕ+ CDP (αP , r̄) cosϕ

]
r̄ dΨdr̄ (2.47)

The propeller power is the product of the torque driving the rotor by the rotational velocity:

P = Q$ =
NP

4π
ρRνT

∫ 1

0

∫ 2π

0
|U |2cP (r̄)

[
CLP (αP , r̄) sinϕ+ CDP (αP , r̄) cosϕ

]
r̄ dΨdr̄ (2.48)
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2.2.3 Analytical Model for the Propellers

The propeller modeling equations are complex, with the double integration and the variations of
aerodynamic coefficients, chord length, and pitch angle along the blade. In order to obtain sim-
ple closed-form expressions, modeling assumptions are made and an eight-parameter-analytical
model is proposed. These assumptions are as follows:

1. The chord length cP (r̄) and the pitch angle θP (r̄) of the propeller blades vary along the
blade. To simplify the modeling, we assume that the average values of these quantities can
be considered. This amounts to assuming that the propeller blade has a rectangular shape
with width cP and fixed pitch θP . It is shown in [44, Chap. 2] and [23, Chap. 3] that for
many propeller blades, one can take the chord length cP and the pitch angle θP at 75%
radius (r̄ = r/R = 0.75) to have good average values.

2. It is assumed that the rotational speed of the rotor is high w.r.t. the air-velocity. This is
usually true for small quadrotors (i.e. weigh a few kilograms), for which typical values of
$ in normal operating conditions are $ ∈ [3000, 6000] RPM. This allows us to neglect the
reverse flow region and assume that the angle of attack αP of the blade is always small.

From the second assumption, the tangential velocity component UT is much larger than the
perpendicular UP (this is of course not true when r̄ is small but the blade element at small
r̄ does not generate significant lift and consequently power). Hence, from Eq. (2.37) we can
approximate the total flow velocity U :

U ≈ νT (r̄ + ν̄2 sin Ψ) (2.49)

This also means that the inflow angle is small:

ϕ(r̄) = atan2(ν̄3,ind, r̄ + ν̄2 sin Ψ) ≈ ν̄3,ind

r̄ + ν̄2 sin Ψ
(2.50)

Using the assumption of fixed pitch angle, the angle of attack is:

αP (r̄) = θP −
ν̄3,ind

r̄ + ν̄2 sin Ψ
(2.51)

The lift force on the blade section is:

dL =
1

2
ρ|U |2cPdrCLP (αP ) (2.52)

where cP is the chord length of the blade at 75% radius and CLP (αP ) is the blade lift coefficient,
modeled as a linear function of αP :

CLP (αP ) = CL0 + aαP (2.53)

where CL0 is the lift coefficient at zero angle attack, a is the lift curve slope. Here, it is assumed
that the angle of incidence α is small. For simplicity reason, the effect of stall is neglected in the
current modeling. 5 The drag force on the blade section is:

dD =
1

2
ρ|U |2cPdrCDP (αP ) (2.54)

5If the blade aerodynamic airfoil data are available for full range of angle of attack, the effect of stall can be
taken into account similar to the wing model in section 2.3. In practice, the propeller blade data are usually not
available, as discussed in section 2.2.6.
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where CDP (αP ) is the blade drag coefficient, modeled as a quadratic function of αP :

CDP (αP ) = b0 + b1αP + b2α
2
P (2.55)

which bi with i ∈ {0, 1, 2} are constant values. The force in the propeller thrust direction is:

dT = dL cosϕ− dD sinϕ ≈ dL (2.56)

The thrust expression in Eq. (2.45) then reduces to (detailed calculation steps are provided in
appendix A):

T =
ρNP cPR

4

ï
CLt

Å
2

3
+ ν̄2

2

ã
− aν̄3,ind

ò
ν2
T (2.57)

where
CLt = CL0 + aθP (2.58)

is the value of the blade lift coefficient at the fixed pitch angle. We can simplify Eq. (2.57) further
by noting that ν̄2 = ν2/νT is small in normal conditions since it is assumed that |ν2| ∈ [0, 20] m/s,
whereas νT is typically in the range [60, 115] m/s and increases when |ν2| increases. Typically
ν̄2 ≤ 0.2 so that one can neglect the ν̄2

2 term:

T =
ρNP cPR

4

Å
2

3
CLt − aν̄3,ind

ã
ν2
T (2.59)

The in-plane force dH normal to the blade span is:

dH = dL sinϕ+ dD cosϕ ≈ ϕ dL+ dD (2.60)

Let us define constants βi with i ∈ {0, 1, 2} as follows:

β0 = b2 − a
β1 = CLt − 2θP b2 − b1
β2 = b2θ

2
P + b1θP + b0 (2.61)

Then, the in-plane drag force expression in Eq. (2.46) reduces to (detailed calculation steps are
provided in appendix A):

H =
ρNP cPR

4
ν̄2(β1ν̄3,ind + β2)ν2

T (2.62)

Finally, the torque expression in Eq. (2.47) reduces to (detailed calculation steps are provided in
appendix A):

Q =
ρNP cPR

2

4

ï
ν̄3,ind

Å
2

3
β1 + β0ν̄3,ind

ã
+
β2

2
(1 + ν̄2

2)

ò
ν2
T

≈ ρNP cPR
2

4

ï
ν̄3,ind

Å
2

3
β1 + β0ν̄3,ind

ã
+
β2

2

ò
ν2
T (2.63)

From Eq. (2.59), (2.62), (2.63), we can express T, H, Q as functions of θ, va, $, νind. Therefore,
Eq. (2.5) is satisfied with:

fT (θ, va, $, νind) =
ρNP cPR

2

4

ï
2

3
CLtR$

2 − a(va,2 sin θ − va,3 cos θ + νind)$

ò
fH(θ, va, $, νind) = −ρNP cPR

4
(va,2 cos θ + va,3 sin θ) [β1(va,2 sin θ − va,3 cos θ + νind) + β2R$]

fQ(θ, va, $, νind) =
ρNP cPR

2

4

{
(va,2 sin θ − va,3 cos θ + νind)ï

2

3
β1R$ + β0(va,2 sin θ − va,3 cos θ + νind)

ò
+
β2

2
R2$2

}
(2.64)
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2.2.4 Comparison With Literature

In this section, we provide a short discussion of the proposed modeling approach with respect
to what is traditionally done in the helicopter literature, on two aspects: the power calculation
and the aerodynamic model.

Helicopter modeling usually divides the required power into three components [23,42,43](see
figure 2.10): induced power, profile power, and parasite power. Johnson [44] even considers the
changing of gravitational potential energy as a fourth component, named climb power. This
division, or “superposition” principle, is an attempt to identify the different sources of energy
consumption. For example, induced power is usually associated with the aerodynamic lift whereas
profile power and parasite power are primarily associated with the aerodynamic drag. While this
principle might work well with axial flight case, in forward flight the division of power components
is no longer clear. Indeed, during forward flight, the induced power includes the inflow ratio, part
of which is due to the inclination of the propeller disk. The thrust force compensates not only
for the gravity force but also for the aerodynamic drag. In convertible UAVs, this power division
is even less clear due to the presence of large aerodynamic forces. In other words, justification
of this decomposition principle is not that straightforward, and this is the reason why we have
preferred not to rely on it. Our approach simply starts from the force balance (i.e. Newton’s
law) and computes directly the total power, without relying on this decomposition. The power
is purely calculated as the product of the torque driving the rotor by the rotational velocity
(Eq. (2.48)).

Concerning the blade element theory, in nearly all helicopter modeling references, for exam-
ple [23, 43], the blade aerodynamic model is over-simplified: the lift coefficient versus angle of
attack is a linear lift curve through the origin whereas the drag coefficient is a constant. Our
calculation uses more accurate blade aerodynamic models. Indeed, the blade lift function is a
linear equation taking into account the lift coefficient at zero angle attack as in Eq. (2.53) since
modern propeller blade cross-sections are usually not symmetric.6 In addition, the blade drag
function is a quadratic equation taking into account the non-symmetric variation of blade drag as
in Eq. (2.55). Our calculations and simulations have shown improvements in modeling thrust and
power coefficients (see the modeling and identification in section 2.2.6) over the aforementioned
classical helicopter modeling.

A modeling of aerodynamic effects on propellers is proposed in [47]. That modeling is more
complete than the one here presented since it considers the 3D case includes angular velocity
dependence, and also provides a modeling of aerodynamic moments. On the other hand, the
above expressions in this thesis specify the explicit dependence of force coefficients on geomet-
ric/aerodynamic parameters of the propellers and include the vertical flight velocity dependence.

2.2.5 Classical Propeller Modeling Limitation

This section briefly discusses the effects that have been ignored in our modeling. Some of them
could be easily incorporated in our model; others required more profound modifications.

1. Moments on propellers: in general, in addition to the blade aerodynamic forces, each
blade element (equivalent to an airfoil) is subjected to an elementary moment. The total
moments on the blades can be found by integration of all elementary moments. Consider a

6The advantages of a non-symmetric or cambered airfoil are positive lift at zero angle of attack, increased
lift-drag ratios, and more desirable stall characteristics. The disadvantages are more complicated design and
greater center of pressure variation compared to symmetric airfoil.
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Figure 2.10: Power variation in forward flight [23]

two-blade propeller in forward flight, the air-velocity of the advancing blade is greater than
the air-velocity of the retreating blade. The total moment of advancing blade is larger than
that of retreating blade. Therefore, there is a total pitch moment on the propeller. Define
a reference linear line though propeller hub and perpendicular to propeller axis that goes
from one blade tip to the other blade tip. If the propeller blade airfoil is symmetric, the
quarter-chord point is the center of pressure [48, Sec. 4.7]. If this point is on the reference
line, the pitch moment is equal to zero. Otherwise, there is an offset between the center of
pressure and the reference line. In such cases, the pitch moment is no longer zero.

If the blade airfoil is cambered, the center of pressure varies [48, Sec. 4.8] and the pitch mo-
ment can be significant. Finding this moment is difficult, especially without the knowledge
of blade airfoil profile. This moment is ignored in the current modeling.

2. Tip effect: this effect means that the blade loading falls to zero at the tip and the effective
thrust is reduced. A pressure difference must be produced by the rotor blade to generate
the lift force. However, at a blade tip, the air can flow around the blade edge, thereby does
not generate any lift. In helicopter literature, the lift loss is evaluated to be about 3-5% of
the total lift [23,43].

3. Non-uniform induced velocity distribution and swirl effect: recall the assumption made in
the beginning of section 2.2.1 that the induced velocity is uniformly distributed, which gives
the minimum induced power loss for a given thrust (this is proved by calculus of variations,
e.g. in [44, Sec. 2-1]). In reality, the induced velocity is far from uniform since the flow
field is not continuous with a wake of discrete vorticity corresponding to discrete loading.
Stepniewski [42] presents examples of non-uniform disk loading in the form of triangular,
polynomial, square root, etc. However, these non-uniform induced velocity distributions
seem to apply to specific cases, and they are only rough approximations of real induced
flow.

Apart from non-uniformity, the rotational nature of the flow generates spiral vortex lines
that cause the swirl effect [43]. Figure 2.11 shows the distribution of inflow and swirl
velocities of a hovering propeller. This effect can be easily incorporated in the modeling
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r̄ = r/R

νind,0 inflow

swirl

Figure 2.11: Radial distribution of the inflow and the swirl velocities of the hovering propeller [44,
Fig. 2-5]

following [44, Sections 2-3.2 and 2-3.3]. The swirl velocity is small when r̄ > 0.25 and
generally can be ignored in the analysis.

4. Ground effect: it is well-known that a propeller operating near ground benefits from a
small added lift. Since this is usually a very particular and short flight phase, this effect is
not considered in this thesis.

5. Reverse flow: when the propeller is in retreating phase as depicted in figure 2.8, there
is a reverse region where the tangential velocity UT is negative. Examining Eq. (2.36)
shows that this region is a circle with diameter ν̄2 and center defined by polar coordinate
(r = ν̄2/2,Ψ = π/2). This effect causes performance loss with higher advance ratio ν̄
for full-scaled helicopter. For small UAVs at low Reynolds number, the reverse flow is
negligible since the speed ratio ν̄2 is small.

6. Span-wise velocity component: the flow velocity ν2 cos ΨjΨ (see figure 2.8) gives rise to
another drag force, called Y-force [44]. This Y-force contribution to the profile power is
about half of the H-force contribution according to [42, Chap. 3], [23, p. 73-74], and [44, p.
219]. The current modeling does not take into account the Y-force.

2.2.6 Eight-parameter Model and Identification

The model defined by Eq. (2.64) depends on eight parameters associated with the propellers’
blades:

• three geometric parameters: NP , cP , and R,

• five coefficients related to aerodynamic parameters: CLt, a, β0, β1, and β2.

From Eq. (2.58) and Eq. (2.61), this model can also be parameterized by the following (more
physical) nine parameters:

• four geometric parameters: NP , cP , R, and θP ,

• two lift coefficients: CL0 and a,

• three drag coefficients: b0, b1 and b2.
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In both cases the geometric parameters can be easily obtained from direct measurements on the
blade7(or from data available by manufacturers), and one is left with the determination of five
parameters characterizing the blade aerodynamic coefficients (lift and drag). These parameters
are usually not available by the propeller manufacturers. It is possible to measure manually
each blade profile at different radius stations on the blade, and then use a vortex panel program
like XFoil [49] (see [50] for more information on the procedure). This is complicated and time
consuming, however, and the result may be significantly affected by measurement errors. A
better solution, when possible, is to use direct thrust and torque (or power) measurements. We
will illustrate this possibility below. Before that, let us recall the definitions of non-dimensional
coefficients used for the characterization of propellers (see, e.g. [23]):

CT ,
T

1
2ρAν

2
T

(2.65)

CH ,
H

1
2ρAν

2
T

(2.66)

CQ ,
Q

1
2ρARν

2
T

(2.67)

CP ,
P

1
2ρAν

3
T

(2.68)

Since P = Q$ = QνT /R, we deduce that CP = CQ. From Eq. (2.59) and Eq. (2.65),

CT =
s

2

Å
2

3
CLt − aν̄3,ind

ã
(2.69)

where s is the solidity of the propeller, which is the ratio of the area of the blades over the area
of the propeller disk:

s =
NP cPR

A
=
NP cP
πR

(2.70)

From Eq. (2.62) and Eq. (2.66) the drag coefficient for H force is:

CH =
sν̄2

2
(β1ν̄3,ind + β2) (2.71)

From Eq. (2.63) and Eq. (2.67), the power (torque) coefficient is:

CP = CQ =
s

2
ν̄3,ind

Å
2

3
β1 + β0ν̄3,ind

ã
+
s

4
β2 (2.72)

The propeller power can be calculated from the power coefficient and the tip velocity:

P =
1
2ρACP ν

3
T

ηM
(2.73)

where the factor ηM is introduced in this expression as motor efficiency. In order to compare
the thrust and power coefficients with those in some articles (for example in [38] or [51]), these

7The geometrical pitch angle at 75% propeller radius can be considered the mean blade pitch for a linear-twist
propeller blade [23, Chap. 3]. The mean blade pitch angle can be calculated from propeller diameter and pitch
length: θP = atan(PitchLength/(0.75×π×2R)). For example, the propeller APC 11× 4.7, with 11-inch diameter
and 4.7-inch pitch length (approximately linear blade twist), has mean pitch angle θP = atan(4.7/(0.75×π×11)) =
0.179 rad.
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coefficients have to be scaled by certain constant factors to be consistent with another common
convention8:

C
′
T =

π3

8
CT , C

′
P =

π4

8
CP (2.74)

In addition, we define the axial advance ratio as the ratio of the propeller air speed along the
thrust (axial) direction over the tip velocity:

Ja =
|ν3|
νT

(2.75)

Again, the factor π is the scaling factor to match with the usual convention. The efficiency of a
propeller is defined as:

ηP = Ja
C
′
T

C
′
P

(2.76)

Coming back to the problem of estimating the five aerodynamic coefficients, we propose to
make use of a few measurements of the thrust coefficient C

′
T and the power/torque coefficient

C
′
P in axial flight. We illustrate this on the APC 11x4.7 propeller.9 One essentially needs five

measurements. Firstly, two of them can be easily obtained from thrust and torque measurements
on a static test bench (corresponding to stationary flight). We carried out such experiments (see
the setup in appendix B), and the result is displayed in figure 2.12 (blue line with circle markers).
The data from UIUC [52] (black line with asterisk markers) and from propeller manufacturer
APC [53] (magenta line with square markers) are also plotted for comparison. As shown in
figure 2.12, our experimental data have very similar trend with those from UIUC. Secondly, the
three remaining measurements can be done in axial flight. For simplicity and consistence, we
make use of UIUC wind tunnel measurements to identify all five aerodynamic coefficients. UIUC
measurements of thrust coefficient C

′
T and power/torque coefficient C

′
P are shown on figure 2.13.

It is worth noting that increasing the Reynolds number improves propeller performance, as
mentioned in many studies, including [38]. We do not try to model this effect here because
propellers typically operate relatively close to a given angular speed. On figure 2.13(a), at each
angular speed $, two points are selected on the curve of C

′
T : a point at minimum Ja and

another point at maximum Ja. Then from Eq. (2.69), we can easily solve two equations for two
unknowns CL0 and a. For each rotor angular speed $, we obtain a pair of CL0 and a. For
example, CL0 = [0.418; 0.457; 0.499; 0.540] at corresponding $ = [3000; 4000; 5000; 6000]. We
can take the average value CL0 = 0.478 for the mean value of lift coefficient at zero angle of
attack at angular speed $ ∈ [3000 − 6000]. Similarly, using Eq. (2.72), taking three points
(two points at the extremes and one point in the middle) on each curve of C

′
P versus Ja in

figure 2.13(b), we can obtain the blade drag coefficients b0, b1, and b2.
In order to validate our eight-parameter-analytical model, we compare our result at rotor

angular speed 6000 RPM with the manufacturer data, experimental data from literature, and
a propeller calculation software called PropCalc [54]. Figure 2.14 shows the thrust coefficient,
the power coefficient, and the axial efficiency of the propeller versus the axial advance ratio.
PropCalc results manifest similar trends but different values of the coefficients and efficiency, as

8In some references, e.g. [38,51], the coefficients are based on the revolutions per second n and the propeller’s

diameter d: C
′
T =

T

ρn2d4
and C

′
P =

P

ρn3d5
.

9We have chosen the propeller APC SlowFlyer 11× 4.7 because among more than 140 small propellers (most
with diameters ranging from 9 inches to 11 inches) from the UIUC database [52], it has high efficiency (max
ηP ≈ 0.6 for angular speed of 6000 RPM) and its efficient operating region falls in a suitable range of advance
ratio Ja ∈ [0.2, 0.5].
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Figure 2.12: Comparison of scaled static thrust coefficients of APC SlowFlyer 11× 4.7 propeller
versus angular speed, between APC [53], UIUC [52], and our ISIR data
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Figure 2.13: APC SlowFlyer 11 × 4.7 UIUC data of scaled (a) thrust and (b) power coefficient
versus axial advance ratio at different angular speeds. [52] This example shows the selection of
points at $ = 3000 RPM.
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compared to UIUC data. APC data give different trends for small advance ratio and significantly
dissimilar amplitudes too. Compared to UIUC, this yields a different efficiency curve, shifted to
the right. Finally, our model provides values close to UIUC. This is of course not a surprise since
we made use of UIUC data to identify our model parameters. The value of this comparison is to
show that with very few measurements, we can obtain a model that fits well to measurements
in a large range of advance ratio and angular speeds (recall that the identification was not made
from the 6000 RPM rotor angular speed here considered).

Based on thrust and power measurements in axial flight at different angular speeds, one can
slightly refine the proposed model by taking into account variations of the aerodynamic coeffi-
cients with the speeds. A simple generalization consists in considering each of these coefficients
as a function of $ instead of a constant. The only additional difficulty is that the function f$ in
Eq. (2.8), i.e. the inverse w.r.t. $ of fT , is slightly more complex. Indeed, when all aerodynamic
coefficients are constant scalars, it follows from Eq. (2.59) that T is a quadratic function of $, so
that inversion of fT is straightforward. When the aerodynamic coefficients are linear functions
of $, T becomes a third order polynomial in $.

2.3 Main Body Modeling

The material of this section is essentially based on [55] and [18, Chap. 6]. The objective is to
provide a model for the aerodynamic force Fa acting on the UAV’s main body valid in a large
operating domain. When the airspeed va belongs to the subsonic range, the aerodynamic forces
Fa can be modeled as a function that depends only on the constant air density ρ, the Reynolds
number Re, the effective aerodynamic area, the airspeed va and the angle of attack α. This latter
variable is the angle between the zero-lift line (along which the airspeed does not produce lift
forces) and the airspeed vector va, as shown in figure 2.15. We define µ as the angle between the
propeller thrust direction k and the zero-lift line. By denoting the angle of the airspeed vector
and the fixed vertical direction k0 as ξ(va), one has:

ξ(va) = atan2(va,2, va,3) (2.77)

The angle of attack of the wing is calculated as:

α(va, θ, µ) = π − θ − ξ(va)− µ (2.78)

The aerodynamic force Fa is decomposed into three parts: a lift force FL and a drag force FD
acting on the wing, and a parasite drag D (assuming no parasite lift) acting on the vehicle’s
main body, i.e.

Fa = FL + FD +D

According to [55], the lift and draft forces are written as:®
FL = ka|va|cL(α,Re)v⊥a
FD = −ka|va|cD(α,Re)va

(2.79)

with v⊥a obtained by rotating counter-clockwise vector va by 90◦ in the plane (O, j0,k0), i.e.

v⊥a = va,3j0 − va,2k0. One has ka =
1

2
ρΣ with Σ the area of the wing. The Reynolds number

is Re =
ρ|va|c
µvis

where c is wing chord length and µvis is air viscosity. The term cL(α,Re) and
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Figure 2.14: Comparison of (a) scaled thrust coefficients, (b) scaled power coefficients, and (c)
efficiency of the propeller APC SlowFlyer 11 × 4.7 versus the axial advance ratio - axial flight
case with rotor angular speed of 6000 RPM
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Figure 2.15: 2D Model of the convertible UAV with inclined wing

cD(α,Re) > 0 denote respectively the lift and drag aerodynamic coefficients of the wing. The
parasite drag acting on the UAV’s main body (i.e. UAV’s body except wing(s) and propellers):

D = −kparacpara|va|va (2.80)

where kpara =
1

2
ρΣpara with Σpara the effective parasite area and cpara a parasite constant. The

total aerodynamic forces Fa is then:

Fa(α,va)=ka|va|
[
cL(α,Re)v

⊥
a − cD(α,Re)va

]
− kparacpara|va|va (2.81)

For any fixed value of µ, Eq. (2.7) is satisfied by substituting Eq. (2.78) into Eq. (2.81):

fa(θ,va)=ka|va|
[
cL
Ä
π − θ − ξ(va)− µ, |va|

ä
v⊥
a − cD

Ä
π − θ − ξ(va)− µ, |va|

ä
va

]

−kparacpara|va|va (2.82)

In this project, for simplicity, the NACA symmetric airfoils are chosen for the wing. The NACA
airfoils are popular and well-documented in literature. The symmetric airfoils have the code
NACA00xx where the last two digits denote the percentage thickness of the airfoil with respect
to the chord length. The aerodynamic characteristic of an airfoil strongly depends on its Reynolds
number. We are interested in the forward operating speed in the range of 6 to 20 m/s, which
translates to the Reynolds number of 0.62 × 105 to 2.05 × 105 based on the reference wing
chord of c = 0.15 m. NACA0018 wing is selected for our model because of its moderate stall
zone and rather high lift-over-drag ratio. Figure 2.16 shows the lift and drag coefficients of the
airfoil NACA0018 at dissimilar Reynolds numbers. One can observe that the lift coefficients
vary significantly at small α for different Reynolds numbers whereas the drag coefficients remain
essentially the same over the whole range of α. In order to model the aerodynamic coefficients in
a wide flight envelope, it is proposed in [18] to interpolate the lift coefficients from two models:
one for small angles of attack and the other one for large angles of attack. More precisely,
consider the two following lift models:




cL1(α,Re) = c2T sin(2α), for
(
0 ≤ α mod 180◦ ≤ α0(Re)

)

or
(
180◦ − α0(Re) ≤ α mod 180◦ ≤ 180◦

)

cL2(α,Re) = c2 sin(2α), for other values of α
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Figure 2.16: The (a) lift and (b) drag coefficients versus the angle of attack of the airfoil
NACA0018 at different Reynolds numbers [56]

where c2T is the lift constant for small angles of attack, c2 is an “average” lift constant, α0(Re)
is the angle where the stall zone starts. To combine cL1(α,Re) and cL2(α,Re) into a continuous
and differentiable curve, a function σ

(
α, α0(Re)

)
combining two sigmoid curves is used:

σ
(
α, α0(Re)

)
=

1

1 + eα−α0(Re)
+

1

1 + e180◦−α−α0(Re)
(2.83)

In this thesis, we propose to scale the angle α0(Re) for the change of Reynolds number (which
is not presented in the works of [55] and [18]):

α0(Re) = α0ref

Å
Re

Reref

ãReexp
(2.84)

where Reref is the reference Reynolds number, α0ref is the angle where the stall zone starts for
the airfoil at reference Reynolds number, and Reexp is the exponential scaling constant. The
numerical values of these constants are given in appendix C. A sample function σ(α, 12◦) is
shown is figure 2.17. Now the lift coefficient can be formulated as:

cL(α,Re) = cL1(α,Re)σ
(
α, α0(Re)

)
+ cL2(α,Re)

(
1− σ

(
α, α0(Re)

))
(2.85)

From figure 2.16(b), it can be observed that the drag coefficient is almost independent of the
Reynolds number. Hence, it is modeled as:

cD(α,Re) ≈ cD(α) = c1 + 2c2 sin2(α) (2.86)

The coefficients c1 and c2 are estimated following the method described in [55] for minimizing
the cost function between the measured and estimated aerodynamic coefficients. c2T is estimated
by interpolation of the origin and another point on the lift curve of figure 2.16(a) at low angles
of attack. (The lift curve is approximately linear at small α.) Figure 2.18 shows the comparison
result between the modeled aerodynamic coefficients and those obtained from experiments. The
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Figure 2.17: The sigmoid function at α0 = α0ref = 12◦ and Re = 160000
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Figure 2.18: The measured (wind tunnel measurement and computer synthesis [56]) and modeled
(a) lift and (b) drag coefficients versus the angle of attack at Re = 160000 for NACA0018 airfoil

modeled values are fairly close to the measured data. At the end of the stall region or at some high
angles of attack, the lift data are slightly different. In some region of very high angle of attack
(α near 80◦), the drag coefficients are overestimated. Figure 2.19 demonstrates the comparison
of the lift coefficients at a different Reynolds numbers. It can be observed that the coefficients
are well-modeled, especially at small angles of attack till the middle of the stall region.

2.4 Comparison Between Different UAV Configurations

Based on the previous modeling, in this section different UAV configurations are considered and
evaluated in terms of their energy consumption at constant velocity in horizontal cruising flight.
We are primarily interested in evaluating the importance of the inclination angle µ between the
propellers’ plane and the wing (see figure 2.15). As a second objective of this section, we also
want to assess the impact of some parameters (wing(s) area, UAV’s mass, choice of propellers)
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Figure 2.19: The measured (wind tunnel measurement and computer synthesis [56]) and modeled
lift coefficients versus the angle of attack at Re = 80000 for NACA0018 airfoil

on the energy consumption. All physical dimensions of the simulated UAVs are elaborated in
appendix C. Before proceeding to the detailed simulation, some assumptions are necessary:

• As suggested in section 2.1, the energy consumption calculation in this section is simplified
by neglecting the small in-plane force H. We have tested the simulation including the H
force, and compared with the simulation without H. The power calculation results are
nearly identical.

• The propellers-wing(s) interaction, might be important depending on the geometry of the
UAV, is not considered in this simulation in favor of simplicity of the model.

• The small power to actuate the wing(s) joints is neglected in the power calculation.

2.4.1 Power Evaluation of Different UAV Configurations

Following the notation of figure 2.15, five UAV configurations are considered:

• Case 1: µ is chosen so as to minimize the thrust force,

• Case 2: µ is chosen so as to minimize the propellers’ power,

• Case 3: µ is chosen so as to maximize the ratio lift/drag on wing(s),

• Case 4: µ = 0,

• Case 5: no wing on the UAV (standard quadrotor case).

The weight of the convertible UAV for the first four cases are equal. With the absence of the
wing(s), the quadrotor in Case 5 is lighter than the convertible. Figure 2.20 and figure 2.21
illustrate the UAV configuration in these five distinct cases at flying speed |va| = 10 m/s and
|va| = 18 m/s. The orientations of propellers and wing(s) are different for various cases.
Figure 2.22 shows the evolution of total mechanical power in these different cases. The power
curve trending is similar to the total power curve in figure 2.10 for a helicopter model, as expected.
Case 1 (thrust minimization) power consumption is higher than Case 5 for speeds smaller than
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Figure 2.20: The configuration in five cases for |va| = 10 m/s
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Figure 2.21: The configuration in five cases for |va| = 18 m/s

6.5 m/s. In fact, at low speed, Case 5 spends the least power because the UAV is evidently
lighter without the wing(s). At speeds |va| = |va,2| ∈ [10, 14] m/s, Case 1 and Case 2 are very
similar. Beyond these speeds, Case 1 decreases rapidly in efficiency to approach the inefficient
Case 4 (µ = 0). At high speeds indeed, the intensity of the upward vertical aerodynamic (lift)
force in Case 1 is among the highest (see figure 2.24(b)) which translates into the lowest thrust
force in figure 2.25. With high parasite drag, the intensity of the horizontal aerodynamic (drag)
force is also large as shown in figure 2.24(a). With strong aerodynamic forces, the propellers
incline at a very large angle θ from the horizontal line as shown in figure 2.27. For example, at
speed |va = 18 m/s, θ ≈ 1.5 rad in Case 1, so that the propellers’ plane is nearly vertical as
illustrated in figure 2.21. At high speed, the propellers act like large disks that block the high
speed airflow. The propellers are then required to spin very fast to generate even small thrust
force (recall that we are considering low-pitch propellers APC 11×4.7). One can verify this point
by examining figure 2.30. Generally when the magnitude of θ increases towards π/2, the rotor
angular speed $ rises fast. The propeller power is a function of the cube of the rotor angular
speed, hence the variation of $ dictates the variation of P , as proven by the similarity of the
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Figure 2.23: The percentage of power saving ver-
sus the speed

trends of figure 2.22 and figure 2.31. Since $ in Case 1 is larger than in Case 2, the propeller
power of the former case is also greater. By contrast, for the optimal Case 2, the thrust is larger
but the drag is kept at low value. One could of course argue that the use of propellers better
suited to high-speed flight could lead to improved results at high speed for Case 1. The choice of
fixed-pitch propellers, however, is constrained by the requirement of good efficiency in stationary
flight.

Concerning the optimal Case 2, figure 2.23 shows the percentage of power saving w.r.t. Case
5 at different horizontal speeds. Adding the wing(s) significantly saves energy at “medium” speed.
The configuration in Case 2 will save energy for a forward-flying UAV at speeds between 6 and
20 m/s. The power saving is 45% at the climax. One can note that the power saving varies with
the forward speed in a “bell-curve” fashion: the gain of power is negative at very low speeds,
small at very high speeds, but significant in between.

Case 3 is an example of a configuration that maximizes the wing(s) lift/drag ratio. That also
means keeping the angle of attack constant and small, as shown in figure 2.29. Case 3 achieves
relatively satisfactory results. Although not as efficient as Case 2, it compares favorably with
Case 5 in a significant range of velocities.

Finally, Case 4 is quite inefficient. The lift force acting on the wing is high, as shown in
figure 2.24(b). The drag force is the highest, however, as depicted in figure 2.24(a).

Figure 2.26 shows the in-plane drag force H acting on the propellers. This drag is small
even at high speeds. Figure 2.28 highlights notably the different evolution of the angle µ for
the convertible UAV. The optimal inclination angle (Case 2) varies significantly with the speeds,
especially from 6 to 14 m/s.

Figure 2.29 depicts the plots of the wing angle of attack versus the speed. Note that when
|va| = 0, α is not defined and the values on the plots are simply results of numerical evaluation.
An imminent feather of these plots is the presence of the stall phenomenon when the angles
of attack change suddenly. It is because the UAV passes from a configuration with low speed
and high angle of attack to a configuration with high speed and low angle of attack. We are
mostly interested in choosing the optimal angle of attack for minimum power consumption (Case
2) starting from medium speed (|va,2| > 6 m/s). Here, the plot of the angle of attack can be
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Figure 2.24: The (a) horizontal and (b) vertical aerodynamic forces versus the speed

0 2 4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

|va,2 | (m/s)

N
T
(N

)

 

 

Case 1: Minimize Propellers Thrust

Case 2: Minimize Propellers Power

Case 3: Maximize Wing Lift/Drag

Case 4: µ=0.00

Case 5: No Wing

Figure 2.25: The total thrust force on all pro-
pellers versus the speed
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Figure 2.26: The total in-plane drag H force on
all propellers versus the speed
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Figure 2.27: The UAV’s orientation angle θ ver-
sus the speed
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Figure 2.28: The wing(s) inclination angle µ ver-
sus the speed

considered as two quasi-linear segments. For the first segment with speeds |va,2| ∈ [6.5, 13] m/s,
α increases with higher speed. This can be expected since higher aerodynamic lift reduces the
required propellers thrust. At the same time, the UAV’s pitch is still relatively small (θ ≤ 0.4 rad)
so that the propellers are in their efficient configurations. Beyond 13 m/s, the UAV’s pitch angle
θ is high. When θ > 0.4 rad, small increment in θ causes a sharp rise in the propellers’ rotational
speeds, and consequently the power consumption. Therefore, the optimal α decreases at higher
speed to limit the aerodynamic forces and UAV’s pitch angle.

We can observe discontinuities of the power in figure 2.22. For example, in Case 1 there is
a discontinuity when speed increases from 9.5 m/s to 10 m/s. The angle of attack (figure 2.29)
jumps from α = 0.57 rad to α = 0.15 rad. The vehicle goes from an equilibrium point after
the stall zone to an equilibrium point just before the stall. This can be explained by looking at
figure 2.18(a), if we limit α to the range of [0, 180◦], for each CL, there are several solutions for α.
By contrast, one does not notice a power discontinuity in Case 2 for example. One can remark
on figure 2.29, however, that the angle of attack of the wing also jumps from α = 0.56 rad to
α = 0.14 rad when speed increases from 6 m/s to 6.5 m/s. The discontinuity in power is not
noticeable in figure 2.22 because there is one local minimum very close to the global minimum on
the power curve (see figure 2.32). As speed increases from 6 m/s to 6.5 m/s, the optimal angle
α jumps to a very different value but the minimum power does not vary much. We do not know
at this time whether this is just a matter of chance or there is an explanation for this property.

2.4.2 Impact of Some Parameters on the Energy Consumption

Figure 2.33 plots the percentage of power saving in Case 2 as compared to Case 5 for different
propellers. Other simulated parameters are kept the same. We can observe greater power saving
for the configurations with small propellers, since the impact of wing(s) is even more prominent.
In addition, the power gain is more significant at medium and high speeds for propellers which
have higher average pitch. This comparison concerns only three APC SlowFlyer propellers.
Future developments will include the performance evaluation of more propellers (possibly from
different manufacturers) and selection of propellers optimized for hover or cruising flight.

Figure 2.34 illustrates the influence of the wing(s) area on the energy consumption. The
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Figure 2.29: The angle of attack α versus the speed (when |va| = 0, α is not defined)
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Figure 2.30: The rotor angular velocity versus
the UAV’s orientation angle θ
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Figure 2.31: The rotor angular velocity versus
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Figure 2.33: Percentage of power saving w.r.t.
Case 5 for different propellers

propellers used are APC SlowFlyer 11 × 4.7. The mass of the UAV except the wing(s) is kept
at 2.9 kg, whereas the mass of the wing(s) are proportional to the wing(s) area. Unsurprisingly,
the larger the wing(s) the higher the power gain at medium speed. At low speeds, configurations
with larger wing(s) obviously spend more power.

Figure 2.35 compares the percentage of power saving for different total masses of the UAV
with a given wing(s) area (total wing area 0.22 m2). The propellers used are still APC SlowFlyer
11 × 4.7. If the total weight of the UAV increases, the maximum gain of power will occur at
higher speeds. In addition, the overall power gain is greater for heavier UAVs with the same
wing(s). The reason is that with heavier UAV, the lift force holds an even more important role
to compensate for the increased weight.

2.5 Chapter Summary

We have proposed a method to evaluate the energy consumption of VTOL UAVs composed of
coplanar propellers and a main body that may include wing(s). This method makes use of two
analytical models of aerodynamic coefficients: a model of the propellers derived by combining
momentum and blade element theories, and a model of the wing(s) recently proposed in the
literature. From these models, energy evaluation is reduced to solving numerically a simple
optimization problem. Energy consumption for five UAV configurations is then compared and
analyzed in detail, allowing to determine the most efficient configuration in terms of the incli-
nation angle between the propellers’ plane and the wing(s). It is shown that the optimal value
of this angle depends on the airspeed and that adding wing(s) may be detrimental for energy
consumption if this angle is poorly chosen. Indeed, adding wing(s) reduces the thrust force
but increases the drag force, thereby yielding a larger inclination angle of the propellers’ plane
- which is not efficient from the energy point of view. Thus, the optimal configuration is the
one that provides the best trade-off between small thrust force and low total drag force on the
UAV. At the end of this chapter, the important impacts of propeller size, wing area, and UAV
mass are evaluated. This chapter paves the way to the possibilities to evaluate the global perfor-
mance of the UAV in terms of fuel consumption and mission performance (maximum endurance,
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Figure 2.34: Percentage of power saving w.r.t.
Case 5 for different wing(s) area Σ
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Figure 2.35: Percentage of power saving w.r.t.
Case 5 for different UAV’s mass

maximum range, ceiling, etc.). Besides, the interaction between wing(s) and propellers is the
area that needs further exploration. The model in this chapter will be complemented with the
estimation and control laws in the next chapter to build the complete control system.



Chapter 3

Control Design

As seen from the previous chapter, good understanding of aerodynamic effects and fine modeling
of these effects are crucial to design an aerial vehicle’s geometry in order to optimize the energy
efficiency. For control design, however, precise modeling is not as important because the feedback
control is expected to grant robustness in the sense of performance insensitivity w.r.t. model
inaccuracies. Thanks to this robustness property, a simplified aerodynamic model of propellers
and wings can be used for the control design, as shown later in this chapter.

Control of convertible aerial vehicles appeals to the control of both fixed-wing and VTOL
vehicles. In the first section of this chapter, existing control techniques for these aerial vehicles
are recalled. Then, we develop control design approaches for our convertible vehicle.

• The first strategy applies for cases when no velocity (neither UAV velocity nor wind ve-
locity) measurement is available. The control design utilizes the measurement data from
IMU (gyrometer, accelerometer) and barometer. One of the most common scenarios is
the teleoperation case, where the UAV is controlled in attitude and altitude. The essen-
tial idea for attitude control is to stabilize the gravitational vector’s direction in the body
frame around its reference value. As for altitude control, the magnitude of the thrust force
can be used as a direct control variable for vertical speed and position, provided that the
vertical aerodynamic force is either known or can be estimated. This control strategy is
made possible with the estimation of state variables via sensor system including IMU and
barometer (or another altitude sensor).

• In the second strategy, the same IMU/barometer measurement data are used. We present
a control strategy involving a spring-damper type controller to control the wings’ angle of
attack near their optimal values in the presence of unknown winds.

• The third strategy is suitable for cases when the UAV velocity measurement is available (e.g.
obtained from GPS signal), the UAV is controlled to follow a reference trajectory or velocity.
The aerodynamic forces and torques are estimated based on the velocity measurement.
The wings’ pitch angles are adjusted so that the angles of attack remain constant. The
propellers/wings interaction is also taken into account by a simple model.

3.1 Recalls on Aerial Vehicles Control

Following [57], we consider a class of thrust-propelled aerial vehicles that encompasses many
systems found in practice, including conventional aircraft, helicopter, multicopter, tail-sitter
UAV, etc. Such vehicles are controlled via a thrust force T = −Tk with thrust intensity T ∈
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Figure 3.1: Diagram of fixed-wing and VTOL aerial vehicles

R, T ≥ 0 along body direction −k (figure 3.1) and a torque vector Γ ∈ R3 to control the attitude.
In practice, this torque is produced in various ways, typically with propellers (VTOL vehicles),
elevators, rudders, and ailerons (airplanes), control moment gyros (spacecrafts), etc.

In order to simplify the exposition, the following assumptions are made for the control model:

• The thrust force T applies at a point that lies on, or close to, the axis {G;k}, so that it
does not create an important torque at G.

• The gyroscopic torque associated with rotorcraft is either negligible or known so that it
can be directly compensated by the control torque action.

• The thrust and torque couplings are neglected.

• The aerodynamic forces and torques depend only on the vehicle’s velocity, orientation,
and wind disturbance. Added mass effects and forces that depend on the vehicle angular
velocity/acceleration are neglected.

Applying the Newton-Euler formalism, the simplified equations for an aerial vehicle can be
obtained: 

ẋ = v
mv̇ = −TRe3 +mge3 + Fa
Ṙ = RS(ω)
Jω̇ = −ω × Jω + Γ + Γa

(3.1)

where the following notation is used:

• I = {O, i0, j0,k0} is a NED (North-East-Down) inertial frame.

• B = {G, i, j,k} is the body-frame with G the vehicle’s center of mass (CoM).

• m is the vehicle’s mass and J ∈ R3×3 is its inertia matrix.

• x = (x1, x2, x3)> ∈ R3 is the vector of coordinates of the vehicle’s CoM position expressed
in the inertial frame I.
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• v = (v1, v2, v3)> ∈ R3 is the vector of coordinates of the linear velocity of the body-fixed
frame B relative to the inertial frame I and expressed in I.

• R ∈ SO(3) is the rotation matrix representing the orientation of the body-fixed frame B
with respect to the inertial frame I. The column vectors of R correspond to the vectors
of coordinates of i, j, k expressed in the basis of I.

• ω = (ω1, ω2, ω3)> ∈ R3 is the angular velocity vector of the body-fixed frame B relative to
the inertial frame I and expressed in B.

• Fa and Γa denote the aerodynamic forces and torques acting on the vehicle, respectively.

• S( · ) is the skew-symmetric matrix associated with the cross product (i.e., S(u)v = u ×
v,∀u, v ∈ R3).

• e3 = (0, 0, 1)> is the third vector of the canonical basis of R3 and also the vector of
coordinates in B of k.

3.1.1 Recalls on Fixed-wing Aircraft Control

There exists a large literature on fixed-wing aircraft control, thus a thorough review is clearly
beyond the scope of this thesis. Nonetheless, this section attempts to provide a brief recall on
classical and modern control techniques for this type of aerial vehicles.

Fixed-wing aircraft usually operates at small angles of attack where accurate aerodynamic
coefficient data can be obtained via wind-tunnel measurements. Consequently, aerodynamic
forces can be explicitly taken into account. With known aerodynamic forces, the control design
then usually relies on a linearized model for the aircraft motion. More precisely, the following
state and control vectors are defined [58]:

• a 9D state vector comprising airspeed, sideslip angle, angle of attack, 3D attitude vector
(roll, pitch, and yaw angles), and 3D angular velocity;

• a 4D control vector composed of thrust intensity and three deflection angles of elevator,
aileron, and rudder.

The aircraft dynamics is then linearized around equilibrium points e.g. constant velocity cruising
flight, steady turning flight, etc. In constant velocity cruising mode, the linearized system can
be decoupled into two dynamics [58]:

• The longitudinal dynamics with a 4D state vector (airspeed, angle of attack, pitch rate,
and pitch angle) and a 2D control vector (thrust intensity and elevator deflection angle).

• The lateral/directional dynamics with a 4D state vector (sideslip angle, roll angle, roll and
yaw rates) and 2D control vector (aileron and rudder deflection angles).

This dynamics provides practical insights on the aircraft characteristics closed to standard op-
erating flight. However, over the entire flight envelope, especially with highly maneuverable
aircraft, there may be large changes in aircraft dynamics, e.g. a dynamic mode that is stable
and adequately damped in one flight condition may become unstable or inadequately damped
in another flight condition. In addition, in some fast oscillation modes of the aircraft, the oscil-
latory frequencies tend to be sufficiently high that a pilot would find it difficult or impossible to
control the aircraft. Therefore, it is necessary to provide an automatic feedback control system
to aid the pilot. Such control systems are known as stability augmentation systems (SAS). If the
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augmentation system is tailored for specific goals, it is known as a control augmentation system
(CAS). Beyond SAS and CAS, autopilot control systems are developed to improve the response
and to achieve minimal steady-state errors and rapid disturbance rejections [58].

Despite their simplicity, control methods based on linear approximation have several disad-
vantages:

• The principal disadvantage of linear control techniques is the local nature of the controllers.
Due to aerodynamic perturbations, the real dynamics may be far from the desired trajec-
tory. Therefore, the linearized system is no longer representative of the real system.

• When the reference trajectory is time-varying or there exists strong disturbance, the system
stability is difficult to establish. In such a case, one may apply gain-scheduling techniques
[59,60]:

– designing a set of local controllers,

– scheduling these controllers depending on the actual state of the system’s evolution.

However, this technique is merely a heuristic approach. The robustness and stability prop-
erties of the global gain-scheduling controller are not guaranteed.

• Linearizing an aircraft’s dynamics often requires a minimal parametrization of the rotation
matrix (e.g. Euler angles), they induce singularities that artificially limit the stability
domain of the controlled system (e.g. the well-known Gimbal lock).

To alleviate some drawbacks of classical control approaches, modern control design often
appeals to different techniques:

• Pole-placement/Eigenvector assignment: usually multiple poles are assigned simultane-
ously in multi-input/multi-output (MIMO) systems and closed-loop eigenvectors are se-
lected based on flying qualities specifications (degree of manual intervention by pilots,
frequency response, time response, etc.) or performance criteria (energy efficiency, max
range, max speed, ceiling, etc.) [58].

• Dynamic inversion [61,62]: this technique is fundamentally based on feedback linearization.
Dynamic inversion design includes an inner full state variable feedback loop and a linear
outer tracking loop. Since the system nonlinearities are taken into account in the inner
loop, the controller is suitable for a wide range of operating conditions, including high angle
of attack conditions or aggressive maneuvers. The drawback of dynamic inversion is that
it requires precise knowledge of nonlinear functions in the aircraft equations. Otherwise,
the control system may include undesirable zero dynamics [58,63].

Guaranteeing stability in a large flight envelope is clearly a desirable property for aerial vehi-
cles. For fixed-wing aircraft, however, there are severe obstructions to this property, essentially
due to stall. Typical airfoil lift curves similar to the ones in figure 2.16 consist of a region as-
sociated with sudden decrease of lift coefficients, i.e. the so-called stall phenomenon. It can
be observed that there may be several angles of attack associated with the same lift coefficient.
Consequently, given a continuous reference velocity profile, the associated equilibrium orientation
may be discontinuous [18]. If such discontinuities are encountered, the stabilization problem is
no longer well-posed. For example, consider an aerial vehicle with wing aerodynamic coefficients
similar to the ones in figure 2.16 tracking a continuous reference velocity vr(t) = [0, cvt, 0]> with
cv a small positive number. Figure 3.2 shows the evolution of the equilibrium angle of attack αe
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Figure 3.2: Equilibria pattern for (a) vr(t) = [0, cvt, 0]
� and (b) vr(t) = [0, vh − cvt, 0]

� with
vh � 1, 0 < cv � 1 [18]

over a number aν � kav
2/(mg) that characterizes the ratio of aerodynamic force over the gravity

force (therefore dictates the equilibrium points). As time goes by, the intensity of the reference
velocity increases, and this implies smaller values of angle of attack at equilibrium condition. At
t = t̄, the equilibrium angle of attack αe(t) instantaneously goes from 19◦ to 12◦, thus making
the vehicle equilibrium trajectory discontinuous. Consequently, this reference velocity cannot be
smoothly tracked by any fixed-wing aircraft that has similar aerodynamic characteristics to the
current example [18].

3.1.2 Recalls on VTOL Aircraft Control

This section is essentially based on the review article on feedback control of underactuated VTOL
UAV [64]. As in the case of fixed-wing aircraft, classical linear control techniques can also apply
to VTOL UAV. A summary of linear control techniques is presented next, with their advantages
and drawbacks.

3.1.2.1 Linear Control Techniques

Linear control techniques usually rely on linear approximations of the system dynamics about
some points or some reference trajectories. To simplify the current presentation, the focus is on
VTOL UAV at hovering flight in the absence of wind. Similar conclusions can be drawn for other
trajectories and flight conditions, such as constant velocity with constant wind, provided that
the aerodynamic forces are either measured or estimated online (so that the equilibrium position
can be found). In view of these simplified assumptions, the approximated orientation matrix is:
R ≈ I3 + S(Θ) with Θ ∈ R3 any minimal parametrization of SO(3) around the identity matrix
(e.g., the vector of Euler angles θ1: roll, θ2: pitch, θ3: yaw). We then have the following linear
approximation of system (3.1) at the equilibrium (x = 0, v = 0,Θ = 0, ω = 0, T = mg,Γ = 0):





ẋ = v

mv̇ = −mgS(Θ)e3 − T̃ e3
Θ̇ = ω
Jω̇ = Γ

(3.2)
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where T̃ = T − mg. Without loss of generality, we assume that the UAV’s inertia matrix is
diagonal, i.e. J = diag(J11, J22, J33). It is possible to decompose the system into four independent
Single-Input-Single-Output (SISO) linear subsystems:
The first subsystem describes the horizontal dynamics along i0:

ẋ1 = v1

v̇1 = −gθ2

θ̇2 = ω2

J22ω̇2 = Γ2

(3.3)

The second subsystem describes the horizontal dynamics along j0:
ẋ2 = v2

v̇2 = gθ1

θ̇1 = ω1

J11ω̇1 = Γ1

(3.4)

The third subsystem describes the vertical dynamics along k0:®
ẋ3 = v3

mv̇3 = −T̃ (3.5)

The fourth subsystem describes the yaw dynamics:®
θ̇3 = ω3

J33ω̇3 = Γ3
(3.6)

Note that the vertical dynamics subsystem (3.5) does not depend on the orientation, i.e. it is
independent of θ and ω. By contrast, the yaw dynamic (3.6) does not depend on position nor
linear velocity. We now detail the control of subsystems (3.3) and (3.4) (Subsystems (3.5) and
(3.6) are second-order and they are straightforward to control.). With appropriate changes of
coordinates, each of subsystems (3.3) and (3.4) can be rewritten as a fourth-order linear system
with u the control variable: 

ẏ1 = y2

ẏ2 = y3

ẏ3 = y4

ẏ4 = u

(3.7)

The most common strategy to control system (3.7) is hierarchical control. This technique con-
siders y3 as the control input for the outer system, and the desired value y3, denote as yd,3 is
used as a reference value for outer system:

ẏ1 = y2

ẏ2 = yd,3 + ỹ3
˙̃y3 = ỹ4
˙̃y4 = −ÿd,3 + u

(3.8)

with ỹ3 = y3 − yd,3 and ỹ4 = y4 − ẏd,3. The outer subsystem (the first two equations in sys-
tem (3.8)) has slow dynamics whereas the inner subsystem (the last two equations in system (3.8))
has fast dynamics. For the outer loop, often called Guidance loop, we can take a PD controller
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represented by yd,3 = −k1y1−k2y2 with k1,2 > 0. Taking the derivative yields ẏd,3 = −k1y2−k2y3

and ÿd,3 = −k1y3 − k2y4. Finally for the inner loop, often called Control loop, the control law
for u is:

u = ÿd,3 − k3ỹ3 − k4ỹ4 with k3,4 > 0.

Since the characteristic polynomial of the closed-loop system is (p2 +k2p+k1)(p2 +k4p+k3), the
positivity of all gains ki (i = 1, . . . , 4) ensures, by a straightforward application of the Routh-
Hurwitz criterion, the exponential stability of the origin of the initial fourth-order system. A
variation of hierarchical control strategy consists in using y4 as a virtual control input.

ẏ1 = y2

ẏ2 = y3

ẏ3 = yd,4 + ỹ4
˙̃y4 = −ẏd,4 + u

with ỹ4 = y4 − yd,4. The control law is:®
yd,4 = −k1y1 − k2y2 − k3y3

u = ẏd,4 − k4ỹ4
(3.9)

with ki > 0(i = 1, . . . , 4). This strategy groups the translational and orientation variables
together in the slow outer Guidance loop. Indeed, it is consistent with the fact that the angular
velocity measurement is accurate with IMU whereas the UAV’s orientation estimation is much
more difficult [64].

Modern linear control theory consists in searching control gains to optimize some objectives,
e.g. energy efficiency and robustness w.r.t model uncertainties or external disturbances (like
wind gusts). Examples of studies with optimization policy are: Linear-Quadratic-Regulator
(LQR) controller for the control of the rotational dynamics of a quadrotor [65]; Linear-Quadratic-
Gaussian (LQG) controller incorporating a quadratic criterion for weighting the model sensibility
with respect to parametric variations for a quadrotor [66] ; robust H2 and H∞ control techniques
for helicopter models [67–69].

As mentioned in section 3.1.1, there are some limitations associated with classical or even
modern linear control techniques. First, the stability analysis is local so that the stability domain
is difficult to specify, then in the case of reference trajectories with time-varying velocities or in
the case of wind gusts, the equilibrium orientation varies with time. This is especially true for
VTOL systems, since their orientation variation w.r.t airflow can be much more significant than
the one of fixed-wing aircraft. Therefore, the linearized system is also time-varying, and the
stability of the system is difficult to analyze. To overcome these shortcomings, nonlinear control
techniques are presented as the extensions to linear methods.

3.1.2.2 Nonlinear Control Techniques

Nonlinear controllers provide enlarged domain of stability and enhanced robustness as compared
to linear controllers. The nonlinear controllers may be seen as natural extensions of locally
approximating linear control schemes. Indeed, linear control gain optimization techniques are
useful for the tuning of a certain number of parameters of nonlinear controllers.

Providing a survey of existing nonlinear control techniques for VTOL vehicles is beyond the
scope of this section. Instead, we focus on one of the most popular technique, namely hierarchical
control. This approach is easy to understand and it appears as a natural extension of the linear
hierarchical control presented above for the stabilization of system (3.7).
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As discussed in the previous linear control section, fast and accurate gyroscope measurement
allows us to control ω to a reference value easily. We can then use ω as the control input instead
of Γ. We assume that the aerodynamic force does not depend on the orientation of the vehicle
and they apply close to the vehicle’s CoM. This assumption corresponds ideally to the case of a
spherical vehicle, for which there is no lift force and the resultant of drag forces applies at the
CoM.

System (3.1) is then simplified to:®
mv̇ = −TRe3 +mge3 + Fa(v, t)

Ṙ = RS(ω)
(3.10)

with T and ω as control inputs.
Hierarchical control applies similarly to many similar objectives like velocity (or position)

control without or with integral correction. For details on integral correction and position control,
interested readers are invited to consult the references [21] and [64]. The following describes a
short summary of velocity control.

Let vr denote a reference translational velocity expressed in inertial frame I and let ṽ = v−vr
denote the error in velocity expressed in I. We then obtain the error model:®

m ˙̃v = −kv(v, t)− TRe3 + F (v, t)

Ṙ = RS(ω)
(3.11)

with F (v, t) = kv(v, t) + Fa(v, t) + mge3 − mv̇r(t), where kv(v, t) is a feedback term designed
so as to ensure the stability of v = vr for the system mv̇ = −kv(v, t). A simple choice is
kv(v, t) = k(v−vr) with k a positive gain but one may use a more sophisticated control expression,
e.g. incorporating integral correction terms, etc. From here, the objective is to ensure the
convergence of −TRe3 + F (v, t) to zero. Indeed, this implies that asymptotically the control
system behaves like the stable system mv̇ = −kv(v, t). For ṽ = 0 to be an equilibrium of
system (3.11), the acceleration error must vanish at this point, i.e. ˙̃v = 0 and we obtain the
following equation:

Tη = F (vr, t) (3.12)

with η = Re3 denoting the thrust direction unit vector in the initial frame. If F (vr, t) is different
from zero, there exist only two solutions to this equation, which define possible reference thrust
intensity Tr and thrust direction ηr:

(Tr, ηr) =

Ç
±|F (vr, t)|,±

F (vr, t)

|F (vr, t)|

å
. (3.13)

The above relation calls for some important remarks:

• In practice, the chosen solution among those in (3.13) is the one that ensures the positivity

of the thrust intensity, i.e. Tr = |F (vr, t)|, ηr =
F (vr, t)

|F (vr, t)|
.

• If F (vr, t) = 0, we have a singular case where any unit vector η satisfies Eq. (3.12) when
T = 0. This situation is uncommon since the gravity term in F (vr, t) usually prevents the
latter from vanishing. However high wind gusts or aggressive reference trajectories may
provoke this situation. In such case, the stabilization of the system involves very specific
nonlinear control technique (e.g. [70]). This situation is not addressed in this thesis.
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• When F (vr, t) 6= 0, well-posedness of the solutions (3.13) to Eq. (3.12) is related to the
independence of F upon the vehicle’s orientation. More precisely, if the external force Fa
depends on the orientation, i.e. Fa = Fa(v,R, t), then F (v, t) in system (3.11) depends on
R also:

F (v,R, t) = mg + Fa(v,R, t)−mv̇r(t). (3.14)

Since η = Re3, Eq. (3.12) then becomes implicit in η and the existence and uniqueness of
solution (given sign of Tr) are no longer systematic.

Once the reference thrust direction ηr has been defined, the next control step is using ω to
ensure the convergence of η to ηr. We can generalize the control solution by considering the
problem of stabilizing a given desired direction characterized by a unit vector ηd, independently
of other possible control objectives. This desired direction may equally be specified by the
orientation of a user’s joystick, or be the (locally) unique solution ηr previously evoked for
velocity control purposes. For instance, in the case of hovering, one can take ηd = e3 and
nonlinear solutions to the control problem can be compared to the linear ones presented in the
previous section. Defining ω1,2 := (ω1, ω2)>, a possible nonlinear control solution, among many
other possibilities, is [57]

ω1,2 =

®
R>
ñ
k0

η × ηd
(1+η>ηd)2

− S(η)2(ηd × η̇d)
ô´

1,2

(3.15)

with k0 > 0. This control ensures the exponential stability of the equilibrium point η = ηd
provided that the initial conditions η(0) and ηd(0) are not opposite to each other.

Note that the expression of aerodynamic forces along arbitrary reference trajectories is seldom
known. Then, neither F (vr, t) nor ηr is known. In practice, one possibility is to obtain an online
estimation of F (v, t) via accelerometer measurements or high-gain observers ( [21, Chap. 2]
and [71]). We will come back to this issue later.

3.1.3 Recalls on Convertible Aircraft Control

Control of convertible aerial vehicles is concerned not only with VTOL mode or cruising mode
separately but also with the transition maneuvers between the two modes. From the time of early
prototypes (e.g. Bell Helicopter XV-3, XV-15, etc.) to the present days of modern aircraft (e.g.
Bell Boeing V-22 Osprey and AgustaWestland AW609), tilt-rotors always represent significant
control challenges. Indeed, the pilot is required to control not only helicopter mode (collective
pitch, cyclic pitch, rotor RPM) but also airplane mode (rudders, elevators, flaps) and pylons tilt
angle. There are usually several options for a control purpose. For instance, the roll control can
be accomplished by the differential collective pitch on the two rotors in helicopter mode or by
ailerons in airplane mode. During the transition between helicopter and airplane modes, one
method of control is washed out as another control washes in. A transition function using tilting
angle is often invoked to blend in the two modes. Simple linear interpolation is easiest, but the
sinusoidal function is often used for a smoother transition [72]. As for small convertible UAVs,
various control techniques have been introduced in recent years:

• [73,74] calculate numerically the reference maneuvers based on minimum time and minimum-
energy transition for a mini tilt-rotor UAV. Then a robust control is implemented to switch
between the control values in the transition period.

• [75] implements on a model-scale tilt-body UAV a linear controller for hover and cruising
flight, and a nonlinear locally input-to-state stable controller in transition flight. When an
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Figure 3.3: 3D convertible UAV model

unexpected state is detected, the recovery controller is triggered towards hover flight, and
transition maneuver is re-tried.

The common denominator of these techniques is the “switching” policy between hover and cruise
control. However, this policy is local and only suitable to some specific desired trajectories.
Recently, [76] performs wind tunnel testing to find the equilibrium states of a tilt-body UAV
during the transition flight. Taking advantage of these equilibrium data, a linear fractional
representation model is implemented to improve the longitudinal control of the UAV .

Comparing to fixed-wing aircraft and convertible aerial vehicle with rotors and wings fixed
rigidly together (e.g. tilt-body or tilt-wing aircraft), convertible vehicle with changeable orien-
tation of rotors w.r.t wings (e.g. tilt-rotor aircraft or our convertible UAV) has the advantage of
control flexibility. This point will be elaborated in the control design of our convertible UAV in
the next section.

Finally, it is worth pointing out one challenge of controlling convertible UAV: the rotor
downwash can have negative impacts on the wings. This problem is even more difficult when the
direction of the downwash varies in the transition period for convertible UAVs such as tilt-rotor.
We examine this behavior in simulation and propose a simple control design to deal with such
challenge in section 3.2.3.

After a brief review of the aerial vehicle control techniques in the literature, the control design
of our convertible UAV is presented next.

3.2 Control of Our Convertible UAV

Figure 3.3 shows the diagram of the convertible UAV. Before proceeding into details, some
notation is introduced (note that the following notation is consistent with that of chapter 2, see
figure 2.1):

• LetW ∈ {A,C}, where A stands for the front wing, and C for the back wing. All variables
relative to the front and back wing are denoted with A and C respectively, i.e. angles of
attack αA, αC , angles ζA, ζC , etc.



3.2. Control of Our Convertible UAV 69

• W = {GW , iW , jW ,kW } denotes the wing frame, with iW ≡ i and kW chosen so that
the line with direction kW passing through the wing’s CoM GW corresponds to the wing’s
zero-lift line.

It is assumed that the wing is symmetric (i.e., its shape is symmetric w.r.t. the zero-lift
line).

• θ1, θ2, θ3 denote three parametrization Euler angles of SO(3) around axes i0, j0,k0 to pass
from frame I to B.

• µW denotes the angle from k to kW .

• ζW denotes the angle from k0 to kW . Note that k0, k, and kW do not necessarily belong
to the same plane. When these three vectors are on the same plane, we have the relation
ζW = θ1 + µW .

• $i (i = 1, ..., 4) denote the rotational speed of the rotors.

• l denotes the distance between G and any propeller center, i.e. l = GG1 = GG2 = GG3 =
GG4.

• L denotes the distance between either wing pivot axis and G.

• Ti = −Tik (i = 1, ..., 4) are the thrust forces acting on the propellers. The total thrust force

intensity is T =
4∑
i=1

Ti. For simplicity of control analysis, small in-plane drag H-forces

considered in chapter 2 are ignored.

• Fa→A and Fa→C denote aerodynamic forces acting on wing A and wing C, respectively. It
is assumed that the aerodynamic forces acting on the vehicle’s body (i.e. excluding wings
and propellers) can be modeled as a parasite drag D acting at G. The total aerodynamic
force is then Fa = Fa→A + Fa→C +D.

• Γa denotes the total aerodynamic torque acting on the UAV (except the propellers).

As mentioned in the introduction of this manuscript, the additional DoFs of our convertible
UAV permit the decoupling between the wings and body, thus facilitates the control. In light of
this advantage, the first objective of the control design is achieving desired angles of attack that
may depend on the reference cruising velocity as suggested in chapter 2, in order to minimize the
UAV energy consumption. After achieving the first objective, the convertible UAV is considered
like a rigid body of quadrotor and two wings. The second objective then is to control this UAV
by nonlinear control techniques as described in section 3.1.2, with additional steps to estimate
state variables and aerodynamic forces/torques. Before proceeding with the detailed design, it
is important to discuss the preliminary assumptions for the control model:

• The principal modes of operation of the UAV are axial flight (including hover) and cruising
flight. In these types of movement, the UAV trajectories are essential planar, which implies
that the reference velocity vector vr is also restricted to a plane. Given a general 3D
reference velocity and small cross wind disturbance along i, the sideslip angle can be
controlled to reduce to zero by changing the UAV’s yaw angle. The wings will be then
facing directly the UAV’s directional movement, and the problem is essentially to control a
convertible planar UAV. Most of this section is devoted to such 2D case, unless otherwise
stated, since this is sufficient to capture the main flight dynamics effects and present the
basic control principles.
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• We are aware that for VTOL aerial vehicles and especially convertibles, there exist many
aerodynamic interference problems, including but not limited to self-induced interference
(rotor self-influence, wing self-influence, bluff-body self-influence), downwash influence of
propellers on fuselage and wings, and modification of the flow around wings that affect
propellers [72]. A detailed treatment of these phenomena, e.g. using the Navier-Stokes
equations, would be unrealistic for real-time simulation and control design. We consider
in our control design, the seemingly most important interference for our convertible UAV:
the propeller downwash influence on wings1. For more practical insights on aerodynamic
interference on helicopter and tilt-rotor, interested readers can refer to [72].

• We assume that the actuation of the wings’ orientation with respect to the UAV’s main
body can be modeled as a first-order system: µ̇W = uW with W ∈ {A,C}.

Taking into account the above objectives and assumptions, the dynamic equations of the system
are then given by 

ẋ = v
mv̇ = −TRe3 +mge3 + Fa
Jω̇ = −ω × Jω + Γ + Γa
Ṙ = RS(ω)
µ̇A = uA
µ̇C = uC

(3.16)

3.2.1 Control Without Velocity Measurement

Consider the case where we do not have the UAV velocity measurement. Assuming for now
that the wings have fixed angles of attack. Detailed description of wing control is presented in
section 3.2.1.5. First, we define γ = R>e3 ∈ R3 as the gravitational vector’s direction in the
body frame B.2 We illustrate the control by the following typical teleoperation case study. Via
a joystick, the UAV is given the following references: two components of the attitude reference
γr,1 and γr,2, the vertical reference position xr,3, and yaw angular velocity ωr,3. The objective is
to design a controller for the UAV to track these references.

3.2.1.1 Equilibrium Existence

Before proceeding to the control design, we consider here the existence of equilibrium of sys-
tem (3.16). More precisely, with a given UAV orientation (characterized by gravitational vector’s
direction γ or Euler angle θ) and a given orientation of the wing (characterized by angle α or ζ),
can we find a desired UAV velocity v that is an equilibrium solution to system (3.16)? To simplify
the exposition, we consider a typical horizontal cruising case with no wind, i.e. |va| = v = v2,
as shown in figure 3.4. The angle of attack α is kept constant.

1Firstly, for quadrotors and our convertible UAV, the fuselage is not directly under the rotor as in the case of
helicopter, thus the downwash influence of propellers on the fuselage is negligible. Secondly, in most situations,
the speed of airflow generated by the propellers is greater than the air-velocity along the propeller axis generated
by the UAV movement. Adding the fact that the sizes of the wings are not too large, the influence of wings on
propellers is relatively small. Finally, self-influence interference is very difficult to model. We simply consider
them as unknown disturbances with the objective of making the control robust enough to achieve performance
insensitivity w.r.t model inaccuracies.

2Note the difference between γ the gravitational vector’s direction in the body frame and η the thrust vector’s
direction in the inertial frame defined in section 3.1.2.2.
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Figure 3.4: Simplified convertible UAV model in cruising flight

With these assumptions, the second equation in system (3.16) becomes

mv̇ = −TR(θ)e3 +mge3 − FLe3 − (FD +D)e2 (3.17)

where e2 = (0, 1, 0)� is the second vector of the canonical basis of R3. From Eq. (2.81) in view of
horizontal velocity (|va| = v = v2) and constant angle of attack α, the intensities of aerodynamic
forces are simplified to: 



FL = kacLv
2

FD = kacDv
2

D = kparacparav
2

(3.18)

where cL and cD are now constant. Substituting Eq. (3.18) into Eq. (3.17), we obtain the
following expressions on horizontal and vertical dynamics:

®
mv̇ = T sin θ − (kacD + kparacpara)v

2

0 = mg − T cos θ − kacLv
2 (3.19)

Substituting T in the second expression into the first one, the horizontal speed differential equa-
tion is obtained:

v̇ = C0 + C1v
2 (3.20)

where C0 = g tan θ and C1 =
ka
m

(cL tan θ + cD) +
kparacpara

m
.

A solution of the above equation can be found :

v =

 
C0

C1
tanh(

√
C0C1(t− t0) + C2)

where C2 is a constant which depends on the initial condition. This solution converges towards

an equilibrium v =

 
C0

C1
. We conclude that there exists a velocity v that is an equilibrium

solution to system (3.16) given the UAV orientation and wing orientation. With this existence of
equilibrium, we can now proceed to detail the hierarchical control, starting with attitude control.
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3.2.1.2 Attitude Control

As explained above, the UAV is given reference values γr,1, γr,2 for for roll/pitch control. We
detail in this section the control law used to stabilize γ to the direction induced by γr,1, γr,2.
Taking the derivative

γ̇1,2 = γ3S2ω1,2 − ω3S2γ1,2 with S2 =

ñ
0 −1
1 0

ô
Selecting a controller in the form

ω1,2 = ωr,1,2 := kγS2(γ1,2 − γr,1,2) +
ω3

γ3
γr,12 (3.21)

where kγ is a gain to be specified, the nonlinear feedback control loop becomes:

γ̇1,2 = −kγγ3(γ1,2 − γr,1,2)− ω3S2(γ1,2 − γr,1,2).

For all the values γr,1,2 constant, ‖γ1,2 − γr,1,2‖2 decreases if kγγ3 > 0. From here, it is easy
to deduce that the above control expression makes γ = γr :=

(
γr,1, γr,2,

√
1− γ2

r,1 − γ2
r,2

)
locally

exponentially stable whatever the value of ω3. When ω3 = 0, one can even deduce that for any
γr,1,2 constant with ‖γr,1,2‖ < 1 and any initial condition γ(0) with γ3(0) > 0, γ(t) converges
exponentially to γr(t). Indeed, in this case, trajectories (γ1(t), γ2(t)) consist in straight lines
between (γ1(0), γ2(0)) and (γr,1(0), γr,2(0)). Therefore ‖(γ1(t), γ2(t))‖ < 1 for all t and γ3(t)
remains strictly positive. This is typically enough in practice to address “normal” flight modes
(i.e. UAV’s thrust vector and reference thrust direction pointing upward). When ω3 is not
identically zero, the domain of stability is more difficult to characterize.

The advantage of this solution is its large stability domain and the fact that it only relies
on accelerometers and gyrometers (i.e., magnetometers measurements, which are not always
reliable, are not used here). The control input ω3 can then be used for yaw control (either with
yaw velocity reference values ωr,3 sent by the pilot, or with yaw reference values).

In case a very large stability domain is required (e.g., UAV’s thrust vector and reference
thrust direction may point downward), one could use the control law

ω = −kγ (γ × γr)

which ensures convergence of γ to γr if at t = 0 these two vectors are not opposite (This can be
checked by considering the candidate Lyapunov Function L = 1− γ>γr.).

To avoid the division by zero in the control expression (3.21), an alternative solution is

ωr,1,2 = kγS2(γ1,2 − γr,1,2) +
ω3γ3

ε+ γ2
3

γr,1,2 (3.22)

with 0 < ε� 1.
As for the outer loop of system (3.16), the angular velocity is controlled by the torque Γ.

There are many possible solutions, e.g.

Γ = ω × Jω − Γa − JK(ω − ωr) (3.23)

where K is a constant 3× 3 diagonal matrix.
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3.2.1.3 Altitude Control

The vertical dynamics is given by:

ẋ3 = v3

v̇3 = − T
m
e>3 Re3 + g +

Fa,3
m

= − T
m
γ3 + g +

Fa,3
m

(3.24)

The above system suggests the following simple control:

T =
m

γ3

ï
g +

Fa,3
m

+ kv,3v3 + kp,3(x3 − xr,3)

ò
(3.25)

One then obtains the closed loop system:®
ẋ3 = v3

v̇3 = −kv,3v3 − kp,3(x3 − xr,3)
(3.26)

whose stability is ensured given kv,3 > 0 and kp,3 > 0. Again, in order to avoid division by zero
in (3.25), an alternative solution is:

T =
mγ3

ε+ γ2
3

ï
g +

Fa,3
m

+ kv,3v3 + kp,3(x3 − xr,3)

ò
(3.27)

with 0 < ε� 1.

3.2.1.4 Control allocation

In this section, we recall the procedure [77] to compute the reference propeller rotational speeds
$r,1, $r,2, $r,3, and $r,4 as a function of control vector [T,Γ]> where T and Γ are given by
Eq. (3.27) and Eq. (3.23), respectively.

Modeling for multirotors often relates each propeller thrust force Ti and torque Qi with its
rotational speed $i by two simple constants κT and κQ:®

Ti = κT$
2
i

Qi = κQ$
2
i .

(3.28)

The constants κT and κQ are simpler representations of the thrust coefficient CT defined in
Eq. (2.65) and the torque coefficient CQ introduced in Eq. (2.67), respectively. Refer to the end
of appendix A for more detailed relations of these coefficients.

The relation between the wrench vector and the propeller rotational speeds can be easily
obtained from examining the forces and torques acting on the quadrotor main body in figure 3.3:ñ

T
Γ

ô
=


κT κT κT κT

κT l/
√

2 κT l/
√

2 −κT l/
√

2 −κT l/
√

2

κT l/
√

2 −κT l/
√

2 −κT l/
√

2 κT l/
√

2
−κQ κQ −κQ κQ



$2

1

$2
2

$2
3

$2
4

 (3.29)

Finally, it is possible to inverse the above relation to determine the reference$r,1, $r,2, $r,3, and $r,4

from [T,Γ]> 
$2
r,1

$2
r,2

$2
r,3

$2
r,4

 =
1

4κT


1
√

2/l
√

2/l −κT /κQ
1
√

2/l −
√

2/l κT /κQ
1 −

√
2/l −

√
2/l −κT /κQ

1 −
√

2/l
√

2/l κT /κQ


ñ
T
Γ

ô
(3.30)
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3.2.1.5 Control design for the wings

Up to now, the controls uA and uC for the wings’ pitch angle have not been specified. A simple
solution would consist in maintaining the wings fixed with respect to the UAV’s main body, i.e.
µA and µC constant. There are two reasons why this solution does not seem very appropriate.
First, we have seen in chapter 2 that from an energy point of view, the optimal pitch angle of the
wing(s) much varies with the velocity. Thus, keeping µA and µC constant would be inefficient in
most situations. Then, from a control point of view, keeping µA and µC constant would mean
that the aerodynamic force Fa varies with the UAV’s main body attitude R. For example, in
forward flight, increasing the UAV’s main body pitch angle would increase by the same amount
the wing pitch angle, and thus reduce angle of attack and lift force. In other words, since Fa now
varies with R, the second equality in (3.58) becomes an implicit equation with no guarantee of
existence/unicity of the solution. This problem has already been evoked in section 3.1.2 and is
studied in more details in [18].

To fully benefit from the additional degrees of freedom given by the wings’ actuation, we
simply propose to control the wings’ pitch angles ζA, ζC to desired values ζr,A, ζr,C . To simplify
this current presentation, the three vectors k0, k, and kW are assumed to be on the same plane.
One has for W ∈ {A,C}:

ζW = θ1 + µW

Thus ζ̃W := ζW − ζr,W satisfies:

˙̃
ζW = ζ̇W = ω1 + µ̇W = ω1 + uW

Setting the control
uW = −ω1 − kW ζ̃W

implies that
˙̃
ζW = −kW ζ̃W

Choosing kW > 0 thus ensures the exponential convergence of ζW to the desired value ζr,W . In
this way the wings’ pitch angles are controlled to their desired values and aerodynamic forces on
the wings do not depend on the UAV’s main body attitude since the wings’ pitch angle are con-
trolled independently. We also note that this control expression only requires the measurement
of ω1 and ζW . In practice, the first one is given by gyrometers of an IMU while ζW is given by
the sum of the UAV’s pitch angle and the angle µW .

3.2.1.6 Estimation

The above control implementation requires the knowledge of the UAV state variables, aerody-
namic forces and torque. Before proceeding to describe the estimation process, we present the
sensors that are available on the IMU unit (The detailed descriptions of these sensors are available
in section 4.1.1.):

• a barometer to measure the altitude and the vertical speed (by derivation/filtering) in the
inertial frame I,

• a three-axis accelerometer to measure the specific acceleration as = R>(v̇ − ge3) in the
body frame B,

• a three-axis gyroscope to measure the rotational velocity ω in the body frame B,
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• a three-axis magnetometer to measure UAV orientation w.r.t the Earth’s magnetic field
(These magnetometer measurements might be utilized by sensor fusion to improve the
attitude measurements, but they are usually not required for close-range teleoperation.),

After low-level data treatment, the angular speed estimation ω̂, the specific acceleration estima-
tion âs, the altitude estimation x̂3, and the vertical speed estimation v̂3 are obtained.

a) Estimation of orientation vector

The standard approach to estimate a VTOL UAV attitude consists in fusing gyrometers and
accelerometers/magnetometers data, where accelerometers are used as inclinometers under the
hypothesis that the linear acceleration is zero. In this case indeed, we have:

âs = as = −gR>e3 = −gγ. (3.31)

Then, the orientation vector γ can be estimated by the following:®
˙̂γ = S(γ̂)(ω̂ − kest,γ(âs × γ̂))
γ̂(0) = −âs(0)/g

(3.32)

where gain kest,γ > 0. Substituting Eq. (3.31) into Eq. (3.32) yields:

˙̂γ = S(γ̂)(ω̂ − kest,γg(γ̂ × γ))

Assuming that ω = ω̂, stability of the above observer can be obtained by considering the Lya-
punov function L = 1− γ>γ̂ whose derivative satisfies:

L̇ = −kest,γg‖γ̂ × γ‖2

where we deduce the convergence of γ̂ to γ if initially these two vectors are not opposite. In
practice, this observer is discretized and we must guarantee that the norm of γ̂ is always 1.
Besides, the gain kest,γ is chosen to be small (to trust the gyroscope measurements more than
the accelerometer ones). When needed, the information on γ is combined with the magnetometer
information to derive an estimation of R. This is achieved through a filtering procedure with
gyros, such as the complementary filter [78,79]. Since we are here only interested in the estimation
of γ, the (not always reliable) magnetometer information will not be used.

Using accelerometers as inclinometers is a common practice with UAVs. However, it relies
on the assumption that the vehicle’s linear acceleration is negligeable, which is not always the
case. In a recent work [47], the aerodynamics of a quadrotor are used to specify what is really
measured by accelerometers. Recalling that the accelerometer measures as = R>(v̇−ge3). From
the second equation of system (3.16), as can be rewritten as:

as = −Te3

m
+R>Fa

m
. (3.33)

The first two components of as are then:
as,1 = e>1 R>

Fa
m

as,2 = e>2 R>
Fa
m

(3.34)
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We can clearly observe from here that the accelerometer gives the measurements of aerodynamic
forces. Looking closer at the aerodynamics of propellers, it can be shown that at low velocities,
accelerometers provide a measurement of the horizontal linear velocity expressed in the body
frame (see also Eq. (2.64) and the remark thereafter in chapter 2 of this thesis). This is used
in [47] to propose a new velocity/attitude observer with improved performance. That solution
has not been tested on our platform. Indeed, preliminary analysis of accelerometer measurements
on the low-cost IMU used on our platform has shown high noise level, which seems to make it
difficult to recover significant velocity information.

b) Estimation of vertical position, velocity, and aerodynamic force

The vertical dynamics in (3.24) suggests the following observer:
˙̂x3 = v̂3 − kest,x(x̂3 − x3)

˙̂v3 = − T
m
γ3 + g +

F̂a,3
m
− kest,v(x̂3 − x3)

˙̂
Fa,3 = −mkest,F(x̂3 − x3)

(3.35)

where kest,∗ denote positive gains. Denoting x̃ = x̂ − x, ṽ = v̂ − v, and F̃a,3 = F̂a,3 − Fa,3 the
estimation errors, one deduces from (3.24) and (3.35) that:

˙̃x3 = ṽ3 − kest,xx̃3

˙̃v3 =
F̃a,3
m
− kest,vx̃3

˙̃Fa,3 = −mkest,Fx̃3 − Ḟa,3

(3.36)

This is the dynamics of a Hurwitz-stable linear system perturbed by the additive term ˙̂
Fa,3.

The estimator provides reliable estimate of Fa,3 provided that this term does not vary too fast.
We consider now the rotation dynamics:

Jω̇ = −ω × Jω + Γ + Γa (3.37)

The above system suggests the following classic observer:{
J ˙̂ω = −ω × Jω + Γ + Γ̂a − Jkest,ω(ω̂ − ω)
˙̂
Γa = −Jkest,Γ(ω̂ − ω)

(3.38)

Denoting ω̃ = ω̂ − ω and Γ̃a = Γ̂a − Γa the estimation errors, (3.37) and (3.38) yield:{
J ˙̃ω = Γ̃a − Jkest,ωω̃
˙̃Γa = −Jkest,Γω̃ − Γ̇a

(3.39)

The estimator provides reliable estimate of Γa provided that the aerodynamic torque does not
vary too quickly.

3.2.1.7 Simulation

The parameters for simulated model are detailed in appendix C. Simulation is performed with
a reference altitude of 5 m, a reference pitch angle of 10◦ around axis i, and the wings are given
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constant reference angles 10◦ w.r.t the ground (i.e. ζr,A = ζr,C = 80◦). The reference yaw angular
velocity ωr,3 is set to zero. No wind is blowing.

The control parameters are: kγ = 2, K =

6 0 0
0 6 0
0 0 6

, kp,3 = 0.36, kv,3 = 3.6, and ε = 0.001.

The control gains for the wings are: kA = kC = 10.2. The estimation gains are: kest,γ = 0.002,
kest,x = 4, kest,v = 3.2, kest,F = 4, kest,ω = 9, and kest,Γ = 4.8.

The results of the simulation are shown in figure 3.5. The UAV is able to track well the
reference altitude, with small overshoot, fast response time, and very small steady-state error, as
proven in figure 3.5(b). The outer loop control for the attitude response is even faster as expected,
with just a few seconds for the UAV to achieve its desired pitch angle of (figure 3.5(c)). This
control strategy is successful thanks to quite accurate estimation of the vertical aerodynamic
force, as depicted in figure 3.5(d).3

Next, we perform the simulation in the presence of wind. The UAV is given the same
references as in the previous case. However, from t = 40 s, the UAV is perturbed by wind
with constant components vwind = [0, 3, 1.5]> as in figure 3.6. The wind varies strongly in both
magnitude and direction. Figure 3.7 illustrates the attitude response. In general, the UAV is
able to resist the wind disturbance. In particular, the horizontal component of the wind (e.g.
from t = 70 s to t = 120 s) does not affect the system so much, since the angles of attack only
vary slightly. By contrast, the vertical component of the wind causes large errors in altitude, up
to more than 4 m. In addition, the UAV’s pitch angle oscillates slightly, as proven by figure 3.8.
The biggest problem is that the wind reduces the angles of attack of the wings to below zero
(figure 3.9), effectively decreases the lift force, and increases the power consumption (figure 3.10).

3.2.2 Control Without Velocity Measurement Based on a Modified Mechan-
ical Design

From the previous section, we have seen that unknown aerodynamic disturbances can have neg-
ative impacts on system performance. In particular, there might be strong and rapid variations
of the aerodynamic forces and torques acting on the vehicle. These forces and torques must
be finely controlled in order to avoid flight instability and inefficient configurations. The main
issue here is the control of the aerodynamic forces acting on the wings, which typically relies on
the control of the wing’s angle of attack in terms of the air-velocity magnitude, and therefore
on air-velocity measurements. For conventional airplanes flying at high speed, the air-velocity
vector can be accurately measured via different devices such as classical Pitot tubes or vanes
(See, e.g. [80]), or more recent flush air-data sensing (FADS) systems [81, 82]. Small VTOL
UAVs typically operate at low speed (less than 20 m/s), however, and due to their sensitivity
to wind they can be subjected to fast and large variations of the angle of attack. Obtaining
precise and high-frequency measurements of the air-velocity vector in such conditions is diffi-
cult. In this section, we propose a strategy to efficiently control the wing’s angle of attack. The
main point is that air-velocity measurements are not needed to implement this feedback control
strategy. In fact, like in the case of the previous control design, the control can be implemented
with IMU/barometer measurements only. The proposed solution relies on a modified mechanical
design and the torque induced by aerodynamic forces. The spring-damper like controller with
variable stiffness ensures the convergence of the angle of attack to a desired value. This value
may depend on the (non-measured) air-velocity magnitude. A stability analysis of the proposed

3In the simulation, the values of Fa,3 are from system dynamics whereas the values of F̂a,3 are estimated from
vertical position as in (3.35).
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Figure 3.5: Teleoperation simulation with attitude and altitude control
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Figure 3.7: Reference altitude versus UAV alti-
tude (teleoperation with wind simulation)
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Figure 3.8: UAV’s pitch angle (teleoperation
with wind simulation)
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Figure 3.11: 2D simplified model

feedback controller is provided, showing a large convergence domain of the angle of attack to the
desired value.

To keep the current exposition simple without impairing its generality too much, the control
approach will be discussed on the basis of the simplified model with only one wing and two
propellers (figure 3.11). We assume that P ≡ GB, i.e. the pivot point is also the CoM of the
vehicle’s main body, and that the wing’s CoM GA is close enough to P so that the effect of a
possible offset on the linear motion dynamics can be neglected. The 2D model here considered
is more realistic than the model in figure 3.4. Indeed, the pivot point P can be different from
the CoM GA of the wing. In addition, the aerodynamic force acting on the wing at a point A
which typically does not coincide with neither P nor GA (figure 3.12).

Let ξ = ξ(va) denotes the angle from va to k0. Recall the linear motion equation:

mv̇ = −TR(θ)e3 +mge3 + Fa (3.40)

Although v ∈ R3, since we consider here only the planar case, we are only interested in the
components v2 and v3 of v. In other words, the dynamics of v1 is unimportant. The torque
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Figure 3.12: The model decoupled into the main body and the wing

around P acting on the main body consists of the torque induced by the propellers and the
torque Γµ = Γµi induced by the wing. By applying the Euler theorem of momentum, with the
assumption that aerodynamic forces acting on the vehicle’s main body do not generate torque,
the following equation of angular motion is obtained:

JB θ̈ = Γ + Γµ (3.41)

with JB the main body’s inertia and Γ = (T1−T2)l where l is the distance between UAV’s CoM
and either propeller’s center. The torque around P acting on the wing consists of the torque
induced by gravity, the torque −Γµ induced by the main body, and the aerodynamic torque Γa

induced by the aerodynamic force Fa. This yields the following equation:

JAζ̈ = −Γµ −mAgdA sin ζ + Γa (3.42)

with JA the wing’s inertia, mA the wing’s mass, and dA the distance between P and GA.
Gathering Eq. (3.40), (3.41), (3.42) yields the following control model:




mv̇ = −TR(θ)e3 +mge3 + Fa

JB θ̈ = Γ + Γµ

JAζ̈ = −Γµ −mAgdA sin ζ + Γa

(3.43)

with the control inputs T , Γ, and Γµ. The control Γµ results from the actuation of the joint
between the main body and the wing.

3.2.2.1 Aerodynamic forces and torque

The aerodynamic force Fa is composed of three parts: lift force FL and drag force FD acting on
the wing, and a parasite drag D (assuming no parasite lift) acting on the vehicle’s main body,
i.e.

Fa = FL + FD +D

Recall from section 2.3 that the lift and drag forces are written as
®

FL = ka|va|cL(α,Re)v⊥
a

FD = −ka|va|cD(α,Re)va
(3.44)

and
D = −kparacpara|va|va
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with the angle of attack α from Eq. (2.78) rewritten as

α = π − θ − µ− ξ(va) = π − ζ − ξ(va) (3.45)

To lighten the notation, the Reynolds number dependence will often be omitted, i.e., we often
simply write cL(α) and cD(α).

To specify the aerodynamic torque Γa induced by the aerodynamic force Fa, first recall the
assumption that the parasite drag is acting at P, and thus it does not generate any torque around
P. The aerodynamic forces FL and FD act at the center of pressure, here denoted as A. For a
symmetric airfoil, the center of pressure is located on the zero-lift line and its distance w.r.t. the
leading edge is constant over a wide range of α and Reynolds number [48, Sec. 4.7]. Although
the present approach can be extended to the case when the center of pressure location is not
constant, we will thus assume for simplicity that PA = dkA with d a constant scalar. The
aerodynamic torque around P is thus

Γa = dkA × (FL + FD) = Γai0

and we deduce from Eq. (3.44) that

Γa(va, α) = dka|va|2(cD sinα+ cL cosα) (3.46)

We rewrite the previous equation as

Γa(va, α) = |va|2h(α) sinα (3.47)

where
h(α) = dka (cD(α) + cL(α)cot(α)) (3.48)

For a symmetric airfoil the term cL(α) cot(α) is typically well defined everywhere (it is defined by
continuity at α = kπ provided (∂cL)/(∂α)(kπ) 6= 0) and strictly positive. Since the aerodynamic
drag coefficient cD also shares these properties, we conclude that h is well defined and strictly
positive everywhere. Note that considering a distance d which varies with α does not change the
fact that h is strictly positive if d(α) itself remains strictly positive, i.e. if the center of pressure
is “below” the pivot point P.

We proceed with the detailed control strategy. The aerodynamic force and torque depend on
the air-velocity vector va and the angle of attack α. From (3.45), α is a function of va and ζ.
Therefore, the control system (3.43) can be written as

v̇ = ge3 − u1R(θ)e3 + F̄a(va, ζ)

θ̈ = u2

ζ̈ = u3 + Γ̄a(va, ζ)

(3.49)

with
u1 =

T

m
, u2 =

Γ + Γµ
JB

, u3 = −Γµ +mAgdA sin ζ

JA

and
F̄a(va, ζ) =

Fa(va, α)

m
=
Fa(va, π − ζ − ξ(va))

m

Γ̄a(va, ζ) =
Γa(va, α)

JA
=

Γa(va, π − ζ − ξ(va))
JA

(3.50)
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The mapping (T,Γ,Γµ) 7−→ (u1, u2, u3) is bijective for any ζ. Therefore, one can view u1, u2, u3

as the control inputs.
System (3.49) suggests the following control strategy. Firstly, u3 is used to control ζ so as

to achieve a satisfactory angle of attack, e.g., a wing configuration that ensures a low energy
consumption of the UAV. Secondly, the (normalized) thrust input u1 and angular velocity control
u2 can be used to monitor the UAV’s attitude θ and altitude x3, similar to section 3.2.1, with
F̄a(va, ζ) viewed as an external force that needs to be compensated via the propeller thrust.

3.2.2.2 Control of the wing’s pitch angle

When the air-velocity vector va is known, it is straightforward to control ζ so as to achieve a
desired angle of attack. However, obtaining a precise measure of va in real-time and at high
frequency is very difficult, especially for small UAVs. The objective of this section is to propose
a control solution that does not rely on such measures. While this approach cannot compete
with the case when high-quality measure/estimates of va were available, we will show that it
can still provide interesting results. Throughout this section it is assumed that ζ is measured or
estimated. Since ζ = θ+ µ, it can be computed from an estimate of θ (typically obtained via an
IMU), and a measure of µ.

It follows from (3.47), (3.49), and (3.50) that

ζ̈ = u3 +
|va|2h(α) sinα

JA
(3.51)

Assume that a model of a “desired” angle of attack as a function of the air-velocity is available,
i.e.

α∗(va) = f0(va)

For example, such a desired angle of attack could be the one that minimizes the energy con-
sumption of the UAV for a given air-velocity (see chapter 2). The vector va is fully determined
by its amplitude and direction, so that we can rewrite the previous equation as

α∗(va) = f(|va|, ξ(va))

Since the UAV has a symmetric geometry (i.e., when θ = µ = 0, the vehicle’s shape is symmetric
w.r.t. k-axis), a natural requirement is that

f(τ,−ξ) = −f(τ, ξ) (3.52)

For example, in the absence of wind, if at a certain speed the desired angle of attack when flying
in the direction of j0 is α = α∗, the desired angle of attack when flying in the direction of −j0 at
the same speed should be α = −α∗. We further specify the class of functions f via the following
assumption.

Assumption 1 The function f is of the form

α∗(va) = f(|va|, ξ(va)) = acot
Ç
g1(|va|2)

g2(ξ(va))

å
(3.53)

where the functions g1, g2 satisfy the following properties:

1. g1 : R −→ R is continuous, strictly increasing, odd (i.e., g1(−τ) = −g1(τ), and

lim
τ→+∞

g1(τ)

τ
= b > 0 (3.54)
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2. g2 is odd and g2(ξ) > 0 ∀ξ ∈ (0, π).

Let us comment this assumption. First, g1(τ) tends to +∞ as τ tends to +∞. Therefore, α∗

tends to zero as |va| tends to infinity. This is a desired property in practice because when the
air-velocity amplitude gets large, the only way to keep aerodynamic forces bounded is to impose
a small angle of attack. Then, the function g2 is introduced to model possible dependence of α∗

on the air-velocity direction. From the positivity of g1(|va|2) and Condition 2, note that (3.52)
is satisfied since acot is an odd function. Note also that if g2 is continuous at ξ = 0, π, then it
vanishes at these points. The function f is still defined by continuity, however, provided that
va 6= 0. When va = 0, the definition of the angle of attack does not make sense anyway.

We can now state the main result of this section.

Proposition 1 Define two functions kp, kv as follows:

kp(ζ, ξ) = g−1
1 (g2(ξ) cot(π − ζ − ξ))h(π − ζ − ξ) sin(π − ζ − ξ)

kv(ζ, ξ) = 2η0

»
|kp(ζ, ξ)|

(3.55)

with η0 > 0. Suppose that Assumption 1 is satisfied and that va is constant with va,2 6= 0. Then,
the control law

u3 = −kp(ζ, ξ(va)) + kv(ζ, ξ(va))ζ̇

JA
(3.56)

ensures the asymptotic stability of α = α∗ with convergence domain (α∗ − π, α∗ + π).

The proof of this proposition is given in appendix E.

This proposition calls for remarks.
First, u3 can be viewed as a nonlinear spring-damper type feedback control. The main idea

is that the spring-like feedback term kp is designed so as to compensate the aerodynamic torque
at the desired value α∗. This strategy thus strongly relies on the fact that the center of pressure
is below the pivot point P.

Then, from an application point of view, the main benefit of this result is to show how to
stabilize the “desired” angle of attack α∗ without a measure of |va|. Note that the direction ξ(va)
of the air-velocity vector is needed to compute the control law. While this is not as demanding
as knowing the air-velocity vector itself, this may still seem a strong requirement in practice.
As a matter of fact, in many situations knowledge of this angle is not really needed. First,
horizontal flight with horizontal wind (i.e. va being horizontal) constitutes the most standard
flight condition. In this case, the direction of the air-velocity is typically known (ξ(va) = ±π/2)
without the need of a sensor. Then, since the controller ensures the asymptotic stability of
α = α∗(va) when ξ(va) is known, it will also ensure the convergence of α to a neighborhood of
α∗(va) when the functions kp, kv are computed with ξ(va) replaced by a “reasonable” estimate
ξ̂. For example, if v is measured one may take ξ̂ = ξ(v), or even simply ξ̂ = ξ(vr) when the
objective is to follow a reference trajectory vr. Simulation results reported later will support
these simple strategies.

Finally, let us also remark that the function kp is defined by continuity when π− ζ− ξ = 0, π
(see the proof in appendix E). Therefore, the control expression is well-defined everywhere.

3.2.2.3 Simulation results

We report in this section simulation results obtained from the modeling equations (3.43). The
simulated parameters are given in appendix C. Some additional specific parameters for the current
simulations are:
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• d(α) = d = 0.03 m. We take d(α) constant because, for symmetric airfoils, the distance
between the center of pressure and the leading edge is constant over a wide range of α and
Reynolds number [48, Sec. 4.7],

• dA = 0.01 m.

Based on the previous model of aerodynamic lift coefficient of NACA0018 airfoil in Eq. (2.85)
and Eq. (2.86), one verifies from (3.48) that the function h in (3.47) is given by

h(α) = dka(c1 + 2c2 + 2(c2T − c2)σ(α) cos2 α)

It is straightforward to verify that h is strictly positive since d, ka, σ, c1 > 0 and c2T > c2 > 0.

Model of desired angle of attack

The functions g1, g2 that define the desired angle of attack in (3.53) are chosen as follows:

g1(τ) = bτ, g2(ξ) =
sin ξ

(1 + a cos ξ)
(3.57)

with |a| < 1. This yields

α∗ = acot
Ç
b|va|2(1 + a cos ξ)

sin ξ

å
with b = 0.05 and a = −0.99. Figure 3.13 shows a comparison of the so-obtained “desired
angle of attack” α∗ with the angle of attack αopt that minimizes the energy consumption, for
three flight configuration: horizontal flight (ξ(va) = 90◦), descending flight (ξ(va) = 75◦), and
ascending flight (ξ(va) = 105◦). The solid-line curves are associated with αopt whereas the dashed
curves are associated with α∗. Although the trends are similar, α∗ only provides a very rough
approximation of αopt. A better approximation could be obtained by using a more complex
function g1. The very simple function g1 here chosen will illustrate that even a rough estimate of
the optimal angle of attack can yield satisfactory results in terms of energy efficiency. Figure 3.14
provides the energy consumption as functions of |va| for the same horizontal, descending, and
ascending flights. For comparison, the energy consumption for a classical quadrotor (i.e. without
wings) is also shown in red with triangular markers. Energy consumption with α = α∗ is close to
the optimal case α = αopt, except in the velocity range [7, 10] m/s. Note that for low velocities
the classical quadrotor provides better energy consumption since it is lighter than the convertible
UAV.

Teleoperation with wind simulation

We report in this section the results obtained with the proposed control approach for the
teleoperation case with wind.

The control u3 for the wing’s pitch angle is defined by (3.56) with the parameter η0 in (3.55)
given by η0 = 1 and ξ(va) replaced by the approximation ξ̂ = ξ(vr). In other words, we do not
use any velocity measurement for the control of the wing’s pitch angle.

The attitude and altitude are controlled in the same fashion as in section 3.2.1. Simulation
results presented next support the use of this simplified control expression.

The system is perturbed by the wind as in figure 3.6. The errors in altitude are less than
the previous case (compare figure 3.15 with figure 3.7). The UAV’s pitch angle is kept almost
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Figure 3.13: Comparison of desired angle of attack α∗ (dashed curves) and optimal angle of
attack αopt (solid curves) versus the airspeed at different directions
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Figure 3.14: Power comparison in (a) horizontal, (b) descending, and (c) ascending forward flight



3.2. Control of Our Convertible UAV 87

0 50 100 150 200 250
−8

−7

−6

−5

−4

−3

−2

−1

0

time (s)

U
A

V
 r

e
fe

re
n
c
e
 a

lt
it
u
d
e
 a

n
d
 a

lt
it
u
d
e
(m

)

 

 

xr,3

x3

Figure 3.15: Reference altitude versus UAV al-
titude (second control design)
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Figure 3.16: UAV’s pitch angle (second control
design)

perfectly at reference value, as proven in figure 3.16. This point is important since the UAV
main body is kept from the influence of disturbances and vibrations. The wing’s pitch angle is
controlled so as to counteract the influences of the wind, and consequently the wing’s angle of
attack varies, as depicted in figure 3.17. Note that in the simulation, it is assumed that there is
no delay in the wing servos’ response.

Figure 3.18 plots the average power consumption since t = 0 s. The power consumption is
lower than the previous case (compared with figure 3.10). This energy improvement is achieved
since the wing’s angle of attack is controlled with the goal of minimizing the power.

Finally we present the results for the teleoperation case with wind modeled according to the
common reference U.S. Military Handbook MIL-HDBK-1797 [83]. Specifically, the wind speeds
are the superposition of wind shear model, Dryden wind turbulence model (the angular velocity
effects of turbulence are ignored), and discrete wind gust. The total wind velocity components
are illustrated in figure 3.19, showing highly turbulence and wind gusts. Similar to the previous
simulation, the altitude and attitude tracking is accurate, as shown in figure 3.20 and figure 3.21.
The average power consumption is low, as depicted in figure 3.22.

3.2.3 Control With Velocity Measurement

With velocity measurement typically obtained by GPS, the control objective is essentially to
stabilize a constant velocity reference trajectory vr.

3.2.3.1 Control design for the propellers

The control design is based on [57] and has already been summarized in section 3.1.2. Let us
first assume that Fa and Γa are known. The second equation in (3.16) can be written as

mv̇ = −kv(v, t)− TRe3 +mge3 + kv(v, t) + Fa

where kv(v, t) is a feedback term designed so as to ensure the stability of v = vr for the system
mv̇ = −kv(v, t). A simple choice is kv(v, t) = kv1(v−vr) with kv1 a positive gain but one may use
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Figure 3.17: Angle of attack of the wing (second
control design)
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since t = 0 (second control design)
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Figure 3.19: Wind speed components, which are
superposition of wind shear model, Dryden wind
turbulence model, and discrete wind gust.
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titude (simulation with a different wind model)
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Figure 3.21: UAV’s pitch angle (simulation with
a different wind model)
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Figure 3.22: The average power consumption
since t = 0 (simulation with a different wind
model)

a more sophisticated control expression, e.g. incorporating integral correction terms, etc. From
here, the objective is to ensure the convergence of −TRe3 +mge3 +kv(v, t)+Fa to zero. Indeed,
this implies that asymptotically the control system behaves like the stable systemmv̇ = −kv(v, t).
Provided thatmge3+kv(v, t)+Fa 6= 0, the relation −TRe3+mge3+kv(v, t)+Fa = 0 is equivalent
to

T = ±‖mge3 + kv + Fa‖ , Re3 = ± mge3 + kv + Fa
‖mge3 + kv + Fa‖

From these two solutions, the constraint of positive thrust T allows one to specify a unique
physically admissible solution:

T = ‖mge3 + kv + Fa‖ , Re3 =
mge3 + kv + Fa
‖mge3 + kv + Fa‖

(3.58)

This equation specifies the thrust control input and a “reference thrust direction”:

ηr =
mge3 + kv + Fa
‖mge3 + kv + Fa‖

The torque control input is then designed so as to ensure the convergence of η = Re3 to ηr. This
is a classical problem in the attitude control of rigid bodies and in theory, it is a problem easy
to solve since the system is fully actuated in torque. A possible solution [57] is given by:

Γ = ω × Jω − Γa − kω(ω − ωr)

where ωr, which denotes a vector of “reference (or desired) angular velocity”, can be defined as
in Eq. (3.15) in section 3.1.2:

ωr,1,2 =

®
R>
ñ
kθ

η × ηr
(1+η>ηr)2

− S(η)2(ηr × η̇r)
ô´

1,2

(3.59)

with ωr,1,2 := (ωr,1, ωr,2)>. In the above equations, kω and kθ denote positive gains. The deriva-
tion term η̇r is difficult to obtain. In practice, this term is simply set to zero. Simulation suggests
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that doing so will not degrade too much the performance of the above nonlinear controller. At
this point, note that ωr,3 is not specified yet. Indeed, convergence of η to ηr puts no requirement
on the yaw angle. In the case of our convertible UAV, a natural requirement is to align the wings
towards the apparent wing (zero sideslip angle). In the absence of wind, a simple solution is

ωr,3 = −kθ3

ñ
θ3 + asin

Ç
vr,1

‖(vr,1, vr,2)‖

åô
(3.60)

with kθ3 a positive control gain, and θ3 any parametrization of the UAV’s yaw, like the Euler
angle θ3 = asin(eT2Re1). More sophisticated attitude control solutions can be found in [21].

Before going any further, let us make a few remarks. The reference thrust direction given by
the second equality in (3.58) is well defined if and only if mge3 + kv + Fa 6= 0. For high-speed
flight, the amplitude of the aerodynamic force Fa can be large and close to the gravity force
amplitude mg. Thus, in theory one cannot rule out the possibility that mge3 +kv +Fa vanishes,
although this is relatively unlikely. In the same line, to limit the risk that this term vanishes it
seems preferable to use a bounded feedback term kv. In particular, the maximum amplitude of
the vertical component eT3 kv should be significantly smaller than mg.

3.2.3.2 Control design for the wings

This short section can be seen as an extension of the wing control in section 3.2.1.5. Specifically,
we propose to control the wings’ pitch angle so as to obtain desired angles of attack αr,A and
αr,C . These angles should be chosen so as to ensure a good energy efficiency. We assume that the
desired values are defined in function of the desired velocity: αr,A = αr,A(vr), αr,C = αr,C(vr).
At this point we also assume that the UAV’s yaw angle has been controlled so that the sideslip
angle is zero. In this case, the motion is essentially planar and we can assume without loss of
generality that vr is of the form vr = (0, vr,2, vr,3). Along the desired velocity profile (i.e. for
v = vr), one has for W ∈ {A,C}:

αW =
π

2
+ atan2(vr,3, vr,2)− ζW

Thus α̃W := αW − αr,W satisfies:

˙̃αW = α̇W = −ζ̇W = −ω1 − µ̇W = −ω1 − uW

Setting

uW = −ω1 − kW
ï
ζW −

Å
π

2
+ atan2(vr,3, vr,2)

ã
+ αr,W

ò
implies that

˙̃αW = −kW α̃W

Choosing kW > 0 thus ensures the exponential convergence of αW to the desired value αr,W . If
one assumes that the system is perfectly symmetric, it is natural to choose the reference values
αr,A, αr,C equal: αr,A = αr,C = αr, and also the control gains equal: kA = kC = k. Then, in the
case of a horizontal reference velocity, the control uA, uC reduce to

uA = −ω1 − k
Å
ζA −

π

2
+ αr

ã
uC = −ω1 − k

Å
ζC −

π

2
+ αr

ã (3.61)
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3.2.3.3 Estimation of aerodynamic force and torque

Implementation of the above control solution requires, among other things, the knowledge of the
aerodynamic force and torque Fa and Γa. One could obtain an estimation of these forces from
the analytical model of lift and drag forces and the velocity measurements. Due to the difficulty
to obtain very precise models of these forces and to account for wind perturbation, it seems more
reliable in practice to estimate Fa and Γa online. To this purpose, a classical estimator can be
defined as 

m ˙̂v = −TRe3 + F̂a −mkest,v(v̂ − v)

J ˙̂ω = −ω × Jω + Γ + Γ̂a − Jkest,ω(ω̂ − ω)
˙̂
Fa = −mkest,F(v̂ − v)
˙̂
Γa = −Jkest,Γ(ω̂ − ω)

(3.62)

where kest,∗ denote positive gains and, for any variable x, x̂ denotes its estimate. Denoting
x̃ = x̂− x the estimation error, one deduces from (3.16) and (3.62) that:

m ˙̃v = F̃a −mkest,vṽ

J ˙̃ω = Γ̃a − Jkest,ωω̃
˙̃Fa = −mkest,Fṽ − Ḟa
˙̃Γa = −Jkest,Γω̃ − Γ̇a

(3.63)

These are the dynamics of a Hurwitz-stable linear system perturbed by the additive terms Ḟa, Γ̇a.
Provided that Fa and Γa do not vary too fast, such an observer will be able to provide reliable
estimates of these quantities. The convertible structure, with angles of attack independent of
the UAV’s main body attitude, is also a positive aspect in order to avoid fast variations of Fa
and Γa.

3.2.3.4 Simulation results

We first evaluate this control strategy under the following conditions:

1. No wind;

2. Air-velocity on both front and back wing is given by va,A = va,C = v; i.e. the propellers
have no impact on the air-velocity on the wings.

The following control parameters are used:

kv(ṽ) =


satδ(k1,pṽ1 + k1,I

∫
ṽ1)

satδ(k2,pṽ2 + k2,I

∫
ṽ2)

satδ(k3,pṽ3 + k3,I

∫
ṽ3)


with satδ(τ) = τ min(1, δ/|τ |) the classical saturation function. The gains are: k1,p = 1, k1,I = 2,
k2,p = 1, k2,I = 2, k3,p = 0.2, k3,I = 1.2 with δ = 10. The attitude gains are kω = 14, kθ = 10,
and kθ3 = 0.25. The wings control gains are kA = kC = k = 9. The estimation gains are:
kest,v = 4.8, kest,ω = 9, kest,F = 13.5, and kest,Γ = 4.8.

The reference altitude is xr,3 = −5 m. The reference motion consists in a horizontal flight
with vr,1 = vr,3 = 0 and vr,2 ramps from 0 to 8 m/s in 15 s. From t = 15 s to t = 35 s, vr,2 ramps
to 14 m/s. As for the reference angle of attack of the wings, αr,A = αr,C = αr ramp from 90◦ to
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Figure 3.23: Reference speed and UAV speed
(velocity tracking simulation)
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Figure 3.24: UAV’s pitch angle (velocity track-
ing simulation)

12◦ in 10 s and then these angles are kept constant. The initial ramp of the reference angles of
attack simulates the transition between hover/axial flight to horizontal forward flight.

Figure 3.23 compares the reference speed and the UAV speed. The velocity tracking is almost
perfect. Until t = 12 s, the vertical velocity is negative, which reflects the climbing movement of
the UAV to achieve the desired altitude. At t = 0 s, the wings are at neutral vertical positions
(kA ≡ kC ≡ k). Since the air-velocity is zero, the wings’ angles of attack are not defined. The
values on figure 3.25 are just a matter of numerical evaluation, in this case, αA = αC = 0. As
the UAV gathers horizontal speed, the angles of attack increase rapidly to 60◦. From t = 15 s,
the angles of attack track closely their reference values. Figure 3.24 shows the evolution of
UAV’s pitch angle. The UAV orientation does not vary too fast although there are significant
changes of aerodynamic forces acting on the wings (which depend on the air-velocity and wings
angle of attack). Note that in the current simulation, the wings’ pitch angle are kept constant.
Consequently, the UAV’s orientation is modified depending on the UAV speed. More stable
UAV’s pitch can be achieved when incorporating the wings control as in section 3.2.2.

In this current simulation, we assume that the airflow to the front and back wings are the
same. Adding the fact that the angles of attack of the wings are equal, this implies the aerody-
namic forces acting on front and back wings are identical. Since the wings are located at equal
distances from the UAV’s CoM, total aerodynamic torque on the UAV is nearly zero, as shown in
figure 3.26 (note the scale of the vertical axis). For later reference, figure 3.27 plots the average
power consumption since the beginning of the simulation.

We now evaluate this control strategy under the following conditions:

1. The UAV is perturbed by strong and varying wind, as shown in figure 3.28.

2. As in the previous simulation, air-velocity on both front and back wing is given by va,A =
va,C = |v|; i.e. the propellers have no impact on the air-velocity on the wings.

Figure 3.29 shows that the UAV is capable of tracking the reference velocity with very small
errors.
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Figure 3.26: Aerodynamic torque and estimated
torque (velocity tracking simulation)
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Figure 3.27: The average power consumption since t = 0 (velocity tracking simulation)
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Figure 3.28: Wind speed (velocity tracking sim-
ulation)
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Figure 3.29: Reference speed and UAV speed
(velocity tracking simulation with wind)

Finally, to evaluate the possible impact of propellers downwash on the wings, we evaluate this
control strategy under the following conditions:

1. No wind;

2. Air-velocity on front wing is given by va,A = v and air-velocity on back wing is given
by va,C = v − ε|v|k; ε is small with respect to |v|. In this simulation, the downwash
flow speed is kept constant at ε|v| = 2 m/s, which already represents significant airflow
interference.

The reason for considering this expression of the air-velocity on the back wing is the following.
When the UAV is flying forward, the downwash flow induced by the propellers, especially the
first and fourth propellers as represented in figure 3.3, creates additional flow in the direction of
propeller axis (i.e. k direction, see figure 3.30) to the back wing. By contrast, the air-velocity
on the front wing is not perturbed by the propellers. It is assumed that front wing does not
induce interference on the propellers and the back wing. We are aware that it is probably a very
simplified model of interaction effects that take place. We hope, however, that it captures some
of these phenomena.

We proceed next to analyze the result of this simulation with interference on the back wing.
Figure 3.31 shows the result of velocity tracking, which is as good as the result in the first
simulation without flow interference (figure 3.23). However, in the present simulation case, the
propellers’ downwash to the back wing effectively reduces the angle of attack of the latter. In
fact, at some time instances, the angle of attack of the back wing is reduced to zero or negative
as shown in figure 3.33. Consequently, the aerodynamic force on the back wing is reduced
significantly. Due to the imbalance of the forces on front and back wings, the strong aerodynamic
torque (figure 3.34) acting on the UAV has the tendency to pitch the aerial vehicle “nose-up”.
Consequently, the UAV’s pitch angle is smaller compared to the previous case (see figure 3.32
versus figure 3.24). To counter the above aerodynamic torque, the controller commands the
first and fourth propellers to spin faster and the second and third propellers to spin slower, as
depicted in figure 3.35. This propeller control compensation is made possible thanks to accurate
estimation of the aerodynamic torque as shown in figure 3.34.
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Figure 3.30: Propeller downwash along its axis direction, image capture of IRIS+ drone in wind
tunnel (cnet.com)

The current simulation results call for some remarks. First, the reduced angle of attack of
the back wing significantly decreases the aerodynamic force on it, thereby degrading the energy
performance of the UAV (compare figure 3.36 with figure 3.27). This performance is even worse
when αC < 0, which implies that the aerodynamic lift on the back wing is negative. Second, the
imbalance of the propeller rotational speeds may pose significant control problem since saturation
may occur possibly causing instability.

3.2.3.5 Control With Propellers Influence on Wings

We have seen that different air-velocity on the back and front wings can have a negative impact on
the system’s stability and performance. Concerning the latter issue, this leads to very asymmetric
thrust distribution on the different propellers. The objective of this section is to modify the
above-proposed control design so as to take into account such asymmetry on back and front wings
aerodynamic forces. The main difficulty is that the value ε that characterizes this asymmetry
is unknown. The idea, relatively simple, consists in using the estimation of the torque Γa that
results from this asymmetry to modify the angles of attack on the wings, with the objective of
reducing Γa. In order to analyze this strategy, we first need to relate Γa to ε. We perform this
analysis under the following assumptions.

Assumptions: The following assumptions are made:

1. The velocity is v = v2j0;

2. The sideslip angle is zero;

3. Wind is neglectable;

4. Air-velocity on the wings are given by va,A = v and va,C = v − ε|v|k;

5. Angles of attack on both wings are “small” so that first-order approximations of lift and
drag aerodynamic coefficients are valid; small angles of attack typically means amplitude
less than 0.2 rad.

http://www.cnet.com/news/3d-robitics-iris-plus-drone-goes-hands-free-with-follow-me-technology/
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Figure 3.31: Reference speed and UAV speed
(velocity tracking simulation with propellers’
downwash on wing)
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Figure 3.32: UAV’s pitch angle (velocity track-
ing simulation with propellers’ downwash on
wing)
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Figure 3.33: Wing angle of attack (velocity
tracking simulation with propellers’ downwash
on wing)
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torque (velocity tracking simulation with pro-
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Figure 3.35: Propeller rotational speed (velocity
tracking simulation with propellers’ downwash
on wing)
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Figure 3.36: The average power consumption
since t = 0 (velocity tracking simulation with
propellers’ downwash on wing)

Proposition 2 Under the above assumptions, one has

Γa ≈ Lka|v|2
{

sin θ

ñ
∂cD
∂α

(αC ,ReC)(αA − αC) + ε
Ä
cL(αC ,ReC) cos θ − cD(αC ,ReC) sin θ

äô
− cos θ

∂cL
∂α

(αC ,ReC)(αA − αC) + εcD(αC ,ReC)

}
(3.64)

where the approximation holds up to second-order terms in (αA − αC) and ε.

The proof of this proposition is given in appendix F.

Eq. (3.64) provides an approximation of Γa under the assumption that both αA − αC and ε
are small. If we further assume that αC is small, the above expression can be further simplified
as:

Γa ≈ −Lka|v|2
Ç

cos θ
∂cL
∂α

(αC ,ReC)− sin θ
∂cD
∂α

(αC ,ReC)

å
(αA − αC)

≈ −Lka|v|2g(θ, αC ,ReC)(αA − αC)
(3.65)

with
g(θ, αC ,ReC) = cos θ

∂cL
∂α

(αC ,ReC)− sin θ
∂cD
∂α

(αC ,ReC) (3.66)

The above expression is important as it relates the expression of Γa with the UAV’s pitch angle
θ and the difference of wings angle of attack αA−αC . In particular, it shows that an estimate of
αA − αC can be obtained from an estimate of Γa. In this respect, particular attention must be
given to the term g(θ, αC ,ReC) and more precisely to its sign. In “normal conditions”, this term

is positive, i.e. αC is small so that
∂cL
∂α

(αC ,ReC) is much larger than
∂cD
∂α

(αC ,ReC), and the
UAV’s pitch angle θ is significantly less than π/2. A numerical evaluation with our simulation
model, for αC = 0.2 rad, yields that

g(θ, αC ,ReC) > 0 for θ < 1.4 rad
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Let us now develop the expression of αA − αC . Since va,A = v = v2j0,

αA =
π

2
− ζA

and from the expression of va,C ,

αC =
π

2
+ atan2

Ä
(j0 − εk).k0, (j0 − εk).j0

ä
− ζC

=
π

2
+ atan2(−εk.k0, 1− εk.j0)− ζC

=
π

2
+ atan2(−ε cos θ, 1 + ε sin θ)− ζC

=
π

2
− ε cos θ − ζC +O2(ε)

Therefore,
αA − αC = ζC − ζA + atan2(ε cos θ, 1 + ε sin θ)

= µC − µA + ε cos θ +O2(ε)
(3.67)

We can now proceed with the definition of the wings control variables uA, uC . We propose the
following expression (compare with (3.61)):

uA = −ω1 − k
(
ζA −

π

2
+ αr + kΓ,A

Γ̂a

1 + |Γ̂a|

)

uC = −ω1 − k
(
ζC −

π

2
+ αr − kΓ,C

Γ̂a

1 + |Γ̂a|

) (3.68)

The idea is simply to modify the reference angle of attack in function of the estimated torque
Γ̂a. From (3.67),

d

dt
(αA − αC) ≈ µ̇C − µ̇A − εω1 sin θ

≈ uC − uA − εω1 sin θ

≈ −k
(
αA − αC − (kΓ,A + kΓ,C)

Γ̂a

1 + |Γ̂a|
− ε cos θ

)
− εω1 sin θ

Assuming that the estimate Γ̂a of Γa is perfect, it follows from (3.65) that

d

dt
(αA − αC) ≈ −k

{ñ
1 + (kΓ,A + kΓ,C)Lka|v|2

g(θ, αC ,ReC)

1 + |Γa|

ô
(αA − αC)− ε cos θ

}
− εω1 sin θ

≈ −k
ñÄ

1 + k̄(θ, v, αC ,ReC)
ä
(αA − αC)− ε cos θ

ô
− εω1 sin θ

(3.69)
with

k̄(θ, v, αC ,ReC) = (kΓ,A + kΓ,C)Lka|v|2
g(θ, αC ,ReC)

1 + |Γa|
We see from the above expression that k̄ acts as a nonlinear gain. In particular, if ω1 = 0, the
equilibrium of (3.69) is

αA − αC =
ε cos θ

1 + k̄(θ, v, αC ,ReC)

Thus the higher k̄, the smaller αA − αC . In view of the expression of k̄, this suggests to choose
kΓ,A and kΓ,C large. Limitations associated with the use of high gains and the risk of crossing
the stall zone, however, prevent one from choosing too large values. Also, one can observe the
importance of the positivity of 1+ k̄ (and thus of g), to ensure that (3.69) defines a stable system.
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Figure 3.37: Wing angle of attack (velocity
tracking simulation with aerodynamic torque
compensation)
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Figure 3.38: Aerodynamic torque and estimated
torque (velocity tracking simulation with aero-
dynamic torque compensation)

3.2.3.6 Simulation Results for Control With Propellers Downwash Influence on the
Wing

The simulation condition is identical to the one at the end of section 3.2.3.4 with ε|v| = 2 m/s.
The additional control parameters are: kΓ,A = 0.2 and kΓ,C = 0.7. The reference angles of attack
are adjusted as in (3.68) to take into account the aerodynamic torque. Hence, the angles of attack
of the front and back wings are similar as shown in figure 3.37 (compared with figure 3.33).
Consequently the aerodynamic torque on the UAV is much smaller (compare figure 3.38 to
figure 3.34). The rotational speeds of the propellers are very close to each other, as shown in
figure 3.39. This ensures more uniform thrust distribution than the case without reference angle
of attack adjustment (see figure 3.35). The average power consumption in figure 3.40 is less than
the previous case without torque compensation in figure 3.36 but slightly greater than the case
without propeller downwash interaction in figure 3.27.

3.3 Chapter Summary

In this chapter, we have proposed three control law designs for our convertible UAV. The first
one only makes use of IMU/barometer measurements and concern attitude/altitude teleoperation
control mode. The basic (and classical) idea is a hierarchical controller for attitude, altitude, and
motor control. The control model state variables are estimated based on measurements from sen-
sors. The vertical aerodynamic force is estimated based on barometer measurement. The second
control design also addresses the same teleoperation control mode. By using a slightly modified
mechanical design, we show that it is possible to improve tracking precision and energy efficiency
in the presence of wind. Finally, the last control design concerns velocity control with velocity
measurements. The main objective is to take into account possible downwash of the propellers
on the back wing. By using an estimate of the aerodynamic torque induced by asymmetric aero-
dynamic forces on the wings, we have shown that a simple control on the wings’ reference pitch
angle allows one to compensate the negative effects of the downwash. Simulation results have
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Figure 3.39: Propeller rotational speed (veloc-
ity tracking simulation with aerodynamic torque
compensation)
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Figure 3.40: The average power consumption
since t = 0 (velocity tracking simulation with
aerodynamic torque compensation)

validated the control approaches. The next chapter introduces the physical convertible UAV
prototype and presents the preliminary flight test results.



Chapter 4

Conception and Preliminary
Experiments

This chapter focuses on the physical and experimental aspects of this thesis. In the beginning,
the mechanical prototype of the convertible UAV and the software/hardware architecture are pre-
sented. Each major component of the UAV is described in detail. The preliminary experimental
results are reported at the end of this chapter.

4.1 Mechanical Prototype

The prototype of the convertible UAV along with its major components is shown in figure 4.1.
The main body structure of the UAV has several layers to improve the rigidity of the structure
and to separate different components. The wing assembly consists in a set of foams, a set of
guide pieces, a reinforced axis, and a rotating axis actuated by the one (or two) servo(s). The
foams are made by expanded polystyrene foam, which are cut into roughly equal rectangular
pieces. The guide pieces are made of plastic and are precisely fabricated by 3D printing to have
the shape of NACA0018 airfoils. The foams and guide pieces are alternately attached together
using strong glue. The rotating and reinforcing axes are made of glass fiber. They align the
foams with the guide pieces. Using abrasive materials, the foams are repeatedly scraped until
the surface of the wing is smooth. An illustration of the wings after fabrication is presented in
figure 4.2. Finally, duct tapes are used to cover the surface of the wings.

The system architecture comprises a low level control layer connected with a high level control
layer via the serial communication interface RS-232 as shown in figure 4.3. The main component
of low level control is the Quanton flight controller with build-in Inertial Measurement Unit
(IMU). The Quanton flight controller receives the control signals from a joystick via a Radio
Control (RC) Receiver using Pulse Position Modulation (PPM). As for the actuation, the flight
controller sends the signals to four Electronic Speed Controllers (ESC) which in turn control the
rotational speeds of the four main rotors. The flight controller also transmits the Pulse Width
Modulation (PWM) signals to control the servos mounted on the wings. The main component
of high level control is the ODroid onboard computer. This mini computer runs on Linux with
integrated Robot Operating System (ROS) framework. Various Universal Serial Bus (USB) ports
on the computer board enable the connection to a GPS module, cameras (in the future), etc.
Communication between the ODroid and a computer workstation is assured by Wifi data link.
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Figure 4.1: Convertible UAV prototype
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Figure 4.2: The wings after fabrication
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Figure 4.4: Quanton flight controller board

4.1.1 Low Level Control

The low level control is responsible for several tasks. First, it receives the control signals from the
pilot’s joystick via RC receiver. Second, it receives the data from built-in sensors for estimation
of the UAV states such as altitude, angular velocity, linear acceleration, and (consequently via
sensor fusion) attitude. Then, the embedded control algorithm is executed in the Quanton flight
controller. Finally, the control output is sent to the motor ESCs and wing servos.

4.1.1.1 Quanton flight controller

The principle component of the low level control is a small-size (5 cm × 5 cm board as shown
in figure 4.4) flight controller. It includes a microcontroller (STM32F405 32bit ARM Cortex-
M4 CPU with FPU, 168MHz, 192kb RAM and 1024kb flash) and a set of embedded sensors
(accelerometer, gyro, magnetometer, and barometer). Input and output ports are also presented
in the microcontroller circuit in order to connect to additional peripherals (e.g. other sensors,
radio receptors, motor controllers, etc.).

Accelerometer and gyro sensors

The IMU contains a three-axis accelerometer and a three-axis gyro on the same integrated
circuit with the model MPU6000 with the following characteristics:

• The sensors communicate with the microcontroller using the SPI (Serial Peripheral Inter-
face) bus.

• For accelerometer, we can configure the range to be ±2g,±4g,±8g, or±16g. At the smallest
range ±2g, the resolution is highest at 6× 10−5g.

• For gyrometer, we can configure the range to be ±250◦/s,±500◦/s,±1000◦/s, or±2000◦/s.
At the range ±250◦/s the resolution is 0.0075◦/s.
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Figure 4.5: Motor mounting on the UAV frame

Motor Dimensions (Diameter × Length) 44.3 mm × 25 mm
Weight 0.108 kg
Idle current at 10 V 0.5 A
Max continuous current 27 A
Max continuous power 450 W
Internal resistance 0.132 Ω

Table 4.1: Main characteristics of motor T-4008 KV600

• The data frequency can be programmable up to 200 Hz, which is largely sufficient for our
UAV data acquisition.

Magnetometer (compass) and barometer

These two sensors are connected on the same bus I2C as slaves for the microcontroller.
Therefore, it is not possible to obtain the data from these two sensors at the same time instance.
We have to alternate the data demand.

The magnetometer (HMC5883L) enables 1◦ to 2◦ heading accuracy. The maximum output
rate of this sensor is 160 Hz. The full-scale range is ±8 gauss whereas the field resolution is
2 mili-gauss.

The resolution of the barometer (MS5611) permits detecting the pressure variation of 0.01 mbar,
which corresponds to altitude variation of approximately 8 cm. In practice, because of the im-
portant noise level, the altitude precision is about ±50 cm. Since the pressure data acquisition
takes rather long (20 ms), we can obtain up to 50 data values per second.

4.1.1.2 Main Motor

The motors chosen in this project are T-4008. They are powerful motors capable of delivering
high continuous power (maximum 450 W) and handling high current (maximum 27 A). When
connecting with a 13-inch propeller, the maximum speed and maximum thrust of the motor are
approximately 6500 RPM and 12 N respectively, which are largely sufficient for our project. The
image and the main characteristics of these motors are shown in figure 4.5 and table 4.1.
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Table 4.2: Comparison between three ESCs

4.1.1.3 Electronic Speed Control (ESC)

The UAV developed in this project will be expected to operate mostly outdoor with partially
unknown environment and obstacles. Therefore, precise control and fast response are required so
that the UAV is able to avoid detected obstacles and to track the required trajectory accurately.
Test flights with our early quadrotor prototypes highlighted a few issues:

• response of the quadrotor is different when battery is full and battery is almost emptied,

• badly damped transient is observed when trying to push the control gains for attitude
control.

Moreover, for the convertible UAV, information about actual speed and current consumption of
each motor is required in order to calculate the power consumption. Therefore, a fast and highly
accurate ESC is required. Since ESCs have been traditionally designed for fixed-wing airplane
or helicopter applications, they are programmed to vary the throttle command to the motor in a
gentle way to prevent sudden stress on the propellers and the airframe. However, for multirotor
applications, the rotational speeds of the motors usually change very fast. This rapid variation
can be controlled by modern and dedicated ESCs for multirotors. Three ESCs are compared
in this project: Mikrokopter 2.0, Mikrokopter 1.2, and Autoquad ESC32. These three ESCs
are chosen because Mikrokopter was the initial based platform for quadrotor in our laboratory,
and Autoquad ESC32 is a new controller with promising capabilities. Based on the comparison
between different criteria as briefly shown in table 4.2, the Autoquad ESC32 (figure 4.6) is chosen
because:

• it has more processing power, RAM, and flash memory than the Mikrokopter one;

• its CPU is Arm Cortex M3, therefore, Keil IDE (Integrated Development Environment)
which is currently used to develop flight controller source code can be used;

• its source code is available;

• it supports both I2C and CAN (Controller Area Network) interface;
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Figure 4.6: Autoquad ESC32 (autoquad.org)

Table 4.3: ESC communication comparison

• it has Command Line Interface (CLI) which eases the process of debugging and configura-
tion;

• the current rating of the field-effect transistors (FETs) used in ESC32 is similar to those
of Mikrokopter 2.1 which has high current rating (35A continuous and 40A peak);

• the closed loop speed control is already implemented in the official firmware.

However, a disadvantage of ESC32 is that the electronics schematic is not provided. Nevertheless,
this is considered to be a minor disadvantage for this project. Furthermore Mikrokopter 2.0 is
closed source (i.e. no source code available) and Mikrokopter 1.2 uses FETs with low current
rating and weak CPU. Due to the shortcomings of Mikrokopter 1.2 and Mikrokopter 2.0, ESC32
easily stands out as the best candidate.

There are two options available regarding the communication between the AutoQuad and the
flight controller Quanton: CAN and I2C. The advantages and disadvantages of each interface are
highlighted in table 4.3. CAN interface has higher bit-rate, can communicate in asynchronous

http://autoquad.org/esc32/
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Figure 4.7: Graupner E-prop 13 × 8

mode, and can tolerate noise slightly better. However, in this project I2C is selected and the
reasons are shown below.

• I2C speed (400 kbit) is enough for this project.

• Development tools1 for I2C are already available in our laboratory. This minimizes time
and effort to acquire additional tools.

• Previous flight controller uses I2C interface. Therefore, I2C source code in the flight con-
troller can be reused.

• It has been used for UAV community for some time (more than two years). Therefore, we
can assume that the I2C interface can be safely used in UAV operating environment.

4.1.1.4 Propeller

Initially, we selected the APC propeller family for our convertible prototypes since they are well-
documented [52, 53] and have high efficiency. In light of this reason, APC SlowFlyer 11 × 4.7
was selected for the simulations in chapter 2 and chapter 3 of this thesis.

Unfortunately, the weight of our prototype (current weight m = 3.2 kg) was under-estimated
at that time so that APC SlowFlyer 11 × 4.7 propellers do not provide enough thrust to fly
efficiently. For this reason we use Graupner E-prop 13 × 8 as depicted in figure 4.7.

The principal disadvantage of Graupner propeller is that their documentation is scarce in the
literature. Indeed, the aerodynamic data are not available from the manufacturer. There are only
a few references limited to small-diameter (maximum 11-inch diameter) Graupner propeller data
from wind tunnel tests [52,84]. Nonetheless, we have chosen Graupner E-prop 13 × 8 propellers
for our platform purely based on mechanical requirements and control reasons. Since these
propellers possess thin and rigid blades, they provide fast control responses with less vibrations
than APC and a few other propellers. The energy performance of different propellers remains a
subject for future experiments.

4.1.2 High Level Control

The high level control is principally responsible for receiving and logging the data from the
low level controller and the UAV’s position/speed information from the GPS module, Other
high level tasks, such as visual servoing, image processing, trajectory planning, localization, etc.
are envisaged for this convertible UAV in the future. In the following, we describe the main
components of high level control.

4.1.2.1 ODroid onboard computer

The ODroid (Open Android) onboard computer is an open-source development platform. It
includes a Samsung Exynos5 Octa : CortexTM-A15 and a CortexTM-A7 processors with 2GB
DDR3 RAM together with various input/output ports such as USB, HDMI, etc. Robot Operating

1e.g. USB-ISS interface between PC and I2C, SPI, Serial port, see robot-electronics.co.uk

http://www.robot-electronics.co.uk/htm/usb_iss_tech.htm
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Figure 4.8: ODroid-XU onboard computer (hardkernel.com)

System (ROS) is installed on the ODroid. ROS is an open-source operating system for robots. It
provides the services including hardware abstraction, low-level device control, implementation of
commonly-used functionality, message-passing between processes, and package management. It
also provides tools and libraries for obtaining, building, writing, and running code across multiple
computers (see ros.org). The data can be displayed in real-time as well as saved as text files for
analysis and plotting.

4.1.2.2 GPS Module

The GPS module is Ublox NEO-6M as illustrated in figure 4.9. It has fast satellite fix (1–27
s) and fast navigation update rate (10 Hz). The horizontal position accuracy is standard (2.5
m) but the velocity and heading accuracy are high (0.1 m/s and 0.5◦ respectively). This GPS
module communicates with the ODroid via USB.

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G137510300620&tab_idx=2
http://www.ros.org
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Figure 4.9: GPS module Ublox NEO-6M

4.2 Model Parameters

The main parameters of the convertible UAV are listed below:

• total mass of the UAV m = 3.2 kg with 0.5 kg battery (5.1 Ah, 4S1P) or m = 3.0 kg with
0.3 kg battery (2.6 Ah, 4S1P),

• NACA0018 wing chord length c = 0.15 m,

• total wing area Σ = 0.22 m2.

The propellers Graupner E-prop 13× 8 have the following parameters:

• propeller radius R = 0.165 m,

• propeller thrust coefficient κT = 2.7× 10−5,

• propeller torque coefficient κQ = 1.3× 10−6.

These propeller coefficients are obtained with our static test bench as described in appendix B.
The mass distribution of the convertible UAV is illustrated in figure 4.10. The geometric
parameters are:

2�1 = 0.5, 2�2 = 0.55, 2�3 = 0.15, 2�4 = 0.15, 2�5 = 0.08, 2�6 = 1.44, 2�7 = 0.74

where we consider the battery (0.5 kg) dimension.
The moment of inertia (unit: kg m2) around the axes i, j, k are (refer to appendix D for

detailed calculations):

J11 = 0.273, J22 = 0.093, J33 = 0.366 (4.1)

In the case without the wings, one has:

J11 = 0.083, J22 = 0.052, J33 = 0.135
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Figure 4.10: Mass distribution of our convertible UAV (unit: kg)

G1

G4 G3

2�1

i

k

j

2�6

2�4

2�3
2�2

2�52�7

G2

50 cm

Figure 4.11: Top-view schematic of our convertible UAV
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Figure 4.12: View of wing servo and IMU during the test

We can observe that impact of the wings in terms of inertia around i and k is particularly
important. In addition, we can see how the distance 2`6 impacts on J11:

2`6 = 1.2 =⇒ J11 = 0.215
2`6 = 1 =⇒ J11 = 0.175

The distance `6 can be reduced. For initial flight tests, we have chosen a relatively large value
of `6 to diminish the risk of significant aerodynamic interaction between wings and propellers.
In terms of flight maneuverability, small values of `6 leading to reduced moments of inertia are
clearly desirable.

4.3 Wing Servo Control Tests

Currently the wings pitch angles w.r.t. the UAV’s main body are controlled by servo motors.
The servo model is Hitec HS-5087MH, which is very lightweight (22 g) and has maximum torque
of 0.42 Nm. The purpose of these tests is to evaluate the response of the wing servos w.r.t the
UAV desired orientation. An IMU is mounted on the wing in order to measure the wing pitch
angle and angular velocity (i.e. accelerometer is used as inclinometer), as shown in figure 4.12.
The wing’s IMU model is ADIS16407. This is a spare unit that we used when testing various
quadrotor prototypes.

In the first test, the UAV is inclined manually around its pitch axis (see the angular velocity
in figure 4.13) and the servos are controlled so as to ensure that the wing’s pitch angle (inclination
angle w.r.t the ground, which is equal to 90◦−ζ in this test) remains near zero. Indeed, figure 4.14
shows that this angle is quite close to zero, although in the transient zone, e.g. from t = 14.7 s
to t = 16 s, there are oscillation in the measurements. The maximum non-transient deviation is
small, around ±3◦. Nonetheless, these errors are not negligible since the wings’ angle of attack
have strong impact on the aerodynamic forces especially at high speed.

In the second test, the wing is given desired pitch angle with increment of about 10◦. Fig-
ure 4.15 shows the response of the wing’s pitch angle, as measured by the wing accelerometer.
The pitch angle converges fast to desired attitude, but in some cases, there are offset errors of
2◦ to 3◦. In the transient period the measurement deviation error is quite high due to sudden
changes of attitude.
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Figure 4.13: First component of angular velocity measured by UAV gyro
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Figure 4.14: Comparison between UAV’s pitch angle estimation, UAV’s pitch angle measurement
by accelerometer, and wing pitch measurement by wing accelerometer
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Figure 4.15: Wing pitch angle (inclination angle w.r.t the ground) estimated by wing accelerom-
eter measurements
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From these two small experiments, we can conclude that the response of the wing servos is
quite fast but offset errors of up to 3◦ might be present. This accuracy is not enough to ensure
a precise control of the wings angle of attack. Although our preliminary flight tests (including
the first test reported below) have been made with the servos here presented, we are currently
looking for a better solution to obtain a more precise wing control.

4.4 Preliminary Flight Tests

In this section, we present the results of the first few test flights. The objectives of these flight
experiments are to verify the function of the hardware/software system and to test the attitude
control in teleoperation. Due to the time needed to develop the platform, flight tests have only
started this fall (in September). As could be anticipated, the first flights have revealed weaknesses
of the initial design:

• Servo motors for wings control: We have already mentioned above that the servos were
not accurate enough to ensure a very precise pitch angle of the wings w.r.t. the propellers’
plane. In addition, these servos turned out to be not robust enough to sustain flight with
significant speeds. They broke after a few outdoor flights. In these flights the UAV reached
a velocity of 6–7 m/s (measured by the GPS), with a facing wind of a few m/s.

• Main motors control: Initially, I2C interface was used to control the motors. During first
flight tests, it was discovered that the motors were saturated, although their rotational
speeds were well below the maximum speed. In addition, motors disarmed in several occa-
sions. It seems that data congestion (the magnetometer and barometer also communicate
through I2C) and/or electrical interference (proximity of power cables with signal cables)
had occurred. At present, I2C bus are only used to send logging data from motors to the
flight control board. The motors are now controlled by PWM signals.

Nonetheless, during these first flights, other software and hardware components functioned well.
We have also verified that the GPS model provides accurate longitudinal and latitude coordinates
(less than 2 m error). The altitude information from GPS, however, was not reliable.

We now present experimental data of a few preliminary indoor flights. These flights have been
made in the university’s gymnasium. The obvious advantage of indoor flight is the absence of
wind disturbance. However, the disadvantages are constraint space (the length of the gymnasium
is about 30 m) and unavailability of velocity measurements.

4.4.1 First indoor teleoperation experiment

The control mode used in this experiment is teleoperation control without velocity measurement
(see section 3.2.1). However, in this experiment, the desired thrust is given by the pilot via
the joystick. In other words, the altitude measurements by barometer are not used and these
experiments can only validate the control of the UAV’s attitude. Both the main motors and
the servos HS-5087MH are controlled by PWM. In this test, the lighter battery (0.3 kg) is used
so that the UAV mass is about 3.0 kg. The wings are given zero reference pitch angles (the
objective is that they remain parallel to the ground), i.e. ζr,A = ζr,C = 90◦.

The gains for attitude control are: kγ,1 = 3.2, kγ,2 = 3, K =

13 0 0
0 11.9 0
0 0 2.25

.
The attitude estimation is accomplished by fusing gyrometers and accelerometers data, as in

Eq. (3.32) with kest,γ = 0.01. The flight can be divided into five different time zones (see e.g.
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figure 4.16). In Zone 1, the UAV takes off and achieves a few meter altitude quasi-stationary
flight at t = 10 s. Then in Zone 2, it inclines “nose-down” and flies forwards for a few seconds.
At t = 13 s, the UAV is commanded to incline “nose-up” to reduce the speed and to fly rearward.
In Zone 3, the UAV reduces the altitude and lands on the ground at t = 27 s. At t = 30 s, the
UAV takes off again. In Zone 4, when it achieves sufficient altitude, the UAV performs forward,
rearward, and again forward maneuvers. Finally it lands on the ground at t = 59 s. During the
periods when the UAV is near or on the ground, i.e. in Zones 1, 3, and 5, the vehicle is in ground
effect for a few seconds. Therefore, the data obtained in those periods are often perturbed by
strong unknown disturbances.

Note that in this section, some data in the plots (essentially the angular velocity measure-
ments given by the gyrometers) are filtered by simple moving-average filters to partly remove
noise. Figure 4.16 compares the reference attitude (given by joystick) with the estimated atti-
tude data from IMU measurements. The pitch angle response is fast and accurate except when
the UAV is near the ground. By contrast, there is a deviation in the roll angles as compared to
the reference values, as illustrated in figure 4.16(b). In an attempt to understand this deviation,
we plot the reference angular velocity and the angular velocity components measured by the
gyrometers in figure 4.17. Indeed, around the roll axis j, there is a significant static offset of
about 0.3 rad/s in Zone 2 and 4, as depicted in figure 4.17(b). As for the yaw control, although
the rough trending of the angular speed is consistent with the reference values, the UAV seems
unable to reach the reference angular speed (figure 4.17(c)). Figure 4.18 compares the reference
thrust/torque with the values reconstructed from the angular speed of the rotors (the torque
values are only available in Zone 1 and 2 due to unexpected I2C communication loss). The
thrust and torque data show very good track with reference values. Then one might wonder
why the angular velocity tracking is not very good. Figure 4.18 only proves that the response
of the main rotors is fast and accurate. However, the real values of the thrust/torque may not
match the values reconstructed from the angular speed of the rotors due to model imperfection.
Indeed, UAV is slight heavier on the left side (i.e. the side which does not has the servo mo-
tors in figure 4.1). This creates an additive perturbation torque. Since the roll angular velocity
offset is 0.3 rad/s, we can estimate the roll torque offset of about 0.3 × J33 = 0.028 Nm. In
addition, we can estimate the attitude offset that is inversely proportional to the attitude gain
(see Eq. (3.22)): 0.3/kγ,2 = 0.1. Suppose that we have compensated for these offset, we can then
plot the corrected roll angles and angular velocity as in figure 4.19. These static perturbation
torque can be compensated via the observer proposed in section 3.2.1. This will be tested in the
near future.

As for the yaw velocity offset, currently we have little yaw control authority because of very
large moment of inertia around k and small reaction control torque of the propellers. We may
increase the yaw control gain and re-perform the experiment.

Recall that we choose small gain for attitude estimation since the gyroscope measurements
have faster update and more reliable than accelerometer ones. Indeed, when the UAV has
just landed in Zone 5, the estimated attitude angles converge very slowly to zero, as shown in
figure 4.16.

Figure 4.20(a) depicts the total current intensity of the main motors. As expected the trend-
ing is similar to the thrust trending in figure 4.18(a). From the current values, we can have an
idea of the motor power consumption as illustrated in figure 4.20(b) assuming that the battery
supply voltage is constant (14.8V with 4S1P battery). In reality, the battery supply voltage
varies depending on the remaining charge. Since the flight period is short, the constant voltage
assumption is valid.
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Figure 4.16: Reference attitude (from joystick) versus UAV attitude estimated from IMU (first
experiment)

4.4.2 Second indoor teleoperation experiment

We are finding better solution for wing control. The first solution that was replacing the broken
Hitec servos by GMB5010 brushless motors (figure 4.21). This type of motors is designed to
drive gimbal for cameras up to a weight of 0.5 kg. They are more robust than the servos but
they are also heavier (98 g each). The two wing motors are now mounted diagonally as shown
in figure 4.22.

The control and estimation gains are identical to the ones in the previous experiment. The
results obtained for this second flight were not quantitatively different from the first one but
the experiment consisted of stationary and quasi-stationary flight, which provide complementary
information w.r.t. the previous flight.

In Zone 1, the UAV takes off to achieve an altitude of about 1 m in 13 s. Then it is given zero
pitch and nearly 2◦ roll reference angles in Zone 2. Finally, in Zone 3, the UAV is controlled to
track some small reference attitude angles. The attitude response is acceptable (see figure 4.23),
although there are some oscillations, notably in the roll axis. With the wing motors mounting
diagonally, the offsets in roll angle (figure 4.23(b)) and angular velocity (figure 4.24(b)) are
less than the previous experiment. However, examining figure 4.24(b) reveals a small negative
offset in yaw angular velocity. This can be explained by the mechanical imbalance of the UAV.
Indeed, the wing motors are heavier than the previous servos, so that the structure slightly bends
downward at the wing motors locations. Looking at figure 4.22, the front wing bends down to
its left side, and the back wing bends down to its right side. When the UAV moves laterally
towards its right side (The roll angle is positive in Zone 1, Zone 2, and partly Zone 3 as shown in
figure 4.23(b).), the lateral airflow tends to generate greater aerodynamic forces on the front wing
than the back wing. Consequently, the UAV has tendency to rotate counter-clockwise around
its yaw axis. To alleviate this effect, we are currently considering changing the location of the
wing motors.
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Figure 4.17: Reference angular velocity versus UAV angular velocity estimated from IMU (first
experiment)
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Figure 4.18: Reference control thrust/torque versus UAV thrust/torque reconstructed from an-
gular speed of rotors (first experiment)
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Figure 4.19: Roll angle and angular velocity after offset correction (first experiment)
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Figure 4.20: (a) Total current intensity and (b) total power of the motors (first experiment)

Figure 4.21: GMB5010 wing motor (mikrokopter.altigator.com)

http://mikrokopter.altigator.com/moteur-gmb5010-pour-nacelle-brushless-jusqua-500-grammes-p-41129.html
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Wing Motor

Wing Motor

Figure 4.22: New wing motors installed on our convertible UAV
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Figure 4.23: Reference attitude (from joystick) versus UAV attitude estimated from IMU (second
experiment)
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Figure 4.24: Reference angular velocity versus UAV angular velocity estimated from IMU (second
experiment)
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4.5 Chapter Summary

In this chapter, we have presented the mechanical prototype and hardware/software architecture
of our convertible UAV. A brief description of the fabrication of the UAV including the wings has
been introduced. In addition, important components of the low level and high level architecture
with their salient characteristics are described. In particular, some issues associated with the
ESC (control at low battery level and badly transient response) during early experiments are
briefly discussed. To address these issues, we have selected fast and reliable Autoquad ESC32.
We have also described the inertia calculation of the convertible UAV, showing significant change
in terms of inertia values when adding the wings. Before the flying experiments, the wing servos
are tested and their responses are fast enough but the accuracy is not very good. Preliminary
flight experiments revealed some shortcomings of servo motor robustness and propellers’ motors
control. Whereas issues concerning propellers’ motors were resolved, the control of wings pitch
angle is not completely satisfactory.

Finally, we have presented the results of two preliminary experiments and discussed the
results. Clearly, we are only at the very beginning of the validations of our control algorithm and
energy modeling models. The attitude control of the platform is now satisfactory. Estimation of
torque and perturbations will be tested shortly and should provide more accuracy on the attitude
control. Altitude control will come next and should allow us to start evaluating wings impact
on the energy efficiency.





Conclusion and Perspectives

This thesis is devoted to the conception, modeling, and control of a new convertible UAV. The
first chapter of this manuscript provides a short introduction to aerial vehicles: fixed-wing,
VTOL, and convertible aircraft. Thanks to their flexibility, convertible aircraft, and especially
convertible UAVs, have become increasingly popular. Inspired from a classical quadrotor, our
convertible UAV has the potential of efficient cruising flight while retaining the simplicity of a
quadrotor.

The main incentive for convertible UAVs is their energy performance in cruising flight but the
literature on this subject for small convertible UAVs is relatively scarce. One of the main contri-
butions of this work is the energy modeling and evaluation of those aerial vehicles. Specifically,
in the second chapter of this thesis, we focus on a class of convertible UAV made up of coplanar
propellers and a main body that may include wing(s). The propeller modeling is essentially
based on classical momentum and blade element theories. An eight-parameter-analytical model
is proposed, allows one to characterize easily propeller aerodynamic properties when the thrust
and torque coefficient data are available. As for the wings, a symmetric NACA0018 airfoil for
the wings is selected and a recent study in the literature is used to model the aerodynamic forces
over the whole range of angle of attack while taking into account the influence of the Reynolds
number.

It is quite natural to expect energy efficiency improvement in cruising flight when adding the
wings to a multirotor structure. However, finding the configurations that provide best energy
performance is not straightforward. Intuitively, one might consider that reducing propellers
thrust will improve the energy efficiency. This is generally true for low and medium speed flights
(less than 14 m/s in our simulation). However, at high speed, the propellers’ plane inclines at
a large angle, so that the drag force on the propellers increase. The propellers then spin very
fast but generate little thrust. Consequently, the energy performance degenerates. It is clear
that not only the intensity of the thrust but also its direction can have great impact on the
UAV’s power. Maximizing wing lift/drag generally seems to be a good strategy to minimize the
energy consumption. This strategy, however, is not optimal since the power greatly depends on
propeller thrust vector. With convertible UAVs, in order to achieve high energy efficiency, one
has to find the right balance between high lift force on the wings and low total drag force (drag
force on the wings, drag force on the propellers, and parasite drag acting on the main body).
The energy modeling, especially the evolution of the optimal angles of attack to minimize the
energy consumption, provides guidelines for the control design. Finally, the model allows one to
conduct simulations with different parameters (different propeller size and pitch angle, various
wings area, different mass of the UAV). This can be beneficial for UAV presizing.

The third chapter of this manuscript focuses on the control aspect. The additional DoFs of
the wings offer a great flexibility for the control. Indeed, they permit the decoupling between
propellers and wings control, in order to obtain a larger flight envelope and to avoid the depen-
dency of aerodynamic forces on UAV orientation. In particular, transition between hover and
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cruising flight can be achieved with the wings’ angles of attack remaining small. Furthermore,
the control design can strongly rely on existing methods for quadrotors, which have been already
well-studied and validated. Three control law designs for our convertible UAV are proposed. The
first two strategies make use of only IMU/barometer measurements. The first strategy involves
classical hierarchical attitude/altitude control. The second strategy considers a more general
model and takes advantage of a slightly modified mechanical design to improve the velocity
tracking and energy efficiency. Simulations suggest the soundness of this strategy even in the
presence of strong and varying wind. The third control strategy involves velocity tracking with
velocity measurements. The effect of propellers’ downwash on the wings is modeled as a small
airflow vector onto the back wing. This airflow causes an imbalance between aerodynamic forces
on the two wings and creates an adverse torque, potentially hampers the stability and the energy
performance of the UAV. This adverse torque can be estimated and this estimation can be used
in the controller to modify the reference angles of attack of the wings, in order to compensate
for the undesirable asymmetry.

The last chapter of this thesis describes in detail the mechanical structure and hardware/
software architecture of our convertible UAV. Preliminary testing of the UAV highlighted some
limitations of our initial design, including the lack of robustness of servo motors for the wings
and communication/control problem with the main motors. While the latter problem has been
resolved, we are still trying different solutions in order to ensure a fast and precise control of the
wings’ pitch angle. First flight tests here reported have demonstrated relatively good stability
and precision in attitude, with some improvements still possible concerning roll response and
static offsets due to small mechanical imbalance. These offsets should be addressed shortly
by adding in the controller external torques estimation and compensation. Encouraged by the
additional understanding of the system after the initial tests, the next experiments will focus on
improving the wing control and the implementation of aerodynamic force/torque estimation.

As already mentioned, we are only at the beginning of the experimental validations of the
models/control methods proposed in this thesis. We are aware that a lot of experimental work
is still necessary at this level. Along the way, possible future developments for this convertible
UAV, which would help us to better understand the potentials and limitations of this structure,
are numerous and include, e.g.,

• Extending the energy model to 3D case.

• Design the yaw control to take into account the lateral wind.

• Experimental validation of propeller model in forward flight.

• Testing the UAV in wind tunnel: this would certainly be useful for a precise power evalu-
ation in function of air-velocity.

• Comparison of flight performance and energy efficiency with different propellers and/or
different wings.

• Evaluation of the effects of propellers/wings interaction and finding the optimal distance
between the wing axis and propellers.



Bibliography

[1] Donald, D., The Complete Encyclopedia of World Aircraft , Barnes Noble Books, New York,
NY, 1st ed., 1997.

[2] Pounds, P., Design, construction and control of a large quadrotor micro air vehicle, Ph.D.
thesis, Australian National University, 2007.

[3] Beard, R. W., Kingston, D., Quigley, M., Snyder, D., Christiansen, R., Johnson, W.,
McLain, T., and Goodrich, M., “Autonomous Vehicle Technologies for Small Fixed-Wing
UAVs,” Journal of Aerospace Computing, Information, and Communication, Vol. 2, No. 1,
Jan. 2005, pp. 92–108.

[4] Cai, G., Peng, K., Chen, B., and Lee, T., “Design and assembling of a UAV helicopter
system,” International Conference on Control and Automation, Vol. 2, June 2005, pp. 697–
702 Vol. 2.

[5] Wang, F., Wang, T., Chen, B., and Lee, T., “An indoor unmanned coaxial rotorcraft system
with vision positioning,” 8th IEEE International Conference on Control and Automation,
June 2010, pp. 291–296.

[6] Hamel, T., Mahony, R., Lozano, R., and Ostrowski, J., “Dynamic modelling and configura-
tion stabilization for an X4-flyer,” 15th Triennial World Congress, International Federation
of Automatic Control , 2002.

[7] Bouabdallah, S., Design and control of quadrotors with application to autonomous flying ,
Ph.D. thesis, Lausanne Polytechnic University, 2007.

[8] Hoffmann, G. M., Huang, H., Waslander, S. L., and Tomlin, C. J., “Quadrotor helicopter
flight dynamics and control: Theory and experiment,” Proceedings of the AIAA guidance,
navigation, and control conference, Vol. 4, 2007, p. 44.

[9] Pflimlin, J. M., Commande d’un minidrone à hélice carénée : De la stabilisation dans le
vent à la navigation autonome, Ph.D. thesis, LAAS-CNRS, 2006.

[10] Ta, D. A., Fantoni, I., and Lozano, R., “Modeling and control of a convertible mini-UAV,”
Proceedings of the 18th IFAC World Congress, 2011, pp. 1492–1497.

[11] Hrishikeshavan, V., Bogdanowicz, C., and Chopra, I., “Experimental Investigation of Per-
formance of a Wing-Propeller System for a Quad-Rotor-Biplane Micro Air Vehicle,” 54th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confer-
ence, AIAA, Boston, Massachusetts, April 2013.



128 Bibliography

[12] Ostermann, T., Holsten, J., Dobrev, Y., and Moormann, D., “Control concept of a tilt-wing
UAV during low speed manoeuvring,” Proceeding of the 28th International Congress of the
Aeronautical Sciences: ICAS Brisbane, Australia, 2012.

[13] Phung, D.-K. and Morin, P., “Modeling and Energy Evaluation of Small Convertible UAVs,”
Workshop on Research, Education and Development of Unmanned Aerial Systems, Vol. 2,
Compiegne, France, Nov. 2013, pp. 212–219.

[14] Phung, D.-K. and Morin, P., “An Approach for Modeling, Design, and Energy Evaluation
of Small Convertible Aerial Vehicles,” AIAA Modeling and Simulation Technologies Confer-
ence, June 2014.

[15] Phung, D.-K. and Morin, P., “Control of a New Convertible UAV With a Minimal Sensor
Suite,” IEEE Conference on Decision and Control , Dec. 2014, pp. 229–235.

[16] Green, W. and Oh, P., “A fixed-wing aircraft for hovering in caves, tunnels, and buildings,”
American Control Conference, June 2006.

[17] Frank, A., McGrew, J., Valenti, M., Levine, D., and How, J. P., Hover, transition, and level
flight control design for a single-propeller indoor airplane, Defense Technical Information
Center, 2007.

[18] Pucci, D., Towards a unified approach for the control of aerial vehicles, Ph.D. thesis, Uni-
versité de Nice-Sophia Antipolis and “Sapienza” Universita di Roma, 2013.

[19] “U.S. Federal Aviation Administration - Pilot’s Handbook of Aeronautical Knowledge,” 2008.

[20] Basset, P.-M., Tremolet, A., and Lefbvre, T., “Rotary Wings UAVs presizing: Past and
present methodological approaches at Onera,” Onera Aerospace Lab, 2014.

[21] Hua, M. D., Contributions au contrôle automatique de véhicules aériens, Ph.D. thesis, Uni-
versité de Nice Sophia-Antipolis, 2009.

[22] “U.S. Federal Aviation Administration - Helicopter Flying Handbook,” 2012.

[23] Newman, S., Foundations of Helicopter Flight , A Butterworth-Heinemann Title, April 1994.

[24] Alvissalim, M., Zaman, B., Hafizh, Z., Ma’sum, M., Jati, G., Jatmiko, W., and Mursanto,
P., “Swarm quadrotor robots for telecommunication network coverage area expansion in
disaster area,” SICE Annual Conference, Aug. 2012, pp. 2256–2261.

[25] Jaimes, A., Kota, S., and Gomez, J., “An approach to surveillance an area using swarm of
fixed wing and quad-rotor unmanned aerial vehicles UAV(s),” IEEE International Confer-
ence on System of Systems Engineering , June 2008, pp. 1–6.

[26] Kushleyev, A., Mellinger, D., Powers, C., and Kumar, V., “Towards a swarm of agile micro
quadrotors,” Autonomous Robots, Vol. 35, No. 4, Nov. 2013, pp. 287–300.

[27] Ryll, M., Bulthoff, H. H., and Giordano, P. R., “Modeling and control of a quadrotor UAV
with tilting propellers,” IEEE International Conference on Robotics and Automation, 2012,
pp. 4606–4613.

[28] Senkul, F. and Altug, E., “Modeling and control of a novel tilt - roll rotor quadrotor UAV,”
International Conference on Unmanned Aircraft Systems, 2013, pp. 1071–1076.



Bibliography 129

[29] McKenna, J. T., “One Step Beyond,” Rotor & Wing , 2007, pp. 54.

[30] Bhanja C., A., Kulhare, A., and Raina, G., “A generalized control method for a Tilt-rotor
UAV stabilization,” 2012 IEEE International Conference on Cyber Technology in Automa-
tion, Control, and Intelligent Systems (CYBER), May 2012, pp. 309–314.

[31] Basset, P.-M. and Cuzieux, F., “CREATION – Note Technique – Convertibles et Com-
binés: éléments pour l’estimation analytique de leur performance,” Onera report NT 3/18466
DCSD, June 2013.

[32] Kubo, D., Muraoka, K., and Okada, N., “High Angle of Attack Flight Characteristics of a
Wing-in-Propeller-Slipstream Aircraft,” Proceedings of ICAS2010 , 2010.

[33] Cetinsoy, E., Dikyar, S., Hancer, C., Oner, K., Sirimoglu, E., Unel, M., and Aksit, M.,
“Design and construction of a novel quad tilt-wing UAV,” Mechatronics, Vol. 22, No. 6,
Sept. 2012, pp. 723–745.

[34] Kubo, D., Muraoka, K., and Suzuki, S., “Vertical Takeoff and Landing Technology Research
Using Small Experimental Unmanned Aircraft,” International Conference on Intelligent
Unmanned Systems, 2011.

[35] Shkarayev, S., Moschetta, J.-M., and Bataille, B., “Aerodynamic design of VTOL micro air
vehicles,” Proc. of the MAV07 International Conference, France, 2007.

[36] Leishman, J. G., Principles of Helicopter Aerodynamics, Cambridge University Press, April
2006.

[37] Driessens, S. and Pounds, P., “Towards a more efficient quadrotor configuration,” 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nov. 2013,
pp. 1386–1392.

[38] Brandt, J. B. and Selig, M. S., “Propeller Performance Data at Low Reynolds Numbers,”
49th AIAA Aerospace Sciences Meeting , 2011, pp. 2011–1255.

[39] Tennekes, H., The simple science of flight: from insects to jumbo jets, MIT Press, Cam-
bridge, Mass., 2009.

[40] Aleksandrov, D. and Penkov, I., “Energy Consumption of Mini UAV Helicopters with Dif-
ferent Number of Rotors,” 11th International Symposium - Topical Problems in the Field of
Electrical and Power Engineering , 2012, pp. 259–262.

[41] Moschetta, J.-M., “Introduction to innovative micro air vehicles configurations: key chal-
lenges, breakthroughs and trade-offs,” Oct. 2014, Aerial Robotics, Onera, Toulouse, France.

[42] Stepniewski, W. Z. and Keys, C. N., Rotary-Wing Aerodynamics, Dover Publ., 1979.

[43] Bramwell, A. R. S., Done, G. T. S., and Balmford, D., Bramwell’s Helicopter Dynamics,
AIAA, 2nd ed., Jan. 2001.

[44] Johnson, W., Helicopter Theory , Courier Dover Publications, Oct. 1994.

[45] Pucci, D., “Flight dynamics and control in relation to stall,” American Control Conference,
2012, pp. 118–124.



130 Bibliography

[46] Johnson, W., Rotorcraft Aeromechanics, Cambridge University Press, April 2013.

[47] Martin, P. and Salaun, E., “The true role of accelerometer feedback in quadrotor control,”
IEEE International Conference on Robotics and Automation, 2010, pp. 1623–1629.

[48] Anderson, J., Fundamentals of Aerodynamics, McGraw-Hill Education, Feb. 2010.

[49] Drela, M., “XFoil Subsonic Airfoil Development System,
http://web.mit.edu/drela/Public/web/xfoil/,” 2008.

[50] Moffitt, B., Bradley, T., Parekh, D. E., and Mavris, D., “Validation of vortex propeller
theory for UAV design with uncertainty analysis,” 46th AIAA Aerospace Sciences Meeting
and Exhibit , 2008, pp. 2008–406.

[51] Merchant M. P., “Propeller Performance Measurement For Low Reynolds Number UAV
Applications,” Master thesis, Wichita State University, 2004.

[52] Brandt, J. B. and Selig, M. S., “UIUC Propeller Data Site, http://www.ae.illinois.edu/m-
selig/props/propDB.html,” 2012.

[53] Landing Products, “APC Propeller Performance Data,” 2013.

[54] Schenk, H., “PropCalc - Propeller Calculator Software,
http://www.drivecalc.de/PropCalc/index.html,” 2012.

[55] Pucci, D., Hamel, T., Morin, P., and Samson, C., “Nonlinear Control of PVTOL Vehicles
subjected to Drag and Lift,” IEEE Decision and Control and European Control Conference,
2011, pp. 6177–6183.

[56] Sheldahl, R. E. and Klimas, P. C., “Aerodynamic Characteristics of Seven Symmetrical
Airfoil Sections Through 180-Degree Angle of Attack for Use in Aerodynamic Analysis of
Vertical Axis Wind Turbines,” Tech. Rep. SAND-80-2114, Sandia National Labs., Albu-
querque, NM (USA), March 1981.

[57] Hua, M.-D., Hamel, T., Morin, P., and Samson, C., “A Control Approach for Thrust-
Propelled Underactuated Vehicles and its Application to VTOL Drones,” IEEE Transactions
on Automatic Control , Vol. 54, No. 8, Aug. 2009, pp. 1837–1853.

[58] Stevens, B. L. and Lewis., F. L., Aircraft control and simulation, Wiley, Hoboken, NJ, 2nd
ed., 2003.

[59] Shamma, J. S., Analysis and design of gain scheduled control systems, Ph.D. thesis, Mas-
sachusetts Institute of Technology, 1988.

[60] Kadmiry, B. and Driankov, D., “A fuzzy gain-scheduler for the attitude control of an un-
manned helicopter,” IEEE Transactions on Fuzzy Systems, Vol. 12, No. 4, 2004, pp. 502–515.

[61] Lane, S. H. and Stengel, R., “Flight Control Design using Nonlinear Inverse Dynamics,”
American Control Conference, 1986 , June 1986, pp. 587–596.

[62] Wang, Q. and Stengel, R., “Robust nonlinear flight control of a high-performance aircraft,”
IEEE Transactions on Control Systems Technology , Vol. 13, No. 1, Jan. 2005, pp. 15–26.

[63] Sobolic, F. M., “Agile flight control techniques for a fixed-wing aircraft,” Master thesis,
Massachusetts Institute of Technology, 2009.



Bibliography 131

[64] Hua, M.-D., Hamel, T., Morin, P., and Samson, C., “Introduction to feedback control of
underactuated VTOL vehicles: A review of basic control design ideas and principles,” IEEE
Control Systems, Vol. 33, No. 1, Feb. 2013, pp. 61–75.

[65] Bouabdallah, S., Noth, A., and Siegwart, R., “PID vs LQ Control Techniques Applied to
an Indoor Micro Quadrotor,” Intelligent Robots and Systems, 2004, pp. 2451–2456.

[66] Benallegue, A., Belaidi, A., and Mokhtari, A., “Polynomial linear quadratic gaussian and
sliding mode observer for a quadrotor unmanned aerial vehicle,” Journal of Robotics and
Mechatronics, Vol. 17, No. 3, 2006, pp. 483–495.

[67] Takahashi, M. D., “Synthesis and evaluation of an H2 control law for a hovering helicopter,”
AIAA Journal of Guidance, Control, and Dynamics , Vol. 16, No. 3, 1993, pp. 579–584.

[68] Mammar, S. and Duc, G., “Loop Shaping H∞ design applied to the robust stabilization of
an helicopter,” IEEE Conference on Control Applications, 1992, pp. 806–811.

[69] Luo, C.-C., Liu, R.-F., Yang, C.-D., and Chang, Y.-H., “Helicopter H∞ control design with
robust flying quality,” Aerospace Science and Technology , Vol. 7, No. 2, 2003, pp. 159–169.

[70] Morin, P. and Samson, C., “Control with transverse functions and a single generator of
underactuated mechanical systems,” 2006 45th IEEE Conference on Decision and Control ,
Dec. 2006, pp. 6110–6115.

[71] Hua, M.-D., Morin, P., and Samson, C., “Balanced-force-control of underactuated thrust-
propelled vehicles,” 2007 46th IEEE Conference on Decision and Control , Dec. 2007, pp.
6435–6441.

[72] Dreier, M., Introduction to Helicopter and Tiltrotor Flight Simulation, AIAA, Reston, Va.,
March 2007.

[73] Naldi, R. and Marconi, L., “Optimal transition maneuvers for a class of V/STOL aircraft,”
Automatica, Vol. 47, 2011, pp. 870–879.

[74] Naldi, R. and Marconi, L., “Robust control of transition maneuvers for a class of V/STOL
aircraft,” Automatica, Vol. 49, No. 6, June 2013, pp. 1693–1704.

[75] Casau, P., Cabecinhas, D., and Silvestre, C., “Hybrid Control Strategy for the Autonomous
Transition Flight of a Fixed-Wing Aircraft,” IEEE Transactions on Control Systems Tech-
nology , Vol. 21, No. 6, Nov. 2013, pp. 2194–2211.

[76] Itasse, M., Moschetta, J.-M., Ameho, Y., and Carr, R., “Equilibrium Transition Study for
a Hybrid MAV,” International Journal of Micro Air Vehicles, Vol. 3, No. 4, Dec. 2011,
pp. 229–246.

[77] Guenard, N., Hamel, T., and Moreau, V., “Dynamic modeling and intuitive control strategy
for an "X4-flyer",” IEEE International Conference on Control and Automation, Vol. 1, 2005,
pp. 141–146.

[78] Hamel, T. and Mahony, R., “Attitude estimation on SO[3] based on direct inertial mea-
surements,” IEEE International Conference on Robotics and Automation, May 2006, pp.
2170–2175.



132 Bibliography

[79] Mahony, R., Hamel, T., and Pflimlin, J.-M., “Nonlinear complementary filters on the special
orthogonal group,” IEEE Transactions on Automatic Control , Vol. 53, No. 5, 2008, pp. 1203–
1218.

[80] Gracey, W., “Summary of methods of measuring the angle of attack on aircraft,” Tech. Rep.
4351, NASA Technical Note, 1958.

[81] Whitmore, S. A., Moes, T. R., and Larson, T. J., “Preliminary results from a subsonic high
angle-of-attack flush air-data sensing (HI-FADS) system: design, calibration, and flight test
evaluation,” Tech. Rep. 101713, NASA Technical Memorandum, 1990.

[82] Samy, I., Postlethwaite, I., and Gu, D., “Subsonic Tests of a Flush Air Data Sensing System
Applied to a Fixed-Wing Micro Air Vehicle,” Journal of Intelligent and Robotic Systems,
Vol. 54, No. 1-3, 2009, pp. 275–295.

[83] U.S. Department of Defense Handbook MIL-HDBK-1797 - Flying Qualities of Piloted Air-
craft , 1997.

[84] Theys, B., Dimitriadis, G., Andrianne, T., Hendrick, P., and De Schutter, J., “Wind Tunnel
Testing of a VTOL MAV Propeller in Tilted Operating Mode,” International Conference
on Unmanned Aircraft Systems, 2014, pp. 1064–1072.



Appendix A

Detailed Calculation of Propellers
Parameters

The calculations below use the following relationships:

∫ 2π

0
sin2 Ψ dΨ = π (A.1)

∫ 2π

0
sin Ψ dΨ =

∫ 2π

0
sin3 Ψ dΨ = 0 (A.2)

Substituting Eq. (2.42) into Eq. (2.44), we obtain:
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Note that the term sin Ψ appears in the expression of in-plane drag force H since H is the
integration of dH along the line parallel to j in figure 2.8 (the integration of dH along the line
parallel to i is zero due to flow symmetry).
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Using the simplified assumptions in section 2.2.3 the simplified thrust expression is:

T =
NPρcPRν

2
T

4π

∫ 1

0

∫ 2π

0
(r̄ + ν̄2 sin Ψ)2(CL0 + aαP ) dΨdr̄

=
NPρcPRν

2
T

4π

∫ 1

0

∫ 2π

0
(CL0 + aθP )(r̄ + ν̄2 sin Ψ)2 − aν̄3,ind(r̄ + ν̄2 sin Ψ) dΨdr̄

=
NPρcPRν

2
T

4π

∫ 1

0

∫ 2π

0

[
CLtν̄

2
2 sin2 Ψ + (2CLtr̄ν̄2 − aν̄3,indν̄2) sin Ψ + (CLtr̄

2 − aν̄3,indr̄)
]
dΨdr̄

=
NPρcPRν

2
T

4π

∫ 1

0

[
πCLtν̄

2
2 + 2π(CLtr̄

2 − aν̄3,indr̄)
]
dr̄

=
NPρcPRν

2
T

4

ï
CLt

Å
2

3
+ ν̄2

2

ã
− aν̄3,ind

ò
(A.6)

Before simplifying Q and H, we need to calculate this term:
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Substituting Eq. (A.7) into Eq. (A.4) we have:
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Substituting Eq. (A.7) into Eq. (A.5) we have:

H =
NP

4π
ρRν2

T

∫ 1

0

∫ 2π

0
cP sin Ψ

[
β2ν̄

2
2 sin2 Ψ + (2β2r̄ν̄2 + β1ν̄3,indν̄2) sin Ψ + β2r̄

2 + β1ν̄3,indr̄ + β0ν̄
2
3,ind

]
dΨdr̄

=
NPρRcP ν

2
T

4π

∫ 1

0
π(2β2r̄ν̄2 + β1ν̄3,indν̄2)dr̄

=
NPρRcP ν

2
T

4
ν̄2(β1ν̄3,ind + β2) (A.9)

Now we develop the relations between different representations of thrust and torque coeffi-
cients. From Eq. (2.65), Eq. (2.69), and Eq. (3.28), one can easily deduce the following relation:

κT =
1

2
ρAR2CT =

1

4
ρAR2s

Å
2

3
CLt − aν̄3,ind

ã
(A.10)
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Similarly, Eq. (2.67), Eq. (2.72), and Eq. (3.28) yield:

κQ =
1

2
ρAR3CQ =

1

4
ρAR3s

ï
ν̄3,ind

Å
2

3
β1 + β0ν̄3,ind

ã
+
β2

2

ò
(A.11)

It can be seen that κT and κQ depend on the normalized total flow perpendicular to the propeller
disk ν̄3,ind. In practice, for simple estimates to be used in the controller, these coefficients are
measured using a static test bench as in appendix B.





Appendix B

Static Test Bench

Propeller thrust and torque are measured by a simple test bench. The schematic diagrams of
the test bench are shown in figure B.1 and figure B.2. The propeller and the motor are mounted
on a bar that can rotate freely around a pivot point. Due to symmetric arrangement, the scale
reading is equal to the propeller thrust.

As for the torque measurement in figure B.2, when the propeller spins, there is a reactive
torque Q acting at the pivot point. The magnitude of this torque can be easily calculated from
Q = L × F where L is the distance from the rotor axis to the pivot point and F is the scale
reading. The propeller speed $ can be measured manually by a tachometer. Knowing $, T ,
Q, the thrust constant κT and torque constant κQ can be easily calculated from Eq. (3.28).
Similarly, the thrust coefficient CT and torque/power coefficients CQ = CP can be deduced from
Eq. (2.65) and Eq. (2.67). The actual experimental setup is shown in figure B.3. The scale
is Sartorius AY6000 with maximum weight 6 kg and precision 1 g. The optical tachometer is
Voltcraft DT-20LK which can measure from 2 to 99,999 RPM and have resolution ±0.05%.
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Figure B.1: Schematic of test bench for thrust measurement

F

�

Q

LL

Figure B.2: Schematic of test bench for torque measurement

Figure B.3: Experimental setup of our static test bench for torque measurement



Appendix C

Parameters for Simulation

The parameters for the simulation in chapter 2 and chapter 3 are the same as the parameters for
the physical convertible UAV model in section 4.2, except that the simulated model uses APC
SlowFlyer 11× 4.7 propellers with the following parameters:

• number of propellers N = 4,

• number of blades per propeller NP = 2,

• propeller radius R = 0.1397 m,

• propeller area A = πR2 = 0.061 m2,

• mean chord of a propeller blade at 75% radius cP = 0.028 m,

• solidity of the propeller s = NP cPR/A = 0.127,

• pitch angle at 75% radius of the propeller blade θP = 0.1794 rad,

• blade aerodynamic coefficients [CL0, a, b0, b1, b2] = [0.48, 4.53, 0.02, 0.02, 2.21],

• constants for thrust and torque are: κT = 1.9× 10−5 and κQ = 3.8× 10−7.

The total mass of the UAV is m = 3.2 kg. The aerodynamic parameters of NACA0018 wing(s)
as derived based on [56] (see chapter 2):

• drag constant c1 = 0.0128,

• average lift constant c2 = 0.9595,

• high lift constant c2T = 2.6749,

• reference Reynolds number Reref = 160000,

• Reynolds number exponential constant Reexp = 0.3,

• reference angle where the stall starts α0ref = 12◦.

The standard constants are:

• air density ρ = 1.225 kg/m3,

• air viscosity µvis = 1.789× 10−5,
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• gravity constant g = 9.8 m/s2.

The parasite drag coefficient is cpara = 0.4 and the effective parasite drag area is Σpara = 0.1 m2.
The propeller motor efficiency is assumed to be ηM = 0.7. In reality, this efficiency depends on
torque and rotational speed. The modeling and testing of the electric motors will be considered
in the near future.



Appendix D

Inertia Calculation

The objective of this section is to estimate the moments of inertia of the convertible UAV. Refer
to figure 4.11 for the top-view schematic of the UAV.

We suppose that all the mass distributes on the propellers’ plane, i.e., the mass distribution
along the thrust axis is neglected. We also assume that the UAV is composed of the following
elements, each with homogeneous mass distribution:

• four motors, with coordinates x1 = ±`1, x2 = ±`2 and mass of each motor m1;

• two bars parallel to i, with coordinates x1 ∈ [−`2, `2], x2 = ±`1 and mass m2;

• two bars parallel to j, with coordinates x1 = ±`3, x2 ∈ [−`1, `1] and mass m3;

• one rectangular plate, with coordinates x1 ∈ [−`3, `3], x2 ∈ [−`1, `1] and mass m4;

• one rectangular battery, with coordinates x1 ∈ [−`5, `5], x2 ∈ [−`4, `4] and mass m5;

• two external bars parallel to j, with coordinates x1 = ±`7, x2 ∈ [−`6, `6] and mass m6;

• two wings parallel to i, with coordinates x1 ∈ [−`7, `7], x2 = ±`6 and mass m7;

The moment of inertia of these elements is calculated as follows:

Each motor (considered as a point mass):

J11 = m1`
2
1

J22 = m1`
2
2

where J11 and J22 are the principle moments of inertia around i and j, respectively.

Each bar parallel to i: with ρl the linear mass density (unit kg/m),

J11 =

∫ `2

−`2
`21 ρldx1 = 2ρl`2`

2
1 = m2`

2
1

J22 =

∫ `2

−`2
x2

1 ρldx1 = 2ρl
`32
3

= m2
`22
3
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Each bar parallel to j:

J11 =

∫ `1

−`1
x2

2 ρldx2 = 2ρl
`31
3

= m3
`21
3

J22 =

∫ `1

−`1
`23 ρldx2 = 2ρl`1`

2
3 = m3`

2
3

Rectangular plate: with ρs the surface mass density (unit kg/m2),

J11 =

∫ `1

−`1

∫ `3

−`3
x2

2 ρsdx1dx2 = 2ρs`3

∫ `1

−`1
x2

2 dx2 = 4ρs`3
`31
3

= m4
`21
3

J22 = m4
`23
3

Battery:

J11 = m5
`24
3

J22 = m5
`25
3

Each external bar parallel with j:

J11 = m6
`26
3

J22 = m6`
2
7

Each wing parallel to i:
J11 = m7`

2
6

J22 = m7
`27
3

By summing all above moments of inertia, we obtain the total moments of inertia of the
UAV:

J11 = 4m1`
2
1 + 2m2`

2
1 + 2m3

`21
3

+m4
`21
3

+m5
`24
3

+ 2m6
`26
3

+ 2m7`
2
6

J22 = 4m1`
2
2 + 2m2

`22
3

+ 2m3`
2
3 +m4

`23
3

+m5
`25
3

+ 2m6`
2
7 + 2m7

`27
3

The moment of inertia around k is simply the sum of the two previous moments of inertia:

J33 = J11 + J22

D.1 Numerical Evaluation

The geometric parameters are:

2`1 = 0.5, 2`2 = 0.55, 2`3 = 0.15, 2`4 = 0.15, 2`5 = 0.08, 2`6 = 1.44, 2`7 = 0.74 (D.1)

where we consider the battery (0.5 kg) dimension. The masses are:
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• The motors (T-Motor 4008) with propellers (13-inch Graupner) with mass 0.134 kg.

• The bars parallel to i are made of glass fiber. With all the connecting parts (screws, nuts,
etc.), the estimated mass is 0.18 kg.

• The bars parallel to j are considered to be part of the rectangular plate.

• The rectangular plate with mass 1.27 kg.

• The battery with mass 0.3 kg or 0.5 kg depending on the model.

• The external bars are made of carbon fiber. Each bar and the connecting parts have
approximate mass of 0.1 kg.

• Each wing (including servo) has mass of about 0.15 kg

In summary, with the battery 0.5 kg we have:

m1 = 0.134, m2 = 0.18, m3 = 0, m4 = 1.27, m5 = 0.5, m6 = 0.1, m7 = 0.15 (D.2)

We verified that the battery impact on the moment of inertia is negligible. Finally, the total
moments of inertia are (unit: kg m2):

J11 = 0.273, J22 = 0.093, J33 = 0.366 (D.3)

In the case without the wings, one has:

J11 = 0.083, J22 = 0.052, J33 = 0.135





Appendix E

Proof of Proposition 1

The proof is given for va,2 > 0. The case va,2 < 0 is completely similar.
First, since va is assumed to be constant, ξ(va) and α∗ are also constant. Note also, from

(2.78) and (3.55), that

kp(ζ, ξ(va)) = g−1
1 (g2(ξ(va)) cot(α))h(α) sin(α) (E.1)

Let α̃ = α− α∗. Then ˙̃α = α̇ = −ζ̇ and it follows from (2.78), (3.51), (3.56), and (E.1) that

JA ¨̃α = (g−1
1 (g2(ξ(va)) cot(α))− |va|2)h(α) sinα+ kv(ζ, ξ(va))ζ̇

= (g−1
1 (g2(ξ(va)) cot(α))− |va|2)h(α) sinα− kv(π − α− ξ(va), ξ(va)) ˙̃α

(E.2)

The equilibrium points of the above equation are defined by the relation

(g−1
1 (g2(ξ) cot(α))− |va|2)h(α) sinα = 0

Since by assumption h is a strictly positive function, this is equivalent to

g−1
1 (g2(ξ(va)) cot(α)) sinα = |va|2 sinα (E.3)

We claim that α = 0, π are not solutions to the above equation. Indeed, it follows from (3.54) in
Assumption 1 that

lim
τ→+∞

g−1
1 (τ)

τ
=

1

b
> 0

Thus,

lim
α→0

g−1
1 (g2(ξ(va)) cot(α)) sinα = lim

α→0

g2(ξ(va))

b
cot(α) sinα =

g2(ξ(va))

b
6= 0 (E.4)

which implies that α = 0, π are not solutions to (E.3). The equilibrium points are thus given by
the solutions of

g−1
1 (g2(ξ(va)) cot(α)) = |va|2 (E.5)

This condition is equivalent to g2(ξ(va)) cot(α) = g1(|va|2). From (3.53), this implies that α = α∗

or α = α∗ + π. Thus α∗ is an equilibrium point of (E.2).
Since va is constant, Eq. (E.2) is autonomous and the stability of α = α∗ can be studied

from the linearized equation. Since g1 is a class K∞ function (and thus strictly increasing),
and the function cotα is strictly decreasing, one easily verifies that the linearized system is
asymptotically stable. Since there are only two equilibrium points, the domain of convergence is
necessarily (α∗ − π, α∗ + π). This concludes the proof.





Appendix F

Proof of Proposition 2

The aerodynamic forces are composed of the parasite drag D acting at the center of mass, the
aerodynamic force Fa→A acting on the front wing and the aerodynamic force Fa→C acting on
the back wing. The aerodynamic torque is thus

Γa = Γai = Lj × (Fa→A − Fa→C) (F.1)

From the expressions of lift and drag forces in Eq. (2.79),

Fa→A = ka|va,A|cL(αA,ReA)v⊥a,A − ka|va,A|cD(αA,ReA)va,A

Since by assumption va,A = v = v2j0, this yields

Fa→A = −ka|v|2
Ä
cL(αA,ReA)k0 + cD(αA,ReA)j0

ä
This implies that

Lj × Fa→A = −Lka|v|2
Ä
cL(αA,ReA) cos θ − cD(αA,ReA) sin θ

ä
i (F.2)

Similarly,

Fa→C = ka
∣∣∣v − ε|v|k∣∣∣cL(αC ,ReC)(v − ε|v|k)⊥ − ka

∣∣∣v − ε|v|k∣∣∣cD(αC ,ReC)(v − ε|v|k)

Noting that
(v − ε|v|k)⊥ = v⊥ − ε|v|k⊥ = −|v|k0 − ε|v|j

we obtain after a few calculations that

Lj × Fa→C = −Lka|v|
∣∣∣v − ε|v|k∣∣∣ÄcL(αC ,ReC) cos θ − cD(αC ,ReC)(ε+ sin θ)

ä
i

in which ∣∣∣v − ε|v|k∣∣∣ =
∣∣∣|v|j0 − ε|v|(cos θ k0 − sin θ j0)

∣∣∣
= |v|

∣∣∣(1 + ε sin θ) j0 − ε cos θ k0

∣∣∣
≈ |v|

Ä
1 + ε sin θ +O2(ε)

ä
where O2(x) denotes terms of order two at least. Therefore, the above expression of Lj×Fa→C

can be written as

Lj×Fa→C = −Lka|v|2
Ä
1+ε sin θ+O2(ε)

äÄ
cL(αC ,ReC) cos θ−cD(αC ,ReC)(ε+sin θ)

ä
i (F.3)
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We deduce from (F.1), (F.2), and (F.3) that

Γa = −Lka|v|2
ñÄ
cL(αA,ReA)− cL(αC ,ReC)

ä
cos θ −

Ä
cD(αA,ReA)− cD(αC ,ReC)

ä
sin θ

−ε sin θ
Ä
cL(αC ,ReC) cos θ − cD(αC ,ReC) sin θ

ä
− εcD(αC ,ReC) +O2(ε)

ô
With the assumption of small angles of attack (and neglecting the dependence of aerodynamic
characteristics on the Reynolds number), we have

cL(αA,ReA)− cL(αC ,ReC) =
∂cL
∂α

(αC ,ReC)(αA − αC) +O2(αA − αC)

cD(αA,ReA)− cD(αC ,ReC) =
∂cD
∂α

(αC ,ReC)(αA − αC) +O2(αA − αC)

Thus, Γa can be written as:

Γa = −Lka|v|2 cos θ

ñ
∂cL
∂α

(αC ,ReC)(αA − αC) +O2(αA − αC)

ô
+Lka|v|2 sin θ

ñ
∂cD
∂α

(αC ,ReC)(αA − αC) +O2(αA − αC)

ô
+Lka|v|2 sin θ

ñ
ε
Ä
cL(αC ,ReC) cos θ − cD(αC ,ReC) sin θ

äô
+Lka|v|2εcD(αC ,ReC)− Lka|v|2O2(ε)

This concludes the proof.





Abstract
The family of aircraft essentially consists of two classes of systems: fixed-wing and VTOL (Vertical Take-Off and

Landing) aircraft. Due to their streamline shapes inducing high lift/drag ratio, fixed-wing airplanes are efficient in
cruising flight. However, most of them require runways or catapult/net systems for take-off and landing. As for VTOL
aircraft, thanks to their hover ability, they are particularly suitable for many applications including observation and
structures inspection, but their efficiency in horizontal flight is generally mediocre. There is therefore an interest in
designing so-called “convertible” vehicles, that combine the advantages of these two types of aircraft: efficient cruising
flight and VTOL capability. This thesis is devoted to the conception, modeling, and control of such a convertible
mini-UAV (Unmanned Aerial Vehicle).

The main contributions of this work are threefold. Firstly, we design a novel UAV structure by adding to each side
of a quadrotor one wing that can rotate around an axis belonging to the propellers’ plane. Our prototype has many
advantages over existing convertible structures: simple mechanical concept since inspired by a classical quadrotor,
flexibility for selecting different components (wings, propellers) and payload placement, flexibility for the control
design, etc. Secondly, we provide an energy modeling of this type of convertible UAVs, taking into account their
characteristics as compared to full-scale helicopters (large variation of aerodynamic forces, performance degradation
at low Reynolds number, etc.). This modeling relies on momentum and blade element theories for the propellers and
an aerodynamic coefficient model for full range of angle of attack for the wings. The ultimate objective is to optimize
the wings’ inclination with respect to the propellers’ plane so as to achieve energy-efficient flight. In addition, the
impact of various parameters (choice of propellers, wings’ area, mass of UAV) is analyzed. The energy modeling
provides useful guidelines for UAV presizing and control design - which is also the third contribution of this thesis.
The degrees of freedom of the wings permit the decoupling between propellers and wings’ orientations. This greatly
enhances the control flexibility as compared to traditional aircraft. Relying on this feature, several control approaches
are proposed. In particular, using a specific geometrical design, we show that an efficient control of our UAV can
be obtained without air-velocity measurements. This strategy is well suited to small aerial vehicles for which such
measurements are difficult to acquire. Simulation results confirm the soundness of our control design even in the
presence of strong and varying wind.

En route to validate the theory, a mechanical prototype of the UAV was constructed in our laboratory and
preliminary flight tests were performed. This is reported in the last chapter of the thesis.
Keywords: VTOL UAV, Convertible UAV, Energy Modeling, Aerodynamics, Feedback Control

Résumé
La famille des véhicules aériens est essentiellement constituée de deux classes de systèmes: les voilures-fixes et les

systèmes à décollage et atterrissage vertical (VTOL en anglais, pour “Vertical Take-Off and Landing”). En raison
de leur forme profilée, induisant un rapport portance/traînée élevé, les voilures-fixes ont l’avantage d’une bonne
efficacité énergétique. Cependant, la plupart d’entre eux nécessitent des pistes ou des systèmes catapulte/filet pour
le décollage et l’atterrissage. Quant aux VTOL, grâce à leur capacité au vol stationnaire, ils sont particulièrement
bien adaptés aux applications d’observation et d’inspection de structures, mais leur efficacité énergétique en vol “de
croisière” est généralement médiocre. Il y a donc un intérêt à concevoir des véhicules appelés “convertibles”, qui
combinent les avantages de ces deux types de structures : bonne efficacité énergétique en vol de croisière et capacité
au vol stationnaire. Cette thèse est consacrée à la conception, la modélisation et la commande d’un tel mini-drone
convertible.

Les principales contributions de ce travail comportent trois volets. Tout d’abord, nous concevons une nouvelle
structure de drone en ajoutant de chaque côté d’un quadrirotor une aile qui peut pivoter autour d’un axe appartenant
au plan des hélices. Notre prototype a de nombreux avantages par rapport aux structures convertibles existantes:
conception mécanique simple car dérivée d’un quadrirotor classique, flexibilité pour le montage de différents composants
(ailes, hélices) et le placement de la charge utile, flexibilité de la conception de commande, etc. Deuxièmement, nous
proposons une modélisation énergétique de ce type de drone convertible, en tenant compte de ses caractéristiques par
rapport aux hélicoptères avec pilote à bord (grande variation des forces aérodynamiques, dégradation des performances
à faible nombre de Reynolds, etc.). Cette modélisation s’appuie sur les théories de la quantité de mouvement et de
l’élément de pale pour les hélices et un modèle de coefficient aérodynamique couvrant la gamme complète des angles
d’attaque pour les ailes. L’objectif ultime est d’optimiser l’inclinaison des ailes par rapport au plan des hélices
afin d’obtenir la meilleure efficacité énergétique. En outre, l’impact de divers paramètres (choix des hélices, des
aile(s), masse de drone) est analysé. La modélisation énergétique fournit des informations utiles pour la conception
mécanique et la conception de la commande; ce dernier aspect constituant la troisième contribution de cette thèse.
Les degrés de liberté des ailes permettent le découplage entre les orientations des hélices et celle des ailes. Cela
augmente considérablement les possibilités de contrôle par rapport aux aéronefs traditionnels. S’appuyant sur cette
caractéristique, plusieurs approches de contrôle sont proposées. En particulier, en utilisant une conception géométrique
spécifique, nous montrons qu’un contrôle efficace peut être obtenu sans mesures de la vitesse air. Cette stratégie est
bien adaptée aux petits véhicules aériens pour lesquels ces mesures sont difficiles à acquérir. Les résultats de simulation
confortent cette stratégie de contrôle, même en présence de vent fort et variable.

Afin de valider la théorie, un prototype mécanique du drone a été construit dans notre laboratoire et des essais en
vol préliminaires ont été effectués. Ces aspects sont décrits dans le dernier chapitre de la thèse.
Mots-clés: Véhicule à décollage et atterrissage vertical, Drone convertible, Modélisation énergétique, Aérody-
namique, Commande par retour d’état
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