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Abstract 

The adaptation of fungal pathogen to its hosts and to the climate variation, in particular to the 

temperature, was investigated on wheat stripe (yellow) rust, caused by the biotroph fungus 

Puccinia striiformis f. sp. tritici (Pst) in the Middle East, focusing on Lebanon and Syria. This 

disease is a major problem for the crop in the region. Specific resistance genes were postulated in 

138 wheat genotypes including elite lines, grown varieties and local landraces, using an array of 

11 French pathotypes. Resistance gene diversity for yellow rust in wheat elite lines was higher 

than in current, commercial varieties grown in Lebanon, with nine Yr genes detected singly or in 

combination. Some varieties were resistant to all tested pathotypes and might provide interesting 

sources of resistance. Most of the Lebanese landraces were susceptible but also heterogeneous by 

their number of plants susceptible and resistant to a specific pathotype in a same landrace. 

A field survey was conducted in Lebanon and Syria in 2010-2011 and 275 Pst isolates 

were collected. The pathogen population was genotyped with 20 microsatellite markers and was 

found to be clonal, although the alternate host Berberis libanotica is present in the region. The 

dominant multilocus genotype shared similarity with the new invasive strain PstS1/PstS2 

dispersed worldwide since 2000. The population was clonal with 10 pathotypes detected in 

Lebanon and Syria. 50 MLGs were detected considered high for clonal population. The virulence 

profiles combining Vr2, Vr6, Vr7, Vr9, and Vr27 are typical of the Mediterranean area according 

to group (Bahri et al., 2009) and corresponded to the worldwide invasive pathotype described 

since 2000 (Milus et al., 2009). The Vr8 was not fixed in this population, whereas this virulence 

is frequent in the Mediterranean genetic group (Bahri et al., 2009). 

Recently Pst strains have been described for adaptation to warm temperature (Milus et 

al., 2009; Mboup et al., 2012). The question of temperature adaptation in this study was whether 

the strains adapted to warm temperature are found in few clones of invasive strains or if they are 

selected in different pathogen genotypes locally under specific climate conditions. We selected 

26 Pst isolates from the Middle East, 13 isolates from warm and 13 isolates from cold areas. We  

  



  



 

assessed their infection efficiency and latent period under four temperature regimes (high 

and warm temperature for the spore penetration phase, and high and warm temperature for the 

latency period). The isolates differed for the thermal aptitude for infection efficiency and latent 

period, but no clear relationship was established between the climate of the origin location of the 

isolate and its thermal aptitude. Some isolates were able to infect at high temperature but had 

long latency at high temperature and vice versa, some isolates had low infection efficiency and 

short latent period at high temperature, and few isolates were efficient either at high temperature 

or cold temperature for infection efficiency. Latency period showed pattern of local adaptation. 

Warm dew temperatures retarded sporulation, but this effect was far less marked for isolates 

from warm climates when incubated under warm conditions. 

This study provides details about probable effective yellow rust genes present in different 

genotypes and the prevalent pathotypes in the region. Moreover, the thermal aptitude for 

infection efficiency and latent period of some isolates under contrasting temperature will help us 

to build a better integrated disease management in the highlight of global warming. 
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General introduction 
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2. Adaptation to temperature and effect on Pst population

3. Resistance genes

6- Breeding for rust resistance 

1. Seedling vs. Adult plant resistance

2. Quantitative trait loci (QTL) of resistance

3. Resistance management strategies for durable resistance
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1-Wheat 

1. Importance in CWANA region

Wheat is a major staple cereal crop contributing directly or indirectly in substantial proportion of 

the caloric intake for the human population (http://faostat.fao.org). Wheat demands are 

increasing and by 2030 the demand for wheat (Triticum aestivum L.) is estimated to increase by 

40% with an increase of the population of 8.27 billion (House of Commons Environment, Food 

and Rural Affairs Committee 2009; http://www.parliament.uk) and 60% increase by 2050. The 

greater demands for wheat are influenced by the population growth and dietary changes for 

populations. Wheat (bread and durum wheat) is consumed by 2.5 billion people in 89 countries. 

The total wheat production was estimated at 653 million tons in 2013 with the highest rank 695 

million tons for the year 2012. Wheat is grown on 215 million hectares and distributed from 

Scandinavia to South America and across Asia. About 54 million hectares are grown in the 

Central, West Asia and North Africa (CWANA) region, including spring and winter/facultative 

bread wheat, durum wheat. About 50% of total durum wheat areas are located in the developing 

countries and 80% of the total of 11 million hectares of durum wheat is cultivated in the 

CWANA region. The productivity of wheat in CWANA region is lower than all geographic 

regions and lower than the world average of 2.9 tons/ha. In ancient times, CWANA region used 

to be the breadbasket of many empires. The Fertile Crescent and Turkey are considered as ones 

of the richest and important centers of diversity for wheat and barley. The first domesticated 

wheat species were einkorn (Triticum monococcum sp. monococcum) and emmer (Triticum 

turgidum sp. dicoccon) and then they evolved from their wild relatives (T. boeticum and T. 

dicoccoides, respectively) about 10 000 years ago (Heun et al., 1997). Later on after its spread 

from the Fertile Crescent, durum wheat (T. turgidum durum) played a major role by providing 

sub-species cultivated for thousands of years across the continents (Feuillet et al., 2007).  
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History of wheat evolution from progenitor till  bread and durum wheat
(http://www. newhallmill.org.uk/wht-evol.htm)

Triticum urartuAegilops speltoides

Triticum dicoccoides

BBAuAu

AuAuBB

Triticum dicoccum

BBAuAu

Triticum boeoticum

Triticum monococcum

Aegilops tauschii

AmAm

AmAm

Triticum spelta

BBAuAuDD

Triticum aestivum

BBAuAuDD

Triticum durum

BBAuAu

DD
3  to 1 million years 

500 000 – 300 000 years

10 000 to 9000 years

8 500 years

Figure 1: Simplified scheme for bread and durum wheat origin and history of evolution from progenitor (Trottet, 

2011) 
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In average, the annual wheat production level in CWANA is about 126 million tons on the 

total area, and is far below the regional demand of about 164 million tons. However, the highest 

wheat consumption is registered for this region and is about 185 kg/capita/year. Moreover, 

CWANA and sub-Saharan Africa will be the most adversely affected with the climate change 

resulting in decrease in cereal production and increase in irrigated cereal production (ICARDA, 

2010). Beside the abiotic stresses affecting the region, wheat is subjected to many biotic stresses. 

1. 2 Taxonomy and phylogeny

Wheat (Triticum aestivum) belongs to Magnoliophyta divison, Liliopsida class, order 

Cyperales, family Pooideae which is the fourth largest cultivated among flowering plants. In this 

family there are some of the most important crops such as maize (Zea mays) and rice (Oryza 

sativa). Wheat is superior to most other cereals in their nutritive value. Grass genomes differ in 

size, ploidy, and chromosome number. Archeological findings had highlighted that wheat was 

domesticated 10.000 years ago in the Fertile Crescent that extends from the Eastern part of the 

Mediterranean to the lower Zargros Mountains in Iran and Iraq (www.icarda.org). Bread wheat 

originated through polyploidization events (Feldman et al., 1995; Huang et al., 2002). The three 

ploidy are: the diploid Einkorn (2n = 14), the tetraploid such as Emmer and T. turgidum L. (2n = 

28) and the hexaploid, spelt and Triticum aestivum L. (2n = 42).

The current cultivated bread wheat is an allohexaploid (2n = 6x = 42), has the AABBDD genome 

and is characterized with the largest genome 17 Gb. The genome is identified with three groups 

of seven chromosomes. A set of three pairs of homologous chromosomes A, B, and D is present 

in each group. The genome AA, BB, DD derived from Triticum urartu and Triticum boeticum, 

Triticum turgidum dicoccoides, and Aegilops tauschii, respectively (Fig. 1). The A genome 

comprises the highest number of transposable elements compared to B and D genomes (Sabot et 

al., 2005). 
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1. 3 Landraces versus improved varieties

In 1975, Harlan defined the landraces as the principal focus of agricultural production 

(Newton et al., 2010). The Fertile Crescent is known as one of the important centre of diversity 

of many field crops, particularly wheat and barley. Recently, Camacho Villa et al. (2005) came 

out with a new definition “a landrace is a dynamic population(s) of a cultivated plant that has 

historical origin, distinct identity and lacks formal crop improvement, as well as often being 

genetically diverse, locally adapted and associated with traditional farming systems”. In modern 

farming, the landraces have been replaced by elite cultivars. Elite cultivars are derived from a 

relatively narrow germplasm pool and are well adapted to high input agriculture. Landraces are 

known for their diversity and heterogeneity. Zeven (1998) described nicely the “yield stability of 

landraces under traditional low input agricultural system is due to the fact that whatever the 

varying biotic and abiotic stress for each plant, one or more genotypes within the landrace 

population will yield satisfactorily”. Landraces have closer affinity with modern cultivars than 

wild species and can be eventually as a foundation material in breeding programs. Recently, 

many studies were conducted on physiological, biochemical, molecular and technological traits 

on bread wheat landraces (Newton et al., 2010). They reviewed the status of landraces and their 

context in sustainable agriculture and highlighted major points as: 1) Landraces have diverse 

response to many stresses and are large resources for the development of future, 2) Worldwide, 

many germplasm collections of landraces are available and have not been characterized, 3) The 

germplasm materials have been maintained ex-situ and in situ where they evolve and both 

methods have their advantages and disadvantages, 4) The high quality phenotyping-genotyping 

association enables to exploit the variations present in the landraces, 5) Landraces display a 

potential source of traits for crop improvement particularly those related to developmental stage, 

soil condition and root system, 6) Landraces are rich with nutritional traits such as antioxidants,  
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phenolics, carotenoids and tocols; Zinc and iron have been successfully transferred to improved 

varieties, 7) Landraces have potential sources of disease tolerance and resistance of pest and 

various abiotic stresses. 

2- Biology of Puccinia striiformis f. sp. tritici (Pst) 

2.1 Classification 

Rust fungi are cosmopolitan plant pathogens, well distributed on a wide host range, 

including ferns and conifers, and most families of dicotyledon and monocotyledon angiosperms. 

The rusts belong to the family Pucciniaceae, Order Pucciniales, Class Uredinales, and 

Basidiomycota phylum. Rust fungi are obligate biotrophic parasites, depending entirely on living 

host cells to complete their biological cycle (Cummins and Hiratsuka, 2003). Puccinia is one of 

the main genera accounting for 3000-4000 species that are highly diverse with respect to host 

preference and number of spore stages reaching up to five within the life cycle (Staples, 2001; 

Liu and Hambelton, 2010). Puccinia striiformis infects at least 320 grass species in over 50 

genera from the Poaccae family (Hassebrauk, 1965). Eriksson was the first to use forma 

specialis of P. striiformis; Liu and Hambleton (2010) summarized the host range of P. striiformis 

and cited the following: P. striiformis f. sp. tritici infects Triticum aestivum, P. striiformis f. sp. 

hordei infects Hordeum vulgare, P. striiformis f. sp. pseudo-hordei infects wild barley grass 

(Hordeum spp.), P. striiformoides infects cocksfoot grass (Dactylis glomerata) and P. 

pseudostriiformis infects mainly Kentucky bluegrass (Poa pratensis). 

The complete genome of P. striiformis is estimated to be 110 Mb (Zheng et al., 2013). 

Comparing to the conventional sequencing technologies, the Next Generation Sequencing (NGS) 

has been improved speedily in term of efficiency and cost reduction (Cantu et al., 2011). For 

instance, Saunders et al. (2012) used high throughput computational methods to characterize the 

effector complements from the fully sequenced rust fungi Puccinia graminis f sp. tritici and 

Melampsora larici-populina. Cantu et al. (2011) provide a draft genome of a Pst isolate (PST-

130), annotating 22,185 putative coding sequences and classified 1,088 of these as predicted 

secreted proteins. Moreover, a BAC library (Chen & Ling, 2004), a cDNA library from 

uredospores (Ma et al., 2009), a germinated uredospores EST library (Zhang et al., 2008), and a 

haustorial EST library (Yin et al., 2008) have been identified and publicly available. 
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Figure 2: Life cycle of Puccinia striiformis f. sp. tritici. (A) Uredinia on wheat leaf containing single-celled dikaryotic 

uredospores (n + n) originating from aeciospores (n+ n) or urediniospores. Top inset: echinulate surface of a uredospore under a 

scanning electron microscope (SEM) (×4000). Bottom inset: broadly obovoid uredospores (×1000). (B) Telia typically form 

beneath the leaf epidermis near the end of the growing season. Top inset: the two-celled, oblong-clavate teliospores (2n) (×1000). 

Bottom inset: the elliptoid basidiospores (n) from the germination of teliospores (×2500). (C) Pycnia produced by basidiospore 

infection on Berberis chinensis on upper leaf surfaces via inoculation with germinating teliospores of P. striiformis. Top inset: a 

magnified flask-shaped pycnia (×400). Middle inset: the oblong-shaped pycniospores (×4000). Bottom inset: magnified receptive 

hyphae (×900). (D) Cluster of sunflower-shaped aecia produced on the lower leaf surface of Berberis shensiana. Top inset: a 

campanulate aecium (×200). Middle inset: flat spherical-shaped aeciospores (×3300). Bottom inset: cluster of aeciospores (×250). 

(E) A wheat seedling that can be infected by aeciospores produced on barberry plants and can produce uredospores (Chen et al., 

2014). 
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 2.3 Life cycle 

The causal pathogen Puccinia striiformis Westend. f. sp. tritici Erick. (Pst), is one of the most 

widely destructive plant disease to present international wheat production (Wellings, 2011) as 

well to old times to the Bible, to the Greek and Roman Empires (McIntosh et al., 1995). Pst is 

classified as a biotrophic obligate parasite relying on the host plant to complete the life cycle. Pst 

was classified as an autoecious microcyclic rust pathogen, has been considered until recently to 

reproduce only asexually through dicaryotic uredospores on wheat, the basidiospores produced 

by teliospores produced at the end of the cropping season failing to encounter an alternate host to 

finalize the sexual cycle (Fig. 2). Recently Jin et al. (2010) and Rodriguez-Algaba et al., 2014 

showed that Pst completes its sexual cycle on different species of Berberis, in controlled 

conditions but the role of the sexual cycle has never been shown under natural field conditions. 

In the conditions of Pacific Northwest of the United States, Wang & Chen (2015) showed that 

there is no synchrony in the prevalence of susceptible leaves of Berberis and phenology of P. 

striiformis, i.e. the period when basidiospres are released. Furthermore, Kang et al. (2015) found 

very few Pst aecia on Berberis in China. Under natural conditions, sexual reproduction was 

suspected to occur in populations that exhibit footprints of recombination in their genetic 

structure, such as in China, Nepal and Pakistan (Ali et al., 2014b). Algaba et al. (2014) 

established a successful life cycle of P. striiformis, using Berberis vulgaris as alternate host 

under laboratory conditions. 

2.4 Symptoms and economic losses 

Pst is the most serious biotic threat to sustainable international wheat production (Wellings, 

2007), and has been the important disease constraint to winter wheat in Central and West Asia 

over the last 12 years (Nazari et al., 2008; Ziyaev et al., 2011). The fungus Pst infects green 

tissues of cereals and grasses crops. Symptoms appear like tiny, yellow- to orange-colored rust 

pustules, called uredia. Each uredium contains thousands of uredospores. Spores appear as a 

powdery mass differing in color from yellow to orange color (Chen, 2005). At the senescence 

and late growth stage, black telia are often produced (Fig. 3). Yield losses in wheat from Pst 

infections are arising from reduced kernel number per spike, low test weight and reduced and 

shriveled kernel quality (Prescott et al., 1986; Roelfs, 1978). 
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Figure 3: Wheat stripe rust symptoms in the field. (A–C). Yellow to orange uredinial pustules on susceptible adult plant leaves. 
(D) Uredinial pustules on the glumes and awns. (E, F). Yellow to orange uredinial pustules on the seedling wheat leaves. (G) 
Telial and uredinial pustules together on an adult plant leaf (Chen et al., 2014). 
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In Australia, the yield losses due to yellow rust, if the disease was not controlled, was estimated 

up to A$83-43 per hectare and A$994 million at the national level (Murray & Brennan, 2009). 

In the United States, annual losses on wheat exceeded one million metric tons over several years 

since 2000 and mounted to 2.4 million tons in 2003 (Long, 2009). In China, yellow rust annual 

losses varied between 1.8 and 6.0 million tons in three epidemic years (Wan et al., 2004). In the 

year 2009, the yield losses reached the highest records in Northern Africa (Ezzahiri et al., 2009) 

where 90% of the varieties showed susceptibility to the disease. 

3. Quantitative components of host-pathogen interaction

Quantitative components of the pathogen life cycle include germination and infection efficiency, 

latent period, sporulation rate, infectious period and lesion size.  

3.1 Germination and infection efficiency 

The climatic conditions play a major role in the potential of a spore to infect and germinate. 

Uredospores germinate between just above 0°C and 20°C, but the optimum temperatures for 

germination are from 7°C to 12°C (Chen, 2013). Spores produced between 5°C and 10°C 

14



Figure 4: The lethal survival temperature are below -10°C and above 37°C.  Germination temperature is 0-20°C and optimal from 

7 to 12°C (Green highlight) The optimal temperature range for sporulation is 12°C to 20°C (Light blue line) but can occur from 

just above 0°C to 28°C (Dark blue highlight) (Modified from Chen et al., 2013). 
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germinated best in the presence of dew whereas spores produced at 30°C and over were unable 

to germinate (Georgievskaja in Rapilly, 1979). Schmitt et al. (1964) considered a temperature 

range from -2.8 to 21.7°C with the optimum 9.7°C whereas de Vallavieille-Pope et al. (1995) 

demonstrated for a Northern French isolate that the range of infection is at 5-12 °C during the 

dew period. Under free water conditions at 12°C, uredospore germination initiates after 3 hours 

with contact of free moisture; uredospores germinate diving 24 hours to produce a promycelium 

of four cells (Fig. 4) (Chen, 2013). Infection efficiency is the percentage of successful infections 

after the deposition of controlled number of spores (Metha & Zadoks, 1970). Practically, due to 

the coalescence of the sporulating lesions growing on the leaf, this parameter is evaluated by 

counting the chlorotic flecks per unit of leaf area (Milus & Line, 1980) and expressed as the 

percentage of spores which produce sporulating lesions. Pst uredospores have a semi-systemic 

growth within the leaf, developing sporulating stripes. Therefore, the point of infection of several 

spores might overlap, and to distinguish the success of each spore, the infection success is scored 

at early stage with the chloroses. Infection efficiency was considered quite low for P. striiformis 

(ca 1-4%) (Hau & de Vallavieille-Pope, 2006) but if the plants received light before infection, 

infection efficiency can reach 30-40% (de Vallavieille-Pope et al., 2000) and be as high as for 

other wheat rusts. Isolates can differ for their thermal aptitude in term of infection efficiency. 

Loladze et al. (2014) compared the stripe rust pathogen population dominant in Australia since 

2002 to previous pathogen populations for latent period and infection efficiency. The new 

Australian pathotype 150 E16 A+ had the highest percentage of infected plants (71.6%), but was 

not significantly different (P < 0.05) from five of the old pathotypes. Variation in latent periods 

has been found among American and Australian isolates (Loladze et al., 2014; Milus et al., 

2006). In the US states at East of the Rocky Mountains, new Pst races completely replaced the 

old races that were found before 2000. All new isolates differed from the old isolates by showing 

shorter latent periods at 18°C than at 12°C (Milus et al., 2006). Latent period is expressed in 

degree-days for Septoria leaf blotch on winter wheat, but Milus et al. (2009) evaluated the latent 

period for Pst isolates in days.  

Sporulation corresponds to the contagious period (Rapilly, 1979) and is evaluated with the rate 

of sporulation. This rate is the amount of spores produced per lesion and per unit of time (Sache, 

1997). The sporulation occurs when relative humidity is not exceeding 50%. However, free 

water droplets stop sporulation (Rapilly, 1979). According to Newton & Johnson, (1936) the  
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RR  rr 

Pathogen Avirulent  AA AR (-) Ar (+) 

Genotype Virulent  aa aR (+) Ar (+) 

     
- = Resistance or incompatible reaction  

  
+ = Susceptiblity or compatible reaction 

  

     
Figure 5: Quadratic check for Gene-for-gene hypothesis. 
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optimal temperature range for the latent period is 13–16 °C.  The optimal temperature range for 

sporulation is 12°C to 20°C but can occur from just above 0°C to 28°C (Chen, 2013). 

 

3.3 Lesion and density size 

The lesion size is defined as the surface area that produces spores. This parameter is not easy to 

assess especially for Mycosphaerella graminicola (Zymoseptoria tritici) that induces necrosis on 

the host leaf (Cowger & Mundt,  2002), but in case of Puccinia triticina, causal agent of 

brown/leaf rust, lesions are limited, but it can dramatically increase in Pst for which lesion 

growth is semi-systemic and subsequently difficult to assess (Schmitt et al., 1964). 

 

4- Host-pathogen interaction 

 

4.1 Principles of gene-for-gene (GFG) concept 

Understanding how pathogens harm the plants is a primordial focus in plant pathology and is of 

particular importance for cultivated host plants. Among plant diseases, wheat yellow rust was the 

first to be studied for genetics of resistance. In 1905, Biffen described the first Mendelian 

resistance to Pst in the wheat variety Rivet (Knott, 1989). This finding was the causal factor for 

understanding the host-pathogen interaction (De Wit, 1992). In 1947, Flor studied the inheritance 

of host reaction and pathogenicity of Melampsora lini in Linum usitatissimum L. and proposed 

the gene for gene (GFG) hypothesis and expressed in incompatibility between a host and a 

pathogen involved corresponding genes in each organism. This incompatibility is the result from 

the interaction between a race specific receptor in the resistant host and a race specific elicitor in 

the avirulent pathogen. For expression of incompatibility or resistance, at least one R gene in the 

host should recognize the corresponding avirulence (Avr) effector gene in the rust pathogen. 

Each R gene confers resistance to pathogen strains carrying the corresponding avirulence 

effector (Avr) gene. Four well-known quadratic checks for GFG interactions describing effector-

triggered immunity of host and pathogen (Fig. 5). To better set the host-pathogen interaction, 

Loegering & Powers (1962) proposed a terminology: resistant or susceptible reaction of the host; 

virulent or avirulent pathogen; and the interaction results in an infection type which may be low  

or high. McIntosh & Wellings (1986) revised the gene for gene concept for wheat rust and 

proposed the following rules: the first rule is addressed to the interaction of products of single 
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genes in hosts and pathogens, whereas the second is addressed to the second order of interaction, 

epistasis of resistance reaction over susceptible one. Formally stated:  

 

1. Incompatibility between a host and pathogen is the consequence of interaction 

between the products of at least one host resistance gene and at least one 

corresponding pathogen avirulence gene, that is: LIT = LP:LR.  

where: LIT is low infection type; LP is low pathogenicity; and LR is low reaction. 

 

2. When more than one interacting gene pair are involved, the level of 

incompatibility is as low as, or lower than the level produced by the most 

incompatible interacting gene pair acting alone, that is: LIT1,2 ≤ LIT1 where: LIT1 

< LIT2. 

 

In host pathogen interaction, McIntosh & Wellings (1986) discussed four familiar 

applications based on the gene-for-gene hypothesis:  

1. Unknown host and unknown pathogen.  

2. Known host and-unknown pathogen applied in case of race analysis studies and pathogenic 

variation. 

3. Unknown host and known pathogen applied in case of gene postulation. 

4. Known host- known pathogen applied in fundamental studies of host pathogen interactions.  

 

4.2 Molecular approach 

 

Many R genes are race-specific and confer resistance during the seedling stage. Identification 

and functional analyses of these genes are crucial in understanding the resistance mechanism. R 

genes are encoding receptors to detect the presence of the pathogen and activating signaling 

cascade leading to resistance reaction (Hammond-Kosack & Jones, 1997). R genes are classified 

in five major groups. The first group characterized by the presence of a nucleotide binding site  
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(NBS) and leucine rich repeat (LRR). The NBS region is related with plant cell death (Biezen & 

Jones, 1998). Three separate functions characterize the NB-LRR protein: (1) pathogen strain 

(effector) recognition, (2) R protein transition from the resting to active state and (3) signaling to 

the host defense response machinery. The Pto group is characterized by a Serine/threonine kinase 

with N-terminal site. The Toll-Interleukin Receptor/Coiled coil ( TIR/CC) group includes a 

nucleotide binding site (NBS), a leucine rich repeat motif plus either a coiled coil (CC) sequence 

or a Toll and Interleukin-1 receptor type region (TIR). These two groups are localized 

intracellular. The LRRs and LRR kinase group are trans-membrane protein with extracellular 

LRRs. The LRR kinase has a cytoplasmic protein kinase domain. The fifth group, the Single 

Anchor/Coiled coil (SA:CC) group which carries a putative signal anchor (SA) for membrane 

insertion, and a putative CC domain (Dangl & Jones, 2001; Jones, 2001). Saunders et al. (2012) 

identified diverse set of candidate effectors, including families of haustorial expressed secreted 

proteins and small cystein-rich proteins for Puccinia graminis f. sp. tritici, and Melampsora 

larici-populina.  

 

 

5- Co-evolution and population dynamics of Pst 

5.1 Center of origin and diversity of Pst populations at the global level.  

For a long time, the center of diversity of Pst has been thought to differ from the center of 

domestication of cereals, that is the fertile crescent. Transcaucasia has been hypothesized by 

Hassebrauk (1965) and later by Stubbs (1985) to be the center of origin of Pst based, on disease 

and pathotype prevalence and geographical barriers. The recent findings on the population 

structure of Pst showed very high diversity in the Himalayan zone (Ali et al., 2014b) with 

production of lot of telia of isolates from this area in laboratory conditions (Ali et al., 2010) 

suggesting that Himalayan zone is the new center of diversity for Pst. Despite this long-distance 

migration capability (Brown & Høvmoller, 2002), Pst population structures diverged highly at a 

worldwide scale as shown by independent national surveys using different genetic markers. The 

divergent Northern population was compared to North-African and Middle-Eastern populations 

in 2005 and 2006. Fourteen multilocus genotypes 
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Figure 6: Origin and migration routes of recently emerged populations of wheat yellow rust pathogen identified or confirmed 
through population genetic analyses of a worldwide representative set of isolates. G1 to G6 represent the six major genetic groups 
(Ali et al., 201b). 
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obtained from 16 microsatellite markers were clustered in 3 genetic groups. The North-West 

European group strongly diverged from the other 2 groups with 71% of the observed SSR 

polymorphism. The Mediterranean group included the pathotype 6E16 found up to 2002 in 

Southern France and rare in the West-Mediterranean area. 6E16 differed from the two dominant 

pathotypes in North Africa for four virulences and several molecular markers, they were 

determined as the aggressive PstS2 strain. This group differed only for 14% of the observed SSR 

polymorphism from the Middle-eastern group.  In the Middle-East, the diversity was higher with 

nine pathotypes, one very close PstS2 strain which was likely to have originated in the Middle 

East.  

 

 Populations were clonal in USA, Australia, New Zealand, and Europe and diverse in Pakistan 

and China (Ali et al., 2014). The world population structure showed evidence of geographic 

structuring, with six major genetic groups (Fig. 6) from the set of multilocus genotypes obtained 

with 20 SSR markers. These 6 groups were associated with their likely geographical origin. The 

Chinese population was clearly separated from Middle-Eastern, Mediterranean and Central Asian 

populations. This cluster was further divided into two groups, one specific to the Middle-East and 

East-Africa, and another group specific to the Central-Asia and Mediterranean regions. A 

Pakistan-specific group was distinguished. NW European populations were separated from the 

Chinese population, and a Nepali group was individualized. More recently, two high temperature-

adapted aggressive strains closely linked genetically and named PstS1 and PstS2, are spread 

worldwide. Strain1, first detected in 2000 in USA, has spread quite rapidly in that country and 

Australia at high frequencies. Strain2 has spread in Asia, North Africa, Middle East, and Europe. 

East Africa has both strains (Hovmøller et al., 2011). PstS1 and PstS2, were assigned to the 

Middle Eastern-Red Sea area-East Africa group, suggesting this area as the source for these 

widely spread, aggressive strains.  An older set of aggressive isolates frequently reported in 

Europe and Mediterranean area named 6E16, although probably less aggressive than PstS1 and 

PstS2, was assigned to the Central Asian-Mediterranean genetic group (Ali et al., 2014b). 
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The rapid evolution of virulence in the Northern French population is driven by the acquisition of 

new virulences in resident clonal lineages, in response to major resistance genes deployed locally. 

A stepwise clonal evolution based on AFLP markers and virulences can explain the Northern 

French population evolution over the last 25 years (de Vallavieille-Pope et al., 2012). Hubbard et 

al. (2015) observed a shift in the Pst population structure observed in the UK recently and 

identified four distinct lineages that correlated to the phenotypic groups by applying a field 

pathogenomics approach by transcriptome sequencing infected wheat leaves. In 2011, new 

multivirulent strains arose in UK, France, Denmark and Sweden. Based on PCR, these strains 

may be migrants (www.wheatrust.org).   

In China, Shan et al. (1998) showed high genetic diversity, especially in Tianshiu county 

of the Gansu province, using repeated genomic sequences. Duan et al. (2010) found 139 AFLP 

genotypes among the 160 isolates analysed. The factorial correspondence analysis on AFLP data 

did not reveal different genetic structures among the 5 populations. The absence of linkage 

disequilibrium in the AFLP data shows that Gansu populations were not strictly clonal, 

contradicting previous findings, and demonstrated that recombination must occur in addition to 

the epidemic clonal behavior of this species. The marked diversity has been attributed to the 

specific environmental and agronomic conditions that favor inter-epidemic survival of the 

fungus. The differences in wheat maturation between the altitudes induce an overlapping period 

between earlier sowing and harvest periods in the lowlands than in the highlands. This green-

bridge was expected to maintain higher genetic diversity by reducing recurrent inter-season 

demographic bottlenecks. Diversity was not due only to reduced bottlenecks in the 

oversummering area. The high pathotype diversity was also observed in the Gansu area with 86 

pathotypes within a subset of 140 isolates, in contrast to the low diversity in other regions such 

as France, where only 22 pathotypes were detected among 1 334 isolates collected over a 25 

year-period. There was no correlation between pathotypes and MLGs. The lack of linkage 

disequilibrium observed between virulence factors and molecular markers also agreed with 

random mating. 
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World population structure showed that geographically distant populations were genetically 

related and provided evidence of intercontinental migrations. The distribution of the NW 

European genetic group confirmed NW Europe as the source of the North American populations 

in the early 1900s. Pst was also first reported in South America in the early 20th century and has 

the same NW European origin, revealing another incursion from NW Europe. In 1979, Pst was 

introduced from NW Europe into Australian populations. The Mediterranean and Central Asia 

group appeared to be the source of the population in South Africa, where Pst was absent before 

1996. Boshoff et al. (2002) showed that the first pathotypes detected were similar to those 

present in the Middle East and Mediterranean regions. The widespread race in Europe since 

2011, “Warrior” race, was detected in Morocco and Algeria. This race attacks both wheat and 

triticale, showed the same aggressiveness as PstS1 and PstS2 but reported earlier 

(www.wheatrust.org). Aggressive strains PstS2 were detected in 2014 in East Africa and Asia. 

The virulence profile comprises Vr2, 6, 7, 8, 9 combining often Vr27. The PstS2 strains was 

detected in Ethiopia, Kenya, Tanzania, and Rwanda with additional virulence to Yr1 and Yr10 

(www.wheatrust.org). Centers of diversity may contribute to emergences of new strains but other 

significant drivers of population structuring are those due to temperature and deployment of 

resistance genes.  

5.2 Adaptation to temperature and effect on Pst population  

 

The Pst worldwide structure cannot be explained only by resistance gene deployment. 

Another driver, in recent years, temperature, was advocated to contribute to population 

structuring (Milus et al., 2009; Mboup et al., 2012).  Based on molecular markers and 

pathotypes, Enjalbert et al. (2005) have shown a strong and steady spatial structure between 

Northern and Southern French populations. Northern pathotypes, which carried all the virulences 

necessary to infect Southern cultivars, were not selected in the South. There was a climate effect, 

the temperature being higher in the south than in the north.  The Southern isolates, which 

belonged to a Mediterranean genetic group, were more adapted to high temperatures (Mboup et 

al., 2012). The French isolates germinate equally at low temperature, but the Mediterranean  
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Southern isolates have higher germination rates at high temperature. At low temperature, 

Northern European isolates have higher infection efficiency, but at high temperature, 20°C, only 

Southern French isolates were able to infect the wheat cultivar. At high temperature, the latency 

was shorter for Southern isolates by 0.8 day compared to the Northern isolates.  

The Southern Mediterranean isolates produced two times more spores per leaf than the north-

western European isolates at high temperature. At all studied stages of the infection process, the 

Southern Mediterranean genotypes were found to be more adapted to high temperature than were 

the West-European ones. The advantage of the Southern isolates at high temperature was 

confirmed by isolate competition in the field, at the adult plant stage and over several infection 

cycles (Mboup et al., 2012).  An equal proportion of spores of the Southern and the Northern 

isolates were inoculated in field plots in the north and south of France. Frequency of the 

Southern isolate at the end of the season was assessed by its infection efficiency on a differential 

cultivar. The final frequencies of Southern isolates are higher than the initial 50%, both in the 

north and south experimental fields. For the four different Southern/Northern pairs of isolates 

tested, the mean competitive success of southern isolates was significantly higher in the southern 

than in the northern location in most cases. The field experiment revealed competitive superiority 

of Southern over Northern isolates, especially in the Southern assay location. Evidence for 

differential response of pathogen genotypes to temperature, in accordance with their region of 

collection was shown. 

Adaptation to warm temperature was also tested by Milus et al. (2009) with North 

American isolates, by comparing the new aggressive isolates belonging to the Middle Eastern 

genetic group to the old isolates belonging to the NW European group. Milus et al. (2009) 

demonstrated on adult plants that the strains spread all over the world since 2000 were better 

adapted to warmer temperatures than are old isolates. The new PstS1/S2 strains sporulated 2.1 

days sooner at the low temperature, and 3 days sooner at high temperature than the old isolates.  

They also produce 2 to 3 times more spores per day compared with old isolates. New PstS1 and 

S2 isolates showed significant adaptation to the warm temperature regime for all variables of 

infection cycle. These differences may have contributed to the recently expanded geographic 

range for P. striiformis. Nowadays, stripe rust epidemics occur in areas once believed too warm 

for Pst growth and reproduction, like in the Southern United States and West Australia. 
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There is a question whether there is a correlation between adaptation to warm temperature and 

the genetic background because all tested isolates not adapted to warm temperature belong to the 

NW European genetic group while those adapted to warm temperature belong to Mediterranean 

or Middle East genetic groups. Both temperature and resistance genes are drivers leading to 

divergence between the clonal lineages, and there is a need to consider agro-climatic conditions 

when developing strategies to improve durability of resistances. 

5.3 Resistance genes 

 

Genetic ways to withstand the pathogen populations were often based on specific Yr genes, 

which follow the gene-for-gene model. Their virulences were found few years after their release 

in wheat cultivars due to the rapid evolution of new pathotypes. Up to date, 70 yellow rust 

resistance genes had been catalogued and the details are given in Table 1 

(www.shigen.nig.ac.jp/wheat/komugi/genes). These resistance genes were often considered to be 

inefficient. However, the combination of some Yr genes, including Yr1, Yr3, Yr4, and Yr17 still 

protects NW European cultivars against the invasive strains PstS1/S2 adapted to high 

temperature (de Vallavieille-Pope et al., 2012). Furthermore, the specific resistance genes Yr7 

and Yr17, which were overcome rapidly when used alone on large scale (Bayles et al., 2000), 

were shown to be present in cultivars having durable resistance, as cv-Apache, the most widely 

cultivar in France the last decade (Paillard et al., 2012). Four French wheat cultivars combining 

genes for specific resistance and partial have remained effective against yellow rust for decades 

and can be considered as sources of durable resistance to-day, cv-Renan (Dedryver et al., 2009) 

and cv-Camp Rémy, (Mallard et al., 2005). One to 5 QTLs in addition to seedling Yr genes were 

sufficient to provide a high level of resistance. 

Another way is to organise the diversity of resistance genes within a field. A recent review of 

Huang et al. (2002) based on 133 cases of field data on use of cultivar mixtures for controlling 

stripe rust showed that most of them produce positive mixture effects. Disease severity 

progression in the field showed that one third of susceptible cultivar was well protected by two  
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thirds of fully resistant cultivars. A modelling approach taking into account quantitative 

resistance shows that the proportion of fully resistant cultivars in a three-component mixture can 

 

 

 

6- Breeding for rust resistance 

 

6.1 Seedling vs. Adult plant resistance 

Global devastating large-scale periodical epidemics of Pst occurrs across the world; the 

challenge ahead the breeders and pathologists is to control rusts and to maintain stable wheat 

production. Cereals protection is based on chemical control and genetic resistance. The 

deployment of resistance genes has been suggested to be the most economical and 

environmentally friendly measure to control the disease (de Vallavieille-Pope et al., 1990; Singh 

et al., 2004). Genetic control has advantages for environmental and economic reasons, 

particularly for the possible development of resistance to fungicides in the developing world with 

no evidence for rust resistance recorded worldwide (Oliver, 2014). Generally, two classes of 

genes are utilized for breeding for rust resistance. The first class is the R-genes; they are 

pathogen race-specific in their action, or also called all stage resistance or seedling stage 

resistance and effective at all plant growth stages; it is easily phenotyped in the glasshouse on 

seedlings and recognized by a diverse range of hypersensitive reactions as described in Roelfs et 

al.  (1992). R genes are mostly functional from seedling to adult growth stages if the pathotypes 

does not change. In general, all stage resistance is race specific (Qayoum & Line; 1985). 

Seedling resistance is most common in wheat genotypes by single genes or simple combination 

of single genes. Due to selection pressure and the ability of the Pst pathogen to evolve rapidly 

and produce new strains, race-specific genes can be easily overcome and produce the “Boom and 

Bust” cycles of wheat production (MacDonald & Linde, 2002). The type of resistance that 

follows the gene for gene types are given the following terminology: race specific, seedling, 

qualitative, major gene, vertical, monogenic, complete, etc.  

The second class is called Adult Plant Resistance genes (APR) that shows susceptibility in the 

seedling stage but is usually functional at the post-seedling stage, in contrast to most R genes, the  
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levels of resistance conferred by single APR genes are only partial and may allow considerable 

disease development. APR genes function mainly at the adult stage and is considered more 

robust in term of resistance.The accumulation of several APR genes (QTLs) can confer high 

protection level.  Two main factors are considered in the APR: the nutritional status and the 

temperature. High temperature APR (HATP) are considered often as race non-specific and 

quantitatively inherited (Chen, 2005) and triggered when the average temperature exceeds 21⁰C  

 

and prevent eventually the secondary infection events (Chen et al., 2014).  The types of 

resistance that do not follow the GFG manner are given the following terminology: non-race 

specific, adult plant resistance, quantitative, minor gene, partial, horizontal, polygenic, 

incomplete, general, slow-rusting (Caldwell, 1968) and others. 

From the catalogued Yr genes, 41 are considered as seedling resistance, and 14 confer APR 

genes. A majority of Yr genes originate from T. aestivum, but several are derived from related 

genera or species, including Secale cereale (Yr9), Aegilops spp. (Yr8, Yr17, Yr37, Yr38, Yr40 and 

Yr42), T. spelta (Yr5), T. dicoccoides (Yr15, Yr35 and Yr36), T. turgidum (Yr24/Yr26, Yr53), T. 

tauschii (Yr28) and Thinopyrum intermedium (Yr50) (Chen, 2013). HTAP  resistance genes have 

been characterized: Uauy et al. (2005) characterized Yr36 from Triticum turgidum var. 

dicoccoides located on chromosome 6BS; Lin & Chen (2007) characterized  Yr39 in spring 

wheat cultivar ‘Alpowa’ located on 7BL and Ren et al. (2012) characterized Yr52 on 7BL in 

spring wheat line ‘PI 183527’.  

 

6.2 Quantitative trait loci (QTL)  

Quantitative resistance, like many other agronomic traits, is controlled with several 

genetic loci and this refers to quantitative trait loci (QTL). Individual QTL’s have small or 

intermediate effects on reducing the disease but together, they can confer higher level of 

resistance to Pst following the Mendelian law (Singh & Rajaram, 1994). Quantitative resistance 

had been a point of debate from the seventies (Nelson, 1978; Parlevliet & Zadoks, 1977; 

Vanderplank, 1982). It is very essential to define the QTLs and their association with the 

molecular markers for a better understanding of the relation of resistance genes allowing 

description and localization of QTLs and genes within the genome through correlation between 
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allelic variation and the phenotype (Agenbag et al., 2012). Rosewarn et al. (2013) summarized 

that over than 140 QTLs have been identified with 49 chromosomal regions, described seven 

groups relating to the seven chromosomes groups and highlighted the most important regions 

where QTLs are identified. A large number of QTLs for resistance to Pst and their associated 

molecular markers have been reviewed by Boyd (2006), Chen (2005, 2013), Singh et al. (2004) 

and Wellings et al. (2012). QTLs for resistance to Pst have been mapped to all wheat 

chromosomes except 1D and 3A (Chen, 2005, 2013; Christopher et al., 2013; Powell et al., 

2013; Vazquez et al., 2012; Lu et al., 2009; Mallard et al., 2005; Imtiaz et al., 2004;  Suenaga et 

al., 2003).  

Some cases of race specificity have been described for QTLs. An example is the race-specificity 
between the new Pst races in Europe and QTLs in long-term effective adult plant resistance in 
wheat. Some single-QTL lines would be more susceptible and others more resistant to the new 
races (Sørensen et al.,  2014). 

 

6.3 Durable rust resistance  

Durable and long lasting rust resistance in crucial in wheat breeding. Following 

Johnson‘s definition (1981), he stated “durable resistance that has remained effective in a 

cultivar during its widespread cultivation for a long sequence of generations or period of time in 

an environment favorable to a disease or pest. Vernacularly, the term “durable” was used in the 

reference to describe lasting resistance to diseases and pests. Durable resistance remains the 

debate of competing views of both mechanism of resistance (e.g., horizontal versus vertical 

resistance) and resistance deployment strategies (e.g., pyramids versus mixtures) (Mundt, 2014).  

It is easy to breed resistant varieties with single large R gene for the dominance or partially 

dominance. Successful breeding for minor genes confronts many obstacles: 1) small to 

intermediate effects of individual with minor genes 2) dispersed presence of minor genes in 

different varieties or germplasm, 3) field selection environment lacking uniform and high disease 

pressure, 4) small population sizes in various generations, 5) necessity of pyramiding 3-5 genes 

to achieve adequate to high resistance levels, 6) presence of R-genes in parents used in crossing 

programs, 7) difficulty in distinguishing small effect R-genes from partial resistance genes 

especially for resistance to yellow rust, 8) higher genotype x environment interaction on the 

expression and effectiveness of partial resistance genes, and 9) slow progress in identifying 
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linked molecular markers requiring a long-term commitment (Singh, 2012). Both Race-specific 

and non-race specific genes offer opportunities to achieve durable control of wheat rusts. 

CIMMYT approach of combination of 4-5 minor genes for the rusts tends to maintain low and 

stable final disease severities in field trials when experienced with aggressive races (Singh et al., 

2012). More researches are conducted on non-race-specific resistance genes and identification of 

tightly linked molecular markers. In the highlight of novel technologies, such as genomic 

selection, gene pyramiding of multiple small minor genes can be used. Along field phenotyping 

is an essential step for achieving a strong breeding programs for durable resistance. 

 

The literature review highlighted that pathogens are evolving and variation in both host 

and environmental changes. Pathogens need to migrate, tolerate, or to adapt constantly. The role 

of host and climate on pathogen population structure would reflect on the pathogen adaptation 

capacity to these two factors (McDonald & Linde, 2002). This adaptation is dependent on the 

population innate capacity to evolve which is linked to the level of diversity and recombination 

capacity of the pathogen population (Taylor et al., 1999). The recent invasion in yellow rust 

population and recurrent epidemics could be due to various factors which included monoculture 

of cultivars having limited number of resistance genes, adaptation of Pst fungus to warmer 

temperatures, genetic recombination in location where the alternate host is present.  

The Fertile Crescent, known for the origin area of wheat 11000 years ago, was an area of 

emerging of repetitive epidemics of wheat yellow rust (Bahri et al., 2009, Yahyaoui et al., 2002). 

Up till now, there were no studies assessing resistance of landraces to yellow rust in Lebanon 

and Syria. Little is known about probable yellow rust resistance in Lebanese and Syrian 

germplasm. The region lacks the information about effective yellow rust resistance genes toward 

the prevalent pathotypes carrying possibly many virulences. Many studies reported the invasion 

of PstS1/S2 strains across the six continents and described population structure of Pst 

populations. Over the last decade, contradictory results have been found: high diversity has been 

reported in Asian populations although only clonal populations were described so-far (Ali et al., 

2014b) and epidemics have occurred in regions considered up to now to be too hot for yellow 

rust (Hovmøller et al., 2011; Wellings 2011). Furthermore, this pathogen was also recently 

characterized by worldwide emergence of aggressive strains (Hovmøller et al., 2011) and several 

new invasive strains from exotic origin were discovered in Europe since 2011 (Sørensen et al., 
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2014, Hovmøller et al., 2015). A detailed population genetic structure of Pst in Lebanon and 

Syria remained unknown. The question addressed in the present time with the discovery of 

Berberis sp. as alternate host for Pst, is how is the Middle East region population structure, the 

presence of the recombination signature, the differentiation of Lebanese and Syrian population 

with the presence of geographic mountainous barrier between Lebanon and Syria and 

differentiation in host preference for each country (Lebanon is a Durum wheat grower and Syria 

a bread wheat grower). Moreover, little is known about virulence and pathotype structure in 

Syria and Lebanon. So it is interesting to highlight on genetic diversity of Pst populations in 

Lebanon and Syria following a previous study conducted on limited number of isolates by Bahri 

et al. (2009). 

The role of the climate adaptation is further questioned by the recent expansion of Pst epidemics 

to the areas previously considered as too hot for Pst (South  of the United States, West Australia, 

South Africa, Southern Europe), due to the recent spread of two high-temperature-adapted strains 

(Hovmøller et al., 2008). These recent spread pathotypes reported in the United States since 

2000 were more aggressive than old ones at high temperature (Milus et al., 2006). One of these 

pathotypes was also detected in West Australia (Wellings, 2007; 2011), Europe, and North 

Africa (Bahri et al., 2009), demonstrating the dispersal potential of this species. Other Pst strains 

originating from Mediterranean area, were observed in South of France and were also found to 

be adapted to warm temperature (Mboup et al., 2012). Since temperature adaptation had already 

been observed in some French isolates of this fungus, it is interesting to test which 

Mediterranean fungal isolates perform better under warm and cool experimental penetration and 

incubation temperatures. 

In this PhD thesis, I attempt to understand the role of host and climate on population 

structure of Puccinia striiformis f. sp. tritici in the Middle East, to have clearer understanding of 

Pst interaction with host resistance and temperature. I have conducted a study organized in three 

chapters:  

- Resistance gene diversity for yellow rust in wheat elite lines, commercial varieties, and 

landraces from Lebanon and Syria 

- Genetic and pathotype diversity in the Puccinia striiformis f. sp. tritici populations from 

Lebanon and Syria 
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- Effect of the temperature on aggressiveness components, infection efficiency and latency 

period, on Puccinia striiformis f. sp. tritici in the Middle East, by comparing Pst isolates 

collected from warm and cold locations. 
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Abstract: Stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici (Pst) is the major 

threat to wheat production in Central, West Asia and North Africa (CWANA). Despite the 

availability of effective fungicides, host resistance has remained the most economical, 

effective and ecologically sustainable method for disease control. Understanding the genetic 

diversity of resistance to Pst is a key element in breeding for durable rust resistance. Little is 

known about the genetic structure of resistance to Pst in breeding germplasm and commercial 

wheat varieties grown in CWANA. Multipathotype tests on 87 bread wheat elite lines from 

the spring wheat breeding program at the International Center for Agricultural Research in 

the Dry Areas (ICARDA), 23 Lebanese bread and durum wheat varieties, and 28 Lebanese 

landraces were carried out using 11 French Pst pathotypes able to discriminate low and high 

infection types for Yr1, Yr3, Yr4, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, Yr27, and Yr32. All these 

genes except Yr32 were postulated singly in Lebanese bread and durum wheat varieties, 

landraces and ICARDA elite lines. Combinations of two Yr genes, Yr6+Yr9, Yr6+Yr17, 

Yr7+Yr1, Yr7+Yr4, Yr9+Yr1, Yr9+Yr3, and Yr9+Yr4 were common in ICARDA elite lines. 

Yr3, Yr6, Yr7, Yr17 and Yr27 were the most common postulated genes in ICARDA elite 

lines, in Lebanese bread and durum wheat varieties, and Lebanese landraces. Resistance 

diversity was found in the landraces varying from partial to complete resistant seedlings 

among susceptible landraces to the 11 pathotypes. Three landraces types had high proportions 

of plants resistant to the Pst pathotype 239E175V17, which carries many virulences.  
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The present study showed the presence of effective seedling resistance genes and gave some 

insights into the prevalence of Yr-genes in tested wheat genotypes, which can be very useful 

in development of resistant genotypes and control strategies against Pst. More detailed study 

is required for the adult plant resistance especially for the elite lines. 

 

Introduction 

 

In a world facing global climate change and subsequent food insecurity, feeding the ever-

growing population through sustainable agricultural practices is a global challenge. By 2030 

the demand for wheat (Triticum aestivum L.) is estimated to increase by 40% (House of 

Commons Environment, Food and Rural Affairs Committee 2009; 

http://www.parliament.uk). Either directly or indirectly through livestock feed, the staple 

crops rice, maize and wheat provide a substantial proportion of the caloric intake for the 

human population (http://faostat.fao.org). 

Historically wheat production in many countries is limited by biotic stresses of which the 

three wheat rusts, including the stripe rust, represent a global threat. Stripe (yellow) rust of 

wheat, caused by the biotrophic fungus Puccinia striiformis f. sp. tritici (Pst), is a common 

disease of worldwide economic importance (de Vallavieille-Pope et al. 2012; Singh et al. 

2004). In most wheat producing areas, yield losses caused by stripe rust range from 10-70% 

(Chen 2005), this variation depending on initial infection time, host density, susceptibility 

and nutritional status, disease development, and duration of the epidemic. During the last 40 

years, there have been five major stripe rust epidemics in the CWANA region in 1973, 1978, 

1995, 2005 and 2010. The two most recent epidemics were due to the successive emergence 

of Pst pathotypes presenting new virulences for widely used Yr genes Yr9 and Yr27 

(Yahyaoui et al. 2002, Duveiller et al. 2007, Hodson and Nazari 2010, Morgounov et al. 

2012, Sharma-Poudyal et al. 2013). According to Hovmøller et al. (2011), the aggressive 

strain PstS2, with virulence on Yr2, 6, 7, 8, 9, 25, and Yr27 was observed in high frequencies 

in the Red Sea area, East Africa and in Western and Central Asia between 2003 and 2008 

whereas the first report of this strain in North America was in 2000 (Milus et al. 2009). This 

strain was present in 50% of the virulence profiles of isolates surveyed in Syria in 2011 (El 

Amil et al., unpublished data). 
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This damaging fungus causes losses in both yield and quality by reducing tillering and 

causing shrivelled grains (Roelfs et al. 1992) unless it is controlled by resistant cultivars or 

timely fungicide applications (Hau and de Vallavieille-Pope 2006). The deployment and use 

of resistant cultivars is the most economical and environmentally friendly measure to control 

the disease (Pink 2002; Singh et al. 2004; Pathan and Park 2007). An effective deployment of  

resistance genes for the management of stripe rust in wheat requires knowledge about the 

resistance status and the diversity of resistance genes in available cultivars (Kolmer 2003).  

 

Furthermore, knowledge of the prevalent pathotypes is crucial. Nonetheless, because new 

virulence types of pathogens like Pst can arise frequently, thereby compromising the 

durability of resistance (McDonald and Linde 2002) it is important to deploy strategies to 

improve the durability of resistance. These include i) deploying new resistance genes in a 

controlled manner and over a restricted geographic scale, ii) combining several resistance 

genes within a single cultivar to slow the emergence of pathotypes that can infect them, and 

iii) combining race-specific resistance with non race-specific or partial resistance within a 

single cultivar. These approaches require a good knowledge of the resistance genes present in 

the breeding germplasm and commercial cultivars. Therefore, it is important to identify the 

resistance genes from different cultivars since some may have resistance genes in common 

even if they originated from genetically different sources. This will prevent the release of 

mega-cultivars that contain the same resistance genes or profiles (Statler 1984). 

Gene postulation is based on the gene-for-gene relationship (Flor 1971) and involves the 

postulation of genetically characterized race-specific genes for resistance in a cultivar, based 

on that cultivar’s reaction after being confronted with an array of pathotypes with diverse 

combinations of avirulence and virulence genes. It can identify the probable race-specific rust 

resistance genes (Yr) harboured in a large group of wheat lines. This method has been 

traditionally used for all three rust diseases (Roelfs and McVey 1979; Perwaiz and Johnson  

1986; Dubin et al. 1989; Singh and Rajaram 1991). Using gene postulation procedure, stripe 

rust resistance genes were postulated in wild emmer wheat derivatives and advanced wheat 

lines from Nepal (Sharma et al. 1995), in French wheat lines (Robert et al. 2000), in Danish 

wheat cultivars (Hovmøller 2007), in Chinese wheat cultivars and advanced lines (Xia et al. 

2007), and in Ethiopian bread wheat cultivars (Dawit et al. 2012). 

Landraces were the principal focus of agricultural production until the end of the nineteenth 

century with the arrival of formal plant breeding (Harlan 1975). According to Camacho Villa  
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et al. (2005), “a landrace is a dynamic population(s) of a cultivated plant that has historical 

origin, distinct identity and lacks formal crop improvement, as well as often being genetically 

diverse, locally adapted and associated with traditional farming systems”. Elite cereal 

cultivars are derived from a relatively narrow germplasm pool and are predominantly well 

adapted to high input agriculture. A distinction is made between landraces and modern, or so 

called elite lines, the latter being the result of formal crop breeding programs (Newton et al. 

2010). Landraces might be a good reservoir of non race-specific or partial resistances that 

may confer durability when combined with major resistance gene commonly exploited in 

modern cultivars. Landraces could expand the narrow genetic basis of elite lines, introducing 

adaptation to local edaphic and climatic conditions as well as tolerance and resistance to pests 

and diseases (Beharav et al. 1997). Zhang (1995) demonstrated that nine Chinese landraces 

expressed slow rusting or quantitative resistance to stripe rust. Since Lebanon is located in 

the Near East Fertile Crescent, the most diverse area for wheat and its wild relatives (Harlan 

and Zohary 1966), Lebanese landraces are also likely to be promising sources of novel 

resistance genes with both major and partial effects. Therefore identifying seedling resistance 

genes in Lebanese landraces is an important first step to further wheat improvement, which 

has not yet been initiated at CWANA region. 

The resistance genes to wheat stripe rust of ICARDA elite breeding lines, Lebanese cultivars 

and Lebanese landraces remain largely unknown. Therefore, this study was designed to 

provide detailed information about specific resistance to wheat stripe rust detectable at the 

seedling stage of 87 bread wheat elite lines from the spring wheat breeding program at 

ICARDA, 23 Lebanese bread and durum varieties, and 28 Lebanese landraces. Gene 

postulation was carried using an array of 11 Pst pathotypes that differentiate low and high 

infection types for Yr1, Yr3, Yr4, Yr6, Yr7, Yr8, Yr9, Yr17, Yr25, Yr27, Yr32, YrSD, YrSu and 

YrSP. Adult plant resistance of some ICARDA lines was also evaluated. 

 

Materials and Methods 

Pathogen Materials 

Virulence combinations and pathotype codes of Pst isolates used for resistance gene 

postulation were determined using the European and World sets of 15 differential varieties 

(Johnson et al., 1972), to which were added 6 wheat lines with known resistance profiles:  
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Kalyansona (Yr2), Federation 4*/ Kavkaz (Yr9), Clement (Yr9+), VPM1 (Yr17+), TP981 

(Yr25), Opata (Yr27+Yr18) and 13 Avocet Near Isogenic lines for Yr1, Yr5, Yr6, Yr7, Yr8, 

Yr9, Yr10, Yr15, Yr24, Yr26, Yr27, Yr32, YrSP 

(http://www.ars.usda.gov/SP2UserFiles/ad_hoc/36400500Resistancegenes/Yrgene.xls). Each 

differential line carries at least one race-specific resistance gene (Yr) expressed at the 

seedling stage. 

Resistance genes were postulated at the seedling stage at INRA BIOGER station based on 

infection types (IT) using a set of 11 French pathotypes displaying complementary virulences 

(Table 1) (de Vallavieille-Pope et al. 1990; de Vallavieille-Pope et al. 2000; de Vallavieille- 

Pope et al. 2012). As most of these pathotypes present more than one avirulence factor, 

precise resistance gene combinations could not always be inferred. 

All isolates belonging to the INRA-Grignon collection had been purified from single spores 

and stored in liquid nitrogen for various times before the beginning of this study. Spore 

multiplication was performed in a climate-controlled room. Spores of reference isolates were 

inoculated onto 7-day-old seedlings of the susceptible cultivar Victo, incubated in a dew 

chamber at 8°C for 16 h in the dark to ensure successful infection, and then transferred to a 

climate chamber (day: 16 h, 300 µmol m² s-1, 17°C; night: 8 h, 14°C). High intensity light 

treatment was applied to the seedlings prior to inoculation for at least 8 h in order to 

maximize infection success (de Vallavieille-Pope et al. 2002). A week after inoculation, each 

pot was sealed in a cellophane bag to avoid cross-contamination. Eighteen days post-

inoculation, uredospores were collected, dried in a desiccator filled with Silicagel at 4°C for 3 

days, and stored in liquid nitrogen. After removal from storage, the uredospores were heat 

shocked (40°C for 10 min) before inoculation for Yr-gene postulation tests. 

 

Host Materials 
 

In total 138 genotypes comprising 87 bread wheat advanced lines from spring wheat breeding 

program at ICARDA, 23 (15 bread and 8 durum wheat cultivars) commonly grown in 

Lebanon and 28 Lebanese landraces (bread and durum wheat) were tested. Seed stocks for 

elite lines and landraces were obtained from ICARDA and LARI (Lebanese Agriculture 

Research Institute) germplasm, respectively. The landraces are known for diversity and 

heterogeneity, so landrace seeds were collected from different Lebanese sites to obtain a  
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broad genetic pool and then were purified at the Lebanese agricultural research institute for 

morphological traits before resistance gene tests . 

Inoculation and scoring 

All seeds were planted in square pots (7x7x8 cm) filled with standard peat soil. We planted 5 

seeds of elite lines and varieties and 15 seeds of each landrace in each of two replicated pots 

placed in air-filtered cabinets in a glasshouse at temperatures between 15 and 25°C with a 16- 

h photoperiod extended with sodium vapour lamps. Inoculation was done as described 

previously. The experimentation was repeated two times.

Seedling infection types were recorded 15-17 days after inoculation using 0- 9 scale based on 

the presence of necrosis, chlorosis and the size and intensity of sporulation (McNeal et al. 

1971) in which infection types 0 to 4 indicated varying levels of incompatibility (host

resistance and pathogen avirulence) between host and pathogen, infection types (IT) 7-9

indicated compatible (host susceptibility and pathogen virulence) interactions and infection 

types 5 to 6 were considered intermediate reactions (Roelfs et al 1992). Resistance genes in 

the tested genotypes were postulated by comparing the low and high IT patterns produced by 

the pathotype set on these tested genotypes with those on differential wheat genotypes with 

known resistance genes. When a wheat variety had a similar low/high IT pattern to that of a 

differential line with known resistance profile the tested genotype was postulated to possess 

the same resistance gene(s). Low ITs can confirm the postulation of the Yr gene toward 

specific virulences. This method was applied successively on all Yr genes detectable with the 

array of 11 Pst pathotypes used for the study.

Adult plant stage resistance assessment
Of the ICARDA’s elite lines tested at seedling stage, 47 lines were assessed for adult-plant 

resistance at Tal Hadya research station in Syria during 2009-2011 and Terbol research 

station in Lebanon during 2009 to 2013. 

Thirty seeds of each genotype were planted in two 0.5 m rows in a field nursery by 

November of each year. The highly susceptible cv. Morocco, Seri-82 and Sham-8 were 

planted as spreader rows bordering the trial area, in all pathways, and every 10 wheat lines 

within the trial. The inoculum used for this study comprised the dominant isolate collected in 

the field during the previous year separately in both Syria and Lebanon. The prevalent 

inoculated pathotypes carried virulence for the genes Yr2, Yr6, Yr7, Yr8, Yr9, Yr25, Yr27 and  
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YrSD. The field was dusted in the evening with a spore-talc mixture (1 to 50) at the seedling, 

tillering, and flag leaf stages. The disease infection types were recorded according to Roelfs 

et al. (1992) and the modified Cobb scale was used for disease severity (Peterson et al., 

1948).  

  

Results  

Seedling resistance (All-stage resistance) Seedling tests conducted on the 138 elite lines, 

varieties and landraces with eleven French Pst pathotypes allowed postulation of seedling 

stripe rust resistance genes either singly or in  

combination (Tables 2, 3, and 4). The pathotypes used allowed the postulation of Yr1, Yr3, 

Yr4, Yr6, Yr7, Yr9, Yr17, Yr25, Yr27 and Yr32. Based on these postulations, the lines were 

placed in thirteen stripe rust resistance groups. 

 

 

Resistance group 1, corresponding to genotypes resistant to all Pst pathotypes, included eight 

ICARDA bread wheat elite lines (Table 2) and three Lebanese durum wheat varieties (Table 

3). These genotypes showed low to intermediate ITs to all tested Pst pathotypes, indicating 

that they possess a Yr gene or combination of Yr genes that had no corresponding virulence(s) 

in the 11 Pst test pathotypes. 

Resistance group 2 corresponded to the genotypes susceptible to all 11 Pst test pathotypes, 

therefore harbouring no Yr genes that had not been overcome by all 11 Pst pathotypes. Three 

elite lines (Table 2), one Lebanese variety (Table 3) and 21 Lebanese landraces (14 

populations of Salamouni, three populations of Abou Shwereb, two populations of Ukrainian, 

and one population of each Bekaii and Haurani) showed high ITs ranging from 8 to 9 when 

confronted with all Pst pathotypes (Table 4). 

Resistance group 3 was postulated to harbour the resistance gene Yr1, as characterised by the 

tester genotypes Chinese 166 and the Avocet Yr1 known to have the resistance gene Yr1. 

Plants belonging to this group displayed high ITs of 7 to 9 when confronted with the seven 

Pst pathotypes virulent to Yr1 and low infection types of 1 to 3 against the four Pst 

pathotypes avirulent to Yr1, and were found only in the ICARDA elite lines. 

Resistance group 4 was postulated to harbour the resistance gene Yr3 as characterised by the 

tester genotype Vilmorin 23 and the nine Pst pathotypes virulent forYr3 and the two Pst  
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pathotypes avirulent for Yr3. One ICARDA elite line, one Lebanese variety, and two 

Lebanese landraces belonged to this group (Tables 2, 3 and 4).Resistance group 5 was 

postulated to harbour the resistance gene Yr4 as characterised by the tester genotype Hybrid 

46. Plants belonging to this group showed high ITs (7-9) when confronted with the six 

pathotypes virulent to Yr4 and low to intermediate ITs of 2 to 5 when confronted with the 

five pathotypes avirulent to Yr4. Three elite lines and the bread wheat landrace Nessr 

belonged to this group (Tables 2 and 4). 

Resistance group 6 was postulated to harbour the resistance gene Yr6, either alone, as 

characterised by the tester line Avocet Yr6 or together with additional Yr genes like the tester 

genotype Heines Peko. The lines placed in this group showed high ITs of 7-8 when  

confronted with at least some of the seven pathotypes virulent to Yr6 and low ITs (1-3) when 

confronted with the 4 pathotypes avirulent to Yr6 (Table 2). Five bread wheat elite lines were 

postulated to carry Yr6 plus additional Yr genes. 

Resistance group 7 was postulated to harbour the resistance gene Yr7, either alone, as 

characterised by the tester line Avocet Yr7, and observed for one Lebanese bread wheat 

variety or together with additional Yr genes like the tester genotype Riechersberg 42, as was 

found for 15 elite lines and three Lebanese bread wheat varieties.  

Resistance group 8 was postulated to harbour the resistance gene Yr9, showing similar 

infection phenotypes as the testers Avocet Yr9 and Clement. This group included four bread 

wheat elite lines and one Lebanese durum wheat variety (Tables 2 and 3). 

Resistance group 9 was postulated to harbour the resistance gene Yr17, like the tester VPM 1, 

and included four elite lines (Table 2). 

Resistance group 10 was postulated to carry Yr25 like the tester line TP981, and included one 

elite line, one Lebanese bread wheat variety and two landraces (Tables 2, 3 and 4). 

Resistance group 11 was postulated to carry Yr27, like the tester genotypes Avocet Yr27 and 

Opata, and included eight elite lines and four Lebanese bread wheat varieties (Tables 2 and 

3). 

Resistance group 12 was postulated to carry two Yr genes: Some members of this group, 

namely two Lebanese varieties (one bread wheat and one durum wheat) showed high ITs 

only to pathotypes virulent on both Yr6 and Yr7 and low ITs in the absence of virulence for 

Yr6 and/or Yr7 or both genes were postulated to carry Yr6+Yr7 (Table 3). The Lebanese  
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landrace Naama and two elite lines were postulated to carry Yr6+Yr17 giving low ITs in the 

absence of one or both virulences and high IT only to pathotypes possessing both virulences 

for Yr6 and Yr17.  Other members of this group, namely two elite lines from ICARDA, were 

postulated to carry Yr6+Yr9, showing intermediate reaction (IT 4-5) to pathotypes avirulent 

on Yr6 and Yr9 and high IT to the pathotypes virulent on Yr6 and Yr9. Six elite lines had one 

resistance gene in addition to Yr9, i.e., Yr1, Yr3 and Yr4 in one, one, and four lines, 

respectively. One elite line showed high IT to pathotypes virulent to Yr1 and Yr7 and low IT 

to the avirulent pathotypes to the mentioned genes together, which led to postulate Yr1+Yr7. 

Three elite lines were postulated to have Yr7+Yr4 showing high ITs to the pathotypes virulent 

to Yr7+Yr4 and low ITs to the pathotypes avirulent to Yr7+Yr4. 

Resistance group 13, showing unexplained or uncharacterized resistances that could not be 

attributed to known resistance genes observed in other lines, included 14 elite lines (Table 2), 

one Lebanese bread wheat variety and five Lebanese durum wheat varieties (Table 3), and 

one Lebanese durum wheat landrace (Table 4). 

None of the tested lines was postulated to carry Yr32. 

Except for three elite lines and one Lebanese variety being fully susceptible at the seedling 

stage against the array of pathotypes and 15 elite lines and seven Lebanese varieties having 

un-identified Yr genes, all ICARDA elite lines and Lebanese varieties carried at least one Yr 

gene, whereas 75% of landraces were susceptible to all pathotypes. Nine tested resistance 

genes (Yr1, Yr3, Yr4, Yr6, Yr7, Yr9, Yr17, Yr25, and Yr27) were postulated singly in 

ICARDA elite lines, Yr7, Yr9, Yr25, Y27 were detected in Lebanese varieties and only Yr3, 

Yr4, Yr25 were detected in landraces. Gene combinations of two Yr genes were found in 40% 

of ICARDA elite lines: Yr6+Yr9, Yr6+Yr17, Yr7+Yr1, Yr7+Yr4, Yr9+Yr1, Yr9+Yr3, and 

Yr9+Yr4.  The Yr6+Yr7 combination was found in two Lebanese varieties and Yr6+Yr17 in 

one landrace only. The postulated Yr genes, either singly or in combination, were more 

frequent in Lebanese varieties than in landraces. ICARDA elite lines accumulated more Yr 

genes than the Lebanese varieties and landraces (Fig. 1) 

 

Evaluation of adult plant resistance 
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Forty-seven of the ICARDA elite lines evaluated for their resistance as seedlings were also 

tested as adult plants in a field test carried out in two locations, one in Syria (Tal Hadya) and  

one in Lebanon (Terbol) (Table 5). There was imperfect concordance between the susceptible 

or resistant status of seedlings and adults. Some lines scored as susceptible in the seedling 

stage for the dominant inoculated pathotype prevalent in Lebanon and Syria showing 

virulence to Yr2, Yr6, Yr7, Yr8, Yr9, Yr25, Yr27 and YrSD (Nazari et al., unpublished data),  

namely the elite lines 10, 11, 32, 35, 49, 71, 72 and 86, were resistant as adults. The adult 

elite line 64 was resistant to moderately resistant (30MR and 20R) in Tal Hadya and Terbol, 

respectively. The elite lines 65 and 66, which were resistant at the seedling stage, were only 

moderately resistant in the Lebanese field. The elite line 67 was resistant to all Pst pathotypes 

at the seedling stage and was also fully resistant in Tal Hadya but only moderately resistant to 

moderately susceptible in Terbol at the adult plant stage. The susceptible elite line 71 at the 

seedling stage was moderately resistant in the Syrian field. The elite line 72 susceptible at the 

seedling stage showed resistance in the Lebanese field. The elite lines 1 to 3 postulated to 

have Yr1 showed similar intermediate resistance in both locations, rated 10-30MR and 

20MR-MS in Tal Hadya and Terbol, respectively. The elite line 2 having also Yr1 was 

moderately resistant to susceptible in the Lebanese field. The elite line 6 having Yr3 was 

resistant in the Lebanese field whereas the line 7 having Yr4 was moderately resistant to 

susceptible. The elite lines 10 to 16 having Yr6 were resistant in the fields considering that 

both locations had virulence to Yr6.suggesting carrying APR genes. The elite lines 19 to 26 

having Yr7 were resistant in the Lebanese field indicating APR in the lines at both locations 

since Yr7 Avocet S had been always fully susceptible. The elite lines 34 and 39 having Yr17 

were moderately resistant to moderately susceptible in the two locations. The two elite lines 

(41 and 42) postulated to have Yr27 showed high severity in both locations and the line 43 

was moderately resistant to susceptible in Lebanese field. Furthermore, the combination 

Yr6+Yr17 provided resistance in Lebanese field for the lines 51 and 52 indication 

effectiveness of Yr17 at both locations since the virulence for Yr7 was common among the 

two races used for inoculations. The entry 55 postulated to have Yr7+Yr4 showed high 

resistance in both locations indicating efficiency of the combination of the two seedling 

resistance genes. On the opposite, three elite lines (59-61) combining Yr9+Yr4 were 

susceptible in the Lebanese field indicating the presence of Vr9 and Vr4 in the region; 

However the virulence to Yr4 was not detected in the Lebanese field. The combinations 

Yr9+Yr1, Yr9+Yr3, Yr7+Yr4 and Yr6+Yr17 were resistant at adult plant stage in the Syrian  
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field. Six lines having unidentified resistance genes, except the line 78, showed adult plant 

resistance in both locations. Since Yr6, Yr7 and Yr9 are largely deployed and virulences to 

these genes are confirmed, the combination of these genes with Yr1, Yr3 and Yr4 would be 

effective against the prevalent Pst pathotypes in the region (Fig. 2). 

Resistance diversity in Lebanese landraces

Discussion

Many landraces showed heterogeneous responses to the 11 Pst pathotypes, 

segregating for both resistant and susceptible plants. The segregation of landraces varied and 

showed diverse resistant classes towards the 11 Pst French races (Fig. 3). The highest number 

of resistant plants was observed with the pathotypes 6E16, 43E138 and 237E173 and the 

lowest proportion of resistant plants was observed with 239E175 combining the largest

number of virulence factors. Interestingly, two durum wheat Bekaii (landraces 13 and 18) 

from two different locations and one bread wheat Naama (landrace 28) had a proportion of 

100%, 11%, 75%  of resistant plants, respectively when tested with the pathotype 239E175

(K) (Table 6). This indicates that these landraces carry new resistance gene(s) that could not 

be detected using set of pathotypes array. It was not possible to postulate which resistance 

gene was present in the resistant plants mixed in a susceptible landrace, but it indicated that 

unknown resistance was present and contributed to the resistance of the landraces, 

particularly when tested against the high virulence race 239E175.

The host resistance approach remains the most economical and environmentally 

friendly method of controlling wheat rust diseases. Most of the characterised resistance genes 

are race specific, fitting the well-described gene-for-gene model (Flor 1956). Knowledge of 

the genetic structure of germplasm collections is crucial for efficient use of genetic resources 

namely in breeding programs. To identify the Yr genes in 138 ICARDA elite lines, Lebanese 

varieties and landraces, an array of 11 Pst pathotypes was used in the present study at the 

seedling stage. This set of pathotypes with complementary virulence spectra allowed us to 

infer the resistance profiles of most of the tested lines. The 11 Pst pathotypes in this study are 

able to discriminate 10 seedling resistance genes of which nine genes were postulated singly 

or in combination in tested genotypes. This indicates the usefulness of the pathotype array in 

detection of Yr gene in this study. However, we identified a group of genotypes for which 

seedling resistance could not be explained with the current Pst pathotypes and therefore their 

resistance characterization remained unclear. Among this res istance group, 9% of ICARDA 
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elite lines and 13% of Lebanese varieties showed complete resistance to all Pst pathotypes. 

Within the Lebanese resistant varieties, only three durum wheat genotypes were fully 

resistant whereas none of the Lebanese bread wheat varieties or bread or durum wheat 

landraces was completely resistant to all pathotypes. 

 

In general, our study showed poor genetically based seedling resistance against relevant 

pathotypes from the CWANA area. Indeed, except for Yr3 and Yr4 and to some extent Yr1, 

which are effective in most of the wheat growing areas in CWANA, the rest of postulated  

genes confer no protection against current pathotypes. The Yr1, Yr3, and Yr4 will no longer 

be effective when the North Western European pathotypes spread to CWANA region.Yr1 

was postulated only in 6% of ICARDA elite lines. Despite the effectiveness of Yr1 in most of 

wheat growing areas in CWANA, virulence to the differential lines carrying Yr1, Chinese 

166 (McIntosh et al. 2012) and Avocet/ 6* Yr1, was reported in East Asia (Stubbs, 1985), in 

Central Asia and the Caucasus region (Yahyaoui et al. 2002; Yahyaoui 2005) and Syria (K. 

Nazari unpublished data). Considering the specificity of Yr1 and the spread of “Warrior” 

pathotype to North Africa and Turkey (www.wheatrust.org), the use of elite lines and 

commercial cultivars in CWANA with only Yr1 has to be restricted because these will no 

longer be resistant to prevalent local pathotypes.  

Yr3 and Yr4 were infrequent in the tested lines although Yr3 had been common in old North 

Western European varieties (de Vallavieille-Pope et al., 1990) and has been overcome in 

other regions such as Europe (Bayles and Priestley 1983; de Vallavieille-Pope et al. 2012), 

and Australia (Wellings 2011). 

Yr6 was postulated singly or in combination with Yr9 and Yr17 in 13% of ICARDA elite 

lines and in 9% of Lebanese varieties in combination with Yr7. Varieties carrying Yr6 were 

introduced into the CIMMYT wheat breeding program and hence to ICARDA germplasm as 

sources of leaf rust resistance, including Lr13 and Lr34 (Wellings 1986). However, this gene 

was not frequent in the ICARDA lines tested, and virulence to Yr6 is reported to be fixed for 

all tested isolates in Asia, Africa and South America (GRRC, 2014). 

Yr7 was postulated singly only in one Lebanese variety (Haramoun) and in combination with 

additional resistance gene or genes in two other Lebanese varieties (Tannour and 885) and in 

15 elite lines. Yr7 originated from durum cv. Iumillo, was transferred to Thatcher wheat from 

which wheat cultivar Lee was derived (McIntosh et al. 2012). Yr7 is present in a range of 

winter and spring wheat cultivars (McIntosh et al. 2012). This resistance gene has been  
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overcome in CWANA region and is no longer effective against the prevalent pathotypes 

identified in the region.Yr9 was postulated singly in one Lebanese variety (Nab El Jamal) and 

in four ICARDA elite lines and in combination with Yr1, Yr3 and Yr4 in six elite lines. This 

gene which originated from Secale cereale is linked with Lr26 and Sr31 in the 1BL.1RS 

translocation (McIntosh et al.  2012). During the nineties, most of the wheat germplasm 

generated and distributed by CIMMYT throughout spring wheat production areas in low 

latitude countries carried the 1BL.1RS translocation (Bimb and Johnson, 1997). This 

translocation was identified in European wheat germplasm by Mettin et al. (1973) and Zeller 

(1973). The virulence against  

Yr9 has been detected in wheat-growing areas since 1980s, especially in countries where 

CIMMYT nurseries were distributed starting from Ethiopia (Badebo and Bayu 1992), Syria 

(Mamluk and El-Naimi 1992), Turkey (Dusunceli et al. 1996), Iran (Torabi et al. 1995), 

Pakistan (Bahri et al 2011), and in Central Asia and Caucasus (Yahyaoui 2005) and the 

utilisation of this gene alone has to be restricted in the breeding materials. 

Yr17 was postulated in four ICARDA elite lines and in combination with Yr6 in Lebanese 

landrace (Naama). The cluster of genes Yr17, Lr37 and Sr38 was transferred to wheat in a 

translocation from Aegilops ventricosa (Dousssinault et al. 1998). Originally it was 

transferred to line VPM1 (a cross of Aegilops ventricosa, Triticum persicum and cv. Marne 

Desprez) (Bariana and McIntosh 1993). Virulence against Yr17 has been detected in the USA 

(Line et al. 1992), in North Western Europe (Bayles et al. 2000; Hovmøller et al. 2002); The 

virulence to Yr17 is currently frequent in the North Western European countries (de 

Vallavieille-Pope et al. 2012). The emergence of virulence to Yr17 in Syria and Lebanon in 

recent years (Nazari K., personal communication) leads to the reduction of the utility of this 

Yr gene alone. 

Yr25, which is common and overcome in North Western European varieties, was postulated  

in Lebanese landraces (2 populations of Salamouni), one Lebanese variety (Florence Aurore) 

and one elite line (40). Virulence against Yr25 is frequent in CWANA region (Yahyaoui et al.  

2002).  

Yr27 was postulated in four Lebanese varieties and eight ICARDA elite lines. This gene 

originated from the wheat cultivar Selkirk and was derived from cv. McMurachy (Wellings 

1992), a parent of Selkirk. Again, this gene is present in many CIMMYT genotypes 

(Wellings 2011). Virulence for Yr27 was found in New Zealand (Wellings and Burdon 1992), 

Pakistan (Bahri et al. 2011), India (Prashar et al. 2007), Tajikistan, Kyrgyzstan (Singh et al. 

2004), Iran (Nazari and Torabi 2000) and Syria (Nazari et al. 2011). 
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In Lebanon and Syria for the season 2010/2011, the genes Yr1, Yr3 and Yr4 were still 

effective. The virulences Vr2, Vr6, Vr7, Vr9, Vr25, and Vr27 were predominant and Vr8 and 

Vr17 occurred only at low to intermediate frequencies (El Amil et al., in prep). 

Adult plant resistance is often race non-specific and more durable than race-specific seedling 

resistance and was introduced in North American cultivars in 1950’s (Chen 2007; Chen et al., 

2014). A successful adult plant resistant cultivar cv-Gaines, selected in 1961 (Vogel 1964) 

had durable non-specific race stripe rust resistance. This approach prompted us to test adult 

plant resistance in Lebanese and Syrian fields for a subset of elite lines. The four lines having 

Yr1 were moderately resistant to moderately susceptible in the field despite Vr1 not having  

been detected in the survey conducted in 2010-2011; therefore, Vr1 must have been present 

in Terbol (LB) at low frequency. The lines 15 and 16 having Yr6 were resistant and  

moderately resistant in the field despite the presence of Vr6 in Syria and Lebanon, indicating 

that this line must have additional adult plant resistance factors. The combination of the two 

seedling resistance genes Yr7+Yr4 was efficient in both locations giving that the combination 

Vr4+Vr7 was absent in the region (El Amil et al., in prep). The line 19, with only Yr7, was 

less resistant in the field than the line 55 which has the combination Yr7+Yr4. The line 41 for 

which Yr27 was postulated singly was susceptible in Syria. The elite line 42 was susceptible 

in Lebanon (Missing data for Syria) whereas the line 43 was moderately resistant to 

moderately susceptible suggesting that line 43 showed adult plant resistance. The adult plant 

resistance test confirmed the presence of Vr27 in Syria and Lebanon in 2010 and 2012 as all 

lines harbouring Yr27 showed susceptible reaction in the field.  

Seedling resistance, based on a single resistance gene, alone is short lasting and rapidly 

overcome by the pathogen population. Combinations of multiple seedling resistances prolong 

the efficient life of a particular resistance gene but is rarely durable. Quantitative trait loci 

(QTLs) of adult plant resistance provide partial resistance but seldom confer early protection 

of the plant. Therefore, a combination of both types of resistance is crucial for the protection 

of the plant during its whole growing season. Cases of durable stripe rust resistance were 

observed in four French cultivars and one English cultivar combining both seedling resistance 

genes and QTLs at the adult plant stage: cv. Renan (Dedryver et al. 2009), cv. Camp Rémy 

(Mallard et al. 2005), cv. Apache (Paillard et al.  2012), cv. Soissons (de Vallavieille-Pope et 

al. 2012) and Claire (Powell et al. 2013). Among the tested lines having seedling and adult 

plant resistance, the lines 64, 65, and 66 are interesting cases to be explored. 
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Landraces are considered potential sources for disease resistance and agronomic 

traits. The large observed heterogeneity was already seen for plant height and days to heading  

in Israeli bread and durum wheat landrace populations (Beharav et al. 1997) and has been 

advocated as being potential sources of stripe and leaf rust resistance in nine Chinese 

landraces (Zhang 1995). This study indicated that each landrace was composed of several 

genotypes. Our study confirms that the landraces are composed of several genotypes and it 

will be particularly interesting to investigate resistance presence in the genotypes resistant to 

239E175, the multi-virulent pathotype highly frequent in North Western Europe. Further 

study could indicate whether the resistance genes found in the landraces differed from the 

common genes already known and the resistant landraces could be exploited for rust 

resistance and other agronomic traits. 
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Stripe (yellow) rust is the most important disease of wheat in the Central West Asia and North 

Africa (CWANA) region. Severe epidemics in 2010 caused more than 30% yield losses in Syria, 

and similar losses had occurred in Turkey, Uzbekistan and Iraq. Extensive field surveys were 

conducted in major bread and durum wheat areas in Lebanon and Syria in 2011 using the 

Borlaug Global Rust Initiative surveillance protocols. 275 samples of Puccinia striiformis f. sp. 

tritici from Lebanon and Syria were genotyped with 20 microsatellite markers. Fifty MLGs were 

structured into two closely related clonal subpopulations, one dominant in Lebanon and the other 

one in Syria. The subpopulation predominant in Syria was the most genetically similar to the

2004-2005 Middle East and Mediterranean population and had the genetic signature of PstS2 the 

aggressive strain tolerant to high temperature, worldwide spread since 2000. The pathotypes of

54 isolates had combinations of the virulences for the widely deployed genes Yr2, Yr6, Yr7, Yr9,

Yr25 and Yr27. Virulence for Yr3, Yr8, Yr17 and YrSP occurred at varying frequencies. 

Resistance genes Yr1, Yr4, Yr5, Yr10, Yr15 and Yr32 were effective against all isolates. 
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Six out of the ten pathotypes detected representing 53% of the isolates resembled to the PstS2 

virulence profile.   

 

Key words: wheat yellow (stripe) rust, pathotype, SSR, clonal populations 

 

Introduction 

Wheat yellow rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst) is a 

serious economic disease of wheat worldwide (Stubbs, 1985; de Vallavieille-Pope et al., 2012). 

This biotrophic pathogen historically occurred mainly in temperate areas with cool, humid 

summers or in high-altitude warm areas with cool nights (Rapilly, 1979). More recently this 

disease spread to warmer regions considered as harsh for the pathogen development (Høvmoller 

et al., 2011) and became important in Australia, New Zealand, and South Africa (Wellings, 

2011). Severe epidemics occurred in wheat growing areas causing major losses ranking yellow 

rust the most serious biotic threat to wheat production (Wellings, 2011). A number of resistance 

genes to this pathogen are known, and managing host resistance remains the most economical 

and environmentally friendly measure for controlling the disease (Pathan & Park 2007). Severe 

epidemics are the result of new virulence emergence that overcome deployed resistance genes 

(Chen, 2007) and yield loss ranges from 10-70% (Chen, 2005). The Central West Asia and North 

Africa (CWANA) region witnessed many recurrent epidemics; there have been five in the last 

forty years. In Lebanon, in 1994, 30% of the national grain production was lost to yellow rust 

following the emergence of Vr7 (Mamluk, 1995) and in Iran, major epidemics were reported in 

1995 and 2003 with the emergence of pathotypes with Vr7 together with Vr9, and Vr27, 

respectively (Afshari et al., 2004). The two most recent epidemics, in Syria and Lebanon, were 

due to the emergence of the virulences Vr9 in 1992 and Vr27 in 2010 (Hodson & Nazari 2010, 

Morgounov et al., 2012).  

Lebanon and Syria are located in the Near East Fertile Crescent, well known for the richness and 

diversity of wheat and its wild relatives (Harlan & Zohary 1966), which is expected to exert a 

selection pressure for the emergence of new pathotypes. Knowledge on the prevailing pathotypes 

is crucial, as pathogens like Pst evolve their virulence spectra frequently, thereby compromising 

the durability of resistance (McDonald & Linde 2002). More complex virulence combinations  
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can emerge through mutation, recombination, or migration over long distance (Wellings, 2011). 

The dispersal of Pst  via uredospores over very long distances imply an urgent need to monitor 

Pst in all wheat growing regions and especially in hot spots (Brown & Hovmøller, 2002 ). 

Surveillance, monitoring and new virulence identification are prerequisites for future race 

prediction and for effective breeding programs (McIntosh et al., 1995). Virulence/avirulence 

information on prevalent pathotypes is very useful for making decisions about which resistance 

genes to deploy locally.  

In Syria, yellow rust has been reported annually since 1987 (Mamluk & El Naimi, 1992) and 

detailed monitoring in Syria and Lebanon was routinely carried out every year by planting the 

trap nurseries distributed from the International Center for Agricultural Research in the dry areas 

(ICARDA). Yahyaoui et al. (2002) studied the evolution of physiological races of Pst in Syria 

and Lebanon between 1994-1999. They observed high diversity of the Pst population, with 25 

and 11 distinct pathotypes in Syria and Lebanon, respectively, and the emergence of new 

pathotypes during this five-year period, including the profile Vr2, 6, 7, 8, 9 consistent with 

invasive high temperature tolerant strain described as PstS2 by Hovmøller et al. (2011). Bahri et 

al. (2009) studied the Mediterranean Pst populations. The pathotyping of 214 samples collected 

from Western part (Algeria, Italy, France, Morocco, Portugal, Spain and Tunisia) and 54 samples 

from Eastern part (Cyprus, Israel, Iran, Lebanon and Turkey) revealed twelve pathotypes. Eight 

of these were specific to the Eastern part, suggesting that the Eastern Mediterranean, because of 

its high diversity, is the source of new emerging strains. The pathotype which harbors Vr2, 6, 7, 

8, 9, 25, 27 and is tolerant to high temperature was first detected in Israel and later in the South 

of France, Italy, Portugal, Spain, Morocco, and Tunisia (Hovmøller et al., 2008, de Vallavieille-

Pope et al., 2012).  

Despite intensive monitoring described above, a detailed population genetic study of Pst in 

Lebanon and Syria was lacking. Lebanon and Syria are well known for their endemic Berberis 

vulgaris and Berberis libanotica, which were recently identified as the alternate host of Pst (Jin 

et al., 2010), for the richness of wheat wild relatives, and their high Pst diversity, even in a 

limited sample (Bahri et al., 2009). Therefore, this study was designed i) to study Pst pathotype 

diversity currently present across Lebanon and Syria and compare this with past reports; ii) to 

investigate Pst population genetic structure and test for evidence of recombination across  

 

92



9893



Lebanon and Syria, given that the alternate host Berberis sp. is present in the region and iii) to 

test whether the aggressive strain PstS2 is still predominant in the region. 

 

Materials and methods 

Yellow rust sampling and spore multiplication 

In May 2011, extensive surveys were conducted in the important wheat growing area in Syria. 

Sampling started from Aleppo where ICARDA is located, and was performed to the Eastern, 

Southern and Northern parts (Figure 1). In Lebanon, the survey was conducted in late May early 

June in the Bekaa valley, the center of wheat cultivation. Syrian samples were collected from 22 

sites at different altitudes ranging from 209 to 501 meters above sea level (masl) and from major 

bread and durum wheat areas. Lebanese samples were collected from three sites at about 1000 

masl from bread and durum wheat (Figure 1). At each site, 10-15 leaves with a single sporulating 

stripe lesion were collected, dried for 48 h at room temperature and kept in glassine bags at 4⁰C 

before spore multiplication.  

Multiplication of the Syrian samples was carried out at ICARDA-Tal Hadya station (Syria) in 

Summer-Autumn 2011 and was successful for only 48 of the 159 samples. Multiplication of the 

Lebanese samples was carried out at INRA Versailles in May 2014 and was successful for only 

6. 

Single lesions were rubbed on 10-day-old wheat seedlings of the highly susceptible cultivar 

Morocco. The seedlings were placed for 24 h with 100% relative humidity at 10⁰C in a dew 

chamber in the dark to permit penetration of the fungus. Then the pots were placed in a climate 

chamber with a temperature regime of 19⁰C during 16 h of daylight at 300 µE m-² s-1, and of 

16⁰C in the dark for 8 h. For mass spore multiplication, cv-Morocco was sown in trays (30 cm x 

20 cm) and protected from airborne pathogens with plastic covers. When the seedlings were 1-

cm tall, 60 ml of maleic hydrazide acid (0.25 g/l) was added. The inoculation took place under a 

laminar flow, which was decontaminated between each inoculation to avoid cross contamination. 

The incubation was done as described above. A week after inoculation, each tray was sealed 

within a cellophane bag to avoid cross-contamination. Eighteen days post-inoculation, 

uredospores were collected with a cyclone spore collector, dried in a desiccator filled with  
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silicagel at 4⁰C for 3 days, and stored in microtubes at -80⁰C. From this multiplication, 15 mg of 

spores per isolate were conserved for further pathotyping and genotyping.  

Virulence profile/pathotype determination 

Pathotyping of the 48 successfully multiplied Syrian isolates took place at ICARDA station in 

Aleppo, Syria during Summer-Autumn 2011; the 6 multiplied Lebanese isolates were pathotyped 

at INRA Versailles in high confinement climatic rooms in May 2014. Their virulence profiles 

were determined using a robust set of 43 differentials, chosen from standard differential lines 

used worldwide. Most Yr-genes were represented in more than one tester genotype, and some 

tester genotypes harbored several resistance genes (Table 1). We assessed the reliability of our 

results by verifying that the compatibility of the interaction was coherent among the testers with 

the same resistance genes, singly or in combination. Cv-Morocco, Federation, Jupateco S, and 

Avocet S were used as susceptible controls. Ten seeds of each differential line were sown in 

square pots (7x7 cm). When ten-day old, the seedlings received a high-intensity light treatment 

prior to inoculation for at least 24 h to maximize infection success (de Vallavieille-Pope et al., 

2002). Five mg of frozen uredospores received a heat shock of 35⁰C for 5 mn, and then were 

suspended in 700 µL of mineral oil Soltrol 170 (Chevron-Phillips Chemical Co., Houston, USA) 

and sprayed onto ten two-leaf stage seedlings of each differential line. After 10 mn for oil 

evaporation at room temperature, the inoculated plants were incubated in a dew chamber at 10ºC 

for 24 h in the dark to ensure successful infection, and transferred to a climate chamber (day: 16 

h, 300 µE m-² s-1, 19ºC; night: 8 h, 16ºC). Seedling infection types (IT) were recorded 15 to 17 

days post-inoculation using a 0–4 scale where 0-2 indicate an incompatible reaction and 3 or 4 a 

compatible one as described by Wellings et al. (1988). An isolate was considered virulent if it 

produced 3 or 4 on all differential tester genotypes bearing a particular resistance gene. Here we 

gave an example of how we determined whether different isolates belonged to the same or to 

different pathotypes and therefore how we determined the pathotypes, considering the same Yr 

gene is carried by several differentials, singly or in combination. Here is the example for Vr2 

with the two differentials Kalyonsona and Heines VII. Of the 54 isolates, 47 showed strongly 

compatible reactions, six showed (Pathotype P8) only intermediate reactions and considered 

Avr2, and one interaction was missing on Kalyonsona, which carries only the Yr2 gene. On 

Heines VII, which also harbors Yr2 in addition to another anonymous resistance gene, only 17  
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isolates showed compatible reactions. Sixteen of those were also strongly compatible on 

Kalyansona, the last one being the missing value for Kalyansona. This demonstrates that the 17 

compatible isolates on Heines VII carry Vr2 and the anonymous virulence gene and the other 37 

isolates that did not grow on Heines VII lack the virulence to the additional anonymous 

resistance gene. We applied this reasoning to every tested reaction in order to generate the set of 

pathotypes that explained our observations, taking into account the differential with the single Yr 

gene and considering the differential with additional gene as a confirmation. 

 

DNA extraction and SSR genotyping 

The molecular analyses were conducted at BIOGER-INRA, France. We genotyped all 275 

Lebanese and Syrian samples using 20 microsatellite markers and following the protocols of 

Enjalbert et al. (2002) and Ali et al. (2011). In brief, DNA was extracted either from 

spores through the modified CTAB protocols (Enjalbert et al., 2002) or from infected wheat 

lesions (Ali et al., 2011) and was then amplified for the 20 microsatellite loci, previously 

developed, in three multiplex reactions using the Biorad thermocycler with 35 cycles of 95⁰C for 

30 s, 57⁰C for 90 s and 72⁰C for 30 s (Ali et al., 2011). Subsequently, the PCR products were 

separated using the Beckman Coulter CEQ-8000 DNA Analyzer. Electrophorograms were 

assessed using the CEQ-8000 Genetic Analysis System Software. Sixty three and 24 genotypes 

from the 2004-2005 Middle East and Mediterranean genetic group (Bahri et al., 2009; Ali et al., 

2014a), and the North-Western European genetic group (Enjalbert et al., 2005), respectively, 

were add as references to be compared with the Lebanese and Syrian samples collected in 2010-

2011. Five MLGs from the 2004-2005 Middle East and Mediterranean collection corresponded 

to the MLG-99 reference that had the signature of the aggressive strain adapted to high 

temperature and spread worldwide (Ali et al., 2014a). 

 

Statistical analyses 

The GENCLONE software (Arnaud-Haond & Belkhir, 2007) was used to assess the independent 

information given by each microsatellite locus and our ability to discriminate MLG (multilocus 

genotypes). The GENETIX 4.05.2 software (Belkhir et al., 2004) was used to compute the 

number of alleles per loci, linkage disequilibrium among different loci by generating 1000 

random permutations, and estimation of observed (Ho) and unbiased expected heterozygosity  
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(He). Deviation from Hardy-Weinberg equilibrium using GENPOP 4 and  genotypic diversity 

statistics (including numbers of specific alleles and specific MLGs, and Shannon index) using 

GENCLONE, as well as, Pairwise Nei genetic distances and pairwise FST statistics using 

GenALEx software (Peakall & Smouse, 2012) were estimated. Calculations were performed 

among Lebanese and Syrian populations, among the genetic subpopulations detected by 

STRUCTURE, and among hosts. The level of population differentiation was also performed 

among the 7 different geographically spaced populations. 

Principal Coordinates Analysis (PCoA), using GenALEx software (Peakall & Smouse, 2012), 

was performed on SSR data from the 2010-2011 Lebanese and Syrian isolates, as well as 

references from the 2004-2005 Middle East and Mediterranean, and North Western European 

populations. We tested whether there was genetic substructure in the samples using the model-

based Bayesian method implemented in the STRUCTURE 2.2 software (Pritchard et al., 2000), 

which assigns MLGs to clusters while minimizing the Hardy–Weinberg disequilibrium and 

gametic-phase disequilibrium among loci within clusters. A total of 10 independent runs were 

made with a burn-in period of 100 000 and a total of 100 000 iterations, selecting K ranging from 

1 to 10. STRUCTURE outputs were processed with CLUMPP (Jakobsson &Rosenberg 2007) to 

assign groups of runs to a common clustering pattern (G’-statistic greater than 80%). The 

optimal K value was determined using the method of Evanno et al. (2005) based on the rate of 

change in the log probability of data between successive K values. Calculations were done on 

clone corrected data, with one individual MLG.  

 

Results  
Virulences in Lebanon and Syria  

We pathotyped 54 isolates, 48 Syrian and six Lebanese, using wheat lines differentiating 20 

yellow rust Yr resistance genes, singly or in combination with one or more additional genes. We 

inferred 10 pathotypes for the whole sample, eight in Syria and three in Lebanon, with one 

common pathotype P4 in both countries (Table 2). The pathotype P2 with 17 isolates was 

dominant in Syria and shared the dominant virulence profile Vr2, 6, 7, 9, 25, 27, A. The 

pathotype P4, common to Syria and Lebanon, was also frequent with 16 isolates in total, had Vr8 

in addition to the virulences carried by P2. The most frequent pathotypes P2 and P4 were found  
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in 31% and 30% of the whole population, respectively. P9 and P10 were unique to Lebanese 

samples having Vr2, 6, 7, 8 and Vr2, 6, 7, 8, 9, 25, respectively. 

Eleven Yr-genes out of 20 tested were overcome by at least one isolate. The isolates harbored 

between 4 and 9 different virulences; the most complex virulence spectrum with nine virulences

was P8 and represented 11% of the population. The most frequent pathotypes P2 and P4, as well 

as the most complex pathotype P8 were found on all types of hosts, on bread wheat, durum 

wheat, and volunteer (Table 2). All the isolates had in common the virulences Vr6 and Vr7. The 

virulences Vr2, Vr9, Vr25, Vr27 and VrA were highly frequent in the population with frequencies 

ranging from 92%, to 98%. The virulence Vr17 was present in 14 isolates belonging to three 

pathotypes (P3, P7 and P8). VrSP was present in 8 isolates belonging to two pathotypes (P5 and 

P8). The Vr3 appeared in only pathotype P6, represented by a single isolate. Interestingly, two 

Syrian isolates belonging to P1, having the most frequent virulences Vr2, 6, 7, 9, 25, 27, one 

recovered from bread wheat and the other from durum wheat, showed low infection type on 

Avocet S which was susceptible for all other isolates. The virulences Vr1, Vr4, Vr5, Vr10, Vr15

and Vr32 were clearly absent, because we saw no evidence of a compatible reaction on any 

genotype tester bearing the relevant resistance genes. For genotype testers with YrSD, YrSu and 

YrND, there were some intermediate reactions. However we chose not to interpret intermediate 

reactions as sufficient evidence for the presence of virulence genes. Therefore we can claim to 

have not detected VrSD, VrSu and VrND.

Population genetic structure

We genotyped 275 Pst isolates, 116 Lebanese and 159 Syrian, using a set of 20 microsatellite 

markers. These markers varied in their information content, having between one to 13 alleles

(Table 3). The number of multilocus genotypes (MLG) detected increased steadily when using

information from more loci without showing a plateau (Figure 2). The 20 microsatellite markers 

allowed us to discriminate 50 MLGs, 30 in Lebanon and 26 in Syria (Table 4), that are identical 

for ten SSR loci and the other ten markers showed different level of polymorphism (RJN2, 

RJN3, RJN5, RJN6, RJN10, RJN13, RJO4, RJO24, RJO27 and WU12). We found strong 

linkage disequilibrium for several pairs of loci (Supplementary Table 1). Of the 50 MLGs, 35 

were found only once: 22 in the Lebanese samples and 3 in the Syrian ones. The dominant MLG-

34 represented 60% of the Syrian samples and 22% of Lebanese ones (Figure 3). The dominant  
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MLG-47 in Lebanon represented 32% of the Lebanese samples but was not detected in Syria.

Only five resampled MLGs were found exclusively in the Lebanese population, four in the 

Syrian population, and six MLGs were common for the two populations corresponding to 168 

isolates (Figure 3). Two MLGs, MLG-18 and MLG-47, representing 17% of the population, 

differed from the dominant MLG-34 by one and two alleles, respectively.

Comparing SSR profiles between our samples and 63 Middle East and Mediterranean samples 

from 2005-2006 (Bahri et al., 2009; Ali et al., 2014), we found differentiation between the 2004-

2005 and “2010-2011” population. None of the 50 MLGs detected in Lebanon and Syria in this 

study were found in the 63 isolates sampled in the Middle East and Mediterranean area in 2005-

2006. Four of the 50 MLGs (MLG-24, MLG-25, MLG28, and MLG-41), representing 19.5% 

and 4% Syrian and Lebanese isolates respectively, differed from MLG-99 reference sampled in 

the Middle East and Mediterranean area in 2005-2006, by maximum 3 loci (at RJN2, RJO21 and 

RJO27) and carrying the signature of PstS2 aggressive strain at the SSR marker WU12 

(325/334). However, of the 20 SSR markers, 6 SSRs were monomorphic between the old Middle 

East and Mediterranean population and the recent Lebanese and Syrian population. 

Clustering analyses with STRUCTURE identified a clear pattern of population subdivision. We 

tested for a number of clusters ranging from 1 to 10 and found the best result for K =4 (Figure S1) 

(Evanno et al., 2005). At the optimal value for the number of clusters K=4, the 38 MLGs from 

Syria and Lebanon clustered into two subpopulations, subpopulation 1 and subpopulation 2, and

12 admixed individuals. In addition, the isolates from the 2004-2005 Middle East and 

Mediterranean, and North Western European genetic groups used as references individualized 

into clear separate clusters (Figure S2). The STRUCTURE analysis was able to distinguish the 

North Western European population at K=2 followed by the 2004-2005 Middle East and 

Mediterranean populations at K=3. Higher proportion of admixtures between subpopulation 1 

and subpopulation 2 was observed in Lebanon than in Syria (Figure 1; Table 4). Principal 

Coordinates Analysis (PCoA) discriminated the subpopulation 1, the subpopulation 2, and North 

Western European isolates in distinct groups; the admixures were scattered between the two 

subpopulations from the 2010-2011 season (figure 4) The 2004-2005 Middle East and 

Mediterranean references were genetically closer to the subpopulation 2 than the subpopulation 1 

as confirmed by Nei genetic distance and Fst (Supplementary Table 3). 
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Subpopulation 1, representing 21.5% of the genotyped isolates, was mainly present in Lebanon 

at 95% and only 5% in Syria, while subpopulation 2 representing 70% of the genotyped isolates, 

was mainly present in Syria at 77% and only 23% in Lebanon (Table 4). Subpopulation 1 and 

subpopulation 2 showed an excess of observed heterozygosity and strong linkage disequilibrium 

for the 20 SSR markers and were therefore considered that Pst population in Syria and Lebanon 

as clonal (Table 4). The two subpopulations 1 and 2 were monomorphic with 10 SSR markers 

depicting their strong genetic proximity. The Nei genetic distance between subpopulation 1, 

subpopulation 2, and the 2004-2005 Middle East and Mediterranean population was estimated to 

be around 0.1 whereas the genetic distance of the North-Western European population was 

around 0.5 (Table 4). The Fst was ranging from 0.051 to 0.102 between subpopulation 1, 

subpopulation 2, and the 2004-2005 Middle East and Mediterranean population whereas when 

compared to the North-Western European, Fst was comprised between 0.292 to 0.293 

(Supplementary Table 3). Similarly, low genetic differenciation was observed between different 

types of host: Bread wheat, durum wheat, Triticale, and volunteer (Table 4). Low genetic 

diversity was observed across the 7 locations and in the overall populations (Supplementary table 

2). When comparing pathotypes and MLGs, MLG-34 was dominant in at least nine pathotypes at 

high frequency varying from 83% to 85% in the pathotyped Syrian, Lebanese, and 2010-2011 

population (Table 2). MLG-18 was unique in Syria (4% of pathotyped isolates) and was common 

between P3 and P4.  

Discussion 

Surveillance has been traditionally used for depicting new virulent race emergence. Worldwide, 

pathotype variability stands behind the recurrent yellow rust epidemic by the outbreak of specific 

Yr genes. We identified ten pathotypes out of 54 Syrian and Lebanese isolates surveyed in 2010-

2011. The previous studies reported 14, 16, and 8 pathotypes for the periods 1994-1995, 1998-

1999, and 2004-2005 respectively (Yahyaoui et al., 2002; Bahri et al., 2009;) and similarly 

depicted a high pathotype diversity. The sampling differed between the studies: Bahri et al. 

(2009) received samples from collaborators from six countries, Yahyaoui et al. ( 2002) sampled 

mainly in trap nurseries and here we surveyed the whole wheat growing part of Syria and got 

limited sampling from Lebanon. Comparison of recent pathotypes with the previous ones 

showed that the number of virulences had increased over time. In CWANA region, culture  
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system included several types of wheat genotypes: landraces, farmers varieties and modern 

selected varieties for both bread and durum wheat. Furthermore, no fungicide sprays were 

applied in the region. Those selection pressures might contribute to the selection of diverse 

pathotypes in the pathogen population. Six pathotypes from both countries (representing 41% of 

the pathotyped isolates), P4, P5, P6, P7, P8, and P10 shared similarity in their virulence profile 

with the aggressive and tolerant to warm temperature strain PstS1/PstS2, and often combined 

with Vr25 and/or Vr27 (Hovmøller et al., 2011). PstS2-like pathotypes were frequent in the year 

2005-2006 for the Middle East and Mediterranean, and also dominated the year 2010-2011. The 

two aggressive strains PstS1/PstS2 were present in the Middle East, in Iran (Afshari et al., 2004) 

and in North Africa (Bahri et al., 2009). Except for Vr17, all depicted virulences in this study 

were already reported previously in Israel, in South of France, Italy, Portugal, Spain, Morocco, 

and Tunisia (Bahri et al., 2009). The fixed virulences Vr6 and Vr7 from 1999, were the most 

frequent followed by Vr2, Vr9 and Vr27. In Lebanon and Syria, the season 2010-2011 witnessed 

the emergence of Vr27 resulting in severe epidemics and yield losses for both countries. The 

resistance genes Yr6 + undetermined gene, Yr7 +, and Yr27 were the most frequent postulated 

resistance genes on a subset of varieties from the International Center for Agricultural Research 

in Dry Areas (ICARDA) and in Lebanese varieties (El Amil et al., in preparation). Vr8 frequency 

was only 55% in the 2010-2011 Lebanese and Syrian population and was not fixed in Syria 

although this virulence was described in PstS1/S2 strains worldwide. Vr17 was reported for the 

Syrian population at only 26%, and absent in the Lebanese population, probably due to the 

limited number of pathotyped isolates. Vr17 virulence was not detected by Bahri et al. (2009) in 

the Mediterranean region; Yahyaoui et al. (2002) did not include the differential host genotype 

carrying Yr17 (AvSYr17 or VPM1). These outcomes also agreed with gene postulation results. 

Yr8 was not postulated and Yr17 was present at very low frequency in the CWANA lines tested 

(El Amil et al., in preparation).  

Based on avirulence of Avocet S towards two Syrian isolates, we postulated that Avocet S 

carries at least one effective gene for resistance to the two isolates (temporarily designated 

as YrAvS). This suggested that Avocet S was not genetically homogeneous or more likely, that 

the genetic background of Avocet S was not fully regenerated during the six backcross and 

subsequent selfing generations. The resistance of Avocet S is yet to be characterized (Nazari & 

El Amil, 2013). These results illustrated the problems that can arise when sets of differential  
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genotypes that perform in a satisfactory way in a particular limited geographical area are applied 

globally. Pst races carrying avirulence genes that are absent in the original area where a 

differential cultivar was characterized for its susceptibility may be present in other areas. 

Consequently, a differential cultivar which was susceptible in the original area may unexpectedly 

exhibit resistance in a new region. This was also reported for Victo, which has been reported 

universally susceptible to North-Western European Pst population, showed avirulence to 

Pakistani isolates (Ali et al., 2014b). This was also reported for wheat lines more resistant to an 

exotic Pst strain than to the local ones (Sørensen et al., 2014). Therefore, host lines considered to 

be “universally susceptible” in one region may not be susceptible globally.  

 

Genotyping 275 Syrian and Lebanese Pst isolates revealed an overall clonal population structure 

with some admixed individuals. Differentiation was not observed between the two countries. The 

genotyping analyses showed a genetic proximity of the 2010-2011 Syrian and Lebanese Pst 

samples with the 2004-2005 Middle East and East Africa genetic group described by Bahri et al., 

(2009) and Ali et al. (2014a). The 2010-2011 population clustered between subpopulation 1 

dominant in Lebanon and subpopulation 2 dominant in Syria. This clear subdivision between 

Lebanon and Syria might be due to geographical barrier of high mountainous chain between the 

two countries or the host structure specific to each country. Although Lebanon presented both 

subpopulations at almost similar amount, while Syria was mainly represented by subpopulation2, 

both countries were genetically close. The presence of the alternate host of yellow rust did not 

seem to contribute in having more diverse meta-population in Lebanon since the wheat growing 

area in Lebanon was centralized in the Bekaa valley surrounded by mountains having the 

Berberis sp. plantations at high altitude above 1200 masl. The role of Berberis sp. for Pst life 

cycle under natural conditions which required synchrology between the liberation of Pst 

basidiospores and occurrence of young leaves of Berberis remains to be further investigated 

(Wang & Chen, 2015). The Northern part of growing area in Syria was mostly delimited from 

the South by the desert. Moreover, Lebanon was growing more durum wheat than bread wheat 

opposing to Syria in which bread wheat was mainly cultivated. In Lebanon, farmers continue to 

cultivate old wheat landraces for their culinary traits exerting strong selection pressure on the 

pathogen population. Landraces were heterogeneous for their resistance, having some highly  
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resistant plants among susceptible ones (El Amil et al., in preparation). The number of detected 

MLGs in this study was higher than earlier described clonal population (Enjalbert et al., 2005). 

The predominant MLG-34 in this study was found in 120 isolates, 25 Lebanese isolates and 95 

Syrian isolates, which represented about half the population. Most of the MLGs were closely 

related to PstS2 aggressive strain. Comparing the dominant MLG-34 and MLG-99 corresponding 

to PstS2 strain in the study of Ali et al. (2014a), the two MLGs differed by only one allele on 

four heterozygous SSR markers but shared the WU12 marker that marked the aggressive 

signature (Ali et al., 2014a). The most related MLGs to MLG-99 were detected in the Syrian 

population differing by maximum three SSR markers with the same set of microsatellites. This 

divergence from MLG-99 had been detected resulting in a rapid shift and in emergence of new 

variants of the PstS2. A similar result was observed major shift revealing in the United Kingdom 

in 2013 where the Pst population structure showed four distinct lineages that had replaced the 

previous Pst population (Hubbard et al., 2015). Furthermore, new variants of Ug-99 stem rust, 

the invasive race since 1999, had been reported and became dominant in Africa in 2010 (Wolday 

et al., 2011). In the study we separated Pst genotypes collected from bread wheat, durum wheat, 

Triticale and volunteer and we found no differentiation between the host type.   

Comparing our studies and previous ones, high pathotype diversity was detected in the region 

with a clonal and clear subdivision population in Lebanon and Syria, and the spread of dominant 

MLG closely related to those of the PstS1/S2 aggressive strains spread worldwide. This 

information could be useful for the region for better integrating disease management. Cultivation 

of cultivars with different resistance genes would prevent the selection and uniform spread of a 

specific pathotype in the region. Diversification in term of resistance genes over time could help 

in retarding emergence of new virulences. Along with durable deployment of resistance genes in 

breeding programs, population genetic structure of Pst, and combination of both types of 

resistance, seedling and adult plant resistance, confer better protection and considered as best 

strategy for durable resistance (de Vallavieille-Pope et al., 2012).  
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Continued Supplemantry table 1: 
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Effect of the temperature on aggressiveness components, infection efficiency and latency 

Introduction

period, on Puccinia striiformis f. sp. tritici in the Middle East
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4Department of Agroecology, Aarhus University, Forsøgsvej 14200, Slagelse, Denmark 
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It is now generally accepted that average temperatures are rising globally, with rates of 

change increasing towards the poles, and increasing average temperatures associated with 

more frequent extreme temperature events (IPCC 2007). These changes in environmental 

conditions will lead to selection on living organisms, which, in order to persist, will need to 

migrate, tolerate or adapt to locally changed conditions. Range shifts to higher latitudes or 

elevations are already underway (Parmesan 2006) including for crop pests (Bebber et al.

2013). The ability to tolerate climate change or adapt to it while staying in the same site 

depends the breadth of genetic variation for temperature tolerance. Variation within and 

among populations has been observed for a large range of organisms including insects, plants 

and fungi (Sørensen et al. 2001; Wahid et al. 2007; Fallis et al. 2011; Angert et al. 2011; 

Mboup et al. 2012; Stefansson et al. 2013; Sternberg & Thomas 2014), suggesting that 

adaptation to changing conditions should be possible (Reusch & Wood 2007).  

Plant diseases will, therefore, pose an ever-increasing ecological and evolutionary challenge.

In addition to the perpetual adaptation of diseases to host resistance in natural (Tack et al.

2012) and agricultural (Kiyosawa 1982) systems, climate change may lead to range shifts 

with new diseases invading previously untouched areas (Evans et al. 2008; Luck et al. 2011; 

Shaw & Osborne 2011). Furthermore, pests and diseases may adapt to changing conditions, 

for example increasing the breadth of their temperature tolerance or shifting their temperature 

optima.
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Wheat stripe (yellow) rust caused by Puccinia striiformis f. sp. tritici (Pst), provides one such 

example. Historically considered a disease of temperate zones, Pst was only sporadically 

recovered from hotter grain production areas such as Western Australia and the mid-west of 

North America, presumably because it was unable to tolerate the high temperatures (Wellings 

2011). However, a new strain, referred to as PstS1 (Hovmøller et al. 2008), caused severe and 

widespread epidemics in the North American mid-west in 2000 (Chen et al. 2002). An almost 

identical strain was recovered from Western Australian in 2002 and from Eastern Australia in 

2003 , where it also led to major epidemics (Wellings 2011). Evidence as to whether the 

aggressive strains responsible for these epidemics are adapted to high temperatures remains 

somewhat equivocal (Milus et al. 2009; Loladze et al. 2014). Milus et al. (2009) showed 

adaptation to high temperature of Pst isolates post 2000 from North America, Eritrea and 

Denmark compared to American isolates pre-2000, whereas comparison of Australian isolates 

pre and post-2002 did not show adaptation to high temperature. On the other hand, in France, 

there is clear evidence for local adaptation to temperature conditions in Pst. Southern strains 

outperform northern ones at high temperatures and northern strains outperform southern ones 

at low temperatures under controlled experimental conditions (Mboup et al. 2012). 

 

Which strain will occur in a particular region depends not only on its ability to thrive under 

local climatic conditions, but also on the resistance structure of available hosts. Indeed, in the 

example cited above (Mboup et al. 2012), southern French strains outperformed northern 

strains under all field conditions, even northern ones, when susceptible hosts were provided. 

Hence, disease emergence will be conditioned by local host availability as well as climatic 

adaptation of the pathogen. The Middle East and the Mediterranean basin represent a cradle 

of agriculture and a centre of wheat diversity. Indeed we have found a number of 

uncharacterised resistance phenotypes in landraces that are grown throughout the Middle East 

(El Amil et al. in prep) and many of these landraces segregated for resistance, demonstrating 

that they are variable and heterozygous for these novel resistance types. In the wheat-growing 

areas of North America, North Western Europe and Australia, on the other hand, a single 

homogeneous variety is grown over very large scales. The wheat cultural practices in the 

Middle East therefore probably exert a more diversified selection regime on wheat pathogens 

than is experienced in wheat-growing zones of North America and Australia. In addition, the 

climatic conditions vary over small geographical regions, from 
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dry-Mediterranean climates to cooler wetter conditions in the highlands. We therefore set out 

to test a set of Pst isolates from throughout the Middle East, collected from warmer and 

cooler sites from each region, for their performance under contrasting cool and warm 

temperature regimes. This will provide a better understanding of the breadth of temperature 

adaptation in Pst populations from this region and thus how rapidly we can expect Pst to track 

global environmental change. Since temperature adaptation had already been observed in 

some French isolates of this fungus (Mboup et al. 2012), we predict that fungal isolates from 

warmer regions would perform better than those from cooler regions under warm 

experimental penetration and incubation temperatures. We carried out a fully factorial 

experiment to test the relative importance of penetration and incubation temperatures and 

their interactions on two important life history characters of this plant pathogen – infection 

efficiency and latency period or time until sporulation. We also tested whether isolates with 

genetic markers that ally them to two aggressive strains that had caused recent epidemics, 

here referred to as PstS1 and PstS2, thought to be adapted to high temperatures (Milus et al. 

2009), perform better under high temperature conditions. Finally we test whether there is a 

correlation between phenotypic and genetic distance, the latter calculated based on neutral 

markers.  

 

Materials and Methods 

Details of the Pst isolates used in this study are given in (Table 1) and briefly summarized 

here. Of the 30, four were reference isolates with previously characterized temperature 

specificities. These were included to make sure that the experimental conditions gave results 

comparable with previous ones and to position the other isolates with respect to these known 

isolates but they were not included in the analyses of temperature adaptation. The reference 

isolates include three isolates previously characterized as warm-adapted (PstS2: DK66/02, 

PstS1: ET02/10, and Fr6) (Milus et al. 2009; Mboup et al. 2012) and one cold-adapted isolate 

(Fr232) (de Vallavieille-Pope et al. 1995, 2002). Of the other 26 isolates, 18 were obtained 

from the collections of the Institut National de Recherche Agronomique, BIOGER, France 

(10), Global Rust Reference Center, Aarhus University, Denmark (6) and the International 

Center of Agricultural Research in Dry  
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Areas, Syria (2). An additional 8 isolates were collected from field surveys of bread wheat 

growing in coastal and mountainous areas of Lebanon, Syria and Turkey during the cropping 

season 2011-2012. Isolates were chosen to maximize pathotype diversity and geographic 

origin, and to have some strains from cold and some from warm conditions. We classified 

local conditions based on latitude, elevation and mean temperatures from February to May, 

the growing season of wheat in the Mediterranean region. This enabled us to test for local 

adaptation to temperature conditions, i.e. whether isolates from warm areas perform better 

under warm conditions. 

The virulence profiles of all isolates were tested at INRA, Versailles as described in de 

Vallavieille-Pope et al. (2012). All isolates were genotyped for 20 microsatellite markers (Ali 

et al. 2011) at INRA Grignon and for a SCAR marker at Aarhus University (Hovmøller et al. 

2011), the latter which permitted us to determine, for each strain, whether it belonged to the 

aggressive strains PstS1 or PstS2 (Table 2). 

The temperature experiment was carried out at INRA, Versailles, in a high containment 

spore-proof climate controlled chamber with level 3 security to prevent the escape of foreign 

spores. All plants were cultivated at 16⁰C-19⁰C with 16-h photoperiod from natural and 

supplemental light at 200 μE/m2/s1 before experimental temperature treatments. Before 

inoculation the photoperiod was modified to give plants 16 hours of light just prior to the 

inoculation treatment, followed by 24 hours at 100% humidity in the dark post-inoculation, at 

8⁰C for spore multiplication (de Vallavieille-Pope et al. 2002) and varying temperatures for 

the experiments. To enhance spore production and to prevent leaf elongation each pot was 

treated with 20 ml of maleic hydrazide (0.25 g/liter) solution when seedlings were at 1-cm 

tall. To ensure genetic purity, a single lesion of each Pst isolate was collected after initial 

inoculation at low spore numbers. This lesion was rubbed onto 10 seedlings of two 

susceptible cultivars (Victo and Michigan Amber) growing mixed in a single pot and 

subsequently enclosed in a cellophane bag. After 14-17 days we collected as many spores as 

possible by tapping them onto the cellophane bag and dried them in a desiccator filled with 

Silicagel at 4⁰C for 3 days. These spores were suspended in mineral oil Soltrol 170 (Chevron-

Phillips Chemical Co., Houston) and sprayed onto 3 or 4 pots of seedlings pretreated as above 

for a first round of multiplication that was followed by an identical second round of 

multiplication. Then spores were collected, dried and stored in small vials at -80⁰C. A third 

multiplication was done just prior to each experiment and spores were harvested and dried as 

above. 
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Fifteen seeds of cv. Cartago with no known resistance genes to yellow rust, were planted in 

square pots (7x7x8 cm) filled with standard peat soil, grown in the high confinement 

glasshouse at 16⁰C-19⁰C with 16-h photoperiod from natural and supplemental light at 200 

μE/m2/s1 and half of the pots, those for the latency period tests, were treated with maleic 

hydrazide as above. Pots were thinned to ten homogenous seedlings. 

We assessed infection efficiency and latency period of all isolates at two different dew 

temperatures (5⁰C and 20⁰C) and two different incubation temperatures (10⁰C -15⁰C and 

16⁰C-25⁰C). Using pots at the two-leaf stage, we inoculated 32 pots with 0.5 mg of 

urediniospores suspended in 300 mL of mineral oil Soltrol 170 of each fungal isolate. After 

10 minutes for oil evaporation at room temperature each tray of 16 pots, representing a 

treatment combination, was placed in a wet plastic bag for 24 h with 100% relative humidity 

at either 5⁰C or 20⁰C dew temperature, in the dark to permit penetration of the fungus. 

Subsequently, these 16 pots were split into two different climate chambers with different 

temperature regimes (daylight 300 µE⁄m2⁄s1, during 16 h at 15⁰C and darkness for 8 h at 

10⁰C) and (daylight 300 µE⁄m2⁄s1, during 16 h at 25⁰C light and darkness for 8 h at 16⁰C). We 

removed the second and third leaves of all the seedlings 7 days after inoculation. Seven to 10 

days after inoculation, as soon as the first chloroses were visible, we counted chloroses on the 

first leaf of 4 pots per dew temperature and incubation temperature combination per isolate to 

determine infection efficiency (IE). IE, which represents the proportion of deposited spores 

successfully infecting the leaf and causing symptom development, was calculated as the 

number of chloroses divided by the leaf surface (length x width, mm2) and the density of 

deposited spores/mm2. After counting chloroses we discarded these pots. 

Two measures of latency period are commonly used: LP1 is the time interval from inoculation 

to the first appearance of spores in new uredinia breaking the leaf epidermis (Jeffrey et al. 

1962; Miller et al. 1998) and (LP50) is the time needed for half of the final number of lesions 

to sporulate (Knott & Mundt 1991; Flier & Turkensteen 1999) or to show sporulation 

structures (Johnson 1980; Tomerlin et al. 1983). For the remaining 4 pots per dew 

temperature and incubation temperature combination per isolate, starting the 8th day post-

inoculation, we counted all sporulating lesions on each inoculated leaf daily. We marked each 

sporulating lesion with an ink pen on the leaves to be able to identify newly sporulating 

lesions, and continued these observations on each pot until the day after which no additional 

symptom development was observed on any plant in that pot. We originally planned to 

estimate spore production but climate chamber conditions appeared not appropriate for proper  
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spore development. All our plants became wilted and chlorotic and it was impossible to 

collect spores. 

This experiment was replicated three times in March, April and June 2013 for a total of 2880 

pots. 

 
Statistical analysis 

 

We worked with the mean values for our variables per pot. Using only the 26 isolates from 

the Middle East and Mediterranean region we tested whether infection efficiency, following 

natural log transformation to homogenize variances, and latency, both LP1 and LP50, varied 

among dew and incubation temperature combinations. We tested also whether this depended 

on isolate origin, i.e., from cold versus warm conditions for the Middle Eastern and 

Mediterranean samples, or on the SCAR/SSR group determined from genotyping. We used a 

factorial, hierarchical ANOVA followed with Tukey multiple comparison tests where 

relevant. Dew and incubation temperatures were analyzed in a factorial manner. Isolate was 

treated as a random factor nested within isolate origin (i.e. whether from cold or warm 

conditions, or SCAR/SSR group). Analyses were carried out using the JMP statistical package 

(SAS2009). 

 

To visualize patterns of phenotypic similarity we carried out a principal component analysis 

(PCA) using data from all strains, including the reference isolates and those from outside the 

Middle East and Mediterranean regions, using XLSTAT (XLSTAT version 2012.6.01). This 

analysis provided coordinates for the position of each isolate in phenotypic space based on the 

first two principal components (PCA1, PCA2). We compared pairwise genetic distances, 

based on the 20 microsatellite data, with pairwise phenotypic distances on the PCA1 and 

PCA2 plot between isolates, using a Mantel test calculated in GENEPOP, to test whether 

genetic and phenotypic distances were correlated. 
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Results 

Temperature adaptation to climatic conditions of origin 

 

Infection efficiency was very sensitive to variation in dew temperature, with very low 

infection efficiency at high dew temperature. IE for the different Pst isolates varied from 

7.56% to 15.23% under the cold/warm regime; from 5.65% to 12.8% under cold/cold regime; 

from 0.04% to 0.935% under warm/cold regime and from 0.05% to 0.875% under 

warm/warm regime. 

There was a non-significant tendency for higher infection efficiency at warm incubation 

temperature (Table 3, Figure 1). Pst isolates that had experienced cold dew temperature post 

inoculation had higher infection efficiency when subsequently incubated at warm 

temperatures but Pst isolates that had experienced warm dew temperature had higher infection 

efficiency when subsequently incubated at cold temperature, shown by the significant dew 

temperature * incubation temperature interaction (Table 3, Fig 1). We found no evidence of 

local adaptation to climatic conditions in infection efficiency. Infection efficiency did not 

vary significantly between isolates originating from warm versus cold climates, either as a 

main effect or in any interactions. 

 

Latency period, both until first sporulation or until 50% sporulation, on the other hand, 

showed patterns of local adaptation. The two variables gave very similar results, so we chose 

to present the analyses for latency period until first sporulation throughout. Latency period 

was almost 18 hours shorter on average at low than at high dew temperature but over 70 hours 

shorter at high than at low incubation temperature. There was a significant interaction 

between the two, such that warm dew temperatures retarded sporulation more when 

incubation temperatures were warm compared to cold (Table 4, Figure 2). Though latency 

period did not vary significantly with climate of origin either as a main effect or in two-way 

interactions with the experimental dew or incubation temperature regime, there was a 

significant three-way interaction (Table 4).  
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When incubated at cold temperature, isolates originating from cold and warm climates 

responded similarly to variation in dew temperature. This was not the case when incubated at 

warm temperature. Under the warm incubation regime Pst isolates from cold climatic 

conditions took significantly longer to sporulate when they had experienced a warm than a 

cold dew temperature. Those from a warm climate did not differ in latency time between the 

two dew temperatures when incubated under warm conditions. Overall, warm dew 

temperatures retarded sporulation, but this effect was far less marked for isolates from warm 

climates when incubated under warm conditions, with isolates from warm climates being 

more resistance to the retarding effects of warm dew temperatures (Table 4, Figure 3) 

Temperature adaptation of isolates belonging to different genetic groups 

Here we tested whether isolates belonging to the genetic groups characterised as new, highly 

aggressive and adapted to high temperatures indeed performed better, showing higher 

infection efficiency and shorter latency periods, under warm versus cold experimental 

conditions. For infection efficiency, as for the previous analysis that compared isolates from 

cold versus warm climates of origin, infection efficiency was higher at low dew temperature 

and there was a significant interaction between dew and incubation temperature. The results 

resemble closely those presented in Table 3, and are therefore not shown. Genetic group to 

which the isolates belonged, i.e. the aggressive PstS1 or PstS2 versus other genetic groups, 

did not explain significant variation in Infection Efficiency, either as a main effect of in any 

interactions. For latency period, both until first sporulation or until 50% sporulation, however, 

we found a significant interaction between genetic group and incubation temperature (Table 

5, Figure 4). The isolates identified as PstS2 sporulated more rapidly than did the other two 

groups at warm incubation temperatures, which supports the idea that this genetic group is 

warm-adapted.  

Correlation between genetic and phenotypic distance 

The principal component analysis (PCA) provided an overall summary of results of the two 

epidemiological parameters (infection efficiency and latent period 50%) under the 4 

temperature regimes for the 30 Pst isolates. The first two components of the PCA accounted 

for 61% of the original variation. The principal component analysis based on data on infection 

efficiency and the latency 50% measures under the four different dew- and incubation-

temperature combinations did not generate clear groups either of isolates coming from warm 

versus cold climatic conditions or of the different genetic groups. 
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 (Figure 5) shows the plot of isolates, identified by their climate of origin and their genetic 

group, on the first two principal components. According the Eigen vectors of principal 

component (PC) analysis for the eight variables (infection efficiency at low and high 

penetration temperature followed by high and low incubation temperature, and latent period at 

low and high penetration temperature followed by high and low incubation temperature), the 

representation of the two first PCs showed the PC1 axis which corresponded to the most 

variation detected, classified isolates for the LP values, being long in the positive direction 

and short in the other direction. 

PC2 classified isolates with high IE values at 20°C and intermediate-high value at 5⁰C in the 

right upper quadrant of the Figure 5, and low IE at 20°C and intermediate-low IE at 5°C. In 

this quadrant the isolates have also long LP at 5°C and 20°C/25 and intermediate-short LP at 

20°C /15°C.  

          In the opposite left low quadrant, the isolates have low IE at 20°C and intermediate-low 

IE at 5°C. In this quadrant isolates have also short LP at 5°C and at 20°C/25°C and 

intermediate –long LP at 20°C/15°C. In the upper left quadrant, the isolates have low IE at 

5°C and intermediate-high IE at 20°C, furthermore they showed short LP at 5 and 20°C. In 

the opposite low right quadrant, the isolates have high IE at 5°C, intermediate-low IE at 20°C, 

and long LP at 5 and 20°C. The four reference isolates corresponded to what was expected for 

their adaptation to warm and cold conditions. Fr232 the cold-adapted reference isolate 

(Mboup et al. 2012) was in the bottom right quadrant, corresponding to high IE at low dew 

temperature and long latent period. The two reference isolates for warm temperature, French 

Fr6 isolate (Mboup et al. 2012) and the DK66/02 PstS2 isolate (Milus et al. 2009) were in the 

left upper quadrant, corresponding to low IE at 5°C, intermediate-high IE at 20°C and short 

LP. The aggressive PstS1 reference isolate ET02/10, tolerant to high temperature (Milus et al. 

2008) was in the upper right quadrant corresponding to high IE at 20°C and long LP. We 

separated the 26 Pst isolates into five groups. Group 1 in the upper right quadrant includes 

three isolates from cold and three from warm locations, with one isolate PstS2, two isolates 

PstS1, and three isolates with the genotype ‘other’. Group 2 situated in the low right quadrant 

includes four isolates belonging to cold and one to warm locations. Three isolates were PstS2 

and two had the genotype ‘other’ Group 3 situated in the center low right of the PC1-PC2 

plan, includes five isolates belonging to warm locations and one to cold location; four were 

PstS2 and two were  
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‘other’. Group 4 situated in the center up left of the PC1-PC2 plan included five isolates 

belonging to cold location; three isolates were PstS2, one PstS1 and one ‘other’. 

Group 5 includes five isolates which were all from warm locations and PstS2 genotype. This 

group 5, having low IE at 20°C and short LP is opposed to Group 1, which has high IE at 

20°C and long LP. Group 2 had isolates with efficient IE at 5⁰C but long LP and on the 

opposite the cold isolates from group 3 had low IE at 5°C but short LP. Groups 3 and group 4 

had an intermediate behavior comparing with Group 1, 2, and 5. 

Nonetheless, when we compared the pairwise phenotypic distance between isolates with their 

pair-wise genetic distance, we found a significant relationship between phenotypic and 

genetic distance (Mantel test result from 1000 permutations, p = 0.007). Genetically more 

distant strains, therefore, were phenotypically more dissimilar in their infection efficiency and 

latency periods under the four temperature conditions.  

 

Discussion 

Under warm incubation temperature, we observed that on average LP was 2 days shorter; this 

result agrees with Milus et al. (2009), who showed that North-American post-2000 isolates 

had a latent period 3 days shorter than old North-American isolates at 12°C for penetration 

temperature and at high incubation temperature (12-28⁰C). These results were contradictory 

with Australian pre and post-2002 Pst isolates, as higher temperature (penetration temperature 

of 15°C and incubation temperature of 23°C) generally extended the LP of 1.8 days for all 

isolates in the same way compared to low penetration temperature of 10°C and low 

incubation temperature of 17°C (Loladze et al. 2014). The percentage of infected leaves was 

higher for the new pathotype 150E16A+ than the older pathotypes, but temperature adaption 

was not significant. Mboup et al. (2012) demonstrated that Southern French isolates were able 

to germinated better at 20°C than the Northern isolates, to have a low but positive IE at 20°C 

for penetration temperature whereas Northern isolates were not able to penetrate at that high 

temperature. Latent period was 0.9 day shorter and sporulation rate was two time higher at 

high incubation regime of 22-25°C for southern isolates than Northern isolates. 

With our results, IE was more efficient under cold than warm dew temperature revealing that 

still the cold temperature is considered as primary factor for the penetration suggesting that 

the cold areas will be more threatened by Pst for early disease onset. Unlike for IE, the warm 

incubation plays a major role in shortening the other aggressiveness component LP. The  

150



  

151



suggestion that 18⁰C is a high temperature for assessing LP (Milus et al. 2006) seems to be 

uncertain as in our case, we succeeded to assess it at 20⁰C but unfortunately spore production 

assessment was not successful under our climate chamber condition under the (16/25⁰C) 

regime. 

The two groups 1 and 5 have opposite life trait strategy. The group 4, the closest group to 

warm adapted temperature, was including an old Lebanese isolate ’other’ genotype 

(LB75061), a new Syrian PstS2 isolate (SY03/10), a new Turkish PstS1 isolate, and a new 

Lebanese PstS2 isolate and none of PstS2 originated from warm location. Group 1, well 

adapted to high temperature showing high IE at 20⁰C, only one Syrian out of six isolates was 

PstS2. Among the cold-adapted group 2, four out of the five isolates were originating from 

cold locations. 

The Lebanese isolate having ‘other’ genotype (LB75061) collected forty years ago, showed 

adaptation to high temperature and not belonging to the PstS2. 

Loladze et al. (2014) did not show temperature adaptation within old and new invasive Pst 

Australian isolates rather than variation between individual isolates; this was clearly 

independent of the categorization into new and old group. Similarly, we observed diversity 

within the Mediterranean and Middle East isolates for temperature response for IE and LP. 

There was no clear cut categorization between the warm and cold origin for the Pst tested 

isolates. However, group 2 including IR90/63, IR91/50 and LB74015 were collected from 

high altitude 1593 m, 1346 m, and 1000 m, respectively were situated close to the cold-

adapted reference whereas the group 4 closest to warm-adapted reference included the isolates 

collected from below 1000 m. Our three Pst references adapted to high temperature belong to 

three different genotypes PstS1, PstS2 and other. Similarly, the Mediterranean and Middle 

East isolates adapted to high temperature belong to different genotypes. 

Latency period is a critical life history character for pathogens and infectious diseases, as it 

determines the generation time of the pathogen and thereby disease dynamics. Doubling time 

in an epidemic or outbreak is a direct function of pathogen generation time (Fraser et al. 

2004), so pathogens with short latency will cause more rapid epidemic spread. Zhang and 

McDonald (2011) showed that population of Mycosphaerella graminicola (Zymoseptoria 

tritici) originating from warm places perform better for growth rate under the high temperature 

than those from cold places. 
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There are two ways of thinking about local adaptation. One is that organisms should perform 

better when exposed to their habitual rather than a novel environment (the home versus away 

advantage), the other, that they should outcompete exotic organisms on their home turf (the 

local versus foreign advantage)(Kawecki & Ebert 2004). Under cold incubation conditions, 

the times to sporulation of Pst isolates collected from cold or warm climates were 

undistinguishable from one another, both when they had experienced cold and when they had 

experienced warm dew temperatures. In all cases latency was long. When incubated at warm 

temperatures, on the other hand, first, latency was much shorter. Second, though isolates 

collected from cold or warm climates were undistinguishable from one another when they had 

experienced cold dew temperatures, after a warm dew temperature treatment, isolates from 

warm climatic conditions clearly out-performed those from cold origins. We note that, though 

the latency period was slightly shorter, even for the isolates from warm climatic conditions, 

for the combination of cold dew temperature and warm incubation temperature, that at warm 

dew and incubation temperatures isolates from warm climatic conditions had a large relative 

advantage over those from cold conditions. Therefore this is a case when our isolates of warm 

climatic origin can be shown to be locally adapted to their climatic conditions following the 

“local versus foreign advantage” criterion, but not for the “home versus away advantage” 

criterion.  
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General Discussion 

 

The present study was designed to describe the diversity of Puccinia striiformis f. sp. 

tritici and its host in the Middle East especially in Lebanon and Syria. The Middle East located 

in Near East Fertile Crescent is considered the cradle of agriculture and well known for the 

richness for wheat and its wild relatives (Heun et al., 1997). The region experienced many 

recurrent epidemics (Yahyaoui et al., 2002). Bahri et al. (2009) hypothesized the Middle East as 

the origin of emerging Pst strains to the Western Mediterranean region. Furthermore, Ali et al. 

(2014b) hypothesized the Middle East as source of the aggressive strain PstS2 tolerant to high 

temperature worldwide spread since 2000 (Milus et al., 2006). The identification of Berberis as 

an alternate host for P. striiformis f. sp. tritici by Jin et al. (2010) and its presence in the Middle 

East gave more insights to assess its role on the pathogen population diversity and genetic 

recombination. Moreover, the study of resistance gene diversity of landraces, elite lines and 

commercial varieties grown in the region helped to understand the selection pressure exerted by 

the host. One other reason in designing this study was to assess the diversity of two components 

of Pst aggressiveness in the highlight of climate change (Chakraborty, 2013) and the emergence 

and invasion of aggressive warm-adapted strains worldwide (Hovmøller et al., 2011). 

Historically, Pst occurred mainly in temperate areas (Hau & de Vallavieille-Pope, 2006) and it 

was anticipated that the pathogen would not survive the harsh Australian conditions (Brown, 

1984; Wellings, 2011), American central regions and East states of the Rocky Mountains in the 

United States (Milus et al., 2009). The question here was how the Middle East Pst isolates from 

different regions (warm and cold) in the Middle East would perform under extreme temperatures 

for spore penetration and incubation period, given that aggressive strains adapted to high 

temperature were responsible of severe epidemics in different parts of the world (Hovmøller et 

al., 2011). 
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 The first chapter was designed to postulate the race-specific resistance genes in spring 

bread wheat ICARDA elite lines, Lebanese varieties and landraces. The infection type observed 

after inoculation by a set of pathotypes harbouring complementary virulence profiles gave quick 

detailed information about wheat stripe rust specific resistance genes detectable at the seedling 

stage. An array of eleven French pathotypes was selected from INRA collection to postulate the 

presence of ten Yr-genes in wheat lines. Yr1, Yr6, Yr7, Yr17 and Yr27 were the most frequently 

postulated resistance genes in ICARDA elite lines. Combinations of two Yr-genes were more 

common in ICARDA elite lines than Lebanese varieties and landraces. The lines resistant to all 

pathotypes figured among ICARDA elite lines and three Lebanese durum wheat varieties. The 

selectionmwork carried by ICARDA breeders lead to accumulate more resistance gene 

combinations in ICARDA elite lines than Lebanese varieties. Some lines showed adult plant 

resistance in both locations, Lebanon and Syria. The ICARDA elite lines combining two Yr-

genes were more resistant at the adult-plant stage than those having a single Yr gene. When 

combining the genes Yr6, Yr7, and Yr9 with others like Yr1, Yr3 and Yr17, the resistance reaction 

in the field was higher than for one Yr gene alone. This finding supported the strategy of 

combining several genes to protect the plant and reduce the emergence of new specific races. It 

is well known that more than two Yr-resistance genes are required to protect for a long term 

(Singh et al., 2004). 

Among tested lines, the highest number of susceptible plants was found among the 

landraces. However, we observed variation in the proportion of resistant plants between the 

landraces. Interestingly, one and three landraces showed up to 65% and 45% of resistant plants 

to the tested pathotypes, respectively. Some plants of a landrace were resistant to “Warrior” race 

harbouring the largest number of virulences among the tested pathotypes, spread in Europe since 

2011. Our findings corroborated with the Chinese study revealing stripe and leaf rust resistance 

in nine landraces (Zhang, 1995).  

Since the deployment of resistance genes is still the most economical and 

environmentally friendly way to control the disease, it would be very interesting to explore these 

combinations of specific Yr genes expressed since the seedling stage and identify QTLs of adult 

plant resistance that provide efficient durable resistance (Dedryver et al., 2099; Paillard et al., 
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 2012). The combination of both seedling resistance genes protecting the early stage of 

the crop and adult plant resistance appeared to be the most appropriate strategy.

The second chapter studied the Pst diversity in Lebanon and Syria for both virulence and 

molecular markers for a population sampled in 2010-2011 under high epidemic pressure.

Pst pathotypes were determined on a robust set of 43 differential hosts including near isogenic 

lines to get the most precise description of the present virulences/avirulences. We also included 

the European and world differentials (Johnson et al., 1972), having  two or three resistance genes 

for most of them, to confirm the presence of virulences in another genetic background and to be 

able to compare with other studies using this differential set for a long time (Bayles et al., 2000 ; 

de Vallavieille -Pope et al., 2012). We chose four susceptible controls, Morocco, Jupatecco S, 

Federation and Avocet S. Interestingly, the universal susceptible Avocet S showed avirulence to 

two Syrian isolates suggesting that Avocet S carried at least one effective gene for resistance to 

the two isolates. Similarly, the susceptible control cv-Victo showed avirulence to 127 Pakistani 

isolates from the crop season 2010 (Ali et al., 2014a). This arose the problem of the notion of 

universal susceptible differential line, one being susceptible in its original area might 

unexpectedly exhibit resistance in a new region, far from the selection pressure. 

New pathotypes are constantly selected as new cultivars are released (Chen et al., 2013;

de Vallavieille -Pope et al., 2012). The 2010-2011 Middle Eastern Pst population was diverse for 

the pathotypes with ten pathotypes identified among 54 Lebanese and Syrian isolates. All the 

pathotypes detected in this study have the same common virulences Vr2, Vr6, Vr7, Vr9, and most 

of them have in addition to Vr25, Vr27 or VrA. The virulences Vr1, Vr4, Vr5, Vr10, Vr15, Vr32

and VrSD were absent in the region, and Vr3 detected only once. These virulence profiles were

similar to those of PstS1/S2: Vr2, 6, 7, 8, 9, described by Milus et al. (2006) and Hovmøller et 

al. (2008). However Vr8, described in the PstS2 aggressive strain and in Mediterranean isolates 

6E16 (PstS3) (Nazari et al., 2008; Mboup et al., 2012 ) was not fixed in this Middle East 

population. The virulence profiles observed, characterized by the absence of Vr3 , VrSD

and Vr4 was common in this part of world  (Bahri et al., 2009)although these virulences were fixed 

in the North-West European populations described at the same period (de Vallavieille -Pope et al.,

2012). This study concluded that the region was characterized by a richness of pathotypes as 

shown in previous studies (Yahayoui et al., 2002; Bahri et al., 2009). The aggressive PstS2 strain 

already present in the Middle East in 2004-2005 and prevalent in the 2004-2005 Mediterranean 
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region (Bahri et al., 2009) was dominant in the studied population. The dominant PstS2

strain found in Lebanon and Syria comprised several variants, having all the fixed virulences

Vr2, 6, 7, 9, oftenly combined with Vr17, Vr25, Vr27, VrA or VrSP .

This high pathotype diversity can be analysed considering the different wheat varieties 

and landraces which were grown in the area. The prevalent virulences in the CWANA region 

were coherent with the postulated Yr-genes. The resistance genes Yr6 +, Yr7 +, and Yr27 were 

the most frequently postulated genes on a subset of ICARDA materials, and the Lebanese 

varieties. The virulences Vr6 and Vr7 were fixed in all pathotypes tested and Vr27 was highly 

frequent (98%). Virulences to Yr8 and Yr17 occurred at intermediate frequencies (55% and 26%, 

respectively). Yr8 was absent and Yr17 postulated only in four elite lines, was rare in the 

ICARDA and Lebanese germplasm, although Yr17 was frequent in the North Western European 

germplasm (Bayles et al., 2000). The widely deployed Yr3 and Yr4 in the North Western 

European varieties (de Vallavieille -Pope et al., 2012) were postulated within the Middle Eastern 

germplasm although at low frequency, and were not overcome there. Indeed the detected 

virulences corresponded to resistance genes deployed in the region, suggesting strong host 

selection pressure (McDonald and Linde, 2002). Therefore, adopting integrated disease 

management by diversifying cultivars with different resistance genes could be a major strategy in 

preventing or at least slowing down the emergence and global spread of specific pathotypes by 

reducing the genetic uniformity of the host (de Vallavieille -Pope et al., 2012). 

The population was clonal as shown with 20 microsatellite markers. However the number 

of 50 MLGs detected were higher than in earlier described clonal populations, as  the 2004- 2005 

Mediterranean population (Bahri et al., 2009) and 1985-2000 North-West European population 

(Enjalbert et al., 2005). The 50 MLGs detected in the population were partitioned in two 

subpopulations closely related to the Mediterranean Middle East genetic group described by Ali 

et al. (2014b). The MLG-34 closely related to MLG-99 frequent in the PstS2 population 

described worldwide (Ali et al., 2014b) was dominant in the region. The dominant MLG-34 

corresponding to PstS2 was present in 60% of the Syrian samples and 22% of Lebanese ones.

The studied population was diversified for virulences and multilocus genotypes. Although 

virulences to the resistance genes Yr2, 6, 7, 8, 9 were characteristic of PstS2 (Milus et al., 2006; 
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 Hovmøller et al., 2011), variants were present with additional virulences to Yr27 (96%), 

Yr25 (98%), YrA (93%), Yr8 (53%), Yr17 (26%), YrSP (15%), or Yr3 (2%). 

These findings suggested that the strains were still evolving and emergence of new 

variants of the aggressive strains was still on-going with the five evolutionary forces, mutation, 

genetic drift, gene flow, reproduction/mating system, and selection in the highlight of climate 

change. 

 

Although the alternate host Berberis libanotica and Berberis cretica were present in the 

area (Tohmé and Tohmé, 2002), we did not detect any genetic recombination in the Lebanese 

and Syrian Pst population. Jin et al. (2010) and Rodriguez-Algaba et al. (2014) showed that 

Pst completed its sexual cycle on different species of Berberis sp. in laboratory controlled 

conditions but the role of the sexual cycle has not been shown under natural field conditions. 

In the Himalayan region of Pakistan, high genotypic diversity and Pst recombinant population 

structure across locations where Berberis sp. was present, were in favour of the existence of 

sexual reproduction in this region (Ali et al., 2014c). However this recombinant genetic structure 

was not detected in Lebanon in Syria although Berberis was present.  This corroborated the 

situation observed in the Pacific Northwest of the United States where Wang and Chen 

(2015) showed that there is no synchrony in the prevalence of susceptible leaves of Berberis and 

phenology of P. striiformis, i.e. the period when basidiospores are released. Furthermore, 

Kang et al. (2015) found very few Pst aecia on Berberis in China, although recombinant 

population was observed in Gansu area (Mboup et al., 2009). It would be interesting to lauch an 

extensive survey in the Berberis sp. zone plantations to study in details their role in the sexual 

phase in the Middle East and to find the appropriate timing for sampling. 

Based on the intergovernmental panel on climate change report (2007), it is now 

generally accepted that average temperatures are rising globally, with rates of change increasing 

towards the poles, and increasing average temperatures associated with more frequent extreme 

temperature events. To cope with the environmental conditions changes, living organisms, in 

order to persist, will need to migrate, tolerate or adapt to locally changed conditions 

(Chakraborty, 2013). Furthermore, pests and diseases may adapt to changing conditions, for 

example increasing the breadth of their temperature tolerance or shifting their temperature  
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optima. This last decade, epidemics have spread in areas considered so-far to be too 

warm for the pathogen, as south of the United States and Western Australia (Milus et al., 2009; 

Wellings, 2011). It was advocated that the PstS1/S2 strains adapted to warm temperature, first 

detected by Milus et al. (2006) in 2000 in the south of the United States, had migrated 

worldwide, and reached Australia in 2002 (Wellings, 2011), and then Europe and Asia 

(Hovmøller et al., 2011). The invasion by the clonal lineage PstS1/S2 was mainly responsible of 

the new epidemics under warmer climate. However, Loladze et al. (2014) did not show 

conclusive evidence for temperature adaptation within old and new invasive Pst Australian 

isolates. Another pathotype 6E16 (PstS3) originating from the Mediterranean area, found in 

south of France, earlier in the 1980s, was also able to develop at higher temperature than the 

Northern French pathotypes (Mboup et al., 2012). 

The question arose whether the aptitude of Pst to adapt to warm temperature was selected 

in rare genotypes and spread clonally through migration, or if this adaptation could be local, and 

found in different locations. To answer this question, the third chapter was designed and we have 

selected 26 Pst isolates from the Middle East, 13 from warm locations and 13 from cold 

locations. We have tested two major components of the infection cycle, the infection efficiency 

estimating the success of infection of the spores, and the latent period, estimating the duration of 

a generation, under two extreme cold and warm temperatures. We found variation within the 

Middle Eastern isolates for their response to temperature for both aggressiveness components, 

but we found no evidence of local adaptation to climatic conditions in infection efficiency and 

latent period which did not vary significantly between isolates originating from warm versus 

cold climates. However, isolates originating from cold climatic conditions, having been under a 

warm dew temperature for spore penetration, had longer latent period under the warm incubation 

regime than isolates originating from warm climatic conditions. Overall, warm dew temperatures 

retarded sporulation, but this effect was less marked for isolates from warm climates when 

incubated under warm conditions; the isolates from warm climates were not as much affected by 

warm dew temperatures for their infection cycle. The genetic group to which the isolates 

belonged, i.e. the aggressive PstS1/S2 versus other genetic groups, did not explain significant 

variation in infection efficiency. However for latent period, we found a significant interaction 

between genetic group and incubation temperature. The isolates identified as PstS2 sporulated 

more rapidly than did the other two groups at warm incubation temperatures, which supports the  
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idea that this genetic group is warm-adapted. The variation was independent of the 

categorization into new and old group; one Lebanese isolate from Stubbs’ collection sampled 

forty years ago, showed adaptation to high temperature and did not belong to the PstS2 

genotypes. 

We classified the 26 isolates into five groups. Group 5 with five isolates which were all 

from warm locations and PstS2 genotypes, had low infection efficiency at warm temperature 

20°C and short latent period, and was opposed to Group 1, which had high infection efficiency at 

20°C and long latent period. The other three groups were scattered between the groups 1 and 5. 

Group 4 was the closest to warm-adapted reference isolate included the isolates collected from 

below 1000 m. Group 2 was the closest to the cold adapted reference isolate having high 

infection efficiency at 5⁰C and comprising isolates from different origins. The adaptation to high 

temperature of the PstS2 and the other strains was thought to contribute to their prevalence in the 

warm climate of Middle East, however isolates less well adapted to high temperature were found 

in the region, therefore they were able to compete there. 

 

 The study of the Middle East Pst populations, which showed the dominance of PstS2 

strains in the region, emphasized the importance of invasive strains. Emergence and spread of 

new races were already reported the last decades worldwide (Ali et al., 2014b). The capacity of 

Pst uredospores to migrate for long distance gave them advantages in spreading invasive strains 

and resulting in high yield losses (Brown and Hovmøller, 2002; Hodson, 2011).  Already in the 

early 20th century, the introduction of Pst in North America was through migration from North 

West Europe (Carleton, 1915). The first Pst detection in Australia was reported in 1979 from 

Europe via human travel (Wellings et al., 1987). In addition, Pst was reported in 1996 in South 

Africa from an invasive race closely related to Mediterranean-Central Asian population (Boshoff 

et al., 2002). The detection of closely related pathotypes in 2000 in North America and in 

Western Australia in 2002 urged to put endeavors together to assess the international Pst spread. 

The strain PstS1 was common in America and PstS2 was common in Eritrea (Red Sea area), 

West and Central Asia (Hovmøller et al., 2008), and Middle East and Mediterranean region 

(Bahri et al., 2009). Similarly, Enjalbert et al. (2005) reported in France less aggressive isolates 

(6E16, PstS3) than PstS1/PstS2 originating from the Mediterranean area (Ali et al., 2014b). 

More recently, in 2006, a new Triticale-aggressive race emerged in Scandinavia causing 
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 epidemic and yield losses reached up to 100% mainly in organic fields (Hovmøller et al., 2015). 

Since 2011, new invasive races occurred in Europe, the Kranich and Warrior races, which have 

replaced the existing North West European populations since 2011 (Hubbard et al., 2015; 

Hovmøller et al., 2015). The race Warrior reached Morocco and Tunisia in 2013-2014 season 

causing epidemics in wheat fields (www.wheatrust.org). New invasions and rapid shift were 

observed in Pst population at the regional, national, and international level. The breeders have 

more challenges ahead to develop new varieties possessing broad range of resistance for the new 

Pst races and their variants.  

 

Conclusion 

The present study would provide us with new information generated from the three chapters. The 

information generated from gene postulation would be very interesting for the breeders in their 

breeding programs. The second chapter provided us with the prevalent pathotypes in Lebanon 

and Syria and how the population was evolving in term of virulence and characterizing it with a 

high number of pathotypes. Based on this, this would give a good idea about the gene 

deployment by breeders and farmers avoiding planting varieties carrying the same resistance 

gene over large areas and escaping the boom and bust cycles. The information from our study 

will help the breeders to understand Pst population biology, and eventually to use a better 

resistance genes deployment for a better management for yellow rust.  
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