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La filosofia e scritta in questo grandissimo libro che continuamente ci sta
aperto innanzi a gli occhi (io dico l'universo), ma non si puo intendere se
prima non s’tmpara a intender la lingua, e conoscer i caratteri, ne quali é
scritto. Eqli é scritto in lingua matematica, e @ caratteri son triangoli, cerchi,
ed altre figure geometriche, senza i quali mezzi € impossibile a intenderne
umanamente parola; senza questi € un aggirarsi vanamente per un 0Scuro
laberinto.

Galileo Galilei G. Galilei, Il Saggiatore, VI, 232
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Abstract

On Quantization and Sporadic Measurements in Control Systems:

Stability, Stabilization, and Observer Design
by

Francesco Ferrante

In this dissertation, two fundamental aspects arising in modern engineered control systems
will be addressed: On the one hand, the presence of quantization in standard control loops.
On the other hand, the state estimation in the presence of sporadic available measurements.
These two aspects are addressed in two different parts. One of the main feature of this
thesis consists of striving to derive computer-aided tools for the solution to the considered

problems. Specifically, to meet this requirement, we revolve on a linear matrix inequalities
(LMIs) approach.

In the first part, we propose a set of LMI-based constructive Lyapunov-based tools for
the analysis and the design of quantized control systems involving linear plants and linear
controllers. The entire treatment revolves on the use of differential inclusions as modeling

tools and on stabilization of compact sets as a stability notion.

In the second part of the thesis, inspired by some of the classical observation schemes
presented in the literature of sampled-data observers, we propose two observers to exponen-
tially estimate the state of a linear system in the presence of sporadic measurements. In
addition, building upon one of the two observers, an observer-based controller architecture
is proposed to asymptotically stabilize a linear plant in the presence of sporadic sensing and

actuation.
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Résumé

Sur la quantification et 'intermittence de mesures dans les systemes

de commande: stabilité, stabilisation, et estimation d’état.
par

Francesco Ferrante

Dans cette these, nous aborderons deux aspects fondamentaux qui se posent dans les systemes
de commande modernes du fait de l'interaction entre des processus en temps continu et des
dispositifs numériques: la synthese de lois de commande en présence de quantificateurs et
I’estimation d’état en présence de mesures sporadiques. Une des caractéristiques principales
de cette these consiste également a proposer des méthodes constructives pour résoudre les
problemes envisagés. Plus précisément, pour répondre a cette exigence, nous allons nous

tourner vers une approche basée sur les inégalités matricielles linéaires (LMI).

Dans la premiere partie de la these, nous proposons un ensemble d’outils constructifs basés
sur une approche LMI, pour 'analyse et la conception de systéemes de commande quantifiés
impliquant des modeles et des correcteurs linéaires. L’approche est basée sur I'utilisation
des inclusions différentielles qui permet de modéliser finement le comportement de la boucle

fermée et ainsi d’obtenir des résultats intéressants.

Dans la seconde partie de la these, inspirés par certains schémas d’observation classiques
présentés dans la littérature, nous proposons deux observateurs pour I'estimation de 1’état
d’un systeme linéaire en présence de mesures sporadiques, c’est-a-dire prenant en compte la
nature discrete des mesures disponibles. De plus, en se basant sur une des deux solutions
présentées, une architecture de commande basée observateur est proposée afin de stabiliser
asymptotiquement un systeme linéaire en présence a la fois de mesures sporadiques et d'un

acces intermittent a l'entrée de commande du systeme.
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GENERAL INTRODUCTION

In this dissertation, two fundamental aspects arising in modern engineered control systems
will be addressed: On the one hand, the presence of quantization in standard control loops.
On the other hand, the state estimation in the presence of sporadic available measurements.

These two aspects are addressed in two different parts.

One of the main feature of this thesis consists of striving to derive computer-aided tools
for the solution to the considered problems. Specifically, to meet this requirement, we
revolve on a linear matrix inequalities (LMIs) approach. The spirit of such an approach
consists of formulating the considered problem directly in a form that is convenient from a
numerical standpoint, instead to derive closed form solutions, which can be a cumbersome,
often impossible, challenge. Then, thanks to the availability of efficient algorithms for the
solutions of LMIs, the solution to the considered problem can be derived through efficient

computer-aided tools; see, e.g., [126] for an interesting survey on this aspect.

The contents of the two parts composing this thesis are briefly illustrated below.

Quantization in control system

Most of the modern engineered systems are composed by continuous-time plants interacting
with digital devices and/or data networks. In all these settings, quantization is an always
present phenomenon, e.g., [17, 21, 32, 35, 51, 84, 116, 117] just to cite a few.

In this first part of this thesis, we propose a set of LMI-based constructive Lyapunov-
based tools for the analysis and the design of quantized control systems involving linear plants
and linear controllers. The entire treatment revolves on the use of differential inclusions as

modeling tools, and on stabilization of compact sets as a stability notion.



State estimation and observer-based control in the pres-

ence of sporadic measurements

In real-world engineering applications, assuming to continuously measuring the output of
a given plant is undoubtedly unrealistic. This practical needed has brought to life a new
research area aimed at developing observer schemes accounting the discrete nature of the

available measurements; see, e.g, [1, 4, 6, 74, 92].

In this part of this thesis, inspired by some of the classical observation schemes presented
in the literature of sampled-data observers, we propose two observers to exponentially es-
timate the state of a linear system in the presence of sporadic measurements. In addition,
building upon one of the two observers, an observer-based controller architecture is proposed
to asymptotically stabilize a linear plant in the presence of sporadic measurements and in-
termittent input access. The design of such a controller is streamlined by the derivation of

a separation principle for the considered architecture.

A unique feature of the proposed approach consists of hinging upon the hybrid systems
framework proposed in [56]. On the one hand, by following this approach a completely
novel modeling of the considered observers is provided, as well as the derivation of novel
systematic design strategies is illustrated. On the other hand, the huge flexibility provided
by the framework in [56] allows to envision very appealing extensions of the results presented

in this part, giving rise to novel lines of research.

II



Part 1

Quantization in Control Systems






INTRODUCTION

General Overview and some Historical Aspects

Recently technology enhancements have enabled the conception of a new generation of engi-
neered systems integrating physical interactions, computational and communication abilities.
The rapid spreading of this kind of systems stems from the worthy advantages in scalability,
ease of maintenance and high computational resources entailed by the use of cutting-edge
technology solutions in real-world applications, as transportation systems, automotive, au-
tonomous robotics, energy delivery systems etc. This new trend has having a strong impact
also in modern control systems, that are nowadays built via the adoption of digital con-
trollers and digital instrumentation [93]. Typically physical systems evolve continuously as
the ordinary time flows and are characterized by variables that take values in uncountable
sets. Instead, digital devices evolves in a discrete fashion and their evolution is characterized
by variables taking values in countable set. When a physical system interacts with a digital
one, side effects as time-delays, asynchronism, quantization, are unavoidable issues that can
often turn into an overblown performance degradation, like the appearing of limit cycles or

chaotic phenomena or even instability of the closed-loop system.

Concerning the effect of quantization in control systems, since such a phenomenon is
almost pervasive in modern engineered control systems, its study has been extensively at-
tracted researchers over the last years; see, e.g., [17, 21, 32, 35, 51, 84, 116, 117] just to cite

a few.

The negative impact of quantization on control systems seems to be already known in
the late 50’s, an attempt to tackle with this phenomenon can be traced back in the work of
Kalman featured in [70]. In this paper, quantization was essentially addressed via stochastic
tools. In fact, until the late 80’s, the common trend considered by researchers in addressing

quantization in control systems consisted to look at quantization as a phenomenon inducing
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a non deterministic deviation of the quantized control system from its nominal (quantiza-
tion free) behavior. Therefore, the standard custom was designing controllers via standard
techniques while overlooking quantization. Then, to somehow to capture the real behavior
of the closed-loop suitable stochastic characterizations of the quantization error were con-
sidered; see [6]. Clearly this approach can be effective whenever the level of specification
is rather modest and the quantization somehow restrained. Therefore, since digital devices
at that time were becoming pervasive in control systems and at the same time the level
of performances required was continuously increasing, new systematical tools to deal with
quantized control systems in their actual nature were necessary. In the late 80’s, the works
of Delchamps [34, 35|, and to some extent the one of Miller et al. [89], marked a water-
shed in the literature of quantized control systems proposing an alternative approach to deal
with stability and stabilization in quantized control systems. Such an approach consists of
modeling the quantization phenomenon through a static nonlinear function, the quantizer,
mapping a real variable into a variable belonging to a countable set O, i.e., q: R — Q.
The methodology proposed by Delchamps et al. ([34, 35]) is relevant since it has brought
to life a new research area founded on the tools issued from the nonlinear control theory for
the study of quantized control systems. From then, the rapid development of the control
systems science in the setting of quantized control has rapidly given rise to different ap-
proaches and tools to deal with quantization in control systems. Essentially such approaches
share a common fundamental idea that builds on a robust control point of view. Namely,
the closed-loop system is modeled as a nominal system perturbed by a (potentially locally)
bounded perturbation, i.e., the quantization error. First attempts resting on this approach
for the special case of SISO systems can be found in [89]. In particular, in [89] the authors
attack the problem of having quantized measurements in a linear control system by first
bounding the quantization error and then by pursuing a Lyapunov approach to establish
ultimate boundedness. One of the main important feature of this paper consists of point-
ing out that asymptotic stability of the origin of quantized control systems can be unlikely
achieved due to finite precision information provided by quantizers. Later on, this general
approach has been extended in [17] to general linear systems with quantized measurements,
in [82] to nonlinear systems in the presence of quantized control inputs or quantized mea-
surements, while in [83] an observer-based controller architecture is presented to build an
output feedback controller in the presence of quantized measurements. The key idea adopted
by the authors in all these latter publications consists of addressing quantized control sys-
tem via the input-to-state stability notion due to Sontag; see, e.g., [114]. In particular, the
authors shown that input-to-state stable control systems have the needed robustness to tol-
erate quantization. We emphasize that in all these works, the authors besides pointing out
the relevance of input-to-state stability in quantized control systems, by relying on a more
sophisticated type of quantizer allowing the possibility to dynamically scaling the quanti-
zation error (called in general dynamic quantizer), provided novel control policies to ensure
asymptotic stabilization rather than ultimate boundedness. This approach has given rise to
a complete novel line of research more focused on an information point of view, that is aimed

at characterizing the quantity of information actually needed to achieve stabilization of a
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given plant depending on its open-loop behavior; see, e.g., [121] and the references therein.
Subsequently, in [21] the authors by restricting the attention to logarithmic quantization
and by pursuing a sector bound approach relax the input-to-state stability requirement to
achieve stabilization of nonlinear systems with input quantization, at least for the case of
logarithmic quantization. This fact of encapsulating quantization error into a sector before
being used in [21] was already considered in [51], for the case of discrete-time linear systems.
These latter approaches show that quantization can be effectively faced by the use of robust
control tools as the sector bound approach. The main effort made in these latter works is
concerned to achieve asymptotic stability of the origin via a quantizer as coarse as possible.
On the other hand, the asymptotic stabilization of the origin can be achieved in general
only when the considered quantizer is infinitely precise close to the origin, as it is for the
case of the logarithmic quantizer. However, in some real-world settings the availability of
such a kind of quantizers cannot be considered due to technological or optimization con-
straints. This consideration originated a complete analysis in [21, 36] of the case of finite
symbols logarithmic quantizers. Specifically, in [21] the authors shown that in such a case
under analogous conditions as in the case of the genuine logarithmic quantizer, semi-global
practical stabilization can be easily achieved in the presence of a finite number of symbols,

at least for the case on input quantization.

Another interesting and fundamental aspect linked to quantized control systems regards
the issues related to discontinuous behaviors induced by quantizers in standard control loops.
Indeed, the fact that quantizers map uncountable sets into countable ones implies that
quantizers are essentially discontinuous mappings. This fact has a serious impact when
quantizers interact with dynamical systems. Indeed, it is well known that discontinuities
give rise to serious problems when coupled with differential or difference equations [22, 31,
46, 75, 78]. Such problems range from questions related to the existence and the nature
of the solutions to the resulting closed-loop system (in continuous-time dynamical systems)
to robustness issues of the closed-loop system with respect to small perturbation and/or
measurement noise (continuous-time and discrete-time dynamical systems). The serious
questions arising from discontinuities in differential equations were already known in the
late 60’s by the community working on differential equations, as testified by the work of

Héjek in 1979 [59] that offers an interesting survey on this appealing topic.

Later on, the increasing number of real applications concerning discontinuous differential
equations has notably boosted the research in this area. Such an intense research has led
to a comprehensive and solid theory to address discontinuous right-hand side differential
equations, important results and contributions in this field can be found in [10, 46, 77| just to
cite a few, while an interesting and with a modern flavor survey on discontinuous dynamical
systems is contained in [31]. We emphasize that the huge development of the modern theory
of discontinuous dynamical systems have been made possible by the development of the
theory of differential inclusions; see, e.g., [7, 28], which are the main tool, although not the

unique, to address discontinuous dynamical systems.

Despite the deep knowledge available nowadays about discontinuous dynamical systems,
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surprisingly no much work in that setting has been done in the literature to deal with
quantized control systems. Building on the tools originally proposed in [77], a first work
offering a treatment of quantized continuous-time control systems seems to appear in [21].

Further results have been presented later in [22].

In our opinion, the main reason behind this lack of contributions looking at quantized sys-
tems as discontinuous dynamical systems is mainly due to the fact that the greatest number
of publications within this field deal with discrete-time systems rather than continuous-time
ones. In the case of discrete-time systems, certainly the concerns related to the existence of
solution are no longer a problem. Nonetheless, discontinuities in discrete-time systems may
jeopardize the robustness of the resulting closed-loop system. Interesting examples about
this aspect are shown, e.g., in [75, 78]. On the one hand, pursuing a robust control approach,
as the sector bound approach discussed above, generally prevents from running into poorly
robust control systems even if the discontinuity is not directly accounted. On the other
hand, such a discontinuity may give rise to behaviors for which a traditional analysis cannot

provide any precise justification.

Nevertheless, in modern engineered systems the classical paradigm of considering quanti-
zation only paired with discrete-time systems needs to be reconsidered. Many examples can
be found in which continuous-time dynamical systems interact with quantized variables; see,

e.g., [22]. Thus, a proper treatment of the situations falling into this context is a real need.

Contribution

The contribution we offer in this first part of this dissertation aims at bridging the gap left
by the existing literature concerning the (almost) lack of constructive methods for quantized
linear control systems, with a special focus on uniform quantization. Specifically, we restrict
our interest to the class of continuous-time linear time-invariant systems. The issues related
in having closed-loop systems modeled via discontinuous right-hand side differential equa-
tions will be faced via the proper tools proposed by literature, likewise to [21]. In particular,
inspired by the literature of saturating systems, we provide constructive LMI-based con-
ditions for the stability analysis and the controller synthesis encompassing several settings
naturally arising in real-world applications. Such conditions enable to couple optimization
aspects with the considered problems, in a similar, although dual, fashion to the case of
saturated closed-loop systems. The use of optimization as a tool for conservatism reduction

and closed-loop behavior improvement are the main aims of this thesis.

The main feature of the methodology we propose in this dissertation consists of merging
together aspects arising from discontinuous-right hand side differential equations with a

constructive approach.
The remainder of this part is organized as follows.

e Chapter 1 illustrates the modeling framework adopted in this dissertation to deal
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with quantized control systems, with a special emphasis on linear control systems and
uniform quantization. Moreover, the technical foundations underlying the pursued

approach are thoroughly illustrated and commented within this chapter.

e Chapter 2 deals with static state feedback control for linear systems in the presence of
uniform quantization. In this setting, constructive conditions for the stability analysis
and the controller design are provided. Some of the results presented in this chapter
can be found in [40].

e Chapter 3 deals with dynamic output feedback control of linear systems in the presence
of uniform quantization. Even in this case, the proposed approach is constructive and
strives for obtaining tractable conditions from a numerical standpoint. Some of the

results presented in this chapter are included in [37, 38].

Numerical solutions to LMIs throughout this dissertation are obtained via YALMIP [87] and
coded in Matlab.
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QUANTIZED CONTROL SYSTEMS: MODELING AND
TECHNICAL FOUNDATIONS

“What is now proved was once only imagined.”

— William Blake

1.1 Introduction

N this chapter, we present the quantization phenomenon in its general form, and the
I problems arising from the presence of quantizers in standard control loops. Then, the
general aspects of quantization in control systems are sharpened for the case of linear control
systems subject to uniform quantization. In this context, we illustrate some technical results,

that will be used in the sequel of this dissertation.

1.2 Quantized Systems: Modeling

Following the general approach proposed in [35], in this dissertation, as quantizer, we mean

a function q that maps the Euclidean space R’ into a countable set Q C RY, that is:

q: Ri=Q (1.1)
x — qx).
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In this part of this dissertation, we are interested in analyzing the impact of quantization on

standard control systems. Specifically, let us consider the following nonlinear plant

{x' = f(z,u)

1.2
y = h(z) 2

where x € R" is the state, u € R™ is the control input and y € RP is the plant output, that
in some cases can also coincide with the whole state vector z. f: R®* — R" and h: R® — RP

are two given functions.

Suppose that the system (1.2) is controlled through a feedback controller, whose input
coincides with the measure of the plant output y, and generates a control signal u,. which
feeds (1.2). On the other hand, in real implementations, the plant and the controller are
not directly connected together. Indeed, measurements of the plant output are gathered via
physical sensors. In modern applications, often such sensors have a finite precision, e.g.,
optical encoders, digital sensors, etc. In all these situations, the measured plant output sent
to the controller is represented by means of a discrete set of values i.e., is quantized. In
the sequel, we will denote this case as sensor quantization. Fully analogous considerations
hold for the input channel. In particular, the adoption of finite-resolution actuators, (as,
e.g., stepper motors), or finite precision realization of the controller entails a quantization
of the control signal. In the sequel, we will denote this case as actuator quantization. More-
over, actuator and sensor quantization may also occur simultaneously. For instance, this
situation occur in distributed control systems, where the physical interconnection between
the controller and the plant is ensured by a finite-bandwidth communication channel; see
Figure 1.1. Indeed, in such a situation, the communication channel prevents from sending
infinite precision data from one end to the other; see [22, 62]. Thus, in these contexts,
building from (1.2), the open-loop plant model to be considered for the analysis, but even

for the design, of the control system should be as follows

T = f(x,u)
u = q,(uc) (1.3)
Ym = q,(h(z))

where y,,, and u, are, respectively, the measured output and the signal sent to the plant.

Remark 1.1. In the proposed model (1.3), the dynamics of sensors and actuators do not
directly appear. On the other hand, such dynamics can either be neglected, whenever they
are much more faster of those of the plant, or be incorporated either in the plant model,
or in the controller model. Thus, the modeling framework given in (1.3) is without loss of

generality.

Concerning the controller structure, depending on the availability of plant state, we con-

sider two classes of controllers.
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(z) Controller

[ 3

Communication Channel

Figure 1.1: A networked control system. Both the controller and the plant communicate
with the channel via a finite data rate.

Static State Feedback Controller

Whenever the plant state x is fully accessible, that is h = id, we will adopt a static state
feedback control law. In particular, in this setting, three situations can occur. In the first
case, the plant state is assumed to be measured directly, that is y,, = y = x, and only the
control input is subject to quantization. In this case, u = q,(k(z)), where k: R" — R™ is a
given function. In the second case, we assume that only the measured state x is quantized,
which yields u = u. = x(q,(7)). Finally, in the third case, we assume that both the measured
state and the control input are quantized, that is u = q,,(x(q,(2))). In this latter case, that

encompasses the two others, the closed-loop system reads

&= f(x,u)
0 = 4, () (1.4

ue = £(q, (7))

Dynamic Output Feedback Controller

Whenever, the plant state is not fully accessible, we adopt a dynamic output feedback control
law defined as follows

{ e = 1(e, Yon) (L5)
Ue = w(Ze, Yum)

where z. € R™ is the controller state, and n: R" x RP — R", w: R" x RP — R™ are
two given functions. In this case, three different scenarios can be considered. In the first
one, the plant output y is quantized, namely the measured output effectively accessible is
Ym = qy(y). In the second one, the control input w is quantized, namely u = q,(u.), while

in the third one both the plant output, and the control input are quantized. In this latter
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case, that encompasses the two others, the closed-loop system reads

T = f(x,u)

e = n(Te, Yom)

Ue = W(Te, Ym) (1.6)
u = q,(uc)

Ym = q,(h(z))

1.2.1 Discontinuous Dynamical Systems

From the general representation given by (1.1), it turns out that a quantizer is a function
that maps the Euclidean space into a countable set. This fact implies that, whatever is
the way adopted to realize such a mapping, the resulting map is discontinuous. Recall that
any continuous function maps the Euclidean space, which is connected, into a connected
set, (see, e.g., [107]), then in general uncountable'. Therefore, in any situation of those
presented above, the closed-loop system is described by a discontinuous-right hand side
differential equation. Therefore, there are no guarantees about the existence of classical
solutions to the closed-loop system, i.e., everywhere differentiable functions which satisfy
the dynamics of the closed-loop system at each point in their domain; see [46]. To overcome
this drawback, more general notions of solution are proposed in the literature. In particular,
in this dissertation we will consider the notion of solution due to Carathéodory; see, e.g.,
[22, 31], and the notion due to Krasovskii; [77]. In the sequel, such notions are thoroughly
presented and illustrated in some examples. In particular, we introduce them for a dynamical
system in the following form.

= X(x) (1.7)

where x € R", and X: R" — R".
Definition 1.1 (Carathéodory solution, [31]). Let I C Rso be an interval. A function

¢: I — R™ is a Carathéodory solution to (1.7) if ¢ is absolutely continuous on I, and?

o(t) = X (p(t)) foralmostall ¢ e L.

The above definition does not insist both on the differentiability of ¢, and on the fact that
(1.7) needs to be satisfied on the whole domain of the solution. This weakening with respect
to the classical notion given by Peano ([98]) allows to deal with a wider class of situations

often occurring in control problems.

To delve into this issue, let us consider the following example.

!The only countable connected sets are the singletons. But this case is not of interest in our setting
2Let J C R be a given interval, and f: J — R"™ be a given function, the derivatives of f are considered
one-sided derivatives at the end points of J.
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Example 1.1. Consider the system (1.7) for which

1 x=0
X(z) = (1.8)
—1 elsewhere.

Obviously, the system defined by (1.7)-(1.8) does not admit any solution ¢ in the sense given
by Peano with ¢(0) = 0, i.e., a derivable function satisfying (1.7) for each ¢ € dom ¢. Indeed,
let us assume that there exists such a solution ¢ defined over [0, T, for some T" € Rx(. Then,
since it needs to satisfy ¢(0) = 1, and being ¢ derivable, there would exist a small enough
positive 7", such that for every t € [0,7"], ¢(t) > 0, giving ¢(t) > 0 for t € (0,7"]. However,
this contradicts the fact that ¢ satisfies (1.7)-(1.8) over [0, 7.

In the above example, the issue preventing from the existence of a classical solution ¢,
with ¢(0) = 0, stems from the fact that the discontinuity of the right-hand side imposes
a constraint that does not allow ¢ to flow away from zero. Obviously, this drawback only
occurs whenever a solution comes across to the origin. In particular, completely different
conclusions can be drawn by following the notion of solution due to Carathéodory. This fact
is shown in the following example.

Example 1.2. Let us consider the system defined by (1.7)-(1.8). We want to investigate
the existence of Carathéodory solutions, ¢, with ¢(0) = 0, to such a system. According to
Definition 1.1, for every T' > 0, ¢(t) = —t is a Carathéodory solution for (1.7)-(1.8), Indeed,
such a solution is such that ¢(t) = X (p(t)), for every t € (0,T]. Namely, ¢ does not satisfy
the related differential equation in ¢ = 0, i.e., it satisfies (1.7)-(1.8) for almost all ¢ € [0, T].

The above two examples have the merit to show how via a more general notion of so-
lution, one may overcome drawbacks arising from discontinuous right-hand side differential
equations. However, in some cases, the notion of solution due to Carathéodory is not weak
enough to guarantee the existence of solutions. To understand the relevance of this issue, let
us consider the following example, which situates more in the context of this dissertation.

Example 1.3. Consider the following given plant with quantized actuator

{ U = q(uc>

Specifically, q: u. — sign(u.), for which we consider sign(0) = 1. That is q maps the
Euclidean space into {—1,1}.

Let us suppose that we want to stabilize the above plant via the following static state

feedback controller u. = —x. Then, the closed-loop system reads
& = —sign(z). (1.9)

Clearly, the closed-loop system does not admit any Carathéodory solution ¢ with ¢(0) = 0.
Indeed, by contradiction, let ¢ be a Carathéodory solution to (1.9) with ¢(0) = 0. For
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every = € R, define the function W(z) = %xQ. Then, since ¢ is absolutely continuous on its
domain, and W (z) is continuously differentiable on R, the function W (p(t)) is absolutely
continuous on dom . Hence, its derivative exists for almost all ¢ € dom ¢, and whenever it
exists I (ot
W) — o) sien(p() = (o).

Thus, since W (¢(t)) is absolutely continuous, then

W(gp(t))—/tdwiis( ds = — /|90 Jlds Vi€ dome

0
where the above integral needs to be intended as a Lebesgue integral; see, e.g., [107].

Now, as W (x) is nonnegative for every x € R, then for almost all ¢ € dom ¢, it needs to
be ¢(t) = 0. But, such a function is not a Carathéodory solution to (1.9). Indeed, suppose
that ¢ is a solution to (1.9), and that it is equal to zero for almost all ¢ € dom ¢. Then, it
follows that,

t
o(t) = —/ sign(p(s))ds = —t  Vt € domg
0
but this contradicts the fact that ¢ is equal to zero for almost all ¢ € dom ¢.

The above example shows that unfortunately the notion of solution due to Carathéodory
is still not enough to guarantee the existence of solutions for a given discontinuous right-
hand side differential equation. To overcome this problem, in the literature several notions of
solution are proposed; see, e.g., [8, 46, 77, 111]. In this dissertation, we embrace the notion
of solution due to Krasovskii [77].

Definition 1.2 (Krasovskii solution [59]). For each x € R", let us define the following
set-valued mapping
K[X](z) = () coX (z + 0B) (1.10)

>0
where B is the closed unitary ball in R™. A function ¢: I — R", with I C R is a Krasovskii

solution to (1.7) if I is an interval, ¢ is absolutely continuous on I, and

o(t) € K[X](p(t)) foralmostall ¢ e L.

In this dissertation, for any function X, we will refer to the set-valued mapping [ X](x)
as Krasovskii regularization of X (this terminology is proposed in [56]).
Remark 1.2. Notice that, the Krasovskii regularization of a locally bounded function
X:R" — R" has some interesting properties as set-valued mapping. In particular, by
definition of the Krasovskii regularization, it follows that for each x € R", K[X](z) is con-
vex, dom KC[X] = R™, and according to [56, Lemma 5.16] K[X] is outer semicontinuous. In
addition, local boundedness of X yields local boundedness of K[X]. These properties will

be of interest in the sequel of this dissertation.

Three main reasons encourage to choice this kind of notion in control problems. The first

one is that Krasovskii solutions exist under very mild requirements, (below a formal result
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concerning existence of Krasovskii solutions is given). The second one is that, whenever
they exist, Carathéodory solutions are Krasovskii solutions. Then, any conclusion drawn on
Krasovskii solutions also holds for Carathéodory solutions. The third one is that, as shown
in [59, Corollary 5.6.], (and also more recently in [56, Theorem 4.3.]), Krasovskii solutions
coincide with Hermes solutions, which are defined as follows

Definition 1.3 (Hermes solutions [59]). A function ¢4 is a Hermes solution to (1.7) on a
compact interval J C R, if there exist a sequence of measurable functions {py}?, defined
on J, and a sequence of functions {¢x}7°, defined on J, such that ¢ is a Carathéodory
solution to ¢ = X (¢r + pr), the sequence {px}32; converges uniformly to the zero function

on J, and ¢ converges uniformly to ¢4 on J.

The notion of Hermes solutions allows to capture the effect of arbitrarily small state
perturbations on the solutions to (1.7). Such perturbations may represent actuation dis-
turbances, measurement noises, or modeling errors. Thus, this fact provides a strong jus-
tification fostering the adoption of Krasovskii (Hermes) solutions in control problems. The
reader may consult [56, Example 4.1.] for a interesting example showing connections between
Krasovskii solutions and Hermes solutions, in a case similar to Example 1.2. Concerning the
existence of Krasovskii solutions, let us consider the following result given, e.g., in [23, 56],
and which is direct consequence of general results on differential inclusions presented in [7].
Such a result uses the notion of locally bounded function.

Definition 1.4 ([30]). A function f: S is locally bounded if for every s € S there exists a
neighborhood B of s, such that f(B) is bounded.

Theorem 1.1. Let zyp € R™. If X is locally bounded, then there exists at least a Krasovskii
solution ¢ to (1.7), such that ¢(0) = xq.

To exploit the notion of solution due to Krasovskii, one needs to compute the Krasovskii
regularization of the function X, which in general is a nontrivial task. To simplify such a
task, we illustrate below some properties of the Krasovskii regularization for a given function
X. Such properties were originally proposed for the Filippov regularization in [97], and then
extended to the Krasovskii regularization in [23].

Proposition 1.1.
(i) If X: R% — R® 4s continuous at x € R, then K[X](z) = {X(z)}

(i) Given two locally bounded functions X1, Xo: R% — R® | then K[ X1+ X5](x) C K[X1](2)+
K[X5](2). Moreover, if either X1 or Xy are continuous at x € R, then equality holds.

(iii) Given two locally bounded functions X;: R — R, and Xy: RM — RBx2 (X,
is a matriz valued function). If Xy is continuous at x € R, then K[X2X,|(z) =
Xo(2)K[X1](x); where for every x € R, Xo X (x) == Xo(x) X (2).

Moreover, as follows, we propose another result, that will be of interest in the sequel.
Such a result is somehow derived from [97].
Proposition 1.2. Let X;: R% — R be a locally bounded function, and X,: R — R4 ¢
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continuous function. Then, for each x € R,

KX, 0 Xo)(x) C K[X1](Xa()). (1.11)

Proof. First of all, for each x € R®, let us define the set?
L(z) = {lim X; o Xy(23)|2, — 2} C R?

where x, is any sequence converging to . Since X; o X5 is locally bounded, according to [9,
Lemma 1], it turns out that for every z € R®, K[X; o X5](x) = co L(x). For each x € R,
define the set

P(z) = {lim X, (pi)|pr — Xao(2)} C R®

where py is any sequence converging to Xo(z). Pick any [ € L(z), by definition, there
exists a sequence ry — x, such that [ = lim X; o Xy(xg). For any k£ € N, define the
sequence py, = Xo(xy), then I = lim X;(pg). On the other hand, since X5 is continuous, then
Pr — Xo(z), which implies that [ € P(x). Since this property holds for any [ € L(x), it
follows that, for each x € R,

L(z) CP(x)

Therefore, taking the convex-hull of both sides of the above relation and recalling that for
each z € R
K[X1](Xa(x)) = coP(x)

establishes the result. |
Remark 1.3. Notice that showing the complementary inclusion to (1.11) requires additional

assumptions on the function Xs. In particular, the equality can be established requiring that
X, is smooth and that for each z € R® rank VX, () = £1; see [97].

Another result, still derived from [97], is given next. Such a result is useful to address
decentralized discontinuous functions, often occurring in control problems.
Proposition 1.3. For each i = 1,2,... 0, let X;: R" — R™ be locally bounded functions.

Let, for each x € szl R™
¢

Y(z) = X X;(x;).

i=1

Then, for each x € szl R™ | the following identify holds

KIY (@) = X KX (). (1.12)

Proof. For notation simplicity, we prove the above result for ¢/ = 2, the extension to the

3This notation is inherited by the seminal work of Paden and Sastry [97] presenting calculation rules for
the Filippov regularization.
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general case is straightforward. First of all, for each x € R™ x R", let us define the set
L(z)={limY (x)|ry — x} CR™ x R™

where zj is any sequence converging to x. Since Y is locally bounded, according to |9,
Lemma 1], it turns out that for every x = (x1,25) € R™ x R"2,

K[Y](z) = co L(x).
We want to prove that

{im X (y)|lye — 1} x {lim Xo(z) |2 — 22} C L(x)

where y, and z, are any sequences converging, respectively, to z; and x,. To this aim,
for each x € R™ x R™, pick w € H(z). By definition, there exist two sequences yy, 2

converging, respectively, to x1, zo, such that
w = (lim X (yg), lim X5(2y)).

Define the sequence zj, = (Y., 2x), and notice that xy — x. Therefore, since w = lim Y (),
it follows that w € L(x). Thus, since the latter construction holds for every w € H(x), it
follows that for each x € R" x R"?

H(z) C L().

Now we want to prove the complementary inclusion. To this end, for each x € R™ x R"2,
pick w € L(z). Then, by definition, there exists a sequence x converging to x, such that
w = lim Y (). Split such a sequence with respect to its components, i.e., 25 = (yg, 2x). By
the definition of Y, if follows that

w = (lim X (yy), lim X5(zy,))

that is w € H(z). Thus, for each x € R™ x R™, L(z) C H(x). The two shown inclusions
yield, for each x € R™ x R"2,

To conclude the proof, notice that by taking the convex-hull of both sides of the latter

expression gives®

co L(x) =co ({lim X1 (yx)|yr — 21} X {lim Xo(2x)|2r — x2})
= co{lim X (yx)|yx — 1} X co{lim Xo(zx)|2zx — 2} = K[X1](21) x K[X3](x2).

4We used the following property. Let, for i = 1,2,...,s, S; C R™ given sets, then co )(::1 S; =
S
X,_, coS;; see [13].
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Remark 1.4. The above result decreases the conservatism of [97, Theorem 1 (3)] for the
special class of functions considered. Notice that, whenever for each : = 1,2,...,s n; = 1,

the above theorem specializes to the case of decentralized functions.

By using the rules illustrated in the above result, we reconsider Example 1.3 to investigate
the existence of Krasovskii solutions ¢, with ¢(0) = 0.
Example 1.4. Consider the quantized closed-loop system given in (1.9). Notice that, since
the function sign(-) is locally bounded, (in fact bounded), according to Theorem 1.1, at least
for small enough 7', there exists a Krasovskii solution to (1.9) for every 2y € R. To determine
such a solution, one needs to first determine the Krasovskii regularization of —sign(z). In
particular, as for every x # 0, sign(x) is continuous, by the items (i) and (iii) of Proposition

1.1, and via the expression given in (1.10), one gets

—1 x>0
K[—sign](z) =< 1 x <0
—1,1] z=0.

Differently from Example 1.3, the zero function is a (the unique) Krasovskii solution to (1.9)
on any interval of R>g, and obviously ¢(0) = 0. The main difference with respect to Example

1.3 consists of having enabled solutions starting from the origin to be constant.

At this stage, it should be clear that differential inclusions play a key role in this disser-

tation. In particular, let us consider the following differential inclusion
€ F(x) (1.13)

where x € RY, and F(z): R® = R’ For such a differential inclusion, let us consider the
notion of solution given next.
Definition 1.5. Let I C R>( be an interval. The function ¢: I — R™ is a solution to (1.13)

if i is absolutely continuous on I, and

o(t) € Fo(t)) foralmostall ¢ € .

The above definitions allow to consider Krasovskii solutions to a given differential equation
as the solutions to a certain differential inclusion. Therefore, in the sequel, for the sake of
generality, results, definitions and properties will be stated for general differential inclusions
as (1.13).

Concerning solutions to (1.13), in this dissertation, we consider the following notions.
Definition 1.6 (Maximal solution [56]). Let ¢ be a solution to (1.13). Then ¢ is said to be
maximal if there does not exist any other solution v such that dom ¢ is a proper subset of
dom v and ¢(t) = 9 (t) for every t € dom .

Definition 1.7 (Complete solution [56]). Let ¢ be a solution to (1.13). Then ¢ is said to
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be complete if sup dom ¢ = co.
Remark 1.5. Clearly, every complete solution is maximal but the converse is in general not

true.

1.2.2 About Numerical Simulations of Krasovskii Solutions

To overcome the issues about the existence of solutions to (1.7), we addressed the study of
such a system, by means of the notion of Krasovskii solution. The adoption of this notion
perfectly fits in control problems. On the other hand, when one is interested in the numerical
simulation of (1.7), the question that naturally arises is how to integrate (1.7) to somehow

recover the behaviors captured by the notion of Krasovskii solution.

For this purpose, we need to introduce the notion of §-polygonal approximation and Euler
solution, which are both given in [27].
Definition 1.8 (J-Polygonal approximation). Consider system (1.7). Given z, € R" and

T > 0, consider the following construction

e Fix an arbitrary partition of the interval [0,7], 0 < t; <ty < -+ < ty, with ty =T

d tor — tit < 6.
an ke{o,ril.?f%_u{ b1 = i} <

e Compute x5 1 = zp + (tpy1 — tr) X (ag), for k=0,..., N — 1 and z(0) = zy.
e Build the piecewise affine function ¢s(tx) such that ¢s(tx) = zy for k =0,1,..., N —1.

The function ps(t) is said to be a §-polygonal approximation for (1.7).

Definition 1.9. A function ¢g(t) is said to be an Euler solution to (1.7) if it is the uniform
limit for 6 — 0 of a polygonal approximation () obtained by some partition of the interval
[0, 7], and for some xy € R™.

The interest in considering Euler solutions stems from the fact that, as proven in [16],
Euler solutions are Krasovskii solutions. In particular, notice that, among all the possible
polygonal approximations one can consider, the simplest and straightforwardly attainable
through a numerical procedure arises from selecting a uniform partitioning of the time in-
terval [0, T]. Namely, let N be an arbitrarily positive integer, fix § = %, set to = 0 and for
k=0,1,2,...,N —1, select t; .1 =t + % Thus, the sequence of polygonal approximations
{z T +_y, if converges uniformly, has as a limit a Krasovskii solution to (1.7). Therefore,
for N sufficiently large, the function x T can represent a good approximation of a Krasovskii
solution to the considered system. This aspect is illustrated in the following example.
Example 1.5. Consider again the system analyzed in Example 1.3, and recall that for
such a system, there exists only a maximal Krasovskii solution ¢, with ¢(0), i.e., the null
solution. Then, in this case, for every compact interval [0,7], whatever is the partition
used to determine d-polygonal approximations to (1.3), as § approaches zero, if the family of

functions s converges uniformly on the interval [0, 77, its (uniform) limit is the identically
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zero function on the interval [0, 7, that is

lim sup |ps(t)] = 0.
Jim sup Ioi(1)

In particular, this fact can be shown numerically in this case by considering a uniform
partitioning. Figure 1.2 shows the value of sup |¢ T (t)| versus N. As N approaches infinity
t€[0,10]

(0 approaches zero), sup |¢ ks (t)| approaches zero, meaning that ¢ T uniformly approaches
t€[0,10]

the zero function on [0,10]. Figure 1.3 depicts some d-polygonal approximations obtained

Q
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N

Figure 1.2: sup,c(y 19 [¢(s)| versus N, for a uniform partitioning.

for different uniform partitioning of the interval [0, 5]. Figure 1.3 shows that as N increases

the resulting d-polygonal approximation approaches the null solution.

The above example shows that the notion of Euler solution and the fact that Euler
solutions are Krasovskii solutions provides some insights on how discontinuous systems could
be simulated to capture the peculiar behaviors of Krasovskii solutions. However, following
this approach based on Euler first order integration entails two main problems. On the
one hand, given zy € R", there may exist multiple Krasovskii solutions ¢, s, ..., @, with
©1(0) = ¢2(0) = -+ = s(0) = zp, and some of them may not be Euler solutions. For
instance, consider [23, Example 1], for which X (z) = %xl/B, T =1, and o = 0. In this case, it
can be shown that ¢, (t) = 3/2, @, (t) = t73/2, and p3(t) = 0 are Carathéodory solutions (then
obviously Krasovskii solutions) to the considered system with ¢1(0) = ¢2(0) = 3(0) = 0,
while the only Euler solution is g(t) = 0, despite the continuity of the function X. On the
other hand, establishing if the considered sequence of polygonal approximations uniformly

converges whenever N approaches infinity could be nontrivial. Therefore, this aspect is still
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Figure 1.3: Some d-polygonal approximations (N = 10 blue, N = 100 red, N = 1000 green)

worth of further investigations.

1.3 Uniform Quantized Linear Control Systems

1.3.1 The Class of Systems Under Study

In this dissertation, we focus on plants whose dynamics are linear, that is dynamical systems
in the following form

(1.14)

= Ax + Bu
y=Cr

where A € R™", B € R"™™ and C' € RP*". For such a class of plants, the following

standing assumptions will be considered in the sequel.

Assumption 1.1 (Standing assumption). The matrix A is not Hurwitz. A
Assumption 1.2 (Standing assumption). The pair (A, B) is stabilizable, and the pair (A, C)
is detectable. A

Assumption 1.1 allows to exclude the trivial case of open-loop stable plants. Whereas,
Assumption 1.2 ensures that a linear stabilizing controller exists for the considered plant,

assumption that will play a fundamental role in our approach.

The interest in considering such a class of systems is twofold. On the one hand, many real
plants can be approximately modeled through a linear model, at least around an equilibrium
point. On the other hand, by considering linear plants, constructive methodologies can be

proposed. Namely, building on theoretical conditions, numerical algorithms for the solution
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to the analyzed problems can be derived.

In this particular case, being the dynamics of the plant linear, we reasonably consider also
linear controllers. Therefore, by specializing the various situations presented earlier to the
case of linear plant and linear controllers, we obtain the following models for the closed-loop

system.

Linear static state feedback controller.

Tz = Ax + Bu
u = q,(u) (1.15)
U = qu(x)

where K € R™*" is the controller gain.

Linear dynamic output feedback controller.

&= Axr + Bu

Te = Ace + Beym

Ue = Cete + Doy (1.16)
u = q,(uc)

Ym = q,(Cz)

where . € R™ is the controller state, and A, € R"*" B, € R"*P (C, € R™*" D, € R™*P

are the matrices defining the controller model.

1.3.2 The Uniform Quantizer

In this dissertation, we focus on the uniform quantizer q: R — AZ defined as follows,

q(u) == Asign(u) {@J (1.17)
where A is a positive given real scalar characterizing the quantization error bound, i.e., for

every u, | q(u) —u] < A; see Figure 1.4. Whenever, u € RY, with £ > 1, then

a(u) = (q(u1),q(uz) . .., q(ue)).

Remark 1.6. Observe that the quantizer we consider in this dissertation, due to the larger
dead-zone around the origin with respect to a standard quantizer, it is genuinely uniform
only when restricted to R>. The choice of this quantizer stems from having for a given A

a quantizer as coarse as possible. Indeed, the standard uniform quantizer adopted, e.g., in
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q(u)

4A A —

3A *—0

—S5A —4A —3A —2A ;A A 2A 3A 4A SA
o——e—A

o—e —2A
o—e —3A

—e —4A

Figure 1.4: The uniform quantizer

[22], for a given A > 0 induces a quantization error bounded by %. A quantizer similar
to (1.17) is considered in [85], although we slightly modified such a map to avoid having
a discontinuity at the origin. That said, since the quantizer we consider entails the same
bound on the quantization error as the in the case of the uniform quantizer in [85], with a
slight abuse of notation, we denote (1.17) uniform quantizer. We would like to emphasize
that all the results presented within this dissertation can be easily extended to encompass

the standard uniform quantizer used, e.g., in [22].

Notice that, since q(0) = 0, and the plant and the controller dynamics are homogeneous
(in fact they are linear), both for (1.15) and (1.16), the origin is an equilibrium point for
the closed-loop system. Assume that the origin is also globally asymptotically stable for the
quantization free closed-loop system, one may wonder whether the same property still holds
for systems (1.15) and (1.16). The following examples show that, in general, the answer to
this question is negative.

Example 1.6 (Isolated equilibria). Consider the quantized input version of the balancing

u = q(uc)

pointer from [69].

Suppose that the plant is controlled via a static state feedback controller v, = Kz, with
K = [13 7], and q(+) is the uniform quantizer with A = 2. Notice that, whenever the plant
actuator is not quantized, the origin of the closed-loop system is globally asymptotically
stable, as spec(A+ BK) = {—3, —4}. In Figure 1.5 some closed-loop trajectories are shown.
Simulations show that the closed-loop system trajectories approach two isolated equilibrium

point. Therefore, the origin is no longer globally asymptotically stable.
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(a) Closed-loop trajectories
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(b) A close-up showing the trajectories converging toward the two
equilibria

Figure 1.5: Quantized control system manifesting isolated equilibria.
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Example 1.7 (Limit-cycles). Consider again the balancing pointer plant described in the
above example, and assume that the measured state is quantized via a uniform quantizer
(1.17) with A = 0.5. Suppose that the plant is controlled via the same static state feedback

controller given in Example 1.6, i.e., u. = K q(x).

_ 0 1
Tr =
10

U = U

0
—1

T + U

In Figure 1.6, some closed-loop trajectories are shown. Simulations show that the closed-
loop system trajectories approach a limit cycle, implying that the origin is not globally
asymptotically stable.

The two above examples show that, in general, the asymptotic stability properties of the
quantization free closed-loop system are destroyed by quantization. This phenomenon is
well established in the literature; see, e.g., [22, 84, 117]. In particular, as far as concerns
(1.17), due to finite precision near the origin, such a quantizer induces in both (1.15) and
(1.16) a region of the state space wherein the control system runs in open loop. This implies
that if the origin of the open-loop plant is not asymptotically state, so is the origin of the
closed-loop system. For instance, consider system (1.16), and suppose that the origin of
the open-loop plant is not asymptotically stable. Let q, and q, defined as in (1.17), with
respectively A, and A,. Pick z. = 0, and z( such that |Czo| < A,. Now, let ¢ be a maximal
solution to & = Ax, with ¢(0) = z5. Due to linearity, there exists a strictly positive 7', such
that |Co(t)| < A, for each ¢t € [0,7]. Thus, (¢(¢),0) is a solution to (1.16) on the interval
[0, 7). Since this construction can be repeated for any z, such that |Czo| < A,, and the
origin of the open-loop plant is not asymptotically stable by hypothesis, so is the origin of
(1.16). Basically, sensor quantization induces a lack of the feedback action in a polyhedral
region containing the origin, preventing from achieving closed loop asymptotic stability for
the origin. Similar arguments show that actuator quantization induces the same kind of
behaviors, while analogous considerations hold also for the simpler case of the static state

feedback control system (1.15).

1.4 Stability Notion and Preliminaries Results

The facts illustrated above, also via Example 1.6 and Example 1.7, underline that, in general,
requiring the origin of the closed-loop system (1.15) or (1.16) to be asymptotically stable is in
general impossible. In fact, quantized dynamical systems may manifest complex behaviors,
whose precise characterization, unless in particular cases, is far from trivial. On the other
hand, as shown in [84, 117], and qualitatively illustrated in Example 1.6 and Example 1.7,
under suitable conditions, the closed-loop system trajectories are bounded and converge into
a compact and invariant set A containing the origin, (such a set can contain limit cycles,

equilibrium point etc.). Loosely speaking, the set A gives an outer approximation, near the
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(a) Closed-loop trajectories
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(b) A close-up showing the trajectories converging toward
two limit-cycles

Figure 1.6: Quantized control system manifesting limit-cycles.

origin, of the real behavior of the closed-loop system. In particular, the determination of
the set A enables to define a bounded region having two relevant properties: (1) Closed-
loop solutions starting inside A remain definitely confined in such a set, (2) closed-loop

solutions starting outside A approach such a set. That said, it appears likewise interesting



Chapter 1 27

to investigate on what happens when the closed-loop system is initialized “near” such a set.
From a technical point of view, this fact prompts to seek for conditions guaranteeing the

asymptotic stability of a compact set containing the origin.

In particular, in this dissertation, for a general differential inclusion as (1.13), we consider
the following notion of (uniform) global stability for a closed set A C R’ given in [124].
Such a definition uses distance to closed set, and class K functions, which are given next.
Definition 1.10 (Distance to a closed set [56]). Given a vector z € R", and a closed set A,
the distance of z from A is denoted |z|4 and is defined by |z|4 = inf e 4 ||z — y].

Remark 1.7. Notice that, given a closed set A C R™ and a positive real scalar d, the set
of the points z € R™ with |z|4 < 0 coincides with the set A4 + éB. Such a writing will be
largely used throughout this dissertation.

Definition 1.11 (Class K functions [76]). A function a: R>g — Rs, is a class Ko if « is

zero at zero, continuous, strictly increasing, and unbounded.

The definition of uniform global asymptotic stability of a closed-set is as follows.
Definition 1.12 (Uniform global asymptotic stability). Let A C R™ be closed. The set A

1S

e uniformly globally stable for (1.13), if there exists a class K function «, such that

every solution ¢ to (1.13) satisfies |¢(t)| 4 < a(|¢(0)|4) for every t € dom ¢

e uniformly globally attractive for (1.13), if every maximal solution to (1.13) is complete,
and for every ¢ > 0 and pu > 0 there exists T" > 0, such that for any solution ¢ to
(1.13) with |p(0)|a < p, t > T implies [p(t)[a < €

e uniformly globally asymptotically stable (UGAS) for (1.13), if it is uniformly globally

stable and uniformly globally attractive

The uniformity requirement considered in the above notion of stability implies that when-
ever the distance of the initial condition ¢(0) from the set A approaches zero, so does the
distance of the issuing solution ¢(t) for each t € dom . The uniformity requirement consid-
ered in the attractivity property implies instead that the convergence rate of the solutions’
distance from the set A is uniform with respect to the initial condition’s distance. Although
the uniformity requirements considered in the above definition gives rise to stronger no-
tions of stability than the one usually considered, it turns out that for the class of systems
and problems addressed in this dissertation, the uniformity requirement is without loss of

generality. This aspect will be clarified through the results given in the sequel.

For the special case of compact sets, let us consider the following result which essentially
derives from the combined application of [56, Proposition 7.5.] and [124, Proposition 3|. The
derivation of such a result uses the definition of strong forward invariance of a closed set
for a differential inclusion, given e.g., in [26] and reported below, and general definitions
concerning set-valued mappings that are reported in Appendix D.

Definition 1.13. Let A C R™ be closed. The set A is strongly forward invariant for (1.13)
if every maximal solution to (1.13) is complete, and ¢(0) € A implies rge ¢ C A.
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Now we are in position to state the mentioned result.

Proposition 1.4. Consider the differential inclusion in (1.13), i.e.,
i€ F(x) reR" F:R" =2 R"

Let A C RY be compact, strongly forward invariant and uniformly globally attractive for
(1.13). Let F' be outer semicontinuous, locally bounded, dom F' = R", and such that for each
x € R™ F(x) is convexr. Then, the set A is UGAS for (1.13). O

The proof of the above result uses class L functions.
Definition 1.14 (Class KL functions [76]). A function §: Rsg X Rsg — Rxq, is a class KL
function, if it is nondecreasing in its first argument, nonincreasing in its second argument,

and
lim 5(s,t) = tl}ﬁn B(s,t) = 0.

s—0t
Then, the proof of the above result is as follows.

Proof of Proposition 1.4. Due to the properties required for F' in the statement of the above
result, since A is compact, strongly forward invariant, and uniformly globally attractive
for (1.13), thanks to [56, Proposition 7.5.] it follows that A is stable’ for (1.13). Moreover,
due to the properties required for F', by the virtue of [124, Proposition 3] it follows that
there exists a class-ICL function /3, such that for every maximal solution ¢ to (1.13), one has

for every t € R,
|o(t)].a < B(|0(0) |4, 1)

which in turn, due to [124, Proposition 1], implies that A is UGAS for (1.13), and this
finishes the proof. [ |

Notice that the above result plays a fundamental role in establishing sufficient conditions
to ensure UGAS of a certain compact set containing the origin. Indeed, as previously il-
lustrated in this chapter, the requirements on the right-hand side set-valued mapping F'(x)
needed for the applicability of Proposition 1.4 are obviously verified whenever F(z) arises
from the Krasovskii regularization of a locally bounded function, which is the case in both
(1.15) and (1.16).
Remark 1.8. UGAS of a compact set A4 for (1.13) ensures that every maximal solution to
(1.13) is bounded. To see this, it suffices to observe that, being A compact, for a large enough
d > 0, one has A C éB. Thus, since for every z € R", |z|sp < |z|4, and ||z] < |z|sp + 0.
Finally, boundedness of maximal solutions to (1.13) can be readily established by combining
the latter relations with the bounds issued from UGAS.

Before concluding this chapter, let us consider the following result, which will be exploited
in the sequel.
Proposition 1.5. Consider (1.13) and assume that F is outer semicontinuous, locally

n

bounded, convexr valued, and dom F' = R". Assume that there exists a continuously dif-

®See, e.g., [124, Proposition 3] for a standard definition of € — § stability of a compact set.
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ferentiable function V: R™ — R such that

V(z) >0 Ve #0 (1.18)
| lli‘g V(z) =00 (1.19)

and two positive real scalars p, and o such that
(VV(2),f) < —pV(z) Vo€ LL(V),[ € Fla) (1.20)

where LI (V) = {z € R": V(x) > a}. Then, the set A = R" \ IntL} (V) is UGAS for
(1.13).

The proof of the above result rests on the following lemma.
Lemma 1.1. Let A C R" be compact. If there exists a continuous function T: R" — R
such that for each p > 0, every maximal solution ¢ to (1.13) with ¢(0) € A+ uB is complete,
and t > Y (o) implies p(t) € A. Then, A is globally uniformly attractive for (1.13). O

Proof. The proof is straightforward. In particular, let g > 0 define

€=, B @)
and observe that being T continuous and A compact, £ is well defined. To conclude, notice
that for each maximal solution ¢ to (1.13) with ¢(0) € A + uB, one has that ¢ > £ implies
©(t) € A and this concludes the proof. |
Remark 1.9. The main feature of the above result consists of establishing uniform attractiv-
ity via finite time convergence, assuming continuous dependence of the convergence time on
the initial condition. Specifically, the continuity requirement allows to establish uniformity

with respect to the initial condition.
Now we are in position to show the proof of Proposition 1.5.

Proof of Proposition 1.5. First observe that since V' is radially unbounded, A is compact.
To prove that the set A is UGAS, we firstly show that A is strongly forward invariant for

(1.13) and that every maximal solution to (1.13) is complete.

Concerning strongly forward invariance, since A is compact, thanks to the properties
required for F', from [56, Proposition 6.10.], if suffices to show that each maximal solution
starting inside A cannot leave such a set, i.e., completeness of such solutions automatically
holds. By contradiction, assume that there exists a maximal solution ¢ starting from A that

eventually leaves such a set. Then, there exists 7 € dom ¢ such that ¢(7) ¢ A, that is
V(p(T)) > a.

Thus, since the function V o ¢: dom ¢ — R is continuous, there exists s € dom ¢ such that

V(e(s)) = .
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Without loss of generality®, assume that for each t € (s, 7], p(t) ¢ A. In other words,
s is the largest exit time of the solution ¢ from the set A. From (1.20) thanks to the

Gronwall-Bellman lemma, it follows that for every ¢ € [s, 7]

V(g(t) < e PV (p(s))

then
V(p(r)) < V(e(s)).

However, this contradicts the fact that ¢(7) ¢ A, i.e., ¢ cannot leave the set A. Hence, A

is strongly forward invariant for (1.13).

Concerning completeness of the maximal solutions starting outside A, by retracing the
same steps performed above, it can be readily shown that every maximal solution ¢ to (1.13)
and with ¢(0) ¢ A cannot leave the sublevel set Ly, )(V) = {z € R": V(z) < V(¢(0))}.
Hence, since sublevel sets of V' are compact, it follows that every maximal solution to (1.13)
is bounded. Thus, thanks to [56, Proposition 6.10.], every maximal solution to (1.13) is

complete.

Bearing in mind completeness of maximal solutions to (1.13) and strong forward in-
variance of A, now we conclude the proof of the above result by showing that maximal
solutions to (1.13) converge in finite time into 4. Pick any maximal solution ¢ to (1.13),
with ¢(0) € IntO. Let T = {t € Rx¢: p(t) € A}, since A is strongly forward invariant,
either 7 = () or sup T = co. In other words, if ¢ eventually enters A, then by strong forward
invariance, it cannot leave such a set. By contradiction, let us suppose that 7 = (), then for
every t € Rsg, ¢(t) ¢ A. Therefore, still from (1.20), it follows that

Vie(t)) <e PV (p(0))  VteRs. (1.21)

Pick,

from (1.21) one gets

that is ¢(t) € A, but this contradicts the fact that 7 = (). Now, for every w € R™, define

0 we A
Twr=ay, (Vw)l) weA
P) a
notice that Y is continuous on R", and that for every maximal solution ¢ to (1.13), t >
T(¢(0)) implies that ¢(t) € A. Then, since every maximal solution to (1.13) is complete,
from Lemma 1.1 it follows that A is globally uniformly attractive for system (1.13). Now,

6This assumption, is discussed in [11] and for self completeness simple arguments justifying such an
assumption are given in Appendix A. Notice that, since ¢(s) may not exist, standard arguments revolving
of the monotonicity of the function ¢t — V o ¢(t) cannot be exploited to conclude.
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A is compact, strongly forward invariant, and globally uniformly attractive for (1.13), from
Proposition 1.4 it follows that A is UGAS for (1.13), and this finishes the proof. [

1.5 Conclusion

In this chapter, we illustrated the quantization phenomena in control systems, with a special
attention to uniform quantization and linear control systems. In particular, two main points
were addressed. The first pertains to the notion of solution to adopt to deal with quantized
control systems. In particular, it was shown that the discontinuity introduced by quantizers
may jeopardize the existence of closed-loop solutions. This issue is completely overcame
by considering, for the closed-loop system, the notion of solution due to Krasovskii. The
other main aspect highlighted in this chapter regards instead the more convenient notion of
stability to adopt in dealing with quantized control systems. Indeed, for a general quantized
control system, requiring the asymptotic stability of the origin is unattainable. In this
setting, it was shown that considering the asymptotic stability of a compact set containing
the origin provides a way to guarantee a proper behavior of the closed-loop system, while

matching with the nature of considered problem.
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QUANTIZED LINEAR STATIC STATE FEEDBACK CONTROL

“Research is what I'm doing when I don’t know what I'm doing”.

— Wernher von Braun

2.1 Introduction

HIS chapter pertains to quantization in linear static state feedback control schemes. In
T particular, two cases are considered. In the first one, the plant state is assumed to be
fully measurable and the plant actuator uniformly quantized. In the second one, the plant
state is assumed to be fully measured via a uniformly quantized sensor. In such two situ-
ations, we address both stability analysis and stabilization of the closed-loop system. The
approach followed to address the two configurations is essentially the same. Namely, as a
first step we provide a general result to characterize the behavior of the closed-loop system,
such a result to some extent uses ideas from [84], though adapted to deal with Krasovskii
solutions and uniform global asymptotic stability of a certain compact set. Then, by the
use of novel sector conditions, a less conservative result, based on the solution to certain
matrix inequalities, is proposed. Building on such a result, a complete apparatus revolving
on convex optimization is presented to solve both the stability analysis and the stabiliza-
tion problems, while taking into account optimization aspects. First results concerning the

actuator quantization case can be found in [40].

33
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Figure 2.1: The function ¥, in the scalar case, representing the quantization error.

2.2 Actuator Quantization

2.2.1 Problem Statement and Preliminary Results

Consider the following continuous-time linear system with actuator quantization

{ZL“:AZ‘-FBU @.1)

u=q(Kz)
where x € R", u € R™, are respectively the state, and the input of the system. A, B, K

are real matrices of suitable dimensions, and q(+) is the uniform quantizer defined in (1.17)

having as a quantization error bound A > 0. Define the function,

v: R™ — R™
(2.2)
2z q(z) —z
the closed-loop system can be rewritten as
t=(A+ BK)r + BY(Kx). (2.3)

The function ¥ represents the quantization error, then according to (1.17), ¥ is bounded. In
particular, for every u € R™, || U(u)|| < /mA; see Figure 2.1. Moreover, since the function
VU is discontinuous, the right-hand side of (2.3) is a discontinuous function of the state.
Thus, for the reasons illustrated in Chapter 1, we focus on Krasovskii solutions to system
(2.3). Notice that, in view of the local boundedness of the right-hand side of (2.3), for every
xo € R™, there exists at least a Krasovskii solution ¢ to (2.3) with ¢(0) = z; see Chapter 1.
Therefore, by defining
X:R"—R"

(2.4a)
r+— (A+ BK)x + BY(Kz)

we consider the solutions to the following differential inclusion

i € K[X](z) (2.4b)
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where IC[X](z) represents the Krasovskii regularization of the function X; see Definition 1.2
on page 14. As pointed out earlier, the presence of the uniform quantizer, due to its deadzone
effect, represents a real obstacle to the asymptotic stabilization of the closed-loop system.
Namely, one should be aware that if the matrix A is not Hurwitz, then the asymptotic
stability of the origin for the closed-loop system (2.4) cannot be achieved via any choice of
the gain K. Indeed, for every x belonging to the set P = {x € R": |Kz| < A}, one has
U(Kz) = —Kz. Thus, there exists a sufficiently small neighborhood of the origin strictly
contained in P, such that for every z the right-hand side of (2.1) coincides with Az. Namely,
the behavior of the closed-loop system around the origin is not influenced by the choice of
the gain K. On the other hand, since the function ¥ is bounded, one may expect that,
under opportune hypothesis on the quantization free closed-loop system, the solutions to
(2.4) manifest some stability properties. A positive answer to this question is given by the
following theorem, which uses ideas from [82, Lemma 1].

Theorem 2.1. Let A, B, K be matrices of adequate dimensions, such that A + BK is
Hurwitz. Then, there exists a compact set A C R”, containing the origin, which is UGAS
for (2.4).

Proof. Since A+ BK is Hurwitz, there exists P,Q € 87 such that He (P(A + BK)) = —Q.
For every x € R", define k(xz) = Kz. Since the function x — (A + BK)z is continuous, by

Proposition 1.1, for every x € R,
K[X](z) = (A+ BK)x + BK[Y o k](z).

Since W is locally bounded, (in fact bounded), according to [9, Lemma 1] it follows that, for
every r € R"
K[V o k)(z) = co {lim V(K (xy))|zr — x}.

Then, due to the bound shown earlier on the function W, it turns out that for each = € R"
K[¥ o k](z) C BymA.
Therefore, for each x € R™, the following inclusion holds:
K[X](z) € (A+ BK)x + BBy/mA. (2.5)
Now, for every x € R™, define the function V(z) = z"Px, and notice that for every
r € R", and any f € K[X](z)
(VV(2), f) = —2"Qx + 22" PBE < —Auin(Q)a" x + 22T PBE

for some £ € By/mA. Let us recall that for every a,b € R"™ and for every positive scalar e,
2a'b < ea'a + %bTb. Then, by setting ¢ = %)\min(Q), from the latter inequality one gets

2
)\min(Q)

(VV(2), f) < —;)\min(Q)xTx + |BTP*B|mA?  vaeR" feK[X](z) (26)
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which in turn gives

Auin(@) 1y Q(Q) |BPB|ma>  vee R f € K[X(@). (27)

(VV(@).f) < —

= 2max(P)

Pick 6 € (0, 1) and consider the following superlevel set of V'

n. 4>\maX(P) T p2 2
and define A = R™\ Int®. Moreover, from (2.7)
Amin(Q)
(Vi) f) <~ 1 —0)V(a) Vo€ .] € KIX](). 2.5)
Then, thanks to Proposition 1.5 it follows that A is UGAS, completing the proof. [ |

Theorem 2.1 shows that if the matrix A + BK is Hurwitz, then there exists a compact
set A containing the origin, which is UGAS for (2.4). Moreover, such a set is a sublevel
set of a certain quadratic function. On the one hand, this fact fosters to consider quadratic
Lyapunov-like functions to investigate the dynamics of (2.4). This fact essentially arises
from the fact that the underlying dynamics of the considered control systems are linear. On
the other hand, the characterization of the set A provided by the above result is quite coarse,
and strongly depends on the choice of the matrix ). It appears obvious that the matrix @)
should be selected in a way such that the resulting set A fits as much as possible the real
behavior of the closed-loop system. However, the selection strategy of such a matrix appears
unclear. To overcome this problem, we pursue a constructive approach. Namely, first we
derive computationally tractable conditions aimed at providing a characterization of the set
A. Essentially, through this stage, one obtains a set of conditions whose solution yields the
set A. Then, the search of the set A is done by embedding the obtained conditions into an
optimization scheme aimed at shrinking the size of A. The outcome of this approach consists
of a systematic procedure able to perform a search of the most convenient set A, starting
from the data of the closed-loop system. To operate this approach, we seek for conditions
solving the problem formalized as follows.

Problem 2.1. (Stability analysis) Let A, B, K be matrices of adequate dimensions, such
that A+ BK is Hurwitz. Determine a compact set A C R™ containing the origin, such that
A is UGAS for system (2.4).

The solution to the above problem is the object of the remainder of this section.

2.2.2 Stability Analysis

As explained earlier, in solving Problem 2.1, we are interested in deriving a set A fitting
as much as possible the real behavior of the closed-loop system. To this end, we want to

reduce the conservatism introduced in the proof of Theorem 2.1 to bound the set-valued
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mapping IC[V]. Inspired by the general idea pursued in the literature on nonlinear systems
with isolated nonlinearities; see, e.g., [66, 120] and the references therein, we provide some
sector conditions providing tighter bounds for the set-valued mapping K[¥]. To this aim,
consider this first result concerned with the function W.

Lemma 2.1. [38] Let z € R, and Sy, S» € D',. The following relations hold:

U(2)"S¥(2) — trace(S;)A%? < 0 (2.9)
W(2)TSy(W(2) +2) <0 (2.10)

Proof. Let z = (z1,22,...,2¢). Then, by definition, for each i € {1,2,...,¢}, |¥;(2)] =
W (z)| < A. Now, let sgl),s?), - ,sg@ any strictly positive scalars. One has, for each
ie{l,2,..., 0}, 3§1)|\Ilz(z)| < sgi)A, then by summing over i = 1,2,..., ¢, and by setting

Sy = diag(st”, s, s1)

yields (2.9). To prove (2.10), notice that by definition, for each ¢ € {1,2,...,¢}, ¥%(z) +
U;(2)z6) < 0 (see Figure 2.1). Pick sél), 352), e ,sg) any strictly positive scalars. Then, by
following the same arguments adopted to show (2.9), and by defining

S2 = diag(5g1)7 552)7 s 7Sg€)>

yields (2.10), and this concludes the proof. [ |

The above Lemma allows to embed the function ¥ in a certain sector. However, the
conditions provided by such a result do not directly apply to the set-valued mapping K[V],
and then further work is needed. On the other hand, let us remark that for every z € R*
such that W(z) is continuous, as shown in Proposition 1.1, K[¥](z) = {¥(z)}. Then, for
such z the conditions provided by Lemma 2.1 are certainly fulfilled. Therefore, the main
point to address consists in verifying whether the conditions provided by Lemma 2.1 hold
even for the set valued map IC[¥] or not. A positive answer to this question is given by the
following result.

Lemma 2.2. Let z € R, v € K[¥](z), and Sy, Sa € D Then, the following relations hold:

v' S1v — trace(S;)A? < 0 (2.11)
v Sy (v+2) <0 (2.12)

Proof. First of all, for each z € R, let us define the set
L(2) = {lim ¥(z;)|z, — 2} C R

where z; is any sequence converging to z. Since V¥ is locally bounded, likewise the proof
of [23, Proposition 11], it turns out that for every z € R, K[V](z) = co L(z). Now, let us
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define the following closed set
V,={ve RY: o' Syv — trace(S1)A* < 0} C R¢
which, due to S; positive definite, is also convex . We want to show that, for z € R’
coL(z) C V. (2.13)

To this end, pick | € L(z), then, by definition, there exists a sequence z; — z such that
[ =1lim ¥(z;). On the other hand, from Lemma 2.1, it turns out that, for every k£ € N, and
for every diagonal positive definite matrix S, one has WT(z;,)S;¥(z;) — trace(S;)A? < 0,
which, by taking the limit over k yields [T S;] — trace(S;)A% < 0, that is [ € V;. Hence,

£(Z) C Vl.

Thus, since V; is convex, taking the convex-hull of both sides of the latter relation establishes
(2.13), which in turn gives (2.11).

To show (2.12), we pursue a similar approach. Specifically, for any z € R’ define the
closed set
Vo(2) = {v e R 0T Sy(v 4 2) <0} C R’

which is convex due to Sy positive definite. We want to show that co £(z) C Vy(z). To this
end, pick any [ € £(z), then there exits a sequence z; — z, such that [ = lim W(z). Still,
according to Lemma 2.1, for every k € N, one has WT(z;,)S2(¥(z1) + 2x) < 0, then by taking
the limit over k, one gets [7Sy(l + 2) < 0, that is [ € Vy(2). Hence

L(z) C Vy(2).

Thus, by taking the convex hull of both sides, being V»(z) convex, yields co L(z) C Va(2),
that is (2.11), and this finishes the proof. [

Building on the conditions given by the above result and to the fact that, thanks to
Theorem 2.1, the search of the set A can be carried out by focusing on a sublevel set
of a certain quadratic function, the next result gives a first sufficient condition to solve
Problem 2.1.

Proposition 2.1. If there exist P € S, 5,5, € DI, and a positive scalar T such that

_ KT
N |He(P(A+BE) +7P PB=K'S| (2.14)
[ ] _Sl - 252

trace(S1)A* —7 <0 (2.15)

1 Positive definiteness of S; implies that the function v + v Sjv —trace(S;)A? is convex, then its sublevel
sets are convex sets; see, e.g., [14].
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then,
A=E&(P) (2.16)

solves Problem 2.1.

Proof. For every x € R", consider the following quadratic function V(x) = 2" Px. Following
the ideas presented in the proof of Theorem 2.1, we want to prove that under (2.14) and

(2.15) there exists a positive real scalar § such that
(VV(z),w) < —=pV(z) VreR"\IntAd w e KL[X]|(z). (2.17)

As the above relation is analogous to (2.8) in the proof of Theorem 2.1, establishing (2.17)
suffices to show that the set A in (2.16) is UGAS for (2.4). By S-procedure arguments,
(2.17) can be verified by showing that for every x € R", there exists a positive real scalar 7
such that

(VV(2),w) —17(1 —2"Pz) < =BV (2)  Vw € K[X](x). (2.18)

On the other hand, via Proposition 1.1 and Proposition 1.2, for every w € K[X](x), there
exists v € K[V](Kz), such that w = (A+ BK)x+ Bv. Then, still by S-procedure arguments
and according to Lemma 2.2, (2.18) is ensured by proving that for each x € R™, and for each
veR™,

(VV(2),(A+ BK)x + Bv) — 7(1 — 2" Pz) —v' Syv

(2.19)
+ trace(S1)A% — 20" Sy (v + Kx) < -8V (z).

By straightforward calculations the left-hand side of the above relation can be rewritten as
follows
T

H ik

v v
Thus in view of (2.14) and (2.15), it follows that there exists a small enough positive scalar
7 such that for every z € R" \ IntA, w € K[X](x), one has (VV(x),w) < —yxTz. Then,
since for every x € R™, V(x) < Apax(P)z"x, by setting 8 = 2L gives (2.18), and this

Amax(P)
finishes the proof. [ |

+ trace(S))A? — 7. (2.20)

Remark 2.1. In the proof of the above result, we relied on Proposition 1.2 to build an
overapproximation of K[X], avoiding the derivation of the exact expression of [X], that
is in general a nontrivial task. However, as argued in Remark 1.3, whenever rank K = m
such an expression could be obtained by following similar arguments to [97, Theorem 1]
and by relying on Proposition 1.3. On the one hand, due to the approach we embrace,
following this approach would not give rise to any change in the derived conditions (the
same sector conditions would be considered also in this case). On the other hand, the
derivation of the actual Krasovskii regularization of x — W(Kx) could allow, in some case,
a deep understanding of the dynamics of (2.4). This aspect will be clarified in Section 2.2.5

via some numerical examples.
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The above result provides a sufficient condition to solve Problem 2.1. A necessary condi-
tion to ensure the feasibility of (2.14) is that the matrix A + BK is Hurwitz. On the other
hand, from Theorem 2.1, it turns out that having A + BK Hurwitz enables to exhibit a
solution to Problem 2.1. Therefore, at a first sight, the conditions provided by Proposition
2.1 could appear stronger than the mere Hurwitzness of the matrix A+ BK. In other words,
one may wonder whether the Hurwitzness of the matrix A + BK ensures the feasibility of
conditions (2.14) and (2.15). A positive answer is given by the following result.
Proposition 2.2. Let K € R™*" such that A + BK is Hurwitz. Then, there exists
(7, P, S1,52) € Rog x 8T x D} x D} satisfying (2.14) and (2.15).

Proof. Assume there exist (7, P, S1) € Ry x 8} x D" such that

He(P(A + BK)) +7P PB

[ ] —Sl
trace(S;)A? — 7 < 0. (2.22)

<0 (2.21)

For every diagonal Sy € RP*P_ define

He(P(A+ BK))+7P PB—K'S,

M(SQ) = [ ] _gl - 252

From (2.21) it follows that M (0) < 0. Moreover, since M(S2) depends continuously on the
entries of S, there exists a small enough positive scalar 9, such that for every S, € 6D
with Sy < 41 yields* M(S;) < 0.

To conclude the proof, it suffices to show that whenever A + BK is Hurwitz there exists
(T,P,S1) € Ryg x 8T x DT such that (2.21) and (2.22) holds. To this end, define Ay =
A+ BK, and let R(Aq) = {|R(N)|: A € spec(Ay)}, notice that since A, is Hurwitz, then
R(Aa) C Rep. Pick 7 € (0,2minR(Ay)), and define, Ay = Ay + 1. Observe that,
according to the selection considered for 7, A, is Hurwitz. Select S; € D, such that
trace(S1)A? — 7 < 0. By following these choices, the right-hand side of (2.21) reads

He(A,P) PB

. 5| (2.23)

For any @, € S, pick the solution W € 8% to the following matrix equality

He(A,W) = —BS;'B" — Q,

notice that such a solution always exists since A, is Hurwitz, and S, € DT'. Now, set in

2This fact can be justified by noticing that the set H := {v € R™: M(diag{vi, va,...,v,}) < 0} is open.

Then, since 0 € H, there exists a positive scalar € such that eB C H. Thus, by picking § = \/—%6 yields the
result.
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(2.23), P = W', By following this choice, (2.23) becomes

He(ATW ™) W 'B

. 5, | (2.24)

We want to show that the latter matrix is negative definite. By pre-and-post multiplying
(2.24) by diag(W,I), it turns out that (2.24) is negative definite if and only if

He(Ach) B

— | <o 2.25
. _3, (2.25)

and the latter, due to the selection done for W turns into

~-BS,'B"-Q, B

<0 2.26
[ J —Sl ( )

Moreover, by Schur complement, as S is positive definite, (2.26) is negative definite if and
only if
—BS;'B"-Q,+BS,'B=-0Q,<0 (2.27)

which is obviously satisfied being @), € S". Then, (7, W_l,gl) establishes the result. [ |

Remark 2.2. Notice that, whenever 7 is fixed, (2.14) and (2.15) are linear in the decision
variables. Therefore, Proposition 2.1 turns the solution to Problem 2.1 into a “quasi”’-LMI

feasibility problem. These aspects will be clarified in the sequel.

2.2.3 Controller Design

In the previous section of this chapter, we focused on the analysis problem of the quantized
closed-loop system (2.4). Essentially, building on a stabilizing state-feedback controller for
the quantization free closed-loop system, we shown that there exists a compact set A sur-
rounding the origin which is UGAS for the closed-loop system. Such a set may contain
limit-cycles and or parasitic equilibria for the closed-loop system that are undesired behav-
iors in engineered systems. Then, with the aim of limiting the influence of these phenomena,
one may want to design the controller K so as to shrink the size of the set A. To this end,
in this section we propose certain constructive conditions characterizing the solutions to the
problem formalized as follows.

Problem 2.2. (Controller design) Let A, B be matrices of adequate dimensions. Determine
a gain K € R™*" and a compact set A C R™ containing the origin, such that A is UGAS
for system (2.4).

At a first sight, Problem 2.2 could be solved directly by searching for a feasible solution
to conditions (2.14) and (2.15), with the only caveat to treat also K as a variable. On
the other hand, (2.14) and (2.15) are nonlinear in the decision variables. Hence, from a

numerical standpoint, Proposition 2.1 does not provide an effective solution to Problem 2.2.
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To overcome this problem, let us consider the following result.
Proposition 2.3. If there exist W € S}, 51,5, € D', Y € R™*", and a positive scalar T,
such that (2.15) is verified and,

He(AW + BY) +7W B-YTS,

<0 (2.28)
[ _Sl - 252
then,
A=W (2.29)
K=YW! (2.30)

solve Problem 2.2.

Proof. The proof of this result is based on Proposition (2.1). In fact, we prove that condition
(2.28) is obtained from (2.14) by means of a congruence transformation and an invertible
change of variable. Let us assume that (2.28) is verified. Then, since from (2.30), YW ™! =
K, pre-and-post multiplying the right-hand side of (2.28) by diag(W~!,1), yields

He(W A+ W 'BK)+ W' W'B-K'S,
[ ] _Sl - 252

Finally, by setting in the previous relation W~! = P yields (2.14). Hence, thanks to Propo-

sition 2.1 the assert is proven. [ |

Remark 2.3. Although the above result alleviates one of the nonlinearity affecting condition
(2.14), (2.28) is still nonlinear in the decision variables. This aspect will be discussed in the

sequel.

Clearly, as shown for Proposition 2.1, also in this case the feasibility of the conditions
given by Proposition 2.5 is always ensured (under Assumption 1.2 on Page 21). In this sense,
let us consider the following result that follows directly from Proposition 2.2.

Proposition 2.4. Let A, B matrices such that Assumption 1.2 is satisfied. Then, there
exists (1,W,S1,52,Y) € Rug x 87 x D} x DU x R™™ satisfying (2.28) and (2.15).

Proof. Since from Assumption 1.2 the pair A, B is stabilizable, there exists a gain K such
that A+ BK is Hurwitz. Then, since condition (2.28) is obtained from condition (2.14) via
invertible changes of variables and congruence transformations, by following the same steps

as in the proof of Proposition 2.2, and by setting Y = KW yields the result. [ |

2.2.4 Optimization Issues

It appears obvious that in solving Problem 2.1, one looks for an UGAS set which mostly
fits the real behavior of the closed-loop system. On the other hand, in solving Problem 2.2,

the main objective consists of designing the gain K to ensure that the closed-loop solutions
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stay sufficiently close to the origin. To this end, building on the conditions provided by
Proposition 2.1 and by Proposition 2.3, one can consider the two following optimization
problems:

Problem 2.3 (Stability). Let A, B, K be matrices of adequate dimensions. Determine
P € 87, such that £(P) is UGAS for system (2.4), and it is minimized with respect to some
criterion.

Problem 2.4 (Stabilization). Let A, B be matrices of adequate dimensions. Determine a
gain K € R™" and P € S, such that £(P) is UGAS for system (2.4), and it is minimized

with respect to some criterion.

Notice that, although the two above problems are formulated in a similar fashion, they
are in fact quite different. Indeed, in solving Problem 2.3, one attempts to reduce the
conservatism in the analysis of the closed-loop system behavior. Instead, solving Problem 2.4
means to actively act on the closed-loop system by designing the controller gain K, to
impose a desired behavior. The solution to the two above optimization problems can be
carried out by embedding the conditions provided, respectively, by Proposition 2.1, and
Proposition 2.3 into a suitable optimization scheme. To this end, an adequate measure of
the sets £(P) and £(W ™) needs to be selected. Namely, the objective consists of defining
a function M,: R”" — R (M,: R™" — R), such that M,(P) (Ms(W)) provides a
convenient indication on the size of £(P) (£(W™1)). Once M, (M) is defined, Proposition
2.1 (Proposition 2.3) enables to reformulate Problem 2.3 (Problem 2.4) as follows:

minimize M, (P)

P7SI7527T

subject to 5,5, € D', P € S, 7>0 (2.31)
(2.14), (2.15).

minimize M (W)
W751 752 77—7Y

subject to 51,5, € D', W € 8}, 7> 0 (2.32)
(2.28), (2.15).

Size Criteria

Being the considered set, in both the above optimization problems, an ellipsoidal set, sev-
eral criteria can be adopted to obtain a measure of such a set; see, e.g., [15, 66, 120]. A
first choice is to consider the volume of £(P) (E(W™')) as size criterion, i.e., vol(E(P))
(vol(E(W™1))). In particular, it turns out that, given S € S, and a generic ellipsoidal
set £(S) = {w € R": w'Sw < 1}, then vol (£(S)) x (/det(S~1); see [15]. Thus, adopt-
ing this criterion leads to M,(P) = —det(P) and M,(W) = det(W). However, as the
two functions M,(P) = —det(P) and M (W) = det(W) are in general non-convex, this
would lead to possible N-P hard problems; see [15]. Therefore, with the aim of obtaining a

numerically tractable optimization problem, the above criteria cannot be adapted directly.
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Concerning Problem 2.3, a straightforward strategy to overcome this drawback, see [15]),
consists of considering, as objective function to minimize — logdet(P). Indeed, the function
— log det(P) is convex over the set ST and its minimization is equivalent to the minimization
of M,(P) = —det(P); see [15]. On the other hand, the adoption of the latter criterion could
lead to a set £(P) excessively stretched along some direction. This is a well known behavior
in the literature; see [120]. To overcome this problem, instead of minimizing the volume of
E(P), one can minimize the trace(P~1). Indeed, as trace(P~!) = X" \;(P~1), P > 0, and
each eigenvalue of P~! corresponds to length of one of the axis of the ellipsoid £(P), mini-
mizing trace(P~') tends to homogeneously shrink the set £(P) is each direction. However,
since this criterion is in general non convex in the decision variable P, its exploitation in a
numerical scheme is not straightforward. To overcome this drawback, we introduce a further

variable N € 87, subject to the following linear constraint

>0

e P

which, by Schur complement, is equivalent to P~' < N. Therefore, the minimization of
trace(P 1)

can be implicitly performed by minimizing trace(N), which is a convex (in fact linear)

function of N. By pursuing this approach, Problem 2.3 reads

minimize  trace(NV)
P7SI7SQ777N

20 (2.33)

Sl,SQ E,DT,P,NGS:?,T>O
(2.14), (2.15).

subject to
[

Another alternative solution, inspired from [120, 66], and that can be used to state Prob-
lem 2.3, consists of minimizing the set £(P) along certain directions of interests, (this method

does not directly requires to specify a measure for the considered sets). In particular, let

U1, Ve, ...,V € R" be some given vectors, and let 0y, 0,, ... ,0,, positive scalars. Consider for
each 1 = 1,2,...,p, the following constraints
vy Pv; >0; i=1,2,...,s. (2.34)

By maximizing the scalars 6;, the set £(P) shrinks along the directions v;.

Hence, e.g., via a linear scalarization, the above size criterion, can be adopted to state
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Problem 2.3 as single objective optimization problem, as follows

S
minimize — Z 0y
P,51,82,7,01,02,...,05 i1

subject to S1,S, € DT P eS8, T>0 (2.35)

(2.15), (2.14), (2.34)

where ~v; > 0 are the weights of the objectives.

Even in Problem 2.4, the above trace criterion can be easily adopted, and its exploitation
is also simpler than in Problem 2.3; indeed it suffices to consider as convex objective in
the decision variables directly trace(1V). In particular, this choice leads to the following
optimization problem

$gluguTz$ trace(WW)
subject to 51,5, € D', W € 8}, 7 >0 (2.36)
(2.28), (2.15).

However, if one insists in requiring convexity for the measure criterion, adopting the above

illustrated volume criterion is impossible. Indeed, the function log det(W) is concave.

Numerical Issues in the Solution to (2.31)

Concerning (2.31), notice that, as long as the considered objective function is convex, when-
ever the scalar 7 is fixed, such a problem is a genuine convex optimization problem over LMI
constraints. Then, the solution to this problem can be performed in polynomial time via
interior points methods; see [15]. On the other hand, the positive scalar 7 can be treated as
a tuning parameter, or being selected via an iterative search. This is a typical scenario in
the literature; see, e.g., [118, 119, 126]. Then (2.31) can be efficiently solved on a computer,
with only caveat to obtain a sub-optimal solution. Based on this idea, consider the following
algorithm that, by performing a grid search for 7 in an interval wherein the feasibility of

(2.14)-(2.15) is ensured, provides a possible solution to (2.31)
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Algorithm 2.1 Stability analysis
Input: Matrices A, B, K, scalars A > 0, a convex function M,: 8§ — R, and a
tolerance p > 0.
Initialization: Let R(A + BK) = {|R(\)|: A € spec(A + BK)}, select 7 = 2 x
0.99min R(A + BK),
Iteration

Step 1:
Solve the following convex optimization problem over LMIs

minimize M,(P)

51,52,P

s.t. 51752 € IDT, Pe Sﬁ

He(P(A+ BK))+ 7P PB—K'S,
[ —Sl — 252

trace(S))A% —7 <0

<0

Pick the sub-optimal solution (P, Sy, Ss). Store the obtained solution:

MPE M, (P), PP P,

k+—k+1

Step 2:

Decrease 7 of p, i.e., T < T —p

Until 7 > 0.

Step 3: kmax < k, select k* = argmin {Mé’i)}
ke{1,2,kmax}

Output: P = P,
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Remark 2.4. Notice that, as shown in the proof of Proposition 2.2, the initialization pro-
posed ensures that at each iteration, Step 1 terminates with a sub-optimal solution to Prob-

lem 2.3. Then, Algorithm 2.1 always terminates in a finite number of steps.

Numerical Issues in the Solution to (2.32)

The solution to (2.32) is much more complicated, and for this further work is needed. Indeed,
even when 7 is fixed, condition (2.28) is nonlinear due to the product of decision variables
YTS, (and its transpose). This kind of nonlinearity often occurs whenever one attempts to
design, via the solution of an optimization problem, a static state feedback controller for
certain class of nonlinear systems; see, e.g., [118]. Nevertheless, being Sy diagonal, at least
for m < 2, even for this variable a grid search can be envisaged to solve (2.32), with still the

only caveat to obtain a suboptimal solution.

Another strategy to ride over this problem consists of adopting a procedure indicated
here below:

e As a first step one selects some stabilizing gain for the pair (A, B), this is always
possible due to Assumption 1.2

e Once the controller gain is known, by fixing 7 as prescribed in the proof of Proposi-
tion 2.2, (2.28) becomes a genuine LMI in the remaining variables, whose feasible set

is non-empty. Therefore, Sy can be selected to ensure the feasibility of (2.28)-(2.15)

e Once 9 is selected as indicated above, by preforming a grid search for 7, a suboptimal
solution to (2.32) can be determined by solving a finite number of convex optimization
problems over LMIs.

These steps are exploited to build the following algorithm.



48 Chapter 2

Algorithm 2.2 Controller design
Input: Matrices A, B, scalar A > 0, a tolerance p > 0, and a convex function M,: S —
]R>0.
Initialization: Select K, such that A+ BK is Hurwitz. Let R(A+BK) = {|R(\)|: X €
spec(A + BK)}. Set for the next step

7=2x0.99min R(A + BK)

Step 1:
Determine a feasible solution to the following LMI problem
51,8, € D', P e SY

He(P(A+ BK))+7P PB—K'S,
[ —252 - Sl

trace(S))A% —7 <0

<0

Set Sy = S, for the next step. Select a grid of positive values G, such that 7 = max G,
Iteration

Step 2:
Solve the following convex optimization problem over LMIs selecting 7 over G

minimize M (W)

Ww,51,Y
S, €D, PeSY

He(AW + BY)+7W B -YT'S,
° —25,— S,

trace(S;)A% —7 <0

subject to <0

Pick the suboptimal solution to the above optimization problem
(%, W*, Y™, 57).

and determine the controller gain as K* = Y*(W*)~1.

Determine the closed-loop matrix A+ BK*, and set T = 2x0.99 min R(A+ BK™*). Build
a grid of positive values G, such that 7 = max G,, and 7* € G,, (notice that necessarily
7 < 7. Including 7* in G, ensures the feasibility at the next step).

Until M (V) does not decrease below p over three consecutive steps.
Output: (K*, P = (W*)™)
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Remark 2.5. The above algorithm essentially performs a grid search for 7 keeping the
value of 95 unchanged from the initialization stage. However, the grid search proposed is
“greedier” than a standard one. Indeed, the grid G is built from scratch at each iteration,
to tentatively explore a wider portion of the feasible set, at least in the 7-direction.

Remark 2.6. The proposed algorithm has two important properties. The first one is that,
thanks to the initialization proposed building on the proof of Proposition 2.2, the algorithm
always provides a suboptimal solution to the controller design problem. The second one is
that, since at each iteration the objective is at least non-increasing, the algorithm stops in a

finite number of iterations.

An alternative strategy to solve the controller design problem consists of exploiting the
following sufficient condition to (2.28).
Proposition 2.5. If there exist W € 8%, S1,H € D', Y € R™ ", and a positive scalar T,

such that
He(AW + BY)+ W BH — YT o

. —4H I <0 (2.37)

[ ] [ ] —Sl
then W,T,Y,S1,Sy = H™! satisfies (2.28).

Proof. By Schur complement, (2.37) implies

He(AW + BY W BH-YT
AW+ BY) +7 | <o (2.38)
[ ] —4H + Sl
On the other hand, being S; and H positive definite, one has
(H—S7")S\(H =57 >0

or equivalently
—2H + S;' > —S H”.

Then, it follows

He(AW + BY)+7W  BH—-YT He(AW + BY)+7W BH-YT <0
. —2H — S H?*| — . —4H + St '
(2.39)
Moreover, pre-and-post multiplying the left-hand side of the above relation by diag(I, H~1)
yields
He(AW + BY W B-YTH!
(AW + BY) + 7 <o0. (2.40)
° —2H 1 — S1
Then, since setting Sy = H ! yields (2.28), the assert is proven. |

Thus, exploiting the above result, performing a grid search for the matrix S, (at least
for m < 2), or a two-stage procedure, represent viable solutions to solve Problem 2.4 via a

convex setup. Nevertheless, while the feasibility of the conditions provided by Proposition
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2.3 is ensured by Proposition 2.4, there is no guarantees that Proposition 2.5 provides feasible
conditions. Therefore, establishing which of the two techniques is more convenient is an open
question.

A less evident aspect to be considered in solving (2.32) consists of avoiding solutions
characterized by an overly large controller gain, situation that needs to be ruled out to
envision the physical realization of the proposed controller. In particular, observe that the
optimal solutions to (2.32) could in some case be approached only via an infinitely large
controller gain. This phenomenon is thoroughly addressed in [110] for the case of static
state-feedback H.-problem for linear systems. To overcome this problem, a typical solution
consists of adding further constraints in (2.32) to limit the controller gain. This procedure
somehow corresponds to reshape the feasible set of the considered optimization problem in
way such that high-gain control solutions become unfeasible solutions. However, it follows
from Proposition 2.3 that the matrix W is linked to both the set £(WW ') and to the gain
K. Then, limiting the norm of the gain K by directly operating on the expression given
in Proposition 2.3 leads to add further constrains on the matrix W. This fact may have a
negative effect on the solution to (2.32). On the one hand, further constraining the matrix
W may introduce an additional conservatism in the solution of (2.32). On the other hand,
although the feasibility of (2.32) should not be affected by additional constraints on the
matrix W, at least when those are not excessively severe, including further constraints on
the matrix W may impact on the achievable suboptimal solutions. Loosely speaking, the
addition of further constraints in the optimization problem can reshape the feasible set of
(2.32) in a unfavorable fashion. To alleviate these issues, following the lines of [20], we
provide a sufficient condition to (2.28) in which the matrices W and K are not directly
coupled. In particular, let us consider the result given next
Corollary 2.1. If there exist J € S, Y € R™", F € R"™" 5, S, € D', and a positive

4
scalar 7 such that (2.15) is verified, and

—He(F) J+AF+ BY — F" B
. 7J +He(AF + BY) —YTS,+B| <0 (2.41)
[ [ ] —Sl - 25’2

then K =Y F~' and A= E(F~TJF™!) are solution to Problem 2.2.

Proof. The proof is inspired by [99]. From Proposition 2.1, notice that A" = WTQW, where

A+BK B 0o P 0
W= I 0/,9=|e 7P —K'S,
0 I o o 5, —25

Thus, (2.14) can be rewritten equivalently as WTQW < 0. Moreover, being S; and S,
positive definite, UTQU < 0, with YT = [0 0 I], is obviously satisfied. Thus, by the

projection lemma; see [99], the satisfaction of (2.14), whenever S; and S, are required to be



Chapter 2 51

positive definite, is equivalent to find a matrix X such that
Q+ W XU + U XTWE <0 (2.42)

where, U and W+ are some matrices having as rows a basis of the row-null space, respec-
tively of U and W. Now, by selecting U+ = [Izn OQWP} and Wit = [—I A+ BK B}, and
by partitioning X = {Xl XQ}, where X, Xy € R™™, from (2.42) one gets

—He(X;) P—X,+ X[ (A+ BK) XTB
. He(X](A+ BK))+7P XJB—K'S,| <O0. (2.43)
[ [ ] —Sl - 2S2

At this stage, by setting in the above expression X; = Xy = X, then by pre-and-post multi-
plying the left-hand side of the resulting matrix by diag(X~T, X~ T 1) and diag(X !, X1 1)
and finally by setting X' = F, J = FTPF and Y = KF yields the left-hand side of
(2.41). Then, the satisfaction of (2.41) implies the satisfaction of (2.14). Therefore, thanks

to Proposition 2.3, the assertion is proven. [

Remark 2.7. Notice that, the fact of choosing X; = X, in the derivation of the previ-
ous result adds some conservatism to the conditions given in Proposition 2.3. Specifically,
differently from Proposition 2.3, there is no guarantees that the conditions provided by

Proposition 2.7 are feasible.

Building from the previous result, with the objective of limiting the norm of the controller
gain K, consider the result given next
Proposition 2.6. If there exist two matrices F' € R™", and Y € R"™", and a positive
scalar u, such that
He(F)—1 YT

>0 2.44
. T (2.44)

then [[YF7Y| < p.
Proof. First, from [33], He(F) — I < FTF, then (2.44) gives

FTF YT

> 0. 2.45
« 2al° (2.45)

Then, by pre-and-post multiplying the left-hand side of (2.45), respectively by, diag(£~T,1)
and diag(F~1,1), one gets
I FTYyT

> 0. 2.46
. (2.46)

Then, by Schur complement (2.46) yields F~TYTY F~! < 421, which in turn is equivalent to
|YF~Y| < p, concluding the proof. |

Another strategy to, implicitly, limit the norm of the gain K consists of constraining the

eigenvalues of the matrix (A+ BK) to lay in a suitable region contained in the open left-half
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complex plane. This kind of additional constraints can be easily expressed in a linear matrix
inequality form; see [25]. A typical choice is to consider as region the closed circle centered
in (—w,0) with radius » > 0, where w is a positive real scalar, i.e., {z € C: |z + w| < r}.

Such a condition is guaranteed by considering the following constraint; see [118],

—rQ) wF+ AF + BY

. i aF-Q) < 0 (2.47)

where () is a symmetric matrix with adequate dimensions.

As mentioned earlier, Corollary 2.1 allows to solve Problem 2.2, by decoupling the matrix
defining the set A = E(F-TJF~1), from the controller gain K. On the other hand, by doing
so, the matrix defining the set A does not explicitly appear in (2.41). Then, embedding (2.41)
into an optimization scheme to shrink the size of the set A requires further work. Suppose
that one wants to insist on considering a trace criterion, that is minimizing trace(F.J~1FT).
A strategy that can be adopted to obtain a convex objective function to minimize consists

of considering the following constraint

N F

>0 2.48
. (2.48)

where N € S”. Indeed, the latter constraint is equivalent to F.J"'FT < N. Then, the min-
imization of trace(FJ 1FT) can be performed indirectly via the minimization of trace(N).
Therefore, Problem 2.4 can be formalized as follows
RS, tracelV)
5.t Sy, S, € D J,N € 8" (2.49)
(2.41), (2.15), (2.48), (2.44) (or (2.47)), (2.48)

Remark 2.8. Obviously, with the aim of limiting the norm of the controller gain, similar
techniques as those illustrated above can be developed directly building from the conditions
given by Proposition 2.3 (without the introduction of any slack variables) by adding further
constraints on the matrix W. However, although the feasibility of the conditions given by
Proposition 2.3 is ensured, whenever such conditions are coupled with further constraints,
the feasibility of the resulting optimization problem cannot be ensured a priori. On the other
hand, as mentioned earlier, due to the conservatism introduced by Corollary 2.1, even (2.49)
could be unfeasible. Therefore, determining a priori which approach is the more convenient

is an open question.

Similarly to Proposition 2.3, condition (2.41) is nonlinear in the decision variables. As
matter of fact, condition (2.41) is affected by the same kind nonlinearities of condition (2.28),
then the same techniques illustrated above can be used to alleviate these nonlinearities. In
this sense, the result given next parallels Proposition 2.5.

Proposition 2.7. If there exist W € 8%, S;,H € D', Y € R™ ", and a positive scalar T,
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such that
—He(F) J+ AF+ BY — F" B 0
J+He(AF+BY) YT+ BH 0
© 7/ He(AF+BY) * <0 (2.50)
° ° —4H I
) [} [ J —Sl

then J,F,7,Y,S1,S, = H™' satisfies (2.41).

Proof. The proof follows the same steps traced in the proof of Proposition 2.5, then it is
omitted. |
Remark 2.9. Notice that, although the solution to Problem 2.4 provides in one shot a solu-
tion to Problem 2.2, hence the controller gain, and the set A, due to the further constraints
introduced to render Problem 2.4 numerically tractable, the set A issued by this stage can
be further tightened to fit more the behavior of the closed-loop system. Indeed, once the
controller gain K is known, by performing an analysis stage via Proposition 2.1, further

improvements can be obtained in terms of reduction of the size of set A.

In the next section, the effectiveness of the proposed methodology is shown in some

examples.

2.2.5 Numerical Examples

Example 2.1 (Furuta pendulum). Consider the Furuta pendulum [67], whose linearized

model around the unstable equilibrium point is given by

0 0 1 0 0
0 0 0 1 0
T = T+ u (2.51)
0 39.32 —-1452 0 25.54
0 81.78 —13.98 0 24.59

where x1, 25 represent respectively the base angle and the pendulum angle (rad), z3 and x4
are respectively the two angular speeds (rads™!), and u is input voltage (V) of the motor
driving the base shaft. Assume that the system is controlled via a static state feedback
controller, with

K = [2.2710 —27.1793 2.4963 —3.9153}

and that the actuator is quantized via uniform quantizer with A = 0.5. By selecting as
convex criterion M,(P) = —logdet(P), the solution of Problem 2.3, via the adoption of
Algorithm 2.1, with a tolerance p = 0.1, yields

20.6128 —59.4021 7.79714 —9.06105
—59.4021 556.424 —33.2957 40.6492
779714 —33.2957  6.45171  —7.62996
—9.06105 40.6492 —7.62996 10.3472
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Figure 2.2: y/det(P~1) versus the number of iterations.

Figure 2.2 shows the evolution of \/det(P) (proportional to vol(€(P))) at each iteration of
Algorithm 2.1.

To give a measure of the tightness of the set A with respect to the actual behavior of the
closed-loop system, in Figure 2.3 we report the time-evolution of the function 2" Pz along
some solutions to the closed-loop system. The figure reveals that the trajectories once enter
the set A (finite time convergence) no longer leave it and actually stay sufficiently close to

its boundary.
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4.5

25F

Figure 2.3:  The evolution of the function V(z) = z"Pz. xy = (0,7/8,0,0) (solid-line),
zo = (0,7/18,0,0) (dashed-line), zy = (0,7/36,0,0) (dotted-line).
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Example 2.2. This example has the aim to show how the use of slack variables, as suggested
in Corollary 2.1, can, in some cases, provide notable benefits. Consider the following data,

borrowed from the balancing pointer system in [69], defining the closed-loop system in (2.4).

A:[01
10

Assume that, we want to design a static state feedback controller by solving (2.36). Moreover,

0

B = A =1

to avoid overly large controller gain, we limit the controller gain explicitly via a constraint
like (2.44). In particular, by following the same steps in the proof of Proposition (2.6), it
turns out that given p > 0, | K| < p? if

>0

2W —1 YT
° ul

Therefore, pursuing this approach (2.36) reads

minimize trace(W)

w,51,52,Y,R
s.t. Sl, SQ € DT, W e Si
(2.28), (2.15) (2.52)
oW —1 YT
> 0.
° pul

For yi = 50,7 = 0.99,5, = 0.1 the solution of (2.52) yields, K = [2.93 1.59] and A =
EW1), with

0.8009 —0.4087
—0.4087  1.151

for which one has trace(WW) ~ 1.9521.
Instead, solving (2.49), endowed with the additional constraint given by Proposition (2.6),
still for p = 50,7 = 0.99, Sy = 0.1 provides

K = [4.772 4.563]
A=EF TJF™

where

i — [3.872 2.45]

245 3.84

and for which trace(FJ 'F) & 0.869. Namely the introduction of slack variables leads to
an improvement of about 55.45% in terms of minimization of the size of A, at least for the
considered trace criterion. Figure 2.4 shows the two sets obtained by solving (2.49) and
(2.52). The figures points out that, in this case, solving (2.49) enables to shrink more the
size of the set A.
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Figure 2.4: The two sets A resulting from the solution to the controller design problem.
EW 1) solid, E(F-TJF~1) dashed.
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Example 2.3 (A multi-input system). For the closed-loop system (2.4), consider the fol-

lowing example derived from [2] for which

—05 15 4 -0.7 —-1.3
A=143 6 5 |,B=| 0 —43
3.2 6.8 7.2 0.8 —1.5

and assume A = 0.5. We solve (2.49) augmented with (2.47) for which w = 10,7 = 8.5. To
deal with the nonlinearities affecting (2.49), we select 7 and Sy over a three dimensional grid.

In particular, the most convenient values selected are 7 = 1.8, S, = diag(1.4 x 1075 4.3 x

K -0.71 19 =27 '
43 4.1 43

1079), giving

As a second step, to tighten more the set A obtained by the solution to (2.49), we
perform an analysis stage via Algorithm 2.1, while considering as a convex criterion M, (P) =
— logdet(P). Specifically, Algorithm 2.1 provides

29.33 1325 —14.07
P= 1325 65 —136.7]| .
—14.07 —136.7 404.8

Figure 2.5 shows the evolution of the closed-loop system in its state space, from different
initial conditions. Furthermore, Figure 2.6 reports a particular closed-loop trajectory in its

time-domain.

Simulations show that trajectories converge into the set A = £(P). More precisely, closed-
loop solutions appear to converge towards two equilibria contained in £(P) . Notice that also
the origin is an equilibrium point for the closed-loop system, though unstable. It is interesting
to notice that these two equilibrium points appear to belong respectively to the two surfaces
Kz =[A —A]" and Kz = [-A A]" wherein the function q(K ) is discontinuous. As matter
of fact, the two mentioned equilibria are actually Krasovskii equilibria, indeed there does

not exist any point € R3, such that

- A
Axr=—-B
—A
- A
Kz =
—-A
The same considerations hold for the other equilibrium point, for which Kz = [-A A]T.

The determination of this kind of equilibria, in general, is far from trivial. However, in this
example, the results provided by the above simulation may be used as a first guess to exactly

determine the two Krasovskii equilibria. Specifically, let & be a Krasovskii equilibrium for the
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D) -1 -1

Figure 2.5: Some closed-loop solutions converging into the set £(P) (magenta). The solutions
are obtained by integrating the closed-loop model via an Euler method with time step 1074

closed-loop system and such that KZ = [A —A]". By defining x(z) = Kz, the determination

of Z needs to be carried out by searching for a point z € R3, such that
0 € {Ax + BK[qok](Z)}.

On the other hand, for every € R3, thanks to [97, Theorem 1], since rank K = 2, one has
Klaor](z) = Klq](KZ).

Moreover, due to the decentralized structure of the function u — q(u), from Proposition 1.3

it follows )

Klaor](z) = X Kla] (K 7).

i=1
Therefore, a necessary and sufficient condition for a point € R? to be a Krasovskii equi-

librium for the closed-loop system is that

0 € {Az + B X Kla](KT)}-

i=1
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 2.6: The evolution of the closed-loop system from zo = (0.5,0.5,0.5): Above the
control inputs (q(u;) (solid-black), q(us) (solid-blue), and the two quantization-free inputs
(Kyz(t) (dashed-black), Kz)x(t) (dashed-blue). Below the closed-loop states: x; (solid),
zo (dashed), x5 (dashed-dotted). The solutions are obtained by integrating the closed-loop
model via an Euler method with time step 107%.

Now, if one restricts the search to the points T such that Kz = [A — A]", in view of the

definition of the function q(-) given in (1.17), the latter relation turns in

0c {xERQ:Ax—l—B gl

A, (6:,8,) € {]0,1] x [—1,0]}}.

2

Therefore, x needs to satisfy

s
K|
I

|
Sy
>
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and this is possible if and only if

o).

for some (d1,02) € {[0,1] x [—1,0]}. In particular, it turns out that the latter condition is
verified for 0, =~ 0.48856, 9y ~ 0.21977, which, in turn yields z = (—0.12,0.018, —0.014). No-
tice that, Z is the only Krasovskii equilibrium belonging to the surface S; == {z € R*: Kz =

[A — A]™} for the closed-loop system. Analogous considerations allow to compute the other
equilibrium point satisfying Kz, = [-A A]", specifically 7, = —Z. A posteriori of these
calculations, let us focus on Figure 2.7, that is essentially a closed-up of Figure 2.5, and in
which the two computed equilibrium points are represented. The figures shows, both the
accuracy of the above arguments in foreseeing the behavior of the closed-loop system, in
terms of Krasovskii solutions, and the accuracy provided by Euler integration, that succeeds

in capturing the peculiar behaviors due to the discontinuity introduced by the quantizer.

Figure 2.7: Closed-loop trajectories approaching the two equilibrium points (’x’). The solu-
tions are obtained by integrating the closed-loop model via an Euler method with time step
10~
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2.3 Sensor Quantization

2.3.1 Preliminary Results

Consider the following continuous-time linear system with quantized measured state

T = Az + Bu
(2.53)

u=Kq(z)

where x € R”, u € R™ | are respectively the state, the input of the system. A, B, K are real
matrices of suitable dimensions, and q(-) is the uniform quantizer defined in (1.17) having as
a quantization error bound A > 0. As in the previous section, by introducing the function

U defined in (2.2), the closed-loop system can be rewritten as
& =(A+ BK)x + BKV(x). (2.54)
Therefore, with the aim of considering the Krasovskii solutions to (2.54), let us define

Z:R"—R"

(2.55a)
r+— (A+ BK)x + BKV(x)
we consider the solutions to the following differential inclusion.
€ K[Z](x). (2.55b)

By retracing the steps performed in the actuator quantization case, we provide a first re-
sult characterizing the behavior of the closed-loop system (2.54) in terms of its Krasovskii
solutions.
Theorem 2.2. Let A, B, K be matrices of adequate dimensions, such that A + BK is
Hurwitz. Then there exists a compact set A C R", containing the origin, which is UGAS
for (2.55).

Proof. The proof follows the same steps shown in the proof of Theorem 2.1, and then it is
omitted. |

Also in this case, we want to provide constructive tractable conditions for the search of
the set A C R"™, whose existence is ensured by Theorem 2.2. Therefore, in the sequel, the
same apparatus presented for the actuator quantization case is considered for the case of
interest of this section.

2.3.2 Stability Analysis

Problem 2.5. (Stability analysis) Let A, B, K be matrices of adequate dimensions, such
that A+ BK is Hurwitz. Determine a compact set A C R" containing the origin, such that
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A is UGAS for system (2.55).

The next result, which essentially parallels Proposition 2.1, gives a first sufficient condition
to solve Problem 2.5.

Proposition 2.8. If there exist P € 8%, 51,53 € D, and a positive scalar T such that

He(P(A + BK)) + 7P PBK — 5,

<0 (2.56)
[ J —Sl - 232
trace(S;1)A% —7 <0 (2.57)
then,
A=E(P) (2.58)

solves Problem 2.5.

Proof. The proof retraces the same steps performed in the proof of Proposition 2.1. For
every © € R", consider the following quadratic function V(z) = 2" Pz. Following the ideas
presented in the proof of Theorem 2.1, we want to prove that there exists a positive real
scalar § such that

(VV(x),w) < —pV(x) Vo e R"\ IntA, w € K[Z](x). (2.59)

As the above relation is analogous to (2.8) in the proof of Theorem 2.1, establishing (2.59)
suffices to show that the set A in (2.58) is UGAS for (2.55). By S-procedure arguments,
(2.59) can be verified by showing that for every x € R", there exists a positive real scalar 7
such that

(VV(2),w) —7(1 —2"Px) < -8V (z)  Vw € K[Z](z). (2.60)

On the other hand, via Proposition 1.1, for every w € K[Z](x), there exists v € K[¥](x),
such that w = (A + BK)x + BKv. Then, still by S-procedure arguments and according to
Lemma 2.2, (2.60) is ensured by proving that for each € R, and for each v € R",

(VV(2),(A+ BK)x + BKv) — 7(1 — 2" Pz) — v' Sjv
+ trace(S1)A% — 20T Sy (v + 2) < —BV (x).

By straightforward calculations, the left-hand side of the above relation can be rewritten as

T
T
:
Thus in view of (2.56) and (2.57), it follows that there exists a small enough positive scalar
7 such that for every z € R" \ IntA, w € K[Z](z), one has (VV(z),w) < —yz'z. Then,
since for every € R", V(x) < Apax(P)z"z, by setting 8 = —L— gives (2.60), and this

)\max(P)
finishes the proof. [ |

follows
He(P(A+ BK))+7P PBK — S,
(] _Sl - 252

o trace(S;)A% — 7. (2.61)
v

Also in this case, the feasibility of the conditions given in Proposition 2.8 is ensured under
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Assumption 1.2. In particular, let us consider the following result, whose proof is essentially
based on the ingredients exploited in the proof of Proposition 2.2.

Proposition 2.9. Let K € R™ " such that A + BK is Hurwitz. Then, there exists
(7, P, S1,52) € Rog x ST x D} x DY satisfying (2.56) and (2.57). O

2.3.3 Controller Design

As already done in the actuator quantization case, also in this case, we want to tackle the
controller design problem for the closed-loop system (2.55). Essentially, assuming that the
gain K has to be designed, we want to derive tractable constructive conditions characterizing
the solutions to the problem formalized as follows

Problem 2.6. (Controller design) Let A, B be matrices of adequate dimensions. Determine
a gain K € R™" and a compact set A C R" containing the origin, such that A is UGAS

for system (2.55).

Clearly Proposition 2.8 provides a first condition to solve Problem 2.6. However, due
to products between unknown variables, a direct exploitation of the conditions given by
Proposition (2.8) to solve the controller design problem appears unlikely, and then further
work is needed. Nevertheless, differently from (2.14), applying similar strategies as the
ones shown in Proposition 2.3 does not allow to alleviate the bilinear term PBK (and its
transpose) appearing in (2.14). In particular, if one attempts to alleviate this term by means
of standard techniques (congruence transformations, and invertible changes of variables), the
resulting condition reveals to be still nonlinear and presenting more involved nonlinearities
as trilinear terms. On the other hand, via the use of the projection lemma, (see, e.g., [99]),
one can derive a condition equivalent to (2.56), which is linear in the variable P defining the
set A, and bilinear with respect to the controller gain and some additional variables. This
condition is proposed in the result given next.

Proposition 2.10. Let P € §©,5,,5, € D}, K € R™", and 7 € Ryy. The satisfaction of

He(P(A+ BK))+ 7P PBK — S,

<0 (2.62)
[ ] _Sl - 252

s equivalent to the feasibility of

—He(X,) P—X,+ X[ (A+BK) X/BK
. He(X3(A+ BK))+7P X]BK — S| <0 (2.63)
[ [ ] —Sl - 232

with respect to X1, Xy € R™*",

Proof. The proof follows the same lines of the one of Corollary 2.1. In particular, from
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Proposition 2.8, notice that (2.56) can be rewritten as WTQW < 0, where:

A+ BK BK 0o P 0
W= 1 0 ,Q: o TP —SQ
0 I o o —5,—25

Moreover, being S; and Sy positive definite, UT QU < 0, with U = {O 0 I}, is obviously
satisfied. Thus, by the projection lemma; see [99], the satisfaction of (2.56), whenever Sy

and Sy are required to be positive definite, is equivalent to find a matrix X such that
Q+ W XU + U XTWE < 0 (2.64)

where, U:- and W+ are some matrices having as rows a basis of the row-null space, respec-
tively, of U and W. Now, by selecting U+ = |:12n Ognxp} and Wi = [—I A+ BK BK}
and by partitioning X = [X1 Xz}, where X, Xy € R™™, from (2.64) one gets

—He(X)) P—Xo+XJ(A+BK) X]BK

o  He(X](A+BK))+7P XIBK —S,| <0 (2.65)
L4 L4 —Sl — 252
which is (2.63) and this finishes the proof. [

As already mentioned, the advantage offered by the above result is twofold. On the one
hand, there is no trilinear term. On the other hand, the matrix P defining the set A appears
linearly. This fact enables to build an iterative relaxation procedure that allows to solve the

controller design problem, this aspect is presented in the next subsection.

2.3.4 Optimization Issues

Concerning the optimization aspects in the solution to Problem 2.5 and Problem 2.6, anal-
ogous considerations as the ones presented for the actuator quantization case hold in this
case. In particular, the optimization problems to address in this setting can be formulated
as follows:

Problem 2.7 (Stability). Let A, B, K be matrices of adequate dimensions. Determine
P € 87, such that £(P) is UGAS for system (2.55), and it is minimized with respect to
some criterion.

Problem 2.8 (Stabilization). Let A, B be matrices of adequate dimensions. Determine a
gain K € R™" and P € 8%, such that £(P) is UGAS for system (2.55), and it is minimized

with respect to some criterion.

Obviously, since the sets whose size needs to be minimized are still ellipsoidal sets, the
size criteria that can be considered in Problem 2.7, and Problem 2.8 are the same illustrated

for the actuator quantization case.
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As far as concerns Problem 2.7, as long as 7 is fixed, (2.56) is linear in the decision
variables. Then, a direct generalization of Algorithm 2.1 allows to solve Problem 2.7 in a

convex setting. Such an algorithm is given next
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Algorithm 2.3 Stability analysis

Input: Matrices A, B, K, scalars A > 0, a convex objective function M,, and a tolerance
p > 0.

Initialization: Let R(A + BK) = {|R(\)|: A € spec(A + BK)}, select 7 = 2 x
0.99 min R(A + BK),

Iteration

Step 1:

Solve the following convex optimization problem over LMIs

minimize M,(P)

S1,S2,P
s.t. S1,S2 € D}, PeSY
He(P(A + BK)) +7P PBK — S, 0
[ ] —Sl - 252

trace(S;)A% — 7 <0

Pick the sub-optimal solution (P, Sy, 55). Store the obtained solution: M «+ M, (P),
*) P

k<« k+1

Step 2:

Decrease 7 of p, i.e., T« T —p

Until 7 > 0.

Step 3: kmax < k, select k* = argmin {./\/lgi)}
k€{1,2,k111ax}

Output: P = P

Clearly the same considerations pointed in Remark 2.4 holds also for the above algorithm.

As mentioned before, the solution to Problem 2.8, due to nonlinearities affecting condition
(2.56) is much more involved, and requires a suitable strategy. In particular, inspired by [5],

we propose the following iterative algorithm to derive a suboptimal solution to Problem 2.8.
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Algorithm 2.4 Controller design

Input: Matrices A, B, scalar A > 0, a convex objective function M, and a desired
tolerance p > 0.
Initialization: Select K such that Ay = A+ BK is Hurwitz. Let R(Ay) == {|R(\)|: A €

spec(Agq)}, then select 7 = 2 x 0.99 min, R(A,) and build a grid of positive values G, such
that max G, =7 (ensuresjhe feasibility of the resulting optimization problems).
Iteration Step 1: Given K from the previous step, solve the following convex optimization

problem over LMIs by selecting 7 over G..

minimize M,(P)

S51,52,P,X1,X2
s.t. S1, 5 EDK,PES?
~He(X,) P-Xo+X[(A+BEK) XIBK (2.66)
e  He(XI(A+ BEK))+7P XIBK -S| <0
L4 ° —Sl — 282

trace(S;)A% —7 <0

Pick the suboptimal solution obtained and set X; = X;, Xo = X, for the next step.

Step 2: Given X1, X, from the previous step, solve the following convex optimization
problem over LMIs by selecting 7 over G..

minimize M,(P)

S1,S2,P,K
s.t. S1, 59 EIDK,PESi
~He(X)) P-X,+X,(A+BK) X,BK (2.67)
. He(X5(A+ BK))+ 7P X,BK —S,| <0
[ [ ] —Sl - 282

trace(S;)A% — 7 < 0.

Set K = K, for the next step.

Determine the closed-loop matrix A + BK and set 7 = 2 X 0.99min R(A + BK). Build
a grid of positive values G, such that 7 = max G,, and 7* € G, (notice that necessarily
7 < 7. Including 7* in G, ensures the feasibility at the next step).

Until M; does not decrease below p over three consecutive steps.
Output: K.
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Remark 2.10. Proposition 2.10 plays a determinant role in the development of the above
exposed algorithm. In fact, the introduction of the slack variables X, X5 enables to treat
P as a decision variable at each step of the algorithm, without adding any additional con-
servatism; recall that the feasibility of (2.64) is equivalent to the one of (2.56). Notice that,
by exploiting directly Proposition 2.8, due to the bilinear terms involving the matrix P and
the controller gain K, if one would retrace the strategy proposed in Algorithm 2.4, then one
needs to alternatively fix either P or K, preventing from treating P as a decision variable
at each step. This obviously has a dramatic impact on the achievable suboptimal solutions
to Problem 2.8.

The above algorithm presents some interesting properties that render its utilization in
practice quite convenient. In particular, notice that at each iteration, both (2.66) and (2.67)
are always feasible. Indeed, during the first iteration, since A, is Hurwitz, the feasibility of
(2.66) is ensured by Proposition 2.9. To see that also at each other iteration the considered

optimization problem are always feasible, consider the following arguments.

For the j —th iteration, denote the value of the matrix P, respectively, at the exit of step
1 and of step 2 as Pg-l) and Ff).

[From step 1 to step 2] Obviously step 2 is always feasible, indeed keeping the same gain

K from the previous step yields a feasible solution and moreover MS(PE»Z) ) < MS(?ED).

[From step 2 to step 1] The feasibility of (2.66) is ensured by following same arguments
illustrated for the other case. Moreover, MS(FE%) < MS(F?). Notice also that by assum-
ing M(P) > 0 over the feasible set of (2.67) (this assumption is certainly verified for the
trace criterion previously illustrated and can be fulfilled for the logdet criterion by consid-
ering for the stopping criterion — det(F) which is positive on ST and monotonically related
to —logdet(P) ), the above mentioned monotonicity property guarantees that the sequence
{MS(ng)};?‘;l converges. Therefore, for any positive p, the algorithm terminates in a finite

number of iterations.

As for the actuator quantization case, one may add (in step 2) further constraints to limit
the norm of the controller gain. In particular, since in step 2 the controller gain K is a

decision variable, for any positive s, considering the following constraint (linear in K)

<0 (2.68)

ensures that || K| < k.
Remark 2.11. Although Algorithm 2.4 provides a numerically tractable solution to Prob-
lem 2.8, one should be aware that the initialization stage plays a relevant role in the final
result. In particular, from different initializations the algorithm may converge to different
solutions. On the other hand, determining the most efficient initialization seems a nontrivial

problem.
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As far as concerns the convex criterion My to adopt in Algorithm 2.4, both the determi-
nant based criterion and the trace criterion as it was presented in (2.33) represent valuable

choices that leads to computationally tractable procedures.

2.3.5 Numerical Examples

Example 2.4. Consider the static state feedback control system with quantized sensor from
[49], that is defined by the following data:

N R
0.5 0.5

By selecting as convex criterion M (P) = — log det(P), by solving Problem 2.7 via Algorithm
2.3, with a tolerance p = 0.001, yields

1
A =1,K =[-03491 —0.7022].

p_ 2605570.22255 —2605570.2217
| —2605570.2217  2605570.22332

Figure 2.8 reports the set £(P), along with some closed-loop solutions. Notice that

30 T T T T T
20

10

-10

-30 -20 -10 0 10 20 30

Figure 2.8: The set £(P) (red), some closed-loop trajectories (black). Solutions are obtained
by integrating the closed-loop model with an Euler method with time step 107%.
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spec(P) = {0.001148,5.211 x 10°}

ensuring that P > 0. This huge difference between such eigenvalues is due to the shape of

the set £(P) represented in Figure 2.8, which is nearly a segment.

Figure 2.8 points out that the solution to the Problem 2.7 via the proposed algorithm
provides a very satisfactory characterization of the actual behavior of the closed-loop system.
In particular, simulations suggest that the closed-loop trajectories converges toward the set
S = {(z1,72) € R*: 11 = 2} N Z?. Clearly, such a set is not connected, therefore being A
necessarily connected (in fact convex), it can only provide an overapproximation of S, which

seems quite tight in this case.

Fostered by the above arguments, one may wonder whether the points belonging to S are
equilibrium points for the closed-loop system. However, such points, except for the origin,
cannot be equilibria in a classical sense. Indeed, let assume that there exists a classical
equilibrium z € §. Then, it has to be

T =19 =k

AZ + BK13k =0
for some k € Z. That is

(A+ BK)1,k =0

but the latter, being A + BK Hurwitz, is obviously satisfied only for & = 0. That said,
the search of the equilibrium points into the set S needs to be performed by looking at

Krasovskii equilibria. Similarly to Example 2.3, we seek for each point Z € R?, such that
0 € {Azx + BKK|q|(z)}.

On the other hand, for every x € R?, thanks to Proposition 1.3, one has

2

Kla](z) = X Klal(z)

Therefore, it follows that a point z € R? is a Krasovskii equilibrium for the closed-loop
system if and only if
2
0 € {A + BK X Kla)(2))}.
i=1
Now, if one restricts the search to the points & such that x = k1,, for some k € N, in
view of the definition of the function ¢(-) given in (1.17), the latter relation turns into

o1

0c {:ZeRQ:Aai"+BK 5

: (51,52) € {[k‘— 1,/{3] X [k’ — 1,]{3]}} .

2

Therefore, by setting x = k1,,, x is a Krasovskii equilibrium for the closed-loop system if
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and only if, there exists (d1,02) € {[k — 1, k] x [k — 1, k], such that

B
Al,k + BK 1] = 0.
D)
Since
Bi = |B0 Kol gy ]!
Kay K 1

the latter equality imposes that
K(1)51 + K(2)52 - —]{7

Concluding, x = k1, with £ € N can be a Krasovskii equilibria for the closed-loop system

if and only if the following polyhedral in R? is nonempty

K1yo1 + K902 = —k

& <k

o >k—1 (2.69)
5 <k

6y >k — 1.

Moreover, by definition of the uniform quantizer (1.17) and Proposition 1.1, if
2
0 € {Az + BK X Kl[d](z@)},
i=1

then
2

0 € {—AZ + BK X K[a](-Z)}

=1

that is the equilibria are symmetric with respect to the origin.

Therefore, in practice, to determine if the points +k1, are Krasovskii equilibria for the
closed-loop system for some £ € N, one can test, via standard linear programming algo-
rithms, whether (2.69) is non-empty. In particular, by pursuing this approach, it turns out
that for the given gain K, (2.69) is non-empty for & up to 20. This means that the only
Krasovskii equilibria belonging to S for the closed-loop system are the points z = k1, with
k = £1,4£2...,420, which exactly matches the results presented in Figure 2.8. Specifi-
cally, Figure 2.9 emphasizes that the closed-loop system solutions approach the Krasovskii

equilibria.
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30 T T T T T

-30 -20 -10 0 10 20 30

Figure 2.9: The set £(P) (red), some closed-loop trajectories (black), and the Krasovskii
equilibria (blue bullets). Solutions are obtained by integrating the closed-loop model with
an Euler method with time step 1074,
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As pointed out above, the shape of the set A intrinsically leads to a matrix P which
tends to be ill-conditioned. On the other hand, whenever having a good conditioning is
a relevant matter, one may add an additional constraint in the considered optimization
problem, so as to ensure a given condition number for the matrix P. Such constraint can
easily integrated by means of additional LMI constraints; see [127], at the price of obtaining
more conservative results. Indeed, limiting the condition number reflects on the shape of the
resulting set \A. To show this fact in this example, for the considered closed-loop system,
we solve Problem 2.7 via Algorithm 2.3, while considering an additional constraint aimed
at ensuring a condition number for P less or equal than «. Figure 2.10 reports the sets A
obtained as above, whenever 7 varies in a grid built upon the interval [10,5000]. The figure

shows that, as expected, the larger the condition number, the tighter the resulting set A.

25 T T T T T

20

15

v increasing

10

X2
o
T

4 4
(@) ] o
T T

N
o
T

-25 i i i i i
-30 -20 -10 0 10 20 30

Figure 2.10: Different sets A obtained imposing a condition number for P less or equal than
v. v =10 (black), v = 5000 (red), v € (10,5000) (blue), the sets shrink as 7 increases.
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Example 2.5. (A multi-input plant) Consider the again the example from [2] for which

-05 15 4 -0.7 —1.3
A=143 6 5|,B=| 0 —43],
3.2 6.8 7.2 0.8 —1.5

and assume in this case, that the measured state is quantized via the uniform quantizer
(1.17) with A = 0.5. We want to solve Problem 2.8 via Algorithm 2.4, by using the trace
criterion as presented in (2.33). In particular, let N € S%, by requiring that

N 1
o P

we want to minimize trace(N). To initialize the algorithm, we use three different stabilizing

>0

gains. The first one
[0.0380 0.1751 —0.8551]
0 p—

3.8514 3.8400 9.5510

is borrowed directly from [2]. The second one

—-0.71 1.9 -2
K, = 0.7 9 7
4.3 41 43

comes from Example 2.3, and finally the third one,

[-0.11527 —0.28207 —1.2449
27| 24835 42519  6.2107

is the gain issued from the solution of an LQR problem on the pair (A, B), with @ = I3, and
R =1,. For all these three initializations, the tolerance for the algorithm is p = 107, Fig-
ure 2.11 shows the evolution of trace(N) over the number of iterations for the three proposed
initializations. Surprisingly, although the algorithm does not ensures convergence toward the
optimal solution, and the initialization are quite different of each other, the algorithm pro-
vides three solutions giving nearly the same value of the objective. This shows that, at least
for the matter of this specific example, the initialization stage is not excessively crucial,
though it may impact the computational burden: the number of iterations might increase
depending on the initialization, e.g., for the third initialization the number of iterations is
almost twice as much as the number of iterations occurring for the second initialization. In
Table 2.1 the different outputs of the algorithm are reported for the three considered initial-
izations. As shown in Table 2.1, the first and the third initialization provides quite similar
results also in terms of controller gain and the matrix P defining the set A = £(P) solving

the controller design problem.
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45 - - - - - - - - -

3sp =

25
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10 20 30 40 50 60 70 80 90

iterations

Figure 2.11: Objective function versus the number of iterations. First initialization (ma-
genta), second initialization (blue), third initialization (black).

Initialization trace(N) K P Tterations
- 099 03 —053
~3.3804 —0.37076 —25.912]

1 12.673 03 037 —06 71
| 44004 057293 16.594 053 06 1.4
- (059 018 —0.13]
~8.4812 —0.1307 —30.799]

2 12.653 0.18 042 —0.55| 52
63613 14677 13.504 013 055 L1
- (097 0.3 —0.53]
34714 —0.39353 —25.839]

3 12.669 03 037 —061] 91
43721 060222 16.29 053 061 14

Table 2.1: The different outputs of Algorithm 2.4 for the three different initializations.
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2.4 Comments and Conclusion

In this chapter, we addressed the state feedback control problem for linear systems in the
presence of either actuator quantization or sensor quantization, in terms of Krasovskii solu-
tions. In this setting, first we shown that the asymptotic stability of the quantization-free
closed-loop system (in both the considered schemes) ensures the existence of an ellipsoidal
set A, which UGAS for the closed-loop system (in terms of its Krasovskii solutions). Then,
with the aim of pursuing a constructive approach, thanks to some novel sector conditions
for the uniform quantizer, we turn the search of the set A into the feasibility problem of
certain matrix inequalities. Moreover, we shown that this approach is lossless, in the sense
that under the asymptotic stability of the quantization-free closed-loop system, the derived

matrix inequalities are always feasible.

As a second step, we addressed the stabilization problem for the same class of systems.
In this context, the considered problem consists of deriving some conditions enabling the
simultaneous search of a linear static state feedback controller, and a compact set A con-
taining the origin, such that the resulting closed-loop system has the set A UGAS. Such a
problem is solved by suitably transforming the matrix inequalities derived for the stability

problem in more advantageous fashions.

Building on the derived conditions, some algorithms based on convex optimization over
LMIs are proposed to effectively solve the considered problems, while providing (sub)optimal
solutions with respect to convenient objectives. Finally, the effectiveness of the proposed
methodology is shown in some examples. These examples, not only provide a benchmark to
test the proposed apparatus from a numerical standpoint, but also point out the complexity

hidden behind quantized control systems.

Although, the proposed methodology is tailored to the uniform quantizer defined in (1.17),
the framework is quite flexible to envision extensions to other type of quantizers. For in-
stance, the extension to the uniform quantizer considered in [22] is quite straightforward. In

particular, give A > 0, such a quantizer is defined for each u € R" as

where the above operators are considered component-wise. Therefore, analogously to the
case considered in this chapter, define for each u € R" the function I'(u) = q(u) — u. As
pointed in Figure 2.12, it can be readily shown that for each S;,S, € D} and for each
u € R™, the following conditions hold for the function I"

2

D(u)" ST (u)" — tlrace(Sl)A4 <0
(T — )" Sy(T" +u) < 0.

Hence, the methodology illustrated in this chapter can be extended to deal with the quantizer
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Figure 2.12: The function I', for the scalar case and its sector.

adopted in [22] with few extra work.

In the case of combined sensor and actuator quantization, the stability problem could be
addressed in the same manner, though this case requires a special care in view of the nested
discontinuous nonlinearity issued by the combined effect of the two quantizers. Concerning
the design problem, due to the difficulties encountered even for the simpler case of the mere
sensor quantization, a design procedure in this case appears intricate. Nevertheless, we will
show how to solve this problem later in the next chapter, by employing a dynamical output

feedback controller.

Also, the work presented in this chapter assumes that the quantizer has an unbounded
range. However, if one considers a finite range for the quantizer, using ideas from [82], the
proposed methodology can be still adapted, providing local results. In particular, as far as
concerns the actuator quantization case, let us assume that the uniform quantizer defined in
(1.17) has a finite range M, that is for each u € R™, q(u) = (q(u1), ¢(u2), ..., q(un)), and

: ol
qo () = | 18 00) M) w € [-M. M)
M otherwise.

Consider the set A = £(P) obtained from the solution to Problem 1. Building from this
set, pick n € (0,1), and consider the set Ay = E(P,n) = {z € R": 2" Pz < n}, then
A C Ays. Define the set S(K, M) = {x € R™: |[Kz| < M}. If there exists n > 1, such
that Ay C S(K, M), then all the arguments presented in the proof of Theorem 2.2 are
still valid inside the set A,;, hence local uniform asymptotic stability of the set 4 can be
established directly. From this observation, it appears obvious that all the result presented
in this chapter can be extended to derive conditions ensuring that the set A is locally
uniformly asymptotically stable for the closed-loop system in the presence of finite range
uniform quantization, without no much modifications. Analogous considerations hold for
the sensor quantization case. Clearly, in this setting more involved optimization problems
could be considered. For instance, the minimization of the set A could be coupled with
the maximization of the set Ay, still with respect to adequate size criteria. An interesting
point to address in the actuator quantization case, in the presence of finite range quantizers,

regards the design of the gain K to simultaneously enlarge Aj; and shrink A.
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Although this approach enables to solve the two considered problems in the presence of
finite range quantization, the results obtained by restraining the set A); to be contained in
the set S(K, M) may be conservative. Indeed, as for the case of saturating systems, one may
enable the quantizer to saturate while ensuring the well behavior of the closed-loop system.
Clearly, this approach requires a dedicate strategy. For instance, by using ideas from [117],
one may model the finite range quantizer, as the composition of an infinite range quantizer
and a standard saturation operator, say sat(-). Pursuing this approach enables to blend the
techniques proposed by the literature of saturated systems, with the techniques presented in
this chapter. On the other hand, one should be aware that handling the closed-loop system
in terms of Krasovskii solutions, in this case requires further work. Just to give an hint
about the difficulties encountered in this case, consider that the closed-loop system, in this
case, reads

& = Az + Bsat(q(Kx)).

Therefore, the differential inclusion issuing from the Krasovskii regularization of the right-

hand side of the above expression gives
& € Ax + BK[sat oqoK]|(x)

where with an abuse of notation, we denoted K the linear operator issuing from the matrix
K, i.e., the function z — Kz. Obviously, the latter needs to be suitably worked out to
distinguish the effect of the two nonlinearities®. This is work is currently part of our research

activity.

Concerning the actuator quantization case, another interesting aspect consists of con-
sidering the effect induced by replacing the actual state with an estimate provided by an
asymptotic observer, whenever the plant state is not fully accessible. In particular, let us

consider the following plant

& = Az + Bu
u=q(Kz) (2.70)
y=Cr

where y € R? is the measured output. In particular, as the plant dynamics are linear, we

consider the following full-order Luenberger state observer; [88]
&= A%+ Bu+ L(y — C%) (2.71)

where & € R" is the estimate of the plant state x provided by the observer, and L € R"*? is
the observer gain to be designed. Building on the estimate provided by (2.71), we consider
the following control law

u= Kz (2.72)

3Notice that, since q oK is discontinuous, Proposition 1.2 does not provide any viable strategy to build
an overapproximation for K[sat o q o K](z).
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where K € R™*" is the controller gain to be designed. By means of the latter control law,
the dynamics of the closed-loop system (2.70)-(2.71) can be written as

{i:Am+quﬁ) (279

i=At+ Bq(K2)+ LC(z — 2)

Since the state & can be seen as an estimate of x, by defining the estimation error e = r—1,
the dynamics of (2.73) can be rewritten in a more convenient fashion in the (z, £) coordinates.

In particular, by defining the following invertible change of variables

R IH

by taking as vector state & = (z,e) € R*", and by defining, for each u € R™, the function

U(u) = q(u) — u, the closed-loop system (2.73), in the new coordinate turns into

. [a+BK —-BK B
P 4 w([K —K]:z:). (2.74)
0 A-LC o \. ,
x B, ’

Therefore, with the aim of considering Krasovskii solutions to (2.74), define

X: R — R*
(2.75)
T A2+ B.Y(C.2)
we consider the solutions to the following differential inclusion
T € K[X](%). (2.76)

At this stage, notice that (2.75)-(2.76) inherits some notable properties by the upper trian-
gular structure of (2.74). In particular, it is not difficult to show that whenever A — LC' is
Hurwitz, the set R™ x {0} is UGAS for (2.75)-(2.76). Moreover, notice that every solution

¢ = (s, ¢-) to the restriction of (2.76) to the set R™ x {0}, i.e.,
T e X(%) (2.77)

where, for each 7 € R", X = K[X](Z)N(R™x{0}), is such that ¢, is a solution to (2.4). From
this analysis, it is straightforward to show that the fulfillment of the conditions provided by
Proposition 2.1, along with the Hurwitzness of the matrix A — LC ensures that the set
E(P) x {0}, where P is defined in Proposition 2.1, is UGAS for (2.75)-(2.76). A formal
proof of this result arises from the application of [56, Corollary 7.24.], for the simpler case
of differential inclusions, (an example pertaining to the cascade of two nonlinear systems is
shown in [55]). Beyond the discussed properties arising from Hurwitzness of A — LC, and

the upper triangular structure of (2.4), the key ingredients of the proof are that solutions
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to (2.4) are bounded for every initial condition (this is mainly due to the linearity of the
plant dynamics), and that K[X] is convex-valued, outer semicontinuous, locally bounded,
and dom KC[X] = R?". These arguments show that the apparatus built in this chapter for the
design of a static state feedback stabilizer controller in the presence of actuator quantization
can be considered also when the state is not fully accessible and replaced by an estimate
generated through a Luenberger state observer.

Although the extension to the case of partial measurements in the presence of actuator
quantization is trivial, the same extension in the case of sensor quantization is nontrivial

and requires further work. This is the object of the subsequent chapter.
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QUANTIZED DYNAMIC OUTPUT FEEDBACK
STABILIZATION

“Scientific research is one of the most exciting and rewarding of occupations.”

— Frederick Sanger

3.1 Introduction

HIS chapter pertains to output feedback stabilization of linear plants subject to sensor
T and actuator uniform quantization. In particular, we design a dynamic output feedback
controller to achieve closed-loop UGAS of an ellipsoidal set. As a first stage, we consider
that only the plant output is gathered by a uniformly quantized sensor. In this setting, we
first provide a general result turning the stabilization problem into the feasibility problem to
certain matrix inequalities. Then, we propose a methodology based on convex optimization
over LMIs to design the stabilizing controller. As a second stage, we extend the approach
mentioned above to tackle the same stabilization problem for linear plants subject to simul-
taneous sensor and actuator quantization. Finally, the proposed methodology is shown in

some examples. Some of the results presented in this chapter can be found in [37, 38|.

83
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3.2 Sensor Quantization

3.2.1 Preliminary Results and Problem Statement

Consider the following continuous-time linear system with quantized sensor

(3.1)

{x’ = Ax + Bu
Ym = q(Cx)

where x € R", u € R™, y,, € RP, are respectively the state, the input, and the measured
output of the plant. While (A, B,C) € R™™ x R™™ x RP*" and q(-) is the uniform
quantizer defined in (1.17) having as a quantization error bound A > 0. We want to design

the following plant-order dynamic output feedback stabilizing controller for (3.1)

(3.2)

T, = Acxe + Bou,
Ye = chc + Dcuc

where x. € R"™ is the controller state, y. € R™ is the controller output, u. € R? is the
controller input.
(Ae, Be, Ce, D) € R™™ x R™P x R™ ™ x R™*P (3.3)

are real matrices to be designed. Interconnecting plant (3.1) with controller (3.2), i.e., setting

U = Ye, Ue = Ym, yields the following dynamics for the closed-loop system

&= Az + BC.x.+ BD.q(Cx) (3.4)
t. = Acxe + B.q(Cx). .
Therefore, as in Chapter 2, by defining the function
U: RP — RP
(3.5)
zq(z) —z
by taking as vector state & = (z,z.) € R*", and by defining the matrices
~ A+ BD.C BC.| = BD.| ~
= ,B = ,C=1C 0 3.6
B A g |0l 35)
(3.4) can be rewritten as
#= Az + BV (Ci). (3.7)

Since the function U is discontinuous, the right-hand side of (3.7) is a discontinuous function
of the state. Therefore, as done in the previous chapter, we want to focus on the Krasovskii
solutions to such a system. Notice that, as for the other considered cases, in view of the
local boundedness of the right-hand side of (3.7), for every Z, € R?", there exists at least a
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Krasovskii solution ¢ to (3.7) with ¢(0) = Zo; (see Chapter 1). In particular, define

X:R*™ — R*
. I (3.8a)
T— AT+ BY(C7)
we consider the solutions to the following differential inclusion
T € K[X](%) (3.8b)

where K[X](Z) represents the Krasovskii regularization of the function X; see Definition 1.2

on Page 14.

As pointed out on Page 25, the presence of the uniform quantizer, due to its deadzone
effect, represents a real obstacle to the asymptotic stabilization of the origin of the closed-
loop system. Specifically, if the matrix A is not Hurwitz, then the asymptotic stability of the
origin for the closed-loop system (3.8) cannot be achieved via any choice of the controller
(3.2). Nevertheless, also in this case, under suitable conditions on the quantization-free
closed-loop system, system (3.8) manifests some interesting properties. In this sense, let us
consider the following result that parallels Theorem 2.1.

Theorem 3.1. Let A, B,C, A., B., C., D. be matrices of adequate dimensions, such that A
defined in (3.7) is Hurwitz. Then, there exists a compact set A C R?", containing the origin,
which is UGAS for system (3.8).

Proof. The proof of the above result follows the same lines of the proof of Theorem 2.1.
Thus, we provides the main steps of such proof below. In particular, under the considered
hypothesis, we derive for (3.8) a relation like (2.8). Then, the proof directly follows from the

arguments presented in the proof of Theorem 2.1.

For every & € R*", define ¢(z) = CZ. Since the function Z — AZ is continuous, by

Proposition 1.1, for every # € R?", one has
K[X](%) = Az + BK[V o d](#),

Since W is locally bounded, (in fact bounded), thanks to [9, Lemma 1] it follows that, for
every I € R?"
K[V o c|(z) = co {lim U(Cip)| e — f}

where Ty is any sequence converging to . Then, due to the bound shown in Chapter 2 on

the function V¥, it turns out that for each & € R*®
KW o c](z) C By/pA.
Therefore, for every € R?", the following inclusion holds

K[X](%) C A% + BB/pA. (3.9)
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Since A is Hurwitz, then there exist P,Q € S2", such that He(P;l) = —(. Building on this
relation, for each & € R*", define the function V(%) = Z'PZ. Then, thanks to (3.9), for
every T € R?", and any f € K[X](Z)

(VV(2), f) = =" QF + 28" PB¢ < —Auin(Q)E' & + 23" PBE

for some ¢ € B,/pA. At this stage, by following the same arguments shown in the proof of
Theorem 2.1, pick, 6 € (0, 1), then the compact set

A= {x e R™: V() < Mm‘”‘(];e) |BTP*B| AQp}

)‘IQnin(Q
is UGAS for (3.8), concluding the proof. [

The above result shows that under the asymptotic stability of the quantization-free closed-
loop system, there exists a compact set containing the origin, which is UGAS for the closed-
loop system (3.8). On the one hand, Theorem 3.1 allows to select the more convenient
notion of stability to consider in dealing with (3.8), and points out that if the controller is
selected among the stabilizing controllers for the quantization free dynamics, then the set A
is a sublevel set of a certain quadratic function. On the other hand, the above result gives
rise to the same considerations addressed for Theorem 2.1. Indeed, Theorem 3.1 provides
a coarse characterization of the behavior of (3.8), whose tightness dramatically depends on
the choices of the controller and of the matrix P. Therefore, with the aim of designing
the controller (3.2) to mitigate the effect induced by sensor quantization, the adoption of
Theorem 3.1 is of any help. For this reason, as already done in the previous chapter, we
pursue a constructive approach. Specifically, we derive computationally tractable conditions

characterizing the solutions to the problem formalized as follows.

Problem 3.1. (Controller design) Let A, B, C' be matrices of adequate dimensions. Deter-
mine matrices (Ae, Be, C,, D) € R™™ x R™P x R™ " x R™*P and a compact set A C R*"
containing the origin, such that A is UGAS for system (3.8).

The solution to the above problem is the object of the remainder of this chapter. Specif-
ically, in the sequel, by retracing the same approach carried out in the previous chapter, we
present a complete apparatus to turn the solution to Problem 3.1 into the solution to certain

matrix inequalities, while considering optimization aspects.

3.2.2 Sufficient Conditions

A first sufficient condition to solve Problem 3.1, and based on the sector conditions illustrated
in Lemma 2.2, is given next.
Proposition 3.1. If there exist P € 8", 51,5, € DY, A, B., C., D.. real matrices of ade-
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quate dimensions, and a positive scalar T such that
He(PA)+7P PB-C"S,
[ ] —252 - Sl
trace(S))A% —7 <0 (3.11)

<0 (3.10)

where A, B,C are defined in (3.6). Then A, B.,C,, D. and
A=E&(P) (3.12)

solve Problem 3.1.

Proof. For every & € R*", consider the following quadratic function V(Z) = 2" PZ. Following
the ideas presented in the proof of Theorem 2.1, we want to prove that there exists a positive

real scalar 3 such that
(VV(3),w) < —BV (%)  VzeR™\ IntAw e K[X](Z). (3.13)

As the above relation is analogous to (2.8) in the proof of Theorem 2.1, establishing (3.13)
suffices to show that the set A in (3.12) is UGAS for system (3.8). By S-procedure arguments,
(3.13) can be verified by showing that for every # € R?", there exists a positive real scalar
7 such that

(VV(3),w) —7(1 — 3" P) < —BV(2)  Yw € K[X](Z). (3.14)

On the other hand, via Proposition 1.1 and Proposition 1.2, for every w € K[X](Z), there
exists v € K[W](CZ), such that w = AZ 4+ Bv. Then, still by S-procedure arguments and
according to Lemma 2.2, (3.14) is ensured by proving that for each € R?*", and for each
v € RP,

(VV (%), A% + Bv) — 7(1 — ' PZ) — v" Syv + trace(S;)A? — 207 Sy (v 4+ CF) < —BV ().
(3.15)

By straightforward calculations, the left-hand side of the above relation can be rewritten as

z
v
Thus in view of (3.10) and (3.11), it follows that there exists a small enough positive scalar
7 such that for every & € R?" \ IntA, w € K[X](Z), one has (VV (x),w) < —yi'Z. Then,
since for every 7 € R*, V(%) < Apax(P)ZT7, by setting B = 2~ gives (3.14), and this

>\max(P)
finishes the proof. |

follows
T

He(PA)+ 7P PB-C"S,
® —252 - Sl

iy trace(S;)A% — 7. (3.16)

(%

The above result provides a sufficient condition to solve Problem 3.1. As in Chapter (2),
Assumption 1.2 ensures the feasibility of conditions (3.10) and (3.11). This claim is formal-
ized in the result given next.

Proposition 3.2. Let A, B, C matrices such that Assumption 1.2 is satisfied. Then, there
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exist
(7, P, S1, 82, A, B, Cey D) € Rog x 87" x DY x D x R™™ x RMP x R™*™ x R™*P

satisfying (3.10) and (3.11).

Proof. Notice that, from Assumption 1.2, there always exist A., B, C., D, such that A is
Hurwitz. Therefore, since (3.10) and (3.11) match, respectively, (2.14) and (2.15), by follow-

ing the same arguments proposed in the proof of Proposition 2.2, the assert is proven. MW

The conditions provided by Proposition 3.1 turns the solution to Problem 3.1 into a
feasibility problem to certain matrix inequalities. However, (3.10) is nonlinear in the deci-
sion variables, therefore, in general, solving Problem 3.1 by directly solving the feasibility
problem associated to (3.10) and (3.11) appears unlikely from a numerical standpoint. To
overcome this drawback, in the sequel we show two possible strategies to derive computa-
tionally tractable conditions from Proposition 3.1. The first strategy consists of performing
a special choice for the controller parameters in (3.3) and for the matrix P in (3.10). Such
choices spring from the selection of a linear observer-based controller. The second strategy
instead consists of selecting a general output feedback dynamic controller and then capi-
talizing on existing results presented in the literature for the LMI-based design of output

feedback dynamic controllers.

3.2.3 Controller design: Observer-based like Controller Design

The solution presented in this section builds on the following result.
Proposition 3.3. If there exist P, P, € S, 51,5, € D}, K € R™", L € R”", and a

positive scalar T such that

He(Pi(A + BK)) + 7P, _PBK (TS,
. He(Py(A— LC) + 7P, —PL | <0 (3.17)
L ® —252 — 51
trace(S))A? —7 <0 (3.18)

then,

are a solution to Problem 5.1.
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Proof. The proof of the above result is performed by showing that via congruence trans-
formation and invertible change of variables; (3.10) turns into (3.17) for the choice of the
controller given in (3.23) and a particular choice of the matrix P in (3.10) that is shown
later. To this end, let us replace the controller parameters in (3.10) through the correspond-

ing expressions given in (3.23). Via this step, 4, B in (3.6) turn into

~ A BK ~ 0
= , B = : (3.24)
LC A+ BK-LC L
Now, define
I 0
o —
I I
and notice that since © is nonsingular (in fact ! = ©), the satisfaction of (3.10) is
equivalent to
He(©0"TPAO ') + 76 TPO~' ©TPB-0TCTS
e )+ 2l <0 (3.25)
° —25, — 51
which can be rewritten equivalently as follows:
He(@ TPO'0A67 ) +76°TPO! ©TPB-0TC'S
e )7 2l <0 (3.26)
[ J —252 - Sl
In particular, due to expression of ©, 4, B, C, by denoting
X
pr ]
o X
one has: . .
o-Tpo-1 — X + X + He(U) —XA— U
° X
~ A+ BK —-BK
edot = |47 (3.27)
0 A—-LC
o TPh— (U —|—AX)L '
—XL
At this stage, select U = — X, which gives
X X
P= . ] (3.28)
o X
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according to this selection, from (3.27) one gets

X—-X 0 -
o TPl = { % L0 TPB =

0
XL] . (3.29)

To conclude, set P, = X - X , Py = X. Then, exploiting the latter change of variables and by

plugging the expressions given in (3.29) into (3.27) yields (3.17). Therefore, the satisfaction

of (3.17) and (3.18) implies the one of (3.10) and (3.11), whenever A, B,, C., D, are chosen

as in (3.23) and

P +P, —P
° Py

P =

which is symmetric and positive definite' due to P, > 0 and P, > 0, and this concludes the
proof. [

It is not difficult to realize that the choice of the controller, as long as the structure of
the matrix © adopted to derive the above result actually build on a linear observer-based
controller paradigm. Specifically, the considered controller is an observer-based controller,
while © is the matrix associated to the classical change of variables leading to the closed-
loop system represented in the (z,¢) coordinates, where ¢ represents the estimation error
introduced by the observer. The selection of this controller stems from a few considerations.
On the one hand, since the plant dynamics are linear, inspired by “certainty equivalence”
principle illustrated in [83], it turns out that selecting an observer-based control revolving
on a Luenberger observer seems the most natural choice to tackle the considered problem.
On the other hand, Proposition 3.3 manifests two important features. The first one is that
the provided result is lossless with respect to Theorem 3.1, in the sense that if there exist
two gains K, L such that A+ BK and A — LC' are Hurwtiz, then the conditions provided by
Proposition 3.3 are always feasible. Namely, Proposition 3.3 states a separation principle for
the considered observer-based control architecture and for the stabilization objective pointed
in Problem 3.1. The second one is that the considered result, by structuring the controller
parameters, decreases the number of parameters to be designed and allows, through an
adequate change of variables, to determine the gain L via convex optimization over LMIs,
with the only caveat to make a choice for the gain K. The last shortcoming is quite common
in the literature; see, e.g., [79, 120]. These two properties are stated and formally proven as
follows.

Fact 3.1. Let A, B, C, K, L be matrices such that A+ BK and A — LC are Hurwitz. Then,
there exists (7, Py, P, S1,52) € Rog X 8T x S8t x DY x DY satisfying (3.17) and (3.18).

Proof. The proof follows the lines of the proof of Proposition 2.2. Assume that there exists

IThis claim can be readily proven by observing that the Schur complement of P is P;.
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7,P, Py, 5) € Rog x 8* x 8% x DP such that
+ + +

He(Pl(A+BK))+TP1 —PlBK 0
° He(Py(A— LC))+ 7P, —PL| <0 (3.30)
) ® —Sl
trace(S;)A% — 7 < 0. (3.31)

For each diagonal S; € RP*P let us define

He(P,(A + BK)) + 7P, —P,BK ~CTS,
M(S,) = . He(Py(A—LC)) +7P, —P,L
[ ] L] —282 - 51

Since from (3.30) M(0) < 0 and M(S2) depends continuously on the entries of Sy, there
exists a small enough positive scalar 0, such that every Sy € D} with Sy < oI yields

M (Sg) < 0.

To conclude the proof, it suffices to show that whenever A+ BK and A— LC are Hurwitz,
there exists (7, P, P2, 51) € Rog x 8t x 8t x DY satisfying (3.30) and (3.31). Define
A, = A+ BK, A, = A — LC, and let R(Ar) = {|R(N)|: A € spec(4r)}, R(A,) =
{IR(N)|: X € spec(A,)}. Notice that since Ay and A, are Hurwitz, then R(Ay), R(A,) C Ro.
Pick 7 € (0,2min{min R(A;), min R(A,)}). Define, A, = Ay + II, and A, = A, + IL
Observe that, according to the selection considered for 7, Ay, and A, are Hurwitz. Select
S; € DY, such that trace(S;)A? — 7 < 0. By following these choices, the right-hand side of

(3.30) reads
He(PlAk) —PlBK 0

° He(PA,) —PR.L| . (3.32)
[} [} —gl
For any Qs € S, pick the solution W, € S to the following matrix equality

He(A,Ws) = —Qy — LST'LT

notice that such a solution always exists since A, is Hurwitz and S; € D".. For any Q, € S,

pick the solution W; € S to the following matrix equality
He(AW)) = —Q, — BKW,Q;'WLK'™ BT

still such a solution always exists since A is Hurwitz and Q5* € S%. Now, set in (3.30),
P, =W, and P, = Wy . By following these choices, the right-hand side of (3.30) turns

He(W;'A,) —W['BK 0
. He(Wyt4,) —W;'L (3.33)

[ ] [ ] —Sl

M
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We want to show that .# is negative definite. By pre-and-post multiplying .# by diag(Wy, Wa, 1),
this is equivalent to show that

He(A,W,) —BEKW, 0
. He(A,W,) —L| <O. (3.34)

[ ] [ ] —51

By Schur complement, since S; € D", the latter relation holds if and only if

He (A, W) —BKW, (3.35)
. He(A,W,) 4+ LSTLT '
which, due to the selection operated for Wy, W, turns in
—Q1 — BKW,Q;'WoKTBT —BKW-
[ Q1 2Q5 ' W ‘ ] o (3.36)
d —&f2

By Schur complement, since Q5 € S, the latter is true if and only if
—Q1 — BEW,Q;'WoK"BT + BEW,Q5'WoK'BT = —Q, < 0

which is obviously satisfied since Q; € S%. Therefore, (7T, Wt Wyt Sy) satisfies (3.30) and
(3.31), establishing the result. |

Now, we illustrate the above mentioned change of variables allowing to partially linearize
(3.17).
Corollary 3.1. If there exist P, P, € 8}, 51,5, € D}, K € R™*", J € R™? and a positive

scalar 7 such that

He(P (A+ BK))+ 1P —P BK ~CTS,
o He(PoA — JC) + TP, —J <0 (3.37)
® ® —282 — Sl
trace(S;)A% — 7 <0 (3.38)
then,
A.=A+BK - P, 'JC, B.= P, 'J
C.=K
D.=0
and

P+P —P
[ ] P2

el )

Proof. The proof of the above result is straightforward. In particular, define the invertible

solve Problem 3.1.
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change of variable J = P, L. Since the latter turns (3.17) into (3.37), the result is proven. W

Optimization Issues

As already mentioned, in solving Problem 3.1, roughly speaking the main objective consists
of designing the controller (3.2) to ensure that the solutions to (3.8) converge/stay sufficiently
close to the origin. To this end, building on the conditions provided by Proposition 3.3, one
can consider the following optimization problem.

Problem 3.2 (Observer-based stabilization). Let A, B,C be matrices of adequate dimen-
sions. Determine K € R™*", L € R"*? and P;, P, € 87, such that the set

g( ) 53

is UGAS for system (3.8), and it is minimized with respect to some criterion.

P+P —PB
[} P2

P

As already illustrated in Chapter 2, the solution to the above optimization problem can
be carried out by embedding the conditions provided by Proposition 3.3 into a suitable
optimization scheme. To this end, an adequate measure of the set £(P) defined in (3.39)
needs to be selected. As in Chapter 2, a first choice is to consider the volume of £(P) as
a size criterion. In particular, with the aim of obtaining a convex optimization problem
over LMIs, one can consider as a size criterion —logdet(P). In particular, observe that
det(P) = det(P P,); see, e.g., [102, Lemma 2.1.]. Therefore,

—logdet(P) = —logdet(P;) — log det(F2)

which is a convex function on &% x §%. Thus, Problem 3.2 can be stated as follows.

p, Mipimize - — log det(P;) — log det(P,)
subject to S1,8 €D, P, P,eSY,T>0 (3.40)

(3.17), (3.18).

On the other hand, as pointed out earlier, the adoption of the latter criterion could lead to a
set £(P) excessively stretched along some directions. To overcome this problem, as already
done in Chapter 2, instead of minimizing the volume of £(P), one can minimize trace(P™!).
However, since this criterion is in general non-convex in the decision variables P;, P, its
exploitation in a numerical scheme is not straightforward. To overcome this drawback, we
introduce a further variable N € S?r”, subject to the following linear constraint

N 1

e
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which, by Schur complement, is equivalent to P~' < N. Therefore, the minimization of
trace(P~1) can be implicitly performed by minimizing trace(N), which is a convex (in fact

linear), function. By pursuing this approach, Problem 3.2 turns in

minimize trace(NV)
Py,P5,51,8,J,mN, K
subject to S1,S, € DY, P, P, € SI,N € Si”,T >0
N I (3.41)
>0
o P

(3.17), (3.18).

Another alternative solution, consists of minimizing the set £(P) along certain directions of
interest. In particular, let vy, vq,...,v, € R** be some given vectors, and let 61,6s,....,0,,

positive scalars. Consider the following constraints
v, Po; >0;  i=1,2,...,s. (3.42)

By maximizing the scalars 6;, the set £(P) shrinks along the directions v;. In this case,

Problem 3.2 can be stated as follows

S
minimize - 0
Py.Py,51,82,7.K.01 62.....05 7; i
subject to 51,8 €Dy, P, P,eSl,T>0

(3.17), (3.18), (3.42).

where v; > 0 are the weights of the different objectives.

Remark 3.1. Notice that the results derived in this chapter aim at characterizing the
whole control system state, i.e., (x,z.). However, the x. component of the state is somehow
artificial, and one may be in general more interested in the behavior of the plant state.
Nonetheless, the application of the presented results allows to draw some conclusions on the
plant state x. Specifically, notice that UGAS of the set A = £(P) entails global attractivity
of the set

A, ={z € R": 2" Pz < 1} x R™.

To see this, observe that?

P+ P —P
[ J PQ

PO
e O

pP—

and the latter implies that A C A,, yielding the attractivity of A,. However, uniform
stability of A, cannot be established being such a set, in general, not strongly forward

invariant for (3.8)°. Building on this observation, with the aim steering the plant state as

2Since P, > 0, this inequality readily follows from the application of the Schur complement lemma for
nonstrict inequalities; see [15].
3Notice that, by definition, uniform stability of a given set implies its strongly forward invariance.
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much as possible to the origin, one may suitably modify both the determinant and the trace

criteria illustrated above by only focusing on the matrix P;.

Numerical Issues in the Solution to Problem 3.2

As pointed out earlier, (3.37) is still nonlinear in the decision variables due to the terms
P,BK (and its symmetric), and 7P;. While the latter nonlinearity can be easily managed
via a grid search, the first is hardly tractable. To be best author knowledge, there are no
strategies in the literature to perform the design of a linear observer-based controller through
the solution to linear matrix inequalities. On the other hand, Fact 3.1 ensures the feasibility
of the conditions given by Proposition 3.3 under the Hurwitzness of the matrices A + BK.
Hence, by assuming that the controller gain K is a given stabilizing gain, (3.17) can be used
in a convex setup to design the observer gain without leading to any drawback in terms of
feasibility of the resulting optimization problems.

Remark 3.2. The selection of the controller gain K somehow constraints the feasibility set
of the above optimization problems. Indeed, once K is given, to ensure the feasibility of
(3.18), 7 € (0,2min R(A + BK)), where R(A + BK) = {|R(\)|: X € spec(A + BK)}.
Remark 3.3. As pointed out in Chapter 2, approaching the optimal solutions to Problem 3.2
may lead to solutions characterized by a large gain L. Such a situation needs to be avoided
to envision the physical construction of the proposed controller. As already discussed in
Chapter 2, a general way to overcome this drawback consists of adding suitable constraints

on the eigenvalues of the matrix A — LC.

Notice that, as long as the considered objective function is convex, whenever the scalar 7
is fixed and a choice is considered for the gain K, the above proposed optimization problems
are genuine convex optimization problems over LMIs. On the other hand, as for the matter
of the optimization problems presented in Chapter 2, the positive scalar 7 can be treated
as a tuning parameter, or being selected via an grid search. Moreover, Fact 3.1 provides a
valuable tool to characterize the interval of values for 7 ensuring the feasibility of (3.17) and
(3.18). Based on this idea, consider the following algorithm, that by performing a search
on certain interval for 7 (wherein the feasibility of the considered optimization problem is

ensured), provides a possible solution to determine a (sub)optimal solution to Problem 3.2.
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Algorithm 3.1 Observer-based controller design

Input: Matrices A, B, K, C, scalars A > 0, a convex criterion M, and a tolerance p > 0.

Initialization: Let R(A + BK) = {|R(\)|: A € spec(A + BK)}, select 7 = 2 x
0.99 min R(A + BK),
Iteration

Step 1:
Solve the following convex optimization problem over LMIs

minimize M (P, P,)

S1,52,P1,Pa,J
s.t. Sl,SQ S DT, P e S_?_
He(P,(A + BK)) + 7P, _PBK —CTS,
° He(PgA—JC)+TP2 —J <0
L] L] —2S2 - Sl

trauce(Sl)A2 —7<0
Pick the sub-optimal solution (P}, P,,.J) and store the obtained solution:

M“(‘;]i) « MS(diag{Pl?P?})a Pl(f) < Ph Pz(f) < Pz, Jik) < j

k+—k+1

Step 2:
Decrease T of p, i.e., T+ T — p
Until 7 > 0.

Step 3: kmax < k, select k* = argmin {/\/lgi)}
ke{1,2,kmax}

Output: P, = P p, =P L = ptg*)
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It is worthwhile to remark that, the above algorithm, due to the proposed initialization
arising from the proof of Fact 3.1, always terminates with a suboptimal solution to Problem
3.2.

Numerical Example

Example 3.1. Consider the system derived from [49], already considered in Example 2.4,
that is defined by the following data:

0 1 1
A= B=||,K= [—0.3491 —0.7022] .
05 0.5 1

Assume that the plant state is not fully accessible, and that only the second component is
measured via a uniform quantized sensor with A =1, i.e., y, = q ( [O 1} :)3> We want to
solve Problem 3.3 via Algorithm 3.1, by using the trace criterion as presented in (3.60). In
particular, let N € 87", by requiring that

>0

N I
) diag(Pl,Pg)

as convex objective to minimize, we consider trace(N). By considering p = 0.01, Algo-
rithm 3.1 yields

p _ | 105716438 —1.05651233]
' |-1.05651233  1.05766293
P _ | 811663119 —8.11833684]
?7 | -8.11833684  8.12644359
_ [o875

9.3735

trace(diag{ P, *, Py '}) ~ 1422.

Now, with the aim of steering the plant state as much as possible to the origin, we want
to solve Problem 3.3 by considering a trace criterion based only on P;. In particular, as

mentioned earlier, let N € 8%, by requiring that

N 1
.Pl

as convex objective to minimize, we consider trace(N). Since in this case the matrix P, in

>0

not accounted by the size criteria and its inversion is needed to derive the gain L, to avoid
numerical problems, in the solution of the considered optimization problem, we consider

additional constraints on the matrix P, aimed at ensuring a strictly positive lower bound on
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Amin(P). That said, by selecting p = 0.01, Algorithm 3.1 yields

b _ | 202467621 —2.02376235|
LT |-2.02376235  2.0252034
P _ | 62456127 —36.2469778|
? 7 |-36.2469778  36.2485599
,_ [200.40

200.36

trace(P; ') ~ 849.54.

Figure 3.1 shows the evolution of the plant state obtained by considering the two different
design. In both simulations, the closed-loop system is initialized as (zo,Z9) = (—6,0,0,0).
Simulations show that, although the controller gain K is the same in both cases, the second

design allows to steer the plant state closer to the origin.

0 10 20 30 40 50
t
Figure 3.1: Plant state evolution: First design (z; dashed-black, o dashed-blue), second

design (7 solid-black x5 solid-blue). The solutions are obtained by integrating the closed-
loop model via an Euler method with time step 1074
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3.2.4 Full Dynamic Controller Design

The aim of this subsection is to provide another design strategy for the controller in (3.2),
which avoids the above illustrated issues preventing from designing the whole controller
via the solution to a convex optimization problem. The approach followed in this section
revolves around the congruence transformations and the change of variables presented in
[25]. In particular, as a first step, we give an equivalent condition to (3.10), which is linear
in the (new) decision variables; whenever 7 and S, are fixed. Such a result, whose proof is
a slight variation of the one of [25, Theorem 4.3], is given next.

Proposition 3.4. For each 7, Si,S> € DY, there exist XY € 8, K € RV, L € R"P,
M e R™" N € R™*P such that

He(H H H
e(Hy) + 71 5o l<o (3.44)
[ ] —51—252
Hy, > 0 (3.45)
where
o _ |AY +BM A+ BNC vy o BN -YC("S,
e K XA+LC|"7? e x| | L=CT8s,

A

if and only if, for any nonsingular matrices U,V € R™" such that UVT =1 - XY, X =
UN(X — Y YH)~U, the matrices

D.=N
C.=(M—NCY)VT
(3.46)
B,=U"YL— XBN)
A, =U'(K - XAY —XBM -~ UB.CY)V~T
and
X
P= v (3.47)
o X

satisfy (3.10).

Proof. (Necessity) We want to prove that (3.10), implies (3.44) and (3.45).
Let P € Si”, and A, B., C., D. matrices of adequate dimensions, such that (3.10) is verified.

Let us denote

X U

A

o X

-1

Y V

P= .
o Y

(3.48)

)
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Thus, the following relations hold

XY +UVT =1 (3.49)
XV4+UY =0 (3.50)
UV+XY =1 (3.51)
UY +XVT =0 (3.52)

in particular, UVT =1 — XY, and X = UT(X —Y~1)7U. Define

Y V
I O

I =

and observe that, as shown in [25, Lemma 4.2], U,V can be assumed, without loss of gen-
erality, nonsingular. This latter assumption assures nonsingularity of J (see Lemma A.2).
Pre-and-post multiplying the left-hand side of (3.10) respectively by diag(J, 1) and diag(J", ),

from the satisfaction of (3.10) it follows

He(JPAJ" PJ" JPB - JCT
e(JPAI") + 7JPJ" J ICS| _ (3.53)
[ ] —282 - Sl
where
I 0
P= 3.54
J ¥ U (3.54)
Y 1
PJ" = 3.55
JPJ Iy (3.55)
IPATT - (A+ BD.C)Y + BC.VT A+ BD.C
| X(A+BD.C)Y + XBC.VT +UB,CY + UAVT X(A+ BD.C)+ UB.C
(3.56)
JPB = BDc (3.57)
XBD,+ UB,
~ YCT
JCT = o (3.58)

then JPJT = H, > 0 yielding (3.45). Now, let us consider the following change of variables
given in [25]

VT o0
cy 1

K L
M N

XAY O
) 0

U XB
0 I

AC BC
C. D.

. (3.59)
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By straightforward calculations, it turns out that

JPAJ" = H,
JP]" = H,
JPB —JC"S, = Hj

Therefore, it follows that the satisfaction of (3.10) implies the satisfaction of (3.44).

(Sufficiency) Let XY € St, K € R™", L € R”?, M € R™" N € R™P? such that
3.44) and (3.45) are verified. Then, it is always possible to determine U, V' nonsingular such
( VS p g
that [ — XY = UVT, and also such that

is nonsingular (see Lemma A.2). Now, from (3.45), as shown in the necessity part, since J

is nonsingular, it follows that

X U

P=J'HJ T =

To conclude, it suffices to observe that, due to U nonsingular, the change of variables in
(3.59) is invertible. In particular, by inversion of the relation given in (3.59), one gets the
relations in (3.46). Now, recall that (3.44) was derived in the necessity part from (3.10) by
the change of variables in (3.59), and a congruence transformation involving the matrix J.
Hence, the satisfaction of (3.44) implies the satisfaction of (3.10), with P given in (3.47),
and A., B.,C., D, given in (3.46), and this concludes the proof. [ |

Optimization Issues

As already mentioned, in solving Problem 3.1, the main objective consists of designing the
controller (3.2) to ensure that the closed-loop solutions converge sufficiently close to the
origin. To this end, building on the conditions provided by Proposition 3.1, one can consider
the following optimization problem.

Problem 3.3 (Stabilization). Let A, B, C' be matrices of adequate dimensions.

Determine A, B., C, D,, and P € 82", such that £(P) is UGAS for system (3.8), and it is

minimized with respect to some criterion.

As already illustrated in the previous chapters, the solution to the above optimization
problem can be carried out by embedding the conditions provided by Proposition 3.4 into
a suitable optimization scheme. To this end, an adequate measure of the set £(P) needs to
be selected. Differently from the previous chapters, in this setting, since P is nondiagonal,
the adoption of a criterion based on the determinant of P would give rise, in general, to a

non-convex criterion. For this reason, as a criterion to be minimized, in this chapter, we
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consider trace(P~!). In particular, notice that from Proposition 3.4, it follows that

Y V
o V

pl=

where V = (I — XY)'U™T, and Y = —U'XV, which in turn yields ¥ = —U'X(I —
XY)TU-T. At this stage, observe that modulo the nonsingularity requirement, U can be
arbitrarily chosen without any influence on the feasibility of the conditions given by Propo-
sition 3.4. Therefore, building on this degree of freedom, U can be selected with the aim
of determining a convex criterion in the decision variables. In particular, selecting U = X
yields

trace(P~') = 2trace(Y) — trace(X ')

and the latter expression points out that trace(P~!) can be implicitly minimized by simul-
taneously minimizing trace(Y’), and — trace(X~'). On the other hand, the minimization
of —trace(X '), being X € 8", can be indirectly obtained by minimizing trace(X). By

pursuing this strategy, Problem 3.3 specializes in

minimize trace(X +Y)
X,Y,L,K,M,N,7,51,
subject to S1,S, €D, X, Y €S, 7>0 (3.60)

(3.44), (3.45), (3.11).

Remark 3.4. Another convex criterion can be worked out by following a similar strategy to
the one in [53]. However, establishing which of the two strategies always provides the best
result is difficult.

Numerical Issues in the Solution to (3.60)

Notice that, due to the terms 7X, 7Y, and YCTS, (and its symmetric) (3.44) is nonlinear
in the decision variables. Therefore, from a numerical standpoint, the solution to (3.60) may
lead to NP-hard problems. Nevertheless, whenever 7 and S, are fixed (3.44) turns into a
genuine LMI. As already discussed throughout this dissertation, the nonlinear terms 7X and
7Y can be easily managed by performing a grid search for 7 over a certain interval (0, Tiax)-
Instead, the selection of Sy could be more complicated. However, notice that Sy € DY | hence
at least for p < 2, a grid search for S; represents a viable strategy to determine a solution
to (3.60). Differently from other cases treated in this dissertation, the derivation of linear
sufficient conditions to (3.44) appears hard due to the increased complexity of (3.44) with
respect to the simpler conditions presented in Chapter 2. On the other hand, another viable
strategy arises from the combined exploitation of Proposition 3.2 and Proposition 3.4. Such

a strategy is schematized as follows:

e as a first step, select some stabilizing controller for the triplet (A, B, C); this is always

possible due to Assumption 1.2.
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e once the controller is known, by fixing 7 as prescribed in the proof of Proposition 3.2,
(3.44) becomes a genuine LMI in the remaining variables, whose feasible set is non-
empty. Therefore, Sy can be selected to ensure the feasibility of (3.44)-(3.45) under

the choices considered in the first step for 7 and for the controller.

e once S, is known, by preforming a grid search for 7, one can derive a suboptimal

solution to (3.60) by solving a finite numbers of LMI optimization problems.

Remark that, since Proposition 3.4 provides an equivalent condition to (3.44) and the choice
of Sy, and 7 ensures the feasibility of (3.44)-(3.45) for the controller chosen to start the
procedure, it follows that throughout the third stage of the above procedure, the feasible set
of (3.60) is nonempty.

The above idea is concretely adopted to develop the following algorithm. Such an algo-

rithm, analogously to Algorithm 2.2, performs an improved search for 7.



104

Chapter 3

Algorithm 3.2 Controller design

Input: Matrices A, B, C, scalar A > O and a tolerance p > 0.
Initialization: Select A, B C() , such that

40 _ A+BD§0>C BC(SO)]

BOC  A®)

is Hurwitz. Let R(A©) = {|JR(\)|: X € spec(A®)}. Set for the next step

7=2x0.99minR(A®) BO = [BDc]

C

Step 1:
Determine a feasible solution to the following LMI problem

Si,Sy € DY, P e S
He(PA®) +7P PB© — (TS, ~0
[ ] —252 - Sl
trace(Sl)A2 —7<0

Set S, = S, for the next step. Select a grid of positive values G, such that 7 = max G,
Iteration
Step 2:
Solve the following LMI optimization problem selecting 7 over G
X{/ninérjr\l}%esl trace(X +Y)
subject to S €D, XY € Sﬁ,traee(Sl)A2 —7<0,Hy,>0

AY+BM A+BNC Y I BN-YCTS
He([ K XA+LCD+7'[ x| [ L_CTEQj} <0

° -5 —
Pick the suboptimal solution to the above optimization problem
X* 4 (7, XY LY K, M™, N™,ST).
Set U =X*V = (I1—X*Y*)TU"T, and determine the controller parameters from X'*
via (3.46), and P via (3.47). N N
Determine the closed-loop matrix A, and set 7 = 2 x 0.99min R(A). Build a grid of

positive values G, such that 7 = max §,, and 7* € G,, (notice that necessarily 7 < 7.
Including 7% in G, ensures the feasibility at each step).

Until trace(X + Y) does not decrease below p over three consecutive steps.
Output: (A, B.,C., D., P)
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Obviously the above algorithm may converge to different solutions depending on the
controller chosen throughout the initialization stage.
Remark 3.5. The initializing controller required to start the above algorithm can be de-
signed via standard linear techniques as LQG control design. Another solution consists of
selecting as initializing controller, the observer-based controller built through the apparatus
proposed in Section 3.2.3.
Remark 3.6. Notice that the design stage, to be numerically tractable, introduces some
conservatism in the determination of the set A = £(P). Essentially, this additional conser-
vatism depends on the fact that the selection of Sy can dramatically affect the achievable
suboptimal solutions. Therefore, as a second step, one can envision a further analysis stage
to obtain a tighter estimation of the real behavior of the closed-loop system. Such a stage
can be performed by embedding the conditions provided by Proposition 3.1 in a suitable
optimization problem. In particular, once the controller parameters are known, and some
selection for 7 is considered, relation (3.10) turns into a genuine LMI. Thus, provided that a
convex criterion to measure the set A is chosen, a potentially tighter set A can be determined

by solving a finite number of convex optimization problems over LMIs.

As pointed out earlier in this dissertation, to attain the optimal solutions to Problem 3.3
the controller parameters could even blowup (see [110] for a formal treatment of these issues
in the case of H, state feedback control). Obviously, such a situation needs to be avoided
to envision the physical construction of the proposed controller. To overcome this problem,
one may consider further constraints aimed at placing the eigenvalues of the matrix A in
certain sectors of the complex plane. Via the apparatus proposed in [25], such constraints
can be easily integrated in the solution to (3.60) by means of additional LMIs in the decision
variables. Some classical constraints, along with sufficient conditions (linear in the decision

variables of (3.60)), are given below.

e Disk centered at (—¢,0) with radius r

—rHy qHs+ H

[TQ G M) g (3.61)

® —’I"HQ

e Open-half plane R(z) < —«

200H, + He(HI) <0 (362)
e Open-half R(z) > —«

— 2aH, — He(H;) < 0 (3.63)

Conic sector with apex at the origin and inner angle 26

Remark 3.7. The selection of the more convenient pole placement constraint needs to

—cos(0)H; sin(0)H, (3.64)

sin(0) Hy cos(@)]-h]) “o
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be tailored to the considered case. Also, notice that including the above constraints may
impact on the feasibility of the resulting optimization problem, and dramatically affect the
value of the achievable suboptimal solution. In other words, the addition of pole placement
constraints somehow reshapes the feasible set of the considered optimization problem in a
way that appears unclear. However, in general, one can reasonably assume that, as long
as the pole placement constraint is not excessively severe, at least the feasibility of the
resulting optimization problem should be preserved. This aspect was already discussed in
Chapter 2 for the matter of the actuator quantization case. In that setting, we shown a
possible strategy to limit the effect induced by pole placement constraints for the considered
optimization problems. On the other hand, pursuing this approach in the case under study

in this section appears nontrivial.

Numerical Examples

Example 3.2. Consider the balancing pointer system derived from [69] that is defined by

oie-ff

Assume that the plant state is not fully accessible, and that only the first component is

the following data:

measured via a uniform quantized sensor with A = 0.5, i.e., y,, = q ( {1 0} x) We want
to solve Problem 3.3 by performing a simultaneous grid search for the positive scalars 7 and
Sy. Moreover to avoid the occurrence of fast dynamics or/and high gains in the designed
controller, we consider, for the matrix A the pole placement constraint in (3.63) with a = 10.
The latter constraint provides an indication on how to choose the upper bound defining the
grid of values for 7 inspected throughout the design stage. Indeed, since (3.63) with a = 10

implies that for each A € spec(A), R(\) > —10, to ensure the feasibility of the considered

optimization problem, it has to be 7 < 20.

Concerning the choice of the grid of values for S5, bearing in mind that, as shown in the
proof of Proposition 2.2, selecting Ss = 0 ensures the feasibility of (3.10) and (3.11) for some
P e 82", S; € DY, and 7 > 0, (at least when no additional constraints on the eigenvalues
of A are considered), it follows that Sy can be selected small enough and then increased up
to a certain value to meet the desired optimization specifications. However, the selection
of Sy strongly depends on the considered cases, and a systematic algorithm for its selection

appears complicated. Hence, a certain tuning stage for this variable needs to be considered.

In this case, keeping in mind the constraint on 7, we let 7 vary over a grid of 50 points
from 0.1 up to 20 x 0.99. For S,, we still consider a grid of 50 points from 0.001 up to 0.1.
Figure 3.2 depicts the evolution of the optimal value of trace(X + Y) obtained by solving
(3.60) over the grid chosen for 7 and Ss, versus 7 and Sy. The figure empathizes that the
value of the suboptimal solution strongly depends on the values chosen for 7 and S5, and
that due to the further constraint ensuring the desired pole placement, the largest value of

7 ensuring the feasibility of (3.60) is smaller than the upper bound considered in the related
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grid. Specifically, the most convenient values selected for 7 and Sy are 7 = 0.904, Sy = 0.0232,
that give

o |3232 1319
¢ 1-9.587 —11.56
B |33
5.174
C, = [—7.433 —11.86]
D, = 8.729

—-0.9672 1.082 —0.9672 1.082
1.741  —0.9672 2628 1692
—0.9672  1.082 1692 1093

lmzﬂ —0.9672  1.741 0.9672}

For such a solution, one has trace(X + Y') ~ 10.5549.

T

S

Figure 3.2: The optimal value of trace(X + Y') obtained by solving (3.60) over the grid
chosen for 7 and Sy, vs 7 and S;. The red cross indicates the suboptimal solution to (3.60).



108 Chapter 3

To foster the use of the pole placement constraints mentioned above, we want to show
that the solution to (3.60), whenever no pole placement constraints are considered, can lead
to controllers in practice unattainable. To this end, still consider 7 = 0.904, S, = 0.0232,
the solution to (3.60) gives

[ 18788 —12100
A, =
~2.914-10"" —1.427- 10"
[_4.14
B, = 0
~3.681

C, = [—2.214 S101 —1.427- 1011}

D, = 0.02664
1.743  —0.9675 1.743  —0.9675
—0.9675 1.082 —0.9675 1.082

1.743  —0.9675 10322 6648
—0.9675  1.082 6648 4287

for which spec(A.) = {—6.835, —1.427 - 10"'}. Due to overly fast dynamics, the resulting
controller is in not suitable either for real implementations or numerical simulations. On
the other hand, the above controller gives trace(X + Y) & 10.5569, i.e., the improvement
in terms of suboptimal value is only about 0.017%. Namely, the addition of the above pole
placement constraint provides a valuable strategy to design an implementable controller,
without penalizing the considered optimization.

Example 3.3. Consider the system derived from [49], already considered in Example 3.1
and that is defined by the following data:

A:{O 1],3:[1],1(:[—0.3491 ~0.7022],C =0 1],A=1.
05 0.5 1

We want to solve (3.60) via Algorithm 3.2. In particular, to start such an algorithm, we use
the dynamic output feedback controller issued from the observer-based controller considered
in Example 3.1. Namely, by considering the observer gain obtained in the last part of
Example 3.1 (the more convenient in terms of the considered optimization), one gets the

following data for the initializing controller

C

—200.7 0.2978
~200.2 —0.2022| ¢

D.=0.

200.4
200.4

O, = [—0.3491 —0.7022]
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Algorithm 3.2 initialized with the above controller yields

(23069 —7.2
s 39.69 776]

—9.156 —42.67

5 0.1338
~0.1285

C, = [—28.14 82.58}

D, = —3.734

1.575  —1.159 1.575 —1.159
—1.159 1.048 —1.159 1.048
1.575 —1.159 781.5  165.6
—1.159 1.048 165.6 8222

Figure 3.3 shows the evolution of the plant state obtained by considering the two different
designs. In both simulations, the closed-loop system is initialized as (g, z.) = (—6,0,0,0).
Simulations show that the controller designed via the proposed apparatus allows to steer the

plant state closer to the origin than for the previously considered observer-based controller.

6 T T T T
i
a\ 1
[
] \
\
| \
2 B ) \\' .
\\
n —— _\;\:“_‘.- L e o e — — — —— — —— ——— ——— ——— —— ——— ——— —————

-8 i i i i
0 10 20 30 40 50

t

Figure 3.3: Plant state evolution: Proposed design (z; dashed-black, x5 dashed-blue),
observer-based control (x; solid-black xs solid-blue).) The solutions are obtained by in-
tegrating the closed-loop model via an Euler method with time step 107%.
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Example 3.4. Consider the linearized model of the Furuta pendulum [67], examined in

Example 2.1, for which

0 O 1 0 0
0 0 0 1 0
T = x + u (3.65)
0 3932 —-1452 0 25.54
0 81.78 —13.98 0 24.59

where 1,y represent respectively the base angle and the pendulum angle (rad), x3 and
x4 are respectively the two angular speeds (rads™'), and w is input voltage (V) of the
motor driving the base shaft. Assume that the two angles x1, x5 are measured through two
identical incremental optical encoders with resolution of 1°. This situation can be modeled

in our setting by taking as measured output y,, = q(Cz), where

[t ooo
0100

and q is the uniform quantizer defined in (1.17), with A = 7/180. Now, we want to design a
dynamic output feedback controller for the given plant by solving (3.60) via Algorithm 3.2.
To this end, to initialize Algorithm 3.2, we consider the following LQG controller for the
triple (A, B, C)

[—1.638 —3.008 1 0
L —3.008 —14.49 0 1
“ 12017 —622.7 3848 —93.35

| 185  —639.8 37.05 —89.88

[1.638 3.008
5 3.008 14.49
“ 15.366 25.78

22.74 109
C.=11 —2491 2075 —3.655
D, = 0.
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Algorithm 3.2 initialized with the above controller yields®

[—10.22 —263.1  6.119  —0.03099
A _ | 01857 —28.23 —0.7419  3.407
‘ 21.84 50.83 4345  —109.0
| 17.94  —84.79 4289  —1025
[—0.6291 2.777
B _ | 00545 1.916
“ |-0.6765 106.8
|—0.3055 44.16

C’C:[—O.5653 9.917 —1.915 2.717}
D, = [-0.05517 —9.548}

[ 0.4358  0.1078 0.4882 —0.3913 0.4358 0.1078 0.4882 —0.3913]
0.1078 2254 2812 —1.624 0.1078 22.54 2.812 —1.624
0.4882 2812 1.488 —1.185 0.4882 2.812 1.488 —1.185

—-0.3913 —-1.624 —-1.18 1.193 —-0.3913 —-1.624 —1.185 1.193

P =
0.4358 0.1078 0.4882 —0.3913 627.1 —8022 644.1 —1248
0.1078 22.54 2.812 —1.624 —8022 1.044-10° —8382 16244
0.4882 2.812 1.488  —1.185 644.1 —8382 688.5 —1339.0

|—0.3913 —1.624 —1.185 1.193 —1248 16244 —1339 2610

Notice that Apax(P) =~ 108199, while Apin(P) ~ 0.0209. In particular, it is interesting to
notice that the eigenvector associated to Apax(P)

(2.346-107",—2-107%,—2.243 - 107°,1.192 - 10~°,0.075, —0.98,0.078, —0.15)

is “nearly” parallel to the hyperplane span{es, g, €7, eg}, where e; is the generic vector of the
standard basis of R®, that is the subspace of the state space associated to the controller state.
Loosely speaking, the performed optimization, in this case, seems to favor some directions

rather than others.

To compare the improvement produced by Algorithm 3.2 with respect to the LQG con-
troller used to initialize such an algorithm, we perform an analysis stage of the two controllers
directly employing the conditions provided by Proposition 3.1. Since the measure chosen for
the set A = £(P) to design the controller is related to trace(P~1), as illustrated in Chapter 2,

4A first attempt in the solution to the considered optimization problem leads to a controller unsuitable
for physical implementation due to overly fast dynamics. This fact, as already mentioned, can be related to
the unattainability of the optima to the considered optimization problem. Thus, in the effective controller
design, as already done in the other cases presented in this dissertation, we consider an additional pole
placement constraint as the one in (3.63), where « is chosen via a tuning stage aimed at preserving the value
of the suboptimal solution obtained.
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for each of the two controllers we solve the following optimization problem

minimize  trace(©)

7,51,5,P,0
subject to 51,5, € DY, P,© € Si",T > 0 (3.66)
S}
>0, (3.10), (3.11).
[ J

As usually, to overcome the nonlinearity introduced by the product 7P, we perform a grid
search for 7. In particular, the solution to the above optimization problem can be performed
via an algorithm totally analogous to Algorithm 2.1. By running such an algorithm for the
two considered controllers, one gets the following values for trace(P)™!, for the designed
controller (trace(P; ")) and for the LQG controller (trace(Pl;gl))

trace(P; ') ~ 23.29
trace(P,}) ~ 37.6.

a9

Namely the proposed design produces an improvement of about 38% with respect to a
standard design. Moreover, this improvement in terms of trace(P~') shows the effectiveness
of the implicit minimization of this latter objective via the minimization of trace(X + Y)

performed throughout the design stage.
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3.3 Simultaneous Sensor-actuator Quantization

3.3.1 Preliminary Results and Problem Statement

Consider the following continuous-time linear system with sensor and actuator quantization

i = Ax + Bv
v = qu(u) (3.67)
Ym = qy(C'x)

where z € R", u € R™, y,, € RP, are respectively the state, the input, and the measured
output of the plant. A, B,C are real matrices of suitable dimensions, and q,(-),q,(-) are
the uniform quantizers defined in (1.17) having as a quantization error bound, respectively,
Ay, Ay > 0. We want to design the following plant-order strictly proper dynamic output
feedback stabilizing controller for (3.67)

T, = A.x. + Bou,
(3.68)

Ye = Ccajc

where z. € R" is the controller state, y. € R™ is the controller output, u. € RP is the

controller input.
(A, Be, Ce) € R™™ x R™P x R™*™

are real matrices to be designed. By interconnecting plant (3.67), i.e., setting u. = ym,

u = y., with controller (3.68) yields the following dynamics for the closed-loop system

{ &= Az + Bq,(Cex.) (3.69)

Te = Acte + Beq,(C).

Remark 3.8. Notice that, the use of a nonstrictly proper controller in this setting induces a
nested discontinuity in the closed-loop system; this approach is considered in [37]. However,
from a technical point of view, addressing such a nested discontinuity requires a special care.
Indeed, in the presence of a nested discontinuity, Proposition 1.2 is of any help. Thus, one
needs to extend the results presented in Lemma 2.2 to the case of a composition of the
function ¥ with a discontinuous function. On the one hand, such an extension is technically
tedious and does not provide any substantial novelty to the proposed methodology. On the
other hand, assuming a strictly proper controller does not introduce any severe restriction in
the apparatus presented in the sequel. Therefore, to maintain the presentation simple and
to focus more on the key ideas and results, we will insist in the remainder of this chapter in

considering a strictly proper controller.
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Therefore, by defining the functions

U,: R™ — R™
(3.70a)
v,: R? — R?
(3.70Db)
zq,(2) — 2
by taking as vector state & = (z,z.) € R*", and by defining the matrices
~ A  BC.| = 0| -~ Bl - -
= ‘| B = , By = ,Ci=|C 0],0, =10 C. 3.71
BCCAclBC201{}2{}()
(3.69) can be rewritten as
= At + BY, (C1) + By, (Cai) (3.72)

At this stage, since the functions V¥, ¥, are discontinuous, the right-hand side of (3.72) is a
discontinuous function of the state. Thus, we want to focus on Krasovskii solutions to system
(3.72). In view of the local boundedness of the right-hand side of (3.72), for every &y € R*",
there exists at least a Krasovskii solution ¢ to (3.72) with ¢(0) = Zo; (see Chapter 1). In

particular, let us define

X:R*™ — R*
. - _ - _ (3.73a)
we consider the solutions to the following differential inclusion
T € K[X](%) (3.73b)

where K[X](Z) represents the Krasovskii regularization of the function X; see Definition 1.2
on Page 14. The next theorem provides a first characterization of the behavior of (3.73).
Theorem 3.2. Let A, B, C, A., B., C. be matrices of adequate dimensions such that A is
Hurwitz. Then, there exists a compact set A C R?", containing the origin, which is UGAS
for (3.73).

Proof. The proof of the above result follows the same lines of the proof of Theorem 2.1. In
particular, under the considered hypothesis, we derive for (3.73) a relation like (2.8). Then,

the proof directly follows from the arguments presented in the proof of Theorem 2.1.

For every & € R?", define ¢;(Z) = C1Z and ¢y(Z) = Ch#. Since the function & — AZ is

continuous, by Proposition 1.1, for every & € R*",

KIX)(%) = AZ + K[B1¥, 0 1 + By, 0 ¢)(%)
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Therefore, by item ii of Proposition 1.1, for each & € R?", it follows that
K[B1W, 0 ¢c; + ByW, 0 ¢5](2) € BiK[W, 0 ¢1](x) + BoK[W,, 0 3] (). (3.74)

Moreover, due to the bound shown earlier on the function ¥, it turns out that for each
T eR™
K[y o ai](z) € By/pA,

K[¥, o (%) C BvmA,

therefore, for every & € R?*", the following inclusion holds
K[X](%) C A% + BiB/pA, + ByBy/mA,. (3.75)

Since A is Hurwitz there exist P,Q € S, such that He(Pﬁ) = —(). Building on this
relation, for each 7 € R*", define the function V(%) = #" P#. Then, thanks to (3.75), for
every T € R?", and any f € K[X]|(Z)

(VV (), f) = 2" Qi + 23" P (Bi&, + Bat)

for some &, € B,/pA,, &, € By/mA,. By standard arguments, it is straightforward to show
that

IPB&, + PBotu|? < 2 (|PBi&, > + IPBoul?) < 2 (IPBiIPAZp + || P B2 A%m)

Thus, by following the same arguments shown in the proof of Theorem 2.1, pick 6 € (0, 1),
then

o 8P

is UGAS for (3.73), concluding the proof. [ |

(IPB a3y + | Bl |

Building on the above result, as already done throughout this dissertation, with the aim
of providing constructive conditions for the design of the controller (3.68) ensuring UGAS
of a certain compact set, we want to derive sufficient conditions solving the problem given
next.

Problem 3.4. Let A, B,C be matrices of adequate dimensions. Determine (A, B.,C.) €
R™ ™ x R™P x R™*" and a compact set A C R?" containing the origin, such that A is
UGAS for system (3.73).

3.3.2 Sufficient Conditions

A first sufficient condition to solve Problem 3.4, and based on the sector conditions illustrated

in Lemma 2.2, is given next.
Proposition 3.5. If there exist P € Si”, S1, 5, € DY, 51,55 € Dy, A, B, C, real matrices
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of adequate dimensions, and a positive scalar T such that

He(PA) 4+ 7P PB,—ClS, PB,—CJ}S,

[ ] —252 - Sl 0 < 0 (376)
[ [ ] —252 - gl
trace(S1)A? + trace(S1)A2 — 7 < 0 (3.77)
where
~ A  BC.| = 0| -~ B| ~ ~
- ) - ) By = ’ C - 0 ) C =10 c
BC A "7 T BT o] ™! ¢ 0of.C=lo ¢
then
A, B, Ce (3.78)
A=E(P) (3.79)

solve Problem 3.1.

Proof. For every ¥ € R?", consider the following quadratic function V(%) = 2T PZ, where
P € §2". Following the ideas presented in the proof of Theorem 2.1, we want to prove that

there exists a positive real scalar S such that
(VV(3),w) < -V (z)  VzeR™\IntA w e K[X](Z). (3.80)

As the above relation is analogous to (2.8) in the proof of Theorem 2.1, establishing (3.80)
suffices to show that the set A in (3.79) is UGAS for (3.73). By S-procedure arguments,
(3.80) can be verified by showing that for every & € R?", there exists a positive real scalar
7 such that

(VV(2),w) —1(1 —2"P%) < —pV(Z)  VYw € K[X](2). (3.81)

On the other hand, as shown in the proof of Theorem 3.2, for every w € K[X](Z), there
exist v, € K[¥,](C1Z) and vy € K[¥,](Cy), such that w = AZ + Byv; + Bivy. Then, still
by S-procedure arguments and according to Lemma 2.2, (3.81) is ensured by proving that
for each € R?", and for each v; € RP,v, € R™

(VV (%), A% + Byvy + Bova) — 7(1 — &' P&) — v] Syv; + trace(Sy) A2 — 20] Sy (v; + (1)
— 03 Syvy + trace(Sy) A2 — 201 Sy (vy + CoZt) < —BV (E).
(3.82)

By straightforward calculations, the left-hand side of the above relation can be rewritten as
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follows

71" [He(PA)+7P PBi— (TS, PB,—CIS,) [#
v 3 —25, — 5 0 vy | + trace(S1)A? 4 trace(S1) AL — 7.
Uy ° ° —252 — 51 Vo
(3.83)
Thus in view of (3.76) and (3.77), it follows that there exists a small enough positive scalar
7 such that for every 7 € R*" \ Int A, w € K[X](Z), one has (VV (z),w) < —yZ"#. Then,
since for every # € R?", V(%) < Anax(P)2TZ, by setting 3 = o) 8ives (3.81), and this

max

finishes the proof. [ |

Also in this case, the above result is lossless with respect to Theorem 3.2. Precisely, As-
sumption 1.2 ensures the feasibility of conditions (3.76) and (3.77). This claim is formalized
in the result given next.

Proposition 3.6. Let A, B,C' matrices such that Assumption 1.2 is satisfied. Then, there

exist
(1, P, S1, S2, 51, 82, Ac, B, Ce) € Rug x 87" x D x DY x DT x D' x R™™ x R™P x R™*"

satisfying (3.76) and (3.77).
Proof. Define

Cy

E = [él EQ} ,é = ,gl = diag{Sl, gl}, §2 = diag{Sg, gg}

2

then, (3.76) can be equivalently rewritten as

He(PA)+ 7P PB-(C"5,

_ Fl <o. (3.84)
[ ] —282 - Sl

Now, observe that for each Sy € D%, S, € D, one has
trace(S1) A2 + trace(S;)A2 < trace(S)) max(A2, A7)
Therefore, if there exists
(1, P, S1,Sa, 51, 82, Ac, Be, Cr) € Rug x 82" x DY x DI x D' x D' x R™™ x R™P x R™*"

such that (3.84) and
trace(S;) max(A2, AY) —7 <0 (3.85)

are satisfied, so are (3.76) and (3.77). On the other hand, since Assumption 1.2 ensures the
existence of A, B,, C such that A is Hurwitz, and (3.84) and (3.85), respectively, match
(2.14) and (2.15), by following the same arguments proposed in the proof of Proposition 2.2,

the assert is proven. [
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3.3.3 Controller Design

Also in this case, the conditions issued from Proposition 3.1 cannot be directly employed
to solve Problem 3.4. On the one hand, attempting to design an observer-based control
gives rise to the same drawbacks discussed in the previous section with even an increased
complexity due to the addition of actuator quantization. On the other hand, the similarities
between the conditions in Proposition 3.5 with the ones in Proposition 3.1 foster to reconsider
the same approach pursued in Proposition 3.4. In particular, retracing the steps performed
to derive Proposition 3.4 gives rise to the following result.

Proposition 3.7. For each 7, Sy, 52 € DY, 51,55 € D there exist K € R™", L € R"*P,
X, Y € 8%, and M € R™" such that

He(Hl) + TH2 H3 H4
L ® —51 - 252
Hy, >0 (3.87)
where
g _ |AY +BM A Y I | =YCTS, _|B=M'5,
b K XA+LC| 2 e X7 T L-C"S,|" T | XB-5,

A

if and only if, for any nonsingular matrices U,V € R™™ such that UV =1— XY, X =
UT(X -Y-H)~ U,

Co=MV™T
B.,=U"'L (3.88)
A, =U"'(K - XAY —XBM - UB.CY)V~T

and

(3.89)

satisfy (3.76).

Proof. The proof is totally analogous to the proof of Proposition 3.4. In particular, necessity
can be proven as in the proof of Proposition 3.4 by still employing the same change of

variables as in (3.59), with the only caveat to enforce D. = 0, and by noticing that

JPBQI

B B Va
XB I

Sufficiency can be proven directly by retracing the same steps as in the proof of Proposition
3.4, with the only caveat to enforce N = 0. |
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3.3.4 Optimization and Numerical Issues

Also for the matter of Problem 3.4, we want to associate to such a problem the following
optimization problem

Problem 3.5 (Stabilization). Let A, B, C' be matrices of adequate dimensions.

Determine A., B, C., and P € 83", such that £(P) is UGAS for system (3.73) and it is
minimized with respect to some criterion.

Pursuing the same approach shown in the first section of this chapter, which relies on

Proposition 3.7, Problem 3.5 turns into

minimize = trace(X +Y)
X,Y,L,K,M,7,51,52,51,52
subject to S, 8, €D, S, S, € DX, Y eSS, 7>0 (3.90)

(3.86), (3.87), (3.77).

Obviously the solution to (3.90) entails the same issues discussed on Page 102, with an
increased complexity due to the further nonlinearity introduced by the bilinear term M7 Ss,
and its symmetric, appearing in (3.86) due to actuator quantization. Nevertheless, the same
strategies presented in the previous section can be adopted to face this problem. On the one
hand, a grid search in this setting entails a greater number of elements subject to such a
search, namely p4+m+1. On the other hand, the complexity of an iterative procedure as the
one presented in Algorithm 3.2 is unchanged since Ss, S5 are selected once at the same time
throughout the first step. Moreover, in light of Proposition 3.6 feasibility of the optimization
problems considered at each step can be ensured via suitable choice. Thus, the adoption of

an algorithm alike to Algorithm 3.2 is certainly a viable solution to tackle (3.90).

Numerical Example

Example 3.5. Let us consider again the system analyzed in Example 3.4, and assume that,
in addition to sensor quantization as considered in Example 3.4, the plant is subject to
uniform actuator quantization with quantization error bound A, = 0.25. That situation
can be embedded in the setting illustrated in (3.67), by taking A, = 7/180, A, = 0.25. To
stabilize the closed-loop system, we want to design the controller in (3.68) by solving (3.90)
via an algorithm totally analogous to Algorithm 3.2. The initialization of such an algorithm

is performed choosing as initializing controller the LQG controller already considered in
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Example 3.4. In particular, under this choice, the mentioned algorithm yields

[—70.5 241.5 —44.31 57.22
A _ |74020 3487 0169 232
©7 121891 —1536 40.06 —148
2247  —1736  69.26 —178.9
(2222 —170.4
4. —40.
B — 091 —40.34
—11.16 —548
|—2.971  —557
Oc:[—5.065 8451 —7.082 11.84}
3785 —6.101 —243 1689 3.785 —6.101 —2.43  1.689 |
~6.101 594  6.855 —6.52 —6.101 594  6.855 —6.52
~9243 6855 2.6 —2394 —243  6.855 2.6  —2.394
p_ | 1689 652 —2304 2465 1689 652 2394 2465
| 3785 —6.101 —243 1.689  6.074 —20.48 —0.4997 —0.133
~6.101 594  6.855 —6.52 —20.48 1635 —6.034 6.759
243  6.855 2.6 —2394 —0.4997 —6.034 4.296 —4.048
| 1689  —6.52 —2.394 2465 —0.133 6759 —4.048 4.206

As® in Example 3.4, to compare the improvement arisen by the use of Algorithm 3.2 with
respect to the LQG
sis stage of the two controllers directly employing the conditions provided by Proposition
3.5.
trace(P~!), as illustrated in Chapter 2, for each of the two controllers we solve the following

controller used to initialize such an algorithm, we perform an analy-
Since the measure chosen for the set A = £(P) to design the controller is related to

optimization problem

minimize  trace(©)

7,51,92,P.6

subject to 51,5, € DY, P, O, € Si",T >0 (3.91)
©

> 0, (3.76), (3.77).

As usually, to overcome the nonlinearity introduced by the product 7P, we perform a grid
search for 7. In particular, the solution to the above optimization problem can be performed
via an algorithm similar to Algorithm 2.1. By running such an algorithm for the two con-

sidered controllers, one gets the following values for trace(P)~!, for the designed controller

5Also in this case, a first attempt in the solution to the considered optimization problem leads to a
controller unsuitable for physical implementation due to overly fast dynamics and poorly damped eigenvalues.
Thus, in the effective controller design, as already done in the other cases presented in this dissertation, we
consider an additional pole placement constraint as those in (3.63) and (3.64) characterized by parameters
« and 6 chosen via a tuning stage aimed at preserving the value of the suboptimal solution obtained.
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(trace(P; 1)) and for the LQG controller (trace(Pl;gl))

trace(P; ') ~ 57.01
trace(P, 1) ~ 855.32

q9

That is, the proposed design produces an improvement of about 93.33% with respect to
the considered standard LQG design used to initialize the proposed algorithm. Figure 3.4
and Figure 3.5 show, respectively, the steady-state evolution of the plant state and of the
controller state obtained by considering the two different controllers. In both simulations,
the closed-loop system is initialized as (xg, z.) = (0,7/4,0,0,04). Simulations bring out that
the proposed design allows to notably reduce the amplitude of the oscillations induced by

quantization.
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10 105 11 115 12 125 13 135 14 145 15

10 11 12 13 14 15

Figure 3.4: Plant state evolution: Proposed design (blue), LQG design (red). The solutions
are obtained by integrating the closed-loop model via an Euler method with time step 1074
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10 11 12 13 14 15

Figure 3.5: Controller state evolution: Proposed design (blue), LQG design (red). The
solutions are obtained by integrating the closed-loop model via an Euler method with time
step 1072
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3.4 Comments and Conclusion

In this chapter, we tackled the design problem of a dynamic output feedback controller to
stabilize linear plants in the presence of sensor quantization and simultaneous sensor-actuator
quantization. In this setting, we firstly shown that Assumption 1.2 ensures the existence of
a compact set A containing the origin, which is UGAS for the quantized control systems,
with respect to Krasovskii solutions. Such a result also points out that the compact set
A can be chosen as a sublevel set of a certain quadratic function. Thus, building on this
result, by the use of quadratic Lyapunov-like functions coupled via S-procedure to the sector
conditions for the uniform quantizer illustrated in Chapter 2, we turned the stabilization
problem into the feasibility problem to certain matrix inequalities. Such a formulation
based on matrix inequalities is shown to be lossless in the sense that under Assumption 1.2,
the derived matrix inequalities are always feasible. Thus, the proposed formulation not only
structures the design problem, but also decreases the conservatism in the determination of
the set A with respect to the main result without requiring any additional hypothesis beyond
Assumption 1.2.

Afterward, relying on the proposed characterization of the stabilization problem based on
matrix inequalities, we proposed a complete apparatus based on convex optimization over
LMIs to allow the controller design while shrinking the size of the set A. The effectiveness of
the proposed methodology is shown in some examples. As mentioned in the previous chapter
of this dissertation, the methodology proposed is quite flexible to envision the extension of
the derived results to finite range quantizers, as well as to other kind of quantizers. In
particular, for the extension to finite range quantizers, the same considerations discussed
in the end of Chapter 2 about finite range quantizers, and other kinds of quantizers apply

mutatis mutandis for the matter of the problem considered in this chapter.

The results presented in this chapter show that employing an observer-based controller
in the presence of sensor quantization does not allow to derive computationally tractable
conditions for the design the complete design of the resulting controller. In particular, as
shown, one needs first to make a choice for the controller gain K, and then designing the
observer gain L via the solution to convex optimization problem over LMIs. Nonetheless,
we shown that if the choice considered for K is such that the matrix A + BK is Hurwitz,
then the resulting optimization problem allowing the design of the gain L is always feasible.
Such a shortcoming preventing from fully designing an output feedback controller resting on
an observer-based architecture is completely overcome by considering a general plant-order
dynamic output feedback controller. The adoption of the latter controller scheme also al-
lows, with few extra work, to derive computationally tractable conditions for the design of
an output feedback controller to deal with simultaneous sensor and actuator quantization,
bridging the gap left in Chapter 2. However, it is worthwhile to notice that adopting a
dynamic controller entails an augmentation of the closed-loop system state, whose turns out
to be the aggregation of the controller state and of the plant state. This fact could lead

to unsatisfactory results in terms of the behavior of the plant. Indeed, whenever the stabi-
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lization of the closed-loop system pertains to the whole control system state, the considered
optimization aimed at steering the closed-loop system state as much as possible to the ori-
gin, could favor more the component of the state associated to the controller than the ones
associated to the plant, leading to large deviations of the plant state from the origin. For this
reason, the paradigm of steering the plant state as much as possible close to the origin via the
shrinkage of the set A naturally considered in Chapter 2 needs to be partially reconsidered
in the presence of additional dynamics in the closed-loop system. As shown, this point can
be (partially) addressed by considering an observer-based controller architecture. In fact as
pointed in Remark 3.1, the adoption of this architecture enables to somehow decouple the
optimization to focus more on the side of the plant. However, as underlined, this kind of
architecture is hard to manage from a numerical standpoint. A possible solution to overcome
this problem consists of considering a size criterion based on directions of interest as the ones
considered in Chapter 2 also for the design of the full dynamic controller considered in Sec-
tion 3.2.4, and Section 3.3.2. Such directions can be chosen to belong to the subspace of the
state space associated to the plant state. On the other hand, pursuing this approach would
not suggest any selection for the matrix U in Proposition 3.4 and Proposition 3.7. Such a
further variable could be considered to shape the issued controller in a way that ensures its
physical construction and/or additional requirements. This aspect provides an interesting

direction for future research.
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CONCLUSION OF PART I

Concluding Remarks

In this part, we provided several tools to perform stability analysis and controller design of
linear systems in the presence of actuator and/or sensor quantization. In particular, both
static state feedback control and dynamic output feedback controllers were considered. The
pursued approach strives to always lead to computationally tractable conditions, so as to
provide solid and reliable tools actually exploitable in real-world settings. This latter feature
stems from having founded the whole methodology on convex optimization, in particular we

proposed an LMI-based approach.

Another interesting feature of our approach consists of having adopted the notion of solu-
tions due to Krasovskii. This choice allows to both overcome the technical issues concerning
the existence of solutions for the closed-loop system and to exploit a large class of existing
results presented in the literature. In particular, the exploitation of such results allows to
certify stronger properties for the solutions to the considered closed-loop systems than the
ones usually considered. We emphasize that the analysis we considered takes into account

Carathéodory solutions whenever they exist.

Moreover, we would like to point out that having dealt with Krasovskii solutions, due to
the equivalence between Krasovskii solutions and Hermes solutions mentioned in Chapter 1,
guarantees that the properties established for the closed-loop system are robust with respect

to small perturbations, that inevitably affect physical control systems.

Another interesting aspect pertains to the fact that having considered Krasovskii solutions
does not lead to any change in the resulting constructive procedures with respect to classical
approach. Notice that this aspect is only due to the fact that the sector conditions we worked
out for the quantizer considered in this dissertation provide sufficiently room to include the

set-valued mapping resulting from the Krasovskii regularization of the closed-loop system.
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Observe that, in general, this may not be the case.

We would like to point out that some preliminary results combining quantization, time-

delays and saturation have been presented in [39)].

As pointed out throughout this first part, the main drawbacks encountered essentially
concern the fact that most of the time the approach we followed does not lead straight
to genuine convex optimization problems. This shortcoming has been addressed by the
introduction of specific iterative algorithms able to handle the optimization problems issuing
from the considered problems. The most important features offered by the algorithms we

proposed consists of:
e avoiding as much a possible the use of tuning stages and/or heuristics,
e always providing a suboptimal solution to the considered optimization problems.

The two above properties are of primary interest to envision solid and systematic tools to be
exploited in real-world applications. On the other hand, such algorithms operate iteratively,
hence they may lead to an increased complexity from a numerical standpoint. Moreover, the

convergence toward the optimum (whenever it exists) cannot be guaranteed.

Perspectives and Future Outlook

The methodology we offered appears quite robust and promising to envision several exten-
sions. Such extensions, as briefly discussed all along this dissertation up to now, mainly
consist of considering finite range quantizers and dealing with other class of quantizers, as
the well established finite precision logarithmic quantizer; see [21]. Another possible line
of research pertains to the extension of the methodology we proposed to a wider class of
plants as for instance polynomial systems. This class of systems has been recently achieving
a resounding interest by researchers due to the emerging of solid numerical tools to address
a large number of problems originating in such a scenario; see [24, 61]. In this context, an
interesting issue lies in generalizing the methodology illustrated in this dissertation via the

use of polynomial Lyapunov-like functions instead of quadratic ones.

Although the discontinuous behaviors induced by quantizers are fully accounted by the
proposed analysis, such a discontinuity may induce behaviors that are undesired in real con-
trol systems. Such behaviors essentially consist of rapid switching experienced by quantized
variables. Such a phenomenon is induced by unattainable sliding-mode and/or by the pres-
ence of process and measurement disturbances, always present in engineered control systems.
On the one hand, these phenomena induce an early wear of physical elements used to the
real implementation of control systems. On the other hand, whenever quantizers are used as
a mean to reduce the quantity of information sent through a finite bandwidth channel, fast
switchings traduce into an overly large number of transmissions per unit of time; [22]. To

overcome this problem, in [22] a hysteretic quantizer has been proposed and analyzed in a
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consensus setting via quantized information. Part of our ongoing work consists of extending
the analysis proposed in [22] to the general case of nonlinear systems as well as proposing
some refinements of the model in [22], so as to ensure some robustness properties for the re-
sulting model. First researches have shown that the general idea proposed in [82], consisting
of capitalizing on input-to-state stability for the quantization free closed-loop system, can be
successfully applied even to tackle this more involved problem. We would like to point out
that such a quantizer is no longer a static nonlinearity but it is a hybrid dynamical systems.

Hence, the tools we have been considering in this setting are the ones introduced in [56].
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APPENDIX A

SOME USEFUL RESULTS

Lemma A.1. Let f: R — R be a continuous function. Suppose that there exist t,s € R
with s < t such that f(s) =0, and f(¢) > 0. Then, there exists ' > s such that f(s') =0
and f(z) > 0 for each z € (¢, 1]

Proof. By continuity of f and the fact that f(¢) > 0, there exists € > 0 such that f(z) >0
for each x € [t — ¢,t]. Define the set

Q={e>0:Vazelt—et] f(xr) >0}

Observe that € is non-empty, and furthermore Q C [s,t]. Define v = sup 2. Let {zx} be a
sequence belonging to (¢t — v, t| for each k € N, and such that limz; = ¢t — . By continuity
of f and the definition of the set €, it follows that lim f(zx) = f(t — ) > 0. Now we prove
that necessarily f(t — ) = 0. By contradiction, assume that f(t — ) > 0, then still by
continuity of f, there exists 7, > 0 such that for each z € [t — v — v,t — 7], f(z) > 0. But
this contradicts the fact that v = sup 2. Hence, setting s’ = t — v establishes the result. B
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Lemma A.2. Let X,Y € R"™" be two symmetric positive definite matrices and U,V € R",
such that UVT =1 — XY. The following statements are equivalent

(a) det(Y )7&0

I
K X
) # 0 and det(U) # 0

(b) det(VU) £ 0

Yy v
(c) det(_I 0

Proof. First notice that (a) can be replaced with det(I — XY') # 0. Moreover, since by
definition det(VU) = det(I — XY), (a) and (b) are equivalent. Now, we show that (c) and
%

Y
(b) are equivalent. To this end, observe that det ( 0

) = (—1)"det(V), thus (c¢) and

(b) are equivalent, concluding the proof.
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INTRODUCTION

General Overview

Recent technological advances have enabled the control of dynamical systems using data
transmitted over communication networks or using digital devices. In these context, data
can get lost or can only be available intermittently [62, 65, 129]. As an example, when
the controller and the system to control are connected through a network, and an estimate
of the plant state is needed, the classical paradigms of accessing the output of the plant
continuously [88] do not apply and new approaches are required. This practical needed has
brought to life a new research area aimed at developing observer schemes accounting the
discrete nature of the available measurements; see, e.g, [1, 4, 6, 74, 92|, just to cite a few.
In these works, by assuming a periodical availability of the measured output, the authors
propose a discrete-time approach to the state estimation problem. Such an approach consists
of two stages. First the continuous-time plant is discretized, then a discrete-time observer is
proposed to estimate the state of the discretized version of the plant. However, this approach
entails three main drawbacks. The first drawback stems from the fact that the intersample is
completely lost only studying the evolution of the estimation error at sampling times. In fact,
with such a discrete-time approach, no explicit bounds on the estimation error in between
consecutive samples are available. The second drawback is that any mismatch between the
actual sampling time and that one used to discretize the plant model induces an error in
the discrete-time description of the state estimation problem. The third drawback is that
in many modern applications, such as networked control systems, the output of the plant
is often accessible only sporadically, making the fundamental assumption of periodically

measuring unrealistic; see, e.g, [62, 65, 129].

To address these issues, several strategies are presented in the literature. Such strategies
essentially belong to two main families. The first one pertains to observers whose state is

entirely reset, according to a suitable law, whenever a new measurement is available, and that
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run in open loop in between such events (continuous-discrete observers). This approach is, for
instance, pursued in [3, 94]. The second family of strategies considers instead continuous-time
observers, for which the output injection error in between consecutive samples is estimated
via a continuous-time processing of the last received measurement. This approach is pursed,
e.g., in [73, 90, 101, 104]. However, we would like to point out that, except for the zero
order sample-and-hold scheme in [90, 104], the design of observers within this family is
essentially performed by an emulation approach. Such an approach consists of first designing
a continuous-time observer, and then to evaluate the maximum allowable sampling period
(MASP) the designed observer can withstand. On the other hand, in real applications, most
of the time the design of the observer needs to be performed ensuring convergence of the
estimation error for a given maximum sampling time. In other words, an effective design
strategy should allow to consider the maximum allowable sampling interval as a design

parameter.

The main aspect shared by the two families of observers illustrated here above is that the
resulting observers exhibit both continuous-time and impulsive behaviors. Roughly speaking,
the fact of having intermittent incoming measurements gives rise to observation schemes
that need to instantaneously adapt their working principle according to the data streams.
This fact of relying on observation schemes that experience continuous-time and impulsive
behaviors foster to analyze such a schemes via the tools arising from the literature of hybrid
dynamical systems. In particular, recently a comprehensive and solid framework for the
analysis of hybrid dynamical systems has been presented in [56]. Although the modeling
framework in [56] is solid and allows to deal with general hybrid dynamics, to the best of our
knowledge, the design of observers in the presence of sporadic measurements via the tools

in [56] has not received attention by the existing literature.

Another appealing aspect consists of analyzing the impact of sporadic measurement
streams on observer-based controller architectures. Indeed, often the estimate provided by
asymptotic observers is exploited to replace the actual plant state into static state feedback
controller schemes; [128]. In the context of modern control systems, several settings can be
considered. On the one hand, one can assume that, although the plant output is measur-
able sporadically, the plant input can be accessed at any time. This situation may occur,
e.g., when the output is measured via digital sensors with a low and time-varying sampling
rate, or in distributed control systems, whenever the controller and the plant are co-located
and plant measurements are sent to the controller via a data network; see, e.g., [129]. On
the other hand, in some real applications, temporal limitations can even affect the access
to the plant input. As an example, in distributed systems, where the controller and the
plant are located in different areas, the communication between the two systems happens
via a shared channel handled by a supervisor. Such a supervisor alternatively allocates com-
munication resources to the controller, to send control inputs toward the plant, and to the
plant, to send measurements toward the controller; see [62]. Still within a distributed control
systems framework, intermittent access to the plant input can be entailed also by package

dropouts; see, e.g., [112]. Another interesting case in which technological constraints involve
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intermittent actuation pertains to the case of low-rate actuators considered in [91].

Thus, in all these settings, the classical assumption considered in the literature of sampled-
data systems consisting of assuming the sample and hold operations, of the measured output

and of the control input, occur synchronously is overly restrictive.

An attempt to overcome this assumption is proposed, e.g., in [50], where the authors, by
pursuing a time-delay approach, propose a design strategy for an output feedback controller,
guaranteeing an H,, performance, in the presence of aperiodic and asynchronous sampling
and holding operations. Another work following a similar approach, though for the case of
static state feedback controller is also presented in [91]. However, the proposed approach
therein is to some extent intrinsically conservative due to the coarseness introduced by
modeling the sampling and holding operations as processes introducing time-varying time

delays.

Contribution

The contribution offered within this part of this dissertation aims at showing how the gen-
eral hybrid systems framework proposed in [56] can be successfully adopted to model and
design asymptotic observers for continuous-time LTT systems in the presence of intermittent
measurements. In particular, we shall consider two observation schemes: The first one falls
within the family of continuous-discrete observers considered in [3, 94], while the other falls
within the family of observers considered in [73, 101, 104]. In addition, building on the first
observation scheme, an observer-based controller architecture is proposed with the aim of
stabilizing a continuous-time LTI system in the presence of both sporadic output measure-
ments and input access. For such schemes computationally tractable design procedures will

be illustrated and thoroughly discussed.

The contribution of the work presented in this part is twofold. On the one hand, resting on
the general hybrid systems framework in [56] allows to come up with some completely novel
observation schemes, whose design appear hardly tractable from a numerical standpoint
by following alternative approaches as, e.g., the one in [73]. On the other hand, adopting
the general modeling framework in [56] allows to extend the derived results to deal with
more involved problems of practical interest. For instance, the construction of the above
mentioned observer-based controller essentially has the role to emphasize the flexibility and
the modularity offered by the modeling framework in [56]. Other extensions are currently

under preparation and will not presented in this thesis.
The remainder of this dissertation is organized as follows:
e Chapter 4 provides some general notions on hybrid systems as presented in [56].

e Chapter 5 illustrates the modeling and the design of a measurement triggered-jumps

observer to exponentially estimate the state of a continuous-time LTI systems in the
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presence of sporadic measurements. The results illustrated in this chapter are presented
in [42, 44].

e Chapter 6 illustrates the modeling and the design of an observer with continuous
intersample injection, still to exponentially estimate the state of a continuous-time LTI
systems in the presence of sporadic measurements. Preliminaries results concerning the

aspects illustrated in this chapter are presented in [41].

e Chapter 7 illustrates how the observer presented in Chapter 5 can be used to asymp-
totically stabilize a continuous-time LTT system in the presence of both sporadic mea-
surements and intermittent input access. First results on this line of research can be
found in [43].

Simulations of the hybrid systems contained in this part have been performed via the
Hybrid Equations (HyEq) Toolbox [108].



PRELIMINARIES ON HYBRID SYSTEMS

“Beauty is the first test: there is no permanent place in the world for ugly mathe-

matics.”

— G. H. Hardy

4.1 Introduction

N this part of this dissertation, we rest on the hybrid system framework proposed in
I [56]. For this reason, within this chapter, we provide the main ingredients and the main
definitions concerning hybrid systems. Notice that the list of notions given in this chapter
is not an exhaustive one. In particular, for the sake of clarity, most of the definitions are
given throughout the remainder of the dissertation. The aim of this chapter is to provide
only the basic concepts and definitions needed to follow the results presented in the sequel
of this dissertation. Thus, for a complete study of hybrid dynamical systems, the reader is
referred to [56].
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4.2 Hybrid systems: Modeling Framework and Basic

Notions

In this part of this dissertation, we adopt the hybrid system framework proposed in [56]. In

particular, we consider hybrid systems in the following form

reC &€ F(x)

reD xteGx) “y)

x is the state of the hybrid system, & stands for its velocity and z* indicates the value of
the state after an instantaneous change. C' indicates the set where the continuous evolution
(flow) of the system can take place. Such an evolution is determined by the differential
inclusion & € F(x). D is the set wherein discrete evolution (jumps) can take place. Such an
evolution is determined by the difference inclusion % € G(x). In the sequel, according to

[56], we name the objects defining the general hybrid system (4.1) as follows
e (' is the flow set
e D is the jump set
e [ is the flow map
e (G is the jump map.

In particular, the four data (C, F, D, G) univocally define a hybrid system as in (4.1). For this
reason, we refer to the four data (C, F, D, G) as data of the hybrid system (4.1). Specifically,
the shorthand notation H = (C, F, D, G) stands for the hybrid system (4.1) represented by
the data (C, F, D, G).

In this dissertation with focus on hybrid systems with state in R™. In that case, the data
of the hybrid system (4.1) are defined precisely as follows:
Definition 4.1. The data of the hybrid system H = (C, F, D, G) with state in R" are defined

as follows.
e CCR"
e [: R" = R"” with C' C dom F
e DCR"

o (: R*" = R" with D C domG

4.3 Hybrid Time Domains and Solution Concept

In continuous-time systems, solutions are parameterized by a real scalar variable ¢, that is

the time. Instead, in discrete-time systems, solutions are parameterized by an integer scalar
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variable 7 € N, that keeps track of the number of jumps or of the elapsed discrete steps. Since
hybrid systems exhibit both continuous-time and discrete-time behaviors, it seems natural
to parametrize solutions by means of two variables. The first one, ¢ € R, representing the
amount of time elapsed. The second one, 7 € N, keeps track of the number of the occurred
jumps. However, a set £ C Ry x N needs to satisfy some specific properties to provide the
parametrization of a solution to some hybrid system. Such a properties are captured by the
notion of hybrid time domain given next.

Definition 4.2 (Hybrid time domain). A subset £ C Rs¢ x N is a compact hybrid time

domain if
J—1

U ([tj7tj+1]7j)

=0
for some finite sequences of times 0 =ty < t; <ty < --- <t;. It is a hybrid time domain if
for all (T, J) € E, EN([0,T] x {0,1,...,J}) is a compact hybrid time domain.

In the sequel, given a hybrid time domain E and (¢, j), (s, k) € E, the writing (¢, ) *= (s, k)

means t + j > s + k. Furthermore, we indicate

sup, E = sup{t € R>o: 3j € Nsuchthat (¢,j) € E}
sup,; I = sup{j € N: 3t € Rygsuchthat (,5) € E}.

Definition 4.3 (Hybrid arc). A function ¢: E — R™ is a hybrid arc if £ is a hybrid time
domain and if for each j € N, the function ¢t — ¢(t, ) is locally absolutely continuous on
the interval I/ = t: (t,j) € E.

Notice that from some 7, the intervals I can be empty or being singleton. In such cases,
the above requirement on absolutely continuity is not relevant. Here below, we provide a first
categorization of hybrid arcs based on their properties. In particular, here below we list only
the properties that are relevant within this dissertation, for an exhaustive categorization of
hybrid arcs, the reader is refereed to [56].

Definition 4.4 (Types of hybrid arc). A hybrid arc ¢ is called.

e nontrivial if dom ¢ contains at least two points
e complete if dom ¢ is unbounded
e Zeno if it is complete and sup, dom ¢ < oo

Now we are in position to provide the following definition proving the concept of solution
to hybrid systems used throughout the sequel of this dissertation.
Definition 4.5 (Solution to a hybrid system). Given a hybrid system H = (C, F, D,G). A
hybrid arc ¢ is a solution to H if ¢(0,0) € C U D, and

(S1) for all j € N such that I’ := {¢: (¢,7) € dom ¢} has nonempty interior.

o(t,7) el Vt € Intl7,
o(t,§) € F(o(t,5)) Vt € Intl;
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(S2) for all (¢,7) € dom ¢ such that (¢,5 + 1) € dom ¢,

o(t,j) € D,
o(t,j+1) € G(o(t,)))

Remark 4.1. Notice that, given a hybrid system, it is inappropriate to first select a hybrid
time domain and then try finding a solution to the given hybrid system having the selected

domain. In other words, it is the solution itself that determines its own domain.

Now, we provide another definition that extends the concept of maximal solution from
continuous-time and discrete-time systems to hybrid systems.
Definition 4.6 (Maximal solutions). A solution ¢ to H is maximal if there does not exist
another solution v to H such that dom ¢ C dom and ¢(t, j) = (¢, 7) for all (¢, 5) € dom ¢.

In the sequel of this dissertation, given a hybrid system H, and a set S, S (S) denotes
the set of all maximal solution to H such that ¢(0,0) € S. If no set S is mentioned, then

Sy stands for the set of all maximal solutions to H.

4.4 Basic Assumptions on Data

Before ending this chapter, let us consider the following assumption
Assumption 4.1 (Hybrid basic conditions).

(A1) C and D are closed subsets of R”

(A2) F:R™ = R" is outer semicontinuous and locally bounded relative to C';, C' C dom F,

and F'(x) is convex valued for every x € C

(A3) G: R™ = R" is outer semicontinuous and locally bounded relative to D, and D C
dom F

Such an assumption ensures that the considered hybrid system is well-posed in the sense
specified in [56, Definition 6.2]; see [56, Theorem 6.8]. Well-posedness is a key property that
is required for the applicability of a large number of results presented in [56]. We invite the

reader to see [56] for further details on well-posed hybrid systems.



AN OBSERVER WITH MEASUREMENT-TRIGGERED JUMPS

“Success depends upon previous preparation, and without such preparation there is

sure to be failure.”

— Confucius

5.1 Introduction

HIS chapter deals with the state estimation problem for linear time-invariant (LTT)
T systems for which measurements of the output are available sporadically. To solve the
considered problem, we provide an observer with jumps triggered by incoming measurements,
which is studied in a hybrid systems framework. Specifically, the resulting system is written
in estimation error coordinates and augmented with a timer variable that triggers the event of
new measurements arriving. Then, the observer is performed to achieve global exponential
stability (GES) of a closed set including the points for which the state of the plant and
its estimate coincide. Furthermore, a computationally tractable procedure for the proposed
observer is presented. Finally, the effectiveness of the proposed methodology is demonstrated

in two numerical examples. The results presented in this chapter can be found in [44, 42].
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5.2 Problem statement

5.2.1 System description

We consider continuous-time linear time-invariant systems of the form

2= Az+ Bu

n (5.1)

where z € R", y € R?, and u € RP are, respectively, the state, the measured output, and the
input of the system, while A, B and M are constant matrices of appropriate dimensions. We
assume that the input u belongs to the class of measurable and locally bounded functions
u: [0,00) — RP. Our goal is to design an observer providing an estimate 2 of the state z
when the output y is available only at some time instances i, k € N, not known a priori (a

similar setup is considered in [100]).

We assume that the sequence {t;}7°, is strictly increasing and unbounded, and that for

such a sequence there exist two positive real scalars T} < T, such that

0<t <1

(5.2)
Tlgtk+1—tk§T2 Vk € N.

As also pointed out in [64], the lower bound in condition (5.2) prevents the existence of accu-
mulation points in the sequence {t;}%2;, and, hence, avoids the existence of Zeno behaviors,
which are typically undesired in practice. In fact, 77 defines a strictly positive minimum time
in between two consecutive incoming measurements. Furthermore, T5 defines maximum time
in between two consecutive incoming measurements. For this reason, we will refer to T, in

the sequel as maximum sampling interval.

Since the information on the output y is available in an impulsive fashion, assuming that
the arrival of a new measurement can be instantaneously detected, motivated by [3, 103],
to solve the considered estimation problem, we consider an observer with jumps in its state

following the law

2(t) = A2(t) + Bu(t) Vt # ),k €N

(5.3)
2(tF) = 2(t) + L(y(t) — MA(t)) Vt =ty keN

where L is a real matrix of appropriate dimensions to be designed. Note that, in between
events, the observer runs in “open-loop” in the sense that no information of the output is
used.

Remark 5.1. Assuming the knowledge of the input is not overly restrictive. Indeed, in
many practical settings, all of the devices employed to control and supervise the plant may
be embedded into the same system. Notice also that, often, the estimated state is part of a

feedback controller (e.g. in linear observer-based controller architectures), in which case the
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input u is a static function of the estimated state that is perfectly known.

Along the lines of [109], the state estimation problem is formulated as a set stabilization
problem. Namely, our goal is to design the matrix L such that the set wherein the plant state
z and its estimate £ coincide is globally exponentially stable for the plant (5.1) interconnected
with the observer in (5.3). At this stage, as usual in estimation problems, we define the
estimation error as

e=z—2%. (5.4)

Thus, since at times t; the plant state in unchanged, the error dynamics are given by the

following dynamical system with jumps:

E(t) = Ae(t) Vt £tk €N

(5.5)
e(tt) = (I— LM)e(t) Vt=t, ke N.

Due to the linearity of system (5.1), the estimation error dynamics and the dynamics of z
are decoupled. Then, for the purpose of estimation, one can effectively only consider system
(5.5).

5.2.2 Hybrid Modeling

The fact that the observer experiences jumps when a new measurement is available and
evolves according to a differential equation in between updates suggests that the updating
process of the error dynamics can be described via a hybrid system. Due to this, we represent
the whole system composed by the plant (5.1), the observer (5.3), and the logic triggering
jumps as a hybrid system (see [81] where a similar approach is adopted to model a finite-time

convergent observer).

The proposed hybrid systems approach requires to model the hidden time-driven mecha-
nism triggering the jumps of the observer. To this end, in this work, and in a similar manner
as in [19], we augment the state of the system with an auxiliary timer variable 7 that keeps
track of the duration of flows and triggers a jump whenever a certain condition is verified.
This additional state allows to describe the time-driven triggering mechanism as a state-
driven triggering mechanism, which leads to a model that can be efficiently represented by
relying on the framework for hybrid systems proposed in [56]. More precisely, we make 7 to
decrease as ordinary time t increases and, whenever 7 = 0, reset it to any point in [17, T3],
so as to enforce (5.2). After each jump, we require the system to flow again. The whole

system composed by the estimation error ¢ and the timer variable 7 can be represented by
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the following hybrid system, which we denote H.

= = A

- } () eC
7T = —1

et = (I—LM)e
’7'Jr € [Tl,TQ]

} (e,T) €D

where the flow set and the jump set are defined as

C:{(g,T) e R" XRZ()I T € [O,TQ}}

(5.6b)
D ={(e,7) e R" xRsp: 7 =0}.

The set-valued jump map allows to capture all possible measurement events within 7} or
T5 units of time. Specifically, the hybrid model in (5.6) is able to characterize not only the
behavior of the analyzed system for a given sequence {t;}?,, but for any sequence satisfying
(5.2). We denote the state of H. by

x=(g,T)

and by f and G, respectively, the flow map and the jump map, i.e.,

fla) = f‘i Vo e C (5.72)
Cla-Lme
G(z) = T Ty Vx € D. (5.7b)

Remark 5.2. It is worthwhile to notice that the hybrid system H. satisfies Assumption 4.1.
This assertion can be straightforwardly verified by inspection of the data of H.. On the
one hand, this property not only guarantees that the stability property exhibited for H. are
somehow robust with respect to perturbations. However, in this dissertation we do not focus
on perturbed hybrid systems and we refer to [56] for a complete treatment of this aspect.
On the other hand, having Assumption 4.1 satisfied will be a crucial aspect in the sequel of
this dissertation, being required for the derivation of some results.

Remark 5.3. To make the hybrid system (5.6) an accurate description of the real time-
triggered phenomenon, which governs the feedback update process, the variable 7 needs to

belong to the interval [0, T3], property that is guaranteed by the definition of C' and D.

In this chapter, we consider the following notion of global exponential stability (GES) of
closed sets for a general hybrid system # in R’.
Definition 5.1. (GES [123]) Let A C R’ be closed. The set A is said to be globally expo-
nentially stable (GES) for the hybrid system H if there exist strictly positive real numbers
A, £ such that every solution ¢ to H satisfies for all (¢,j) € dom ¢

6(t, 7)| a4 < ke 2| 6(0, 0)] 4. (5.8)
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Then, by introducing the set!
A={(e,7) ER" X Rxp: e =0,7 € [0, T3] }. (5.9)

the problem to solve is formulated as follows:

Problem 5.1. Given the matrices A, B, and M of appropriate dimensions and two positive
scalars T} < Ty, design a matrix L € R™*9 such that the set A defined in (5.9) is GES for
the hybrid system (5.6).

Remark 5.4. Concerning the existence of solutions to system (5.6), by relying on the
concept of solution proposed in Definition 4.5, it is straightforward to check that for every
initial condition ¢(0,0) € C U D there exists at least a nontrivial solution to (5.6) and
that every maximal solution to (5.6) is complete. Notice that, although Definition 5.1 does
not insist on completeness of maximal solutions, since the completeness requirement stated
in Problem 5.1 is automatically satisfied by (5.6), solving Problem 5.1 ensures that the

estimation error converges exponentially to zero as t + j goes to infinity.

In addition, we can characterize the domain of the solutions to (5.6). Indeed, the variable
7, acting as a timer, guarantees that for every initial condition ¢(0,0) € C'U D, the domain

of every maximal solution ¢ to (5.6) can be written as follows:
domo = (J ([t tj+1]) x {4} (5.10a)
Jj€No

with
T1 S tj+1 — tj S T2 VJ c NO \ {O} (5 ]_Ob)
0<t, —ty <Th. '

Furthermore, assuming t, = 0, the structure of the above hybrid time domain implies that
for each (t,7) € dom ¢ we have
t<Ty(j+1) (5.11)

the latter relation will play a key role in establishing GES of the set A for hybrid system
(5.6).

5.3 Main Results

5.3.1 Conditions for GES
The following result provides conditions for GES of the set A defined in (5.9) for hybrid
ystem (5.6).

Theorem 5.1. If there exist P € S, and a matrix L € R"*? such that

(I— LM) A" Pe(1—LM)— P <0  Yove [T}, T3] (5.12)

1By the definition of system (5.6) and of the set A, for every x € CU D UG(D), |z|a = |e]|.
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then the set A defined in (5.9) is GES for the hybrid system (5.6).

The proof of the above theorem relies on the following Lemma.

Lemma 5.1. Let ¢ be a strictly negative real number. Pick

v e (0, i ],fze [“%75 ~+oo>. (5.13)

14T, 14715’

Let ¢ be any solution to the hybrid system (5.6). Then, for every (¢,7) € dom ¢, one has

05 < R—~(t+ 7). (5.14)

Proof. From (5.14), by rearranging the terms, one gets
v+ (v+9)j—R<0 Y(t,j) € dom ¢ (5.15)

Now, pick any solution ¢ to (5.6). Now recall that from (5.11) for every (¢, ;) € dom ¢ one
has
t<Ty(j+1) (5.16)

then, for every strictly positive scalar v, from the latter expression, one gets
vt < ATy) +~Th Y(t,j) € dom ¢. (5.17)
Thus, by the virtue of the above bound, it turns out that (5.15) holds if
(Yo+v+9)j—R+T2 <0 Vi € Ny (5.18)

which holds due to the selections considered in (5.13) for v and R, concluding the proof. W

Now we are in position to state the proof of Theorem 5.1

Proof. Consider the following Lyapunov function candidate for the hybrid system (5.6) de-
fined for every x € R" X R>q and every P € S7:

V(z) =c e PetTe. (5.19)
Note that there exist two positive scalars aq, as such that

ailz < V(x) < aslel} Vo € CUDUG(D). (5.20)

Specifically, due to the positive definiteness of P and the nonsingularity of the matrix e

for every 7, by continuity arguments, one can set

_ . ) ATr ATt
o] = Tén[ol,%])\mm (e Pe ) (5.21)
Q9 = MAaX Apax (eATTPeAT) (5.22)

TG[O,TQ]
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where A\pin(+) and Apax() denote, respectively, the smallest and the largest eigenvalue of

their matrix argument. By straightforward calculations one gets
VV(z) = (QeATTPeAT&t, eTeMT(ATP + PA)@ATg) :
Moreover, by exploiting the fact that the matrices e4” and A commute, one has
(VV(z), f(x)) =0 Vo e C. (5.23)

Now, observe that for every g € G(x), there exists a real scalar v belonging to the interval
[T1, T3] such that
(I—LM)e

v

g:

Then, for every g € G(z), one has

V(g) = V(z) = (1 — LM)Te Pe** (1 — LM)e

— e T peATTe
Furthermore, whenever z € D, from (5.6b), we have that 7=0, which in turn implies
V(g) = V() =" (I - LM) X" Pe*(1— LM) - P) e

Hence, by virtue of relation (5.12), it follows that there exists a positive small enough scalar
3 such that, for every z € D, g € G(x)

V(g) = V(z) < —fe'e = —Blz[}. (5.24)

Without loss of generality, assume that ay in (5.22) and § in (5.24) satisfy 1 — O% > 0, which
is always possible by picking 8 small enough. Define § = In (1 - O%) and observe that # < 0.
Then

V(g) <efV(z) VaxeD,geGx). (5.25)
Pick 0 0
Ty
76(0,1+TJ andR€l1+T2,oo>. (5.26)

Let ¢ be a maximal solution to (5.6). As shown in the proof of [56, Proposition 3.29], thanks
to (5.23) and (5.25), direct integration of (¢,j) — V(¢(t,5)) over dom ¢ yields

V(6(t,j) < e”V(6(0,0))  V(tj) € dom . (5.27)

Then, according to Lemma 5.1, due to the selection considered for v and R in (5.26), from
(5.27) one gets

0j < R—~(t+)) Y(t,7) € dom ¢ (5.28)
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which, along with (5.20) and (5.27), leads to

0t ) < €5 [Z2eHN9(0,0)L4 V(2. j) € dom. (5.29)
1
Hence the set A defined in (5.9) is GES for system (5.6) concluding the proof. [

Remark 5.5. Notice that assuming relation (5.12) to hold implies that the eigenvalues of
e(1— L M) are strictly contained in the unit circle for every v belonging to [T1, T]. On the
other hand, according to Sylvester’s determinant theorem, \(e4*(I—LM)) = A\((I— LM )e??).
Thus, the existence of a pair P, L satisfying condition (5.12) requires the detectability of the
pair (e4?, MeA?) for each v belonging to [T}, Ty, which in turn, due to the nonsingularity of
e for any v and for any matrix A, is equivalent to the detectability of the pair (e, M).
Thus, it follows that Theorem 5.1 requires the sampled version of system (5.1) to be de-
tectable for every v belonging to [T1, Ty, though this condition, in general, is only necessary.

A similar remark is pointed out in [103].

5.3.2 Effect of Measurement Noise

So far, the measured output was assumed to be perfectly known at sampling times ¢y,
k € N. However, in a real-world setting, the measured output is affected by measurement
noise. To quantify the robustness properties of our observer, denote the measurement noise
as n: R>¢g — R?. Then, the measured output is

y=Mz+n.

This, in view of the definition of € given in (5.4), suggests considering the following hybrid
system with state x = (¢,7) € R x R>¢ and input n € R?

. i‘i } (e,7) €C
H, (5.30)

et = (I—-LM)e— Ly (c.r)eD
T+ c [Tl,TQ] ’

For notational simplicity, in the sequel we use

Gla.n) = (I—LM)e — Ln

T Ty (5.31)

To study the effect of the measurement noise, we consider the input-to-state-stability (155)
concept introduced in [115] for continuous-time nonlinear systems and extended to hybrid
systems in [18]. Such a notion is given next for a general hybrid system H,; with state in

R, and input d € R*. Before, consider the following notions of solution pair to Hg4, and the
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supremum norm for hybrid signals

Definition 5.2. Given an hybrid arc d, its superior norm at (¢, j) is

dl| .5y = max{ ess.sup |d(s, k)| , supld(s,k)] }
(s,k)edom d\T'(d),(s,k)2(t.5)  (s,k)ET(d),(s,k)2(t.5)
where I'(d) denotes the set of all (¢,7) € domd such that (t,7 + 1) € domd; see [18] for
further details.
Definition 5.3. A hybrid arc ¢ and a hybrid signal d is a solution pair (¢,d) to Hy =
(F,G,C,D) if

e (0,00 eCUD
e dom ¢ = domd

e for all 7 € N and almost all ¢ such that (¢,j) € dom ¢
o(t,j) € C. o(t.5) € F(o(t,j), d(t. )
e for all (¢,j) € dom ¢ such that (¢,j + 1) € dom ¢

Building on these notions, let us consider the following definition.
Definition 5.4 ([18]). A hybrid system H, is input-to-state-stable with respect to d and
relatively to A if there exist v € L and k € K such that each solution pair to Hy satisfies

|6(,5)|a < max{7(|$(0,0)[a,t +7), s(lldll.))} (5.32)

for each (t,7) € dom ¢.

Remark 5.6. This extension of ISS to hybrid systems deals with hybrid signals as external
perturbations. In our case, due to the continuous-time nature of the plant, the perturbation
t — n(t) acting on the measured output is a purely continuous-time signal. On the other
hand, such a perturbation can be transformed into a hybrid signal to fit in the framework
proposed by [18]. To this end, as shown in [105], given a solution ¢ to H,, the signal ¢ — n(t)
can be represented as a hybrid signal 7y, defined as

nu(t,7) = n(t) Y(t,j) € dom ¢. (5.33)

In particular (¢, ny) is a solution pair to H,. Moreover, due to the form of 7, the hybrid
sup norm ||ny|| ;) satisfies |||« ) = [0l for every (¢,7) € dom ¢.

Remark 5.7. Notice that, since the Lyapunov function in (5.19) does not decrease during
flows, the ISS Lyapunov condition for hybrid systems given in [18] cannot be employed in our
setting. Thus, to show ISS of system (5.30) via the Lyapunov function given in Theorem 5.1,

we couple strict decrease at jumps of such a function with the persistence of jumps enforced
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by the variable 7. This claim is formalized in the result given next.

Theorem 5.2. Let T < T be two positive real scalars. If there exist P € 87, and a matrix
L € R™ 1 satisfying condition (5.12), then the hybrid system (5.30) is ISS with respect to n
relatively to the set A.

Proof. Consider the Lyapunov function defined in (5.19). Since the measurement noise 7

does not act on the flow map, as in the proof of Theorem 5.1, one gets
(VV(z), f(x)) =0 Vo e C. (5.34)
For any (z,7) € R x Rs¢ x R and for each g € G(z,7) one gets
V(g) = V(x) =" ((1 _ LM) A P (T — LM)— eATTPeAT>5 0T LTeA Pt (1 — LM)e
+ nTLTeATUPGAvLT/

where v is a real scalar belonging to the interval [T}, T3]. Whenever x € D, from (5.6b), we
have 7=0. Then, for each z € D, n € R?, g € é(x,n), one gets

V(g) = V(z) =" (1= LM) e P’ (1= LM) = P) e — 20" LT Pe™ (1 — LM)e
+ nTLTeATvPGAvLT/‘
(5.35)
Moreover, from (5.12), there exists a small enough positive real scalar 8 such that, for every

veE [T, T3] and every ¢
(1= LM) e Pe(1— LM) — P)e < —fc'e. (5.36)

Now recall that for every a,b € R", 2a"b < wa'a + w™'b"b for every positive real scalar w.
From (5.35) and (5.36), setting a = ¢, b" = —n" LTeA""PeA(I— LM), and w = & yields

!

(5.37)

Vig)—V(z) < —;656 +10'n

2
LTeAT”P<16 + (I — LM)(1 - LM)TeAT”P> e

Moreover, thanks to (5.12), one has ||(I — LM)TeA"PeA*(1 — LM)| < ||P||. Thus, from
(5.37), it follows V(g) — V(z) < —3Be"e + p||L||>n"n, where

2 T
p= 1715+ 1P1) s (171,

ve[T1,T?]

The above relationship, together with (5.20), yields
V(g) < €’V(@) +||IL|*pn"™n Vo € D,y e R, g € Glz,n) (5.38)

where 6 = In (1 — %) and ay is defined in (5.22). Therefore, from (5.38) and (5.23), by

2
considering the domain of the solutions to (5.30), which is given in (5.10), it turns out that
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given any maximal solution pair (¢,7) to (5.30), one gets

V(6(t0)) = V(6(0,0)) Vi e [0,4] (5.39)
. Jfi 2j_1€9(j—1—i) - 2
V(g(t, 7)) < e?V(9(0,0)) + pl[ L] ; [7(tiva, i+ 1) (5.300)

Y(t,j) € dom¢  with j > 1

Furthermore, with € negative as in the proof of Theorem 5.1, for each (¢,j) € dom ¢ such
that 7 > 1, we have

pe || L|?

V(@(t. ) < "V (#(0,0)) + =~ Inllf)- (5.40)

Since the input dependent term in the right-hand side of (5.40) is nonnegative, by combining
it with (5.39a) and (5.40), we obtain for each (¢, 7) € dom ¢,

. 60 p6_9||L||2 2
Vot 3) < v (0.0 + 2D e (5.41)
further using (5.20) one gets
—0| 72
N2 oo X2 6 2 pe”"||L]| 2
o(0.3) < Z2e16(0.0) % + 55l (5.42)

Now, by following the same arguments in the proof of Theorem 5.1, for some (solution

independent) positive real scalars v, R, from (5.42) one gets

pe” || L|I?

2
mHUH(m) (5.43)

. _ : (0%
[B(t )l < P2 6(0,0)4 +

or equivalently

. Qo R _A(t+)) 2pe=?
|¢(t7])|A§max{1/2@1626 2 ¢(0,0)] 4, MHMHWH@J)} (5.44)

Thus, according to Definition 5.4, the hybrid system (5.30) is ISS with respect to n (relatively
to the set A). |
Remark 5.8. The above result allows to conclude that, in the considered case, condition
(5.12) actually suffices to guarantee the ISS property for hybrid system (5.30), and there is

no need in finding an ISS-Lyapunov function as defined in [18].
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5.4 Observer Design

In the previous section a condition to guarantee global exponentially stability and input-to-
state-stability, respectively, for systems (5.6) and (5.30) was provided. However, due to its
form, such a condition is not computationally tractable to obtain a solution to Problem 5.1.
Indeed, from a numerical standpoint, condition (5.12) has two drawbacks: it is not linear in
P and L, and it needs to be verified for infinitely many values of v. The relevance of the
second drawback is evident at a first sight, while the lack of linearity is a severe constraint,
since the solution to nonlinear matrix inequalities often lead to NP-hard problems; see e.g.,
[15]. Thus, to make the problem numerically tractable, further work is needed. To this
end, the following result provides a first step toward an LMI-based design procedure for the
proposed observer.
Proposition 5.1. Let P € St and L € R™*9. The satisfaction of (5.12) is equivalent to the
feasibility of
—He(F) F—FLM AP
o —P 0 | <O Yo € [Th, T3] (5.45)
° ° —P

with respect to F' € R™™,

Proof. The proof carried out here is inspired by [99]. Specifically, set

Avpedy @ I— LM 0
7= "° S = Y=11.
0 -P I I
Then, condition (5.12) can be rewritten as
STZS <0 (5.46)

while the positive definiteness of P can be expressed equivalently by requiring that
YTZY <. (5.47)

Thus, by the projection lemma [52], (5.46) and (5.47) are satisfied if and only if there exists

a matrix F such that
eA"vPeAv — He(F) F — FLM

< 0. 5.48
. p (5.48)
Moreover, by Schur complement, from (5.48) one gets
—He(F) F—FLM e
° -pP 0 <0 (5.49)

° ° —p!

and finally, pre-and-post multiplying by diag(I, I, P) yields the left-hand side matrix in (5.45),

concluding the proof.
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Remark 5.9. Notice that by setting F'L = J, condition (5.45) turns into a parametric LMI

in v, with respect to the unknown matrices F\,.J, and P.

Proposition 5.1, along with the above remark, provides an equivalent condition to (5.12),
which is linear in the decision variable F,J and P. Nevertheless, the obtained condition
still has to be verified for infinitely many values of v. This situation is rather common
in the literature of sampled data and impulsive systems; see, e.g., [64] and the references
therein. A general procedure to overcome this issue consists of embedding the term e4?, with
v in the interval [T7, T3], into a polytope, (a convex set having a finite number of extreme
points [125]). Namely, one needs to find some matrices X, Xo,..., X, € R™" such that
e € co{ X1, Xy,...,X,} whenever v € [Ty, Ty]. Throughout the sequel, we refer to such a
polytope as polytopic overapproximation or polytopic embedding of e¥ on [T}, Ts]. Then,
by exploiting the linearity of condition (5.45) with respect to e?, one can obtain a finite set
of LMIs, whose satisfaction implies (5.45) to hold. This approach is formalized for our case
in the result given next.

Corollary 5.1. Let X, X5,..., X, be matrices such that el ¢ co{X}, X5,..., X, }.
If there exist P € S, a matrix J € R™9, and a matrix F' € R™*" such that, for every

+
ie{l,...,v},
—He(F) F—JM XiTP
° —P 0 <0 (5.50)
° ° -P

then the matrices P and L = F~'J satisfy condition (5.12).

Proof. Since e € co{X1, Xs,...,X,} whenever v € [T}, T3], then there exist non-negative
functions &1, &, . .., &, such that for each v € [T7, T3]

et = i:lgi(v)Xi, zyjlgi(v) =1 (5.51)

Then, replacing in left-hand side of (5.45) the term e“” with the expression given in the
left-hand side of (5.51) leads to

_He(F) F—JM S, &(0)XTP
° -P 0 (5.52)
° ° —P

which, thanks to the constraint on each &(v) given in the right-hand side of (5.51), can be

equivalently rewritten as

—He(F) F—JM XJP

Zyj&-(v) . -P 0 (5.53)
=1 ° ° -P

Hence, by the virtue of (5.50) and Proposition 5.1 matrices P and L = F~!J satisfy condition
(5.12) and this concludes the proof. |
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The previous result allows, once a polytopic embedding of the term e4? is known, to design
the proposed observer via the solution to a finite number of linear matrix inequalities. The

next subsection illustrates a possible technique to build such an embedding.

5.4.1 Polytopic Embedding

The derivation of a polytopic overapproximation of the exponential matrix on a given com-
pact interval is recognized in the literature as a difficult problem; see [29, 60]. In [60] an
exhaustive comparison between several kinds of overapproximations is presented and the
authors suggest that two classes of approaches can be pursued to determine polytopic over-
approximations of the matrix exponential term on a given compact interval. In the sequel,

for any interval Z C R, we denote
e = {Y € R™": Ju € T such that Y = e™}.

The first approach aims at determining a finite number of matrices F, Fs, ..., F, € R™"
such that e € co{F|, Fy,...,F,} for a given compact interval Z. This approach is com-
monly called without uncertainties. The other approach leads to a finite numbers of matrices
Fy,F,, ..., F, € R and a norm bounded uncertainty A(v) € R™*" such that, for every v
belonging to a given compact interval, eA” = %, o;(v)F; + A(v) for some positive scalar
functions ay, ..., o, with >!"; a;(v) = 1. This approach is commonly called with uncer-
tainties. On the one hand, the approaches with uncertainties allow, in general, to obtain
tighter overapproximations than those without uncertainties; see [29]. On the other hand,
managing bounded uncertainties to build a design procedure can be hard, although in [63]

a possible two-stage design procedure is proposed to cope with this issue.

In this dissertation, we propose a novel methodology to build a polytopic embedding
without uncertainties. Such a methodology is based on the well known expansion of the
matrix exponential based on residue matrices. By arranging the eigenvalues of the matrix A
in a way such that the first o, are real and distinct, the following . are complex and distinct
with positive imaginary part, and the remaining o, are the conjugates of the previous ones,

such an expression is given by

I mi Ao pi—1
e = Z Z Rije m
s (5.54)

c
ortoc My

i Z Z 9eR(Ni)v (3?(31]') cos(S(A\i)v) — S(Ry;) sin(%(&)v))

i=or+1j=1

i1

(-1

The constants m] and m{ are, respectively, the multiplicity of the real eigenvalue \; and
of the complex-conjugate eigenvalue pair A;, A} in the minimal polynomial of the matrix A.
The matrices R;; are real n X n matrices corresponding to the residues associated to the
partial fraction expansion of the rational matrix (sI — A)~!. The advantage of the proposed

method lies in the fact that there exist several methods to compute the residues matrices.
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For instance, in this work, we rely on the procedure proposed in [80].

Remark 5.10. Although the above expansion based on residue matrices concerns the multi-
plicity of each eigenvalues in the minimal polynomial of A, the knowledge of such a minimal
polynomial is not required to start with the application of proposed methodology. Indeed,
as a first step, one can assume without any loss of generality that the minimal polyno-
mial of A coincides with its characteristic polynomial and compute the residues matrices
for each eigenvalues according to its multiplicity in the characteristic polynomial. Then, for
each eigenvalue A\, if the multiplicity of A in the minimal polynomial of A is less than the
one in the characteristic polynomial, higher order residues are automatically equal to zero.
This feature is ensured in the algorithm proposed in [80]; see [80, Section 4 and Example 1].
Therefore, from a practical view point, as a first step, one can for each eigenvalue (depending
on its multiplicity in the characteristic polynomial) compute all the related residues. Then,
by neglecting the ones equal to zero (the selection of a certain threshold can be required in

finite-precision implementations), one gets the right residues expansion.

Once the residue matrices are known, to build a polytopic embedding of e4¥ one can

proceed in a similar manner as in [29]. In particular, define for each i = 1,2,..., 0, and for
each v € [T, T5]

mr o1
Bit v [621(1)) Biz(v) ... @mf(v)} = [e)‘i” ety L. e)‘i“(fn,;:l)!
ﬁiz’ = [Ril Ry ... Rim;‘]
and set for each v € [T7, Tb]
-
Brve [Bi(v) Balv) ... Bo ()]
o= [}?1 _EQ Egr}
Define for each i = 0, + 1,0, + 2,...,0, + 0. and for each v € [T1, T3]
VitV [%‘1(1)) Yia(v) ... /Yimf(vﬂ
= [26%(’\”” cos(S(\)v)  2eROD cos(I(\)v)v ... 2R cos(%()\i)v)(if__ll)!}
Vi) v [ () V) o Ape()]
= [—26%(’\”“ sin(S(\)v)  —2eRA)vsin(S(\)v)v ... —2eRRDUsin(S(\)v) (:’r:?_ll)!}
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and set for each v € [T}, Ty,

.
Yiv [%Tﬂ(v) Yorr2(v) .. %T+1+ac(’0)}

.
b= [Goir Qs ove Qoverre.

The definition of the above quantities leads to the following equivalent writing for (5.54) for
each v € [T, Ty
p(v)
=0 & o] ||| @, |. (5.55)
7 (v)
The above writing allows to make a separation between constant elements and functions of v
appearing in (5.54), which is useful to build up a polytopic embedding for such an expression.

To this aim, firstly observe that

rge (B x v x ') CrgefS x rgey x rgey’. (5.56)

Moreover, by defining the following quantities: for each i € {1,2,...,0,}

o Aiv Ujil - r
;; = max e’ e{l,2,...,m
R M I } (5.57a)
. v vi 1 . r
ij = B c€1l,2,...,m;
O T AR
and for each i € {0, + 1,0, +2,...,0, + 0.}
_ R(A;)v (N v : 1 c
Vi = Max 2e cos((A;)v) G=1) je{1,2,...,m}
j—1
= min 2eRO cos(S(A)0) e {1,2,...,m¢
i = Jmin 2e cos(3(Ai)v) A {1,2,...,mf}
O (5.57h)
ok 9 RNV i (Cef ). v : c
7= max 2e sin((\;)v) G- Jjed{Ll,2,...,m}
j—1
v;; = min —2eTA)Y gin (S(\)v) ° jed{Ll,2,....mi}

’UG[T:[,TQ] (] — 1)‘
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by continuity of the functions involved in (5.55), it turns out that”

r

rge 3 C >T<><rge6ij = XXCO{E,@} :co>2 X{Fm@} — 0O

i=1j=1 i=1j=1 i=1j=1
or+oc mf ort+oc mzc or+oc mf
rgey C X Xrgevy; = X Xeol¥i, vt =co X X{Fg, 7} =col'  (5.58a)
i=op 41 j=1 =41 j=1 =1 j=1
Optoe M ortoe M orto. ™M
rgey’ € X Xrgev; = X Xeo{vvt =co X X{j v} =col”
i=or+17=1 i=or+17=1 i=or+1j=1

Thus from (5.55) and (5.56), via the above expressions, one gets

AlTLT] ~ {[\IJ ) <I>*] (E®1,)|£€co(® T x F’)}

=co|[¥ & @[ (OxTxI)®I,) (5:580)

Q

Let us remark that the set ) is a finite point set, hence each element belonging to its

convex-hull is the convex combination of a finite number of elements in 2. Specifically,

or+oc

v = card(Q) = card (6 x I' x I') = card(©)card(I')card (") < 22172 22ila ™ on,
Therefore, let X7, X5, ..., X, be the matrices such that
= {Xl,XQ,...,XV} (558C)

then for each v € [T1, Tb],
GAU € CO{X17X27 s vXV}’

Remark 5.11. The most laborious part of the proposed technique, namely the computation
of the residue matrices, does not depend on the considered interval [T7, T5]. Thus, for a given
matrix A, once the residues are known and stored, the construction of the needed polytopic
embedding only requires the computation of the extrema of a finite number of continuous
scalars functions on a compact interval. Notice that although the proposed embedding
technique could lead to similar results to the ones proposed in [29], our methodology does
not require either the derivation of the real Jordan form of A or its minimal polynomial.
Moreover, the proposed methodology is systematic and does not require dedicated strategies
depending on the multiplicity of the eigenvalues.

Remark 5.12. As the tightness of the resulting polytopic embedding is not taken into
account by the procedure itself, the resulting overapproximation can be rather conservative.
However, although this conservatism plays a relevant role in analysis problems (where one

is interested in obtaining a description of the exponential matrix as tight as possible), in

2Here we used the fact that given S; C R™,S, C R™...,S,, C R™ any sets, then co le S; =
S
X,_, coS;; see [13].
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our case, being the final aim obtaining a design procedure, overapproximation tightness
is not excessively crucial. Nevertheless, if needed, the overapproximating polytope can be
made tighter by subdividing the interval [T7,75] in N subintervals and then by applying
the proposed procedure on each subinterval. Specifically, the proposed technique operated
on every subinterval leads to N local polytopic embeddings, whose convex-hull yields the
required polytopic overapproximation on the interval [T}, 7). The advantages of this kind
of refining process, that is inspired by [64], are discussed in details below via the following
claim.
Claim 5.1. Let A € R™"™ be a given matrix, and let T} < T5 be given real scalars. Let
Q = co{Xy,Xo,..., X, }, where X3, X,..., X, are matrices obtained as in (5.58) on the
interval [T, T5].
Let Z,,7Z, ..., Zy be N compact intervals such that length(Z,) = % and [Ty, To] = Us_, Zy.
For k=1,2,... N, let

Ap = cof{Xx® x® . xn

be the matrices obtained as in (5.58) on the interval Z;. Then,

N
AT C o { U Ak} C Q.

k=1
Proof. First of all notice that

GA[ThTz}

=

N
k=1

k=1

Moreover, since Zj, C [Ty, T3] for every k = 1,..., N, by the construction of the sets Ay,
it follows that for each k = 1,2,...,N, A, C Q, which in turn yields Uy, A, € Q. By
isotonicity of the convex hull operator; see [12], co {U{Ll Ak} C co{Q}. Therefore, being

convex, the claim is proven. [ |

Remark 5.13. The above result shows an underlying monotonicity of the considered refining
process. Namely, by following the same arguments as in the proof of Claim 5.1, it is not
difficult to show that for every M > N, eATT2l C co {Ukle Ak} Cco {U,ivzl Ak} C Q. Thus,
the larger the value of N the tighter the overapproximation. Nonetheless, as in general
the set el ig not convex, the overapproximation cannot be made arbitrarily tight by
selecting a value of N arbitrarily large (the pursued approach is intrinsically conservative).
To somehow formalize this aspect, one can look at the asymptotic behavior of the sequence
of sets I'y, = co {Ule Ai} when k goes to infinity. Specifically, consider the sequence {I'x}2° |,
and observe that as argued above, for each k € N, one has I'y,; C I'y. Moreover, since by
construction I'y = €2, and 2 is trivially bounded, it follows that the every element of the
sequence {I'y}?2, is compact. From these observations, by relying on the general notions of
convergence for sequence of sets; see, e.g., [106], one can readily show that the considered

AlTy,T?]

sequence converges to a convex set. Thus, since in general the set e is not convex, one

should expect that the overapproximation polytope cannot be made arbitrarily tight.
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5.5 Numerical Examples

Example 5.1. To illustrate the proposed polytopic embedding technique, we consider

1 1
A=
L
and v € [0,1.5]. As in [64], to visualize the resulting embedding, one can consider the real
Jordan form of the matrix A,
-2 0
J=U"AU = :
0 1
Indeed, since
—2v 0
= | U
0 e

if {X1,Xs,...,X,} are matrices such that e4” € co{ X}, X,..., X, }, then
e’ € co{lU' XU, U X,U,..., U X, U}

Figure 5.1 reports the curve (e"”(l, 1),e’?(2, 2)) : [0,1.5] — R? and different polytopic over-
approximations obtained by subdividing the interval [0,1.5] in several subintervals. Fig-
ure 5.2 depicts the polytopic embedding obtained with N = 5 and the local embedding
polytopes Ay, for £ = 1,2,...,5. As expected, the larger the value of N, the tighter the

overapproximation.
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Figure 5.1: The curve (eJ”(l, 1),6‘”(2,2)) : [0,1.5] — R? (solid-blue) and different overap-
proximations, N = 1 (light-gray), N =2 (gray), N = 10 (black).
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Figure 5.2: The curve (e‘]”(l, 1),6‘]”(2,2)) : [0,1.5] — R? (solid-blue), polytopic embedding
with N =5 (light-gray) and local polytopic overapproximations (dashed-blue).
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Example 5.2. Consider the mass-spring system in [54], defined as follows

0O 0 1 0 0
0 0 1 0
Z= z+ u (5.59)
-2 1 -1 0 1
2 =2 0 =2 0
——
A B

where z1, zo are respectively the position of the first and the second mass, while z3 and 24
are respectively the speed of the first and the second mass, and u is the force applied to
the second mass. Suppose that only 2; is measurable through a biased sensor which can be
accessed at most every 0.2s and at least every 3s. That is, assuming the initial time ¢5 = 0,

the measured output can be expressed as
y(ty) = 21(ty) +b VEk eN

where ¢, € [0,3], {tx}72, is an increasing and unbounded sequence of positive times, such
that for each £k € N, 0.2 < tx,1 — tx < 3, and b is the sensor bias, i.e., an unknown real
constant. Notice that, the sequence {t;}22, satisfies (5.2) with 773 = 0.2, and T, = 3. To fit
this problem in the setting addressed by Theorem 5.1, one needs to avoid considering the
bias as an external perturbation. To this end, we follow an exosystem approach, see [48, 68].
Namely, we model the constant bias affecting the output sensor as an extra state, b, such
that b = 0. In this way, y = Mz, where

M::[10001

and z == (z,b). Therefore, by setting z as vector state, one can consider the extended system
defined by

A0
0 0

BT =[BT 0

that matches the class of systems considered in this paper. To build a polytopic embedding

for the matrix A, it suffices to build the one of A. In fact, since for each real scalar v

v |1 0 0
0 0 1

given an interval Z C R, if for each v € Z

e [1 o] +

e e co{X, X, ..., X,}

then by defining

@
I
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v ¢ { [0
0

In particular, in this case since spec(A) = {—0.68055 + 1.6332i, —0.6389, —1}, v = 16. Once

the matrices X; are determined® by following the technique proposed in Section 5.4.1, via

it follows

0 +c0{@X1®T,®X2®T,...,@X,,@T}} Vo eT.

Corollary 5.1 one gets

[ 1.883  0.88796  1.3892 0.95109 —1.0667 |
0.88796  12.965 10.415 10.305 0.091033
P = 1.3892 10.415 10.086 8.6622 —1.0351

0.95109  10.305  8.6622 8.8987  —0.018634
| —1.0667 0.091033 —1.0351 —0.018634  7.6949

[ 0.77524 ]
0.18123
L=|-0.12123] .
—0.17406
| 0.22469 |

Figure 5.3 reports the function v — Apax ((I — LM)TeA"v PeAv(I— LM) — P) asv € [T1,T).
As expected, the proposed design ensures that (5.12) holds.

-0.05

-0.1

-0.15¢

-0.2

-0.25F

-0.3

-0.35¢

_0.4 Il Il Il Il Il
0 0.5 1 1.5 2 2.5 3

Figure 5.3: The function v — Apax ((I — LM)Te’F”PeA”(I —LM) — P) Versus v.

3Such matrices are reported in Appendix B
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Assume u(t) = sin(t), b = 1, and denote the estimate provided by the observer as 2, =
(2, 13) Figure 5.4 shows the evolution of the plant state and of its estimate projected onto
ordinary time. Figure 5.5 reports the evolution of the bias b projected onto ordinary time.
The figures show that the designed observer reconstructs the plant state despite the presence

of the sensor bias.

1 4
0.5 ] 3
Or(\ 2
-0.5 1
1 0
13 10 t 20 30 0 10 t 20 30

Figure 5.4: The evolution of the states z (red) and 2 (blue) projected onto ordinary time ¢.
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Figure 5.5: The bias b (red) and the evolution of its estimate b (blue) projected onto ordinary
time ¢.



170 Chapter 5

5.6 Comments and Conclusion

In this chapter, we proposed a methodology to model and design, through the solution to
certain LMIs, a measurement-triggered observer to estimate the state of a linear plant in
the presence of sporadically available measurements. The considered observer is shown to
be ISS with respect to measurement noise. As shown, the effective design of the observer
requires a priori the solution of an infinite number of LMIs, which is in practice undoable.
To overcome this problem, via the introduction of a novel polytopic embedding for the
exponential matrix, we embedded the obtained conditions in a polytope making the design
possible via the solution to a finite number of LMIs. The proposed embedding technique
somehow provides a systematic way to build a polytopic embedding for the exponential
matrix, pursuing an approach analogous to the one in [29]. Hence, such a methodology is a
worthwhile contribution in itself and worth of further investigations. Finally, the effectiveness

of the proposed methodology is displayed in two numerical examples.

The results presented in this chapter show that the hybrid systems framework proposed
in [56] permits to model and analyze the considered observer. In particular, exponential
state estimation and ISS with respect to measurement noise via Lyapunov arguments were
proved. Alternative frameworks, as the ones based on impulsive dynamical systems; see,
e.g., [103] could be used to come up with similar sufficient conditions as the ones proposed
in this chapter. Another alternative approach that could be followed to tackle the problem
in this chapter is the discrete-time approach considered in the literature of networked and
sampled-data control systems; see [29] and the references therein. This approach consists
of three stages. As a first step, a discrete-time model of the considered system is built by
integration of the continuous time-dynamics in between sampling times. As a second step,
asymptotic stability is established for the discretized model obtained throughout the first
step. Finally, the proper intersample behavior is guaranteed by relating the continuous-
time behavior with the behavior at the sampling times via the derivation of certain bounds.
Following this approach, in the specific case considered in this chapter, would allow to
recover some of the results presented, and also to exploit tools deriving from the literature
of uncertain discrete-time systems, as, e.g., polytopic Lyapunov functions ([33]), which can
potentially lead to less conservative results. On the other hand, the aforementioned strategy
consisting of overlooking the intersample behavior contrasts with the spirit of the hybrid
system framework in [56], which studies hybrid dynamics in their whole. Then, in this
setting, adopting tools from the literature of uncertain discrete-time system does not appear
a viable solution. However, we would like to point out that addressing the considered problem
through the hybrid system framework in [56] has several advantages. The first one is that the
hybrid systems approach does not require the integration of the estimation error dynamics
in between jumps. Thus, the proposed methodology can be extended to deal with more
complex plants without the need of resorting on different models and frameworks. Moreover,
the pursued approach, enabling the search of alternative Lyapunov functions, could be used

to come up with simpler design procedures avoiding the use of the exponential matrix, which
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is undoable following a discrete-time approach.

The second one is that our analysis leads straight to an explicit exponential bound on
the estimation error and not for a discretized version of it. Moreover, such a bound can be
easily determined via the tools presented in this chapter. In this sense, our methodology
allows to derive constructive results to effectively determine an exponential bound on the
error trajectories in their whole. The derivation of such bounds appears intricate and far

from systematic via the tools in [29].

The third one is that the hybrid system framework in [56] allows to tackle problems
arising from more involved settings, where, e.g., state estimation in the presence of sporadic
measurements is one of the task needed to exhibit a solution to the considered problem
and not the unique. This aspect will be clarified and made more concrete later in this
dissertation, when such an observer will be used to build up an observer-based controller in

the presence of both sporadic measurements and actuation.

Another interesting aspect that we would like to emphasize concerns with the possibility of
using another modeling technique of time-triggering phenomenon presented in this chapter.
Specifically, a modeling strategy similar to the one in [19] could be used to retrace the
same steps illustrated within this chapter. Nevertheless, it is interesting to observe that the
modeling we considered lends itself to an easy implementations in the hybrid simulator [108]
than the one in [19].

Several directions of research still need to be investigated. Among them, an interesting
issue concerns the construction of a measurement-triggered observer to estimate the state of
more general plants, as plants characterized by sector nonlinearities. Going in that direction
would allow to build interesting links with the works in [3] and the references therein. How-
ever, such an extension appears nontrivial due to the choice we considered in this chapter

for the Lyapunov function, which is tailored to the linear dynamics of the plant.

Another interesting future outlook concerns the evaluation of the performances, in terms
of convergence speed, offered by the proposed observer compared with observer schemes
derived via emulation approach as the ones in [100]. Indeed, the main peculiarity of the
scheme we considered in this chapter is that at every jump the whole state of the observer
is reset. These instantaneous changes in the observer dynamics can potentially lead to an
improvement of the convergence rate, while avoiding the need of a large observer gain, which

is typically unwanted in practice to limit the effect of measurement noise.

Furthermore, one may envision to investigate the impact of quantized measurements on
the estimation error dynamics. In particular, according to the general philosophy illustrated
in [82], the ISS property shown for the estimation error dynamics with respect to measure-
ment noise suggests that the considered observer owns the robustness needed to withstand

quantized measurements.
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A HYBRID OBSERVER WITH A CONTINUOUS
INTERSAMPLE INJECTION IN THE PRESENCE OF
SPORADIC MEASUREMENTS

“Fxperience is simply the name we give our mistakes”

— Oscar Wilde

6.1 Introduction

N this chapter, we address again the problem of exponentially estimating the state of a
linear time-invariant system in the presence of sporadically available measurements. Dif-
ferently from Chapter 5, we adopt an observer with a continuous-time intersample injection
term. Such an intersample injection is provided by a linear dynamical system, whose state
is reset to the measured output estimation error whenever a new measurement is available.
The resulting system is augmented with a timer triggering the arrival of a new measurement
and analyzed in a hybrid system framework. The design of the observer is performed to
achieve global exponential stability of a set wherein the estimation error is equal to zero.
Moreover, four computationally tractable procedures are illustrated to design the observer.
Such procedures lead to four different strategies to build the proposed observer. Finally, the
effectiveness of the proposed methodology is shown in two examples. Some of the results

illustrated in this chapter can be found in [41].
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6.2 Problem Statement

6.2.1 System Description

We consider continuous-time linear time-invariant systems of the form

2= Az

o (6.1)

where z € R" and y € R? are, respectively, the state and the measured output of the system,
while A and M are constant matrices of appropriate dimensions. We want to solve the same
problem considered in Chapter 5 by means of an alternative observation scheme. Here below
we recall the problem we solve. Assuming the initial time ¢, = 0, our goal is to design an
observer providing an asymptotic estimate Z of the state z with sporadic measurements of
y. Namely, we assume that the whole output y is available only at some time instances #,
k € N, not known a priori.

Remark 6.1. In this chapter we consider unforced plants. Whenever the considered plant
is forced by an exogenous signal and such a signal is known, the results presented in this
chapter apply mutatis mutandis. Such an assumption about the knowledge of the plant input

has been already discussed in Chapter 5; see Remark 5.1.

We assume that the sequence {t;}7°, is strictly increasing and unbounded, and that for

such a sequence there exist two positive real scalars T} < T, such that

0<t <Tp

(6.2)
Ty <tpr —te < T Vk € N

As also pointed out in [64], the lower bound in condition (6.2) prevents the existence of accu-
mulation points in the sequence {t;}72 ,, and, hence, avoids the existence of Zeno behaviors,
which are typically undesired in practice. In fact, 77 defines a strictly positive minimum
time in between consecutive measurements. Furthermore, T, defines the maximum sampling

interval.

Since measurements of the output y are available in an impulsive fashion, assuming that
the arrival of a new measurement can be instantaneously detected, to solve the considered
estimation problem, inspired from [73, 100, 104], we propose the following observer with
jumps
A1) = As(t) + LO(t) } vt ke N
0(t) = HO(t)

(6.3)
2(tT) = 2(t)
o(tr) = y(t) — MA(t)

} Vit =ty k€N

where L and H are real matrices of appropriate dimensions to be designed. The operating
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- tr) _
2= Az — t __?_J(_k__.+ Ey_ 0=Ho
y= Mz ' ! _:?_ 0" =e,
Plant 1 Cog(ty)
e 0
[Drigeer—EX]
Y l=A5+10
y = M2

Continuous-time Observer

Figure 6.1: The proposed observer scheme. The dashed arrows denote impulsive data
streams, while the solid arrows denote continuous data streams.

principle of the observer in (6.3) is as follows. The arrival of a new measurement triggers an
instantaneous jump in the observer state. Specifically, at each jump, the measured output
estimation error, i.e., y — M Z, is instantaneously stored in #. Then, in between consecutive
measurements, # is continuously updated according to linear continuous-time dynamics, and
its value is continuously used as an intersample injection to feed a continuous-time observer;
see Figure 6.1. Along the lines of [109], we formulate the state estimation problem as a set
stabilization problem. Namely, our goal is to design the matrices L and H such that the set
wherein the plant state z and its estimate Z coincide is globally exponentially stable for the
plant (6.1) interconnected with the observer in (6.3). At this stage, we define the following

change of variables

M
I
N
|
(O3

™
Il
=
N
|
IS3S
N—
|
>

which defines, respectively, the estimation error and the difference between the output es-
timation error and . Hence, the two error dynamics are given by the following dynamical

system with jumps:

_gz(t)] = F [f(?] } Vt 4ty k€N

6(t) o(t

: (6.4)

)| le(®) _

_%*)] — lé(t)] } Vt =ty k€N

where
o A—LM L
" IMA—-MLM —HM ML+ H

(6.5)

-]

Notice that, in view of the linearity of the plant (6.1), the error dynamics are decoupled from
the plant dynamics. Then, for the purpose of estimation, one can effectively only consider
system (6.4).
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6.2.2 Hybrid Modeling

The fact that the observer experiences jumps when a new measurement is available and
evolves according to a differential equation in between updates suggests that the updating
process of the error dynamics can be described via a hybrid system. Due to this, we represent
the whole system composed by the plant (6.1), the observer (6.3), and the logic triggering
jumps as a hybrid system. The proposed hybrid systems approach requires to model the
hidden time-driven mechanism triggering the jumps of the observer. To this end, as already
illustrated in Chapter 5, we augment the state of the system with an auxiliary timer variable
T that keeps track of the duration of flows and triggers a jump whenever a certain condition
is verified. This additional state allows to describe the time-driven triggering mechanism as a
state-driven triggering mechanism, which leads to a model that can be efficiently represented
by relying on the framework for hybrid systems proposed in [56]. More precisely, we make 7
to decrease as ordinary time ¢ increases and, whenever 7 = 0, reset it to any point in [T7, T5],
so as to enforce (6.2). After each jump, we require the system to flow again. The whole
system composed by the states € and 6, and the timer variable 7 can be represented by the

following hybrid system, which we denote H:

H (6.6a)

7'+ < [Tl, TQ]

where the flow set and the jump set are defined as

C = R™ x [0, T3]

D =R" x {0}. (6:60)

The set-valued jump map allows to capture all possible sampling events occurring within
Ty or T, units of time from each other. Specifically, the hybrid model in (6.6) is able to
characterize not only the behavior of the analyzed system for a given sequence {t;}72,, but

for any sequence satisfying (6.2). We denote the state of H by
x=(g,0,7)

and by f and G, respectively, the flow map and the jump map, i.e.,

f(z) = d [5] Ve e C (6.7a)
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G €
G(z) = 0 Vr € D. (6.7b)
[Tla TQ]
Then, by introducing the set!
A= {0} x {0} x [0, T3] (6.8)

the problem to solve is formulated as follows:

Problem 6.1. Given the matrices A and M of appropriate dimensions and two positive
scalars T < T, design the matrices L € R"*? and H € R?*? such that the set A defined in
(6.8) is GES for the hybrid system (6.6).

Concerning the existence of solutions to system (6.6), by relying on the concept of solution
proposed in Definition 4.5, it is straightforward to check that for every initial condition
#(0,0) € C'U D every maximal solution to (6.6) is complete ensuring that the estimation
error approaches zero when t+j goes to infinity. Thus, completeness of the maximal solutions
to (6.6), as required in the statement of Problem 6.1, is guaranteed for any choice of the
gains L and H. In addition, we can characterize the domain of these solutions. Indeed, as in
Chapter 5, for every initial condition ¢(0,0) € C'U D, the domain of every maximal solution

¢ to (6.6) can be written as follows:

domo = J ([t;,tj41]) x {5} (6.9)

J€No

with tg = 0 and
Tlgtj+1—tj STQ VJGN

(6.10)
0<t <7y

where dom ¢ is the domain of the solution ¢, which is a hybrid time domain. Therefore, the

structure of the above hybrid time domain implies that for each (¢,j) € dom ¢ we have
t>Tj— T, (6.11)
the latter relation will play a fundamental role in establishing GES of A for hybrid system

(6.6).

6.3 Preliminary Results

6.3.1 Conditions for GES

In this section we provide a first sufficient condition to solve Problem 6.1. Such a condition

is obtained by the adoption of a Lyapunov-like function, that is inspired by [47, 55]. To

By the definition of system (6.6) and of the set A, for every x € C U DUG(D), |z|a = ||(¢,0)].



178 Chapter 6

pursue this approach, let us consider the following assumption, whose role will be clarified
right after via Theorem 6.1.
Assumption 6.1. Consider (6.7a) and set

F = Jtll le ‘
FZl f22

There exist two continuously differentiable functions V;: R* — R, V5: R? — R, positive real

scalars aq, g, wy, we, 0, A, a such that for each (g,0,7) € C

(A1) aiflel|” < Vile) < asle]®

(A2) w[f]|* < Va() < ws b))

(A3) (VVi(e), Fuie + Fizb) + 7 (VVa(0), Foof + Fare) — 0e” Va(f) < =Ac(lle]|* + (|6]|*)
A

Sufficient conditions to let Assumption 6.1 hold will be given in the sequel of this chapter.
Theorem 6.1. Let Assumption 6.1 hold. Then the set A defined in (6.8) is GES for hybrid
system (6.6).

The proof of the above theorem requires the following lemma, whose proof is given later.

Lemma 6.1. Let \. be any strictly positive real number. Pick

T
Ae(&ACl

> ).
1+ﬂ’w—

Let ¢ be a solution to the hybrid system (6.6). Then, for every (¢,7) € dom ¢, one has

— At <w — At + ). (6.12)

Now we are in position to prove Theorem 6.1

Proof of Theorem 6.1. Inspired by [55, Example 27], consider the following Lyapunov func-
tion candidate for the hybrid system (6.6) defined for every x € R"4 x Rx:

V() = Vi(e) + e Va(8). (6.13)

To prove the claim, we rely on the proof of the stability result provided in [56, Proposition
3.29]. To this end, notice that by setting p; = min{a;,w;} and py; = max{ay,w,e’2}, in

view of the definition of the set A in (6.8), one gets
pilzl% < V(z) < polzl%4 Ve CUDUG(D). (6.14)

By straightforward calculations, and from the definition of the flow map f in (6.7a), for each
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x € C, one has
(VV (), f(x)) = (VVi(e), Frae + Frab) + €7 (VVa(0), Fazb + Fre) — e Va(6).
Thus from Assumption 6.1, the above relation yields
(VV(2), f()) < =Acllell” + 16]]°) = =AcJely Vo eC (6.15)

which in turn thanks to (6.14) gives

(VV (@), f(x)) < _?);V(x) vz e (6.16)

Now, notice that for every g € G(z), there exists a real scalar v belonging to the interval
[T1, T3] such that g = (¢,0,v). Then, for every g € G(z) and for every x € D, one has

Vig) —Vi(zx) = =V5(0) <0. (6.17)
Pick

\ ATy
w = =
pQCYQ(l -+ Tl)

and let ¢ be a maximal solution to (6.6). As shown in the proof of [56, Proposition 3.29],
thanks to (6.16) and (6.17), direct integration of (¢, j) — V(¢(t, 7)) over dom ¢ yields

Y
V(g(t, ) < e 7='V((0,0)). (6.18)
Then, due to the choice operated for A according to Lemma 6.1, from (6.18), it follows that
V(6L 4)) < e MHDAV(6(0,0) V(L) € dom o, (6.19)

Still, in view of (6.14), one has

oltpla < 56t (2) jo0.00u (es) < domo (6.20
which implies that the set A defined in (6.8) is GES for system (6.6). [

Now, the proof of Lemma 6.1 is given

Proof of Lemma 6.1. From (6.12), by rearranging the terms, one gets

(=M +AN)t+ X —w <0. (6.21)

Now, pick any solution ¢ to hybrid system (6.6). From (6.11), it follows that for every
(t,j) € dom¢
j< 11 (6.22)
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then, for every strictly positive scalar A, from the latter expression and for every (¢,j) €

dom ¢, one gets

(—)\t+>\)t+)\j—w§(—)\t+)\+;\>t+)\—w. (6.23)
1

Thus, being T} strictly positive, by selecting

ATy
re (o > )
< ( ’1+T1]’“—

yields (6.21), which concludes the proof. |

Theorem 6.1 shows that if there exist matrices L € R™? and H € R?*? such that
Assumption 6.1 holds, then such matrices are a solution to Problem 6.1. Next, we provide
two alternative sufficient conditions ensuring the satisfaction of Assumption 6.1.
Proposition 6.1. Consider (6.7a) and set

F_ JFiu Fr .
For Fa

If there exist two continuously differentiable functions Vi: R™ — R and V5: R? — R, positive

real scalars oy, s, B, 7y, wr,ws, p, &, 0,a such that

(i) arlle]|* < Vi(e) < agflef|* Ve e R"

(i) (VVi(e), Fiie + Fiab) < —Blel|* +~]|0]|* V(e,0) € R" x R¢
(iii) wlld] < Va(@) < wollfl V0 € Re

(iv) (VVa(B), Farl + Fare) < pllel|® +€)|0)|*  V(e,0) € R x RY

such that
ow; —v >0 (6.24a)
1 _
T, < ~ln <mm {5, o 7}) . (6.24b)
o p &
Then Assumption 6.1 holds, with
A = min {| — B4 e 2p|, |y + e7T2E — crw1|} ) (6.25)

Proof. From (ii) and (iv), it follows that for each (¢,0,7) € R® x RY x [0, Ty

<v%(€),f118 -+ f125> —+ 60T<V‘/2(0~),f220~ -+ f21€> — O’@UT‘/Q(é) §

a nlla oT a Nila oT ) (626)
= Bllell* +A101* + e (pllell* + &01*) — o™ Va(6).
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By using (iii) and by rearranging the terms, from the above inequality one gets

<V‘/1(E),f11€ -+ f129~> + 607<V‘/2(9~),F229~ + f21€> — J@UT‘/Q(HN) §

(=B +e"p) ||e]l® + (7 + 7€ — owy) [16]|° (6.27)
)\1 )\2

Notice that A; and Ag are strictly negative due to (6.24b). Thus, by setting A\, = min{|\|, |A2|},

the above result is proven. [ |

Conditions (i)-(iv) in Proposition 6.1 are rather mild to satisfy. In particular, by selecting

L such that A — LM is Hurwitz, (i)-(ii) can be always satisfied by selecting V;(g) = &' Pye,
with P, € ST and such that He(P; (A — LM)) < 0. (iii)-(iv) can be always satisfied, e.g., by
selecting for V5 any positive definite quadratic function. The most challenging issue consists
of fulfilling (6.24). In particular, due to T > 0 a necessary condition for the applicability of
Proposition 6.1 is that

B>p

ow; —vy—&>0.

Moreover, given positive scalars ay, as, 3,7, wy, we satisfying (i), (ii), (iii), (iv), the satisfac-

tion of (6.24a) can be ensured by selecting o large enough. However, notice that

lim lln (min{ﬁ, il _7}> =0
o—00 (g p é_

therefore, enlarging the value of o may prevent from fulfilling (6.24D).

To somehow overcome this problem, as follows we provide an alternative sufficient condi-
tion to let Assumption 6.1 hold.
Proposition 6.2. Consider (6.7a) and set

F = fll -F12 '
FQI -F22

If there exist two continuously differentiable functions Vi: R" — R, and V5: R? — R, positive
real scalars o, s, 3,7, w1, Ws, p, i, 0, a such that

(a) arflel]* < Vie) < agfle]|* Ve € R™

(b) (VVi(e), Fuie + Fiaf) < —Blle]l* + v]|0]]*  V(e,0) € R" x R

(c) wllfl|* < Va(d) < welld]]* V0 € R

(d) (VVa(0), Fosll + Fare) < —pll6]|* + plle]|* V(e 0) € R" x R?

and
ow; —y+pu>0 (6.28a)

Ty<im <6> . (6.28b)
o \p
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Then Assumption 6.1 holds, with

Ac:min{|—6+6"T2,0|,|7—,u—0w1|}. (6.29)

Proof. From (b) and (d), it follows that for each (¢,0,7) € R* x R? x [0, T

<V‘/1(E), f11€ + F126'~> + 607<VV2(9~), ./T"gzé + .F21€> — J@UT‘/Q<9~) <

a nila oT a Nila oT 0 - (63())
= Bllell® + 101" + e (pllel|* — pll0]]*) — o Va(0).
By using (c¢) and by rearranging the terms, from the above inequality one gets
<V‘/1<€),f115 + f129~> -+ 60T<V‘/2(§),f22§ + .F21€> — O'GUT‘/Q(é) S
(=B +¢"p) [lel|” + (v = pr — own) 0] (6.31)
— —

)\1 )\2

Notice that A; and g are strictly negative due to (6.28). Thus, by setting A. = min{ ||, |A2|},

the above result is proven. [ |

Also in this case, due to T5 > 0 a necessary condition for the applicability of Proposi-
tion 6.2 is that 8 > p. Nonetheless, differently from Proposition 6.1, due to p > 0, (6.28a)
appears less stringent than (6.24a). In particular, (6.28a) can be a priori satisfied by select-
ing a smaller value for o with respect to (6.24a). Such a benefit arises from having required
in Proposition 6.2 a stronger assumption than in Proposition 6.1, namely (d). Nevertheless,
such an assumption can be always satisfied. Indeed, due to the linearity of the  flow dy-
namics, (d) turns out to be equivalent to the Hurwitzness of the matrix Faq, property that
can be always ensured via a suitable choice for H. Even more, due to the expression of Fs,
p in (d) can be selected arbitrarily large via the selection of the matrix H. However, it is
worthwhile to observe that, in general, picking for o an overly large value may lead to a large

value of p in (d), which in turn may render (6.28b) unfulfilled.

Proposition 6.1 and Proposition 6.2 provide first indications on how a solution to Prob-
lem 6.1 could be determined and also on the main challenges in determining such a solution.
The approach presented, though leading to different conclusion, is similar to some extent to
the one considered in [73, 100]. However, the use of Proposition 6.1 and Proposition 6.2 to
solve Problem 6.1 entails several drawbacks. The first one concerns the fact that the results
given in Proposition 6.1 and Proposition 6.2 dramatically depend on the choice performed
for the two functions V; and V3, and on the way the bounds given in (a)-(b)-(c)-(d) in Propo-
sition 6.1 or in Proposition 6.2 are obtained. The second one is that Proposition 6.1 and
Proposition 6.2 do not provide a clear strategy to select the two gains L and H so as to
solve the considered problem for given data (A, M,T5). In particular, as it is in [73], the
proposed approach is rather cumbersome whenever one attempts to design the considered
observer. Roughly speaking, Proposition 6.1 and Proposition 6.2 are essentially analysis

results. Therefore, to build up an effective design strategy further work is needed.
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Specifically, to overcome all the drawbacks illustrated above, we pursue a constructive
approach. In particular, by restricting the search of the two functions Vi and V5 in Assump-
tion 6.1 to the class of quadratic functions, as follows we provide a sufficient condition to let
Assumption 6.1 hold that is based on the solution to certain matrix inequalities. Via this
step, essentially we reduce the solution to Problem 6.1 to the solution to a feasibility prob-
lem of certain matrix inequalities. The solution of such a problem provides in one shot the
solution to Problem 6.1. As argued in the above discussions, by selecting the two functions
V1 and V5 in Assumption 6.1 as quadratic functions allows to fulfill (a)-(b)-(c)-(d) either
in Proposition 6.1 or in Proposition 6.2. Hence although conservative, this choice appears

promising to solve the considered problem.

6.4 Observer Design via Matrix Inequalities

The following result is one of the key results within this section. It turns the solution to
Problem 6.1 into the solution to the feasibility problem to certain matrix inequalities.
Theorem 6.2. If there exist P, € S}, P, € S1, a positive real scalar o, and two matrices
L e R"4 and H € R9°? such that

Mo ‘He(Py(A— LM)) PL+ (MA—MLM — HM)TP, 0
b . He(Py(ML + H)) — 0P, 632)
Mo — [He(Py(A— LM)) PiL+e"™(MA— MLM — HM)TP, 0 ‘
2T . e (He(Py(ML + H)) — o P,)
then Assumption 6.1 holds.
Proof. Define for each (e,0) € R" x R¢
Vi(e) =e' Pie
1(e) - (6.33)
Va(6) = 6" Py6.
Set
ayp = )\min(Pl)
Qo = )\max(Pl)
Wy = )\min(P2>
Wy = €72 X max (P2).

By straightforward calculations, it follows that for each (e, 0, 7) € C, and each positive real

scalar o,
<V‘/1(€),f11€ -+ f12(§> —+ <V‘/2(9~),JT"22 + JT"21€> — 0607‘/2(9~) =

e"He(Py(A— LM))e 4+ 2¢" PLLO + ¢°70" He(Py(ML + H))f (6.34)
+ 270" Py(MA — MLM — HM)e — 070" Py6.



184 Chapter 6

By defining the vector { = (g, é), the above expression can be equivalently rewritten as

follows
o He(Py(A— LM)) PiL+e"(MA— MLM — HM)'P, ¢ (6.35)
. e’ (He(Py(ML + H))—0P,) ' '
M(r)

Now, notice that, for any positive o, there exists a scalar function &, : [0, T3] — [0, 1], such
that for every 7 € [0, T3], €77 = &,(7) + (1 — &,(7))e°?2. Thus, for each z € C, (6.35) can be

rewritten as

¢’ (&(T)Ml +(1- 50(7))/\42) ¢ (6.36)
where M; and My are defined in (6.32). Thus, in view of (6.32), for each T € [0, T3],
M(1) < 0. (6.37)

Moreover, since M(7) depends continuously on 7, and 7 belongs to a compact interval, the

following bound holds

M(7) < max Apax(M(7))I V7 € [0,T3].
’TE[O,TQ]
Thus, by selecting
Ao = = 108X A (M(7))

T€[0,T%]

which is positive due to (6.37), for each z € C, from (6.34) one has

(VVi(e), Fiie + Fiol) + (VVa(D), Faz + Fore) — ae” Vo(0) < =A(|e]* + [|10]]).  (6.38)

Hence Assumption 6.1 holds, concluding the proof. [ |

Remark 6.2. The feasibility of the conditions given in Theorem 6.2 requires a detectable
pair (A, M), (though this condition is in general only necessary). It is worthwhile to remark
that, differently from the observer considered in Chapter 5, a priori, we do not require the
detectability of the pair (e, MeA) for each v belonging to [T7, T3], which would be a more

restrictive condition.

6.5 Numerical Issues in the Solution to Problem 6.1

In the previous section a condition to guarantee GES of the set A for system and based
on the feasibility of some matrix inequalities was provided. However, due to its form, such
a condition is not computationally tractable to obtain a solution to Problem 6.1. Indeed,
condition (6.32) is nonlinear in the design variables Py, P»,0, H and L, so further work
is needed to derive a numerically tractable design procedure for the proposed observer.
Specifically, the nonlinearities present in (6.32) are due to both the bilinear terms involving

the matrices Py, P>, L, H, and the scalar o, as well as the fact that o also appears in a
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nonlinear fashion via the exponential function. Nevertheless, from a numerical standpoint,
the nonlinearities involving the scalar ¢ are easily manageable. Indeed, o can be treated
as a tuning parameter or being selected via a grid search. Thus, the main issue to tackle
pertains to the other nonlinearities present in (6.32). To this aim, in the sequel we provide
four constructive sufficient conditions to solve Problem 6.1 via the solution of the feasibility

problem to certain linear matrix inequalities.

6.5.1 Two First Design Results

Proposition 6.3. If there exist P, € S, P, € 81, a positive real scalar o, J € R™, and
Y € R such that

(He(PLA— JM) J+ATMTP,— MY o

. He(Y) — oPs
- (6.39)
He(PLA—JM) J+ e (ATMTP, = MY)| _

o (He(Y) — o Py)e” ™

then L =P 'J, H=Py'YT — ML is a solution to Problem 6.1.

Proof. By setting H = P, 'YT — ML and J = P,L in (6.32) yields (6.39), thus by virtue of
Theorem 6.2, this concludes the proof. [ |

The main idea behind the above result consists of selecting the design variable H so as
to cancel out the term M LM, which would unlikely lead to tractable conditions. Obviously

other approaches can be pursued to cope with this issue.

Building on the previous result, another strategy to design the proposed observer is given
next. Such a strategy leads to the well known observer scheme in [73].
Corollary 6.1. If there exist P, € ST, P, € S1, a positive real scalar o, and J € R"*? such
that

He(PLA— JM) J+ ATMTP, o
° —obs
- (6.40)
He(PLA—JM) J+e2ATMTP, <0
° —e2g P,
then L = P;'J, H = —ML is a solution to Problem 6.1.
Proof. The proof follows directly from Proposition 6.3 by selecting Y = 0. |

As mentioned above, the proposed choice for the gain H leads to the predictor-based
observer scheme proposed in [72, 73], though written in different coordinates. Indeed,
whenever H = —ML, by rewriting (6.3) via the following invertible change of variables
(2,w) = (2,0 + M%), yields the same observer in [72, 73].

In the next sections, we present two other design procedures. The derivation of such pro-
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cedures is based on an equivalent condition to Theorem 6.2, which is formulated introducing

some slack variables via the use of the projection lemma; see [99].

6.5.2 Slack Variables-based Design

Before stating the main result, let us consider the following fact.

Fact 6.1. The matrix F in (6.5) can be factorized as follows

I 0| |A—LM L
F= (6.41)
M 1 —-HM H
Fi Fr

where F; is nonsingular.

Building on this fact, the following result provides an equivalent condition to condition
(6.32) in Theorem 6.2, in which the term M LM no longer appears.
Corollary 6.2. Let P, € ST, P, € ST, L € R" H € R™? and o € R.. The satisfaction
of (6.32) is equivalent to the feasibility of

He(S) SX+ P
° N1 + He(S3X)

He(Sf) S%/ + pTg

<0 6.42
o Nyt He(SY) (6.422)

with reSpeCt to Xl’}/l7X37Y3 € RHXTL’X2’Y2 € Rnxq7X47}/47X67}/6 € quanf)va) € Rqu’

where:

P= diag{P1, P>}
pTg = diag{Pl, PQ@UTQ}

(6.42b)
N1 = dlag{O, —O'PQ}
NQ = dlag{O, —O'€UT2P2}
X1+ MX, —Xo4+M'X Y+ MY, —Y,+ MY
S¥ = vt ! 2 F I (6.42¢)
—X4 —X5 _Y;l _Y5
v |[A=LMYX;—-M"H'Xs 0| _, [(A-—LM)Ys—MHY; 0
LT X5+ H' X 0 LY+ H'Ys
G YI(A—LM)-YJHM —Ys + M"Yy YL+ Y]H
2 YJ(A—LM) —YJTHM — Yy YL+ YT H
(6.42¢)
ox XT(A—LM) - XJHM — X5+ M"X¢y XL+ XJH
2 XI(A—LM) - XTHM — X XJL+XTH

Proof. First of all, notice that by defining the matrices

F 0 P 0 P
B=|"|,N = Ny = T
I o N o Ny
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matrices M; and My in (6.32) can be equivalently rewritten respectively as follows

M, =B"N1B, My = B'N,B. (6.43)
Moreover, by defining
U — 0(2n+q)><q
Iq

the positive definiteness of P, is equivalent to the satisfaction of the following relations

U'MU <0

6.44
UTNLU < 0. (6.44)

Then by the projection lemma; see [99], (6.32) is verified if and only if there exist two
matrices X, Y such that
N+ B XU+ U XTB: <0

T 1 Ty Tl (6.45)
No+B YU 4+U",Y'B,- <0

where B and Ul are some matrices having as rows a basis of the row-null space respectively

of B and U. Specifically, notice that in view of Fact 6.1, one can consider the following choice

A—LM L
-HM H

-1 0

B =[-F" fr]:[ Vo

while Ul = [12n+q 0(2n+q)xq}. Thus, according to the following partitioning

X X X _ | Y2 Y
X X Xl Y Y
relations (6.45) turn in (6.42a) and this concludes the proof. [

The above result yields an equivalent condition to (6.32), that can be exploited to derive an
efficient design procedure for the proposed observer, though introducing some conservatism.
To this end, one needs to suitably manipulate (6.42a) in order to obtain conditions that are
linear in the decision variables. Specifically, the two results given in the next sections provide

two possible approaches to derive convex design procedures for the proposed observer.

Zero-order Sample-and-hold Intersample Scheme

Proposition 6.4. If there exist P, € ST, P, € S{, a positive real scalar o, matrices X €
R™"™ X4, Yy, Xg, Yg € R X5, Y5 € R™¥ J € R4 such that

He(Rl) RQ + PT2
° He(Qs3) + Ny

He(Ql) QQ + P

. He(Qs) + N, <0 (6.46)
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where P, Pr,, Ny, Ny are defined in (6.42b) and
X + MY, MY

X+ M™X, M'X
Q1 = N ! i Ry =
—X4 —X5 —Y;l _}/5
0, XM X+ XTA=IM | XA MY+ XTA— M ]
T — X, o| —Y, 0
(ATX —MTJT 0
Qs = -
J 0

then L = X"TJ and H = 0 are a solution to Problem 6.1.
Proof. By selecting in (6.42a) H=0,X;=X3=Y, =Y3 =X, X, =Y, =0, X"L = J gives
[ |

(6.46). Thus, thanks to Corollary 6.2 the result is proven.
It should be noticed that the above design procedure leads to the well known zero-order

sample-and-hold scheme; see Figure 6.2.
y=Mz _i_ "

Plant H : :
. 1 :
|Trigger|;—-|_x_| 0:

Az + Lo
Mz

Continuous-time Observer

gL
Y

Figure 6.2: Zero-order sample-and-hold scheme

A Novel Observer Scheme
Proposition 6.5. If there exist P, € ST, P, € 81, a positive real scalar o, matrices X €

R™™ U W e R J € R"™1 such that
(6.47)

He(Zl) ZQ + PTQ
He(Zg) + N2

He(Z,) Z,+ P
[ ] ZS+N1

where p,pTQ,Nl, Ny are defined in (6.42b) and

|

|

-X U X+ XTA—JM J
Zl - ZQ -
0o -U WM W
ATX = MTJT 0
L3 =
JT 0
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then L =X"TJ and H=U"TW are a solution to Problem 6.1.

Proof. By selecting in (6.42a) X; = X3 =Y, =Y;3 =X, Xo =Y, =0, X, =Y, =0, X5 =
Yo =0,X; =Y =UX"L=JU"H =W gives (6.47). Thus, thanks to Corollary 6.2 the
result is proven. |
Remark 6.3. The above result gives rise to a novel observer scheme. Indeed, as a difference
to Proposition 6.3 and Proposition 6.4, Proposition 6.5 does not impose any structural
constraint on the gain H. This is a worthwhile novelty introduced by our approach with
respect to classical approaches as [73, 104] and alike, where the choice of the gain H is a
priori constrained. Thus, in general, the use of Proposition 6.5 may lead to observation
schemes that are not encompassed either by Proposition 6.3 and Proposition 6.4 or by
existing approaches.

Remark 6.4. The derivations of the design presented in Proposition 6.4 Proposition 6.5
consist in some particular choices of the slack variables X and Y introduced in Corollary 6.2.
Therefore, when one is interested in solving Problem 6.1 for the largest achievable value of
T,, the design procedures arising from Proposition 6.4 and Proposition 6.5 may lead to
conservative results. To overcome this problem, one can envision a two-stage procedure.
Indeed, whenever L, H, o and T are fixed, condition (6.32) is linear in the decision variables.
Thus, once the observer has been designed via one of the proposed methodologies, by testing
the feasibility of (6.32) with respect to P;, P, over a selected grid for o, one may enable to

enlarge the maximum allowable sampling interval 75 for the considered design.

6.6 Numerical Examples

Example 6.1. In this first example, we want to show the improvement provided by our
methodology with respect to existing results. Specifically, consider the example in [72],
which is defined by the following data:

A:[O 1
4 0

As pointed out earlier, by setting H = —M L in (6.3), the observer proposed in this chapter

M=1[1 0.

corresponds to the one in [72, 73]. Therefore, for a given gain L, by following the above
selection for H, Theorem 6.2 can be used to provide an estimate of the maximum allowable

sampling interval T». Hence to compare with [72], we consider

4
ol
In this case, it turns out that the conditions of Theorem 6.2 are feasible for 75 up to 0.42.

This bound is about 5.18 times less conservative than the one in [72] (75 = 0.081). That

is our methodology leads to an improvement on the estimation of the maximum allowable

I —
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sampling interval of about 418%. On the other hand, Corollary 6.1 can also be used to
design a new gain L, to tentatively enlarge the maximum allowable sampling interval, still
for the scheme proposed in [72]. Specifically, it turns out that, whenever the observer gain
is designed via Corollary 6.1, conditions in (6.40) are feasible for 75 up to 0.496, that is an
improvement of about 18% with respect to the design in [72] . The observer gains obtained
for T5 = 0.496 are

s

~|0.351
- 1=2.29

} JH,=—ML, = —0.351.

Figure 6.3 and Figure 6.4 report, respectively, the evolution of the estimation error and of 6,

-4 i i
0 5 10 15
t

Figure 6.3: The evolution of the plant state z (blue) and of its estimate 2 (black) provided
by the observer projected onto ordinary time. Above zq, 21, below 2o, 25

both projected onto ordinary time. In this simulation 77 = 0.1, and the sampling instances
are chosen randomly according to a uniform distribution. Simulations show that the observer
successfully reconstructs the plant state. Moreover, Figure 6.5 reports the evolution of the
function V used in the proof of Theorem 6.2 projected onto ordinary time. Simulations show
that the function V' decreases during flows, and at jumps it is nonincreasing (in fact in this

simulation it appears even decreasing).
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Figure 6.4: The evolution of # projected onto ordinary time.
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Figure 6.5: The evolution of the function V' projected onto ordinary time.
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Example 6.2. Consider the model of the longitudinal dynamics of the F8 aircraft in [71],

whose state-space model is given by

0.8 —0.006 —12 0
.| 0 0014 -166 —32.2
Tl Z10t —15 0

1 0 0 0
oo 0 1
Y“loo -1 1|"

The two outputs are respectively the pitch angle and the flight path angle. We want to
design an observer for the considered plant while enlarging as much as possible the maximum

transfer time 75 allowable.

In Table 6.1, we report, for each design methodology, the values of the maximum 75 for
which conditions (6.32) are feasible along with the corresponding value of o, and the two
designed gains L and H. In each of these designs, the value of ¢ is selected so as to enlarge
the value of T5 ensuring the feasibility of the considered conditions. Concerning the design
procedure derived by Proposition 6.4 and Proposition 6.5, as mentioned in Remark 6.4,
to reduce as much as possible the conservatism in the estimate of the largest value of T5
allowable, after a first design step, we performed a further analysis stage via Theorem 6.2.

About the design procedure issued from Proposition 6.4, it is worthwhile to notice that, the

Design o Ts L H
—0.712 0.872]
o 1744  —2133 462 —5.73
Proposition 6.3 0.6 4.7 9 69 398 l12'3 _14.7]
—-8.13  9.95 |
0.15702 0.42578]
, ~34.118 —84.26 —0.221 —0.539
Corollary 6.1 0.71 4.1 0.10341 0.24557 [—0.118 —0.294]
0.22093  0.53946 |
—0.216 0.216
e —21.6 ~36.1
Proposition 6.4 0.97 3.54 —0.00971 —0.00372 0959
0.1 0.134 |
—0.044 0.102

Proposition 6.5 0.59  5.73 0.0184 0.0143| |—0.0172 —0.236

0.15  0.199 |

—31.8 —47.0 [—0.258 —0.0121]

Table 6.1: Values of 75 and ¢ and the designed observer gains L and H for the considered
design procedures.
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design conditions for the same observer scheme given in [104], (when they are specialized
to the linear systems case), are feasible for T, up to 0.4. Namely, the proposed design,
in this specific case, enables to enlarge the maximum allowable sampling interval of 8.85
times with respect to [104]. Moreover, it turns out that the design procedure issued from

Proposition 6.5, in this specific case, provides the largest allowable value for T5.

6.7 Comments and Conclusion

Building from the general ideas in [73], in this chapter we proposed a novel methodology
to design, via linear matrix inequalities, an observer with intersample injection to exponen-
tially estimate the state of a continuous-time linear system in the presence of sporadically
available measurements. Specifically, pursuing a unified approach, we provided four design
methodologies to design the observer, which are computationally efficient, i.e., the design
algorithm entails a time of computation which is polynomial with respect to the dimension
of the data. Two of them lead back respectively to the observer scheme proposed in [73]
and to the zero-order sample-and-hold proposed in [104], while the remaining lead to two
completely novel schemes. Notice that, although we recover some existing schemes, the
design procedures we propose are novel and, in some cases, outperform the corresponding
existing design techniques, whenever they exist. To the best author knowledge, a unified
approach for the systematic design of the class of observer presented in this chapter, which
encompasses the observer in [73], ensuring exponential state estimation for a given value of
the maximum sampling interval, has been presented for the first time in [41]. Furthermore,
we would like to emphasize that, although this chapter is devoted to LTI plants, differently
from Chapter 5, the extension to a wider class of plants, as the one considered in [104], is

almost direct.

Concerning the possibility of adopting alternative frameworks to address the problem
illustrated in this chapter, we would like to emphasize that employing a discrete-time ap-
proach, as the one in [29], would hardily lead to a tractable design for the proposed observer.
In particular, notice that by discretizing the (e, 9~) dynamics in between jumps would give
rise to a discrete-time model for which the two gains L and H appear via a matrix exponen-
tial term, preventing from deriving a tractable design procedure via polytopic embedding

strategies, as done in Chapter 5.

The proposed observer allows to provide an alternative solution to the state estimation
problem in the presence of sporadic measurements with respect to the one proposed in
Chapter 5. Moreover, the design of the observer proposed in this chapter appears simpler
than the one in Chapter 5. In particular, we recall that in the design presented in Chapter 5,
the total number of lines in the considered matrix inequalities is proportional to 2". Then,
the complexity of the resulting design increases exponentially with the size of the plant.
Instead, for the designs presented in this chapter, the number of lines and the number of

scalar variables entailed by the resulting LMI feasibility problem increase polynomially in n;
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Table 6.2 reports precisely these data for the mentioned designs. Hence, whenever the plant
size increases, such designs are expected to be less complex from a numerical standpoint than

the design in Chapter 5. However, the two considered approaches are deeply different and

Design Number of scalar variables Number of lines
Corollary 5.1 (n+1)/2n 4+ n? + nq 3n2"
Proposition 6.3 (n+1)/2n+ng+ ¢* +q(q+1)/2 2(n+q)
Corollary 6.1 (n+1)/2n+nqg+q(g+1)/2 2(n+q)
Proposition 6.4 (n+1)/2n+q(q¢+1)/2+n?+4gn +2¢> + ng  2(n+q)
Proposition 6.5 (n+1)/2n+q(q+1)/2 +n? +2¢* + ng 2(n+q)

Table 6.2: Number of lines and number of scalar variables entailed by the different designs.

both manifest advantages and disadvantages that prevent from overlooking one of the two
solutions. In particular, the observer in Chapter 5 has been shown to be ISS with respect to
measurement noise. So far, we did not succeed in showing such a property for the observer
considered in this chapter. First investigations allowed to show that the observer considered
in this chapter is finite-gain £, o, stable from the measurement noise to the estimation error
e (see [95, Definition 3] for more details on this notion of stability for general hybrid systems
with inputs and outputs). Obviously this latter property is weaker than the ISS proven for

the observer in Chapter 5.

Another interesting point concerns the fact that the conditions worked out in this chapter
to design the considered observer do not depend on the value of T, which is not the case
for the design in Chapter 5. This observation gives rise to some important considerations.
Among them, let us remark that in the case of periodic sampling, i.e., T} = T, = T the
observer in Chapter 5 can be always designed via the proposed apparatus, provided that the
pair (eT, M) is detectable, the same is not true for the observer with flow injection presented
in this chapter. Specifically, observe that periodic sampling does not originate any change
in the conditions considered within this chapter. The reason behind this matter stems from
the fact that the observer presented in this chapter is designed by ensuring the decrease of a
certain Lyapunov-like function within the flow set, whereas the behavior within the jump set,
wherein T} comes into play, is rigidly prescribed by the structure of the considered observer.
This remark fosters to consider more general jump maps for the observer presented in this

chapter.

Still concerning the observer in Chapter 5, numerical experiments show that in general
such an observer, thanks to the recommended design, allows to ensure larger values of the
maximum allowable sampling interval, with respect to the schemes considered in this chap-
ter. This gap between the two proposed observation schemes originates from the innate
nature of such schemes. Indeed, the approach pursued in this chapter basically relies on the
intrinsic robustness of the continuous-time observer used as a core to build up the considered
observation scheme. Such a robustness explicitly appears in Proposition 6.1 and Proposi-
tion 6.2, respectively, in (i) and in (b) in the form of certain bounds that can be fulfilled

provided that T5 is small enough. This discussion naturally establishes connections between
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our approach and the one in [73], which we recall is one of the inspiring approach leading to
the ideas presented in this chapter. Completely different considerations hold for the scheme
presented in Chapter 5. Indeed, such a scheme does not rely on any continuous-time ob-
server. On the one hand, this fact does not suggest any strategy to derive first guidelines,
as Proposition 6.1 and Proposition 6.2, for the design of such an observer. On the other
hand, the fact of operating a reset of the whole estimate seems to better address the state
estimation problem in the presence of sporadic measurements, at least in terms of maximum
allowable sampling interval T5. However, the use of such an observer barely allows to envision
extensions to more involved settings of practical interest as the one considered for instance
in [90] dealing with multi-outputs plants with asynchronous sporadic measurements. To give
an hint of the difficulties encountered in this situation, here below we briefly illustrate the

problem to solve in such a case and first attempts towards its solution.

Let us considers continuous-time linear time-invariant system in the form

z = Az

(6.48)
yi:MiZ VZ:LQ,,p

where z € R” and y = (y1,%2,...,Yp) € RY are, respectively, the state and the measured
output of the system, while A and M, are constant matrices of appropriate dimensions. The
goal is to design an observer providing an asymptotic estimate 2 of the state z whenever each
of the component y; of the vector y is available only at some time instances t,(;), k € N, not
known a priori. Obviously, whenever for each k£ € N, t,(cl) = t,(f) =... = t,(cp ), one falls inside
the focus of this chapter. However, whether this assumption does not hold, a modification
of the scheme in (6.3) is needed. In particular, inspired by [100], we consider the following

observer

E(t) = Az(t)+ Lo(t) (). . _
9(15) _ mew) } when t ¢ {t,’:i=1,2,...,p},keN

(6.49)

2t) = 2(1)
0:(t7) = wi(t) — Mi2(t)

} Whent:t,(;),ie{1,2,...,p},k€N

In particular, in between measurements the above observer behaves as the one presented in
this chapter. Instead, whenever a new measurement is received, only the corresponding com-
ponents of the vector # get updated via the received measurement. This proposed observer is
currently part of our research activity. Specifically, a hybrid model of the considered observer
have been constructed. First researches have shown how a generalization of the methodology
presented in this chapter provides the right answer to tackle with the considered problem.
In particular, the main point we addressed consists of reshaping Assumption 6.1 to match
the asynchronous nature of the incoming measurements. Such a reshaping is inspired by the
construction presented in [47]. Notice that, while the construction of such an observer is the

natural extension of the one illustrated in this chapter, the design of an observer to tackle
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this problem within the framework considered in Chapter 5 does not appear clear.

The state estimation problem in the presence of asynchronous sporadic measurement is in
part encompassed by the work in [100] dealing with state estimation of networked systems,
though in [100] the authors focus on an emulation approach. However, differently from
[100], we do not assume any scheduling behind the arrival of measurements. This enables
to address a certain number of situations of practical interest, that are uncovered by the

approaches building on protocols ; see, e.g., [90] and the references therein.

The observers presented in this chapter and in the previous one can be used to build up
controller architectures to asymptotically stabilize a linear plant in the presence of sporadic
measurements. For this reason, to conclude this part of this dissertation, in the next chapter
we present an observer-based controller, whose core is centered on the observer presented
in Chapter 5. For brevity, we limit the analysis to a scheme built upon the observer in
Chapter 5. Nevertheless, observe that the construction of a similar scheme building on the

observer presented in this chapter can be considered without too much work.



OBSERVER-BASED CONTROL IN THE PRESENCE OF
SPORADIC SENSING AND ACTUATION

“C’est par la logique qu’on démontre, c’est par l'intuition qu’on invente”.

— Henri Poincaré

7.1 Introduction

N this chapter, we consider the problem of stabilizing a linear time-invariant system in
I the presence of sporadic output measurements and sporadic access to the plant input.
The plant is equipped with a zero-order hold device which stores the value of the input
in between control input updates. We propose an observer-based controller consisting of
a measurement-triggered observer, which experiences jumps in its state whenever a new
measure is available, a state-feedback control law computed from the estimated state, and a
copy of the zero-order hold device feeding the plant, which jumps whenever the control input
is sent to the plant. The closed-loop system is modeled as a hybrid system that includes
two timers triggering the two different events. The resulting hybrid system is analyzed as
the cascade of hybrid systems and its asymptotic stability properties are established through
a separation principle. In addition, a computationally design procedure based on LMIs is
presented and illustrated in an example. First results pertaining to the problem presented

in this chapter can be found in [43].

197
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7.2 Problem Statement

7.2.1 System Description

Consider the following continuous-time linear system:

2= Az+ Bu
P: (7.1)

y=Mz

where z € R", y € R? and u € RP are, respectively, the state, the measured output, and
the input of the system, while A, B and M are constant matrices of appropriate dimensions.
Now, let us suppose that both the input channel and the output channel of system (7.1)
are accessible in an intermittent fashion. Especially, assume the initial time tqg = 0, let us
assume that the output of system (7.1) is gathered only at time instances tx, k € N, not
known a priori and that the input channel grants its access only at time instances s, k € N,
not known a priori. Analogously to the previous chapters, suppose that {t;}2] and {s; }/>3
are two strictly increasing unbounded real sequences of times and assume that there exist
four positive real scalars TP < T, TH < TY, such that

TP <t <T¢

Tloétk_,_l—tkSTQO Vk € N

y !/ (7.2)
Tl <51 < T2
T{/ISSkJrl—SkSTg[ VEk € N.

The problem studied in this chapter consists of designing an observer-based controller that

u y
...... J P

Z0OH

YK y(tx)

Figure 7.1: Continuous-time plant P controlled by the controller K, which has intermittent
access to the input channel and sporadic available measurements of the output y.

asymptotically stabilizes the resulting closed-loop system for any given sequences satisfying
(7.2) providing measurements of the plant output and input access respectively.

Assuming that the arrival of a new measurement can be instantaneously detected by the

controller, and that the controller is aware when a new sample is sent to the plant (such
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assumptions are not much severe and they can be fulfilled in real engineered systems; see,
e.g., [62, 113]) motivated by Chapter 5, we design an observer-based controller with jumps

in its state (Z,4), given by

(1) = Az(t) + Ba() o0 to0
ﬁ(t) — 0 } when ¢ & {s}25 U {te )2
a(tt) = K2(t) when t € {s}{25

(7.3)

2(t7) = 2(t) + LM(2(t) — 2(t)) when t € {tx}{

where L and K are two matrices of appropriate dimensions to be designed. The variable
Z represents the estimated state of the plant generated by the observer by means of the
measured plant output y, while @ stores the last value of the control input sent to the plant.
Indeed, whenever a new sample of the control value is sent to the plant, the controller
accordingly updates its internal variable @ so as to memorize the signal applied to the
plant input u. Furthermore, the plant is equipped with an event-based zero-order hold
device, whose driving events are generated by new control input arriving. In particular,
such a device stores the value of the last received input between two updates and it gets
updated whenever a new control input is sent by the controller, see Figure 7.1. Thus, the
input injected into the plant is piecewise constant, and specifically, for every integer k € N,
u(t) = KZ2(sg) for t € [sg, Sk+1), while u(t) = u(0) for t € [0,s1), where u(0) denotes the
initial condition of the zero-order hold device, which can be chosen arbitrarily. Moreover,
notice that if t € {sx}32, N {tx}72, then both 2 and @ are updated.

7.2.2 Hybrid Modeling

The fact that the closed-loop system experiences jumps when a new measurement is available
or when the input channel grants access to the controller suggests that the dynamics of the
closed-loop system can be described via a hybrid system. We provide a hybrid model that
captures not only the behavior due to a single pair of sequences {tx}32,, {sk}32,, but each
possible evolution generated by any sequence satisfying (7.2) respectively. This is a unique
approach that, while leads to nonunique solutions, allows to establish a strong result for a

family of sequences t; and sy.

The proposed modeling approach requires to model the time-driven mechanism governing
the availability of measurements or of access to the plant input. To this end, as in Chapter 5,
we add two auxiliary timer variables 71 and 75 to keep track of the duration of flows and to
trigger jumps according to the mechanism in (7.3). In particular, this modeling procedure

leads to a model that can be efficiently represented by the framework for hybrid systems
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proposed in [56]. To accomplish that, we make 71 and 75 decrease as ordinary time ¢ increases
and, whenever 71 = 0 or 7, = 0, reset it to any point in 7, € [0,7%] or 7, € [0,7¥]
respectively, so as to enforce and (7.2). Then, after a jump occurs, the two timers are reset

according to the following jump rule':

Tv TH
[1 2] if7'1:0,7'27£0

T2
h - T
e ' i £0,m =0 (7.4)
T2 TP, T3]

TH TY T

[1 2] 3 ! ilezTQIO.

T2 [TlovTQO]

To capture this mechanism, we define a hybrid system H,. within the framework in [56]. In
particular, take as a vector state & = (z,u, 7, 2,1, 72), and for each x € C = R" x RP x
0, TH] x R™ x RP x [0, T5] define the flow map as

[Az + Bu
0
-1
Flx) = |
Az + Ba
0
L _1 -
For each x € D, define the jump map as
Gl(I) ifr € D1 \ D2

{G1<JI), GQ(ZE)} ifz € D, N D,y

where for each x € D = D, U D,

S _ _
Kz U
[T{1> Té’{] T1
Gi(x) =  Ga(z) = 75
1(@) 5 A0 = s L — 2) (7:5)
K2 a
L T2 i L [Tloa T2O]

!The reason behind the choice considered to update the two timers in the case 71 = 75 = 0 will appear
clear later.
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Dy =R" x R? x {0} x R" x RP x [0, T5] 76)
Dy =R" x RP x [0, T%] x R" x R? x {0}. '

These objects define a hybrid system H. = (C, F, D, G) that represents the dynamics of the
closed-loop system. Now, for the purpose of stabilization, consider the following invertible

change of coordinates:
(Zv u, T, €, ﬂu 7-2) = (ZJ u, T,z — 27 U — /aa 7-2) = T
which leads to the following model of the closed-loop system

te = Fe(z.) z.€C,
He (77&)
) € Ge(x.) xz.€ D,

where Ce = O, De = Dle U Dze, Dle = Dl, DQe = D2 and

Az + Bu] z
0 K(z—¢) u
-1 [T{/{ng] T1
Fe e) — 7G e e) — 7G e e) — 77b
(@) = | g 4 pa| Gl e (%) = | 1 _ [ane (7.70)
0 0 U
L -1 J L 72 J L [TIO’T2O] ]
Gle(xe) if Te € Dle \ D2e
Ge(xe) = Gge(l’e) if z, € Do, \ D1, (77C)

{Gle(xe)a GQe(xe)} 1f Te S Dle N D2e-

Remark 7.1. Taking the union of the two reset laws whenever 7y = 75 = 0 in (7.4) ensures
that the resulting jump map G, is outer semicontinuous relatively to D. This fact can be
proven by directly resorting to the definition of outer semicontinuity for set-valued mappings
given in Appendix D. This fact, along with the continuity of the low map, D, C dom G,
C. C dom F,, and the closedness of the sets C. and D, ensures that hybrid system (7.7)
satisfies Assumption 4.1. This is a key property that will be used in the sequel. Observe that
having a hybrid system satisfying Assumption 4.1 may not be trivial and it actually derives
from suitable choices done throughout the modeling stage. Several cases of hybrid systems
not matching Assumption 4.1 can be encountered in the literature; see, e.g., the hysteretic

quantizer in [22].

Concerning the existence of solutions to system H., by relying on the concept of solution
given in Definition 4.5, it is straightforward to check that every ¢ € Sy, (C.UD,) is complete.

Moreover, the following properties hold:

e For every (¢,7) € dom ¢ such that (¢,j + 1) € dom ¢ and ¢(¢,j) € Do \ Die, one has
(t,j +2) ¢ dom g,
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e For every (t,7) € dom ¢ such that (¢,j + 1) € dom ¢ and ¢(¢,j) € Dy \ Dae, one has
(t,j +2) ¢ domg,

e For every (t,7) € dom ¢ such that (¢,5 4+ 1) € dom ¢ and ¢(t, ) € D1 N Dy, we have
either ¢(taj + 1) S Dle \ D26 or ¢(t7] + 1) € DQ@ \ Dle'

In other words, at most two jumps can occur consecutively without flowing. Furthermore, for
every maximal solution ¢ to H., due to (7.2), every (t,j) € dom ¢ such that (¢,s) € dom ¢,
for some s € {j + 1,7 + 2}, implies that {[t,t + min{TC, T"}] x {s}} C dom ¢. Essentially,
the domain of the solutions to H,. manifests an average dwell-time property, with dwell time
p = min{TP, T¥} and offset Ny = 2; see, e.g., [56, Example 2.15]. Such a property imposes
a strictly positive uniform lower bound on the length of every flow interval, preventing from
the existence of Zeno solutions.

Remark 7.2. A notable property enforced by timer 7y is that, for every maximal solution
to (7.7), there exists (T,J) € dom ¢ satisfying T + J < T% + 1, such that ¢(T,J) € Dj,,
which implies that @(7,J 4+ 1) = 0. Then, since solutions to (7.7) cannot leave the set
R"xRPx [0, TH] xR x {0} x [0, T¥’], it follows that for every initial condition ¢(0,0) € C.UD.,
@ converges to zero in finite hybrid time. Moreover, notice that to make the hybrid system
(7.7) an accurate description of the real time-triggered phenomenon, which governs the
update process, 7, and 7, have to belong to the intervals [0, 7Y] and [0, T{’] respectively,

which is a property that is guaranteed by the definition of C, and D..

In this chapter, we consider the following notions for a general hybrid system H with
state in R.
Definition 7.1. ([56, Definition 7.1.]) Let A C R be a compact set. The set A is

e stable for H if for every € > 0 there exists 6 > 0 such that every solution to H with
|6(0,0)| 4 < 0 satisfies |p(t,j)|a < € for all (,7) € dom ¢;

e locally pre-attractive for H if there exists p > 0 such that every solution ¢ to H with
|$(0,0)|.4 < p is bounded and, if ¢ is complete, then also limy, ;1o [¢(, )4 = 0;

e locally pre-asymptotically stable (LpAS) for H, if it is both stable and locally pre-

attractive for H;

e globally pre-asymptotically stable (GpAS) for H, if it is both stable and locally pre-
attractive for H for every p > 0.
Definition 7.2. ([56]) A set A C R’ is strongly forward pre-invariant for #, if for every
maximal solution ¢ to H, rge¢ C A.
Remark 7.3. In referring to complete solutions, we will drop the term “pre” from the
above definitions, which leads respectively to locally asymptotically stable (LAS), globally
asymptotically stable (GAS), and strongly forward invariant.

Then, by introducing the set

A= {0} x {0} x [0,T4] x {0} x {0} x [0, T¥] (7.8)
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for which, for every z, € C. U D, U G.(D.), |xc|la = ||(2, u, €, @)]|, the problem we solve is
as follows:

Problem 7.1. Given the matrices A, B, and M of appropriate dimensions and four positive
scalars TH < T TP < Ty, design matrices L € R™? and K € RP*" such that the set A in
(7.8) is globally asymptotically stable for the hybrid system (7.7).

To cope with this problem, we treat (7.7) as the cascade of two hybrid systems (modulo
the coupling effect, yet vanishing in finite hybrid-time, as shown in Remark 7.2, induced by
@ on the ¢ dynamics). Namely, this cascade is composed by the ¢ dynamics along with its
timer 75, which enters into the (z,u,7) dynamics. By pursuing this approach, we are able
to solve Problem 7.1 without the need of finding a Lyapunov function for the whole hybrid

system (7.7), which appears as a nontrivial problem.

7.3 Main results

7.3.1 A solution via a Separation Principle

In this section, we provide a solution to Problem 7.1 that relies on the properties inherited
from the components of the closed-loop system, namely, the observer and the controller
subsystems. Specifically, let us consider the following assumptions.

Assumption 7.1 (Observer subsystem). The hybrid system

. _ 4
N : } (e,m) € C,
To = -1
N (1 L) (7.9a)
eT = — €
(6, 7'2) eD,
o € (TP, T7] }
where
C, =R" x [0,75], D, = R" x {0} (7.9b)
has the set A, = {0} x [0,75] GAS. A
Assumption 7.2 (Controller subsystem). The hybrid system
= Az+ Bu
w = 0 (z,u,m) € Ck
o= —1
(7.10a)
2t = 2z
ut = Kz (z,u,m) € Dy
o€ [TV TY]

where
Cx =R" x R? x [0, T¥], D = R" x R? x {0} (7.10b)
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has the set Ax = {0} x {0} x [0, T] GAS. A

A sufficient condition guaranteeing that Assumption 7.1 holds is given in Chapter 5,
while a sufficient condition for Assumption 7.2 to hold will be given in Proposition 7.1. The
following result establishes GAS of the set A for the closed-loop system (7.7) under the
two aforementioned assumptions. Before state such results, let us consider the following
definition.

Definition 7.3. Given a hybrid systems H = (C, F, D, G) with state in R”, and let O C R™.
We denote, H|, = (CNO,F,DNO,G).

Remark 7.4. Namely, H|, is the restriction of the dynamics of H to the set O. Notice that
in the above definition, any property is required for O. In particular, O N (C' U D) could be
empty leading to a restriction having no solutions.

Theorem 7.1. Let Assumption 7.1 and Assumption 7.2 hold. Then, the set A defined in
(7.8) is GAS for system (7.7). O

The proof of this theorem is inspired by the idea in [122, Theorem 1]. Specifically, we base
our proof on [56, Corollary 7.24], which requires the satisfaction of Assumption 4.1 (hybrid
basic assumption on data), that is satisfied by (7.7). Since the proof is rather involved, for

the sake of clarity, we firstly provide a list of the main steps carried out.

As a first step, to situate the analysis within the focus of [56, Corollary 7.24], which works
with compact sets, we select an arbitrarily compact set J having A in its interior and we
build the following auxiliary system H.; = H.|,. For such a system, we prove that the set

A is GpAS, by performing the following steps:
(a) Prove that there exist two compact sets J; O J. and J. D A such that:
(a.1) Jz is GpAS for H.,
(a.2) J. is GpAS for Hesl ;.
(b) Since J. C J, applying [56, Corollary 7.24] allows to conclude that J. is GpAS for H.,
(c) Prove that H.,|, has A GpAS

(d) Since J. D A, thanks to (¢) applying [56, Corollary 7.24] allows to conclude that A is
GpAS for H.;.

Step (a) is performed by selecting a compact set J; such that for every x = (z,u, 7, ¢, 4, 13) €
Jz u = 0, and compact set J. C Jz such that for every x = (z,u,m,¢e,4,m) € J- is such
that ¢ = 0. In particular, (a.1) is established by using finite hybrid-time convergence of @ to
zero. While, (a.2) follows from Assumption 7.1. Finally, (¢) follows from Assumption 7.2.

From GpAS of A for H.; and the fact that A C IntJ, we prove LpAS of A for H., which
turns out to be LAS, due to completeness of the maximal solution to H.. Finally, from LAS
and the fact that the compact set J can be selected arbitrarily large, GAS is established via

homogeneity arguments.

The following two results basically establish the point (a) here above.
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Claim 7.1. Define the closed set A; = R™ x RP x [0, T4] x R" x {0} x [0, T¥]. Let Assump-
tion 7.1 hold. Then, .|, has the closed set A. = R™ x R? x [0, T3] x {0} x {0} x [0, 5]
GAS. 0

The proof of the above claim is given in Appendix C.
Lemma 7.1. Pick any positive real scalars M,, M,, M., Mg, M., , M,,, and define the com-
pact set J = M, B x Mz x M, B x MzB x BM,,. Let A. be the set defined in Claim 7.1.
Assumption 7.1 implies that hybrid system H.; = .|, has the compact set J. = (J U
Ge(J)) N A. GpAS. OJ

The proof of the above lemma is given later.
Now we are in position to provide the proof of Theorem 7.1.

Proof of Theorem 7.1. We first show that under Assumption 7.1 and Assumption 7.2 the
set A defined in (7.8) is LAS for system (7.7) and that its basin of attraction contains every
initial condition such that the resulting trajectory is bounded. Then we prove that LAS of
A ensures that every maximal solution to (7.7) is bounded, allowing to extend the basin of
attraction of A to include C, U D, yielding GAS for A.

Pick six arbitrarily large positive scalars M., M,,, M., Mg, M,,, M., such that the compact
set J = M,B x M,B x M, B x M.B x M;B x M,B contains A in its interior. Define the
closed set

A, =R" x R? x [0, T¥] x {0} x {0} x [0,T%].

According to Lemma 7.1, which uses Assumption 7.1, the set J. = (J U G(J)) N A, is
GpAS for system He; = H.|;. Moreover, thanks to Assumption 7.2 and by following the
same steps as in the proof of Lemma 7.1, it turns out that the set A is GpAS for system
Hesly,, and since J. C A, similarly to [56, Proposition 3.32], it follows that A is GpAS
for system H.;| .- Thus, since system H,; satisfies Assumption 4.1, A and J. are compact,
and A C 7z, thanks to [56, Corollary 7.24], the set A is LpAS for system H.; and its basin
of attraction correspond to the one of J., which is equal to J establishing GpAS of A for
Hes.

Building on GpAS of A for H.;, we establish LAS of the same set for H.. First we show
that GpAS of A for H,.; implies stability of A for H..

To this end, pick € > 0 and suppose without loss of generality that A + eB C IntJ, such
a choice is always possible due to A C Int.J by selecting € small enough. From GpAS of A
for system H.;, it is always possible to pick 6 > 0 such that for every solution ¢ to H.y,
|6(0,0)| 4 < ¢ implies |p(t, 5)|a < € for all (¢,5) € dom¢. Now, from Lemma C.1, it follows
that Sy, (A+0B) C Sy, ,(A+0B). Pick any ¢ € Sy, (A+0B). Then thanks to the selection
considered for § one has for all (¢,7) € dom that |¢(t,5)|a < e. Hence, since the above

arguments can be performed for any selection of € > 0, it follows that A is stable for H ;.

Now we prove local attractivity of A for H.. The proof follows similar steps to the proof

of stability here above. In particular, pick the same pair (e,d) from above. Since for such
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a pair we shown that ¢ € Sy (A + 6B) implies that ¢ is a maximal solution to H,. and
maximal solutions to H. are complete. Hence, from GpAS of A for H.;, it follows that
every ¢ € Sy, (A + 0B) converges to A. Then, A is locally attractive for H,.. This latter
property along with the stability proven above establish that A is LAS for H.. Furthermore,
since M., M, M., My, M., , M., can be selected arbitrarily large, for every maximal bounded
solution ¢ to H., there exists a suitable choice for M., M,,, M., Mz, M., , M., such that rge ¢ C
IntJ. Hence, such a ¢ is a complete solution to H.; and it converges to A being A GpAS
for H.. Thus, the basin of attraction of A contains each point from which maximal solutions
to H. are bounded. Thus to establish GAS, we show that every maximal solution to (7.7)
is bounded, that is the basin of attraction of A includes C, U D.,.

For each positive A, define M, = diag(AI[, I, 1, A, A, 1), and notice that for each? z €
Ce U D, UG(D,), one has |Myx|4 = A||(z,u,e,ua)||. Pick any maximal solution ¢ to (7.7)

and denote

(t7.]) — 1?(@]) = (Z(t,j),U(t,j),Tl(t,j),E(t,j),ﬂ(f,j),TQ(t7j)).

From LAS of A for (7.7), there exists u > 0 such that every ¢ € Sy, (A + uB) is bounded.
Select a small enough \* > 0 such that A*||(2(0,0),«(0,0),£(0,0),a(0,0))|| < p, then

| M33p(0,0)]4 < p.

For each (t,j) € dom ), consider the function (¢, j) — M3 (t, 5), and notice that according
to Lemma C.2 M3y is a maximal solution to (7.7). In particular, due to the selection
considered for p, one has M3y € Sy (A + uB), therefore M3t is bounded. Since the above
arguments hold for any maximal solutions, boundedness of maximal solutions to (7.7) is
established and this finishes the proof. [ |

Now, the proof of Lemma 7.1 is given. Such a proof uses the definition of uniform pre-
attractivity of a closed set for a general hybrid system #H with state in R’.
Definition 7.4. ([56, Definition 6.24]) A compact set A C R’ is said to be uniformly pre-
attractive from a set S C R’ for H if every ¢ € Sx(S) is bounded and for every e > 0 there
exists T' > 0 such that |¢(¢, j)|4 < € for every ¢ € Sy(S) and (¢, ) € dom ¢ with ¢t + 5 > T.

Proof of Lemma 7.1. Let Ajz be the set defined in Claim 7.1. The set J; = (JUG.(J))NAz
is compact, and uniformly pre-attractive for system H.; from any neighborhood of J;. In
particular, notice that each solution to H.; is bounded and that for each complete solution
¢ to H.y, as pointed out in Remark 7.2, there exist a (solution independent) strictly positive
scalar T, such that ¢t + j > T, with (¢,7)dom ¢, implies ¢(t,j) € Az. This is enough to
show uniform pre-attractivity of J; for H.; from any neighborhood of 7;. Then, since H.;
satisfies Assumption 4.1, thanks to [56, Proposition 7.5], along with global (uniform) pre-
attractivity of the set J; for H.; shown right above, it follows that J; is GpAS for H.;.

2Notice that M, amounts to the nonproper standard dilation defined in [57, Definition 3.7]. In particular,
H. is homogeneous of degree zero with respect to the nonstandard dilation; see [123].
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Now, consider the system H.| T = Heljn T Since JNJ; C Az, by containment arguments
(see; [56, Proposition 3.32]), it follows that every solution to H.;|; is a solution to Hes|,_.
Thus, from Claim 7.1, the set 7. is GpAS for H8J|jﬂ. Furthermore, as J. C Jg, from [56,
Corollary 7.24], it follows that J. is LpAS for H.; and its basin of pre-attraction coincides
with the one of 7;, which in turn coincides with .J. Therefore 7. is GpAS for H.. [ |

7.3.2 Sufficient Conditions

Now, we provide sufficient conditions guaranteeing that the stated assumptions hold.

The observer gain L can be already designed to satisfy Assumption 7.1 via Corollary 5.1
on Page 157. To design the controller K ensuring that Assumption 7.2 is verified, as follows
a constructive methodology is offered. Such a methodology basically uses ideas from [56,
Example 3.21].

Proposition 7.1. If there exist P € Si’Lp, and a matriz K € R"*P such that

GTe" PG —P <0  Yoe [TY, TY, (7.11)
where
A B I 0
= G = (7.12)
0 0 K 0

then Assumption 7.2 is verified.

Proof. Consider system (7.10) and set

z
fic(ze) = K [u ,Gr(zx) = = u
—1 [TV, T3]

Pick the following Lyapunov function candidate for the hybrid system (7.10) defined for

every rx = (z,u, 1) € R+

T
V(IIC) = [Z] eIE‘Tn I[J)BFH

z] . (7.13)

To prove the claim, we pursue a similar approach as the one in the proof of Theorem 5.1.

To this end, notice that there exist two positive scalars oy, ay such that
041|:L“;C|?4K S V(ZL‘;C) S a2|w;¢|i\,€ \V/Zlf}c € C}C @) D;C @) G;C(D;C) (714)

where Ay is defined in Assumption 7.2. Specially, due to the positive definiteness of P and

the non-singularity of the matrix ef™ for every 71, by continuity arguments, one can set

o= min Api (¢ 7P (7.15)

Tle[ovTé/{}
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— Amax (€5 1P 7.16
= iy e (TR o

where Apin(+) and Apax(+) denote, respectively, the smallest and the largest eigenvalue of

their matrix argument. By straightforward calculations one gets

VV(zg) = (QGFT“IPGFTl

Z] : [Z U] GFTTl <IFT]P> + P]F)GFTI [2] )
u u
Since the matrices ef™ and F commute, one has

<VV($), fIC(fEIC» =0 Vri € Ck. (717)

Notice that, for every gx € Gi(xx), there exists a real scalar v belonging to the interval
[T TY] such that

Then, for every gx € Gic(xx), one has

T

V(gIC) _ V(IIC) — (GTBFTUPGFUG o e]FTU]P)eFv)

z
u
Moreover, whenever xx € Dy, from (7.10b), we have that 7 = 0. Then, we have

:

Hence, by virtue of relation (7.11), it follows that there exists a positive small enough scalar
3 such that, for every v € [TY, T¥], and Vax € D, Vgx € Gx(xx)

u

T
(GTe]FT”IP)eF”G — IP)

z

u

Vige) = Viex) < —Blaxli, (7.18)

Now, let ¢ be a solution to (7.10). Notice that, for each (¢,j) € dom ¢, one has ¢t <
T (j + 1). Hence, by following the same arguments presented in the proof of Theorem 5.1,
thanks to (7.17) and (7.18) it follows that the set Ay is GES, hence GAS, for system (7.10).

Hence, Assumption 7.2 is verified, concluding the proof. [

7.3.3 Design Procedure

Direct computation of the gain K via Proposition 7.1 is not straightforward. In particular,
from a numerical standpoint, (7.11) has two issues: it is not linear in P and K, and it

needs to be verified for infinitely many values of v. Thus, to make the problem numerically
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tractable, inspired by the results presented in Chapter 5, some manipulations are needed.
To this end, the following results allow to derive an LMI-based design procedure for the
proposed controller.

Proposition 7.2. If there exist a matriz K € RP*", and Py € 8¢, such that for each
v e [T, 7Y),

v T v
(eA” + [ eAsdsBK> P, (eA“ + [ erasBK ) ~P <0 (7.19)
0 0

then, there exists P € SI*P such that the pair (K,P) satisfies (7.11).

Proof. First of all notice that, for every real scalar v, the following identity holds

(A 0 )
v Av v Asd B
N[0 0f ) e Jyetds (7.20)
0 |
and consequently
Av L VedsdsBK 0
g — ¢ Thoeds . (7.21)
K 0

Hence, since the (2,2)-block of the aforementioned matrix is zero, thanks to Lemma C.3, it
turns out that from (7.19) there exists P € ST such that (7.11) holds and this concludes
the proof. [ |

Now, we proceed to provide a condition linear in the decision variables whose feasibility
is equivalent to (7.19).
Proposition 7.3. The feasibility of (7.19) is equivalent to the feasibility of

W+ S+ ST —eS — [7eAdsBY

. Cw <0 wvelTY Ty (7.22)

with respect to W € 8¢, S € R™", and Y € RP*™. In particular, given any feasible solution
to (7.22), K=Y S ' and P, = STTWS™! satisfy (7.19).

Proof. Notice that the feasibility of (7.19), by Projection Lemma [99], is equivalent to the
feasibility of

P+ He(X) —XTedr — XT [V e*dsBK

<0 wvelTY TY (7.23)
[ ] —P1

where X € R™". Now, by setting X' =5, STP,S = W, and KS =Y and by pre-and-post
multiplying the left-hand side of (7.23) by diag(ST, ST) and diag(.S, S) provides the left-hand

side of (7.22) and since the above transformations are invertible, the result is established. W

Proposition 7.3 provides an equivalent condition to (7.19), which is linear in the decision

variables W, Y, and S. In particular, the above result ensures that given (W.Y,S) such
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that (7.22) holds, then K = Y S™! lets Assumption (7.2) hold. Moreover, due to the shown
equivalence, the use of Proposition 7.3 as a design result does not entail any additional

conservatism.

Nevertheless, (7.22) still has to be verified for infinitely many values of v. To overcome
such a drawback, we proceed in a similar way as in Chapter 5. Namely, by building a suitable
polytopic embedding, we derive a finite number of conditions whose satisfaction yields the
satisfaction of (7.23). To this end, consider the following preliminary result, whose proof is
given in Appendix C.

Lemma 7.2. Let v be a real scalar belonging to a given compact interval Z, and let 2; and

), be two real constant matrices. Let

v [moa] o [r e _[r @
oy LT e LT U, Ly
be matrices such that for each v € Z,
Q Q
exp ( 01 02 v) €co{Xy, Xs,..., X, }. (7.24)
Then, for each v € Z, the following identities hold:
e fyeedsy| €co{[R1 Q][R @), [R, Q]} (7.25)

O

The above result is rather general, since it is not based on a specific polytopic embedding
of the exponential matrix in (7.24). Thus, to achieve the desired task, any of the technique
proposed in the literature can be adopted. In this dissertation, we rely on technique exposed

in Chapter 5.

Now we are in position to state the following design result.

Proposition 7.4. Let

R R R, Q.
X, = 1@,&: Q%waz @ (7.26)
Uy, Ly Uy Lo U, L,
be matrices such that for each v € [TY, TY],
A B
exp ( 0 v) eco{Xy,Xo,..., X, }. (7.27)
If there exist W € ST, S € R™", and Y € RP*" such that for everyi=1,...,v
W+S+ST —RS—Q;Y
e @Y _o (7.28)
° -W
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then K =Y S~ ensures Assumption 7.1.
Proof. First of all, according to Lemma 7.2, there exist positive functions A;(v),..., A, (v),
such that for each v € [TY, TY]
e =S N (v)R:, / edsB =3 \i(v)Q; (7.29)
i=1 0 i=1
with > ; A;(v) = 1. Thus, the left-hand side of (7.22) turns in
- W4+ S+S8T —R,S—Q;Y
S| T @) (7.30)
i=1 i -w
Hence by the virtue of Proposition 7.3 the result is proven. |
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7.4 Numerical example

Example 7.1. Consider the linearized model for the unstable batch reactor in [58], which

is described by the following data:

1.38  —0.208 6.71 —5.68 0 0
_|-0581 —429 0 0.675 568 0
| 107 427 —-665 589 | |1.14 -3.15
0.048 427 134 —2.1 1.14 0 (7.31)

1 1 -1
M = X
01 0 O
and assume TP = TY =T, = 0.1 and T = T = Ty, = 0.9. As a first step, by relying on

the apparatus illustrated in Section 5.4, we design the observer gain L to let Assumption 7.1

hold. In particular, we obtain

0.8618 —0.1012
0.0001516 1

0.131 0.277
—0.006379  0.1765

Then, as a second step, to let Assumption 7.2 hold we design the controller gain K via Propo-
sition 7.4. In particular, by building on the polytopic embedding proposed in Section 5.4.1,

one gets
~10.19355  —0.17442 0.094692 —0.23368

| 1.2263  0.087818 0.85837 —0.53913|

Figure 7.2 shows the evolution of the plant state z and Figure 7.3 shows the evolution of
the observer state Z projected onto ordinary time. While Figure 7.4 and Figure 7.5 show,
respectively, the evolution of the input u feeding the plant and the evolution two timers 7
and 7y, still projected onto ordinary time. In this simulation, z(0,0) = (1,1,1, 1), 2(0,0) =
(0,0,0,0),u(0,0) = (0,0),a(0,0) = (0,0),71(0,0) = 72(0,0) = T», and the sampling instants
are chosen randomly according to a uniform distribution. Simulations show the effectiveness
of the proposed approach, by stressing that the stabilization is achieved despite the lack
of synchronism between the output sampling and input updating, as Figure 7.5 suggests.
Moreover, it is interesting to notice that, according to the initialization operated for 7 and
T9, the control system runs in open-loop for the first 75 units of time, as underlined by

Figure 7.3 and Figure 7.4.
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10

Figure 7.5: The evolution of 7; (above) and 7» (below) projected onto ordinary time.
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7.5 Comments and Conclusion

In this chapter, we shown how the measurement-triggered observer proposed in Chapter 5 can
be used to asymptotically stabilize a linear plant in the presence of sporadic measurements
even when the plant input is not accessible at any time, provided that the controller is aware
whenever a new sample is sent to the plant. The proposed approach builds on a separation
principle, which due to the homogeneity of the resulting hybrid system leads to a global
result. Moreover, a numerically tractable design, based on the solution to certain LMIs was

provided. Finally, the effectiveness of the described methodology is shown in an example.

One of the main advantages of the proposed approach consists in avoiding the need of
seeking for a Lyapunov function for the whole closed-loop system to certify asymptotic sta-
bility, which is a nontrivial problem. This is a worthwhile feature, which is enabled by the use
of the general and powerful framework proposed in [56] to study hybrid dynamical systems.
In particular, building on [56] allows to mimic the standard arguments adopted to establish
stability properties for upper triangular continuous-time or discrete-time nonlinear systems.
The pursued approach also brings outs that, in the considered setting, using an observer-
based controller enables to achieve closed-loop asymptotic stability without assuming any

correlation between the output sampling events and the control input updating events.

One should be aware that the same approach could be considered to stabilize nonlinear
plants, as long as one is able to build, for the considered case, an observer to reconstruct
the plant state in the presence of sporadic measurement and a state feedback controller to
stabilize the plant in the presence of sporadic input access. However, in this setting, the
considered separation principle could allow to establish only local results, as in the more
general case considered in [122], unless the plant to stabilize gives rise to an homogeneous
closed-loop system. Whenever homogeneity does not hold, as suggested in the proof of The-
orem 7.1, an estimate of the basin of attraction of the closed-loop system can be determined
by seeking for a set from which the initialization of the closed-loop system leads to bounded
solutions. This is certainly a difficult problem in general. In addition, often estimates of
basin of attraction are built via the construction of a Lyapunov function for the closed-loop
system. On the other hand, the knowledge of a (strict) Lyapunov function enables itself to
conclude on asymptotic stability of the closed-loop system, making the use of a separation

principle worthless, unless only a weak Lyapunov function is available.

As in Chapter 5, an interesting direction of research consists in the search of other Lya-
punov functions to ensure the satisfaction of Assumption 7.2, with the aim of reducing
the conservatism and the computational burden of the proposed polytopic embedding-based

design procedure.

Concerning comparisons between the approach we illustrated and the other approaches
usually considered in the literature to deal with stability and stabilization in the presence of
asynchronous sampling, it is worthwhile to observe that adopting a discrete-time approach,

as the one often considered in the literature of sampled-data and networked control systems;
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see, e.g., [29] and the references there in, does not seem suitable in this setting due to the
asynchronicity of the output sampling events and the control input updating events. Indeed,
such an approach rests on the construction of a discrete-time model of the closed-loop system,

process that does not appear doable in our setting due to multiple asynchronous jumps.



CONCLUSION OF PART II

Concluding Remarks

In this part of this thesis, we provided two observer schemes to exponentially estimate the
state of a continuous-time LTI system in the presence of sporadic measurements. In addition,
building on the first considered observer scheme, an observer-based controller scheme is
proposed to asymptotically stabilize a continuous-time LTI system in the presence of both
sporadic measurements and input access. For such a scheme, a separation principle was
shown. The pursued approach hinges upon the hybrid system framework in [56] and leads to
computationally tractable conditions for the design of the resulting observation/controller

schemes.

Perspectives and Future Outlook

The work presented within this part has the role to prepare the stage for several interesting
extensions. In this sense, the results included in this part do not represent an ended work.
In particular, as previously mentioned, the extension of the observer in Chapter 6 to multi-
output linear plants with asynchronous channels in the presence of sporadic measurements
is currently under investigation. A likewise interesting extension consists of the construction
of an observer-based controller, as in Chapter 7, to account event for asynchronous input
channels in multi-inputs plants. This latter lines of research suggests that a possible exten-
sion of the work presented in this dissertation concerns the construction of an observer-based
controller in the case of networked control systems; see [129]. Indeed, in this setting actu-
ators and sensors are grouped in different nodes that, respectively, grant their access and
transmit data sporadically. Thus, such a situation can be addressed, with some extra work,

merging the ideas in Chapter 7 and the observer presented in Chapter 6, though adapted
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for the case of asynchronous multi-outputs sampling. However, observe that to rest on the
controller architecture proposed in Chapter 7, as assumed therein, one would need to en-
sure that whenever a new control sample is sent to the plant, the controller instantaneously
updates its internal variables to keep track on the plant input, so as to build a correct esti-
mation of the plant state. This assumption should not entail a severe constraint in practical
implementations and usually considered in the literature of networked control systems; see,
e.g., [62]. For instance, a packet acknowledgment mechanism, as the one implemented in the

TCP protocol, would enable to effectively ensure such an assumption; see [113].

In the framework of networked control systems, an aspect that deserves investigations
pertains to the presence of time-delays in the considered input and output channels, which
is a well acknowledged in the literature of networked control systems; see [62]. Also such a
problematic could be addressed in a hybrid systems setting via the notion of hybrid system

with memory illustrated in [86], although the extension does not appear straightforward.

Concerning genuine observer design in the presence of sporadic measurements, an inter-
esting aspect consists of coupling some performance requirements to the synthesis procedures
proposed within this dissertation. For instance, as already done, e.g., in [45], one can envi-
sion the derivation of design strategies guaranteeing a given exponential decay-rate for the
estimation error, and/or ensuring some performance in terms of attenuation of exogenous

signals.
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APPENDIX B

B.1 Extreme matrices of Example 5.2

[0.12242  0.14812  0.39226  —0.011693
X, = 0.31962 0.09904 —0.023385  0.22076
—0.8079 0.41564 —0.26983  0.1715
1048828  —0.4649  0.34301  —0.34247
[0.12242  —0.70693 —0.46279 —0.86674]
X, — 0.31962 —1.6111 —1.7335 —1.4893
—0.8079  1.2707  0.58522  1.0266
10.48828  1.2452  2.0531 1.3676 |
[0.45744  1.2652 1.32 0.80905 |
X, = 0.91237  2.0755 1.6181 1.6729
—1.0219 —0.29808 —0.86258 —0.35287
10.10958  —1.7277 —0.70574 —1.2702 |
[0.45744  0.41019 0.46498  —0.045998
X, = 0.91237  0.36545  —0.091995 —0.037207
—1.0219  0.55697 —0.0075306  0.50218
10.10958  —0.017582  1.0044 0.43986
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X7

Xio

[—0.16909  0.31446  0.11447 0.14779
0.33335  0.12649  0.29558  0.095588
0.066639 —0.18111 —0.28356 0.018883

1—0.39999  0.1044  0.037766 —0.064684

[—0.16909 —0.54059 —0.74058 —0.70726]
0.33335 —1.5836 —1.4145 —1.6145
0.066639  0.67394  0.57149  0.87393
|—0.39999  1.8145 1.7479 1.6454 |

[ 0.16593  1.4316 1.0422  0.96854 |
0.92609  2.103 1.9371 1.5477
—0.1474 —0.89483 —0.87631 —0.50549
|—0.77869 —1.1584  —1.011  —0.99245]

[ 0.16593 0.57653 0.18719 0.11349
0.92609 0.3929 0.22697  —0.16237
—0.1474 —0.039783 —0.021257 0.34956

| —0.77869  0.55172 0.69912 0.71765

0.8232 —0.35304 0.1821  —0.057382
—0.59132 0.70844 —0.11476  0.42038
—0.47896  0.29686 0.6411 —0.23828

1.0703  —0.95551 —0.47655 —0.13231

[ 0.8232 —1.2081 —0.67295 —0.91243
—0.59132 —1.0017 —1.8249 —1.2897
—0.47896 1.1519  1.4962  0.61677
| 1.0703  0.75459  1.2335 1.5778

[ 1.1582 0.76408  1.1099  0.76336

0.0014298  2.6849 1.5267 1.8725
—0.693  —0.41686 0.048357 —0.76265

| 0.69157  —2.2183 —1.5253 —1.0601

[ 11582  —0.090972 0.25481 —0.091687
0.0014298  0.97485 —0.18337  0.16241

—0.693 0.43819 0.90341  0.092402
| 0.69157 —0.5082 0.1848 0.65002




X3

X14

X6 =

[ 0.53169

—0.57759
0.39558

| 0.18201

[ 0.53169

—0.57759
0.39558

| 0.18201

[ 0.86671
0.015156
0.18154

| —0.19669

[ 0.86671
0.015156
0.18154

| —0.19669

—0.18669 —0.095689 0.1021 ]
0.73580  0.2042  0.29521
—0.29989  0.62738  —0.3909
—0.38621 —0.78179  0.14548 |
—1.0417 —0.95074 —0.75295]
—0.97421 —1.5059 —1.4149
0.55516  1.4824  0.46415
1.3239 092831  1.8556 |
0.93042 0.83208  0.92285
27124  1.8457  1.7473
—1.0136 0.034631 —0.91527
—1.649 —1.8305 —0.78229
0.075374 —0.022973  0.067796
1.0023  0.13559  0.037246
—0.15857  0.88968  —0.060218
0.061102 —0.12044  0.92781
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APPENDIX C

Proof of Claim 7.1. Pick any maximal solution ¢ = (¢1, ¢2) to system H 4., where

(taj) = ¢1(t7j) - (’Z<t7j)7u<t7j)77—1<t7j))
(taj) = ¢2(t>j) = (‘S(taj)aOaTQ(t:j))'

According to the properties of the domain of the solutions to (7.7) shown in Section 7.2.2, it
is straightforward to show that there exists a solution ¢ to system (7.9), with sup, dom ¢ =
sup, dom ¢, and such that for every (t,j) € dom ¢ there exists s € N, s > j: (t,s) € dom ¢
and ¢(t,7) = [e(t, s), m2(t, s)]. Loosely speaking, ¢ flows whenever ¢ flows and only jumps
whenever ¢ jumps due to ¢(t,s) € Ds.. Moreover, notice that for every (z,u,m,¢e,u,Ty) €
(CoNAz) U (DN Az) UG(D. N Ap), one has |(z,u, 71,€,U,72)|a. = |(g,72)|4,. Now, from
stability of A, for system (7.9), one has for every (¢, j) € dom ¢, |¢(t,5)|4, < |¢(0,0)|4,, and
by construction for all (¢,s) € dom ¢ there exists j € N with j < s, such that (¢, j) € dom ¢
and

|0(1, 8)|a. = |¢2(t, 5)[ 4, = [0(2, )] 4,

Then, stability of A, is proven. Concerning global attractivity, pick any maximal solution
¢ to H.,, which is complete, and suppose that the set A. is not attractive for ¢. Then,
there exists h > 0 such that for every positive scalar 7', t + s > T and (¢, s) € dom ¢ implies
|p(t, $)|a. = h. Now, pick (¢,j) € dom ¢ and such that ¢t + j > T'. Then, there exists s* > j
such that |p(t,7)|a, = |P(t,s")|a., but since t + s* > t + j > T one has |¢(t,7)|a, > h,
which contradicts the fact that A, is globally attractive for the hybrid system (7.9), and this
concludes the proof. [ |
Lemma C.1. Given a hybrid system H = (C, F, D, G) and a compact set J. Let H; be the
restriction of H to J. Assume that, for some set S C IntJ, each ¢ € Sy, (S) is such that
rge ¢ C IntJ. Then, Sy (S) C Sy, (5).

Proof. To establish the result, it suffices to show that each 1) € Sy(S) is a solution to H .
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Indeed, since each solution to H; is a solution to H, maximality of such solutions for H;

directly follows from the fact that they are maximal for H.

By contradiction, let us assume that there exists ¢ € Sy(S), which is not a solution
to Hy . Then, by definition of solution, since H and H; have the same dynamics, and
¥(0,0) € SN (CUD) C IntJ the only possibility for 1) not being a solution to H; is
that ¢ eventually leaves J. Let us assume that 1 leaves J via a jump. Then, there exist
(t,7) € dom such that (¢,5 + 1) € dom, (t,5) € IntJ, ¥(t,j + 1) € G((t, 7)) ¢ J.
Thus, this implies that there exists a solution ¢ to H; starting in Int.J that leaves J, and

this is not possible by assumption.

Let us assume that v leaves J by flowing. Then, there exists (s,j) € dom such that
Y(s,j) ¢ J. By continuity of the function t +— (¢, j) over [t;, t;11], there exists s* € [t;,t;11]
such that ¥(s*,7) ¢ IntJ. This implies that there exists a solution to H; that leaves Int.J,
and this contradicts the hypothesis. Then each 1 € Sy(S) is a solution to H;, concluding
the proof. [ |
Lemma C.2. Let ¢ be a solution to (7.7). For each A\ > 0, let M, = diag(\, A\, 1, AL, AL, 1).
For each (t,j) € dom ¢ consider the function ¥ (t,j) = My¢(t,j). Then, ¢ is a solution to
(7.7).

Proof. The proof follows the lines of [56, Lemma 9.3.]. In particular, we show that the hybrid
system (7.7) is homogeneous of degree zero with respect to the standard nonproper dilation
M) defined above. For each A > 0 and for each z. € C. U D,, one gets

Fe(M)\xe> = M)\Fe<xe)7 Ge(M)\xe> = M)\Ge<xe)

moreover, M,C, = C,, M\D, = D.. Now, pick any solution ¢ to (7.7), and notice that
obviously My¢ is a hybrid arc, in particular one has dom ¢ = dom M)¢. To conclude, pick
(t,j) € dom¢. Hence, if ¢(t,j) € C. then My¢(t,j) € C., while if ¢(t,7) = F.(¢(t, 7))
then My\o(t,j) = F.(M\p(t,j)). Furtheremore, If ¢(t,j) € D, then M\o(t,j) € D., and
if ¢(t,j+1) € Ge(P(t,j)) then Myo(t,j+ 1) € Go(Mro(t,7)). Thus My¢ is a solution to
(7.7). n

Proof of Lemma 7.2. First notice that, according to (7.20), it follows

Q Q

v ' [eﬂl” Io 1550, (1)

where X; are some suitable matrices. Thus, by partitioning every X; as follows

R, Q;

X; =
U; Ly




one has

et Jo e dsQ, _ SR Y Ni(v)@Q; (C.2)
0 I B z"jzl )\Z(U)Uz Z;jzl )\Z(U>LZ .
and this finishes the proof. |

Lemma C.3. Let v be a real scalar belonging to a given compact interval Z. Let Q(v) €
R™>m 0 Qs (v) € R™*™2 and Qs(v) € R™*™ be given real matrices of suitable dimensions

whose entries depend continuously on v. If there exist P, € SI', P, € S§}* such that

QI(U)Plgl(U) — P <0 (C?))
Q;-(/U)PQQ:;(U) — P2 <0 (04)

then there exist two constant symmetric positive definite matrices Fi, F3 such that for every
vel
T
Q(v) Qa(v)
0 Qg (U)

o0
0 F

Qi (v) Qa(v)
0 Qg(U)

o0
0 F

< 0.

Proof. First of all denote

- Ql(U) = QI(U)Plﬁl(’U) — Pl
— QQ(’U) = Q;—(U)ngg)(l}) — Pg.

Now, let v a positive scalar to be selected later and consider the following expression

P 0
0 ’}/PQ

Q@) O] [P 0 ][ Q)
i 0 Qg(’U) 0 ’YPQ 0 Qg(v)

—Qi(v) Q) A() }
J QF (v) Py (v) — 7Q2(v)

Then by Schur complement the above right-hand side matrix is negative definite if and only
if
Q3 (0) P (v) = 7Q2(v) + (2 (v) P (v)) T Q1(v) (2] (v) Pis(v)) < 0 (C.6)

that is
YQ2(v) > Q5 (v) (P + Piu(0)Q1 (0) "2 (v) P1) Qa(v).

which is equivalent to
_1 _1
V> Q52 () (v) (Pr+ P (0)Qu () Q] (v) Pr ) 2(v)Qs  (v).
The latter is satisfied if for each v € 7

7> Anae (@27 @QI0) (P + PR (0)Q1(0) Q] (0) A1) R(0)Q5 (1) )



Thus, by continuity arguments, picking

7 > max Mnax (Q;é(v)Qg(v) (P1 + Plﬁl(v)Qﬂv)*lQI(U)Pl) Qz(U)Qz_é(U))

brings the desired result, with F} = P, and Fy = v Ps.



APPENDIX D

SET-VALUED MAPPINGS

Definition D.1 (Domain). Given a set-valued mapping F': R” = R™
dom F = {z € R": F(x) # 0}

Definition D.2 (Local boundedness). A set-valued mapping F': R” = R™ is locally bounded
at x if there exists a neighborhood U, of x such that F'(U,) is bounded. F'is locally bounded
if it is locally bounded at each z. Given a set S C R", I is locally bounded relatively to .S
if the set-valued mapping F:R"=R™

Flz): z— Flo) wed
0 x ¢S

is locally bounded at each z € S.

Definition D.3 (Outer semicontinuity). A set-valued mapping F': R" = R™ is outer semi-
continuous at x € R™ if for every sequence of points z; convergent to x and any convergent
sequence of points y, € F(xy), one has limy, = y € F(z). The mapping F' is outer semi-
continuous if it is outer semicontinuous at each x € R". Given a set S C R", F' is outer

semicontinuous relatively to S if the set-valued mapping M:R" = R™

Fz): z— Flo) we$
0 ¢S

outer semicontinuous at each x € S.
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GENERAL CONCLUSION AND RECOMMENDATIONS FOR
FUTURE RESEARCH

In this dissertation, two specific problems arising in modern control systems were addressed.
On the one hand, stability analysis and stabilization for quantized LTI continuous-time
control systems. On the other hand, state estimation and observer-based control in the
presence of both sporadic sensing and actuation for the case of LTI continuous-time systems.
Although the two considered problems are tackled separately, the applicability of the results
issued from our research situates in the context of control systems with limited information.
Such a class of systems encompasses control systems built in the presence of communication

constraints and/or in the presence of limited sensing and actuation capabilities.

The methodology offered within the first part of this thesis leads to constructive computer-
aided tools for the analysis and the design of stabilizing controllers in the presence of actuator
and sensor quantization. Both static state feedback controllers and dynamic output feedback
controllers were considered, providing tools having a wide range of applications in real-world
settings. Basically, given a LTI continuous-time plant subject to (uniform) quantization,
either in the actuation channel or in the sensor channel or in both, the methodology we pro-
vided allows to design a LTI continuous-time controller ensuring uniform global asymptotic
stability of a compact set containing the origin, while enabling the shrinkage of such a set

via convex optimization.

The methodology offered within the second part of this thesis leads to constructive
computer-aided tools for the design of asymptotic observers that exponentially reconstruct
the state of a given LTT continuous-time plant, whenever the output is measured sporadically
and only a lower and an upper bound on the sampling interval is known. Moreover, such
observers can be used to stabilize a given LTI continuous-time plant in the presence of both
sporadic sensing and actuation. Concerning, it was shown that the design of the resulting

output feedback controller can be performed in two stages thanks to a separation principle.
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Perspectives and Future Directions

As pointed throughout the conclusive chapters of this thesis, the work presented lets sev-
eral questions open. In particular, within the scope of the first part, the extension of the
offered methodology to other class of quantizers such as saturating quantizers is undoubt-
edly interesting and currently under investigation. Another interesting aspect, that is part
of our current research, concerns the chattering suppression achieved by mean of hysteretic
quantizers (see page 129 for further details). A likewise interesting aspect pertains to the
development of alternative algorithms to handle the bilinear terms affecting the derived con-
ditions. A worth improvement along that direction could be the derivation of more advanced

strategies to improve the search of the optima, like in [96].

As far as concerns the second part, the main aspects to investigate pertain to the extension
of the illustrated methodology to more general plant dynamics and to multi-ouput plants with
asynchronous sampled channels; see page 219 for further details. In this setting, considering
MIMO plants, another aspect to address is the construction of an observer-based controller
to account both sporadic sensing and actuation, in the presence of asynchronous channels
both in the input and in the output. This extension is worthwhile since it would help the
design of output feedback controllers for networked control systems ([62]) via the use of a

separation principle.
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INTRODUCTION GENERALE

Dans cette these, deux aspects fondamentaux qui se posent dans les systemes de contrdle mo-
dernes sont abordés : d’une part, la synthese de lois de commande en présence de quantification et
d’autre part, I’estimation d’état en présence de mesures sporadiques. Ces deux aspects sont traités

dans deux parties différentes.

Une des caractéristiques principales de cette thése consiste a obtenir des résultats certifiés par
ordinateur. Plus précisément, pour répondre a cette exigence, nous nous tournons vers une ap-
proche basée sur les inégalités matricielles linéaires (LMI en anglais). L’esprit d’une telle ap-
proche consiste a formuler le probleme examiné directement dans une forme qui est avantageuse
d’un point de vue numérique, au lieu de déterminer des solutions analytiques, qui peut étre un défi
compliqué, voire impossible. Ensuite, grace a la disponibilité d’algorithmes efficaces pour la so-
lution des LMI, la solution aux problemes considérés peut étre obtenue grace a des outils assistés

par ordinateur ; [76].

Les contenus des deux parties qui composent cette these sont bricvement résumés ci-dessous.
Tous les détails ainsi que les démonstrations des résultats présentés sont donnés dans le manuscrit

en anglais.

Quantification dans les systemes de commande

La plupart des systemes modernes sont composés par des systemes en temps-continu qui in-
teragissent avec des dispositifs numériques et/ou des réseaux de données. Dans tous ces cas, la

quantification est un phénomene toujours présent, [8, 9, 18, 21, 31, 54, 71, 72].

Dans cette premiere partie de la theése, nous proposons un ensemble des méthodes constructives
basées sur la théorie de Lyapunov et fondées sur un approche LMI, pour I’analyse et la synthese de

systeémes de controle quantifiés impliquant des systémes et des controleurs linéaires. L’ approche



poursuivie se fonde sur I’utilisation des inclusions différentielles comme outil de modélisation et

sur la stabilisation d’ensembles compacts comme notion de stabilité.

Estimation d’état et commande basée observateur en présence

de mesures sporadiques

Dans la plupart des applications modernes d’ingénierie, I’hypothese d’'une mesure en temps
continu de la sortie d’un systeme donné est évidemment irréaliste. Cette contrainte a donné lieu
a une nouvelle voie de recherche visant a développer des schémas d’observateur qui considere

explicitement la nature discrete des mesures disponibles, [1, 3, 4, 46, 60].

Dans cette partie de la these, inspiré par certains schémas d’observation classiques présentés
dans la littérature des observateurs échantillonnés, nous proposons deux observateurs pour estimer
I’état d’un systeme linéaire en présence de mesures sporadiques. En outre, en s’appuyant sur un
des deux observateurs, une architecture de contrdle basée observateur est proposée pour stabiliser
asymptotiquement un systéme linéaire en présence de mesures sporadiques et d’un acces a I’entrée
intermittent. La conception d’un tel dispositif de commande est simplifiée par 1’utilisation d’un

principe de séparation qui s’applique a I’architecture considérée.

Une caractéristique unique de 1’approche proposée consiste a s’appuyer sur le cadre de systemes
hybrides proposé dans [33]. D’une part, en suivant cette approche un nouvelle modélisation des
observateurs proposés est fournie, conduisant a des stratégies de synthese systématique, qui se
démontrent efficaces dans certains exemples. D’autre part, I’énorme flexibilité offerte par le cadre
proposé par [33] permet d’envisager des extensions trés intéressantes des résultats présentés dans

cette partie.

II



Premiere partie

Quantification dans les systemes de
commande






INTRODUCTION

Cadre général et aspects historiques

Les récents améliorations technologiques ont permis la conception d’une nouvelle génération
de systemes intégrant des composantes physiques, des organes de calcul tout en s’appuyant sur des
réseaux de communication. Le développement rapide de ce type de systemes est lié aux avantages
apportés par I’utilisation de technologie de pointe, notamment en termes de facilité d’entretien et
de disponibilité de ressources de calcul élevées, qui favorisent les applications récentes, comme
les systemes de transport, la robotique autonome, la distribution d’énergie, etc. Cette nouvelle
tendance a aussi un fort impact dans les systtmes modernes de contrdle, qui sont aujourd’hui
construits par 1’adoption de contrdleurs et instrumentation numérique [61]. Si typiquement les
systeémes physiques évoluent en temps-continu et sont caractérisés par des variables qui prennent
des valeurs dans des ensembles indénombrables, les appareils numériques évoluent de maniere
discrete. Quand un systeme physique interagit avec un dispositif numérique, les effets secondaires
comme les retards, les asynchronismes ou la quantification, sont inévitables et peuvent souvent
se transformer en une dégradation des performances, comme la présence de cycles limites, de

phénomenes chaotiques, voire I’instabilité du systeme en boucle fermée.

En ce qui concerne I’effet de la quantification dans les systémes de commande, un tel phéno-
mene est presque omniprésent dans les systemes de contrdle modernes et son étude a largement
attiré les chercheurs au cours des dernieres années ; voir, e.g., [8, 9, 18, 21, 31, 54, 71, 72] pour

n’en citer que quelques-uns.

L’impact négatif de la quantification sur les systemes de contrdle semble étre déja connu a la fin
des années 50. Des premiers essais pour la prise en compte de ce phénomene peuvent €tre retrouvé
dans le travail de Kalman en [42]. Dans cet article, la quantification est étudiée essentiellement via
des outils stochastiques. En fait, jusqu’a la fin des années 80, la tendance commune pour 1’analyse

de systemes de commande quantifiés consistait a regarder la quantification comme un phénomene
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induisant un écart non déterministe du systeéme de controle quantifiée de son comportement no-
minal (en absence de quantification). Par conséquent, 1’idée générale était d’abord de concevoir
des contrdleurs via des techniques standard tout en négligeant la quantification. Puis, le compor-
tement réel de la boucle fermée était caractérisé grace a des outils d’analyse stochastique ; [4]. 11
est clair que cette approche peut étre efficace lorsque le niveau des spécifications est plutdét mo-
deste et la quantification petite. Par conséquent, 1’utilisation de plus en plus répandue de systemes
numériques dans les dispositifs de commande ainsi que 1I’augmentation des exigences de perfor-
mance, ont rendu nécessaire 1’ utilisation de nouveaux outils. A la fin des années 80, les travaux de
Delchamps [20, 21], et dans une certaine mesure ceux de Miller et al. [57], ont marqué une étape
tres importante dans la littérature des systemes de controle quantifiés, en proposant une approche
alternative pour mener 1’analyse de stabilité et la stabilisation des systemes de contrdle quantifiés.
Cette approche consiste a modéliser le phénomene de quantification par une fonction non linéaire
statique, le quantificateur, qui lie une variable réelle a une variable appartenant a un ensemble dé-
nombrable Q, i.e., q: R — Q. La méthodologie proposée par Delchamps et al.([20, 21]) a donné
lieu a de nouvelles directions de recherche fondées sur les outils issus de la théorie du contrdle non
linéaire pour I’étude des systemes de controle quantifiés. Des lors, cela a donné lieu rapidement a
différentes approches et outils pour I’analyse de la quantification dans les syst¢emes de commande.
Essentiellement, ces approches partagent une idée fondamentale commune basée sur 1’approche
d’analyse et commande robuste. En particulier, le systeme en boucle fermée est modélis€ comme
un systeme nominal perturbé par un perturbation bornée, i.e., I’erreur de quantification. Des pre-
mieres tentatives reposant sur cette approche, pour le cas particulier des systemes SISO, peuvent
étre trouvés dans [57].

Plus tard, cette approche générale a ét€ étendue pour les systemes linéaires généraux avec des
mesures quantifiées [8] et pour les systeémes non linéaires en présence d’entrées de commande
quantifiées ou des mesures quantifiées[52], tandis que dans [53] une architecture de contréleur basé
observateur est présenté pour construire un contrdleur par retour de sortie en présence de mesures
quantifiées. L’idée fondamentale adoptée par les auteurs dans toutes ces dernieres publications se
base sur I’adoption de la notion de stabilité entrée-€tat introduite par Sontag ; [70]. En particulier,
les auteurs montrent que les systeémes de controdle stables entrée-état ont la robustesse nécessaire
pour tolérer la quantification. Nous souhaitons souligner que dans tous ces travaux, les auteurs ont
également proposé de nouvelles politiques de controle pour assurer la stabilisation asymptotique
plutdt que la stabilité pratique habituellement étudiée. Cette approche a permis le développement
de nouvelles recherches ciblées sur les aspects de le théorie de I’information, visant a caractériser la
quantité d’information réellement nécessaire pour la stabilisation d’une systeme donné, en fonction
de son comportement en boucle ouverte [74]. Par la suite, dans [9] les auteurs, en se limitant a la
quantification logarithmique et en poursuivant une approche basée sur des conditions de secteur,
ont réussi a relacher les conditions de stabilité entrée-état, pour obtenir la stabilisation des systemes
non linéaires a entrée quantifiée, au moins pour le cas de la quantification logarithmique. L’idée
d’encapsuler I’erreur de quantification dans un secteur, avant d’étre utilisée dans [9] avait déja été

considérée dans [31], pour le cas des systemes linéaires a temps-discret.

Ces dernieres approches montrent que la quantification peut étre efficacement traitée par des
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outils de la commande robuste. L’effort principal fait dans ces derniers travaux consiste a détermi-
ner de conditions pour assurer la stabilité asymptotique de 1’origine vis-a-vis d’un quantificateur

le plus grossier possible.

Comme mentionné par ailleurs, la stabilisation asymptotique de 1’origine peut €tre obtenue en
général lorsque le quantificateur considéré est infiniment précis autour de 1’origine, comme pour
le cas du quantificateur logarithmique. Toutefois, dans certaines situation réelles la disponibilité
d’un tel type de quantificateurs ne peut €tre considérée en raison de contraintes technologiques
ou d’optimisation. Dans [9, 22], cette contrainte a donné lieu a une analyse complete de I’'impact
sur la stabilité asymptotique en présence d’un quantificateurs avec un nombre fini de symboles.
Plus précisément, dans [9] les auteurs montrent que, dans un tel cas, la stabilisation pratique semi-

globale peut étre facilement obtenue, au moins dans le cas d’entrée quantifiée.

Un autre aspect intéressant et fondamental lié aux systemes de contrdle quantifiés concerne les
enjeux liés aux comportements provoqués par les discontinuités induites par les quantificateurs
dans les boucles de commande standard. En effet, le fait que les quantificateurs envoient des en-
sembles indénombrables vers des ensembles dénombrables implique que les quantificateurs sont
essentiellement des fonctions discontinues. Ce fait a un impact tres important lorsque les quan-
tificateurs interagissent avec des systemes dynamiques. Il est bien connu que les discontinuités
donnent lieu a de graves problemes lorsqu’elles sont couplées avec des équations différentielles
ou aux différences [10, 17, 28, 47, 50]. Ces problemes vont de questions relatives a 1’existence et
la nature des solutions pour le systéme en boucle fermée(dans les systemes dynamiques a temps
continu) a des problemes de robustesse du systeme en boucle fermée vis-a-vis de petites per-
turbations et/ou bruit de mesure (en temps-continu et a temps-discret). Les questions liées aux
discontinuités dans les équations différentielles étaient déja connues a la fin des années 60 par la
communauté travaillant sur les équations différentielles, comme en témoigne le travail de Hajek en
1979 [34], qui offre un panorama intéressant sur ce sujet.

Plus tard, le nombre croissant d’applications réelles concernant les équations différentielles dis-
continues a notamment stimulé la recherche dans ce domaine. Une telle recherche a conduit a une
théorie complete et solide pour I’étude des équations différentielles a second membre discontinu.
Des résultats importants dans ce domaine peuvent étre trouvés dans [6, 28, 49, 17]. Nous souli-
gnons que 1I’énorme développement de la théorie moderne des systemes dynamiques discontinues
a été rendue possible par le développement de la théorie des inclusions différentielles ; voir, e.g.,

[5, 14], qui sont le principal outil pour I’étude de systemes dynamiques discontinus.

En dépit de la profonde connaissance disponibles de nos jours sur les systemes dynamiques dis-
continus, étonnamment peu de travaux dans ce cadre ont été menés dans la littérature des systemes
de contrdle quantifiés. Un premier travail dans ce cadre apparait dans [9]. D’autres résultats ont été
présentés plus tard dans [10].

A notre avis, la raison principale derriere cette manque de contributions est principalement due
au fait qu’un grand nombre de publications dans ce domaine concerne des systemes a temps dis-
cret. Dans le cas des systemes en temps-discret, les questions liées a I’existence de solution ne sont

plus un probleme. Néanmoins, la présence de discontinuités dans les systemes en temps-discret
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peuvent tout de méme compromettre la robustesse du systeme en boucle fermée. Des exemples in-
téressants sur cet aspect sont présentés dans [47, 50]. Il est important de remarquer que la poursuite
d’une approche de type commande robuste permet d’éviter, en général, les problemes de robus-
tesse provoqués par des discontinuités. Cependant, des telles discontinuités peuvent donner lieu
a des comportements pour lesquels une analyse traditionnelle ne peut fournir aucune justification

précise.

Néanmoins, dans les systemes modernes de commande, le paradigme classique de considérer la
quantification pour des systemes en temps-discret doit etre reconsidérée. De nombreux exemples
peuvent étre trouvés dans lesquels des systemes a temps-continu interagissent avec des variables

quantifiées ; voir, e.g., [10].



QUANTIFICATION DANS LES SYSTEME DE COMMANDES :
MODELISATION ET ASPECTS TECHNIQUES

1.1 Introduction

Dans ce chapitre, nous présentons le phénomene de quantification dans sa forme générale, et
les problemes dérivants de la présence de quantificateurs dans des boucles de commande standard.
Ensuite, les aspects généraux de la quantification dans les systemes de contrdle sont particularisés
aux cas des systtmes de commande linéaires soumis a de la quantification uniforme. Dans ce

contexte, nous illustrons des résultats techniques qui seront utilisés dans la suite de cette these.

1.2 Systemes quantifiés : modélisation

En accord avec I’approche générale dans [21], dans ce mémoire, comme quantificateur, nous
entendons une fonction q qui transforme I’espace Euclidien Rf en un espace dénombrable Q C R?,
a savoir :

R — Q
q: (1.1)
x— q(x).
Dans cette partie de la these, nous sommes intéressés a analyser I’impact de la quantification sur des

systemes de commande standard. Plus précisément, considérons le systéme non-linéaire suivant

y = h(z)
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ou z € R" est I'état, u € R™ I’entrée de commande et y € RP la sortie, laquelle peut aussi
coincider avec 1’état = dans des cas particuliers. f: R” — R" et h: R" — RP? sont deux fonctions

données.

Supposons que le systeme (1.2) soit contr6lé par un correcteur par retour de sortie. Un tel cor-
recteur génere un signal de commande u,. qui alimente (1.2). Toutefois, dans les implémentations
réelles, le systeme et le contrdleur ne sont pas directement reliés entre eux. En effet, les mesures
de la sortie du systeme sont recueillies par des capteurs physiques. La sortie du systeme envoyée
au contrdleur est représentée par un ensemble de valeurs discretes, i.e., elle est quantifiée. Dans la
suite, nous noterons ce cas comme guantification de capteur. Des considérations tout a fait ana-
logues sont valables pour le canal d’entrée. Dans la suite, nous noterons ce cas comme quantifica-
tion d’actionneur. Clairement, la quantification des actionneurs et des capteurs peut également se
produire simultanément. Notamment, dans une telle situation, le canal de communication empéche
d’envoyer des données de précision infinie ; [10, 36]. Pour cela, dans ces contextes, le modele du
systeme en boucle ouverte a considérer pour 1’analyse, mais aussi pour la synthese de correcteurs,
devrait étre comme suit

&= f(x,u)

u = q,(uc) (1.3)

Ym = dy(h(z))
ou ¥,, et u. sont la sortie mesurée et le signal envoyé au systeme. En ce qui concerne la structure
du correcteur, en fonction de la disponibilité de 1’état du systéme, nous considérons deux classes
de correcteurs. Soit un correcteur par retour d’état statique, soit un correcteur par retour de sortie

dynamique.

1.2.1 Systémes dynamiques discontinus

D’apres la représentation générale donnée par (1.1), il se trouve que le quantificateur est une
fonction qui envoie I’espace Euclidien dans un ensemble dénombrable. Ainsi, quelle que soit la
maniere adoptée pour réaliser une telle fonction, celle-ci sera discontinue. Par conséquent, dans
toutes les situations présentées ci-dessus, le systeéme en boucle fermée est décrit par une équation
différentielle a membre droite discontinu. Il n’y a aucune garantie quant a I’existence de solutions
classiques pour le systeéme en boucle fermée, i.e., des fonctions différentiables partout qui satis-
font la dynamique du systeme en boucle fermée a chaque point dans leur domaine ; [28]. Pour
pallier cet inconvénient, des notions plus générales de solution sont proposées dans la littérature.
En particulier, dans cette these, nous considérons la notion de solution de Carathéodory [10, 17]
et la notion de solution de Krasovskii [49]. Ces notions sont introduites dans ce qui suit pour un

systeme dynamique dans le forme suivante :
&= X(x) (1.4)

avecr € R"et X: R" — R".
Définition 1.1 (Solutions de Carathéodory, [17]). Soit C R, un intervalle. Une fonction ¢: I —
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R™ est une solution de Carathéodory pour (1.4) si ¢ est absolument continue sur I, et

o(t) = X(p(t)) quasiment partout ¢ € I.

Bien que la notion de solution proposée par Carathéodory permet de traiter une plus large classe
de situations, il se trouve que cette notion n’est pas suffisamment générale, (pour plus de détails sur
cet aspect nous renvoyons a la version en anglais de ce mémoire). Afin de résoudre ce probleme,
nous nous tournerons vers la notion de solution de Krasovskii [49].

Définition 1.2 (Solution de Krasovskii [34]). Pour chaque x € R", définissons la fonction multi-
valuée suivante
K[X](z) = [|@0X (x + 0B) (1.5)
>0
ou B est le boule fermée de rayon unitaire dans R". Une fonction ¢: I — R", avec I C R est
une solution de Krasovskii de (1.4) si I est un intervalle, ¢ est absolument continue sur I, et

o(t) € K[X](p(t)) pour presque tout ¢ € L.

Dans ce mémoire, pour une fonction X donnée, nous nous référerons a la fonction multivaluée
K[X](z) comme régularisation de Krasovskii de X.

Trois raisons principales incitent a choisir ce genre de notion dans des problemes de contrdle.
La premiere est que I’existence de solutions de Krasovskii est garantie sous des conditions tres
faibles. La seconde est que, quand ils existent, les solutions de Carathéodory sont des solutions
de Krasovskii. Pour cela, toute conclusion tirée sur des solutions Krasovskii s’applique également
aux solutions de Carathéodory. La troisieme est que, comme indiqué dans [34][Corollaire 5.6.]
(et aussi plus récemment dans [33, Théoreme 4.3]), les solutions de Krasovskii fournissent des

indications sur le comportement perturbé du systeéme considéré.

Pour ce qui concerne I’existence de solutions de Krasovskii, considérons le résultat suivant
[11, 33] et qui est la conséquence directe des résultats généraux sur les inclusions différentielles
présentées dans [5]. Ce résultat utilise la notion de fonction localement bornée.

Définition 1.3 ([16]). Une fonction f: S localement bornée si pour chaque s € S il existe un
voisinage B de s, tel que f(B3) est borné.

Théoréeme 1.1. Soit 2y € R™. Si X est localement bornée, alors il existe au moins une solution de
Krasovskii ¢ pour (1.4), tel que ¢(0) = .

Il est clair que les inclusions différentielles jouent un réle tres importante dans cette these. En

particulier, considérons I’inclusion différentielle suivante
T € F(x) (1.6)

ou z € Rfet F(z): R® = R Pour une telle inclusion différentielle, considérons la notion de
solution suivante.

Définition 1.4. Soit I C R un intervalle. La fonction ¢: I — R" est une solution pour (1.6) si
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 est absolument continue sur I et

o(t) € Fp(t)) pour presque tout ¢ € II.

La définition ci-dessus permet de traiter les solutions de Krasovskii d’une équation différen-
tielle donnée comme les solutions d’une certain inclusion différentielle. Par conséquent, dans la
these, pour des raisons de généralité, les résultats, définitions et propriétés sont indiqués pour une

inclusion différentielle générale comme (1.6).

En référence a (1.6), nous considérerons les définitions suivantes.
Définition 1.5 (Solution maximale [33]). Soit ¢ une solution a (1.6). Alors  est maximale s’il
n’existe aucune autre solution 1) tel que dom ¢ est un sous-ensemble propre de dom ) et ¢(t) =
¥(t) pour chaque ¢ € dom .
Définition 1.6 (Solution complete [33]). Soit ¢ une solution a (1.6). Alors ¢ est compléte si

sup dom ¢ = o0.

1.3 Systemes de commande linéaires soumis a quantification

uniforme

1.3.1 La classe de systéemes étudiée

Dans cette theése, nous nous concentrons sur des systemes dont la dynamique est linéaire.

= Ax + Bu
(1.7)
y=Cx
ou A e R™" B e R"™" et C' € RP*™, Pour telle classe de systémes, les hypotheses suivants sont
considérées.
Hypothése 1.1. La matrice A n’est pas Hurwitz. A
Hypotheése 1.2. La paire (A, B) est stabilisable et la paire (A, C') est détectable. A

Etant donnée la dynamique du systeme linéaire, nous considérons raisonnablement des contro-
leurs linéaires. Par conséquent, en se focalisent sur un tel cadre, les différentes situations présentées

avant donnent lieu aux modeles suivants pour le systeme en boucle fermée.

Retour d’Etat Statique Linéaire.

T = Az + Bu
u = q,(u.) (1.8)
u. = K q,(z)
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ou K € R™*™ est le gain de commande.

Retour de Sortie Dynamique Linéaire.

( = Ar + Bu
te = Acte + Beym
Uue = Cete + Dty (1.9)
u = qy(uc)

| ¥m = q,(C)

ou z. € R" est I’état du correcteur et A. € R"*" B, € R"*P O, € R™*" D. e R"™*P sont

les matrices du correcteur.

1.3.2 Le quantificateur uniforme

Dans cette thése, nous nous concentrons sur le quantificateur uniforme q: R — AZ défini

comme suit

q(u) = Asign(u) {%J (1.10)

ou A est un scalaire réel positif caractérisant I’erreur de quantification, i.e., pour chaque u, | q(u) —
u| < A'; voir FIGURE 1.1. Chaque fois que u € RY, avec £ > 1, alors

q(u) = (q(u1), q(ua) .., q(u)).

Supposons que I’origine soit globalement asymptotiquement stable pour le systeme en boucle
fermée en I’absence de quantification, on peut se demander si la méme propriété reste vraie pour le
systeme bouclé. Les exemples que 1’on retrouve dans la these montrent que, en général, la réponse

a cette question est négative.

1.4 La notion de stabilité considérée

Demander que I’origine des systeme (1.8) et (1.9) soit asymptotiquement stable est en géné-
ral impossible. Les systemes dynamiques quantifiées peuvent avoir des comportements tres com-
plexes, dont la caractérisation précise, sauf dans des cas particuliers, est tres compliquée. D’ autre
part, comme indiqué dans [54, 72], sous des conditions appropriées, les trajectoires du systeme
bouclé sont bornées et convergent dans un ensemble compact et invariant A contenant 1’origine,
(un tel ensemble peut contenir des cycles limites, des points d’équilibre, etc.). Grosso modo, 1’en-
semble .4 donne une approximation extérieure, pres de 1’origine, du comportement réel du systeme
en boucle fermée. En particulier, la détermination de I’ensemble A permet de définir une région

délimitée ayant deux propriétés importantes : (1) les solutions en boucle fermée initialisées dans
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q(u)
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o—e —3A

—e —4A

FIGURE 1.1 — The uniform quantizer

I’ensemble A restent définitivement confinées dans un tel ensemble, (2) les solutions qui démarrent
en dehors de A approchent cet ensemble. I semble également intéressant d’étudier ce qui se passe
lorsque le systeme en boucle fermée est initialisée “proche” d’un tel ensemble. D un point de vue
technique, ce fait incite a rechercher des conditions qui garantissent la stabilité asymptotique d’un

ensemble compact contenant I’ origine, plutot que de I’origine méme.

En particulier, dans cette these, pour une inclusion différentielle générale comme (1.6), nous
considérons la notion suivante de stabilité globale (uniforme) pour un ensemble fermé A C RY,
donnée en [75]. Cette définition utilise la notion de distance d’un ensemble fermé, et celle de
fonction de classe K, qui sont données ci-dessous.

Définition 1.7 (Distance d’un ensemble fermé [33]). Soient x € R" et A un ensemble fermé de
R", la distance de = de A est dénotée |x| 4 et définie comme || = inf e 4 ||z — Y.
Définition 1.8 (Fonction de classe K [48]). Une fonction a: R>y — R>( est une fonction de

classe K, si «v est zéro en zéro, continue, strictement croissante et non bornée.

La définition de stabilité asymptotique uniforme globale d’un ensemble fermé est comme suit
(UGAS depuis I’anglais Uniform Global Asymptotic Stability)
Définition 1.9 (Stabilité asymptotique uniforme globale). Soit A C R” fermé. L’ensemble A est
— uniformément globalement stable pour (1.6), s’il existe une fonction o de classe K, tel
que toute solution ¢ de (1.6) satisfait |¢(t)| 4 < a(]¢(0)|4) pour chaque ¢ € dom ¢
— uniformément globalement attractive pour (1.6), si chaque solution maximale de (1.6) est
complete et pour chaque € > 0 et u > 01l existe 7' > 0, tel que pour toute solution ¢ de
(1.6) avec |p(0)|4 < p, t > T implique |p(t)|a < ¢
— uniformément globalement asymptotiquement stable (UGAS) pour (1.6), s’il est uniformé-
ment globalement stable et uniformément globalement attractive.
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1.5 Conclusion

Dans ce chapitre, nous avons abordé les phénomenes de quantification dans les systemes de
contrOle, avec une attention particuliere a la quantification uniforme et aux systemes de controle
linéaires. En particulier, deux points principaux ont été abordés. Le premier concerne la notion
de solution a adopter pour faire face a des systemes de contréle quantifiés. Notamment, il a été
montré que la discontinuité introduite par les quantificateurs peut compromettre 1’existence des
solutions en boucle fermée. Cette question est completement surmontée en considérant la notion
de solution de Krasovskii. ’autre aspect principal souligné dans ce chapitre concerne la notion
plus intéressante de stabilité a adopter pour 1’analyse de systemes de controle quantifiés. En effet,
pour un systeme de contrdle quantifié, en général imposer la stabilité asymptotique de I’ origine est
impossible. Dans ce cadre, il a été montré que considérer la stabilité asymptotique d’un ensemble
compact contenant 1’origine fournit un moyen de garantir un bon comportement du systeme en

boucle fermée, tout en considérons la nature du probleme considéré.
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COMMANDE PAR RETOUR D’ETAT STATIQUE QUANTIFIE

2.1 Introduction

Ce chapitre concerne la quantification dans les systemes de contrdle par retour d’état statique
linéaire. En particulier, deux cas sont considérés. Dans le premier, I’état du systeme est supposé
mesuré et ’actionneur uniformément quantifié. Dans le second, 1’état du systeme est mesuré par
un capteur uniformément quantifié. Dans ces deux situations, nous feront face a la fois a I’analyse
de stabilité et a la stabilisation du systeme en boucle fermée. Des premiers résultats concernant le
cas d’actionneur quantifié peuvent étre trouvés dans [23].

2.2 Actionneur quantifié

2.2.1 Enoncé du probléeme

Considérons le systeme linéaire a temps-continu avec actionneur quantifié

{9’5 = Ax + Bu
2.1)

u=q(Kz)

oux € R", u € R™ sont, respectivement, 1’état et ’entrée du systeme. A, B, K sont des matrices
réelles de dimensions adéquates et ¢(-) est le quantificateur uniforme défini dans (1.10) ayant

15
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FIGURE 2.1 — The function ¥, in the scalar case, representing the quantization error.

comme borne d’erreur A > 0. Définissons la fonction suivante,

v: R™ — R™
(2.2)
2 q(z) — 2.
Alors, le systeme en boucle fermée s’écrit de maniere équivalente comme suit
t=(A+ BK)x+ BY(Kx). (2.3)

La fonction V¥ représente I’erreur de quantification, donc en accord avec (1.10), ¥ est bornée. En
particulier, pour chaque u € R™, || ¥ (u)|| < /mA ; voir FIGURE 2.1. De plus, puisque la fonction
U est discontinue, le membre a droite de (2.3) est une fonction discontinue de I’état. Pour cela,
nous nous focalisons sur les solutions de Krasovskii de (2.3). Donc, en définissant

X:R*" - R"
(2.4a)
r+— (A+ BK)x + BY(Kz)
nous allons considérer I’inclusion différentielle suivante :
€ K[X](x) (2.4b)

ol K[X](x) est la régularisation de Krasovksii de X (voir Définition 1.2 a page 9). Comme il a
été déja mentionné, la présence du quantificateur empéche de garantir la stabilité asymptotique de
I’origine du systeme bouclé. Toutefois, puisque la fonction ¥ est bornée, on peut s’attendre que
sous des hypotheése opportunes, les solutions de (2.4) satisfont certaines propriétés de stabilité. Une
réponse positive a cette question est donnée par le théoreme suivant, qui utilise des idées de [52,
Lemma 1].

Théoreme 2.1. Soient A, B, K matrices de dimensions adéquates, tel que A + BK soit Hurwitz.

Alors, il existe un ensemble compact A C R", contenant I’origine, qui est UGAS pour (2.4). [

Le théoreme précédent nous motive a poser le probleme suivant
Probleme 2.1. (Analyse de stabilité) Soient A, B, K des matrices de dimensions adéquates, telles
que A + BK est Hurwitz. Caractériser un ensemble compact .4 C R™ contenant 1’origine, tel que
A est UGAS pour le systeme (2.4).
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La solution de ce probleéme est I’objet de la section suivante.

2.2.2 Analyse de stabilité

Comme expliqué avant, dans la résolution du Probleme 2.1, nous sommes intéressés a la déri-
vation d’un ensemble .4 fournissant une approximation la plus bonne possible du comportement
réel du systeme en boucle fermée. Pour cela, inspiré par I’'idée générale suivie dans la littérature
des systemes avec des non-linéarités isolées ; voir, e.g.,[39, 73] et les références ci incluses, nous
fournissent des conditions de secteur fournissant des bornes plus fines pour la fonction multivaluée
K[W].

Lemme 2.1. Soient z € R, v € K[¥](z) et S1, 5, € D. Alors, les inégalités suivantes sont

vérifiées
v' S1v — trace(S;)A? <0 (2.5)

v Sy (v+2)<0 (2.6)

Grice aux conditions énoncées dans le Lemme 2.1, les résultats suivants fournissent des condi-
tions suffisantes pour la solution du Problem 2.1.

Proposition 2.1. S’il existe P € S, 51, Sy € DI et un nombre positive T tels que

He(P(A+ BK))+7P PB—K'S,

N = <0 (2.7)
[ J —Sl - 252
trace(S))A% —7 <0 (2.8)
alors,
A=E&(P) 2.9)
est une solution au Probleme 2.1 L.

Le résultat ci-dessus donne une condition suffisante pour résoudre le Probleme 2.1. Une condi-
tion nécessaire pour assurer la faisabilité de (2.7) est que la matrice A + BK soit Hurwitz. D’autre
part, d’apres le Théoréme 2.1, il se trouve que le fait d’avoir A + BK Hurwitz permet toujours
de présenter une solution au Probleme?2.1. Par conséquent, a premiere vue, les conditions données
par la Proposition 2.1 pourrait apparaitre plus fortes du fait d’avoir A + BK Hurwitz. En d’autres
termes, on peut se demander si le fait que A + BK soit Hurwitz assure la faisabilité des conditions
(2.7) et (2.8). Une réponse positive est donnée par le résultat suivant.

Proposition 2.2. Soit K € R"™*" tel que A + BK est Hurwitz. Alors, il existe (T, P, S1,S2) €
Ry x 8% x DY x DY satisfassent (2.7) et (2.8). O
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2.2.3 Synthese du correcteur

Dans la section précédente de ce chapitre, nous nous sommes concentrés sur le probleme de
I’analyse de stabilité du systeme (2.4). Dans cette section, nous voulons résoudre le probleme de
synthese du controleur pour le méme systeme en boucle fermée.

Probleme 2.2. (Synthese du correcteur) Soient A, B matrices de dimensions adéquates. Détermi-
ner une matrice X € R™*" et un ensemble compact A C R" contenant 1’origine, tel que A est
UGAS pour le systeme (2.4).

Afin de dériver des conditions applicables d’un point de vue numérique, nous allons utiliser le
résultat suivant
Proposition 2.3. S’il existe W € S%, 51,5, € D', Y € R™*", et un nombre positif 7, tels que
(2.8) est vérifiée et

He(AW + BY) +7W B—YTS,

<0 (2.10)
[ ] _Sl - 252
alors,
A=W (2.11)
K=Yyw! (2.12)
sont solution du Probleme 2.2. O

2.2.4 Exemple numérique

Exemple 2.1 (Pendule de Furuta). Considérons le pendule de Furuta [40], dont le modele linéarisé
autour du point d’équilibre instable est donné par

0 O 1 0
0 O 0 1 0
T = T + U (2.13)
0 39.32 —-14.52 0 25.54
0 81.78 —13.98 0 24.59

ou x1, xy représentent, respectivement, I’angle de base et I’angle du pendule (rad), x5 et x4 sont
les deux vitesses angulaires (rad s~1) et u est la tension d’entrée (V) du moteur d’entrainement de

I’arbre de base. Le systeme est commandé par un contrdleur par retour d’état statique, avec :
K = 22710 —27.1793 2.4963 —3.9153]

et I’actionneur est quantifié par un quantificateur uniforme avec A = 0.5. La solution au Pro-

bleme 2.2, lorsque I’on considere un critere d’optimisation basé sur le volume de .4 (consulter la
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version en anglais de la these pour plus d’informations sur cet aspect.), fournit

20.6128 —59.4021 7.79714 —9.06105
p_ —59.4021 556.424 —33.2957  40.6492

779714 —33.2957  6.45171 —7.62996

—9.06105 40.6492 —7.62996 10.3472

Pour donner une mesure du conservatisme par rapport au comportement réel du systeme en boucle
fermée, dans la FIGURE 2.2 nous rapportons 1’évolution temporelle de la fonction 2" Px le long
des trajectoires du systeme en boucle fermée. La figure montre que les trajectoires une fois entrées

dans I’ensemble 4, ne quittent plus cet ensemble et effectivement restent suffisamment proche de
sa frontiere.

4.5
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FIGURE 2.2 — L’évolution de la fonction V(z) = z'Px. o = (0,7/8,0,0) (ligne continue),
zo = (0,7/18,0,0) (ligne en tirets), zo = (0, 7/36,0,0) (ligne pointillée).
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2.3 Capteur quantifié

2.3.1 Résultats préliminaires

Considérons le systeme linéaire a temps-continu suivant avec état mesuré quantifié

{ z = Az + Bu
(2.14)

u=Kq(r)

ouxr € R” et u € R™ sont, respectivement, 1’état et I’entrée du systeme. A, B, K sont des ma-
trices réelles de dimensions appropriées et q(-) est le quantificateur uniforme défini dans (1.10)
ayant comme borne sur I’erreur de quantification A > (. Comme dans la section précédente, en

définissant la fonction ¥ dans (2.2), le systeme en boucle fermée peut s’écrire comme
t=(A+ BK)r + BKY(x). (2.15)

Par conséquent, avec 1’objectif d’examiner les solutions de Krasovskii du systeme (2.15), nous

considérerons 1’inclusion différentielle suivante :

i € K[Z)(x). (2.16a)

Z:R"—R"

(2.16b)
r+— (A+ BK)x + BKV(x)

Maintenant, en retragcant les mémes étapes considérées dans la section précédente, on donne en
premier résultat de stabilité pour le systeme (2.16).

Théoreme 2.2. Soient A, B, K des matrices réelles de dimensions adéquates, telles que A + BK
soit Hurwitz. Alors, il existe un ensemble compact A C R™, contentant I’origine, qui est UGAS
pour (2.16). ]

Méme dans ce cas, nous voulons proposer des conditions constructives pour la recherche de
I’ensemble A C R”, dont I’existence est assurée par le théoreme 2.2. Par conséquent, dans la

suite, nous allons considérer la méme stratégie présentée pour le cas d’actionneur quantifié.

2.3.2 Analyse de stabilité

Probleme 2.3. (Analyse de stabilité) Soient A, B, K des matrices réelles de dimensions adéquates,
telles que A + BK est Hurwitz. Déterminer un ensemble compact .4 C R" contenant 1’origine, tel
que A soit UGAS pour le systeme (2.16).

Le résultat suivant, donne une premiere condition suffisante pour résoudre le Probleme 2.3.
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Proposition 2.4. S’il existe P € 8%, 51, Sy € DY} et un nombre scalaire positif T tels que

He(P(A+ BK))+ 7P PBK — 5,

<0 (2.17)
[ _Sl - 252
trace(S1)A? —7 <0 (2.18)
alors,
A=E&(P) (2.19)
est solution du Probléeme 2.3. O

La faisabilité des conditions indiquées dans la Proposition 2.4 est assurée en vertu de I’ Hypo-
these 1.2.
Proposition 2.5. Soir K € R™*" tel que A + BK soit Hurwitz. Alors, Il existe (1, P, S1,Ss3) €
Roo x 8t x D} x DY tels que (2.17) et (2.18) sont satisfaites. L]

2.3.3 Synthese du correcteur

En supposant que le gain K doive étre synthétisé, le probleme que nous résolvons peut étre
formalisé comme suit :
Probleme 2.4. Soient A, B des matrices de dimensions adéquates. Déterminer un gain K € R™*",

et un ensemble compact.4 C R"™ contenant I’origine, tel que A est UGAS pour (2.16).

Nous obtenons le résultat suivant, qui se fonde sur le lemme de projection, voir [64].
Proposition 2.6. La faisabilité de

He(P(A+ BK))+ 1P PBK — 5,

<0 (2.20)
[ J —Sl - 232

pour chaque P € S, S, Sy € DY est équivalente a la faisabilité de

—He(X,) P—Xo+X](A+BK) X/BK

. He(XJ(A+ BK))+7P XIBK —S,| <0 (2.21)
° ° —S51 — 255
pour quelques matrices X1, Xo € R™*™, U

[’avantage offert par le résultat ci-dessus consiste a faire apparaitre la matrice P, définissant
I’ensemble A, de facon linéaire. Ce fait permet de construire une procédure de relaxation itérative
qui consent de résoudre le probleme de syntheése du controleur, nous invitons le lecteur a consulter
la version en anglais de ce manuscrit pour plus d’informations sur ce sujet et pour des exemples de

solution aux problemes de stabilité et stabilisation en présence de capteur quantifié.
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2.4 Remarques et conclusions

Dans ce chapitre, nous avons abordé le probleme de contrdle par retour d’état statique des sys-
temes linéaires en présence de quantification de 1’actionneur ou de quantification du capteur. Dans
ce cadre, nous avons d’abord montré que le stabilité asymptotique du systeme en boucle fermée
sans quantification (dans les deux situations considérées) assure 1’existence d’un ensemble ellip-
soidale A, qui est UGAS pour le systeéme en boucle fermée (en termes de solutions de Krasovskii).
Puis, dans I’objectif de poursuivre une approche constructive et grace a de nouvelles conditions
de secteur pour le quantificateur uniforme considéré, nous avons transformé la recherche de 1’en-
semble A en un probleme de faisabilité de certaines inégalités matricielles. En outre, nous avons
montré que cette approche est sans perte de généralité, dans le sens que sous I’hypothese de sta-
bilité asymptotique du systeme en boucle fermée sans quantification, les inégalités matricielles

proposées sont toujours faisables.

Dans un deuxieme temps, nous avons abordé le probleme de stabilisation pour la méme classe
de systemes. Dans ce contexte, le probleme considéré consiste a dériver des conditions permettant
la recherche simultanée d’un controleur par retour d’état statique linéaire et un ensemble compact
A contenant 1’origine, tels que le systéme en boucle fermée résultant ait I’ensemble A UGAS. Ce
probleéme a été résolu en transformant de fagon appropriée les inégalités matricielles obtenues pour
le probleme de stabilité en des formes plus avantageuses d’un point de vu numérique.

Dans des nombreuses applications réelles, I’ensemble des variables mesurées ne permet pas
la connaissance de 1’état du systeme que 1’on veut stabiliser et seulement des sorties du systeme
peuvent étre exploitées par le controleur. Afin de répondre a cette nécessité, dans la these, les
résultats présentés dans ce chapitre ont été étendus au cas de retour de sortie, avec 1’objectif de
proposer des correcteurs par retour de sortie dynamique pour la stabilisation en présence a la fois
de quantification de capteur et d’actionneur. En particulier, cette extension est illustrée dans le
Chapitre 3 de la version en anglais de ce mémoire. Des telles techniques s’appuient directement
sur les résultats principaux énoncés dans ce chapitre et sur les changements de variables illustrés

dans [13]. Pour des raisons de concision, ces résultats ne sont pas illustrés dans ce résumé.

Bien que la méthodologie proposée soit construite pour le quantificateur uniforme défini dans
(1.10), le cadre utilisé est assez flexible pour envisager des extensions a d’autres types de quantifi-
cateurs. Par exemple, I’extension au quantificateur uniforme considéré dans [10] est assez simple.

Nous envoyons a la these pour plus d’informations sur cet aspect.
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Conclusions et remarques

Dans cette partie, nous avons fourni plusieurs outils pour effectuer 1’analyse de stabilité et la
synthese de systemes de commande linéaires a temps continu en présence d’actionneur et/ou de
capteur de quantifiés. L’approche adoptée vise a conduire a des conditions traitables d’un point de
vue numérique. Notamment, les solutions numériques proposées se basent sur des outils d’optimi-

sation convexe.

Une autre caractéristique intéressante de 1’approche proposée consiste dans 1’utilisation des
solutions de Krasovskii. Ce choix permet a la fois de surmonter les questions techniques relatives
a I’existence des solutions pour le systeéme en boucle fermée ainsi que d’exploiter une grande classe
de résultats existants présentés dans la littérature.

En outre, en raison de 1’équivalence entre les solutions Krasovskii et solutions Hermes, nous
tenons a souligner que I'utilisation des solutions Krasovskii, garantit que les propriétés établies
pour le systeme en boucle fermée sont robustes par rapport aux petites perturbations, qui affectent
inévitablement les systemes de controle physiques.

Comme il a été souligné tout au long de cette premiere partie, les principaux inconvénients
rencontrés concernent essentiellement le fait que la plupart des conditions que nous avons dérivé
ne sont pas linéaires. Ce probléme a été surmonté par I’introduction d’algorithmes itératifs capables

de traiter les non-linéarités en question.

Perspectives futures

La méthodologie que nous avons offert est assez robuste et permette d’envisager plusieurs ex-

tensions. Ces extensions consistent essentiellement a considérer des quantificateurs a alphabet fini
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[52]. Une autre voie de recherche possible concerne 1’extension de la méthodologie proposée a une
classe plus large de systeme comme les systemes polynomiaux. Dans ce contexte, une question in-
téressante consiste a généraliser la méthode illustrée dans cette these via 1’utilisation de fonctions

de Lyapunov polynomiales [12, 35].



Deuxieme partie

Estimation d’état et commande basée
observateur en présence de mesures
sporadiques
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INTRODUCTION

Cadre général

Les progres technologiques récents ont permis le contrdle des systemes dynamiques en utilisant
des données transmises sur des réseaux de communication et a 1’aide de dispositifs numériques.
Dans ce contexte, les données peuvent se perdre ou ne peuvent étre disponibles que de fagon inter-
mittente [36, 38, 78]. A titre d’exemple, lorsque un contréleur et un systeme sont reliés a travers
d’un réseau et qu’une estimation de 1’état du systéme est nécessaire au correcteur, les paradigmes
classiques qui considerent I’acces a la sortie du systeme a chaque instant de temps [56] ne sont pas
applicables et de nouvelles approches deviennent nécessaires. Cette nécessité pratique a donné lieu
a une nouvelle piste de recherche visant a développer des observateurs tout en prenant en compte
la nature discrete des mesures disponibles [1, 3, 4, 46, 60]. Dans ces travaux, en supposant une dis-
ponibilité périodique de la sortie mesurée, les auteurs proposent une approche a temps discret au
probleme d’estimation d’état. Une telle approche se compose de deux étapes. D’abord le systeme
a temps continu est discrétisé, puis un observateur a temps discret est proposé pour estimer 1’état
de la version discrétisée du systeme. Cependant, cette approche comporte trois inconvénients ma-
jeurs. Le premier inconvénient est lié au comportement de I’erreur d’estimation entre deux mesures
qui est completement perdu en étudiant son évolution uniquement aux instants d’échantillonnage.
En fait, en poursuivant une telle approche, on ne peut pas donner de bornes explicites sur I’er-
reur d’estimation entre des mesures consécutives. Le second inconvénient est que tout décalage
entre le temps d’échantillonnage réelle et celui utilisé pour obtenir le modele discrétisé induit une
erreur dans la description du systeme a temps discret qui se reflete sur la solution du probleme
d’estimation d’état. Le troisiéme inconvénient est que dans de nombreuses applications modernes,
telles que le contrdle de systemes dynamiques en réseau, la sortie du systeéme est souvent acces-
sible seulement sporadiquement. Dans ces cas, I’hypothese fondamentale d’obtention de mesures

périodiques devient irréaliste [36, 38, 78].

Pour résoudre ces problemes, plusieurs stratégies sont présentées dans la littérature. Ces straté-

27



28 Introduction

gies appartiennent essentiellement a deux familles principales. La premiere famille se base sur
I’utilisation d’observateurs dont 1’état est complétement mis a jour, selon une loi appropriée,
chaque fois qu’une nouvelle mesure est disponible et qui fonctionnent en boucle ouverte entre
ces événements (observateurs continus-discrets). Cette approche est, par exemple, étudiée dans [2,
62]. La seconde famille de stratégies considere plutdt des observateurs a temps-continu, pour le-
quel I’erreur d’injection de sortie entre deux mesures consécutives est estimé grace a un traitement
de la derniere mesure recue. Cette approche est utilisée, e.g., dans [45, 58, 66, 68]. Cependant,
nous tenons a souligner que, a I’exception du schéma basé sur un organe de maintient d’ordre zéro
dans [68, 58], 1a synthese de ce type d’observateurs est essentiellement réalisée par émulation. Une
telle approche consiste a synthétiser d’abord un premier observateur a temps continu et puis a éva-
luer la période d’échantillonnage maximale admissible (MASP) que 1’observateur peut supporter.
Toutefois, dans les applications réelles, la plupart du temps la conception de I’observateur doit étre
effectuée tout en assurant la convergence de I’erreur d’estimation pour une période d’échantillon-
nage maximale donnée. En d’autres termes, une stratégie de conception efficace doit permettre de

tenir compte de la période d’échantillonnage maximale admissible comme parametre de synthese.

L’aspect principal partagé par les deux familles d’observateurs illustrées ci-dessus est que les
observateurs résultants présentent a la fois un comportement a temps continu et un comportement
impulsionnel. Grosso modo, le fait d’avoir des mesures intermittentes donne lieu a des schémas
d’observation qui doivent adapter instantanément leur principe de fonctionnement selon les flux de
données disponible. Ce fait de s’appuyer sur des observateurs qui manifestent des comportements
en temps-continu et des comportements impulsifs nous motive a analyser ces systeémes via les
outils issues de la littérature des systemes dynamiques hybrides. En particulier, récemment, un
cadre global et solide pour I’analyse des systemes dynamiques hybrides a été présenté dans [33].
Bien que le cadre de modélisation dans [33] soit solide et permette de faire face a des dynamiques
hybrides générales, a notre connaissance, la conception d’observateurs en présence de mesures

sporadiques via les outils présentées dans [33] n’a pas recu d’attention par la littérature relative.

Une autre aspect intéressant consiste a analyser I'impact des flux de mesures sporadiques sur
des architectures de commande basées observateur. En effet, souvent, I’estimation fournie par les
observateurs asymptotiques est exploitée pour remplacer 1’état réel du systeme dans des systemes
de commande par retour d’état statique [77]. Dans le contexte des systemes de contrdle modernes,
plusieurs situations peuvent étre considérées. D’une part, on peut supposer que, bien que la sortie
du systéme soit mesurable de facon sporadique, I’entrée du systeme peut €tre accessible a tout
moment. Cette situation peut se produire, par exemple, lorsque la sortie est mesurée via un cap-
teur numérique avec une fréquence d’échantillonnage faible et variable dans le temps, ou pour des
systemes de commande distribués, chaque fois que le dispositif de commande et le systeme sont
co-localisés et les mesures du systeme sont envoyées au dispositif de commande via un réseau
de données [78]. D’autre part, dans certaines applications réelles, des limites temporelles peuvent
méme affecter I’acces a I’entrée du systeme. A titre d’exemple, dans les systemes distribués, quand
le controleur et le systeme sont situés dans des zones différentes, la communication entre les deux
systemes est réalisée via un canal partagé qui est géré par un superviseur. Ce superviseur attri-

bue alternativement les ressources de communication au contrdleur, afin d’envoyer des entrées de
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commande vers le systeéme et au systeme, afin d’envoyer des mesures au correcteur [36]. Toujours
dans le cadre des systemes de contrdle distribués, 1I’acces intermittent a 1’entrée peut étre dii aussi
a la perte de données sur le réseau [69]. Un autre cas intéressant ou les contraintes technologiques
impliquent un actionnement intermittent concerne le cas d’actionneurs avec une faible fréquence

de mis a jour, qui sont considérés dans [59].

Ainsi, dans tous ces contextes, I’hypothese classique considérée dans la littérature des sys-
temes €chantillonnés qui consiste a supposer que les opérations d’échantillonnage et de maintien,
respectivement, de la sortie mesurée et de 1’entrée de commande sont synchrones est sans doute

restrictive.

Une tentative pour surmonter cette hypothese est proposé dans [30], ou les auteurs, en pour-
suivant une approche basée sur les systeémes a retard, proposent une stratégie de syntheése pour
un controleur ‘H., par retour de sortie, en présence d’opérations d’échantillonnage et de maintien
apériodiques et asynchrones. Un autre travail poursuivant une approche tout a fait similaire, bien
que pour le cas de controleur par retour de d’état statique, est présenté dans [59]. Cependant, 1’ap-
proche qui y est proposée dans ce travaux est d’une certaine mesure intrinsequement conservatrice
due a la modélisation de 1’échantillonnage et des opérations de maintien comme des processus

introduisant des retards variables dans le temps.
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UN OBSERVATEUR A SAUTS DECLENCHES PAR DES
MESURES

3.1 Introduction

Ce chapitre traite le probleme de I’estimation de 1’état de systémes linéaires invariants dans le
temps dont les mesures de la sortie sont disponibles de facon sporadique. Pour résoudre ce pro-
bleme, nous fournissons un observateur avec des sauts déclenchés par les mesures disponibles.
Cet observateur est étudié dans le cadre des systemes hybrides [33]. Plus précisément, le systeme
résultant est écrit en coordonnées d’erreur et augmenté avec une variable auxiliaire qui joue le role
d’un temporisateur qui déclenche un saut dans 1’observateur chaque fois qu’une nouvelle mesure
est disponible. Ensuite, le synthése de I’observateur est effectuée pour garantir la stabilité expo-
nentielle global (GES) d’un ensemble fermé contenant les points pour lesquels 1’état du systeme
et son estimation coincident. De plus, une procédure de calcul numériquement tractable pour la
synthese de 1’observateur est proposée. L’efficacité de la méthode proposée est démontrée dans un

exemple numérique. Les résultats présentés dans ce chapitre peuvent €tre trouvés dans [26, 25].
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3.2 Enoncé du probléeme

3.2.1 Description du systéme

Nous considérons le systeme linéaire temps-continu dans la forme suivante :

2= Az+ Bu
y=Mz

3.1

ouz € R", y € R?etu € R? sont, respectivement, 1’état, I’entrée et la sortie du systeme, tandis que
A, B et M sont des matrices réelles de dimensions adéquates. Notre objective consiste a concevoir
un observateur fournissant une estimation 2z de 1’état z lorsque la mesure de y est disponible a des

instants tx, k € N, qui ne sont pas connus a priori [65].

Nous supposons que la sequence {#;}72, soit strictement croissante et non bornée et que pour

cette sequence, il existe deux nombres strictement positifs 77 < 75 tels que

0<t <1y
T <tpy—te<Ty VkeN

(3.2)

Comme indiqué aussi dans [37], la borne inférieur (3.2) empéche 1’existence de points d’accu-
mulation pour la sequence {;}72,, et donc évite I’existence de comportements de Zeno, qui est
indésirables en pratique. En effet, 7} définit un temps minimum strictement positif entre deux me-
sures consécutives, tandis que 75 définit un temps maximum entre deux mesures consécutives.

Pour cette raison, nous dénoterons 7, comme intervalle d’échantillonnage maximum.

Motivé par [2, 67], pour résoudre le probleme d’estimation considéré, nous considérons un

observateur avec des sauts dans son €tat suivant de la loi suivante

2(t) = Az(t) + Bu(t) Vt #tp, k €N
Z(tT) = 2(t) + L(y(t) — M2(t)) VYt=ty,keN

(3.3)

ou L est une matrice a synthétiser. A ce stade, comme d’habitude dans les problémes d’estimation,

nous définissons I’erreur d’estimation comme suit
€=z 2. 3.4)

Donc, car aux instants ¢; 1I’état du systeme reste inchangé, la dynamique d’erreur peut s’écrire

comme le systeme linéaire dynamique avec des sauts suivant

E(t) = Ae(t) Vit # ty, k€ N
e(tt) = (I— LM)e(t) Yt =ty keN.

(3.5)
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3.2.2 Modélisation hybride

Le fait que I’observateur subit des sauts quand une nouvelle mesure est disponible et évolue
selon une équation différentielle entre deux mesures consécutives nous suggere que le processus
de mise a jour de la dynamique d’erreur peut etre décrit par un systeme hybride. Pour cette raison,
nous représentons 1’ensemble du systeme composé par le systeme (3.1), I’observateur (3.3), et la
logique de déclenchement des sauts comme un systéme hybride, [51]. En particulier, en introdui-
sant une variable auxiliaire 7 qui joue le role d’un temporisateur, nous pouvons écrire le systeme

mentionné ci-dessus par le systeme hybride H. suivant

( .
— A
- : } (em)ecC
T = —1
H. (3.6a)

et = (I—LM)e
~ € [T.T) } (e,7) e D

\

ou
C={(e,7) e R" xR>g: 7€ [0, T
(&) i 7€ 0.7} .
D:{(E,T) GR” XRzoi T:O}
Définissons I’ensemble
A:{(E,T)ERTLXREUI&“:O,TG[O,TQ]}. 3.7

le probleme que nous résolvons est le suivant

Probléme 3.1. Etant données A, B et M des matrices de dimensions appropriées et deux scalaires
positifs 77 < T5, déterminer L € R"*? tel que A dans (3.7) soit globalement exponentiellement
stable (GES) pour (3.6).

Nous envoyons a la version en anglais de ce manuscrit pour plus d’informations concernant
la nature et les propriétés des solutions du systeme (3.6), ainsi que pour la définition de stabilité

exponentielle globale utilisée.

3.3 Résultat principal

3.3.1 Conditions pour GES

Le résultat suivant fournit des conditions suffisantes pour assurer la stabilité exponentielle glo-
bale de I’ensemble A défini dans (3.7) pour le systeme (3.6).
Théoreme 3.1. S’il existe P € ST et L € R"* tels que

(I1— LM)TeX"Per"(1—LM)— P <0  Yuve [T}, T3] (3.8)
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alors ’ensemble A défini dans (3.7) est GES pour le systeme (3.6). ]

3.4 Synthese de ’observateur

La condition donnée par le Théoreme 3.1 n’est pas directement traitable d’un point de vue
numérique afin d’obtenir une solution au Probleme 3.1. En effet, d’un point de vue numérique, la
condition (3.8) entraine deux problémes : elle n’est pas linéaire en P et L et nécessite d’étre vérifiée
pour un nombre infini de valeurs de v. La pertinence du deuxieme probleme est évident a premiere
vue, tandis que le manque de linéarité est une contrainte sévere, puisque la solution aux inégalités
matricielles non-linéaires conduisent souvent a des problemes NP-durs [7]. Ainsi, pour rendre le
probléme traitable numériquement, des manipulations supplémentaires sont nécessaires. A cette
fin, le résultat suivant fournit une premiere étape vers une procédure de synthese de 1’observateur
en question basée sur la solution a des inégalités matricielles linéaires (LMI).

Proposition 3.1. Les matrices P et L satisfont la condition (3.8), si et seulement s’il existe une

matrice ' € R"*" telle que pour chaque v € [T}, T5]

—He(F) F—FLM e*"P
. —P 0 | <o. (3.9)
° ° -P

O

Ensuite, en exploitant la linéarité de (3.9), on peut obtenir un ensemble fini de LMI, dont la
satisfaction implique celle de (3.9). Cette approche est formalisée dans le résultat suivant
Corollaire 3.1. Soient { X, X5, ..., X, } des matrices réelles tels que eA["072 € co{ X, X5,..., X, }.
S’ils existent P € 8%, J € R"*? et F' € R™™ tels que, pour chaque i € {1,...,v},

—He(F) F—JM XJP

° -P 0 <0 (3.10)

° ° -P
alors P et L = F~'J satisfont la condition (3.8). 0]
Plusieurs techniques existent dans la littérature pour déterminer les matrices Xy, Xo,..., X,

mentionnées ci-dessus. Nous invitons le lecteur a consulter la version en anglais de ce mémoire,

ou une nouvelle technique est proposée et illustrée en détail.

Pour compléter ce chapitre, comme suit, nous illustrons I’application de la méthodologie pro-

posée dans un example.
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Exemple 3.1. Considérons le systéme masses-ressort dans [32], qui est défini comme suit :

0O o0 1 0 0
o 0 0 1 0
z = z+ U 3.11)
-2 1 -1 0 1
2 -2 0 =2 0
\ -~ v ~—~
A B

ou 21, 2o sont, respectivement, la position de la premiere et de la seconde masse, tandis que 23 et 24
sont, respectivement, la vitesse de la premiere et de la seconde masse, et u est la force appliquée a
la seconde masse. Supposons que seulement z; soit mesuré via un capteur ayant un biais constant
et qu’un tel capteur soit accessible au plus tous les 0.2s et au moins tous les 3s. Donc, en supposant

que le temps initial ¢y = 0, la sortie mesurée peut s’écrire comme suit
y(ty) = z1(tg) +b Vk €N

oty € [0,3] et {tx}72, est une suite croissante et non bornée de temps positifs tel que pour chaque
keN, 0.2 <t —1tx <3, bestle biais du capteur, i.e., un scalaire positif inconnu. Notons, que
la sequence {1, }72, satisfait (3.2) avec 7} = 0.2 et 75 = 3. Pour adapter ce probleme dans le cadre
du Théoréme 3.1, il faut éviter de considérer le biais comme une perturbation extérieure. A cette
fin, nous suivons une approche de type 2 exosystéme, voir [29, 41]. A savoir, nous modélisons le
biais constant affectant le capteur de sortie comme un état supplémentaire, b, tel que b = 0. De
cette facon, y = Mz, ou
Mi=[100 0 1]

et Z := (z,b). Donc, en considérons z comme vecteur d’état, on peut considérer le systeme suivant

A0
0 0

BT = [BT 0}.

Une fois déterminées les matrices X;(voir la version en anglais de ce mémoire), via Corollaire 3.1

on obtient _ _
1.883  0.88796  1.3892 0.95109 —1.0667
0.88796  12.965 10.415 10.305 0.091033
P = 1.3892 10.415 10.086 8.6622 —1.0351

0.95109  10.305  8.6622 8.8987  —0.018634
| —1.0667 0.091033 —1.0351 —0.018634  7.6949

[ 0.77524 |
0.18123
L= [-0.12123
—0.17406
| 0.22469 |

La FIGURE 3.1 montre la fonction v — Ay ((I — LM A Pet(1 — LM) — P) lorsque v €
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[T1, T5]. Comme prévu, la technique proposée garantit que (3.8) est vérifié.

-0.05

-0.1

-0.15¢

-0.2

-0.25F

-0.3

-0.35¢

_0.4 Il Il Il Il Il
0 0.5 1 1.5 2 2.5 3

FIGURE 3.1 — La fonction v — A\jyax <(I — LM)TeA"v Pev(1 — LM) — P> versus v.
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Supposons u(t) = sin(t), b = 1, et dénotons I’estimation fournie par I’observateur %, := (2, b).
La FIGURE 3.2 montre 1I’évolution de 1’état du systeme et de son estimé projeté sur le temps
ordinaire. La FIGURE 3.3 montre I’évolution de b projeté sur le temps ordinaire. Les deux figures
montrent que I’observateur concu reconstruit 1’état du systeme, malgré la présence du biais du
capteur.

1 4
0.5 ] 3
Of /\ 2
0.5 1
1 0
13 10 t 20 30 0 10 t 20 30

FIGURE 3.2 — L’évolution des états z (rouge) et z (blue) projeté sur le temps ordinaire ¢.
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09f

0.8
0.7
0.6

0.4
0.3
0.2

O Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45
t

FIGURE 3.3 — Le biais b (rouge) et son estimé b (blue) projeté sur le temps ordinaire ¢.
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3.5 Remarques et conclusions

Dans ce chapitre, nous avons proposé une méthodologie pour modéliser et synthétiser, a travers
la solution de certaines LMI, un observateur hybride pour estimer I’état d’un systeme linéaire en
présence de mesures sporadiques. La conception de cet observateur exige a priori la solution d’un
nombre infini de LMI, de qui est en pratique infaisable. Pour surmonter ce probleme, nous avons
déterminé des conditions suffisantes rendant la synthese de 1’observateur possible via la solution
d’un nombre fini de LMI. Enfin, I’efficacité de la méthode proposée est illustrée au travers d’un
exemple numérique.

Les résultats présentés dans ce chapitre montrent que le cadre de systemes hybrides proposé
dans [33] permet de modéliser et analyser 1’observateur considéré de maniere élégante et efficace.
Des cadres alternatifs, comme ceux basés sur des systemes dynamiques impulsionnels [67] pour-
raient étre utilisés pour arriver a des conditions suffisantes semblables a celles proposées dans ce
chapitre. Une autre approche alternative qui pourrait €tre suivi pour aborder le probleme dans ce
chapitre est I’approche a temps discret considérée dans la littérature des systemes bouclés en ré-
seau ; voir [15]. Cette approche se compose de trois étapes. Dans un premier temps, un modele
a temps-discret du systeme considérée est construit par I'intégration de la dynamique a temps-
continue entre deux sauts. Ensuite, les propriétés de stabilité désirées sont établies pour le modele
discrétisé. Enfin, le comportement correct du systeme original est garantie en dérivant des bornes
sur les trajectoires entre deux sauts. Suivre cette approche, dans le cas spécifique considéré dans ce
chapitre, permettrait de récupérer une partie des résultats présentés, et aussi d’exploiter des outils
sur la littérature des systemes en temps-discret incertains, comme, par exemple, des fonctions de
Lyapunov polytopiques [19], qui peuvent potentiellement conduire a des résultats moins conserva-
tifs. D’autre part, cette stratégie consistant a d’abord négliger le comportement du systeéme entre
deux sauts contraste avec 1’esprit du cadre des systemes hybrides dans [33], qui vise a étudier les
dynamiques hybrides dans son ensemble. Cependant, nous tenons a souligner que 1’utilisation du
cadre des systeme hybrides [33] pour la solution du probléme considéré dans ce chapitre présente
plusieurs avantages. Le premier est que cette approche ne nécessite pas 1’intégration de la dyna-
mique d’estimation d’erreur entre les sauts. Ainsi, la méthodologie proposée peut étre étendue
pour traiter des systeme avec des dynamiques plus complexes. En outre, I’approche poursuivie,
permettant la recherche de fonctions de Lyapunov alternatives, pourrait étre utilisée pour arriver a
des procédures de conception plus simples en évitant le présence de termes de type exponentielle

de matrice, ce qui est impossible via une approche en temps-discret.

La seconde avantage est le cadre de systemes hybride [33] qui permet de considérer des pro-
bleémes plus complexes, ol I’estimation d’état en présence de mesures sporadiques est seulement
une des taches nécessaires pour la solution au probleme considéré. Cet aspect est clarifié et rendu
plus concret dans la version en anglais de cette these, oul I’observateur présenté dans ce chapitre est
utilisé pour construire un controleur basé observateur en présence a la fois de mesures sporadiques
et actionnements sporadiques.

Plusieurs directions de recherche doivent encore étre étudiées. Parmi eux, une question inté-
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ressante concerne la construction d’un observateur sous les méme hypotheses considérées dans
ce chapitre pour estimer I’état de systeémes plus générales, comme les systemes caractérisés par
des non-linéarités de secteur. Allant dans ce sens permettrait d’établir des liens intéressants avec
les résultats présentés dans [2] et dans les références qui y sont. Cependant, une telle extension
ne semble pas étre trivial en raison du choix que nous avons considéré dans ce chapitre pour la

fonction de Lyapunov, qui est adapté a la dynamique linéaires du systeme a estimer.

Un autre perspectives intéressante concerne 1’évaluation des performances, en termes de vitesse
de convergence, offert par I’observateur proposé par rapport aux schémas d’observation dérivés via
des approches a émulation comme dans [65]. En effet, la particularité principale de 1’observateur
que nous avons considéré est que a chaque mesure tout I’état de 1’observateur est réinitialisé.
Ces changements instantanés de 1’état de 1’observateur peuvent potentiellement conduire a une
amélioration de la vitesse de convergence, tout en évitant 1’utilisation d’un gain d’observateur

élevé, qui est généralement indésirable dans la pratique car peu robuste au bruit de mesure.



UN OBSERVATEUR AVEC INJECTION HYBRIDE EN
PRESENCE DE MESURES SPORADIQUES

4.1 Introduction

Dans ce chapitre, nous considérons a nouveau le probleme de I’estimation d’état d’un systeme
linéaire en présence de mesures sporadiques. Différemment du Chapitre 3, nous adoptons un ob-
servateur avec un terme d’injection hybride. Une telle injection est fournie par un systeme linéaire
dont I’état est réinitialisé a I’erreur d’estimation de sortie mesurée, chaque fois qu’une nouvelle
mesure est disponible. Le systeme résultant est augmenté avec un temporisateur qui déclenche
I’arrivée d’une nouvelle mesure et le systeme résultant est analysé dans un cadre de systemes hy-
brides. La synthese de 1’observateur est effectuée afin de garantir la stabilité exponentielle global
d’un ensemble dans lequel I’erreur d’estimation est égale a zéro. En outre, quatre procédures de
synthese applicable d’un point de vu numérique sont illustrées. Ces procédures conduisent a quatre
stratégies différentes pour construire 1’observateur proposé. Enfin, I’efficacité de la méthode pro-
posée est illustrée dans un exemple. Certains des résultats illustrés dans ce chapitre peuvent étre

trouvés dans [24].

41
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4.2 Enoncé du probléeme

4.2.1 Description du systéme

Nous considérons le systeme linéaire temps-continu suivant :

z= Az
y=Mz

(4.1)

ou z € R", y € RY sont, respectivement, 1’état et la sortie du systeme, tandis que A et M sont des
matrices réelles de dimensions adéquates. Nous voulons résoudre le méme probléme considéré
dans le Chapitre 3 tout en s’appuyant sur un schéma d’observateur différent. Nous rappelons le
probléme que nous résolvons, en supposant que le premier temps £, = 0, notre objectif est de
concevoir un observateur qui fournit une estimation asymptotique z de 1’état z avec des mesures
sporadiques de y. En d’autres termes, nous supposons que ¥ soit disponible seulement a certains
instants de temps tx, k¥ € N a priori inconnus. Comme dans le Chapitre 3, nous supposons que la
sequence {t; } 2, est strictement croissante et non bornée et que pour cette sequence, il existe deux

nombres strictement positifs 77 < 75 tels que

0<t <1

(4.2)
Tlgtk+1—tk§T2 Vk € N.

Puisque les mesures de la sortie y sont disponibles de facon sporadique, en supposant que I’ arrivée
d’une nouvelle mesure peut étre instantanément détectée, pour résoudre le probléme d’estimation

considéré, inspiré par [45, 65, 68], nous proposons I’observateur avec saut suivant :

[ Z(t) = Az(t)+ LO(t)
i - mo) } Vit 4ty keN
(4.3)
2(t1) A(t

} Vi =1y, keN

\

s=Az L ¢ - y) i ey [ = Hy
y=Mz j— I i 0" = e,
Plant 1 Cog(te)
- 2
[Drigger—E]
Yy l2=a2+10
§=M:2

Continuous-time Observer

FIGURE 4.1 — Le schéma proposé. Les fleches en pointillés indiquent flux de données impulsifs,
tandis que les fleches pleines indiquent des flux de données en continu.



Chapitre 4 43

Considérons le changement de variable suivant :

z—2

=M(z—2)—10

™
I

™

qui définit, respectivement, I’erreur d’estimation et la différence entre I’erreur d’estimation de

sortie et A. Par conséquent, les deux dynamiques d’erreur sont données par le systeme dynamique

( ;(t)] _ [g(t)] } Vt £t keN

avec saut suivant :

0(t) (t)
(4.4)

)| |e®) B

] <o} s
ou
5o A— LM L
" |MA—-MLM - HM ML+ H

(4.5)

-]

4.2.2 Modélisation hybride

Comme dans le Chapitre 3, nous représentons 1’ensemble du systeme composé par le systeme

(4.1), I’observateur (4.3) et la logique de déclenchement des sauts comme un systeme hybride.

H (4.62)

T+ € [Tl, TQ]

ou
C =R"1 x [O,TQ]
(4.6b)
D =TR"" x {0}.
Donc, en introduisant 1’ensemble
A = {0} x {0} x [0, T3] (4.7)

le probleme que nous résolvons est le suivant :
Probléme 4.1. Etant données les matrices A et M et deux scalaires strictement positifs 77 < T,
déterminer L € R"*? et H € R7* tels que I’ensemble .4 défini dans (4.7) soit GES pour (4.6).
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Nous envoyons a la version en anglais de ce manuscrit pour plus d’informations concernant la

nature et les propriétés des solutions du systeme (4.6).

4.3 Synthese de I’observateur basée sur la solution de LMI

Le résultat suivant est I’un des principaux résultats de cette section. Il caractérise la solution au
Probléme 4.1 comme la solution au probléeme de la faisabilité de certaines inégalités matricielles.
Théoréme 4.1. S’il existe P, € ST, P € S1, un nombre positif o et deux matrices L € R™*7 et
H € R tels que

Mo — ‘He(Py(A— LM)) PL+ (MA—MLM — HM)™P,
e . He(Py(ML + H)) — 0Py
L 4.8)
M, _ |He(P(A=LM)) AL+ e’ (MA— MLM — HM)'P|
2T . T2 (He(Poy(ML + H)) — o P,)
alors L et H sont une solution au Probleme 4.1. U

4.4 Questions numériques dans la solution du Probleme 4.1

Dans la section précédente une condition pour garantir la stabilité exponentielle globale de 1’en-
semble A pour le systeme (4.6) basées sur la faisabilité de certaines inégalités matricielles a été
fourni. Toutefois, en raison de leurs formes, ces conditions ne sont pas traitables d’un point de
vue numérique pour obtenir une solution au Probleme 4.1. En effet, (4.8) est non-linéaire dans
les variables de décision Py, P, 0, H et L. Pour cela des manipulations supplémentaires sont né-
cessaires. Plus précisément, les non-linéarités présentes dans (4.8) sont dues a la fois aux termes
bilinéaires impliquant les matrices Py, P, L, H et le scalaire o, ainsi que le fait que o apparait
également de facon non-linéaire via la fonction exponentielle. Néanmoins, du point de vue numé-
rique, les non-linéarités impliquant les scalaires o sont facilement gérables. Par exemple, o peut
étre traité comme un parametre de réglage ou étre sélectionné via une recherche sur une grille pré-
définie. Pour cela, la principale question a aborder concerne les autres non-linéarités présentes dans
(4.8). Pour cet objectif, dans la suite, nous fournissons quatre conditions constructives suffisantes
pour résoudre le Probleme 4.1 via la solution du probleme de faisabilité de certaines inégalités
matricielles linéaires.

Proposition 4.1. S’il existe P, € S%, P, € S, un nombre positif o, des matrices J € R"*? et
Y € R tels que

He(PLA—JM) J+ATMTP,— MY
° He(Y) — oP;

He(PLA— JM) J+e(ATMTP, — MTY)
. (He(Y) — o Py)e’ ™2

<0

(4.9)
<0
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alors L = P['J,H = P;'YT — ML est une solution au Probleme 4.1. U

En choisissant dans les conditions ci-dessus Y = 0, on revient au schéma d’observateur pré-
senté dans [44, 45]. Cet aspect est formalisé€ dans le résultat suivant :
Corollaire 4.1. S’il existe P, € 8¢, P> € S?, un nombre positif o et une matrice J € R"*7 tels

que i
He(PLA—JM) J+ATM'P, <0
o —O'PQ
- (4.10)
He(PLA—JM) J+e2ATMTP, <0
° —e’ 2o P,
alors L = P;'J, H = —M L est une solution au Probleme 4.1, U

Nous présentons maintenant d’autres stratégies de synthese qui sont basées sur une transforma-
tion des conditions données par le Théoréeme 4.1 grace a I’utilisation du lemme de projection [64]

(nous envoyons a la version en anglais de cette these pour plus d’informations).

4.4.1 Procédures de synthese basées sur le lemme de projection

Proposition 4.2. S’il existe P, € S}, P, € Si, un nombre positif o et des matrices X €
R™™ ™ X4, Yy, Xe, Yg € R X5, Y, € RI*9 J € R" 9 tels que

He(Q)) Qy+P He(R,) Ry+ Py, 0 @11)
. He(Qs) + M J He(Q3) + No
ou .
P = diag{P, P>}
Pr, = diag{ Py, Pye®™
T gl P, P } 4.12)
N, = diag{0, —0 P}
Ny = diag{0, —0e”"2P,}
et

R X+ MY, MY
b ~Y, ~Y;

—Xy —X5

X+ MTX, M'X,
Q1 =

X MTX+ XTA—TM T

Q2 = X, 0
ATX - MTJT 0
Qs = T
J 0

Ry

X4+ MY+ XTA—JM J|

~Ys 0

alors L = X~ TJ et H = 0 sont une solution au Probleme 4.1.

O

Il est intéressant de noter que la procédure de synthese ci-dessus conduit au schéma d’observa-
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tion avec bloquer d’ordre zéro (ZOH) tres bien connu ; voir la FIGURE 4.2.

i=Az 7 y(te): 4 [ZOH :
y:MZ —f—-___:_-_,__t __'I_I’._
Plant bt :
: 1 .
|Trigger|—§—-|_){_| 9:
gUz=Az+ 10
=DMz

Continuous-time Observer

FIGURE 4.2 — Zero order sample-and-hold scheme

Proposition 4.3. S’il existe P, € S?,P, € Si, un nombre positif o et des matrices X €
R™™ U W e R4 J € R"1 tels que

He(Z))  Zo+ P
L] He(Zg> + N1

He(Zl) ZQ + PT2

<0 4.13
° He(Zg> + N2 ( )

ou f’, PTQ, N1, Ny sont définis dans (4.12) et

_x U X+ XTA—JM J
Zl - ZQ -
0o -U WM w
(ATX —MTJT 0
A3 =
JT 0
alors L = X" "J et H = U"TW sont une solution au Probléme 4.1. [l

4.5 Exemple numérique

Exemple 4.1. Considérons le modele de la dynamique longitudinale de I’avion F8 dans [43], dont
le modele dans I’espace d’état est :

—-0.8 —0.006 —12 0
0 —-0.014 -16.6 —32.2
1 -107* -15 0
1 0 0 0

00 0 1
= x.
“loo 11
Les deux sorties sont respectivement 1’angle d’attaque et 1’angle de trajectoire de vol. Nous vou-
lons synthétiser un observateur pour le systeme considéré tout en élargissant autant que possible

I’intervalle maximal d’échantillonnage 75 admissible. Dans la TABLE 4.1, nous présentons, pour

chaque méthode de conception, les valeurs du maximum 75 pour lesquels les conditions (4.8) sont
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satisfaites avec la valeur correspondante de o et les deux gains déterminés L et H. Dans chacune
de ces syntheses, la valeur de o est choisie de maniere a agrandir la valeur de 75 assurant la fai-

sabilité des conditions relatives. Concernant la procédure de synthese basée sur la Proposition 4.2,

Synthese o T5 L H
—0.712  0.872]
.. 1744  —2133 4.62 —5.73
Proposition4.1 0.6 4.7 269 —398 [12'3 _14.7}
—-8.13  9.95 |

0.15702 0.42578]]
—34.118 —84.26 —-0.221 -0.539
0.10341 0.24557 [—0.118 —0.294}
0.22093  0.53946 |

Corollaire 4.1 0.71 4.1

—0.216  0.216
L —921.6 ~36.1
Proposition4.2 097 3.54 —0.00971 —0.00372 0959
0.1 0.134
—0.044 0.102
L —31.8 —47.0 —0.258 —0.0121
Proposition 4.3 0.59  5.73 0.0184 0.0143| |—0.0172 —0.236
0.15  0.199 |

TABLE 4.1 — Valeurs de 75 et o et des gains L and H pour les différentes procédures de synthese.

il est intéressant de constater que les conditions de synthese pour le méme schéma d’observateur
données dans [68], (dans le cas de systemes linéaires), sont faisables pour 75 jusqu’a 0.4. Donc, la
stratégie de synthése proposée, dans ce cas précis, permet d’agrandir I’intervalle d’échantillonnage
maximale admissible de 8.85 fois par rapport a [68]. En outre, il se trouve que la procédure basée

sur la Proposition 4.3, dans ce cas précis, offre la plus grande valeur admissible pour 75.

4.6 Remarques et conclusions

A partir des idées générales dans [45], dans ce chapitre, nous avons proposé une nouvelle mé-
thodologie pour la conception basée sur inégalités matricielles linéaires d’un observateur avec
injection hybride pour I’estimation de 1’état d’un systeéme linéaire a temps-continu en présence de
mesures sporadiques. Plus précisément, en poursuivant une approche unifiée, nous avons fourni
quatre méthodologies de conception pour la synthese de 1’observateur, qui sont basées sur la solu-
tion d’un certain nombre de LMI. Deux d’entre eux ramenent respectivement au schéma d’obser-
vateur proposé dans [45] et au schéma avec bloquer d’ordre zéro proposé dans [68], tandis que les
autres deux amenent a des nouveaux schémas d’observateur. Bien que nous récupérons certains
schémas existants, les procédures de synthése que nous proposons sont nouvelles et, dans cer-

tains cas, sont plus performantes par rapport aux autres techniques de conception correspondant
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existant, quand elles existent. A la connaissance de I’auteur, une approche unifiée pour la concep-
tion systématique de la classe d’observateur présentée dans ce chapitre, qui englobe 1’ observateur
dans [45], et assurant une estimation d’état exponentielle pour une valeur donnée de I’intervalle
d’échantillonnage maximale, a été présentée pour la premiere fois dans [24]. En outre, nous tenons
a souligner que, bien que ce chapitre soit consacrée aux systemes LTI, différemment du Chapitre 3,
I’extension a une catégorie plus large de systemes, comme celle qui est considérée dans [68], est
presque directe.

L’ observateur proposé permet de fournir une solution alternative au probleme d’estimation
d’état en présence de mesures sporadiques par rapport a celle proposée dans le Chapitre 3. Néan-
moins, la conception de I’observateur proposé dans ce chapitre apparait plus simple que celle du
Chapitre 3. En particulier, nous rappelons que dans la synthese présentée dans le Chapitre 3, le
nombre total de lignes dans les inégalités matricielles considérées est proportionnelle a 2". Donc,
la complexité de la synthese résultante augmente de facon exponentielle avec la taille du systeme.
Ce probleme ne se manifeste pas dans les stratégies proposées dans ce chapitre. En particulier,
dans les conditions présentées dans ce chapitre, le nombre de lignes et le nombre de variables
scalaires des problemes de faisabilité considérés sont polynomiaux en n. La TABLE 4.2 indique
précisément ces données pour les synthése proposées. Par conséquent, les stratégies de synthese
proposées dans ce chapitre sont censées €tre moins complexes d’un point de vue numérique que

celles du Chapitre 3. Cependant, le deux solutions présentées sont complémentaires. Nous invi-

Synthese Nombre de variable scalaires Nombre de lignes
Corollaire 3.1 ~ (n+1)/2n +n? +ng 3n2"

Proposition 4.1  (n+1)/2n +nq+¢> +q(qg+1)/2 2(n+q)
Corollaire 4.1  (n+1)/2n+ng+q(qg+1)/2 2(n+q)
Proposition 4.2 (n+1)/2n +q(q+1)/2+n? +4qn +2¢*> + ng  2(n+q)
Proposition 4.3 (n+1)/2n + q(q+1)/2 +n? + 2¢*> + ng 2(n+q)

TABLE 4.2 — Nombre de variable scalaires et nombre des lignes pour les différentes stratégies de
synthese.

tions le lecteur a consulter la version en anglais de ce manuscrit pour une comparaison complete
des deux schémas.

Les schémas d’estimation analysés dans ce chapitre permettent de considérer de nombreuse
extensions d’intérét pratique, comme I’extension au cas de systemes a plusieurs sorties en présence
de mesures sporadiques et asynchrones, comme dans [58]. Cette extension est actuellement en
cours de réflexion et de premieres idées pour 1’analyse des schémas résultants sont illustrées dans

la version en anglais de ce mémoire.

Les observateurs présentés dans ce chapitre et dans le précédent peuvent étre utilisés pour
construire des architectures de commande pour la stabilisation asymptotique de systemes linéaires
en présence de mesures sporadiques. Dans la version complete de la these (manuscrit en anglais),
afin d’obtenir la stabilisation asymptotique d’un systeme linéaire en présence de mesures et ac-

tionnement sporadiques, la synthése d’un correcteur basé observateur est développée. Une telle
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synthese se base sur I'utilisation des résultats présentés ici, ainsi que sur la dérivation d’un prin-
cipe de séparation pour I’architecture considérée. La dérivation d’un tel principe de séparation est

plutdt technique et donc pour des raisons de concision, elle n’est pas présentée dans ce résumé.



Cette page a été laissée vierge intentionnellement.



CONCLUSION DE LA PARTIE II

Conclusions et remarques

Dans cette partie de cette these, nous avons fourni deux schémas d’observation pour estimer de
facon exponentielle 1’état d’un systeme LTI temps-continu en présence de mesures sporadiques.
En outre, la construction d’un correcteur basé observateur est proposée afin de stabiliser asympto-
tiquement un systeéme LTI temps-continu, en présence de mesures et actionnement sporadiques. La
synthese d’un tel correcteur est fondée sur un principe de séparation. L’ approche suivie se base sur
le cadre des systemes hybrides décrits dans [33] et conduit a des conditions basées sur la solutions

d’inégalités matricielles linéaires pour la synthese des schémas résultants.

Perspectives futures

Le travail présenté dans ce cadre a le role de préparer le terrain pour plusieurs extensions in-
téressantes. Dans ce sens, les résultats présentés dans cette partie ne représentent pas un travail
cloturé. En particulier, comme mentionné précédemment, I’extension de I’observateur du Cha-
pitre 4 au cas de systemes a plusieurs sorties asynchrones en présence de mesures sporadiques fait
actuellement 1’objet d’étude. Une extension également intéressante consiste dans la construction
d’un contrdleur basé observateur pour prendre en compte le cas de systemes a plusieurs entrée-
plusieurs sorties avec acces sporadique et asynchrone. Cette extensions permettrait d’appliquer
la méthodologie proposée dans cette these au cas des systemes de contrdle en réseau [78]. En
effet, dans ce cadre les actionneurs et les capteurs sont regroupés dans différents nceuds qui, res-
pectivement, permettent leur acces et transmettent des données de fagon sporadique et synchrone.
Toujours, dans le cadre des systemes de contrdle en réseau, un aspect qui mérite 1’attention pour de
futures recherches se rapporte a la présence de retards dans les canaux d’entrée et de sortie consi-
dérés [36]. Aussi une telle problématique pourrait étre abordée par le cadre des systemes hybrides,
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tout en s’appuyant sur la notion de systeme hybride avec mémoire illustrée dans [55]. Cependant,
une telle extension ne semble pas étre simple.

En ce qui concerne la conception d’observateur avec des mesures sporadiques, un aspect inté-
ressant consiste a coupler certaines aspects de performance aux procédures de syntheése proposée
dans cette these. Par exemple, comme dans [27], on peut envisager la dérivation des stratégies de
synthese pour garantir un taux de convergence exponentielle donné pour I’erreur d’estimation et/ou

I’atténuation de I’effet des signaux exogenes sur I’erreur d’estimation.



CONCLUSION GENERALE ET RECOMMANDATIONS POUR
DES RECHERCHES FUTURES

Dans cette these, deux problemes spécifiques qui se posent dans les systemes de contrdle mo-
dernes ont été abordés. D’une part, 1’analyse de la stabilité et la stabilisation pour des systémes
de contrdle linéaires a temps continu quantifiés, d’autre part, I’estimation d’état et le contrdle basé
observateur en présence a la fois de mesures et actionnement sporadique, toujours pour le cas de
systemes linéaires a temps continu. Bien que les deux problemes considérés sont abordés séparé-
ment, I’applicabilité des résultats issus de notre recherche se situe dans le contexte des systemes
de contrdle a informations limitées. Une telle classe de systemes englobe des systeémes de controle
construits en présence de contraintes de communication et/ou en présence de capacité de mesure

et d’actionnement limitées.

La méthodologie proposée dans la premiere partie de cette these mene a des outils constructifs
assistés par ordinateur pour I’analyse et la synthese de contrdleurs pour la stabilisation en présence
d’actionneur et de capteur quantifiés. Essentiellement, étant donné un systéme linéaire a temps
continu soumis a de la quantification (uniforme), soit dans le canal d’entrée, soit dans le canal de
sortie, soit dans les deux, nous avons fourni un ensemble de méthodes qui permet de concevoir
un correcteur linéaire a temps continus assurant, pour le systtme en boucle fermée, la stabilité
asymptotique globale uniforme d’un ensemble compact contenant I’ origine, tout en permettant la
réduction de la taille d’un tel ensemble grace a des outils d’optimisation convexe.

La méthodologie proposée dans la seconde partie de cette these mene a des outils constructifs
assistés par ordinateur pour la syntheése d’observateurs asymptotiques pour reconstruire de facon
exponentielle 1’état d’un systeme linéaire a temps continu donné, lorsque la sortie est mesurée de
facon sporadique et seulement une borne inférieure et une supérieure sur I’intervalle d’échantillon-
nage sont connues. En outre, nous avons montré que ces observateurs peuvent étre utilisés pour
construire d’un correcteur basé observateur pour stabiliser un systeme linéaire a temps continu en

présence de mesures et actionnements sporadiques.
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Perspectives futures

Comme il a été souligné tout au long de cette these, le travail présenté ouvre plusieurs questions.
En particulier, dans le cadre de la premiere partie, I’extension de la méthodologie proposée pour
d’autres classes de quantificateurs ainsi que le cas de quantificateurs saturants sont intéressantes
et font actuellement objet d’étude. Un aspect également intéressant concerne le développement
d’algorithmes pour traiter les termes bilinéaires affectant les conditions de synthese dérivées. Une
amélioration possible dans cette direction pourrait étre la dérivation des stratégies plus évoluées
pour améliorer la recherche des solutions optimales, comme dans [63].

En ce qui concerne la deuxieme partie, les principaux aspects a €tudier concernent les exten-
sions de la méthodologie pour des systemes avec des dynamiques plus générales et des systemes
a plusieurs sorties avec des canaux asynchrones. Dans ce contexte, toujours par rapport a des
systemes a plusieurs entrée-plusieurs sorties, un autre aspect intéressant est la construction d’un
contrOleur basé observateur, pour la stabilisation en présence de mesures et d’actionnement spo-
radiques avec des canaux asynchrones. Cette extension est utile car elle permettrait la conception
via ['utilisation d’un principe de séparation de correcteurs par retour de sortie pour des systemes

de contr6lés en réseau ([36]).
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