
HAL Id: tel-01261936
https://theses.hal.science/tel-01261936v2

Submitted on 9 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design flow for the rigorous development of networked
embedded systems

Alexios Lekidis

To cite this version:
Alexios Lekidis. Design flow for the rigorous development of networked embedded systems. Embedded
Systems. Université Grenoble Alpes, 2015. English. �NNT : 2015GREAM056�. �tel-01261936v2�

https://theses.hal.science/tel-01261936v2
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 7 août 2006

Présentée par

Alexios Lekidis

Thèse dirigée par Marius Bozga
et codirigée par Saddek Bensalem

préparée au sein du laboratoire VERIMAG
et de l’ École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Design flow for the rigorous de-
velopment of networked embedded
systems

Thèse soutenue publiquement le 10 Decembre 2015,
devant le jury composé de :

M. Ahmed Lbath
Professeur, Université Joseph Fourier Grenoble, Président

M. Roman Obermaisser
Professeur, Universität Siegen, Rapporteur

M. Roberto Passerone
Professeur, University of Trento, Rapporteur

M. Smail Niar
Professeur, Université de Valenciennes, Examinateur

M. Marius Bozga
Ingénieur de recherche, HDR, CNRS, Directeur de thèse

M. Saddek Bensalem
Professeur, Université Joseph Fourier Grenoble, Co-Directeur de thèse

2

Abstract

Over the latest years the use of embedded devices has expanded rapidly due to the
convenience they offer in daily life. Embedded devices are characterized by their tiny
size, their portability as well as their ability to exchange data with other devices through
a dedicated network unit. The analysis of the behavior and interactions between such
devices lead to the emergence of a new system type, called networked embedded systems.

As the current popularity of networked embedded systems grows, there is a trend for
addressing their existing design challenges in the development of functional applications.
These challenges relate to the use of their limited hardware resources (e.g. processor
memory, power unit) and the system heterogeneity in terms of software, hardware as well
as communication mechanisms between the embedded devices. To this end, in this thesis
we present a rigorous approach considering all the design challenges through a model-
based design flow. The flow uses BIP as an underlying framework for the hierarchical
construction of component-based systems and it is easily employed, as each step is fully
supported by developed tools and methods. Its benefits include early-stage simulation and
testing, verification of functional correctness, generation of deployable code and collection
of performance data from real executions, in order to calibrate the developed models.
Calibrated models represent faithfully the real system and can analyze system performance
as well as evaluate accurately system requirements. Additionally, performance analysis
results may provide design enhancements in the target system.

Our approach is demonstrated in several well-known application domains of networked
embedded systems, namely the automotive, industrial automation, Wireless Sensor Net-
work (WSN) and Internet of Things (IoT) systems. Each domain includes different charac-
teristics and technologies, but also features different challenges. These challenges are con-
sidered by developed tools for each domain, which are validated against existing domain-
specific, such as MATLAB/Simulink, RTaW-Sim, OPNET Modeler and Cooja. The vali-
dation is facilitated through case-studies in industrial or benchmark networked embedded
systems. Our experiments illustrate the support of a better fine-grained analysis from the
developed tools by initially providing similar simulation results and additionally offering
capabilities for automated code generation as well as requirement verification.

3

Résumé

Au cours des dernières années, l’utilisation d’appareils embarqués a augmenté rapi-
dement en raison de la commodité qu’ils offrent dans la vie quotidienne. Les appareils
embarqués se caractérisent par leur petite taille, leur portabilité ainsi que leur capacité
d’échanger des données avec d’autres appareils grâce à leur service de communication
réseau. L’analyse du comportement et les interactions entre ces appareils a abouti dans
l’établissement d’un nouveau type de système, appelé systèmes embarqués en réseau.

En tant que la popularité actuelle des systèmes embarqués en réseau grandissent, il y a
une tendance de relever leurs défis de conception existants afin de développer d’applications
fonctionnelles. Ces défis concernent l’utilisation de leurs ressources matérielles limitées
(p.ex. la mémoire du processeur, l’unité d’alimentation) et l’hétérogénéité du système en
termes de logiciel, de matériel et aussi des mécanismes d’interaction entre les appareils. A
cet effet, dans cette thèse nous présentons une approche rigoureuse considérant tous les
défis grâce à un flot de conception basée sur techniques de modélisation. Le flot utilise
le formalisme BIP pour la construction hiérarchique de systèmes autour de composants
et il est facilement utilisé, car chaque étape est entièrement automatisée par des outils et
méthodes développés. En plus, ce flot perme la simulation des systèmes à chaque étape de
développement, la vérification par l’exploration de l’espace de conception, la génération
de code et la calibration des modèles développés, afin de présenter fidèlement le système
réel. Les modèles calibrés peuvent analyser la performance de system et aussi valider
des exigences sur le system. Finalement, les résultats d’analyse de performance peuvent
apporter des améliorations sur la conception de système cible.

Notre approche est présenté sur plusieurs bien connus domaines applicatifs des systèmes
embarqués en réseau, comme les systèmes automobiles, les systèmes de l’automation in-
dustrielle, les systèmes de réseaux de capteurs sans fil (WSN systèmes) et les systèmes pour
l’internet des objets (IoT systèmes). Chaque domaine inclut différentes caractéristiques et
technologies, mais dispose également différent défis. Ces défis sont considérés par les out-
ils développés pour chaque domaine, qui sont validées contre les outils existantes, comme
MATLAB/Simulink, RTaW-Sim, OPNET Modeler et Cooja. La validation se fait grâce à
les cas d’études sur les applications industrielles ou les benchmark réalistes des systèmes
embarqués en réseau. Nos expérimentations illustrent le soutien d’une meilleure analyse
par les outils développés en fournissant d’abord résultats similaires pendant la simulation
et en plus les capacités de génération automatique de code et la vérification des exigences.

4

Acknowledgments

The presented work is the outcome of my research efforts over these 4 years at Verimag.
For this reason I would like to thank firstly my supervisors Marius Bozga and Prof. Saddek
Bensalem. Marius was always there, even from my first day, to support and help me
expecially in the difficult stages of this work and Prof. Saddek gave me motivation and
research directions in the projects we have carried out.

I would also like to express my gratitude to Prof. Joseph Sifakis, for giving me the
opportunity of joining Verimag as well as for his advice, help and his ideas on future
research directions, such as the Internet of Things and the Real-Time Ethernet.

I am evenly grateful to all the jury members who were interested in my work and for
all the time spent to review it.

A great thank goes to my collaborators all these years Paraskevas Bourgos, Prof.
Panagiotis Katsaros, Emmanouela Stachtiari, Ayoub Nouri because without them this
work would never be the same.

Additionally, I would like to thank my colleagues at Verimag. Firstly, I would include
here Jacques Combaz, for his help and support during the time we were trying to have
stable versions for new BIP tools. Then, I am really grateful to Ayoub Nouri for the time
he devoted for corrections on chapters of this thesis. Afterwards, I would like to thank
Petro Poplavko for his help and the understanding we had between each other all the
years we shared the office. Moreover, I am grateful to Ananda Basu, Balaji Raman, Jean
Quilbeuf, Pranav Tendulkar, Anakreontas Mentis, Dario Socci, Hosein Nazarpour, Souha
Ben Rayana, Najah Ben Said and many more for the interesting discussions and the really
enjoyful working environment.

I would like to thank my friends Christoforos, Vassilis, Katerina, Paraskevas, Dimitris
who have been with me all these years and their support meant the world for me. Addi-
tional thanks goes to Tony, Thiago, Irini, Tasos, Stefano, Andy, Maciej, Audrey, Bogdan,
Christoph, Alina, Rosi, Petra, Savina, Gözde and Dimitris with whom we shared great
moments.

Finally, I would like to thank my family: my mother Haroula, my father Vassilis,
my brother Panagiotis as well as my grandmothers Nitsa and Eleni who have provided
unconditional support in all the stages of my life. As in life we are never alone, I left for
the end my gratitude to a very important person in my life, Alexandra. Without her by
my side I wouldn’t have come this far..

Contents

I Context 9

1 Introduction 11
1.1 Networked Embedded Systems . 12

1.1.1 Heterogeneous Embedded Devices 12
1.1.2 Heterogeneous networks and protocols 12
1.1.3 Resource-constrained systems . 13

1.2 Functional and Extra-Functional Requirements 14
1.2.1 Timing Constraints . 15
1.2.2 Clock Synchronization . 15
1.2.3 Energy and thermal constraints . 16

1.3 Development Methods . 16
1.3.1 Classical methodologies . 17
1.3.2 Model-based Design . 17
1.3.3 Embedded system design methodologies 18

1.4 Thesis Contribution . 19
1.5 Organization . 20

2 Networked Embedded Systems: A Background 23
2.1 Classification of Networked Embedded Systems 23

2.1.1 Automotive systems . 23
2.1.2 Industrial Automation Systems . 26
2.1.3 Wireless Sensor Network systems . 27
2.1.4 IoT Systems . 29

2.2 Technologies and Communication Protocols 32
2.2.1 Controller Area Network (CAN) . 32
2.2.2 CANopen . 35
2.2.3 Ethernet Powerlink (EPL) . 43
2.2.4 IEEE 802.11 . 47
2.2.5 The 6LoWPAN protocol . 49
2.2.6 Contiki OS . 51

2.3 Summary and Discussion . 55

3 The BIP Framework 57
3.1 Concepts . 57

3.1.1 Atomic components . 57
3.1.2 Component composition . 60

5

6 Contents

3.2 Modeling language . 64

3.3 Toolset . 69

3.3.1 Language Factory . 69

3.3.2 Engine-based simulation . 71

3.3.3 Verification . 71

3.3.4 Statistical Model Checking . 72

3.4 Design Flow . 73

3.5 Summary . 74

II Contribution 75

4 Rigorous Design Flow for Networked Embedded Systems 77

4.1 Overview and design phases of the proposed flow 78

4.2 PPM: A programming model for networked embedded systems 82

4.3 Automated Code Generation from PPM specifications 85

4.4 System-level performance analysis methods 86

4.4.1 Distribution fitting . 86

4.4.2 Model calibration . 88

4.4.3 Monitoring performance information in the System Model 90

4.4.4 Improvement of simulation for the System Model 91

4.5 Conclusions . 94

5 Application of the Design Flow to Automotive Systems 97

5.1 Design phases of the automotive system flow 98

5.2 Modeling rules and principles . 99

5.3 CAN HW/Communication Model . 100

5.4 Tools for automotive system development: The NETCAR2BIP Translator . 106

5.5 Case study: Powertrain Vehicle System . 108

5.5.1 Modeling the Application Software 108

5.5.2 Requirement Description . 110

5.5.3 Experiment 1: Simulation . 110

5.5.4 Experiment 2: Performance optimization 111

5.6 Summary and Discussion . 112

6 Application of the Design Flow to Industrial Automation Systems 115

6.1 Design phases of the industrial automation system flow 117

6.2 System modeling principles . 118

6.3 CANopen protocol model . 119

6.4 Tools for industrial automation system development: The CANopen2EPL
Code Generator . 124

6.4.1 EPLNodeConf Device Configurator 125

6.5 Case study 1: Pixel Detector Control System 126

6.5.1 Modeling the Application Software 128

6.5.2 Requirement Description . 129

6.5.3 Experiments . 130

6.6 Case study 2: Triple Modular Redundancy System 131

6.6.1 Modeling the Application Software 132

6.6.2 Code generation . 135

6.6.3 Experiments . 135

Contents 7

6.7 Summary and Discussion . 137

7 Application of the Design Flow to WSN Systems 139

7.1 Design phases of the WSN system flow . 140

7.2 System modeling principles . 142

7.3 WLAN architecture model . 144

7.4 Tools and methods for WSN system development 148

7.4.1 Translation of the WLAN network configuration 148

7.4.2 Automated code generation for WSN 149

7.4.3 Distribution Fitting . 150

7.5 Case study: Wireless Multimedia Sensor Network 152

7.5.1 Application overview . 152

7.5.2 Modeling the Application Software 155

7.5.3 Code generation . 162

7.5.4 Requirement Description . 162

7.5.5 Experiments . 163

7.5.6 Summary and Discussion . 166

8 Application of the Design Flow to IoT Systems 169

8.1 Overview of the design flow for IoT systems 171

8.2 Modeling rules and principles . 172

8.3 Contiki OS Kernel Model . 174

8.3.1 Modeling the Contiki Kernel . 174

8.3.2 Modeling the Contiki network stack 179

8.3.3 Fault injection model . 182

8.4 Tools and methods for IoT system development 182

8.4.1 Translation of the WPAN network specification 183

8.4.2 Using the DSL application description 184

8.4.3 BIP System Model Calibration . 186

8.5 Case study 1: Smart Heating System . 187

8.5.1 Modeling the Application Software 188

8.5.2 Requirement Description . 189

8.5.3 Experiments . 190

8.6 Case study 2: Building Automation System 191

8.6.1 Modeling the Application Software 192

8.6.2 Requirement Description . 193

8.6.3 Experiments . 194

8.7 Summary and Discussion . 195

9 Conclusion 197

9.1 Summary . 197

9.2 Perspectives . 198

8 Contents

List of figures 201

List of tables 205

Bibliography 208

Part

Context

9

- Chapter 1 -

Introduction

The recent exponential increase in the use of embedded devices, has made a great impact
on the modern society. The reason behind this increase is the commodity and utility
they offer in every day life. Their main attributes include compact size, low-cost as well as
the low-power that they consume while operating. The addition of networking capabilities
lead to the emergence of networked embedded systems, a new type of distributed embedded
systems with tremendous applications. Such systems are nowadays used in a variety
of domains including health-care, transportation, agriculture, environmental monitoring,
security systems, industrial process control, factory and building automation and control
(BAC), high-energy physics, and many more.

In general, the development of functional networked embedded systems is challenging,
even when complete knowledge of the application software and the interactions with the
HW abstraction layers is assumed. This occurs due to their complexity and unpredictable
behavior in terms of functionality as well as external factors (e.g. harsh environmental
conditions). An example of unpredictable functional behavior is when developing software
modules that depend on each other as well as on the underlying hardware architecture,
in which case the communication and data processing latencies should be taken into con-
sideration. Nevertheless, such details are not known during the development. Moreover,
assuming that the functional errors are resolved, unpredictable behavior can be also iden-
tified in the deployment phase of an application, such as the conflicts that might occur
in the network stack. From these examples we can reason that the time required for the
design of networked embedded systems as well as additional effort for their a posteriori
validation, which is a hardly predictable.

Nowadays, the academic and industrial focus lies towards techniques to improve the
overall efficiency, performance and lifetime of networked embedded systems, whilst keeping
the production cost low. This dissertation aims on providing solutions for the efficient
design, validation and deployment of networked embedded systems. To this extent, in
the following sections we introduce with some more details the main characteristics of
such systems and discuss the most important design and development challenges. Then,
we summarize our contribution and provide an insight on the overall organization of this
document.

11

12 Chapter 1. Introduction

1.1 Networked Embedded Systems

Networked embedded systems are complex heterogeneous systems. They usually consist
of different devices, every one including specific sensors and actuators to gather data and
to interact with their environment. Moreover, they are usually managed by different op-
erating systems and support different network protocols and communication mechanisms
for data exchange. All these make system design complex and each developer should be
able to handle different coordination principles, as synchronous and asynchronous, object-
and actor-based, and event- and data-based.

1.1.1 Heterogeneous Embedded Devices

In general, embedded devices are deployed in the physical environment, in order to inter-
act with it and collect measurements as well as to handle different types of events. The
collected measurements may be exchanged with other embedded devices or base stations
in the network and additionally the device may often indicate to them its own critical
operating conditions, such as identified failures or insufficient energy. Therefore, an im-
portant characteristic of a networked embedded device is its high-degree of reactivity. In
this sense, the device is not only able to gather measurements, but also to act rapidly in
order to abstract these measurements and obtain useful data from them. Then, it can use
this data to make inferences and perform dedicated operations.

The typical architecture of a networked embedded device is illustrated in Figure 1.1.
The device receives inputs from the external physical environment in the form of signals
or probes that are measured by the sensor and performs control actions to them through
the actuator unit. Accordingly, these actions produce data that are stored in the storage
memory of the central processing unit in order to be displayed or exchanged with other
devices and base stations through the network unit. Thus, the outputs of such a device are
respectively in the form of displays or communication signals. Moreover, they are usually
a function of its inputs and several other factors (e.g. elapsed time, current temperature,
power consumption). Another source of reactive behavior in a device relates to its auto-
matic configuration, during its initial deployment in the physical environment. Therefore,
apart from the deployment itself, no further human intervention is required for the normal
device operation.

Actuator OutputInput Sensor

Power unit

Memory

Processing unit(s)

Network unit

Figure 1.1: Networked embedded device example

1.1. Networked Embedded Systems 13

1.1.2 Heterogeneous networks and protocols

An important characteristic of networked embedded systems is that they are distributed
systems. This architecture usually involves a large number of independent devices that
are spatially scattered in many different locations to process information in parallel. Ad-
ditionally, these locations are often distant and therefore a distributed deployment allows
networked embedded devices to use their network unit for delivering the gathered data to
nearby devices in a collaborative and reliable manner.

Wired and wireless networks. Embedded devices are connected by either wired or
wireless networks or often a combination of both. Wireless communication is becoming
more and more widespread due to the avoidance of the cost and complexity from the
installation of wires. Though the absence of wires is beneficial, it also introduces unpre-
dictable latencies, which may worsen the overall performance especially in time-critical
applications. Therefore, the selection of the communication network depends on the ap-
plication characteristics or requirements and sometimes it is also quite challenging. For
example in environmental monitoring applications, networked embedded devices can be
deployed in mountains or forests, in order to gather data. The installation of wires in such
areas is however not possible, therefore the only option for transmitting the data to central
processing (base) stations is the use of wireless communication. Nevertheless, the harsh
and unpredictable environmental conditions in these areas may lead to low performance
and increased data losses.

Event- and time-triggered technologies. Most of the communication protocols that
are currently found in networked embedded systems, employ two basic data exchange tech-
nologies, named event-triggered and time-triggered. On the one hand, in event-triggered
technologies messages are transmitted to signal the occurrence of significant actions. More-
over, event-triggered technologies provide a high degree of flexibility, in order to exchange
data whenever it is necessary as well as to support dynamic scheduling in the activation of
the software tasks that service the events. This allows them to handle different functioning
modes of the application. Besides their benefits, event-triggered technologies lack of pre-
dictability in the occurrence of events. Therefore, in a worst-case scenario multiple events
may occur in approximately the same moment. As a result, the load in the communication
medium would be sharply increased, leading to low system performance. On the other
hand, in time-triggered technologies messages are transmitted in predetermined points in
time (e.g. periodical transmission). Such technologies offer a restrictive design procedure,
in that all software processes and their time specifications must be known in advance.
They also support a static predetermined scheduling between the different processes, such
as the periodic clock interrupts or time-slot allocation (e.g. in TDMA communication).
This requires a lot of planning and deprives flexibility in the design phase, but in con-
trast to event-triggered technologies it also provides a predictable behavior to the system.
The selection of the type of data exchange technology depends on the category and re-
quirements of the application. For example time-critical applications are likely to employ
time-triggered technologies, in order to ensure a high-level of predictability.

Dynamic reconfiguration. Communication in networked embedded systems is usually
supported by several localization algorithms, which are mainly trying to identify the nearby
devices (i.e. neighbors) as well as the closest route for delivering the data to the base
station [LR04]. An advantage of such an architecture is data availability, meaning that
in case of a device failure its data will be still accessible through a backup in another
device, unlike a centralized architecture where the failure would be expanded in the entire

14 Chapter 1. Introduction

network and the data would be unrecoverable.

1.1.3 Resource-constrained systems

Most of the embedded devices nowadays contain microprocessors as a part of their pro-
cessing unit and are battery powered, which makes them respectively compact as well as
portable and thus facilitates their deployment in the physical environment. Nevertheless,
the use of batteries introduces significant resource constraints on the devices. Typical
examples of such constraints relate to their processing power, memory size and energy
they use while operating. The efficient use of these resources is of vital importance, since
it determines the device lifetime. In detail, the design of networked embedded systems
should ensure that the resources of the individual devices do not reach a critical state,
or otherwise the devices will fail to process and exchange data and will require replace-
ment. Nevertheless, since devices can be deployed in inaccessible areas (e.g. mountains,
forests), they should not be replaced often upon failure. Moreover, neighbor devices may
not notified of the failure and will continue data transmission to a non-operational device.
Each such transmission would consequently lead to data loss, which will lead to a perfor-
mance degradation in the system. Special attention should be also given to the restricted
communication bandwidth and processing performance, which are offered by embedded
devices and are a direct outcome of their scarce resources. For all these reasons they are
usually described as resource-constrained devices. Recent efforts have been made in order
to improve the resource exploitation in such devices by introducing proprietary technolo-
gies in their network stack [Zur05]. However, the development and maintenance cost of
the produced embedded devices in this case cannot be justified from the novel capabilities
that they offer.

Energy efficiency. This an important characteristic in networked embedded systems,
since it determines the system lifetime. It is tightly connected to network communication,
as transmission/reception consumes around 60% of the power resources in an embedded
device [SHC+04]. This is due to certain event handling functionalities taking place in the
sensor unit and keeping it constantly awake in order to process and respond to the received
data. As an example, transmission/reception in wireless communication is supported by a
radio transceiver, which is monitoring the shared communication channel even if nothing
is happening. In this scope, many techniques have been defined to reduce the energy
consumed for network communication. A commonly employed technique amongst them
sets the sensor unit into a low-power (sleep-mode) state from which it is awakened at cer-
tain instants to process and handle incoming events (e.g. from the physical environment).
Awakening could either be periodical, meaning that the device sets a timer and the sensor
unit is notified to wake-up upon expiration [GS05], or based on wake-up signals from the
device at asynchronous moments (e.g. in the occurrence of high-priority event) [CKH11]
or sometimes even adaptive [BKL05].

1.2 Functional and Extra-Functional Requirements

Up to this point we have described the main characteristics of networked embedded sys-
tems. These characteristics are considered during the system development, in order to
ensure the benefits of using networked embedded systems (e.g. low-cost, compact size and
low power consumption). More precisely, a set of system-level requirements are usually
identified and addressed before the system development is initiated. Such requirements

1.2. Functional and Extra-Functional Requirements 15

are distinguished in two major categories, the functional requirements which are related to
the functionality, correctness and robustness of the developed applications, as well as the
extra-functional requirements which are related to the performance, efficiency and Quality
of Service (QoS) of the entire system-under-study. Characteristic examples of functional
requirements include the delivery of expected functionality, the absence of deadlocks as
well as of other unexpected errors in the application software. However, special focus
should also be given to extra-functional requirements, such as enforcing bounds on the
communication and data processing latencies, energy consumption or maintaining the
system temperature in specified levels. The significance of extra-functional requirements
is depicted if we consider our earlier statement about the strong impact of non-efficient
energy consumption on the probability of a device failure.

Further requirements are defined for networked embedded systems that may be clas-
sified in one of the aforementioned categories but are strongly influenced by the other. A
typical example are the memory management requirements, which may be considered as
functional, but are influenced by communication and data processing latencies. Although,
functional requirements are concerning the application software as well as the code devel-
opment and debugging, the extra-functional requirements are also affected directly by the
choices of the hardware and network communication technologies that are made in the
system as explained in the following section.

1.2.1 Timing Constraints

In the category of extra-functional requirements the identified constraints concern the ef-
ficiency as well as the overall performance of the networked embedded system. The most
important types of extra-functional requirements in this category relate to timing con-
straints and concerns dedicated time intervals for data handling (i.e. processing, storing).
These constraints are related to certain time frames on which processing and exchange
of data should be completed. The selection of these time frames depends on the system
requirements and the type of employed communication technologies. The existing commu-
nication technologies used for networked embedded systems are organized into three main
categories according to their overall impact on the system-under-study. The categories are
hard real-time, soft real-time and best effort. Hard real-time are the technologies that set
strict deadlines, which should be guaranteed to ensure a time-critical functionality. Typical
examples in this category are the avionics or control systems. Soft real-time technologies
also define deadlines, nevertheless they are not necessarily met in all cases. Likewise, an
example in this category concerns building automation and healthcare systems. Finally,
best effort technologies do not set any deadlines and may only define relative priorities
between the messages. In this category we usually encounter systems that are used in
agriculture or for environmental monitoring.

In particular, the extent on which the time constraints are satisfied in a networked
embedded system is strongly influenced by the communication and data processing la-
tencies that are produced during data exchange. These latencies usually depend on the
employed hardware platforms as well as the network communication technologies and the
mechanisms they use for data delivery.

1.2.2 Clock Synchronization

A further issue that should be taken into account when enforcing timing constraints in
distributed networked embedded systems lies in the different frequencies with which the
hardware clocks of the individual devices advance over time. This causes a slight divergence

16 Chapter 1. Introduction

between every clock in the system, called skew. Therefore, if for example we consider a
timing constraint between two events that occur in different nodes (e.g. transmission and
reception of data), the achieved measurement won’t be accurate due to the skew difference.
In order to obtain the desired accuracy we would have to measure this duration according
to a consistent notion of time in the system, named common time reference.

A possible question at this point would be on how to obtain this common time ref-
erence in a distributed system? A well-defined mechanism for answering to this question
is by performing clock synchronization, in order to correct the skew of each clock. Clock
synchronization involves message exchange in order to initially compute the difference be-
tween two or more nodes. Once this difference is computed the clocks can be corrected
or adjusted in order to operate in a synchronized way. The interval where this difference
is found over time determines the effectiveness of the protocol which is used to perform
clock synchronization, also called synchronization accuracy. Several synchronization pro-
tocols have been proposed to compute this difference [SBK05], which are classified with
respect to two basic criteria 1) their efficiency, in terms of synchronizing the clocks with
the least number of messages (to ensure low resource consumption) and 2) their effective-
ness denoting their ability of preventing message latencies from affecting the quality of
synchronization. The commonly obtained synchronization accuracy of the synchronization
protocols is usually in the microsecond scale.

1.2.3 Energy and thermal constraints

The scarce resources pose significant constraints on the use of networked embedded sys-
tems and necessitate the introduction of management techniques to improve their effi-
ciency. Efficiency improvements lead also to the reduction of the device failure rate in
such systems when the device resources reach a critical point. The most prominent man-
agement techniques in this direction aim in introducing energy constraints to control the
energy consumption in the system and thermal constraints to maintain the measured tem-
perature of each device in the desired levels. The former define specific bounds for the
consumed energy in the units of each device and provide efficient techniques for its dissi-
pation in network communication [HCB00]. Additionally, the latter try to prevent peaks
in the load of the processing unit in the individual devices of the networked embedded
system, which will cause them to overheat and will accordingly degrade their performance
as well as decrease their overall lifetime [FS13].

1.3 Development Methods

When considering the underlying effort for building a functional networked embedded
system, the longest period is allocated in the application development and debugging (or
testing) phase, as it was also described in the context of the makeSense project (Figure 1.2).
Moreover, once the application is functional and properly tested, it is still uncertain that all
the design or development errors were fixed before the deployment. Non-identified errors
may concern conflicts in the network stack or even unexpected behaviors that were not
taken into consideration during the development. In such a case it is extremely hard and
time-consuming to fix these errors by the use of debugging techniques, even for developers
with high-expertise i.e. complete knowledge of the application as well as the underlying
hardware architecture (operating systems and network stack protocols).

1https://www.sics.se/projects/makesense-easy-programming-of-integrated-wireless-sensor-networks

18 Chapter 1. Introduction

2. This methodology is based on an extension of the Waterfall SDLC model 3 and focuses
on two main aspects, namely development and testing. A considerable drawback in the
“V-model” is its underlying assumption that all the system requirements are initially
well-known as well as that they can be used to build the system from scratch. However,
system requirements are usually formulated and understood during the development and
additionally system construction is rather incremental by reusing existing software modules
and applying modifications to them. Moreover, since the development proceeds iteratively
between different phases, identified errors in the application software or modifications of
the hardware platforms may require an immediate return to a previous phase. As a result,
the cycle as well as the overall development effort would be augmented.

A recently emerging methodology used by many developers to improve the derived
limitations of the “V-Model” is “Agile/Scrum” [HC01]. Unlike the “V-Model” method-
ology “Agile/Scrum” focuses on the development of the simplest version of the system,
which will adaptively evolve based on the requirements and needs of the system users.
The evolution is supported by several iterations in which different functionalities of the
system are initially developed and accordingly integrated, in order to perform a series of
tests to them. Nevertheless, this methodology considers that coding and system design
are performed in parallel. This is quite problematic as the changing requirements in each
iteration lead to a unstructured development approach. Moreover, the constantly changing
requirements in “Agile/Scrum” cannot provide a clear vision for the final system, which
is of vital importance in system development. A direct consequence in this case would be
the implementation of software modules for vague projects (in terms of time and overall
cost), where the objective is not known.

1.3.2 Model-based Design

An alternative to classical methodologies are model-based design techniques, which at-
tempt to describe faithfully the behavior and functionality of the system through dedicated
model artifacts. Model-based design allows the progressive system implementation, start-
ing from the description of the application software to the development of software modules
until the application deployment in the hardware architecture. Moreover, the developed
model artifacts are reusable, thus they can be instantiated and parameterized according
to the particular system-under-study. Furthermore, they can be used for early-stage sim-
ulation and testing, performance evaluation as well as verification of system requirements.
Additionally, system design can be also enhanced by the presence of incremental compo-
nent composition techniques, which will add a high-degree of productivity and correctness
to the resulting system. More specifically, such techniques allow the system to be con-
structed incrementally through the composition of simple components in order to form
more complex components. As an outcome, the debugging and identification of errors in
simple components is easier and less time-consuming. The incremental system construc-
tion using model-based design is becoming extremely appealing for networked embedded
systems, due the substantial reduction on the development time and effort that it offers.
Many existing techniques in this scope rely on data-flow systems or finite state machines
to facilitate the design of such systems as well as their validation through simulation or
verification of system requirements.

The benefits of model-based design apart from incremental system construction include
the support of separation of concerns during system design and development. Separation

2http://ops.fhwa.dot.gov/publications/seitsguide/section3.htm
3http://www.tutorialspoint.com/sdlc/sdlc waterfall model.htm

1.3. Development Methods 19

of concerns in networked embedded systems is two-fold and involves the separation of
communication and computation as well as the separation of application from the archi-
tecture. The former denotes that the mechanisms and primitives of the protocols employed
in the network stack should be handled independently from data handling (i.e. processing,
storing). On the other hand, the latter is of vital importance as it allows the application
to be developed independently from the hardware architecture. In this scope, developers
have to specify and build separate artifacts for the software and the hardware architecture,
which can be also reused in similar applications. Moreover, this is highly beneficial, since
any modifications to any of them (i.e. application software or the hardware architecture)
won’t affect the other. Then, they should be able to define the optimal methodology for
the deployment of the application on the target architecture by simultaneously ensuring
its proper functionality.

1.3.3 Embedded system design methodologies

Several methodologies exist currently in order to facilitate embedded system design by
considering both the application software as well as the underlying hardware architecture.
These methodologies are also enhanced by model-based design techniques to provide mod-
eling, simulation and design space exploration capabilities during the early development
stages. A notable modeling framework for such systems is Ptolemy II [BLL+08]. It is
based on the Java programming language and focuses on embedded application software
development rather than the deployment in hardware architectures. It supports several
computational models, such as data-flow systems, finite state machines, Process Networks
(e.g. Kahn Process Network [TBHH07]), Synchronous/Reactive (SR) models. These
models are hierarchically mixed and controlled by a global scheduler. Another notable
framework in this scope is metroII [DDG+13], which focuses both in the development of
functional as well as hardware architecture models (e.g CPUs, memories, communication
channels). metroII supports design space exploration as well as provides guarantees for
the satisfaction of logical and time-based conditions that are linked to system require-
ments. Furthermore, openMETA [SBN+14] is a framework that supports a design flow
for the systematic development of embedded systems. The supported flow allows the
early design space exploration for hybrid dynamic models and the finite element analysis
of thermal, mechanical and mobility requirements. Finally, the Generic Modeling En-
vironment (GME) [LBM+01] uses metamodels based on UML to provide a flexible and
extensible modular component architecture that allows the simulation, evaluation and op-
timization capabilities for for a target system domain. GME is also applied to the domain
of embedded systems through the MILAN framework [BPL01].

Additional tools and techniques also exist to provide feedback in the system architec-
ture by conducting a system-level performance analysis, such as the SymTA/S approach
[HHJ+05]. SymTA/S is based on formal scheduling analysis techniques and symbolic sim-
ulation to determine performance data, such as end-to-end latencies, bus and processor
utilization, and worst-case scheduling scenarios. A similar approach is supported by the
MAST toolset [GHGGM01]. Additionally, in [WTVL06] the authors present the Modu-
lar Performance Analysis (MPA) method, used for the effective evaluation of Real-Time
embedded systems through the Real-Time Calculus [TCN00].

Even though the aforementioned tool-supported frameworks facilitate embedded sys-
tem design, they provide limited support for the operating systems and hardware ar-
chitectures that are found in networked embedded systems as well as the protocols and
interaction mechanisms that are used in the network stack of each embedded device. This
motivated our research contribution of the following section.

20 Chapter 1. Introduction

1.4 Thesis Contribution

In the scope of this dissertation we propose a novel method for providing systematic and
generic solutions in the presented design challenges that are faced during the development
of networked embedded systems. The method is based on a design flow with rigorous
semantics, which uses model-based design techniques as well as incremental component
construction to progressively build such systems by modular and reusable components.
The flow covers all the levels in the design, namely the description of the application
software, the modeling and implementation of software modules in a high-level for the
application software as well as in a low-level for the hardware architecture through rapid
prototyping techniques and finally the application deployment on the target architecture.
Moreover, since it is model-based, it allows to capture all possible behaviors in a net-
worked embedded system and furthermore provide simulation, performance evaluation
and model-checking capabilities even in the early system development stages i.e. before it
is implemented.

We advocate that the proposed design flow is rigorous as it involves the following
capabilities:

• Open to standards: By this term we denote that it uses as input for the application
software well-known specifications and standards. This allows to combine a high-
degree of standardization with the necessary customizations to obtain a fully-fledged
design of the networked embedded system architecture.

• Model-based: It uses a single semantic framework (BIP [BBS06]) to represent all
the hardware/software layers of networked embedded systems, in order to maintain
semantic coherency in the description of the application software and the under-
lying hardware architecture. Furthermore, the application software and hardware
architecture models are developed independently according to the Y-chart design
principle. This allows to consider the separation of concerns (Section 1.3.2), such
that the development and modifications to any of them proceed independently, in
order do not affect the other. Once built, these models are accordingly synthesized
using the mapping procedure, which describes the application deployment in the
hardware architecture.

• Component-based: It is using component composition to derive composite com-
ponents from simpler components. To this extent, it supports component reusability,
in order to reduce the development time and effort as well as to design and analyze
the system incrementally.

• Correct-by-construction: This term denotes that the design flow leads to the con-
struction of a final model for the system-under-study, which preserves in the entirety
all the requirements of the initial input model for the application software model.
This is accomplished by extensive use of formal design rules and transformations to
proceed from one step to another in the flow.

• Tool-supported: This attribute denotes that the design flow includes tools, which
are used to automate the transition between its different steps. These tools are
either generic or specifically adapted to each category of each networked embedded
system-under-study.

• Re-targetable: It can be deployed in a wide range of embedded systems featur-
ing network communication between resource-constrained devices. Specifically, the

1.5. Organization 21

design flow provides support for several types of application software, operating
systems as well as network stack protocols.

The proposed flow implements of an approach for rigorous design and development
of functional networked embedded systems, illustrated in Figure 1.4. In this scope it in-
volves several design phases, which aim in the independent development of the application
software and the hardware architecture. Therefore, initially the application software is de-
scribed in domain-specific languages or programming models and can be either translated
to an Application Software Model (phase 1) or used to automatically generate deployable
code for the target architecture (phase 5). The Application Software Model is then used
to check correctness and the proper functionality in the application-level through veri-
fication techniques (phase 4). In the design flow we also synthesize a HW/OS-Network
Model (phase 2) for the hardware architecture from model fragments for the operating
systems as well as the network stack protocols that are used in the system (preliminary
phase). The integration of the models from phase 1 and 2 allows the construction of a
functional System Model, representing the entire system (phase 3). The System Model
is further calibrated with performance data that are derived from the execution of the
deployable code in a hardware architecture (phase 6). The resulting Calibrated System
Model is used for the simulate and analyze the performance of the system, but also to
evaluate functional and extra-functional requirements at the system-level. Furthermore,
performance evaluation (phase 7) may also propose design enhancements for the system.

1.5 Organization

The first part of this document provides a background to the area of networked embedded
systems and an existing framework that is used in the context of this dissertation.

Chapter 2 describes the system categories of networked embedded systems, by extend-
ing the classification in [Zur05] to include the automotive, industrial automation, Wireless
Sensor Network (WSN) as well as the recently emerged type of Internet of Things (IoT)
systems. Furthermore, it describes characteristic technologies (e.g. operating systems,
network stack protocols) that are used in this dissertation for each system category.

Chapter 3 presents BIP, a component-based framework which is used as a basis for
the model-based design and incremental construction of networked embedded systems. It
then proceeds on describing the concepts of the framework, the basic constructs that are
used in its modeling language as well as its supported toolset. The chapter accordingly
details on an existing system design flow that is defined through the BIP framework in
the domain of manycore architectures.

The second part of this document refers to the thesis contribution, that is, a rigorous
design flow for networked embedded systems and its application in such systems.

Chapter 4 provides a generic presentation of the proposed design flow and details on
its benefits, namely early-stage simulation, validation and verification of functional and
extra-functional system-level requirements. Accordingly, it presents the tools and methods
that are used to fully automate its different phases. Specifically, the presented tools and
methods allow (i) the description of the application software through a novel programming
framework, (ii) the automated code generation for several hardware architectures of such
systems, (iii) the construction of faithful system-level models and (iv) the system-level
performance evaluation. The chapter additionally provides a discussion with respect to
the existing BIP design flow for manycore architectures.

22 Chapter 1. Introduction

Translation Translation

Modeling

Verification

Error

(BIP)
library

Model
(BIP)

packet delivery)

(e.g. timing,

Runtime

Application
Software

HW/
OS−Network

Model
(BIP)

Code

deployment
generation/

Execution

Transformation

(BIP)

System

Model

2

calibration
Model

System
Model

Calibrated

measurements
6

OS/
Network stack

(e.g. standards)
specifications

OS−Network

(BIP)

library

Preliminary phase

(DSL)

software

Application

(XML)

Mapping

specifications

3

1

5

evaluation
Performance

4

7

Architecture

HW

(BIP)

Figure 1.4: Rigorous design flow for networked embedded systems

Chapter 5 demonstrates the flow in the domain of automotive systems through the
CAN communication protocol [ISO03a] [ISO03b] as well as the newly introduced CAN
FD protocol version [Bos12]. The chapter proceeds on describing the input application
software in NETCARBENCH [BHN+07] and how it is progressively translated into a
application-level model through a developed tool. The benefits of the resulting flow are
illustrated through the simulation and performance evaluation of a powertrain automotive
network, which is also configured optimally in order to avoid load peaks in the CAN
network.

Chapter 6 demonstrates the flow in the domain of industrial automation systems
using the CANopen communication protocol [CAN11]. The chapter details on the con-
figuration flexibility and management capabilities that CANopen provides to the input
application software as well as on rapid prototyping techniques that automate the gener-
ation of deployable code for Real-Time Ethernet hardware architectures [Dec05] using the
Ethernet Powerlink protocol [Std14b] for network communication. The industrial automa-
tion flow is demonstrated through two case studies, each one focusing on a different type
of industrial automation system. Specifically, the chapter initially presents the simulation
and performance evaluation capabilities of the flow in the Pixel Detector Control System
[KBI+02], which is constitutes a part of the ATLAS experiment at CERN’s Large Hadron

1.5. Organization 23

Collider (LHC) particle accelerator and then it proceeds on describing the code generation
capabilities through a Triple Modular Redundancy System [Kop11], providing support for
fault-tolerance in safety-critical Real-Time Ethernet applications.

Chapter 7 demonstrates the flow in the widely popular application domain of WSN
systems through the IEEE 802.11 standard [IEE12] for WLAN network communication.
The WLAN network is described by input HW specifications, that are also used to config-
ure the target architecture. Additionally, the chapter details on the automatic generation
of deployable code based on the Linux sockets. Runtime measurements of the code are
used by developed methods to derive performance data for calibration of system-level mod-
els. In this context, the flow is illustrated through a concrete case-study for multimedia
transmission over a wireless network. Furthermore, the case-study proposes a software-
based clock synchronization mechanism for improving the clock synchronization accuracy
in such systems. The resulting accuracy is verified through dedicated extra-functional
system-level requirements.

Chapter 8 demonstrates the flow in the emerging application domain of IoT sys-
tems through the Contiki operating system [DGV04] as well as the supported network
stack protocols. The chapter details on the configuration of the underlying WPAN net-
work through an input HW specification as well as presents a high-level Domain Specific
Language (DSL) for the IoT application software. The IoT application software is either
translated to an application-level model or used to generate deployable code for execution
in dedicated hardware platforms. The execution of the code allows measuring software-
dependent runtime constraints of the Contiki OS. The chapter proceeds on explaining
dedicated techniques that were developed, in order to add these constraints to system-level
models and accordingly obtain models that represent Contiki OS systems. The benefits of
the resulting flow in IoT systems are illustrated through two case-studies, which focus on
simulation and validation of functional and extra-functional system-level (e.g. thermal)
requirements in a smart heating and a building automation system respectively.
Finally, Chapter 9 draws a conclusion of this work by summarizing its key points and
discusses future perspectives for the proposed design flow.

24 Chapter 1. Introduction

- Chapter 2 -

Networked Embedded Systems: A Background

2.1 Classification of Networked Embedded Systems

Network embedded systems are used in many different types of systems, which can be orga-
nized in the automotive, industrial automation, wireless sensor network systems categories
as described in [Zur05]. This dissertation extends this classification to four categories in
order to include the recently emerged type of IoT systems. In this chapter we provide a
brief introduction to each category and accordingly describe representative technologies
that are suitable for them in different HW abstraction layers (Chapter 1), namely from the
operating system to the network communication through the supported protocol stack.
As it is detailed each category has its own characteristics in terms of offered capabilities
in the application or system level as well as requirements and constraints from their use
and is additionally targeted to different lower-layer hardware architectures.

2.1.1 Automotive systems

A modern automotive embedded system consists of several subsystems, which are com-
prised of one or several Electronic Control Units (ECUs). In turn, the ECU’s are comprised
of a micro-controller as well as a set of sensors and actuators and are able to communi-
cate through the transmission of electronic signals. The subsystems that rely on network
communication in automotive systems are divided into five main categories:

• The powertrain subsystem : Involves the generation of power in the engine
(engine control) and transmission of it through the gear box to the driving axis and
wheels (transmission and gear control) [CSB+06].

• The chassis subsystem : Provides functional units for in-vehicle active safety,
driving dynamics and assistance and some of its main systems include the Antilock
Braking System (ABS), EPS (electronic power steering), the suspension system and
others.

• The body subsystem : Implements the in-vehicle body and comfort functions,
such as the air condition and climate control

• Passive safety subsystem : Provides safety-related functions inside the vehicle
and includes the airbags and seat belt pretensioners

25

26 Chapter 2. Networked Embedded Systems: A Background

• The telematics subsystem : Includes services related to multimedia technologies,
such as the in-vehicle navigation system (GPS), monitor displays CD or DVD players.
Most of these technologies use wireless communication.

Each subsystem involves a different set of communication requirements from its use,
which are mainly described in terms of:

• fault tolerance, defining to which degree incorrect behavior is allowed in the subsys-
tem

• predictability, in terms of real-time behavior that the subsystem offers

• minimum bandwidth, which is required for the subsystem to operate properly

• flexibility, allowing the transmission of both event- and time-triggered messages as
well as defining the extent on which management of the overall load in the network
is offered

There are several network technologies which were defined for the exchange of infor-
mation in automotive systems. They are classified in two categories, namely wired and
wireless. The wireless technologies were recently introduced to supply more bandwidth
in automotive systems and are mainly based on Zigbee and Bluetooth. Nevertheless,
the absence of real-time guarantees and proof of delivery for message exchange restrains
their use in specific subsystems, such as the telematics subsystem. On the other hand, the
wired technologies that are employed in automotive systems are distinguished according to
their event or time triggered architecture. Characteristic examples belonging to the event-
triggered category are the Controller Area Network (CAN) (see Section 2.2.1), the Local
Interconnect Network [Wen00] and the MOST Bus [Coo10]. On the other hand time trig-
gered communication protocols for automotive systems include the Time-Triggered CAN
(TTCAN) [FMD+00], FlexRay [C+05]. There are also technologies that provide both
event and time triggered communication, such as Volcano [Men].

Modern automotive systems can have up to 70 ECU’s, which are responsible for the
distribution of more than 2500 variables and signals. Therefore, the growing number of
networked ECU’s makes system design complex in terms of support and management of
the network interconnecting all these ECUs. An efficient solution proposed by the auto-
motive industry to this end was a common scalable electric/electronic architecture, which
was standardized under the name AUTomotive Open System ARchitecture (AUTOSAR)
[FMB+09].

The AUTOSAR architecture

An initiative towards the direction of providing a common middleware for automotive
systems was done through the AUTomotive Open System ARchitecture (AUTOSAR)
standard [FMB+09]. AUTOSAR supports an architecture which improves the quality
and reliability of automotive systems by distinguishing them in three layers, namely the
Application, the RunTime Environment (RTE) and the basic software layers (Figure 2.1).

The Application layer defines several software components, which are generally pro-
vided by suppliers to exchange information through the RTE. Similarly, the basic software
layer includes modules, which provide basic services to the architecture, such as network
communication through the interaction with the ECU hardware. The modules of this layer
have standardized interfaces which makes the whole architecture modular and hardware-
independent. Finally, the RTE acts as a middleware between software components of

2.1. Classification of Networked Embedded Systems 27

component 1

Software

Application layer

Basic Software

ECU Hardware

Software

component 2

Software

component N

ECU abstraction layer

Microcontroller abstraction layer

RunTime Environment (RTE)

Service
layer

Complex

drivers
device

Figure 2.1: The AUTOSAR architecture

the application layer and the modules of the basic software layer. Moreover, it provides
support for all types of communication in an ECU and to remove communication and
hardware dependencies from the software components of the application layer.

Tools for automotive system development

A variety of tools exist in the market to provide support for the development of automo-
tive applications as well as for testing and Hardware-In-the-Loop (HIL) simulation. They
include the Renesas Development Environment 1, the DSpace Automotive Simulation
Models 2 as well as the Eclipse IDE libraries for automotive software development 3. Fur-
thermore, several tools are based on the AUTOSAR architecture to support a structured
development for automotive systems. The most notable ones amongst them include the
Simulink and Embedded Coder integrated environment provided by Mathworks’ 4 as well
as dedicated tools that are provided by Vector GmbH 5. The latter include the DaVinci
Developer 6 for the design of the BSW layer component and the DaVinci Configurator
Pro 7 for the configuration and generation of the BSW layer components as well as the
RTE layer. Even though powerful, the aforementioned tools are not capable of provid-
ing support for performance analysis of quantitative aspects in the system (e.g. timing
and thermal information, energy consumption) or for addressing and verifying system re-
quirements and are merely focused in a module-specific and comprehensive consistency

1http://www.renesas.eu/applications/automotive/peer/manual softtools index.jsp
2https://www.dspace.com/en/pub/home/products/sw/automotive simulation models.cfm
3http://www.eclipse.org/downloads/packages/eclipse-ide-automotive-software-developers-includes-

incubating-components/keplersr2
4mathworks.com/solutions/automotive/standards/autosar.html
5https://vector.com/
6http://vector.com/vi davinci developer en.html
7http://vector.com/vi davinci configurator pro en.html

28 Chapter 2. Networked Embedded Systems: A Background

check of parameters in the system. Moreover, the aforementioned tools are following the
“V-Model” development cycle and therefore inherit its described limitations in Chapter 1.

2.1.2 Industrial Automation Systems

Industrial automation systems are used in manufacturing, quality control and material
handling processes. General purpose controllers for industrial processes include Pro-
grammable Logic Controller (PLC) devices as well as sensors and actuators. The ex-
changed data in industrial processes are stored in powerful computers, such as servers.
The main concern in such systems is to assure real-time performance as well as efficiency
in terms of resource usage, such as the energy or memory consumption. Typical examples
of such systems are distributed control systems or safety critical systems.

The main technologies used nowadays in industrial automation systems are called
fieldbus protocols. They provide a digital communication link between control devices
(input or output), which serves as a Local Area Network (LAN). Fieldbus technologies
offer several characteristics, such as installation flexibility, maintainability (monitoring
and maintenance are handled through the network) and most of all configurability. The
latter provides a high degree of parameterization in the control devices, thus making them
reasonably intelligent. The most common solutions in the family of fieldbus protocols
rely on the Real-Time or Industrial Ethernet [Dec05]. Real-Time Ethernet is using the
standard Ethernet communication and apply modifications to extend it with real-time
capabilities. Currently, a lot of Real-Time Ethernet solutions are in use, but only some of
them are known due to their technical aspects and standardization status. Many of these
solutions are defined in the IEC 61784-Part 1 [Std14a] and IEC 61784-Part 2 [Std14b]
international standards for fieldbus communication and rely mainly on the master/slave
architecture. In such an architecture a particular device manages the network and has
uniformal control over the other devices.

The Real-Time Ethernet that employ a master/slave architecture are classified into
three categories according to the implementation of the slave devices in the system. We
hereby present these categories by evenly giving characteristic examples of technologies
that are mainly described by the IEC 61784-Part 1 and IEC 61784-Part 2 international
standards for each one of them. Moreover, for solutions that are not included in these
standards, supporting material is provided.

The first category is using the TCP/IP protocol stack and hardware, such as the
standard Ethernet controller as well as Ethernet switches. However, it does not provide
guarantees for real-time performance as the communication latencies deriving from the
use of switches as well as of the best-effort delivery service are unpredictable and result in
an average data rate of 100 ms. Typical technology variants belonging in this category in-
clude Ethernet/IP, PROFINET Component Based Automation (CBA) and Modbus/TCP.
The second category uses the same hardware, but employs an additional timing layer in
the third layer (Internet) of the TCP/IP stack, in order to control access to the medium.
Technology variants belonging in this category include PROFINET Real-Time (RT) and
Ethernet POWERLINK (EPL) (see Section 2.2.3). An important feature of this cate-
gory is that it provides better real-time performance (average data rate below 10 ms),
which can be additionally ameliorated as some of the related technologies are also de-
ployed using Ethernet hubs (e.g. Ethernet POWERLINK). Finally, the third category
aims on achieving the best possible real-time performance for the most demanding class
of applications. Nevertheless, this is not feasible without specific modifications on the un-
derlying hardware. These modifications depend on the technology and can either concern
the Ethernet controller or the Ethernet switches. Technologies related to this category

2.1. Classification of Networked Embedded Systems 29

include PROFINET Isochronous Real Time (IRT), SERCOS III, EtherCAT and TTEth-
ernet [Ste08]. The selection of the category as well as the specific master/slave solution
for an application depends on its requirements and needs.

Even though Real-Time Ethernet technologies are widely used for industrial automa-
tion systems, application development is still challenging, due to their low level complexity
as well as their high expertise needed for their configuration. Therefore, a higher layer
of abstraction is required, which is typically found in application-layer protocols. An in-
creasingly popular application-layer fieldbus protocol is CANopen (see Section 2.2.2), as
it provides a vast variety of communication mechanisms, such as time or event-driven,
synchronous or asynchronous as well as additional support for time synchronization and
network management. Furthermore, it offers a high-degree of configuration flexibility,
requires limited resources and has therefore been deployed on many existing embedded
devices.

Tools for industrial automation system development

Currently, the development of industrial automation applications using the IEC 61784-
Part 1 or IEC 61784-Part 2 standards is supported by dedicated development kits. The
kits include the hardware platforms as well as for software tools and dedicated drivers to
facilitate application development. Characteristic examples between them are the IXXAT
Econ 100 platform and its native Soft-PLC programming environment provided by IXAAT
8 as well as the AM3359 Industrial Communications Engine (ICE) platform and the Code
Composer Studio IDE provided by Texas Instruments 9. Although, the software tools are
supporting the rapid and efficient implementation of complex applications, they cannot be
used for early-stage simulation, or performance evaluation in the system. This increases
the probability for the discovery of errors or unexpected behaviors during the deployment
of the application in the hardware platform, even if it is found error-free during debugging.
Yet another toolkit which provides support for the development and code generation in
industrial automation applications is EtherLab 10. Etherlab relies on the design of control
modules in the Simulink/Real-Time workshop as well as provides various capabilities for
test management and data logging server applications. Communication in the toolkit is
realized through the EtherCAT protocol [Std14b]. However, all the presented tools require
the presence of the specific hardware equipment and cannot be easily extended to support
alternative Real-Time Ethernet solutions.

2.1.3 Wireless Sensor Network systems

The recent availability of low-cost standard wireless network technologies offered new
features in networked embedded systems. Such features include the high transmission
rate (up to 54 Mb/s) and mostly the avoidance as well as cost of cabling. The former
allows to maintain (or at least not significantly worsen) the real-time behavior of network
embedded applications, whereas the latter minimizes the deployment complexity.

The introduction of wireless sensor networks has provided a huge technological advance
in comparison with the previous approach which was followed. Specifically, sufficiently big
and robust devices had to be built, containing the sensors in order to store data locally.
Periodically, human intervention was required to collect this data and calibrate the sensors.
Nevertheless, in case of a hardware failure all the gathered data would be lost. Instead,

8http://www.ixxat.com/embedded-controller en.html
9http://www.ti.com/tool/ccstudio

10http://www.etherlab.org/download/flyer.pdf

30 Chapter 2. Networked Embedded Systems: A Background

with the use of tiny, low-cost, low-power devices with wireless transmission capabilities the
data are transferred to central stations and the configuration can be performed remotely.

Although they provide several benefits, there are underlying challenges for the de-
velopment of functional WSN applications with real-time abilities. This is due to the
unpredictable network communication latencies that are imposed through the use of ran-
dom access schemes, such as the Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA) technique (described in Section 2.2.4). Another source of non-deterministic
behavior in wireless communication is the electromagnetic interference by electrical appli-
ances or by nearby wireless networks, due to the use of radio channels. This interference
may lead to error-prone data exchange or in increased packet losses. In both cases the
performance of the network will be detiorated, thus leading to low reliability especially in
applications with strict timing constraints for data handling.

Currently, there are three main categories for wireless technologies, namely, the Wire-
less Personal Area Networking (WPAN), the Wireless Local Area Networking (WLAN)
and the Wireless Metropolitan Area Networking (WMAN). WPAN technologies are in-
tended for short distances (up to 10 m), they support a small transmission rate (19.2 -
100 kbps) and were designed to have the least energy consumption. WLAN technologies
extend the range to slightly longer distances (up to 92 m), but are able to achieve the
54 Mb/s transmission rate as they are not always considering power as a critical charac-
teristic. Finally, WMAN technologies provide broadband Internet connections with the
highest data rates. For this reason they usually employ directive antennas, instead of
radios. While competing in many applications, each technology has its own application
focus and limitations. In particular, WMAN technologies are not considered suitable for
real-time embedded applications, as their long range communication has a strong impact
on the challenges described in the previous paragraph.

A number of technology standards exist for real-time embedded applications. The
most common of them for WLAN architectures is the IEEE 802.11 or WiFi (see Section
2.2.4) and for WPAN architectures is the IEEE 802.15.4 (see Section 2.2.5).

Most of WSN applications are developed in lightweight versions of Linux, called embed-
ded Linux [HHKK04], due to their open-source environment and the support of several
off-the-shelf hardware platforms, as the Beaglebone Black 11, the Raspberry Pi 12 and
APC Rock 13. Though being lightweight, embedded Linux environments may still have
sometimes high demands in required resource requirements (CPU or memory). Specific
operating systems were defined with a scope of overcoming this limitation with reduced
requirements (e.g. TinyOS [LMP+05], LiteOS [CASH08]). These operating systems have
a different functionality from the embedded Linux environments, which is mainly related
to the absence of priority scheduling support in the majority of them. Moreover, they
also use dedicated hardware platforms, such as the MICAz platform for TinyOS 14. WSN
applications that have strict timing constraints are can also developed through specific
bridge interconnections with Real-Time Ethernet solutions [CVV08], in order to avoid the
latencies from wireless communication.

Tools for WSN system development

The development of functional WSN applications is a difficult task due to the limited
library or API support for communication as well as data processing between the different

11http://beagleboard.org/black
12http://elinux.org/RPi Hub
13http://apc.io/products/rock/
14http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz datasheet-t.pdf

2.1. Classification of Networked Embedded Systems 31

devices in a WSN application. Some examples of existing libraries for embedded Linux
system contain the Linux (Berkeley) sockets 15 or Raw socket 16 for network communi-
cation. In order to cope with underlying time and effort for the development as well as
rising cost for the deployment of WSN applications, developers are also using dedicated
simulation tools to detect potential errors or provide feedback during the design phase and
the system implementation in the early-stage. The most notable ones amongst them are
NS-2 [MFF+97], OMNeT++ [V+01], J-Sim [SHK+06] as well as simulators that are de-
fined for specific WSN systems, such as the TOSSIM simulator for the TinyOS [LLWC03].
Nevertheless, the level of abstraction as well as the granularity of the simulation tools
may often lead to significant behavioral differences or inaccurate performance results in
comparison with the real system. Thus, testbed implementations that also involve the
application deployment in the real system have also become of increasing interest over the
latest years. Characteristic examples of such implementations are the Motelab [WASW05]
or the Deployment Support Network (DSN) [DBK+07]. Both of them provide support
for the most popular hardware platforms in WSN systems, as the Micaz, TMote Sky as
well as the TinyNode, and involve additional tools for the development, debugging and
monitoring of distributed devices in such systems. A considerable drawback of testbed
implementations is they are more difficult to manage and handle in comparison with the
simulation tools, especially in large-scale deployments [Zur05]. Therefore, recent efforts
have been trying to provide effective solutions in order to bridge the gap between simula-
tion and testbed implementation with the most notable one being the EmStar framework
[GEC+04]. EmStar offers simulation, testbed execution as well as low-level emulation
capabilities to represent realistically the complete hardware platforms in the supported
framework.

2.1.4 IoT Systems

A recent technological evolution in the area of pervasive computing is the Internet of
Things (IoT). The main idea behind the IoT is the use of miniature embedded devices
(referred as “things”), such as smartphones or tablets, smart thermostat and home ap-
pliances, biochip transponders, automobiles with built-in sensors, field operation devices,
heart monitoring implants. These devices are equipped with sensors, actuators and mi-
crocontrollers, in order to identify, access and exchange real time embedded information
from smart physical or visual objects in a cooperative context, without any human in-
teraction. For doing so, it uses existing Internet standards, related to representation and
transfer of information, management, analytics and communication. The development
of IoT applications requires the convergence of multiple disciplines, through the differ-
ent design phases. These disciplines focus on defining the IoT basic elements, namely
the hardware, the middleware (e.g development tools) as well as the visualization and
interpretation tools. Each IoT application is deployed in a large-scale distributed environ-
ment, using low-cost identification and communication technologies, such as Near Field
Communication (NFC), Bluetooth, barcodes, Zigbee, WSN and many more.

IoT applications are build on top of reusable web services enables the scenario where
sensors are provided and accessed over the web through the use of the REpresentational
State Transfer (REST) architecture [FT02]. This architectural style allows interconnected
things to be represented as abstract web resources controlled by a server process and
identified by a Universal Resource Identifier (URI). Accordingly, each web resource can

15http://www.linuxjournal.com/article/2333
16http://linux.die.net/man/7/raw

32 Chapter 2. Networked Embedded Systems: A Background

be accessed in a request/reply or publish/subscribe manner. The resources are decoupled
from the services and can be represented by various formats (e.g. plain text, XML or
JSON). Moreover, the use of web resources facilitates the software reusability and reduces
the complexity in application development. Nevertheless, it also includes an important
challenge in the rationale between the web services which are often long-running, while
IoT applications are short-running since they are implemented in resource-constrained de-
vices as well as they remain idle for long time durations. Additionally, typical Internet
applications provide unicast, multicast and broadcast communication capabilities using
synchronous interactions, whereas IoT applications also rely on event-based (i.e. asyn-
chronous) interactions.

The current IoT applications can be distinguished in two main categories, namely
Sense-Only (SO) and Sense-Compute-Control (SCC). The SO applications involve the
exchange of data either in distinct moments and only when it is necessary to do so (in-
termittent sensing) or in a regular basis (regular data collection). The former case can
be found for example when using barcode applications where the scanned ID tag has to
be transmitted to a base station to be verified against a given database, thus the sensing
activities are quite rare. The latter case is the most common and is employed in IoT ap-
plications with sensors that transmit periodically data related to temperature, humidity
e.t.c. to inform users about the activity in an area or a building. On the other hand
SCC applications involve actuation apart from sensing, thus they may perform control
activities, such as taking actions when the temperature in a room is above a certain level
or sending particular notifications to users. Therefore, this type of IoT applications does
not require usually an human intervention. Regardless, of the category it belongs each IoT
application is deployed in resource-constrained hardware architectures and consequently
requires a dedicated operating system as well as a network stack, to manage and organize
its interactions.

All the existing IoT operating systems have an event-driven architecture, meaning that
they contain processes acting as event handlers which run to completion. All processes of
a device share the same stack, under the condition that an event handler cannot block.
When an event is destined for a process, the process is scheduled and the event - along
with accompanying data is delivered to the process through the activation of its event
handler. A lengthy computation in a such system absorbs the entire processing capacity
and the system becomes unable to respond to external events. In these occasions an
execution environment with preemptive multithreading is preferred. In order to preserve
the advantages of lightweight design, existing IoT operating systems provide the possibility
of building such an execution environment if the program is linked to a provided application
library. Therefore, in such a system the multithreaded processes run on top of the system’s
event-driven kernel.

There are several operating systems that have been defined for IoT. First, many appli-
cations use the embedded Linux environment (Section 2.1.3) for the development of such
systems, due to its native support of a variety of system libraries and communication pro-
tocols. However, it consists a monolithic kernel which lacks modularity and often results
in a complex structure that is hard to understand, especially for large-scale systems. Ad-
ditionally, the embedded Linux environment has resource requirements (required CPU or
memory), which cannot be often fulfilled by IoT devices, such as those used in IoT archi-
tectures. Secondly, a well-known operating system namely TinyOS, was extended in order
to include an RESTful API with the addition of a JSON library [SSW09]. However, as it
uses an event driven code style, it cannot support multithreading. Thirdly, an emerging
under-development IoT operating system for such applications is RIOT [BHG+13], which

2.1. Classification of Networked Embedded Systems 33

is similar to Contiki and includes further optimizations in the resource usage. Neverthe-
less, as the development is still ongoing, it doesn’t yet include an implementation for some
application-level protocols for the network stack and porting of the OS to IoT platforms is
not yet fully provided. Finally, the Contiki OS 2.2.6 is an increasingly popular OS for IoT
applications as it supports modularity, due to its layered system construction. As Contiki
provides full support from the application development libraries to the implementation in
IoT platforms, it is considered as a promising candidate operating system. An summary
of the characteristics of the described systems is provided in Table 2.1.

OS Required RAM Required ROM Supported languages Multithreading Modularity

Linux ∼ 1MB ∼ 1MB C/C++ ✓ ✗

TinyOS < 1kB < 4kB C ✗ ✗

RIOT ∼ 1.5kB ∼ 5kB C/C++ ✓ ✓

Contiki < 2kB < 30kB C ✓ ✓

Table 2.1: IoT operating systems characteristics

A diversity of protocols can be used for interactions in the application layer of the net-
work stack in IoT systems. First, the well-known Hypertext Transfer Protocol (HTTP)
[FGM+99] relying on Transmission Control Protocol (TCP) on the transport layer. Nev-
ertheless, TCP’s control flow mechanism is not appropriate for resource-constrained appli-
cations as well as its overhead is relatively high for short-lived transactions. Additionally,
TCP does not provide multicast support. Therefore, other application-level protocols were
defined in order to compress HTTP and achieve a more compact data frame using the User
Datagram Protocol (UDP). An attempt towards this direction was made with the Em-
bedded Binary HTTP (EBHTTP) [Tol10] protocol. However, this protocol was primarily
designed for transportation of small amount of data and thus it is not fully compatible
with several IoT applications (i.e video surveillance). Lately, a promising application-level
protocol has been defined, named Constrained Application Protocol (CoAP) [SHB14], due
to its lightweight design, which provides a common ground between the HTTP and the
REST design principles. According to all these protocols the main identified mechanisms
that are used for communication in IoT systems are:

• Continuous: Data are transmitted continuously at a prespecified rate (period)

• Event-driven (asynchronous): Data are transmitted if an event of interest occurs

• On-demand: Data are transmitted only if a dedicated request is received for them

• Command: Data are transmitted as a result of a triggering action by a system entity

Tools for IoT system development

The development of IoT applications is quite challenging mainly due to (i) the underlying
heterogeneity in terms HW abstraction layers of the individual devices (i.e. operating
systems, supported network stack protocols) as well as the number of interactions be-
tween them and (ii) the aforementioned rationale between short-running IoT applications
and long-running web-services. To this end, domain-specific tools are introduced to facil-
itate application development in such systems. A characteristic example of such tools is
Cooja [Öst06], a powerful and increasingly popular Java-based tool for the development,
simulation and low-level platform emulation of IoT applications. Cooja is based on the
lower level MPSim platform emulator [EÖF+09] that provides accurate information for a

34 Chapter 2. Networked Embedded Systems: A Background

system’s underlying hardware. It is thus possible to investigate the system’s functional
and extra-functional behavior and inspect various performance aspects based on its native
TimeLine module (e.g. message buffer utilization, energy consumption etc.). Although
Cooja was initially introduced for simulating Contiki OS applications, lately additional
support is also provided for simulating RIOT OS applications [RSZ15]. Additionally, the
TOSSIM simulator can also be used to simulate applications that are developed with the
TinyOS RESTful API. Similarly to WSN systems testbeds are also introduced for the IoT,
such as the SmartCampus testbed deployed in a building infrastructure [NGAH13]. How-
ever, the underlying difficulty in deploying and maintaining the IoT system, leads users
to prefer usually Cooja for early-stage simulation and platform emulation capabilities of
their IoT applications.

2.2 Technologies and Communication Protocols

We hereby focus on representative technologies and communication protocols used in dif-
ferent HW abstraction layers of network embedded systems. They are separated into
categories according to the classification presented in 2.1.

2.2.1 Controller Area Network (CAN)

A widely adopted technology in the design of automotive systems is the Controller Area
Network (CAN). It was initially introduced in the beginning of the 1990s by Robert Bosch
GmbH targeting industrial control systems. Its scope was to reduce the number of wires
in passenger cars through a serial Bus system. Nonetheless, recently its use expanded
in the domain of automotive embedded systems, due to the efficient, yet simple, MAC
mechanism and the ease of deployment it offers. The CAN protocol is defined by the
communication standards ISO 11898-2 [ISO03a] and ISO 11898-2 [ISO03b] as the classic
CAN or CAN 2.0, which denotes the protocol’s most commonly used version nowadays.
CAN is a message-oriented transmission protocol, based on a multi-master access scheme
to a shared medium. Message exchange is handled by the CAN station, which includes all
functional units of a Basic CAN Controller [PAK08], such as the CAN Protocol Controller
as well as the hardware acceptance filtering mechanism. The CAN Protocol Controller
(often referred as CAN Protocol Handler) is responsible for all messages transferred via
the Bus. The acceptance filtering mechanism determines if the received message on each
local reception buffer are relevant to the specific node or not. In the second case the
message is discarded.

An example of an automotive system using the CAN protocol is illustrated in Figure
2.2. It presents a set of automotive control units, such as the engine and traction control
systems, that exchange messages through a serial Bus system. The message exchange
is handled by several CAN stations, which include all the functional units of a Basic
CAN Controller, such as the CAN Protocol Controller, the message buffers as well as the
hardware acceptance filtering mechanism.

CAN uses the Carrier Sense Multiple Access Collision Avoidance (CSMA/CA) ap-
proach, in order to solve bus contentions deterministically. Its protocol stack implements
only the physical (PHY) and the data link (DLL) layers of the OSI reference model, thus
reducing the message processing delays and simplifying the communication software. The
physical layer is responsible for data transmission, whereas the data link layer for manag-
ing the access on the Bus. CAN messages are denoted as frames and are assigned with a
unique identifier, which defines both the content and the priority of the frame. The ab-

36 Chapter 2. Networked Embedded Systems: A Background

is a very important technique for CAN transmissions, it simultaneously increases the frame
response time proportionally to the content of the transmitted data.

and therefore is not fixed. A highly probable outcome of its usage are the additional
transmission jitters, which may cause deadline violations.

Each CAN frame can be transmitted only when the Bus is idle. They are of three
types, namely:

• Data frame, used for data transmission

• Remote frame, used for data request

• Error frame, used to report error conditions

Data frames are also divided in the standard and the extended format. Their main
difference is found in the frame identifier. The former defines a 11-bit identifier supporting
up to 2032 different frames in the network 17, whereas the latter a 29-bit identifier sup-
porting more than 500 million different message types. Remote frames are similar to data
frames, though they do not carry data, and error frames consist of an error flag, denoting
the occurred error condition and an error delimiter. Each frame constitutes of a number of
sections, called fields, thoroughly described in the following paragraph. The transmission
of each frame field is followed by a synchronization between all the connected nodes in the
network and the Bus, during which the latter broadcasts the received data to all of them.

CAN frame format

Figure 2.4 illustrates the formats for the CAN standard and extended frames. The begin-
ning of every frame, except the error frames, is indicated by the Start Of Frame (SOF) field,
which corresponds to 1 bit. Immediately after the SOF, is the Arbitration field containing
the frame identifier (used for the arbitration mechanism) and the Remote Transmission
Request (RTR) bit. The frame with the lowest identifier is always transmitted first, since
the dominant level (binary 0) in CAN has higher priority than the recessive. A dominant
value in the RTR bit denotes a data frame and a recessive a remote frame, ensuring higher
priority for the former. The Control field contains the Identifier Extension (IDE) bit, the
reserved r0 bit as well as the Data Length Code (DLC) field. The IDE bit distinguishes
a standard from an extended data frame. In the extended frame format the Arbitration
field is larger, due to the addition of the IDE bit and the Substitute Remote Request
(SRR) bit. Moreover, the Control field includes one more reserved bit in the place of the
IDE bit. The DLC field denotes the length of the data and its value is between 0 and 8.
The Data field, not applicable in the remote frame, contains the frame data, which are
according to [Bos91] from 0 to 8 bytes. The integrity of a frame is guaranteed by the Cyclic
Redundancy Check (CRC) field, consisting of 15 bits plus a 1-bit delimiter. The ACK
Field, consisting of 2 bits (ACK bit and a ACK delimiter), serves as an acknowledgment,
if at least one node received the frame successfully. In the opposite case, the frame will
be retransmitted consecutively until it is successfully received. Finally, the End Of Frame
(EOF) field indicates an error-free transmission to all the nodes connected in the network
and corresponds to 7 recessive bits.

CAN with Flexible Data Rate (CAN FD)

Although CAN is widely used in automotive embedded systems it also introduces cer-
tain limitations in application development, related to the supported bandwidth (up to

17CAN prohibits identifiers with the seven most significant bits recessive

2.2. Technologies and Communication Protocols 37

S

F
O

R

R
T

r
0

field

ACK

field

EOF
11 bit identifier

E
D
I

DLC

Control field

Data field
(0−8 byte)

Arbitration field

(16 bit)

CRC field

(a) Standard CAN frame

S

F
O

S

R
R

R

R
T

r
1

r
0

E
D
I

Control field

DLC
CRC

field field

ACK

field

EOFData field
(0−8 byte)

Arbitration field

11 bit identifier 18 bit identifier

(b) Extended CAN frame

Figure 2.4: Classic CAN data frame format

1kbit/s) and the maximum allowed frame length of 64 bytes. The former may lead to
low-performance especially in time critical applications, whereas the latter necessitates
the segmentation for long frames. In order to overcome these limitations the CAN in
Automation (CiA) 18 has recently proposed a newer protocol version named CAN with
Flexible Data Rate (CAN FD) [Bos12]. CAN FD will be defined in the upcoming versions
of the ISO 11898-1 and ISO 11898-2 standards. This protocol version provides higher
bandwidth rates for message transmission in the data phase, which can reach up to 10
Mbit/s. Furthermore, it allows the transmission of up to 64 bytes, thus the segmentation
for long frames is avoided. An equally important difference with the previous version is
that CAN FD does not allow the transmission of CAN remote frames. The CAN FD
data frame has a different structure from the classic CAN, as can be denoted from Figure
2.5. The distinction of the two formats is handled according to the value of the Extended
Data Length (EDL) bit. When EDL is recessive the frame follows the CAN FD structure.
The Control field of a CAN FD frame includes also the Bit Rate Switch (BRS) bit, which
has to be set as recessive to indicate that the bit rate during the data phase is changed.
Moreover, the Error State Indicator (ESI) bit of the Control Field is used to detect node
failures. As the allowed size of transmitted data is increased, the CRC field needs to be
extended as well. Therefore, in CAN FD for data lengths up to 16 bytes (short CAN FD
frame), a 17-bit polynomial is used, whereas for data lengths greater than 16 bytes (long
CAN FD frame) the CRC field constitutes of 21 bits. CAN FD also defines that stuff bits
will be inserted in fixed positions of the CRC field, that is, 5 additional bits for a 17-bit
field and 6 additional bits for a 21-bit field. At the time being the existence of nodes
working with the CAN 2.0 as well as the CAN FD versions in a single Bus is not feasible,
as the former will detect an error in the CAN FD frames.

S

F
O

E
D
I

r
0

r
1

S
R
B E

I
S

field

ACK

field

EOF
11 bit identifier

Arbitration field

D
E

L

Control field

DLC
(0−64 bytes)
Data field CRC field

(17/21 bit)

Figure 2.5: CAN FD standard data frame format

Application development with CAN

Although CAN is robust and cost-effective, its low-level complexity and the correct alloca-
tion of the frame identifiers introduce certain obstacles in complex CAN-based application
design. In particular, two or more nodes should not have the same frame identifier as the

18http://www.can-cia.org/

38 Chapter 2. Networked Embedded Systems: A Background

may proceed to the arbitration phase at the same time and create unmanageable collisions
in the Bus. Furthermore, in classic CAN remote frame transmissions, the requesting node
is usually unaware of the data length he is about to receive and therefore sets the DLC
field randomly. This leads evenly to unmanageable collisions in the Bus. To facilitate
application design, high-level communication standards are build on top of CAN, such as
CANopen (detailed in Section 2.2.2) for networked embedded systems, DeviceNet [Spe01]
for factory automation systems and J1939 [Sta13] for trucks and other vehicles have been
proposed. All these technologies except CANopen are found only in CAN-based systems,
where they adopt the CAN standard frames for message exchange. This is due to their
shorter size and higher communication efficiency.

2.2.2 CANopen

CANopen [CAN11] is an increasingly popular application layer protocol, belonging to the
family of fieldbus protocols for networked embedded systems. Its main attributes are the
vast variety of communication mechanisms, such as time or event-driven, synchronous
or asynchronous as well as the support for time synchronization and network manage-
ment mechanisms. Additionally, it provides a high-degree of configuration flexibility and
requires limited resources. CANopen uses a master/slave architecture for management
services, but concurrently allows the utilization of the client/server communication model
for configuration services as well as the producer/consumer model for real-time communi-
cation services. A comprehensive introduction to the protocol can be found in [PAK08].
Unlike other fieldbus protocols it does not require a single master controlling all the net-
work communication. Instead a CANopen system is specified by a set of devices (Figure
2.6), which in turn use a set of profiles, in order to define the device-specific functionality
along with all the supported communication mechanisms. The communication profile de-
fines all the services that can be used for communication and the device profile how the
device-specific functionality is made accessible. The communication profile is defined in
the DS-301 standard [CAN11], whereas the device profiles providing a detailed descrip-
tion on CANopen’s usage for a particular application-domain, are defined in the DS-4xx
standards 19. If CANopen systems require configurations or data access mechanisms not
covered by the standard communication profile, profile extensions can also be defined.
These are called Frameworks and are found in the DS-3xx standards 19.

The protocol’s communication mechanisms according to the DS-301 are specified by
standard Communication Objects (COB). All the COBs have their own priority and are
transmitted through regular frames of the chosen lower-layer protocol. They are generally
divided in the following main categories:

• Network Management objects (NMT), used for the initialization, configuration and
supervision of the network

• Process Data Object (PDO), used for real-time critical data exchange

• Service Data Object (SDO), used for service/configuration data exchange

• Predefined objects, specifying standard object that are included in every device. The
featured objects in this category are:

– Synchronization object (SYNC), broadcasted periodically to offer synchronized
communication as well as coordinate operations

19http://www.can-cia.org/index.php?id=440

2.2. Technologies and Communication Protocols 39

CANopen API CANopen APICANopen API

Lower−layer communication

SW HW

Device profile

Communication profile

Manufacturer profile

OD

SW HW

Resources

Device profile

Communication profile

Manufacturer profile

OD

SW HW

Resources

User layer

CANopen Device N

Device profile

Communication profile

Manufacturer profile

OD Resources

CANopen Device 1 CANopen Device 2

Figure 2.6: Communication in a CANopen system

– Timestamp object (TIME), broadcasted asynchronously to provide accurate
clock synchronization using a common time reference

– Emergency object (EMCY), triggering interrupt-type notifications whenever de-
vice errors are detected

All the aforementioned objects are stored in a centralized repository, called Object
Dictionary (OD), which holds all network-accessible data and is unique for every device.
The OD is commonly used to describe the behavior of a device and supports up to 65536
objects addressed through a 16-bit index. The COBs are spread to distinct areas, defining
communication, manufacturer and device specific parameters (Figure 2.6). The latter are
left empty and are used by manufacturers, in order to provide their own device function-
alities. Each OD entry has also an associated data type with a respective code, used to
identify it. The supported data types along with their code are given by the following
Table.

Index Data type

1 BOOLEAN
2 INTEGER8
3 INTEGER16
4 INTEGER32
5 UNSIGNED8
6 UNSIGNED16
7 UNSIGNED32

Table 2.2: Frame fields in the CAN HW/Communication Model

Furthermore, every CANopen object in the OD has a dedicated type with respect to the
information it stores. In turn, each one of these types has an associated code. In particular,
the CANopen object may be either a variable (object code 7), an array (object code 8)
or a record (object code 9). The difference between the array and the record is that the

40 Chapter 2. Networked Embedded Systems: A Background

former contains sub-indexes of the same data type, whereas the latter of different data
types.

The OD entries are described by electronically readable file formats, such that they
are uniformly interpreted by configuration tools and monitors. According to the DS-306
standard [CAN05b] they are provided by the INI format files and termed as Electronic
Data Sheet (EDS) files. These files provide a generic description of a device type. However,
since CANopen allows parametrization according to manufacturer specifications, a specific
file format exists and is defined as Device Configuration File (DCF). This file describes the
configuration for a specific device. Nevertheless, EDS and DCF files have limitations on
the validation and presentation of the data as well as require a specific editor. Therefore,
new XML-based device descriptions were introduced according to the DS-311 standard
[CAN07]. These substitute the EDS with the XML Device Description (XDD) file format
and the DCF with the XML Device Configuration (XDC) file format. A fragment of an
XDC a device description is provided in 2.8. Currently, the protocol supports both device
descriptions.

We hereby describe thoroughly the CANopen objects, according to the classification
we have previously mentioned.

Network Management (NMT) Objects

The NMT objects are generally transmitted by devices, which act as an NMT master in
CANopen. Upon the reception of such object a CANopen device is informed to transit to
a different NMT state. Each NMT state supports specific communication mechanisms and
objects of the CANopen protocol, related to the device functionality. The device can switch
between three main states, named Pre-Operational, Operational and Stopped. In the
Pre-Operational state a device can actively participate in all communication mechanisms
related to SDO and Predefined object exchange. However, the main difference with the
Operational state is that it doesn’t support PDO object exchange. In the Operational state
the device is fully operational and can perform all the functionalities that it was designed
to do. The NMT master can also switch off the device by transmitting a dedicated
NMT object. Accordingly, the device has to switch to the Stopped state stopping all
communication, except from the support for the reception of NMT objects.

Process Data Objects (PDO)

The real-time data-oriented communication follows the producer/consumer model. It
is used for the transmission of small amount of time critical data. PDOs can transfer
up to 8 bytes (64 bits) of data per frame and are divided in two types: The transmit
PDO (TPDO) denoting data transmission and the receive PDO (RPDO) denoting data
reception. Therefore, a TPDO transmitted from a CANopen device is received as an
RPDO in another device (Figure 2.7). Additionally, the supported scheduling modes are:

• Event driven, where the transmission is asynchronous and triggered by the occur-
rence of an object-specific event

• Time driven, where transmission is triggered periodically by an elapsed timer

• Synchronous transmission, triggered by the reception of the SYNC object, further
divided in:

– Periodic transmission within an OD-defined window (synchronous window),
termed as Cyclic PDO transmission

2.2. Technologies and Communication Protocols 41

– Aperiodic transmission according to an application specific event, termed as
Acyclic PDO transmission

• Individual polling, triggered by the reception of a remote request (see [CAN05a])

CANopen Device 2CANopen Device 1

TPDO RPDO

Lower−layer communication

Figure 2.7: PDO communication

Each PDO is described by two OD sub-objects: The Communication Parameter and
Mapping Parameter. For a TPDO (e.g. OD entry 1800h and 1A00h respectively) the
former indicates the way it is transmitted in the network and the latter the location of
the OD entry/entries, which are mapped in the payload. On the contrary for a RPDO
(e.g. OD entry 1400h and 1600h respectively) the former indicates how it is received from
the network and the latter the decoding of the received payload and the OD entry/entries
where the data is stored.

The Communication Parameter entry includes the Communication Identifier (COB-
ID) of the specific PDO, the scheduling method, termed as transmission type, the inhibit
time and the event timer. The inhibit time (expressed as a multiple of 100 µs) defines the
shortest and the event timer (expressed as a multiple of 1 ms) the longest time duration
between two consecutive transmissions of the same PDO.

The Mapping Parameter describes the structure of a PDO. It can be of two types, that
is, static or dynamic. Static mapping in a device cannot be changed, whereas dynamic
mapping can be configured at all times through an SDO.

In Table 2.3 we illustrate the sample configuration and mapping parameters of a TPDO
for a CANopen device. They represent how analogue input data, obtained from temper-
ature sensors, are described in the OD of the device. Accordingly, we also present the
fragment, which describes them in an XDC format.

Example 1 The fragment of Figure 2.8 illustrates the TPDO configuration of Table 2.3
in an XDC format. We can observe that all the CANopen objects are defined inside the
construct “CANopenObjectList”. Moreover, for each object (“CANopenObject”) dedicated
elements are also defined to denote the sub-objects (“CANopenSubObject”). Every sub-
object has an index (“subIndex”), a name (“name”), a specific object code (“objectType”)
and a type of data that it may contain (“dataType”). Additionally, a sub-object includes
a default value (“defaultValue”) and its specific value in the application (“actualValue”).
Nevertheless, the latter is optional and if it is not provided in the XDC file, it is assumed
and set equal to the default value.

Service Data Objects (SDO)

The service oriented communication follows the client/server model. It supports large,
non-critical data transfers and uses three modes to allow peer-to-peer asynchronous com-

42 Chapter 2. Networked Embedded Systems: A Background

Index Subindex Description Value

1800h (6144) 0 Number of entries 5

1 COB-ID 641 + deviceID

2 Transmission type 255

3 Inhibit time (in ms) 1

4 Reserved -

5 Event timer (in ms) 1000

Index Subindex Description Value

1A00h (6656) 0 Number of entries 1

1 1st object to be mapped 6400h (25600)/Subindex 1

6400h (25600) 0 Number of analogue inputs n

1 input 1 (in ◦C) 30.5

:::: :::: :::: ::::

n input n (in ◦C) 23

Table 2.3: Example TPDO configuration and mapping parameters in the OD

<ProfileBody>

<ApplicationLayers>

<CANopenObjectList>

<CANopenObject index="1800" name="1st Transmit PDO Communication Parameter" objectType="9" subNumber="5">

<CANopenSubObject subIndex="00" name="Number of entries" objectType="7" dataType="0005" lowLimit="0x02"

highLimit="0x05" accessType="ro" defaultValue="5" PDOmapping="no" actualValue="5"/>

<CANopenSubObject subIndex="01" name="COB-ID" objectType="7" dataType="0007" PDOmapping="no"

uniqueIDRef="UID_PARAM_180001"/>

<CANopenSubObject subIndex="02" name="Transmission Type" objectType="7" dataType="0005" PDOmapping="no"

uniqueIDRef="UID_PARAM_180002"/>

<CANopenSubObject subIndex="03" name="Inhibit Time" objectType="7" dataType="0006" PDOmapping="no"

uniqueIDRef="UID_PARAM_180003"/>

<CANopenSubObject subIndex="05" name="Event Timer" objectType="7" dataType="0006" PDOmapping="no"

uniqueIDRef="UID_PARAM_180005"/>

<CANopenObject>

.....

<CANopenObject index="1a00" name="1st Transmit PDO Mapping Parameter" objectType="9" subNumber="9">

<CANopenSubObject subIndex="00" name="Number of entries" objectType="7" dataType="0005" accessType="ro"

defaultValue="1" PDOmapping="no" actualValue="8"/>

<CANopenSubObject subIndex="01" name="PDO Mapping Entry" objectType="7" dataType="0007" PDOmapping="no"

uniqueIDRef="UID_PARAM_1a0001"/>

</CANopenObject>

<CANopenObject index="6400" name="Read Analog Input 16-bit" objectType="8" subNumber="13">

<CANopenSubObject subIndex="00" name="Number of elements" objectType="7" dataType="0005" accessType="ro"

defaultValue="12" PDOmapping="no" actualValue="N"/>

<CANopenSubObject subIndex="01" name="AnalogInput16_1" objectType="7" dataType="0003" PDOmapping="TPDO"

uniqueIDRef="UID_PARAM_640101"/>

.....

<CANopenSubObject subIndex="01" name="AnalogInput16_N" objectType="7" dataType="0003" PDOmapping="TPDO"

uniqueIDRef="UID_PARAM_64010N"/>

<ApplicationLayers>

.....

</ProfileBody>

Figure 2.8: TPDO configuration in an XDC CANopen specification

munication through the use of virtual channels:

• Expedited transfer, where service data up to 4 bytes are transmitted in a single
request/response pair.

• Segmented transfer, where service data are transmitted in a variable number of
request/response pairs, termed as segments. In particular it consists of an initiation
request/response followed by 8-byte request-response segments.

• Block transfer, optionally used for the transmission of large amounts of data as a

2.2. Technologies and Communication Protocols 43

sequence of blocks, where each one contains up to 127 segments.

ID1 Data ID1

Tx−SDO

CANopen Device 2

Tx−SDO

CANopen Device 1

Channel p Channel p

Data

Lower−layer communication

Figure 2.9: SDO communication

A CANopen device can either receive or request an SDO, therefore these objects are
not separated as the PDOs, instead they are distinguished according to their identifiers
(Section 2.2.2). The communication is always initiated by a device defined as client in
the network towards the server, nonetheless information is exchanged bidirectionally with
two services: Download and Upload. The former is used when the client is attempting
service data transmission to the server, whereas the latter when it is requesting data
from the server. In both services the use of the virtual channel ensures that the received
SDO is identical to the transmitted (Figure 2.9), unlike in PDO communication. Each
request or receive SDO uses byte 0 as metadata, containing important information about
the transmitted object and reducing the payload to seven bytes per frame. This byte
includes the command specifier, which indicates the type of the frame, that is initiated
or domain segment and request or response. The command specifier is either termed as
client command specifier (ccs) for the client device or server command specifier (scs) for
the server device. For the initial request/response pair byte 0 also determines which of the
three modes is used (see [CAN11]). If transmission errors are detected either on the client
or the server side, data transfer is aborted through the SDO abort frame. SDOs are used
for configuration and parametrization, but also allow the transmission of a large quantity
of asynchronous data, consequently they are always assigned a lower priority than PDOs.

Predefined objects

These specific objects provide additional functionalities to the protocol. Their transmission
is following the producer/consumer communication model. Particularly, the SYNC and
the TIME object are always transmitted from a specific device (Producer), according to
the OD specification, whereas the EMCY object can be transmitted by any device in the
network (dynamical configuration). The Predefined objects are always assigned with a
high priority, in order to be transmitted as soon as possible.

The SYNC object is used to enable synchronized operation. Yet, if the transmission
is handled by the CAN protocol the derived delays due to non-preemption can result to a
certain jitter. Thus, if it does not provide the required accuracy for the synchronization,
CANopen enables the use of the TIME object, containing a reference clock time. Though
implementing a different synchronization mechanism, this object is used for accuracy,
measuring the difference between theoretical and the actual transmission time of the SYNC
and transmitting it through a subsequent PDO.

44 Chapter 2. Networked Embedded Systems: A Background

The EMCY object is used in internal error conditions in a device and is transmitted
as an interrupt, in order to notify other devices. However, no notification is present when
the internal error is fixed and thus the other devices cannot know the change of condition.
Consequently, its implementation is not considered mandatory in CANopen systems.

Network configuration

Considerable complexity in CANopen systems is found in the configuration and allocation
of a frame identifier to each COB. As CANopen allows parametrization the allocation
scheme can be configured according to specific manufacturer requirements, however suffi-
cient attention must be given to the priority group of each object. Therefore, to reduce
the complexity of CANopen system development, a default allocation scheme is provided
for applications using CAN as the lower-layer communication protocol. This scheme is
named Predefined Connection Set. As defined by this scheme, every object is assigned
an identifier (COB-ID) according to Table 2.4, derived from its priority in the protocol.
Nevertheless, each frame has its own identifier, since the COB-ID is also augmented by
the specific identifier of the node transmitting it. Every device can use up to four TPDOs,
four RPDOs, one EMCY and one SDO. All the COB-IDs can be configured, except of the
SDOs, if the particular device allows it.

Communication Object COB-ID

NMT 0
SYNC 128
EMCY 129
TIME 256
TPDO1 385-511
RPDO1 513-639
TPDO2 641-767
RPDO2 769-895
TPDO3 897-1023
RPDO3 1025-1151
TPDO4 1153-1279
RPDO4 1281-1407
Tx-SDO 1408-1535
Rx-SDO 1536-1663

Table 2.4: Predefined Connection Set

Application development with CANopen

Apart from its use in automotive systems as a high-level protocol on top of CAN, CANopen
can be used as an application layer protocol in industrial automation systems where it is
integrated with Real-Time Ethernet technologies. The integration with many of those
technologies is facilitated by the existence of a gateway [Zel05] or a proxy [AP03]. Nev-
ertheless, a possible constraint in this case are the additional latencies that often have a
strong impact in the real-time performance. Therefore, a direct integration of CANopen
as an application layer protocol along with its communication and device profiles is of-
ten preferred as an industrial solution. Two technologies facilitating this integration are
Ethernet POWERLINK (EPL) (Section 2.2.3) and EtherCAT [Pry08]. Both technologies
support fully the CANopen communication profile, in order to describe its services and
mechanisms into a real-time Ethernet environment. Nevertheless, in many implementa-
tions EPL is preferred over EtherCAT, since it does not require any specific hardware
modifications and is more suitable for the transmission of large amounts of data.

2.2. Technologies and Communication Protocols 45

2.2.3 Ethernet Powerlink (EPL)

ETHERNET Powerlink (EPL) [Std14b] is a commercial protocol for industrial automation
systems based on the Fast Ethernet IEEE 802.3. One of protocol’s major advantages is
that it can operate with either the use of Ethernet switches or hubs, depending on the
temporal constraints of the application. To overcome the effect of collisions occurring in
standard Ethernet systems, EPL uses a TDMA technique (deployed in the data link layer),
which is based on a mixed polling and time slicing mechanism, called Slot Communication
Network Management (SCNM) (Figure 2.10). This technique uses a special node, referred
as Managing Node (MN), to grant the slave devices, referred as Controlled Nodes (CN’s),
access to the medium only when they are polled. The use of SCNM hampers the direct
deployment of standard Ethernet devices in the network, as they would corrupt the access
mechanism. To overcome this limitation dedicated gateway are connected to control the
communication traffic of standard Ethernet devices. The supported topologies in EPL are
the line and star topology.

M
an

ag
er

 N
o
d
e

C
o
n
tr

o
l

N
o
d
e

SoC

Asynchronous PhaseStart Phase Isochronous Phase

PReq

Idle Phase

Send

SoA

PRes

PReq

PRes

PReq

PRes

Figure 2.10: EPL cycle

EPL supports periodic and event-based data exchange during a cyclic period of fixed
duration. This period is divided in four phases, namely the starting, the isochronous, the
asynchronous and the idle phase. The synchronized transition between phases is done
through broadcast frames initiated by the MN device. More specifically, the reception of
the Start of Cycle (SoC) frame by the slave devices ends the starting phase and accord-
ingly begins the isochronous (cyclic) phase. During this phase the MN polls progressively
every CN through a PReq unicast frame, in order to receive their data responses through
the subsequent PRes frames. The PRes frames are also broadcasted, in order to facilitate
data distribution amongst all the remaining nodes. Having polled all the CN devices in
the EPL network, the MN broadcasts the Start of Asynchronous (SoA) frame, to indicate
the beginning of the asynchronous period. This period allows a single asynchronous trans-
action (Send in Figure 2.10) to be performed. This transaction might be an asynchronous
EPL data frame (ASnd frame), detection of active stations (IdentRequest frame), or even
a standard Ethernet data frame. All the asynchronous transactions are enqueued in the
MN, in order to be transmitted according to their priority. As the asynchronous period
is used for the exchange of large frames, the EPL cycle includes the idle phase to ensure
that the ongoing transaction has ended.

EPL frame format

EPL frames (Figure 2.11) are encapsulated and transmitted in the Data field of IEEE
802.3 standard Ethernet frames. Therefore, their main difference with the legacy Ethernet
frames is the Ethernet Type field of the Ethernet frame, which is set to the hexadecimal
value 88ABh. An EPL frame consists of five fields: the Message Type, specifying the type
of EPL frame (as defined above), the EPL source and destination addresses, the EPL data

46 Chapter 2. Networked Embedded Systems: A Background

to be exchanged and an optional padding. The Message Type field can contain one of the
values present in Table 2.5.

(2 bytes)
Address
(6 bytes)

Source Ethernet
Type

(46−1500 bytes)

Data FCS

(4 bytes)

(1 byte) (1 byte) (1 byte) (0−1496 bytes)
Type

EPL Message
Source
EPL

Destination
EPL

Data
EPL

(0−43 bytes)

Padding

Preamble

(7 bytes) (1 byte)

SoF
Destination
Address
(6 bytes)

Figure 2.11: EPL frame format

Message Type EPL frame type

01 Start of Cyclic (SoC)
03 Poll Request (PReq)
04 Poll Response (PRes)
05 Start of Asynchronous (SoA)
06 Send (ASnd or IdentRequest)

Table 2.5: Message Type field of EPL frame

The EPL source and destination addresses for each frame are specified according to the
Table 2.6. Specifically, we can denote that for each EPL node there is a unique address,
except from the MN which is always equal to 240. Likewise, the CN’s have an id in the
range 1-239 and 253 is used by a node to address itself. Finally, as the minimum Ethernet
II frame size is equal to 64 bytes, extra padding data is added to the packet. The size of
the data padding in an EPL frame can be up to 43 bytes.

Address EPL node

o Invalid
1-239 Controlled Node (CN)
240 Managing Node (MN)

241-252 Reserved
253 Self diagnostic identifier
254 EPL to legacy Ethernet router
255 Broadcast identifier

Table 2.6: EPL node addressing

Application layer profile

EPL is fully integrated with the CANopen protocol as well as its communication and device
profiles as presented in Section 2.2.2. As a result of the integration, CANopen’s objects are
encapsulated into lower-layer EPL frames. Initially, during the isochronous phase of the
EPL cycle (Figure 2.10), data relevant to the application are stored and exchanged through
Process Data Objects (PDOs). To this regard, the MN sends a TPDO to each CN via a

2.2. Technologies and Communication Protocols 47

PReq frame which, in turn, stores the data in one or more RPDOs and responds with a
TPDO encapsulated in a PRes frame. Moreover, in the asynchronous phase configuration
data are exchanged through Service Data Objects (SDOs), respectively encapsulated in
ASnd frames.

EPL also uses the Object Dictionary (OD) to store all the network-accessible data. It
may also contain a maximum of 65536 entries as well distinguished in the communication,
manufacturer and device specific categories. The OD entries are described only by the
XDD and XDC file formats, similar to the one presented in Figure 2.8.

Even though the CANopen communication profile is fully integrated in EPL, there
are also minor differences between them as with the SDO channels, which are defined
and configured during initialization in CANopen, but instead EPL allows a dynamical
configuration of these channels. Another difference lies on the transmission of unconfirmed
segment frames during the segmented data transfer in EPL, whereas as mentioned in
Section 2.2.2 CANopen segments are always confirmed. A method for confirming the
transmission when large amounts of configuration data need to be exchanged is through
the use of multiple expedited SDO transfers.

Application development with EPL

When developing applications in EPL the most frequent challenges (by priority level)
that may arise are:

a. Separation of functionalities between the EPL nodes. The developer should be
able clarify and implement a different behavior for each EPL node, according to the type
of EPL application. As an example in an application that involves control activities the
MN node is not only used for polling, but the CN’s may often require dedicated data
from it, in order to perform actuations. This is handled in the EPL cycle by supporting
transmission capabilities to the MN node using proper configuration. Therefore, the
developer should be able clarify and implement a different behavior for each EPL node.

b. Mapping of application-specific functionality to the Object Dictionary en-
tries. Once a clear functionality separation is defined, the developer should assign
specific entries to the Object Dictionary for handling the network configuration as well
as the exchange of time critical or asynchronous data in the application. This task
should be done in respect to the CANopen profile and thus requires high expertise, in
order to define the correct data encoding and object linking and may be time consuming
if the application’s behavior is complex.

c. Selection of the EPL configuration parameters. EPL applications are character-
ized by strict timing constraints. Therefore the selection of parameters, such as the cycle
duration, the timeout for acquiring the polling responses, the tolerance timeout in the
CN’s for receiving the SoC frame and the maximum transmitted data during the asyn-
chronous phase, determines to a large extent the EPL application functionality. The
selection of these parameters also depends on the characteristics of resource-constrained
devices (e.g. computational platforms), which are chosen in the underlying hardware
architecture.

From the aforementioned challenges we can reason that the correct configuration of the
MN and the CN devices is of vital importance in EPL application development. To this
end, an open source (BSD Licence) tool for the development of applications with Ethernet
Powerlink (EPL) was defined, named openPOWERLINK [BS10]. openPOWERLINK is

48 Chapter 2. Networked Embedded Systems: A Background

an open source (BSD Licence) Real-Time Ethernet stack provided by SYSTEC electronic
20. openPOWERLINK is developed using a layered approach, which segments the system
in a hierarchical way, namely the user and the kernel part. The former implements the
application layer of the EPL protocol and provides an API for the development of EPL
applications. It contains an implementation for the OD, as well as the PDO, SDO, Error
Handler and Event Handling modules. The latter implements the Data Link Layer (DLL)
of the EPL protocol and the necessary drivers to communicate with the hardware. It
also contains an Event Handling module as well as implementations for an Ethernet and
a time-critical driver (for the time slicing mechanism). The Event Handling module is
responsible for delivering events, which are related to OD accesses, completion of SDO
transfers, configuration and stack errors etc. The two parts interact with each other by
message passing through the Communication Abstraction Layer (CAL). All the processes
defined above the CAL have a high-priority in the stack, whereas the ones below have a
low-priority. The overall architecture of the openPOWERLINK stack is illustrated in Fig-
ure 2.12. In order to allow NMT functionalities related to the CANopen protocol (Section
2.2.2) openPOWERLINK supports an additional NMT module to manage the NMT state
machine. The Managing Node can use this module to set its or the Controlled Nodes’
state machines into four states, namely PreOperational1, PreOperational2, ReadyToOp-
erate and Operational. In the PreOperational1 state all the modules are stopped, the
PreOperational2 allows the functionality all the modules except from the PDO and the
ReadyToOperate is a transitional state where the PDO module is initiated before moving
to the Operational state.

Handling

Event

OD PDO SDO

NMT

Error

Handler

API

Driver

Ethernet

Driver

Time−critical

Data Link Layer

Communication Abstraction Layer

EPL Application

EPL Hardware

User part

Kernel part

Handling

Event

Figure 2.12: openPOWERLINK stack architecture

openPOWERLINK handles communication between different layers of the stack using
dedicated methods, such as variable linking. This method defines specific API variables,

20http://www.systec-electronic.com

2.2. Technologies and Communication Protocols 49

called process variables, which are accordingly linked with entries of the OD. The process
variables are also used to realize communication in the isochronous phase of the EPL
cycle through the PRes frames. Two main types of process variables are used in the stack,
namely input and output process variables. The former handle the processing as well
as manipulation of sensor/actuator data (i.e. ATD conversion, encoding/decoding, data
display) and are also initiating data transmission. On the other hand the latter are useful
for data reception.

Additional techniques in the openPOWERLINK stack is the assignment of higher
priority to data handling during the EPL cycle than event handling. This ensures the
real-time behavior of the stack and is accomplished with the use of threads. Furthermore,
openPOWERLINK supports real-time communication between modules of one or several
layers through the presence of asynchronous callbacks. Callbacks are functions that are
passed as an argument to another function and are commonly using in event-driven pro-
gramming. In this way a callback is used to subscribe to an event and accordingly invoked
when the event happens. As an example, in openPOWERLINK callbacks are used in
the EPL Application for data transmission in which case a callback has to be defined for
the communication with the user as well as the kernel part. The most commonly used
callbacks in openPOWERLINK define communication between the Communication Ab-
straction Layer (CAL) and Data Link Layer for the kernel part as well as between the
EPL Application and the API layer for the user part. The former is used to update the
values of the process variables during the EPL cycle and the latter to provide event-based
notifications from the user part modules (i.e Event Handler, OD, PDO, SDO) to the EPL
Application.

Until now we have presented techniques which are used in openPOWERLINK to suc-
cessfully address and handle the aforementioned challenges. The described techniques can
be used for the development of functional applications in openPOWERLINK, which is
sequential and relies on the following steps.

1. The MN should detect and access the connected CNs in the EPL network through
an Ident Request

2. The Object Dictionary entries in the CNs are initialized by dedicated SDO frames
in the asynchronous phase of the EPL cycle

3. The process variables of the EPL Application layer should be linked with entries of
the OD module for each node (MN or CN). Once linked, a modification of a process
variable will automatically signal the API layer to update the dedicated entry in the
node’s OD.

4. Implementation of the callback functionality between the Communication Abstrac-
tion Layer (CAL) and the Data Link Layer for the kernel part.

5. Implementation of the callback functionality between the EPL Application and the
API layer for the user part.

2.2.4 IEEE 802.11

The IEEE 802.11 belongs to the IEEE 802.x family of standards for WSN systems [IEE12].
It was defined by IEEE to facilitate communication over a Wireless Local Area Network
(WLAN), through a number of specifications for the Medium Access Control (MAC) and
the Physical (PHY) layers of the OSI model. The communication is handled through the

50 Chapter 2. Networked Embedded Systems: A Background

ad-hoc and the infrastructure mode. The former is based on peer-to-peer connections,
whereas the latter on packet relay through a fixed station, called Access Point (AP).
In particular in the infrastructure mode the AP is responsible for the reception of every
packet, which it accordingly distributes to the concerned network node. In both modes the
requests for data transmission in the MAC layer are handled by a shared communication
medium, called shared channel. Moreover, depending on the employed communication
mode the 802.11 standard defines two corresponding access schemes, called Distributed
Coordination Function (DCF) and Point Coordination Function (PCF) respectively, which
are based on the CSMA/CA protocol, in order to minimize the probability of collision
occurrence in the shared channel. The DCF access scheme is also called Basic Access
(BA) mechanism, as it is defining a simple and robust access to the shared channel.

According to DCF every network node has to monitor the status of the shared chan-
nel prior to any data transmission. If the channel is found idle, it shall begin sending,
otherwise it has to defer its transmission and try again when the channel becomes free.
Nevertheless, since several nodes can simultaneously monitor the channel state, collisions
are still probable. Therefore, the standard defines a period for which the channel should
be sensed free before any transmission is initiated. When this period elapses every node
should additionally wait for a random exponential period, called backoff. The value of the
backoff period is chosen randomly from a uniform distribution in the range [0,CW], where
CW is defined in as the contention window and computed by CW = (aCWmin+1)·2bc−1.
The variable aCWmin is a constant determined by the chosen type of physical layer and
bc is a counter representing the number of retransmissions for a data packet, called backoff
counter. The backoff counter can be increased up to a maximum value, ensuring that the
contention window is always between: aCWmin ≤ CW ≤ aCWmax, where aCWmax is
yet another constant provided by the physical layer. The backoff is decremented by one
unit when the channel is idle for a time duration denoted as aSlotTime. Nevertheless, if
during this procedure the channel is sensed busy the backoff is frozen until the channel be-
comes again idle for the duration of a fixed period, which is called DCF InterFrame Space
(DIFS) (Figure 2.13). A successfully transmitted packet is followed by an acknowledgment
reception from the receiver, since the transmitter cannot listen to its own transmission.
The acknowledgment (ACK) is transmitted when the Short Interframe Space (SIFS) time
duration has elapsed. This duration allows the receiver to process a received frame and
to respond with a response frame. The value of SIFS is smaller than the value of DIFS
to ensure that no other device accesses the channel before the receiver can transmit its
acknowledgment. If the ACK frame is not received before the acknowledgment timeout
has elapsed, then the frame is retransmitted. The maximum number of frame retransmis-
sions for a short frame (less than 2347 bytes) is given by the ShortRetryLimit parameter,
whereas for a long frame is respectively given by the LongRetryLimit parameter. Neverthe-
less, the LongRetryLimit parameter is not frequently used, as the frame size is not longer
than 2347 bytes, unless it is defined by aMPDUMaxLength parameter of the physical layer.
In this case the packet can have a maximum length up to 4096 bytes.

In the PCF access scheme, the AP coordinates channel access to ensure collision-free
communication. It also broadcasts periodically a beacon every station, which includes a
list of all the stations that have packets pending at the AP. In this access scheme the AP
uses a wait period called the PCF InterFrame space (PIFS), which is shorter than DIFS,
though longer than SIFS. Therefore, PCF traffic has priority over traffic generated by
stations operating with the DCF access scheme, without interfering with DCF’s data and
acknowledgment messages. If the AP senses the channel as free, it transmits the packets
it has to the corresponding stations.

52 Chapter 2. Networked Embedded Systems: A Background

Address 1 Duration IDFrame Control Address 2 Address 3 Sequence Control Address 4 QoS Control

(2 bytes) (2 bytes) (2 bytes)(6 bytes) (6 bytes) (6 bytes) (6 bytes) (0−2312 bytes)(2 bytes) (4 bytes)

FCSFrame Body

Preamble Header

Sync SFD PLW PSF Header Error Check

(80 bits) (4 bits)
(34−2346 bytes)

MAC PDU

(80 bits) (12 bits) (16 bits)

Figure 2.14: IEEE 802.11 packet format

which are received if the packet’s integrity is verified through the Frame Control Sequence
(FCS) field. The physical layer includes a preamble and a header to the MAC-layer packet.
The preamble includes the SYNC field, used to synchronize the receiver’s packet timing.
Respectively the header includes the PLW field with information marking the start of
the MPDU field and the PSF field, which identifies the transmission data rate, and the
Header Check Error contains the result of a calculated frame check sequence from the
sending station.

Application development with WiFi

IEEE 802.11 is used currently in several applications along with the User Datagram Pro-
tocol (UDP) protocol in the transport layer. A widespread category of such applications
are found in the multimedia domain and connect external hardware (i.e. microphones
and cameras) to embedded devices, in order to provide audio and video capabilities for
multimedia applications on a sensor network environment [MRX08]. The resulting Multi-
media Wireless Sensor Network (MWSN) applications can be used for video surveillance,
image recognition or motion detection. They are mainly developed in the embedded Linux
environment through the Advanced Linux Sound Architecture (ALSA) library 21. More-
over, they have strict timing constraints for data delivery and are extremely demanding in
terms of bandwidth as well as storage memory. The existence of high demands in storage
memory make necessary the usage of compression algorithms.

2.2.5 The 6LoWPAN protocol

6LoWPAN [SB11] is a popular protocol in IoT systems. It uses the unslotted CSMA/CA
mode of the IEEE 802.15.4 standard in the MAC layer (described below) and applies an
adaptation layer, in order to transport IPv6 packets over a Wireless Personal Network
(WPAN). Nevertheless, IPv6 headers are sufficiently large (40 bytes), which leaves very
little space for data since IEEE 802.15.4’s standard packet size is 127 bytes. This makes
necessary the use of compression techniques, in order to reduce the IP headers to 14 bytes
and achieve a maximum payload size equal to 108 bytes. Thus, after the compression the
IP addresses can become as small as 6 bytes.

A second enhancement technique introduced by the 6LoWPAN protocol is the packet
fragmentation. This technique allows IPv6 data packets to be transmitted in several
subsequent chunks, as the IPv6 version requires the Maximum Transmission Unit (MTU)
to be at least 1280 Bytes. Fragmentation is also used in devices which have smaller-sized
buffers the ones found usually in resource-constrained devices.

21http://www.alsa-project.org/main/index.php/Main Page

2.2. Technologies and Communication Protocols 53

IEEE 802.15.4

This standard was developed to support data exchange in the lower layers of the TCP/IP
protocol stack for Wireless Personal Area Network (WPAN) architectures. It specifically
implements the Medium Access Control (MAC) and physical layer. In comparison with the
IEEE 802.11 family of protocols it offers much less energy consumption and communication
cost, however it cannot support the same data transmission rate as its bandwidth is
considerably smaller. IEEE 802.15.4 serves as the basis for several technologies, such
ZigBee [All06], as well as ISA100.11a and WirelessHART [PC11], each of which develops
the upper communication layers (not defined in the standard). Alternatively, it can be
also used with 6LoWPAN as well as standard Internet protocols.

The MAC layer of the IEEE 802.15.4 standard supports two modes: slotted and un-
slotted. The former is used in beaconless networks and employs a variant of the IEEE
802.11 contention resolution algorithm (CSMA/CA) for data exchange. The latter is used
in beacon-enabled networks and is more complex, as it includes a superframe structure in
addition to the possibility of reserving time-slots for critical data. Our focus here lies on
the unslotted mode as it is used by the 6LoWPAN protocol, nevertheless for a detailed
description of the slotted mode the reader is referred to [sC+03].

Though following the same CSMA/CA contention resolution algorithm, the IEEE
802.15.4 unslotted mode has significant differences with the IEEE 802.11 standard in order
to be adjusted for the domain of WPAN architectures. First, the IEEE 802.15.4 unslotted
mode defines that backoff waiting time is chosen from a uniform distribution in the interval
[0, 2BE − 1], where BE denotes the backoff exponent and is a non-negative integer in the
interval [macMinBE,macMaxBE] with BE initially equal to macMinBE (default value
3) as well as macMaxBE (in the range 3-8 with default value 5). Associated with BE
is also the NB variable, denoting the number of successive backoffs before an ongoing
transmission. Furthermore, the backoff is decremented by one unit when the channel
is idle for a time duration equal to one aUnitBackoffPeriod period, which is a MAC
layer parameter and equals to 20 symbol periods. The symbol period in IEEE 802.15.4
corresponds to the time duration for the transmission of the smallest data unit (4 bits) over
the wireless network. Secondly, considering the case where the channel is sensed busy while
decrementing the backoff, accordingly the backoff will remain frozen and only continue to
be decremented once the channel becomes idle again. This means that in comparison with
the IEEE 802.11 standard the IEEE 802.15.4 unslotted mode does not include a DIFS
period. A third difference lies in the actions that follow the completion of the backoff
period. Specifically, a sending station performs a Clear Channel Assessment (CCA), which
is equal to eight symbol periods. If after the CCA, the channel is assessed to be busy, both
BE and NB are incremented by one. This is allowed only if these variables have not reached
their maximum values, namely macMaxBE for BE and macMaxCSMABackoffs+1 for NB.
As defined by the standard, macMaxCSMABackoffs can be in the range [1-5] with a default
maximum value of 4. If NB > macMaxCSMABackoffs a channel access failure is
generated and the current transmission is terminated as the sending station failed to access
the channel several times. Nevertheless, in a successful access of the channel after the CCA,
the frame can be transmitted. The final difference is found when the sending station is
requested to send an acknowledgment frame, informing about the correct reception of the
sent frame. The transmission of this frame requires that its destination switches from
the transmitting to the receiving mode, a duration which is called aTurnaroundTime in
the standard. If the acknowledgment frame is sent within the time duration indicated by
macAckWaitDuration, then transmission ends successfully. In the opposite case the frame
is retransmitted up to a maximum of aMaxFrameRetries times. When this value is reached

54 Chapter 2. Networked Embedded Systems: A Background

the transmission is evenly terminated with a communication failure message. Whether
an acknowledgment frame is requested or not, the end of transmission is followed by an
InterFrame Separation (IFS) period, in order to provide the MAC layer time to process
the data received in the physical layer. IFS is either represented by the LIFS (Long IFS)
time duration in the case of long data frames (> 18 bytes) or by the SIFS (Short IFS) in
the case of short data frames (< 18 bytes).

The different access mechanisms are used by IEEE 802.15.4 to manage data exchange
are put into practice in Chapter 8. Specifically, we provide a model representing the
behavior of the Contiki protocol stack, which includes the IEEE 802.15.4 standard in the
MAC and physical layers. This model is additionally parameterized with all the described
parameters of the standard.

6LoWPAN packet format

Figure 2.15 illustrates the 6LoWPAN frame format after the compression as defined by
the standard, as well as its encapsulation in an IEEE 802.15.4 data frame format.

(4 bytes)

Start of Frame Frame Length

(1 byte)(1 byte)
(11−127 bytes)

Compressed UDP header

(3 bytes)

LoWPAN header

(3 bytes)

MAC header

(7 bytes)

FCS

(4 bytes)(0−108 bytes)

Compressed
IPv6 header
(1 byte)

Packet data

6LoWPAN packetPreamble sequence

Figure 2.15: LoWPAN packet encapsulated in an IEEE 802.15.4 frame

The compression affects the IPv6 as well as the UDP headers, following the HC1/HC2
encoding mechanisms [MKHC07]. Nevertheless, these compression mechanisms are only
applied in link-local source and destination addresses and not in global addresses. For
this case another encoding mechanism was defined, named IPHC [HT11]. We can observe
from Figure 2.15 that the IPv6 header is compressed to 1 byte and likewise the UDP
header to 3 bytes. Apart from the addressing information, the 6LoWPAN packet format
also contains the packet data as well as the Frame Control Sequence to verify the packet’s
integrity.

As the 6LoWPAN packet is encapsulated in a 802.15.4 frame in the MAC communica-
tion layer further fields are added. These concern the frame preamble, the Start of Frame
byte, as well as a dedicated field for storing the frame length.

2.2.6 Contiki OS

Contiki [DGV04] is a modular OS for IoT systems supporting a layered system archi-
tecture, which aids in building the system in a hierarchical way. Therefore, application
development proceeds by choosing the level of separation between the kernel and the user
space.

Contiki applications are implemented in the user-space as event-driven systems with
processes acting as event handlers that run to completion. Specifically, the application
development is based on loosely coupled RESTful web services that may be shared and

2.2. Technologies and Communication Protocols 55

reused to represent the interactions in the application layer. The REST architectural style
(Section 2.1.4) provides web accessibility to quantitative information (e.g. temperature,
humidity, pressure) that are gathered in the sensor units of the hardware devices (e.g.
platforms) in the form of abstract resources. The state of the resources can be obtained
or even modified using the appropriate CoAP/HTTP methods (e.g GET, POST, PUT,
DELETE) through dedicated function blocks, called resource handlers. Each Contiki pro-
cesses has one or more associated resource handlers, which it can invoke during execution
as illustrated in Figure 2.16.

Resource Handlers

M N1H H H NkH1

Resource Handlers

M N1H H H NkH1

R Z
R Z

P

Processes

1 NP P

Processes

1 N

Devices

P

SWSW HWContiki Node NContiki Node 1 HW

Devices

Network

Resources

R 1 R 2

Resources

R 1 R 2

Figure 2.16: A distributed Contiki system

As Contiki has limited memory resources, all the Contiki processes are implemented
as lightweight threads, known as protothreads, that share a common stack. The aim
behind this is to not waste memory in multiple stacks that are used most of the time
only partially. Protothreads occupy only 2 bytes in the Contiki OS. Additionally, they
support conditional blocking within an event handler. If an event handler does not run to
completion, conditional blocking allows the scheduling of other processes. This is possible
because protothreads are based on a low-level mechanism to save and restore the context,
when a blocking operation is invoked. This mechanism is called local continuations. A
protothread consists of a C function and a single local continuation. The protothread’s
local continuation is set before each conditional blocking wait. If the protothread is to
be set in a wait state, an explicit return statement is executed and the control returns
to the caller. Upon the next invocation of the protothread the local continuation that
was previously set is resumed and the program jumps to the same wait statement, where
the blocking condition is re-evaluated. The protothread continues its execution, once this
is allowed by the condition. A local continuation is a snapshot of the current state of a
process and its main difference when compared with ordinary continuations is that the
call history and values of local variables are not preserved. If some variables need to be
saved across a blocking statement, this limitation can be sidestepped by declaring them
as static local variables.

The event-driven architecture of Contiki allows the processes of the user space to
communicate with the kernel using two types of events. The so-called asynchronous events
are first enqueued by the kernel and afterwards dispatched to the target process. On the
other hand, synchronous events cause the target process to be scheduled immediately.
Execution control returns to the event posting process only when the target process has
finished the event processing. As in Contiki processes run to completion, the Contiki
kernel handles external interrupts for status updates of hardware devices through its native

56 Chapter 2. Networked Embedded Systems: A Background

polling mechanism. Polling is realized by scheduling high-priority events, which trigger
calls of all processes having a poll handler, in order of their priority.

Figure 2.17 illustrates the functionality of the Contiki kernel. In particular, it imple-
ments an event scheduler that withdraws the events from an event queue and dispatches
them to running processes through dedicated event handlers. It can also periodically call
processes’ poll handlers. Once an event has been scheduled, its event handler must run
to completion since it cannot be preempted by the kernel. The control can also return to
the kernel if the protothread encounters a conditional blocking wait.

Kernel

Thread 1 Thread 2

Event Handler

P1

P1

stack stack

Event Queue

Figure 2.17: Contiki kernel architecture

Contiki also supports a multithreaded execution environment where programming is
linked to a application library that also provides a dedicated API. In this case, the mul-
tithreading processes run on top of the system’s event-driven kernel, thus preserving the
advantages of a lightweight design in most parts of the system.

Contiki network stack

The Contiki OS includes a TCP/IP network stack which uses as an application layer
protocol the HTTP as well as the CoAP protocol. Though HTTP is used in vast variety
of applications, CoAP is optimized for resource-constrained environments as it supports
lower resource consumption [CSDC11]. Therefore, when used in IoT hardware devices it
increases battery lifetime and for this reason is often preferred over HTTP. CoAP follows
the REST architectural style and defines four methods to access the resources, namely
GET, PUT, POST, and DELETE. These methods have the same semantics and response
codes as the in HTTP protocol. CoAP also allows yet another method to subscribe in the
resource changes. This is done through an observation request, which is simply a GET
request with an elective Observe option that is set to zero by the client. If the server
supports resource observation, it respectively adds the client in the observation list, which
contains all the nodes that have requested to be notified once the resource state changes.
Nevertheless, the server does not always support the observation request and can equally
reply with a normal response to GET response.

The CoAP application-layer messages are forwarded to the lower communication layers
of the Contiki network stack, which are presented in Figure 2.18. From this Figure we
can observe that Contiki uses the both the UDP or the TCP protocol in the transport
layer, nevertheless UDP is preferred in most of the existing REST engine implementations
(see [KDD11]). Moreover, the messages are transformed into IP packets through the IPv6

2.2. Technologies and Communication Protocols 57

protocol in the Network Layer and additionally their headers are compressed according to
the 6LoWPAN protocol. The Network Layer also includes the IPv6 Routing Protocol for
Low power and Lossy Networks (RPL) protocol [Win12] to support routing and forwarding
of packets between different network devices. Finally, each packet is sent over the WPAN
network through an IEEE 802.15.4 frame (see Section 2.2.5).

Application

layer

MAC/PHY

layer

Networking

layer

CoAP

TCP/UDP

IEEE 802.15.4

6LoWPAN

IPv6/RPL

layer

Transport

Figure 2.18: Contiki network stack

Application development in the Contiki OS

The design of REST applications for the Contiki OS proceeds progressively through the
following steps:

1. For the IoT application under development, the devices to be used are represented
by proper REST resource definitions. Each resource definition consists of a URL
and the set of HTTP or CoAP methods through which the resource will be accessed.

2. For each resource definition, either a new resource handler is implemented or an
existing one is reused. Resource handlers interact with the system’s devices and
subsequently respond to RESTful service requests.

3. Server processes are implemented that activate one of the available REST mediators
(either the REST or the ERBIUM engine [KDD11]) and a set of resources.

4. Client processes are implemented, and the processes that will be automatically
started are defined, along with their priorities.

5. In the Cooja simulator, appropriate parameters for the network environment are
selected. Then, the IoT application’s processes are allocated on the system’s node
representations as imposed by the distribution of the interconnected devices.

6. The functional behavior of the simulated IoT system is debugged through the simu-
lation of simple execution scenarios. The system’s performance can be inspected by
the simulation of more realistic workloads.

7. Once the required level of confidence is achieved for the correctness and the ro-
bustness of the IoT system under development, the application’s processes can be
deployed on the system’s nodes.

58 Chapter 2. Networked Embedded Systems: A Background

2.3 Summary and Discussion

In this chapter we introduced the networked embedded systems domain along with its main
categories, each one containing different characteristics and requirements. Moreover, we
focused on dedicated application development tools, representative design challenges and
technologies that cover different HW abstraction layers for each one of them. In particu-
lar, the described categories included initially the automotive systems, for which we have
presented middleware architectures (i.e. AUTOSAR [FMB+09]), as well as communica-
tion requirements and technologies that satisfy them, such as the Controller Area Network
(CAN). Secondly, we proceeded on describing the industrial automation system category
and their main technologies, called fieldbus protocols. Fieldbus protocols are widespread
and include application layer protocols as CANopen to allow a high-degree of configura-
tion flexibility as well as Real-Time Ethernet solutions to provide optimized performance
and additionally satisfy timing requirements especially for time-critical applications. The
latter were demonstrated through the Ethernet Powerlink (EPL) protocol and the devel-
opment as well as proper configuration of industrial automation applications using the
openPOWERLINK stack [BS10]. Accordingly, the chapter focused on Wireless Sensor
Network (WSN) systems, a popular and fast growing category of networked embedded
systems due to the use of radio connectivity instead of wires. These systems also provide
support for real-time embedded applications through technology standards, such as the
IEEE 802.15.4 for short-range (WPAN) architectures and the IEEE 802.11 standard for
wider range (WLAN) architectures. Finally, we have detailed about the emerging category
of Internet of Things (IoT) systems, where each embedded device is capable of accessing
and exchanging information over the web without any human intervention. Moreover, we
have presented the different operating systems and communication technologies of IoT
systems, with a particular emphasis on the open source Contiki OS and its supported
network stack.

In the next chapter, we present a unifying semantic framework (BIP), which provides
the basic rules and principles for the development of a rigorous design flow for networked
embedded systems. Furthermore, we discuss the benefits that the BIP framework intro-
duces in this flow, namely model-based design techniques, incremental system construction
as well as the vast supported toolset for early-stage simulation, verification of functional
correctness and performance evaluation.

- Chapter 3 -

The BIP Framework

In this chapter we describe the Behavior-Interaction-Priority (BIP) framework [BBS06],
which is used for the construction of a design flow for networked embedded systems. BIP
is based on a single and unifying semantic model, ensuring coherency whilst moving from
one design flow phase to another. Moreover, it provides a general component construction
methodology, which facilitates the development of rigorous, trustworthy and correct-by-
construction systems. It is highly expressive and allows building complex, hierarchically
structured models from atomic components characterized by their behavior and their
interfaces.

This chapter proceeds as follows. Section 3.1 presents an overview to the BIP frame-
work along with the SBIP extension, which was recently introduced to provide stochastic
semantics in BIP. Section 3.2 provides the basic constructs of the BIP modeling language
extension as well as the additional constructs in SBIP. Section 3.3 describes the exist-
ing tool-support in the BIP framework. Section 3.4 refers to the design flow for rigorous
system construction based on BIP. Finally, Section 3.5 concludes the chapter.

3.1 Concepts

Component construction in BIP is layered as illustrated in Figure 3.1. The first layer
(Behavior) describes the behavior of the system, in terms of basic processes, activities
or functionalities of its individual units, through a set of atomic components. Atomic
components are Petri-Nets or finite-state automata extended with variables, used to store
local data. The second and third layer define coordination mechanisms and composition
glue for the atomic components. Specifically, the second layer (Interaction) specifies the
interactions, associated with data exchange, between the atomic components. The third
layer (Priority) and is used to restrict the non-determinism between simultaneously en-
abled interactions and to steer system evolution so as to meet performance requirements
e.g., to express scheduling policies. Accordingly, we describe briefly each BIP layer and
also focus on defining the components and their structure in BIP.

3.1.1 Atomic components

BIP atomic components are transition systems or 1-safe Petri-Nets extended with a set
of ports and a set of data variables. Atomic components move from one control location
to another through the use of transitions. Each transition is labeled by a port to enable

59

60 Chapter 3. The BIP Framework

Priorities

Interactions

B E H A V I O R

Figure 3.1: Structure of a BIP Model

communication between different components. It has an associated guard, defining a
Boolean condition, as well as an update function, defining the computations on local
variables. In BIP the variables along with their related computations through the update
functions are written in C/C++.

Definition 1 (Atomic BIP component) An atomic component B is a tuple (Q,X,P, T),
where:

• Q is a set of control locations,

• X is a set of variables,

• P is a set of communication ports and

• T is a set of transitions.

Each transition τ is of the form (q, p, g, f, q′), where:

• q, q′ ⊆ Q are subsets of control locations,

• p ∈ P is a port,

• g is a guard (predicate defined over variables in X) and

• f is the update function of τ that computes new values for X according to their
current values.

Every transition τ in B can have multiple source and target control locations. In the
specific case that for all τ ∈ T there exists at most one source as well as one target control
location the component is represented by an automaton.

Example 2 Figure 3.2 illustrates the graphical representation of two BIP atomic compo-
nents. The component on the left represents an automaton named Sender1 and the com-
ponent on the right is a Petri-Net named Sender2. Concerning the behavior of Sender1
it has two control locations, the idle and the tran. It initially resides in the idle control
location, from which it can switch to tran through the transition labeled by the port send.
This transition is also associated with a port having the identical name. After the transi-
tion send is taken, a set of computations on local variables follows incrementing by one the
value of the variable s as well as setting the value of the variable t to zero. While being in
the tran control location it can execute the loop transition send, accordingly incrementing
by one the value of the variable t. The Sender1 component can only switch back to the

3.1. Concepts 63

probabilistic variable distVal according to a uniform distribution λ : [0, 2BE − 1] → [0, 1].
Assuming distVal equals to 0 in the control location L1 and following the execution of
the transition it is chosen as 1 from λ in control location L2. The selection is done

with probability
1

2BE
amongst all the available values, such that

2BE−1
∑

distV al=0

λ(distV al) = 1

(Figure 3.4). Therefore, in the next execution of startTrans the selection of distVal will
be independent from the previous execution and may result in a different value.

L2

L1

distVal=rand(0,2 −1)
BE

L 2, distVal=0

L 1, distVal=0

L 2, distVal=1

2
BE

1

2
BE

1
2

BE

1

BE

startTrans

L2, distVal=2 −1

Figure 3.4: Probabilistic behavior of an atomic SBIP component

3.1.2 Component composition

Given a set of atomic components in BIP, a composite component can be assembled using
a composition glue. The composition glue provides mechanisms for the coordination of
component behavior, which are the interactions (in the second BIP layer) and priorities
(in the third BIP layer). We hereby describe the both mechanisms, before we provide the
complete definition for component composition in BIP.

Interactions

The interaction layer in BIP implements communication mechanisms between the compo-
nents. These mechanisms are called interactions and involve several ports that are jointly
executed. Each interaction is enabled when a condition, named guard, evaluates to true
and triggers computation of data transfer functions to realize data exchange between the
involved ports. In order to participate in an interaction, BIP components should export
at least one port which labels a transition to the component interface (as in Figures 3.2
and 3.3). When exported, a port P may also include one or more associated variables vP .
An interaction is defined in BIP as follows.

Consider a set of n atomic components {Bi = (Qi, Xi, Pi, Ti)}
n
i=1 such that their respec-

tive sets of ports and variables are pairwise disjoint. We define the global set P
def
=

⋃n
i=1 Pi

of ports.

Definition 3 (Interactions) An interaction a is a triple (Pa , Ga , Fa), where:

• Pa ⊆ P is a set of ports,

• Ga is a guard and

• Fa is a data transfer function.

64 Chapter 3. The BIP Framework

By definition Pa contains at most one port from each component. We denote Pa = {pi}i∈I
with I ⊆ {1, . . . , n} and pi ∈ Pi. Ga and Fa are defined on the variables of participating
components, that is

⋃

i∈I Xi.

In the BIP language, interactions between components are specified by connectors.
A connector defines a set of interactions based on the synchronization attributes of the
connected ports (Figure 3.5i), which may be:

• Strong synchronization or rendezvous, when all connected ports are synchrons (graph-
ically represented by a circle) i.e. the defined interaction may be executed only if all
the connected components allow the transitions of those ports (Figure 3.5ii),

• Weak synchronization or broadcast, where at least one port is a trigger (graphically
represented by a triangle) i.e. the possible interactions are all non-empty subsets of
the connected ports that contain the trigger port (Figure 3.5ii).

(ii) Flat Connectors

a b c

a b c

a b c

abc

a+ab+ac
+abc

a+b+ab+ac
+bc+abc

Rendezvous

Broadcast

(i) Port use

synchron

trigger

(iii) Hierarchical Connectors

b ca

Rendezvous

abc

b ca

Atomic broadcast

a+abc

b ca
Causality chain

a+ab+abc

Figure 3.5: Flat and hierarchical BIP connectors

Hierarchical connectors. Connectors can also export their ports (similarly to atomic
components) for building hierarchies of connectors (Figure 3.5iii). Furthermore, they can
use data variables, in order to compute transfer functions associated with interactions.
Computations take place iteratively either upwards (up) or downwards (down) through
the connectors’ hierarchy levels, but computed values are not stored between the execution
of two interactions (connectors are stateless). Exported ports may also have associated
variables, which are mainly used to store results from the computation of transfer func-
tions.

In the scope of this dissertation we use hierarchical connectors to enable incremental
modeling, which is necessary in complex architectures, such as the ones found in networked
embedded systems. The main reasons for this choice is that they 1) describe such systems
in a structured way, 2) facilitate modifications in the BIP model, such as the addition
of new interactions and connectors, as well as 3) provide substantial performance gains
during simulation in comparison with the flattened BIP connectors (Figure 3.5ii).

Let us consider the example of Figure 3.6. In this example we focus on computing
the minimum value which is associated with the exp ports of the atomic components
B1, . . . , B4 and accordingly set this value to all the involved components in the interaction.
The components are connected by the c1, c2, c3 connectors. Each connector export the port
exp and has an associated upstream transfer function U (with U1, U2, U3) to indicate the
flow of data during the “up” action of an interaction and likewise a downstream transfer

3.1. Concepts 65

function D (with D1, D2, D3) to indicate the flow of data during the “down” action. Each
component specifies one variable xi with i = 1, . . . , 4, which is associated with its port exp.
In order to compute the minimum here, we ascend in the hierarchy levels. Specifically, the
sequence of actions which is followed is:

1. The upstream function U1 of connector c1 computes the minimum between the values
associated with the component ports

2. The computed minimum is stored in the variable y1 and associated to the exported
port exp of the connector c1

3. The upstream function U2 of connector c2 computes the minimum between the
variable y1 in connector c1 and the variable x3 of component B3 and stores it in the
variable y2

4. The upstream function U3 of connector c3 computes the minimum between the
variable y2 in connector c2 and the variable x4 of component B4 and stores it in the
variable y3

At this moment the variable y3 will contain the minimum value, since c3 is a top-level
connector. Specifically, a top-level connector is defined as the connector which is not
connected directly to another connector (i.e. it can be connected to other connectors only
at the upper level, however it should not export any further ports). Therefore, in this
example the minimum would be 2. Then, we start descending in the hierarchy levels and
execute sequentially the downstream functions D3, D2, D1 of connectors c3, c2, c1 to set
the minimum value of variable y3 to all the involved components. Thus, in the end of all
this sequence every component should have the minimum value (xi = 2) associated with
its exp port.

x 3x 2

B2 B4B3

2c
 2 ,U 2,D

1c
 1 ,U 1,D

x);4x);3

3c
 3,D 3 ,U

y =4
1

B1

1
x =8

2D : =y ; 3D : =y ;1D : =y ;

1

x 1

2

x =2
3exp x =4

2
x =5

4

min(x , 2x);1U : y =
1

U : y =
2 3U : y =

3 2
min(y ,min(y ,

1

2

3
y =2

y =2

exp expexp

3 33

exp

exp

exp

Figure 3.6: Hierarchical connector example

Priorities

Non-determinism occurs in a model, if more than one interaction can be enabled at the
same time. If needed, the non-determinism can be restricted by using priorities, by filtering

66 Chapter 3. The BIP Framework

the possible interactions based on the current global state of the system. Thus, priorities
define rules, which order pairs of interactions and may be also associated with a condition.
In such a case the priority is applied only when the condition holds. As an outcome
out of the enabled interactions only the one with the higher priority would be executed.
Therefore:

Definition 4 (Priority) Given a BIP component B = γ(B1, . . . , Bn), where γ denotes a
set of interactions, a priority is defined as a strict partial order π ⊆ γ×γ. We write aπb for
(a, b) ∈ π, to express the fact that interaction a has lower priority than b. Subsequently,
the resulting BIP component would be defined as B = πγ(B1, . . . , Bn), if π is not an empty
relation.

Composition

Given the previous definitions for the interactions (Definition 3) and priorities (Definition
4), a composite component in BIP or SBIP is defined as:

Definition 5 (BIP composite component) A BIP composite component πγ(B1, . . . , Bn)
is defined by a set of components B1, . . . , Bn, composed by a set of interactions γ and
a priority π ⊆ γ × γ. If π is the empty relation, then we may omit π and simply
write γ(B1, . . . , Bn). The result of the composition is a new BIP component defined as
B=(Q,X ′, γ, T ′) , where:

• Q = Q1
⋃

. . .
⋃

Qn indicates the set of control locations,

• X ′ =
⋃n

i=1Xi the set of variables,

• γ the set of ports and

• T’ its set of transitions.

Each transition τ is of the form (q, a, g′, f ′, q′) , where:

• q, q′ ⊆ Q are subsets of control locations,

• a = {pi}i∈I ∈ γ indicates a port with I ⊆ {1, . . . , n} as above,

• g′ = Ga ∧
∧

i∈I gi is the guard of τ with Ga denoting the guard of the port a and gi
the guards of the components that participate in the interaction a,

• f ′ = {Fa ;
⋃

i∈I fi} is the update function of τ , with Fa denoting the update function
of the port and fi the update functions of the interacting components.

The behavior of a composite component without priority B = γ(B1, . . . , Bn) is defined
as a new BIP component with transitions, which correspond to interactions and have the
following semantics: each transition a ∈ γ in B can be executed iff (i) for each port
pi ∈ Pa , the corresponding atomic component Bi allows a transition from the current
control location labeled by pi (i.e. the corresponding guard gi evaluates to true), and (ii)
the guard Ga of the interaction evaluates to true. If these two conditions hold true for an
interaction a from a control location q to another control location q′, then a is enabled at
that state. Execution of a modifies participating components’ variables by first applying
the data transfer function Fa on variables of all interacting components and then the
update function fi for each interacting component. The local states of components that
do not participate in the interaction stay unchanged.

3.2. Modeling language 69

variable types. Apart from these types additional data types can also be defined as in the
C/C++ languages. In this dissertation, we define these types as well as the ways to access
them in external C/C++ files. The defined types are included in the model through the
statement extern data type <typeName>, where typeName indicates the type name
as defined in the external file. Additionally, the control locations are defined with the
declaration place and the actions taking place in the initial control location respectively
with initial to. Each transition is encapsulated in the declaration on . . . from . . . to

indicating accordingly the involved control locations. Transitions can also have associated
guards which are represented by declaring provided. When the condition defined by the
guard holds the respective action is triggered found in do Both the guards and the
actions are expressed in C functions.

atom type Sender1

data int s, t
export port SyncPort tick
export port DataPort send(s)
port InternalPort comp

place idle, tran
initial to idle do {s = 0; }

on send from idle to tran
do {s = s+ 1; t = 0; }

on tick from tran to tran
do {t = t+ 1; }

on comp from tran to idle provided (s ≥ 100)
end

In the scope of the presented example, it shall be noted that there is an alternative
way of defining internal ports in BIP atomic component without specifying a type, but
rather by just using internal . . . from . . . to. Nevertheless, this definition implies that
once enabled, this associated transition will be automatically chosen to be executed as it
would have the highest priority in the component.

Connectors. As described in Section 3.1.2 atomic components use connectors in order to
interact with each other. The interactions may involve generic synchronization as well as
data exchange. Moreover, connectors are also used to form composite components, such as
the one presented in Figure 3.7. This component uses two types of connectors, namely the
RendezvousData, the RendezvousSync and the Broadcast connectors. The first two define
interactions with the maximal number of ports, which in the case of the RendezvousData
connector may enable communication involving data exchange between different ports of
BIP components (e.g. send port of the Sender1 component) or may simply be used for
synchronization policies without any data exchange (e.g tick port of the same component)
in the case of the RendezvousSync connector. On the other hand the Broadcast connector
defines interactions with weak synchronization either with or without data exchange. We
hereby provide the textual description in BIP of the two defined connector types.

70 Chapter 3. The BIP Framework

connector type RendezvousData(DataPort s1, DataPort s2)
data int a
define s1 s2
on s1 s2

up {}
down {s2.i=s2.i+s1.i;}

end

We can observe that this connector enables interactions between two ports of DataPort
type and performs the computation s2.i=s2.i+s1.i as a part of the down action, when
both ports are enabled. The connector can also export an additional port, which can be
connected with ports of further components in order to allow hierarchical interactions.
Likewise, the RendezvousSync connector is described by:

connector type RendezvousSync(SyncPort s1, SyncPort s2)
export port SyncPort tick()
define s1 s2
on s1 s2

end

Finally, the textual description for the Broadcast connector is:

connector type Broadcast(SyncPort s1, SyncPort s2)
define s1’ s2’
on s1 provided (s1.i < 1000) down {s1.i=s1.i+1;}
on s2
on s1 s2

end

This connector is different from the previous one as it connects two ports by defining
weak synchronization between them. This allows it to be executed if at least one of the two
ports is available. Additional guards can also be defined inside the connectors (“provided”
construct) to reinforce conditions under which the interactions would be executed. We
should note that when defining connectors for broadcast interactions, the corresponding
actions are taken with respect to their selection have to be defined next to the associated
port names. Moreover, these actions must only involve the variables of the involved ports.
As an example, when port s1 is enabled the actions following this interaction should not
involve or affect in any condition variables that are related with the s2 port.

Composite components. Composite components are described in the BIP language
by the construct compound type. The description continues by instantiating a set of
atomic components, then a set of connectors and finally the required priorities in order
to form new reusable components. They can be either defined as top-level components
or evenly instantiated as a part of further components. In the BIP textual language they
are described in the same way with the atomic components. We hereby provide the BIP
textual description of the SenderReceiver component from Figure 3.7.

3.2. Modeling language 71

compound type SenderReceiver

component Sender1 sender
component Receiver receiver
component extAtom newAtom
connector RendezvousData SendRecv (sender.send, receiver.recv)
connector RendezvousSync tick1 (sender.tick, receiver.tick)

connector RendezvousSync Tick (tick1.tick, newAtom.tick)

connector Broadcast extComp (newAtom.compute,receiver.exe)
priority π1 Tick:*<extComp:receiver.exe

end

The composite component System (compound type SenderReceiver) initially instanti-
ates three BIP atomic components. The first two are of Sender1 and Receiver types and the
third one is a further component, extAtom which is used as an external component to trig-
ger sample interactions in the Receiver component. As it is observed the instance extComp
of the Broadcast connector is defined for interactions between the compute port of the
extAtom and the exe port of the Receiver component. Instances of the RendezvousData
and RendezvousSync are also defined in the compound type. The former is the SendRecv
connector, which is instantiated we this sequence of ports in order to perform the compu-
tation r:=r+s, as illustrated in Figure 3.7. Priorities are also defined for this composite
component. We hereby distinguish the priority π1 Tick:*<extComp:receiver.exe, which
specifies that the interaction through the exe port would have bigger priority than every
port which is involved in the Tick connector interaction (denoted by the use of the *).

Stochastic extension

The SBIP textual description inherits BIP syntax and further defines additional constructs
to allow the specification of probabilistic variables. To facilitate the reader’s comprehen-
sion we here focus only on a fragment of the AbsMsgSender textual description, which
concerns only the parts defining the stochastic behavior of this component (e.g. proba-
bilistic variables and distributions).

package SBIPModel
use SenderReceiver

extern data type distribution t
...
atom type AbsMsgSender

data int size, distVal
data distribution t distrib
port SenderReceiver.InternalPort startTrans

initial to s0 do { distrib = init distribution(“distBackoff.txt”,size); }
...
on startTrans from s1 to s2 do {distVal= select(distrib,size); }
...

end

72 Chapter 3. The BIP Framework

From the presented example we can derive that the SBIP modeling language uses the
same syntax with BIP, with additional constructs used to define the probabilistic variables
and distributions. Before moving to the description of the SBIP constructs we should note
that we here use the previously defined package SenderReceiver, in order to inherit the
port, component and connector types. When included however a type should be referenced,
as in this example with the statement “SenderReceiver.InternalPort startTrans”.

Concerning the SBIP textual description we define distribution t” as an external
data type in dedicated C/C++ files as we previously mentioned. This data type de-
fines the probabilistic distribution distrib. The distribution is initialized through the
init distribution(<fileName>,size) function, where <fileName> indicates the file
with the traces of the distribution and in this example it is equal to “distBackoff.txt”.
It shall be noted here that if the distribution is not initialized in the textual descrip-
tion, then it will be initialized by default as a uniform distribution. When the startTrans
transition is enabled the select(distrib,size) function would be executed. This func-
tion aids in choosing a value from the distribution distrib, according to its shape and
form. The chosen value is stored in the probabilistic variable distVal. SBIP also al-
lows the definition of monitor functions as in the presented example with the statement
trace i(“AbsMsgSender.distVal”, distVal). These statements are used to display the
value of corresponding variables, but are also used as execution traces in the SMC-BIP
tool (Section 3.3.4). Specifically, the traces are gathered by the SMC core in order to
be analyzed according to the available statistical testing algorithms and provide a final
verdict.

3.3 Toolset

The BIP framework provides a rich set of tools for modeling, model transformation, analy-
sis (both static and code generation) and execution of BIP models. The tools are organized
in the different categories of Figure 3.9 that are used for the following actions:

1. Translation of various languages and programming models through the BIP Lan-
guage Factory (Section 3.3.1), in order to generate automatically BIP models. This
category also includes front-end BIP tools which allow editing and parsing of BIP
descriptions.

2. Model transformations that are applied to the BIP models in order to allow perfor-
mance optimization, such as the connector flattening technique (see Chapter 4) as
well as the deployment in distributed hardware architectures, as the Send-Receive
BIP model transformations [BBJ+10].

3. Engine-based simulation of skeleton C++ code that is produced from the Code Gen-
erator as well as deployable code for distributed platforms produced by the Dis-
tributed Code Generator. Simulation is performed through the BIP execution en-
gines, which coordinate the selection and execution of the BIP interactions between
the BIP atomic or composite components (Section 3.3.2). Additionally, the deploy-
able C/C++ code for distributed platforms can be generated from the Send-Receive
BIP models through the Distributed Code Generator [BBJ+10]. The generated code
in this case may employ either TCP sockets, MPI or shared memory for communi-
cation.

4. Verification for safety analysis of functional requirements as well as deadlock-freedom
in BIP models (Section 3.3.3).

3.3. Toolset 73

5

3 3

2

4

1

1

S/R BIP Model

C++

BIP Executable

C++

BIP Executable

C++

BIP Executable

Communication Primitives

Distributed Platform

C++

BIP Executable

Execution Engine

Platform

BIP

BIP Language

C nesC DOL LustreSimulink

Language Factory

transformations
Model

BIP Model

Validation

Verification

Code Generator

Distributed
Code Generator
(engine−based

simulation)

Performance
evaluation

decentralization

translation Parsing

BIP Meta−Model

Figure 3.9: The BIP toolset

5. Performance evaluation in order to analyze the performance through Statistical
Model Checking (Section 3.3.4) and propose design enhancements in the system
level.

3.3.1 Language Factory

The BIP toolset includes translators that generate a BIP models from a variety of pro-
gramming models and languages. The translation proceeds in subsequent steps. First,
the application software’s functional units that represent its behavior are translated into
BIP components. The translation encapsulates as well the data structures and functions
of the application software. Then, the interactions between the application software’s
units are translated to connectors in BIP. Finally, the application software’s coordination
mechanisms are expressed in BIP using native priorities.

Translating DOL applications to BIP

The BIP toolset also includes a tool for the translation of application software that is
defined in the Distributed Operation Layer (DOL) [TBHH07] framework. DOL defines a
programming model, used for the specification and analysis of multiprocessor embedded
systems both in the application as well as the hardware architecture level. The BIP
language factory includes a source-to-source transformation DOL2BIP tool [Bou13] for
the automatic generation of BIP models from DOL. Specifically, the translation is initially

74 Chapter 3. The BIP Framework

mapping the function calls of the DOL XML process network description to ports that
are used for interactions in each BIP atomic component. Then, template BIP components
are developed in order to represent the functional behavior of the DOL processes. These
components are reusable and once developed they are instantiated and connected through
the DOL XML process network description.

Translating TinyOS applications to BIP

Existing work on BIP also considers applications running in the TinyOS [LMP+05].
TinyOS belongs to the category of event-triggered WSN operating systems and supports
programming in resource-constrained devices through its native nesC language. NesC is
designed as a subset of the C language, defining a set of cooperating tasks and processes,
which support similar run-to-completion semantics with the Contiki OS (Chapter 2). Basu
et al. introduced in [BMP+07] a systematic approach for translating application software
written in nesC into a BIP model. This model along with developed library of TinyOS
components allowed the construction of faithful executable models for TinyOS systems,
which were simulated, analyzed and validated with the BIP toolset.

Translating Matlab/Simulink and Lustre models to BIP

The translation of a Matlab/Simulink model into BIP is based on Synchronous BIP
[BSS09], a subset of BIP for modeling synchronous systems. It associates with each
Simulink block B a unique synchronous BIP component MB. Moreover, basic Simulink
blocks (e.g. operators), are translated into elementary (explicit) synchronous BIP com-
ponents. Structured Simulink blocks (e.g. subsystems), are translated recursively as a
composition of the components associated to their contained blocks. The composition is
also defined structurally i.e. dataflow and activation links used within Simulink blocks are
translated into connectors in BIP.

The Synchronous BIP also considers modal flow graphs to facilitate the translation
of Lustre models into BIP. Lustre [HCRP91] is a synchronous dataflow programming
language allowing system development using formal methods. Moreover, it is used as a
core language in the Software Critical Application Development Environment (SCADE)
design environment 1. Each modal flow graph is an acyclic graph, which representing
three different types of dependency between two events p and q: strong dependency (p
must follow q), weak dependency (p may follow q), conditional dependency (if both p and
q occur then p must follow q).

Translating AADL to BIP

The SAE Architecture Analysis and Design Language (AADL) [AS504] is a textual and
graphical language dedicated to modeling and specification of safety-critical systems. It
introduces a model-based design approach to facilitate analysis, automated integration
and code generation in such systems. It further supports the development of component
in different system levels from the application software to the physical hardware. The
translation to BIP [CRBS09] provides additional capabilities to this approach, namely
formal verification (Section 3.3.3) and performance evaluation through Statistical Model
Checking (Section 3.3.4).

1http://www.esterel-technologies.com/products/scade-suite/

3.3. Toolset 75

3.3.2 Engine-based simulation

BIP models can be executed through the dedicated simulation tool. In this case, a dedi-
cated code generator is used, in order to generate C++ code from the BIP System Model.
However, it shall be noted that this code is not deployable, but instead structured with the
scope of running under the control of the BIP framework. This is made possible through
the BIP engine, which is coordinating the selection and execution of interactions between
the BIP atomic or composite components. The BIP engine initially finds all the enabled
interactions by monitoring the state of all the components in the BIP model as well as
the composition glue between them. Then, it orders the enabled interactions according
to their priority and selects the one with maximal priority to be executed first. If several
interactions exist with maximal priority the selection amongst them is either random or
based on a user input (e.g. to reinforce a certain scheduling policy). Furthermore, the use
of the BIP engine ensures that no interaction is possible when some component is perform-
ing a computation. The execution of the model is continuous as the enabled interactions
are computed iteratively and will only stop when no interactions are enabled by signaling
a deadlock.

Currently, three types of engines are supported in the BIP framework, namely the
single-thread, the multi-thread and the real-time engine 2. The single-thread is main
reference engine in the BIP framework, the multi-thread is used for increasing the per-
formance when running on multicore platforms and the real-time engine is an extension
to the single-thread engine, allowing the definition of strict timing constraints (e.g clocks,
time constraints, urgency types). In the scope of this dissertation we chose to use the
single-thread engine, since it was considered as the most suitable for the domain of net-
worked embedded systems. Moreover, the single-thread engine also includes an optimized
version, which can be used for optimizations in the overall simulation performance (e.g.
computations during the execution of interactions) of the BIP System Model. This version
is available online 3 and was used for the conducted simulations in this dissertation.

3.3.3 Verification

Apart from the simulation tool, the BIP toolset includes two tools for the verification
of safety properties and deadlock-freedom in BIP models, namely the BIP state-space
exploration tool as well as D-Finder [BBNS10]. The former is based on classical model-
checking techniques for the exhaustive exploration of the whole state-space of the BIP
system. State-space exploration can also be performed by the BIP engine by computing
every possible sequence of interactions in the BIP system. Nevertheless, depending on the
overall scale of the system this computation may lead to state-space explosion problem
(as mentioned in Section 3.3.4). To this end, the BIP toolset was extended with the D-
Finder tool, which implements compositional verification techniques for checking deadlock-
freedom in the developed models. In comparison with standard state-space exploration
techniques D-Finder is exponentially faster, as it uses an abstraction technique based on
invariant and reachability analysis to avoid exhaustive and costly verification. Specifically,
it relies on a class of interaction invariants which capture well-enough guarantees for
deadlock-freedom in BIP components. The computation of those invariants does not
involve fixpoints and thus avoids the exhaustive state-space exploration.

2http://www-verimag.imag.fr/Code-Generation-Runtimes.html
3http://www-verimag.imag.fr/TOOLS/DCS/bip/doc/latest/html/installing-using-ref-engine.html

76 Chapter 3. The BIP Framework

3.3.4 Statistical Model Checking

The BIP framework provides support for the evaluation of BIP models through the use
of Statistical Model Checking (SMC) [LDB10]. SMC is a recently introduced approach
allowing to cope with the scalability issues in numerical methods that are typically used
to check stochastic systems. In comparison to existing model checking approaches (e.g.
PRISM [HKNP06] or UPPAAL [LPY97]) that are proposed to system correctness, SMC
applies a series of simulation-based techniques to test whether the stochastic system sat-
isfies (or not) a set of requirements, providing as well a certain degree of confidence.
Moreover, although the existing model-checking techniques employ heuristic techniques,
such as partial order, or state-space representation techniques (e.g. symbolic approach)
they are generally slow and often suffer from memory problems due to state-space explo-
sion. As an example, we have illustrated in Figure 3.4 that the number of states depends
on the value range of the probability distributions, which are associated with the model
variables in a stochastic BIP component. In this scope, SMC was introduced in order to
bridge the gap between testing and the existing model checking techniques.

For being able to test system requirements by SMC, we have to formalize them with
stochastic temporal properties. To this end, in this dissertation we use the Probabilis-
tic Bounded Linear Temporal Logic (PBLTL) formalism [HLMP04], to allow describing
Bounded Linear Temporal Logic (BLTL) [BCCZ99] properties probabilistically for a con-
sidered system. The PBLTL formalism allows to encapsulate a BLTL property φi with a
probabilistic operator P, in order to query on the value of P (φi). The declaration of the
probabilistic operator can follow two variants:

• Qualitative, used to estimate an probability interval θ for which the property holds
(or not) and denoted as P≥θ(φi) and P<θ(φi)

• Quantitative, used to compute the exact probability value for which the property
holds and denoted P=?(φi)

The SMC-BIP tool

The BIP framework includes an SMC tool [Nou15], named SMC-BIP (Figure 3.10) ,
to allow the verification of stochastic component-based systems in BIP. SMC-BIP uses
several statistical testing algorithms (such as the Single Sampling Plan [You05], Sequential
Probability Ratio Test [Wal45] and Probability Estimation [HLMP04]). It takes as input a
system-level model in BIP, a property φ to check, as well as series of confidence parameters,
namely α, β and δ to specify the required precision by the statistical test. The property
is described in the PBLTL formalism, which allows expressing probabilistic requirements.
Initially, the tool performs a syntactic validation of the PBLTL formula through a parser
module. Then, it builds an executable model and a monitor for the property under
verification. The executable model will be triggered iteratively by the SMC Core, which
is a module that implements statistical algorithms. Once triggered, the executable model
will generate independent execution traces. These traces are monitored to produce local
verdicts. This procedure is repeated until a global decision can be taken by the SMC Core.
SMC-BIP provides a final verdict as the probability by which the property holds or not.

The tool is developed in the Java programming language and is available online in 4.
It uses JEP 2.4.1 library 82 (under GPL license) for parsing and evaluating mathematical
expressions and ANTLR 3.2 93 for PBLTL parsing and monitoring. For the time being,

4http://www-verimag.imag.fr/Statistical-Model-Checking.html

3.4. Design Flow 77

Figure 3.10: SMC-BIP tool architecture

it runs in command-line mode only on GNU/Linux operating systems, as it is integrated
in the BIP toolset.

3.4 Design Flow

A system design flow is defined upon the BIP framework for the rigorous design and de-
velopment of embedded systems. The BIP design flow is unique as it is based on a single
semantic framework to support application as well as system modeling, detection of func-
tional errors, early-stage simulation and performance analysis as well as code generation
for target hardware architectures.

As described above the BIP framework includes several model generators in its ded-
icated language factory, from which only the DOL to BIP translator is integrated in a
domain-specific design flow for the manycore architectures [Bou13]. The resulting design
flow is illustrated in Figure 3.11 and provides support from the translation of application
software to the implementation on manycore platforms. In this context the application
software is described in the DOL framework and translated through the aforementioned
DOL2BIP translator into a BIP Software Model (as described in Section 3.3.1). The flow
accordingly progresses with the development of a hardware component library for the tar-
get manycore architecture from the input DOL hardware execution platform specification.
This library along with the constructed Software Model are used to synthesize a System
Model in BIP, through a series of transformations which initially refine the Software Model
according to an input mapping specification for the application deployment also described
in DOL. The refinement procedure aids in the accurate deployment on the hardware ar-
chitecture. Then, the hardware component library is used to instantiate and parameterize
BIP components and accordingly form a hardware platform model. Finally, the Software
Model is combined with the hardware platform model in order to form the BIP System
Model. The System Model is used by the dedicated code generator to generate executable
code for physical or virtual manycore platforms, such as the MPARM virtual platform
[LAB+04] as well as the STHORM platform [Nou15] respectively. During the execution
software-dependent computational delays (e.g. from the use of a processor CPU) are mea-
sured. These delays are accordingly used to calibrate the BIP System Model, a procedure

78 Chapter 3. The BIP Framework

which results in obtaining the Calibrated BIP System Model. The BIP flow for manycore
architectures was also recently extended [Nou15] to support the verification of functional
and extra-functional system requirements in the Calibrated BIP System Model through
the use of SMC techniques.

Compositional

verification

(D−Finder)

Modeling

Execution

times

Translation

Model

(BIP)

Model

(BIP)

HW/Platform

Transformation

System

Model

(BIP)

Code

Generation

Calibrated Performance

(SMC)

System
Model

(BIP)

evaluation

Software

software

Application

(DOL) (DOL)

HW execution
platform

specification

Mapping

(DOL)

Figure 3.11: Design flow for manycore architectures based on BIP

3.5 Summary

In this chapter we presented the BIP framework, used in the scope of this dissertation.
BIP is a component-based framework for the incremental construction of rigorous systems.
The presentation was progressive by initially introducing its three supported layers, namely
Behavior, Interaction, Priority. The Behavior layer describes the functional behavior of
the main system units through atomic components, which are Petri-Nets or finite-state
automata extended with data and functions for computations on the data in C/C++.
Transitions in atomic components are taken with respect to conditions, named guards,
and define the progress along different control locations. Moreover, they are associated
with port names to specify their interactions in the second layer (Interaction). The inter-
actions are used to implement communication mechanisms with other atomic components
involving additional data transfer. Connectors are used to define interactions, based the
synchronization attributes of the involved ports. A third layer (Priorities) is also used
to restrict non-determinism between simultaneously enabled interactions in a BIP atomic
component. Priorities are also employed in BIP to reinforce coordination and scheduling
policies. Accordingly, we have described the stochastic extension which was recently intro-
duced in BIP, named SBIP. The benefits of this extension are the addition of probabilistic
variables that represent quantitative information with stochastic variations (e.g. commu-
nication and computation delays, temperature variation and energy consumption data)
in BIP models, whilst maintaining BIP’s underlying expressiveness. SBIP also allows the

3.5. Summary 79

verification of system-level requirements through statistical model-checking techniques by
a dedicated tool (SMC-BIP).

Additionally, the chapter provided an insight on the textual description of the BIP
models, that is, the basic constructs of the BIP modeling language as well as the addi-
tional constructs that are introduced in the SBIP extension. Then, we detailed on the
existing tool-support in the BIP framework, which allows model transformations from
domain-specific languages (e.g. Simulink, Lustre, nesC, AADL) to BIP models, code gen-
eration and execution of BIP models. Finally, we illustrated the unifying design flow based
on BIP, which uses a single framework to ensure consistency in the design of heteroge-
neous systems. The core advantage of this flow is that is rigorous, supporting correct-
by-construction source-to-source transformations between the different design steps. The
BIP design flow was presented through an example by the previous work in the domain
of manycore platforms, where we have detailed the techniques used for simulation, ver-
ification of correctness, validation of system requirements as well as code generation for
dedicated hardware architectures.

In the following chapter we use the BIP design flow and adapt it in the domain of
networked embedded systems. Thus, we describe the considered application software and
the hardware architecture as well as the specific capabilities that are provided by the
flow. Along with that, we detail about further contributions in different steps of the flow,
starting from methods for reducing the application development effort in such systems
until the methods for optimizing the performance in the system level.

80 Chapter 3. The BIP Framework

Part

Contribution

81

- Chapter 4 -

Rigorous Design Flow for Networked Embedded Systems

In this chapter we provide an overall presentation of our contribution in the scope of this
dissertation, namely a rigorous design flow targeting the design challenges of networked
embedded systems that were described in Chapter 1. Therefore, the proposed flow covers
all the stages in the development of such systems, starting from the description of the
application software, to the implementation of a functional and correct system and its
deployment on one or several resource-constrained platforms of the hardware architecture.

The flow is using model-based design techniques to represent systems in different levels
of abstraction, thus allowing to examine different aspects of the system-under-study. The
main benefit from the use of model-based design is the development of model artifacts that
offer an abstraction of application logic as well as the system interfaces as well as provide a
high degree of modularity since the system is partitioned into independent modules. Each
module supports a specific functionality and is defined according to well-known specifica-
tions and standards. Moreover, it can be reused to reduce the overall development time
and effort. Additionally, the design flow supports early-stage simulation and testing to
provide developers sufficient time to develop strategies aiming in the reduction of the sys-
tem errors and risks before the actual system implementation. Furthermore, untraceable
system errors can be detected through verification techniques i.e. exploration of the whole
design space, in order to ensure correctness in the system. Verification also targets the
system requirements (functional and extra-functional) as well as provides feedback to the
initial design, in order to optimize the overall system performance in an effective manner.

When developing a system-level model using model-based design techniques, the im-
portant questions that should be addressed are: which specific system level will the model
represent and in the subsequent step what are the main functional units of the system
in this level. The answer to the first question depends on the selection of the precision
with which the model reflects the reality. This selection should be done with caution, as a
too precise model may be faithful according to the real system, nevertheless it requires a
lot of effort to be developed and even further exploration time to be debugged as well as
analyzed. On the other hand, a too abstract model can have an unrealistic behavior with
respect to the real system and for this reason it not sufficient to conduct a detailed analysis.
Therefore the selection of the system level which the model represents is a trade-off and
depends on the behavioral characteristics of the system, which we would like to analyze
each time. Furthermore, if we consider that the first question is successfully addressed, the
following step will require adequate technical knowledge of the system in order to identify
the main functional units and represent them in the model. On top of these questions, the
main point one should always keep in mind is that the overall modeling time and effort as

83

84 Chapter 4. Rigorous Design Flow for Networked Embedded Systems

well as the cost should be considerably lower than that of the real-system development.
In this dissertation we use a specific type of model-based design techniques, namely

computational modeling. Computational modeling techniques are based on expressive
formalisms and operational semantics to capture through simulation quantitative aspects
of a system (e.g. timing, energy or thermal information) and are mainly machine-based
(e.g. finite state machines machine-based, automata, Petri-Nets). Nevertheless, another
existing type of model-based design techniques is analytical modeling, which relies on
mathematical methods (mathematical equations and transfer functions) to express tight
bounds on the system performance. The main underlying difference between them is
that analytical modeling techniques provide upper bounds on performance metrics and
therefore target on the worst-case possible situation, whereas computational modeling
techniques try to model faithfully the real systems by capturing all their possible behaviors.
Additionally, even though computational models offer fine grained information about a
system, they are not usually able to capture its worst-case. On the other hand, the use of
analytical modeling techniques provides a safe and correct analysis, when the assumptions
that are made are met. However, in the opposite case, the result of the analysis would be
too pessimistic and will not correspond to the reality. Characteristic examples of analytical
modeling techniques are the Real-Time Calculus [TCN00] as well as schedulability analysis
(as in [DBBL07]), whereas computational modeling techniques are based on frameworks
for simulation (e.g. the Ptolemy II framework described in Chapter 1), performance
evaluation as well as model checking [CE82].

Considerable complexity is found nowadays when trying to generate deployable code
from application or system level models. The main difficulties lie in: (i) refining atomic
statements as well as the high-level and modular functionalities of developed models, in
order to express them as sequences of primitives dedicated for the underlying hardware
architecture and (ii) expressing synchronization constraints introduced by the particular
resources of each embedded device of the hardware architecture. The presented flow
provides support for this challenge as well as for additional hurdles that are found once code
is generated, since model modifications (e.g. updated system requirements or modules of
the hardware architecture) or resolution of debugging errors require a thorough knowledge
of the modeling principles and languages.

The organization for the remaining part of this chapter proceeds as follows. In Section
4.1 we introduce a design flow for the rigorous development of networked embedded sys-
tems cover all its different design phases. The following sections focus on specific phases
of the design flow. In particular, Section 4.2 focuses on the description of the application
software, as it introduces a novel programming model to facilitate application development
in networked embedded systems. Moreover, Section 4.3 describes how this programming
model is used to automate the generation of deployable code in such systems. Then,
Section 4.4 proceeds with methods for analyzing and evaluating system performance that
were used in the context of the flow. Finally, Section 4.5 discusses the proposed flow and
provides a summary as well as future prospects for the presented methods.

4.1 Overview and design phases of the proposed flow

The design flow is using BIP as a unifying framework and relies on the generic principles
and steps of the existing design flow based on BIP as presented in Chapter 3. Additionally,
the existing BIP design flow was applied to multiprocessor embedded applications that are
deployed in powerful manycore platforms. Nevertheless, the flow in its current form cannot
be applied to networked embedded systems since (i) they consist from a set of embedded

4.1. Overview and design phases of the proposed flow 85

devices with limitations on their resources (i.e. processing unit, memory) usage, (ii) they
need to exchange data through a distributed hardware architecture that includes a variety
of network stack protocols for each device and numerous communication mechanisms and
(iii) they include dedicated operating systems to provide an optimal usage of the embedded
device resources. For all these reasons in this chapter we define an extension to the existing
BIP flow for the specific domain of networked embedded systems. This extension supports
several types of domain-specific application software for such systems, the different HW
abstraction layers (e.g. operating systems, network stack protocols) of the individual
devices in the system as well as their corresponding interactions that involve message
exchange through the communication network of the underlying hardware architecture.
The design flow proceeds according to the following phases.

Translation Translation

Modeling

Verification

Error

(BIP)
library

Model
(BIP)

packet delivery)

(e.g. timing,

Runtime

Application
Software

HW/
OS−Network

Model
(BIP)

Code

deployment
generation/

Execution

Transformation

(BIP)

System

Model

2

calibration
Model

System
Model

Calibrated

measurements
6

OS/
Network stack

(e.g. standards)
specifications

OS−Network

(BIP)

library

Preliminary phase

(DSL)

software

Application

(XML)

Mapping

specifications

3

1

5

evaluation
Performance

4

7

Architecture

HW

(BIP)

Figure 4.1: Design flow for networked embedded systems

0. Preliminary modeling phase of the OS/communication protocol stan-
dards. This phase is applied only once as an initial step before proceeding with
the different phases of the design flow (Preliminary phase in Figure 4.1). It aims
in the development of models for the operating systems as well as the commu-
nication protocols used in the network stack of each device in the system. The
modeling procedure is based on predefined standards, in order to capture faithfully
their important quantitative aspects (related to the behavior or the performance).

86 Chapter 4. Rigorous Design Flow for Networked Embedded Systems

The modeling procedure results in the definition of the OS-Network library in BIP
with modular model fragments, which are can be parameterized as well as reused
for any device that uses similar operating systems or communication protocols of
the network stack. Therefore, the development effort is only done once during this
phase. When the development of the OS-Network library is completed the design
flow proceeds according to the following phases or steps.

1. Building the Application Software. The application software is generally de-
scribed in a programming language or a computation model which is domain-specific
[Zur05] and depends on the considered network embedded system category that the
application belongs (discussed in Chapter 2), such as NETCARBENCH [BHN+07]
in the category of automotive systems. However, the engagement with languages
or models that are specific for each application requires time and underlying effort,
in order to gain adequate knowledge and accordingly manipulate them according to
the application requirements and needs. Moreover, as far knowledge is concerned,
no unifying language or computation models exist currently able to be reused and
adapted in more than one categories of networked embedded systems. To this end,
in Section 4.2 we try to provide an efficient solution to this problem, by defining a
novel programming model for such systems. This programming model is high-level,
has an easily readable description in XML format and considers the characteristics,
attributes and technologies used in applications for networked embedded systems.
Furthermore, irrespective from the type of the considered language or programming
model in the design flow step 1 of Figure 4.1 the application software is translated in
order to automatically generate an Application Software Model in BIP. The transla-
tion focuses on the definition of the adequate information regarding the functionality
of the application software (e.g. processing units), the network communication (e.g.
protocol stack, message types) as well as the employed coordination mechanisms
(e.g. scheduling policies).

2. Synthesizing a functional model of the hardware architecture. The hard-
ware architecture is described by a specification, which defines the main processing
units and network interfaces that are used in each individual device (i.e. hardware
platform) to exchange information with other devices in the network through its HW
abstraction layers (described in Chapter 1). The synthesis of a BIP model for the
hardware architecture of the system-under-study reuses and instantiates the devel-
oped model fragments in the OS-Network library in the preliminary phase. During
its instantiation, each model fragment can be optionally parameterized through spe-
cific values that are provided by a translation of the operating system or network
stack specifications. In the absence of such values the model fragments are initialized
with default values that are provided by the standards. The final resulting model is
described as the HW/OS-Network Model in BIP and is illustrated by step 2 of the
design flow.

3. Construction the BIP System Model. The BIP System Model is obtained
through a series of correct-by-construction transformations on the Application Soft-
ware Model and the HW/OS-Network Model that were obtained in the design flow
steps 1 and 2 respectively. The transformation is based on the input mapping specifi-
cation, which defines how the application is deployed on the target hardware architec-
ture, in order to instantiate the respective connectors as well as coordination policies
(i.e. BIP priorities) and build a functional BIP model of the system. Moreover, a
separate error library in BIP is also developed to represent error-prone behaviors

4.1. Overview and design phases of the proposed flow 87

through the injection of faults in the BIP System Model. Though various types of
faults can be considered, our main focus lies on failures in the Cyclic Redundancy
Check (CRC) mechanism in wired networks as well as loss of bandwidth and radio
interference as a form of additive noise in wireless networks.

4. Verification of the BIP Application Software Model. In this step the de-
veloped models for the application software (BIP Application Software Model) is
checked for the correctness through the absence of deadlocks by using either the BIP
state-space exploration tool (for exhaustive verification) or the D-Finder tool (for
compositional verification), which were described in Chapter 3. Detected deadlocks
provide feedback for early-stage identification of functional errors in the developed
models, or possibly in the design or the deployment scheme of the application on
the target hardware architecture. It shall be noted that the described verification
techniques can be also applied in the entire system (BIP System Model), since it
preserves the behavior and functionality of the BIP Application Software Model.

5. Generation of deployable code for the target architecture. The design flow
supports automated code generation for several architectures of networked embedded
systems. The code is generated directly from the application software using rapid-
prototyping techniques or through a source-to-source transformation on the BIP
Application Software Model (step 5 in Figure 4.1). In both cases the generated code
concerns only the application part of the system, since the architecture components
are replaced by physical or virtual hardware during the application deployment.
Nevertheless, the benefit of using the former is that when modifications are needed,
a user doesn’t have to be familiar with the BIP language, but would rather apply
these modifications directly to the application software description. On the other
hand, generating code from the Application Software Model facilitates the ability
of reinforcing correctness in the generated code. The code generation procedure is
automated through code templates that are developed for the application software
and the target architecture. Specifically, they may respectively concern interactions
with APIs on the application software layer (e.g. data processing mechanisms) as
well as lower-layer interactions with the hardware architecture (e.g. communication
through network interface cards).

6. Calibration of the BIP System Model with runtime measurements. Al-
though the BIP System Model represents the system functionality, it does not include
HW/SW dependent performance metrics, which can only be measured during the
code execution on the hardware architecture. They are related to quantitative data,
such as timing or thermal information that are measured and accordingly analyzed
through performance characterization methods (described in Section 4.4). The data
obtained from this analysis are injected as model parameters to the BIP System
Model in order to calibrate it and consequently obtain the BIP Calibrated System
Model (step 5 in Figure 4.1). This procedure is called model calibration (Section
4.4.2) and can be also applied to the BIP error library (described in step 3), in or-
der to calibrate it with realistic runtime measurements, such as the packet delivery
ratio.

7. Performance evaluation on the BIP Calibrated System Model. The BIP
Calibrated System Model can be used to simulate and analyze the performance of
the system, but also to evaluate functional and extra-functional requirements at
the system-level. These requirements are associated with performance aspects in

88 Chapter 4. Rigorous Design Flow for Networked Embedded Systems

networked-embedded systems, such as resource utilization (e.g. memory, energy),
timing and thermal information as well as packet losses. The system-level require-
ments are firstly expressed as temporal properties using the PBLTL formalism and
then evaluated through the SMC-BIP tool (Chapter 3).

4.2 PPM: A programming model for networked embedded

systems

The Pragmatic Programming Model (PPM) is a description language developed to pro-
vide a simple and convenient way for describing highly-parallel applications expressed as
a process network, which involves communication between different processes. A process
network is a directed graph, where the nodes represent the processes and the directed
edges represent the communication channels between them. The language has been in-
spired by DOL (Distributed Operation Layer) [TBHH07], which is a framework devoted to
the specification as well as the analysis of mixed software/hardware systems by providing
a Kahn Process Network (KPN) model of the application. Even though DOL provides
a fine grained programming model for the application software, it cannot be extended
in networked embedded systems due to three main reasons. Initially, it uses as a basic
representation the KPN programming model, in which each process can only commu-
nicate through the use of FIFO queues. Writing/reading to/from the FIFO queues is
non-blocking since they are assumed to be as large as needed. However, networked em-
bedded systems may use other ways to support communication between different devices
apart from FIFO queues, as for example through the use of shared memories. Moreover, as
we previously mentioned each device has limitations on its available storage memory and
therefore the size of every FIFO queue should be bounded. Secondly, DOL allows restricted
communication primitives, which are allowing synchronous communication between the
application-level processes. Nevertheless, networked embedded systems are mainly using
asynchronous communication, such as event-triggered transmission, and dedicated tech-
niques (e.g. asynchronous callbacks as mentioned in Chapter 2) to perform data exchange.
Finally, since DOL is used to describe multiprocessor systems, specific API primitives of
the hardware architecture in networked embedded systems are also not supported. For
all these reasons, we have defined a new framework (PPM), which addresses these limita-
tions in a systematic way and provides additional characteristics to the description of the
application software (detailed in the following paragraph).

PPM describes the application software as a set of synchronous processes that commu-
nicate asynchronously through various modes, such as unicast, multicast or broadcast. In
order to represent the multicast and broadcast communication we consider that a process
is able to write data to several queues or memories simultaneously.

Modeling the Application Software in PPM

The application software in PPM consists of three basic entities: Processes, Shared Objects,
and Connections. The network structure is described in XML. Each Process has input,
output ports and sequential behavior. Processes communicate by using shared objects.
Each shared object could represent a queue with respective scheduling policy (e.g FIFO,
HPF), a shared or a remote memory channel and a synchronization policy, such as mutex,
semaphore, barrier etc. It also has input and output ports, which are uniquely associated
with ports of processes through the Connections. For example, an output port of a process
is associated to an input port of a shared object and vice versa.

4.2. PPM: A programming model for networked embedded systems 89

The XML description for a process is given by:

<process name="processName" process-class="WhileFire">

<port name="in" peer-class="objectType" peer-name="out"/>

<header lang="c" file="processName.h"/>

<source lang="c" file="processName.c"/>

</process>

where the “process name” element specifies the name of a process and the “process-class”
element the category in which its behavioral description belongs. Furthermore, “port
name” depicts the name of the port this process uses to communicate, “peer-class” defines
the type of shared object this process is connected to with example values “FIFO” for a
FIFO queue, “SHMEM” for a shared memory and “MUTEX” for a synchronization policy.
Additionally, “peer-name” the particular name of the shared object in the process network.
The XML description also includes the programming language (“header lang” and “source
lang”) as well as the filenames (“file”) for the header and source files, describing the
behavior of the process.

The XML description for a shared channel is given by:

<shared-object name="objectName" object-class="objectType" size="M"

<port name="in"/>

<port name="out"/>

</shared-object>

where the “shared-object name” element specifies the name of a shared object and the
“object-class” element the category in which this shared object belongs to (example values
“FIFO”,“SHMEM” ,“MUTEX” as described previously). In case of a queue or a shared
memory the available data size (“size” element) has to also be provided. The “port name”
elements indicate the input and output port names this shared object uses to communicate.

Each connection is described in the following XML fragment:

<connection>

<port-ref node="portA" port="out"/>

<port-ref node="portB" port="in"/>

</connection>

denoting that the output of “portA” should be connected to the input of “portB” in
the process network. The behavior of each process is described in C language with a
particular structure, which is presented in algorithm 1. This algorithm defines three main
functions, which are application-specific and operate on the process state. The init()
function initializes the process data and is followed by an endless loop calling the fire()
function. In this function the process can communicate read and write primitives for
respectively sending and receiving data to shared objects. A read operation reads data
from an input port, and a write operation writes data to an output port. Additionally,
the fire() function may invoke a detach primitive in order to terminate the execution of
the process.

PPM allows the replication of the elements from the XML schema, in case the applica-
tion consists of multiple similar network devices or repetitive communication links. This
is accomplished on one the hand by adding the “multiplicity” XML element right after
the category definition that a process or a shared object belong to and on the other by
an iteration loop (“iterate-loop”) in the description of a connection. For example given a
number of replications N, the XML description for a shared object and respectively for a
process will be:

<shared-object name="objectName" object-class="objectType" size="M" multiplicity="N">

90 Chapter 4. Rigorous Design Flow for Networked Embedded Systems

Algorithm 1 PPM Process behavior

1: procedure < processName > init(< processName > process *p)
initialize process data

2: end procedure
3: while (true)
4: procedure < processName > fire(< processName > process *p)
5: < sharedObjectType > read(buffer,INPUT,size)

perform computation
6: < sharedObjectType > write(buffer,OUTPUT,size)
7: end procedure
8: end while
9: procedure < processName > deinit(< processName > process *p)

deallocate process thread and data
10: end procedure

<port name="in"/>

<port name="out"/>

</shared-object>

Likewise, the XML description of a replicated connection will be:

<connection>

<iterate-loop var="i" start="0" stop="N"/>

<port-ref node="portA" port="out"/>

<port-ref node="portB" port="in"/>

</connection>

Application Deployment in PPM

The deployment of the PPM application software on the target platform is specified with
the use of a mapping XML description file, as presented in the following fragment:

<mapping

<deployment>

<app-node name="processA"/>

<hw-element name="node" hw-class="platformA" index="0"/>

<hw-property name="netInterface" hw-class="node-inter" value="interfaceName"/>

</deployment>

<deployment>

<app-node name="processN"/>

<hw-element name="node" hw-class="platformN" index="N"/>

<hw-property name="netInterface" hw-class="node-inter" value="interfaceName"/>

</deployment>

</mapping>

The application deployment description (“mapping”) consists of several mapping el-
ements (“deployment”) for each application processes (“app-node”) that is bound to a
device of the underlying hardware architecture (“hw-element”), which is a hardware plat-
form of certain type (“hw-class”). The device is identified in the hardware architecture by
its index (“index”). The binding includes additional information, concerning the hardware
platform (“hw-property”), that are necessary for establishing and configuring the commu-
nication between the network devices. This information can include the network interface
name, the IP addresses of the destination network device, the port specification and the

4.3. Automated Code Generation from PPM specifications 91

type of communication used (unicast, multicast and broadcast). The application deploy-
ment description may also contain additional elements which are application-specific and
define particular characteristics of the hardware architecture or the application software,
however they have to be specified in separate XML elements.

4.3 Automated Code Generation from PPM specifications

In this section, we describe the automated code generation method we developed in the
scope of this dissertation and aims at rapid prototyping for networked embedded systems.
The method is based on an infrastructure for generating code from PPM specifications. It
requires as input the XML-based specification as well as the C code templates describing
the application software in PPM, an XML-based specification denoting the deployment of
the application in underlying hardware architecture (mapping) and dedicated hardware
code templates implementing the functionalities and communication mechanisms offered
by the specific platforms.

The generated code is portable and can be eventually deployed and run on a variety
of platforms that support wired or wireless communication in a networked embedded
hardware architecture. It consists of the functional code and the glue code. The functional
code is generated from the application software in PPM consisting of processes and shared
objects. In the case of networked embedded systems, processes are implemented as threads,
and shared objects are implemented according to the underlying communication protocols.
The implementation in C contains the thread local data and the routine implementing the
specific thread functionality. The latter is a sequential program consisting of plain C
used as a controller, wrapping the process C code described in PPM. The communication
function calls are implemented by substituting the read and write primitives by read and
write API calls on the respective communication protocol.

The glue code implements the deployment of the application to the resource-constrained
platforms, i.e., allocation of threads to the devices (i.e. hardware platforms). The glue
code is essentially obtained from the application deployment (i.e. mapping) PPM speci-
fication. Threads are created and allocated to network devices according to the process
mapping, which also specifies configuration parameters for the underlying communication
protocols. In particular, for wireless communication through the WiFi protocol (Chap-
ter 2), each process is mapped to a “node” element, in order to communicate through
the wlan0 network interface (i.e. hw-property value=“wlan0”). The glue code is linked
with hardware architecture library to produce the binary executables for execution on
the resource-constrained devices. The generated code is described in C language. Both
functional and glue code are implemented using re-targetable template files and hardware
specific files.

The code generation method is a sequential process that is automated by a dedicated
tool. The tool operates according to the Algorithm 2 and therefore involves the several
steps. In the initial (line 1) step, it parses the PPM Application Model and in the second
step (line 2), it parses the PPM Application Deployment (i.e. mapping) specification to
orchestrate the code generation process. As a following step, it initializes the dedicated
system builder according to the underlying hardware architecture. Depending on the
selection, different implementations of the generic functions provided in this algorithm
will be chosen. In this dissertation we consider two types of builders, indicated by
< builderTarget >, which can either have a value “powerlink”, in the case of industrial
automation systems (thoroughly described in Chapter 6) or “sensor network” in the case
of WSN systems (thoroughly described in Chapter 7). The tool accordingly relies on the

92 Chapter 4. Rigorous Design Flow for Networked Embedded Systems

Algorithm 2 Algorithm of the Code Generation Tool

Require: XMLAppFile, CCodeAppFile, XMLMapFile, PlatformFiles
Ensure: Platform Dependent Code Generation
1: app := reader.loadApplication(XMLAppFile)
2: app := reader.loadMapping(XMLMapFile)
3: < builderTarget > Builder builder;
4: procedure buildPreamble()

mkdir build directory, transfer default platform files
5: end procedure
6: procedure buildApplication()

encode application structure into C Structures from Input XML
build process controller, copy input process C files and other library source files

7: end procedure
8: procedure buildMapping()

allocate processes to the network devices
configure communication parameters of the underlying hardware architecture

9: end procedure
10: procedure buildPostamble()

create main.c, create FIFOs, create and run processes
11: end procedure
12: procedure buildMakefile()

code compilation and library linking
13: end procedure

mapping specification to create the different hardware platform directories as well as to
copy target platform specific files into them through the buildPreamble function (line 3).
In the most important step of the algorithm the tool calls the buildApplication function
(line 6), in order to copy the process source, header and library files in the hardware
platform directories. Afterwards, it creates a process controller C file per each input
PPM process. The process controller contains all the necessary functions to control the
execution of each process and to connect the process communication primitives with the
communication interface of the target hardware platform. The buildMapping (line 8)
function call allocates processes to hardware platforms according to the input mapping
specification. It then deducts the necessary communication parameters that need to be
configured based on the supported protocol stack of underlying hardware architecture.
Finally, the tool generates the processes, shared objects (buildPostamble function in line
10) and builds a makefile (buildMakefile function in line 12) in order to simplify the
compilation of the generated code.

4.4 System-level performance analysis methods

4.4.1 Distribution fitting

Distribution fitting is a particular case of model fitting [LB10], a well established tech-
nique to derive models that characterize the given data. In this scope, distribution fitting
considers that the target model is a probability distribution. Furthermore, it is used as
a statistical inference technique when trying to find a statistical model that describes a
set of observations for a performance metric, or simply data set. According to [Nou15]

4.4. System-level performance analysis methods 93

distribution fitting can be defined as a three-step process, where each individual step de-
notes: (1) the exploratory analysis, (2) the parameters estimation and (3) the distribution
evaluation steps. We hereby present the role of each step.

The initial exploratory analysis step tries to find a standard probability distribution
that has the same shape with the distribution of the data set. The distribution shape
can be usually obtained using a histogram plot. Then, considerable effort has to be
done in order to identify if this shape matches with the shape of a standard probability
distribution. A potential match is considered only if the two distributions differ by a
change of scale and location in the horizontal or vertical axis. Nevertheless, this process
is not straightforward, as it requires that the data are proven independent beforehand,
meaning that considering a data sequence xk with k = 1, . . . , n the observation xk+1 is
not affected by the previous observation xk. This can be proved qualitatively using a Lag
plot 1, which allows to identify if there is any clear shape emerging in the data set. In
such case, the exploratory analysis step cannot be continued and the distribution fitting
technique fails to fit a probability distribution to the data set. In case of an independent
data set, it also has to be verified for the presence of additive noise [LB10]. Existing
noise in the data set necessitates its separation in two parts: the deterministic and the
stochastic part. The stochastic part consists of the noise and can be possibly identified
through a the Box-Whisker plot, which represents the outliers of the data set as well as
aids in recognizing its characteristic parameters such as the mean, median and variance.
However, it shall be noted that distinguishing the two parts is also quite challenging, as it
may often require adequate knowledge of the system’s behavior as well as its performance.
Moreover, once the two parts are separated, the resulting deterministic part should also
be verified, in order to satisfy data independency. All the aforementioned procedures
constitute the exploratory analysis step as the most crucial one in distribution fitting. As
a outcome, this step provides distributions that can be used as candidates for the next
step of the technique, namely the parameters estimation.

This step allows to estimate the parameters of the obtained candidate distributions,
using well-known methods, such as moments matching and maximum likehood. The mo-
ments matching method tries to estimate the model parameters by using as many moments
as the number of missing parameters of the candidate distribution. These moments de-
pend on the probability law that the chosen candidate distribution follows. For example
if it follows the Poisson probability law two moments, namely the mean and variance,
suffice in order to estimate the parameters of the candidate distribution, as mentioned in
[AGG89]. On the other hand the maximum likehood method defines a likehood function,
which contains the parameters we need to estimate. This function is defined as:

L(xk, θ1, θ2...θm) =
n
∏

k=1

f(xk, θ1, θ2...θm)

where θ1, θ2...θm indicate the parameters that need to be estimated. This method tries to
find the parameters that maximize the likehood function. Therefore, it either uses mathe-
matical analysis methods if the likehood function is not complex and iterative methods in
the opposite case. In every case the logarithmic form of the likehood function, also called
log-likehood, can also be used. Let us evenly consider that the candidate distribution
follows the Poisson probability law. Then, the likehood function would be:

1http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm

94 Chapter 4. Rigorous Design Flow for Networked Embedded Systems

L(xk, λ) =

n
∏

k=1

f(xk, λ) =

n
∏

k=1

λxke−λ

xk!
=

λ

n∑

k=1

xk

e−nλ

x1!x2!...xn!

Additionally, the logarithmic function is:

log(L) =
n
∑

i=1

xi log λ− nλ

Considering the derivative of this function with respect to λ we obtain that the maximum

is achieved at: λ =
n
∑

i=1
xk/n. Thus, for a candidate distribution that follows the Poisson

probability law, the likehood function is maximum when λ is equal to the mean of the
data set.

The last step of the distribution fitting technique, called distribution evaluation, leads
to the selection of one or many candidate distributions, which are characterize the data
set. For the evaluation we can use several plots to compare the deviation of each candidate
distribution according to its empirical form. Characteristic examples of such plots are the
density function, the Quantile-Quantile (Q-Q) plot [Pha06] as well as the Probability-
Probability (P-P) plot and the Cumulative Distribution Function (CDF).

After the distribution evaluation step we are able to identify one or more distributions
that fit a given data set. These distributions provide a statistical characterization of
the data set to a large extent. Nevertheless, in cases where great precision for the fitting
distribution is needed, additional tests can be applied in order to measure the goodness-of-
fit and quantify the deviation of a candidate fit from the data. Notable goodness-of-fit tests
are the Kolmogorov-Smirnov (K-S) test for continuous distributions and the Chi-Square
(χ2) test for discrete [Pha06], as the Poisson and binomial distributions. The distribution
fitting technique with all its underlying step is demonstrated in detail in Chapter 7, as
we try to find a fitting distribution, in order to characterize data sets which contain the
end-to-end delays in network communication.

4.4.2 Model calibration

Let us suppose that we developed the BIP System Model for a particular system M,
able to capture its behavior by representing all the necessary processes and functional
units of which it consists according to its abstraction level. Nevertheless, this model
might not be accurate in order to characterize the real system M. This is due to missing
information about the system’s external physical environment as well as software and
hardware constraints that are not considered due to assumed level of abstraction. Since the
former is unpredictable, we focus on representing the latter by the injection of performance
data in the BIP System Model. This procedure is called model calibration and results in
obtaining the BIP Calibrated System Model.

The considered performance data are related to timing information (e.g duration of cer-
tain communication or computation), temperature variation or energy consumption that
are described by observed measurements, which are gathered by executions of the real sys-
tem. Nevertheless, the introduction of such measurements in the model is a challenging
task, since the behavior of the gathered data is usually not deterministic. On the contrary
it is variable and can be influenced by the inputs of the system as well as interference
factors, such as the internal or external system interruptions and the environmental noise.
Moreover, even under the assumption that the observed measurements of a performance

4.4. System-level performance analysis methods 95

metric are data-independent, the frequency and the way in which interference factors af-
fect them is not known. This leads us to remark that the behavior of performance data
is considered mostly stochastic. Therefore, by using the aforementioned distribution fit-
ting technique (Section 4.4.1) we can derive probabilistic distributions which characterize
measurements for all the necessary performance data in a particular system. These distri-
butions can be accordingly used to calibrate a BIP model, as illustrated in the following
example.

Example 5 We hereby focus on the BIP model of Figure 4.2, which we would like to
calibrate according to specific timing information measured from the execution in a target
architecture. Then, the measurements are added to a data set. We assume data inde-
pendency in the data set and that by following the distribution fitting technique steps we
are able to identify a good fitting distribution λdata that characterizes it. The calibration
procedure is initiated by selecting a value from λdata and storing it in variable distVal.
This selection is non-deterministic and depends on the probability law which λdata follows.
The resulting value is stored in variable distVal and denotes the time duration to be added
in the component’s behavior. Therefore, we introduce an additional transition tick to the
component, in order for it to progress in discrete time units. We also assign guards to
prevent other transitions from being enabled until the particular time duration elapses.

L1

p1

L2

p2

L3

L1

L2

L3

p2

p1
distVal:=select()

[t < distVal]

tick

t:= t+1

[t = distVal]

λdata

Figure 4.2: Calibration of a BIP component with a fitting distribution

Process profiling

As described above in most cases the behavior of performance data is considered stochas-
tic. Nevertheless, there are certain exceptions in resource-constrained environments where
it can be approximated as deterministic. These exceptions apply only when the observa-
tions of a performance metric are data-independent and do not require any interaction with
components of the hardware architecture (e.g for data exchange or processing). There-
fore, interference factors do not affect them in a considerable level. This is observed only
in resource-constrained environments where the software processes that perform specific
computations on input data are uninterrupted until they finish. Therefore, the computa-
tions last for a fixed time duration. In such a case we do not need to follow the presented
analysis in order to measure the time duration of the computation, but rather add it di-
rectly to our model. The procedure which is followed to calculate such time durations

96 Chapter 4. Rigorous Design Flow for Networked Embedded Systems

and calibrate a developed model with them is called process profiling. Process profiling
proceeds in several steps as illustrated in the following example.

Example 6 For this example we consider a model for a software process in BIP as illus-
trated in Figure 4.3. This model consists of three control locations L0, L1, L2 and includes
two transitions p1 and p2 from/to these locations. In each transition we inject the compu-
tational block of code, whose time duration we would like to measure. This block of code is
enclosed by dedicated functions for time advance in the respective operating system (time()
function of Figure 4.3). The measured values are then added as timing information to the
model by the form of tick transitions, to allow time advance by same values. Additional
guards are placed to prevent transitions p1 and p2 from being enabled, before the respective
time durations elapse.

L1

p1

L1 L1

L2

p2

L2 L2

L3 L3 L3

1t

2f

2f

p1

1f

1f

1t
2t := time()

1t := time()

2t := time()

p2

2f

p2

1f

2f

p1

1f

t = t − 2

t = t − 2

1t := time()

tick

tick

[t < t]

t:= t+1

[t < t]

t:= t+1

[t = t]

[t = t]

Figure 4.3: Process profiling in a BIP component

Additional details about the procedure which is followed in order to measure the time
durations before they are injected in the model are provided in Chapter 8, as a part of the
developed method for model calibration with specific data processing time durations.

4.4.3 Monitoring performance information in the System Model

In order to capture performance information (e.g. timing or processing delays) from the
simulation of the BIP System Model or the Calibrated System Model we use a specific type
of components that monitor their evolution over time. These components are external to
the model and their introduction should not alternate its behavior. An example of such
component, named Time Monitor is illustrated in Figure 4.4. This particular component
is used to measure time durations for events or packets that are represented through a
timing model in the system. The timing model is used to measure the timing advance in
the system in terms of elapsed time units, named steps. The time granularity of each step
depends on underlying hardware architecture and in the scope of this dissertation it is
considered equal to the time needed for the transmission of the smallest data unit over the
communication network. The Time Monitor interacts with system components through a
hierarchical connection (presented in Chapter 3), which involves its dedicated tick port in
order to allow time advance in the system by one step.

98 Chapter 4. Rigorous Design Flow for Networked Embedded Systems

4.4.4 Improvement of simulation for the System Model

In the previous section we have mentioned that the timing aspect in the model is rep-
resented by a timing model, which also supports incremental modeling through the use
of hierarchical connections. In particular, let us consider a BIP System Model, which is
composed by applying a set of hierarchical connectors c1, . . . , cN or priorities p1, . . . , pN
in a set of atomic components B1, . . . , BN+1. Additionally, we suppose that each atomic
component implements a timing model and interacts through its dedicated tick port, as
illustrated in Figure 4.6. In this system every interaction will result in a time advance
by one discrete timing unit (i.e. step). The granularity of this step is considered equal
to the time needed for the transmission of the smallest data unit over the communication
network (as mentioned in Section 4.4.3). Nevertheless, this value is in most occasions rel-
atively small in comparison with the event occurrence in the system, resulting in multiple
interactions through the tick port. Such behavior 1) detiorates the performance of the
System Model by lengthening the overall simulation time, and 2) increases the number of
states in the model, thus making the validation or verification techniques extremely hard.
Therefore, we hereby consider a technique to allow optimal performance by the compu-
tation of the minimal progress in time units between the components that implement a
timing model.

1c
 1 ,U 1,D

B2 Bi

i−1c
 i−1 ,U i−1,D

B1 BN+1

N+1
x y

N+11x
1y

tick

Ttick

Ttick

Ttick

Nc
 N,D N,U

min(x ,1 2x);1U : T = x); N+1min(T,

2y2x ix
iy

y N+1 ND : =T;

x);3min(T,

tick tick

1y
i−11

tick

U : T =Ni−1U : T =

y i−1D : = T;D : =T;

Figure 4.6: Hierarchical timing connector in BIP

The algorithm which is used for improvements in the simulation of each System Model
proceeds in several steps. First, we define the tuple xi, yi, which indicates associated
variables used in the interaction through the tick port of each component. In this tuple
variable xi corresponds to the number of time units the component Bi needs to advance
with at a given moment and yi is used by every Bi to store the resulting minimal progress in
time units in the final step. An important remark is that the algorithm operates properly
only if every component that implements a timing model is able to interact through the
tick port, even when it doesn’t need to advance with a time duration at a given moment.
In this case the respective component sets xi = MAX, so as to not affect the calculation
of the minimal advance.

The presented algorithm is applied in the definition of the corresponding hierarchical
connector in BIP. More specifically, lines 2-5 are implemented as a part of the upstream

4.4. System-level performance analysis methods 99

Algorithm 3 Simulation improvement algorithm

1: Initialize: i=0, T=MAX
2: while (i ≤ N) do
3: T = min(T, xi)
4: i=i+1
5: end while
6: while (i > 0) do
7: yi = T
8: i=i-1
9: end while

transfer function U (with U1, . . . , UN), in order obtain the desirable advance in time units
for each component with a timing model (variable xi) and to calculate the minimum
amongst them by ascending in the connector hierarchy. When the minimum advance is
calculated, it is stored in the temporary variable T of algorithm 3) and set to the yi
of every component (lines 6-9 of the algorithm). This is implemented as a part of the
downstream transfer function D (with D1, . . . , DN) of the connector by descending in the
hierarchy. After this procedure, it is ensured that every component will progress with the
same number of time units following a tick interaction.

The described technique was applied in every BIP System Model or Calibrated Sys-
tem Model that required a significant reduction in the simulation time throughout this
dissertation. Consequently, each component that includes a timing model progresses by
a step equal to the minimal advance in time units after an interaction through the tick
port, instead of the conventional value of one time unit. In order to ensure the proper
simulation functionality this technique should be also followed by reinforcing a schedul-
ing policy in the BIP System Model or the Calibrated System Model through the priority
πscheduler tick:*<*:*. The πscheduler priority gives to interactions through the tick port
the least priority in the system. This allows the BIP engine to execute of all the enabled
interactions at the given moment before advancing in time units.

Further improvement on the simulation time can be obtained in addition to presented
technique. The additional improvement is related to the computation of transfer func-
tions upon the execution of each connector in a hierarchical interaction. If we consider
the example of Figure 3.6 the overall number of invocations of the transfer function in
the hierarchical connector was 2N, where we recall that N is equal to the total number of
connectors. Therefore, if N is sufficiently large, the computational overhead may be un-
manageable and the resulting simulation time might be often longer than the one obtained
from the use of flattened connectors. To improve the overall simulation time, we introduce
a model-to-model transformation technique, named connector flattening [BJS10]. The use
of this technique allows the transformation of the set of individual connectors c1, . . . , cN in
a hierarchical connector to an equivalent connector c. The resulting connector preserves
the functional behavior and computations of the initial connectors. This technique pro-
vides a major gain in the simulation time (detailed in Chapter 5), since the calculation of
the minimal advance in time units is no longer done iteratively in every hierarchical level,
but rather as a one time in the flattened connector.

100 Chapter 4. Rigorous Design Flow for Networked Embedded Systems

4.5 Conclusions

In this chapter we presented a flow for the rigorous design of networked embedded systems.
The flow extends the existing BIP design flow by supporting as inputs domain-specific ap-
plication software as well as dedicated hardware architectures and specifications of network
stack protocols for such systems. The flow is initiated by a preliminary phase during which,
the operating systems as well as the communication protocols of the network stack are
modeled in BIP. The modeling procedure is based on existing standards and results in the
construction of a OS-Network library in BIP. This library aids in obtaining a model of the
hardware architecture in BIP (HW/OS-Network Model) by instantiating and parametriz-
ing components according to the input specification for the hardware architecture. The
HW/OS-Network Model along with a model for the application software (Application Soft-
ware Model) are used to synthesize a model for entire system i.e. the System Model in
BIP. The BIP System Model can be used for the verification of functional correctness or to
test the system performance through early-stage simulation as well as for the evaluation of
functional and extra-functional requirements by describing them as temporal properties.
The latter also involves an intermediate step concerning the calibration of the System
Model with performance data, which are obtained through the execution of deployable
code in the hardware architecture. The code in the design flow is automatically generated
from the application software or from the BIP Application Software Model. The benefits
from employing the proposed flow include the identification of functional or implementa-
tion errors as well as the provided feedback to the user for enhancements in the design of
the system.

Furthermore, this chapter focused on the methods which were introduced for facilitat-
ing the development of functional applications. These methods include the definition of
the Pragmatic Programming Model (PPM), a novel framework for automating the appli-
cation development procedure in networked embedded systems. PPM covers three main
application development phases, namely 1) the description of the application software as
a network of communicating processes in a dedicated XML-based specification, 2) the
application deployment to the underlying hardware architecture according to a mapping
XML specification and 3) the definition of rapid prototyping techniques for the automatic
generation of deployable code from PPM specifications. PPM allows to overcome existing
limitations of similar frameworks (i.e Distributed Operations Layer (DOL) [TBHH07])
in networked embedded systems, mainly concerning the communication through FIFO
queues of unbounded size as well as their restricted API primitives, which provide only
synchronous communication capabilities. It also provides additional characteristics and
attributes to the domain-specific application software for such systems. Currently, we are
extending the PPM application software description, in order to generate automatically the
BIP Application Software Model from the PPM specifications based on a source-to-source
transformation. The extension will be supported by the PPM2BIP tool, which would
initially instantiate template atomic components for the application software. Then, the
tool would associate the PPM function calls to ports used for the interactions in the in-
stantiated BIP atomic components. Finally, the BIP components would be interconnected
according to the shared objects of the PPM specification.

Accordingly, we described methods for performance analysis in networked embedded
systems, such as the distribution fitting and the model calibration method. The former
is a statistical inference technique for probabilistic characterization and aims in finding a
statistical model that describes the performance data, in order to construct a probability
distribution that fits the data according to it. The latter is used to inject information

4.5. Conclusions 101

that are related to performance data into the BIP System Model. Performance data
are obtained through runtime measurements from the code execution in the hardware
architecture. Model calibration considered two techniques to characterize the measured
performance data either by using the probability distributions that are obtained through
the distribution fitting technique, or process profiling if the performance data can be
considered approximately deterministic (as in resource-constrained environments). Then,
we also gave examples of these model calibration techniques in the BIP framework. Finally,
we described methods to monitor dedicated performance information as well as to improve
the simulation of the obtained BIP System Model.

In the forthcoming chapters, we instantiate the design flow for the different categories
of networked embedded systems, as they were presented in Chapter 2. Each category has
its own features and characteristics as well as specific design challenges. The application
of the flow aims at providing efficient solutions for these challenges through the use of
model-based design and dedicated tools to allow simulation, testing, rapid prototyping as
well as the analysis of functional and extra-functional requirements in the application or
system level.

102 Chapter 4. Rigorous Design Flow for Networked Embedded Systems

- Chapter 5 -

Application of the Design Flow to Automotive Systems

In this chapter we present the application of the proposed design flow for networked em-
bedded systems (Chapter 4) in the application domain of automotive systems, developed
on top of the CAN protocol (2). The specific flow aims on (i) early-stage simulation and
testing, (ii) validation of functional and extra-functional requirements in the application
or in the system level and (iii) optimal configuration of automotive applications, based
on the performance analysis of system models. The inputs of the flow are an XML file
describing the automotive application software (presented in Section 5.4), a hardware ar-
chitecture specification and a mapping XML specification for the application deployment
in the hardware architecture.

This chapter introduces two novel contributions in the category of automotive systems.
The first contribution concerns an initial effort towards a top-down approach for the
rigorous design of such systems using model-based design techniques. Previous work has
shown that such techniques provide a efficient method for the efficient development of
automotive systems. In this scope, Sangiovanni et al. in [SVDN07] propose a methodology
on building a design flow for such systems based on the Y-chart. Additionally, [DZDN+07]
illustrates a design flow for automotive systems, nevertheless the focus lies only to the
period assignment stage, in order to optimize the mapping of automotive applications
in the underlying hardware architecture. Therefore, as far knowledge is concerned, the
existing approaches do not consider automotive systems in different levels of detail, namely
from the introduction of the application software until the implementation in dedicated
platforms.

Our second contribution concerns the support of tools for the simulation, analysis and
validation of automotive systems, which to the best of our knowledge is currently lim-
ited. A very interesting model-based framework providing tool-support for development
of networked embedded systems with a particular focus in the automotive category is
SysWeaver [DNBR06]. SysWeaver is an extension of Simulink’s modeling language, which
enables simulation through Matlab environment and code generation through the Embed-
ded Coder tool. Nevertheless, the Mathworks’ tools do not provide support for addressing
and validating system requirements. With respect to the CAN communication protocol,
Vector GmbH provides two powerful tools for the simulation of such systems, CANalyzer
[Veca] and CANoe [Vecb]. Nonetheless, these tools are not able to perform timing analysis
and validation. Furthermore, their use in the design of correct and functional CAN sys-
tems requires high expertise. Likewise, they are targeting an industrial use and therefore
their evaluation versions can only be used to familiarize with the CAN protocol. Sub-
sequently, they have limitations on the network size and the protocol functionalities. In

103

104 Chapter 5. Application of the Design Flow to Automotive Systems

comparison with evenly powerful existing tools that are capable of performing both timing
analysis and performance evaluation, such as RTaW-Sim [NMM+10], the developed tools
in the context of this chapter provide a better fine-grained analysis through the validation
support for system requirements.

The remainder of this chapter is organized as follows. Initially, in Section 5.1 we intro-
duce the design flow for automotive systems along with its domain-specific inputs as well
as design phases. Then, in Section 5.2 we describe the modeling rules and principles that
were used in the preliminary design flow phase for automotive systems, before proceeding
with the resulting model of the CAN protocol and the underlying hardware architecture in
Section 5.3. In Section 5.4 we present a tool which translates domain-specific automotive
application software to BIP model, in order to automate a dedicated design phase of the
flow. Furthermore, in Section 5.5 we demonstrate the flow through a case-study focusing
on one of the automotive subsystems that were described in Chapter 2 (i.e. powertrain
subsystem). Finally, the chapter summarizes the presented work and discusses future
directions and perspectives in the application domain of automotive systems.

5.1 Design phases of the automotive system flow

The resulting design flow in the application domain of automotive systems is illustrated
in Figure 5.1 and involves the following phases:

Modeling
software

(XML)

Application
Automotive

specification

HW

Synthesis

Model

Application

Automotive

(BIP)

Translation 1

Validation
and

model
evaluation

Code
generation

Deployable
code

Transformation 3

4
5

System

Model

(BIP)

Model
Communication

HW/
CAN

(BIP)

architecture
Mapping

(XML)

2

standards

CAN

communication

CAN

(BIP)

component
library

Preliminary phase

Figure 5.1: Design Flow for automotive systems

0. Preliminary modeling phase of the CAN communication standards. Be-
fore initiating the design flow phases we proceed on modeling the CAN primitives
and communication mechanisms in the BIP framework. The modeling procedure
is based on the ISO 11898-1 and ISO 11898-2 standards and focuses on critical

5.1. Design phases of the automotive system flow 105

functional and timing aspects of the classic CAN as well as the CAN FD protocol
versions. These include the CSMA/CA media access control, timing at the bit level,
connectivity, scheduling policies for frames, correct frame identifier allocation etc.
As an outcome, the modeling procedure leads to the development of dedicated model
fragments, which capture the constraints imposed by the communication network on
any potential application running on top. The developed model fragments are used
to form the CAN component library in BIP.

1. Translation of the Automotive Application Software to BIP. Applications
running on top of CAN networks can be a priori developed using dedicated multi-
language frameworks and/or particular programming models. The translation en-
sures their representation in BIP, which is a prerequisite for any reliable and mean-
ingful analysis. In our flow we consider that the application software is provided
by NETCARBENCH [BHN+07], an XML-based domain specific language defining
realistic in-vehicle network characteristics that are inherited through the automatic
translation to the Automotive Application Model in BIP (Section 5.4).

2. Synthesis of the CAN HW/Communication Model. The hardware archi-
tecture specification is used to define the CAN hardware architecture in terms of
number of embedded devices (i.e. platforms) as well as the dedicated interfaces that
they use for communication through the CAN network. It is also used to specify
how the model fragments of the CAN component library would be instantiated and
connected in order to form the CAN HW/Communication Model in BIP.

3. Construction of the System Model. The BIP System Model is intended to
represent the entire mixed SW/HW system, that is, the automotive application
software running on top of the CAN network. This model is directly derived by
a combined transformation of the BIP models obtained in design phases 1 and 2
using additional deployment information (mapping in Figure 5.1), which concerns the
allocation and scheduling of various software modules onto the network nodes. The
key addition of this transformation is to meaningfully integrate the CAN network
(hardware) constraints into the application (software) model.

4. Performance analysis and addressing of functional or extra-functional re-
quirements. The constructed BIP System Model allows extensive testing, simula-
tion and validation of the system prior to its deployment. It is also used to provide
feedback for the real-system implementation, such as the proper application config-
uration in order to desynchronize frame transmissions and avoid load peaks in the
Bus. Furthermore, it can be used to evaluate functional requirements, such as safety
properties (including deadlock-freedom) as well as functional and extra-functional
requirements in the form of stochastic temporal properties described in the PBLTL
formalism (Chapter 3).

5. Code generation. The BIP tools allow the generation of platform dependent
C/C++ code from the BIP System Model obtained in design phase 3. This code is
used for simulation and performance analysis under the control of the BIP engine
(Chapter 3).

106 Chapter 5. Application of the Design Flow to Automotive Systems

5.2 Modeling rules and principles

The design flow for Automotive Systems uses as a basic representation the System Model
in BIP. This System Model represents the architecture of an automotive system in different
levels of detail, starting from the application software until the hardware infrastructure of
the CAN network. It is comprised by a model for the automotive application software as
well as a model for the communication protocol and the hardware of CAN systems.

The Automotive Application Model consists of a set of BIP components, namely Device
1 to Device M, which describe the functional behavior of ECUs. Furthermore, the CAN
HW/Communication Model represents the functional units of the classic CAN protocol
version as well as the newly developed CAN FD protocol. In particular, it provides a
high-level model of the CAN stations as well as the CAN bus. It additionally supports
the Basic CAN interface [ISO03a], meaning a single transmit and a single receive buffer
are used for the transmission and the reception of the frames accordingly. The CAN
HW/Communication Model is also compliant with the High Speed physical layer standard
[ISO03b], due its higher baud rate and interoperability with application-level protocols,
such as CANopen. Finally, the current version is not modeling transmission errors.

The overall architecture of the BIP System Model is illustrated in Figure 5.2. It uses
a glue layer, that consists of a set of connections and priorities in order to represent the
interaction and arbitration policies between the Automotive Application Model and the
CAN HW/Communication Model. More specifically, one or many Device components
(Device 1 to Device M) of the Automotive Application Model use a sending port, named
REQUEST, as well as a receiving port, named RECV, to exchange data with a CAN
station component (CAN station 1 to CAN station N) of the CAN HW/Communication
Model. In Figure 5.2 we also present an abstract view of the communication in the lower-
layer, where data are broadcasted (BROADSND port) to the CAN stations through the
CAN Bus (CAN bus).

REQUEST RECV
REQUEST RECV

RECVREQUEST RECVREQUEST RECVREQUEST

REQUEST RECV

CAN station 1

Device 2 Device i Device M

CAN station N

Automotive Application Model

CAN station j

BROADSND BROADSND BROADSND

RECVREQUEST

Device 1

BROADSND

CAN HW/Communication Model

CAN bus

Figure 5.2: Architecture of the BIP mphSystem Model

5.3. CAN HW/Communication Model 107

The description of the BIP System Model as a context-free grammar is:

SystemModel ::= AutomotiveAppModel . CANInV ehicleModel
AutomotiveAppModel ::= Device+

CANInV ehicleModel ::= CANstation+ . CANbus
CANstation ::= Controller . F ilter

We assume that the CAN arbitration phase (Chapter 2) in the System Model has
the form of an one-step action, where every CAN station transmits directly the entire
CAN frame identifier and not sequentially as bit-per-bit sequence. We initially modeled
both cases, such that in the end of this phase only the CAN station with the smallest
identifier continues to transmit in the Bus and the other stations listen to its transmission.
Nevertheless, we decided to chose the former case for the sake of comprehension (reduced
overall complexity of the model) as well as for the reduction of the overall simulation time
in the BIP System Model.

The timing aspect of the model is a constraint that has to be carefully considered as it
depends on the choice of the discrete time step with which the system advances. Since, its
granularity has to be relative with the baud-rate (speed) of the CAN protocol, we consider
the time needed for the transmission of one bit to the Bus equal to one-step advance in
our model. For example a baud-rate of 500 kbit/s, corresponds to a time step advance of
2 microseconds (µs). Subsequently, 2µs of real time will be taken as a one-step advance
in our model.

We accordingly consider the ports used for the component interactions with capital
letters, whereas all the remaining are internal ports in the BIP System Model.

5.3 CAN HW/Communication Model

The CAN HW/Communication Model represents the CAN-specific hardware as well as the
employed primitives and communication mechanisms of the CAN protocol. The construc-
tion of the model is facilitated through a library of CAN components, which are param-
eterized upon instantiation. The model supports two types of frames: data transmission
(data frame) or data request (remote frame). It uses two generic types of components:
the CAN station and the CAN bus. The former represents the CAN protocol controller
and the acceptance filtering mechanism (as described in Chapter 2) and serves as an in-
termediary, in order to exchange frames with the Automotive Application Model. The
latter represents the Bus functionality, preserving entirely its arbitration and broadcast
mechanisms. Data transmission is synchronous, that is, all stations receive synchronously
the frames sent by any of them. Furthermore, the underlying communication is a two-step
process: first data are transmitted to the CAN bus and consequently broadcasted to all
the CAN stations, including the sender. The transmission is sequential, that is, field per
field and the considered fields in the model depend on the version of the CAN protocol
which is used (Table 5.1). Additionally, the transmission end of each CAN frame field is
followed by strong synchronization between the CAN stations and the CAN bus, through
the use of rendezvous interactions between their ports.

The main components as well as the structure of the model is presented in Figure 5.3.
It uses two categories of ports for modeling the communication and data exchange in CAN
systems, namely:

108 Chapter 5. Application of the Design Flow to Automotive Systems

Frame field Classic CAN version CAN FD version Description

canId ✓ ✓ CAN identifier
rtr ✓ ✗ Remote Transfer Request (RTR) bit
ide ✓ ✗ IDentifier Extension (IDE) bit
edl ✓ ✓ Extended Data Length bit
brs ✗ ✓ Bit Rate Switch (BRS) bit

length ✓ ✓ data size
payload ✓ ✓ frame data

Table 5.1: Frame fields in the CAN HW/Communication Model

a. Ports used for interactions with Automotive Application Model (REQUEST, RECV)

b. Ports used for interactions between the different components of the CAN HW/Com-
munication Model (SOF, ARBITRATION, CONTROL, DATA, ACK, EOF)

c. Ports used for global synchronization interactions (TICK)

DATAARBITRATION CONTROL EOFACKSOF

REQUEST RECV REQUEST RECV

DATASOF ARBITRATION CONTROL ACK EOF

Controller Filter

CAN station n

DATAARBITRATION CONTROL EOFACKSOF

SOF ARBITRATION CONTROL DATA ACK EOF

CAN bus

CAN station 1CAN station 0

Filter Controller FilterController

TICK

RECVREQUEST

Figure 5.3: Generic model of a CAN system

Table 5.2 presents analytically the ports used for the interactions in the CAN HW/-
Communication Model, a short description of their functionality and the category they
belong to.

BIP model of CAN stations

CAN stations are composite components consisting of two atomic components: the CAN
Controller and the CAN Filter. These components are responsible for the frame trans-
mission to the CAN bus (REQUEST interaction) and the frame transmission to the ap-
plication (RECV interaction) accordingly. The Controller component uses a transmission
queue, in order to store the pending frames, that is, received from the application and

5.3. CAN HW/Communication Model 109

Port Description Category

REQUEST Receives a frame request from the Automotive Application Model a

RECV Sends a frame to the Automotive Application Model a

SOF Denotes the Start-of-Frame field of a CAN frame b

ARBITRATION Initiates the arbitration phase b

CONTROL Denotes Control field of a CAN frame b

DATA Data exchange phase of the CAN protocol b

ACK Distinguishes an error-free from error-prone transmission b

EOF Denotes the End-of-Frame field of a CAN frame b

TICK Denotes the time step advance in the model c

Table 5.2: Ports used for the CAN HW/Communication Model interactions

waiting to be sent over the Bus. The selection of the queuing policy depends on the needs
and requirements of each specific application and can either be of type First-in-First-Out
(FIFO) or High Priority First (HPF). The latter policy defines that the frames are selected
according to their priority.

The Controller component (Figure 5.4) is modeled as a Petri-Net, which (1) receives
frame requests from the Automotive Application Model and (2) exchanges CAN frames
from the CAN bus component and (3) transmits frames to the Automotive Applica-
tion Model after the necessary filtering mechanism. The transmission process is initiated
through the REQUEST port, which stores the received frame in the transmission queue.
If the Controller has a frame to send, the transmission cycle begins (SOF port). Next,
in the arbitration phase, labeled by the ARBITRATION port in the model, every Con-
troller sends its identifier (canId field) to the CAN bus. The minimum identifier “wins”
the arbitration and gets broadcasted to all of the listening Controller components 1. The
Controller with the minimum identifier is allowed to proceed with the transmission of the
length (CONTROL port) and payload (DATA port) fields, while all the listening Con-
trollers are receiving them. The end of the transmission cycle is denoted by the EOF
port. Throughout this cycle’s duration the REQUEST port is always available, ensuring
the seamless frame reception from the application. If at least one receiving Controller re-
ceives the all frame fields correctly it sets the ackT flag. When this flag is set the receiving
Controllers forward the received frame to the Filter component through the port RECV.
In the opposite case they return through the transError port and the sending Controller
is inform of the error, in order to retransmit its frame.

The Filter component (Figure 5.5) models the acceptance filtering mechanism for every
transmitted frame in the Bus and decides upon delivering it to the application layer or
ignoring it. It receives all the frames through an interaction involving its HANDLE port
and the RECV port of the Controller component and checks their identifier in a list
of identifiers (IdList), which the particular CAN station would like to receive. If the
identifier belongs to the identifier list (IdList), the frame is transmitted to the Automotive
Application Model through the transition RECV, otherwise it is discarded through the
transition filtered.

BIP model of the CAN bus

The CAN bus (Figure 5.6) is receiving sequentially the frame fields of Table 5.2 from
each CAN station component. In contrast to the CAN station it includes a timing model,

1If a Controller has no frame to send its identifier will be automatically set to 211 for the standard
frame and 229 for the extended

110 Chapter 5. Application of the Design Flow to Automotive Systems

R1

R2 R3

REQUEST

queue.push(frame)

processReq

p : = findMin(queue, canId)

queue.pop(frame)

busy : = 1

REQUEST

queue.push(frame)

noReq

[busy = 0 ∧ queue.isEmpty = 1]

frameSent
[busy = 0 ∧ queue.isEmpty = 0]

S1

S2

S3

S4 S5

S6

S7

S8

S9

S10

CONTROL DATA

ACK

EOF

SOF
[busy = 1]

ARBITRATION

checkMin
[min = canId]

arbLoss
[min 6= canId]

rtrSet
[rtr = 1]

send
[rtr = 0]

sndDat:=1

listen
sndDat:=0

transEnd
[sndDat = 1]

transError
[ackT = 0 ∧sndDat = 0]

RECV
[ackT = 1 ∧sndDat = 0]

REQUEST frame RECV frame

SOF

rtrcanId ide

ARBITRATION

edl brs length

CONTROL

payload

DATA ACK EOF

Figure 5.4: CAN Controller component

L1 L3

HANDLE

found : = checkList(can− id, IdList)

RECV
[found = 1]

filtered
[found = 0]

HANDLE frame

RECV frame

Figure 5.5: CAN Filter component

in order to represent the discrete time step advance needed for the transmission of each
frame field. This advance is denoted by the port TICK in the model, which leads to strong
synchronization between all the components that include a timing model. As we stated in
Section 5.2 one tick corresponds to the time needed for the transmission of one bit (τbit).

The role of the CAN bus is to synchronize all the CAN stations. During the transmis-
sion cycle it interacts with all the CAN station components through the SOF port. The
identity of the data frame sent to the Bus is determined through a check on the ide field,
providing information about the number of bits transmitted through the ARBITRATION
port. The resulting value is 12 for a standard frame and 32 for an extended representing
the time needed for the arbitration phase, accordingly stored in variable A. The distinc-
tion between a CAN 2.0 and a CAN FD frame in the model is possible through the edl
field. When transmitted recessive the CAN bus handles the frame according to the CAN
FD version and switches the alternate bit rate during data transmission of the payload
field. The alternative bit rate is a model parameter, named tswitch. In any case, the

5.3. CAN HW/Communication Model 111

L1

L2

L3

L4

L5

L6

L7

L8

CONTROL
[t = g]
t := 0

DATA
[t = 6]
t := 0

crc
[t = 8 ∗ length+ stuff]

t := 0

ACK
[t = 16]
t := 0

EOF
[t = 9]
t := 0

SOF
t := 0

TICK

ARBITRATION
A : = arbLength(ide)

TICK
[t < 1]
t++

TICK
[t < A]
t++

TICK
[t < 6]
t++

TICK
[t < 8 ∗ length+ stuff]

t++

TICK
[t < 16]
t++

TICK
[t < 9]
t++

TICK
[t < 3]
t++

ifs
[t = 3]

SOF

TICK

rtrcanId ide

ARBITRATION

edl brs length

CONTROL

payload

DATA ACK EOF

Figure 5.6: CAN bus component

time duration for the transmission of the payload field (DATA port) depends on the value
of the length field received through the CONTROL port. The CAN bus broadcasts this
field in a time duration of 6 ticks for a CAN 2.0 frame and 9 ticks for a CAN FD frame.
Likewise, the checksum computation results in a time duration of 16 ticks for a CAN 2.0
frame and 17 or 21 ticks for CAN FD. The transmission cycle ends through the EOF port,
which along with the ACK port correspond to a 9-tick time duration. The presence of
the Interframe space (IFS) between consecutive frame transmissions is used to avoid Bus
overload occurrences and corresponds to a time duration of 3 ticks in the model. After
this time elapses the control returns to its initial control location (ifs port).

According to the presented analysis we identify the overall classic CAN (CAN2.0) frame
transmission time in the model as:

CCAN2.0
= (32 +A+ 8 · length) · τbit (5.1)

Equally, for a short (CANFDS) and a long CAN FD (CANFDL) frame this time would
be given by:

CCANFDS
= (35 +A+ 8 · length) · τbit

CCANFDL
= (39 +A+ 8 · length) · τbit

(5.2)

112 Chapter 5. Application of the Design Flow to Automotive Systems

Bit-stuffing model

Equations 5.1 and 5.2 are used to calculate the overall time duration for the transmission
of a CAN frame through the CAN bus. However, the calculated time from these equations
may not be completely accurate as it does not consider the bit-stuffing encoding technique,
which as mentioned in Chapter 2 is introduced to provide a high-degree of synchronization
among the connected device in a CAN network. The additional bits that are added by
this technique may increase the time of Equation 5.1 by:

Cstuffing =
⌊

(23 + w + 8 · length− 1)
s

100

⌋

· τbit , (5.3)

where w = A − 1, since the remote request bit is not subject to stuffing, τbit = 1 and
s ∈ [1, 25] is a parameter of the model, denoting the number of stuffed bits for every
frame. If the frame payload is known beforehand, this number is calculated directly from
the sequence of transmitted bits, whereas in the opposite case it can be rather chosen from
a probabilistic distribution provided as an input to the model. Related to the analysis
provided in [DBBL07], our model is not considering the IFS field as part of the frame and
the worst-case transmission time is provided with s equal to 25. In both cases, the number
stuffed bits is denoted by the variable stuff in the model and added to the transmission
time after the DATA interaction (Figure 5.6). Likewise, for a CAN FD frame Cstuffing

would be:

Cstuffing =

(

⌊

(7 + w + 8 · length)
s

100

⌋

+ 1 +

⌊

15

4

⌋)

· τbit ⇔

Cstuffing =

(⌊

7 + w + 8 · length

s

⌋

+ 4

)

· τbit (5.4)

However, even the addition of the bit-stuffing encoding time duration may not often be
sufficient in order to calculate the overall frame transmission time, due to the unpredictable
queue-waiting time for every frame, termed as blocking time. This time depends (1) on
the choice of the queuing policy for each CAN station component, (2) the selection or not
of transmission offsets in order to boost the performance of the network by decreasing the
overall load on the Bus [YBND12] as well as (3) the selection of abortable or non-abortable
transmission requests [KDN11].

5.4 Tools for automotive system development: The NET-
CAR2BIP Translator

In the context of the presented design flow we developed a tool which translates the in-
put Automotive Application Software to the Automotive Application Model in BIP. An
overview of the tool is shown in Figure 5.7. It uses as input an XML file with config-
uration parameters for a subsystem of an in-vehicle network. Figure 5.8 illustrates an
example of this file for the powertrain subsystem presented in Chapter 2. The parameters
are provided by the user in order to define the range of network characteristics as the
network load (“network-load”), the data length (“frame-payloads), transmission period
(“frame-periods”), the lower and higher threshold for the frame identifier which defines
their priority on the Bus (“prio low range” and “prio high range”) for each frame.

Accordingly, the tool executes NETCARBENCH, in order to generate the required
number of message sets (given by the user) by selecting parameter values from the input

5.4. Tools for automotive system development: The NETCAR2BIP Translator 113

Network

Configuration

(XML)

Set 1

(XML) (XML)

Set N

Message Message

AppModel

(BIP)

Set N

AppModel

Set 1

(BIP)

NETCARBENCH

Translation Translation

Figure 5.7: NETCAR2BIP Translator

<can-network name="pwrt_config" bandwidth="500" granularity="5" >

<network-load min="0.40" max="0.50" />

<nb-network-interfaces min="5" max ="15"/>

<frame-periods>

<period value="10" weight="5" margin="2" prio_low_range="50" prio_high_range="200"/>

<period value="20" weight="10" margin="2" prio_low_range="100" prio_high_range="400"/>

<period value="50" weight="20" margin="5" prio_low_range="250" prio_high_range="500"/>

<period value="100" weight="10" margin="2" prio_low_range="300" prio_high_range="600"/>

<period value="200" weight="5" margin="2" prio_low_range="400" prio_high_range="800"/>

<period value="1000" weight="5" margin="2" prio_low_range="500" prio_high_range="1000"/>

<period value="2000" weight="5" margin="2" prio_low_range="600" prio_high_range="1000"/>

</frame-periods>

<fixed-loaded_stations>

<station id="1" value="0.30" />

<station id="2" value="0.20" />

</fixed-loaded_stations>

<frame-payloads>

<payload value="1" weight="2" margin="1" />

<payload value="2" weight="5" margin="2" />

<payload value="3" weight="5" margin="2" />

<payload value="4" weight="5" margin="2" />

<payload value="5" weight="10" margin="5" />

<payload value="6" weight="15" margin="5" />

<payload value="7" weight="20" margin="5" />

<payload value="8" weight="40" margin="5" />

</frame-payloads>

</can-network>

Figure 5.8: XML configuration file of NETCAR2BIP

114 Chapter 5. Application of the Design Flow to Automotive Systems

configuration file. The values chosen randomly, however they always follow specified con-
straints and the probability distribution for each network characteristic, which is provided
as a frequency histogram by NETCARBENCH. Each generated message set by NETCAR-
BENCH is an XML file itself and is used to define an realistic CAN network. A fragment
of such a message set is provided in Figure 5.9.

Example 8 A fragment of the XML message set generated NETCARBENCH is illus-
trated in Figure 5.9. It defines an ECU component (“nc:ecu” in XML) along with referent
identifiers to associate the frames it transmits to the Bus (“nc:frame-ref”). The Bus defines
the characteristics of every frame, concerning its identifier on the CAN network (“nc:can-
id”), its data size in number of bytes (“nc:payload”), its triggering period (“nc:period”)
and its transmission type (“nc:type”), determining how it is triggered (i.e periodically or
by an asynchronous event).

<nc:ecu id=’id3’>

<nc:short-name>Powertrain.node1</nc:short-name>

<nc:bus-connection id=’id4’>

<nc:bus bus-ref=’id13’/>

<nc:sent-frames>

<nc:frame frame-ref=’id15’/>

<nc:frame frame-ref=’id16’/>

<nc:frame frame-ref=’id20’/>

<nc:frame frame-ref=’id21’/>

<nc:frame frame-ref=’id36’/>

<nc:frame frame-ref=’id38’/>

</nc:sent-frames>

<nc:queuing>HPF</nc:queuing>

<nc:buffer-count>3</nc:buffer-count>

<nc:use-hw-cancellation>true</nc:use-hw-cancellation>

</nc:bus-connection>

</nc:ecu>

<nc:buses>

<nc:bus id=’id13’>

<nc:short-name>Powertrain</nc:short-name>

<nc:frames>

<nc:frame id=’id15’>

<nc:can-id>189</nc:can-id>

<nc:payload>5</nc:payload>

<nc:period>10</nc:period>

<nc:type>PERIODIC</nc:type>

<nc:minimum-delay>0</nc:minimum-delay>

</nc:frame>

</nc:frames>

<nc:clock-drift-configurations>

<nc:clock-drift-configuration id=’id81’>

<nc:default-drift-factor>1.0</nc:default-drift-factor>

<nc:default-drift-mode>NODRIFT</nc:default-drift-mode>

</nc:clock-drift-configuration>

</nc:clock-drift-configurations>

<nc:bit-stuffing-load>OBSERVED_10_PERCENT</nc:bit-stuffing-load>

</nc:bus>

</nc:buses>

Figure 5.9: XML message set generated by NETCARBENCH

NETCAR2BIP translates every generated message set into an BIP file for the Au-
tomotive Application Model. Specifically, for every ECU XML element it instantiates a
BIP template for a Device component (detailed in 5.5.1). Each component is instantiated
with a queuing policy and a number of frames. Each frame is initialized in the Device
component template as: init(frameArray, canId, type, P, length, payload, offset), where
frameArray is an array containing all the frames along with their identifier (canId), trans-
mission type (type), triggering period (P), data size (length), frame data (payload) and a
possible initial transmission offset (offset). All these parameters are extracted by NET-
CAR2BIP from the message set along with CAN network characteristics from the XML
message set, such as the bit stuffing percentage in each frame and the bit-rate of the Bus.

5.5. Case study: Powertrain Vehicle System 115

The size of frameArray depends on the number of frames with which it is initialized and is
a parameter of the Device component, named N. We hereby assume that each column of
the frameArray is a sub-array itself, that is, P is a sub-array containing the frame periods.

The tool in its current version is implemented as an executable file in the Linux en-
vironment. It sequentially 1) provides the path to a network configuration file in order
to execute NETCARBENCH, 2) chooses randomly one of the generated message sets and
translates it to an Automotive Application Model. The translator is developed in the
Python programming language and consists of 450 lines of code. As part of our future
work we plan to make the tool capable of choosing the generated message set based on
application-specific criteria.

5.5 Case study: Powertrain Vehicle System

We consider the powertrain subsystem of an automotive embedded system, as introduced
in Chapter 2. The network is configured in order to trigger periodic or stochastic data
transmission through the classic CAN protocol. The network configuration is illustrated
in Figure 5.8 and used by NETCARBENCH to generate several message sets. The chosen
message set is provided in Figure 5.9, consisting of 5 ECUs communicating over a Bus
with a bit-rate of 500kbit/s. The queuing policy used was HPF and the overall Bus load
was 13.8%, distributed approximately equal in every ECU. Bit-stuffing was fixed to 10%,
meaning s was equal to 10 for every frame in Equation 5.3. Initial transmission offsets
and clock drifts were not considered in this scenario. All parameters concerning the frame
identifier, period, data size and frame deadline are provided in Table 5.3.

ECU CAN ID Period (in ms) Data size (in bytes) Deadline (in ms)

1

189 10 5 10
200 20 1 20
269 50 2 50
298 50 8 40
533 100 6 50
685 2000 8 1000

2

328 20 6 20
371 100 8 50
379 20 8 20
477 50 5 40
506 200 8 100

3

262 20 7 20
427 50 7 40
472 100 6 50
492 100 7 50
774 2000 8 1000
977 1000 8 500

4

159 20 6 20
208 20 7 20
321 50 7 40
480 50 8 40
502 100 4 50
628 200 7 100
690 2000 8 1000
776 1000 8 500

5

260 20 4 20
307 50 6 40
370 100 5 50
473 50 6 40
724 200 7 100

Table 5.3: Network configuration parameters

116 Chapter 5. Application of the Design Flow to Automotive Systems

5.5.1 Modeling the Application Software

We recall that the Automotive Application Model is represented as a collection of De-
vice components. For the considered case study each Device atomic component models
the functionality of a powertrain ECU unit (Figure 5.10). Frame transmission is han-
dled by the REQUEST port, whereas frame reception by the RECV port. Each frame
is triggered when its specific period is reached (port generate). This is achieved by con-
secutively incrementing variable t whenever the interaction through the port TICK is
possible. Specifically, this interaction is enabled until t is equal to the minimum period of
the sub-array P, responsible of storing the periods for all the frames. As the periods here
are fixed, the minimum period of every Device component is only calculated in the initial
control location.

R1 R2

R3

generate
[t = period]

t:=0

TICK
[t < period]

t++

RECV

RECV
init(frameArray)

period := min(P)

internal
[i = N]

period := min(P)

trig
[i < N]

P[i]− = period

REQUEST
[P[i] = 0]

delete(P[i])
i++

internal
[P[i] 6= 0]

TICK

REQUEST frame RECV frame

Figure 5.10: Deterministic Device component

We accordingly introduce a stochastic behavior to the previously presented Device
component according to the SBIP extension in Chapter 3. This is accomplished by adding
first an probabilistic offset (margin) for every period chosen from a probability distribution
(λmargin), in order to reduce the load on the Bus. The offsets (m in Figure 5.11) are added
to the frame periods and the resulting period is stored in the sub-array P’, which replaces
the column with the frame periods (sub-array P) in the frameArray. As the minimum
period of every stochastic Device component is not fixed it has to be calculated iteratively
and not only in the initial control location. Secondly, we add a stochastic bit-stuffing in
each frame, by varying parameter s in Equation 5.3 according to a probabilistic distribution
in the range [1,25] and each transmitted frame has a different response time.

The described application-level components were used in order to construct and an-
alyze the BIP System Model for the generated message set of this case-study. The BIP
System Model (constructed through the different design flow phases) to represents the
entire SW/HW system, reflected by the message set. In particular, it contains 15 atomic
components for the CAN protocol model and 5 atomic components for the application
model. It also uses 60 connectors (40 for the CAN protocol and 20 for the application
model). The total number of transitions in the system is 255 (210 for the CAN proto-
col and 45 for the application model). Overall the model totals about 1250 lines of BIP
textual code.

5.5. Case study: Powertrain Vehicle System 117

R1 R2

R3

generate
[t = period]

t:=0

RECV

TICK
[t < period]

t++

init(frameArray)

m := select(λmargin)

P’:=init(P+m)

period := min(P′)

RECV

internal
[i = N]

period := min(P′)

trig
[i < N]

P′[i]− = period

REQUEST
[P′[i] = 0]

m[i] := select(λmargin)

delete(P’[i])
i++

internal
[P′[i] 6= 0]

TICK

REQUEST frame RECV frame

Figure 5.11: Stochastic Device component

5.5.2 Requirement Description

We identified two requirements for the automotive powertrain system, from which the first
one is functional and can be verified either the application or the system level, whereas
the second is extra-functional and can be evaluated only in the system-level. Then, we
described both requirements in stochastic temporal properties using the PBLTL formalism,
in order to evaluate them through the SMC-BIP tool (as presented in Section 5.5.4). The
requirements are:

Requirement 1. The highest priority frame “wins” always the arbitration.
This requirement can be expressed with the property:
Property 1: φ1 = CANstationi.canId >= min, where CANstationi denotes every exist-
ing CAN station (for i=1,2 . . . 5) in the specific system.
Requirement 2. The worst-case response time of each frame never exceeds its deadline.
The deadlines for each frame in this requirement should be less or equal to its period ac-
cording to the SAE benchmark for automotive systems [SAE93]. In this case-study they
are provided in Table 5.3. The aforementioned requirement is expressed as the property:
Property 2: φ2 = Rm < Pm, where Rm indicates the worst-case response of each frame
with identifier m (for m=1,2 . . . 30) and Pm indicates the period for the specific frame.

5.5.3 Experiment 1: Simulation

The constructed BIP System Model was simulated using the BIP simulation tool (Chap-
ter 3) and its results were validated against RTaW-Sim [NMM+10], a fine-grained CAN
simulator which is fully complaint with NETCARBENCH. Specifically, we provided the
generated message set as input to RTaW-Sim. Figure 5.12 illustrates the results obtained
for the first experiment using both methods. The presented analysis focuses in three cat-
egories, that is minimum, average and worst-case frame response times. The results were
identical for both methods, in all the aforementioned categories. From the conducted anal-
ysis we can also note that approximately 55% of the frames had a deterministic response
time, where the remaining 45% had a fixed blocking time, due to higher priority frame
transmission.

For this experiment we also analyzed the simulation performance of the two aforemen-
tioned methods. Therefore, we simulated a real system time of 1 hour in 5 minutes and

118 Chapter 5. Application of the Design Flow to Automotive Systems

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

T
ra

n
s
m

is
s
io

n
 t

im
e

 (
m

s
)

Frame identifier (in increasing order)

Minimum

Average

Maximum

Figure 5.12: BIP/RTaW-Sim frame response times for the automotive powertrain system

30 seconds using the BIP simulator and in 13.5 seconds using the RTaW-Sim simulator.
The observed divergence occurred due to the difference in the simulation models. The
BIP simulator is state-based, whereas RTaW-Sim is an event-based simulator. A signifi-
cant improvement on the performance can be obtained by using a model transformation
technique which is described in Chapter 4, called connector flattening. By applying this
technique we obtained an equivalent system model BIP, which was also simulated and
resulted in a performance gain of approximately 130%, thus reducing the simulation time
to 2 minutes and 25 seconds. This improvement was due to the increased number of com-
putations, performed in the hierarchical connectors, which were extensively used in the
BIP System Model. Although, the improvement was significant the overall performance
still diverges from RTaW-Sim. A large portion of this simulated time is caused by the
interactions and coordination between the different components of the BIP System Model.
Therefore, we believe that by applying additional model transformation techniques such
as the component flattening (discussed in [BJS10]), we will obtain a similar simulation
performance.

5.5.4 Experiment 2: Performance optimization

The second experiment aimed in optimizing the system performance by introducing a
stochastic behavior to the automotive powertrain system. Therefore, it used the stochastic
Device components of Section 5.5.1, in order to initially build an BIP Application Model
and then construct an BIP System Model according to the phases of the design flow (as
in the first experiment). More specifically, we first introduced a probabilistic offset in
the stochastic Device components. The offset followed a Poisson distribution based on a
mean rate equal to 1/10 of each period. Secondly, we also chose the additional bits of
the bit-stuffing encoding technique for every frame based on a uniform distribution in the
range [1,25]. Before proceeding to the results of this experiment we should note that the
addition of probabilistic offsets can also be analyzed by the professional version of RTaW-
Sim, however the user can only change the offset granularity and not the probabilistic
distribution used for the offset generation. Additionally, the bit-stuffing technique is fixed
for every frame in the course of a simulation. Therefore, our analysis exceeds the simulation
capabilities of the RTaW-Sim simulator.

The results of the second experiment are shown in Figure 5.13 and are also divided in

5.5. Case study: Powertrain Vehicle System 119

the three aforementioned categories. As it is observed, the introduction of probabilistic
offsets in the transmission of each frame aided in desynchronizing the transmissions as
well as in avoiding load peaks in the Bus. More specifically, Figure 5.13 shows that all
the frames have a very small blocking time. Nevertheless, due to the non-deterministic
behavior of the system, response times cannot be described only through the previous
timing analysis. Consequently, in Figure 5.14 we focus on a particular frame, in order to
show the probabilistic variation of the obtained response times.

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6
T

ra
n

s
m

is
s
io

n
 t

im
e

 (
m

s
)

Frame identifier (in increasing order)

Minimum

Average

Maximum

Figure 5.13: BIP frame response times for the stochastic automotive powertrain system

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Response time (ms)

N
u
m

b
e
r

o
f

s
a
m

p
le

s

Figure 5.14: Response time distribution of a frame

We can observe from the shape and form of the response time distribution that it
follows a certain probability law with a possible candidate being the Weibull law. This
law is commonly considered when trying to characterize aperiodic traffic in automotive
systems [KNBM09]. For this particular distribution we can reason that the mean is:
E(X) = λΓ(1 + 1

k
), where λ indicates the scale, k the form of the distribution and Γ

is an extension of the factorial function to the real and complex numbers. Furthermore,
by using the Lag plot (described in Chapter 4) we can note that the data set contains
independent observations. Additionally, the shape and the form of the distribution is
similar to the empirical Weibull distribution with λ = 1 and k = 0.5. Consequently, this

120 Chapter 5. Application of the Design Flow to Automotive Systems

frame response time distribution can be useful for distribution fitting techniques, which
can further facilitate the application of stochastic abstractions in the BIP System Model.

In addition to the conducted simulations, the construction of an BIP System Model
allows us to validate the functional and extra-functional requirements of Section 5.5.2.

Property 1: We tested the defined property for Requirement 1 in a wide range of
communication cycles in which it was always satisfied (P (F φ1) = 1).

Property 2: We proceeded with a relevant test on the defined property for Require-
ment 2. As it is illustrated in Figure 5.13 this property is satisfied for both experiments
(P (F φ2) = 1). This derives mainly from the high bit-rate of the automotive powertrain
system (500kbit/s). In automotive subsystems where the bit-rate is much less (for exam-
ple in a body subsystem with 125kbit/s bit-rate as in Tindell’s approach [TB94]), this
property may not hold.

5.6 Summary and Discussion

In this chapter, we have instantiated the rigorous design flow for networked embedded
systems in the application domain of automotive systems. The resulting flow was demon-
strated through the CAN protocol. We explained the main principles of the tool-supported
translation of the domain-specific application software (based on a NETCARBENCH XML
file) and the modeling of the CAN communication standards (ISO 11898-1 and ISO 11898-
2). Furthermore, the modeling effort results in a BIP library of CAN components, which
are instantiated according to the input hardware architecture specification to synthesize
an CAN HW/Communication Model. This model along with the model of the application
software are used to construct the BIP System Model. The System Model supports the
separation of hardware and software design issues, allowing different versions of the CAN
protocol to be selected, such as the classic CAN or the latest CAN FD version. The selec-
tion is made according to the application requirements and does not have any impact on
the application-level model. Moreover, we illustrated how it can be used for early-stage
simulation and testing as well as for the optimal configuration of automotive applications,
based on performance analysis using the BIP associated tools. As a proof of concept, we
applied the design flow in an automotive powertrain system, which allowed us to analyze
timing characteristics, such as the frame response times. Additionally, we experimented
on a scenario which used probabilistic distributions for scheduling frames with offsets as
well as for the calculation of the additional bits in each frame due to bit-stuffing. The
results have shown that the transmissions were desynchronized and load peaks on the Bus
were avoided. Finally, we also verified important functional and extra-functional system
requirements, which are critical for the functionality and performance of the automotive
powertrain system.

As future work, the currently supported NETCARBENCH XML specifications for the
application software can be extended to a broader range of frameworks and program-
ming models, such as those supported by the Mathworks’ toolset. In this scope we can
use the existing source-to-source transformation from MATLAB/Simulink models to the
Automotive Application Model in BIP, as described in Chapter 3. Moreover, this will al-
low us to express requirements for additional performance metrics to timing information,
such as the dynamics of sub-systems (steering, anti-lock breaking etc.), the overall energy
consumption and temperature models.

5.6. Summary and Discussion 121

In the following chapter we present a design flow for a higher layer protocol of CAN,
namely CANopen, which is using the constructed models for the CAN communication
standards to construct a BIP System Model for the analysis of industrial automation
systems as well as for the generation of C/C++ code for real-time Ethernet applications.

122 Chapter 5. Application of the Design Flow to Automotive Systems

- Chapter 6 -

Application of the Design Flow to Industrial Automation
Systems

In this chapter, we apply the rigorous design flow for networked embedded systems (Chap-
ter 4 in the category of industrial automation systems. The resulting flow is based on the
CANopen fieldbus protocol, due to the several attributes it offers, such as the configura-
tion flexibility and network management (Chapter 2). The flow inputs are the CANopen
communication profile specification (in EDS or XDD format), CANopen-based application
software described in the Pragmatic Programming Model language (PPM) (Chapter 4)
and a mapping specification also in PPM, for the deployment of the application to the
underlying hardware architecture. In the scope of this chapter we consider a Real-Time
Ethernet hardware architecture using the EPL protocol for network communication. The
design flow uses dedicated tools and methods to proceed on the one hand in the construc-
tion of a System Model in BIP and on the other in the automated generation of deployable
code for Real-Time Ethernet architectures based on rapid prototyping techniques. The
constructed BIP System Model can be used for simulation, functional verification as well
as performance evaluation of industrial automation systems.

In summary, our contribution in this chapter is two-fold. First, a novel approach is de-
fined for the systematic construction of industrial automation systems. The approach was
illustrated through a design flow, which covers all the layers in the design of such systems,
namely from the description of the CANopen application software until the implementa-
tion in the Real-Time Ethernet hardware architecture. A similar effort in this direction
has been presented in [L+08], targeting the design of fieldbus systems (e.g. CANopen,
EPL) using model-based design with the UML language. Even though it supports sepa-
ration of concerns and validation rules through the Eclipse Modeling Framework (EMF),
it is not able to perform simulations in order to evaluate system performance as well
as code generation for industrial automation architectures. Additionally, in [VHPY09] a
novel approach is defined, driven by a design flow for the simulation, closed-loop validation
and verification of industrial automation systems based on Simulink/Stateflow as well as
CheckMate to support model-checking functionalities. Nevertheless, the approach cannot
be easily used to generate deployable code as it requires that the hardware architecture
supports the semantics of the functional model in Simulink.

The second contribution concerns the tool-support for the development of industrial
automation systems in the context of the design flow. These tools facilitate the develop-
ment of functional applications by allowing simulation and testing, validation of system
requirements as well as rapid prototyping in order to automate code generation for in-
dustrial automation architectures. Previous work in this scope uses the OPNET Modeler

123

124 Chapter 6. Application of the Design Flow to Industrial Automation Systems

framework [LPFJ+03] to simulate and analyze the performance of industrial automation
systems, which use the EPL protocol in their network stack [CSVV09]. Specifically, the
conducted sets of extensive simulations are considering several performance indicators as
well the presence of notifications in the form of alarm frames in the asynchronous phase of
the EPL cycle. Though the developed models are generic, the use of the OPNET Modeler
framework is limited in terms of customizability as well as it does not allow addressing and
validating system requirements or the generation of deployable code for such systems. An
interesting toolbox for a specific type of such systems, namely distributed control systems,
is provided by PLCTOOLS [BMMP00]. Though being able to describe such systems in
different levels from the design of function block diagrams (FBDs) to timed Petri-Nets
for validating the design and generating C code, the generated code cannot be deployed
in dedicated platforms but rather runs through a dedicated engine. Furthermore, since
it targets on the design validation of software controllers, it does not provide support
for fieldbus protocols of the IEC 61784-Part 1 [Std14a] and IEC 61784-Part 2 [Std14b]
standards.

Additionally, if we focus now only in CANopen and its affiliation with the CAN protocol
particular extensions are provided for the dedicated CAN tools (mentioned in Chapter 5).
Such extensions are provided by Vector, named CANalyzer.CANopen [Veca] and CANoe
CANopen [Vecb]. Further tools that were developed to provide support for CANopen in-
clude the youCAN CANopen prototypes [por], maintained by port GmbH 1 and CANopen
Magic [Emb] maintained by Embedded Systems Academy 2. The latter is an interactive
tool, providing an interface for the development and simulation of applications using the
protocol. Nonetheless, these tools are used for extensive simulation or testing and there-
fore are not able to perform timing analysis and validation. Furthermore, their use in
the design of correct, functional CANopen systems requires high expertise. Likewise, they
are targeting an industrial use and therefore their evaluation versions can only be used to
familiarize with the protocol. Subsequently, they have limitations on the network size and
the protocol functionalities. On the other hand, the existing simulation tools for CAN
(e.g. RTaW-Sim [NMM+10]) that are capable of performing both timing analysis and
performance evaluation, are not implementing the CANopen protocol and do not provide
support for automated code generation.

The remainder of this chapter is organized as follows. Initially, in Section 6.1 we provide
an overview of the design flow for industrial automation systems along with its inputs as
well as design phases. In Section 6.2 we detail on the rules and principles that were
used for the preliminary construction of a functional system-level model for the CANopen
application-layer protocol as well as the lower communication layers. The model of the
which is accordingly presented in Section 6.3. Section 6.4 focuses on a tool-supported
rapid prototyping technique for the generation of deployable code for Real-Time Ethernet
architectures in the context of the design flow. Then, the flow is demonstrated through
two case studies focusing on performance evaluation and analysis of a distributed control
system in Section 6.5 as well as automated code generation in a safety-critical system in
Section 6.6. The chapter concludes with Section 6.7, which summarizes the presented work
and discusses future directions and perspectives in the application domain of industrial
automation systems.

1http://www.port.de/
2http://www.esacademy.com/

6.1. Design phases of the industrial automation system flow 125

6.1 Design phases of the industrial automation system
flow

The resulting design flow in the application domain of industrial automation systems is
illustrated in Figure 6.1 and involves the following phases:

Industrial
automation
application

software

(PPM)

Mapping

(PPM)

CANopen

profile

(EDS/XDD)

communication

specification

HW
architecture

(BIP)
library

component

(SMC)

4

Model

System

(BIP)

evaluation
Performance

(BIP)

Transformation

Modeling

CANopen
protocol

(BIP)
model

Translation

Modeling

Code

generation

1

3

2 CANopen

Preliminary phase

5

Application
Industrial

Model

Figure 6.1: Design flow for industrial automation systems

0. Preliminary modeling phase of the CANopen communication profile. In
this design phase the input CANopen communication profile, described in either the
EDS or the XDD electronically readable file formats, is modeled in the BIP language
in order to represent the protocol’s entities and communication mechanisms in ded-
icated model fragments. The model fragments initially encapsulate the protocol’s
functional and timing aspects and form a CANopen component library in BIP. This
library allows component reusability for any hardware architecture which supports
network communication through the CANopen protocol (in the application layer).

1. Building the industrial automation application software. The input indus-
trial automation application software is described as process network in PPM and
involves data exchange between application processes. Following the structure and
the main functional units of this model we can obtain the application software model
in BIP. In particular, the modeling effort relies on describing each process in a BIP
atomic component. Then, the atomic components use ports to interact according
to their connections in the process network. Finally, the existing shared objects
for scheduling policies (e.g. mutex type) in the process network are translated into
priorities in the BIP model.

126 Chapter 6. Application of the Design Flow to Industrial Automation Systems

2. Modeling hardware architectures with CANopen communication. In or-
der to synthesize a model of the CANopen protocol in BIP we use the CANopen
component library to instantiate and optionally parameterize the BIP components.
To this end, the optional parameters are derived from a translation of the input HW
architecture specification. Since, the CANopen component library contains compo-
nents only for the application-layer, the lower communication layers in the CANopen
model can either be supported by the CAN HW/Communication Model of Chapter
5 or by a relevant model for the EPL protocol.

3. Construction of the System Model. The BIP System Model is constructed by
synthesizing the application software model as well as the CANopen protocol model.
This is accomplished by a gradually applying structural transformations, which en-
sure the behavioral preservation of the industrial automation application software.
These transformations additionally use the mapping specification, in order to instan-
tiate a set of connectors and priorities which specify how the application software
components are allocated and scheduled in the network devices (i.e. hardware plat-
forms) of the target architecture.

4. Performance evaluation on the System Model. The constructed BIP Sys-
tem Model can be used for the validation of both functional and extra-functional
requirements. The functional requirements are related to the correctness and func-
tionality of the industrial automation application, whereas the extra-functional on
the performance and existence (or not) of timing guarantees in the system. Our
focus in extra-functional requirements lies on those related to timing information
(e.g. network communication delays), in order to ensure the real-time behavior of
industrial automation systems. Both functional and extra-functional requirements
are described through temporal properties in the PBLTL formalism and validate
them through the SMC-BIP tool.

5. Code generation for Real-Time Ethernet architectures. The code in the
flow is generated directly from the input CANopen application software as well as
the mapping specification. The code generation procedure is facilitated by an initial
development of code templates in PPM and may concern the behavior as well as
the interactions of each process in the application software with the API layer of
the openPOWERLINK stack. Furthermore, additional hardware code templates are
added as a part of the mapping specification and specify data processing and network
communication in the openPOWERLINK stack. The developed code templates
are modular for any hardware architecture that involves network communication
through the EPL protocol. The code generation procedure is fully automated and
tool-supported, as described in Section 6.4.

6.2 System modeling principles

The design flow for industrial automation systems uses as a basic representation the BIP
System Model. This model represents faithfully the architecture of such systems in different
levels of detail, starting from the application software to modeling of the CANopen fieldbus
protocol in the application layer until the implementation of the lower-layer hardware
infrastructure. The hardware infrastructure additionally involves communication through
the CAN or the EPL protocol.

6.2. System modeling principles 127

The overall architecture of the BIP System Model is illustrated in Figure 6.2. It uses
a glue layer, that consists of a set of connections and priorities in order to represent the
interactions and arbitration policies between the Application Software Model with the
CANopen protocol model. More specifically, one or many AppModule components (App-
Module 1 to AppModule M) of the Application Software Model represent the user-layer
(above the application layer) in CANopen communication and generate events for the
CANopen devices (CANopen Device 1 to CANopen Device N). The triggering mecha-
nisms are represented by the TRIG port in the model. Moreover, the transmission or
the reception of frames through/from the CANopen protocol model is represented by
the REQUEST and RECV ports respectively. These ports are used by the CANopen
protocol model to communicate with the lower layers in order to exchange data. The
lower-layer communication is implemented through the CAN HW/Communication Model
(Chapter 5) as well as a similar model for the EPL protocol. The CAN HW/Comunication
Model involves communication through the use of stations for the CAN or EPL protocol
(CAN/EPL station 1 to CAN/EPL station N), where each station interacts with only one
CANopen Device component. This is introduced as an assumption in the model, in order
to ensure that the identifiers allocated for the CANopen objects are uniquely used in the
network communication. Moreover, in the physical layer data are transmitted through a
CAN Bus or in case of communication through the EPL hardware the physical layer is
represented by a switch or a hub. Two types of communication are allowed in the model,
namely broadcast and poll/response. To facilitate the reader’s comprehension, in Figure
6.2 they are respectively presented in an abstract way by the BROADSND and the POLL
ports.

CANopen protocol model

RECVREQUESTRECVREQUEST

RECVREQUEST RECVREQUEST RECVREQUEST

CAN/EPL station 1 CAN/EPL station 2 CAN/EPL station N

Lower−layer communication model

POLL POLL POLLBROADSND

CANopen Device 1 CANopen Device 2 CANopen Device N

TRIG TRIG TRIG

REQUEST RECV

BROADSND BROADSND

POLL

CAN bus / EPLHW

BROADSND

TRIGTRIG

AppModule 2AppModule 1

TRIG

AppModule i

TRIG

AppModule j

TRIG

AppModule M

Application software model

Figure 6.2: Architecture of the System Model

The description of the System Model as a context-free grammar is:

SystemModel ::= IndustrialAppModel . CANopenModel . HWCommModel

128 Chapter 6. Application of the Design Flow to Industrial Automation Systems

IndustrialAppModel ::= AppModule+

CANopenModel ::= CANopenDevice+

HWCommModel ::= (CANStation+ . CANbus) | (EPLStation+ . EPLHW)
CANStation ::= CANController . F ilter
EPLStation ::= EPLController . F ilter

The CANopen protocol model represents the functionality of the most recent commu-
nication profile [CAN11], which additionally implies that the SYNC object is not anymore
mapped to an empty frame, but includes an 1-byte counter as payload. Moreover, cur-
rently we don’t consider hardware or transmission errors. Therefore, the SDO abort frame
is not included in the model.

A constraint that has to be carefully considered in our model is the choice of the time
step advance for the TICK interaction. Its granularity has to be relative to the baud-rate
(speed) of the CAN protocol. Therefore we consider the time needed for the transmission
of one bit to the Bus equal to one-step advance in our model. For example a baud-rate of
500 kbit/s, corresponds to a time step advance of 2 microseconds (µs). Subsequently, 2µs
of real time will be taken as a one-step advance in our model.

6.3 CANopen protocol model

The CANopen protocol model is composed by one or more CANopen Device components,
as it is also described by the context-free of Section 6.2. The CANopen Device is com-
ponent component consists of four groups of ports using strong or loose synchronization
upon interactions:

a. Interactions with application-specific (user-layer) components which belong to the Ap-
plication software model

b. Interactions between different CANopen objects

c. Interactions with components of the lower-layer communication model

d. Global synchronization interactions

Table 6.1 describes in detail the interactions modeling the communication mechanisms
and primitives of the CANopen protocol. It also provides a description of their function-
ality as well as the category they belong to. The modeling of CANopen systems in BIP is
structural. Each Device component is composed from several sub-components, correspond-
ing to COBs present in the device OD. As illustrated in Figure 6.3, the generic CANopen
Device component is composed of three parts: a transmitting part (TRANSMIT), a re-
ceiving part (RECEIVE) and a third part (HANDLING) responsible for configuration
handling. The HANDLING part is used to implement request-response communication
mechanisms or data acknowledgment schemes, therefore it invokes dedicated ports for
both transmission and reception. Each part consists of a set of components, implementing
the protocol’s communication mechanisms. Each component is directly derived from a
COB of the device OD, such that it will belong to one of the main categories mentioned
in Chapter 2. In particular, PDO components can either exist exclusively only in the
TRANSMIT or the RECEIVE part, or they can also be unused for the specific Device,
meaning that they will not exist in any part. The same policy applies to SDO compo-
nents, with the difference that if they exist for the specific Device, they are included in

6.3. CANopen protocol model 129

Port Description Category

EVENT TRIG Triggers the transmission of a event-triggered PDO a

ASYNC TRIG Triggers the asynchronous transmission of SDO configuration dataI a

OD WRITE Triggers storage of an object in the OD a

SYNC TRIG Triggers the transmission of a synchronous PDO b

REQUEST Initiates a frame transmission through the lower communication layers c

RECV Receives a frame from the lower communication layers c

TICK Used to represent the time step advance in the model d

Table 6.1: Ports used for the CANopen protocol model interactions

the HANDLING part. Furthermore, only one of the dashed SDO components is allowed
to operate in the system at a time, thus the interactions between them are not maximal
(weak synchronization through broadcast trigger ports). In the Predefined objects com-
ponent category though only one Device can exist in the transmitting part and all the
other on the receiving, meaning that they are exclusive for every Device. Therefore, only
one of the dashed SYNC objects will be associated with the Device of Figure 6.3.

T−SYNC

U−SDO

D−SDO

T−PDO1

SYNC_TRIG

REQUEST

R−PDO1 R−PDOmR−PDO2

RECV

R−SYNC

RECEIVE

TICK OD_WRITEASYNC_TRIGEVENT_TRIG

TRANSMIT HANDLING

T−PDO2T−PDOn

Figure 6.3: Generic CANopen Device component

Thereafter, we consider in our model representation that each component corresponds
to a specific object. Furthermore, to facilitate the readers comprehension, we have de-
scribed each individual component with an abbreviation. Each abbreviation denotes the
part it belongs to and the name of the Communication OBject (COB) category it is de-
rived from. For example, the SYNC Transmitter is described as T-SYNC, whilst the
SYNC Receiver is described as R-SYNC. Thus, the description of the CANopen Device
as a context-free grammar is:

CANopenDevice ::= [SY NC] ? . PDO . SDO
SY NC ::= T -SY NC . R-SY NC∗

PDO ::= T -PDO∗ . R-PDO∗

SDO ::= D-SDO . U -SDO

Overally, the CANopen Device is substituted by 8 types of atomic components and 2
types of composite components for the SDO objects. Each type follows one of the COB
categories presented in Chapter 2. More specifically, three types of components were
defined for the event-driven, time driven, or synchronous PDO transmission (T-PDO1,

130 Chapter 6. Application of the Design Flow to Industrial Automation Systems

. . . , T-PDOn) and three more similar types for PDO reception (R-PDO1, . . . , R-PDOn).
Two types of components have been defined for the transmission or reception of the SYNC
object (T-SYNC, R-SYNC). Finally, CANopen Device includes two additional components
for the SDO Download (D-SDO) and SDO Upload (U-SDO) operations. Each one of
these components is composite and consists of a Client and a Server part, as described
in accordingly. All the described component types can be instantiated with different
parameters according to the associated entries in the OD they are found, except the T-
SYNC and R-SYNC for which the COB-ID is predefined and fixed.

Since each component is responsible for handling of a COB as a frame, it consists of
the tuple: (id,length,payload), where id is the value of the COB-ID for a particular frame.
In the model it belongs to the Predefined Connection Set (Chapter 2). Thereafter, length
contains the length of data and payload the actual data of the frame.

Process Data Objects (PDO)

The PDO component types implement all the supported scheduling policies, which are
illustrated in Chapter 2. Consequently they can be of three types: SYNC-triggered, time-
triggered and event-triggered. Each type is further divided in two categories: T-PDO and
R-PDO.

Each T-PDO component is responsible for the correct initialization and generation a
TPDO (REQUEST port). In particular, the SYNC-triggered T-PDO component follow-
ing the interaction between its SYNC TRIG port and the R-SYNC component, generates
a synchronous PDO, or performs another device-specific action. Evenly triggered by exter-
nal interrupts is the event-triggered T-PDO component, through the port EVENT TRIG.
Finally, the time-triggered component implements a specific timer modeling the time step
advance, through the TICK port. When this timer expires a time driven PDO is gen-
erated. Figure 6.4 presents the SYNC-triggered T-PDO component, responsible for the
transmission of a TPDO2 frame, when it is triggered by a SYNC frame. It consists of
the control locations idle, trigger and the ports: TICK, SYNC TRIG and REQUEST,
also corresponding to transition labels. A connector between the SYNC TRIG ports of
this component and the component used for the reception of the SYNC (see below) en-
sures a synchronized operation, such that the T-PDO component moves from the idle to
the trigger control location. The PDO parameters have to be provided before the trans-
mission is triggered through the REQUEST port. After the interaction with the lower
communication layer, it returns to the idle control location.

The corresponding R-PDO components are responsible for the reception of a specific
COB frame, provided as a parameter. They are triggered by lower-layer frame receptions
(RECV port) and subsequently check the id of the received frame. If it is the expected
frame its payload is written to the OD of the receiving Device component, through the
port OD WRITE. The particular OD entry is provided by the Mapping Parameter cor-
responding to the specified COB. This process may accordingly trigger a device-specific
action. As a particular example, in Figure 6.4 we illustrate the component associated
with the reception of TPDO2 frames, respectively named R-TPDO2. Since it is a receiver
component, it consists of the control locations idle, receive and the ports: SYNC TRIG
and RECV. It is also triggered by lower-layer frame receptions (RECV port) moving to
the receive control location, where it checks the id of the received frame. If it is the
TPDO2 frame sent by the aforementioned T-PDO component, the frame’s corresponding
payload will be written to the OD of the receiving Device component, through the port
OD WRITE. This process may accordingly trigger a device-specific action.

6.3. CANopen protocol model 131

idle

trigger

SYNC TRIG
id:=TPDO2REQUEST

idle

receive

RECVOD WRITE
[id = TPDO2]

internal
[id 6= TPDO2]

OD WRITE

RECV frame

TICK

REQUEST frame

SYNC TRIG

Figure 6.4: T-PDO and R-PDO components

Service Data Objects (SDO)

The SDO components are of two types: SDO Download (D-SDO) and SDO Upload (U-
SDO) according to the protocol’s communication mechanisms. The D-SDO and U-SDO
components are responsible for configuration data exchange in the model, using one of the
mechanisms presented in Chapter 2. They correspond accordingly to the SDO Download
mechanism and the SDO Upload mechanism. As the SDO frames are associated with
two COB-IDs, the Device transmitting the actual data is associated with the Tx-SDO
COB-ID, whereas the Device receiving them with the Rx-SDO COB-ID. The D-SDO and
U-SDO are implemented as composite components in the model, consisting of a Client
and a Server atomic component. The former is illustrated in Figure 6.5. The SDO com-
ponents do not implement any timing model, since service data transmission in CANopen
is asynchronous. The Client component is always initiating data transmission, after it is
triggered by an external event, through the ASYNC TRIG port. The D-SDO Client com-
ponent is presented in Figure 6.6. Apart from the ASYNC TRIG port it interacts with
the REQUEST and RECV ports, used for interactions with the lower communication
layer. All its remaining ports are internal. Initially, in the S1 control location it moves to
the S2, whenever it is triggered by an asynchronous event. Accordingly, it determines if
service data transmission is expedited or segmented. After the data request (REQUEST
port) it remains in the S3 control location, until it receives (RECV port) a frame whose
id is 1408+clientID and the received server command specifier (scs) is valid. ClientID
is the identifier of the specific client device. If the transmission was expedited (bit e of
byte 0 is set) it will return to the initial control location (S1), otherwise it will repeat the
aforementioned process for all the subsequent segments, initialized according to the device
OD and denoted in the model by variable N (model parameter). The variable counter is
decremented in every successful transmission of a request/receive pair, until it is equal to
1, indicating the last segment (bit c of byte 0 is set). Afterwards, the component moves
to the initial control location, otherwise it proceeds to the next segment by the transition
next segment. The toggle variable is used to identify the sequence of successfully received
request/response segments (bit t from payload byte 0).

Predefined objects

This category is focused on the SYNC object, as the other objects are not considered
mandatory (see Chapter 2).

In particular, the SYNC components are divided in two categories: T-SYNC and
R-SYNC (Figure 6.7). The T-SYNC component is responsible for the SYNC frame trans-

132 Chapter 6. Application of the Design Flow to Industrial Automation Systems

D−SDO

Client Server

REQUEST RECV

ASYNC_TRIG

REQUEST RECV

REQUEST RECV

ASYNC_TRIG

Figure 6.5: D-SDO composite component

S1 S2 S3

S4

S5S7

S6

ASYNC TRIG
id:=1536+clientID REQUEST

RECV

length:=8
toggle:=0

recv initiate
[recv id = 1408+ clientID]

scs=calc specifier(payload)

if (e 6= 0) then counter:=N
expedited

[e = 1 ∧ scs = 3]

not valid
[scs 6= 3]

REQUEST
[e 6= 1 ∧ scs = 3]

counter=counter-1
if (counter=1) then c:=1 else c:=0

RECV

recv segment
[recv id = 1408+ clientID]

scs=calc specifier(payload)not valid
[scs 6= 1]

segment valid
[scs = 1]

toggle:=toggle+1
if (toggle%2) then t:=0 else t:=1

next segment
[c = 0]

last segment
[c = 1]

ASYNC TRIG

REQUEST frame RECV frame

Figure 6.6: D-SDO Client component

mission. It consists of the control locations idle, transmit and the ports: TICK and
REQUEST. Initially it is in the idle control location, where it interacts through the TICK
port. This port denotes the notion of step time advance in the model, which is calculated
and stored in the variable t. When t is equal to the value of the SYNC period, defined in
the device OD, the transmission is triggered by an internal move to the control location
transmit. The transmitted frame is initialized with the SYNC object parameters before
the transmission through the port REQUEST. Subsequently, the component moves to the
trigger control location. The R-SYNC component is controlling the SYNC-triggered PDO
transmission. It only triggers a frame transmission upon the successful reception of the
SYNC frame. This component consists of the control locations idle, receive and the ports:
SYNC TRIG and RECV. When a frame is received through the RECV port, used for
the interactions with the lower communication layer, it will move to the receive control
location. It returns to the idle control location either by triggering the transmission of
a PDO frame (SYNC TRIG port), or internally. The choice is controlled by a specific
guard.

6.4. Tools for industrial automation system development: The CANopen2EPL Code
Generator 133

idle

transmit

internal
[t = period]

t:=0
id:=SYNC
length:=1

TICK
[t 6= period]
t:=t+1

REQUEST

idle

receive

RECVSYNC TRIG
[id = SY NC]

internal
[id 6= SY NC]

SYNC TRIG

RECV frame

TICK

REQUEST frame

Figure 6.7: T-SYNC and R-SYNC components

Lessons learned

The construction of a formal model for the CANopen protocol facilitated the identification
of some important issues in the supported communication mechanisms. Initially, in SDO
communication the data size parameter is optional and usually not indicated in CANopen
systems before as well as during the transfer. Even though this type of objects should
always be addressed with the lowest priority, the receiver cannot perform a consistency
check, which is consequently reducing the robustness of the protocol. Another important
issue is related to the number of unused data bytes in some SDO frames, instead filled with
padding, in order to follow the 7-byte data request/receive pair specification. The outcome
is the introduction of significant overhead to the lower-layer transmission protocol, which
might cause additional delays in the transmission of high-priority frames, especially during
SDO block transfers.

6.4 Tools for industrial automation system development:

The CANopen2EPL Code Generator

In this section we describe the code generation tool, which was developed to automate
the design phase 5 of the flow for industrial automation systems (Figure 6.1). The tool
aims in reducing the overall complexity in industrial application development using the
openPOWERLINK stack. More specifically, according to the description we provided in
Chapter 2, the development of functional applications requires extensive knowledge of the
API and may often be time-consuming, due to the asynchronous callbacks that should be
considered for data handling as well as the need for proper device configuration.

The tool is named CANopen2EPL and illustrated in Figure 6.8. CANopen2EPL re-
quires as input the PPM model of the application software along with code templates for
the application-specific behavior as well as the hardware platform. The latter includes
application deployment in an EPL hardware architecture and respective code templates
for the implementation of CANopen’s primitives and communication mechanisms.

CANopen2EPL also uses further tools such as the EPLNodeConf (see Section 6.4.1)
to generate specific configuration files for the openPOWERLINK stack. Overally, the
method to generate deployable code for industrial automation systems consists of the
following steps.

A. Development of the hardware code templates. The hardware code templates are

134 Chapter 6. Application of the Design Flow to Industrial Automation Systems

configuration
files

openPOWERLINK

Translation

Deployment

EPL

MN
CN1

EPL EPL EPL

CNnCN2

Code generation

openPOWERLINK

(C code)
stack

EPLNodeConf

CANopen/
POWERLINK

(XDC)
configurations

device

CANopen2EPL

Application Software Model (PPM) Mapping (PPM)

Behavior

(C code)

Process Network

(XML)
(C code)

Templates

HW Code Architecture

(XML)

Figure 6.8: CANopen2EPL code generator

require an initial development effort and contain the interactions and communication
mechanisms for the user part modules of the openPOWERLINK stack. The hardware
code templates concern as well the modules for the lower-layers of the stack, such as
the Communication Abstraction Layer (CAL) and the kernel part, and are included
as code libraries in the XML specification of the hardware architecture (Architecture
in Figure 6.8).

B. Generation of the openPOWERLINK stack and the CANopen/EPL de-
vice configurations. This is accomplished for each network device of the hardware
architecture by first initializing the hardware code templates, which are parameterized
according to the Architecture XML specification. Secondly, the shared objects of the
Application Software Model are replaced with the API primitives of the openPOW-
ERLINK stack as well as the code libraries implementing the lower layers of the stack.
Finally, the processes of the Application Software Model are instantiated according
to the Architecture XML specification. Moreover, the generated device configurations
may either conform to CANopen or EPL.

C. The translation of the CANopen/EPL device configurations into open-
POWERLINK configuration files. The translation is done automatically by a
developed tool, called EPLNodeConf (Section 6.4.1), which parses the CANopen/EPL
device configurations in order to create (1) header files related to the object definitions,
(2) initial object configuration files as well as (3) to provide object linking information
to the API module of the stack. The resulting configuration files are provided to the
OD module of the stack.

D. The deployment in the underlying EPL hardware architecture. This proce-

6.4. Tools for industrial automation system development: The CANopen2EPL Code
Generator 135

dure concerns the mapping of the processes in the EPL hardware architecture as well
as the proper distribution of the generated code according to the Architecture XML
specification. To this extend, the configuration files generated in step C should be also
provided, however only the MN device should include the initial object configuration
files.

6.4.1 EPLNodeConf Device Configurator

We hereby describe the tool, which was developed in order to generate specific configura-
tion files for the openPOWERLINK stack. The tool takes as input the device configuration
files for each network device generated in step C of the proposed method in CANopen or
EPL conforming format. The full conformity is proved according to the open-source val-
idation tools, such as the EPL XDD-Check utility 3. The EPLNodeConf tool consists of
two XML translators: the xdc2objh and the xdc2Cfm. The xdc2objh translator parses ev-
ery device configuration file and creates a header file (objdict.h) for the OD module of the
stack. This file contains the definition of each object used in the communication or device
profile. Consequently, the xdc2Cfm translator identifies the MN device configuration and
extracts linking information for the API layer in order to add them to a stack-specific file
(xap.h), which provides access to OD modules from the EPL Application layer. It addi-
tionally extracts the initial values for the OD objects of all the device configurations, in
order to use them in the object initialization phase. All these information are evenly added
in a stack-specific file (mnobd.txt), which is latter converted to a binary file (mnobd.cdc)
through the txt2cdc tool, developed by Kalycito 4. The output binary file is used by the
MN device of the stack.

Translation

(MN)

Manager Node

Conversion

In
it

ia
l

co
n

fi
g

u
ra

ti
o

n

(XDC)

device configuration

CANopen/POWERLINK

objdict.hmnobd.txtxap.h

xdc2Cfm xdc2objh

mnobd.cdc

txt2cdc

Figure 6.9: Configuration of EPL devices using EPLNodeConf

As an alternative to the developed EPLNodeConf tool the reader could use the open-
CONFIGURATOR 5 to generate the same configuration files. The main difference between

3http://www.ethernet-powerlink.org/en/powerlink/conformity/xdd-check/
4http://www.kalycito.com/cms v2015/
5http://ehc.ac/projects/openconf/

136 Chapter 6. Application of the Design Flow to Industrial Automation Systems

the two tools lies in their use. EPLNodeConf is a console-based tool and fully automated,
whilst openCONFIGURATOR operates through a Graphical User Interface (GUI) in order
to configure the hardware platforms before generating the files. In this scope, EPLNode-
Conf is considered more efficient especially for resource-constrained environments, which
do not provide GUI support.

6.5 Case study 1: Pixel Detector Control System

In this case-study we focused on analyzing the performance of the CANopen protocol,
while being used in distributed control system along with CAN in the lower communication
layers. In particular, we analyzed the Pixel Detector Control System (PDCS), used as the
innermost part for the ongoing ATLAS experiment at CERN’s Large Hadron Collider
(LHC) particle accelerator. For the particular case study we consider an extension to
the test beam of 2002, previously presented in [KBI+02], used for the calibration and
performance evaluation of the detector modules used in the experiment.

The chosen test beam is presented in Figure 6.10 and consists of two Detector systems,
each one containing four pixel detector modules. Each pixel detector module is equipped
with a temperature sensor, used in order to measure its operating temperature and ac-
cordingly determine its lifetime. The measurements are subsequently provided as input
to a thermal interlock system (Interlock Box) and a plug-on I/O board manufactured in
CERN, named as ELMB (Embedded Local Monitor Board), in order to be transmitted to
a Detector Control System (DCS) Station through the CAN Bus, using CANopen as the
communication protocol. The application software as well as the hardware configuration
for the ELMB board can be found in [Hen11]. This manual also provides a full listing
of the Object Dictionary, defining not only the standard objects according to the DS-401
Device Profile [CAN08], but also manufacturer-specific objects for the ELMB. A fragment
of the Object Dictionary is also provided in Table 6.2 and contains the most important
communication and mapping parameters along with the dedicated entries that are used
for data mapping (e.g. 6000h or 6400h entries in Table 6.2).

A new scan cycle begins every 1 second and in the course of it all the pixel detector
modules are scanned. A TPDO2 frame is transmitted whenever a change of a module’s
temperature value is detected. This change is particularly termed as Change-of-State
(CoS). The transmitted frame contains the ADC readout in counts (ADC resolution).
However, after a power-up or a reset of the ELMB the ADC voltage ranges need to be
re-calibrated through a TPDO3 frame. This frame contains the input voltage in µV and
is transmitted prior to the generation of a TPDO2 frame. Since each temperature sensor
is exposed to safety risks, the Interlock Box is responsible of comparing the input data
to a reference value (threshold) as well as for the generation of a logical signal, if the
temperature is found higher. The output of every Interlock Box module is provided to a
Logic Unit, which is also monitored by an ELMB module. This module is used to transmit
the generated signal as a TPDO1 frame, informing the associated pixel detector that it
is overheated, in order to enable its Cooling Box. The coolant flow inside each Cooling
Box is set and controlled by an expedited SDO frame. Therefore, two additional ELMB
modules are considered, each one obtaining coolant flow data from a Regulator module.
Subsequently they establish a peer-to-peer communication channel with the correspond-
ing ELMB of each Detector module and transmit the data through an SDO Download
operation. Finally, although the DCS Station is mainly used for data logging, it is also re-
sponsible for the periodical transmission of the SYNC frame, informing the ELMB module
of every Detector to abort the current scan cycle and accordingly start a new one.

6.5. Case study 1: Pixel Detector Control System 137

Interlock Box

Logic Unit

Cooling Box Cooling BoxInterlock Box

CAN Bus

ELMB1ELMB2

ELMB3
ELMB4ELMB5

DCS Station

Detector 2 Detector 1

Regulator 2 Regulator 1

Figure 6.10: Pixel Detector Control System

The bit-rate of the CAN Bus for the particular test beam is set to 125kbit/s. An
equally important remark is that during the initialization phase of the system the DCS
Station initializes properly, all the ELMB devices, storing via an SDO Download operation
all the COB-IDs correctly in their OD.

6.5.1 Modeling the Application Software

In this section we detail on the construction of a model for the analysis and performance
evaluation of the PDCS system, which is illustrated in Figure 6.12. Therefore, we have
initially built an application-level BIP model for the system. A specific component of this
model is the Detector, which is described in the following example.

Example 9 The Detector component (Figure 6.11) represents the behavior and function-
ality of the Detector system, in order to monitor the temperature of the four pixel detec-
tor modules and trigger the transmission of a TPDO2 through the corresponding ELMB
module to the DCS station (EVENT TRIG port) when a CoS has been detected in the
temperature. The temperature values are selected through four independent probability dis-
tributions, which were in turn obtained from real temperature sensors 6. Following the
detection of a CoS the Detector also initiates an ADC conversion, which according to
the ELMB specification has a time duration of 0.4s. The procedure is repeated iteratively
for each pixel detector module (denoted by variable modNum) every time the cycle time
duration expires (denoted by the parameter evTimer and equal to 1s in the model).

In this case-study we have also used another application-level component, named
AsyncTimer. This component represented an asynchronous timer, generating event in-

6The same distributions were also used to derive the reference value (threshold) for the Interlock Box

6.5. Case study 1: Pixel Detector Control System 139

in Chapter 5) to represent the lower-layer communication.

The resulting BIP system for the DCS is illustrated in Figure 6.12. It is comprised
by 39 atomic components forming the CANopen communication layer and 13 atomic
components for the CAN protocol. The generated BIP model used 95 connectors (53
for the CANopen and 42 for the lower-layer communication model). The total number
of transitions for this system was 427 (174 for the CANopen and 252 for the lower-layer
communication model). Overall, the model totals about 2300 lines of BIP textual code.

R−SYNC

R−PDO1

R−SYNC

R−PDO1

R−PDO3

R−PDO2

R−PDO3

ASYNC_TRIG

AsyncTimer2

R−PDO1

R−PDO2

R−PDO3

R−SYNC

R−PDO1

R−SYNC

R−PDO1

COMM

D−SDO

RECV

COMM

CAN station 2

D−SDO

COMM

D−SDO D−SDO

COMM COMMCOMM

CAN station 4CAN station 3

TICK

RECV REQUESTREQUEST

CAN station 6CAN station 5

COMM

CAN bus

ELMB4 ELMB5

RECV

R−PDO2

RECV

R−PDO2

R−PDO3

T−PDO1

R−SYNC

RECVREQUEST

EVENT_TRIG

ELMB3ELMB2

EVENT_TRIG

T−PDO2

REQUEST RECV

T−SYNC

DCS Station ELMB1

T−PDO2

CAN station 1

RECVREQUEST REQUEST RECV REQUEST RECV REQUEST RECV REQUEST RECV REQUEST RECV

EVENT_TRIG

Detector1 Detector2

EVENT_TRIG

REQUEST

REQUEST

T−PDO3

REQUEST

T−PDO3

TICKTICK TICK TICK

ASYNC_TRIG

AsyncTimer1

TICK ASYNC_TRIGTICK ASYNC_TRIG

Figure 6.12: BIP model of the Pixel Detector Control System

6.5.2 Requirement Description

The existence of certain requirements for the DCS ensure the proper functionality of the
system. They are divided in two categories: those concerning the physics and performance
of the DCS individual subsystems, found in the CERN Document Server 7, and those
related to the communication through CANopen. We have identified three extra-functional
requirements for the second category and accordingly expressed them in textual format.
Then, we used the PBLTL formalism (Chapter 3) to describe them in stochastic temporal
properties, in order to evaluate them through the SMC-BIP tool as presented in Section
6.5.3. Specifically, the requirements are:

Requirement 1. The Logic Unit must inform the DCS Station rapidly in case of an
increased temperature in a sensor.
This requirement denotes that the TPDO1 frame should have zero-blocking time. Fur-
thermore, it can be expressed with the property:
Property 1: φ1 = Tinhibit > TTPDO1, where Tinhibit is the inhibit time and TTPDO1 the
response time of the TPDO1 frame (COB-ID 388).
Requirement 2. TPDO3 reset frames from ELBM1 or ELMB2 should be transmitted
before a CoS in a pixel detector module is detected.
This requirement must be satisfied, since otherwise an ADC conversion may be required
before the ELMB’s are configured. It is expressed with the property:
Property 2: φ2 = TTPDO2 < TTPDO3, where TTPDO2 and TTPDO3 denote the response

7http://cds.cern.ch/record/391176

140 Chapter 6. Application of the Design Flow to Industrial Automation Systems

time of TPDO2 and TPDO3 following an ELMB reset.
Requirement 3. The coolant flow must be set at least once before a Cooling Box is
required to cool an indicated pixel detector module.
This requirement indicates that ELMB4 and ELMB5 should initiate the D-SDO frame
transmission before any other frame in the network is triggered. It is expressed with the
property:
Property 3: φ3 = tTPDO2 > tD−SDO, for a finite number of steps which is required for
the system initialization period (Tinit = 2sec), tTPDO2 is the system time at the end of
the TPDO2 frame transmission and tD−SDO is the system time at the beginning of the
D-SDO frame transmission.

6.5.3 Experiments

We used the BIP engine (Chapter 3) to simulate through the BIP System Model a real
system time of 4 hours in 2 minutes and 43 seconds. The obtained results are illustrated
in terms of minimum, average and worst-case frame response times in Figure 6.13. The
existing COB frames of the DCS system are represented in the horizontal axis. As it
is observed the response times (in milliseconds) are highly dependent from the choice
of the lower-layer scheduling policy (here HPF). Due to the stochastic behavior of the
system, the blocking time for each transmission varies according to the Bus load at the
given instant. This variation between the minimum (zero) and the worst-case (maximum)
blocking time depends on the frame identifier, defining its priority on the system. In
particular, the SYNC frame (COB-ID 128) has a relatively small variation compared to
the D-SDO frames of ELMB1 and ELMB2 (COB-IDs 1540 and 1541 respectively). In this
analysis the response time of the SDO frames is measured from the instantiation of the
request frame until the transmission end of the response frame.

SYNC TPDO1 TPDO2 TPDO3 D−SDO
0

1

2

3

4

5

6

7

T
ra

n
s
m

is
s
io

n
 t

im
e
 (

m
s
)

COB frames of the DCS system (in decreasing order of priority)

Minimum

Average

Worst−case

Figure 6.13: Frame response times computed from the BIP model

We accordingly detail on the results of the stochastic temporal properties that we
defined for the requirements of Section 6.5.2 after an extensive number of simulations
using the SMC-BIP tool.
Property 1: We tested the defined property for Requirement 1. For the DCS system
Tinhibit is equal to 1 sec, which much greater than the worst-case response time of TPDO1
(TTPDO1max

= 1.72 msec from Figure 6.13). Therefore P (G φ1) = 1 and this requirement

6.6. Case study 2: Triple Modular Redundancy System 141

is always satisfied.

Property 2: We proceeded with a relevant test on the defined property for Requirement
2. The conducted experiments (Figure 6.14) illustrate that if a scan cycle is initiated
through the reception of the SYNC frame, a CoS can be detected before the generation of
a TPDO3 frame. However, a reset in ELMB1 or ELMB2 occurred in approximately 3% of
the simulations, thus this property was quantified as P (F φ2) = 0.005. This probability
is equal to the tool’s level of confidence, thus the requirement is considered as satisfied.

643

642

898

1540

 2.69998e+08 2.7e+08 2.70002e+08 2.70004e+08 2.70006e+08 2.70008e+08 2.7001e+08 2.70012e+08 2.70014e+08

F
ra

m
e
 i
d
e
n
ti
�
e
r

Time (�s)

TPDO2+1
TPDO3+1

TPDO3+1

TPDO2+1

Figure 6.14: Response time graph following a reset in ELMB1

Property 3: Finally we tested the defined property for Requirement 3. Since the D-SDO
frame was generated asynchronously, this property was quantified as P (G φ3) = 0.1.
As it is observed by Figure 6.15, focusing in a specific simulation, the TPDO2 frames
from ELMB1 and ELBM2 finish their transmission before a D-SDO frame. Moreover the
conducted experiments have shown that even when the D-SDO frame was generated before
the first instance of a TPDO2 frame, it was mostly blocked due to its lowest priority for
this system.

6.6 Case study 2: Triple Modular Redundancy System

In this case-study we focused on demonstrating the code generation capabilities of the in-
dustrial automation design flow using the CANopen2EPL Code Generator (Section 6.4).
Specifically, our objective was to automatically generate code for the three-device setup
of Figure 6.16. This setup is commonly deployed in safety-critical Real-Time Ethernet
applications to provide support for fault-tolerance through the Triple Modular Redun-
dancy (TMR) mechanism [Kop11]. This mechanism also aids in masking the failure of a
component. In the particular network we have tested a basic industrial setup with one
Managing Node (MN) and two Controlled Nodes (CNs) in a line topology. Each CN sends
data to the MN through PRes frames containing PDO objects with values of keyboard
input keys. If no key is pressed on the keyboard of a CN the previous value will be sent

142 Chapter 6. Application of the Design Flow to Industrial Automation Systems

���

���

���

����

	�
������� 	�
������ 	�
������� 	�
������ 	�
������� 	�
������

��
�
�
	�
�
�
�
��
�
�
�

����	����

������
�������
�������

�� ��

�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�

Figure 6.15: Response time graph for TPDO1, TPDO2 and D-SDO

with the PDO object. The MN receives input data during the EPL control loop from the
CNs and compares them. Accordingly, it notifies the user if the values of the data send by
the CN’s are the same or there a difference between them. The notification is provided by
a display to either the Managing Node’s console terminal or to a dedicated LED device
which is connected to the Managing Node’s UDOO platform through a parallel-port cable.
The TMR application does not consider the transmission of SDO objects through ASnd
frames, except from the ones transmitted by the MN for the configuration of the CNs’ OD
entries during the initialization phase.

OutputSwitch
Manager

Node

CN1

CN2

Figure 6.16: TMR CANopen Application

Each device is a UDOO platform 8 and the EPL network is supported by a 100 Mbps
NETGEAR Gigabit Switch (GS105 model [NET]). As we here consider a small-scale
application, the use of switch instead of a hub does not introduce significant communication
latencies in the EPL network. Furthermore, for the device id we have used for CN1 EPL
network id equal to 1, likewise for CN2 an id equal to 2 and for the Managing Node (MN)
we used the defined by the standard id, equal to 240 (Chapter 2).

8http://www.udoo.org/features/

6.6. Case study 2: Triple Modular Redundancy System 143

6.6.1 Modeling the Application Software

In this section we detail on the underlying effort, which was done to describe the TMR
Application into a network of communicating processes in PPM (as described in Chapter
4). Therefore, our focus lies in describing the developed PPM Application Software along
with the application deployment specification in PPM, since they both are used as inputs
for the industrial automation design flow to:

• Automatically generate deployable code for the EPL hardware architecture using
the CANopen2EPL Code Generator.

• Facilitate the development of the application software model in BIP by providing a
high-level design of the application software and its functional units.

PPM Application Software

We have described the TMR CANopen Application in PPM by representing the application-
specific behavior of the main processes that support the application functionality as well
as data exchange. Therefore, the polling mechanism of EPL which is realized in every
application using PReq frames was not considered in this model, as it does not involve the
exchange of data and is rather implemented directly in the hardware architecture.

The processes of the PPM Application Software were encapsulated in process blocks
according to their usage in the safety-critical system (Figure 6.17). This also facilitated the
deployment in the EPL hardware architecture. Two process blocks were identified, namely
the Master and the Slave block. The processes of the PPM Application Model can either
belong to the Master block the Slave block or both. Those that belong to both blocks are
mainly responsible for data reception during the asynchronous phase (AsynRecv). Data
reception may concern EPL frames (i.e. ASnd) or even non-EPL frames. The Master block
contains processes for data reception in the EPL cycle (CyclicRecvMN) as well as network
management and device detection during the asynchronous phase (AsynSendMaster). On
the other hand, the Slave blocks (Slave 1 and Slave 2) contain processes for responding
to polling requests (CyclicSend), to identification requests (AsynSendSlave) as well as
additional processes for data reception in the EPL cycle (CyclicRecvCN). Data exchange
in the model is represented through shared objects (SO1, . . ., S10) that represent FIFO
queues (Figure 6.17).

It shall be noted here that for the TMR CANopen Application we have considered that
the poll response (PRes) EPL frame is transmitted as broadcast to both CyclicRecvMN
and CyclicRecvCN processes in the model. However, generally it can be also transmitted
as unicast only to the CyclicRecvMN process and in this case the implementation of the
CyclicRecvCN is not required. Furthermore, in any case the behavior of the CyclicRecvCN
process should differ from the CyclicRecvMN process of the Master block, in order to
ensure the proper functionality of the EPL cycle.

The PPM Application Model is described in XML (Figure 7.19). It consists of pro-
cesses, shared objects and connections. For each process, we specify its name (e.g. process
name=“CyclicRecvMN”), the names of the input and output (e.g. port name=“out”)
ports, the respective process type (e.g. process-class=“WhileFire”) as well as the loca-
tion of the source C code describing the process behavior (e.g. file=“CyclicRecvMN.h”
or “CyclicRecvMN.c”). For each shared object we specify its name (e.g. shared-object
name=“SO1”), its type (i.e object-class=“FIFO” or “MUTEX”), the maximum capacity
of data (e.g. size=“4”) and the names of the input (e.g. port name=“in”) and output
port (e.g. port name=“out”). Finally, we define the connections between the processes

144 Chapter 6. Application of the Design Flow to Industrial Automation Systems

Slave 1

Slave 2

AsynRecv

AsynRecv

AsynRecv

CyclicSend

CyclicSend

Master
SO1

SO3

SO2

SO5

SO6

SO4

S
O

7

S
O

8

S
O

9

S
1

0

CyclicRecvMN

CyclicRecvCN

CyclicRecvCN

AsynSendMN

AsynSendCN

AsynSendCN

Figure 6.17: TMR CANopen Application Model in PPM

and the shared objects (e.g. port-ref node=“SO1” or “CyclicRecvMN”) by specifying the
input and output ports which contribute in each connection.

<header lang="c" file="Epl.h">

<parameter name="N" value="3"/>

<process name="CyclicRecvMN" process-class="WhileFire">

<port name="out" peer-class="FIFO" peer-name="in"/>

<header lang="c" file="EplCfg.h"/>

<header lang="c" file="CyclicRecvMN.h"/>

<source lang="c" file="CyclicRecvMN.c" libs="-lpowerlink -lm -lrt"/>

</process>

...

<shared-object name="SO1" object-class="FIFO" size="4" item-size="64">

<port name="in"/>

<port name="out"/>

</shared-object>

<shared-object name="PResASnd" object-class="MUTEX" multiplicity="N">

<port name="a"/>

<port name="b"/>

</shared-object>

...

<connection>

<port-ref node="SO1" port="out"/>

<port-ref node="CyclicRecvMN" port="in"/>

</connection>

...

Figure 6.18: TMR CANopen Application XML Description

The resulting model is illustrated in Figure 6.17 and includes communication between
application software processes through the shared objects of FIFO type. Moreover, addi-
tional shared objects of MUTEX type were used to enforce scheduling policies between the
threads that are instantiated for the processes. An example in this scope are the process
threads that are allocated for data reception, such as the threads for the CyclicRecvMN and
AsynRecv processes.

The description of a PPM process for the TMR application, namely the CyclicRecvMN
process, is provided in the following example. CyclicRecvMN receives data in the isochronous

6.6. Case study 2: Triple Modular Redundancy System 145

phase through the PRes frames and is implemented in the Master block.

Example 10 The CyclicRecvMN PPM process (illustrated in Figure 6.19) uses the generic
structure defined in Chapter 4. Specifically, the CyclicRecvMN init function defines input
(InputProcessImage) and output (OutputProcessImage) process variables, which handle the
transmission and reception of data between the EPL Application and the API layers of the
openPOWERLINK stack respectively. As a further action, the process variables are linked
with OD entries (lines 7-8). The cyclic behavior of the process is defined through the Cycli-
cRecvMN fire function. This function specifies the actions followed in the course of the
EPL cycle, where the data through the PRes frames are received in the OutputProcessImage
process variable (line 17). Then, they are manipulated according to the application-specific
functionality and the outputs of the processing trigger dedicated actions, such as output to
the screen (line 21) or dedicated hardware as for example LEDs. The CyclicRecvMN deinit
function stops the EPL frame processing (line 29), deletes the process variables (line 33)
as well as the instances for all the modules of the openPOWERLINK stack (line 35).

1 #include "CyclicRecvMN_process.h"

2 #include "xap.h"

3 void CyclicRecvMN_init(CyclicRecvMN_process *p) {

4 PI_IN InputProcessImage; // input process image

5 PI_OUT OutputProcessImage; // output process image

6 BYTE sendVar; // 8 bit digital input

7 EplRet = EplApiProcessImageLinkObject(0xA4C0, 0x01,

8 offsetof(PI_OUT, readVar), TRUE, ObdSize, &uiVarEntries);

9 }

10 int CyclicRecvMN_fire(CyclicRecvMN_process *p) {

11 tEplKernel EplRet;

12 EplRet = EplApiProcessImageExchange(&AppProcessImageCopyJob_g);

13 if (EplRet != kEplSuccessful)

14 {

15 return EplRet;

16 }

17 readVar.keyInput = OutputProcessImage.CN1_M00_DigitalInput_Input1;

18 if (readVar.keyInput != readVar.keyInputOld)

19 {

20 InputProcessImage.CN1_M00_DigitalOutput_Output1 = readVar.keyInput;

21 printf("Received values from the CN’s are different: Node 1 has %d\n and Node 2

22 has %d\n", readVar.keyInput,readVar.keyInputOld);

23 }

24 else {

25 printf("Received values from the CN’s are the same: %d\n",readVar.keyInput);

26 }

27 readVar.keyInputOld = readVar.keyInput;

28 return EplRet;

29 }

30 void CyclicRecvMN_deinit(CyclicRecvMN_process *p) {

31 // stop the processing of POWERLINK frames

32 EplRet = EplApiExecNmtCommand(kEplNmtEventSwitchOff);

33 // delete process variable

34 EplRet = EplApiProcessImageFree();

35 // delete instance for all modules

36 EplRet = EplApiShutdown();

37 }

Figure 6.19: CyclicRecvMN Process Code Description

Application Deployment in PPM

The deployment of the TMR CANopen Application in the underlying EPL hardware
architecture is illustrated in Figure 6.21. It specifies how the processes and shared objects
of the PPM Application Model are mapped the devices of the EPL hardware architecture.
The structure of this XML file is following the description provided in Chapter 4 as
template. In particular, the application processes (“app-node”) are bound to a hardware
platform (“hw-element”).

146 Chapter 6. Application of the Design Flow to Industrial Automation Systems

For the specific category of industrial automation systems additional information are
defined under the “hw-property” XML element. These concern initially the type of con-
sidered network interface (i.e. hw-property name=“CycleLen”), considered for EPL as
the Ethernet interface for the Linux environment (i.e. value=“eth0”). A second element
concerns the EPL cycle length (i.e. hw-property name=“CycleLen”), which is crucial to
the application functionality and therefore needs to be specified for each process of the
PPM Application Model (as described in Chapter 2). An additional element is related
to the tolerance timeout on the CN for the reception of the SoC frame which is trans-
mitted by the MN in the beginning of each EPL cycle. This timeout (i.e. hw-property
name=“LossOfSoC”) is considered here equal to the value of the EPL cycle length multi-
plied by two and if it has elapsed the SoC frame is considered as lost. A final described
element concerns the timeout for the reception of the poll responses (i.e. hw-property
name=“PResTimeout”).

<deployment>

<app-node name="CyclicSend"/>

<hw-element name="node" hw-class="UDOO" index="0"/>

<hw-property name="networkInterface" hw-class="node-networkInterface" value="eth0"/>

<hw-property name="CycleLen" hw-class="uiCycleLen" value="000186A0"/>

<hw-property name="LossOfSoC" hw-class="CNLossOfSocTolerance" value="02FAF080"/>

</deployment>

<deployment>

<app-node name="CyclicRecv"/>

<hw-element name="node" hw-class="UDOO" index="1"/>

<hw-property name="networkInterface" hw-class="node-networkInterface" value="eth0"/>

<hw-property name="CycleLen" hw-class="uiCycleLen" value="000186A0"/>

<hw-property name="PResTimeout" hw-class="m_dwPresTimeoutNs" value="0000C350"/>

</deployment>

...

<communication protocol="powerlink">

...

<extra>

<app-property app-name="CyclicSend" property-name="InputODAPI" value="6000"/>

<app-property app-name="CyclicSend" property-name="OutputODAPI" value="6200"/>

<app-property app-name="CyclicRecv" property-name="OutputODAPI" value="A4C0"/>

</extra>

Figure 6.20: TMR CANopen Application Mapping XML Description

The processes of the Master block in the PPM Application Model are mapped to
the EPL Managing Node in the hardware architecture. Likewise, the processes of the
Slave block are mapped to the Controlled Nodes. Moreover, the FIFO shared objects are
mapped to Ethernet cards of the devices of the underlying hardware architecture.

6.6.2 Code generation

In this section we detail on the deployable code, which was automatically generated for
the TMR Application using the CANopen2EPL Code Generator.

During the development of the tool the most recent version of the openPOWERLINK
stack was the 1.8. However, currently there is a newer version of the stack, namely the 2.0
version, which can be considered also for code generation by applying minor modifications
on the code templates of the developed tool. Furthermore, even though in this setup we
have presented code generation for a small-scale safety-critical application the tool is fully-
functional for any-scale CANopen or Real-Time Ethernet application and can generate
deployable code for more complex configurations.

6.6. Case study 2: Triple Modular Redundancy System 147

Control Node 2

Slave 1

Slave 2

AsynRecv

AsynRecv

AsynRecv

CyclicRecv

CyclicSend

CyclicSend

CyclicRecv

CyclicRecv

Master

TMR CANopen Application

Manager Node Control Node 1

EPL HW Architecture

SO1

SO3

SO2

SO5

SO6

SO4

S
O

7

S
O

8

S
O

9

S
1

0

AsynSendSlave

AsynSendSlave

AsynSendMaster

Ethernet
card

Ethernet
card

EPL stack

Switch
EPL stack

Ethernet
EPL stack

card

Figure 6.21: Deployment of the TMR CANopen Application in the EPL hardware archi-
tecture

6.6.3 Experiments

For our experiments we have focused on simulating and analyzing the behavior of the
generated code for the TMR application over the EPL network. Thus, we have executed
the application for 5 minutes, which corresponds to a large number of EPL control loops,
each one taking approximately 100 ms. This can also be evaluated by Figure 6.22, as the
difference between two consequent SoC frames. In the same Figure we can observe that the
Managing Node (MN) transmits two subsequent PReq polling frames, which are correctly
followed by the respective PRes poll-response frames from CN1 and CN2. Additionally,
the times elapsed between PReq and PRes are sometimes different, which is due to the
transmission latency of the network.

Moreover, the PReq frames issued by the MN to the CNs in the isochronous period are
correctly followed by two subsequent PRes frames by each one of them. We can further
observe that transmission of the SoA frame indicates as well the end of the EPL cycle, as
no configuration data transmission is considered in this specific TMR application.

Figure 6.23 illustrates a fragment of the console output in the MN device. For the sake
of comprehension, in this fragment we focus on the messages of only one CN (CN with
id 1), concerning the management of its different states through the NMT state machine
as well as its configuration (initialization of OD entries) as well. The former is presented
in this fragment in lines 6-7 and 20-21, where we can observe how the MN sets the CN

148 Chapter 6. Application of the Design Flow to Industrial Automation Systems

160 165 170 175 180
0

1

2

3

4

5

6

Execution time (s)

E
P

L
 f
ra

m
e
 i
d

SoC SoC SoC

ASnd
ASnd

PRes from CN1,CN2
PRes from CN1,CN2

PReq PReq

Figure 6.22: EPL cycle in the executed code

from the PreOperational1 to the PreOperational2 state for the configuration as well as
from the ReadyToOperate to the Operational state once it is properly configured. On
the other hand, lines 10-16 illustrate the successful configuration of OD entries in the CN
through dedicated ASnd frames in the asynchronous phase, which in this case are the
entries 1600, 1A00 and 1F98. The first two are used for the configuration of mapping
parameters in the EPL, whereas the 1F98 OD entry is used to set the maximum size of
the EPL or non-EPL frames that are transmitted during the asynchronous phase (value
range between 300 and 1500 bytes). Apart from configuring the CN’s the MN performs
also local PDO configurations (lines 1 to 4), indicating where the RPDO and TPDO are
to be mapped respectively. The application functionality is presented in the lines 23 to
25, where we can see that the input values from the keyboards of the CN’s match and
are displayed in the MN console in a decimal ASCII form. We should also note that the
keyboard inputs given to the CNs, should not have a significant time difference (less than
100 ms), as they might not be handled in the same EPL control loop. In this fragment
we illustrate this situation in line 26, where the keyboard input was given with a delay in
the second CN resulting in a difference in the received data by the MN.

6.7 Summary and Discussion

In this chapter, we have instantiated the generic design flow for networked embedded
systems of Chapter 4 in the application domain of industrial automation systems. The
resulting flow is an instance of the generic design flow and is demonstrated through the
CANopen fieldbus protocol. As CANopen is an application layer protocol, for the remain-
ing layers of the network stack we consider either the CAN protocol or Ethernet Powerlink
(EPL). The chapter proceeds on explaining the systematic approach that is followed in
the design flow in order to provide support for the design and development of indus-
trial automation systems by applying formal methods and model-based design techniques.
Initially, we described the inputs of the design flow, namely the industrial automation ap-
plication software as well as the mapping specification for the application deployment both

6.7. Summary and Discussion 149

1 2014/12/11 06:54:42 - AppCbEvent(RPDO=0x1600 to node 0x1 with 1 objects activated)

2 2014/12/11 06:54:42 - 1. mapped object 0xA4C0/0

3 2014/12/11 06:54:42 - AppCbEvent(TPDO=0x1A00 to node 0x1 with 1 objects activated)

4 2014/12/11 06:54:42 - 1. mapped object 0xA040/0

5 ...

6 2014/12/11 06:56:44 - AppCbEvent(Node=0x1, NmtState=NmtCsPreOperational1)

7 2014/12/11 06:56:44 - AppCbEvent(Node=0x1, NmtState=NmtCsPreOperational2)

8 2014/12/11 06:56:45 - AppCbEvent(Node=0x1, Found)

9 2014/12/11 06:56:45 - AppCbEvent(Node=0x1, CheckConf)

10 2014/12/11 06:56:49 - AppCbEvent(Node=0x1, CFM-Progress: Object 0x1600/0,

11 2014/12/11 06:56:49 - 16/133 Bytes2014/12/11 06:56:49

12 2014/12/11 06:56:50 - AppCbEvent(Node=0x1, CFM-Progress: Object 0x1A00/0,

13 2014/12/11 06:56:50 - 24/133 Bytes2014/12/11 06:56:50

14 ...

15 2014/12/11 06:56:55 - AppCbEvent(Node=0x1, CFM-Progress: Object 0x1C14/0,

16 2014/12/11 06:56:55 - 68/133 Bytes2014/12/11 06:56:55

17 ...

18 2014/12/11 06:57:05 - AppCbEvent(Node=0x1, ConfReset)

19 2014/12/11 06:57:06 - AppCbEvent(Node=0x1, Found)

20 2014/12/11 06:57:07 - AppCbEvent(Node=0x1, NmtState=NmtCsReadyToOperate)

21 2014/12/11 06:57:08 - AppCbEvent(Node=0x1, NmtState=NmtCsOperational)

22 ...

23 Received values from the CN’s are the same: 120

24 Received values from the CN’s are the same: 116

25 Received values from the CN’s are the same: 104

26 Received values from the CN’s are different: Node 1 has 99 and Node 2 has 104

Figure 6.23: Console output of the Managing Node

described in PPM and the generic CANopen communication profile in electronic (EDS or
XDD) format. The structure and functional behavior of industrial automation application
software are used to develop an application software model in BIP. On the other hand the
CANopen communication profile is translated to a model of the CANopen protocol in BIP.
The CANopen protocol model supports the primitives and communication mechanisms of
the protocol and additionally uses the CAN HW/Communication Model of Chapter 5 or
a relevant model for the EPL protocol in the lower communication layers. Through a
series of transformations which are also using the input mapping specification the appli-
cation software model and the CANopen protocol model are synthesized to form a mixed
HW/SW System Model in BIP. This model follows the main modeling rules and princi-
ples presented in Section 6.2 and can be used to analyze, simulate and validate system
requirements for industrial automation systems. Moreover, we detailed on how to gener-
ate deployable code for hardware architectures that use Ethernet communication through
the support of rapid prototyping techniques. The code generation is fully automated and
supported by a dedicated tool (described in Section 6.4), which starting from the input
PPM specifications for the application software and the mapping is able to instantiate
and parameterize code templates that were developed using the openPOWERLINK stack
(Chapter 2), in order to generate deployable code as well as optimal configurations for em-
bedded devices that support the CANopen and EPL protocols in their network stack. The
benefits of the design flow were demonstrated through two case studies, each one focusing
on a different type of industrial automation system. Specifically, the first one targeted
simulation, analysis and validation of requirements related to the overall system perfor-
mance or timing guarantees for CANopen communication on the Pixel Detector Control
System [KBI+02] of the ATLAS experiment at CERN’s Large Hadron Collider (LHC)
particle accelerator. On the other hand, the second case-study used the developed code
generation tool for the generation of deployable code in a safety-critical Real-Time Ether-
net application. The application provided further support for fault-tolerance through the
Triple Modular Redundancy (TMR) mechanism [Kop11].

An interesting extension for this work concerns the automatic generation of the Ap-
plication Software Model and the mapping in PPM from specifications for the CANopen
application software. One interesting perspective in this scope is to extend the NETCAR-

150 Chapter 6. Application of the Design Flow to Industrial Automation Systems

BENCH specifications (Chapter 5) for industrial automation systems. Then, a tool should
be developed, which will be using the XSLT transformation language [C+99] and its native
stylesheets, to transform the input specifications to dedicated XML files for describing the
process network and the architecture deployment in PPM. Additionally, as a part of our
future work we plan to investigate the communication latencies and the overall impact on
the performance of more complex architectures for Real-Time Ethernet, than the consid-
ered CANopen TMR application in this Chapter. A particularly interesting architecture
using several communication layers as in Computer Integrated Manufacturing (CIM) sys-
tems [CSVV09]. Each layer in such systems is supported by a dedicated switch, which
may increase the communication latencies in the transmission of EPL frames and conse-
quently the EPL cycle. Furthermore, we will also consider transmission errors related to
electromagnetic noise in Real-Time Ethernet hardware architectures that are frequently
encountered in industrial environments [Dec05]. These errors have a strong impact on the
performance of the network and may cause loss of the transmitted frames, but also their
corruption or duplication.

- Chapter 7 -

Application of the Design Flow to WSN Systems

In this chapter we apply the rigorous design flow for networked embedded systems (Chapter
4) in the widely popular category of WSN systems, which use WLAN network commu-
nication. The resulting flow is build on top of the IEEE 802.11 communication standard
(Chapter 2) and takes input PPM specifications for the application software as well as
for the hardware deployment. Moreover, the flow considers XML-based hardware speci-
fications to configure the sensor network, which are inspired by [AAD+10] and detailed
in Section 7.4.1. The flow proceeds through different phases in defining a framework for
(1) the construction of a faithful System Model for simulation, analysis of functional and
extra-functional requirements as well as performance evaluation and (2) the generation of
deployable code for the execution of such applications in dedicated WSN hardware archi-
tectures. We illustrate that both paths, that is, the construction of the System Model in
BIP and the generation of executable code, are consistent between each other. This is ac-
complished because, firstly, both approaches integrally preserve the behavior of the input
application software. Secondly, the Sensor Network Components in BIP model faithfully
the WSN system, since they are additionally calibrated with performance data obtained
from the low-level code execution on the target architecture.

The design flow which is introduced in this chapter provides three major contributions
in the category of WSN systems. The first contribution concerns a systematic way towards
addressing and providing support for all the design challenges of such systems by using
model-based design techniques. Similar efforts in this direction include a design flow for the
high-level design of WSN networks for industrial control applications [BCSV06]. The flow
supports separation of concerns and considers several system layers, from the application
software to the platform-based design as well as the mapping between them. Though it
covers all the aspects of the design process, meaning from the conceptual description to
the system implementation, and it is additionally able to address extra-functional system
requirements, no validation support is provided for them.

A further contribution concerns the tool-support for automating the design phases of
the design flow as well as for the development of WSN systems, providing simulation,
rapid prototyping and validation capabilities. A rich set of tools is available in the mar-
ket to support application development for wireless sensor network systems, focusing in
different aspects of this procedure as high-level modeling, architectural design, simula-
tion, validation of system requirements, performance evaluation and code generation. To
simplify the reader’s view we can divide the existing work in three categories. The first
uses the Mathworks’ tools for modeling, simulation and automatic code generation tar-
geting specific sensor network operating systems [MGL+08] [MLVSV10]. These tools are

151

152 Chapter 7. Application of the Design Flow to WSN Systems

well known due to their vast variety of libraries, however they are not able to address
system requirements. In the second category we can find the metamodeling frameworks
capable of addressing such requirements. They mainly use the UML tools to model and
the Eclipse platform to generate code for sensor network applications [RDD+11]. Though
certain developed frameworks ([ADBS09]) are also able to validate them, they do not fo-
cus on specific system requirements (i.e. clock synchronization) and the generated code is
usually not complete. Finally, formal modeling approaches for such applications provide
tool-support for simulation and validation of system requirements [SMMM06] [TXY08]
[HSV12], but do not implement tools for automatic code generation.

The final contribution concerns a proposal for a software-based clock synchronization
mechanism, which is demonstrated in the case study application. More specifically, we
use the Kalman filter algorithm [HMZX08], to improve the synchronization accuracy in
the transmission of multimedia through a wireless network. This synchronization method
is different from the existing ones that rely on the Round Trip Delay (RTD) for the
transmission of the synchronization packets between the different network devices (e.g.
the Network Time Protocol (NTP) [SBK05]) or dedicated hardware enchacements (as
in [MGT+11]). Nevertheless, the both of these techniques are not sufficient to provide
high synchronization accuracy, as detailed in Section 7.5 of this chapter.

The remainder of this chapter is organized as follows. Section 7.1 describes the different
design phases of the WSN flow along with its inputs and produced outputs. In Section 7.2
we detail on the rules and principles that were used for the construction of a functional
system-level model for WSN systems, developed on top of the IEEE 802.11 standard. The
construction is based on the systematic modeling of the functionalities and communication
mechanisms of WLAN hardware architectures, as presented in Section 7.3. Then, Section
7.4 illustrates the tools and methods that were developed to automate the different design
flow phases. The benefits of the flow are presented in Section 7.5 through a WMSN
case study application, which aims in the analysis and validation of critical functional
and extra-functional requirements. Finally, the chapter summarizes the presented work
and discusses future directions and perspectives in the in the application domain of WSN
systems in Section 7.5.6.

7.1 Design phases of the WSN system flow

The resulting design flow in the application domain of WSN systems is illustrated in Figure
7.1 and involves the following phases:

0. Preliminary development of the sensor network component library. This
library contains all the components that represent a WLAN sensor network archi-
tecture. The sensor network component library represents in BIP model fragments
the functional behavior as well as the communication mechanisms and primitives of
the IEEE 802.11 communication standard.

1. Building the application software. The application software for WSN systems is
initially described as a process network of communicating processes in PPM (Chapter
4). Then, the PPM application software is used to synthesize an WSN Application
Model in BIP by firstly describing each process in a BIP atomic component. Each
connection in the process network defines an interaction, which is represented as
well in the BIP model. Existing arbitration or scheduling policies are also modeled
through dedicated priorities.

7.1. Design phases of the WSN system flow 153

Transformation

Execution

(XML)

configuration
WLAN network

Translation

Preliminary phase

Modeling

communication

(BIP)

component
library

WLAN

802.11

standard

(BIP)

(BIP)

Calibrated

Mapping

(PPM)

3

Code

generation

C/C++ Code

4

5

2

Model
(BIP)

Modeling

Application

(PPM)

software

1

evaluation
(SMC)

Performance
6

(BIP)

WLAN
Architecture

ModelApplication
WSN

Model

System

System
Model

WLAN
architecture

Figure 7.1: Design Flow for WSN systems

2. Synthesis of the WLAN architecture model. In this design phase we use the
BIP Sensor Network library to instantiate and additionally parameterize model frag-
ments according to the input WLAN HW Specification, in order to derive dedicated
BIP components. Parameterization in this phase is optional and derived through a
translation of the WLAN HW Specification. The absence of values for specific model
fragments, indicates that they are initialized with default values that are obtained
from the IEEE 802.11 standard. The resulting BIP components are used to form
a BIP WLAN architecture model representing the hardware architecture in WSN
systems.

3. Construction of the System Model. The BIP System Model in WSN systems
is derived by using the models of design phase 1 and 2 and combining them through
the PPM application deployment (mapping) specification. In particular, this speci-
fication is used to instantiate connectors, which combine the software and hardware
models. The System Model represents the behavior of the application software run-
ning on the hardware platform according to the mapping. It is worth mentioning
that this model does not include all hardware dependent (e.g. execution times, data
processing delays) and network-specific information (e.g. packet delivery ratio).

154 Chapter 7. Application of the Design Flow to WSN Systems

4. Code generation for WLAN hardware architectures. The code generation in
the context of the flow is automated through the use of rapid prototyping techniques.
The resulting executable code is deployed on a WLAN architecture, which consists
of several sensor network platforms. This is performed by initially transforming the
input WLAN HW specification into code templates. Once these templates are fully
constructed by the user, they can be reused for any sensor network application.
They are accordingly parameterized through the input mapping PPM specification,
in order to automatically generate the executable code.

5. Calibration of the System Model. This construction is done by injecting all
the missing hardware dependent information to the previously constructed System
Model in BIP. This process involves several design phases. Initially, the generated
code in design phase 3 is executed in the physical sensor network distributed platform
and runtime HW/SW constraints ’ are measured in order to obtain characteristic
performance data for the particular system. Afterwards, these data are analyzed
through statistical data fitting and inference methods (Section 7.4.3), in order to
derive probabilistic distributions that characterize them. As a final step the System
Model is enriched with the derived probabilistic distributions, a procedure which
was previously mentioned as model calibration (Chapter 3) and results in obtaining
the Calibrated System Model in BIP.

6. Performance evaluation and requirement validation. The performance anal-
ysis on the System Model in BIP with the use of Statistical Model Checking (SMC)
that performs quantitative verification targeting functional and extra-functional re-
quirements. The results of this analysis are used as a feedback to the user to propose
enhancements in the design of the application.

7.2 System modeling principles

In this section we detail on the rules and modeling principles we followed in order to develop
a system-level model for WSN systems in BIP. This system-level model represents the
sensor network architecture in different levels of detail, starting from the implementation of
distributed sensor network applications until the deployment in dedicated sensor network
platforms. It is comprised by a model for the application software in BIP, named WSN
Application Model, as well as a model for the IEEE 802.11 communication protocol and
the dedicated hardware (e.g. execution platforms) of sensor network systems, named
WLAN Architecture Model. The WSN Application Model is following the Master-Slave
communication model, such that a number of Slave stations transmit data to a base
station, which is simultaneously responsible for the coordination and management of the
network.

The overall architecture of the system model is illustrated in Figure 7.2. In particular,
the BIP System Model is formed by the WSN Application Model, describing the WSN
application software as well as the WLAN Architecture Model, describing the communica-
tion protocols and hardware that is used in WLAN architectures. The WSN Application
Model is following the Master-Slave communication model, such that a set of Slave com-
ponents (S1 to Sn) transmits data to the Master component through the Channel, which
is modeling the shared communication medium. The data is received through the pktRcv
port. The Master is also using the pktSnd port, in order to transmit data which are
related to the coordination and management of the network, such as time signals used

7.2. System modeling principles 155

to synchronize one or more Slave clocks. The WSN Application Model is glued with the
WLAN Architecture Model through a set of connectors and priorities in order to form
the BIP System Model. Specifically, a component of the WSN Application Model, mean-
ing the Master or one of the Slaves, is connected to a WLAN station component of the
WLAN Architecture Model using their corresponding pktSnd and pktRcv ports. Message
exchange in the model is initiated if the Channel is found to be free. This action is il-
lustrated through the chanSense port in the abstract view of Figure 7.2. Three types of
communication are allowed in the model according to the UDP protocol, namely unicast,
multicast and broadcast. All types are realized through abstract send-receive connections
between the corresponding ports (sndRcv ports in the abstract view of Figure 7.2).

Slave N

WLAN station 1 WLAN station N

WLAN Model

WSN Application Model

Master Slave 1

WLAN station j

pktSnd pktRcv pktRcv

Channel

chanSense sndRcv chanSense sndRcv

chanSense

chanSense sndRcv

pktRcvpktSnd

pktRcvpktSnd

pktRcvpktSnd

pktSnd

pktRcvpktSnd

Figure 7.2: Architecture of the BIP System Model

The description of the system model as a context-free grammar is:
SystemModel ::= WSNAppModel . WLANModel

WSNAppModel ::= Master . Slave+

WLANModel ::= WLANStation+ Channel
WLANStation ::= WLANSender . WLANReceiver

We recall from Chapter 4 that model-based design techniques allow the representation
of systems in different levels of abstraction, in order to analyze different system aspects. To
this end, in the context of the national project ACOSE 1 we developed a detailed and an
abstracted version for the WLAN Architecture Model. The former is used to analyze the
functional behavior of WLAN hardware architectures, whereas the latter for performance
evaluation. Both models use the ad-hoc mode and the Basic Access (BA) mechanism
(Chapter 2). Additionally, we chose to represent in the physical layer the Frequency
Hopping Spread Spectrum (FHSS) modulation technique, due to its little influence from

1http://www.systematic-paris-region.org/fr/projets/acose

156 Chapter 7. Application of the Design Flow to WSN Systems

environmental factors, such as the noise. This choice also determines the default values
for model parameters.

Detailed version

We initially developed a detailed version, in order to fully represent the behavior and func-
tionality of WLAN stations which operate with the IEEE 802.11 protocol. The modeled
functionality includes (1) the DCF access scheme, (2) the collisions in the shared channel
as well as (3) the required re-transmissions once a data packet transmission fails. For
this version no transmission errors were assumed, meaning that each transmitted packet
can be decoded by the receiving stations. Therefore, we assume that it is not necessary
to represent the Extended Interframe Space (EIFS) in the model. Additionally, we con-
sider that the collisions between an acknowledgment and a data packet or between two
acknowledgments are extremely rare events and thus were not added in the model.

The timing aspect of the model depends on the granularity of a discrete time step
advance, which has been defined based on the transmission time per bit through the IEEE
802.11 protocol. Being in ad-hoc mode, this time is defined as the inverse of the data rate
of the network’s access point. Therefore, for an access point with a transmission bit rate
of 1Mbps, we can deduct that supported transmission rate of our timing abstraction is
1µs.

Finally, although the detailed model is able to capture all the possible interleavings
of events, when the number of WLAN stations is increased (e.g. for large-scale systems),
the verification of functional and extra-functional requirements through model-checking
may encounter by state-space explosion issues. For this reason we have also developed an
abstract version for the WLAN model, which covers a much broader scale of systems.

Abstracted version

The abstracted version of the WLAN Architecture Model, called AbsWLANModel, de-
scribes the entire IEEE 802.11x family of protocols in a higher level of abstraction. This
version aims in the analysis and performance evaluation of large-scale WLAN systems
and therefore does not model the detailed behavior (e.g. the BA mechanism) of the IEEE
802.11. Additionally, the AbsWLANModel version keeps only the necessary information
from the detailed model and deducts all the sub-components, as denoted in the system
architecture of Section 7.2. Therefore, AbsWLANModel is modeled in BIP as an atomic
component. Additionally, the abstraction is not taking in account the end-to-end delays
of the WLAN Architecture Model, since the AbsWLANModel relies in the calculation of
delays which are specific to the underlying network architecture traffic. For this calcula-
tion we use runtime measurements from the execution in the target architecture and apply
a method based on distribution fitting technique (see Section 7.4.3) to derive probabilistic
distributions with performance data, such as end-to-end or data processing delays, which
are provided as parameters to the AbsWLANModel. In this version of the model, we also
represent error-prone behavioral characteristics specific to the access point (e.g. extensive
loss of bandwidth leading to packet losses) or to the wireless communication protocols,
such out-of-order packet deliveries in the UDP protocol.

The AbsWLANModel describes a larger number of protocols in the IEEE 802.11x
family and therefore the underlying timing abstraction is not fixed and depends on the
specific version of the IEEE 802.11 protocol which is used.

7.3. WLAN architecture model 157

7.3 WLAN architecture model

The WLAN Architecture Model represents the behavior of WLAN architectures regarding
the three most significant layers of the OSI model, namely the Transport, Data-Link and
Physical layer. Our modeling abstraction considers the UDP protocol, the IEEE 802.11
protocol and WLAN-specific hardware in these layers respectively. Specifically, the WLAN
Architecture Model consists of several WLAN station components that communicate over
a shared medium, which is denoted by the Channel component. Two specific types of
transmission are supported: data packets and data acknowledgments. The structure of
the model is presented in Figure 7.3.

beginT busy free endT col

ack_s

ack_r

send

recv

pktSnd pktRcvpktSnd pktRcv

beginT free

WLAN Model

col

WLAN station 1 WLAN station N

Channel

busy endT

ack_s

ack_r

send

recv

beginT busy free endT col

tick tick

Figure 7.3: WLAN Architecture Model interactions

Each packet in the WLAN Architecture Model consists of several fields (Table 7.1),
most of which were considered according to the IEEE 802.11 packet format presented in
Figure 2.14 of Chapter 2. Additional fields that were considered are related to the UDP
protocol, such as the overall size and triggering time of the packet. Data transmissions in
the WLAN Architecture Model transfer all the fields in the packet when the corresponding
interaction is enabled.

Packet field Description

pktControl Frame control field (type of the 802.11 packet)
srcId IPv4 address of the source WLAN node

srcPort Communication port used by the source WLAN node
destId IPv4 address of the destination WLAN node

destPort Communication port used by the destination WLAN node
pktSize Data size

timestamp Local triggering time for the packet
payload Packet data

Table 7.1: Packet fields in the WLAN Architecture Model

158 Chapter 7. Application of the Design Flow to WSN Systems

Port Description Category

pktSnd Receives a packet request from the WSN Application Model a

pktRcv Sends a successfully received packet to the WSN Application Model a

beginT Initiates a transmission through the channel b

busy Blocks an attempted transmission due to occupied channel b

free Notifies the WLAN stations that the channel is free b

endT Indicates the end of an ongoing transmission b

col Indicates the simultaneous transmission of more than one packets b

ack s Transmission of a data acknowledgment packet b

ack r Reception of a data acknowledgment packet b

send Transmission of a data packet b

recv Reception of a data packet b

tick Denotes the time step advance in the model c

Table 7.2: Ports used for the WLAN Architecture Model interactions

The WLAN Architecture Model relies on 3 categories of ports, which defines:

a. Interactions with WSN Application Model

b. Interactions between the different components of the WLAN Architecture Model

c. Global synchronization interactions in the WLAN Architecture Model

Table 7.2 describes in detail the interactions modeling the communication and data
exchange in the WLAN Architecture Model. It also provides a description of their func-
tionality as well as the category to which they belong.

BIP model of WLAN stations

Each WLAN station is modeled as a composite component consisting of two atomic com-
ponents: the WLAN Sender and the WLAN Receiver respectively shown in Figures 7.4
and 7.5. These components are responsible for packet transmission and packet reception
following the IEEE 802.11x standards family. Both actions are modeled as interactions
with the WSN Application Model through the corresponding pktSend and pktRcv ports.

Model parameter Value

aSlotTime 50µs
aCCATime 27µs

aRxTxTurnaroundTime 20µs
aSIFSTime 28µs

DIFS aSIFSTime + 2 · aSlotTime = 128µs
MAXBACKOFFS 4-7 (default 4)

tsense aRxTxTurnaroundTime + aCCATime
tdata [224− 15717]µs
tack 205µs

ACK TO 300µs

Table 7.3: Parameters of the WLAN Station model

In particular, the WLANSender component receives packet requests for transmission
in the s0 initial control location and initializes the value of the backoff counter (bc), such
that it is less than the MAXBACKOFFS parameter. This parameter along with other
important model parameters are specified in Table 7.3. The model parameters may contain

162 Chapter 7. Application of the Design Flow to WSN Systems

successc:=choose(λok)

degraded

idle

iterate prepare

sending

pktRcv
[c > 0]
N:=N+1

delay[N]:=choose(λdelay)
c:=c-1

[c = 0]
c:=choose(λfail)

[c = 0]
c:=choose(λok)

pktRcv
[c > 0]
c:=c-1

tick
[t < P]
t:=t+1

[t = P]

t:=0
i:=0

[i = N]
expired:=0

[i < N]
delay[i]=delay[i]-P

[delay[i] 6= 0]
i:=i+1

[delay[i] = 0]
i:=i+1

pktSnd

pktSnd pkt

tick

pktRcv pkt

Figure 7.7: AbsWLANModel component

7.4.1 Translation of the WLAN network configuration

We hereby detail on the tool that was developed to automate the design phase 2 of the
flow (Figure 7.1). The tool is using as input the WLAN network configuration file and
generates a WLAN Architecture Model in BIP, which is detailed in Section 7.3 of this
chapter. Initially, it parses the WLAN network configuration file, which is described in
the format of [AAD+10] and defines important characteristics for the wireless network as
well as the hardware platforms. Then, it instantiates the model fragments of the WLAN
component library and parameterizes them with values that are obtained through the
WLAN network configuration file. The tuning of parameters in the model fragments allows
(i) the description of important details about the network (e.g. topology, frequency band)
as well as (ii) the analysis of different performance aspects of the WLAN network, such as
the impact of increasing and decreasing the contention window limits in the computation
of the backoff counter (Chapter 2). In the latter case, performance aspects are analyzed
during the simulation of the BIP Calibrated System Model through the BIP engine. We
should note that in this step the absence of values for parameters of model fragments in
the WLAN network configuration file, indicates that default values from the IEEE 802.11
standard would be given. Finally, the translation tool instantiates a set of connectors in
order to synthesize the WLAN Architecture Model.

Example 11 A fragment of the XML configuration file is illustrated in Figure 7.8. It de-
fines the profile elements used for the generic configuration of the wireless network (“wire-
lessProfile” element). These elements define firstly the Service Set IDentifier (SSID),
which indicates the name of the wireless network (“ssid” element). The network connec-
tion type (“connType” element) can be either equal to Extended Service Set (ESS) in the
case of an ad-hoc network or Infrastructure Basic Service Set (IBSS) in the case of an in-
frastructure network. As part of the wireless profile we find the channel and the frequency
band in which the network operates (indicated by “channel2.4Band” and “channel5Band”
element) as well as the device functionality in the network (“devMode” element). Addi-
tional configuration parameters are provided for a specific profile instance (“confInstance”
element), such as the network authentication type and the encryption protocol (“authType”,
“encryptProt” element respectively) as well as tunable parameters for analyzing the WLAN
network performance. The latter are part of the IEEE 802.11 communication standard

7.4. Tools and methods for WSN system development 163

<wirelessSet configuration="set1">

<wirelessProfile>

<topology>WLAN</topology>

<ssid>SnowballAP</ssid>

<connType>ESS</connType>

<channel2.4Band>6</channel2.4Band>

<channel5Band>0</channel5Band>

<devMode>station</devMode>

</wirelessProfile>

<confInstance>

<authType>WPA2</authType>

<encryptionProt>AES</encryptionProt>

<IEEE802.1X>

<protType>b</protType>

<aCWmin>15</aCWmin>

<aCWmax>1023</aCWmax>

<ShortRetryLimit>7</ShortRetryLimit>

<LongRetryLimit>4</LongRetryLimit>

<ACK_TO>300us</ACK_TIMEOUT>

<ShortRetryLimit></ShortRetryLimit>

<LongRetryLimit></LongRetryLimit>

</IEEE802.1X>

</confInstance>

</wirelessSet>

Figure 7.8: Fragment of the WLAN network configuration file

(“IEEE802.1X” element) and relate to (a) the computation of backoff counter through
the minimum and maximum contention window limits (“aCWmin” and “aCWmax” ele-
ment respectively) (b) the maximum number of packet retransmissions (“ShortRetryLimit”
and “LongRetryLimit” element for short and long packets respectively) as well as (c) the
acknowledgment timeout (“ACK TO” element).

The translation tool is developed in the Python programming language. It consists
of 250 lines of code and parses the XML WLAN configuration file to generate the corre-
sponding BIP textual description file.

7.4.2 Automated code generation for WSN

We developed a tool, named PPM2WSN, which is used to automate the design flow phase
4 for the generation of deployable code for WLAN hardware architectures. The tool is
using rapid prototyping techniques to automate the code generation procedure in WSN
applications based on PPM specifications (Figure 7.9). Code generation in PPM2WSN is
following the generic algorithmic procedure, which is described in Chapter 4 and accord-
ingly adapted to the category of WSN systems. Specifically, given a PPM description of
the application software as well as the mapping specification the tool is able to generate
deployable code for any platform which supports network communication through Linux
sockets. The application software constitutes of a process network specification of the
WSN application in XML as well as code templates describing its specific behavior. Like-
wise, the mapping specification consists of an XML architecture description and additional
code templates to implement the API function calls, which are used for communication
in the supported network stack of the hardware architecture. In our case, communication
is handled using Linux sockets parameterized with the UDP or the raw Socket protocol.
The latter allows the exchange of packets without any protocol-specific transport layer
formatting. The protocol choice is done during initialization. In our context, we prefer-
ably use UDP as it allows sensor network devices to communicate through various modes,
such as unicast, broadcast and multicast using a minimal design. Additionally, UDP is
characterized by a small overhead and is furthermore connectionless i.e. there is no need
of permanent connection between two hosts.

164 Chapter 7. Application of the Design Flow to WSN Systems

Mapping (PPM)

(C code)

Deployable

PPM2WSN

WSN

Node 1

WSN

Node 2

WSN

Node N

Application Software (PPM)

Behavior

(C code)

Process Network

(XML)
(C code)

Templates

HW Code Architecture

(XML)

Figure 7.9: PPM2WSN code generator

The code generation procedure follows several steps. First, the processes of the PPM
Application Software are assigned to devices of the hardware architecture using the map-
ping specification. Then, the write and read primitives of the shared objects in the PPM
Application Software are replaced by the API function calls used in Linux sockets and
parameterized with the UDP protocol, namely the sendto and recvfrom primitives respec-
tively. During parameterization the tool also uses the mapping specification to extract
additional configuration parameters for the UDP as well as lower-layer communication
protocols and of the supported network stack.

The generated code is portable and can be eventually deployed and run on any hard-
ware platform supporting Linux sockets. The tool is implemented in C++ and it consists
of approximately 35 files and 11235 lines of code. Apart from the UDP and the Linux
socket, it supports additionally the raw Socket protocol.

7.4.3 Distribution Fitting

In order to find suitable probability distributions that fit the data measured from the
execution of the generated code we used the distribution fitting technique (Chapter 4).
These distributions are accordingly used in the design flow phase 5 of Figure 7.1 to calibrate
the System Model and consequently obtain a faithful Calibrated System Model for WSN
applications. The described distribution fitting technique in this section follows the three-
step analysis as presented in Chapter 4. As the independence of data cannot be proven
for any dataset our analysis will stop at the first step, namely the exploratory analysis.

In Figure 7.10 we illustrate an observation for the end-to-end delays measured for the
execution of the generated code and the corresponding Box-Whisker plot, which visualizes
the median, quantiles and whiskers of the data. For this particular measurement we used
as access point a Snowball SDK platform 2.

We accordingly tried to identify candidate distributions that could fit the data. Nev-
ertheless, due to the data shape and the diversity compared to most of the well-known

2http://www.calao-systems.com/articles.php?pg=6186

7.4. Tools and methods for WSN system development 165

0 2 4 6 8 10 12

x 10
4

0

50

100

150

200

250

300

350

Index of observation

E
n
d
−

to
−

e
n
d
 d

e
la

y
 (

in
 m

s
)

Figure 7.10: End-to-end delays in the generated code

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

E
n

d
−

to
−

e
n

d
 d

e
la

y
 (

in
 m

s
)

Figure 7.11: Box-Whisker plot for the end-to-end delays

distributions this was not possible. As a following step, we tried to find a pattern that
characterizes them by carefully examining each observation of Figure 7.10. This proce-
dure resulted in identifying a fitting data pattern (Figure 7.12) for the end-to-end delays,

166 Chapter 7. Application of the Design Flow to WSN Systems

which was repeated in different intervals inside the entire data set. Based on these pat-
terns we eliminated the noise in the dataset and therefore we were able to synthesize
the obtained data into the distribution of Figure 7.13. Accordingly, we performed a Lag
plot (Chapter 4) of this distribution and found that there is no correlation between its
observations, therefore it contains independent data. Then, we proceeded on identifying
possible candidates for that match the form and shape of this distribution. In this case,
we recognized as possible candidates the discrete Poisson distribution and the Gamma
continuous distribution. Afterwards, we proceeded with the second step of our analysis,
namely the estimation of the parameters for the identified candidate distributions. For
the particular dataset composed of xk observations, where k = 1, . . . , n with n=200000,
we assume that there exist X1, . . . , Xn independent and identically distributed (iid) ran-
dom variables following the Poisson distribution with parameter λ > 0, such that xk is
a realization of Xk. Identically distributed in this context means that every Xk random
variable follows the Poisson distribution D : S → [0, 1] with parameter λ and S being a
sample space. Therefore, the probability mass function is defined as:

f(y, λ) = P (Xk = y) = e−λ(
λy

y!
), y ≥ 0, (7.1)

where e indicates Euler’s number and is approximately equal to 2.71828 and y! is the
factorial of y.

As the first moment we consider the expected value E[Xk], which for the candidate
Poisson distribution is equal to the variance V ar[Xk], such that E[Xk] = V ar(Xk) = λ.
Through our analysis we identify that λ = 160. Then, we also consider a second moment,
namely the mean deviation E[Xk−λ]=8.16, which describes the form of this distribution.
In this step we rely only in two moments, since they suffice in order to describe the shape
and form of the fitting distribution [AGG89].

It shall be noted that we can also consider the λ, which maximizes the likehood or the
log-likehood function. Nevertheless, this calculation leads to an numerical computation of
the mean from the data set, which is also equal to the value of λ as described in Chapter
3.
Likewise, for the Gamma distribution, the probability density function would be:

f(y, α, λ) =
λα

Γ(α)
yα−1 exp(−λy), y ≥ 0, (7.2)

with α indicating the shape and λ the scale of the distribution. The first moment in such
a case is the expected value: E[Xk] =

α
λ
with α = 50 and λ = 5. We also consider the

mean deviation as a second moment with E[Xk − λ] = 2 exp(−α)αα λ
Γ(α) = 5.7.

In the last step of our analysis we tried to evaluate the obtained candidate distribu-
tions, in order to select the best one that fits the data. Therefore, Figure 7.14 illustrate
a Quantile-Quantile (Q-Q) plot, which was used to test the quantiles of the empirical
distribution we obtained according to the theoretical quantiles of the Poisson distribution.
We can observe that in the [145,190] ms interval the quantiles obtained by the dataset fit
perfectly the theoretical quantiles of the Poisson distribution.

We have subsequently tested if the quantiles of the dataset fit to the theoretical quan-
tiles of the Gamma distribution an additional Q-Q plot. The result in this case was
similar, which lead us to the use both the Poisson and the Gamma fitting distributions
for the calibration of the AbsWLANModel component with the end-to-end delays (λdelay

in Figure 7.3). This allowed us to obtain a faithful model for the system, which was later
used in order to conduct experiments on critical functional and extra-functional system
requirements.

7.4. Tools and methods for WSN system development 167

3.2306 3.2307 3.2308 3.2309 3.231 3.2311 3.2312 3.2313 3.2314 3.2315 3.2316

x 10
4

150

155

160

165

170

175

Index of observation

E
n
d
−

to
−

e
n
d
 d

e
la

y
 (

in
 m

s
)

Figure 7.12: Fitting pattern of the dataset

145 150 155 160 165 170 175 180 185 190
0

0.5

1

1.5

2

2.5

End−to−end delay (in ms)

D
e

n
s
it
y

Figure 7.13: Fitting distribution of the dataset

As stated earlier in this section it is not always feasible to fit the obtained data to
a model as there are cases that the deterministic part cannot be separated from the
stochastic, which contains as well the noise. This is illustrated for example in Figure 7.15,
where we have measured the end-to-end delays using as access point a UDOO platform 3.
For this measurement it was not possible to estimate a governing law from the subset of
observations, as there is strong correlation between them. This is illustrated by the Lag

3http://www.udoo.org/features/

168 Chapter 7. Application of the Design Flow to WSN Systems

Figure 7.14: Q-Q plot of the fitting distribution

plot of Figure 7.16. Due the underlying correlation our analysis could not be applied to
this dataset. Although a particular data pattern cannot be identified in this dataset, it
can still be used to calibrate the AbsWLANModel component. This is done by selecting
randomly one dataset sample at a time according to a uniform distribution and adding it
to the end-to-end delay measurement for a specific packet in the model.

0 500 1000 1500 2000 2500
0

100

200

300

400

500

600

Index of observation

E
n

d
−

to
−

e
n

d
 d

e
la

y
 (

in
 m

s
)

Figure 7.15: End-to-end delays

7.5. Case study: Wireless Multimedia Sensor Network 169

0 100 200 300 400 500 600

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

6
0

0

lag 1

V
1

Figure 7.16: Lag plot for the end-to-end delay observations

7.5 Case study: Wireless Multimedia Sensor Network

We demonstrate our approach through a case study aiming in audio capturing and repro-
duction over a WLAN network with the addition of clock synchronization. Furthermore,
the wireless network is supported by the IEEE 802.11 standard. This specific case study
is provided by an industrial partner (Cyberio 4) and belongs to the category of WMSN
applications (presented in Chapter 2).

7.5.1 Application overview

Audio capturing in the case-study is supported by dedicated microphone devices that
are connected to the Slave devices. The captured audio is send to a base station and
accordingly reproduced through a speaker device. Furthermore, in this scope we use a
clock synchronization mechanism for the synchronized reproduction of the received audio
in the base station. particular type of synchronization (i.e. sender-to-receiver), where the
base station broadcasts periodically (period T=5s) a packet containing the hardware clock
value to all the devices through the WLAN network. Each Slave device applies a Phase
Locked Loop (PLL [RLL08]) synchronization technique, to construct a software clock in
the slave devices of the system. The construction is based on the clock synchronization
algorithm, which is described below. The PLL system takes the broadcasted clock as input
and keeps the local clock synchronized to it. The expected synchronization accuracy for
the particular case study, defined as the difference between the input and output clocks,
is specified as 1µs. The resulting clock is used by the microphone to timestamp the audio
packets. Subsequently, the base station is able to reproduce the received audio packets in
the correct chronological order. An important assumption in our system is that the rate
used by the slave devices to generate audio packets through their microphone interface is

4www.cyberio-dsi.com/

7.5. Case study: Wireless Multimedia Sensor Network 171

Clock synchronization algorithm

The PLL functional unit of our case-study implements the Kalman filter algorithm (pro-
posed in [HMZX08]), in order to synchronize a local clock according to the clock of a
common time reference in the system reference system node, which in this context is the
Master device. More specifically, the Kalman filter algorithm tries to track the advance of
the Master and automatically adapt to it. The proposed synchronization method is differ-
ent from the existing clock synchronization protocols, as most of them rely on the calcu-
lation of the Round Trip Delay (RTD) for the transmission of the synchronization packets
between the different network devices (e.g. the Network Time Protocol (NTP) [SBK05]).
The RTD calculation is done in several trials, performed in parallel with the execution
of the application to improve synchronization accuracy. However, it instead results in
augmenting the energy consumption as well as in providing less accuracy. Both are an
outcome of increased amount of the exchanged data in the network, which in turn produces
further communication latencies and delays. Many protocols have focused on ameliorating
the performance and precision of the RTD calculation, from which only the Precision Time
Protocol (PTP) [LEWM05] has succeded in providing high synchronization accuracy. To
do so, it relies on dedicated hardware enhancements (as in [MGT+11]), which nevertheless
may not be available in lightweight and resource-constrained environments.

We hereby detail on the method that the Kalman filter algorithm uses to correct
continuously the local clock reducing its offset from the master clock. Initially, a clock is
defined by a discrete model as follows:

θ[n] =
n
∑

k=1

α[k]τ [k] + θ0 + ω[n], (7.3)

where α is the clock skew, τ [k] the sampling period at the kth sample, θ0 the initial clock
offset, and w[n] the random measurement as well as other types of additive noise. In a
sender-to-receiver synchronization, this noise consists of four factors [SBK05]:

• the time for message construction and sender’s system overhead,

• the time to access the transmit channel,

• propagation delay,

• the time spent by the receiver to process the message.

Since τ [k] can be different, the above clock model covers uniform and non-uniform sam-
pling. Equation (7.3) can be rewritten recursively as follows:

θ[n] = θ[n− 1] + α[n]τ [n] + ϑ[n], (7.4)

where ϑ[n] = ω[n]−ω[n−1] is considered as a Gaussian random variable with mean 0 and
variance σ2

ϑ, as described in [EGE02]. We assume that the clock skew α[n] is time-varying,
that is, it can change completely from one sample to another with the optimal estimator
being:

α̂[n] =
θ[n]− θ[n− 1]

τ [n]
(7.5)

This variation can be modeled as a random process defined by the Equation (7.6):

α[n] = α[n− 1] + γ[n], (7.6)

172 Chapter 7. Application of the Design Flow to WSN Systems

where γ is considered as a Gaussian random variable with mean 0 and variance σ2
γ indicat-

ing the noise model, as described in [HMZX08]. As the above equations are used to define
the Kalman Filter algorithm, we accordingly illustrate its vector-matrix form, previously
introduced in [HMZX08].

Let θ denote the master timestamp in which we add the noise delays (see Equation
(7.3)), and θ̃ the value of the synchronized clock.

θ̃ [n] =

n
∑

k=1

α [k] τ [k] + θ0 ⇒

θ̃ [n] = θ̃ [n− 1] + α [n] τ [n] (7.7)

Based on the Equation 7.6, the Kalman Filter state of the synchronized clock is defined
by the Equation 7.8.

x [n] = Ax [n− 1] + u [n] , (7.8)

where x [n] = [θ̃ [n] α[n]]
T
, A =

[

1 τ
0 1

]

, u [n] = [0 γ[n]]T and τ is the sampling

period. The Kalman Filter observation equation is the noisy observation of the reference
clock (Equation 7.9).

θ [n] = θ̃ [n] + v [n] = bTx [n] + v [n] , (7.9)

where bT = [1 0]. Then, the Kalman Filter vector-matrix form is defined by the following
equations:

x̂[n] = Ax̂[n− 1] + G [n]
(

θ [n]− bT Ax̂[n− 1]
)

(7.10)

S [n] = AM [n− 1]AT + Cu (7.11)

M [n] =
(

I −G [n] bT
)

S [n] (7.12)

G [n] = S [n] b (σ2
v + bT S [n] b)

−1
(7.13)

7.5.2 Modeling the Application Software

We have described the WMSN application as a process network in PPM based on the
functionality and the behavior of its different units. The PPM application software was
later used to implement the BIP System Model for the specific application in the scope of
the design flow phase 1.

7.5. Case study: Wireless Multimedia Sensor Network 173

synchro PLL

speaker micro

PLL

micro

SO1

SO2

SO3

SO4

Figure 7.18: WMSN Application in PPM

PPM WSN Application Software

Figure 7.18 presents the case-study application in the PPM framework. It consists of (1)
one clock synchronization process synchro, sending out synchronization data through the
FIFOs (SO1, SO3), and (2) two audio capturing processes micro, sending out audio data,
through the FIFOs (SO2, SO4). The synchronization data are received by two processes
PLL (implementing the clock synchronization protocol) and the audio data by an audio
reproduction process speaker.

The PPM WSN Application Software is described in XML (Figure 7.19). It consists
of processes, shared objects and connections. For each process, we specify its name (e.g.
process name=“pll”), the names of the input and output (e.g. port name=“out”) ports,
the respective process type (e.g. process-class=“WhileFire”) and the location of the source
C code describing the process behavior (e.g. file=“pll.h” or “pll.c”). For each shared object
we specify its name (e.g. shared-object name=“SO1”), its type (i.e object-class=“FIFO”
or “MUTEX”), the maximum capacity of data (e.g. size=“4”) and the names of the input
(e.g. port name=“in”) and output port (e.g. port name=“out”). Finally, we define the
connections between the processes and the shared objects (e.g. port-ref node=“SO1” or
“pll”) by specifying the input and output ports which contribute in each connection.

The structured C format of the WMSN application aided in expressing the behavior of
each process in PPM. An example of such behavior, following the generic structure defined
in Chapter 4, is provided through the micro process in Figure 7.20.

Example 12 The micro PPM process (illustrated in Figure 7.20) uses the functions pro-
vided in algorithm 4. It also defines the micro init function, which uses the audioInput init
and audioInput preprocess functions to configure the audio processing. Additionaly, the mi-
cro fire function describes the cyclic behavior of the process and uses the audioInput process
function to write samples to the audio buffer. Finally, the micro deinit function deallo-
cates the reserved memory space through the audioInput postprocess and audioInput deinit
functions.

We also provide hereby the description of the PLL process, which is responsible for
the correction of the slave clocks according to the master reference clock in the model.

Example 13 The PLL process is shown in Figure 7.21. It defines the function pll init()
to initialize the process data and the function pll fire() to describe the cyclic behavior of
the process (Chapter 4). PLL process receives data from the process network using the

174 Chapter 7. Application of the Design Flow to WSN Systems

<header lang="c" file="global.h"/>

<parameter name="N" value="2"/>

<process name="pll" process-class="WhileFire">

<port name="out" peer-class="FIFO" peer-name="in"/>

<header lang="c" file="pll_state.h" x-state="true"/>

<header lang="c" file="pll.h"/>

<source lang="c" file="pll.c"/>

<source lang="c" file="SPM_clock.c" libs="-lblas -lm -lrt"/>

</process>

...

<shared-object name="SO1" object-class="FIFO" size="4" item-size="64">

<port name="in"/>

<port name="out"/>

</shared-object>

<shared-object name="pll_micro" object-class="MUTEX" multiplicity="N">

<port name="a"/>

<port name="b"/>

</shared-object>

...

<connection>

<port-ref node="SO1" port="out"/>

<port-ref node="pll" port="in"/>

</connection>

...

Figure 7.19: WMSN Application XML Description

1 #include "micro_process.h"

2

3 void micro_init(micro_process *p) {

4 audioInput_init (&(p->local->micro));

5 audioInput_set_samplerate (&(p->local->micro), samplerate);

6 p->local->data_size = (p->local->micro).block_size;

7 audioInput_preprocess (&(p->local->micro));

8 }

9 int micro_fire(micro_process *p) {

10 if (! AudioInput_process (&(p->local-> micro))) {

11 Audio_packet_t* paudio = (Audio_packet_t*) (p->local-> micro).data_out;

12 gettimeofday (&p->local->local_time, NULL);

13 uint64_t local_clock = ((uint64_t) p->local->local_time.tv_sec *

14 (uint64_t) 1000000) + (uint64_t) p->local->local_time.tv_usec;

15 MUTEX_lock();

16 paudio -> time_stamp = pll_get_clock (local_clock);

17 MUTEX_unlock();

18 FIFO_write(p->out, paudio, (p->local->micro).block_size);

19 }

20 return 0;

21 }

22 void micro_deinit(micro_process *p) {

23 AudioInput_postprocess (&(p->local->micro));

24 AudioInput_deinit (&(p->local->micro));

25 }

Figure 7.20: Micro Process Code Description

7.5. Case study: Wireless Multimedia Sensor Network 175

FIFO read() function and the rest of the code implements the synchronization algorithm
(pll clock in() function).

1 #include "pll_process.h"

2 void pll_init(pll_process *p) {

3 (p->local->pll).stream_size = 1;

4 (p->local->pll).block_size = (unsigned int) sizeof(clockOut_t);

5 (p->local->pll).data_in = malloc((p->local->pll).block_size);

6 p->local->data_size = (p->local->pll).block_size;

7 }

8 int pll_fire(pll_process *p) {

9 FIFO_read(p->in, (p->local->pll).data_in, (p->local->pll).block_size);

10 gettimeofday (&(p->local->slave_time), NULL);

11 uint64_t slave_clock = ((uint64_t) p->local->slave_time.tv_sec * \

12 (uint64_t) 1000000) + (uint64_t) p->local->slave_time.tv_usec;

13 clockOut_t* master_frameClock = (clockOut_t*) (p->local->pll).data_in;

14

15 master_clock = master_frameClock->time;

16 pll_clock_in (slave_clock, master_clock, p->local->argument);

17

18 return 0;

19 }

20 void pll_deinit(pll_process *p) {

21 free((p->local->pll).block_size);

22 }

Figure 7.21: PLL Process Code Description

Application Deployment in PPM

The application deployment in the WLAN hardware architecture is specified with the use
of a XML-based description file, as presented in Figure 7.22. This file specifies how the
processes and shared objects of the PPM Application Software are mapped to devices
(i.e. hardware platforms) of the target architecture. The structure of this XML file
is following the description provided in Chapter 4 as template. More specifically, the
application processes (“app-node”) are bound to a hardware platform (“hw-element”).
The binding (“deployment”) also includes dedicated information for the specific category
of WSN systems. These are related to the network interface name (“wlan0”), the IP
addresses (“10.0.0.14” as destination IP address), the communication ports (375, 250 as
origin and target port respectively), and the type of communication used, such as unicast,
multicast (“multiIP”) and broadcast (“broadcast”). Additional elements for the specific
the case study application are also defined, such as the communication protocol used in the
network stack (“communication protocol” element). The protocols which are supported
here are the “udp” as well as the “rawSocket”. Finally, extra process properties are defined
through the “extra” XML element, as for example period for the clock synchronization
timestamp of the Master defined in separate application properties XML elements (“app-
property”).

The deployment in our case-study specifies that the synchro and speaker processes are
mapped to the Master UDOO device, whereas the PLL and micro processes to the Slave
UDOO devices. The shared objects are mapped to the WiFi cards, which handle the
communication through the Snowball SDK AP. The deployment of the application on the
target hardware platforms is shown in Figure 7.23.

176 Chapter 7. Application of the Design Flow to WSN Systems

<deployment>

<app-node name="pll"/>

<hw-element name="node" hw-class="udoo" index="0"/>

<hw-property name="networkInterface" hw-class="node-inter" value="wlan0"/>

<hw-property name="srcPort" hw-class="node-srcPort" value="375"/>

<hw-property name="dstPort" hw-class="node-dstPort" value="250"/>

<hw-property name="dstIP" hw-class="node-dstIP" value="10.0.0.14"/>

</deployment>

<deployment>

<app-node name="synchro"/>

<hw-element name="node" hw-class="udoo" index="1"/>

<hw-property name="networkInterface" hw-class="node-networkInterface" value="wlan0"/>

<hw-property name="srcPort" hw-class="node-srcPort" value="250"/>

<hw-property name="multiIP" hw-class="node-multiIP" value="10.0.0.255"/>

<hw-property name="broadcast" hw-class="node-broadcast" value="0"/>

</deployment>

...

<communication protocol="udp"/>

...

<extra>

<app-property app-name="synchro" property-name="period" value="1"/>

</extra>

Figure 7.22: WMSN Application Deployment XML Description

System Model in BIP

The BIP System Model for the case-study was obtained from the PPM WSN Application
Software by initially parameterizing template BIP atomic components that were devel-
oped for the specific application, namely synchro, PLL, micro and speaker components.
An example of such a template for the PLL component is illustrated in Figure 7.24. For
each shared object, we instantiate a buffer component, which is used to read or write
data packets following a FIFO queuing policy. Secondly, we chose to instantiate hard-
ware components which model the underlying architecture, such as the AbsWLANModel
component (Figure 7.7) as well as components which model the hardware clock of the
devices of the architecture. We particularly chose the AbsWLANModel to model the
WLAN architecture, as the level of abstraction it offers is considered sufficient for the par-
ticular application. Finally, we use the application deployment specification (illustrated
in Figure 7.22) to form composite components from the individual atomic components
using connectors, which define the composition of the WSN Application Model and the
WLAN Architecture Model. In the following paragraphs we detail about the aforemen-
tioned steps, in order to obtain the BIP System Model, starting with the description of
the application-specific PLL component.

Example 14 Figure 7.24 shows a graphical representation of the PLL component in BIP,
which models the behavior of the PLL process in the PPM Application Software. PLL
consists of the control locations idle, recvMsg, process and sndRes. It is responsible
for the reception of synchronization packets through the clkRecv port. It subsequently
moves from the idle to the recvMsg control location. After an interaction through the port
localClk, it calculates a software clock through the internal port update and returns to the
initial (idle) control location. The new value of the software clock is calculated through
pll clock in, a function which is deducted from the PPM Application Model (illustrated
in the fire procedure of the PLL process in Figure 7.21) and used as external C code in
the component. The clkReq port is used to receive requests for calculating the local clock.
The value of the local clock is calculated at the internal transition prepare and is exported
through port clkRes. Likewise, the pll get clock function, which the obtains the current
time of a clock (illustrated for the micro process Figure 7.20), is used as external C code

7.5. Case study: Wireless Multimedia Sensor Network 177

synchro PLL

speaker micro

PLL

micro

WMSN Application

SO1

SO2

SO3

SO4

Master
WiFi
card

Sound
card

UDOO node

WLAN HW architecture

Snowball SDK
Access Point

WiFi

WiFi
card

Slave
WiFi
card

Sound
card

UDOO node

Slave
WiFi
card

Sound
card

UDOO node

SPM Audio()
functions

COM eth()
functions

Figure 7.23: Deployment of the WMSN Application on the WLAN hardware architecture

idle recvMsg

processsndRes

clkRecv
mic req:=1

clkReq
new frame:=1

localClk

update
[new frame = 1]

refClk:=Mclk+delay
res:=pll clock in(refClk)

prepare
[mic req = 1]

time el:=local clock-t update
Sclk:=pll get clock(res,time el)

clkRes

clkReq clkRes Sclk

clkRecv

pkt localClk

lclk

Figure 7.24: PLL component

178 Chapter 7. Application of the Design Flow to WSN Systems

in the component.

We continue on describing application-specific components which are used to model
the hardware clock of the Master and Slave devices. These components are respectively
the Mclock and the Sclock illustrated in Figure 7.25. In order to faithfully model the clock
of the hardware platforms we also used probabilistic distributions, which were injected as
parameters to theMclock and Sclock models. In the following example we focus on the
behavior of the Mclock component, since the Sclock depicts a similar behavior.

Example 15 The Mclock component (Figure 7.25a) consists of the initial control location
idle and the transmit control location. It periodically triggers the transmission of packets
through an interaction with the synchro component. The period with which the packets are
generated is fixed and thus considered as a model parameter (PSY NC). The time advances
through discrete time steps modeled using the tick interaction. When the time becomes
equal to PSY NC , the control moves from idle to the transmit control location due to the
corresponding guard. Following the interaction involving its synchroSnd port, the current
hardware clock value is forwarded to the synchro component. This value is obtained from
the probabilistic distributions for the discrete clock model of the Master.

idleMclk = TM0

transmit

generate
[t = PSY NC]

timestamp:=Mclk
t:=0

tick
[t < PSY NC]

aM := aM + λγ

Mclk:=Mclk+aM ∗ tMperiod

t:=t+1

synchroSnd

tick

synchroSnd

Mclk

(a) Mclock component

idleSclk = TS0

request

tick
aS := aS + λγ

Sclk:=Sclk+aS ∗ tSperiod

getClknewReq

tick

getClk

Sclk

(b) Sclock component

Figure 7.25: Hardware clock components of the Master and the Slave

As a final step we have formed the composite components of the model according
to the application deployment specification. In this case-study, we have identified two
architecture-specific components, namely the Master and the Slave. The Master initiates
the transmission of synchronization packets, which are accordingly received by the Slave.
Both are composite components, such that the Master is formed by the synchro and speaker
atomic components and the Slave by the micro and PLL components. Both components
include an atomic component which models their hardware clock, that is, the Mclock and
Sclock respectively.

The Master component is responsible for the periodical transmission of synchroniza-
tion packets containing its hardware clock value through the port clkSend of the synchro
component. Additionally, it uses the speaker component for reproduction of the received
audio samples periodically (PP period) through the port READ after an initial playout
delay p1. The processing and transmission of the data is handled by the AbsWLANModel
component, modeling the wireless network, and responsible for the packet transmission to

7.5. Case study: Wireless Multimedia Sensor Network 179

every Slave component in the model. This component is using probabilistic distributions
for network-specific characteristics, such as the packet delivery rate and the end-to-end
delays. These distributions where obtained using the distribution fitting technique, which
is described in Section 7.4.3. Respectively, the Slave component receives the transmitted
synchronization packets from the Master and updates the synchronized clock. To accom-
plish that, it needs to interact with the Sclock component receiving its local clock (localClk
port), in order to apply the PLL functions of the real application. It is also polled periodi-
cally by the micro component (clkReq port), in order to add a hardware clock value to each
audio packet scheduled for transmission. The corresponding reply (clkRes port) contains
the latest computed synchronized clock value augmented by the time elapsed between the
last reception of a packet and the received request. Both are measured through an inter-
action with the Sclock component (localClk port). The micro component generates each
audio packet periodically (PM period) through the audioSend port. We have considered
in the model that PM = PP , following the assumption which was proposed in the case
study description.

The concrete model after the composition is illustrated in Figure 7.26 and consists of
a Master component and two instances for the Slave component, using the same interfaces
and interactions with the other system components.

micro

audioSend

clkReq

clkRes

localClk

micro

audioSend

clkReq

clkRes

localClk

PLL

localClk

clkReq

clkRes

SbufferMbuffer
Mclock

TICK synchro

Master

AbsWLANModel

clkSnd

speaker

tick

MClkRcvsynchroSnd

Read

tick

pktRcvpktSnd

Slave 2

Sclock

recv recv

req

Slave 1

Sclock
clkRecv

tick

getClk

PLL

localClk

clkRes

clkReq

getClk

tick

clkRecv

req

Figure 7.26: BIP System Model for the WMSN Application

The constructed BIP System Model contained probabilistic variables, each one fol-
lowing a probability distribution. The distributions were obtained using the distribution
fitting technique (Section 7.4.3) from the execution of the generated code that is described
in the following section.

180 Chapter 7. Application of the Design Flow to WSN Systems

7.5.3 Code generation

As depicted by the deployment of Figure 7.23 the clock synchronization protocol runs
in parallel with an audio application. The synchro and speaker processes are mapped to
the Master UDOO device, whereas the PLL and micro processes to the Slave UDOO de-
vices. The FIFO’s are mapped to the WiFi cards, which are managing the communication
through the Snowball SDK AP, whereas the mutexes enforce a synchronization policy in
the execution of the synchro and PLL process threads. Additional configuration param-
eters for the communication protocols of the supported network stack are also extracted
from the mapping specification of Figure 7.22. In our case, these concern specific XML
elements, such as the source port (“srcPort”), a destination (“dstPort”) port and a desti-
nation device IP (“dstIP”) of a process. A fragment of the generated code illustrating the
communication between synchro and the PLL process is shown in Figure 7.27.

synchro SO1 PLL

memcpy (self.buffer, f -> data_in, f -> block_size);

iCom = sendto (self.sock, self.buffer, self.buffer_size, 0,

(struct sockaddr*)(&(self.dst_addr)), sizeof(self.dst_addr));

if (iCom == -1)

{

printf ("COM_eth_udp_lin process (sendto) error (%d) :

%s\n", errno, strerror(errno));

return (-1);

}

memset (&recvfrom_addr, 0,sizeof(recvfrom_addr));

iCom = recvfrom (self.sock, self.buffer, self.buffer_size, 0,

(struct sockaddr*) &recvfrom_addr, &recvfrom_addr_len);

if (iCom == -1)

{

printf ("COM_eth_udp_lin process (recvfrom) error (%d) :

%s\n", errno, strerror(errno));

return (-1);

}

Figure 7.27: Communication through Linux sockets in the generated code

7.5.4 Requirement Description

As described in Chapter 2 the development of functional WSN applications is a challenging
procedure, as the devices have constraints in the resource utilization and may additionally
have timing constraints in data processing. Therefore, aspects as the memory utilization
or the synchronization of their clocks are of major importance. In particular, before
the final deployment of the described multimedia application, special attention should be
given in the selection of the playout period for the audio samples, and in the accuracy of
the clock synchronization. A relatively small playout period, often results in underflow
as the reception buffer may not contain any samples to be played. On the other hand,
if the playout period is sufficiently bigger, the rate at which samples are stored in the
reception buffer may result in a potential overflow, as the memory space of the buffer is
exceeded. Additionally, the quality of the audio playback may not be as expected, as the
accuracy of the clock synchronization determines whether the samples are synthesized by
the speaker in the right order or not. These considerations aided us in describing two
equally important requirements for the case study, namely:

Since both requirements cannot be evaluated in their current form, we described them
with stochastic temporal properties using the PBLTL formalism (Chapter 3), in order to
detail on their probabilistic results using the SMC-BIP tool.

Requirement 1. Avoid potential audio playback problems by properly sizing the buffer
components in the application.
This requirement is satisfied by considering the properties:
Property 1: φ1 = (size(Sbuffer) < SbufferMAX), denotes the property of overflow
avoidance in the Sbuffer component with SbufferMAX indicating the maximum allowed

7.5. Case study: Wireless Multimedia Sensor Network 181

number of packets which are stored in each Sbuffer
Property 2: φ2 = (size(Mbuffer) > 0), denotes the property of underflow in the Mbuffer
component
Property 3: φ3 = (size(Mbuffer) < MbufferMAX), denotes the property of overflow
in the Mbuffer component with MbufferMAX indicate the maximum allowed number of
packets which are stored in each Mbuffer

Requirement 2. Maintain a bounded clock synchronization accuracy, in order to ensure
a satisfactory sound quality in the audio playback.
This requirement is satisfied by considering the property of maintaining a bounded syn-
chronization accuracy, which is defined as:
Property 4: φ4 = (|(θM − θS) − A| < ∆), where θM − θS denotes the difference between
the Master clock (θM) and the software clock computed in every Slave (θS). Additionally,
A indicates a fixed offset between the Master and each computed software clock and ∆ is
a fixed non-negative number, denoting the resulting bound.

Both requirements can be considered functional, nevertheless they are strongly influ-
enced by extra-functional characteristics of the application related to time, such as the
end-to-end delays or to error-prone behavior, such as in the case of failed packet trans-
missions.

7.5.5 Experiments

We have conducted two sets of experiments for each requirement of the WMSN case-study.
Initially, we have used the BIP Calibrated System Model detailed in Section 7.5.2 to evalu-
ate the corresponding properties for Requirement 1 (Property 1, Property 2 and Property
3) through the SMC-BIP tool (Chapter 3) using different scenarios. Each scenario used
probability distributions, which were described in Section 7.4.3 and were considered repre-
sentative for the end-to-end delays, as we have executed several times the generated code
for the case-study in the sensor network architecture of Figure 7.23. Additionally, we have
measured the clock synchronization accuracy resulting from the generated code as well as
from the BIP Calibrated System Model, in order to evaluate the corresponding property
for Requirement 2 (Property 4). We have considered the two scenarios for the experiments
in each of the presented properties:

Scenario A. In this scenario we have considered the Poisson distribution of Figure 7.13
as an input probability distribution for the end-to-end delays in the AbsWLANModel
component. Additionally, we assumed that there is no loss bandwidth in the network,
in order to study the absence of error-prone behaviors in the application. Therefore all
packet transmissions in the applications were considered as successful.

Scenario B. For the second scenario we considered the Gamma candidate distribution in
order to calibrate the AbsWLAN component with the end-to-end delays. In this scenario,
we have introduced error-prone behavior in the application, that is associated with an
extensive loss bandwidth in the access point. This resulted in obtaining two additional
probability distributions, the λok and the λloss respectively (Figure 7.7). The former
denotes the successive successful transmissions of packets in the system, whereas the latter
the successive losses of packets. These distributions were also injected as parameters in the
AbsWLANModel and we reinitiated the tests for Requirement 1, to observe their impact
on the results.

Property 1: We have evaluated the described property according to a fixed value of
SbufferMAX , which was equal to 600. As illustrated by Figure 7.28a for the first sce-
nario P (φ1) = 0.05, whereas for the second P (φ1) = 1. The main reason that leads to
such a large deviation in the probability results is the addition of error-prone behavior

182 Chapter 7. Application of the Design Flow to WSN Systems

in the system. In particular, we have observed up to 800 consecutive losses through the
execution of the application. Thus, a much smaller number of packets were stored in the
Sbuffer. Nevertheless, the number of consecutive losses is not known when designing the
application and consequently the size of the Sbuffer should be considered at least 700 to
ensure that the maximum size of the Sbuffer is not reached.

0 100 200 300 400 500 600 700 800 900 1000

0
2
0

4
0

6
0

8
0

1
0
0

size(Sbuffer)

P
ro

b
a
b
ili

ty
(%

)

size(Sbuffer)

P
ro

b
a
b
ili

ty
 (

%
)

(a) Scenario 1

0 100 200 300 400 500 600 700 800 900 1000

0
2
0

4
0

6
0

8
0

1
0
0

size(Sbuffer)

P
ro

b
a
b
ili

ty
(%

)

(b) Scenario 2

Figure 7.28: Probabilities of satisfying φ1 in the system

Property 2: Through our experiments we identified that the probability of underflow
avoidance in the Mbuffer is strongly influenced by the initial audio playout delay (p1).
Specifically, in Figure 7.29 we can observe that for both scenarios p1 should be at least
1210 ms, meaning that the consumption of audio packets from the speaker of the Master
component should not start before this time duration has elapsed. The small difference
observed for this property between the probability results of the two scenarios is also
caused by the amount consecutive packet losses. Therefore, in the second scenario the
time duration which is necessary to receive the sufficient number of packets in the Mbuffer
component is slightly longer. Nevertheless, for p1 ≥ 1430 ms we have obtained from the
experiments that P (φ2) = 1 for both scenarios.

Property 3: This property also depends on the initial sampling period value (p1), meaning
that the number of packets which is stored in the Mbuffer depends on the time duration
that the speaker of the Master component waits until it starts the consumption of packets
in the system. Thus, we have experimented with different values for p1 and illustrate
the results in Figure 7.30. After p1 elapsed the rate with which the microphone samples
were transmitted was equal to the rate that they were reproduced (PM = PP) leading to
no further deviation in the produced results for the specific application. Therefore, for a
given value of MAXMBUFFER equal to 10 P (φ3) = 1 as measured in the experiments,
this property is satisfied.

Property 4: This requirement is satisfied by considering the property of maintaining a
bounded synchronization accuracy, which is defined as: φ4 = (|(θM − θS) − A| < ∆),
where θM − θS denotes the difference between the Master clock (θM) and the software
clock computed in every Slave (θS). Additionally, A indicates a fixed offset between the
Master and each computed software clock and ∆ is a fixed non-negative number, denoting
the resulting bound.

7.5. Case study: Wireless Multimedia Sensor Network 183

0 200 400 600 800 1000 1200 1400 1600

0
2
0

4
0

6
0

8
0

1
0
0

Initial playout delay (ms)

P
ro

b
a
b
ili

ty
(%

)

Initial playout delay (ms)

P
ro

b
ab

il
it

y
 (

%
)

Initial playout delay (ms)

P
ro

b
ab

il
it

y
 (

%
)

(a) Scenario 1

0 160 320 480 640 800 960 1120 1280 1440 1600

0
2
0

4
0

6
0

8
0

1
0
0

Initial playout delay (ms)

P
ro

b
a
b
ili

ty
(%

)
(b) Scenario 2

Figure 7.29: Probabilities of satisfying φ2 according to the initial playout delay

● ● ● ● ● ● ● ●

1 2 3 4 5 6 7 8

0
2
0

4
0

6
0

8
0

1
0
0

size(Mbuffer)

P
ro

b
a
b
ili

ty
(%

)

●

●

●

● ● ● ● ●

● ●

●

●

● ● ● ●

● ● ● ● ●

●

●

●

p1=180

p1=500

p1=1000

p1=1500

P
ro

b
ab

il
it

y
 (

%
)

size(Mbuffer)size(Mbuffer)

P
ro

b
ab

il
it

y
 (

%
)

(a) Scenario 1

● ● ● ● ● ●

1 2 3 4 5 6

0
2
0

4
0

6
0

8
0

1
0
0

size(Mbuffer)

P
ro

b
a
b
ili

ty
(%

)

●

●

●

● ● ●

● ●

●

●

● ●

● ● ● ●

●

●

p1=180

p1=500

p1=1000

p1=1500

size(Mbuffer)

P
ro

b
ab

il
it

y
 (

%
)

size(Mbuffer)

P
ro

b
ab

il
it

y
 (

%
)

(b) Scenario 2

Figure 7.30: Probabilities of satisfying φ3 for various initial playout delays

In the initial phase of our experiments we used the results obtained from the generated
code for the case study, to estimate the clock synchronization accuracy of a Slave devices.
Specifically, in Figure 7.31a we illustrate the time difference between the Master and the
software clock computed in the PLL of the Slave. The software clock follows the advance
of the Master clock and maintains a relative offset from it (here around 100µs) with a
resulting accuracy of 76µs. As illustrated in [RLL08], in a PLL-based approach this offset
depends on the synchronization frequency of the application. Although an increase of this
frequency results in better synchronization, it is simultaneously increasing the number
of transmitted packets in the network. This leads to higher energy consumption, thus
shortening the network lifetime.

In the second phase of our experiments we used the BIP Calibrated System Model to

184 Chapter 7. Application of the Design Flow to WSN Systems

derive a bound on the clock synchronization accuracy by using several simulations through
the SMC-BIP tool. Each simulation used a different probabilistic distributions for the end-
to-end delays obtained from the execution results of the application in the sensor network
architecture to test if the expected bound ∆ = 1µs is achieved. However, as it can be
depicted by Figure 7.31b the achieved bound by the simulations was always above the
defined bound of 1µs for A = 100µs. As a subsequent step we repeated the previous
experiments, in order to estimate the best bound for the clock synchronization accuracy.
Thus, we tried to estimate the smallest bound, which ensures synchronization with prob-
ability P (φ4) = 1, by repeating the previous experiment for a variety of ∆ between 10µs
and 80 µs. The simulations have validated that the synchronization bound observed in
the execution results of the generated code was 76 µs in every system’s execution, despite
the greater variation in the BIP Calibrated System Model (Figure 7.31b). This observed
variation of the model in this case allows better functional and behavioral analysis of the
WMSN application.

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

140

160

180

S
y
n
c
h
ro

n
iz

a
ti
o
n
 e

rr
o
r

(u
s
e
c
)

Number of samples

(a) Generated code

0 200 400 600 800 1000 1200
20

40

60

80

100

120

140

160

180
S

y
n
c
h
ro

n
iz

a
ti
o
n
 e

rr
o
r

(u
s
e
c
)

Number of samples

(b) BIP System Model

Figure 7.31: Synchronization accuracy (in µs) obtained from the experiments

7.5.6 Summary and Discussion

This chapter has presented the application of the rigorous design flow for networked em-
bedded systems in the popular category of WSN systems. In order to adapt for the
specific type of systems the resulting flow takes as input PPM specifications describing
the application software and the mapping in hardware platforms as well as an XML-
based specification containing configuration parameters for a WLAN sensor network. The
flow is used to automate the code generation process for WSN systems through rapid
prototyping techniques as well as to provide proper configuration for the developed ap-
plications. Its main advantages are on the one hand the existence of executable code for
the target platform as well as for debugging purposes and on the other the development
of correct and functional applications before the final system deployment. The latter is
accomplished by synthesizing an BIP System Model from the input PPM specifications.
This model represents faithfully the target system, as it is calibrated with runtime metrics
(e.g. end-to-end and data processing delays) obtained from the execution of the generated
code on the WLAN hardware architecture. The calibration is performed by adding to
the model as parameters probabilistic distributions, which are obtained using distribution
fitting techniques. Moreover, the model is executable, meaning that it can be tested,

7.5. Case study: Wireless Multimedia Sensor Network 185

simulated and validated using the associated tools of the BIP toolset. We illustrated the
presented approach through a Wireless Multimedia Sensor Network (WMSN) application,
where we evaluated critical functional and extra-functional requirements, such as buffer
utilization and clock synchronization accuracy through statistical model checking. It also
exploits the advantages of the generated code for deployment on the target platform and
for debugging purposes. The conducted experiments focus on critical functional and extra-
functional system requirements of WSN systems, such as memory utilization in the buffers
of each device as well as the clock synchronization accuracy.

An interesting direction to be considered in the future work is the reduction of the rel-
ative offset between the software clock (computed in each device), according to a common
time reference. Thus, we are experimenting with various clock synchronization frequencies,
whilst trying to keep the amount of packets in the network as low as possible. This may as
well lead to a change of the clock synchronization protocol. Additionally, we could provide
additional support for a broader range of applications, by extending the design flow to
support multi-hop networking through energy-efficient routing protocols. Multi-hop net-
working is an increasing domain of interest in WSN systems, as it allows the deployment
of applications where sensors interact over large distances in order to gather, process and
exchange data without any human intervention. Through this extension we would be able
to analyze the effects of multi-hopping on the presented system requirements. These ef-
fects may concern the impact on the communication latencies, packet losses as well as the
additional conflicts in the network stack, in the presented system requirements. Further
improvements may be considered as well in the design flow in order to automate the gener-
ation of a BIP Application Software Model from the translation of the PPM specifications
using the PPM2BIP tool (briefly described in Chapter 4).

In the following chapter we present the application of the rigorous design flow for
networked embedded systems in environments supporting lower resource platforms than
Linux. Even though they are more energy-efficient, they allow the transmission of a small
amount of data in each packet. The design flow allows us to analyze the impact and the
additional latencies of such systems.

186 Chapter 7. Application of the Design Flow to WSN Systems

- Chapter 8 -

Application of the Design Flow to IoT Systems

In this chapter we apply the rigorous design flow for networked embedded systems (Chap-
ter 4) in the recently emerging category of IoT systems (previously presented in Chapter
2. The resulting flow is demonstrated through the Contiki OS and uses of model-based
techniques, to provide a faithful as well as fine-grained analysis of such systems. It uses
as input high-level domain-specific language (DSL) specification to describe the applica-
tion software (described in Section 8.4.2), the PPM XML specification for the application
deployment in the target architecture and a WPAN network configuration XML file for
tuning important IoT network parameters (Section 8.4.1). It proceeds developing a frame-
work which (1) automates the process of generating executable code for the deployment
in Contiki OS dedicated platforms as well as (2) leads the construction of a system-level
model in BIP. The constructed model provides a much more fine-grained analysis in terms
of timing granularity in comparison with the existing tools (e.g Cooja/MPSim). Addition-
ally, it also provides support for the validation of important functional and extra-functional
requirements for such systems.

The design flow for IoT systems which is introduced in this Chapter provides three
main contributions. First, it constitutes a systematic approach for the design of IoT
systems using formal methods and model-based design techniques. Since IoT systems is
a novel and rapidly evolving category of networked embedded systems, the existing work
towards a top-down approach for their design is currently limited. An interesting effort
in this direction is demonstrated in [SLT+14], where the authors detail on a reference
workflow for the design and development of such systems. The workflow used model-
based design techniques and is influenced by the “V-Model” cycle to support high-level
IoT application development using the graphical Matlab tools. It also allows hardware
in the loop simulation as well as the generation of network simulations to be executed
in Contiki. Nevertheless, since it relies on MATLAB/Simulink there is no support for
addressing specific functional and extra-functional requirements as well as it inherits the
existing system design and development limitations of the “V-Model” cycle (described in
Chapter 1).

A second contribution concerns support of tools and methods for automating the de-
sign phases of the design flow as well as for facilitating the development of functional IoT
applications using the Contiki OS. In particular, in this Chapter we introduce a framework
for the simulation, testing and verification of Contiki OS applications. This framework
(available online in 1) provides a better fine-grained analysis (in terms of granularity) than

1http://depend.csd.auth.gr/ServiceSystemsModelling.php

187

188 Chapter 8. Application of the Design Flow to IoT Systems

the Cooja/MPSim environment which is integrated in the operating system. A relevant
simulation tool which is frequently used for providing accurate performance metrics in IoT
applications is NetSim [TET]. However, it concerns only the network communication and
more specifically some of the protocols used in the Contiki network stack and not the whole
operating system as well as the applications deployed upon it. An additional remark to
these tools is that they can only provide support for system simulation, which is a partial
assurance of the IoT system’s behavior and therefore not adequate for guaranteeing cor-
rectness properties and the application’s functional and extra-functional requirements. To
this end, DiaSuite [BBC+14] supports a framework for the different development phases
of Sense-Compute-Control (SCC) applications, through an integrated high-level specifica-
tion. Although it is enriched with a methodology to address extra-functional requirements,
validation support for them is not provided. Finally, the proposed framework in this Chap-
ter includes support for code generation from the input DSL description through the use
of rapid prototyping techniques. Similar work has been presented in [GPF10] where the
authors define a domain-specific language (SM4RCD) based on Finite State Machines
(FSM) to support code generation targeting IoT hardware platforms. Nevertheless, the
operating system support does not include many well-known IoT operating systems (e.g.
Contiki, RIOT) as well as their dedicated hardware platforms and is only limited to iSense
WSN operating system 2.

A third contribution concerns the addition of error-prone behaviors in the BIP Sys-
tem Model and the performance analysis with respect to the initial ideal behavior. These
may either relate to the loss of bandwidth or radio interference in the form of additive
electromagnetic noise in Contiki OS systems. The effects of the former are related to an
increase on the probability of packet losses and were demonstrated as a part of the two
case-studies that in this Chapter. On the other hand, the latter may result in augmenting
the packet collision rate, as it causes error-prone access in the wireless communication
medium (detailed in [ZHKS04]). Similar error-prone behaviors can be also provided by
the Cooja/MPSim environment as described in [BRÖV11], however they are only related
to electromagnetic noise, as a form of radio interference. Yet another error-prone behav-
ior in this direction is multipath fading in radio communications [WLMP10], where the
transmitted data do not reach the destination only through the direct path, but also from
resulting reflections in physical objects (e.g. buildings, hills, water). As an outcome the
destination network device may not be able to decode the received data even when being
close to the transmitter.

The remainder of this chapter is organized as follows. Section 8.1 provides an overview
of the flow along with its inputs and design phases. In Section 8.2 we detail on the
rules and principles that were used for the construction of a functional system-level model
for IoT systems, demonstrated through the Contiki operating system and the supported
protocols of its network stack. The construction is based on the detailed modeling of the
functional behavior of the operating system as well as the mechanisms its uses for event-
scheduling and the communication mechanisms employed by each network stack protocol.
The resulting model represents the entire kernel of the operating system, as presented in
Section 8.3. Then, Section 8.4 illustrates the tools and methods that were developed to
automate the different design flow phases. The flow for IoT systems is afterwards are
presented through two case studies focusing on performance evaluation and analysis in a
smart heating system (Section 8.5) as well as more industrially relevant IoT application
deployed in a building automation system (Section 8.6). The chapter summarizes the
presented work and discusses future directions and perspectives in the application domain

2http://www.coalesenses.com/index.php/products/solutions/isense-software/

8.1. Overview of the design flow for IoT systems 189

of IoT systems in Section 8.7.

8.1 Overview of the design flow for IoT systems

An overview of the flow is provided in Figure 8.1 and consists of the following design
phases:

Transformation

Contiki OS
Kernel
Model
(BIP)

(BIP)
Model
System

exploration)
(state−space
Verification

Application
Model
(BIP)

IoT

(DSL)

Application

description

1Translation

Fault

(BIP)
model

Modeling

(BIP)

component
library

Preliminary phase

standards
communication

network stack
Contiki kernel/

Contiki OS

configuration

(XML specification)

Translation

WPAN network

(XML)

Mapping

evaluation
(SMC)

Performance

4

Simulation
(e.g. Cooja)

Distributed
deployment

Code

generation

7

Runtime

(e.g. packet
delivery ratio)

measurements
error

5 6

3

2

Figure 8.1: Design flow for IoT systems

0. Preliminary development of the OS kernel library. This library includes the
model fragments developed for the OS and the network stack (detailed in Section
8.3), which are reused in every new IoT system design. The library is used to instan-
tiate all the necessary components, according to the particular Contiki application.

1. Construction of the IoT Application Model. The IoT Application Model in
BIP is generated through the translation of a DSL specification for a given REST-
ful Contiki application. The translation is done by performing a set of systematic
transformations, which are ensuring the behavioral preservation of the Contiki ap-
plication. The structure of the DSL description is preserved when it is translated
into BIP and this allows to trace the analysis findings back to the DSL description.

190 Chapter 8. Application of the Design Flow to IoT Systems

2. Synthesis of the Contiki OS Kernel Model. This model represents the un-
derlying architecture of Contiki OS systems and is obtained from a translation of
the input WPAN network configuration specification, which specifies how the model
fragments of the Contiki OS component library are instantiated and interconnected.
Furthermore, the translation allows parameterization of the model fragments in or-
der to analyze performance aspects of the operating system and its network stack
protocols. In the absence of dedicated parameters for the model fragments, they are
initialized with default values from the Contiki kernel or the network stack commu-
nication standards.

3. Code generation for the IoT system. The code for IoT applications is generated
from the validated DSL application description in several steps. First, generic and
reusable code templates for the resources, resource handlers and the Contiki pro-
cesses are initially developed by the user. Secondly, the code templates are parame-
terized according to the DSL application description and deployment specifications.
Accordingly, dedicated tools are used which target the code generation in either a
platform-dependent form to directly deploy it into the distributed IoT system, or in
a platform-independent form for simulation in an OS-specific tool, such as the Coo-
ja/MPSim environment for the Contiki OS. Finally, the behavior and performance
of the generated code is compared with the manually developed code.

4. Construction of the BIP System Model. The BIP System Model is obtained
through a series of systematic transformations, which apply a set of interactions and
priorities, in order to compose the IoT Application Model and the Contiki Kernel
Model. The composition is based mapping specification, which in the context of the
flow is similar to the XML description in the PPM framework.

5. Verification of the BIP application or system level models. The constructed
model for the IoT application software (IoT Application Model) as well as for the
whole system (BIP System Model) are verified for deadlock-freedom through the BIP
state-space exploration tool. Additionally, in this phase we can also check functional
correctness in the aforementioned models.

6. Validation of functional and extra-functional requirements. On the one
hand the functional requirements refer to characteristics of the application, such
as the maintenance of temperature in dedicated levels. On the other hand extra-
functional requirements refer to critical constraints for IoT system, such as memory
availability and latencies for communication and data processing. Both sets of re-
quirements are formulated as system-level PBLTL properties and evaluated through
the SMC-BIP tool.

7. Fault injection in the BIP System Model. Various error-prone behaviors may
be analyzed through fault injection in the BIP System Model. The fault injection
capabilities can be optionally added through dedicated fault models in the BIP
System Model in order to handle error-prone behaviors in Contiki applications. The
fault models are parameterized through realistic runtime system error measurements
(i.e. packet delivery ratio, signal-to-noise ratio and bit-error rate) that are obtained
by the execution of the generated code in design phase 3 on a distributed hardware
architecture. Our focus here lies on injecting realistic loss of bandwidth and radio
interference in the form of additive electromagnetic noise in the BIP System Model.
The former increases the probability of packet losses and out-of-order deliveries and

8.2. Modeling rules and principles 191

the latter results in error-prone access in the wireless communication medium that
can augment the packet collision rate.

8.2 Modeling rules and principles

In this section we detail on the rules and modeling principles we followed in order to develop
an BIP System Model in BIP. The model represents the functionality and architecture of
Contiki OS systems, in all the software and middleware layers, until its final deployment
in the target Contiki OS devices (i.e. hardware platforms). Specifically, each Contiki
device is represented by BIP models at three different levels, namely the REST module
allocated to the device, the Contiki OS functionality and the protocol stack, which allows
communication through the network channel.

Our model represents Contiki systems that rely on Wireless Personal Area Network
(WPAN) communication using the ad-hoc mode and the Basic Access (BA) mechanism,
defined in Chapter 2 as a carrier sense multiple access with collision avoidance (CS-
MA/CA). Additionally, we chose to represent in the physical layer the Direct Sequence
Spread Spectrum (DSSS) modulation technique. This choice also determines the default
values for model parameters.

The developed model also supports many features of the Contiki network stack, such as
the handling of resources through the HTTP and CoAP protocols. The handling is based
on modeling the REST resource handlers for several resource types, which include peri-
odic, event and actuator resources. Additionally, when a resource is defined as periodic,
clients can subscribe to its changes by transmitting an observation request to the server
(Chapter 2). In any case, the resource content is then provided in plain text, XML or
JSON format. Another important feature is the fragmentation technique, which is applied
to support the transmission of sufficiently large frames (e.g. image data for video surveil-
lance). The fragmentation in the model aids in transmitting information in subsequent
frames, separated by dedicated identifiers as described in [KDD11].

The overall architecture of the model is illustrated in Figure 8.2. As it shown, the
BIP System Model comprises two layers, namely the RESTful Application Model, which
describes the IoT application software, and the Contiki Kernel (Contiki Kernel Model),
which represents the Contiki OS (OS components) and the network stack (Network compo-
nent). RESTful Application Model consists of several RestModule composite components
that are deployed in different Contiki devices (i.e. hardware platforms). Each RestMod-
ule includes a number of process components (P1 to Pk) and optionally a set of resource
components (R1 to Rn), representing REST resources, and associated resource handler
components (Hi to Hj), in order to manipulate the resources. The Contiki Kernel Model
includes the composite components for the OS of every device and the Network composite
component, with components for the modeling the entire network stack of each device
(NetStack 1 to NetStack N) and the communication channel (Channel). In this abstract
view of the architecture, the RestModule interacts with the Contiki Kernel Model through
the process components to perform two main actions: exchange data (handleMsg port of
the Contiki Kernel Model) or signal events that need to be scheduled (schedule port of the
Contiki Kernel Model). While the interactions inside the RESTful Application Model are
application-specific, the Contiki Kernel Model includes additional interactions between its
dedicated components. Specifically, the OS components interact with the Network, in or-
der to transmit (sndPacket port) or receive (rcvPacket port) data packets. Furthermore,
each NetStack component of the Network can either interact with the Channel, in order to
sense if it is free (chanSense port), or with another NetStack component to exchange data

192 Chapter 8. Application of the Design Flow to IoT Systems

through UDP using the unicast, multicast or broadcast communication types 3(sndRcv
port).

sndPacket rcvPacket

sndPacket rcvPacket

schedule handleMsg

A B A B A B

chanSense sndRcv

Network

Contiki Kernel Model

H1 Hj

Rn

R1 H1 Hj

Rn

R1

RESTful Application Model

OS NOS 1

RESTModule 1 RESTModule N

sndPacket rcvPacket

sndPacket rcvPacket

schedule handleMsg

A B

PkP1P1 Pk

Channel

NetStack 1 NetStack N

chanSense sndRcv

chanSense

Figure 8.2: BIP model for the Contiki IoT system architecture

A definition of the model’s structure (Figure 8.2) as a context-free grammar is:

SystemModel ::= RESTAppModel . ConKernel
RESTAppModel ::= RestModule+

RestModule ::= Process+ (Resource . ResHandler)∗

ConKernel ::= OS+ . Network
OS ::= Scheduler . T imer . CommHandler

Network ::= NetStack+ . Channel
NetStack ::= MsgSender . MsgReceiver

The timing aspect of the BIP System Model depends on the granularity of a discrete
time step, which has been defined based on the transmission time per bit through the
physical layer of the Contiki network stack. This time is the inverse of the data rate of
a Contiki network’s access point. The smallest unit of data transmitted is one symbol (4
bits) and the symbol transmission time is:

symbolPeriod =
4

dataRate
(8.1)

3Support for broadcast transmissions in Contiki is provided through its native Rime stack [Dun07]

8.3. Contiki OS Kernel Model 193

In the scope of this dissertation we consider as access point a Tmote Sky platform,
which serves as 6LoWPAN border router connected to a computer running Linux. The
access point operates in a frequency at the 2.4 GHz band, the data rate is equal to
250 kbps, therefore from Equation 8.1 the symbol period is equal to 16µs. Thus, our
timing abstraction ignores delays smaller than the inverse of this data rate, which is 4µs.
However, this abstraction allows a much more fine-grained timing analysis compared to
the one supported by the Cooja simulator, which is in the ms scale.

We have also integrated values of important parameters to the BIP System Model,
in order to model faithfully software-dependent runtime constraints of the Contiki OS.
These parameters are: (i) the time needed for compression and decompression of the
packets’ IP headers according to the HC1/HC2 encoding mechanisms [MKHC07], (ii) the
pre- and post-buffering taking place for each packet transmission. The values for these
parameters were obtained by measuring the duration from the beginning till the end of the
corresponding executable block of code within the Contiki OS. The modeling technique
which was used is based on process profiling (Chapter 4) and described in Section 8.4.3.
We note that the actual parameter values differ from system to system, since they mainly
depend on the available computational resources. Additionally, the HC1/HC2 encoding
mechanisms are used under the assumption that the source and destination addresses are
link-local, in the opposite case the duration of IPHC encoding mechanism [HT11] should
be likewise measured.

8.3 Contiki OS Kernel Model

The Contiki OS Kernel Model consists of the OS and the Network composite components.
The former models the behavior of the Contiki kernel [DGV04] regarding the schedul-
ing and the event-based interprocess communication. The latter represents the Contiki
network module and therefore models the entire network stack.

The Contiki Kernel Model uses 4 categories of ports for its interactions, which are
defining:

a. Interactions with IoT Application Model

b. Interactions between the individual components of the Contiki Kernel Model

c. Interactions with both the IoT Application Model and the components of the Contiki
Kernel Model

d. Global synchronization interactions in the Contiki Kernel Model

8.3.1 Modeling the Contiki Kernel

The OS composite component (Figure 8.3) models the behavior of the Contiki OS kernel
[DGV04] regarding the scheduling and the event-based interprocess communication in the
operating system. It interacts with the RESTModule (Figure 8.4) in order to receive
and handle incoming events and with the Network component (Figure 8.8) to transmit or
receive frames. For comprehension purposes in Figure 8.4 we illustrate the interactions of
the OS component with only one process of the RESTModule composite component, but
the same interactions apply for several processes. The OS consists of the Scheduler, the
Timer and the CommHandler atomic components. The Scheduler manages the incoming
events, the Timer models the simple timer process and the CommHandler the TCP/IP
process.

194 Chapter 8. Application of the Design Flow to IoT Systems

Port Description Category

reqTrans Receives data transmission requests through the Contiki processes a

msgSnt Informs the requesting Contiki process about successful data transmission a

dlvrMsg Delivers received data to the destination Contiki process a

sndPacket Triggers data transmission through the Contiki network stack b

rcvPacket Receives data through the Contiki network stack b

beginT Initiates a transmission through the channel b

busy Blocks an attempted transmission due to an occupied channel b

free Notifies the blocked stations that the channel is free again b

transmit Transmission of a data packet in the Contiki network stack b

recv Reception of a data packet in the Contiki network stack b

endT Indicates the end of an ongoing transmission b

col Indicates the simultaneous transmission of more than one packets b

ack Transmission of a data acknowledgment packet b

recvAck Reception of a data acknowledgment packet b

call Calls a process of the IoT Application or the Contiki Kernel Model c

yield Informs the Contiki kernel that a Contiki process has yielded c

ends Informs the Contiki kernel that a Contiki process has finished c

resume Resumes a yielded Contiki process c

setTimer Sets a timer in the Contiki kernel c

postSyn Posts an asynchronous event to the Contiki kernel c

postAsyn Posts an asynchronous event to the Contiki kernel c

pollReq Requests a poll for a Contiki process c

tick Denotes the time step advance in the model d

Table 8.1: Ports used for the Contiki Kernel Model interactions

rcvPacket endSndsndPacket

tick

OS

ends

resume

call setTimer

postSyn

postAsyn

pollReq

postPoll

postAsyn

postSyn

called

yield

Scheduler

Timer

yields

yield

procPoll

CommHandler

reqTrans

msgSnt

called

dlvrMsg

Figure 8.3: OS composite component

Contiki Scheduler component in BIP

The Scheduler receives the events from the processes of the RestModule. These events are
of four types in the model concerning the 1) initialization (INIT event), 2) synchronous
or asynchronous event posting 3) polling (POLL event), 4) yielding and exiting (EXIT or
EXITED events) of every process. In the model all the previous events are distinguished
into synchronous and asynchronous and stored in a LIFO stack (syn in Figure 8.5) as well

8.3. Contiki OS Kernel Model 195

postAsyn

postSyn

pollReqyields

ends
resume

call

handlerEnd

callHandler

handlerEnd

callHandler

postSyn

OS

postAsyn

postSyn

procPoll

postAsyn

procPoll

msgSnt

msgSnt dlvrMsg

tick

msgSntgetMsg getMsgsndMsg sndMsg

setTimer

setTimer request

setTimer

RESTModule

Process 1 Process N

sndPacket recvPacket

resume

ends

yields

called

resume

ends

yields

called

Figure 8.4: Interactions between the RESTModule and the OS composite components

as a FIFO queue (syn in Figure 8.5) accordingly. The presence of such an event, requires
that is handled either immediately as in the case of synchronous events (postSyn port) or it
is deferred as in the case of asynchronous events (postAsyn port). Every event is described
by the tuple (srcID,destID,type,payload), denoting the caller and destination process, its
type as well as its data (if it carries). Once chosen (pickMsg port) it can be send to
the destination process through the call port. The only exception is with initialization,
usually done through autostarting of processes (autoStart port), and exiting events sent
by the kernel itself. These events are used to add or remove respectively processes in the
process list (pList in Figure 8.5) of the Scheduler. Each time a called process finishes its
processing, it may either yield (yields port) or exit (ends port). In the former case, it
can be later resumed (resume port), removing as well the event it posted (rmvMsg port),
whereas in the latter case it notifies all the concerned processes through an EXITED event
(notifyExited). If no event is present either in the synchronous stack or the asynchronous
queue the Scheduler returns to the initial (s0) control location through the noCalled port.
The Scheduler component includes additional behavior related to the control sequence of
the Contiki kernel, which is followed when there are no synchronous events in the LIFO
stack (doAsyn port). Starting from the second initial control location L0 it first adds
polling events for the active processes of the process list (doPoll port) to the synchronous
stack if a poll request was received through the reqPoll port and secondly schedules the
execution of asynchronous events (doAsyn port).

Contiki Timer component in BIP

The Timer component (Figure 8.6) receives the incoming timer requests (setTimer port)
by the processes of the IoT Application Model and subsequently stores them in a stack.
Each timer request includes a timer mode allowing to set, reset, restart or stop a particular
timer. Whenever this component gets polled (POLL event through the called port) by the
Scheduler component, it checks if there are any expired timers in the stack (chkExpired

198 Chapter 8. Application of the Design Flow to IoT Systems

component includes a Channel component, responsible of informing the network devices
of pending network transmissions as well as for resolving deterministically collisions that
may arise from the simultaneous transmission attempt of multiple devices.

Each frame sent in the modeled network stack can be of three types: data transmission
(data frame) or specific command transmission (MAC command frame) and acknowledg-
ment of successful data reception (acknowledgment frame). The difference in the first
two types is the command type byte in the payload of the frame. In all types a frame is
represented by the tuple: (srcID, srcPort, destID, destPort, resourceID, resourceMethod,
frameSize, AR, payload), where:

Packet field Description

srcId IPv6 address of the source WPAN device
srcPort Communication port used by the source WPAN device
destId IPv6 address of the destination WPAN device

destPort Communication port used by the destination WPAN device
resourceID Id of the target resource

resourceMethod Method used to access the resource
pktSize Data size
payload Packet data

Table 8.2: Packet fields in the Contiki Network Model

tick tick

busy freebeginT endT

beginT busy endTfree

Channel

Network

beginT endTfreebusy

tick

yields

ends
resume postSyn

postAsyn

pollReq

call setTimer

tick

yields

ends
resume postSyn

postAsyn

pollReq

call setTimer

OS 1 OS N

sndPacket

transmit

recvAck

ack

recvPacket

transmit

recvAck

ack

recvPacket

sndPacketsndPacket

sndPacket

recv recv

rcvPacket rcvPacket

reqTrans reqTrans

NetStack 1 NetStack N

Figure 8.8: Interactions between the Network and the OS components

The transmission through the network stack model is initiated when the MsgSender
component (Figure 8.9) receives a frame through the sndFrame port. Accordingly, the
number of successive retransmissions (NB) is set to zero. Before making any attempt to
access the channel this component has to wait for a random number of backoff periods,

8.3. Contiki OS Kernel Model 199

termed as aUnitBackoffPeriod, in the interval (0, 2BE−1), where BE indicates the backoff
exponent and is initially equal to macMinBE. If during this waiting time there is no
ongoing or initiated data transmission the MsgSender component proceeds to the Clear
Channel Accessment (CCA). In the opposite case it moves to the s3 control location
through the port busy, where it waits for the end of the ongoing transmission. The latter
is indicated by an interaction with the Channel component through the port free. After
the CCA time duration elapses (accessChan port) the MsgSender component senses if
the channel is free. In this case it attempts to interact with the Channel component
in order to start its transmission (beginT port). If it isn’t (busy port) as well as in
case this transmission collides with the transmission of another device (collision port),
the attempted transmission halts and the component moves to the s7 control location.
Being there, it will try to retransmit the same frame by incrementing by 1 the number of
successive retransmissions (NB). The value of the backoff exponent is also be incremented
by 1 as long it is inferior to the maximum value (macMaxBE). If the frame is rescheduled
for transmitted more times than the macMaxCSMABackoffs parameter indicates, then
the transmission is aborted (failed port) and a new frame transmission is initiated. After
a successful access of the Channel (success port) each frame is transmitted through the
send port when its overall transmission time has elapsed. This time constitutes from the
6-byte packet overhead (Preamble and Start of Frame Delimiter [SHR], as well as Frame
Length [PHR]) and the length of the data. The latter depends on the frame packetSize
value and can be between 0 and aMaxPHYPacketSize, defined in [sC+03] as 127 bytes.
Therefore, the resulting frame transmission time in the model is computed as:

tdata = (packetSize+ SHR+ PHR) · 8 · τsymbol,

where τsymbol indicates the symbol period

The transmitted frames in the model can have the AR field set (ackSet port) or not (noAck
port). In the former case an acknowledgment frame is requested and the transmission
cannot end before it is received. Therefore, the MsgSender component will initiate a
timeout, whose duration is equal to the macAckWaitDuration. If this timeout elapses
(texpired port) the number of frame transmission retries (NR) is increased by 1. The
transmission is reinitiated until this number surpasses the aMaxFrameRetries parameter
value, a situation which leads also to a transmission failure (failed port). The end of each
frame successful transmission is indicated to the Channel through the endT port.

Model parameter Value

aUnitBackoffPeriod 20 symbol periods
CCA duration 8 symbol periods

macMaxCSMABackoffs 0-5 (default 4)
macAckWaitDuration 54 symbol periods

macMinBE 3
macMaxBE 3-8 (default 5)

aMaxFrameRetries 3
tdata 120-1064 symbol periods
tack 136 symbol periods

aTurnaroundTime 12 symbol periods
SIFS 12 symbol periods
LIFS 40 symbol periods

Table 8.3: Parameters of the modeled network stack

Each transmitted frame is received by the MsgReceiver component through the re-
ceive port. Following an interaction through the port recvFrame the frame is accordingly

8.4. Tools and methods for IoT system development 203

<wirelessSet configuration="WPANset">

<wirelessProfile>

<topology>WPAN</topology>

<ssid>TMoteSky frequency="250kbps"</ssid>

<connType>ESS</connType>

<channelBand868>0</channel5Band>

<channelBand915>0</channel5Band>

<channel2450Band>26</channel2450Band>

<devMode>station</devMode>

</wirelessProfile>

<confInstance>

<UIP_LINK_MTU>1280</UIP_LINK_MTU>

<UIP_TIME_WAIT_TIMEOUT>120ms</UIP_TIME_WAIT_TIMEOUT>

<UIP_CONF_IPV6>0</UIP_CONF_IPV6>

<UIP_BROADCAST>0</UIP_BROADCAST>

<LoWPAN>

<SICSLOWPAN_CONF_COMPRESSION>1</SICSLOWPAN_CONF_COMPRESSION>

<SICSLOWPAN_CONF_FRAG>0</SICSLOWPAN_CONF_FRAG>

</LoWPAN>

<IEEE802.15.4>

<macMaxCSMABackoffs>4</macMaxCSMABackoffs>

<macMinBE>3</macMinBE>

<macMaxBE>5</macMaxBE>

</IEEE802.15.4>

</confInstance>

</wirelessSet>

Figure 8.13: Fragment of the configuration profile for a WPAN network

The “devMode” element defines the functionality of the device in the network. Tunable
parameters for the Contiki network stack are defined under the “confInstance” element.
These parameters are used either for configuring the uIP TCP/IP stack of the Contiki
kernel (uipopt.h) or for analyzing performance aspects in the network stack. The configu-
ration of the uIP TCP/IP stack refers to the maximum transmission unit at the IP Layer
(“UIP LINK MTU” element), the use of IPv6 addressing “UIP CONF IPV6” element),
the maximum transmission timeout (“UIP TIME WAIT TIMEOUT” element) as well as
the support of broadcast communication (“UIP BROADCAST” element). Additional pa-
rameters are specifying attributes of the LoWPAN protocol, such as the compression of
IP headers (“SICSLOWPAN CONF COMPRESSION” element) and the fragmentation
of large data packets (“SICSLOWPAN CONF FRAG” element). Performance aspects in
the Contiki network stack are analyzed through parameters under the “IEEE802.15.4” el-
ement, such as the “macMinBE”, “macMaxBE” which determine the exponential backoff
mechanism, or the “macMaxCSMABackoffs” and “macMaxFrameRetries”, which deter-
mine the timeout for packet reception. These parameters have to be selected carefully, as
they have a strong impact on the network throughput and the number of channel collisions.

The translation tool is developed in the Python programming language. It consists of
320 lines of code and parses the XML WPAN network configuration file to generate the
corresponding BIP textual description file.

8.4.2 Using the DSL application description

In this section we illustrate the input DSL application description and its use in order
to facilitate the development of application-level REST Contiki modules. Specifically,
although application programming in the Contiki OS is using the C language, a developer
should however have a good knowledge of its syntax and semantics i.e. the macros and
functions used in Contiki applications. We hereby propose a possibility of developing the
IoT application at a higher level of abstraction using the input XML-based DSL description
of the proposed IoT system design flow. The DSL description is used in this context to:

204 Chapter 8. Application of the Design Flow to IoT Systems

• Automatically generate the BIP application-level model, which can be used to vali-
date important functional requirements.

• Automatically generate code that can be directly deployed to Contiki devices.

Our DSL supports the most commonly used Contiki functions for device communica-
tion and event scheduling, as well as the essential C control flow constructs. These XML
elements are parameterized through XML attributes. Specifically, we illustrate the syntax
of the DSL description as well as how it encodes into XML elements the Contiki language
constructs in Figure 8.14. In this Figure we can observe the definition of a client module,
which includes one or more processes defined with the “process id” element. Each process
allocates a set of variables (i.e. var id=“period”), communicates with one or more servers
(i.e. “server id”) and is also able of defining timers (i.e. timeout timer=“et”). Actions
that are taken upon the occurrence of an event (e.g. expiration of a timer, packet recep-
tion from the network stack) and are specified between the < waitEv > element tags. In
this fragment a request is sent to a specified server (i.e. sndReq server=“server1”), with
additional attributes specifying the resource name (i.e. resource= “temperature”), param-
eters related to the resource characteristics (i.e. mode=“Celcius”) as well as the method
of the request (i.e. method=“get”). Once a timer has expired it can be reset or restarted
using the timeout command element (here command=“reset”). Dedicated actions can be
taken upon reception of a response to a transmitted request (i.e. getResp). They may also
include complete code segments that will be included directly in the defined place when
the code is generated. These code segments are defined between the < code > element
tags.

<module id="CoapClient1" include="stdio.h,stdlib.h">

<process id="client" startOrder="0">

<var id="period" type="int" mod="const" val="CLOCK_SECOND" />

<server id="server1"/>

<server id="server2"/>

<poll> <code>printf("Process polled\n");</code> </poll>

<body>

<timeout timer="et" command="st" var="period"/>

<while boolExp="true">

<waitEv type="TIMER" >

<sndReq server="server1" resource="temperature" params="

mode=\"Celcius\";" method="get" />

<timeout timer="et" command="reset"/>

</waitEv><!-- timeout handling end -->

...

<waitEv type="TCPIP">

<getResp/>

<code>parse_message(response, uip_appdata, uip_datalen());

response_handler(response);</code>

</waitEv> <!-- response handling end -->

</while>

</body>

</process>

</module>

Figure 8.14: DSL description example for a client process

Translation to an IoT Application Model

The input DSL description was used to generate the IoT Application Model in BIP (de-
sign phase 1 in the design flow of Figure 8.1) by initially parsing its XML elements and

8.4. Tools and methods for IoT system development 205

accordingly associating them to template model fragments that were developed in BIP.
Specifically, for each described XML element of the DSL description, a mapping to a BIP
code template has been defined, so that the BIP application-level model can be automat-
ically derived through translation of the DSL description. The translation initially parses
the XML elements of the DSL specification for each Contiki process and assigns the asso-
ciated transitions (labeled by port names) in the model. Then, it uses links processes to
client or server devices and retrieves from the DSL information about the communication
between the devices in order to define the necessary interactions. Finally, it checks for any
existing arbitration or scheduling policies to instantiate relevant priorities.

A key attribute of the translation is that it is done sequentially in order to preserve
the structure of the DSL description. This simultaneously allows the developer to trace
back to XML elements of the DSL if an undesired behavior or failure in the BIP code is
observed. It is thus possible to repair the application design at the DSL description level.
As for example we point the reader to the DSL fragment of Figure 8.14, which defines a
client process that is described in the case-study of Section 8.5.1.

Code generation

The generation of deployable code in the context of the design flow (Figure 8.1) is also
supported by the input DSL description in the design phase 3. A fragment of the generated
code for the client is illustrated in Figure 8.15. It uses as a basis the previously described
DSL description and inherits its overall structure as well as the relative definitions for vari-
ables or code segments. For the DSL description example of Figure 8.14 two code segments
are defined, where the first one concerns the displayed message when the process is polled
(line 19) and the second is placed in the function handle incoming data (lines 10-11), which
is called inside the process. Moreover, from the structure of the process we can denote
that the PROCESS macro assigns to the process the reference variable client and a string.
AUTOSTART PROCESSES (line 16) requests to automatically start the process upon module’s
boot. The process code is enclosed in a PROCESS THREAD macro, allocating a dedicated
protothread for the specific process as well as defining the accessed variables, the handled
event (ev) and its data. The process control flow is included between PROCESS BEGIN

and PROCESS END. Handlers for the exit and poll events are enabled independently from
the control flow and are therefore placed before PROCESS BEGIN. The incoming events are
processed in an infinite loop (lines 28-37), according to the definition of the input DSL
description. While being inside the loop, the process is blocked (line 30) until the receipt
of an event triggering evaluation of conditions in lines 31 and 35 or likewise in lines 35-37.
The former event is related to packet transmission to the defined servers (successive calls
to the uip udp packet send API function of the Contiki network stack) when the timer
expires. On the other hand, the latter is related to the reception of a packet through
the network stack and the handling of the received data (handle incoming data function).
The control flow is diverted according to the event origin and if both conditions are false,
the process is blocked on PROCESS YIELD.

8.4.3 BIP System Model Calibration

The developed BIP System Model represents analytically the behavior and functionality
of the Contiki OS. Although, the Network components which models the network stack
includes timing information related to the data exchange, there are further time durations
that can be added in order to obtain a faithful BIP System Model. These are mainly related
to data processing delays and are measured during runtime according to the implemented

206 Chapter 8. Application of the Design Flow to IoT Systems

1 static struct uip_udp_conn *conn;

2 static struct etimer et;

3 const int period = CLOCK_SECOND; /* in sec. */

4

5 static void handle_incoming_data() {

6 if (uip_newdata()) {

7 coap_packet_t* response = (coap_packet_t*)

8 allocate_buffer(sizeof(coap_packet_t));

9 if (response) {

10 parse_message(response, uip_appdata, uip_datalen());

11 response_handler(response);

12 }

13 }

14 }

15 PROCESS(client, "Client Smart Heating");

16 AUTOSTART_PROCESSES(&client);

17 PROCESS_THREAD(client, ev, data) {

18 PROCESS_EXITHANDLER(conn_close();)

19 PROCESS_POLLHANDLER(printf("Process polled\n");)

20 PROCESS_BEGIN();

21 SERVER_NODE(&server_ipaddr);

22 SERVER_NODE2(&server_ipaddr2);

23 client_conn = udp_new(&(server_ipaddr), UIP_HTONS(REMOTE_PORT), NULL);

24 udp_bind(client_conn, UIP_HTONS(LOCAL_PORT));

25 client_conn2 = udp_new(&(server_ipaddr2), UIP_HTONS(REMOTE_PORT), NULL);

26 udp_bind(client_conn2, UIP_HTONS(LOCAL_PORT2));

27 etimer_set(&et, CLOCK_SECOND);

28 while (1) {

29 PROCESS_YIELD();

30 if (etimer_expired(&et)) {

31 uip_udp_packet_send(client_conn, buf, data_size);

32 uip_udp_packet_send(client_conn2, buf, data_size);

33 etimer_reset(&et);

34 } else if (ev == tcpip_event) {

35 handle_incoming_data(); /* function call */

36 }

37 }

38 PROCESS_END();

39 }

Figure 8.15: Generated code for the Contiki client

blocks of code in the application software. In this case we use the process profiling method
to calibrate the BIP System Model, since in the Contiki OS data processing lasts for a
fixed (deterministic) time duration. This is due to its lack of storage memory, which allows
certain computations to proceed until they are completed.

We have identified two important time durations needed to be integrated to the BIP
System Model, namely the computation time needed for compression and decompression
of the packets’ IP headers according to the HC1/HC2 encoding mechanisms [MKHC07]
and the pre- and post-buffering taking place for each packet transmission. We note here
that the pre- and post-buffering should be not be inferred as the time durations needed to
store the packets in the transmission/reception buffers, as these durations were measured
and found sufficiently smaller than the time granularity of the model. Thus, they were also
not included in the CommHandler component. Instead we here consider as pre- and post
buffering the time needed to locate the packet and store/copy its fields from/to the buffers
in the Contiki OS using its dedicated C functions. These time durations were measured
and accordingly added to the MsgSender and MsgReceiver components of the Network
using the procedure described in Chapter 3. In particular, considering the MsgSender
component of Figure 8.9, we initially add two additional control locations ss1 and ss2
as well as the corresponding transitions prebuf and encode between the sndFrame and
startTrans transitions as illustrated in Figure 8.16. In the prebuf transition we measure the
time duration for the pre-buffering (memcpy function) using the clock function clock time
of the Contiki OS. Then, we do the same for the IP header compression (compress hdr hc1
function) of the Contiki core module). In the next step we include two tick transitions
in the model and annotate the measured time durations to them with the corresponding

8.5. Case study 1: Smart Heating System 207

guards. When the two time durations elapse the component will take the startTrans
transition as before. It shall be noted here that this technique is strongly dependent of the
environment in which the time durations are measured, therefore this method was entirely
implemented in the open source Contiki environment 4.

2t := clock_time()

buf 1t 2t = t −

buf

1t := clock_time()

1t := clock_time()

comp

2t := clock_time()

1t

comp

[t < t]

[t = t]comp

buf

s1

ss1

ss2 ss2

ss1

s1 s1

ss1

ss2

tick

t:= t+1

[t = t]

NB:=0, NR:=0NB:=0, NR:=0

compress_hdr_hc1()

tick

t:= t+1

prebuf

encode

t = t −

prebuf

[t < t]

encodeencode

2

startTrans

prebuf

NB:=0, NR:=0

memcpy()

pop(queue)

sndPacket sndPacket sndPacket

startTrans startTrans

Figure 8.16: Calibration of the Network MsgSender component using the process profiling
technique

8.5 Case study 1: Smart Heating System

We introduce a SO smart heating IoT application that involves two subsystems, the home
automation and the remote management. The home automation subsystem consists of a
zone-controller receiving temperature readings from sensor devices in the different rooms.
In remote management subsystem, the zone controller is periodically accessed by a smart-
phone or tablet device through a Wide Area Network (WAN) to provide control of the
indoor heating and statistic records/profiles for the rooms to the residents. For the par-
ticular case-study, we focus on the home automation subsystem for an apartment that
consists of two rooms with a temperature sensor in each of them. The zone controller
acts as client in order to communicate with the REST server devices through the CoAP
protocol and obtain temperature data during the course of the day. Specifically, the client
periodically sends unicast GET requests sequentially to the two servers, which process
them and accordingly reply. Responses are received within a certain time frame, before
the client resends the request. Each device also transmits CoAP acknowledgments to
signal a message receipt.

8.5.1 Modeling the Application Software

We have constructed the IoT Application Model based on the described case study sce-
nario. Figure 8.17 shows the client process component for smart heating application, which
is derived by the input DSL description example of Section 8.4.2. Concerning the behavior
of the process it initially sets a timer (setTimer port) and yields (yield port). The choice

4http://www.contiki-os.org/

8.5. Case study 1: Smart Heating System 209

In this fragment we can observe that the client is deployed in a Tmote Sky platform
(i.e. hw-class=“skyMote”) device of the hardware architecture. Additional information
about the network configuration are defined in the “hw-property” XML element. These
concern the network interface (i.e. hw-property value=“wpan0”) 5. Further defined ele-
ments include the local ports that are used by the client to open a connection with the
server devices (i.e. hw-property name=“srcPortServer1” and “srcPortServer2”) as well as
the destination port that is used by the client to transmit its packets. Finally, the network
configuration provided to the client include the IP addresses of the servers with which it
will interact (i.e. hw-property name=“dstIPServer1” and “dstIPServer2”). As a part of
the presented architecture further information can also be provided for the code generation
procedure and are determined by the input WPAN network configuration XML specifi-
cation (Section 8.4.1). These parameters have default values that may be overwritten in
Contiki header files (e.g. the dedicated uipopt.h or project-conf.h Contiki files) in case
they are included in this specification.

8.5.2 Requirement Description

We recall our earlier statement from Chapter 2, that application development for IoT
systems is challenging, due to two main factors that are related to system heterogene-
ity and the trade-off between short-lived IoT applications that need to provide long-lived
web-services. A solution to this challenge can be provided by addressing functional and
extra-functional requirements to ensure respectively the proper system functionality and
the optimal exploitation of the device resources. For the considered smart-heating appli-
cation we focus only in the extra-functional requirements, however the reader is referred
to [LSK+15] for the corresponding functional requirements.
Requirement 1. Memory saving by properly sizing the message buffers in each device.
Such buffers are used in Contiki for the communication through the network stack.
In order to satisfy this requirement several properties can be considered. Such properties
are:
Property 1: φ1 = (size(TxBuffer)) < A, where size(TxBuffer) indicates the transmis-
sion buffer size of the network stack and A is a fixed non-negative number representing a
bound for the size of the buffer.
Property 2: φ2 = (size(RxBuffer) < B), where size(RxBuffer) indicates the reception
buffer size of the network stack and B is also a fixed non-negative number representing a
bound for the size of the buffer.
Requirement 2. Avoidance of overflow in the asynchronous event queue (FIFO) of each
device.
For this requirement we have considered the property:
Property 3: φ3 = (size(AsynFIFO) < MAX), where size(AsynFIFO) indicates the size
of the asynchronous event queue in the model and MAX indicates the maximum number
of packets in the queue.
Requirement 3. Relatively low collision rate in the communication medium, in order to
avoid large communication latencies, which have a strong impact to the network perfor-
mance and may increase the probability of packet losses.
This requirement is expressed as the property:
Property 4: φ4 = (NC ≤ 1), where NC indicates the number of successive retransmissions
following the occurrence of a collision in the model.

5Unlike the “eth0” and “wlan0” interfaces in Linux, the “wpan0” interface is not preconfigured, therefore
dedicated libraries should also be installed if the Contiki native simulation environment (i.e. Cooja/MP-
Sim) is not used.

210 Chapter 8. Application of the Design Flow to IoT Systems

8.5.3 Experiments

We conducted two sets of experiments. First, we compared the performance of the Contiki
code for our application, when it is simulated in the Cooja environment with our BIP
System Model. We focused on the response time for the reply of a Server device to the
Client’s request, i.e. the total time elapsed for the end-to-end transmission, from the
initialization of the message in the Server until it is reliably received by the Client. As
shown by the sample window of Figure 8.18 the obtained results were similar, however
the BIP System Model had a slightly larger variability providing greater or smaller values
than the observed outliers of the Cooja simulator. This is due to its improved accuracy,
which enables a more fine-grained simulation compared to the Cooja environment.

200 250 300 350 400 450 500
11

11.5

12

12.5

13

13.5

14

14.5

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Number of samples

SBIP Model

Cooja

Figure 8.18: BIP/Cooja response times for each Server (in ms)

The second set of experiments concerned with the injection of a realistic representation
of bandwidth loss in the BIP System Model through probabilistic distributions, which
results in consecutive packet losses or out-of-order delivery in the system. The main
reason for analyzing packet losses is that when a network device transmits a packet, it
waits for the acknowledgment in a certain time frame, namely the macAckWaitDuration
parameter of the MAC layer (provided in Table 8.3), before trying a retransmission. If this
time expires, the following retransmission will increase the packet transmission frequency,
leading eventually in higher probability of collisions in the system. Indeed, Figure 8.19
illustrates such a behavior obtained from the simulation of the BIP System Model with the
addition of the Fault Model in BIP, presented in Section 8.3.3. In particular, the response
time for the reply of Server 1 to the Client’s request can be increased up to 23.8 ms,
due the presence of collisions in the communication medium. Injection of packet losses is
also possible in the Cooja simulator, through its UDGM - Distance Loss mode. However,
since this behavior is based on user-provided simulation values for parameters as the
SUCCESS RATIO TX and SUCCESS RATIO RX, it cannot reflect the reality accurately.
Therefore, our analysis exceeds the simulation capabilities of the Cooja environment.

The construction of the BIP System Model also allowed the analysis and validation of
the aforementioned extra-functional requirements (Section 8.5.2) for the case study with
the SMC-BIP tool (Chapter 3). For the sake of brevity in Requirement 1 we have focused
on the reception buffer of the CommHandler component and evaluated Property 2, how-
ever the following analysis can be evenly conducted for Property 1 using the transmission

8.5. Case study 1: Smart Heating System 211

0 500 1000 1500
10

12

14

16

18

20

22

24

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Number of samples

Figure 8.19: BIP response times for each Server (in ms) with fault injection

buffer. Additionally, we illustrate the evaluation results for the properties of Requirement
2 (Property 3) and Requirement 3 (Property 4).

Property 2: In this experiment we tried to estimate the value of B as it varies according
to the value of the period that the Scheduler uses to check for the presence of incoming
events in the event queues (pscheduler). This period determines the frequency with which
the Scheduler posts events concerning the communication through the network stack to
the CommHandler component. If this frequency is increased, the number of transmit-
ted packets over the network is equally increased. Therefore, more packets are received
in the reception buffer of the CommHandler component. In particular, we have experi-
mented with different values for pscheduler, such as p1 = 0.1ms, p2 = 10ms and p3 = 1s.
For pscheduler = p1, as illustrated from Figure 8.20, P (F φ2) = 1 for B equal to 1. If
pscheduler is increased and is equal to p2, φ2 = 1 for B equal to 5. In the worst-case
scenario (p3), pscheduler was equal to the packet transmission period (1s in the specific
case study) and the value of B has to be 10, in order to guarantee that the φ2 always
holds. In the Contiki OS the size of the reception buffer can be adjusted by the parameter
MAX NUM QUEUED PACKETS, found specifically in the core module of the Contiki
kernel. This parameter corresponds to the value of B in our analysis and is initially equal
to 2.

Property 3: The value of MAX should be considered carefully during application develop-
ment, since asynchronous events in Contiki are deferred (Chapter 2). For this experiment
we have considered the value of MAX equal to 10. As for the smart-heating case-study
we only consider a limited number of asynchronous events, we have evaluated that this
property holds always (φ3 = 1) for the chosen value of MAX.

Property 4: In order to evaluate this property we have conducted two sets of experiments
the first one only on the BIP System Model and the second with the addition of the Fault
Model. We have tested the property φ4 for the first experiment in a large number of
communication cycles and evaluated it as P (F φ4) = 1, meaning that no collisions are
present in the communication medium. However, for the second experiment the same
property was evaluated as P (F φ4) = 0.55, as the extensive loss of bandwidth increased

212 Chapter 8. Application of the Design Flow to IoT Systems

� � � � � � � � � �

� � � � � � � � 	 �

�

�

�

�

�

��
�����������

�
��
�
�
�
��
��
�
� �
�

�

�

�

�

� � � � � �

� � � � �

�

�

�

�

�

��
!�"�

�� �
"�

�� ��

Figure 8.20: Reception buffer size for different event scheduling periods

the packet transmissions and hence the number of collisions in the BIP model. This is
also illustrated in Figure 8.19.

8.6 Case study 2: Building Automation System

We introduce an SCC building automation application, which involves digital and analog
sensors in order to measure the temperature of several office rooms as well as detect
motion through passive infrared (PIR) sensors respectively. Therefore, we place in each
office room a ZIG001 Temperature-Humidity Sensor as well as a MS-320LP low power
consumption PIR both available from Zolertia 6. Following the sensing of the environment,
a zone-controller receives the temperature data and acts by opening a thermostat, if the
temperature is above or below the desired level in the first case. Likewise, when the zone-
controller receives the motion data, it automatically turns on the lights on when a room is
occupied and triggering the alarm during non-office hours. The alarm notifies the system
administrator about potential intrusion in the building. The zone-controller can also run
in energy-saving mode during non-office hours by reducing the temperature in each office
room. Specifically, the application consists of 5 devices, where one client, represented by
the zone-controller, communicates with 4 REST server devices using the CoAP protocol.
Each server device includes a ZIG001 Temperature-Humidity sensor represented by a
temperature resource and a MS-320LP PIR sensor represented by a motion resource. The
client implements two Contiki processes, one for sending periodically unicast GET requests
to the servers and the other for subscribing for potential changes of their motion resource
through an observation request. Subsequently, whenever the state of the resource changes
the server issues a CoAP notification message to the client, who takes the respective action
according to the current time of day. Each device waits for each response in a certain time
frame for each transmitted message, before sending again the request. Additionally, it
transmits additional CoAP acknowledgments to signal a message receipt. Finally, when
the client wants to stop its observation request, it should respond with a reset message

6http://wiki.zolertia.com/wiki/index.php/Z1 Sensors

214 Chapter 8. Application of the Design Flow to IoT Systems

getRslt

sndQrygetReq

sndRslt

ResHandler 1

query

result

result

query

getRslt

sndQrygetReq

sndRslt

ResHandler 2

getRslt

sndQrygetReq

sndRslt

ResHandler 3

postSyn

postAsyn

procPoll

msgSnt getMsgsndMsg

setTimer

handlerEnd

callHandler

RESTModule

serverProcess

resume

ends

yields

called

MotionResource

TempResource

Figure 8.22: The RestModule for the server

consisted of several measurements taken at random instants during the course of a day.
For the motion detection, we were able to derive a fitting Normal distribution with mean
µ = 1.5 Volts and standard deviation σ = 1.5 Volts using the distribution fitting tech-
nique, which is described in [PBK14]. Afterwards, we selected a sample value from each
probability distribution and compared it to a chosen reference value (threshold), in order
to take the necessary actions in the system, when measurements above the threshold level
were identified. The selection of threshold refers to the desired temperature level and is
set by the system user on the one hand, whereas on the other hand it depends on the
voltage sensitivity of the employed motion sensor, which was in our case considered equal
to the mean of the fitting Normal distribution.

8.6.2 Requirement Description

This case-study focuses on a more industrially relevant SCC building automation appli-
cation, which in providing more concrete results on the validation of both functional and
extra-functional requirements as opposed to the sense-only smart-heating application in
Section 8.5. We accordingly express initially five critical requirements for the building
automation application, which are formed into a functional requirement (Requirement 1)
and the remaining extra-functional requirements. Furthermore, Requirements 3,4 and 5
are inherited from the previous case-study of Section 8.5. When being expressed in textual
format, these requirements are also described with stochastic temporal properties using
the PBLTL formalism (Chapter 3), since they cannot be validated in their current form.

Requirement 1. Each room’s temperature is maintained within [-2,2] C degrees difference
from user-defined level.
This functional requirement was expressed as the property:

Property 1: φ1 = |RecvDegree − InputDegree| ≤ 2, with RecvDegree the temperature
sensed by the ZIG001 sensors and InputDegree the desired temperature level.

Requirement 2. Rapid detection of movement during non-working hours, based on the
PIR’s voltage level.
We expressed this extra-functional requirement as the property:

Property 2: φ2 = TPIR ≤ Ttrans, where TPIR represents the worst-case response time of

8.6. Case study 2: Building Automation System 215

packets related to the motion resource and Ttrans the transmission period of a regularly
transmitted packet, i.e. a client’s request for the temperature resource (1s).

Requirement 3. Memory saving by properly sizing the message buffers in each system
device. Such buffers are used in Contiki’s network stack. This extra-functional requirement
is the same as the previously described Requirement 1 from the case-study of Section 8.5.
Therefore, it is respectively expressed by the two following properties.

Property 3: φ3 = (size(TxBuffer)) < A, where size(TxBuffer) indicates the transmis-
sion buffer size of the network stack and A is a fixed non-negative number representing a
bound for the size of the buffer.
Property 4: φ4 = (size(RxBuffer) < B), where size(RxBuffer) indicates the reception
buffer size of the network stack and B is also a fixed non-negative number representing a
bound for the size of the buffer.

Requirement 4. Avoidance of overflow in the asynchronous event queue of each device.
We expressed this requirement through the property:

Property 5: φ5 = (size(AsynFIFO) < MAX), where size(AsynFIFO) indicates the size
of the asynchronous event queue in the model.

Requirement 5. Relatively low collision rate in the channel, in order to avoid large com-
munication latencies, which detiorate the network performance and increase the probability
of packet losses. We expressed this requirement through the property:

Property 6: φ6 = (NC ≤ 1), where NC indicates the number of successive retransmissions
following the occurrence of a collision in the model.

8.6.3 Experiments

We considered two simulation sets, from which the first used the BIP model and the second
was based on a representation of error-prone behavior, such as the loss of bandwidth. In
both sets, we focused on the response time for the server devices’ reply to the client’s
request. That is the time elapsed for the end-to-end transmission, starting from the
generation of the message in the server until it is received by the client. Figure 8.23 shows
the response time of the packets transmitted for all servers when the motion resource state
had changed in the second execution scenario. The shown response times are classified in
three categories (shown in different colors), namely the minimum observed, the average
and worst-case response time. Thus, for Server 1 we observe that the average and the
worst case response times are only a few milliseconds higher than the minimum observed,
which is not the case in all other servers.

The construction of the BIP System Model also allowed the analysis and validation
of the aforementioned functional and extra-functional requirements (Section 8.6.2) for the
case study with the SMC-BIP tool (Chapter 3). Similarly to the previous case-study for the
Requirement 3 we have focused on the reception buffer of the CommHandler component
and evaluated only Property 4, however the following analysis can be evenly conducted
for Property 3 in the transmission buffer.

Property 1: Figure 8.24 shows part of the obtained observations, with the temperature
often reaching the limits (as in A), due to opening a window. In point C, the desired tem-
perature is changed, the zone-controller perceives it and the temperature is then reduced
by the thermostat. We found that P (F φ1) = 0.6, due to the zone-controller responsive-
ness to input temperature changes and fluctuations due to external factors, such as the
mentioned window opening.

216 Chapter 8. Application of the Design Flow to IoT Systems

1 2 3 4
0

10

20

30

40

50

60

70

Server ID

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Minimum

Average

Worst−case

Figure 8.23: BIP response times for the motion observation with faults (in ms)

100 150 200 250

18

20

22

24

26

28

30

Temperature observations

D
e

g
re

e
s
 (

C
e

lc
iu

s
)

Desired temperature

Sensed temperature
A

C

Figure 8.24: Temperature degree level (in Celcius)

Property 2: The first set showed that TPIRmax
does not exceed 32ms, meaning that this

property was always satisfied (P (F φ2) = 1). We also evaluated this property with the
addition of the fault model, which increased the number of collisions and TPIRmax

up to
approximately 63ms (server ID=2 in Figure 8.23), due to the presence of collisions in the
channel. Nevertheless, the property holds as it is still significantly smaller from Ttrans.

Property 4: Both simulation sets have shown that the value of B is proportional to the
Scheduler period used to check for the presence of incoming events in the event queues
(pscheduler). Specifically, we experimented with two values for pscheduler, namely p1 = 10µs,
and p2 = 10ms. For pscheduler = p1 P (F φ3) = 1 for B equal to 2. If pscheduler is increased
and is equal to p2, P (F φ3) = 1 for B equal to 10. From this property we infer that
pscheduler should be fairly small to avoid adjusting the reception buffer size in the Contiki
kernel.

8.7. Summary and Discussion 217

Property 5: For this experiment we have considered the value of MAX equal to 10. From
our experiments we have evaluated this property holds always (P (F φ4) = 1), since the
scheduler manages efficiently the rate with which they are inserted in the FIFO queue.

Property 6: In order to evaluate this property we have conducted two sets of experiments
the first one only on the BIP System Model and the second with the addition of the Fault
Model. The property φ5 for the first experiment was evaluated as P (F φ5) = 0.75, mean-
ing that a small number of collisions occur in the channel. For the second experiment the
extensive loss of bandwidth had an impact on the estimation, as P (F φ5) = 0.5.

8.7 Summary and Discussion

In this chapter we have instantiated the rigorous design flow for networked embedded
systems in the emerging application domain of IoT systems. The inputs of resulting flow
are a REST Domain-Specific Language (DSL) application software description, a mapping
specification for the deployment of an application on WPAN architecture as well as a
WPAN network configuration file. The design flow supports the systematic construction of
faithful BIP models for RESTful service-based applications and is demonstrated through
the Contiki OS, an increasingly popular operating system for the development of IoT
applications. Through the use of BIP as the underlying framework we are able to construct
a BIP System Model, which can be used for the analysis, simulation and validation of
system requirements. As a proof of concept, the approach was applied to two case studies,
namely a smart heating as well as a building automation system both containing a client
and multiple server devices. For each case study we have verified through statistical
model checking important system requirements, which were either functional, such as the
temperature control as well as extra-functional, such as the buffer utilization, collision
rate and blocking time in the event queue. As a further contribution, we have proposed a
proof-of-concept fault injection technique for exploring the impact of realistic error-prone
behaviors in the BIP System Model and analyzed its impact on the network performance.

As part of the future work, stochastic abstractions could be developed (as in [BBB+10])
for the presented BIP System Model, since its complexity allows the verification of func-
tional and extra-functional requirements for up to medium scale systems. When deployed
in large-scale systems though the main arising issue is the state-space explosion, which
hampers the use of statistical model-checking techniques for the validation of such require-
ments. Therefore, in order to be able derive accurate results on them we have to apply
the appropriate abstractions to the OS and network stack models. in order to avoid losing
event interleavings of to the application’s functional behavior. Furthermore, additional
extensions in the IoT system model can be added in order to analyze various security
risks related to the DTLS transport and the CoAP protocols [SHB14] or the HTTPS URI
scheme [Res00], as well as their overall impact on the system’s performance. Additionally,
we would like to investigate the effects of computationally intensive (in execution time)
REST resource handlers in the server devices, as presented in [KLD12]. These may include
process starvation as well as potential channel collisions.

218 Chapter 8. Application of the Design Flow to IoT Systems

- Chapter 9 -

Conclusion

9.1 Summary

In the present work we have focused on providing efficient and rigorous solutions for the
current design and development challenges in networked embedded systems. These solu-
tions have been illustrated in the overall scope of a design flow, which uses formal modeling
techniques to facilitate the representation of such systems in different levels of detail, from
the description of the application software to their deployment in the underlying hard-
ware architecture. The flow uses BIP as an underlying framework, to support rigorous
design through the layered composition of components. The main attributes which pro-
vide rigorous semantics are that it is model and component based as well as semantically
coherent (based on a single semantic framework). Furthermore, it supports separation of
concerns between the application software and the hardware architecture. Additionally,
the steps of the design flow are defined by formal rules and transformations and supported
by developed tools.

The design flow takes as input the application software in the form of high-level lan-
guages or programming models (DSLs) and translates it automatically to a BIP Applica-
tion Software Model. The application software is further used for the generation of deploy-
able code for the networked embedded systems according to the input mapping specifica-
tion, which contains details about the application deployment in the target architecture.
Likewise, additional effort is done for the construction of the BIP HW/OS-Network Model
for the hardware architecture, which includes models of the operating systems that are
used in the embedded devices as well as their dedicated network stacks. These models
are synthesized from a dedicated component library with BIP model fragments, which
are instantiated and parameterized through a translation of optional input specifications
or configuration files. The model fragments of the BIP component library are faithfully
representing specifications and standards for the operating systems, network stack as well
as the supported hardware in networked embedded systems. Subsequently, the two devel-
oped models i.e. the BIP Application Software Model and the BIP HW/OS-Network Model
are used to construct a mixed software/hardware BIP System Model through a series of
model transformations. These transformations rely on the mapping specification, in order
apply all the necessary interactions and synchronization/arbitration policies between the
two models. Both the BIP application software and the system model can be verified for
functional correctness as well as the absence of deadlocks. The BIP System Model can be
also used to evaluate the performance of the real system by adding architecture-specific

219

220 Chapter 9. Conclusion

HW/SW performance information (e.g. communication or data processing durations).
These information can be measured through the execution of the deployable code in the
networked embedded architecture. Once measured they are analyzed through perfor-
mance characterization methods and later injected to the constructed BIP System Model.
This model is faithful according to the real system implementation and can be used for
simulation, performance evaluation as well as validation of system requirements through
statistical model checking techniques.

The design flow was applied in different categories of networked embedded systems,
namely the automotive, industrial automation, WSN and IoT systems. For each category
we have obtained a specific instance of the design flow focusing on main system features,
characteristics as well as requirements in their use. Every instance of the flow has been ap-
plied to real-life systems as well as realistic benchmarks, where we have conducted several
experiments to compare our approach with existing domain-specific frameworks as well
as simulation tools. As an outcome, from our analysis we have demonstrated similar and
often even more fine-grained results in terms of model granularity as well as overall per-
formance. Furthermore, we have shown how the BIP System Model may be used in order
to address and validate critical system requirements that were related to the design and
development challenges. Examples of such requirements are time durations for communi-
cation and computations, usage of the embedded device resources, clock synchronization
accuracy and other extra-functional constraints of networked embedded systems. For the
above reasons, as far knowledge is concerned, the presented design flow constitutes the first
effort towards a semantically coherent approach for the efficient design and development
of functional networked embedded systems.

We have further automated the steps of the design flow, by providing tools and tech-
niques, which can be used to facilitate the transition between them. The main tools that
were developed in this context were translators for the application software as well as the
hardware or network stack specifications, source-to-source transformation tools for the
automatic construction of the System Model as well as rapid prototyping tools for the
automated generation of deployable code from application software specifications. Ad-
ditionally, the developed techniques allow the description of the application software in
programming models or domain-specific languages for networked embedded systems and
the calibration of system-level models using performance information.

9.2 Perspectives

The proposed design flow can be ameliorated with generic extensions which will make
it generic, by providing robustness and increasing its capabilities. These extensions are
presented accordingly.

More complex architectures or middleware

This extension is related to the support of Multi-Core System-on-a-Chip (SoC) hardware
architectures (as in [KOSH07]) in the proposed design flow, which will initially allow phys-
ical isolation between critical and less critical functions in such systems. Furthermore, it
will aid on reducing the number of embedded devices in the network, as a single hardware
base will be used to integrate units that are developed by different suppliers and use differ-
ent communication protocols as well hardware infrastructures. The support of Multi-Core
SoC architectures will provide additional capabilities that are related to interoperability
in the design flow. Moreover, the synthesis in this context can be also supported by in-

9.2. Perspectives 221

teroperable architecture standards, as the OPC Unified Architecture [MLD09], to further
enhance the modularity in the flow.

A main source of hurdles that should be considered when moving towards Multi-
Core SoC architectures concerns the separation of jobs in different levels of criticality as
well as the presence of fairly complex scheduling algorithms, in order to optimize system
performance. A prominent solution to such hurdles is to extend the design flow with mixed-
criticality functionalities, which are currently supported in the BIP framework [SPBB13].

Improved performance evaluation

When using model-based design techniques in networked embedded systems, great consid-
eration should be given to the construction of abstract but also faithful models for analysis
and performance evaluation. Additionally, the analysis methods must be scalable, mean-
ing that they should be able to handle realistic networked embedded systems regardless
of their overall scale.

To this end, an approach was recently proposed in [Nou15] to enable the automatic
construction of faithful models as well as their faster analysis through machine learn-
ing techniques. The approach is using output execution traces to learn the behavior of
detailed models and accordingly construct smaller sized models, which produce approxi-
mately similar output traces with the detailed versions. The smaller sized models improve
the efficiency of model checking techniques, when trying to explore performance aspects
in networked embedded systems. This is highly beneficial if we consider that exploring
performance aspects (e.g. through extra-functional requirements) in detailed models is
extremely hard and may also suffer from state-space explosion. A further advantage from
employing such an approach is that it treats the initial detailed models as black-box imple-
mentations and therefore does not require a complete knowledge of their functionality. As
future work, this approach can be considered only for the HW/OS-Network Model, since
the Application Software Model contains event interleavings of the application’s functional
behavior, which may be lost upon the application of the approach. This will simultane-
ously augment the overall scale of the applications, which are considered for networked
embedded systems.

Additional extra-functional requirements

An interesting perspective concerns the considered quantitative performance aspects of
the design flow. Currently, the flow supports the modeling of extra-functional aspects
through probabilistic variables of the SBIP extension. In particular, in our case stud-
ies we consider timing and thermal requirements. In the future we plan to extend the
support with the integration of power consumption aspects. This integration would al-
low to estimate and validate the overall energy consumed for computations as well as
for communication. In this scope a library with power models could be added to the
BIP System Model, in order to associate energy constraints when the components perform
specific computations or exchange data through interactions between other components.
Through the definition of power models, we would be able to compare different operating
systems and network communication technologies in terms of overall energy consumption
by addressing and validating energy requirements. Similar work in this direction has been
presented in [BHS98], as the authors have developed an abstract state-based model for
system components, named Power State Machine (PSM). The use of PSM’s leads to a
simulation-based framework, which facilitates the estimation of the power dissipation and
management in a system.

222 Chapter 9. Conclusion

Following the development of functional applications for networked embedded systems,
further constraints that need to be addressed during system design apart from timing, en-
ergy and thermal aspects concern the security aspects [KLM+04]. These constraints are
equally important as such systems are often used to transfer critical or personal informa-
tion. Security aspects relate either to data exchange through the network stack protocols
or the existence of authorizations for accessing important information. Recent work in the
BIP framework has allowed the definition of security extension in BIP (secBIP [SABB14]),
in order to handle non-interference in terms of data or system events. The main obstacle
faced in applying this extension to networked embedded systems is that the definition
of security requirements or risks requires as well the presence of a model for malevolent
behavior from external system entities (e.g. humans, other embedded devices), which
is mostly unpredictable and can be hardly described by a formal model. Nevertheless,
exhaustive and precise risk analysis techniques (e.g. the EBIOS methodology 1) can be
used to identify the system security threats, thus allowing the presented design flow to be
extended in order to address and validate security requirements.

1http://www.ssi.gouv.fr/en/the-anssi/publications-109/methods-to-achieve-iss/ebios-2010-expression-
of-needs-and-identification-of-security-objectives.html

List of Figures

1.1 Networked embedded device example . 12

1.2 Time allocated in building networked embedded systems (source: make-
Sense project 2) . 16

1.3 Networked embedded devices SW/HW architecture 17

1.4 Rigorous design flow for networked embedded systems 21

2.1 The AUTOSAR architecture . 25

2.2 CAN system example . 33

2.3 CAN arbitration mechanism . 33

2.4 Classic CAN data frame format . 34

2.5 CAN FD standard data frame format . 36

2.6 Communication in a CANopen system . 36

2.7 PDO communication . 39

2.8 TPDO configuration in an XDC CANopen specification 40

2.9 SDO communication . 41

2.10 EPL cycle . 43

2.11 EPL frame format . 43

2.12 openPOWERLINK stack architecture . 46

2.13 Backoff example in a WLAN network . 48

2.14 IEEE 802.11 packet format . 49

2.15 LoWPAN packet encapsulated in an IEEE 802.15.4 frame 51

2.16 A distributed Contiki system . 52

2.17 Contiki kernel architecture . 53

2.18 Contiki network stack . 54

3.1 Structure of a BIP Model . 58

3.2 Atomic BIP component examples . 59

3.3 Atomic SBIP component . 60

3.4 Probabilistic behavior of an atomic SBIP component 61

3.5 Flat and hierarchical BIP connectors . 62

3.6 Hierarchical connector example . 63

3.7 Composite BIP component . 64

3.8 Semantics of the composite BIP component 64

3.9 The BIP toolset . 69

3.10 SMC-BIP tool architecture . 73

3.11 Design flow for manycore architectures based on BIP 74

4.1 Design flow for networked embedded systems 79

223

224 List of Figures

4.2 Calibration of a BIP component with a fitting distribution 89

4.3 Process profiling in a BIP component . 90

4.4 Time Monitor component in BIP . 91

4.5 Hierarchical timing connector with a Time Monitor component in BIP . . . 92

4.6 Hierarchical timing connector in BIP . 93

5.1 Design Flow for automotive systems . 98

5.2 Architecture of the BIP mphSystem Model 100

5.3 Generic model of a CAN system . 101

5.4 CAN Controller component . 103

5.5 CAN Filter component . 103

5.6 CAN bus component . 104

5.7 NETCAR2BIP Translator . 106

5.8 XML configuration file of NETCAR2BIP 106

5.9 XML message set generated by NETCARBENCH 107

5.10 Deterministic Device component . 109

5.11 Stochastic Device component . 109

5.12 BIP/RTaW-Sim frame response times for the automotive powertrain system 110

5.13 BIP frame response times for the stochastic automotive powertrain system . 111

5.14 Response time distribution of a frame . 111

6.1 Design flow for industrial automation systems 117

6.2 Architecture of the System Model . 119

6.3 Generic CANopen Device component . 120

6.4 T-PDO and R-PDO components . 122

6.5 D-SDO composite component . 123

6.6 D-SDO Client component . 123

6.7 T-SYNC and R-SYNC components . 124

6.8 CANopen2EPL code generator . 125

6.9 Configuration of EPL devices using EPLNodeConf 126

6.10 Pixel Detector Control System . 127

6.11 Detector component of the PDCS system 128

6.12 BIP model of the Pixel Detector Control System 129

6.13 Frame response times computed from the BIP model 130

6.14 Response time graph following a reset in ELMB1 131

6.15 Response time graph for TPDO1, TPDO2 and D-SDO 131

6.16 TMR CANopen Application . 131

6.17 TMR CANopen Application Model in PPM 132

6.18 TMR CANopen Application XML Description 133

6.19 CyclicRecvMN Process Code Description 134

6.20 TMR CANopen Application Mapping XML Description 135

6.21 Deployment of the TMR CANopen Application in the EPL hardware ar-
chitecture . 135

6.22 EPL cycle in the executed code . 136

6.23 Console output of the Managing Node . 136

7.1 Design Flow for WSN systems . 140

7.2 Architecture of the BIP System Model . 142

7.3 WLAN Architecture Model interactions . 144

7.4 WLAN Sender component . 146

List of Figures 225

7.5 WLAN Receiver component . 147
7.6 WLAN Channel component . 147
7.7 AbsWLANModel component . 148
7.8 Fragment of the WLAN network configuration file 149
7.9 PPM2WSN code generator . 150
7.10 End-to-end delays in the generated code . 150
7.11 Box-Whisker plot for the end-to-end delays 150
7.12 Fitting pattern of the dataset . 151
7.13 Fitting distribution of the dataset . 151
7.14 Q-Q plot of the fitting distribution . 152
7.15 End-to-end delays . 152
7.16 Lag plot for the end-to-end delay observations 152
7.17 WMSN case-study application . 153
7.18 WMSN Application in PPM . 156
7.19 WMSN Application XML Description . 157
7.20 Micro Process Code Description . 157
7.21 PLL Process Code Description . 158
7.22 WMSN Application Deployment XML Description 159
7.23 Deployment of the WMSN Application on the WLAN hardware architecture160
7.24 PLL component . 160
7.25 Hardware clock components of the Master and the Slave 161
7.26 BIP System Model for the WMSN Application 162
7.27 Communication through Linux sockets in the generated code 163
7.28 Probabilities of satisfying φ1 in the system 164
7.29 Probabilities of satisfying φ2 according to the initial playout delay 165
7.30 Probabilities of satisfying φ3 for various initial playout delays 165
7.31 Synchronization accuracy (in µs) obtained from the experiments 166

8.1 Design flow for IoT systems . 171
8.2 BIP model for the Contiki IoT system architecture 173
8.3 OS composite component . 175
8.4 Interactions between the RESTModule and the OS composite components . 176
8.5 OS Scheduler component . 177
8.6 OS Timer component . 178
8.7 OS CommHandler component . 179
8.8 Interactions between the Network and the OS components 180
8.9 Network MsgSender component . 181
8.10 Network MsgReceiver component . 181
8.11 Network Channel component . 182
8.12 FaultHandler component . 182
8.13 Fragment of the configuration profile for a WPAN network 183
8.14 DSL description example for a client process 185
8.15 Generated code for the Contiki client . 186
8.16 Calibration of the Network MsgSender component using the process profil-

ing technique . 187
8.17 Smart heating client process . 188
8.18 BIP/Cooja response times for each Server (in ms) 190
8.19 BIP response times for each Server (in ms) with fault injection 190
8.20 Reception buffer size for different event scheduling periods 191
8.21 Temperature process for the client . 192

226 List of Figures

8.22 The RestModule for the server . 193
8.23 BIP response times for the motion observation with faults (in ms) 194
8.24 Temperature degree level (in Celcius) . 195

List of Tables

2.1 IoT operating systems characteristics . 31
2.2 Frame fields in the CAN HW/Communication Model 37
2.3 Example TPDO configuration and mapping parameters in the OD 40
2.4 Predefined Connection Set . 42
2.5 Message Type field of EPL frame . 44
2.6 EPL node addressing . 44

5.1 Frame fields in the CAN HW/Communication Model 101
5.2 Ports used for the CAN HW/Communication Model interactions 102
5.3 Network configuration parameters . 108

6.1 Ports used for the CANopen protocol model interactions 120
6.2 Fragment of the ELMB Object Dictionary 128

7.1 Packet fields in the WLAN Architecture Model 144
7.2 Ports used for the WLAN Architecture Model interactions 145
7.3 Parameters of the WLAN Station model . 145

8.1 Ports used for the Contiki Kernel Model interactions 175
8.2 Packet fields in the Contiki Network Model 180
8.3 Parameters of the modeled network stack 181

227

228 List of Tables

List of associated publications

[1] Alexios Lekidis, Marius Bozga, Didier Mauuary, and Saddek Bensalem. A model-based
design flow for CAN-based systems. In 14th International CAN Conference, Eurosites
République, Paris, pages 1–8, 2013.

[2] Alexios Lekidis, Marius Bozga, and Saddek Bensalem. Model-based validation of
CANopen systems. In Factory Communication Systems (WFCS), 2014 10th IEEE
Workshop on, pages 1–10. IEEE, 2014.

[3] Alexios Lekidis, Paraskevas Bourgos, Djoko-Djoko Simplice, Marius Bozga, and Saddek
Bensalem. Building Distributed Sensor Network Applications using BIP. In IEEE
Sensors Applications Symposium (SAS), pages 1–6. IEEE, 2015.

[4] Alexios Lekidis, Emmanouela Stachtiari, Panagiotis Katsaros, Marius Bozga, and
Christos K Georgiadis. Using BIP to reinforce correctness of resource-constrained IoT
applications. In 10th IEEE International Symposium on Industrial Embedded Systems
(SIES’2015), pages 1–10. IEEE, 2015.

229

230 List of associated publications

Bibliography

[AAD+10] Dalen Abraham, Mohammad Shabbir Alam, Jean-Pierre Duplessis,
Trevor W Freeman, Bill Hanlon, Anton W Krantz, Scott Manchester, and
Benjamin Nick. XML schema for network device configuration, feb ” 2”
2010. US Patent 7,657,612.

[ADBS09] Bahar Akbal-Delibas, Pruet Boonma, and Junichi Suzuki. Extensible and
precise modeling for wireless sensor networks. In Information Systems: Mod-
eling, Development, and Integration, pages 551–562. Springer, 2009.

[AGG89] Richard Arratia, Larry Goldstein, and Louis Gordon. Two moments suf-
fice for Poisson approximations: the Chen-Stein method. The Annals of
Probability, pages 9–25, 1989.

[All06] ZigBee Alliance. Zigbee specification, 2006.

[AP03] Thomas Werner Axel Pöschmann, Lutz Rauchhaupt. Integration of CAN-
based Networks into the PROFInet Environment. In 9th International CAN
Conference, Munich, Germany, 2003.

[AS504] SAE AS5506. Architecture Analysis & Design Language (AADL). Embedded
Computing Systems Committee, SAE, 2004.

[BBB+10] Ananda Basu, Saddek Bensalem, Marius Bozga, Benôıt Caillaud, Benôıt
Delahaye, and Axel Legay. Statistical abstraction and model-checking of
large heterogeneous systems. In Formal Techniques for Distributed Systems,
pages 32–46. Springer, 2010.

[BBC+14] Benjamin Bertran, Julien Bruneau, Damien Cassou, Nicolas Loriant, Emilie
Balland, and Charles Consel. DiaSuite: A tool suite to develop Sense/Com-
pute/Control applications. Science of Computer Programming, 79:39–51,
2014.

[BBJ+10] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf,
and Joseph Sifakis. Automated conflict-free distributed implementation of
component-based models. In Industrial Embedded Systems (SIES), 2010
International Symposium on, pages 108–117. IEEE, 2010.

[BBNS10] Saddek Bensalem, Marius Bozga, T-H Nguyen, and Joseph Sifakis. Com-
positional verification for component-based systems and application. IET
software, 4(3):181–193, 2010.

231

232 Bibliography

[BBS06] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous
real-time components in BIP. In Software Engineering and Formal Methods,
2006. SEFM 2006. Fourth IEEE International Conference on, pages 3–12.
IEEE, 2006.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Sym-
bolic model checking without BDDs. Springer, 1999.

[BCSV06] Alvise Bonivento, Luca P Carloni, and Alberto Sangiovanni-Vincentelli.
Platform-based design of wireless sensor networks for industrial applica-
tions. In Proceedings of the conference on Design, automation and test in
Europe: Proceedings, pages 1103–1107. European Design and Automation
Association, 2006.

[BHG+13] Emmanuel Baccelli, Oliver Hahm, Mesut Günes, Matthias Wählisch,
Thomas Schmidt, et al. RIOT OS: Towards an OS for the Internet of Things.
In The 32nd IEEE International Conference on Computer Communications
(INFOCOM 2013), 2013.

[BHN+07] Christelle Braun, Lionel Havet, Nicolas Navet, et al. NETCARBENCH: a
benchmark for techniques and tools used in the design of automotive com-
munication systems. In 7th IFAC International Conference on Fieldbuses
& Networks in Industrial & Embedded Systems-FeT’2007, pages 321–328,
2007.

[BHS98] Luca Benini, Robin Hodgson, and Polly Siegel. System-level power estima-
tion and optimization. In Low Power Electronics and Design, 1998. Pro-
ceedings. 1998 International Symposium on, pages 173–178. IEEE, 1998.

[BJS10] Marius Bozga, Mohamad Jaber, and Joseph Sifakis. Source-to-source ar-
chitecture transformation for performance optimization in BIP. Industrial
Informatics, IEEE Transactions on, 6(4):708–718, 2010.

[BKL05] Krishna Balachandran, Joseph H Kang, and Wing Cheong Lau. Adaptive
sleeping and awakening protocol (ASAP) for energy efficient adhoc sensor
networks. In Communications, 2005. ICC 2005. 2005 IEEE International
Conference on, volume 2, pages 1068–1074. IEEE, 2005.

[BLL+08] Christopher Brooks, Edward A Lee, Xiaojun Liu, Stephen Neuendorf-
fer, Yang Zhao, Haiyang Zheng, Shuvra S Bhattacharyya, Elaine Cheong,
II Davis, Mudit Goel, et al. Heterogeneous concurrent modeling and de-
sign in java (volume 1: Introduction to ptolemy ii). Technical report, DTIC
Document, 2008.

[BMMP00] Luciano Baresi, Marco Mauri, Antonello Monti, and Mauro Pezzè.
PLCTools: design, formal validation, and code generation for programmable
controllers. In Systems, Man, and Cybernetics, 2000 IEEE International
Conference on, volume 4, pages 2437–2442. IEEE, 2000.

[BMP+07] Ananda Basu, Laurent Mounier, Marc Poulhies, Jacques Pulou, and Joseph
Sifakis. Using BIP for Modeling and Verification of Networked Systems–A
Case Study on TinyOS-based Networks. In Network Computing and Appli-
cations, 2007. NCA 2007. Sixth IEEE International Symposium on, pages
257–260. IEEE, 2007.

Bibliography 233

[Bos91] Robert Bosch. CAN specification version 2.0. Robert Bosch GmbH, Stuttgart,
1991.

[Bos12] Robert Bosch. CAN with Flexible Data-Rate specification.
Robert Bosch GmbH, Stuttgart, 2012. http://www.bosch-
semiconductors.de/media/pdf 1/canliteratur/can fd spec.pdf.

[Bou13] Paraskevas Bourgos. Rigorous Design Flow for Programming Manycore Plat-
forms. PhD thesis, Université Joseph Fourier, 2013.

[BPL01] Amol Bakshi, Viktor K Prasanna, and Akos Ledeczi. MILAN: A model based
integrated simulation framework for design of embedded systems. ACM
Sigplan Notices, 36(8):82–93, 2001.

[BRÖV11] CA Boano, K Römer, F Österlind, and T Voigt. Realistic simulation of
radio interference in COOJA. In Adjunct proceedings of the 8th European
conference on wireless sensor networks (EWSN), demo session, pages 36–37,
2011.

[BS10] Josef Baumgartner and Stefan Schoenegger. POWERLINK and Real-Time
Linux: A Perfect Match for Highest Performance in Real Applications. In
Twelfth Real-Time Linux Workshop, Nairobi, Kenya, 2010.

[BSS09] Marius Dorel Bozga, Vassiliki Sfyrla, and Joseph Sifakis. Modeling syn-
chronous systems in BIP. In Proceedings of the seventh ACM international
conference on Embedded software, pages 77–86. ACM, 2009.

[C+99] James Clark et al. Xsl transformations (xslt). World Wide Web Consortium
(W3C). URL http://www. w3. org/TR/xslt, 1999.

[C+05] FlexRay Consortium et al. FlexRay communications system-protocol spec-
ification. Version, 2(1):198–207, 2005.

[CAN05a] CAN in Automation. Application Note 802, August 2005.

[CAN05b] CAN in Automation. Electronic data sheet specification for CANopen, Draft
Standard 306, 2005.

[CAN07] CAN in Automation. CANopen device description, Draft Standard 311,
2007.

[CAN08] CAN in Automation. CANopen Device Profile for Generic I/O Modules,
Draft Standard 401, June 2008.

[CAN11] CAN in Automation. Application layer and communication profile, Draft
Standard 301, February 2011.

[CASH08] Qing Cao, Tarek Abdelzaher, John Stankovic, and Tian He. The liteos oper-
ating system: Towards unix-like abstractions for wireless sensor networks. In
Information Processing in Sensor Networks, 2008. IPSN’08. International
Conference on, pages 233–244. IEEE, 2008.

[CE82] Edmund M Clarke and E Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching time temporal logic. Springer, 1982.

234 Bibliography

[CKH11] Travis L Cochran, Jeong Ki Kim, and Dong Sam Ha. Low power wake-up
receiver with unique node addressing. In Circuits and Systems (MWSCAS),
2011 IEEE 54th International Midwest Symposium on, pages 1–4. IEEE,
2011.

[Coo10] MOST Cooperation. MOST Specification Revision 3.0 E2. 2010.

[CRBS09] M Yassin Chkouri, Anne Robert, Marius Bozga, and Joseph Sifakis. Trans-
lating AADL into BIP-application to the verification of real-time systems.
In Models in Software Engineering, pages 5–19. Springer, 2009.

[CSB+06] Jeffrey A Cook, Jing Sun, Julia H Buckland, Ilya V Kolmanovsky, Huei
Peng, and Jessy W Grizzle. Automotive powertrain control: A survey.
Asian Journal of Control, 8(3):237–260, 2006.

[CSDC11] Walter Colitti, Kris Steenhaut, and Niccolò De Caro. Integrating wireless
sensor networks with the web. Extending the Internet to Low power and
Lossy Networks (IP+ SN 2011), 2011.

[CSVV09] Gianluca Cena, Lucia Seno, Adriano Valenzano, and Stefano Vitturi. Per-
formance analysis of Ethernet Powerlink networks for distributed control
and automation systems. Computer Standards & Interfaces, 31(3):566–572,
2009.

[CVV08] Gianluca Cena, Adriano Valenzano, and Stefano Vitturi. Hybrid wired/wire-
less networks for real-time communications. Industrial Electronics Magazine,
IEEE, 2(1):8–20, 2008.

[DBBL07] Robert I Davis, Alan Burns, Reinder J Bril, and Johan J Lukkien. Controller
Area Network (CAN) schedulability analysis: Refuted, revisited and revised.
Real-Time Systems, 35(3):239–272, 2007.

[DBK+07] Matthias Dyer, Jan Beutel, Thomas Kalt, Patrice Oehen, Lothar Thiele,
Kevin Martin, and Philipp Blum. Deployment support network. In Wireless
Sensor Networks, pages 195–211. Springer, 2007.

[DDG+13] Abhijit Davare, Douglas Densmore, Liangpeng Guo, Roberto Passerone,
Alberto L Sangiovanni-Vincentelli, Alena Simalatsar, and Qi Zhu. metro
II: A design environment for cyber-physical systems. ACM Transactions on
Embedded Computing Systems (TECS), 12(1s):49, 2013.

[Dec05] Jean-Dominique Decotignie. Ethernet-based real-time and industrial com-
munications. Proceedings of the IEEE, 93(6):1102–1117, 2005.

[DGV04] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki-a lightweight
and flexible operating system for tiny networked sensors. In Local Computer
Networks, 2004. 29th Annual IEEE International Conference on, pages 455–
462. IEEE, 2004.

[DNBR06] Dionisio De Niz, Gaurav Bhatia, and Raj Rajkumar. Model-based devel-
opment of embedded systems: The sysweaver approach. In Real-Time and
Embedded Technology and Applications Symposium, 2006. Proceedings of the
12th IEEE, pages 231–242. IEEE, 2006.

Bibliography 235

[Dun07] Adam Dunkels. Rime—a lightweight layered communication stack for sensor
networks. In Proceedings of the European Conference on Wireless Sensor
Networks (EWSN), Poster/Demo session, Delft, The Netherlands. Citeseer,
2007.

[DZDN+07] Abhijit Davare, Qi Zhu, Marco Di Natale, Claudio Pinello, Sri Kanajan,
and Alberto Sangiovanni-Vincentelli. Period optimization for hard real-time
distributed automotive systems. In Proceedings of the 44th annual Design
Automation Conference, pages 278–283. ACM, 2007.

[EGE02] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network
time synchronization using reference broadcasts. ACM SIGOPS Operating
Systems Review, 36(SI):147–163, 2002.

[Emb] Embedded Systems Academy. CANopen Magic User Manual.
http://www.esacademy.org/products/getfile.php?filename=COMPDLLManual.pdf.

[EÖF+09] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels, T. Voigt,
R. Sauter, and P. J. Marrón. COOJA/MSPSim: interoperability testing
for wireless sensor networks. In SIMUTools’09, page 27, 2009.

[FGM+99] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter,
Paul Leach, and Tim Berners-Lee. Hypertext transfer protocol–HTTP/1.1,
1999.

[FMB+09] Simon Fürst, Jürgen Mössinger, Stefan Bunzel, Thomas Weber, Frank
Kirschke-Biller, Peter Heitkämper, Gerulf Kinkelin, Kenji Nishikawa, and
Klaus Lange. AUTOSAR–A Worldwide Standard is on the Road. In 14th
International VDI Congress Electronic Systems for Vehicles, Baden-Baden,
volume 62, 2009.

[FMD+00] Thomas Führer, Bernd Müller, Werner Dieterle, Florian Hartwich, Robert
Hugel, and Michael Walther. Time triggered communication on CAN (Time
Triggered CAN-TTCAN). In 7th international CAN Conference, 2000.

[FS13] Domenic Forte and Ankur Srivastava. Thermal-aware sensor scheduling for
distributed estimation. ACM Transactions on Sensor Networks (TOSN),
9(4):53, 2013.

[FT02] Roy T Fielding and Richard N Taylor. Principled design of the modern Web
architecture. ACM Transactions on Internet Technology (TOIT), 2(2):115–
150, 2002.

[GEC+04] Lewis Girod, Jeremy Elson, Alberto Cerpa, Thanos Stathopoulos, Nithya
Ramanathan, and Deborah Estrin. EmStar: A Software Environment for
Developing and Deploying Wireless Sensor Networks. In USENIX Annual
Technical Conference, General Track, pages 283–296, 2004.

[GHGGM01] M González Harbour, JJ Gutiérrez Garćıa, JC Palencia Gutiérrez, and
JM Drake Moyano. Mast: Modeling and analysis suite for real time ap-
plications. In Real-Time Systems, 13th Euromicro Conference on, 2001.,
pages 125–134. IEEE, 2001.

236 Bibliography

[GPF10] Nils Glombitza, Dennis Pfisterer, and Stefan Fischer. Using state machines
for a model driven development of web service-based sensor network applica-
tions. In Proceedings of the 2010 ICSE Workshop on Software Engineering
for Sensor Network Applications, pages 2–7. ACM, 2010.

[GS05] Lin Gu and John A Stankovic. Radio-triggered wake-up for wireless sensor
networks. Real-Time Systems, 29(2-3):157–182, 2005.

[HC01] Jim Highsmith and Alistair Cockburn. Agile software development: The
business of innovation. Computer, 34(9):120–127, 2001.

[HCB00] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrish-
nan. Energy-efficient communication protocol for wireless microsensor net-
works. In System sciences, 2000. Proceedings of the 33rd annual Hawaii
international conference on, pages 10–pp. IEEE, 2000.

[HCRP91] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The
synchronous data flow programming language LUSTRE. Proceedings of the
IEEE, 79(9):1305–1320, 1991.

[Hen11] Henk Boterenbrood. CANopen applica-
tion firmware for the ELMB, November 2011.
http://www.nikhef.nl/pub/departments/ct/po/html/ELMB128/ELMB24.pdf.

[HHJ+05] Rafik Henia, Arne Hamann, Marek Jersak, Razvan Racu, Kai Richter, and
Rolf Ernst. System level performance analysis–the SymTA/S approach. IEE
Proceedings-Computers and Digital Techniques, 152(2):148–166, 2005.

[HHKK04] Jason Hill, Mike Horton, Ralph Kling, and Lakshman Krishnamurthy. The
platforms enabling wireless sensor networks. Communications of the ACM,
47(6):41–46, 2004.

[HKNP06] Andrew Hinton, Marta Kwiatkowska, Gethin Norman, and David Parker.
PRISM: A tool for automatic verification of probabilistic systems. In Tools
and Algorithms for the Construction and Analysis of Systems, pages 441–
444. Springer, 2006.

[HLMP04] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain Pey-
ronnet. Approximate probabilistic model checking. In Verification, Model
Checking, and Abstract Interpretation, pages 73–84. Springer, 2004.

[HMZX08] Benjamin R. Hamilton, Xiaoli Ma, Qi Zhao, and Jun Xu. ACES: adap-
tive clock estimation and synchronization using Kalman filtering. In Mobile
Computing and Networking, page 152–162, 2008.

[HSV12] Faranak Heidarian, Julien Schmaltz, and Frits Vaandrager. Analysis of
a clock synchronization protocol for wireless sensor networks. Theoretical
Computer Science, 413(1):87–105, 2012.

[HT11] Jonathan Hui and Pascal Thubert. Compression format for IPv6 datagrams
over IEEE 802.15. 4-based networks. 2011.

[IEE12] IEEE. Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specification, IEEE 802.11. 2012.

Bibliography 237

[ISO03a] ISO ISO. 11898-1–Road vehicles–Controller area network (CAN)–Part 1:
Data link layer and physical signalling. International Organization for Stan-
dardization, 2003.

[ISO03b] ISO ISO. 11898-2, Road vehicles Controller area network (CAN) Part 2:
High-speed medium access unit. International Organization for Standard-
ization, 2003.

[KBI+02] S Kersten, KH Becks, M Imhäuser, P Kind, P Mättig, and J Schultes.
Towards a Detector Control System for the ATLAS Pixel Detector, 2002.

[KDD11] Matthias Kovatsch, Simon Duquennoy, and Adam Dunkels. A low-power
CoAP for Contiki. In Mobile Adhoc and Sensor Systems (MASS), 2011
IEEE 8th International Conference on, pages 855–860. IEEE, 2011.

[KDN11] Dawood Ashraf Khan, Robert I Davis, and Nicolas Navet. Schedulability
analysis of CAN with non-abortable transmission requests. In Emerging
Technologies & Factory Automation (ETFA), 2011 IEEE 16th Conference,
pages 1–8. IEEE, 2011.

[KLD12] Matthias Kovatsch, Martin Lanter, and Simon Duquennoy. Actinium: A
restful runtime container for scriptable internet of things applications. In
Internet of Things (IOT), 2012 3rd International Conference on the, pages
135–142. IEEE, 2012.

[KLM+04] Paul Kocher, Ruby Lee, Gary McGraw, Anand Raghunathan, and Srivaths
Moderator-Ravi. Security as a new dimension in embedded system design.
In Proceedings of the 41st annual Design Automation Conference, pages
753–760. ACM, 2004.

[KNBM09] Dawood A Khan, Nicolas Navet, Bernard Bavoux, and Jörn Migge. Aperi-
odic traffic in response time analyses with adjustable safety level. In Emerg-
ing Technologies & Factory Automation, 2009. ETFA 2009. IEEE Confer-
ence on, pages 1–9. IEEE, 2009.

[Kop11] Hermann Kopetz. Real-time systems: design principles for distributed em-
bedded applications. Springer, 2011.

[KOSH07] Hermann Kopetz, Roman Obermaisser, Christian El Salloum, and Bernhard
Huber. Automotive software development for a multi-core system-on-a-chip.
In Software Engineering for Automotive Systems, 2007. ICSE Workshops
SEAS’07. Fourth International Workshop on, pages 2–2. IEEE, 2007.

[L+08] Mikko Laakso et al. Distributed systems design flow: field-bus modeling.
Master’s thesis, TUT, 2008.

[LAB+04] Mirko Loghi, Federico Angiolini, Davide Bertozzi, Luca Benini, and Roberto
Zafalon. Analyzing on-chip communication in a MPSoC environment. In
Proceedings of the conference on Design, automation and test in Europe-
Volume 2, page 20752. IEEE Computer Society, 2004.

[LB10] Jean-Yves Le Boudec. Performance Evaluation of Computer and Commu-
nication Systems. EPFL Press, Lausanne, Switzerland, 2010.

238 Bibliography

[LBM+01] Ákos Lédeczi, Arpad Bakay, Miklos Maroti, Péter Völgyesi, Greg Nordstrom,
Jonathan Sprinkle, and Gábor Karsai. Composing domain-specific design
environments. Computer, 34(11):44–51, 2001.

[LDB10] Axel Legay, Benôıt Delahaye, and Saddek Bensalem. Statistical model check-
ing: An overview. In Runtime Verification, pages 122–135. Springer, 2010.

[LEWM05] K Lee, John C Eidson, Hans Weibel, and Dirk Mohl. IEEE 1588-Standard
for a Precision Clock Synchronization Protocol for Networked Measurement
and Control Systems. In Conference on IEEE, volume 1588, 2005.

[LLWC03] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM: Accurate
and scalable simulation of entire TinyOS applications. In Proceedings of the
1st international conference on Embedded networked sensor systems, pages
126–137. ACM, 2003.

[LMP+05] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin
Whitehouse, Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer,
et al. Tinyos: An operating system for sensor networks. In Ambient intelli-
gence, pages 115–148. Springer, 2005.

[LPFJ+03] Gilberto Flores Lucio, Marcos Paredes-Farrera, Emmanuel Jammeh, Martin
Fleury, and Martin J Reed. Opnet modeler and ns-2: Comparing the accu-
racy of network simulators for packet-level analysis using a network testbed.
WSEAS Transactions on Computers, 2(3):700–707, 2003.

[LPY97] Kim G Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.
International Journal on Software Tools for Technology Transfer (STTT),
1(1):134–152, 1997.

[LR04] Koen Langendoen and Niels Reijers. Distributed localization algorithm. Em-
bedded Systems Handbook, R. Zurawski (Editor), CRC Press, Boca Raton,
FL, 2004.

[LSK+15] Alexios Lekidis, Emmanouela Stachtiari, Panagiotis Katsaros, Marius
Bozga, and Christos K Georgiadis. Using BIP to reinforce correctness of
resource-constrained IoT applications. In 10th IEEE International Sym-
posium on Industrial Embedded Systems (SIES’2015), pages 1–10. IEEE,
2015.

[Men] Mentor Graphics. Volcano Network Architect (VNA).
http://www.mentor.com/products/vnd/communication-management/vna.

[MFF+97] Steven McCanne, Sally Floyd, Kevin Fall, Kannan Varadhan, et al. Network
simulator ns-2, 1997.

[MGL+08] Mohammad Mostafizur Rahman Mozumdar, Francesco Gregoretti, Luciano
Lavagno, Laura Vanzago, and Stefano Olivieri. A framework for mod-
eling, simulation and automatic code generation of sensor network ap-
plication. In Sensor, Mesh and Ad Hoc Communications and Networks,
2008. SECON’08. 5th Annual IEEE Communications Society Conference
on, pages 515–522. IEEE, 2008.

Bibliography 239

[MGT+11] Aneeq Mahmood, Georg Gaderer, Henning Trsek, Stefan Schwalowsky, and
N Kero. Towards high accuracy in IEEE 802.11 based clock synchroniza-
tion using PTP. In Precision Clock Synchronization for Measurement Con-
trol and Communication (ISPCS), 2011 International IEEE Symposium on,
pages 13–18. IEEE, 2011.

[MKHC07] Gabriel Montenegro, Nandakishore Kushalnagar, J Hui, and D Culler.
Transmission of IPv6 packets over IEEE 802.15. 4 networks. Internet pro-
posed standard RFC, 4944, 2007.

[MLD09] Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm. OPC uni-
fied architecture. Springer Science & Business Media, 2009.

[MLVSV10] Mohammad Mostafizur Rahman Mozumdar, Luciano Lavagno, Laura Van-
zago, and Alberto L Sangiovanni-Vincentelli. HILAC: A framework for hard-
ware in the loop simulation and multi-platform automatic code generation
of WSN applications. In Industrial Embedded Systems (SIES), 2010 Inter-
national Symposium on, pages 88–97. IEEE, 2010.

[MRX08] Satyajayant Misra, Martin Reisslein, and Guoliang Xue. A survey of mul-
timedia streaming in wireless sensor networks. Communications Surveys &
Tutorials, IEEE, 10(4):18–39, 2008.

[NET] NETGEAR. ProSafe 5-port and 8-port Gi-
gabit Desktop Switches 10/100/1000 Mbps.
http://www.netgear.ru/images/GS105v3 GS108v3 DS 27Apr1170-
4903.pdf.

[NGAH13] Michele Nati, Alexander Gluhak, Hamidreza Abangar, and William Headley.
Smartcampus: A user-centric testbed for internet of things experimentation.
In Wireless Personal Multimedia Communications (WPMC), 2013 16th In-
ternational Symposium on, pages 1–6. IEEE, 2013.

[NMM+10] Nicolas Navet, Aurélien Monot, Jörn Migge, et al. Frame latency evalu-
ation: when simulation and analysis alone are not enough. In 8th IEEE
International Workshop on Factory Communication Systems (WFCS2010),
Industry Day, 2010.

[Nou15] Ayoub Nouri. Rigorous System-level Modeling and Performance Evaluation
for Embedded System Design. PhD thesis, Université de Grenoble, 2015.

[Öst06] F. Österlind. A sensor network simulator for the Contiki OS. SICS Research
Report, 2006.

[PAK08] Olaf Pfeiffer, Andrew Ayre, and Christian Keydel. Embedded networking
with CAN and CANopen. Copperhill Media, 2008.

[PBK14] Matthew Owen Pugh, Jerry Brewer, and Jacques Kvam. Sensor Fusion for
Intrusion Detection Under False Alarm Constraints. In Sensors Application
Symposium (SAS). IEEE, 2014.

[PC11] Stig Petersen and Simon Carlsen. WirelessHART versus ISA100. 11a: the
format war hits the factory floor. Industrial Electronics Magazine, IEEE,
5(4):23–34, 2011.

240 Bibliography

[Pha06] Hoang Pham. Springer handbook of engineering statistics. Springer Science
& Business Media, 2006.

[por] port GmbH. youCAN CANopen prototyping.
http://www.port.de/fileadmin/user upload/Dateien IST
fuer Migration/youCAN e.pdf.

[Pry08] Gunnar Prytz. A performance analysis of EtherCAT and PROFINET
IRT. In Emerging Technologies and Factory Automation, 2008. ETFA 2008.
IEEE International Conference on, pages 408–415. IEEE, 2008.

[RDD+11] Taniro Rodrigues, Priscilla Dantas, Flávia Coimbra Delicato, Paulo F Pires,
Luci Pirmez, Thais Batista, Claudio Miceli, and Albert Zomaya. Model-
driven development of wireless sensor network applications. In Embedded
and Ubiquitous Computing (EUC), 2011 IFIP 9th International Conference
on, pages 11–18. IEEE, 2011.

[Res00] Eric Rescorla. HTTP over TLS. IETF, 2000.

[RLL08] Fengyuan Ren, Chuang Lin, and Feng Liu. Self-correcting time synchroniza-
tion using reference broadcast in wireless sensor network. IEEE Wireless
Commun., 15(4):79–85, 2008.

[RSZ15] Kévin Roussel, Ye-Qiong Song, and Olivier Zendra. RIOT OS Paves the
Way for Implementation of High-Performance MAC Protocols. In 4th In-
ternational Conference on Sensor Networks (SENSORNETS) 2015, 2015.

[SABB14] Najah Ben Said, Takoua Abdellatif, Saddek Bensalem, and Marius Bozga.
Model-driven information flow security for component-based systems. In
From Programs to Systems. The Systems perspective in Computing, pages
1–20. Springer, 2014.

[SAE93] SAE Technical Report J2056/1. Class C Application Requirement Consid-
erations, June 1993.

[SB11] Zach Shelby and Carsten Bormann. 6LoWPAN: The wireless embedded In-
ternet, volume 43. John Wiley & Sons, 2011.

[SBK05] Bharath Sundararaman, Ugo Buy, and Ajay D Kshemkalyani. Clock syn-
chronization for wireless sensor networks: a survey. Ad Hoc Networks,
3(3):281–323, 2005.

[SBN+14] Janos Sztipanovits, Ted Bapty, Sandeep Neema, Larry Howard, and Ethan
Jackson. OpenMETA: A Model-and Component-Based Design Tool Chain
for Cyber-Physical Systems. In From Programs to Systems. The Systems
perspective in Computing, pages 235–248. Springer, 2014.

[sC+03] LAN/MAN standards Committee et al. Part 11: Wireless lan medium access
control (mac) and physical layer (phy) specifications. IEEE-SA Standards
Board, 2003.

[SHB14] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Pro-
tocol (CoAP). 2014.

Bibliography 241

[SHC+04] Victor Shnayder, Mark Hempstead, Bor-rong Chen, Geoff Werner Allen,
and Matt Welsh. Simulating the power consumption of large-scale sensor
network applications. In Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 188–200. ACM, 2004.

[SHK+06] Ahmed Sobeih, Jennifer C Hou, Lu-Chuan Kung, Ning Li, Honghai Zhang,
Wei-Peng Chen, Hung-Ying Tyan, and Hyuk Lim. J-Sim: a simulation and
emulation environment for wireless sensor networks. Wireless Communica-
tions, IEEE, 13(4):104–119, 2006.

[SLT+14] Zhenyu Song, Mihai T Lazarescu, Riccardo Tomasi, Luciano Lavagno, and
Maurizio A Spirito. High-Level Internet of Things Applications Develop-
ment Using Wireless Sensor Networks. In Internet of Things, pages 75–109.
Springer, 2014.

[SMMM06] Ludovic Samper, Florence Maraninchi, Laurent Mounier, and Louis Man-
del. GLONEMO: Global and accurate formal models for the analysis of
ad-hoc sensor networks. In Proceedings of the first international conference
on Integrated internet ad hoc and sensor networks, page 3. ACM, 2006.

[SPBB13] Dario Socci, Peter Poplavko, Saddek Bensalem, and Marius Bozga. Mixed
critical earliest deadline first. In Real-Time Systems (ECRTS), 2013 25th
Euromicro Conference on, pages 93–102. IEEE, 2013.

[Spe01] DeviceNet Specification. Release 2.0, including Errata 4. April, 1:1995–2001,
2001.

[SSW09] Lars Schor, Philipp Sommer, and Roger Wattenhofer. Towards a zero-
configuration wireless sensor network architecture for smart buildings. In
Proceedings of the First ACM Workshop on Embedded Sensing Systems for
Energy-Efficiency in Buildings, pages 31–36. ACM, 2009.

[Sta13] SAE Standard. J1939: Recommended practice for a serial control and com-
munication vehicle network. J1939, 201308, 2013.

[Std14a] International Electrotechnical Commission Std. IEC 61784: Digital data
communications for measurement and control – Part 1: Industrial commu-
nication networks – Profiles – Part 1: Fieldbus profiles . August 2014.

[Std14b] International Electrotechnical Commission Std. IEC 61784: Digital data
communications for measurement and control – Part 2: Additional profiles
for ISO/IEC8802-3 based communication networks in real–time applications
. July 2014.

[Ste08] Wilfried Steiner. TTEthernet specification. TTTech Computertechnik AG,
Nov, 2008.

[SVDN07] Alberto Sangiovanni-Vincentelli and Marco Di Natale. Embedded system
design for automotive applications. Computer, (10):42–51, 2007.

[TB94] Ken Tindell and Alan Burns. Guaranteed message latencies for distributed
safety-critical hard real-time control networks. Report YCS229, Department
of Computer Science, University of York, May 1994, 1994.

242 Bibliography

[TBHH07] Lothar Thiele, Iuliana Bacivarov, Wolfgang Haid, and Kai Huang. Mapping
Applications to Tiled Multiprocessor Embedded Systems. In Proceedings
of the Seventh International Conference on Application of Concurrency to
System Design, ACSD ’07, pages 29–40, Washington, DC, USA, 2007. IEEE
Computer Society.

[TCN00] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time cal-
culus for scheduling hard real-time systems. In Circuits and Systems, 2000.
Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium
on, volume 4, pages 101–104. IEEE, 2000.

[TET] TETCOS. NetSim Experimental Manual.
http://www.tetcos.com/downloads/netsim
experiment manual.pdf.

[Tol10] Gilman Tolle. Embedded binary http (ebhttp). ID: draft-tolle-core-ebhttp-
00, 2010.

[TXY08] Simon Tschirner, Liang Xuedong, and Wang Yi. Model-based validation
of QoS properties of biomedical sensor networks. In Proceedings of the 8th
ACM international conference on Embedded software, pages 69–78. ACM,
2008.

[V+01] András Varga et al. The OMNeT++ discrete event simulation system. In
Proceedings of the European simulation multiconference (ESM’2001), vol-
ume 9, page 65. sn, 2001.

[Veca] Vector Informatik GmbH. CANanalyzer User Manual.
https://vector.com/portal/medien/cmc/info/CANalyzer ProductInformation EN.pdf.

[Vecb] Vector Informatik GmbH. CANoe User Manual.
http://www.vector.com/portal/medien/cmc/manuals/CANoe75 Manual EN.pdf.

[VHPY09] Valeriy Vyatkin, Hans-Michael Hanisch, Cheng Pang, and Chia-Han Yang.
Closed-loop modeling in future automation system engineering and valida-
tion. Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, 39(1):17–28, 2009.

[Wal45] Abraham Wald. Sequential tests of statistical hypotheses. The Annals of
Mathematical Statistics, 16(2):117–186, 1945.

[WASW05] Geoffrey Werner-Allen, Patrick Swieskowski, and Matt Welsh. Motelab:
A wireless sensor network testbed. In Proceedings of the 4th international
symposium on Information processing in sensor networks, page 68. IEEE
Press, 2005.

[Wen00] Hans-Christian von der Wense. Introduction to local interconnect network.
2000.

[Win12] Tim Winter. RPL: IPv6 routing protocol for low-power and lossy networks.
2012.

[WLMP10] Thomas Watteyne, Steven Lanzisera, Ankur Mehta, and Kristofer SJ Pis-
ter. Mitigating multipath fading through channel hopping in wireless sensor

Bibliography 243

networks. In Communications (ICC), 2010 IEEE International Conference
on, pages 1–5. IEEE, 2010.

[WTVL06] Ernesto Wandeler, Lothar Thiele, Marcel Verhoef, and Paul Lieverse. Sys-
tem architecture evaluation using modular performance analysis: a case
study. International Journal on Software Tools for Technology Transfer,
8(6):649–667, 2006.

[YBND12] Patrick Meumeu Yomsi, Dominique Bertrand, Nicolas Navet, and Robert I
Davis. Controller Area Network (CAN): Response time analysis with offsets.
In Factory Communication Systems (WFCS), 2012 9th IEEE International
Workshop on, pages 43–52. IEEE, 2012.

[You05] Hakan L Younes. Verification and planning for stochastic processes with
asynchronous events. Technical report, DTIC Document, 2005.

[Zel05] Holger Zeltwanger. Gateway profiles connecting CANopen and Ethernet. In
10th International CAN Conference, Rome, Italy, 2005.

[ZHKS04] Gang Zhou, Tian He, Sudha Krishnamurthy, and John A Stankovic. Impact
of radio irregularity on wireless sensor networks. In Proceedings of the 2nd
international conference on Mobile systems, applications, and services, pages
125–138. ACM, 2004.

[Zur05] Richard Zurawski. Embedded systems handbook: Networked Embedded Sys-
tems, volume 2. CRC Press, 2005.

