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Résumé 

Le Liban est un petit pays montagneux à climat typiquement méditerranéen avec une 

grande variabilité spatiale des précipitations dont une quantité substantielle est sous 

forme de neige. La majorité des terrains libanais sont karstiques. En plus, le pays est 

fortement urbanisé avec une grande pression anthropique sur les ressources en eau. 

En outre, les bassins versants libanais manquent de longues séries de données à 

cause de l’arrêt des mesures durant la guerre civile (1975-1990) et l’après guerre 

(1990-2000). 

Ce travail vise à comprendre les caractéristiques de la réponse hydrologique des 

bassins versants libanais dans le contexte méditerranéen et à classer ces bassins en 

fonction de leurs propriétés physiques et hydrologiques. La thèse est structurée en 

trois parties : une revue bibliographique de l’hydrologie méditerranéenne, une analyse 

des données hydrologiques du Liban et la comparaison au contexte méditerranéen, et 

finalement un essai de classification et de modélisation des bassins versants 

Libanais.  

La première partie concerne une synthèse bibliographique basée sur 152 articles 

portant sur l’hydrologie méditerranéenne (article accepté dans Hydrological Sciences 

Journal). Les études ont été classées selon trois catégories d’objectifs : étude du bilan 

hydrologique, les crues et la sécheresse. La méthodologie adoptée porte aussi bien 

sur l’étude des processus hydrologiques à l’échelle d’un bassin versant particulier que 

des études de régionalisation sur plusieurs bassins versants. La zone d'étude est 

divisée en trois parties : nord-ouest (NWM), est (EM) et sud (SM) Méditerranée. 

L'analyse montre les disparités régionales : fortes intensités des pluies et des crues 

dans la région NWM, faibles écoulements et longues périodes de sécheresse en SM, 

et une situation intermédiaire pour EM. Une tendance à la réduction des ressources 

en eau entraînées par les pressions anthropiques et climatiques et un régime de 

précipitations plus extrêmes sont également perceptibles. Les bassins versants 

montrent des réponses hydrologiques très hétérogènes dans le temps et l'espace. La 

modalisation du fonctionnement hydrologique de ces bassins est souvent difficile 

accompagnée de grandes incertitudes dans les prévisions. Cependant, peu de 

modèles ont été développés pour répondre aux spécificités des bassins 

méditerranéens. Les études de régionalisation sont rares et les résultats des 

différentes études difficilement transposables d’une zone à une autre. Des études 

supplémentaires sont nécessaires pour améliorer la compréhension des processus 

hydrologiques en milieu méditerranéen et pour tenir compte des spécificités 

régionales. 

La deuxième partie porte sur l’analyse des données cartographiques et pluie/débit 

des bassins libanais et la comparaison de ces bassins aux bassins méditerranéens 

étudiés précédemment. Vingt huit bassins versants libanais sont étudiés sur la 

période 2001-2011. Une base de données cartographique et hydrologique a été 

constituée. Les données cartographiques concernent  le relief, les cours d’eau, le sol, 
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la géologie, la présence du karst, et l’occupation du sol. Les données pluie/débit 

concernent l’analyse des données pluviométriques (32 stations à  pas de temps 

mensuel et journalier quand disponible), les données du couvert neigeux, 

l’évapotranspiration (à partir des images satellites MODIS à pas de temps mensuel) et 

les débits (vingt quatre stations à pas de temps journalier et quatre stations à pas de 

temps mensuel). Ces données pluie/débit sont comparées à une base de données de 

la période précédant la guerre civile. L’acquisition de données pluie/débit était un 

véritable défi. Ces données ne sont pas toujours disponibles pour la même période et 

une partie étant payante (données pluviométriques). A partir de ces données, nous 

avons établis des indicateurs pour décrire  les caractéristiques physiques des bassins 

versants et les caractéristiques de la réponse hydrologique. Ensuite, les réponses 

hydrologiques des bassins versants libanais sont comparées à celles des autres 

bassins versants méditerranéens. A l’échelle du bilan annuel, les valeurs du 

coefficient de ruissellement sont élevées à travers tout le pays. À l'échelle de 

l'événement de crue, comme pour les autres régions méditerranéennes, les 

précipitations pendant un seul événement peut représenter jusqu'à 40 % du total 

annuel des précipitations. Le débit de pointe spécifique diminue avec la surface du 

bassin versant. Le coefficient de ruissellement à l’échelle de l’événement de crue est 

beaucoup plus élevé que les valeurs observées enregistrées dans l’EM et est dans la 

gamme des bassins versants NWM. 

 

La troisième partie présente un essai de classification et de modélisation des bassins 

versants libanais en fonction de leurs caractéristiques physiographiques et 

hydrologiques. Les variables définies à partir de l'analyse des données ont été 

utilisées pour la classification. Trois classifications ont été menées sur la base des 

indicateurs physiques, hydrologiques et physiques et hydrologiques. Cinq classes de 

bassins physiquement et hydrologiquement similaires ont été identifiées. Enfin, un 

essai de modélisation au pas de temps mensuel en utilisant  le modèle GR2M a été 

entrepris. Plusieurs approches de régionalisation ont été comparées. La discussion 

porte sur l'analyse du fonctionnement hydrologique de chaque bassin versant et de 

chaque classe de bassins. 

 

Mots-clefs hydrologie; Liban ; basin versant Méditerranéen ; bilan annuel; pluie-débit; 

sécheresse; modélisation; régionalisation ; classification 
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Résumé substantiel 

 

Introduction 

L’hydrologie libanaise 

Situé sur la rive orientale de la mer Méditerranée. Le Liban est un petit pays 

montagneux à climat typiquement méditerranéen avec d'importantes variations 

locales en raison de son relief important. Le pays est fortement urbanisé avec une 

grande pression anthropique sur les ressources en eau. En outre, les bassins 

versants libanais sont pauvrement-jaugés due principalement à une grande perte de 

données causée par les 15 années de guerre civile. 

Bien qu'un réseau météorologique et hydrométrique avait été progressivement 

construit depuis les années 1930 et a atteint son apogée dans les années 1970 (Sene 

et al. 1999), l'éclatement de la guerre civile libanaise en 1975 a créé une lacune dans 

les données de plus de 20 ans. De nouveaux réseaux sont en construction depuis la fin 

des années 1990, cependant, la qualité des ces données est discutable. 

Ainsi, les bassins versants libanais sont mal jaugés et dans un contexte 

d'augmentation de la pression anthropique sur les ressources en eau. En outre, le Liban 

a beaucoup de particularités. D'un point de vue géomorphologique, le pays est formé de 

deux chaînes de montagnes parallèles à la mer. La chaine du Mont Liban délimite une 

étroite plaine côtière et la chaîne orientale (Anti-Liban). Les deux chaines sont séparées 

par une plaine élevée, la vallée de la Bekaa. Ce complexe relief cause une grande 

variabilité spatiale des précipitations. D'où la moyenne des précipitations annuelles peut 

dépasser 1500 mm dans certaines régions du Mont-Liban et tomber en dessous de 200 

mm dans la partie nord-est semi-aride du pays. En outre, une quantité substantielle de 

précipitations est sous forme de neige. De plus, en ajoutant à la complexité du relief et 

la variabilité spatiale des précipitations, le substrat de la plupart des terrains libanais est 

formé de roches carbonatées. Il en résulte la formation de paysages karstiques dans 

tout le pays. Par conséquent, la majorité des rivières libanaises trouvent leurs origines 

dans les sources karstiques. Cela rend l'étude de la réponse hydrologique des bassins 

versants libanais un véritable défi. 

En termes des caractéristiques de la réponse hydrologique des bassins versants 

libanais, la majorité des études dans le pays se concentrent davantage sur les aspects 

hydrogéologiques. Pour les études hydrologiques classiques (hydrologie de surface) 

moins d'études existent. On peut citer les travaux de Sene et al. (1999, 2000). Les 

auteurs ont étudié les variations spatiales et temporelles des débits mensuelles de 

rivières pour cinq bassins versants et la répartition régionale des débits de pointes au 

Liban. Hreiche (2003) a présenté un modèle conceptuel développé pour le climat 

méditerranéen (MEDOR), calibré et validé sur différents bassins versants libanais et 

français. Hreiche et al. (2007) a couplé un module de neige à MEDOR pour mieux 
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simuler l’impact de la neige. Des études de modélisation pour la gestion des ressources 

hydriques et la détection des tendances existent également (Massoud et al. 2006, 

Ramadan et al. 2012). Les études de régionalisation dans le pays sont très 

préliminaires. En plus des études mentionnées précédemment (Sene et al. 1999, 2000), 

Abou Daher (2006) a établi des modèles globaux de régression linéaire pour l'estimation 

du coefficient de ruissellement annuel. Ces études préliminaires ont suggéré que les 

paramètres hydrologiques montrent un remarquable degré de cohérence spatiale.  

Compte tenu de la qualité des données pluie/débit des bassins versants libanais (mal 

jaugés), et puisqu’il n’y a pas d’études de classification de ces bassins, il serait d'un 

grand intérêt d’analyser la réponse hydrologique des bassins versants libanais et de les 

comparer à une référence de la littérature (autres bassins versants méditerranéens) et 

enfin de tenter une classification des bassins versants libanais.  

La région méditerranéenne 

Le climat méditerranéen est caractérisé par une forte variabilité interannuelle et intra-

annuelle des précipitations, une sécheresse estivale, et la forte intensité des épisodes 

pluvieux. En raison des caractéristiques climatiques, les régions méditerranéennes sont 

confrontées à des problèmes de disponibilité en eau (Morán-Tejeda et al. 2010). En 

effet, dans les vingt dernières années, de nombreux pays du bassin méditerranéen ont 

connu des périodes de sécheresse pendant plusieurs années (FAO, 2006). De 

nombreuses études (par exemple Milly et al. 2005, IPCC 2014) prédisent que les 

ressources en eau vont même se raréfier en raison du changement climatique et de la 

demande croissante en eau par les différents secteurs économiques. En outre, les 

événements de précipitations se produisent habituellement sous forme de tempêtes de 

courte durée à forte intensité pluvieuse ce qui provoquent des inondations intenses (par 

exemple Anquetin et al. 2010, Vincendon et al. 2010, Moussa et Chahinian 2009 

[France], Koutroulis et Tsanis 2010 [la Grèce], Brath et al. 2004 [Italie], Rozalis et al. 

2010 [Israël]). Les bassins versants méditerranéens sont donc caractérisés par trois 

caractéristiques principales: des ressources en eau limitées, des étés secs et des 

événements pluvieux de forte intensité qui génèrent des fortes inondations. 

De nombreuses études existent sur différents aspects des réponses hydrologiques 

des bassins versants méditerranéens. Cependant, les études sur des bassins 

individuels ou les études de régionalisation, sont tous limitées à des bassins spécifiques 

ou à une région géographique. Toutefois, aucune étude n'a encore tenté de regrouper 

les différents aspects de l'hydrologie méditerranéenne et de synthétiser des travaux 

antérieurs réalisés partout dans la Méditerranée. Par conséquent, dans ce travail, nous 

présentons une revue de la réponse hydrologique des bassins versants méditerranéens 

à l'échelle annuelle des ressources en eau, à l'échelle de l'événement de crue et à 

l’échelle de la période sèche.  
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Les informations recueillies seront également utilisées comme référence pour 

comparer la réponse hydrologique d'un environnement à données limitées comme les 

bassins libanais. 

Classification des bassins versants 

La classification des bassins versants a pour objectif de regrouper des bassins qui 

partagent des caractéristiques physiques et / ou hydrologiques « similaires ». Elle 

permet de comparer un large échantillon de bassins versants situés dans différents 

contextes hydro-climatiques. Andréassian et al. (2006) souligne l'importance de 

travailler avec un grand nombre de bassins; l'objectif est de comparer et d'apprendre 

des différences et des similitudes entre les sites (Parajka et al. 2013, Salinas et al. 

2013). Cette démarche contribue aux travaux en cours pour le développement d'un 

système mondial de classification qui fait encore défaut en hydrologie (Sivapalan 2005, 

Wagener 2007). En outre, la classification des bassins est utilisée dans les études de 

régionalisation pour le transfert de l'information hydrologique des bassins versants 

jaugés à ceux non jaugés (Oudin et al. 2010), ce qui est d'un grand intérêt dans un 

monde où la majorité des bassins sont non jaugé (Hrachowitz et al. 2013). 

Ce travail vise à comprendre les caractéristiques de la réponse hydrologique des 

bassins versants libanais dans le contexte méditerranéen et à classer ces bassins en 

fonction de leurs propriétés physiques et hydrologiques. La thèse est structurée en trois 

parties. Nous commençons par une revue bibliographique sur les caractéristiques de la 

réponse hydrologique des bassins versants méditerranéens à différents échelles de 

temps. Ensuite, une analyse détaillée des données des bassins versants libanais en 

termes de caractéristiques physiographiques, climatiques et hydrologiques est 

présentée. La réponse hydrologique des bassins versants libanais est alors comparée 

avec d'autres bassins versants méditerranéens. Enfin des descripteurs 

physiographiques et des signatures hydrologiques sont définis pour chaque bassin et 

sont utilisés pour classer les bassins libanais en groupes de bassins physiquement 

et/ou hydrologiquement similaires. Enfin, un essai de modélisation au pas de temps 

mensuel en utilisant  le modèle GR2M a été entrepris. Plusieurs approches de 

régionalization ont été comparées. La discussion porte sur l'analyse du fonctionnement 

hydrologique de chaque bassin versant et de chaque classe de bassins. 
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Partie I : Hydrologie du bassin méditerranéen 

C’est la première partie de la thèse constituée d’un seul chapitre (chapitre 1 ; article 

accepté avec révision dans Hydrological Sciences Journal). 

Un total de 152 études sur la région méditerranéenne publiées principalement au 

cours des deux dernières décennies ont été analysées. 

Pour étudier les tendances régionales dans la zone méditerranéenne, la région 

d'étude a été divisée en trois zones : Méditerranée nord-ouest (NWM, englobant 

l’Albanie, la Croatie, la France, l'Italie, le Monténégro, le Portugal, la Slovénie et 

l'Espagne; 102 études), Méditerranée orientale (EM, englobant Chypre, la Grèce, Israël, 

Liban, territoires palestiniens, la Syrie et la Turquie; 35 études) et sud de la 

Méditerranée (SM, englobant le Maroc, l’Algérie et la Tunisie; 15 études). 

Les études ont été divisées en trois groupes : des études de bilan annuel (68 études), 

événements pluie-débit (48 études) et des études sur les périodes de sécheresses (36 

études). Dans chaque groupe, les études sur les bassins versants individuels (120 

études) et les études de régionalisation pour les prévisions dans les bassins non jaugés 

(32 études) ont été analysées séparément. 

Pour chaque étude, des informations clés comprenant (i) la référence et les 

coordonnées de l'emplacement du bassin; (Ii) les objectifs de l'étude; (Iii) les 

caractéristiques du bassin, comme la surface, l'élévation, la pente, l'occupation du sol, 

les classes de sols, la géologie et la présence possible de karst; (Iv) les caractéristiques 

de données hydrométéorologiques, comme la période de mesure pluie-débit, le pas de 

temps des mesures, la moyenne annuelle des précipitations, l'évapotranspiration de 

référence, l'écoulement annuel moyen, le coefficient de ruissellement et de la 

contribution de la neige; pour les études basées sur des événements, des informations 

détaillées sur les réponses des bassins (profondeur des précipitations, la lame d’eau 

écoulée, le débit de pointe) ont également été extraites lorsqu'ils sont disponibles; (V) 

les caractéristiques des modèles, tels que le nom du modèle et la référence d'origine, 

les processus hydrologiques simulés, la résolution spatiale (modèles globaux, semi-

distribués ou distribués), le pas de temps et les critères d'évaluation du modèle; pour les 

études de régionalisation, des informations sur les méthodes de régionalisation et leurs 

performances relatives ont également été identifiées. 

La revue sur l’hydrologie des bassins versants méditerranéens montrent des 

disparités régionales (entre les différentes sous-régions NWM, EM et SM) dans la 

distribution des caractéristiques de réponse climatiques et hydrologiques à l'échelle du 

bilan annuel et à l'échelle de l'événement. La sous-région NWM présente le régime 

pluviométrique  le plus extrême dans la région méditerranéenne, en particulier dans un 

arc qui s’étend du nord-est de l'Espagne au nord-est de l’Italie. Une tendance à la 

baisse des ressources en eau entraînées par la pression anthropique (principalement le 

changement d’occupation du sol) et la pression climatique (diminution des 

précipitations, augmentation de la température) et vers un régime de précipitations plus 
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extrêmes avec une fréquence plus élevée d'événements pluvieux extrêmes en dépit de 

la réduction de la quantité annuelle totale de pluie. En outre, les réponses des bassins 

versants à l'échelle de l'événement pluvieux sont très hétérogènes dans le temps et 

l'espace. Par conséquent, des limites importantes confrontent les approches de 

modélisation classique qui visent à simuler la réponse du bassin versant méditerranéen 

en particulier lors des crues en raison des caractéristiques spécifiques des événements 

pluvieux méditerranéennes. 

D'autre part, les études de régionalisation dans la région ne sont pas assez 

nombreuses, même en termes de débits d’étiages et des courbes de débit classées ce 

qui est surprenant dans une région sous contraintes hydriques. En termes de 

performances, les prédictions de l’hydrogramme donnent de mauvais résultats dans le 

contexte hydro-climatique méditerranéen. Pour la prévision des courbes de débits 

classés et les débits d’étiages, les méthodes statistiques et les méthodes 

géostatistiques performent mieux que les approches paramétriques et les modèles de 

régression, respectivement. Des résultats mixtes ont été trouvés pour l'analyse des 

crues régionales. 

 

Partie II : Analyse des données des bassins versants libanais 

C’est la deuxième partie de la thèse avec 4 chapitres (chapitres 2, 3, 4, et 5). 

Caractéristiques géographiques (chapitre 2) 

Une liste complète des descripteurs qui représentent différents aspects des 

caractéristiques physiques de  bassins versants a été extraite pour les vingt huit bassins 

étudiés à partir des données spatiales disponibles tels : la morphométrie du bassin 

comme la surface, le drain le plus long, la pente, la densité de drainage, l'élévation ; les 

formations géologiques et karst ; les sols ; l’occupation des sols.  

Le substrat géologique des bassins a été décrit en termes de la perméabilité de la 

roche. Donc, en fonction de leurs caractéristiques, ces formations rocheuses ont été 

classées en trois catégories selon leur perméabilité (Abdallah et al. 2006). Les 

principales propriétés qui influent sur la perméabilité sont la présence de porosité 

secondaire (fractures et des fissures), le degré de karstification et la teneur en argile.  

De même, les caractéristiques du sol ont également été prises en compte. En 

fonction de leurs propriétés de texture et de leur contenu en matière organique, les sols 

sont classés en fonction de leur capacité d'infiltration (basées sur Abdallah et al. 2006).  

Enfin, l’occupation du sol est divisée en six grandes catégories: zones urbaines, 

agriculture, forêt, garrigues, prairie et terres nues. 

Une liste complète des variables décrivant les caractéristiques physiques 

(géographiques et climatiques) des bassins versants libanais a été extraite des données 



x 

 

disponibles. La grande majorité des bassins versants étudiés sont des petits et moyens 

bassins versants d'une superficie ne dépassant jamais 500 km2. Seuls deux bassins 

versants (Litani et Oronte) ont une superficie supérieure à 1000 km2. La pente médiane 

est de 8,3 % tandis que le quart a une pente supérieure à 14 %. En raison de leurs 

petites surfaces et leurs pentes importantes, les plus longs drains sont généralement 

courts; ne dépassant jamais 60 km et la densité de drainage est élevée avec une valeur 

médiane d'environ 3,38 km/km². Tous les bassins versants sont de montagne avec la 

grande majorité ayant une élévation moyenne de plus de 1000 m, et plus de la moitié 

d'entre eux avec au moins 20% de la superficie totale du bassin au dessus de 1800 m. 

La géologie du pays est principalement composée de roches carbonatées très 

karstifiées. Le substrat est fait principalement de roches très perméables et tous les 

bassins versants étudiés ont au moins 50% de leur surface karstifiée. En plus, étant 

donné la nature montagneuse du Liban, les sols sont généralement peu profonds avec 

une moyenne à haute capacité d'infiltration. Des sols bien développés et profonds sont 

surtout présents dans les bassins versants avec des terrains agricoles. La répartition 

des classes d'utilisation des terres varie largement. 

Caractéristiques climatiques (chapitre 3) 

A partir des données climatiques disponibles (32 stations pluviomètriques sur la période 

2001-2011 au pas de temps mensuel et parfois journalier), des caractéristiques 

climatiques telles que la moyenne interannuelle des précipitations et 

d’évapotranspiration de référence ont été calculées pour les bassins étudiés. En outre, 

vue l’état des données libanaises (deux bases de données, une avant la guerre et une 

autre après la guerre avec une grande réduction de nombre de stations), une évaluation 

de l’impact de réduction de nombre de station pluviométriques sur la spatialisation de la 

pluie a été entamée.  

Les précipitations moyennes annuelles varient largement dans le temps et l’espace. 

Elles sont de l'ordre de 500 mm dans l'Oronte, dans la partie nord-est du pays et à plus 

de 1200 mm dans la partie centrale du Mont-Liban. L’indice d'aridité (défini comme le 

rapport de la moyenne annuelle des précipitations et de l'évapotranspiration de 

référence) suit la même distribution spatiale des précipitations. L’évaluation de l’impact 

de la réduction de nombres de stations pluviométriques sur la spatialisation de la pluie 

prouve qu’un petit nombre de stations réparties intelligement peut être suffisant.  

Caractéristiques hydrologiques (chapitre 4) 

De l'information hydrologique disponible une liste de variables qui reflètent les différents 

aspects de la réponse hydrologique des bassins (signatures de ruissellement) a été 

produite. Ces variables sont largement utilisés dans la littérature pour la classification 

des bassins versants (Olden and Poff 2003, Alcazar et Palau 2010, Sawicz et al. 2011, 

2014, Archfield et al. 2013, Viglione et al. 2013). Elles représentent tous les aspects du 

régime hydrologique : l’ampleur, la fréquence, la durée, et le taux de changement (voir 
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Poff et Zimmerman 2010). Cela permet la classification des bassins versants en fonction 

de leurs caractéristiques hydrologiques.  

Le jeu de données hydrologiques disponibles (pour la période 2001 - 2011) a été 

utilisé pour extraire des signatures hydrologiques qui représentent les caractéristiques 

hydrologiques des bassins versants libanais. Ces principaux caractéristiques montrent 

une sorte de tendances régionales à travers le pays avec des bassins versants dans la 

partie centrale du Mont-Liban (la région la plus humide) présentant les valeurs les plus 

élevées en termes de débits moyens annuels, coefficients de ruissellement annuels et 

de débits journaliers. En outre, en termes de distribution journalière de débits (courbe de 

débits classés) ces mêmes bassins versants ont les pourcentages les plus élevés avec 

des valeurs élevées de débits moyens journaliers. À l'autre extrême, les bassins dans la 

partie intérieure du pays semblent présenter les valeurs les plus basses en termes de 

moyennes annuelles, coefficients de ruissellement et débit moyen journalier. Ceci est 

due à la fois à la grande superficie des bassins et à des plus faibles précipitations. Les 

bassins versants dans le nord du Liban semblent former une classe intermédiaire. 

Comparaison de la réponse hydrologique entre bassins libanais et bassins 

méditerranéens (chapitre 5) 

La réponse hydrologique des bassins versants libanais à l’échelle du bilan annuel et à 

l’échelle de l’événement de crue est comparée à celle des bassins méditerranéens 

(chapitre 1).  

Comparé à d'autres bassins versants méditerranéens, les valeurs annuelles du 

coefficient de ruissellement sont élevées à travers le Liban. Ces valeurs élevées ne 

pourraient être attribuées uniquement à une sous-estimation de la moyenne annuelle 

des précipitations (il ya sûrement une sous-estimation des précipitations annuelles 

moyennes par manque de stations pluviométriques en haute montagne) mais aussi à 

des valeurs élevées d’écoulement annuel qui pourrait être expliqué par une 

combinaison de l'accumulation de neige et de sources karstiques qui affectent fortement 

le bilan d'eau au Liban. 

Pour les événements pluvieux, la quantité de précipitations dans un événement 

donné peut présenter jusqu'à 40% du total annuel des précipitations. Cela ne surprend 

pas compte tenu de la nature du climat dominant. Les débits de pointes instantanés ne 

sont pas disponibles et nous nous sommes limités à l’étude des débits journaliers 

maximaux. Le débit spécifique maximal diminue avec la surface du bassin versant ; il 

n’y a pas de corrélation avec la quantité des précipitations. Cependant, certain 

regroupement géographique est apparu pour les valeurs les plus élevées de débits de 

pointes spécifiques enregistrées dans la partie centrale plus humide du Mont-Liban. Le 

coefficient de ruissellement de l'événement est élevé, même comparé à d'autres bassins 

versants méditerranéens; en fait, il est beaucoup plus élevé que les valeurs enregistrées 

dans le EM et est dans la gamme des bassins versants NWM. Encore une fois cela 

pourrait être en partie attribuable à une sous-estimation des précipitations mais aussi à 
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la nature karstique des bassins versants étudiés et les conditions antécédentes 

d'humidité du sol. 

Partie III : Classification et modélisation  

C’est la troisième partie de la thèse, elle comporte deux chapitres (chapitre 6 et 7) 

Classification des bassins versants (chapitre 6) 

Les descripteurs physiques et les signatures hydrologiques sont utilisés pour classer les 

bassins versants libanais en fonction de leurs caractéristiques physiques et 

hydrologiques. 

La méthode utilisée ici pour le classement des bassins versants est une classification 

hiérarchique ascendante. C’est une approche de classification par similarité où les 

individus les plus similaires sont regroupés dans une même classe.  

Une analyse en composantes principales (ACP) a été appliquée à chaque ensemble 

de variables (descripteurs physiques et signatures hydrologiques) indépendamment en 

utilisant la matrice de corrélation comme entrée à l'ACP. L'objectif est de réduire la 

dimension de l'espace de variables et de retenir les caractéristiques qui contribuent le 

plus à la variance. L’ACP permet aussi de minimiser la redondance et la multi-

colinéarité entre les variables choisies (Olden and Poff, 2003). Cela réduit la dimension 

des ensembles de données par transformation de l'espace à n dimensions (n = nombre 

de variables initiales) en un nouveau espace à m dimensions, où m (1 <= m <= n) est le 

nombre de nouvelles variables qui sont les composantes principales. Ces composantes 

principales ne sont pas corrélées et orthogonales entre elles et classée tel que la 

première composante représente la plus grande quantité de la variance dans l'ensemble 

de données d'origine. 

Une classification hiérarchique ascendante en utilisant une matrice de dissimilarité 

basée sur la distance euclidienne a ensuite été effectuée pour regrouper les stations de 

jaugeage en grappes de bassins relativement homogènes avec des caractéristiques 

physiques ou hydrologiques similaires (Olden et al. 2011). Les classes ont été générées 

en minimisant les sommes de carré de la distance à la moyenne de centre (Ward, 

1963).  

Enfin, les bassins versants qui sont simultanément dans un groupe de bassins 

versants physiquement similaires et un groupe de bassins hydrologiquement similaires 

sont mis ensemble dans un même groupe de bassins physiquement et 

hydrologiquement similaires. 

Cinq groupes de bassins versants qui sont simultanément physiquement et 

hydrologiquement similaires ont été alors identifiés: le groupe PH1 composées de cinq 

bassins versants avec des régimes de ruissellement dominé par la contribution nivale. 

Ce sont principalement des bassins versants dans le nord du Liban. Ce sont des 

bassins de taille moyenne avec une fraction considérable de la surface touchée par la 
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neige. La réponse hydrologique est induite à la fois par les précipitations et la fonte des 

neiges tandis que les contributions des eaux souterraines maintiennent une bonne 

quantité de volume de ruissellement pendant la saison sèche; le groupe PH2 est 

similaire au précédent, mais ici l’impact des pluies en aval est plus important que dans 

le groupe précédent, en raison à la fois des pentes plus raides et des conditions plus 

humides; les groupes PH3 et PH4 sont composées de bassins versants où la pluie est 

le principal contributeur aux débits fluviaux cependant la contribution de la neige n’est 

pas absente en particulier dans la partie supérieure des bassins versants qui constitue 

le groupe PH4; le groupe PH5 est composé de deux sources karstiques où la rivière 

Ibrahim émerge. Leur entrée principale est la fonte des neiges. Enfin, cinq bassins 

versants ne rentrent pas dans un groupe et constitue un groupe de bassins versants 

non similaires. 

Modélisation de la réponse hydrologique des bassins libanais (chapitre 7) 

GR2M (modèle de Génie Rurale à 2 paramètres Mensuel) est un modèle global 

mensuel à 2 paramètres, développé dans les années 1980 par le Cemagref. La version 

utilisée ici est celle de Mouelhi et al. (2003). Le modèle associe deux réservoirs: un pour 

la production et l'autre pour le transfert. La fonction de production du modèle est basée 

sur le réservoir de production qui simule les conditions d'humidité du sol. La capacité du 

réservoir est représentée par un paramètre X1. Un autre paramètre X2 associé au 

réservoir de transfert ouvre un échange avec l'extérieur du bassin. 

Les entrées du modèle sont les précipitations et l'évapotranspiration de référence en 

mm. Les deux paramètres du modèle sont calibrés en utilisant les lames écoulées 

observées en mm. La fonction critère utilisée est le critère d'efficacité de Nash et 

Sutcliffe. 

 Dans notre étude, nous avons appliqué GR2M sur les bassins versants libanais pour 

la période 2001-2011. Nous avons divisé l'échantillon en deux: nous avons calibré le 

modèle sur la période 2001-2006 et validé sur la période 2006-2011 et vice versa. 

Finalement, la modélisation par GR2M donne des résultats acceptables avec une 

valeur médiane du coefficient de Nash autour de 0,55. Cinq bassins donnent des bons 

résultats avec des valeurs de Nash supérieur à 0.7. Neuf autres donnent des résultats 

assez acceptables avec des Nash entre 0.5 et 0.65. Pour le reste, la simulation donne 

des résultats médiocres. La comparaison des différentes approches de régionalisation 

donnent des résultats mixtes pour les méthodes basées sur la similarité hydrologique 

et/ou physique, tandis que la méthode basée sur  proximité spatiale donne les plus 

mauvais résultats. L’examen détaillé de la simulation montre l’impact important de la 

neige qui peut couvrir plus que la moitié de la surface de certains bassins et qui n’est 

pas pris en compte par le GR. En plus une forte récession qui n’est pas bien capturée 

par le GR est observée durant la période sèche. Elle peut être due à une surexploitation 

des eaux de surfaces. Tout futur essai de modélisation des bassins libanais doit prendre 

en compte ces particularités.  
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Hydrology of Lebanese catchments in the 

Mediterranean context 

Abstract 

Lebanon is a small mountainous country with a typical Mediterranean climate and a high 

spatial variability of precipitation with a substantial amount occurring as snow. Moreover, 

the majority of Lebanese terrains are karstic. It is a heavily urbanized country with 

increasing anthropogenic pressure on water resources. Furthermore, the Lebanese 

catchments are poorly-gauged due mainly to a large gap of data (1975 - 2000) caused 

by the civil war (1975 - 1990).  

However, previous studies on regionalization suggested that across Lebanon when 

physical characteristics are not changing, hydrologic parameters shows a remarkable 

degree of spatial coherence. Thus, with an integration of more physical and functional 

characteristics, a regionalization procedure could be considered as a framework for 

defining the physical and hydrological characteristics of the Lebanese catchments. 

Consequently, this work aims to understand the hydrological response characteristics of 

Lebanese catchments in the Mediterranean context and to classify these catchments 

according to their physical and hydrological properties.  It is structured into three parts: 

(i) a review on Mediterranean catchments hydrology, (ii) a datal analysis of the 

Lebanese catchments and comparison to the Mediterranean context, and finally (iii) a 

classification and modeling of the Lebanese catchments. 

The first part reviews 152 hydrological studies conducted in the Mediterranean region at 

various time scales (paper accepted in Hydrological Sciences Journal). This study also 

compares methods and modeling approaches used for individual-catchment or 

regionalization studies. The study area is divided into the northwestern (NWM), eastern 

(EM) and southern (SM) Mediterranean. The analysis indicates regional discrepancies in 

which the NWM shows the most extreme rainfall regime. A tendency for reduced water 

resources driven by both anthropogenic and climatic pressures and a more extreme 

rainfall regime are also noticeable. Catchments show very heterogeneous responses 

over time and space, resulting in limitations in hydrological modelling and large 

uncertainties in predictions. However, few models have been developed to address 

these issues. Regionalization studies are scarce and inconsistent in the Mediterranean. 

Additional studies are necessary to improve the knowledge of Mediterranean 

hydrological features and to account for regional specificities. 

In the second part, an inventory of the available spatial and temporal data was carried 

out and followed by a detailed data analysis of twenty eight Lebanese catchments 

through extracting the physical and hydrological response characteristics for the period 

2001 – 2011. The spatial data concerns the morphometry, drainage system, geology, 

karst, soils and land cover. The temporal data concerns the precipitation (32 stations at 
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a daily –when available- and monthly time step), evapotranspiration (remote sensing 

data at a monthly time step) and discharge data (24 gauging stations at a daily time step 

and 4 at a monthly time step). Gathering the available temporal data was a real 

challenge since these data are not always available for the same period and 

precipitation data is expensive. The 2001 - 2011 temporal data was analyzed and 

compared with a database from the pre-war period. Afterwards, the hydrological 

responses of the Lebanese catchments are compared with other Mediterranean 

catchments at different time scales. At the annual water balance level, runoff ratio 

values are found to be high across the country. At the event scale, the amount of rainfall 

in a given event represents a substantial amount of the total annual rainfall. Moreover, 

unit peak flow [maximum daily discharge] decreases with the catchment area and is not 

correlated with the rainfall depth of an event. Event runoff ratio is high; in fact it is much 

higher than values recorded in the EM and is the range of the NWM catchments.  

 

The third part concludes with a new clustering of the Lebanese catchments according to 

their physical and hydrological characteristics. The variables defined from the data 

analysis were used for the classification. Three classifications were carried out using 

catchments physical descriptors and runoff signatures separately. Catchments holding 

simultaneously the same physical and hydrological similarities were grouped together 

forming five “physically and hydrologically similar” catchments’ classes. Finally, a simple 

modeling approach at a monthly time step was tested using GR2M model. Different 

regionalization approaches were also compared. The discussion focuses on the analysis 

of the hydrological functioning of each basin and each class of basins.  

Keywords hydrology; Lebanon, Mediterranean catchment; annual water balance; 

rainfall-runoff events; droughts; modeling, regionalization; classification 
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The Mediterranean catchments hydrology 

The Mediterranean climate is characterized by high inter-annual variability of 

precipitation, seasonal rainfall pattern, summer drought, and intense rainfall intensities. 

Due to the characteristics of their climate, Mediterranean areas face water availability 

problems (Morán-Tejeda et al. 2010). Indeed, with 8 % of the world population, 

renewable water resources represent only 3 % of the entire renewable water resources 

on Earth. In the last 20 years, many countries of the Mediterranean basin have 

witnessed drought periods over several years (FAO 2006). Many studies (e.g. Milly et al. 

2005, IPCC 2014) predict that water resources will even become scarcer due to climate 

change and the increasing demand on water by various economical sectors. Moreover, 

rainfall events that usually occur as high intensity short duration storms cause intense 

flood events (e.g. Anquetin et al. 2010,  Vincendon et al. 2010, Moussa and Chahinian 

2009 [France], Koutroulis and Tsanis 2010 [Greece], Brath et al. 2004 [Italy], Rozalis et 

al. 2010 [Israel]). Mediterranean catchments are therefore characterized by three main 

features: limited water resources, dry summers and high intensity rainfall events that 

generate flashy and strong flood events. 

Many attempts have been made to provide an overview on the hydrology of the 

Mediterranean region. Reviews have already detailed specific aspects of the hydrology 

of Mediterranean catchments, such as rainfall interception (Llorens and Domingo 2007), 

the impact of the Mediterranean forest on catchment responses (Cosandey et al. 2005), 

the dryland hydrology (Cudennec et al. 2007), the impact of human activities on fluvial 

systems (Hooke 2006), erosion processes (Shakesby 2011, Garcia-Ruiz et al. 2013) 

and the hydrology of mountainous catchments (Latron et al. 2009). Other studies 

synthesized the results of climate change impact studies in the region, such as in Alpert 

et al. (2008) and Philandras et al. (2011). The Mediterranean region has been studied 

as part of a larger geographical area, for example, the Euro-Mediterranean zone in the 

study on the daily precipitation concentration index in Europe (Cortesi et al. 2012), 

Europe in studies on extreme flash floods (Marchi et al. 2010), and Europe in studies on 

the regional flood frequency (Salinas et al. 2014a, b).  

Various studies exist on different aspect of the hydrological responses of the 

Mediterranean catchments. However, individual catchments studies or regionalization 

studies, all are limited to specific catchment and a geographical region. So far no study 

had yet attempted to regroup different aspect of the Mediterranean hydrology and to 

synthesize previous work from all over the Mediterranean region. Accordingly, this work 

will identify the objectives and the modelling approaches, and will present a review on 

the Mediterranean catchments’ hydrological response at the annual water balance, at 

event scale and during dry periods.  

The information gathered herein will be also used as a reference to compare the 

hydrological response of a data limited environment: the Lebanese catchments.  
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The Lebanese catchments hydrology 

Lebanon is a small mountainous country located on the eastern shores of the 

Mediterranean Sea. It has a typical Mediterranean climate with important local variations 

because of its complex relief. It is a heavily urbanized country with more than 88 % of 

the population living on a narrow coastal plain (World Bank 2010). Moreover, with 

widespread pollution and a large temporal variability of rainfall within the rainfall season 

and between consecutive years, along with the absence of management strategies, 

Lebanon will be unable to meet his water demand in the near future.  

In Lebanon, a meteorological and hydrometric network had been gradually 

constructed since the 1930’s and reached its peak in the 1970’s (Sene et al. 1999). The 

unset of the Lebanese civil war in the 1975 created a data gap of more than 20 years. 

New networks are in construction since the late 1990’s, however, the quality of the data 

–especially for the hydrometric network- is questionable. Thus the Lebanese catchments 

generally lack reliable data that permits a long term monitoring of both climatic and 

hydrological characteristics with an increase of anthropogenic pressure on water 

resources. 

So, the Lebanese catchments are poorly gauged catchments in a context of 

increasing anthropogenic pressure on water resources. Moreover, Lebanon has many 

particularities. From a physiographic point of view, the country is formed by two 

mountain ranges that run parallel to the sea. The Mount Lebanon range delineates a 

narrow coastal plain and the Eastern chain. The two ranges are separated by an 

elevated plain, the Bekaa valley. This complex relief results in a high spatial variability of 

precipitation. Hence mean annual precipitation can exceeds 1500 mm in some parts of 

Mount Lebanon and fall below 200 mm in the semi-arid northeastern part of the country. 

Moreover, a substantial amount of precipitation occurs as snow. Furthermore, adding to 

the complex relief and the high spatial variability of precipitation, the substratum of most 

of the Lebanese terrains is made of carbonates rocks. This results in the formation of 

karstic features all over the country. Hence, the majority of Lebanese rivers find their 

sources in karstic springs. This makes the study of the hydrological response of the 

Lebanese catchments a real challenge.  

Previous studies on different aspects of the hydrological cycle in Lebanon exist. So, 

for the precipitation inputs, various attempts were made to assess the spatial distribution 

of mean annual precipitation all over the country. Rey (1954) established the first rainfall 

distribution map for Lebanon. Another map was produced in 1972 by Plassard; this map 

is still used as a reference for rainfall distribution over Lebanon. Other more recent maps 

were also produced (Traboulsi 2010; Abdallah et al. 2013). A detailed study of the 

climatic characteristics of Lebanon was presented as a PhD thesis by Blanchet in 1976. 

The estimation of snow melt contribution to the water balance of Lebanon was also a 

main concern. The first study in this regard was by Abd El-Al in 1947. More recent 

studies exist, one can mention: Touma 2002, Shaban et al. 2004, Aouad-Rizk et al. 

2005, Corbane et al. 2005, Mhawej et al. 2014, etc.  
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In term of the hydrological response characteristics, the majority of studies in 

Lebanon focused more on the hydrogeological aspects. In 1970 the UNDP presented 

the first assessment of Lebanon groundwater resources, this assessment is currently 

being updated by the UNDP and the Lebanese Ministry of Energy and Water. Other 

studies dealing with the functioning of karstic aquifers are quite abundant, one can 

mention among others: Ukayli et al. 1971, Mroueh et al. 1996, Bakalowicz et al. 2002, 

2008, 2015, El-Hakim 2005, El-Hakim and Bakalowicz 2007, El-Hajj 2008, and many 

others. Now, as for classical hydrological studies (surface hydrology) fewer studies exist. 

One can mention the work of Sene et al (1999, 2000). The author studied the spatial 

and temporal variations in flows for five catchments and the regional distribution of 

maximum instantaneous flows in Lebanon; they found a certain regional pattern. 

Moreover, Hreiche (2003) presented a conceptual model created for the Mediterranean 

climate (MEDOR), calibrated and validated on various Lebanese and French 

catchments. Hreiche et al. (2007) coupled a snow module to MEDOR to better simulate 

snow melt contribution on Mount Lebanon. Bernier et al. (2003) used remote sensing to 

improve hydrological modelling of catchments in Mont Lebanon. Modelling studies for 

trend detection and water resources management also exist (Massoud et al. 2006, 

Ramadan et al. 2012). Regionalization studies in the country are very preliminary. Other 

then the previously mentioned studies by Sene et al. (1999, 2000), moreover, Abou 

Daher (2006) established global linear regression models for the estimation of annual 

runoff ratio. These preliminary studies suggested that all across Lebanon when 

structural characteristics are not varying, hydrologic parameters shows a remarkable 

degree of spatial coherence. Therefore, with an integration of more structural and 

functional characteristics of basins, a regionalization procedure could be undertaken for 

the Lebanese watersheds. Highlighting the status of the Lebanese catchments -poorly 

gauged with undeveloped classification scheme- it would be intersting to analyze the 

hydrological response and compare it with referenced Mediterranean catchments to 

present a complete classification scheme of the Lebanese catchments.  

Catchment classification  

Catchment classification is used to group catchments that share physical and/or 

hydrological characteristics. It permits to compare between large samples of catchments 

across different hydro-climatic conditions. Andréassian et al. (2006) emphasizes the 

importance of working with a large number of basin datasets; the aim is to compare and 

learn from catchments differences and similarities in different locations (Parajka et al. 

2013, Salinas et al. 2013) which contributes enormously to the ongoing work towards 

the development of a global classification scheme which is still lacking in hydrology 

(Sivapalan 2005, Wagener 2007). Moreover, catchment classification is used in 

regionalization studies - the transfer of hydrological information from gauged catchments 

to ungauged ones (Oudin et al. 2010) - which is of great interest in a world where the 

majority of basins worldwide are ungauged and so “in the presence of data scarcity it 

would be compelling to infer hydrologic function from the metric of catchment form” 

(Hrachowitz et al. 2013).  
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Generally, in order to classify catchments a set of variables representing the physical 

and functional characteristics of the catchments are needed. These variables are widely 

available in the literature (Yadav et al. 2007, Olden and Poff 2003, etc.). One of the most 

commonly used classification method is cluster analysis (Alcazar and Palau 2010, 

Sawicz et al. 2011, 2014, Archfield et al. 2013 among others). Here, the initial set of 

individuals (catchments) is re-arranged into groups in such a way that each group 

(cluster) contains individuals that are the most similar. There are multiple algorithms to 

perform clustering. One can mention the distance-based method, such as hierarchical 

clustering, where groups are built according to distance connectivity (Archfield et al., 

2013). Another algorithm is K-means clustering where individuals are grouped in 

clusters in which every individual belong to the cluster with the nearest mean 

(Mehaiguene et al., 2012). Many other clustering algorithms exist and are in use by 

hydrologists, such as hybrid cluster analysis and fuzzy cluster analysis (Ramachandra 

Rao and Srinivas 2006). 

This work articulates on three main axes. First a review on the Mediterranean 

catchments’ hydrology is conducted, than the physical and hydrological descriptors of 

the Lebanese catchments are extracted, analyzed and compared with other 

Mediterranean catchments. Last and not least, a classification scheme of the Lebanese 

catchments is performed following the hydrological knowledge accumulation framework 

promoted by Blöschl et al. (2013) (Fig. I). 

 

Fig. I Knowledge accumulation through Prediction in Ungauged Basins (Blöschl et al. 2013). 

 

Thesis objectives 

This work aims to understand the hydrological response of the Lebanese catchments in 

a Mediterranean context and classify these catchments according to their physical and 

hydrological characteristics. It begins by a review of the hydrological response of 



7 

 

Mediterranean catchments at different time scale. Afterwards, a detailed data analysis 

for the Lebanese catchments in term of physical, climatic and hydrological 

characteristics is presented, than we compare the hydrological response of Lebanese 

catchments with other Mediterranean catchments. Finally catchments descriptors and 

runoff signatures are used to define classes of physically and/or hydrologically similar 

catchments. Conceptual model are than proposed for each of the defined physically and 

hydrological similar catchments group.  

The objective of this thesis is threefold: 

Review the hydrological response characteristics of Mediterranean catchments in 

term of annual water balance, rainfall-runoff events and droughts for individual 

catchments studies and regionalization studies. 

Analyze the physical, climatic and hydrological characteristics of Lebanese 

catchments and compare them to the wider Mediterranean context. 

Classify the Lebanese catchments in groups of catchments with physical and 

hydrological similarities and propose conceptual models that best represent catchments 

functioning in each group. 

 

Thesis structure 

This thesis is structured in three parts and seven chapters 

Part I “state of the art” is made of one chapter. It forms a review article 

accepted with revisions to Hydrological Sciences Journal. It presents a review on 

hydrological response characteristics of Mediterranean catchments. The review begins 

by defining the limits of Mediterranean region. Then follows a review on hydrological 

studies for continuous stream flow simulation, event based studies and drought studies. 

This part ends with a discussion that tries to identify patterns of hydrological response in 

different Mediterranean subregions, assess and compare hydrological modelling and 

regionalization techniques used in the Mediterranean context.  

Part II “Lebanese catchments characteristics and data analysis” is made of four 

chapters. It presents a detailed data analysis of the Lebanese catchments 

characteristics. Two lists of variables that represent the catchments physical 

characteristics and hydrological response characteristics respectively are extracted from 

this part. The part ends with a comparison between Lebanese catchments and other 

Mediterranean catchments.  

Chapter 2 presents a detailed description and analysis of geographical characteristics 

of the Lebanese catchments. The available data were presented and a list of catchment 

descriptors was extracted. 
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Chapter 3 presents a detailed description and analysis of the climatic characteristics 

of the Lebanese catchments. The available climatic data were presented and the 

methodology used for rainfall spatial interpolation is also discussed. 

Chapter 4: presents a detailed description and analysis of the hydrological response 

characteristics of the Lebanese catchments. The available hydrological data are 

presented and analyzed, and a list of runoff signatures was extracted from the data.  

Chapter 5 compares the Lebanese catchments to their Mediterranean counterparts in 

term of hydrological response at the annual water balance scale and the event scale. 

Part III “classification and modelling” comprises two chapters. This part 

presents a classification of the Lebanese catchments according to their physical and 

hydrological characteristics. The variables defined in the previous part were used here 

for the classification. Moreover, a simple modelling approach were undertaken to test 

the robustness of the classification. The part ends by a proposition of conceptual models 

that represents the different groups. 

Chapter 6 presents the classification of the Lebanese catchments by their physical 

and hydrological characteristics. Here, the physical and hydrological variables extracted 

in chapters 2 to 4 were used for the classification using an agglomerative hierarchical 

clustering analysis.  

Chapter 7 presents a simple modeling approach at a monthly time scale for the 

Lebanese catchments. A simple but robust monthly time step model, GR2M, was used 

to assess the modeling quality of the Lebanese catchments and to compare different 

regionalization approaches.  

The thesis ends with a general conclusion that summarizes the main findings and 

limitations of this work and identifies key questions that need to be addressed in order to 

better understand the hydrology of Mediterranean catchments and more particularity the 

Lebanese catchments.  

Annexes 

Annex A: a list of acronyms for the used variables 

Annex B, C and D: a review of modeling approaches, regionalisation approaches and 

regionalisation studies in the Mediterraean respectively. 

Annex E: Lebanese data collection and availability detailing the data collection 

methodology and treatement and the meta-data of the used temporal data. 

Annex F: physical characteristics of the studied Lebanese catchments.  

Annex G: descriptions of the used variables and their calculation method. 

Annex H: hydrogeology of Lebanon. 
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This part consists of one chapter. It is a review of hydrological characteristics of 

Mediterranean catchments at the annual water balance scale, rainfall-runoff event scale 

and the dry period. It also compares methods and modeling approaches used for 

individual-catchment studies. More details about global modeling techniques and 

regionalization methods are available in annexes B and C, and detailed review of 

regionalization studies in the Mediterraean region areis presented in annex D. 

This part forms an article accepted in Hydrological Sciences Journal: 

Mohammad Merheb, Roger Moussa, Chadi Abdallah, François Colin, Charles Perrin 

and Nicolas Baghdadi, 2016. Hydrological response characteristics of Mediterranean 

catchments at different time scales: a meta-analysis. Hydrological Sciences Journal, in 

press. http://dx.doi.org/10.1080/02626667.2016.1140174. 
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1.1 Introduction 

1.1.1 The Mediterranean as a focus of research 

The Mediterranean climate is characterized by high inter-annual variability in 

precipitation, seasonal rainfall patterns, summer drought, and intense rainfall. Because 

of the characteristics of the climate, Mediterranean areas face water availability 

problems (Morán-Tejeda et al. 2010). In the last 20 years, many countries of the 

Mediterranean Basin have witnessed multi-year drought periods (FAO 2006). Many 

studies (e.g., Parry et al. 1999, Milly et al. 2005, IPCC 2014) predict that water 

resources will even become scarcer due to climate change and the increasing demands 

on water by various economic sectors. Moreover, the irregular spatial distribution of 

precipitation leads to large differences in water availability across territories (Morán-

Tejeda et al. 2010). Furthermore, high-intensity but short rainfall events cause intense 

flooding (e.g., Vincendon et al. 2010, Moussa and Chahinian 2009 [France], Koutroulis 

and Tsanis 2010 [Greece], Brath et al. 2004 [Italy], Rozalis et al. 2010 [Israel]). 

Mediterranean catchments are therefore characterized by three main features: limited 

water resources, dry summers and high-intensity rainfall events that generate flash 

floods. 

Many attempts have been made to provide an overview on the hydrology of the 

Mediterranean region. Reviews have already detailed specific aspects of the hydrology 

of Mediterranean catchments, such as rainfall interception (Llorens and Domingo 2007), 

the impact of the Mediterranean forest on catchment responses (Cosandey et al. 2005), 

the dryland hydrology (Cudennec et al. 2007), the impact of human activities on fluvial 

systems (Hooke, 2006), erosion processes (Shakesby 2011; Garcia-Ruiz et al. 2013) 

and the hydrology of mountainous catchments (Latron et al. 2009). Other studies 

synthesized the results of climate change impact studies in the region, such as in Alpert 

et al. (2008) and Philandras et al. (2011) and the impact of global changes on 

Mediterranean water resources (Garcia-Ruiz et al. 2011). The Mediterranean region has 

been also studied as part of larger geographical areas (Gaume et al. 2003a, Marchi et 

al. 2010, Cortesi et al. 2012, Salinas et al. 2014a, b). 

Moreover, many international projects were conducted on the Mediterranean region 

to study the hydrological cycle generally. Among others, the FRIEND Alpine and 

Mediterranean Hydrology (AMHY) project was launched in 1991 as part of the UNESCO 

International Hydrological Program (Servat and Demuth 2006, Gustard and Cole 2002). 

The project involves 19 countries from southern Europe and the Mediterranean Basin. 

Since 2007, the HyMeX project (www.hymex.org) has been promoting a multidisciplinary 

approach to analyse all components of the Mediterranean water cycle (see Llasat et al. 

2013 for more details). This project focuses on physical aspects, the socio-economic 

impacts of extreme events, and the adaptation capacity to changes. Another example of 

current initiatives in the Mediterranean is the MEDEX project 

http://www.hymex.org/
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(http://medex.aemet.uib.es), which focuses on meteorological scenarios with high 

hydrological impacts.  

1.1.2 Objectives of the review 

This paper aims to present an overview of the hydrological response characteristics of 

Mediterranean catchments and to identify the main objectives and modelling 

approaches of studies conducted in the region. It focuses on studies related to annual 

water balance, flood events and droughts.  

The methodology consists of analysing recent individual catchments studies that have 

been published over the last two decades. It starts by defining the study area, followed 

by the collected database representation. The hydrological response characteristics and 

the methods used for a general discussion of the main outcome of this review is 

provided answering the following questions: 

 

- Can we identify regional hydrological tendencies in the Mediterranean region? 

- What is required to model Mediterranean catchments? 

- What are the main challenges for future research in the Mediterranean? 

 

Note that this analysis does not specifically review the studies on ungauged 

catchments for sake of brevity. The reader may refer to the recent general reviews on 

prediction on ungauged basins proposed by Blöschl et al. (2013) or Hrachowitz et al. 

(2013), which include studies on the Mediterranean basin.  

1.2 The Mediterranean region 

1.2.1 Boundary of the Mediterranean region 

The Mediterranean climate is not confined to the Mediterranean Sea region. In fact, 

much of California, parts of Western and South Australia, southwestern South Africa, 

and parts of central coastal Chile have Mediterranean climates. According to the 

Köppen (1936) classification, Mediterranean climates are characterized as subtropical 

climates with dry summers. Nevertheless, this paper was intentionally limited to the 

Mediterranean basin because this region shares more than climatic features. The basin 

has homogenous geological and physiographic settings (Wainwright and Thornes 2004), 

and it forms a geographical unit that faces the challenges of large socio-economic 

exchanges and enormous anthropogenic pressure.  

There is no worldwide consensus on the definition or boundaries of the 

Mediterranean region (Hooke 2006, Shakesby 2011). Several characteristics are 

commonly used to define the Mediterranean region (Fig. 1.1a):  

http://medex.aemet.uib.es/
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- The boundaries of the basins that drain into the Mediterranean Sea (e.g., Milano 

et al. 2012): such a definition omits regions that share similar climatic and 

physiographic characteristics, such as Portugal, and adds regions that might not 

be considered Mediterranean from a climatic and hydrological point of view, such 

as parts of Libya and Egypt.  

- The climate regime: several definitions and classifications denote boundaries that 

are not completely consistent (e.g., Köppen 1936, Thornthwaite 1948). For 

example, the Köppen (1936) classification, which is commonly used, classifies 

regions that are usually considered Mediterranean, such as southeastern and 

central Spain, as cold semi-arid regions; it also uncharacteristically extends the 

Mediterranean to areas in the Middle East.  

- The vegetation types (e.g., Quezel 1985): such definitions are usually called bio-

climatic because vegetation reflects the climatic conditions. Nevertheless, such 

definitions inherit some of the problems of the climatic definition. The distribution 

of many species considered as indicators of the Mediterranean (e.g., olive trees) 

are highly related to human activities.  

- The administrative divisions of the countries surrounding the Mediterranean Sea: 

these definitions are also problematic because they often have no natural basis 

(Wainwright and Thornes 2004). 

In this work, the “Mediterranean” is considered as any catchment falling within one of 

the above-mentioned boundaries and defined by authors as  Mediterranean but 

excluding the administrative boundaries from this assumption (Fig. 1.1 (a, b, and c)). 

1.2.2 Physical characteristics of the Mediterranean region 

The Mediterranean region has a total area of approximately 1,100,000 km² (Grove and 

Rackham 2001). Mountain ranges surround the Mediterranean Sea (Fig. 1.1a): the 

Pyrenees in south-western Europe, the Alps in southern France and north-western Italy, 

the Apennines along the Italian coast, the Dinaric Alps along the coast of the Adriatic 

Sea, the mountains of Greece, the Taurus Mountains in Turkey, Mount Lebanon in the 

eastern Mediterranean and the Atlas Mountains in northern Africa. The proximity of the 

mountain ranges to the sea explains why a majority of the Mediterranean catchments 

are medium-sized and sloping. Lower hills, such as the Cevennes region in France, and 

plains also exist along the coasts and in some interior regions; thus, the landscape is 

quite heterogeneous.  

Most of the underlying geology comprises limestone with sandstone, sedimentary 

deposits and metamorphic granites (Di Castri 1981). The prevalence of limestone rocks 

means that karstic catchments are very common in the region.  

Vegetation is mainly dominated by evergreen trees and shrubs (the famous 

Mediterranean “Maquia” or “Garrigue”). In mountainous areas with wetter conditions, 

several deciduous tree species prevail. Conversely, the driest areas are dominated by 
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steppe (Bonada and Resh 2013). However, Mediterranean catchments exhibit a 

particular relief-driven organization in the distribution of land types. Hence, forests grow 

directly under the rocky summits of Mediterranean mountains; agricultural terraces exist 

downslope. Further down, the Mediterranean Garrigue is present. Finally, agriculture 

dominates the coastal plains. This pattern is partly attributed to past human activities, 

but it is now disturbed by the intense urbanization in Mediterranean coastal plains and 

the abandonment of the agricultural terraces for Mediterranean forests, particularly in 

Europe (e.g., Gallart and Llorens 2004, Lana-Renault et al. 2007, Ceballos-Barbancho 

et al. 2008, Morán-Tejeda et al. 2010). These changes certainly have an impact on the 

hydrological responses of Mediterranean catchments.   

1.3 Review extent and database 

1.3.1 Review information 

A total of 140 studies on the Mediterranean region published over the last two decades 

were analysed. 

To study regional tendencies in the Mediterranean zone, the study region was divided 

into: 

- the North-Western Mediterranean (NWM), encompassing Mediterranean Albania, 

Croatia, France, Italy, Montenegro, Portugal, Slovenia and Spain, with 84 

analysed studies  

- the Eastern Mediterranean (EM), encompassing Cyprus, Egypt, Greece, Israel, 

Lebanon, Palestinian territories, Syria and Turkey, (42 studies) ; 

- and the Southern Mediterranean (SM), encompassing Algeria, Egypt, Libya, 

Morocco and Tunisia, (14 studies).  

These studies were divided into three groups focusing on the annual water balance 

(58 studies), flood events (49 studies) and droughts (33 studies). 

For each study, the key information that was systematically collected and analysed 

includes:  

(i) Basin location (reference and coordinates) 

(ii) Study objectives  

(iii) Basin characteristics, such as the area, mean elevation, mean slope, land use, 

soil classes, geology and the possible presence of karst;  

(iv) Hydro-meteorological data characteristics, such as the rainfall-runoff 

measurement period, the time step of the measurements, the mean annual 

precipitation, the reference evapotranspiration, the mean annual runoff, the runoff 

coefficient and the snow contribution; for event-based studies, detailed 

information on catchment responses (rainfall, runoff, peak discharge) for each 

event was also extracted when available;  

(v) Mode characteristics, such as the model name and original reference, the 

simulated hydrological processes, the spatial resolution (lumped, semi-distributed 

or distributed), the time step and the model evaluation criteria.  
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Fig. 1.1 The Mediterranean region: (a) Relief and different limits; (b) Annual water balance 
studies; (c) Event-based studies and (d) Drought studies. 

1.3.2 Annual water balance studies 

The reviewed studies (Fig. 1.1b) with information about the components of the water 

balance equation (40 out of 58) include approximately 139 Mediterranean catchments: 

(b) 

(c) 

(d) 
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70 catchments in the NWM, 43 in the EM and 26 in the SM (Table 1.1). The majority (27 

out of 40) are studies on individual catchments, while only 13 compare 2 or more 

catchments. The catchment areas range from 0.35 km² to 16,000 km², with a median of 

286 km²; 75% of the catchment areas are below 640 km². Eighteen catchments are 

karstic, having hydrogeological boundaries that do not necessarily match the 

topographic boundaries. Snow represents a significant portion of the precipitation for 

21 catchments. Thus, it is an essential component in those water balances.   

1.3.3 Rainfall-Runoff event-based studies 

Among the forty nine flood studies, twenty one includes useful information for quantative 

on 136 catchments and 191 events (Fig. 1.1c and Table 1.2). 

The analysis was only conducted on hydrological studies at the catchment scale. 

Hence, studies focusing on the hydraulic aspects of the catchment response at the 

reach scale were excluded. These studies are not limited to extreme flood events (such 

as Marchi et al. 2010 and Tarolli et al. 2012) but comprise any runoff-generating rainfall 

event study that contains substantial event-related information. However, this 

information is not equally available to all. Details on each study and event-related data 

are presented in Table 1.2. Here, one must clarify that a single event can affect more 

than one catchment and that more than one event could be reported for the same 

catchment. Among these studies, 13 were conducted in NWM, 5 in EM, and 3 in SM. 

One study (Tarolli et al. 2012) was an analysis of flash flood regimes in the northwestern 

Mediterranean (France, Spain, Italy) and the southeastern Mediterranean region (Israel). 

Moreover, 69 catchments out of a total of 136 are located in the NWM. The rest of the 

catchments are divided between the EM (22) and SM (45). The catchments areas range 

from 3.83 km² for the Valsecure catchment (a headwater catchment of the Gardon 

d’Anduze, Southern France; Tramblay et al. 2010) to 16,330 km² for the Negada 

catchment at Lassoud in Tunisia (Abida and Ellouze 2008). 
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Table 1.1 Characteristics of the annual water balance studies in Mediterranean catchments. Nc: number 
of catchments; Ac: catchment area; Zc: catchment mean elevation; Period: period or number of years 
used to calculate the water balance components.  

Region Country Study Nc Ac range 
(km²) 

Zc range 
(m) 

Period/Number 
of years 

NWM France Adamovic et al. 2015 4 16.7 - 103 892 - 1142 2000 - 2008 
Lespinas et al. 2014 6 130 - 4957 367 - 1076 1960 - 2004 
Tramblay et al. 2013 1 1808 - 1984 - 2010 
Coustau et al. 2012 1 114 - 1994 - 2008 
Fox et al. 2012 1 234 0 - 144 1950 - 2003 
Goswami et al. 2007 3 150-291 79 - 850 1995 - 2003 
Moussa et al. 2007 1 545 123  - 1567 1975 - 1984 

Italy Tayfur et al. 2014 1 137 250 - 887 1989 - 2010 
Pumo et al. 2013 1 9.5 792 1957 - 2004 
De Giroloma and La Porto 2011 1 488 70 - 960 1996 – 2007 
Longobardi and Vallini 2008 28 18 – 5586 240 – 1397 6 – 65 
Fiorentino et al.2007 2 462 – 511 - 1951 - 1961 
Burlando and Russo 2002 1 4000 1000 1953 – 1992 
Brath and Montanari 2000 1 1294 20 – 2121 1923 – 1970 

Portugal Nunes et al. 2011 1 290 - 1961 - 1990 
Spain Bernal et al. 2013 1 2.05 650-1343 1983 - 2010 

Candela et al. 2012 1 615 20-1200 1984 - 2008 
Gallart et al. 2011 2 504-1386 - 1940 - 2000 
Delgado et al. 2010 1 256 - 1940 - 2001 
Estrany et al. 2010 1 1.03 0-144 1974 - 2006 
Lana-Renault et al. 2007 1 2.84 910-1340 1999 - 2005 
Ceballos and Schnabel 1998 1 0.35 378 1991 - 1997 
Pinol et al. 1997 2 0.38-0.51 680-1084 1981 - 1988 

EM Cyprus Hessling 1999 5 23 - 234 115 - 1400 1989 - 1994 
Greece Koutroulis et al. 2013 15 22-1294 - 1970 - 1999 

Nikolaidis et al. 2013 1 132 0 - 2120 1973 - 2010 
Vasiliades and Loukas 2007 7 133 - 6591 415 - 1400 1960 - 2002 
Tzoraki and Nikolaidis 2007 1 149 0 - 2356 - 
Niadas 2005 12 154 -1118 565-1509 5 - 10 

Israel Rimmer and Salingar 2006 1 783 - 1969 - 2004 
Lebanon Sene et al. 2001 16 77 - 1815 - 1967 - 1974 
Turkey Kukul et al. 2007 1 17200 220 - 

Fujihara et al. 2008 1 21700 - 1990 - 2004 
SM Algeria Bakreti et al. 2013 5 236 - 1819 205 - 760 1975 - 2006 

Mehaiguene et al. 2012 24 95 - 2526 153 - 1139 30 
Benkaci Ali and Dechemi 2004 1 575 - 1979 - 1989 

Morocco Bouabid and Chafai Elalaoui 
2010 

4 - - 1959 - 2009 

De Jong et al. 2008 1 1239 1500 - 4071 1963 - 1998 
Tunisia Raclot and Albergel 2006 1 2.45 - 1995 - 2002 

 Bouraoui et al. 2005 1 16000 132 - 1373 1988 - 1999 
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Table 1.2 Summary information of the flood studies on Fig. 1.1c. Nc: number of catchments; Ne: number 
of events; Ac: catchment area; X: available data; and (-) not available. 

Region Country Study Nc Ne Ac 
(km²) 

Available data 

Peak 
Discharge 

Rainfall 
Depth 

Runoff 
Depth 

Event 
duration 

NWM France Nguyen et al. 2014 18 13 6 - 2240 X - - - 

Garambois et al. 2013 6 9 144 - 619 X X - - 

Artigue et al. 2012 1 4 222 X X - - 

Coustau et al. 2012 1 21 114 X X X - 

Tramblay et al. 2010 1 20 3.83 X X X X 

Vincendon et al. 2010 4 4 1090 - 1910 X X - X 

Italy De Waele et al. 2010 1 1 105 X X - - 

Sangati et al. 2009 6 3 75 - 2586 X X X X 

Borga et al. 2007 10 1 23.9 - 1843 X X X X 

Brath et al. 2004 1 15 1050 X X X X 

Slovenia Zanon et al. 2010 4 1 31.8 - 211.9 X X X X 

Spain Lana-Renault et al. 
2014 

2 5 3340 - 4915 X X X - 

Amengual et al. 2006 5 1 0.12 – 2.84 X X - X 

EM Greece Massari et al. 2014 1 16 109 X X X X 

Koutroulis and Tsanis 
2010 

1 9 158 X X X X 

Israel Rozalis et al. 2010 1 20 27 X X X X 

Lebanon Sene et al. 2001 16 16 102 - 1345 X - - - 

NWM 
and EM 

NWM 
and 
Israel 

Tarolli et al. 2012 12 12 12 - 699 X X X X 

SM Morocco Tramblay et al. 2012 1 16 665 X X X X 

Tunisia Abida and Ellouze 
2008 

42 - 3.2 - 16330 X - - - 

Nasri et al. 2004 2 4 3.16 – 18.1 X X X - 

 

1.3.4 Drought studies 

Drought definitions vary according to the variables used to describe the drought (Mishra 

and Singh 2010, 2011). One can define three major types of droughts: meteorological or 

climatic drought; agro-meteorological or agricultural drought; and hydrological drought 

(Gumbel 1963, Palmer 1965). 

Socioeconomic impacts of drought are defined in terms of losses from an average or 

expected return and are measured by both social and economic indicators (Mishra and 

Singh 2010). All these droughts aspects are interrelated and are measured in terms of 

their intensities, durations and frequencies. In this work, we cite recent studies in the 

Mediterranean region that characterize droughts, and we discuss the main objectives 

and methods used (Fig. 1.1d and Table 1.3). 
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Table 1.3 Summary information of the chosen droughts studies on Fig. 1.1d. Nc: number of catchments. 

Region Country Study Nc Period 

NWM France Ruffault et al. 2013 - 1971 - 2006 

Vidal et al. 2012 - 1957 - 2007 

Chaouche et al. 2010 13 1970 - 2006 

Italy 
 
 

 

Capra et al. 2013 - 1921 - 2007 

Diodato and Bellocchi 2008 - 1961 - 2006 

Mendicino et al. 2008 16 1957 - 2007 

Spain Terrado et al. 2014 1 1951 - 2000 

Vicente-Serrano et al. 2014 - 1961 - 2011 

López-Bustins et al. 2013 3 1984 - 2008 

Marquèz et al. 2013 1 1971 - 2100 

Bangash et al. 2012 1 2002 - 2006 

Gomez and Blanco 2012 1 1941 - 2009 

Ruiz-Sinoga et al. 2012 - 1964 - 2008 

Lorenzo-Lacruz et al. 2010 3 1961 - 2006 

Vicente-Serrano and López-
Moreno 2005 

1 1950 - 2000 

Spain and 
Portugal 

Vicente-Serrano 2006 - 1910 - 2000 

EM Greece Vrochidou et al. 2013 1 1974 - 1999 

Tigkas et al. 2012 6 1970 - 1997 

Mavromatis and Stathis 2011 - 1961 - 2006 

Vangelis et al. 2010 - 1955 - 2002 

Nalbentis and Tsakiris 2009 - 1970 - 2000 

Vasiliades and Loukas 2009 7 1960 - 2002 

Tsakiris et al. 2007 2 1962 - 2001 

Israel Aviad et al. 2009 - 1960 - 1990 

Kafle and Bruins 2009 - 1970 - 2002 

Lebanon Shaban 2009 - 1963 - 2007 

Turkey Dogan et al. 2012 1 1972 - 2009 

Yilmaz and Harmancioglu, 
2010 

1 1995 - 2003 

Turkes and Tatli 2009 - 1929 - 1993 

SM Algeria Hamlaoui-Moulai et al. 2013 4 1914 - 2004 

 Hamlat et al. 2012 4 2006 - 2030 

Morocco Esper et al. 2007 - 1050 -2000 

Tunisia Abouabdillah et al. 2010 1 1992 - 1996 

 

 

Droughts are usually studied in a regional context due to their large-scale 

characteristics (Mishra and Singh 2010). Here, thirty three drought-related studies 

published in the last decade in the Mediterranean region are presented (Fig. 1.1d and 

Table 1.3). Eighteen studies are conducted at the catchment scale, while the others 

have a greater spatial extension, generally an entire country or geographical region. 

Approximately half of the studies are conducted in the NWM, with a majority (10 articles) 

in the Iberian Peninsula (mostly Spain), 13 studies were conducted in the EM and only 4 

were conducted in the SM region. Drought studies are usually conducted at long time 

scales (several decades).  
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1.4 hydrological response characteristics 

In this section we analyse the hydrological response characteristics of the studied 

Mediterranean catchments based on the collected data described above, in terms of 

annual water balance, rainfall-runoff events and drought.  

1.4.1 Annual water balance studies 

The mean annual precipitation (MAP), reference evapotranspiration (ET0), and mean 

annual runoff (MAQ) are highly variable across the three Mediterranean sub-regions. 

The median values show decreasing MAP, MAQ, MAQ/MAP and an increasing ET0 

from NWM to EM and SM (Table 1.4).  

The relationship between MAQ and MAP is plotted whereeach point represents a 

studied catchment (Figure 1.2). The results show a significant correlation (R²=0.745) 

between MAQ and MAP reported in all studies. Most low-yielding catchments with MAP 

values lower than 400 mm are located in the SM. For a larger MAP, the graph shows 

important scattering. The graph also shows that even for large MAP values (800 - 900 

mm), the runoff yield can be very low (approximately 30 mm); this is true for catchments 

in Crete (Koutroulis et al. 2013). Thus, the catchment yield is highly variable. The trend 

for the EM and the NWM catchments is quite similar, with an intercept close to 500-550 

mm and comparable slopes. The trend is different for the SM catchments with an 

intercept close to 250-300 mm and a lower slope. For a few catchments (especially in 

NWM and EM), the MAQ is larger than the MAP. Here, two factors may explain this 

phenomenon: the contribution of snow amounts in mountainous catchments that is 

underestimated and the presence of karsts that may greatly increase the effective 

catchment area. 

A similar analysis (not shown) that accounted for catchment area and elevation was 

undertaken. Catchment area does not appear to influence catchment response, 

expressed as the water depth (mm per time step). The impact of the elevation, however, 

could not be neglected because both the MAP and catchment runoff increased with 

elevation. 
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Fig. 1.2 Relationship between the Mean Annual Runoff (MAQ) and the Mean Annual 

Precipitation (MAP) for the three studied sub-regions (NWM, EM and SM). Plain symbols 

indicate karstic catchments in each sub-region.  

 

Table 1.4 Summary statistics of climatic and hydrological variables for the studied catchments (Table 1.1 
and Fig. 1.1b) for the three Mediterranean sub-regions (NWM, EM and SM). MAP: Mean Annual 
Precipitation; ET0: reference evapotranspiration; MAQ: Mean Annual Runoff. 

  MAP  
(mm) 

ET0  
(mm) 

MAQ  
(mm) 

ET0/MAP 
(-) 

MAQ/MAP 
(-) 

NWM Min-Max 589 -1892 775 -1617 33 -1579 0.45 - 2.21 0.06 - 1.21 

 Median 1113 933 485 0.84 0.46 

 Interquartile range 891 -1366 868 - 990 319 - 763 0.67 -1.04 0.32 - 0.62 

       

EM Min-Max 428 -1718 957 - 1517 12 - 1437 0.62 - 2.91 0.02 - 0.99 

 Median 924 1391 105 1.56 0.17 

 Interquartile range 713 -1294 1120 -1444 105 - 649 1.02 - 1.99 0.06 - 0.57 

       

SM Min-Max 257 -1100 519 - 2382 4 - 460 1.07 - 4.29 0.01 - 0.73 

 Median 376 1157 33 2.88 0.08 

 Interquartile range 327 - 433 811 - 1272 15 - 56 2.39 - 3.19 0.05 - 0.14 

 

 

To investigate the climatic features of Mediterranean catchments, a Budyko-type plot 

(Budyko 1974, Andréassian and Perrin 2012) (Fig. 1.3) shows the mean annual runoff 

coefficient MAQ/MAP as a function of the aridity index AI = ET0/MAP. When 

ET0/MAP<1, wet conditions prevail. When ET0/MAP>1, dry climatic conditions prevail. 

The lines MAQ/MAP=1 and MAP=MAQ+ET0 represent the water and energy limits. 

Catchments are expected to fall within these limits for a closed water balance. 

Otherwise, the catchment is either gaining (catchment with MAQ/MAP>1) or losing 
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(catchment with MAP<MAQ+ET0) water, or there might be errors in the data. Four 

catchments fall outside the water or energy limits. These catchments are karstic (e.g., 

Nikolaidis et al. 2013 [Greece], Longobardi and Vallini 2008 [Italy]), which may explain 

the presence of underground water gain or loss processes. Most catchments (60%) can 

be considered water-stressed, with an aridity index greater than 1. 

Figure 1.3 shows a geographical cluster of catchments: (i) NWM catchments with the 

lowest aridity index and a large variation in catchment water yields (MAQ/MAP); (ii) SM 

catchments with the lowest runoff yields; (iii) EM catchments with a large variation in 

both the aridity index and catchment water yields. This large heterogeneity in the 

climatic features and hydrological response of EM catchments can be explained by the 

complex geomorphologic features of this region and the prevalence of karstic and 

mountainous catchments.  

 
 

Fig. 1.3 Plot of mass balance data from the study catchments on the Budyko diagram: the mean 

annual runoff coefficient MAQ/MAP function of the aridity index ET0/MAP/ MAP: Mean Annual 

Precipitation; MAQ: Mean Annual Runoff; ET0: Mean Annual Reference Evapotranspiration for 

the 3 sub-regions NWM, EM and SM; Plain symbols indicate karstic catchments in each sub-

region.  

 

To summarize, Mediterranean catchments exhibit a high variability in terms of both 

climatic characteristics and catchment hydrological responses at the annual scale. The 

latter can highly vary, even for the same amount of rainfall input, which may seriously 

challenge any modelling approach. Nevertheless, some regional patterns exist, and 

catchments in each of the above-mentioned sub-regions appear to have somewhat 

similar characteristics. 
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1.4.2 Rainfall-runoff event-based studies 

1.4.2.1 Rainfall events: amount and duration  

The monthly distribution of the number of events per geographic zone is presented in 

Fig. 1.4. Events in the NWM mostly occur in autumn (September to December), whilst in 

the EM region, events mostly occur in winter (January and February). For the SM, most 

of the studied events occur between September and February, with the highest 

frequency in January.  

 

 

 

 
Fig. 1.4 Monthly distribution of events per geographic region. 

 

For the 191 events presented here, the duration of the runoff generated by a rainfall 

event greatly varies between 2 h and 8 days. Similarly, event rainfall amounts show 

great variability, from 10.4 mm in the Giofyros Basin, Greece (Koutroulis and Tsanis 

2010), to 540 mm in the Gard River Basin, France (Vincendon et al. 2010) over various 

durations. More extreme events were also reported in the literature, particularly in 

southern France. On 12-13 November 1999, the Aude River [Southern France] 

witnessed an extreme flood event generated by 700 mm of rainfall in 24 hrs (Gaume et 

al. 2004). The famous 8-9 September 2002 flood in the Gard region (southern France) 

was generated by approximately 600 mm of rainfall in 48 hrs.  

Figure 1.5 represents the cumulative event rainfall as a function of the event duration, 

with large scattering in the relationship. For the same event duration, the total amount of 

cumulative rainfall can greatly vary over a location. Moreover, the rainfall amounts 

during a single event vary according to the geographical location, with the highest event 

rainfall (> 100 mm) located in the NWM.  

 



28 

 

 
Fig. 1.5 Relationship between rainfall depth and event duration for the studied events on the 

three studied sub-regions (NWM, EM and SM). 

 

1.4.2.2 Peak discharge 

Event peak discharge is widely used as an indicator of the hydrological response of 

catchments. Here, we represent the catchment unit peak discharge (the peak discharge 

per km²) as a function of a catchment’s area (Fig. 1.6a) and cumulative event rainfall 

(Fig. 1.6b). Numerous studies found a dependence of peak discharge on catchment 

area (e.g., Herschy and Fairbridge 1998, Herschy 2002, Furey and Gupta 2005, Marchi 

et al. 2010). Figure 1.6a represents a log-log diagram of the unit peak discharges of our 

catchment database (for each catchment, the highest peak flow was plotted) with two 

envelope curves developed by Tarolli et al. (2012) for the NWM (France, Italy and 

Spain) and for EM (Israel) flash floods. 

In Mediterranean catchments, unit peak discharges are extremely high. Indeed, 

values estimated from post-flooding investigations (Gaume et al. 2003b, Gaume et al. 

2004, Gaume and Bouvier 2004) reached 30 m³/s/km² for the 8-9 September 2002 

event for a 15 km² basin, exceeded 15 m³/s/km² in four basins, and exceeded 10 

m³/s/km² in six other basins. This finding can be linked to the characterization of extreme 

flash floods in 60 catchments of five European climate zones (Mediterranean, Alpine-

Mediterranean, Alpine, Continental and Oceanic) presented by Marchi et al. (2010). The 

authors found the highest unit peak flows in the Mediterranean region followed by the 

Alpine-Mediterranean.  

In our dataset, the highest unit peak flow was recorded on the Alzon River at the 

Saint Jean de Pin, southern France (Nguyen et al. 2014), with a value of 33 m³/s/km² 

(catchment area = 30 km²). However, the unit peak discharges decrease rapidly with the 
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increasing catchment area. This rapid decrease in the unit peak discharge with the 

increase in the catchment area may reflect the high spatial variability in the rainfall 

events that occurs in the Mediterranean and the high heterogeneity in the hydrological 

responses of different locations within a catchment (Latron and Gallart 2007, 2008). 

Thus, for a given catchment and a given rainfall event, the event does not necessarily 

affect the entire catchment, and the runoff-generating processes are not the same in all 

parts of the catchment. 

The differences in catchment responses in terms of unit peak discharges by 

geographical location are illustrated in Figure 1.6a. It clearly shows that the highest peak 

discharges are recorded in the NWM, followed by the SM. The lowest unit peak flows 

were recorded in the EM. The highest unit peak flows were recorded for the smallest 

catchments. For large catchments, values from the NWM and SM catchments are within 

the same range, whereas the EM records the lowest values. Nevertheless, although the 

NWM region is known for severe rainfall events and catastrophic floods, the highest 

peak flows may be partly attributed to the relatively denser gauging networks and larger 

number of research teams investigating post-flood conditions in that region. Hence, 

information on peak flows in small catchments (on the order of 10 km²) is available. This 

information is rarely available for other areas of the Mediterranean.  

Catchment unit peak discharges as a function of event rainfall depth (Fig. 1.6b) are 

highly scattered for a given amount of cumulative rainfall. Therefore, no correlation could 

be found between event rainfall depth and event peak flow, particularly for rainfall 

depths below 100 mm. However, above a 100 mm rainfall threshold, the unit peak 

discharge seems to increase continuously with the amount of event rainfall. 

Another factor that may influence peak flow is the duration of the rainfall event. It is 

tempting to associate a longer event with a higher unit peak discharge. While this might 

be the case in humid environments, no obvious relationship exists in Mediterranean 

catchments. For a given event duration, the unit peak discharges greatly vary (Fig. 

1.6c). However, this relationship is true for relatively short events (event durations of 

less than 50 hrs), whilst it seems from the analysis of Fig. 1.6(c) that for longer event 

durations, a particular pattern exists: the unit peak discharge appears to increase with 

the increasing event duration. Perhaps for really long events, catchment moisture 

conditions and runoff generation processes begin to resemble those of humid 

conditions. In fact, during the wet season, Mediterranean catchments may function 

similarly to catchments in humid climates (Latron et al. 2009, Gallart et al. 2011).   
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Fig. 1.6 Relationship between unit peak discharge and (a) catchment area, (b) rainfall depth and 

(c) event duration.  

 

1.4.2.3 Runoff ratio 

A very important concept for assessing the catchment hydrological response is the 

event runoff ratio, which is defined as the ratio of the event runoff volume to the event 

rainfall volume. Figure 1.7 presents the runoff depth (Fig. 1.7a) and the runoff ratio (Fig. 

1.7b) as a function of the cumulative event rainfall. There is clear scattering in the 

response. Thus, for a given rainfall depth, both the runoff and runoff ratio may greatly 

vary.  

In Mediterranean catchments, event runoff ratios vary over a large range (Fig. 1.7b). 

For instance, the ratio varies from 0.01 in the Rafina catchment (Greece; Massari et al. 

2014) to 1.2 in the Lez catchment (France; Coustau et al. 2012). The mean value of the 

sample we studied was 0.37, with a standard deviation of 0.27. The median was 0.30, 

and the interquartile range was 0.14 - 0.51. There are geographical discrepancies in the 

catchment responses to rainfall events. Figure 1.7 shows that the highest runoff depth 

and runoff ratios appear in the NWM catchments. In fact, the median runoff ratios vary 

between regions, e.g., from 0.40 in the NWM (similar to the values found by Marchi et al. 

2010) to 0.36 in the SM and only 0.12 for EM catchments. It is also obvious that for low 

rainfall depths (particularly below 50 mm), all events are from the EM and SM regions, 

which may exhibit very high runoff ratios despite low rainfall depths.  
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Fig. 1.7 Relationship between runoff depth and rainfall depth (a), and between runoff ratio and 

rainfall depth (b). 

 

Extremely high runoff ratios recorded for some events may exceed 1. This finding can 

be explained by the karstic nature of the catchment, with a runoff-generating area that is 

much larger than the topographic basin. One example is the Lez catchment in France 

(Coustau et al. 2012). Other high runoff ratios were also estimated for other catchments, 

such as Merhavia in Israel (Rozalis et al. 2010), Reno River in Italy (Brath et al. 2004) 

and Mdouar in Morocco (Tramblay et al. 2012). Here, the events triggering such high 

runoff ratios usually occur after other large events. Thus, the initial moisture conditions 
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influence the generation of important runoff amounts. These physical characteristics of 

the Mediterranean and the high seasonality of the climatic features may explain the 

large scattering in the catchment responses both in terms of event runoff ratios and 

peak discharges. 

The relatively low dependency of the runoff ratio on the cumulative rainfall depth 

could be explained by many factors. First, under Mediterranean climatic conditions, 

Hortonian flows are expected to be dominant. Thus, the catchment hydrological 

response is rather controlled by rainfall intensity than depth. Moreover, for different 

events (even with the same amount of rainfall), the initial moisture conditions are 

different and trigger different hydrological responses. Furthermore, the temporal and 

spatial distributions of a rainfall event certainly play a role in shaping the catchment 

hydrological response. In Mediterranean catchments, the temporal and spatial 

distributions of rainfall events are highly variable. In addition, the runoff-generating 

processes along catchments are heterogeneous, and the percentage of the catchment 

area that actually contributes to runoff can vary by event.  

1.4.3 Drought studies 

In contrast to studies on the annual water balance and rainfall-runoff events, quantities 

comparison is difficult because the authors do not use the same variables to quantify 

droughts. Therefore, our analysis is more qualitative, and our conclusions could appear 

more subjective. 

Climatic trends in the region show an overall decrease in the available water 

resources due a reduction in the annual rainfall and an increase in the annual 

temperature and reference evapotranspiration (ET0) (Vicente-Serrano et al. 2014, 

Mavromatis and Stathis 2011, Chaouche et al. 2010, Kafle and Bruins 2009). However, 

important seasonal discrepancies exist in the evolution of different components of the 

water balance equation across areas of the Mediterranean. Studies show a high spatial 

and temporal variability of drought events across the Mediterranean, in the EM, the SM, 

parts of the Iberian Peninsula, the main islands and southeastern Italy.  

Climatic change impact projections for the 21st century in the Mediterranean converge 

towards a drier climate by the end of the century (e.g., Capra et al. 2013, Marquéz et al., 

2013, Vrochidou et al. 2013, Abuabdillah et al. 2010). The water management scenarios 

in different catchments show a large decrease in water availability, particularly during 

dry periods due to the large population increase in these catchments. However, 

important disparities can exist within the same catchment.  

1.5 Objectives and methods of hydrological studies 

In this section the main objectives that drove existing hydrological studies in the 

Mediterranean region and the most used modelling approaches for annual water 
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balance, rainfall-runoff events and drought studies are discussed. In each case, the 

available studies are classified by their relative objectives or models used, and two main 

objectives, “simulation” and “scenario testing”, are then identified. The main objective 

behind this analysis is to evaluate whether the Mediterranean context requires further 

specific approaches.  

1.5.1 Annual water balance studies 

Table 1.5 gives the list of existing studies. The two main objectives include:  

 

(1) “simulation”: characterization of hydrological processes, model performance 

assessment, model uncertainty reduction, development of new models,  

streamflow simulation with limited data and karstic zone modelling; 

(2) “scenario testing”: assessment of the impacts of different scenarios of land use 

change (LUC) and climate change (CC) on water resources and erosion.  

 

Apart from classical modelling objectives, such as assessing model performances, 

improving model predictability or developing and testing new models, continuous 

streamflow simulation studies in the Mediterranean regions focus on the impact of global 

change on hydrological responses. Mediterranean environments are water-stressed, 

and demands on water are increasing because of the increasing population and tourist 

industry. Moreover, the Mediterranean region is prone to climate change (IPCC 2014), 

and many studies have projected an increase in temperature and a decrease in 

precipitation over the Mediterranean Basin (Philandras et al. 2011, IPCC 2014, Alpert et 

al. 2002). Other studies address crucial features of Mediterranean environments, such 

as erosion (e.g., Garcia-Ruiz et al. 2013, Shakesby 2011, Lesschen et al. 2009, Raclot 

and Albergel 2006) and karstic influences (e.g., Touhami et al. 2013, Doglioni et al. 

2012, Coustau et al. 2012). 

Table 1.5 also illustrates that the same hydrological model was used for different 

objectives (e.g., SWAT or GR). However, some models were developed for a specific 

purpose: the HYdrological Land Use Change model (HYLUC) (Delgado et al. 2010) was 

used to evaluate the impact of land use change on catchment hydrological responses; 

the HYdrological Modelling for Karst Environment (HYMKE) (Rimmer and Salingar 2006) 

and 3D Karstic Flow Model (3dkflow) (Rozos and Koutsoyiannis 2006) were built and 

used for hydrological simulations in karstic catchments; and HYDROGEIOS which is a 

semi-distributed model for streamflow simulation in modified basins (Efstratiadis et al. 

2008).  

The model choice seems dependent on the data availability, the experience of the 

researcher (especially in terms of computing experience), and the available funding 

(some models are expensive). Except for some specific cases (e.g., Delgado et al. 2010 

[Spain], Rozos and Koutsoyiannis (2006), Kourgialas et al. 2010 [Greece], Rimmer and 

salingar 2006 [Israel]), the objective of the study does not necessarily influence the 
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model choice. These claims are more obvious when we evaluate the geographical 

distribution of the models in use. Indeed, complex and data-demanding models appear 

to be primarily in use in the Euro-Mediterranean part of the region and in Israel. Most 

models were applied in other climatic contexts.  

1.5.2 Rainfall-runoff event-based studies 

Like in the case of water balance studies, the two main objectives of rainfall-runoff 

event-based studies include (see detailed list in Table 1.6): 

 

(1) “simulation”: similar objectives, with greater emphasis on runoff generation 

processes, wetness impacts on catchment responses and flash flood 

estimations, and sensitivity of model performance to data and parameters;  

(2) “scenario testing”: similar objectives on LUC and CC impact assessment, as well 

as wildfire impact or flood risk mitigation.  

 

Regarding event-based studies, the same model can be used for different objectives. 

These are classical models that are applied worldwide. There have only been a few 

attempts to develop models specifically for the Mediterranean environment (e.g., Manus 

et al. 2009, Nunes et al. 2011, Roux et al. 2011, Massari et al. 2015). Some authors 

slightly modified available models to account for specific features of the Mediterranean 

(e.g., Rozalis et al. 2010). 

Modelling the hydrological response of Mediterranean catchments, particularly at the 

event level, using classical modelling techniques is somewhat controversial. In fact, the 

results from various studies characterizing hydrological responses of these catchments 

and runoff-generation mechanisms show that under Mediterranean conditions, runoff-

generation mechanisms and catchment responses are heterogeneous. Hence, the most 

important rainfall events in terms of precipitation volume are not necessarily those with 

the highest runoff ratio or peak flow (Moussa and Chahinian 2009, Marchi et al. 2010, 

Tarolli et al. 2012), and different mechanisms can co-exist (Manus et al. 2009). 

Furthermore, different parts of the catchments can exhibit different runoff-generation 

processes, while some parts of the basin may not contribute at all (Latron and Gallart 

2007). Catchment responses also depend on the initial wetness conditions, and they 

greatly fluctuate between seasons (Lana-Renault et al. 2007, Maneta et al. 2007, Huza 

et al. 2014). However, because of the high intensity of rainfall under Mediterranean 

conditions, infiltration excess is often dominant (Manus et al. 2009). The impact of high-

intensity rainfall is particularly important for extreme events, where it becomes the sole 

factor that influences runoff generation (Brath and Montanari 2000, Lana-Renault et al. 

2011).  

Some of the most commonly used models (SCS CN) are threshold models, in which a 

portion of the precipitation is used to fill soil water content before generating runoff. 

Other models, e.g., based on TOPMODEL, were developed for more humid climates. 
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They use saturation excess mechanisms to generate runoff. The limitation of 

TOPMODEL for Mediterranean catchments was demonstrated by Gallart et al. (2007) in 

the Vallecebre catchment in Spain. TOPMODEL well simulates the hydrological 

response in the wet season. However, under dry conditions, the model performance 

decreases. Moreover, Mediterranean catchment responses at the event scale are very 

sensitive to the spatial and temporal (within-storm) variation in rainfall (Rozalis et al. 

2010). High spatio-temporal resolution rainfall data, which are not available in many 

parts of the Mediterranean, particularly in North Africa and the Near East, are needed.  

1.5.3 Drought studies 

For the existing drought studies (see detailed list in Table 1.7), the two main objectives 

include: 

 

(1) “simulation”: characterization of the temporal and spatial variations of droughts 

and the methods for drought assessment; 

(2) “scenario testing”: assessment of the impact of different scenarios (climatic, 

anthropogenic, etc.) on drought characteristics in a catchment or region.  

 

The methods used are also presented in Table 1.7. A description of the different indices 

used in these studies and their meanings are available in drought reviews (e.g., Mishra 

and Singh 2010, 2011).  

Precipitation-based indices, such as the standardized precipitation index (SPI) and 

modified versions of such indices are most popular among meteorological-based 

indices. These indices are globally relevant and are applicable at different time scales to 

characterize short- and long-term droughts and their impacts on different components of 

the water balance. Hence, one must emphasize the importance of the choice of the 

index time scale. For instance, in the Mediterranean region, time steps that are too long 

(> 12 months) must not be used due to the high rainfall seasonality (Vicente-Serrano 

and López-Merano 2005). The objective of the index (impact on surface water, 

reservoirs, etc.) should constrain the choice of the time step.  

Hydrological indices, such as the Palmer index (e.g., Vasiliades and Loukas 2009) 

and other hydrological indicators (e.g., Shaban 2009), indices related to soil moisture 

(Vidal et al. 2012) and groundwater indices (Mendicino et al. 2008) have been used. 

Agricultural drought indices are also prevalent in the Mediterranean literature (Diodato 

and Bellochi 2008). 

The models used in drought studies are mainly water management models, such as 

the Water Evaluation and Planning system (WEAP) (Hamlat et al. 2012, Yilmaz and 

Hrmancioglu 2010) and inVEST model (Terrado et al. 2014, Marquéz et al. 2013), or 

simple water balance models, e.g., the SIERRA model (Ruffault et al. 2013).  
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Moreover, climatic trend analyses are also commonly used to assess the impact of 

temporal and spatial drought variations.  

In summary, various methods are used for drought characterization in the 

Mediterranean. However, climate-based indices (such as the SPI) remain most popular. 

Moreover, the main concerns that drive drought studies appear to be global change 

impacts (climatic and anthropogenic pressure).  
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Table 1.5 The main objectives and the models used for continuous streamflow simulation studies in the 
Mediterranean. 

Theme Objectives Region Study Model 

Simulation Assessment of model 
performance 

NWM Delgado et al. 2010 HYLUC 

Franchini and Pacciani 1991 STANFORD IV;TANK; APIC;  
SACRAMENTO; SSARR; 
XINANJIANG ; ARNO 

EM Pisinaras et al. 2010 SWAT 

Hessling 1999 PHASE 

SM Raclot and Albergel 2006 WEPP 

Bouraoui et al. 2005 SWAT 

Benkaci Ali and Dechemi 2004 GR3J, CREC, ARMAX 

Improve model 
performance and 
reduce uncertainty 

NWM Tayfur et al. 2014 GRNM 

Milella et al. 2012 DREAM 

Loiaza Uzuga and Pauwels 2008 TOPLATS 

Gallart et al. 2007 TOPMODEL 

New model 
development 

NWM Silvestro et al. 2013 Continuum model 

Moussa et al. 2007 ModSpa 

EM Efstratiadis et al. 2008 HYDROGEIOS 

Rozos et al. 2004 Modified Thornwaite model coupled to 
a Darcian multi-cell groundwater flow 
module 

Hreiche 2003 MEDOR 

Limited data  EM Ramadan et al. 2012 HRR 

Karstic catchment NWM Makropoulos et al. 2008 3 models: A quasi-physically based 
model; a black box/transfer function 
model and a conceptual model 

EM Hartmann et al. 2012 Conceptual reservoirs models 

   Nikolaidis et al. 2013 Modified SWAT  

   Kourgialas et al. 2010 HSPF coupled to a snowmelt model 
and a conceptual Karstic reservoir 
and a karstic channel model 

   Tzoraki and Nikolaidis 2007 HSPF coupled to a 2-reservoirs kartic 
model 

   Rozos and Koutsoyiannis 2006 3dkflow 

   Rimmer and Salingar 2006 HYMKE 

Scenario 
testing 

LUC impact NWM De Girolama and Lo Porto 2011 SWAT 

Estrany et al. 2010 Thornwaite-Mather model 

CC impact NWM Candela et al. 2012 HEC-HMS coupled to VisualBALAN 

Nunes et al. 2008, 2011 SWAT 

Senatore et al. 2011  ln-STRHym 

Burlando and Russo 2002 PRMS 

EM Hreiche et al. 2007 MEDOR 

SM Bakreti et al. 2013 Hydrological indices 

Bouabid and Chafai ELalaoui 2010 IHACRES, HEC-HMS 

LUC and CC impact NWM Collet et al. 2013 GR4J 

D’Agostino et al. 2012 DiCaSM 

Gallart et al. 2011 SACRAMENTO ; Zhang Eq. 

Ceballos-Barbancho et al. 2008 Statistical Analysis 

Gallart and Llorens 2004 Annual Water balance (Dooge et al. 
1999) 

EM Albek et al. 2004 HSPF 

Erosion NWM Lesschen et al. 2009 LAPSUS 

SM Raclot and Albergel 2006 WEPP 
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Table 1.6 The main objectives and the models used for event-based studies in the Mediterranean. 

Theme Objectives Region Study Model 

Simulation Catchment characteristics 
and wetness 
conditions impact on 
catchment response 

NWM Massari et al. 2015 SCRRM coupled to H-SAF 
soil moisture product 

Huza et al. 2014 Field data analysis 

Molina et al. 2014 Field data analysis 

Manus et al. 2009 Tailor model in LIQUID 

Tramblay et al. 2010 SCS CN 

Brocca et al. 2008 A water balance 

Fiorentino et al. 2007 DREAM 

Brath and Montanari 2000 SCS CN 

EM Massari et al. 2014 MISD and SCRRM 

SM Tramblay et al. 2012 SCS CN 

Runoff generation 
processes and 
catchment hydrological 
response 

NWM Gallart et al. 2007, 2008, 
2011 

Rainfall-Runoff 
relationships, Water 
table dynamics; 
TOPMODEL 

Lana-Renault et al. 2007 Rainfall-Runoff 
relationships, Water 
table dynamics 

Peak flood estimation and 
flash floods 
characterization 

NWM Petroselli et al. 2013 SCS CN/Green Ampt 

Roux et al. 2011 MARINE 

Gaume and Bouvier 2004 SCS CN 

Gaume et al. 2003b, 2004 SCS CN ; 

EM Koutroulis and Tsanis 2010 Empirical Eq. 

Rozalis et al. 2010 Modified SCS 

SM Nasri et al. 2004 A Geomorphological 
model 

Impact of data and 
parameters input on 
model performance 

NWM Maneta et al. 2005 5-parameters overland 
flow model 

Brath et al. 2004 SCS CN 

Scenario Testing Land cover impact of 
floods 

NWM Cosandey et al. 2005 HRR 

Lana-Renault et al. 2011 Paired catchments 

Climate Change impact NWM Mediero et al. 2014 Trend analysis 

Nunes et al. 2013 MEFIDIS 

Fire impact on floods NWM Mayor et al. 2007 Paired catchments 

EM Vafeidis et al. 2007 Paired catchments 

Flood risk mitigation NWM Ballesteros-Cánovas et al. 
2013 

HEC-HMS 

EM Komuscu and Celik 2013 Hydro-meteorological 
analysis 

Gul et al. 2010 HEC-HMS 
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Table 1.7 The main objectives and methods used for the chosen drought studies in the Mediterranean. 

Theme Objectives Region Country Study Methods 

Simulation Drought 
Analysis 

NWM France Vidal et al. 2012 ISBA model; SPI and 
SWI 

Italy Diodato and Bellocchi 2008 Cy; HPR; MCDI 

Spain Ruiz-Sinoga et al. 2012 DDSLR index 

Spain, Portugal Vicento-Serrano 2006 SPI 

EM Greece Tsakiris et al. 2007 RDI; SPI 

Tigkas et al. 2012 RDI and SDI and 
Medbasin model 

Vangelis et al. 2010 Bivariate Analysis for 
RDI 

Nalbantis and Tsakiris 2009 SDI 

Lebanon Shaban 2009 Hydrological Drought 
indices 

Israel Aviad et al. 2009 DDSLR 

SM Algeria Hamlaoui-Moulai et al. 2013 Trend analysis, PCA 

Morocco Esper et al. 2007 PDSI and Cedar Trees 
ring width 

 Efficacy of 
Drought 
indices 

NWM Italy Mendicino et al. 2008 GRI 

Spain Vicento-Serrano and López-
Moreno 2005 

SPI 

EM Greece Vasiliades and Loukas 2009 PDI and UTHBAL model 

Turkey 
 

Dogan et al. 2012 PN-Mean; RDDI; Z-
score; CZI; SPI; EDI 

Turkes and Tatli 2009 SPI and modified SPI 

Scenarios 
testing 

Water resources 
management 

NWM Spain Terrado et al. 2014 InVEST model 

Bangash et al. 2012 MIKE BASIN model 

Gomez and Blanco 2012 Risk Assessment model 

EM Turkey Yilmaz and Harmancioglu 
2010 

WEAP model 

SM Algeria Hamlat et al. 2012 WEAP model 

Climatic trends 
 

NWM France Chaouche et al. 2010 Climatic trends 

Spain Vicente-Serrano et al. 2014 12 methods for ET0 
estimation 

EM Greece Mavromatis and Stathis 2011 Trends in Hydrological 
parameters 

Israel Kafle and Bruins 2009 Climatic trends 

CC Impact NWM France Ruffault et al. 2013 SIERRA model 

Italy Capra et al. 2013 SPI 

Spain López-Bustins et al. 2013 SWAT model; SPI and 
SPEI 

Marquèz et al. 2013 InVEST model 

Lorenzo-Lacruz et al. 2010 SPI and SPEI 

EM Greece Vrochidou et al. 2013 IHMS-HBV model 

SM Tunisia Abouabdillah et al. 2010 SWAT model 

 

 

1.6 Discussion and perspectives 

Sections 4 and 5 presented an overview of the recent studies in the Mediterranean in 

terms of hydrological response characteristics and modelling approaches at different 

time scales and for various objectives: annual runoff, floods and drought periods. This 
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section discusses the main results and provides complementary responses to the three 

questions posed in the introduction. 

1.6.1 Can we identify regional patterns in the Mediterranean? 

The comparison of catchments in different Mediterranean areas shows that some 

regional tendencies exist. In terms of the annual water balance, catchments from the 

NWM have a higher humidity, a relatively low dryness index and higher annual runoff 

yields. This finding could be due to the influence of the humidity from the Atlantic Ocean, 

which modifies the seasonal pattern of rainfall, i.e., less precipitation in winter and a 

rainfall peak in autumn and/or spring (McNeill 1992). SM catchments are the driest, with 

the highest aridity index and lowest annual runoff yields. The EM proves to be more 

heterogeneous, with a relatively wide range of values in terms of both the aridity index 

and runoff yields (e.g., Rimmer and Salingar 2006, Tzoraki and Nikolaidis 2007, 

Kourgialas et al. 2010). 

Regional tendencies also exist in the seasonal distribution and severity of extreme 

rainfall events. In fact, rainfall events in the NWM mostly occur in autumn, with a peak in 

September. Rainfall in the EM region mostly occurs in winter, with a peak in January 

and February. In the SM, the sample is too small to generalize. Moreover, in terms of 

the event rainfall depth, peak discharges and runoff ratios, the highest values occur in 

the NWM. These findings were reported by other authors who studied floods in the 

Mediterranean (Marchi et al. 2010, Tarolli et al. 2012, and Llasat et al. 2013). In fact, the 

NWM region exhibits extreme rainfall regimes, with rainfall commonly exceeding 

200 mm in 24 hrs. Cortesi et al. (2012) studied the distribution of the daily precipitation 

concentration index across Europe. The highest values were computed for the coastal 

arc that extends from southeastern Spain to Sicily (Italy). Moreover, Reiser and Kutiel 

(2011) compared the rainfall regimes in Valencia (Spain) and Larnaca (Cyprus). The 

authors found that in Valencia, the rainfall regimes are more extreme than in Larnaca. 

Hence, in the NWM, daily rainfall values that exceed 600 mm have been recorded. 

However, there is also overlap between morphometric and hydrological 

characteristics of particular catchments located in different regions, particularly between 

the NWM and EM. These similarities between catchments can highlight twin basins 

(e.g., basins with similar physiographic features and/or hydrological responses), for 

which hydrological responses can be transferred from gauged to ungauged basins. 

1.6.2 What is required to model Mediterranean catchments? 

A difference can be made between continuous streamflow simulations and event-based 

simulations. The former is usually applied to quantify water resources in the catchment 

of interest, assess land cover and/or climate change impacts, or test new modelling 

approaches. In event-based studies, the objectives may vary from flood risk mitigation to 

understanding flood-triggering characteristics. For continuous streamflow simulations, 
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daily climatic and hydrological data are mostly used (sometimes monthly data). The 

applied models are often lumped as conceptual models with relatively good results. 

Nevertheless, modelling the catchment response at the event scale is a dilemma. The 

high rainfall intensity and spatial variability within a storm, along with a catchment’s initial 

wetness conditions, complicate this task. Classical hydrological models are not well 

suited to the Mediterranean area. In fact, many of these models assume precipitation 

abstraction (such as the widely used SCS CN) or saturated excess mechanisms (such 

as the TOPMODEL family), which is not necessarily the case in the Mediterranean. 

Moreover, any suitable modelling approach for these catchments is highly demanding in 

terms of data. Hence, to account for the variability in the rainfall intensity in a short time, 

the model should be applied at the hourly (or shorter) scale for flood studies. 

Furthermore, this model should be able to account for any rainfall spatial variability and 

catchment wetness conditions. Therefore, information on soil properties and soil 

moisture conditions is needed. 

The specificities of the Mediterranean catchment responses explain the large 

response heterogeneity in the region and outline the fact that modelling the hydrological 

behaviour of Mediterranean catchments is difficult (Oudin et al., 2008). In regional 

studies that involve catchments from Mediterranean and non-Mediterranean (humid) 

regions, such as in Goswami et al. (2007) and Oudin et al. (2008, 2010), the 

performance of the model-dependent regional approaches is worse in a Mediterranean 

climate. High-resolution spatial and temporal rainfall and soil properties and moisture 

data may be necessary to accurately simulate the hydrological behaviour of 

Mediterranean catchments. However, such data are rarely available. Consequently, 

detailed flood studies are usually performed in small, research catchments, with results 

often difficult to generalize in space and time (Gallart et al. 2007, Latron and Gallart 

2007, Lana-Renault et al. 2007; Manus et al. 2009, Rozalis et al. 2010, Molina et al. 

2014). This finding also explains why studies in large catchments are usually limited to 

flood risk mitigation or peak flow estimation, sometimes using lumped methods only.  

To overcome the difficulties in modelling hydrological responses of Mediterranean 

catchments, particularly in terms of accounting for the high spatial variability in model 

parameters, radar rainfall, spatial soil moisture information and remote sensing data are 

considered (Massari et al. 2015; Tramblay et al. 2010, 2012, Rozalis et al. 2010). New 

approaches that couple observations (that are usually obtained on small catchments) 

and modelling are used to improve our understanding of flood-triggering processes. For 

example, recent work was undertaken within the HyMeX project on two French 

catchments (Braud et al. 2014). This is a multi-scale approach that assesses the runoff-

generation processes from observations at a small hillslope scale; the rainfall variability 

and soil moisture, along with the network organization, were studied for medium-sized 

catchments (1 - 100 km²) and for river rooting and flooding at a large scale (100 - 1000 

km²). Data analyses were coupled to modelling techniques, and the results are 

promising. However, these approaches are very demanding in terms of instrumentation, 
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data, and computational efforts; thus, they may be very expensive. Thus, the majority of 

flood simulation studies in the Mediterranean are concentrated in the developed 

countries of the Euro-Mediterranean region and Israel.  

1.6.3 What are the main challenges for future research in the Mediterranean? 

In recent decades, we observed an important change in the scope of hydrological 

studies in the Mediterranean zone and consequently in the expected performance of 

hydrological modelling. Currently, there remains an important need for research on 

classical rainfall/runoff hydrological modelling for engineering applications in water 

resources management, water supply infrastructure design, flood and drought 

prediction, pollution projections and erosion processes. However, hydrological modelling 

has become an indispensable tool for many interdisciplinary projects in the 

Mediterranean. For example, anthropogenic and climatic change impacts on 

environmental variables, such as water, soil, biology, ecology and the socio-economy, 

can be assessed. Modelling is data intensive, and improving model performances 

involves the acquisition of new data at various spatiotemporal scales. Future research 

challenges in Mediterranean hydrology include: 

 

- Strengthening the hydrological knowledge in EM and SM: The majority of studies 

focuses on the NWM. There is an urge to conduct more hydrological studies in 

the EM and SM, from the plot to the large catchment scales and from short time 

scales (a few minutes for flash flood genesis on hillslopes) to decades (impact of 

land use and climate change);  

- Improving measurements and data availability: There is a need to improve 

measurements during extreme flash flood events, drought periods (absence of 

flow) and long-term land use and climate change. These data can be obtained 

through the installation of long-term environmental stations, dense precipitation 

and streamflow gauging networks. Radar data and remote sensing approaches 

are promising. 

- Conducting large-scale studies under Mediterranean conditions: There is a need 

to lead studies at the scale of the entire Mediterranean region (e.g. Milano et al. 

2012, Chenoweth et al. 2011, Garcia-Ruiz et al. 2011, Iglesias et al. 2007 among 

others). This would require setting up large datasets through scanning and 

digitizing old records, historical data, and previous studies. Thus, the current 

established database initiated in this work could be extended to all Mediterranean 

basins (e.g., the Mediterranean zones in Australia, California, Chile and South 

Africa) for a Mediterranean comparative hydrology. This comparison would 

provide a common basis for understanding the hydrological behaviour of 

catchments and improving regionalization approaches; In terms of hydrological 

modelling, models already applied at continental scales (e.g. EFAS, E-hype) 
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would be good candidates to conduct modelling studies at the Mediterranean 

scale;  

- Studying the Mediterranean under change: Transferring the results between 

“similar” Mediterranean catchments can also be useful for predicting the effects of 

climate change or land use change on the hydrological response, following the 

objectives of the decadal “Pantha Rei” (2013-2022) of the International 

Association of Hydrological Sciences (IAHS) (Hrachowitz et al. 2013). 

- Improving hydrological modelling on small catchments: Theoretical developments 

are needed, and classical models must be adapted by taking into account the 

representation of the main hydrological processes. In large catchments (> 500 

km²), spatial rainfall and hydrographs are smoothed at the daily scale. 

Consequently, conventional hydrological models perform well and therefore 

remain well suited for understanding hydrological processes, testing hypotheses 

or simulating missing discharge data series. However, when moving to small 

catchments (< 100 km²), many hydrological processes remain poorly represented 

or neglected in classical models, e.g., threshold functioning for runoff genesis and 

the transfer on hillslopes and through the channel network (e.g., case of 

ephemeral and intermittent flows), the importance of flow in non-saturated zone, 

and the difficulties in modelling surface-subsurface interactions in dryland 

regions. 

- Accounting for variabilities: New “tailor-made” models need to be developed to 

consider specific spatiotemporal heterogeneities of catchment responses in areas 

with specific hydrological functions, such as in karstic, urban s and peri-urban 

zones. 

 

We believe that reviews at large regional scales, such as the one presented here, are 

essential for advancing our understanding of hydrological behaviour of highly complex 

areas, such as the Mediterranean region, in terms of comparative hydrology. Thereof, 

this review is an attempt to strengthen the research initiatives at this scale. 
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One of the objectives of this work is to classify the Lebanese catchments according to 

their physical and hydrological characteristics. More details on the data collection 

methodology, the available data and the meta-data of the used meteorological and 

hydrometric stations. In this part we have chosen to present 3 categories of data 

separately. Details about the used data are available in Annex E.  Moreover, details 

about the formuals used to calculate the variables used in this part are available in 

Annex G.  

Chapter 2 presents the study area (the Lebanese catchments) and the geographical 

data; these are data available from DEM and thematic maps (geology, soils, land use). 

From these data we will define physical descriptors that describe the physical 

characteristics of the catchments. The methodology used to do so is presented 

alongside the results in term of the distribution of descriptors by catchments. Details of 

physical characteristics for each catchment are presented in Annex F.  

Chapter 3 presents the meteorological dataset used in our study. The chapter 

presents the dataset and a brief analysis of the different climatic characteristics of the 

study area. Finally the methodology applied in order to spatially interpolate precipitation 

across Lebanon and the results of the used approach are presented. More details about 

the river discharge data are available in Annex E. 

Chapter 4 presents the hydrological dataset (discharge data) used in our study. In this 

chapter we define runoff signatures that are used to describe the hydrological function of 

the studied catchments. The hydrological characteristics of the studied catchments are 

then discussed. More details on the meteorological data are available in Annex E. 

Chapter 5 analyzes the hydrological response of Lebanese catchments at the annual 

water balance and the event scale and compares their response to other Mediterranean 

catchments. The chapter begins by analyzing the annual water balance characteristics 

and comparing them to other Mediterranean catchments. Then we detail the catchment 

response characteristics at the event scale in term of maximum recorded flow and event 

runoff and runoff ratio taking into account the storm rainfall duration and amount.  
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2.1 Introduction 

Lebanon (Fig. 2.1a) lies on the eastern shore of the Mediterranean Sea. The country 

has an area of about 10452 km². However, and despite its small surface it presents a 

complex physiography with many well-defined geomorphological units divided by many 

authors (Du Vaumas 1954, Abu Al Anin 1973, El-Fadel et al. 2000) into four major ones 

(Fig. 2.1.b): 

- The narrow coastal plain: less than 5 km in width and less than 100 m altitude. It 

constitutes only 2 % of the Lebanese territory. 

- The Mont Lebanon Mountain range that runs over the entire length of the area 

with a SSW-NNE trend with elevation ranging from 100 m to 3083 m (Qornet Es-

Saouda). It occupies 59.6 % of the country area. 

- The Bekaa valley is a graben-syncline filled with Quaternary and Neogene 

deposits. It represents 14 % of the area of Lebanon 

- The Eastern mountain range occupies the eastern part of the country and runs 

parallel to Mount Lebanon and holds the highest peak at Mount Hermon (2814 

m). It covers an area of 24.4 %. 

Hence, Lebanon could be dissected into two main parts along the Mount Lebanon 

Range. The occidental slopes of Mount Lebanon, and the inland region: the Bekaa 

valley and Eastern chain (Fig. 2.1).  

The objective of this chapter is to describe the study area in term of morphometry 

(landforms, topography), geology, soils and land use and to extract from these 

information descriptors that represent the catchments physical characteristics.  

The chapter begins by presenting the study area with the available data maps, than 

we define the descriptors to be extracted and the methodology used to achieve so. 

Finally we present the results in term of the distribution of different descriptors in the 

studied catchments.  
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Fig. 2.1 (a) Geographical location of Lebanon and (b) its topography (source: CNRS 

2010; resolution: 10 m) and main rivers.  

(a) 

(b) 
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2.2 Study area and data 

From a hydrographic point of view, Lebanon could be dissected into two main parts. The 

occidental slopes of Mount Lebanon delineating a big number (more than 40) of small to 

medium sized basins (< 500 km2), with only 14 basins drained by a permanent water 

course or river, all these rivers are short (< 60 km) and discharges into the 

Mediterranean sea. And the inland region with 3 major basins: the Orontes River which 

enters the Syrian territories; the Litani River which is the longest (170 km) and draining 

the largest basin in Lebanon (2200 km2); and the Hasbani-wazani which forms one of 

the three main tributaries of the upper Jordan River. However, except for the 3 inland 

rivers, there is disagreement between authors on the number of permanent rivers on the 

western slopes of Mount Lebanon, this number could go from 10 to 14 (e.g., 10: Edgell 

1997; 14: Plan Bleu 2001). Twenty eight gauging stations located on 14 rivers were 

discharge records are available are used to delineate 28 catchments (Fig. 2.2) that will 

be studied here. The location of these catchments, their names (rivers at gauging 

station) and main characteristics are presented in Fig. 2.2 and Table 2.1 respectively.  

Figure 2.2 represents longitudinal profiles along 3 cross-sections (see Fig. 2.1). Here 

one can see the important altitudinal variability along one cross section and between 

them. This extreme variability will be reflected in a high spatial variability of rainfall inputs 

and evapotranspiration along different parts of the country, and will surely impact the 

hydrological response of the Lebanese catchments. Therefore, it is mandatory to define 

indices that characterize the morphometry of the studied catchments.  

The underlining geology of the country is made mainly of carbonate rocks. The 

outcrops stratigraphic sequence exposes rocks from the lower Jurassic to the 

quaternary. The geology of the country is well documented in Dubertret (1955), El-

Qareh (1967), Tuglaman (1975), Beydoun (1972, 1977, 1988), Walley (1998), and 

Abdallah et al. (2005). Almost all rock formations in Lebanon are carbonate in nature: 

limestone, dolomite limestone and dolomite, mostly from the Jurassic and the 

Cretaceous, Large areas of Eocene limestone also crops out in southern Lebanon. 

Middle Miocene strata occur occasionally in patches along the coast. Pliocene basalt 

fills the old valley of the upper Jordan River and a part of Akkar in the northernmost part 

of the country, Alluvium deposits from the quaternary fills the Bekaa valley, and part of 

the narrow coastal plain. The dominant formation in Lebanon is the Cenomanian (C4) 

(35 % of the total area of the country). It is formed by a chert-bearing massive thinly 

bedded, highly fractured and jointed, well karstified limestone and dolimitic limestone. 

Another important formation is the Middle to upper Jurassic (J4-7), that covers about 13 

% of the country, and characterized by massive, thick bedded. Highly fissured, jointed 

and well karstified dolomite, limestone, and dolimitic limestone (Fig. 2.4).  
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Fig, 2.2 The location of the studied Lebanese catchments (source: Litani River Authority). 

Information about these catchments is presented in Table 2.1. 



57 

 

Table 2.1 Code, catchment name, gauging station name, area and elevation range of the 

studied Lebanese catchments (see location in Fig. 2.2). 

Code Catchment Gauging Station Area (km²) Elevation range (m) 

1 Ostouene  Sea mouth (sm) 151 10 - 1923 

2 Ostouene  Halba 101 89 - 1923 

3 Arka  Hakour 102 77 - 1951 

4 Bared  Sea mouth 281 29 - 2878 

5 Abu Ali  Racheine 202 80 - 3081 

6 Abu Ali  Abu samra 466 46 - 3081 

7 Abu Ali Kousba 142 240 - 3081 

8 Abu Ali  Daraya 144 174 - 3081 

9 Jouz Sea mouth 189 9 - 1360 

10 Ibrahim Roueiss 100 1073 - 2660 

11 Ibrahim  Afqa 29 1113 - 2130 

12 Ibrahim  Sea mouth 327 3 - 2660 

13 Kelb Hrajel 75 1178 - 2620 

14 Kelb Daraya 143 557 - 2620 

15 Kelb Sea mouth 257 12 - 2620 

16 Beirut  Jaamani 127 270 - 2062 

17 Beirut 

aaychounyeh 

Daychounyeh 209 73 - 2086 

18 Beirut  Jisr El Basha 217 22 - 2086 

19 Damour  Jisr Qadi 185 254 - 1941 

20 Damour  Wadi Sett 40 536 - 1771 

21 Damour 

aConnection 

Connection 77 19 - 1941 

22 Damour  Sea mouth 293 9 - 1941 

23 Awali  Marj Bisri 78 398 - 1949 

24 Zahrani  Sea mouth 152 

 

3 - 1670 

25 Orontes Ain Zarqa 1241 590 - 3081 

26 Berdawni  Damascus Road (D.R.) 77 880 – 2501 

27 Litani  Joub Jannine 1433 859 - 2551 

28 Hasbani  Wazzani 566 281 - 2810 
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Fig. 2.3 Longitudinal profiles at 3 cross sections in Fig. 2.1. The x axis shows the distance in km 

while the y axis shows the elevation in m. 
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Since the majority of geological outcrops in Lebanon are made of exposed, stratified 

and fractured carbonate rocks, under conditions of relatively high precipitation, surface 

karst features of all kind have developed (Edgell 1997). According to Hakim (1985), 65 

% of the Lebanese terrain is Karstified at different scales resulting in different local 

landforms that dominate the carbonate rocks. According to Bou Kheir et al (2003), four 

major karst morphologies can be recognized: sinkholes and depressions (3 %), lapies 

(10 %), areas with developed karst (34 %), such as karren and other surface dissolution 

features, and areas of non apparent karst (18 %), which are covered by thick soil 

accumulation. Figure 2.5 represents the distribution of apparent karst, non apparent 

karst and non-karstic areas across the country.  

Karstic systems in Lebanon are deep and well developed. This is clear from cave 

systems such as Jeita which exists at almost sea level, indicating the surface 

karstification has cut deep through the thick Jurassic carbonate sequence. Some large 

springs even exist below sea level such as offshore from Ras Chekka (Edgell 1997). 

The high areal extent of the well fractured and highly karstified carbonate rocks, 

favorites infiltration. In fact, in a study for determining recharge potential zone in 

Occidental Lebanon (an area of about 5000 km2, about 50 % of the total surface of the 

country), Shaban et al. (2006) classified 56% of the total studied are as having high to 

very high infiltration capacity, while only 28 % of this area have low infiltration capacity. 

Therefore, according to FAO (1967), in areas with high to very high infiltration capacity, 

about 30 to 50 % of total rainfall is estimated to infiltrates. For more details on the 

hydrogeology of Lebanon see Annex 3. 

Based on the 1:200000 soil map of Lebanon, one can identify different soil type, the 

predominant are: Red soils, Brown soils, Yellowish mountainous soils, Black soils, 

Grayey soils, Chestnuts soils,  Sandy soils, Alluvial soil, Sub-desertic yellowish soils, 

Rendzine and Mixed soils (Fig. 2.6). 
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Fig. 2.4 Distribution of geological formations (source: Dubertret 1955; scale 1:200000). 
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Fig. 2.5 Distribution of karstic areas (source: Abdallah and Bou Kheir 2006; scale: 1:50000). 
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Fig. 2.6 Distribution of soils types (source: Gèze 1956; scale: 1:200000) 
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2.2.1 Land cover/use 

Even though detailed land cover/use maps for Lebanon exists for different date (1965, 

1986, 1998), however the classification scheme used in each map is different making it 

difficult to compare land cover/use classes and on different scales (1/200000), 1/50000), 

and 1/ 20000). Figure 2.7 represents the major land use classes across the country in 

2010. 

Lebanon is a highly urbanized country with 88 % of the population living in urban 

areas (World Bank, 2010). In the last few decades, urban expansion in the country is 

tremendous. Figure 2.8 shows the urban expansion between 1967 and 2010. One can 

notice the important increase in urban expansion. However, this expansion is mainly 

concentrated in the narrow coastal plain and the southern part of the country. In fact, in 

Lebanon, 45 % of the Lebanese population lives in agglomeration of 1 million people or 

more –the capital city of Beirut- (World Bank 2010). It is also estimated that the urban 

area of Lebanon will grow by 10 square Kilometers per year over the next 30 years 

(CDR-NLUMP 2004). 

According to FAO Forest Resources Assessment (2005), forests cover 13.2 % of the 

Lebanese territory. Other wooded land adds an additional 11.3 % of the territory, 

yielding a total of 24.5 %. Jomaa et al. (2008) studied the evolution of the forest cover 

over a study area in northern Lebanon in the period between 1965 and 2003. According 

to the authors, forests cover decrease from 27 % of the study area in the 1965 to 20 % 

in 2003. However, the rate of deforestation has decreased during this period. Forest loss 

is mainly attributed to urban expansion. Moreover, another major risk for forest in 

Lebanon is forest fire where forest fires affect annually an area of 1500 to 2000 ha (El-

Hajj and Mitri 2009). 

Even though there are no accurate estimation for agricultural land in Lebanon, the 

increase in water demand for irrigation purposes in the last few years (870 Mm³ for the 

year 2000 (El-Fadel et al. 2000) and 900 Mm³ for 2010 (UNDP 2011), indicated that 

agricultural areas in Lebanon are expanding which means an increasing pressure on 

water resources.  
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Fig. 2.7 Distribution of land use classes (source: CNRS 2010; scale: 1:10000).  
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Fig. 2.8 Urban expansion between 1963 (left) and 2010 (right) (CNRS). 

2.3 Methodology 

A Comprehensive list of catchment descriptors that represent different aspects of 

catchments physical characteristics was extracted for the studied catchments from the 

available spatial data.  

Hence, information about catchment morphometry such as catchment area, longest 

flow path, slope, drainage density, elevation; geological formations, soils and land cover 

use. Table 2.2 summarizes the different descriptors used. These indices are extracted 

from digital elevation model (DEM) with a 10 m spatial resolution developed by the 

CNRS (2010). 

Moreover, catchments geological substratum was described in term of rock 

permeability. So, based on their characteristics, these rocks formations were classified 

into 3 classes according to their permeability (Abdallah et al. 2006). The main properties 

that influence the permeability are the presence of secondary porosity (fractures and 

fissures), the degree of karstification and the clay content. 

Furthermore, soil characteristics were also taken into account. So, based on their 

textural properties and their organic matter contents, soils types are classified according 

to their infiltration capacity (based on Abdallah et al. 2006). Three classes were 
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identified: soils with high infiltration capacity (HIS), soils with medium infiltration capacity 

(MIS) and soils with low infiltration capacity (LIS). 

Finally, the land covers in the country is divided into 6 major classes: urban, 

agriculture, forest, shrubland, grassland, and bareland. 

Table 2.2 The chosen physical catchments descriptors with their notations and units. 

 Catchment Descriptors Notation and units 

Morphometry Catchment area Ac (km²) 

Longest flow path Lflow (km) 

Drainage Density Dd (km/km²) 

Slope along Lflow Sc (%) 

Minimum Elevation Min Zc (m) 

Mean Elevation Zc (m) 

Maximum Elevation Max Zc (m) 

Area above Zc=1800 m Zc>1800 

Geology and Karst Apparent Karst AK (%) 

High Permeability Rocks HPR (%) 

Moderate Permeability Rocks MPR (%) 

Low Permeability Rocks LPR (%) 

Soils High Infiltration Capacity Soil HIS (%) 

Moderate Infiltration capacity Soil MIS (%) 

Low Infiltration Capacity Soil LIS (%) 

Land use Forests Fc (%) 

Urban areas Uc (%) 

Bareland Bare (%) 

Shrubland Shrub (%) 

Grassland Grass (%) 

Agriculture Agr (%) 
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2.4 Results and Discussions  

2.4.1  Morphometry  

The cumulative frequencies of indices used to describe the morphometry of the studied 

catchments are presented in Fig. 2.9. Here one can see that the majority of these 

catchments are small to medium sized catchments with a median area of 152 km². 

These are mainly the catchments of the western slopes of Mount Lebanon with area 

never exceeding 500 km². Nevertheless, catchments in the inner parts of the country 

(the Bekaa valley) have larger areas sometimes exceeding 1000 km² (station 25 on the 

Orontes River, station 27 on the Litani River).  

Median slope of the studied catchments is 8.3 %. Quarter of these catchments have a 

slope exceeding 14 % with 2 mountainous catchments (Ibrahim at Afqa –station 11- and 

Kelb at Hrajel –station 13-) having slopes greater than 20 %.  All of the studied 

catchments have mean elevation greater than 500 m. And more than 80 % of these 

catchments have a mean Zc greater than 1000 m. As for the maximum elevation, it is 

more than 1000 m for all studied catchments and exceeding 2000 m for more than 75 

%.  

Due to their small area and relative steepness, the longest flow paths in the majority 

(more than 90 %) of these catchments are short, hence never exceeding 60 km. 

Moreover, the steepness of the catchments make that drainage density is relatively high 

with a median drainage density for all catchments of about 3.38 km/km². 

The relatively small areas of the Lebanese catchments and their steepness are 

responsible for the short response time of these catchments. Hence, they are prone to 

flood events, which are common features of Mediterranean catchments (Barredo 2007; 

Marchi et al. 2010). Moreover, the high mean and maximum elevations of almost all 

studied catchments make that precipitation as snowfall contributes to an important part 

of their water balance (Abd El Al 1947; Shaban et al. 2004). 
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Fig. 2.9 Cumulative frequency of different indices used to describe the geomorphology of the 

studied Lebanese catchments; (a) catchment area (Ac in km2), (b) slope along the longest flow 

path (Sc in %), (c) longest flow path (Lflow in km), (d) drainage density (Dd in km/km2), and (e) 

minimum, mean and maximum elevation (Zc in m). 
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2.4.2 Geology and Karst 

The outcome of the classification of major rocks type according to their permeability 

(Abdallah et al. 2006) is summarized in Table 2.3. Three main classes are identified: 

high permeability rocks, medium permeability and low permeability rocks (Fig. 2.10a).  

 

Table 2.3 Different geological formations and their relative permeability. 

Permeability classes Permeability 
Geological 

Formations 

Effective infiltration 

elements 

High [HPR] 

Very High 
Mid to Upper 

Jurassic J4-7 

Secondary porosity 

(cracks and joints) of 

carbonate rocks + high 

karstification 

High 

Lower Jurassic (J2-

3), Aptien (C2), 

Cenomanian (C4), 

Eocene (E), Mio-

pliocene (Mp) 

Secondary porosity, 

different forms of 

Karstification, and 

presence of some marl 

intercalations  

Moderate [MPR] 

Moderate 
Neocomian (C1), 

Turonian (C5) 

Clay content and 

jointing system 

Slightly 

Moderate 

Miocene (M), 

Pliocene (P), 

Quaternary (Q), and 

Basalts (B) 

Considerable clayey 

content 

Low [LPR] Low 
Albien (C3), 

Senonian (C6) 
High clayey content 

 

Figure 2.10 presents the cumulative distribution of the 3 identified permeability 

classes in the studied catchments. Here one can see that the substratum of these 

catchments is made primarily of highly permeable rocks. In fact, highly permeable rocks 

formations represent more than 56 % of almost 75 % of the studied catchments. In 

some cases, such as Ibrahim Basin (10, 11, and 12), HPR may reach more than 90 % of 

the catchment surface. 

One can notice that all catchments have at least 40 % of their surface karstified. The 

percentage of karstified areas reaches more than 75 % for about half of the studied 

catchments.  

The prevalence of highly permeable rocks and karst emphasizes the importance of 

infiltration in the hydrological processes that govern Lebanese catchments. Water from 

infiltration contributes to the recharge of many aquifers spread in the different geological 

formations of the country. These aquifers discharge in hundreds of springs that fed 

surface water. In fact, all of Lebanon permanent rivers are spring fed rivers. However, 
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the fact that the extents of these aquifers are not limited to the surface catchment 

boundaries, and their very own nature (karstic aquifers), make that inter-connections 

between catchments is almost certain.  

 

Fig. 2.10 (a) Distribution of infiltration capacity according to rock permeability (source: Abdallah 

et al. 2006) and (b) the cumulative frequency of different permeability classes across the studied 

catchments (c); HPR: High Permeability Rocks, MPR: Medium Permeability Rocks, and LPR: 

Low Permeability Rocks.  

 

Fig. 2.11 Cumulative frequency of apparent karst (AK in %) across the studied catchments   

(a) 
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2.4.3 Soils 

The soil classification (Abdallah et al. 2006) results are presented in table 2.4. While Fig. 

2.12a represents the distribution of different soil infiltration capacity classes across 

Lebanon. Moreover, Fig. 2.12b represents the cumulative frequency distribution of 

different soil classes across the studied Lebanese catchments. Soils in Lebanon are 

generally shallows with medium to high infiltration capacity. This is understandable given 

the mountainous nature of the majority of Lebanese terrains. Low infiltration capacity 

soils (LIS) are mostly common in agricultural terrains, where soils with high clay content, 

such as Red and Brown soils, are dominant. Hence, catchments with highest 

percentage of agricultural areas in the northern (especially the Akkar plain) and southern 

parts of Mount Lebanon (where the coastal plain is relatively larger, these are 

catchments at stations 1, 2, 3, 4, 5, 6, 9, 22 and 24) and in the inner catchments of Litani 

and Hasbani (stations 27 and 28) where agricultural areas are prevalent, show the 

highest percentage of Low infiltration capacity soils. 

 

Table 2.4 Major soil types and their infiltration capacities. 

Infiltration capacity Properties Soil types 

High (HIS) 
High sand and/or organic 

matter content 

Sandy soil, Alluvial soils, 

Rendzine 

Medium (MIS) 
High silt and fine sand 

content 

Yellowish mountainous 

soils, Black soils, Grayey 

soils, Chestnuts soils, 

Mixed soils, Subdesertic 

yellowish soils 

Low (LIS) High clay content Red soils, Brown soils 
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Fig. 2.12 (a) Distribution of infiltration capacities classes according to soil types and (b) the 

cumulative frequency of different infiltration capacity classes across the studied catchments; 

HIS: High Infiltration capacity Soils, MIS: Medium Infiltration capacity Soils, and LIS: Low 

Infiltration capacity Soils.  

2.4.4 Land cover/use 

The land covers in the country is divided into 6 major classes: urban, agriculture, forest, 

shrubland, grassland, and bareland. 

The distribution of these classes varies largely across catchments (Fig. 2.13). Hence, 

catchments in the northern part of the countries show relatively high percentage of 

agricultural areas -more than 20 % of the total basin are- (catchments 1, 2, 3, 4, 5, 6, 7, 

8 and 9). The same could be said about catchments in the southern part of the country 

(catchments 19, 20, 21, 22 and 24). The inner catchments (Litani at stations 26, 27 and 

28) also show high percentage of agriculture. While other more mountainous 

catchments such as Ibrahim (10, 11 and 12) and the upper part of Nahr el Kelb (13 and 

14) are mostly dominated by grasslands, shrubs and barelands. Catchments in the 

central part of Mount Lebanon, Beirut (16, 17 an 18), Damour (19, 20, 21 and 22) and 

Awali (23) are characterized by relatively high percentage of urban areas (10 to 17 % of 

the total catchment area). Forest cover represents around 20 % of catchments areas for 

the majority of catchments on the western slopes of Mount Lebanon, while in the interior 

catchments it only represents between 5 to 10 % of catchments areas. 

(a) 
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Fig. 2.13 The cumulative frequency of different land use classes across the studied catchments 

(see Table 2.2 for notations). 

2.5 Conclusion 

The great majority of the studied catchment is small to medium sized catchments with 

area never exceeding 500 km2. Only 2 catchments (Litani and Orontes) have an area 

exceeding 1000 km2. Median slope is 8.3 % while a quarter have a slope exceeding 14 

%. Furthermore, due to their small area and relative steepness, longest flow paths are 

usually short never exceeding 60 km and drainage density is high with a median value 

of about 3.38 km/km². In addition, all are mountainous catchments with the great 

majority having a mean elevation over 1000 m, and more than half of them with at least 

20 % of total basin area above 1800 m. Moreover, the geology of the country is mainly 

composed of highly karstified carbonate rocks. The substratum is made primarily of 

highly permeable rocks and all studied catchments have at least 50 % of their surface 

karstified. Furthermore, given the mountainous nature of Lebanon, soils are generally 

shallows with medium to high infiltration capacity. Deep well developed soils are mostly 

common in catchments with agricultural terrains. The distribution of land use classes 

varies largely. Finally, mean annual precipitation ranges from around 500 mm in the 

Orontes in the northeastern part of the country to more than 1200 mm in the central part 

of Mount Lebanon. Aridity index (defined as the ratio of mean annual precipitation to 

mean reference evapotranspiration) follows the same spatial distribution of rainfall.  
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3.1 Introduction  

The important relief of the country and its specific physiographic characteristics result in 

a high spatial variability of climatic features across Lebanon. Moreover, the prevalent 

Mediterranean climate results in a high temporal evolution of precipitation. In this 

chapter we aim to analyze the climatic characteristics of Lebanon and present the 

methodology used for the spatial interpolation of precipitation. 

The chapter begins with a short review of climatic change impact over the country, 

than we present the dataset used in this study; afterwards we discuss the climatic 

characteristics of Lebanon in term of temporal and spatial distribution of precipitation, 

temperature and evapotranspiration. Finally, we present the methodology used to 

interpolate the precipitation over Lebanon and the result of this approach.  

3.2 Climatic change impact over Lebanon 

For the Middle East region, studies dealing with climate change impact indicate a trend 

towards decreasing precipitation and a more extreme rainfall regime (Philandras et al. 

2011). Hence, Global Climatic Model projections for the region at the end of 21th 

century, predict a decrease in precipitation, an increase in temperature (Ragab 2002; 

Hemming et al. 2010, IPCC, 2007, 2011, 2014) and a tendency towards a more extreme 

climate. Nonetheless, Bou-Zeid and El-Fadel (2002), and Hemming et al. (2010) pointed 

to the large uncertainties and discrepancies between different GCM projections. 

Moreover, as an example of the uncertainty related to the GCM projections, Ragab 

(2005) used a GCM with 2.5 x 3.75 ˚ grid squares for precipitation prediction, and 0.5 x 

0.5 ˚ grid squares for temperature prediction. Such a resolution is way too coarse to 

account for the very highly spatial variability in rainfall and temperature in mountainous 

countries such as Lebanon. 

Nevertheless, Regional Climate Models (RCM) -with a more finite resolution- were 

also used for climatic predictions in the region (Alpert et al. 2008; Black 2009; Hemming 

et al. 2010) and the results were constituent with the above-mentioned GCM predictions. 

In Lebanon many authors point towards signs of increased hydrological droughts that 

could be partly –anthropogenic induced droughts such as changes in the land 

cover/use, the over-exploitation of groundwater resources, and the excessive use of 

surface water for irrigation, etc. were not taken into account- attributed to climate 

change. Shaban (2009, 2011) suggests that over the last few decades (1967 - 2006), 

Lebanon has witnessed a decrease in the annual discharges of river a drop down in 

groundwater piezometric level, and a decrease in the extent of the snow covered area. 

In addition, Ramadan et al. (2012), studied changes in runoff of the Litani River in the 

upper and lower Litani basins over the last century (1900 - 2008); they found that the 

Litani exhibits a drying trend with a reduction rate of 0.1-0.8 m3/s per decade.  
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Even though, there is no decisive evidence on the influence of climate change on 

water availability in Lebanon (UNDP 2011). Signs of hydrological droughts are 

discernable in the country (Shaban 2009, 2011). Moreover, with increasing 

anthropogenic pressure from urbanization, land cover/use changes and extensive 

irrigation, water resources in Lebanon becomes more and more vulnerable quantitatively 

and qualitatively, and the available resources become unable to fulfill the water demand 

for the population. However, while many studies tried to quantify the impact of climate 

change on water resources in the country, the impact of land cover/use changes need 

profound studies. 

3.3 Dataset 

The American University of Beirut (AUB) meteorological station was the first to operate 

in Lebanon in 1891 and is still in use. By the year 1928, six meteorological stations were 

operating in Lebanon: AUB and Beirut Nazareth in Beirut, El-Qraye and Jezzine in the 

Central part of Mount Lebanon, and Rayak and Ksara in the Bekaa valley. During the 

1930s the number of meteorological stations in the country increases, and in the year 

1940, 31 stations were operating. However, due to the Second World War, no 

meteorological data exists for the period between September 1941 and August 1944. In 

the years following the war, the number of stations increased enormously and by 1950, 

55 stations were operating throughout Lebanon. This network of meteorological stations 

expands more and more during the 1950s and 1960, and by 1970, a dense network of 

about 130 meteorological stations covered the whole country. For climatic and 

orographic considerations, the Lebanese territory was divided into 3 major parts. The 

coastal region: from sea level to 800m; the mountainous region, from 800m to the crest 

line of Mount Lebanon; and the internal region, from the crest line of Mount Lebanon 

downward to the Bekaa valley, this region also includes the Lebanese part of the Anti-

Lebanon and Mount Hermon ranges. So this established meteorological network of the 

pre-war period provided a large set of climatic data such as precipitation, temperature, 

humidity, wind, etc. However, only daily precipitation records are available in an editable 

format, all other parameters are only available on hard copies and need to be digitized. 

Moreover, one should also notice, regarding the spatial and temporal extent of the pre-

1970 meteorological network, that the spatial density and the length of the available data 

series vary from one region to another.  

In 1975, the Lebanese Civil War started causing a big gap in the data for more than 

15 years. Only very few Meteorological stations remain operating (Tripoli-IPC, Beirut 

International Airport, Al-Arz and Rayak) with large gaps in the records. After the war the 

Meteorological network was re-established but not to the same spatial extent. In our 

dataset only 32 stations with daily precipitation data (with missing data in the record) 

and monthly precipitation and temperature data are available for the period 2001 – 

2011.The spatial extent of the pre-war and post-war Meteorological networks is 

represented in Fig. 3.1.  
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Finally, it must be noted that the pre and post-war Meteorological stations are 

controlled by the National Meteorological Service of The General Directory of Civil 

Aviation of the Ministry of Public works and Transport.  

 

Fig. 3.1 Distribution of Meteorological stations for the 1967-1970 and 2001-2011 periods. 
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3.4 Climatic characteristics of Lebanon 

3.4.1 Precipitations 

a. Temporal variation of mean annual precipitation 

Mediterranean climate is characterized in a high inter-annual variation of rainfall 

(Pagney 1994).  In Lebanon, inter-annual variability of rainfall is high throughout the 

country, and slightly increases in the inland region (Sene et al. 1999), especially in the 

semi-arid northeastern part of the country. The coefficients of variation (CV) of mean 

annual precipitation values are consistent throughout the country ranging from 0.2 to 0.3 

except for some stations in the northeast where it can reach more than 0.4. For some 

stations in the central part of Lebanon, CVs are high, but this is due mostly to 

measurement issues (snow contribution). These values of CVs are common in 

catchments with Mediterranean climate. 

For Instance the mean annual precipitation for the period of 1921-2011 at Beirut 

station (Fig. 3.2) is 820 mm with a standard deviation of 214 mm. The lowest value was 

recorded in the hydrological year 1932/1933 with 413 mm, while the highest is 1600 mm 

recorded in 1968/1969. The median, first and third quartiles of annual rainfall are 807, 

663, and 969 mm respectively. This gives an idea on how high the inter-annual 

variability of rainfall is in Lebanon. Mean annual precipitation values ranges from less 

than 50 % of the mean to about 200 % of the mean.  

Fig. 3.2 Temporal variation of annual MAP and 10 years moving average, the lines represents 

average MAP +- standard deviation (Av +- STD)(American University of Beirut station). 
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b. Spatial distribution of mean annual precipitation 

Despite the relatively small surface of Lebanon, rainfall is highly variable across the 

country due to its geo-morphological characteristics. Thus, according to rainfall 

distribution, Lebanon can be divided to five regions (Blanchet, 1976): 

- The coastal region: the mean annual precipitation ranges from 700 to 900 mm, 

with a little increase (1000 mm) to the north of Beirut. However, precipitation 

decreases further to the north, Akkar plain, (750-800 mm), and the south (700 

mm). This decrease is due to the less important relief in the extreme north and 

the southern part of the country. 

- The Mount Lebanon: precipitations in this region are abundant but very variable, 

as a function of the altitude and the topography. It is the part of Lebanon which 

receives the maximum of precipitation. At the exception of the southern part of 

Lebanon, where the combined effect of the decreased altitude and the southern 

latitudinal position reduce precipitation to less than 800 mm per year, all of Mount 

Lebanon receives more than 1000 mm of precipitation per year. The maximum 

precipitation is witnessed in the mountainous mass, just to the north of Beirut 

(Sannine and Laklouk), with 1600 to 1700 mm of precipitation per annum. Here, 

one should point out to the fact that Mount Mekmel (the highest in Lebanon with a 

maximum elevation of 3088 m) receives less precipitation than Mount Sannine 

and the Laklouk (around 2600m). This could be attributed, on one hand, to the 

distance from the sea, Mount Sannine and Laklouk being very close to the sea. 

And on the other hand, to the foehn effect, Mount Mekmel being partially shaded 

from the humid SW-NE winds by Sannine and Laklouk mountains masses 

(Traboulsi, 2010). Due to the topography of the Mount Lebanon range, narrow 

steep slopes, the oriental slopes of Mount Lebanon receives good amount of 

precipitation (around 1000 mm). 

- The Bekaa: the Bekaa plain is under the foehn effect. Air Masses lose their 

humidity while traversing the Mount Lebanon range. Precipitation decreases not 

also from west to east, but also, from south to north. Precipitation in the southern 

Bekaa valley may reach up to 700 mm, and decrease gradually towards the north 

of the Bekaa, where it reaches around 200 – 300 mm. The further decrease in 

precipitation to the north is due mainly to the excessive rain shadow effect 

caused by the Mount Mekmel, the largest and highest mountain in the Mount 

Lebanon range. 

- Eastern chain: as for the Bekaa valley and the Eastern chain, they are shaded by 

Mount Lebanon. Precipitation decreases from about 700 mm in the south to 300 

– 400 mm to the north. Here, one should note that the aforementioned values for 

precipitations in the Anti-Lebanon are estimations. Unfortunately, there are few 

gauging stations available for this part of the country (Traboulsi 2010).  
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- The Hermon: isolated in the southeastern part of the country Mount Hermon 

(peaks at 2814m) is well watered with precipitation ranging from 1000 to 1200 

mm, and decreasing from south to north. This is due to the low altitude of the 

Mount Lebanon in the southern part of Lebanon.  

This high spatial variability of rainfall across the country make it difficult to estimate 

rainfall amount over the Lebanese territories and have a great impact on the 

hydrological responses of the Lebanese catchments as we will see in the next chapters.  

 

c. Snow 

Snow in Lebanon is a major water resource  where it is very common over altitude 

above 1200 m. Snow i cover, at its maximum extent, an area of more than 2000 km2 

(Mhawej et al. 2014) the number of days with snowfall increase with altitude, from 30 

days at 1500 m to 60 days at 2000 m (Blanchet 1976). The snow covers the ground for 

a period ranging from 40 to 120 days between 1500 and 2000 m as a function of altitude 

while on the highest crests snow may persists for 9 months. The evolution of the areal 

coverage of snow over Lebanon Mountains is presented in Fig. 3.3 as10 year’s average 

monthly snow coverage for the period 2002 - 2011. This was adapted from MODIS 

imageries at a 500m spatial resolution and 8-days temporal resolution.  

 

 

Fig. 3.3 Monthly average snows cover extent over Mount Lebanon (2001-2011). 

In fact, snow melt contributes progressively to the alimentation of karstic springs 

(Aouad et al. 2004). Abd-El-Al (1947) estimates that snow melt contribute to about 40 % 

of the total discharge of the coastal rivers. However, Lebanon does not yet have the 

capacity to measure the volume of snow cover in any degree of confidence (UNDP, 

2011), due to technical limitations, mainly the very limited number of snow measure 

stations (Shaban et al. 2004). Nevertheless, during the last decade, a number of studies 
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were carried out to estimate the Snow Water Equivalent (SWE) over Mount Lebanon, 

using the enormous advancement in remote sensing techniques, coupled with some 

localized field measurements (Touma, 2002; Bernier et al. 2003; Shaban et al. 2004; 

Aouad-Rizk et al. 2005; Corbane et al. 2005; Mhawej et al. 2014). SWE is reported to be 

about 1100 Mm3 (Million Cubic Meter) of water for the year 2001. Finally, one most 

mentions that these studies are only limited to Mount Lebanon, while there are no such 

studies relating to the snow cover of the Anti-Lebanon. As for Mount Hermon, a study 

conducted in Israel in 1990 (Gil'ad and Bonne 1990) found that snow melt over Mount 

Hermon contribute to only 10 % of the total annual yield of the upper Jordan River 

sources. 

To calculate the catchment surface covered by snow, we divided the country into 

ranges of altitude (Fig. 3.4a) and calculated the cumulated area by range of altitudes (b). 

Afterwards, we crossed the area above each altitude with the available information on 

the monthly snow extent derived from MODIS imageries (Fig. 3.3) in order to estimate 

the percentage of catchment area covered by snow at a monthly timescale. 
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Fig. 3.4 (a) Elevation ranges over Lebanon. 

 

(a) 
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Fig. 3.4 (b) cumulative distribution of area by elevation range. 

3.4.2 Temperatures and reference evapotranspiration 

Temperature is highly variable as a function of altitude and distance to the sea. In the 

coastal region, temperatures are high, with mean annual temperatures between 18 and 

20˚C. Mean monthly temperatures never drop under 10˚C, while many months have 

their mean annual temperatures above 20˚C. Annual amplitudes are less than 15˚C, 

while daily amplitudes are low and vary between seasons. In the Mount Lebanon region, 

temperature decrease with altitude, the rate of decrease is higher during the winter 

(0.7˚C/100 m in the winter, 0.4-0.5˚C in summer) (Blanchet 1976). Annual amplitudes 

are higher than the coast (15-19˚C). Winters are cold and get colder with elevation; the 

mean annual temperature is 0˚C at 1800 m. Freezing is very common with 100 frozen 

days per year at 1800 m. Warming is fast, temperature increase about 10.4˚C from 

February to May, which is very important for the dynamics of snowmelt. Summers, hot 

and humid on the low elevated slopes, become cooler with altitude (the mean of august 

is 20˚C at 1300 m). In the Bekaa valley, thermal amplitudes are high (in summer, daily 

thermal amplitude is about 16 to 20˚C). Winters are severe, monthly average for 

January is about 5 to 6˚C. In the central part of the Bekaa, 40 to 50 days of freezing are 

recorded. Warming is fast, temperature rise about 10˚C from February to May. During 

summers, the days are hot, especially in afternoon, while the nights are relatively cold. 

The Anti-Lebanon have even more continental characteristics than the Bekaa, annual 

and daily thermal amplitudes are very high (18 to 19˚C, and more than 15˚C, 

respectively). In comparison to Mount Lebanon, and for the same altitude, temperatures 

are lower/higher of about 2˚C during winter/summer. As for Mount Hermon, the 

dynamics of Temperature is very similar to Mount Lebanon (Blanchet 1976). 
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Mean annual ET0 values vary across the country. Its spatial distribution –as for 

temperature- is mainly controlled by the relief of the Lebanese terrains. Figure 3.5a 

represents the spatial distributions of long term mean annual ET0 over Lebanon. Mean 

annual ET0 varies between 703 and 1395 mm per annum with the lowest values at the 

elevated areas of Mount Lebanon, Anti-Lebanon and Mount Hermon. The highest 

values of ET0 are found in the inland part of the country (the Bekaa valley) (Fig. 3.5a).  

Due to seasonality of the intra-annual distribution of rainfall under Mediterranean 

climate (precipitation occurs mainly in the mild to cold winter, whereas warm to hot 

summers are dry), and since reference evapotranspiration follows the dynamic of 

temperature, precipitation and reference evapotranspiration are in opposite phases (Fig. 

3.5b). Hence, the maximum amounts of precipitation fall in the cold winter season where 

reference evapotranspiration is low, whilst the highest reference evapotranspiration 

values occur in the dry summer season. Thus, when reference evapotranspiration is at 

its peak, there are little or no water to evaporate. Therefore, under Mediterranean 

climate Actual evapotranspiration (ET) values are indeed less than the estimated 

reference evapotranspiration (Latron et al. 2009). 
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Fig. 3.5 (a) Spatial distribution of annual ET0 for the period 2000 – 2010 (source: MODIS 2010).  
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Fig. 3.5 (b) Monthly variation of mean monthly (2001 – 2011) Temperature, ET0 and 

Precipitation for three stations located at a West-East transect in Northern Lebanon. (a)Tripoli-

IPC; (b) Al-Arz; and (c) Deir el-Ahmar. 
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3.5 Spatial interpolation of precipitation 

3.5.1 Methodology 

In this section we present the methodology used to interpolate mean annual 

precipitation. The method used here was universal kriging for the spatial interpolation. 

Given the reduced number of stations in our study period (2001 - 2011) we analyzed the 

effects of reducing the number of stations for the period 1967 - 1970 –when there were 

130 stations- on the spatial coherence of the rainfall interpolation and on the mean 

annual precipitation by catchment. Here we reduced the number of station while trying to 

keep a good spatial coverage (Fig. 3.6).  

3.5.2 Results and Discussions 

One can notices that the overall spatial distribution of rainfall is maintained while the 

number of stations is gradually reduced. Table 3.1 compares catchments mean annual 

precipitations for the 1967 - 1970 period using 130 and 32 stations respectively. The 

median absolute value of residual catchment mean annual precipitations resulting from 

the two interpolations (with 130 and 32 stations respectively) is 59 mm. The highest 

absolute residual is found for the semi-arid northeastern part of the country (Assi basin, 

station 25) and the high plateau of the Mount Lebanon at Kelb basin and the headwaters 

of Beirut catchment (stations 13, 14, 15 and 16) and Berdawni basin (station 26). In both 

these 2 regions the decrease (in northeastern Lebanon) and increase (Mount Lebanon) 

in precipitation occur very rapidly at very short distances which may require a higher 

density of rain gauging stations. Nevertheless, the general trend of catchments mean 

annual precipitations calculated using the 2 sets of stations show no major differences.  

Seemingly, we compared catchments mean annual precipitations between the period 

1967 - 1970 and 2001 - 2011. Here too and despite the fact that the period 1967 - 1970 

was a humid period (Fig. 3.8) the overall trend gives acceptable results in term of the 

spatial distribution of rainfall (Fig. 3.7) and the catchments mean annual precipitations 

(Table 3.1). The median absolute residual between the two periods is 228 mm which is 

acceptable since the mean annual precipitation for the whole country is 1073 mm for 

1967 - 1970 and 854 mm for 2001 - 2011. At a monthly scale the spatial distribution of 

rainfall is conserved for all months in both periods (Fig. 3.7 and 3.9). However, for the 

period 1967 - 1970 January exhibits the highest rainfall amount, while in 2001 - 2011 the 

highest monthly rainfall is recorded in February.
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Fig. 3.6 Interpolation of average annual rainfall (1967-1970) using decreasing (10 %) number of stations (132 stations to 50 stations 

from right to left) Evaluation of the impact of a decreasing number of precipitation stations on the overall spatial distribution of 

precipitation. We used a decreasing number of stations for the period 1967 - 1970: from 132 (first map) to 50 stations (last) by 

removing 10% of stations in each step. Number of stations from left to right: 132, 120, 109, 98, 86, 73, 62 and 50.   
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Fig. 3.7 Spatial Interpolation of average monthly rainfall (32 stations) for the period 1967-1970. 
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Fig. 3.8 Comparing the spatial distribution of mean annual precipitation (32 stations) for the periods 1967 – 1970 (left) and 2001 – 

2011 (right).  
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Fig. 3.9 Spatial Interpolation of average monthly rainfall (32 stations) for the period 2001-2011. 

Rainfall

> 400

300 - 400

200 - 300

160 - 200

120 - 160

80 - 120

40 - 80

< 40



94 

 

Table 3.1 Comparison of catchment MAP interpolation using different number of stations (132 

stations (1) and 32 stations (2) for the period 1967 – 1970; column (3) gives the difference 

between columns (2) and (1). And between the periods 2001 – 2011 (4) and 1967 – 1970 using 

the same number of 32 stations; column (5) gives the difference between columns (4) and (2). 

MAP in mm. 

Catchments MAP 

1967-1970 

 132 stations 

(1) 

MAP  

1967-1970  

32 stations  

(2) 

Column (2) – 

column (1)  

 

(3)  

MAP  

2001-2011 

32 stations   

(4) 

Column (4) – 

column (2)  

 

(5) 

 Oustuene at sm 972 1012 40 926 -86 

Oustwene at Halba 975 1011 35 957 -53 

Arka at Hakour 913 1018 105 917 -102 

Bared at sm 994 1085 91 902 -182 

Abu Ali at Rasheine 1097 1117 21 894 -224 

Abu Ali at Abusamra 1084 1094 10 898 -196 

Abu Ali at Daraya 1086 1069 -18 921 -148 

Abu Ali at Kousba 1086 1069 -18 921 -148 

Jaouz at sm 1317 1264 -53 1067 -197 

Ibrahim at Roueiss 1237 1217 -20 998 -219 

Ibrahim at Afqa 1348 1351 3 1053 -297 

Ibrahim at sm 1471 1406 -65 1104 -302 

Kelb at Hrajel 1755 1645 -110 1274 -371 

Kelb at Daraya 1745 1620 -125 1292 -328 

El Kelb sm 1645 1494 -150 1198 -297 

Beirut at Jaamani 1490 1374 -116 1103 -271 

Beirut at Daychounyeh 1449 1394 -55 1110 -285 

Beirut at Jisr El Basha 1431 1382 -49 1099 -283 

Damour at Wadi Sett 1482 1421 -61 1077 -344 

Damour at Jisr Qadi 1416 1356 -59 1117 -239 

Damour at sm 1335 1308 -27 1075 -233 

Awali at Marj Bisri 1371 1318 -53 982 -336 

Zahrani at sm 1087 1019 -68 919 -101 

Orontes  418 848 430 569 -279 

Berdawni at D.R. 1521 1185 -336 970 -215 

Litani at Joubjannine 972 1068 96 926 -142 

Hasbani at Wazzani 986 1097 111 870 -228 
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3.6 Conclusion 

In this chapter we have presented the available data and discussed the methodology 

used to derive spatial rainfall over the studied catchments. We have tried to assess the 

impact of decreasing the number of rainfall stations on the spatial distribution of rainfall 

through interpolation. This step was necessary due to the decrease in the number of 

rainfall station across Lebanon between the pre-Lebanese civil war (the 1970s) and the 

current status of the Meteorological network. The methodology gives fair results proving 

that a rather small number of rainfall stations if distributed intelligibly may be enough. 

Moreover, we have presented the mean monthly snow coverage over Lebanon for the 

2002-2012 periods and classified the country into elevation classes which will be used 

for snow water equivalent estimation necessary for any hydrological modeling trial in the 

country. The information derived from these data is used in the next chapters for 

hydrological response regionalization and modeling. 
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4.1 Introduction 

In this chapter we will present the available hydrological data for twenty eight studied 

Lebanese catchments (fig. 4.1) and discuss their hydrological response characteristics 

in term of mean annual runoff and runoff coefficient, monthly runoff, distribution of daily 

flows and the maximum specific daily discharge. Finally we define a list of runoff 

signatures –derived from the literature- to be used for the classification of Lebanese 

catchments by their hydrological characteristics (see next chapter).  Here, one should 

mention that this work does not take into account possible human impact on river 

discharges.  

4.2 Dataset 

Monthly discharge data are available for the 28 studied catchments for the period 2001 -

2012. However daily discharge data are only available for 24 of the 28 studied 

catchments for the same period (2002-2012). Another daily discharge records exist for 

the majority of the studied catchments for the period 1967-1974, this dataset will be 

used to control the quality of the data used in our work (the 2002-2012 period). 

Finally, one should mention that the hydrometric network in Lebanon is under the 

control of the Litani River Authority.  

4.3 Methodology 

From the above-discussed hydrological information a list of variables (Table 4.1) that 

reflect different aspects of catchments hydrological responses (runoff signatures) were 

computed. These variables are widely used in the literature for catchments classification 

(Olden and Poff 2003, Alcazar and Palau 2010, Sawicz et al. 2011, 2014, Archfield et al. 

2013, Viglione et al. 2013, etc.). They represent all aspects of river hydrological regimes: 

magnitude, frequency, duration, timing, and rate of change (see Poff and Zimmerman 

2010). This permits the classification of catchments according to their hydrological 

characteristics. Table 4.1 summarizes the chosen variables. These runoff signatures will 

be used in the next chapter for the classification of Lebanese catchments according to 

their hydrological characteristics.  
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Table 4.1 Runoff signatures and their description. 

Runoff 

Signatures 

Description 

RS1 Mean annual flow (m3/s) 

RS2 Mean annual runoff (mm) 

RS3 Annual runoff ratio 

RS4 Absolute minimum flow (m3/s) 

RS5 Average maximum annual flow (m3/s) 

RS6 Baseflow index, calculated as the ratio (in percentage) of the lowest mean monthly flow 

to the mean annual flow (Gordon et al., 1992) 

RS7 Ratio Q90 %/Q50 %, used as an index of base flow contribution (Gordon et al., 1992) 

RS8 Mean flow of  Month with highest mean flow 

RS9 Mean flow of Month with lowest mean flow 

RS10 Slope of the flow duration curve 

RS11-21 Number of times that the stream-flow is continuously below the 5 % (RS11), 10 % 

(RS12), 20 % (RS13), 30 % (RS14), 40 % (RS15), 50 % (RS16), 60 % (RS17), 70 

% (RS18), 80 % (RS19), 90 % (RS20), and 95 % (RS21) of mean annual flow 

RS22 Coefficient of variation of daily flows for the 10-year period 

RS23 Average of coefficient of variation of daily flows for each year 

RS24 Average of standard deviation of daily flows for each year 

RS25 Coefficient of variation of mean annual flow 

RS26 Coefficient of variation of annual runoff ratio 

RS27 Variability index as proposed by Growns and Marsh (2000): [Q10 %-Q90 %]/Median 

 

In the following we present some of the main runoff signatures that represent the 

main hydrological characteristics of the Lebanese catchments.  

4.4 Results and discussions 

4.4.1 Mean annual discharge, runoff and runoff ratio 

Mean annual discharges for Lebanese rivers vary across the country with the highest 

value (12.2 m³/s), surprisingly, at the Orontes River (station 25) in the semi-arid 

northeastern part of the country. It is a springfed river largely controlled by a very large 

karstic aquifer. Another inland river, the Upper Litani River (the lower part being 

regulated by a dam), also shows high value of mean annual discharge at station 27 

(Joub Jannine). Although, the inland part of Lebanon (Bekaa Valley and the Eastern 

chain) is the less rainfed part of the country, relatively high values of rivers discharges in 

this region are plausible. On one hand, these rivers drain the largest catchments in the 

country; on the other hand, they are mainly springfed rivers with a baseflow index 

sometimes exceeding 90 % (Sene et al. 1999).  
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On the western slopes of Mount Lebanon, and in Mount Hermon (Hasbani basin), 

which have similar characteristics, the highest values of mean annual discharges are 

encountered in the central part of Mount Lebanon (Ibrahim and El-Kelb basins at station 

12 and 15) and at station 5 in Northern Mount Lebanon (Abu Ali River). Ibrahim and El-

Kelb Rivers drain the part of Mount Lebanon with the highest rainfall amount. And these 

rivers are also fed by karstic springs that discharge the high cenomanian plateau of 

Mount Lebanon. Abu Ali River is the largest catchment on the western slopes of Mount 

Lebanon and drains the largest and highest mountainous mass of Mount Lebanon (El-

Mekmel Mountain which peaks at 3088 m above sea level). Likewise precipitation, 

annual flows are highly variable. In fact, the coefficients of variation of annual flows are 

in the range 0.4-0.5 which is "moderate to high" by international standards (McMahon 

and Mein 1986). 

Catchments runoff yields (Fig. 4.1) and runoff ratios (Fig. 4.2) vary largely across the 

county with the runoff ratio being relatively high. The mean and standard deviation are 

629 mm and 381 mm for the runoff, 0.67 and 0.39 for runoff ratio. Moreover, the first, 

second (median) and third quartiles are respectively 379, 535 and 773 mm for the 

runoff, 0.47, 0.60 and 0.77 for runoff ratio. Catchments with the highest runoff yields and 

runoff ratios are the catchments of central (Ibrahim and Kelb: in order of magnitude, 

stations 11, 10, 12, 13, 14 and 15) and the headwaters of Abu Ali river (stations 7 and 

8), while catchments with the lowest values are primarily the large inner catchments 

(Orontes (25), Litani (27) and to a lesser degree the Hasbani (28)) and the Zahrani in 

the southernmost part of Mount Lebanon.  
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Fig. 4.1 Spatial distribution of mean annual runoff in mm (2001 – 2011). 

 

(a) 

(b) 
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Fig. 4.2 Spatial distribution of mean annual runoff ratio (2001 - 2011). 
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4.4.2 Distribution of monthly runoff 

Except for the particular case of the Orontes River that show almost a uniform 

distribution of discharge volume over the year, river discharges in Lebanon, likewise the 

precipitation exhibit a high intra-annual seasonality. Hence, for the large majority of 

Lebanese rivers more than 75 % of the total annual volumes of river discharges occur 

from December to April, whereas, less than 15 % of total annual volume occurs from 

June to November. River discharges began to increase slowly from the beginning of the 

rainfall season (October - November). The maximum monthly river discharge is reached 

in late winter (February) and spring (March and April) for the large majority of 

catchments. For some, especially headwater catchments with important spring 

discharge and snow melt contribution; a high discharge volume is maintained during 

May. After reaching its peak, monthly discharge volume began to decrease to reach less 

than 2 % of the total annual volume for August and September for the large majority of 

rivers (except the Litani and the Orontes). 

According to the monthly distribution of total annual discharge volume for the 

Lebanese catchments, one can notice 3 main different hydrological regimes (Fig. 4.3):  

- Rainfall dominated hydrological regime: here, the main climatic input regulating 

the hydrological response of catchments is rainfall, thus maximum discharge 

volume is primarily from the contribution of rainfall, and hence it is reached in 

February. We can find this type of hydrological response in the Akkar plain, 

Oustuene River (“a”, 1 and2); Arka River (“a”, 3) In the southern part of Mount 

Lebanon starting from Beirut catchment ( “d”, 17 and 18), Damour (“d”, 19, 20, 21 

and 22) and Zahrani (“e”, 24)  

- Hydrological regime with important snow melt contribution: here, snow 

accumulation and melt are a main contribution to the total discharge volume 

alongside with rainfall. Thus, maximum discharge volumes occur in March. These 

regimes are found in Abu Ali ((b) 5), El-Jaouz ((b) 9), El-Kelb ((c) 15), the 

headwaters catchments of Beirut ((d) 16), Awali ((e) 23), in the Litani catchment 

((f) 26 and 27) and the Hasbani basin ((f) 28).  

- Snow dominated hydrological regime: here, it is snow accumulation and melt is 

the main contributor to the river discharge. Maximum discharge volume is 

encountered in April and a high discharge volume is maintained during May. 

These regimes are found in the most elevated catchments in Lebanon, such as 

El-Bared ((a) 4), the headwaters of Abu Ali River ((b) 6, 7 and 8), Ibrahim ((c) 10, 

11 and 12) and the headwaters of El-Kelb River ((c) 13 and 14). 

Finally, the Orontes River is a special case with uniform distribution of monthly 

discharge volume. It reaches a maximum in May ((f) 25). 
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Fig. 4.3 Distribution of mean monthly runoff (mm) for the studied catchments; (a) Oustwene 

(stations 1 and 2), Arka (3), and Bared (4); (b) Abu Ali (5, 6, 7, and 8) and Jaouz (9); (c) Ibrahim 

(10, 11, and 12) and Kelb (13, 14, and 15). 
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Fig. 4.3 Distribution of mean monthly runoff (mm) for the studied catchments: (d) Beirut (16, 17, 

and 18) and Damour (19, 20, and 21); (e) Awali (23) and Zahrani (24); (f) Orontes (25), 

Berdawni (26), Litani (27) and Hasbani (28). 
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4.4.3 Distribution of daily discharge 

A flow duration curve (FDC) presents the percentage of time (duration) that a streamflow 

value is exceeded for a given gauging station at a select time step. Figure 4.4 presents 

FDCs of daily discharge for stations were daily data are available. Here we compare –

when available- FDCs for 2 different periods (1967-1974 and 2002-2012). The aim is to 

detect any change in the daily distribution of discharge between our study period (2002 

– 2012) and a reference period (1967 – 1974). The general allure of the FDCs for the 

rivers, were data are available, do not change much between the 2 periods except for 

the stations 11, 13, 15, 17, 18, 20 and 21. In these stations the changes are mainly in 

the highest durations (lowest flows), here one can attribute these differences to drier 

conditions or an increase in anthropogenic impact especially for the period 2002-2012, 

or to gauging problems (non recorded low flows but replaced by zero values instead).  

The shape of the FDCs can give a good idea on the hydrological regime of the 

studied river. Hence a FDC with a steep slope reflects a great contribution from extreme 

events. This is the case of most of the Lebanese rivers -with the stations in the Central 

part of Mount Lebanon (Ibrahim, Kelb, Beirut, Damour, and Awali) showing the highest 

daily discharges values- except for the Orontes River. This could be attributed to the 

nature of rainfall events in the Mediterranean region where rainfall occur mostly as short 

duration high intensity rainfall events that are concentrated in winter months (mainly 

from October to April). Moreover, low flows represent a great part of discharge records. 

This is due to the long summer dry periods (more than five months) where discharge is 

only maintained through permanent spring contributions.  

One river, the Orontes (25), shows a very gentle slope with very little variation in daily 

discharges for all durations. This river located in the semiarid northeastern part of 

Lebanon is maintained throughout a year by a very large karstic spring (Ain Zarqa) with 

a very deep and well developed karstic system with a very residence time (about 24 

years) (El-Hakim and Bakalowicz 2007).  

The importance of FDCs in representing the distribution of daily discharges makes it 

necessary to extract variables that represent different aspect of this curve such as the 

main durations (representing low flows, high flows and general flow conditions) and the 

rate of change represented by the slope of the FDC.  
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Fig. 4.4 Flow duration curves. 
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Fig. 4.4 Flow duration curves. 
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4.4.4 Maximum specific daily discharges 

Extreme hydro-meteorological events are common under Mediterranean climate. 

However, the severity of these events depends not only on the meteorological 

disturbance that induces the event, but also on the physical characteristics of the 

catchment.  

Figure 4.5 represents the Maximum specific daily flow (in m³/s) for the studied 

Lebanese catchments for the period 2002 – 2012.  

The maximum specific daily discharges in Lebanon exhibit a sort of regional grouping. 

The highest values being those of the catchments in Central Mount Lebanon (Ibrahim, 

El-Kelb, Beirut, Damour, Awali) and of the Hasbani, whereas, the lowest are those of the 

inland part of Lebanon (Litani and Orontes basins). The remaining rivers in northern 

Lebanon form an intermediate class. This primarily grouping of Lebanese catchments is 

quiet plausible, given the fact that the central part of Mount Lebanon are formed mainly 

of small basins (less than 500 km²) with steep slopes and receive the highest amount of 

precipitation in the country, and the Hasbani basin have similar characteristics (but a 

little greater area). Moreover, the inner part of Lebanon is formed by 2 large basins (Ac 

> 1000 km²) with more gentle slopes and less precipitation. 

4.5 Conclusion 

In this chapter we have presented the available dataset used for extracting runoff 

signatures that represent the hydrological characteristics of the Lebanese catchments. 

The main hydrological characteristics of the Lebanese catchments shows a sort of 

regional tendencies across in the country with catchments in the central part of Lebanon 

(the most humid region) exhibiting the highest values in term of both mean annual 

runoff, runoff ratio and specific daily discharge. Moreover, in term of daily discharge 

distribution these same catchments have higher percentage with high values of daily 

discharges. On the other extreme, catchments in the inner part of the country appear to 

exhibit the lowest values of the mean annual runoff, runoff ratio and daily discharge 

which are due to both larger basin area and lesser amount of precipitation. Catchments 

in the northern Lebanon appear to form an intermediate class. 

These regional tendencies witnessed here will be re-emerge further ahead when we 

classify the Lebanese catchments according to their hydrological characteristics.  
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Fig. 4.5 Spatial distribution of maximum specific daily discharge in m3/s/km2. 
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5.1 Introduction 

This chapter analyzes the hydrological response of the Lebanese catchments at the 

annual water balance scale and the event scale. Furthermore, throughout this chapter 

the Lebanese catchments are compared to other Mediterranean catchments in term of 

annual water balance and climatic conditions and rainfall-runoff events characteristics. 

The aim is not only to characterize the Lebanese catchments response to rainfall inputs 

at the annual and event scale and to compare it to the larger Mediterranean context, but 

also to compensate the lack of high-resolution data. Comparing different catchments 

permit one to learn from their differences and similarities and also could be used as a 

tool for data quality control in poorly-gauged locations. In the following we will (i) present 

the applied methodology and characterize the Lebanese catchments response at the (ii) 

annual water balance scale and the (i) event scale. When the information is available, 

the studied catchments are compared to other Mediterranean catchments.  

5.2 Materials and Methods 

For the annual water balance scale, mean annual precipitation, reference 

evapotranspiration and mean annual runoff are calculated from the data presented in 

the previous chapters for the period 2001 - 2011. 

Daily discharge data and precipitation data (with big gaps in the data) are available 

for the period 2002 - 2011. The rainfall-runoff event selection was based upon the 

highest maximum daily flow in the record where daily precipitation data are available. So 

the maximum daily flow is located than the base flow is separated using a one-

parameter recursive digital filter. Afterwards the entire runoff event corresponding to the 

maximum daily flow is extracted: the runoff event is considered from the first day of 

increase in direct runoff to the last day where direct runoff re-established the pre-event 

value (normally zero direct runoff). The corresponding rainfall event is assumed to start 

one day before the rising in direct runoff and to end at the last day with rainfall before 

the end of the direct runoff.  

5.3 Annual water balance  

The climatic characterization is carried out here by the mean of the Budyko climatic 

classification scheme (Budyko 1974) (Fig. 5.1a). It shows the mean annual runoff 

coefficient MAQ/MAP as a function of the aridity index AI = ET0/MAP. When 

ET0/MAP<1, wet conditions prevail. When ET0/MAP>1, dry climatic conditions prevail. 

The lines MAQ/MAP=1 and MAP = MAQ + ET0 represent the water and energy limits 

respectively. Catchments are expected to fall within these limits for a closed water 

balance. Otherwise, the catchment is either gaining (catchment with MAQ/MAP>1) or 

losing (catchment with MAP<MAQ+ET0) water, or there might be under or over-
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estimation of mean annual precipitation. Moreover, Fig. 5.1a presents the Lebanese 

catchments among other Mediterranean catchments. Furthermore, the relationship 

between mean annual precipitation and mean annual runoff is plotted in Fig. 5.1b and a 

comparison between Lebanese catchments and other Mediterranean catchments are 

also presented. Information about Mediterranean catchments was obtained from the 

literature (see chapter 1).  

The majority of the Lebanese catchments are under dry conditions (only four 

catchments have an aridity index slightly lower than 1). The concentration of Lebanese 

catchments under arid conditions may suggest that these catchments are under water-

limited conditions; however this is not the case with only seven catchments showing low 

annual runoff yield (MAQ/MAP < 0.5). This can be attributed to three main factors: the 

fact that precipitation and evapotranspiration under Mediterranean conditions are in 

opposite phase which mean that although reference evapotranspiration might be high, 

actual evapotranspiration are much lower, moreover, precipitation in Lebanon are quiet 

abundant with the majority of catchments (except for the two internal catchments: 

Orontes and Litani) have a MAP greater than 800 mm and can reach 1200 mm and 

more (Fig. 5.1b); secondly, an important amount of rainfall occur as snow that 

accumulates during winter and are slowly released during the spring and early summer 

which largely increase MAQ, and finally the prevalence of karstic conditions results in 

large karstic aquifers with recharge areas extending outside the border of the surface 

catchments and discharge in karstic springs that maintain river flows through the dry 

season. Hence, the impact of snow and karst are well obvious in catchments exhibiting 

an annual runoff ratio greater than 1. These are karstic mountainous catchment with 

snowfall dominated precipitation.  

 

 

 

 

 



119 

 

 

(a)                                                                      

 

(b)                                                                         

Fig. 5.1 (a) Plot of mass balance data on the Budyko’s diagram: the mean annual runoff 

coefficient MAQ/MAP function of the aridity index ET0/MAP for the studied Lebanese 

catchments among other Mediterranean catchments (from chapter 1), the lines MAQ/MAP=1 

and MAP = MAQ + ET0 represent the water and energy limits respectively; and (b) relationship 

between the mean annual runoff and the mean annual precipitation for the Lebanese 

catchments among other Mediterranean catchments. MAP: Mean Annual Precipitation; MAQ: 

Mean Annual Runoff; ET0: Mean Annual Reference Evapotranspiration. 
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A comparison of summary statistics of climatic and hydrological variables for the 

studied Lebanese catchments and other Mediterranean catchments in the 3 

Mediterranean sub-regions is presented in Table 5.1. As for ET0, it is quite in the range 

of values recorded in other Mediterranean catchments especially in the EM. However 

mean annual precipitation values for the Lebanese catchments appears to have a 

narrow range of variation reaching only a maximum of 1200 mm while in EM subregion 

values up to 1718 mm are recorded alongside a third quartile of 1394 mm. This 

apparently low mean annual precipitation values across Lebanon with comparison to 

other Mediterranean catchments could be almost certainly attributed to a low estimation 

of precipitation in term of both rainfall and snowfall. This possible under-estimation of 

mean annual precipitation may result in a relatively higher than usual annual runoff 

coefficient values.  

Nevertheless, the high annual runoff ratio of Lebanese catchments could not be 

attributed solely to an under-estimation of precipitation since MAQ values across the 

country are high. Indeed the Lebanese catchments MAQ values are in the range of 

values recorded in the more humid NWM subregion (rather than the EM catchments). In 

fact, some of these studied Lebanese catchments are karstic springs with a recharge 

area greater than the hydrological catchment which can explain the high values of MAQ.  

 

Table 5.1 Summary statistics of climatic and hydrological variables for the studied Lebanese 

catchments and for catchments in the three Mediterranean sub-regions (NWM, EM and SM) 

defined in Chapter 2. MAP: Mean Annual Precipitation; ET0: reference evapotranspiration; MAQ: 

Mean Annual Runoff. 

  MAP  

(mm) 

ET0  

(mm) 

MAQ  

(mm) 

ET0/MAP 

(-) 

MAQ/MAP 

(-) 

Lebanon Min-Max 588 - 1200 920 - 1212 133 -1777 0.78 – 1.93 0.16 – 1.91 

 Median 931 1081 552 1.14 0.62 

 Interquartile range 859 - 980 973 - 1121 367 - 790 1.02 – 1.18 0.39 – 0.78 

       

NWM Min-Max 589 -1892 775 -1617 33 -1579 0.45 - 2.21 0.06 - 1.21 

 Median 1113 933 485 0.84 0.46 

 Interquartile range 891 -1366 868 - 990 319 - 763 0.67 -1.04 0.32 - 0.62 

       

EM Min-Max 428 -1718 957 - 1517 12 - 1437 0.62 - 2.91 0.02 - 0.99 

 Median 924 1391 105 1.56 0.17 

 Interquartile range 713 -1294 1120 -1444 105 - 649 1.02 - 1.99 0.06 - 0.57 

       

SM Min-Max 257 -1100 519 - 2382 4 - 460 1.07 - 4.29 0.01 - 0.73 

 Median 376 1157 33 2.88 0.08 

 Interquartile range 327 - 433 811 - 1272 15 - 56 2.39 - 3.19 0.05 - 0.14 
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Finally, some studies have shown that an increasing dryness index result in high 

variability of events runoff coefficients (Norbiato et al. 2009; Tarolli et al. 2012), so we 

might expect a large scatter in runoff response for our catchments. Furthermore, the 

high variability of the dryness index and runoff yield across the Lebanese basins would 

certainly impact flood response. 

 

5.4 Rainfall-runoff events characterization: Rainfall and flood response 

5.4.1 Selected Rainfall-Runoff events 

A summary of the selected rainfall-runoff used in this work is presented in table 5.1. The 

monthly distribution of these events is shown Fig. 5.2. The month with the maximum 

number of events is February (about 30 % of the total events), followed by November 

(26 %) and December (18 %). The remaining events are distributed quite evenly on 

three other months: January, March and April (about 8 % each).  

Table 5.2 Summary characteristic of the selected rainfall-runoff events. 

Catchment Event  Area 

(km
2
) 

Rainfall 

(mm) 

Runoff 

(mm) 

Max. daily 

dis. m
3
/s 

Spec. max 

dis.(m
3
/s/km

2
) 

Runoff 

Ratio 

Arka at Hakour 24 to 27 Nov 2011 102 82 14 15 0.15 0.17 

Bared at sm 21 to 23 Nov 2011 281 41 20 64 0.23 0.49 

Abu Ali at Racheine 18 to 27 Feb 2003 202 314 57 20 0.10 0.18 

Abu Ali at Abusamra 25 to 27 Nov 2004 466 117 16 63 0.14 0.13 

Abu Ali at Kousba 25 to 27 Nov 2004 142 117 26 34 0.24 0.22 

Abu Ali at Daraya 17 to 19 Feb 2011 144 61 45 57 0.40 0.74 

Jouz at sm 16 to 21 Dec 2002 189 198 26 52 0.28 0.13 

Ibrahim at Roueiss 31 Mar to 5 Apr 2006 101 225 315 86 0.86 1.41 

Ibrahim at Afqa 25 to 27 Nov 2004 29 117 201 64 2.26 1.72 

Ibrahim at sm 15 to 21 Dec 2002 327 200 207 696 2.13 1.04 

Kelb at Hrajel 31 Mar to 5 Apr 2006 75 222 64 27 0.37 0.29 

Kelb at Daraya 9 to 13 Dec 2009 143 129 77 58 0.41 0.60 

Kelb at sm 25 to 27 Nov 2004 257 117 58 128 0.50 0.50 

Beirut at Jaamani 14 to 24 Feb 2009 127 211 47 36 0.29 0.22 

Beirut at Daychounyeh 20 to 28 Jan 2004 209 342 98 115 0.55 0.29 

Beirut at Jisr El Basha 16 to 27 Mar 2003 217 225 157 104 0.48 0.70 

Damour at Jisr Qadi 15 to 18 Dec 2009 185 274 128 151 0.82 0.47 

Damour at Wadi Sett 17 to 22 Feb 2003 40 159 112 35 0.90 0.70 

Damour at sm 18 to 21 Feb 2011 293 187 137 275 0.94 0.74 

Awali at sm 18 to 27 Mar 2003 308 376 233 238 0.77 0.62 

Berdawni at D.R. 19 to 28 Feb 2003 77 228 43 13 0.18 0.19 

Litani at Joubjannine 19 to 28 Feb 2003 1433 228 29 182 0.13 0.13 

Hasbani at Wazzani 20 to 28 Jan 2010 566 251 29 66 0.12 0.12 
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Fig. 5.2 Monthly distribution of the selected rainfall-runoff events. 

5.4.2 Rainfall amount and duration 

This section describes the rainfall responsible for catchment response in term of two 

variables: rainfall duration and amount. For the 23 events presented here, the duration 

of the runoff generating rainfall event varies between 3 and 10 days. Similarly, event 

rainfall amounts show great variability, from 41 mm in the Bared catchment to 376 mm 

in the Awali catchment.  

 

 

(a)                                                                  (b) 

Fig. 5.3 Event rainstorm characteristics: (a) rainfall event duration versus event rainfall depth 

and (b) event duration versus ratio of event rainfall depth to mean annual precipitation. 

 

Figure 5.3a represents the cumulative event rainfall as a function of the event 

duration, with scattering in the relationship. For the same event duration, the total 
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amount of cumulative rainfall can vary. Furthermore, the plot of rainfall duration versus 

the ratio of event rainfall to the mean annual precipitation presented in Fig. 5.3b permit 

the comparison between catchments taking into account the difference in mean annual 

precipitation. As for the event distribution, one can notice no significant differences 

between Fig. 5.3a and b. Nevertheless, Fig. 5.3b shows how important a single event 

rainfall amount on the annual water balance for Mediterranean catchments. Hence, in 

our dataset, event rainfall can represent up to 0.41 of the mean annual precipitation with 

a mean value of 0.21 and an inter-quartile range of 0.13 – 0.28. This is a characteristic 

of the Mediterranean climate where rainfall is concentrated in one or two short rainy 

seasons across the year (Cortesi et al. 2012).  

5.4.3 Unit maximum daily discharge 

Event peak discharge is widely used as an indicator of the hydrological response of 

catchments. Unfortunately information about event peak flow is not available herein, so 

we used the mean daily discharge. Figure 5.4a represents a log-log diagram of the 

maximum mean discharges of our catchment database: for each catchment, the mean 

discharge for the day with maximum daily discharge. 

 

 

(a)                                                                (b) 

Fig. 5.4 Unit maximum daily discharge versus (a) drainage area and (b) event rainfall depth. 

In our dataset, the highest unit maximum daily flow was recorded for Ibrahim at Afqa 

with a value of 2.26 m³/s/km² (Ac = 28 km²). The inter-quartile range is about 0.2 – 0.8 

m³/s/km². However, the unit discharges decrease rapidly with the increasing catchment 

area. This rapid decrease in the unit peak discharge with the increase in the catchment 

area may reflect the high heterogeneity in the hydrological responses of different 

locations in the same catchment (Latron and Gallart 2007, 2008). Thus, for a given 
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catchment and a given rainfall event, the runoff-generating processes are not the same 

in all parts of the catchment. Here one most not that a certain geographical clustering 

exist in the distribution of maximum daily flow values with the highest recorded in the 

central part of Mount Lebanon (catchments Ibrahim, Kelb, Beirut, Damour and Awali). 

These catchments are located in the part of the country that receives the highest 

amount of annual rainfall. Similar findings were reported in Sene et al. 2001.   

Catchment unit maximum daily discharges as a function of event rainfall depth (Fig. 

5.4b) are highly scattered for a given amount of cumulative rainfall. Therefore, no 

correlation could be found between event rainfall depth and event maximum daily flow. 

5.4.4 Runoff ratio 

The runoff ratio is defined as the ratio of the event runoff volume to the event rainfall 

volume. It is a very important concept for assessing the catchment hydrological 

response. Figure 5.5 presents the runoff depth (Fig. 5.5a) and the runoff ratio (Fig. 5.5b) 

of the studied Lebanese catchments as a function of the cumulative event rainfall, and 

Fig. 5.5c compares the event runoff ratio of Lebanese catchments to others 

Mediterranean catchments. There is clear scattering in the response. Thus, for a given 

rainfall depth, both the runoff and runoff ratio may greatly vary.  

In the studied catchments, event runoff depth and runoff ratio vary over a large range 

(Fig. 5.5). For instance, runoff depth varies from 14 mm in Arka at Hakour to 315 in 

Ibrahim at Roueiss with an Interquartile range of 29 – 133 mm. Seemingly, runoff ratio 

varies from 0.12 in Hasbani at Wazzani to 1.7 in Ibrahim at Afqa with an Interquartile 

range of 0.19 – 0.7 and median value of 0.47 while runoff ratio’s mean and standard 

deviation are 0.51 and 0.42 respectively. The Lebanese catchments median runoff ratio 

is in the range of NWM catchments (median for NWM region is 0.4) and much higher 

than values recorded in EM catchments (median for EM is 0.12). This is clear in Fig. 

5.5c where the Lebanese catchments appear to be in the same range of catchments in 

the NWM. High events runoff ratios recorded for the Lebanese catchments can be 

attributed to the fact that the majority of these events occur during the wet season, thus, 

the initial moisture conditions could trigger the generation of important runoff amounts.  

The relatively low dependency of the runoff ratio on the cumulative rainfall depth 

could be explained by many factors. First, under Mediterranean climatic conditions, 

Hortonian flows are dominant; thus, the catchment hydrological response is rather 

controlled by rainfall intensity than depth. Moreover, for different events (even with the 

same amount of rainfall), the initial moisture conditions are different and trigger different 

hydrological responses. Furthermore, the temporal and spatial distributions of a rainfall 

event certainly play a role in shaping the catchment hydrological response. Furthermore, 

In Mediterranean catchments, the temporal and spatial distributions of a rainfall event 

are highly variable with heterogeneous runoff-generating processes and the percentage 
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of the catchment area that actually contributes to runoff can vary (Latron and Gallart 

2007, 2008, Molina et al. 2014).  

 

(a)                                                                         (b) 

(c)  

Fig. 5.5 (a) Event runoff depth versus event rainfall depth and (b) event runoff ratio versus event 

rainfall depth for the Lebanese catchments and (c) comparison with other Mediterranean 

catchments. 

 

 



126 

 

5.5 Conclusion 

This chapter presented an analysis of the hydrological response of the Lebanese 

catchments at the annual water balance and the event scale. 

The analysis shows that the majority of the Lebanese catchments are mountainous 

with high relief ratio and drainage density which favors the rapid concentration of runoff 

along flow lines. Although under Mediterranean climate these catchments do not exhibit 

water-limited conditions, in fact annual runoff ratio/aridity index values are higher/lower 

than recorded in other EM catchments. The amount of rainfall in a given event could 

present up to 40 % of the total annual rainfall. Estimation of the unit peak flows are in 

the range of those recorded in other EM catchments however, events runoff ratios 

(mean = 0.39) are more in the range of the NWM catchments (mean runoff ratios are 0.4 

for NWM, 0.35 for SM and only 0.12 in EM); this could be attributed to the karstic nature 

of the Lebanese terrains. Moreover, in Lebanon and all across the Mediterranean, unit 

peak flow and event runoff ratio are not correlated to event rainfall depth. Finally, 

antecedent soil moisture conditions appear to have a major impact on the catchment 

response especially in term of event runoff ratio.  

Finally, one should not that comparing catchments in the same climatic region does 

not only permit to deepen our understanding of the hydrological processes under these 

particular climatic conditions but also to assess the data quality especially in poorly-

gauged environments such as Lebanon. Nevertheless, it does not omit the need for 

higher resolution data that permits more in-depth investigation of the mechanism that 

trigger Lebanese catchment response. 
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CLASSIFICATION AND MODELING  
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This part presents a classification of the Lebanese catchments according to their 

physical and hydrological characteristics. The variables defined in the previous part 

were used here for the classification. Moreover, a simple modeling approach were 

undertaken to test the robustness of the classification. The part ends by a proposition of 

conceptual models that represents the different groups. 

Chapter 6 presents the classification of the Lebanese catchments by their physical 

and hydrological characteristics. Here, the physical and hydrological variables extracted 

in chapters 2 to 4 were used for the classification using an agglomerative hierarchical 

clustering analysis.  

Chapter 7 presents a simple modeling approach at a monthly time scale for the 

Lebanese catchments. A simple but robust monthly time step model, GR2M, was used 

to assess the modeling quality of the Lebanese catchments and to compare different 

regionalization approaches.  
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6.1 Introduction 

Regionalization studies in the country are very preliminary. Sene et al (1999, 2000) 

studied the spatial of baseflow index and the regional distribution of maximum 

instantaneous flows in Lebanon. They found a certain regional pattern. Abou Daher 

(2006) established global linear regression models for the estimation of annual runoff 

ratio. These preliminary studies suggested that all across Lebanon when structural 

characteristics are not varying, hydrologic parameters shows a remarkable degree of 

spatial coherence. Therefore, with an integration of more structural and functional 

characteristics of basins, a regionalization procedure could be undertaken for the 

Lebanese watersheds.  

In the previous part we have analysed the physical, climatic and hydrological 

characteristics of the Lebanese catchments and compare the hydrological response 

characteristics of these catchments to their Mediterranean counterparts. In this chapter 

we used the catchment physical descriptors and runoff signatures previously derived 

from the data in order to classify the studied catchments accordingly. The aim is to 

compare catchments and learn from the differences and similarities between physical 

and hydrological characteristics in order to better understand catchments hydrological 

functioning and to transfer and generalize this understanding.  

In the following we present the methodology applied here for the classification of 

Lebanese catchments. Afterwards, we present and discuss the results.  

6.2 Materials and Methods 

The catchment physical descriptors and runoff signatures derived from the data in part II 

(Data Analysis) are used to classify the Lebanese catchments according to their 

physical and hydrological characteristics.  

The method used here for catchment classification is a hierarchical cluster analysis 

where groups are built according to distance connectivity (Archfield et al., 2013). It is 

similarity-based classification approach where the most similar individual are grouped 

together. The variables used as input to the cluster analysis were the principal 

components resulting from the initial set of variables (catchments descriptors and runoff 

signatures).  

Principal component analysis (PCA) was applied to each set of variables (catchment 

physical descriptors and runoff signatures) independently using the correlation matrix as 

the input to the PCA. The aim is to reduce the dimension of the data set by retaining 

characteristics that contribute most to its variance (i.e. lower-order principal components, 

usually containing the most important aspects of the data). PCA permits minimizing 

redundancy and multicollinearity among the chosen variables (Olden and Poff 2003). It 

reduces the dimension of the datasets by transforming the n-dimensional space (n= 



134 

 

number of initial variables) into a new m-dimensional space, where m (1<= m <= n) is 

the number of new variables which are the principal components. These principal 

components are uncorrelated and orthogonal to one another and ordered as such the 

first component represents the largest amount of variance in the original dataset.  

A hierarchical cluster analysis using a dissimilarity matrix based on Euclidean 

distance was then carried out to group the gauging stations into clusters of relatively 

homogeneous catchments with similar physical or hydrological response characteristics. 

Clusters were generated by minimizing the sums of square distance to the center mean 

(Ward 1963). This Agglomerative Hierarchical classification is the most commonly used 

clustering method for catchments classification (Olden et al. 2011). The variables used 

in the cluster analysis were the principal component axes identified in the PCA for 

catchments physical descriptors and runoff signatures separately, using the loadings of 

the original data of each station on each significant principal component.  

Finally, catchments that are simultaneously in a group of physically similar 

catchments and a group of hydrologically similar catchments are put together in one 

group of physically and hydrologically similar catchments.  

6.3 Results and Discussions 

6.3.1 Catchment classification  

The results of the PCA show that for the two groups of variables (runoff signatures and 

catchment descriptors) the first three to four principal components (for each group 

respectively) are statistically significant and explain most of the total variances in the 

variables (Table 6.1).  

So, for the catchment physical characteristics the first four principal components 

(PC1, PC2, PC3, and PC4) explain about 77 % (40 %, 18 %, 11 % and 8% respectively) 

of the total variance. While for the catchment hydrological response characteristics 

(runoff signatures) the first four principal components (PC1, PC2, PC3 and PC4) explain 

about 86% (44 %, 26 %, 9 % and 7 % respectively) of the total variance in the dataset. 

Moreover, Table 6.1 shows that for each principal component the variables with the 

largest loadings are different among axes, therefore there are no redundancies in the 

new variables (the PC axes) and these variables carry most of the information available 

in the initial sets of variables.    
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Table 6.1 Results from the principal components analysis on the correlation matrix of the studied 

physical and hydrological variables showing the cumulative percentage of variation explained by 

each lower-order principal component as well as the variables exhibiting the largest absolute 

loadings. 

Group of 

variables 

 Principal 

component 

Cumulative % of variations 

explained by Principal 

components 

Variables with largest loadings on 

PC 

Physical 

descriptors 

PC1 40 Bare, Zc>1800, Sc and MIS 

PC2 58 MAP, Ac, AI and HIS 

PC3 69 MPR, LPR, Min Zc and LIS 

PC4 77 Shrub, AK, HPR and Dd 

Runoff 

signatures 

PC1 44 RS16, RS17, RS19 and RS15 

PC2 70 RS24, RS5, RS11 and RS12 

PC3 79 RS10, RS22, RS25 and RS2 

 PC4 86 RS3, RS2, RS10, and RS28 

 

The importance of the PCA stands from the fact that the resulting principal 

components axes are orthogonal, thus the new variables used for catchment 

classification are relatively independent from one another within the single PCS (Olden 

and Poff 2003). So, the principal components identified for each group of variables were 

used to classify the studied catchments in groups of physically or hydrologically similar 

catchments using the agglomerative hierarchical clustering technique. Mahalanobis 

distance was used in the cluster analysis to avoid multicollinearity problems on the 

combined PCA scores (Alcazar and Palau 2010). The results of the two classifications 

(physical similarity and hydrological similarity) are presented in the following sections.  

 

 

 

 

 

 

 

 

 



136 

 

6.3.2 Physically similar catchments 

The cluster analysis revealed five groups of physically similar catchments; except for two 

exceptions (Awali and Damour in groups 1 and 3 respectively) all groups form rather 

geographical differentiated area.  (Fig. 6.1 a and b): 

 

Fig. 6.1a Results of the cluster analysis for physical similarity of the studied catchments using 

the principal components axes identified in the PCA for catchments physical descriptors. 

- Group P1. Five catchments (Awali and Ibrahim at sea mouth; Kelb at sea mouth 

and at Daraya and Berdawni) that are geographically connected (except for the 

Awali). These are highly fractured (Apparent karst always greater than 82 %) 

medium size catchments (maximum Ac of 320 km2 for the Ibrahim) with mean 

elevations in the range of 1200-1700 m and steep slopes. Well developed deep 

soils with agricultural activities covers at least 20 % of catchments areas. At least 

50 % of the total catchment area are barelands or/and covered with herbaceous 

vegetations (grass and shrubs). Mean annual precipitation values ranges from 

800 to 1000 mm while annual reference evapotranspiration are slightly lower than 
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mean annual precipitation. The nature of precipitation (rainfall or snowfall) 

depends upon the elevation.  

- Group P2. Five catchments (Beirut at three stations: Jaamani, Daychounyeh and 

Jisr El Basha; and Damour at two stations: Jisr El Qadi and Wadi Sett). These are 

small to medium size catchments (40 < Ac < 217 km2) with gentler slope (Sc 

around 10 %) and relatively medium elevation (mean Zc around 1000m and less 

than 3 % of Ac above 1800m). Approximately 50 % of the catchments areas are 

formed of karstified highly permeable rocks.  Deep soils suitable for agriculture 

are present in these catchments (more than 10 %). At least 12 % of the total Ac is 

agricultural area, and more than 10 % are urban areas. Forest covers up to 40 % 

of catchments areas. These catchments receive good amount of precipitation 

(mean annual precipitation around 950 mm) mostly as rainfall, while reference 

evapotranspiration values are in the same order of mean annual precipitation.  

- Group P3. Eight catchments (Damour, Jaouz, and Bared at sea mouth; Arka at 

Hakour, Abu Ali at all 4 stations), seven (except the Damour) are in a 

geographically differentiated region (northern Mount Lebanon). These are highly 

fractured (AK always greater than 65 %) medium sized catchments (Ac ranges 

from 102 to 466 km2). Mean elevation ranges from 750 m for Arka to 1300 m at 

Abu Ali stations. This group is quite similar to the previous one. However, here 

deep well developed soils cover at from 20 to 40 % of catchments surfaces with 

agricultural lands occupying at least 20% of total basins areas. Moreover forests 

covers from 18 to 37 % of catchments areas. Mean annual precipitation values 

are in the range of 800-1000 mm while mean annual reference 

evapotranspiration values are slightly higher than its counterpart. The nature of 

precipitation (rainfall or snowfall) depends upon the elevation.  

- Group P4. Three catchments (Kelb at Hrajel, Ibrahim at Afqa and Roueiss) form 

this group. These are highly fractured (AK > 85 %) small and steep high elevation 

mountainous catchments (Ac < 100 km2, Sc > 16 %) with a mean altitude 

exceeding 1700 m and 60 to 85 % of catchment area above 1800 m. Soils are 

shallows with barelands covering about 50 % of total catchments area while the 

rest is mainly covers by grass and shrubs (to a lesser extent). Moreover, these 

catchments exhibit the wettest conditions in the country with the largest amount 

of precipitation (mean annual precipitation around 1200 mm) mostly occurring as 

snowfall, and a low reference evapotranspiration.  

- Group P5. Two catchments (Litani at Joubjannine and the Orontes). These are 

the 2 largest catchments in the country with Ac exceeding 1200 km2. They have a 

mean elevation of about 1300 m (with 10 to 30 % of catchment area above 1800 

m for Litani and Orontes respectively).These are more gentle catchments (Sc < 

6.5 %) with a good part of the catchment occupied by agricultural plains (21% for 
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the Orontes and 48 % for the Litani) with well developed soils. However highly 

permeable karstified rocks are always present (50 to 60 % of catchment area). 

Due to the rain shadow effects of Mount Lebanon, these catchments exhibit the 

driest conditions in Lebanon. Mean annual precipitation values reach 760 mm for 

the Litani and a minimum value of 580 mm in the Orontes catchment; while 

reference evapotranspiration values are in the range of 1100-1200 mm, the 

highest values in the country.  

- One catchment does not fit in any group. The Hasbani is a medium-sized 

catchment however relatively larger than others (Ac = 560 km2), highly karstified. 

Mean elevation is around 1200 m with a maximum elevation at 2810 m, 

nevertheless only 9 % of catchment area is above 1800 m. Sc is gentle (along 5 

%). Deep well developed soils are common in the catchment (more than 50 % of 

area) alongside agricultural activity. About half the Hasbani area is covered with 

herbaceous vegetation. It is an inland catchment, however, contrary to the other 2 

inland catchments (Litani and Orontes) and due to its southern position (where 

Mount Lebanon decreases in elevation) it receives a good amount of precipitation 

with mean annual precipitation around 850 mm. Finally mean annual reference 

evapotranspiration is relatively high (around 1100 mm). Precipitation occurs as 

rainfall or snowfall depending on elevation. 
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Fig. 6.1b Physically similar catchments.  
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6.3.3 Hydrologically similar catchments 

The cluster analysis revealed 3 groups containing many catchments that are not 

necessarily geographically close, one group including the 2 headwaters of Ibrahim 

catchment (Roueiss and Afqa) and one catchment that does not fit in any group (the 

Orontes River (Fig. 6.2 a and b) 

 

Fig. 6.2a Results of the cluster analysis for hydrological similarity of the studied catchments 

using the principal components axes identified in the PCA for catchments Runoff Signatures.  

- Group H1 (Fig. 6.3). It includes twelve catchments: all catchments in the north 

(Arka at Hakour, Bared at sea mouth, Abu Ali at all four stations, and Jaouz at 

sea mouth), the headwaters of catchments in central Lebanon (Kelb at Hrajel, 

Beirut at Jaamani and Damour at wadi sett) and inland (Berdawni) along with the 

Hasbani in the inner part of the country. The rivers in this group are influenced by 

both rainfall and snow melt, here peak runoff is reached in the period between 
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February and April depending on the main precipitation input (rainfall or snowfall) 

with a relatively high runoff volume maintained through May and even in June. 

The runoff volume in the February-April period is somewhat constant (around 15 

to 30 % of total annual volume) and about 10 to 15 % of the total annual volume 

is yielded in the dry season which emphasizes the role of snow and groundwater 

recharge in the hydrological processes of these catchments. Moreover, for a 

majority of these catchments minimum flows (below the mean) represent 60 to 80 

% of the total daily discharges; and represents 10 to 45 % of the total volumes. 

However, some differences exist with the headwaters of Kelb, Beirut and 

Damour, the Jaouz and Berdawni where rainfall input appears to be greater than 

snowmelt (peak runoff in February) and the response is more extreme. Here 

mean daily flows exceeding 10 times the mean occur 2 to 5 % of time and 

contribute to about 10 to 22 % of total volume.  

- Group H2 (Fig. 6.4). It includes four catchments (Damour at sea mouth and Jisr el 

Qadi, and Beirut at Daychounyeh and Jisr el Basha). Here rainfall is the main 

contributor to river discharges and catchment response to rainfall input is quiet 

rapid with a sharp increase in runoff that peaks in February(about 30 % of total 

volume) than decrease rapidly. Here discharge exceeding 10 times the mean 

occurs about 2% of the time but contribute from 18 to 25 % of the total annual 

discharge volume.  

- Group H3 (Fig. 6.5). Five catchments (Awali, Ibrahim and Kelb at sea mouth; Kelb 

at Daraya and Litani at Joubjannine). Rivers in this group are quiet similar to 

those of group 1 however the main differences are the lower contribution of low 

flows (only 10 to 25 % of the total volume) with minimal runoff volume in the dry 

season and a greater contribution of high flows with more than 70 % of total 

volume from flows exceeding the mean.  

- 3 catchments (Fig. 6.6) Ibrahim at Afqa and Roueiss, and Orontes: the first two 

make one group of high mountain active karst springs with a low infiltration rate 

and short residence time (2.5 months), Snow is the main contributor to water 

yield with the maximum runoff volume reached in April. And the Orontes River at 

Ain zarqa spring, this is a large karstic spring with a very deep karstic systems, a  

very low infiltration rate and a huge residence time reflected in a very low 

discharge seasonality reflected in relatively stable monthly runoff volume and 

daily flows.  
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Fig. 6.2b Hydrologically similar catchments. 
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(a)  

(b)  

(c)  

Fig. 6.3 Mean flow distribution of stations in group 1: a) Fraction of monthly flow volume, (b) 1-

day flow duration curve and (c) volume-flow curves. (a) Fraction of monthly volume: monthly runoff 

volume divided by total annual runoff; (b) Flow relative to mean: mean daily flow divided by mean flow for 

the whole record; (c) Fraction of daily volume: daily runoff volume divided by total volume. 
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-  (a)  

(b)  

(c)  

Fig. 6.4 Mean flow distribution of stations in group 2: a) mean monthly flow, (b) 1-day flow 

duration curve and (c) volume-flow curves. 
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(a)  

(b)  

(c)  

Fig. 6.5 Mean flow distribution of stations in group 3: a) mean monthly flow, (b) 1-day flow 

duration curve and (c) volume-flow curves. 
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(a)  

(b)  

(c)  

Fig. 6.6 Mean flow distribution of 3 particular stations (Ibrahim at Afqa and Roueiss, and 

Orontes): a) mean monthly flow, (b) 1-day flow duration curve and (c) volume-flow curves. 



147 

 

6.3.4 Physical similarity Vs hydrological similarity 

So the catchments that are simultaneously in a group of physically similar catchments 

and a group of hydrologically similar are grouped together forming a group of physically 

and hydrologically similar catchments. Five groups of catchments which are 

simultaneously physically and hydrologically similar can be identified (Fig. 6.7):  

- Group PH1. The catchments in northern Lebanon (Arka at Hakour, Bared at sea 

mouth, Abu Ali at all stations and Jaouz at sea mouth). These are medium-sized 

catchments with a considerable fraction of surface affected by snow. Hydrological 

response is induced by both rainfall and snowmelt while groundwater 

contributions maintain a good amount of runoff volume during the dry season. 

- Group PH2. Very similar to the previous group, however here main springs in 

mountainous area heavily affected by snow constitute the headwaters of the 

catchments and at the same time rainfall impact downstream is more important in 

the previous group due to both steeper slopes and more humid conditions (higher 

mean annual precipitations. 

- Group PH3 and PH4. Rainfall is the main contributor to river discharges however 

snow contribution is not absent especially in the headwaters catchments that 

constitutes group IV. 

- Group PH5. Here we have the two karstic springs where Ibrahim River emerges. 

Their main input is snowmelt. Both high and low flows contribute to total springs 

discharges. The former represent rapid spring discharges (to rainfall or a rise in 

temperature that induce a great amount of snowmelt) while the latter represents 

slow response.  

- Non similar catchments. Six catchments do not fit in any group: Kelb at Hrajel is a 

springfed stream with groundwater recharge as main contributor, it is rather 

similar to the group V however here the gauging station does not capture only 

spring discharge but also contribution of surface runoff, seemingly is the 

Berdawni at Damascus Road. The Orontes is a very clear special case that wad 

described earlier. Litani and Hasbani have hydrologically similar catchments but 

are mainly isolated because of their quite specific physical characteristics among 

other the prevalence of agricultural areas and area.  
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Fig. 6.7 Physically and hydrologically similar catchments. 
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6.4 Conclusions 

In this chapter we presented a classification of Lebanese catchments using principal 

component analysis and agglomerative hierarchical clustering. Catchments physical 

descriptors and runoff signatures were transformed separately using PCA. The lowest 

order principal components were then used as an entry in the clustering process.  

This method enables us to define groups of physically or hydrologically similar 

catchments. Catchments that are in the same time in a physically similar group and 

hydrologically similar group were joined together in a group of physically and 

hydrologically similar catchments. Five groups were so identified, while six catchments 

do not fit in any group.  

The obtained results were quite coherent. Hence, catchments in northern Lebanon 

were runoff regime is mostly snow dominated form one group. Another group is made 

mainly by the steepest and most humid catchments in the country located in north 

central Mount Lebanon, while catchments in the southern central Mount Lebanon were 

the runoff regime is mostly rainfall dominated form a single group and their headwaters 

catchments form another group. Moreover, snow dominated mountainous karstic spring 

constitutes one single group. The inner catchments which are much larger with lowest 

precipitation and highest evapotranspiration and more agricultural areas have many 

particularities each and do not fit in any group.  

So through catchments classification we were able to understand the reasons behind 

the similarities and differences in the hydrological responses characteristics of the 

studied catchments and see how the physical characteristics influence catchments 

hydrological response.  

Finally, this classification constitutes a step forward toward the regionalization of the 

hydrological response of the Lebanese catchments. Hence, runoff signatures could be 

transferred from one catchment to another inside the same group. Moreover, this 

classification brings together catchments that have similar hydrological behavior thus 

could be represented by one conceptual model.  
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7 MODELING THE HYDROLOGICAL RESPONSE 
OF LEBANESE CATCHMENTS 
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7.1 Introduction 

In the previous chapter we classified the Lebanese catchments according to their 

physical and hydrological characteristics. Five classes were defined.  

This chapter investigates the hydrological response of Lebanese catchments through 

hydrological modeling taking into account the five above-defined classes. To achieve 

this, a well known global hydrological model, GR2M, was used. The choice behind using 

GR2M is not only from its simplicity and availability but also the fact that it was widely 

used and has proven its capabilities for many studies with different objectives. The 

range of GR2M utility is pretty wide from data analysis and construction of missing 

discharge data to water resources assessment and management studies and impact of 

global anthropogenic changes on basin hydrological response.  

The GR2M is used in this study as a simple tool to assess the modeling quality of 

Lebanese catchments, and to compare different regionalization approaches across the 

studied catchments. Afterwards, GR2M simulation is used as a reference state 

compared to the observed data for each catchment separately. From the divergence 

between simulation and observation one can draw some conclusions about the 

processes that govern the hydrological behavior of the catchments. 

In the following, the methodology of work of GR2M model is presented. Then, the 

results of GR2M application are presented at three levels. First, the overall results for all 

catchments are presented, followed by a comparative assessment of different 

regionalization approaches. Finally, the results are presented by group of similar 

catchments (physically, hydrologically and both).  

7.2 Methodology 

GR2M (modèle de Génie Rurale à 2 paramètres Mensuel) is a global two parameters 

monthly time step model, It was developed in the 1980s by the Cemagref, The version 

presented here is from Mouelhi et al. (2003).  

It is an empirical model however it structure resembles conceptual reservoir models. 

It associates 2 reservoirs: one for production and one for rooting. Hence the production 

function of the model is based on the production reservoir that simulates the soil 

moisture conditions. The capacity of the reservoir is represented by a parameter X1. 

Another parameter -X2- associated to the rooting reservoir opens an exchange with the 

exterior of the basins (Figure 7.1).  

The inputs to the model are rainfall and reference evapotranspiration in mm. The two 

parameters of the model are calibrated using the observed river runoff in mm. The multi-

criteria function used for the calibration is the Nash and Sutcliffe efficiency criteria. The 

model gives Nash values in term of mean monthly observed runoff Nash (Q) but also in 

term of (√Q) which permits to analyze how good is the model in simulating high flows 
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and also ln (Q) for low flows simulation assessment. And finally the model also gives the 

error on water volume.  

 

Fig. 7.1 GR2M structure. 

The GR2M was applied on the Lebanese catchments for the period 2001-2011. The 

time series data (2001-2011) where split in two halves; from 2001 to 2005 for calibration 

and from 2006-2011 for validation, the process was then reverted. Nevertheless, three 

of the datasets (sub-basins) described before were excluded; they are Ibrahim at Afqa, 

Ibrahim Roueiss, and Orontes at Ain Zarqa. These are karstic springs that need to be 

treated separately. 

Accordingly, the GR2M model was first applied separately on each basin 

(calibration/validation) and the results for all catchments were then discussed. In the 

next step, different regionalization approaches were compared. Afterwards, the results 

by groups of similar catchments (physically similar, hydrologically similar, and 

simultaneously physically and hydrologically similar catchments) are discussed.  Finally, 

a detailed description of each catchment modeling result is presented.  

7.3 Results and Discussions 

7.3.1 GR2M modeling Results  

GR2M results across the simulated Lebanese catchments have a wide range. Nash 

coefficient values range from 0.18 to 0.89 in calibration (2001 - 2006) and 0.02 to 0.74 in 

validations (2006 - 2011); and from 0.14 to 0.86 in calibration (2006 – 2011) and 0 to 
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0.84 in validations (2001 – 2006).  Figure 7.2 shows the cumulative frequency 

distribution of GR2M simulation results for the calibration and validation periods. The 

results are quite consistent between the calibration/validation periods with a median 

Nash values in calibration and validation around 0.65 and 0.55 respectively for both. 

Moreover, the parameters values seem not to vary significantly when changing the 

calibration period (Fig. 7.3). However, the inter-quartile range for the 2001-2006 

calibration /2006-2011 validation set appears to be slightly better (Table 7.1). Thus the 

rest of analysis will be presented on this dataset.  

The worst results were obtained for mountainous catchments in the north of Lebanon 

heavily affected by snow (Nash (Q) < 0.1), while the best results (Nash (Q) > 0.7) were 

found in the inner catchments and in catchments located at the southern part of Mount 

Lebanon. In the former (inner catchments: Litani and Hasbani), the large area of these 

basins smooth the hydrological response making their simulation easier. Whilst in the 

latter, precipitation mostly occurs as rainfall (lower elevation) with limited snowfall which 

makes the simulation more efficient. In term of high flow simulation -Nash (√Q) - the 

results are in the same order of the Nash (Q) with a median result in validation around 

0.5. However, for low flow simulation the results deteriorate with a median Nash ln (Q) of 

only 0.27. 

 

Fig. 7.2 Cumulative frequency distribution of GR2M performances over the studied Lebanese 

catchments for the study period (2001-2011) in term of Nash (Q); (a) model calibrated on 2001-

2006 data and validated on 2006-2011. (b) Calibrated on 2006-2011 and validated on 2001-

2006. 

(a) (b) 
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Fig. 7.3 Relationship between model parameters for 2 different calibration periods; (a) 

parameter X1, and (b) parameter X2. 

 

Table 7.1 The range of GR2M parameters values and results of GR2M in term of median and 

inter-quartile range for 2 calibration and validation periods. 

Group X1 range X2 range Median Nash Inter-quartile 
Nash range 

Calibration (2001- 2006) 5.66 – 8.43 6.15 - 8.68 0.66 0.47 - 0.78 
Validation (2006-2011)   0.58 0.46 – 0.67 
Calibration (2006-2011) 0.79 - 2.49 0.72 – 2.16 0.65 0.56 – 0.76 
Validation (2001-2006)   0.56 0.29 – 0.64 

 

In order to investigate the impact of catchments characteristics on GR2M simulation 

efficiency we plotted the Nash (Q) values in validation against the catchment area, the 

catchment mean elevation and the catchment proportion of  elevation greater than 1800 

m (heavy snow impact) (Fig. 7.4). Despite the scatter in the data a slight tendency is felt 

toward a better simulation for catchments with large areas. This is clear given that the 

highest value of Nash is found for the biggest studied catchment, the Litani at 

Joubjannine. Moreover, in term of catchment elevation and snow impact (proportion of 

area above 1800 m), it is clear (except for some few exception, that the more elevated 

the catchment and the more high altitude are it covers the worst are the GR2M 

simulation results. Hence, the mountainous catchments of the north and central Mount 

Lebanon exhibit some of the worst Nash values.  

(a) (b) 
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Fig. 7.4 Nash coefficient in calibration (2001-2006) versus (a) catchment area and (b) mean 

catchment elevation and (c) portion of catchment area above 1800 m for group of similar 

catchments. 

 

7.3.2 Regionalization 

Furthermore, we applied different regionalization approaches on the studied 

catchments. Hence, we validated the model on each catchment, using: (i) the 

parameters of its nearest neighbor (spatial proximity), the global mean parameters 

values, the mean parameter value for each group of similar catchments. The results 

compared to site validation (parameters calibrated on the same catchment) are 

presented in Fig. 7.5 and table 7.2. Despite the fact that the spatial proximity method is 

often reported in the litterature with the best performance, it yielded the poorest results. 

However, the good performance attributed with this method is usually associated with a 

high density of gauging stations (Parajka et al. 2005, Oudin et al. 2008, Andréassian et 

al. 2012, etc.) which is not the case here. For the similarity-based methods and the 

global mean, 60 % of the catchments results do not deviate considerably from the 

reference (site validation). At all levels, mean parameters of the physically similar groups 

(a) (b) 

(c) 
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and hydrologically similar groups yield very similar results and are better than the results 

from those yielded for both the physically and hydrologically similar groups (PH) mean 

parameters, and the global mean; with the PH groups being slightly better than the 

latter. While, it is expected for the global mean to yield poor results, mixed results for 

similarity-based methods are widely reported in the literature (see the review by Parajka 

et al. 2013). However, for the remaining 40 % of the catchments the results deteriorates 

dramatically in all types of grouping with negative Nash values for about 20 % of 

catchments. 

 

Fig. 7.5 Comparison between GR2M performances in term of Nash (Q) for the on site 

calibration, validation and for different regionalization approaches. 

Table 7.2 Results of GR2M on term of median and inter-quartile Nash (Q) values for different 

regionalization methods. 

 Median Nash (Q) Inter-quartile Nash range 

Calibration 0.66 0.47 - 0.78 
Validation 0.58 0.46 – 0.67 
Spatial proximity 0.44 0.17 – 0.58 
Global mean 0.52 0.36 – 0.64 
Group mean for physically similar 0.57 0.35 – 0.66 
Group mean for hydrologically similar 0.56 0.33 – 0.63 
Group mean for physically and 

hydrologically similar catchments 
0.53 0.29 – 0.62 
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7.3.3 GR2M Results by group of similar catchments 

For the physically similar groups (Table 7.3), the best performances are found in two 

catchments that do not fit in any particular group. These are the two internal catchments 

with the largest area. For the 3 remaining groups, all groups exhibit fair performances 

with the median Nash in the same order (around 0.55), however slightly better results 

are found for P1.  

Table 7.3 The range of GR2M parameters values and results of GR2M in term of median and 

inter-quartile range by group of physically similar catchments. 

Group X1 range X2 range Median Nash Inter-quartile 
Nash range 

Group P1 7.0 – 7.6 1.3 – 2.3 0.55 0.5 – 0.63 
Group P2 6.0 – 7.0 1.0 – 1.3 0.53 0.51 – 0.54 
Group P3 6.23 – 8.29 0.91 – 1.67 0.54 0.53 – 0.59 
Non similar 7.32 – 8.37 0.85 – 1.39 0.71 0.59 – 0.72 

 

The hydrologically similar catchments “group H2“, (Table 7.4) comprises 4 

neighboring and nested catchments in the southern central Mount Lebanon exhibits 

better Nash results with a narrow parameters range than the other two remaining 

groups.  

Table 7.4 The range of GR2M parameters values and results of GR2M in term of median and 

inter-quartile range by group of hydrologically similar catchments. 

Group X1 range X2 range Median Nash Inter-quartile 
Nash range 

Group H1 6.87 – 8.37 0.91 – 1.67 0.48 0.21 – 0.55 
Group H2 6.01 – 6.29 0.94 – 1.41 0.61 0.53 – 0.68 
Group H3 7.32 – 7.87 1.01 – 2.32 0.55 0.50 – 0.63 

 

For the third type of classes, catchments that are at the same time physically and 

hydrologically similar (Table 7.5), one can notice that the so defined group exhibit 

narrow parameter ranges (narrower than both previous classification) except of course 

for the non similar catchments, however, the median Nash results are mixed and not 

necessarily better than in previous grouping. Again group PH1 are mainly northern 

catchments with great snow impact, PH2, PH3 and PH4 almost correspond to P1 and 

P2. The non similar catchments are the inner catchments and the Damour at sea mouth 

which explain their high Nash values.  
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Table 7.5 The range of GR2M parameters values and results of GR2M in term of median and 

inter-quartile range by group of physically and hydrologically similar catchments.  

Group X1 range X2 range Median Nash Inter-quartile 
Nash range 

Group PH1 7.49 – 8.28 0.91 – 1.66 0.4 0.15 – 0.47 
Group PH2 7.28 – 7.87 1.4 – 2.32 0.52 0.39 – 0.57 
Group PH3 6.87 – 7.02 1.00 – 1.64 0.55 0.53 – 0.57 
Group PH4 6.01 – 6.25 1.40 – 2.32 0.52 0.39 – 0.57 
Non similar 6.29 – 8.37 0.85 – 1.42 0.71 0.69 – 0.73 

 

7.3.4 GR2M simulation analysis 

In order to look into the details of the GR2M simulation we present here the details 

hydrographs of the simulated catchments with the simulation results. Alongside the 

GR2M simulation the hydrograph presents the observed monthly runoff, precipitation 

and the % of catchment surface covered in snow.  

 

Group PH1 

A shift in the runoff peak from February to March-April is noticed. This can be attributed 

to the prevalence of snow dominated runoff regime. Snow covers 40 to 60% of this class 

catchments’ (except Arka catchment) and can not be seized by the GR2M model. Arka 

catchment simulation gave fair Nash validation results (Nash (Q) = 0.61). A simple shift 

in the observed data for the Bared catchments increased the Nash (Q) from 0.37 to 0.6 

in calibration and 0.02 to 0.3 in validation. So did Abu Ali at Rasheine.  
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 Calibration (2002-2006) Validation (2007-2010) 

P (mm) 3804 2816 
Qobs (mm) 2424 1723 
Qcal (mm) 2321 1356 
Nash(Q) 72.1 60.9 
Nash(√Q) 65.9 46.2 
Nash(lnQ) 55.0 17.6 

Water Balance (%) 96.0 111.4 

 

 

 Calibration (2002-2006) Validation (2007-2011) 

P (mm) 3681 2967 
Qobs (mm) 3291 1399 
Qcal (mm) 3146 2284 
Nash(Q) 37.8 2.7 
Nash(√Q) 39.1 -16.2 
Nash(lnQ) 31.0 -33.6 

Water Balance (%) 95.6 161.9 
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 Calibration (2002-2006) Validation (2007-2011) 

P (mm) 3764 3764 
Qobs (mm) 2493 1503 
Qcal (mm) 2452 1959 
Nash(Q) 66.4 49.5 
Nash(√Q) 68.0 51.1 
Nash(lnQ) 64.2 42.4 

Water Balance (%) 98.4 130.4 

 

 

 Calibration (2003-2006) Validation (2007-2011) 

P (mm) 2438 3472 
Qobs (mm) 2575 2680 
Qcal (mm) 2564 3730 
Nash(Q) 60.2 40.8 
Nash(√Q) 64.6 45.1 
Nash(lnQ) 55.1 37.0 

Water Balance (%) 99.5 137.6 
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 Calibration (2003-2006) Validation (2007-2011) 

P (mm) 2449 3208 
Qobs (mm) 1674 1834 
Qcal (mm) 1544 1847 
Nash(Q) 81.6 63.3 
Nash(√Q) 48.0 65.0 
Nash(lnQ) -24.9 65.4 

Water Balance (%) 113.9 76.8 

 

 

 Calibration (2002-2006) Validation (2007-2011) 

P (mm) 4072 4075 
Qobs (mm) 3391 3391 
Qcal (mm) 1657 856 
Nash(Q) 60.6 46.0 
Nash(√Q) 59.9 31.1 
Nash(lnQ) 29.3 -14.5 

Water Balance (%) 107.8 158.1 

 

Fig. 7.6 GR2M simulation results for different group of similar catchments with observed runoff, 

precipitation and % of snow cover (Group PH1). 

Group PH2 

Similarly to the previous group, snow covers an important portion of the catchment total 

area (more than 50 % of catchments area). Here two main problems obviously appear in 

the hydrograph: a shift in the runoff peak from February (simulated) to March or April 

(observed) and a rapid recession during the dry period that is not captured well by the 

model. While the first problem (the shift in the peak) could be attributed to the snow 

impact, the reasons behind the rapid recession may be attributed to the over-exploitation 

of surface and groundwater in this period of the year. Nevertheless, the simulation gives 

relatively fair results with Nash (Q) in the range of 0.5, and reaches 0.63 for kelb at sea 

mouth. 
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 Calibration (2002-2006) Validation (2007-2011) 

P (mm) 3970 3889 
Qobs (mm) 5073 3817 
Qcal (mm) 5059 4979 
Nash(Q) 31.3 50.5 
Nash(√Q) 39.9 38.1 
Nash(lnQ) 26.4 4.4 

Water Balance (%) 99.7 130.5 

 

 

 Calibration (2003-2006) Validation (2007-2011) 

P (mm) 2995 3936 
Qobs (mm) 2696 2641 
Qcal (mm) 2627 3334 
Nash(Q) 39.6 55.3 
Nash(√Q) 48.7 44.1 
Nash(lnQ) 29.2 11.5 

Water Balance (%) 97.4 115.8 
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 Calibration (2002-2006) Validation (2007-2011) 

P (mm) 4269 3809 
Qobs (mm) 3955 2698 
Qcal (mm) 4174 3543 
Nash(Q) 78.1 63.2 
Nash(√Q) 67.3 55.1 
Nash(lnQ) 36.4 22.1 

Water Balance (%) 105.5 131.3 

 

Fig. 7.7 GR2M simulation results for different group of similar catchments with observed runoff, 

precipitation and % of snow cover. 

Groups PH3 and PH4 

In these two groups, GR2M simulation results are satisfactory. The runoff generating 

mechanism is rainfall dominated. Snow cover is very limited and barely exceeds 20 % of 

total catchment area and for a very brief period of time. Nash ((Q) yields fair to good 

results with values ranging from 0.51 in Beirut at Jaamani to 0.67 for Damour at Jisr 

Qadi. 
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Group PH3 

 

 Calibration (2006-2009) Validation (2009-2011) 

P (mm) 2788 1935 
Qobs (mm) 768 438 
Qcal (mm) 1226 746 
Nash(Q) 80.9 51.1 
Nash(√Q) 70.2 45.0 
Nash(lnQ) 36.7 8.9 

Water Balance (%) 111.6 179.4 

 

 

 Calibration (2004-2006) Validation (2006-2010) 

P (mm) 2024 3625 
Qobs (mm) 1783 3061 
Qcal (mm) 1570 2722 
Nash(Q) 78.4 59.9 
Nash(√Q) 82.2 67.8 
Nash(lnQ) 80.7 59.8 

Water Balance (%) 104.2 92.4 

Fig. 7.8 GR2M simulation results for different group of similar catchments with observed runoff, 

precipitation and % of snow cover (Group PH3). 
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Group PH4 

 

 Calibration (2002-2006) Validation (2007-2011) 

P (mm) 4129 3809 
Qobs (mm) 2388 1627 
Qcal (mm) 2384 2174 
Nash(Q) 72.0 53.4 
Nash(√Q) 83.4 75.0 
Nash(lnQ) 82.1 74.3 

Water Balance (%) 99.8 133.6 

 

 

 Calibration (2002-2006) Validation (2007-2011) 

P (mm) 4111 3802 
Qobs (mm) 2204 1574 
Qcal (mm) 2133 1941 
Nash(Q) 62.8 54.6 
Nash(√Q) 82.1 70.6 
Nash(lnQ) 82.0 74.6 

Water Balance (%) 96.8 123.3 
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 Calibration (2002-2006) Validation (2007-2011) 

P (mm) 4156 3920 
Qobs (mm) 3311 2554 
Qcal (mm) 3440 3242 
Nash(Q) 89.7 67.3 
Nash(√Q) 90.3 76.8 
Nash(lnQ) 85.8 79.4 

Water Balance (%) 103.9 126.9 

 

Fig. 7.9 GR2M simulation results for different group of similar catchments with observed runoff, 

precipitation and % of snow cover (Group PH3). 

Non similar catchments 

Four out of five non similar catchments exhibit a good modeling performance. Nash (Q) 

are around 0.70 and higher. The simulation yields also fair to good results in term of 

high flows (Nash(√Q)) and the error on volume. However, the simulation deteriorates for 

low flows (Nash (lnQ)) except in the case of Damour at sea mouth. Many factors could 

explain the good modeling performance in these cases. Both Hasbani and Litani have 

large surface areas that smooth the response and the snow cover rarely exceed 20 % of 

the area. For the Berdawni, and even though the catchment is small with important snow 

cover, snow melt appears to follow the same dynamics of rainfall with highest snow 

contribution coinciding with the rainfall peak. Both snow melt peak and rainfall peak 

occurs in February (no delay due to snow accumulation). Finally, for the Damour 

catchment, the negligible snow impact seems to be a major drive for the good modeling 

performance. One catchment, Kelb at Hrajel, yields poor results with Nash (Q) = 0.47. 

This is small mountainous catchments with heavy snow impact. 
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 Calibration (2003-2006) Validation (2007-2011) 

P (mm) 2559 2921 
Qobs (mm) 515 747 
Qcal (mm) 531 444 
Nash(Q) 76.6 71.2 
Nash(√Q) 77.9 52.0 
Nash(lnQ) 66.2 -6.7 

Water Balance (%) 102.3 82.6 

 

 

 Calibration (2002-2006) Validation (2007-2011) 

P (mm) 3459 2781 
Qobs (mm) 1033 511 
Qcal (mm) 1066 635 
Nash(Q) 87.8 73.0 
Nash(√Q) 80.7 64.2 
Nash(lnQ) 58.4 31.0 

Water Balance (%) 103.2 124.2 
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 Calibration (2003-2006) Validation (2007-2011) 

P (mm) 2536 3170 
Qobs (mm) 1505 1833 
Qcal (mm) 1552 1814 
Nash(Q) 88.7 69.6 
Nash(√Q) 83.3 63.3 
Nash(lnQ) 63.7 28.2 

Water Balance (%) 103.2 99.0 

 

 

 Calibration (2003-2006) Validation (2007-2011) 

P (mm) 2898 3868 
Qobs (mm) 3323 2772 
Qcal (mm) 3224 4200 
Nash(Q) 23.9 47.1 
Nash(√Q) 32.8 42.5 
Nash(lnQ) 11.7 19.7 

Water Balance (%) 97.0 106.1 
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 Calibration (2002-2006) Validation (2007-2011) 

P (mm) 4087 3813 
Qobs (mm) 3037 2829 
Qcal (mm) 3208 2981 
Nash(Q) 82.4 74.6 
Nash(√Q) 86.0 78.2 
Nash(lnQ) 72.5 64.7 

Water Balance (%) 105.6 105.4 

 

Fig. 7.10 GR2M simulation results for different catchments with observed runoff, precipitation 

and % of snow cover. 

7.4 Conclusions 

In this chapter we presented the results for the modeling the Lebanese catchments 

hydrological response at a monthly time scale using a robust, parsimonious and well 

documented global model the GR2M. Here GR2M was used as a tool to assess the 

capability of a simple but robust model to simulate the hydrological response of complex 

karstic basins such as the Lebanese catchments and to compare different 

regionalization approaches. 

The overall GR2M results give a median value of the Nash-Sutcliffe criteria around 

0.55. The comparison of different regionalization approaches yield mixed results for 

similarity-based methods, while the spatial proximity method yields the worst result.  

GR2M yield a Nash-Sutcliffe (Q) between 0.5 and 0.65 for nine catchments, while for 

five catchments (Litani, Hasbani, Berdawni, Damour at Jisr Qadi and sea mouth) GR2M 

yield quite good results (> 0.7). For the remaining catchments GR2M simulation results 

are poor (Nash (Q) < 0.5). When looking into the details of the simulation one can notice 

two main elements that may have a role in the poor performance of the GR2M. One is a 

shift in the runoff peak between February and March due to the snowmelt; another is the 
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rapid recession during the dry period. So any amelioration of the GR or the proposition 

of new conceptual models must take these two factors into account. 

The relatively fair simulation performances obtained for the Lebanese catchments 

using GR2M are understandable. Looking in details to the hydrographs of the 

catchments with the poorest results, one can notice the great impact of snow that could 

cover more than a half of the catchment area. This is the case for the majority of 

catchments in groups PH1 and PH2. Another important element is the karstic nature of 

these catchments. Catchment surface is not necessarily the entire contributing area to 

the river discharge. This is very obvious in the case of group PH5, where two 

mountainous karstic catchments are in fact karstic spring with a much larger recharge 

areas. Cases like this are reported in the literature. This is the case as an example of 

Torano at Piedimonte Matese, Sarno at S. Valentino Torio, and Fibreno at Brecco in 

southern Italy (Longobardi and Villani 2008), and Koiliaris River in Crete (Kourgialas et 

al. 2010). Here, catchment hydrological surface is much smaller than the recharge area 

that contributes to the river discharge which results in high annual runoff ratio (higher 

than 1). Seemingly, the Orontes river in the northeastern part of the country finds it 

source in a huge karstic spring with very large storage capacity (see annex 3) that can 

maintain a stable flow throughout the year. These three cases when simulated with 

GR2M (not presented here) give very poor results as it would be expected.  

These particularities (snow + karst) are not confined to Lebanon and one can find in 

literature similar cases that had been studied across the Mediterranean (Rimmer and 

Salingar 2006, Tzoraki and Nikolaidis 2007, Fleury et al. 2007, Kourgialas et al. 2010, 

Nikolaidis et al. 2013, among others). These cases are generally treated by separating 

surface flow and groundwater flow. The surface flow component is than modeled using 

classical hydrological models, while the groundwater component (karstic springs) is 

modeled using a two-reservoir Maillet karstic model (Maillet 1905): the upper reservoir is 

responsible for the spring’s rapid response simulation, while the lower one for slow 

response. When snow is a major component of the water balance, a snow module is 

also added to the modeling framework. However, such detailed models need a large 

amount of data, at least at a daily time step which is not available in our case neither for 

rainfall nor for snow.   

Another element that makes the modeling of the Lebanese catchments a challenge is 

the uncertainty on the data. The quality of the available hydro-meteorological data is 

questionable and the uncertainty of the data is yet to be assessed. Therefore, there is 

an urge to assess the uncertainty of the available data, and its impact on any modeling 

procedure. Furthermore, the country is in great need for a more advances monitoring 

system with not only higher temporal and spatial resolution, but also enhanced 

measurements’ quality.  
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General conclusions 

In this work we presented a classification framework for the Lebanese Mediterranean 

catchments. It begins by a state of the art review of Mediterranean catchment hydrology 

at different time scale. Afterwards, a detailed data analysis for the Lebanese catchments 

in term of physical, climatic and hydrological characteristics is presented, than we 

compare the hydrological response of Lebanese catchments with other Mediterranean 

catchments. Finally catchments descriptors and runoff signatures are used to define 

classes of physically and/or hydrologically similar catchments and to develop conceptual 

models to better simulate and understand the hydrological functioning of the studied 

catchments.  

The review on the Mediterranean catchments hydrology showed regional 

discrepancies (between NWM, EM and SM sub-regions) in the distribution of climatic 

and hydrological response characteristics at the annual and the event scale. The NWM 

sub-region exhibits the most extreme rainfall regime in the Mediterranean region, 

especially in an arc that extends from Northeastern Spain to Northeastern Italy. A 

tendency towards decreasing water resources driven by both anthropogenic (mostly 

land covers change) and climatic pressure (decrease in precipitation, increase in 

temperature) and towards a more extreme rainfall regime with higher frequency of 

extreme rainfall events despite the reduction in the total annual amount of witnessed 

rainfall.  Additionally, catchment responses at the event scale are very heterogeneous in 

time and space. Hence, major limitations confront classical modeling approaches that 

aim to simulate the Mediterranean catchment response especially during flooding events 

due to the specific features of the Mediterranean rainfall events. Furthermore, 

regionalization studies in the region are scarce even in term of low flows and FDCs 

which is surprising in a water-stresses region that witnesses long low-flows periods. In 

term of performance, predictions of runoff hydrograph give poor results under 

Mediterranean conditions. For FDCs and low flows predictions, statistical methods and 

Geo-statistical methods appear to outperform parametric approaches and regression 

models respectively. Mixed results were found for regional flood analysis which appears 

to be the most common regionalization practice in the region. 

An inventory of the available spatial and temporal data was carried out and followed 

by a detailed data analysis of twenty eight Lebanese catchments through extracting the 

physical and hydrological response characteristics. The spatial data concerns the 

morphometry, drainage system, geology, karst, soils and land cover. The temporal data 

concerns the precipitation (32 stations at a daily –when available- and monthly time 

step), evapotranspiration (remote sensing data at a monthly time step) and discharge 

data (24 discharges at a daily time step and 4 at a monthly time step). Gathering the 

available temporal data was a real challenge since these data are not always available 

for the same period and precipitation data is expensive. The 2001-2011 temporal data 

was analyzed and compared with a database from the pre-war period.  
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A comprehensive list of variables describing the physical (geographical and climatic) 

characteristics of the Lebanese catchments was extracted from the available data. The 

great majority of the studied Lebanese catchments are small to medium sized 

catchments with area never exceeding 500 km2. Only 2 catchments (Litani and Orontes) 

have an area exceeding 1000 km2. Median slope is 8.3 % while a quarter have a slope 

exceeding 14 %. Furthermore, due to their small area and relative steepness, longest 

flow paths are usually short; never exceeding 60 km and drainage density is high with a 

median value of about 3.38 km/km². In addition, all are mountainous catchments with 

the great majority having a mean elevation over 1000 m, and more than half of them 

with at least 20 % of total basin area above 1800 m. Moreover, the geology of the 

country is mainly composed of highly karstified carbonate rocks. The substratum is 

made primarily of highly permeable rocks and all studied catchments have at least 50 % 

of their surface karstified. Furthermore, given the mountainous nature of Lebanon, soils 

are generally shallows with medium to high infiltration capacity. Deep well developed 

soils are mostly common in catchments with agricultural terrains. The distribution of land 

use classes varies largely. Finally, mean annual precipitation ranges from around 500 

mm in the Orontes in the northeastern part of the country to more than 1200 mm in the 

central part of Mount Lebanon. Aridity index (defined as the ratio of mean annual 

precipitation to mean reference evapotranspiration) follows the same spatial distribution 

of rainfall.  

The 2001-2011 available hydrological dataset were used for extracting runoff 

signatures that represent the Lebanese hydrological characteristics. The latter shows a 

sort of regional tendencies across the country with catchments in the central part of 

Lebanon (the most humid region) exhibiting the highest values in term of both mean 

annual runoff, runoff ratio and specific daily discharge. Likewise, the daily discharge 

distribution of these catchments showed higher percentage of days with high discharge 

values. While catchments in the inner part of the country appear to exhibit the lowest 

values of mean annual runoff, runoff ratio and daily discharge. This is due to large basin 

areas and lower precipitation amount, whereas, catchments in the north of Lebanon 

appear to form an intermediate class. 

Compared to other Mediterranean catchments, annual runoff ratio values were high 

across the country. These high values are not solely attributed to the underestimation of 

the mean annual precipitation (maximum mean annual precipitation in Lebanon is lower 

than in other EM catchments) but also to the high values of mean annual runoff that is 

explained by a combination of snow accumulation and karstic springs that affect the 

water balance in the country. At an event scale, it is obvious that the rainfall amount may 

reach up to 40 % of the total annual rainfall. The maximum peak flows were not 

available; hence, the maximum daily flows were used in characterizing the catchment 

response. As expected, unit maximum daily discharge decreases with catchment area 

and is not correlated with event rainfall depth. However, it does show certain 

geographical clustering with the highest values recorded in the more humid central part 
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of Mount Lebanon. Event runoff ratio is high even when compared to other 

Mediterranean catchments; in fact it is much higher than values recorded in the EM and 

is in the range of the NWM catchments. The latter could be attributed to both rainfall 

underestimation and the karstic nature of the studied catchments along with the 

antecedent soil moisture conditions. 

The extracted catchments descriptors and runoff signatures were used separately for 

the classification of catchments according to their physical and hydrological 

characteristics. The method used for catchment classification is a hierarchical cluster 

analysis where groups are built according to distance connectivity. It is a similarity-

based classification approach where the most similar individuals are grouped together. 

Catchments holding simultaneously the same physical and hydrological similarities were 

grouped together forming five “physically and hydrologically similar” catchments’ 

classes. The first group “PH1” -mainly catchments from north Lebanon- is composed of 

five medium-sized catchments with snow-dominated runoff regimes. In this group, 

hydrological response is induced by both rainfall and snowmelt while groundwater 

contributions maintain a good amount of runoff volume during the dry season. The 

second group “PH2” is very similar to the previous one, however downstream rainfall 

impact is more important than the previous group due to both steeper slopes and more 

humid conditions (higher mean annual precipitation). While the third and fourth group 

“PH3” and “PH4” are composed of catchments sharing the same hydrological 

characteristics and having the rainfall as the main contributor to river discharges, 

however, these groups differ in their physical characteristics (catchment size, elevation, 

land cover). The last group “PH5” is composed of two small mountainous catchments 

heavily affected of snow with large groundwater contribution. Five catchments (Litani at 

Joubjannine, Orontes, Hasbani, Berdawni at Damascus Road, and Damour at sea 

mouth) did not share any of the physical and hydrological similarities and consequently 

did not fit in any group. 

Finally, the overall GR2M results are fair with a median value around 0.55. The 

comparison of different regionalization approaches yiled mixed results for 

similarity0based methods, while the spatial proximity method yields the worst result. 

GR2M yield fair results (Nash (Q) between 0.5 and 0.65) for nine catchments, while for 

five catchments (Litani, Hasbani, Berdawni, Damour at Jisr Qadi and sea mouth) GR2M 

yield quite good results. For the remaining catchments GR2M simulation results yielded 

Nash values lower than 0.5. When looking into the details of the simulation one can 

notice two main elements that may have a role in the poor performance of the GR2M. 

One is a shift in the runoff peak between February and March due to the snowmelt; 

another is the rapid recession during the dry period. So any amelioration of the GR or 

the proposition of new conceptual models must take these two factors into account. On 

the other hand, for the classification of catchments according to their hydrological and 

physical characteristics; catchments in the same group exhibit same modeling function, 

particularly for groups of physically and hydrologically similar catchments (PH).  
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 The particularities (snow + karst) of the studied catchments that make their 

simulation with GR2M difficult are not confined to Lebanon and one can find in literature 

similar cases that had been studied across the Mediterranean. Models that deal 

specifically with such situations were proposed and implemented with satisfactory 

results. Nevertheless, such detailed need a large amount of data, at least at a daily time 

step which is not always available in our case neither for rainfall nor for snow.  Further, 

the uncertainty on the data is another element that makes the modeling of the Lebanese 

catchments a challenge. The quality of the available hydro-meteorological data is 

questionable and the uncertainty of the data is yet to be assessed.  

 

Perspectives 

This study has highlighted various aspects of the hydrological and physical 

characteristics of the Mediterranean catchments in general and the Lebanese 

catchments in particular. And identified research challenges and gaps that need to be 

addressed in future works.  

The review on Mediterranean hydrology showed disproportionality in the distribution 

of studies across the Mediterranean. There is a need for more hydrological studies in 

the Eastern and Southern Mediterranean, since the event scale studies at a high spatial 

and temporal resolution are rare. Moreover, new hydrological models based on 

observational data that take into account the high spatial and temporal variability of 

rainfall and heterogeneity of catchment response is also needed. On the other hand, 

most of the regionalization studies in the Mediterranean are based on the countries 

political boundaries and does not take into account the diversity of climates that that 

same country may encounter. Thus, studies that encompass countries borders and 

permit the comparison of catchments from different part of the Mediterranean will be 

useful for understanding the regional hydrology. Additionally, this work gathered 

information on a great number of the Mediterranean catchments, a follow-up on this 

work would be to find twins catchments across the Mediterranean. Nevertheless, this 

work was limited to the Mediterranean region; future work that may extent the angle to 

regroup all Mediterranean climate areas or undertake different climatic regions is 

recommended.  

Concerning the Lebanese catchments, there are many problems that exist and need 

to be addressed. First, in term of data acquisition, the current spatial extent of the 

Meteorological network does not permit the full coverage of the entire country especially 

in the areas that might receive the highest amount of precipitation (mountainous areas) 

and in remote areas such as the Eastern chain. This can run also on the spatial extent 

of the hydrometric network with only permanent rivers being gauged while no 

information whatsoever is available for small intermittent streams. Furthermore, the 

temporal resolution for both networks needs to be higher in timescale (in minutes or 
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even hours) in order to capture the rapid variation in precipitation and the rapid response 

of the Lebanese catchments. Additionally, snow contributes to a great extent to river 

discharge; hence snow accumulation and melt has to be closely monitored in order to 

establish a credible water balance of the country. Some work leaded by the CNRS is 

being conducted in the last couple of years with the construction of some snow 

monitoring stations. Last and not least, one should note that great efforts need to be 

placed to improve the quality of these measurements.  

Lebanon has not developed a national data sharing policy. Data on water resources 

are neither sufficient nor available for everyone. However, some things could be done to 

improve the current situation. Remote sensing techniques can be one of the solutions 

that produce high resolution grids of rainfall spatial distribution on a daily and hourly time 

scale. Similarly, satellite imageries can be used to monitor the spatial distribution of the 

snow and its relative depth if appropriate tools are being used. This information could be 

used to build taylor-made model that better represent the hydrological functioning of the 

Lebanese catchments.  

Finally, when gathering data on the Mediterranean catchments, the great 

heterogeneity of the used descriptors especially in regionalization studies was a real 

challenge. The same remark is made when defining the physical descriptors and runoff 

signatures of the Lebanese catchment. There exist a huge number of variables in the 

literature. Accordingly, each author defines his own variables. This doesn’t only make 

the classification less objective but also of a great challenge towards comparative 

hydrology and the development of a global classification schemes. Thereof, there is an 

urge to agree on a minimal number of variables to be used in catchment classification. 

Perhaps the development of an interactive international database with an identity card 

(made of the so defined variables) for each catchment would be a great step towards a 

global classification schemes in hydrology.  
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Ac Catchment area (km²) 

AI Aridity index (AI= ET0/MAP) 

Agr                  Agricultural areas (%) 

Ak                  Apparent karst (%) 

Bare                Bareland areas (%) 

CC                  Climate change 

D Deterministic approach 

Dd                 Drainage Density (km/km2) 

EM Eastern Mediterranean 

ET0 Mean annual evapotranspiration (mm) 

Fc                    Forested areas (%) 

G Geo-statistical methods 

GR Global regression 

Grass            Grassland areas (%) 

Group H          Hydrologically similar catchments 

Group P          Physically similar catchments 

Group PH       Physically and hydrologically similar catchments 

HIS                 High infiltration capacity soils (%) 

HPR               High permeability rocks (%) 

IM Index methods 

Lflow             Longest flow path (km) 

LIS                 Low infiltration capacity soils (%) 

LPR                Low permeability rocks (%) 

LUC                Land use change 

MA Model averaging 

MAP Mean annual precipitation (mm) 

MAQ Mean annual runoff (mm) 

Max Zc         Maximum elevation (m) 

Min Zc           Minimum elevation (m) 

MIS                 Moderate infiltration capacity soils (%) 

MPR               Moderate permeability rocks (%) 

Nc Number of catchments 

Ne  Number of events 

NSE Nash-Sutcliffe efficiency criterion 

NWM North-western Mediterranean   

P Event rainfall depth (mm) 

PSBI Physiographic space-based interpolation 
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R Two-step regression 

R² Coefficient of determination  

RC Regional calibration 

RMSE Root mean square error 

RR Regional regression 

S Similarity 

Sc                  Slope along the Lflow (m/m) 

Shrub              Shrubland areas (%) 

SM Southern Mediterranean 

SP Spatial proximity 

Uc                   Urban areas (%) 

Zc Catchment mean elevation (m) 

Zc>1800        Area above 1800 m (%) 
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Introduction 

Hydrological modeling could be defined as a simple representation of hydrological 

processes at a certain scale, generally at catchment scale. Hydrological modeling 

may simulate continuous hydrological processes at the catchment scale, or simulate 

hydrological processes induces by a single event, such as a storm. 

 

Different approaches for hydrological modeling 

1- Physically-based models or process-based models: these models are based 

on the understanding of physical processes and their mathematical 

description, such models required a large set of data (e.g. Green and Ampt 

1911; Morel-Seytoux 1996). Physically-based models represent the 

component hydrological processes such as evapotranspiration, infiltration, 

overflow, and saturated and unsaturated zone flow using the governing 

equations of motion. In theory, physically-based models are defined by wholly 

measureable parameters and can provide continuous simulation of the runoff 

response without calibration (Beven 2001). 

2- Conceptual models: these models are based on the conceptualization of 

physical processes (e.g. Horton 1933). According to Wheater et al. (1993), 

conceptual models are based on two criteria: firstly, the structure of the model 

is specified prior to any modeling being undertaken, and secondly not all of the 

model parameters have a direct physical interpretation. Therefore at least 

some conceptual model parameters have to be estimated through calibration 

against observed data. Conceptual models generally represent all of the 

component hydrological processes perceived to be of importance in 

catchment scale input-output relationships (Wheater 2002). 

3- Empirical models:  are based on statistical analysis of observed data, and they 

are usually applicable only to the same conditions under which the 

observations were made (e.g. Soil Conservation Service SCS 1972). The 

simplicity of such models has allowed them to be applied relatively easily to 

ungauged catchments by regional analysis, relating model properties to 

physical and climatic descriptors of the catchment. 

Much widely used hydrological modeling software are based on one or more of 

these models, e.g.  Morel-Seytoux model which is a simplification of the famous 

Green and Ampt equation (Chahinian et al. 2005) is used among others in WEPP 

(Raclot and Albergel 2006) and KINEROS (Woolhiser et al. 1990); Horton's model is 

used by example in MARINE (Roux et al. 2011), SCS is used among other in SWAT 

(Arnold et al. 1998) and HEC-HMS. 

Based on the degree of model spatial representativeness, one can dedifferentiate 

lumped model and spatially distributed model. Lumped models are simple model that 

represent the whole basin as one entity, thus, does not account for spatial variability 
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inside the catchment and for small-scales processes. On the contrary, spatial 

distributed model or distributed hydrological models (e.g. Moussa et al. 2007) are 

more complex models that take into account catchment subdivisions, and the 

variability of catchment physical characteristics from one subdivision to another. 

In Hydrology, models have become essential for study of the water cycle at the 

catchment scale. These models are used by hydrologists to test hypothesizes and to 

understand hydrological processes (Beven 2001). They have become useful tools in 

water resources planning and management, providing capability to predict stream 

flow form routinely used climatic data. One hydrological models application that have 

been largely developed in recent years is the assessment of the hydrological impact 

of land cover changes. Whereas land cover change influence on water yield have 

become a major concern for hydrologists, hydrological modeling aiming to respond to 

this problematic has flourished in the last few years. 

 

Model calibration and validation procedure 

Model calibration is the process of selecting suitable values of model parameters 

such that hydrological behavior of the catchment can be simulated closely (Moore 

and Doherty 2005). Validation takes place after calibration to test if the model 

performs well on a portion of data, which was not used in calibration. Model 

verification aims to validate the model’s robustness and ability to describe the 

catchment’s hydrological response, and further detect any biases in the calibrated 

parameters (Gupta et al. 2005).Special attention should be paid to model calibration 

procedure since the role of calibration is to determine the model parameters. The 

rainfall-runoff record for the study area is usually divided into calibration and 

validation groups; while it is generally advisable that both groups should be large 

enough and represent the climatic and hydrological variability, more importance is 

usually given to the calibration group due to the calibration direct role in determining 

the model parameters. In general, records used for validation are not included in the 

calibration group; this is to asses independently the performance of the calibrated 

model (Bahat et al. 2009). Many objectives criteria are used in the literature for model 

calibration, these criteria usually measure agreement between the observed and the 

simulated runoff. Volume conservation, peak flow reproduction and global agreement 

between observed and computed curves are taken into account in the objectives 

criteria. 

Two main objectives criteria used for calibration and validation procedures are the 

the Nash and Sutcliffe (1970) efficiency measure and the Root Mean Square Errors 

RMSE. 

The Nash-Sutcliffe efficiency index is calculated as: 

NSE = 1-  
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Oi is the observed discharge at timestep i, Si the simuated discharge, and O the 

mean value of observed discharges Oi. 

Nash–Sutcliffe efficiencies can range from −∞ to 1. An efficiency of 1 (NSE = 1) 

corresponds to a perfect match between observed and simulated data. Essentially, 

the closer the model efficiency is to 1, the more accurate the model is. 

As an example of the Root Mean Square Error: 

RMSEV =  
 

 
            

    

 

Where 

RMSEV    the root mean square error for the overall runoff volume 

n                number of events in the calibration group 

I                index representing a flood event 

Voi            observed runoff volume for the event i (m3) 

Vsi             simulated runoff volume for the event i (m3) 

 

Here, one should mention that due to the high variability in events magnitudes, 

RMSE may be sensitive to large events, thus the representativeness of such criteria 

is questioned. As an example Bahat et al (2009) found that the optimal parameters 

based on RMSLQ (root mean square error for peak flow) for 12 rainfall-runoff events 

are 9 mm and 1 mm/h for the initial loss and infiltration capacity, respectively. If the 

largest runoff volume event is removed from this group, the calibration yields values 

of 6 mm and 8 mm/h. They notice that by adding a log-based function to the objective 

criteria equation, as example, 

 RMSELV =  
 

 
                           

    

(constants considerably smaller than any observed values are added to the 

logarithmic function to avoid the analysis of a zero in a log function), the sensitivity of 

the RMSE to large events decreases, as such, the parameters obtained for the 

RMSELV objective function are 4 mm and 3 mm/h for groups with or without the 

largest event. 

 The calibration is done by finding the optimal parameter values for each 

objective function, by scanning the parameter space at constant intervals and finding 

the parameter set with the best objective function value. 
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Models limitations 

Since the models are the mathematical representations of natural processes, they 

are limited by many factors: 

Empirical models based on statistical analysis of observed data are limited to the 

fact that they can only be used in the same conditions under which observations 

were made; otherwise, the model parameters will need intense calibration to fit in for 

the new environment were the model is applied. Moreover, one should mention, that 

the fact that these models are based on statistical analysis is a limitation, since 

statistical analysis are always liable for a certain degree of subjectivity. Furthermore, 

statistical techniques have their own limitations, sampling procedure, overweighting 

(sometimes the representativeness of a sample could be altered by the presence of 

extreme, very rare events), etc. 

Physically-based models are highly demanding in term of data. Although these 

models describe the physical processes inside a catchment, it can only be applied on 

a very small scale; otherwise, one will need an immense data gathering networks. 

Such models are usually used in experimental catchment were data measurements 

are available. Moreover, such models most be applied on short time-steps to account 

for the continuous variation of physical parameters in the study area. 

The limitations of a conceptual model lie in the reality that these models are a 

simplification of very complex natural process which is reduced to a mathematical 

formula. Conceptual models also required an immense parameterization. 

In term of lumped and distributed hydrological models, the former is a 

simplification of a very complex situation; it neglects the effect of relief, and the 

influence of rainfall variability which make runoff less predictable especially in 

mountainous region (Moussa et al. 2007). While the latter, which is a more realistic 

approach for hydrologic simulation, is limited by data availability especially in term of 

rainfall and soil moisture distributions, which are two important variables that control 

runoff generation and serve as input to models (Nikolopoulos et al. 2011). A 

distributed model also required rigorous parameterization, calibration and validation 

procedures, with some test of internal consistency of the distributed results on 

subcatchments (Moussa et al. 2007). 

One should also mention that in practice, complex models often do not provide 

more accurate runoff predictions relative to simpler and less detailed ones. For 

example, Michaud and Sorooshian (1994a), for the 150 km2 semi-arid Walnut Gulch 

experimental watershed in Arizona, found similar performance of simple Soil 

Conservation Service (SCS 1965). Al-Qurashi et al. (2008) modeled a 734 km2 arid 

watershed in Oman with the complex Kineros model but performance was poor and 

inferior to that of a simple empirical model. 
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Input errors 

The biggest problems for modelers are input data. It is said that the quality of the 

results is more dependent on the quality of the input data than the model chosen for 

use (Boughton 2005). Two major problems are measurement errors and sampling 

errors (when the selected input data are not representative for the whole catchment 

(Boughton 2005). 

Another issue is the spatial variability and distribution of input data, especially 

rainfall. Rainfall spatial distribution over the catchment is often not well represented 

by rain-gauge networks (Faures et al. 1995). Actually, radar technology has allowed 

the representation of rainfall variability and distribution. However, this method has 

always its limitations: on one hand, several corrections should be performed on the 

initial radar signal so that it can be used as an input to the hydrological model, on the 

other hand, which is more important, Nikolopoulos et al. (2011) has demonstrates 

that for rainfall resolution greater or equal to 8 km, the different in peak discharge and 

runoff volume between simulated and observed results, for all simulated catchment, 

are non-acceptable. This indicates that rainfall radar resolution should be considered 

when using radar data for runoff simulation. 
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  Regionalization in hydrology 
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Introduction 

Although the definition of the term “regionalization” has slightly changed over the 

years (He et al. 2011), it is mostly used to refer to any approach that permit the 

transfer of hydrological information from gauged catchments to ungauged ones 

(Oudin et al. 2010).  

During the last decade (named the PUB decade by the International Association of 

Hydrological Sciences), hydrologists worldwide emphasize on developing, applying 

and comparing new methodologies for regionalization of hydrological information 

(Merz and Blöschl 2004, 2005; Parajka et al. 2005; Young 2006; Bardossy 2007; 

Gotzinger and Bardossy 2007; Oudin et al. 2008; etc.). This emphasize was driven 

by the fact that the majority of basins worldwide are ungauged and that “in the 

presence of data scarcity it would be compelling to infer hydrologic function from the 

metric of catchment form” (Hrachowitz et al. 2013). Moreover, hydrologists became 

aware that the, already in use, hydrological models and empirical methods are 

unable to predict in ungauged sites (Sivapalan, 2003a), which reflect their 

insufficiency in representing the underlying hydrological processes.  

The importance of regionalization comes, not only from the necessity of prediction 

in ungauged basins, but also from its ability to compare between large samples of 

catchments across different hydro-climatic conditions. Andréassian et al. (2006) 

emphasizes the importance of working with a large number of basin datasets; the 

aim is to compare and learn from catchments differences and similarities in different 

locations (Parajka et al. 2013; Salinas et al. 2013). Hence, regionalization studies 

contribute enormously to the ongoing work towards the development of a global 

classification scheme which still lacking in hydrology (Sivapalan 2005; Wagener 

2007). Furthermore, the application of regionalization approaches proved to be 

valuable in constraining model uncertainties (Yadav et al. 2007). 

As referred to earlier, regionalization is “any method used to transfer hydrological 

information from gauged to ungauged sites”. However, there are many types of 

hydrological information. In some cases, hydrological information could be limited to 

some hydrological indices (also called runoff signatures) that represent aspects of 

catchment response (see Olden and Poff 2003 for a detailed review of hydrological 

indices) such as low flows (Longobardi and Vallini 2008; Mehaiguene et al. 2012, 

etc.) or floods (Farquharson et al. 1992; Saf 2009; etc.). While in other cases, the aim 

of regionalization is a continuous streamflow simulation (Kay et al. 2006; 

Andréassian et al. 2012; etc.). In the first case, regionalization is model independent 

(hydrological indices are directly regionalized), in the latter, regionalization is model-

dependent. This means that the parameters of a hydrological model are calibrated on 

one (or more) donor catchment (gauged site) and then transferred to the target 

catchment (ungauged site) where the model is run to predict the runoff hydrograph. 

Model-independent or dependent, there are many regionalization approaches 

available in the literature. They can be summarized into 3 major groups: geographical 

distance-based regionalization, similaqrity-based methods and regression-based 
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methods. Moreover, one can implement regionalization in many different manners. 

This largely depends on the number of donor catchments used to transfer 

hydrological information to the target one. Hence, one can talk about, global 

regression, regional regression, model averaging, output averaging, regional 

calibration, etc.  

These regionalization methods do not perform equally well (Oudin et al. 2008, 

2010; Parajka et al. 2013; Salinas et al. 2013; etc.). They have their limitations and 

they depend on the available data and the underlying climatic and catchments 

characteristics.  

In the following we will present an overview of the widely used regionalization 

methods, their limitations and a comparison assessment of their performances. 

 

Regionalization methods 

There are many regionalization approaches mentioned in the literature. However, 

they can be grouped into 3 main classes of regionalization methods: geographical 

distance-based methods, similarity-based methods and regression-based methods. 

Geographical distance based methods 

a) Spatial proximity 

This approach assumes that catchments in the same geographical region have 

similar climatic and physical conditions. Therefore, one can transfer hydrological 

information from one (or more) gauged sites to an ungauged catchment in the same 

geographical region (Parajka et al. 2005; Oudin et al. 2008; etc.). The spatial 

proximity between catchments is measured as the Euclidian distance between 

catchments outlets or centroids (Eq.1) (Parajka et al. 2005; Andréassian et al. 2012).  

 

                                              (1) 

 

Where Xt, Yt and Xd, Yd are the coordinates of the centroids (or outlets) of the 

target and donor catchments respectively. 

b) Geo-statistical methods 

As for the spatial proximity approach, geo-statistical methods also assume that 

geographically close catchments present similar behavior. These are a set of 

methods (such as “Kriging” and “inverse distance weighting”) developed to 

interpolate point observations (i.e. runoff signature, model parameter at the donor 

catchment outlet) over the geographical space (Vandewiele and Elias 1995; Parajka 

et al. 2005; Samuel et al. 2011; etc.). However, classical kriging (and other geo-

statistical methods) does not take into account stream network organization and 
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nested catchments (Skoien et al. 2006). Therefore, a new approach was developed: 

Topological kriging or Top-kriging (Skoien et al. 2006; Skoien and Blöschl 2007). 

Top-kriging combines the continuous process in space defined for point variables 

(classical kriging) and the topology of the channel network and the organization of 

nested catchments. 

 

Similarity-based methods 

a) Physical similarity 

This approach assumes that catchments having similar climatic and physical 

characteristics must have similar hydrological behavior, thus, one can transfer 

hydrological information from one (or more) catchment to a “similar” ungauged target 

catchment.  Physical characteristics of catchment are measured in term of catchment 

attributes or descriptors. However, the choice of these attributes varies from one 

study to another. Hence, Oudin et al. (2010) defined the most similar catchments in 

term of seven catchments descriptors (aridity index, catchment area, mean slope, 

median altitude, drainage density, fraction of forest cover and soils). Merz and 

Blöschl (2004) also added information about geological units, porous aquifers and 

Lake Index. Others, such as Kay et al. (2006) use a very large set of catchment 

descriptors (22 catchments descriptors relative to catchment from, drainage 

organization, land use, soil, geology, etc.) while, on the other hand, some authors 

define physical similarity with very few descriptors such as, catchment area, mean 

annual precipitation and baseflow index (McIntyre et al. 2005) or even with only one 

descriptor such as the drainage area (Masih et al. 2010). 

Similarity is calculated as the root mean square difference of all catchments 

descriptors, these descriptors are standardizes by their standard deviations (Eq. 2). 

              
         

    
  

 
                  (2) 

 

Where j is one of j catchments properties, Xa,j is the value of that catchment 

properties at the ath catchment, while σx,j is the standard deviation of the property 

across all sites.  

b) Hydrological similarity 

What really define catchment hydrological behavior and how to assess catchments 

hydrological similarity is still a problem for hydrologists (Wagener 2007). As pointed 

out by Oudin et al. (2010), a model-independent definition would be preferable, such 

definition is based on catchment hydrological response indices (also called runoff 

signatures) such as flow duration curves (Masih et al. 2010), or baseflow index 

(Longobardi and Vallini 2008), etc.  However, runoff signatures represent only 

aspects of the catchment behavior, thus, to cover all aspects of the flow regimes, 
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some authors rely on model parameters transferability to define hydrological 

similarity. Therefore, 2 catchments are considered hydrologically similar if the 

streamflow of one catchment is adequately simulated using the parameter set 

calibrated on the other catchment (Kokkonen et al. 2003; Oudin et al. 2010). 

c) Transformed coordinates 

These approaches measure the similarities between catchment in a transformed 

space of the catchments physical and climatic descriptors (He et al. 2011).  

 One of the most well known examples of such methods is the Principal 

Component Analysis (PCA). PCA is a multivariate statistical method usually applied 

to reduce the dimension of large datasets by transforming the n-dimensional space 

(n= number of initial variables) into a new m-dimensional space, where m (1<= m <= 

n) is the number of new variables which are the principal components. These 

principal components are linear correlations of the initial variables; they are 

uncorrelated and orthogonal to one another and ordered as such the first component 

represents the largest amount of variance in the original dataset. Individual 

catchments can then be projected into this space and grouped accordingly 

(Mehaiguene et al. 2012). PCA is generally applied in combination with other 

methods such as regression or with kriging. The former method is referred to as 

Principal Component Regression (PCR) (Eslamian et al. 2010) and the latter, 

Physiographic Space-Based Interpolation (PSBI) (Castiglioni et al. 2009, 2011). 

 Another multivariate statistical method used for regionalization is the 

Canonical Correlation Analysis (CCA). Here we have 2 sets of random variables X= 

(X1, X2, …, Xn) and Y= (Y1, Y2, …, Ym), and there are correlations between the 

variables. CCA will find combinations of Xi and Yj which have the best linear 

correlations. In other worlds, CCA allows us to find the dominant linear model of 

covariability between the 2 sets of variables X and Y (Ouarda et al. 2001). 

Correlations between catchments descriptors and catchments response signatures 

(ex: low flows, floods) (Ouarda et al. 2001) or model parameters (Hundecha et al. 

2008) could be found via CCA. These so found relationships (correlations) are than 

replaced by canonical variables. As for the principal components of the PCA, these 

canonical variables are uncorrelated and orthogonal, thus, can be used as 

coordinates axes that define a canonical space where distance between catchments 

can be computed using Euclidean metrics (He et al. 2011).  

As for the PCA, CCA can also be used for a Physiographic Space-Based 

Interpolation (Ouarda et al. 2001). Here, similarity measures are performed in the 

canonical space using geo-statistical methods such as kriging. 

 All of the similarity measures presented in this work exhibit a limitation 

represented by the fact that these measures describe dependencies or bivariate 

correlations between random variables. Thus, these relationships will change if the 

marginal distribution of the random variable changes. To overcome this problem, 

some authors introduced the usage of copulas (Chowdhary and Singh 2010; 
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Samaniego et al. 2010). Copula is a multivariate distribution with uniform marginal 

distribution. In other words, copula is a measure describing dependency regardless 

of the marginal (He et al. 2011).  Copula based similarity measure outperform 

Euclidean distance measures and reduce uncertainty in streamflow prediction 

(Samaniego et al. 2010).  

Regression-based methods 

Hydrological indices and/or model parameters are related to catchments descriptors 

via empirical relationships, the latter are used to estimate hydrological indices/model 

parameters in ungauged catchments. These types of regionalization methods are the 

mostly commonly used approaches (Nash 1960;; Kokkonen et al. 2003; Merz and 

Blöschl 2004; Parajka et al. 2005; Kay et al. 2006; Yadav et al. 2007; Oudin et al. 

2008; Longobardi and Vallini 2008; Vezza et al. 2010; Mehaiguene et al. 2012; etc.). 

As for the physical similarity approach, one can relate catchment response indices 

(hydrological indices or model parameters) to a large range of catchments 

descriptors. Thus, as for the similarity-based methods, an important issue is raised: 

what are the catchments attributes that control the catchment hydrological response, 

and therefore need to be included in the regression model. 

Regression could be directly applied to whole set of studied catchments; here we 

talk about global regression. Or, one can first subdivide the initial set of catchments 

into groups of catchments of similar characteristics using different grouping 

techniques, such as cluster analysis (Mehaiguene et al. 2012), or Principal 

Component Analysis (Eslamian et al. 2010) or based on pattern identification (e.g. 

seasonality of runoff) or even geographical distribution: here we talk about regional 

regression. 

 

Other Regionalization methods 

A set of regionalization methods widely used in regional flood studies (Farquharson 

et al. 1992; Javelle et al. 2010; etc)  is: “Index Methods” (Salinas et al. 2013). These 

approaches are applied over regions that are assumed homogenous. The flood 

distribution function (of the region of interest) is than scaled by an index flood (such 

as mean annual flood) so we obtain a regional-scaled flood distribution function. For 

the ungauged catchment, the index flood is first estimated and multiplied by the 

regional-scaled flood distribution function afterwards.  

Another approach used for regionalization is cluster analysis. Here, the initial set 

of individuals (catchments) is re-arranged into groups in such a way that each group 

(cluster) contains individuals that are the most similar. There are multiple algorithms 

to perform clustering. One can mention the distance-based model, such as 

hierarchical clustering, where groups are built according to distance connectivity 

(Archfield et al. 2013). Another algorithm is K-means clustering where individuals are 

grouped in clusters in which every individual belong to the cluster with the nearest 

mean (Mehaiguene et al. 2012). Many other clustering algorithms exist and are in 
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use by hydrologists, such as hybrid cluster analysis and fuzzy cluster analysis 

(Ramachandra Rao and Srinivas 2006). 

Finally, some authors use the arithmetic mean of model parameters as a 

regionalization method (Kokkonen et al. 2003; Parajka et al. 2005; Oudin et al. 2008; 

etc). This method is generally applied as the simplest regionalization method to 

compare with other more sophisticated approaches.  

 

Implementation of the regionalization methods 

The implementation of the regionalization methods can be model-dependent or 

independent. It depends on the method in use, the parameters to be regionalized 

(model parameters or runoff signatures) and the number of donor catchments.  

For model parameters regionalization, many implementation techniques are in 

use: 

- Model Averaging: this technique is applied with geographical distance based 

methods and similarity based methods. Here, more than one donor catchment 

is in use. An average parameter set computed from parameter sets of many 

donor catchments (Goswami et al. 2007; Oudin et al. 2008; Samuel et al., 

2011).  

- Output Averaging: Also used with a group of donor catchments, and with the 

spatial and similarity based methods. Here, instead of averaging the model 

parameters, the streamflow is averaged over the donor catchments and 

transferred to the target site (McIntyre et al. 2005; Oudin et al. 2008). The 

advantage is that all the information of the locally calibrated model parameters 

is used (Oudin et al. 2008). 

- Two-step regression: this regression technique is applied, as the noun 

implicate, in two steps. First, model parameters are calibrated on the gauged 

catchments; secondly, model parameters are related to catchment descriptors. 

This technique is the most popular regression (Kokkonen et al. 2003; Merz 

and Blöschl 2004; Wagener and Wheater 2006; Young 2006; etc). 

- One step regression/regional calibration: this technique combines the two 

steps of the previous one. Here, the model is not calibrated independently 

form catchment descriptors. On the contrary, the performance of the multiple 

regression (between model parameters and catchment descriptors) are 

simultaneously taken into account (Hundecha and Bardossy 2004; Hundecha 

et al. 2008, etc). This method allows one to find more liable parameters and 

make use of the information contained in the catchment descriptors (Parajka 

et al. 2013). 

- Sequential regression; here instead of calibrating all the model parameters 

simultaneously, the calibration is performed sequentially from the most 
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identifiable parameter to the least one (He et al. 2011). In fact this method is 

developed to overcome the issue of poor model parameters identifiability 

(Hogue et al. 2000; Wagener and Wheater 2006). 

The performance of regionalization methods are usually assessed with the leave-

one-out cross validation procedures (also known as pseudo-ungauged catchment 

procedure or jack-knife procedure). Here, each basin is used in turn as if it was 

ungauged (Parajka et al. 2005; Oudin et al. 2008; Samuel et al. 2011; etc). Statistical 

tests are then applied to test the performance of the prediction in the pseudo-

ungauged catchments. One of the most commonly in use efficiency criterion is the 

Nash and Sutcliffe (1970) criterion (Cutore et al. 2007; Oudin et al. 2008, 2010; etc). 

Other efficiency tests are also in use such as the coefficient of determination 

(Castiglioni et al. 2011; Vezza et al. 2010; etc), the root mean square error (RMSE) 

(Saf 2009; Chokmani and Ourda 2004, etc), volume error, mean bias, etc.   

 

Limitations  

Although regionalization approaches seem promising for prediction in ungauged 

basins, for constraining uncertainties related to model parameterization and for 

comparing large set of catchments (which is most valuable for the development of a 

unified hydrological theory and a general classification scheme). These methods 

have their limitations. They are either due to the regionalization approach itself, to the 

model in use, or to the underlying climate and physical conditions and the data 

availability.  

Limitations due to the regionalization methods 

A main issue with the geographical-distance based methods is that we do not 

understand how this approach works. In fact, as pointed by He et al. (2011), we do 

not yet know the underlining causes behind catchments similarity. Many authors 

have discussed the fact that geographical proximity does not necessarily reflect 

hydrological similarities which make spatial proximity a “vague indicator”. Hence, one 

can find in the literature contradictory results, with geographical distance approach 

sometimes yielding good results (Parajka et al. 2005; Oudin et al. 2008; Andréassian 

et al. 2012) or poor results (McIntyre et al. 2005; Young 2006).  

Similarity-based approaches also exhibit important limitations: how can we define 

catchments similarity? What catchments attributes should we choose? What 

similarity measures should we apply? 

Many authors rely on physical similarity assuming that physically similar 

catchments might exhibit similar hydrological behavior, hence, new questions are 

raised: are physically similar catchments really hydrologically similar? And how we 

measure physical similarity and hydrological similarity? 

Physical similarity is usually measured by Euclidean distance between catchment 

attributes (see section 2.2.a). However, no universal rules are set for the choice of 
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attributes, and choices are usually made according to the author knowledge of the 

system and/or the available data. Hence, there exist, in the literature, a wide range of 

catchment descriptors to choose from. Furthermore, in a study by Oudin et al. (2008) 

of 913 catchments in France, seven catchments attributes were chosen (aridity 

index, catchment area, mean slope, median altitude, drainage density, fraction of 

forest cover and soils), the author then apply different combination of these 

descriptors, 3 descriptors were enough to yield optimal results.  

To answer the question of whether physically similar catchments are really 

hydrologically similar, Oudin et al. (2010) grouped 903 catchments (893 in France 

and 10 in the UK) according to their physical similarity and hydrologic similarity 

(based on model parameter transferability (see section 2.2.b). Only 60 % of the 

studied catchments were both physically and hydrologically similar. The author 

emphasized on the need to define new catchment attributes that better describe the 

underlining geological and soils characteristics of the basins. Other studies also find 

no improvement in the prediction in ungauged basins by grouping of catchments 

according to their physical-climatic characteristics (McIntyre et al. 2005). 

Another similarity approach is the transformed coordinates. A first limitation of 

these methods lies in the fact that any transformation (projecting data from one 

space to another) involves a loss of information. Hence, in PCA, the individuals 

(catchments) are usually projected in the space created by the first and second 

principal component. However, these 2 components represent the largest amount of 

variance in the original variables, but not the whole variance. Moreover, Canonical 

Correlation Analysis, as pointed out by He et al. (2011), is subject to 3 main 

limitations: (1) the original variables should be normally distributed, (2) non-linear 

relationships are not captured, and (3) the linear correlation is not unique and hard to 

interpret. 

 Regression-based approaches share some limitations with the similarity 

approaches. Here again, no rules for the choice of catchment attributes against 

which model parameters or hydrological indices are regressed. Nonetheless, some 

catchment attributes seems to be more in use than other, such as drainage density, 

land cover/use, slope, soil and elevation (He et al. 2011). However, if a catchment 

descriptor is widely in use, this does not mean that it is crucial in defining catchment 

hydrological response. In fact, regression-based methods do not improve our 

understanding of catchment hydrological behavior. They may correctly estimate 

model parameters or catchment response indices, but they are still empirical 

relationships that may or may not come up with good estimations. 

 

Limitations due to the model in use 

In a study by Parajka et al. (2013), authors compared different regionalization 

approaches (for continuous streamflow simulation) involving 3874 catchments across 

different climates. These studies used different rainfall-runoff models with different 

degree of complexities, which was very valuable to determine the limitations induced 
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by model structure on the performance of regionalization approaches. Model 

complexity was expressed in term of number of model parameters. Results indicate 

no strong dependency of the performance on model complexity. However, one most 

notes that in these studies compared by Parajka et al. (2013), different 

regionalization methods were used with different models. Moreover, other authors 

(e.g. Oudin et al. 2008) found a slight decrease in regionalization performance with 

an increasing number of model free parameters. In the UK, Kay et al. (2006) 

compared 3 regionalization methods using 2 models (PDM and TATE) with 6 free 

parameters. Authors found that physical similarity outperforms regression for PDM, 

while, regression performs better with TATE. They concluded that model structure 

does influence the performance of regionalization methods. 

A well known problem of model-dependent regionalization is the problem of model 

parameters equifinality (different sets of model parameters yield the same optimum 

result). Another is the interdependency of model parameters. In order to overcome 

this problem, Bardossy (2007) discussed a new approach where the whole sets of 

catchment parameters are transferred from the donor catchments to the target 

catchments.  The approach was presented as trial and error procedure. Where some 

target catchments delivered good results and other don’t. Further work is needed to 

develop this approach. 

Impact of data availability, climatic conditions catchment characteristics on 
regionalization efficiency 

Geographical-distance based methods and physical similarity methods seem to 

improve with an increasing density of gauged basins (Parajka et al. 2005; Oudin et 

al. 2008; Andréassian et al. 2012). In fact, the impact of the streamgage network 

density on the efficiency of the geographical-based methods is crucial. Oudin et al. 

(2008) progressively decreases the network density of the possible donor 

catchments. The efficiency of the spatial proximity largely decreases with the 

decrease of the network density. The same results were presented by Andréassian 

et al. (2012). This limitation is very undermining since the whole point of 

regionalization is prediction in “ungauged basins”. 

Parajka et al. (2013) and Salinas et al. (2013) compared regionalization methods 

for runoff hydrograph prediction, and low flows and floods predictions respectively. 

The former used 3874 catchments from 34 international studies on continuous 

streamflow simulation across different climates. The Latter used 3112 catchments 

(14 studies) for low flows predictions and 3023 catchments (20 studies) for floods 

prediction across different climates. They concluded -for all regionalization methods 

and all regionalized parameters- that regionalization methods perform better in humid 

areas than in arid areas. This is mainly due to the fact that hydrological processes 

are more linear under humid conditions. Arid regions are more spatially 

heterogeneous and hydrological processes tend to be more non-linear and variable 

in time. Other authors gave the same conclusion. Hence, Bao et al. (2012) compared 

regionalization methods across different climates in China. They found better 

performance in humid regions. Oudin et al. (2008) found the better performance of 
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regionalization methods in western France, while the catchment in the Mediterranean 

southern part of the country yielded the poorer results. However, in cold 

environments regionalization yielded a very wide range of performance. This may be 

due to the complexity of such environments where snow is a major control on 

hydrological processes. 

In the same works, Parajka et al. (2013) and Salinas et al. (2013) studied the 

effect of catchment characteristics (for a lesser number of catchments/studies) on the 

regionalization method performance. They found that the impact of elevation goes in 

the same direction of climate, in other word when the increase in elevation tend to 

enhance more humid conditions (e.g. France), the performance increases, whereas, 

when it enhance arid conditions (e.g. Austria) the performance decreases. For all 

methods, an increase in catchment scale always increases method performance. 

This can be attributed to 2 main reasons: (1) the increasing number of raingauge in a 

large catchment, and more importantly (2) to the aggregation effect of runoff, as the 

catchment area increases, hydrological variability is averaged out (a smoothing 

effect). 

Comparative assessment of regionalization methods 

Comparing the performance of regionalization methods is very problematic. On the 

one hand, regionalization methods performance depend on the model in use, the 

available data, the used catchment descriptors, catchments characteristics and the 

climatic conditions. However, studies comparing different regionalization methods are 

always limited in one or another of the above mentioned criteria. As an example of 

this dilemma: Parajka et al. (2005) compared different regionalization methods in 

Austria, however Austria has only a cold climate, by which the comparison is limited. 

Moreover, the streamgage network in Austria is well developed which may favor one 

methods over another (geographical based over similarity). These same comments 

could be make for many other studies (e.g. Goswami et al. 2007; Oudin et al. 2008 

[France]; Kay et al. 2006; Young 2006 [UK]; Viviroli et al. 2009 [Switzerland]; 

Kokkonen et al. 2003 [North Carolina, USA]; Samuel et al. 2011 [Ontario, Canada]; 

etc). Furthermore, Parajka et al. (2005) and Merz and Blöschl (2004) compared 

spatial proximity and kriging for the same sets of catchments in Austria. However, the 

former used an improved version of the model (HBV) used by the latter. Parajka et al. 

(2005) found that kriging slightly outperform spatial proximity, while with Merz and 

Blöschl (2004), the results favored spatial proximity.  

On the other hand, studies that compare regionalization methods across different 

geographical locations (i.e. different climates) by synthesizing other works (e.g. 

Parajka et al. 2013; Salinas et al. 2013) have also their constrains. Different studies 

use different kind of datasets, different catchment descriptors and different models.  
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All the above-mentioned factors make it very difficult to generalize on the 

comparative performance of regionalization methods. However, some conclusions 

could be drawn from the literature: 

- All regionalization methods perform better in humid climates than in arid 

climates and in large catchments than in small ones (Parajka et al., 2013; 

Salinas et al. 2013; Bao et al. 2012). 

- For the geographical distance based methods, geo-statistical approaches 

(mainly kriging) more often outperform spatial proximity approaches 

(Vandewiele and Elias 1995; Parajka et al. 2005; Castiglioni et al. 2009). 

- Geographical distance based methods are dependent on the streamgauge 

density, and seem to outperform other methods when streamgauge density is 

high (Parajka et al. 2005; Oudin et al. 2008; Parajka et al. 2013). The 

performance of these methods increases when the number of neighbors 

increases (Andréassian et al. 2012). 

- Regression-based methods are the most commonly used. However, they tend 

to exhibit lower performances when compared to other methods (Kokkonen et 

al. 2003; Merz and Blöschl 2004; Parajka et al. 2005; McIntyre et al. 2005; 

Oudin et al. 2008; Samuel et al. 2011). One can find some exceptions as in 

Young (2006) and Kay et al. (2006). 

- In comparison with other approaches, mixed performances are reported for 

the physical similarity approach and it is hard to draw a general conclusion. It 

is somewhat in between geographical-distance based approaches and 

regression. It seems that the choice of catchment attributes and the model 

have a great impact on the performance of this method (Kokkonen et al. 2003; 

Kay et al. 2006; Oudin et al. 2008). 

- Physical similarity does not necessarily implicate hydrological similarity (Oudin 

et al. 2010) and using model-independent approaches to measure 

hydrological similarity seems to be more accurate (Masih et al. 2010) than 

model parameters transferability approaches. 

- When implemented via output averaging, spatial proximity and physical 

similarity seems to yield better results than with the model averaging approach 

(McIntyre et al. 2005; Oudin et al. 2008). 

- New approaches combining different regionalization methods (Samuel et al. 

2011; Bao et al. 2012) and other using more sophisticated statistical 

techniques such as PCA (Castiglioni et al. 2009), CCA (Ouarda et al. 2001), 

copulas (Samaniego et al. 2010) or geo-statistical based approaches  such as 

Top-kriging (Skoien et al. 2006; Skoien and Blöschl 2007) or even a 

combination of both such as the PSBI (Physiographic space-based 

interpolation) (Castiglioni et al. 2009, 2011) seems to be very promising. 
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However, more work is needed to further develop these approaches and learn 

about their potentialities and limitations. 

Conclusion 

During the last decade, prediction in ungauged basins has been a main arena for 

research development in the field of hydrological sciences. Its importance stands 

from many factors: (1) the majority of catchments around the globe are ungauged, (2) 

the need to develop a global classification scheme for classification in hydrology, (3) 

and the necessity to compare large number of catchments in order to deepen our 

knowledge and understanding of catchment organization and the hydrological 

patterns and responses that govern catchment hydrological behavior.   

Prediction in ungauged basins can be model dependent or independent. Many 

approaches are undertaken by hydrologists in order to optimize prediction in 

ungauged basins. In this work, we have presented an overview of the most 

commonly used regionalization methods, their limitations and their relative 

performances. One can summarize as follow: 

- Regionalization methods could be grouped into 3 main approaches: 

geographically-based approaches, similarity-based approaches and 

regression. They can be implemented as model-dependent or independent. 

They are applied for continuous streamflow simulation or for specific runoff 

signatures. 

- Regionalization approaches have many limitations. These limitations are due 

to the philosophy (assumption) behind the approach; data availability; 

catchment descriptors and model complexity, and the underlining climatic and 

catchments characteristics. 

- The relative performances of regionalization methods vary with climatic 

conditions, catchments attributes, the model and the data. However, although 

the most commonly in use, regression based methods appears to be the least 

successful. Whereas the geographical based approach (mainly geo-statistical 

methods) tends to be the most successful especially in regions with dense 

streamgauge network. 

- Catchment attributes most commonly in use for similarity and regression 

based methods are not necessarily the main factors influencing catchment 

hydrological behavior. More work is needed to fully understand what govern 

the hydrological response of catchments in order to optimize the choice of 

catchment attributes.    

- New promising regionalization approaches are being developed (CCA, PSBI, 

copulas, Top-kriging, etc.). However, more work is needed to fully explore the 

potentiality of these methodologies. 
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On regionalization studies in the Mediterranean 
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Introduction 

Although the definition of the term “regionalization” has slightly changed over the 

years (He et al., 2011), it is mostly used to refer to any approach that permit the 

transfer of hydrological information from gauged catchments to ungauged ones 

(Oudin et al., 2010).  

During the last decade (named the PUB decade by the International Association of 

Hydrological Sciences), hydrologists worldwide emphasize on developing, applying 

and comparing new methodologies for regionalization of hydrological information 

(Merz and Blöschl, 2004, 2005; Parajka et al., 2005; Young, 2006; Bardossy, 2007; 

Gotzinger and Bardossy, 2007; Oudin et al., 2008; etc.). This emphasize was driven 

by the fact that the majority of basins worldwide are ungauged and that “in the 

presence of data scarcity it would be compelling to infer hydrologic function from the 

metric of catchment form” (Hrachowitz et al., 2013). Moreover, hydrologists became 

aware that the, already in use, hydrological models and empirical methods are 

unable to predict in ungauged sites (Sivapalan, 2003a), which reflect their 

insufficiency in representing the underlying hydrological processes.  

The importance of regionalization comes, not only from the necessity of prediction 

in ungauged basins, but also from its ability to compare between large samples of 

catchments across different hydro-climatic conditions. Andréassian et al. (2006) 

emphasizes the importance of working with a large number of basin datasets; the 

aim is to compare and learn from catchments differences and similarities in different 

locations (Parajka et al., 2013; Salinas et al., 2013). Hence, regionalization studies 

contribute enormously to the ongoing work towards the development of a global 

classification scheme which still lacking in hydrology (Sivapalan, 2005; Wagener, 

2007). Furthermore, the application of regionalization approaches proved to be 

valuable in constraining model uncertainties (Yadav et al., 2007). 

As referred to earlier, regionalization is “any method used to transfer hydrological 

information from gauged to ungauged sites”. However, there are many types of 

hydrological information. In some cases, hydrological information could be limited to 

some hydrological indices (also called runoff signatures) that represent aspects of 

catchment response (see Olden and Poff, 2003 for a detailed review of hydrological 

indices) such as low flows (Longobardi and Vallini, 2008; Mehaiguene et al., 2012, 

etc.) or floods (Farquharson et al., 1992; Saf, 2009; etc.). While in other cases, the 

aim of regionalization is a continuous streamflow simulation (Kay et al., 2006; 

Andréassian et al., 2012; etc.). In the first case, regionalization is model independent 

(hydrological indices are directly regionalized), in the latter, regionalization is model-

dependent. This means that the parameters of a hydrological model are calibrated on 

one (or more) donor catchment (gauged site) and then transferred to the target 

catchment (ungauged site) where the model is run to predict the runoff hydrograph. 

Model-independent or dependent, there are many regionalization approaches 

available in the literature. They can be summarized into 3 major groups: geographical 

distance-based regionalization, similarity-based methods and regression-based 

methods. Moreover, one can implement regionalization in many different manners. 

This largely depends on the number of donor catchments used to transfer 
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hydrological information to the target one. Hence, one can talk about, global 

regression, regional regression, model averaging, output averaging, regional 

calibration, etc.  

These regionalization methods do not perform equally well (Oudin et al., 2008, 

2010; Parajka et al., 2013; Salinas et al., 2013; etc.). They have their limitations and 

they depend on the available data and the underlying climatic and catchments 

characteristics.  

In the following we will present an overview of the widely used regionalization 

methods, their limitations and a comparison assessment of their performances. 

Database 

A total of 32 studies on the Mediterranean region published over the last two 

decades were analysed. 

To study regional tendencies in the Mediterranean zone, the study region was 

divided into the northwestern Mediterranean (NWM, encompassing Mediterranean 

Albania, Croatia, France, Italy, Montenegro, Portugal, Slovenia and Spain; 102 

studies), eastern Mediterranean (EM, encompassing Cyprus, Egypt, Greece, Israel, 

Lebanon, Palestinian territories, Syria and Turkey; 35 studies) and southern 

Mediterranean (SM, encompassing Algeria, Egypt, Libya, Morocco and Tunisia; 15 

studies).  

The studies were divided into three groups to focus on the annual water balance 

(68 studies), flood events (48 studies) and droughts (36 studies). In each group, 

studies on individual catchments (120 studies) and regionalization studies for 

predictions in ungauged basins (32 studies) were analysed separately.  

For each study, key information includes (i) the reference and coordinates of the 

basin location; (ii) the objectives of the study; (iii) the basin characteristics, such as 

the area, mean elevation, mean slope, land use, soil classes, geology and the 

possible presence of karst; (iv) the hydro-meteorological data characteristics, such as 

the rainfall-runoff measurement period, the time step of the measurements, the mean 

annual precipitation, the reference evapotranspiration, the mean annual runoff, the 

runoff coefficient and the snow contribution; for event-based studies, detailed 

information on catchment responses (rainfall, runoff, peak discharge) for each event 

was also extracted when available; (v) the model characteristics, such as the model 

name and original reference, the simulated hydrological processes, the spatial 

resolution (lumped, semi-distributed or distributed), the time step and the model 

evaluation criteria; for regionalization studies, information on the regionalization 

methods and their relative performances was also obtained.  

 

Continuous streamflow simulation 

Regionalization studies concern either the prediction of the runoff hydrograph for 

ungauged basins or the prediction of flow duration curves (FDC), which characterize 

the discharge distribution.  
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Runoff hydrograph studies  

A predicted runoff hydrograph in ungauged basins is usually achieved through 

regionalization of hydrological model parameters. Hence, model parameters are 

transferred from the gauged (donor) catchment(s) to the ungauged (target) 

catchment(s) (Blöschl 2005). Definitions and details of each method are presented in 

Parajka et al. (2013) and Goswami et al. (2007). 

Six studies on runoff hydrograph predictions in Mediterranean countries are 

presented in Table D.1. Three of these studies were undertaken specifically in the 

Mediterranean region, while three other Mediterranean catchments were part of a 

larger set of catchments. All of the presented studies used conceptual rainfall-runoff 

models for the regionalization of the runoff hydrograph. Four of the six studies 

performed regionalization for the daily runoff hydrograph, while monthly runoff 

hydrographs were predicted for the remaining two studies (Cutore et al. 2007; 

Vicente-Guillén et al. 2012).  

 
Table D.1 Summary of existing regionalization studies for continuous runoff simulation in the 
Mediterranean. Statistical evaluation indicates the leave-one-out assessment of the regionalization 
approach performance with the Nash-Sutcliffe (NSE) efficiency criterion. Nc: total number of 
catchments and the number in brackets represents the number of Mediterranean catchments in the 
larger dataset. Methods used for transfer of hydrologic model parameters include: SP: physical 
similarity; S: similarity; MA: model averaging; R: two-step parameter regression; and RC: regional 
calibration.  The performances of the regionalization approaches are not reported when they were 
available for the whole set of catchments and not particularly for the Mediterranean cases.  

Study Country Nc Hydrologic 
model 

Time 
step 

Regionalization 
method 

Performance 
(NSE) 

Castiglioni et al. 2010 Italy (Central) 52 HYMOD Daily R 0.53 
Cutore et al. 2007 Italy (Eastern 

Sicily) 
9 Regression-

based RR 
model 

Monthly R; RC 0.59; 0.66 

Oudin et al. 2010 France 850 GR4J; 
  TOPMO 

Daily S - 

Oudin et al. 2008 France 913 
(162) 

GR4J; 
TOPMO 

Daily SP, S, R - 

Goswami et al. 2007 France 12 (3) Combination 
of models 

Daily MA, RP - 

Vicente-Guillén et al. 
2012  

Spain 8 Exponential 
model 

Monthly R 0.9 

 

 

When assessing the relative performances of regionalization approaches, Oudin et 

al. (2008) proved that the spatial proximity method yielded the best results, the two-

step regression had the worst performance, and the physical similarity provided 

intermediate results. Here, one must note that the relatively dense discharge network 

in France may have favoured the spatial proximity approach (Oudin et al. 2008, 

Andréassian et al. 2012). This result was also found by Parajka et al. (2013) in their 

review on runoff hydrograph studies across climates. The unfavourable performance 

of two-step regression methods was also shown in Castiglioni et al. (2010), in which 

the median NSE value did not exceed 0.53. Even at a monthly time step, the two-

step regression yielded poor results. Cutore et al. (2007) examined the two-step and 

one-step (regional calibration) methods and proved that the median NSE 
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performance of the method slightly increased from 0.59 (two-step) to 0.66 (one-step). 

A comparison between the model average and regional pooling (Goswami et al. 

2007) shows that the latter has a better performance in all catchments, possibly 

because this method preserves the response of each donor catchment.  

Generally, regionalization approaches perform poorly in Mediterranean 

catchments. In Goswami et al. (2007) and Oudin et al. (2008), regionalization 

approaches yielded poor results in Mediterranean catchments when compared with 

catchments in other French regions. The authors state that the high temporal and 

spatial variability of extreme rainfall events caused highly variable streamflow 

discharges over time and that the catchment responses in relatively arid areas are 

heterogeneous (Parajka et al. 2013, Salinas et al. 2013).   

Flow duration curves  

A flow duration curve (FDC) presents the percentage of time (duration) that a 

streamflow value is exceeded for a given gauging station at a select time step (e.g., 

daily). A FDC is commonly used because it is a convenient and informative method 

for displaying the entire range of streamflow discharges from low flows to floods 

(Castellarin et al. 2004). Many available approaches exist for the regionalization of 

FDCs. These methods can be summarized as statistical approaches, parametric 

approaches and geographical approaches. For details on each approach, please 

refer to Castellarin et al. (2004). 

Despite the importance of FDCs for water management plans, particularly in 

water-stressed environments, few studies that deal with the regionalization of FDC 

have been published (Table D.2). This body of literature for FDC predictions in 

ungauged basins is scarce for the Mediterranean and globally, as shown in Parajka 

et al. (2013) and Salinas et al. (2013). Table D.2 summarizes the main FDC 

regionalization studies undertaken in the Mediterranean region. 
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Table D.2 Summary assessment of existing regionalization studies for Flow Duration Curve (FDC) in 
the Mediterranean. Statistical evaluation indicates the leave-one-out assessment of the regionalization 
approach. NSE: Nash-Sutcliffe efficiency criterion; MSE: mean square error; RMSE: root mean square 
error;  

Study Country Nc FDC 
approach 

Predicted 
variable 

Performance 
criterion 

Performance 

Sellami et al. 2014 France (South) 10 Modelling FDC NSE - 
Longobardi and 

Vallini 2013 
Italy (South)  

28 
Statistical FDC  

RMSE 
 
0.014 - 0.498 

Mendicino and 
Senatore 2013 

Italy (South) 19 Statistical 
Parametric 

FDC NSE >0.75 for more than 
78% of cases for all 
models; >0.75 for 
more than 52% of 
cases for all models 

Rianna et al. 2011 Italy (Lazio) 28 Statistical FDC NSE >0.95 for 54% of cases 
Viola et al. 2011 Italy (Sicily) 53 Parametric FDC RMSE 0.24 – 0.38 
Castellarin et al. 

2007 
Italy (Eastern 
Central) 

18 Statistical FDC NSE As figure 

Castellarin et al. 
2004 

Italy (Eastern 
Central) 

51 Statistical 
Parametric 
Graphical 

FDC NSE >0.75 for 29 % of 
cases; 

>0.75 for 31% of 
cases; 

>0.75 for 22% of cases 
Franchini and 

Suppo 1996 
Italy (Molise) 16 Parametric FDC - - 

Croker et al. 2003 Portugal 67 Statistical FDC BIAS (%) 12 sites with BIAS > 
75% 

Mimikou and 
Keamaki 1985 

Greece 11 Parametric FDC MSE (%) 3 - 10 

 

 

Except for Sellami et al. (2014), who used hydrological model parameter 

regionalization for the prediction of FDC, all classical approaches for the 

regionalization of FDC perform well. These results may be surprising, particularly 

compared with the poor performance of runoff hydrograph regionalization under the 

same Mediterranean conditions. However, FDC is much simpler than a runoff 

hydrograph, and one could expect a better regionalization performance. 

When assessing the relative performances of different FDC regionalization 

approaches, mixed conclusions are reported. Hence, statistical approaches appear 

to yield the best results according to Mendicino and Senatore (2013), while 

Castellarin et al. (2004) reported better performances for parametric approaches. 

However, for all approaches, the results deteriorate for the lowest duration of the 

FDC (high streamflow values). Moreover, the catchment area, mean annual 

precipitation, and indices representing the catchment permeability are reported as 

the most redundant variables in regression models. This finding emphasizes the 

important role of the catchment shape and geological features along with climatic 

characteristics in catchment responses represented by the FDC. Finally, given the 

extreme variability in climatic and hydrological responses in Mediterranean 

catchments that complicates modelling and results in a poor performance of runoff 

hydrograph regionalization techniques, the good performance of FDC regionalization 

is very promising.  
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Floods 

Flood regionalization is a common practice in the Mediterranean region. The main 

methods used are index methods (IM), process-based approaches, and regional 

regression (RR). Definitions and details of these methods are available in Salinas et 

al. (2013). Eleven flood regionalization studies undertaken in various areas in the 

Mediterranean were analysed (Table D.3).  

 
Table D.3 Summary of existing regionalization studies for floods in the Mediterranean. Statistical 
evaluation indicates the leave-one-out assessment of regionalization approach. Methods used include: 
IM: Index Methods; PB: Process based methods; RR: Regional Regression models (RR). Notations: 
Nc : number of catchments ; Q(2, 10, 100) : flood of 2, 10 and 100 years return period; Q100/Qm : 
Q100 normalized by the mean annual flow ; MAF : maximum annual flow; (-): information not 
retrievable.  

Study Country Nc Regionalizati
on method 

Predicted 
Variable 

Performance 
criterion 

Performance 

Artigue et al. 2012 France (South) 1 PB Peak flow NSE and % of Peak 
Discharge 

- 

Javelle et al. 2010 France (South) 160 PB Peak flow Peak Error - 
Shentsis et al. 1997 Israel 67 RR Peak flow RMSE - 
Bocchiola and Rosso 

2009 
Italy (Northwest) 16 IM Peak flow Dimensionless MSE 

(%) 
8 - 69 

Aronica and Candela 
2007 

Italy (Sicily) 6 IM Peak flow Comparison with 
observed 

- 

Ferro and Porto  
2006 

Italy (Sicily) 43 IM MAF MSE - 

Portela and Dias 
2005 

Portugal 120 IM Q2 Correlation 
coefficient 

0.774 - 0.929 

Mediera and Kjeldsen 
2014 

Spain 93 IM Q(2, 10, 
100) 

RMSE - 

Cherif and Bargaoui 
2013 

Tunisia 32 IM Q100 RMSE 0.29 - 0.46 

Saf 2009 Turkey (West) 47 IM Q100/Qm RMSE 0.43 
Topaloglu 2005 Turkey 50 IM MAF Prediction Error (%) 49 - 56 

 

The most common technique for flood prediction in ungauged basins is index 

methods. The maximum annual flood is usually taken as the index flood. Here, 

differences between studies are often related to the method used to identify 

homogenous regions, the choice of the suitable flood frequency distribution function, 

and the regression models used to estimate the index flood. This group of statistical 

approaches appears to yield relatively satisfactory results. However, these results 

deteriorate for large return-period floods. This is true for all regionalization 

approaches. Moreover, the catchment area and antecedent soil moisture (when 

available) constitute the main parameters in regional regression models. However, it 

must be emphasized that the development of new descriptors that better describe the 

hydrological function of Mediterranean catchments (Mediera and Kjeldsen 2014) 

appear to improve the overall performance of the regionalization approach. These 

descriptors will not only help predictions in ungauged basins but also permit a deeper 

understanding of the highly variable and heterogeneous runoff-generation processes 

during rainfall events in Mediterranean conditions.  
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Low flows  

Five recent regionalization studies on low-flow indices undertaken in the 

Mediterranean region were analysed (Table D.4). Four of these studies were 

conducted in Italy, and one study was conducted in northwestern Algeria. The 

hydrological indices include the discharge over 355 days (Q355), a daily discharge 

equal to or greater than 95% and the base flow index (BFI). 

 
Table D.4 Summary of existing regionalization studies for low flows in the Mediterranean. Statistical 
evaluation indicates the leave-one-out assessment of the regionalization approach. Methods used 
include: PSBI: Physiological Space-Based Interpolation; G: Geo-statistical methods; GR: Global 
Regression; and RR: Regional Regression. Notations: Nc: number of catchments; BFI: baseflow 
index; Q355: discharge associated with duration of 355 days; Q95%: discharge equalled or exceeded 
95% of the time.  

Study Country Nc Regionalization 
method 

Predicted 
Variable 

Performance 
criterion 

Performance 

Mehaiguene et al. 
2012 

Algeria (Northwest) 24 GR 
RR 

BFI R² 0.32; 0.82 - 0.92; 
0.70 - 0.99 

Castiglioni et al. 
2011 

Italy (Centre) 51 PSBI 
G 

Q355 NSE 0.78 - 0.83 
0.89 

Vezza et al. 2010 Italy (Northwest) 41 GR 
RR 

Q95% R² 0.657 
0.531 - 0.687 

Castiglioni et al. 
2009 

Italy (Centre) 51 D 
 G 
GR 

Q355 NSE 0.64 - 0.65 
0.31 - 0.81 

0.72 
 
Longobardi and 

Vallini 2008 

 
Italy (South) 

 
28 

 
GR 

 
BFI 

 
R² 

 
0.230 - 0.678 

 

The methods used for predicting low-flow indices in ungauged basins in the region 

are applicable worldwide. These methods are geo-statistical methods (G), 

deterministic interpolation (D), global regression (GR), and regional regression (RR). 

For detailed definitions of these methods, see Salinas et al. (2013). Geo-statistical 

methods and regression-based methods have been applied in transformed spaces of 

physical and climatic catchment characteristics (e.g., principal component analysis). 

Here, we discuss physiological space-based interpolation (PSBI) following Castiglioni 

et al. (2011). 

Because the Mediterranean region is water-stressed, and low flows constitute a 

major component of the hydrological response of Mediterranean catchments, 

numerous studies on low-flow regionalization are expected in the region; however, 

few articles address this subject.  

When assessing the relative performances of low-flow regionalization approaches, 

Castiglioni et al. (2009) showed that interpolation approaches (both deterministic and 

geo-statistical approaches) yielded better results than global regression (except for 

ordinary kriging). The performances of both approaches improved when applied in 

the transformed space of catchment’s physical and climatic characteristics (PSBI) 

(Castiglioni et al. 2011). When comparing global regression and regional regression, 

the latter always outperform the former (Vezza et al. 2010, Mehaiguene et al. 2012). 

Moreover, the choice of catchment descriptors highly impacts the results of 

regression models. Attributes that describe catchment permeability are particularly 

important in the case of low flows. The use of a permeability index, which takes into 
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account catchment land cover, slope and geology, greatly increases the performance 

of the regression model (Longobardi and Vallini 2008). Nevertheless, the number of 

studies available here and the extent of the areas are very limited for generalizing the 

entire Mediterranean. One can definitely say that there is a need for many more low-

flow regionalization studies in this region.  

 

Discussion and Conclusion 

Regionalization studies specifically undertaken in the Mediterranean are rare. 

Several studies were conducted at the national scale (e.g., in France), in which the 

Mediterranean is only a part of the study. Runoff hydrograph studies are the least 

common, and a majority of these studies were conducted at the national scale rather 

than the Mediterranean only. The results from these studies show that runoff 

hydrograph regionalization in the Mediterranean produces relatively poor results, 

possibly because these methods are model-dependent; thus, uncertainty from the 

regionalization approach is added to the already-discussed hydrological modelling 

limitations in the Mediterranean. 

Relative evaluations of different regionalization methods show no specificity for the 

Mediterranean region. Regionalization studies on FDCs, particularly on low flows, are 

scarce. Regional flood studies appear to be the most common type of regionalization. 

Statistical approaches for FDCs and floods appear to yield satisfactory results. 

However, these results deteriorate for the lowest duration of the FDC (high 

streamflow values) and seemingly for large return-period floods. Parametric 

approaches and regression analysis for FDC and low flows, respectively, produce 

mixed results. 

Nevertheless, regionalization studies are important because they present an idea 

of the catchment attributes that impact the catchment hydrological responses. In FDC 

regionalization studies, the catchment area, mean annual precipitation, and indices 

that represent catchment permeability are the most relevant variables. The 

catchment shape and geological features, along with climatic characteristics, are 

important to the catchment response presented by the FDC. In low-flow models, 

catchment permeability appears in most regression equations. Groundwater plays a 

role in maintaining streamflows during dry periods. 

In flood studies, the catchment area and antecedent soil moisture conditions 

(when available) constitute the main parameters in regional regression models. 

However, it must be emphasized that new descriptors that better describe the 

hydrological function of Mediterranean catchments are needed (Mediera and 

Kjeldsen 2014). 
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Lebanese data collection and availability 
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Introduction 

In order to pursue a hydrological study, a set of data is required. This data goes from 

the meteorological and hydrometric measures, to the physical characteristics of the 

study area. 

However, such data are not always available or/and accessible. In Lebanon, while 

getting the spatial data seems to be relatively easy, having access to available 

meteorological and hydrometric data is a real dilemma. Moreover, huge gaps exist in 

the series of temporal data due to political and military conflicts that took place in the 

country. 

Herein, we are going to present the temporal and spatial extent of the available 

meteorological and hydrometric data, the available spatial data.  

Temporal data 

The temporal data consist of the series of meteorological and hydrometric data 

available for the country. 

Meteorological data 

General information 

The American University of Beirut (AUB) meteorological station was the first to 

operate in Lebanon in 1891 and is still in use. However, available information from 

this station is limited to daily precipitation and temperature series from 1920 to 1974.   

By the year 1928, six meteorological stations were operating in Lebanon: AUB and 

Beirut Nazareth in Beirut, El-Qraye and Jezzine in the Central part of Mount 

Lebanon, and Rayak and Ksara in the Bekaa valley. During the 1930s the number of 

meteorological stations in the country increases, and in the year 1940, 31 stations 

were operating. However, due to the Second World War, no meteorological data 

exists for the period between September 1941 and August 1944. In the years 

following the war, the number of stations increases enormously and by 1950, 55 

stations were operating throughout Lebanon. This network of meteorological stations 

expands more and more during the 1950s and 1960, and by 1970, a dense network 

of 134 meteorological stations covers the whole country.  

For climatic and orographic considerations, the Lebanese territory was divided into 

3 major parts. The coastal region: from sea level to 800m, it was further divided into 

"Littoral North (LN), "Littoral Centre" (LC), and "Littoral South" (LS). The mountainous 

region, from 800m to the crest line of Mount Lebanon, further  divided into 

"Mountainous North" (MN), "Mountainous Centre" (MC). The Internal region, from the 

crest line of Mount Lebanon downward to the Bekaa valley, this region also includes 

the Lebanese part of the Anti-Lebanon and Mount Hermon ranges, it was further 

divided into "Interior Oronte" (IO), "Interior Litani" and "Interior Hasbani". The 

meteorological stations were classified according to this climatic division of the 
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country. Hence, fig. E.1 shows the expansion of the Meteorological Network at its 

peak in the year 1970. On the map, the stations were indexed from North to South in 

each geo-climatic class. Information regarding the name, altitude and the starting 

date for each station in fig. E.1 is presented in Table E.1. Available records from 

these station end in the year 1970. 

Although this meteorological network provided a large set of climatic data such as 

precipitation, temperature, humidity, wind, etc. These parameters are only available 

on hard copies and need to be digitized. We were able only only to digitize monthly 

precipitation data. 

Moreover, one should also notice, regarding the spatial and temporal extent of the 

pre-1970 meteorological network, that the spatial density and the length of the 

available data series vary from one region to another. Hence, the maximum spatial 

coverage of the Network is in the Central part of Mount Lebanon, the Interior Litani 

region and in the Littoral Centre. These three regions also benefits from the longest 

available records. Hence, in 1970, among 134 deployed throughout the country, 63 

stations were concentrated in the above-mentioned three regions (33 in the Central 

part of Mount Lebanon, 22 in the Interior Litani, and 18 in the Littoral Centre). 

Moreover, from a total of 79 stations with records length of 10 years and more, 55 

stations are located in these three geo-climatic zones. 

In 1975, the Lebanese Civil War started causing a big gap in the data. For about 

15 years and more only very few Meteorological stations remain operating (Tripoli-

IPC, Beirut International Airport, Al-Arz and Rayak). One should wait until the year 

2000 for a new Meteorological Network to be established for the whole country, 

however, with only 32 stations, the spatial coverage of this Network is far from the 

one of the pre-war network. Table E.2 represents details about these stations and 

their available meteorological data. The spatial extent of this Network is represented 

in fig. E.2. Daily precipitation and monthly temperature records are available from 

these stations from the department of meteorological services of the directory of civil 

aviation but not free of charge. In fact, these data cost a fortune and we were only 

capable of obtaining these data through a project financed by the UNDP. Afterwards, 

the data were examined to look for outliers and shift in the record.  

Fortunately, around 20 stations from the pre and post-war period are almost in the 

same exact location (stations highlighted in yellow in tables E.1 and E.2).  

At least but not last, it is worth-mentioned that the pre and post-war Meteorological 

stations are controlled by the National Meteorological Service of The General 

Directory of Civil Aviation of the Ministry of Public works and Transport. 

At last, in 2009 the Lebanese Agronomic Research Institute (LARI) starts the 

establishment of its own Meteorological Network. Daily precipitation, temperature, 

humidity, wind speed and direction, and sunshine are available from these stations. 

Unfortunately, the records are too short, and there are a lot of missing data in the 

available record. 
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Meteorological data used in this work 

This work was limited to the period 2002 - 2011. For this period precipitation data 

were available at a daily time step for 32 stations (Table E.2).  

These data were used at two different levels: 

- Daily precipitation data were used to characterize the hydrological response of 

the Lebanese catchments at the event scale. Fere, we have only worked on 

the most extreme event during the study period. The daily precipitation was 

averaged on the catchment during the event using the arithmetic mean of daily 

precipitation recorded in the stations located inside or directly near the border 

of the catchment. 

- Monthly precipitation data were calculated from these data and used for 

rainfall-runoff modeling with GR2M for the period 2002 - 2011. Here monthly 

precipitations were calculated using all 32 stations for the whole country using 

interpolation methods (see chapter 3). Afterwards, monthly values were 

extracted for each catchment.  

Temperature was only available at a monthly time scale (table E.2). However, due to 

the large gaps in the record we used ET0 values retrieved from MODIS imageries for 

the GR2M modeling.  

Missing precipitation data 

The gaps in the precipitation record for the study period (2002-2011) were completed 

using a simple arithmetic mean method. Hence the precipitation P at a given station x 

is given by: 

Px = 
 

 
    

    

Where 'n' is the number of nearby stations, 'Pi' is precipitation at ith station and 'Px' is 

the missing precipitation. 

Hydrometric data 

Hydrometric network in Lebanon is under the control of the Litani River Authority. 

Hydrometric measures start in Lebanon in the early 1930s, with stations on the Litani 

and the Orontes Rivers. Afterwards, the number of hydrometric stations increases 

and by the year 1967, all of the main Lebanese rivers had at least one hydrometric 

station. Due to its importance, the Litani River has the densest hydrometric network, 

with 16 hydrometric stations on the main river and its tributaries. Unfortunately, with 

the civil war starting in 1975, the hydrometric records stopped for about 15 years. 

After 1990, the hydrometric Network was reestablished gradually, and by the year 

2002, the Network count about 48 stations installed on the main Lebanese rivers. 

Hydrometric data are available from a large number of hydrometric stations, 

however for the pre-1975 period; this record is short (about 8 years). The spatial 
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extension of stations are available is presented in fig. E.3. Table E.3 gives details 

about each station in fig. E.3. Daily records are available for 24 stations and only 

monthly records for another 4 stations. However, getting these data were not easy, it 

was possible through personal connections.  

Spatial data 

Three forms of spatial data are in use in this study: Digital Elevation Model, Thematic 

maps and Satellite imageries. 

Digital Elevation Model 

A 10 m resolution Digital Elevation Model is developed for Lebanon at the Remote 

Sensing Center of the Lebanese National council for Scientific Research (CNRS). 

This DEM was developed from the topographic maps of Lebanon, with 10m contour 

lines interval. This DEM is in use for the delineation of watersheds, and the extraction 

of basins morphometric characteristics.  

Thematic maps 

Many thematic maps exists for Lebanon, the one in use in this study for the 

extraction of the physical characteristics of basins are: 

- A 1/200000 geological map of Lebanon elaborated by Dubertret in 1955. 

- A 1/50000 Karst map of Lebanon elaborated in 2011 by the CNRS. 

- A 1/200000 soil map of Lebanon elaborated by Geze in 1956. 

- A series of 1/20000 urban expansion map of Lebanon from 1963 to 2010, 

elaborated by the CNRS. 

Satellite images 

Due to the huge development in Remote Sensing technologies during the last few 

decades, satellite imageries had become an important aid in hydrological studies. 

In the context of our study, we are using MODIS images at 500 m spatial 

resolution and 8-days temporal resolution from 2002 to 2012, to monitor the extent of 

snow cover over the Lebanese mountains and to calculate monthly ET0. 

Conclusion 

In this annex, we have briefly presented the temporal and spatial data available for 

our study area, Lebanon. 

Temporal data exists from the early 1930s with different spatial coverage that 

increases over time and that is not evenly distributed all over the country. The 

maximum extent of the temporal data coverage was reached in the late 1960s. 

Unfortunately, few years later, in 1975, the Lebanese Civil War destroys the 

Meteorological and Hydrometric Network of the country, and it is not until the year 

2000 that a new Meteorological and Hydrometric Networks were reestablished. 
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However, these post-war Networks are not as dense as the pre-war Networks, and 

the quality of the measurements are questioned.  

As for spatial data, these data are available and easily accessible, however, some 

issues does exist with these data: the geological and soil map of the country, were 

developed over a half century ago on a very large scale (1/200000). The land 

cover/use maps developed for the country do not use all the same classification 

systems.  
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Fig. E.1 Meteorological Network at its peak in 1970; details of measurements period are given in 

table E.1 
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Table E.1 Details of pre-war Meteorological stations; The measurements ended in 1974 due to 

the civil war (1975-1990) that causes a gap in the data. The highlighted stations are those re-

established after the civil war (the same as the highlited stations in table E.2); as an example, 

the Qlaiaat station operated from 1931 to 1974 and than was re-established in 2003 (details in 

table E.2). 

Station 
number 

Station name 
Altitude 

(m) 
Starting 

date 
Station 
number 

Station 
name 

Altitude 
(m) 

Starting 
date 

LN1 Kouachra 400 1962 MC5 Ghebale 970 1944 

LN2 Qlaiaat 5 1931 MC6 
Faraya-
village 

1320 1962 

LN3 Qaabrin 25 1966 MC7 Faraya-Mzar 1840 1965 

LN3 Qoubayat 540 1962 MC8 Rayfoun 1050 1949 

LN4 Beino 510 1966 MC9 
Qlaiaat-

Kesewan  
1050 1939 

LN5 Halba * 160 1938 MC10 Beskinta 1220 1966 

LN6 El-Abde  40 1954 MC11 Bikfaya  900 1949 

LN7 Tripoli-Mina  20 1960 MC12 
Jouar-el-

haouz 
1290 1966 

LN8 Bared-Moussa 250 1955 MC13 
Ras-el-
Maten 

920 1944 

LN9 Bakhaoun 630 1966 MC14 Arsoun 750 1945 

LN10 Zgharta 110 1966 MC15 Falouga 1250 1966 

LN11 Bechmezzin 275 1966 MC16 
Dahr-el-
Baidar  

1510 1952 

LN12 Abou-Ali  250 1938 MC17 El-Qraye 1010 1928 

LN13 Amioun  300 1945 MC18 Bhamdoun  1090 1946 

LN14 Chekka  15 1951 MC19 Ain-Zhalta 1080 1940 

LC1 Kaftoun 215 1951 MC20 Fraidis 1250 1966 

LC2 Batroun  20 1939 MC21 
Kafar-

Nabrakh 
1020 1944 

LC3 Kafar-Halda  580 1940 MC22 
Majdel-
Maouch 

810 1946 

LC4 Amchit 135 1966 MC23 Beit-ed-din  880 1940 

LC5 Ghazir  390 1950 MC24 
Jdeidet-ech-

chouf 
770 1944 

LC6 Ghosta 650 1950 MC25 Moukhtara  810 1940 

LC7 Zouq-Mikayel  70 1944 MC26 
Jbaa-ech-

chouf 
1130 1964 

LC8 
qornet-

Chehwan 
605 1948 MC27 

Beit-eddine-
loqch 

835 1965 

LC9 
Un.Americaine 

(Bey) 
35 1891 MC28 Jezzin  945 1928 

LC10 Arbaniye-jisr 510 1960 MC29 Jbaa-halawi 800 1964 

LC11 Fanar 255 1969 MC30 Dahr-Darje 1150 1964 

LC12 Nazareth (Bey)   90 1928 MC31 Jarjouaa 850 1964 

LC13 
Un.Saint-

Joseph (Bey) 
45 1933 MC32 Rihan 1090 1965 

LC14 
Ins.de 

Geographic 
(Bey) 

55 1933 IO1 Hermel  700 1932 

 
LC15 

Jamhour  410 1955 IO2 El-qaa 650 1966 

LC16 Aeroport (Bey)  15 1933 IO3 Fakehe 1060 1970 
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LC17 Choueiffat  100 1956 IO4 Arsal 1400 1961 

LC18 
Souq-el-
Ghareb  

700 1948 IO5 Nabha 1100 1966 

LC19 Jisr-el-Qadi 260 1948 IO6 Yammoune  1370 1939 

LC20 Dmit 350 1946 IO7 Chlifa-Flawi 1120 1944 

LC21 Gharife 680 1965 IO8 Younin 1200 1966 

LC22 Katermaya 380 1964 IO9 
Haouch-
Dahab  

1010 1960 

LC23 Saida 5 1962 IO10 Baalbek  1150 1931 

LC24 Sfarai 570 1962 IL1 Kafar-dan 1080 1966 

LC25 Maghdouche 230 1964 IL2 
Haouch-

snaid  
995 1958 

LC26 Anqoun 380 1965 IL3 Qaa-el-rim  1320 1940 

LC27 Arab-salim 580 1964 IL4 Sarain  1000 1946 

LC28 deir-el-zahrani 450 1964 IL5 
Haouch-el-
Ghanam 

955 1951 

LC29 lebaa 360 1969 IL6 Rayak   920 1928 

LS1 Insariye 160 1964 IL7 Tell-Amara 905 1953 

LS2 Douair 380 1962 IL8 Zahle   990 1950 

LS3 Jarmaq 400 1964 IL9 Ksara 920 1928 

LS4 Nabatiye 410 1964 IL10 Chtaura  920 1953 

LS5 El-Qasmiye  30 1951 IL11 Terbol 890 1954 

LS6 tyr 5 1955 IL12 Taanayel 880 1958 

LS7 Jouaya 300 1964 IL13 Anjar 925 1951 

LS8 Qana 300 1964 IL14 Ammiq 870 1962 

LS9 Ain-Ebel  765 1960 IL15 Mansoura  860 1939 

LS10 Aitaroun  680 1939 IL16 
Soultan-
Yaaqoub 

1400 1965 

LS11 Alma-Chaab  385 1960 IL17 Joub-Janin 920 1948 

MN1 Michmich 1080 1964 IL18 
Kherbe-
Qanafer  

950 1955 

MN2 
Syr-ed-
Denniye  

915 1940 IL19 
Qaraoun-

village 
950 1953 

MN3 
Bouhairet-

Toula 
1135 1966 IL20 

Qaraoun-
Barrage 

0 1963 

MN4 Kafar-Sghab 1310 1964 IL21 Machghara   1070 1939 

MN5 Bcharre-Ville 1460 1938 IL22 Markabe 670 1964 

MN6 Bcharre-Usine  1400 1966 IH1 Yanta 1500 1961 

MN7 Les Cedres  1925 1937 IH2 
Deir-el-
Achayer 

1280 1965 

MN8 Hasroun 1375 1963 IH3 Kafar-Qouq 1210 1961 

MC1 Maifouq 875 1966 IH4 Rachaya  1235 1933 

MC2 Laqlouq 1700 1940 IH5 Kfair-ez-Zait  940 1944 

MC3 Tourzaya  880 1940 IH6 Hasbaya  750 1944 

MC4 Qartaba 1140 1939 IH7 Marjayoun  760 1944 

 

mailto:LS@
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Fig. E.2 Post-war (after 1990) Meteorological Network; details of measurements period are 

given in table E.2 
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Table E.2 Post-war (after 1990) Meteorological stations; the highlighted stations are those that 

operated before the civil war (see Fig. and Table E.1) 

Station 
number 

Station 
name 

Altitude 
(m) 

Daily Rainfall 
Record 

Missing 
Rainfall data 

Monthly 
Temperautre 

record 

Missing 
Temperature data 

nLN1 
El Qlaiat-

Akkar 
5 

Mar 2003 to Dec 
2011 

 
Mar 2003 to Dec 

2011 
Sep 2006, May and 

Jun 2007 

nLN2 
El 

Qoubayat 
497 

Jan 2001 to Dec 
2011 

 
Jun 2000 to Dec 

2011 

Jan and Feb 2003, 
Sep 2003 to Mar 
2005, Jun to Sep 
2006, Aug 2010 

nLN3 El Abde 37 
Jan 2001 to Dec 

2011 
 

Jan 1998 to Dec 
2011 

Mar 2002 to Dec 
2002, Oct 2003 to 

Sep 2004 

nLN4 Tripoli-IPC 5 
Aug 1940 to 
Dec 2010 

Mar 1958 to Jul 
1962, Mar 1976 

to Dec 1976 

May 1940 to Dec 
2011 

1941, May 1958 to 
June 1968, Mar to 

Dec 1976, May 
1981, Jan to Apr 

1982, Aug and Sep 
1982, Sep 1984 to 

Mar 1994 

nLN5 Balamand 359 
Jan 2001 to Jan 

2012 
 

May 2000 to Dec 
2011 

Oct 2001 to Aug 
2003, Nov 2004 to 

Mar 2005, 

 
 
 
 

nLN6 
 
 
 

Kafar 
Chakhna 

260 
Apr 2003 to Mar 

2012 
 

May 2003 to Dec 
2011 

Nov 2003 to Feb 
2004, May to Sep 
2004, Dec 2004 to 
Mar 2005, Nov and 
Dec 2005Mar and 

Apr 2008 

 
NLC1 

 
Kaslik 

Jounieh 

 
41 

 
Aug 2001 to 
Dec 2011 

 
 

Jul 2001 to Dec 
2011 

 
Jul to Oct 2004, Feb 

2005, Dec 2010, 
Mar, Apr and May 

2011 

nLC2 
El 

Qoussaiba
h 

584 
Jan 2001 to Dec 

2011 
 

Nov 2000 to Dec 
2011 

Feb, May and Jun 
2001; Oct 2001 to 
Feb 2002, July to 

Sep 2002, Dec 2002 
to Feb 2003, Jun to 

Dec 2003, Jul to 
Sep 2005, Feb 

to2010 

nLC3 
Beyrouth-

Golf 
14 

Feb 1999 to 
May 2012 

 
Feb 1999 to Dec 

2011 
 

 
 

nLC4 
 

Beirut 
Internation
al Airport 

12 
Jul 1932 to Dec 

2009 
 

May 1931 to Dec 
2011 

1941, 1977 

nLC5 El Meshref 395 
Jun 2003 to Feb 

2012 
 

Jun 2002 to Dec 
2011 

Sep 2004, Aug 
2005, Jan 2008 to 
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Jan 2009 

nLC6 Saida 14 
Jan 2001 to Feb 

2012 
 

May 2000 to Dec 
2011 

Aug-10 

nLC7 Lebaa 331 
Jan 2001 to Feb 

2012 
 

Jun 2000 to Dec 
2011 

Oct 2001 to Oct 
2002, Feb to Sep 

2004, Aug and Sep 
2010 

nLS1 Zahrani 10 
Jan 2001 to Feb 

2012 
 

July 2000 to Dec 
2011 

Feb, Jun and Jul 
2001, Dec 2001 to 

Feb 2002, Sep 2002 
to May 2004, Sep 
2005 to Mar 2006 

nLS2 
El 

Quasmiye 
9 

Jan 2001 to Feb 
2012 

 
Apr 2000 to Dec 

2011 

Fen to Aug 2001, Jul 
2002 to Jan 2003, 
Mar 2004, Jan to 

Mar 2005, Jun 2007, 
Sep 2010, Aug and 

Sep 2011 

nLS3 Sour 4 
Jan 2001 to Sep 

2011 
 

Jan 1999 to Dec 
2011 

Aug 1999 to Jan 
2000, Mar to May 
2000, Dec 2002 to 

May 2003, Sep 
2003, Oct 2004 

 
 

 
nLS4 

 
 
 

Kafar 
Dounine 

560 
Sep 2004 to Feb 

2012 
 

Sep 2004 to Dec 
2011 

May, Aug and Sep 
2005, May to Dec 

2006, May and Jun 
2007, Jan to Jul 

2008,  

 
 

nMN1 
 

Syr-Ed-
Denniye 

926 
Feb 2001 to Aug 

2012 
Sep 2006 to Oct 

2007 
Jan 2001 to Dec 

2011 

Jul 2004 to May 
2005, Oct 2006 to 

Oct 2007 

nMN2 
Al Arz-Les 

Cedres 
1891 

Jan 1982 to Apr 
2011 

Jan 1988 to Mar 
1996 

Jan 1947 to Dec 
2011 

1949, Jun 1951 to 
Feb 1956, 1962, 
1976, 1977, Jan 

1984 to Feb 1996 

nMC1 Tannourine 1838 
Jan 2001 to Dec 

2011 
 

Dec 2000 to Dec 
2011 

Sep 2002 to Jul 
2003, Nov 2004 to 

Jan 2005, Jan to Apr 
2006, Sep 2006 to 

Apr 2007, Nov 2007 
to Apr 2008, Oct 

2008 to Sep 2009 

nMC2 Qartaba 1222 
Jan 2001 to Dec 

2011 
 

Apr 2000 to Dec 
2011 

Jun-06 

nMC3 Faqra 1655 
Jan 2001 to Dec 

2011 
 

Jul 2000 to Dec 
2001 

Oct 2001 to Oct 
2002, Jun and Jul 
2003, Apr to Aug 
2004, Jun to Se 

2006 

nMC4 
Dahr El 
Baidar 

1516 
Jan 2001 to Dec 

2011 
 

Jun 1962 to Dec 
1972, Dec 1998 

to Dec 2011 

Jun and Aug 1967, 
Oct 1969, Oct 2004 
to Jan 2005; May 

and Sep 2005; Jun 
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to Oct 2006; Apr and 
May 2008, Nov and 

Dec 2010 

nMC5 Bayssour 940 
Jan 2001 to Dec 

2011 
 

Jun 2000 to Dec 
2011 

May and Jun 2006 

 
nMC6 

 

Barouk 
Fraidis 

1114 
May 2000 to Jan 

2009 
 

Mar 2000 to Apr 
2009 

Nov 2004 to Mar 
2005; Jan, Mar, Apr 

and Sep 2006 

nMC7 
Deir El 
Kamar 

794 
Jan 2001 to Feb 

2012 
 

Mar 2000 to Dec 
2011 

Oct 2002 to Sep 
2004, Aug 2010 

 
 
 
 
 

nMC8 
 
 
 

 
 
 
 
 

Jezzin 1070 
Aug 2001 to Feb 

2012 
 

Jul 2001 to Dec 
2011 

Oct 2001 to Mar 
2002, Jul 2002 to 
Feb 2003, Jun to 
Nov 2003, Jun to 

Nov 2003, Mar to Jul 
2004, Nov 2004 to 
Jan 2005, Sep and 

Oct 2006 

nIO1 El Hermel 605 
Jan 2011 to Dec 

2011 
 

Aug 2004 to Dec 
2011 

Oct to Dec 2005, 
Jun to Oct 2006 

nIO2 El Qaa 513 
Jan 2004 to Dec 

2009 
 

Jan 2004 to Dec 
2011 

Jan 2006, Jun and 
Jul 2007, Apr to Dec 

2008 

nIO3 
Deir El 
Ahmar 

943 
Jan 2001 to Dec 

2011 
 

Oct 1999 to Dec 
2011 

Oct 2004 to Mar 
2005, Jun 2008 

 
nIL1 

 
Douris 1009 

May 2003 to 
May 2006 

 
Oct 2004 to May 

2006 
 

nIL2 
Rayak-
Amara 

852 
Feb 1932 to Feb 

2010 

1941, Feb 1976 
to Dec 1977, 

Jan 1986 to Dec 
1997 

Jan 1932 to Dec 
2011 

Apr 1932, 1933, 
1935, 1939, 1941 to 
1943, Jul 1947, Oct 
1969, 1970, 1976, 
1977, Feb 1986 to 

Jul 1989, Jun to Sep 
1995, Jan 1996, 

May 1996, Feb to 
Jun 1997 

nIL3 
Houch El 
Oumara-

Zahle 
926 

Jul 1998 to Dec 
2011 

 
Jan 1998 to Dec 

2011 
 

nIL4 El Qaraoun 843 
Mar 2001 to Mar 

2012 
 

Mar 2002 to Dec 
2011 

Jun-06 

nIH1 
Kafar 

qouq/Rach
aya 

1205   
Apr 2003 to Dec 

2011 
Apr and Nov 2005 

nIH2 Marjeyoun 827 
Aug 2009 to Mar 

2012 
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Fig. E.3 Hydrometric Network of stations with daily flow records; details of measurements period 

are given in table E.3 
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Table E.3 Hydrometric stations with daily records; the highlighted cells are stations were only 

monthly data is available. 

Station 
number 

Basin River Station name Operating years Missing data 

1 Ostouene Ostouene Sea Mouth 2002-2012  

2 Ostouene Ostouene Halba 2002-2012  

3 Arka Arka Hakour 1967-1974 and 2002-2012  

4 Bared Bared Sea Mouth 1967-1974 and 2000-2012  

5 Abou Ali Racheine Zghorta Bridge 1967-1974 and 2002-2012 1972/1973 

6 Abou Ali Abou Ali Abou Samra 1967-1974 and 2000-2012  

7 Abou Ali Abou Ali Kousba 1967-1974 and 2002-2012 1972/1973 

8 Abou Ali Abou Ali Daraya 1967-1973 and 2002-2012  

9 El jouz El Jouz Sea Mouth 2000-2012  

10 Ibrahim El Rouaiss Majdel Bridge 1967-1972 and 2002-2012  

11 Ibrahim Afka Spring After The Spring 1967-1974 and 2002-2012 1972/1973 

12 Ibrahim Ibrahim Sea Mouth 1967-1974 and 2000-2012  

13 Kelb El Mougharah Hrajel 1967-1974 and 2002-2012 1972/1973 

14 Kelb El Kelb Daraya 1967-1974 and 2002-2012 1972/1973 

15 Kelb El Kelb Sea Mouth 1967-1972 and 2000-2012  

16 Beirut El Joamani Ras El Metn 
Bridge 

1967-1974 and 2006-2012  

17 Beirut Beirut Dachounieh 1967-1973 and 1992-2012  

18 Beirut Beirut Jiser El Bacha 1967-1974 and 1990-2012  

19 
 
 

Damour Damour El Qadi Valley 1967-1974 and 1992-2012 1996/1997, 
1997/1998 and 

1998/1999 

20 Damour Es Safa Es Sitt Valley 1967-1973 and 1998-2012  

21 Damour Damour connection 2002-2012  

22 Damour Damour Sea Mouth 1994-2012  

23 Awali Awali Saida 2000-2012  

24 Zahrani Zahrani Sea Mouth 2002-2011 2009/2010 

25 Oronte Oronte Hermel 1967-1974 and 1991-2012  

26 Litani Berdaouni Damascus Road 1967-1974 and 1990-2012 1970/1971 

27 Litani Joub Janine Joub Janine 
Bridge 

1998-2012  

28 Hasbani Hasbani After Wazzani 
Spring 

2002-2012  
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Annex F.  

Lebanese catchments’ characteristics 
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Table F.1 Physical characteristics of the studied Lebanese catchments (refer to annex A and G for variable description and calculation)

St 
 

Catchments Min Zc Ac Dd Lflow Zc Max Zc Zc>1800 Sc AK HPR MPR LPR HIS MIS LIS Fc Uc Bare Shrub Grass Agr 

1 Outuene at sm 10 151 3.0 19 516 1923 0.6 10 43 42 5.8 52 8.2 61 30 24 6.3 0 3.3 19 46 

2 Oustuene at Halba 89 100 3.4 17 651 1923 0.7 9.6 61 60 8.2 31.8 0.2 52 43 33 6.2 0 4.1 18 38 

3 Arka at Hakour 77 102 3.8 16.2 737 1951 0.75 11 73.
6 

66.8 9.2 24 0.5 60.6 38.9 24.2 8 0 6.9 13.8 46.6 

4 Bared at sm 29 281 4 42 1278 2878 21 6.7 6 61.7 15.7 22.6 1.5 50.8 47.7 37.4 2.8 1.6 12 17.2 26.8 

5 Abu Ali at Racheine 80 202 4.6 26.7 1302 3081 48 11 79 71.4 6.6 22 4.2 50.2 45.6 19.4 4.6 8.8 15.6 27.2 24 

6 Abu Ali at Abu samra 46 466 3.4 35 1328 3081 32.5 8.6 73 64 5.5 30.5 3.5 56.5 40 18.4 4.9 8.8 11.9 28.5 27.3 

7 Abu Ali at Kousba 240 142 4.2 16 1650 3081 38 17 69 59.6 3 37.4 2.8 78.2 19 19.8 4.3 10.8 5.3 36.9 22.7 

8 Abu Ali at Daraya 174 144 4.2 18.2 1670 3081 37.5 15 68 59.2 3.2 37.6 2 77.2 20.8 19.8 4.6 10.7 5.3 36.6 22.7 

9 Jouz at sm 9 189 4.8 29 1032 2342 10.5 4.6 87 64.4 7.6 24.9 10.6 26.6 62.8 28.5 6.2 1.2 21.2 20.7 21.4 

10 Ibrahim at Roueiss 1073 95 5.7 9.6 2024 2660 83.6 16 95 94 1 5 0 100 0 0.6 0.2 42 2 51 3 

11 Ibrahim at Afqa 1113 28.6 6.4 4.2 1894 2130 85.6 24 100 100 0 0 0 100 0 4 0.7 35 1.3 58 0 

12 Ibrahim at sm 3 326 2.4 36.7 1541 2658 40.8 7.2 92 83 6 11 11.3 66.4 22.3 20 3.8 20.6 11 36 8.5 

13 Kelb at Hrajel 1178 75 3.2 5 1886 2622 61.6 28 91 81 10 9 19 80 1 1.26 3.5 39 2.8 43 9 

14 Kelb at Daraya 557 143 2.4 11.7 1733 2622 39.3 17 85 77 15 8 29 63 18 8.5 5.4 28 8.4 35 14.5 

15 Kelb at sm 12 257 3.0 28.3 1733 2622 26.7 9.2 84 77.8 14.4 7.8 21.3 51 27.7 21 14 15.7 12.4 23.2 13.4 

16 Beirut at Jaamani 270 127 2.5 13.3 1064 2062 3 13 67 65 33 2 36 27 37 46.4 9 2 10 20 12 

17 Beirut at Daychounyeh 73 209 3.4 24.2 1018 2086 3 8.3 62 58 38 4 37 37 26 42 10.6 1.6 11.4 19.5 14.4 

18 Beirut at Jisr Basha 22 217 3.3 27 1003 2086 2.9 7.6 62 59 37 4 37 37 26 41.8 11.2 1.6 11.2 19.2 14.4 

19 Damour at Jisr Qadi 254 185 3.1 43 938 1941 0.4 3.9 75 47 49 4 21.6 75.4 3 14.6 14 2.3 13 26 29 

20 Damour at Wadi Sett 536 40 4.5 28.3 1143 1771 2 4.3 58 44 39 17 27 60 13 9.5 17.6 8 11 26 27 

21 Damour at connection 19 77 3.4 12 828 1941 4 13 79 55 41 4 17 78 5 20 15 1.7 14 20 28 

22 Damour at sm 9 293 3.7 56.7 802 1941 0.3 3.4 79 57 4 39 18 7.8 74.2 20 15 1.7 14 22 26 

23 Awali at Marj Bisri 308 78 4.5 9.9 1247 1949 5 15 98 76 23 1 4 78 18 21 10.6 0.3 24.5 26.6 16.7 

24 Zahrani at sea mouth 3 152 1.6 15 534 1670 0 9 81 78 15 7 25 18 57 11 16 1 18 17 36 

25 Orontes 590 1241 2.9 39 1393 3081 30.2 6.3 60 64.8 31.4 3.8 2 73.2 24.8 5.4 2 11 6.4 53 21 

26 Berdawni at DR 880 77 0.9 15.7 1560 2501 16.2 10 88 87 10 3 15 63 22 0.7 8.6 9.6 13 47 20 

27 Litani at Joubjannine 859.7 1433 2.5 65.6 1223 2551 9.6 2.5 53 44 26 30 11 41 48 5.4 4.7 2.7 6.6 32 48 

28 Hasbani at wazzani 281 566 2.1 47.5 1198 2810 8.1 5.3 82 79.5 13.4 7.1 10 27 63 6 3.6 0.7 22 43 24 
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Annex G.  

Variables’ calculation  
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Notation  Description 

Ac (km²) Catchment area calculated from digital elevation model 

Lflow (km) The longest drainage line from the crest to the outlet 

Dd (km/km²) Total drainage length in km divided by catchment area in km
2
 

Sc (%) MaxZc – MinZc / Lflow 

Min Zc (m) The elevation of the catchment outlet 

Zc (m) Average elevation calculated by averaging pixel elevations on the DEM 

Max Zc (m) The elevation of the highest point in the catchment 

Zc>1800 Percentage of Ac with elevation above 1800 m 

AK (%) Percentage of Ac with apparent karst 

HPR (%) Percentage of Ac with High Permeability Rocks 

MPR (%) Percentage of Ac with Moderate Permeability Rocks 

LPR (%) Percentage of Ac with Low Permeability Rocks 

HIS (%) Percentage of Ac with High Infiltration Capacity Soil 

MIS (%) Percentage of Ac with Moderate Infiltration capacity Soil 

LIS (%) Percentage of Ac with Low Infiltration Capacity Soil 

Fc (%) Percentage of Ac covered by Forests 

Uc (%) Percentage of Ac covered with Urban areas 

Bare (%) Percentage of Ac covered with Bareland 

Shrub (%) Percentage of Ac covered with Shrubland 

Grass (%) Percentage of Ac with Grassland 

Agr (%) Percentage of Ac with Agricultural areas 

RS1 Mean annual flow (m
3
/s) averaged over the study period 

RS2 Mean annual runoff (mm) averaged over the study period 

RS3 Annual runoff ratio averaged over the study period 

RS4 Absolute minimum flow (m
3
/s) which the lowest flow recorded over the study period  

RS5 Average maximum annual flow (m
3
/s): the average of the maximum flow in each year 

of the record 

RS6 Baseflow index, calculated as the ratio (in percentage) of the lowest mean monthly 

flow to the mean annual flow (Gordon et al., 1992) 

RS7 Ratio Q90 %/Q50%, used as an index of base flow contribution (Gordon et al., 1992) 

RS8 Mean flow of  Month with highest mean flow (averaged over the whole study period 

record) 

RS9 Mean flow of Month with lowest mean flow (averaged over the whole study period) 

RS10 Slope of the flow duration curve: [Q30% - Q70%] / 40Qd where Qd is the mean daily 

runoff 

RS11-21 Number of times that the stream-flow is continuously below the 5 % (RS11), 10 % 

(RS12), 20 % (RS13), 30 % (RS14), 40 % (RS15), 50 % (RS16), 60 % (RS17), 

70 % (RS18), 80 % (RS19), 90 % (RS20), and 95 % (RS21) of mean annual flow 

RS22 Coefficient of variation of daily flows for the 10-year period 

RS23 Average of coefficient of variation of daily flows for each year 

RS24 Average of standard deviation of daily flows for each year 

RS25 Coefficient of variation of mean annual flow 

RS26 Coefficient of variation of annual runoff ratio 

RS27 Variability index as proposed by Growns and Marsh (2000):  

[Q10 %-Q90 %]/Median flow 
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Annex H.  

 Hydrogeology of Lebanon 
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The underlining geology of the country is made mainly of carbonate rocks which are 

highly karstified and fractured. 

   

 

Fig. H.1 The Lebanese faulting system on the major geological formations of Lebanon (El-Hakim 

and Bakalowicz 2007)  
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Karstic systems in Lebanon are deep and well developed. This is clear from cave 

systems such as Jeita which exists at almost sea level, indicating the surface 

karstification has cut deep through the thick Jurassic carbonate sequence. Some large 

springs even exist below sea level such as offshore from Ras Chekka (Edgell 1997, 

Bakalowicz et al. 2008). Figure H.1 shows a geological cross-section of the Ain Anjar 

spring karstic system (a source for the Litani River) that discharges a cenomanian 

aquifer in the Bekaa valley. One can notice how large and deep (1500 m) is this karstic 

system. This emphasize on the great importance of groundwater contribution to river 

flows in Lebanon. In fact, the high areal extent of the well fractured and highly karstified 

carbonate rocks, favorites infiltration. In fact, in a study for determining recharge 

potential zone in Occidental Lebanon (an area of about 5000 km2, about 50 % of the 

total surface of the country), Shaban et al. (2006) classified 56 % of the total studied are 

as having high to very high infiltration capacity, while only 28 % of this area have low 

infiltration capacity. Therefore, according to FAO (1967), in areas with high to very high 

infiltration capacity, about 30 to 50 % of total rainfall is estimated to infiltrates. And the 

geological history of the country favored the development of deep and highly developed 

(in some cases deep below the base level) karstic systems (Fig. H.2). 

  So, groundwater contribution to surface flow is crucial. In fact, Base Flow Index (BFI) 

for the period 1968 - 1972 (Sene et al. 1999) represents more than 70 % of the total flow 

for the majority of stations in northern Lebanon and in the internal region where it can 

reach more than 90 %. In other parts of the country BFI rarely drops below 40 %. It only 

reaches value below 30 % in the southern part of Mount Lebanon where snow 

contribution is minimal. Hence, a large number of aquifers (Fig. H.1) discharge in many 

hundreds of mostly karstic springs across Lebanon (El-Fadel 2000). Many of these 

springs have large discharges and contribute largely to river flows (e.g. Ain Zarqa: the 

main source for the Orontes River, it has a discharge of 14 m3/s; Afqa (1-2 m3/s) and 

Roueiss (0.5-1 m3/s) are the main sources of the Ibrahim River; Nabaa el Laban (0.5-1 

m3/s) and Jeita Grotto (1-2 m3/s) contributes to El Kelb River; Qob Elias (0.5-1 m3/s), 

Chamsine (1-2 m3/s) and Faour (0.5-1 m3/s) contributes to the Litani River; etc.). 

However these karstic systems functions differently. El-Hakim and Bakalowicz (2007) 

classified some karstic aquifers in Lebanon (the aquifers of Ain Anjar Spring, Chamsine 

spring, Afqa spring and Ain Zarqa spring) according to two index: i and k. The index i 

represents the infiltration delay (0<i<1), a high value of i indicates a low infiltration rate; 

while k is the residence time in years. K highlights the storage capacity of the aquifers, 

an aquifer with a high residence time have a large storage capacity. Their findings 

provide some insight to the functioning and capacities of some Lebanese karstic 

aquifers. The i index was found to be 0.83, 0.90, 0.80 and 0.98 for Anjar, Chamsine, 

Afqa and Zarqa respectively. This high i index means that low infiltration is dominant due 

to snow cover which constitutes the main source of groundwater recharge (El-Fadel 

2000). As for the K index, one can distinguish two cases:  on one hand, Afqa spring with  
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k = 0.21 years (2.5 months); and on the other hand, Anjar, Chamsine and Ain Zarqa 

with k = 1.6, 3 and 24 years respectively. The value of k<0.5 is very common in active 

karstic aquifers such as high-mountain karstic system (Fig. H.2a), however the values of 

k>1 are very unusual, carbonate aquifers which such huge storage capacities are very 

uncommon. This could be explained by a very deep well karstified phreatic zone, 

partially or totally confined under impermeable sediments (Fig H.2b). This very high 

phreatic zone storage capacity is responsible for the seasonally low variable discharge 

of the Orontes River.  

In conclusion, karstic aquifers developed all around the country in various carbonate 

formations largely contribute to surface water via springs. However, these aquifers do 

not respect the boundaries of surface water catchments. In fact, many aquifers such as 

Cenomanian aquifer stretch over many catchments. Hence, the cenomanian aquifer 

underline most of the northern half of the country extending on almost all the basins of 

this area.  Not only the cenomanian, but also other aquifers such as the Jurassic extend 

over the area of many adjacent surface basins (Fig. H.1).  
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Fig. H.2 (a) High-mountain karst system (e.g. Afqa spring) and (b) Karst systems related to 

basins and grabens. Conduit systems developed during a regional uplift followed by the closing 

and the sediment infilling of the basin. From the example of the Anjar–Chamsine system, the 

Bekaa plain (source: Bakalowicz 2015. 
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