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CHAPTER I: INTRODUCTION

A. CONTEXT AND NEEDS

1. Vector-borne diseases, a major concern

The incidence of emerging infectious diseases has increased during recent decades due to changing socio-
economic, environmental, and ecological factors (Jones et al. 2008). This is especially true for vector-borne
diseases (VBDs), which represent almost 29% of emerging infectious diseases in the last decade (Jones et
al. 2008). The introduction and spread into Europe in the 1979 of Aedes albopictus, an efficient vector for
at least 22 arboviruses (Gratz 2004), of bluetongue virus (specifically BTV-8) in 2006 (Zientara and
Sanchez-Vizcaino 2013), and Schmallenberg virus in 2011 (Doceul et al. 2013) are good examples of the
problem posed by VBDs. The specific emergence of VBDs is probably due in part to climate anomalies that
occurred during the 1990s (Jones et al. 2008), as has been shown for BTV in Europe (Guis et al. 2012;
Purse et al. 2005). Indeed, as explained by Massad and colleagues (Massad et al. 2011), “increased spread
of insect-borne diseases is likely in a warmer world”. In the context of global warming, emerging VBDs are
thus a growing concern, all the more so because of their huge economic and social impact (Marsh et al.
2008). To address this challenge, Lindgren and colleagues (Lindgren et al. 2012) argue in favor of
developing novel approaches for risk assessment and surveillance in order to enhance preparedness and

to facilitate public-health decision making.

2. Equine industry, risk and specificities

2.1. Population at risk

Horses, unlike livestock, typically travel frequently over short and long distances around the world for
competition, training, and/or reproduction. These movements increase the risk of the dissemination of
infectious diseases (Robin et al. 2011). This is a concern not just for the equine industry but also for public
health. Indeed, numerous equine viruses are zoonotic (e.g., rabies, brucellosis, anthraw, glanders,
leptospirosis, Hendra virus). However, controlling diseases spread by equines is not only important from a
sanitary point of view but also with regard to the important economic weight of the equine industry,
particularly in Europe (Liljenstolpe 2009). As an example, in 2010, the European equine industry
encompassed 3.7 million horses, generated 100 billion euros a year, and provided the equivalent of
400,000 full-time jobs (Leadon and Herholzt 2009). Furthermore, the sector is growing, with an increase in

the number of horse riders of 5% per annum. The introduction of exotic infectious disease may thus have



huge economic consequences, as was seen with the 13-week outbreak of African horse sickness in

Portugal in 1990, whose total cost was estimated around US $2 million (Portas et al. 1999).

2.2. Population not well tracked

Despite the sanitary and economic impacts of equine diseases, effective health regulations and biosecurity
systems to ensure safe equine movements are not always in place at the national and international level
(Leadon and Herholzt 2009; Murray et al. 2013). This was illustrated by the outbreak of equine influenza in
Australia in 2007. Here, the authorities failed to contain the infection in quarantine following the
importation of one or more infected horses (Webster 2011). The horse population is also not well-tracked,
which complicates the control and surveillance of diseases. In the EU, the implementation of mandatory
passports for horses in 2008 has improved the tracking of horses. However, the database that contains the
information on animal movements and deaths is not regularly updated. This has two consequences.
Firstly, the exact number of horses and their geographical location is unknown, which is an obstacle for
disease surveillance and control. Secondly, the exact number of horses transported between EU member
states or within a country is still not available. Indeed, although the EU’s Trade Control and Expert System
(TRACES) (Commission Decision 2003) provides information on the number of horses imported to and
within the EU, several movements are not recorded in the database due to the absence of mandatory

transport notification.

The difficulties of implementing proper health regulations and tracking systems can be explained by the
complex reality of the world of horses. The equine industry includes a myriad of activities (e.g., tourism,
equestrian sports, breeding and slaughtering of horses) and the various stakeholders engaged in each

activity do so with different expectations, ranging from professional to leisure (Castejon-Montijano and

Rodriguez-Ferndndez 2011).

Considering the potential health and financial risks posed by horses, it is especially important to develop
novel approaches for the surveillance of exotic infectious diseases, such as VBDs. However, this also

constitutes an additional challenge given the structure of the equine industry.

3. Early warning

A key point in controlling emerging or reemerging VBDs is early warning. Indeed, dealing with a disease
outbreak in its early stages is easier and more economical than once it has become widespread (FAO-OIE-
WHO Collaboration 2013; FAO-OIE-WHO Collaboration 2006). Early warning systems are timely
surveillance systems aimed at predicting the probability that an outbreak is spreading to new areas in
order to trigger prompt public health interventions (FAO-OIE-WHO Collaboration 2006). Different

strategies such as active and/or passive surveillance are used to ensure the timeliness of detection.
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3.1. Active surveillance

Active surveillance refers to the active role of health authorities in data collection. The advantage is that
active sampling may detect a disease without the observation of clinical signs. However, one of the major
drawbacks is that, to detect rare diseases like a newly introduced exotic disease, active sampling has to be
very large and redundant, which can be very costly (Doherr and Audigé 2001). To mitigate costs, it is
possible to implement a specific type of active surveillance, known as risk-based surveillance. Risk-based
surveillance is defined by Stark and colleagues (Stark et al. 2006) as the allocation of surveillance activities
based on the probability of events with or without consideration of the consequences of the event, the
management of the event, or the process of communication of the event. The term “targeted
surveillance” is also used (Doherr and Audigé 2001; de Koeijer et al. 2002; Salman 2003). The simple idea
behind the concept is to collect samples from the segments of the population that have the highest
probabilities of being infected, thus increasing the probability of disease detection (Salman 2003). In this
way, this process decreases the required sample size without reducing the probability of detecting the
disease. Risk-based surveillance is based on the concept of looking for something where it is most likely to
be found; this approach thus requires reliable and thorough prior information on at-risk populations in
order to ensure the appropriate representativeness of the sampling (FAO 2014; Oidtmann et al. 2013;

Stark et al. 2006).

3.2. Passive surveillance

In many countries, passive surveillance is one of the most common forms of surveillance for rare and
exotic diseases. The term refers to any passive disease reporting systems in which veterinarians, farmers,
or any other stakeholders notify authorities when they have sick animals. These surveillance systems are
used to identify numerous diseases since they have several significant advantages: they cover a large part
of the animal population and the costs associated with data collection and analysis are relatively low
(Doherr and Audigé 2001; FAO 2014; Salman 2003). However, the performance of passive surveillance
systems suffers from frequent under-reporting due to the lack of stakeholder awareness regarding a
disease of interest. This may result in a failure to identify the disease (Hadorn et al. 2008) especially when
it manifests in few or unspecific clinical signs (Doherr and Audigé 2001). In addition, potential fears of the
disease’s consequences may also incite stakeholders to not report suspected cases (FAO 2014; Salman
2003). Under-reporting is especially problematic regarding the surveillance of exotic diseases, as exotic
diseases have a low probability of occurrence, their symptoms usually not well known by practitioners,

and the consequences of reporting an exotic disease in a new area may be dramatic.

3.3. Early warning in horse population

For the early detection of exotic VBDs in horses, both active and passive approaches could theoretically be

implemented. However, as previously highlighted, one of the major drawbacks of the active approach is



that it can be very costly, especially when a disease is rare like exotic VBDs (Doherr and Audigé 2001).
Risk-based active sampling could be implemented, but the equine industry suffers from a lack of accurate
data regarding the populations at risk (e.g., details of animal movements, population size and location)
which might complicate the planning and the implementation of such an active surveillance system. The
efficiency of the classical passive surveillance approach in the early detection of an outbreak may also be

limited due to the high probability of under-reporting, especially for exotic diseases.

Instead of relying on classical active or passive surveillance to detect new outbreaks, then, new
approaches for estimating the probability of outbreak occurrence may constitute a promising way to
improve the early detection of VBDs in horses. Different approaches can be considered in estimating this

probability: classical risk assessment and syndromic surveillance.

4. Risk assessments

Risk assessments are the component of risk analysis that estimates the risks associated with a hazard,
probability of hazard occurrence and its consequences (OIE 2010). Applied to exotic diseases, they are
well-known tools for describing the probability of pathogen entry and spread within an area. The
probability of entry is defined as the probability that a pathogen enters in a given area, considering all
potential pathways of introduction and without considering the later steps of transmission (OIE 2014). The
probability of “spread” is a vaguer concept and can include different sub-definitions, as presented by de
Vos and colleagues (de Vos et al. 2011): (1) the probability of transmission, which is defined as the
probability that the pathogen is able to spread to susceptible hosts in the area at risk, (2) the probability of
establishment, which is the probability that the pathogen is able to spread to susceptible hosts and to
susceptible vectors given the conditions of introduction, and (3) the probability of spread, which is the
probability that the pathogen is able to spread in time and space, considering both local and long-distance
dispersal. Regarding the specific issue of early detection, the probability of spread is irrelevant, as it is
related more to the assessment of a disease’s impact when early surveillance has already failed to detect
and control an outbreak. Conversely, the probabilities of transmission and establishment are especially
interesting for early detection as they indicate the time period and the most suitable area for early spread
of a pathogen. In particular, the probability of establishment, which takes into account the place and time
of entry, is an interesting parameter with which to evaluate the likelihood of an infection actually leading

to local spread.

The above approach gives a probability of outbreak occurrence based on risk factors such as the suitability
of an environment and climate for disease transmission, or the presence of risky practices (e.g.,
importation of animals from infected area). It can be used by decision makers for risk mitigation and/or to
enhance stake-holders’ awareness of rare or emerging diseases through risk maps, as has already been

proposed for some endemic VBDs (e.g., surveillance of West Nile virus in California (Brown 2012)
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(http://www.westnile.ca.gov/) or tick-borne diseases in Europe (Beugnet et al. 2009)

(http://www.fleatickrisk.com/FR/Pages/Home.aspx)).

5. Syndromic surveillance

To enhance traditional passive surveillance systems, methods based on the analysis of pre-diagnostic and
unspecific routinely collected data were developed at the beginning of the 21* century. Such approaches,
referred to as syndromic surveillance, aim to identify the early, often weak, signal of an outbreak in the
absence of an accurate identification of the disease by medical practitioners or laboratories. There is no
single and commonly accepted definition for syndromic surveillance but it is commonly accepted that it
focuses on data collected prior to clinical diagnosis or laboratory confirmation (Katz et al. 2011; Shmueli
and Burkom 2010). First developed in human medicine, it is now also widely used in veterinary medicine
(Ddrea et al. 2011); indeed, a recent review by Dupuy and colleagues (Dupuy et al. 2013a) identified at
least 27 syndromic surveillance systems or initiatives in 12 European countries. However, regarding
horses, few syndromic surveillance initiatives are in place and only two have been explicitly identified: one
in UK with Equine quarterly surveillance reports (DEFRA/AHS/BEVA 2015) and another another in The

Netherlands with the GD monitor system (Rockx et al. 2006).

Syndromic surveillance provides a risk of outbreak occurrence based on the abnormal evolution of a
health-related indicator. Such approaches can be used to rapidly detect a well-known disease or new
pathogen without a priori consideration and they thus promise to strengthen surveillance of VBDs in
horses. However, because they rely on health-related indicators, syndromic surveillance usually has a low
specificity (variations in the indicator might be due to disease or to another event) and it is not able to
take into account other epidemiological information available for a disease, such as environmental risk

factors.


http://www.westnile.ca.gov/
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CHAPTER I: INTRODUCTION

B. RESEARCH QUESTION

In the present work we explore various sources of information that shed light on the probability of
occurrence of a newly introduced epidemic, focusing on exotic VBDs in horses. This is approached from
various ends: is there a probability of entry? is there a probability of establishment? and is there a change

in clinical signs, or other health-related indicator, that may signal such an epidemic?

The risk assessment for pathogen entry and establishment gives a risk profile of outbreak occurrence
based on risk factors. However, an outbreak may also occur (with low probability) in a lower risk area
instead of a higher risk area. The value of risk assessment for early detection is therefore more as

supporting evidence than as formal evidence of an outbreak.

Similarly, syndromic surveillance gives a risk of outbreak occurrence based on the abnormal evolution of a
health indicator. However, an outbreak may also occur without modification of such indicators. Even
when significant modification is detected, the signal is often very unspecific and might occasionally be due
to random fluctuation or to the effects of another outbreak or similar event. Again, then, the value of
syndromic surveillance for early detection is more as supporting evidence than as formal evidence of an

outbreak.

Risk assessments and syndromic surveillance can both suggest the possibility of a newly introduced
epidemic, but they do not prove the presence of the disease. Using these approaches in concert, however,
can increase the amount of evidence available and can be a way to improve confidence in predictions of
newly introduced epidemics. In doing so, the interaction between risk assessments and syndromic
surveillance must be considered carefully as these techniques are not fully independent. Indeed, for
example, increased awareness via risk assessments might change the value of syndromic surveillance,

because awareness will lead to increased reporting of data and thus to more numerous false alarms.

All these risk indicators are highly variable over time and space due to the unique nature of VBDs, which
have a strong spatiotemporal pattern that is influenced by climatic and environmental factors (Altizer et
al. 2006; Gage et al. 2008; Reisen 2010). Variability can also arise as a result of other non-biological
fluctuations related to features of international trade, animal production, and so on. Spatial and temporal
analyses must thus be performed in order to provide accurate data on the probability of occurrence of a

newly introduced VBD.

To address the challenges of establishing early warning systems for VBDs in horses, the present work
explores spatiotemporal risk assessments and syndromic surveillance, alone and in concert. In particular,
we describe the limits and advantages of both methods in order to arrive at a new and more valuable

approach for early warning systems.
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C. CASES STUDIES
As case studies, we focus on three emerging vector-borne diseases found in French horses: African horse

sickness, equine encephalosis, and West Nile fever.

1. French equine industry

1.1. Equine population

In France there are between 900,000 and 1,000,000 horses, which are mainly used for sport and leisure.
The horse population, as estimated by IFCE-SIRE, is more concentrated in Basse-Normandie (10% of the
population) (IFCE - les Haras nationaux 2011) (see Figure 1). However, the exact number of horses and

their geographical locations are unknown.

Figure 1: Estimated geographical distribution of horses population (ICFE-SIRE)

1.2. Organization of the equine industry

The equine industry in France is an important sector: it represents 4.3% of the full-time-job-equivalent in
the agricultural sector and produces around 12 billion euros of revenue per year, mainly generated by
horse-race betting operations (Lebrun 2010). Furthermore, France is the world’s fourth-largest exporter of
horses and its equine industry is growing, with an increase in both the number of breeders and the size of

the breeding population since the last decade (IFCE - les Haras nationaux 2011).

Nonetheless, the French equine industry is fragmented, with different organizations in charge of the
various sub-industries: racing, sport and leisure, breeding, and butchery. All of these sub-industries are
further subdivided into several sectors, each with its own specific regulations and organizations as

presented in Erreur ! Source du renvoi introuvable.. The ‘Institut francais du cheval et de I'équitation’



(IFCE) is a central institute which manages the SIRE database (‘systeme d’identification des équidés’) which

collects all the data available on French microchipped equids.

Table 1: Main players in the French equine industry

‘France galop’: Grants authorization to train and ride horses for gallop racing; updates
racing regulations and stud book organization

‘Cheval frangais’: Grants authorization to train and ride horses for harness racing; updates
racing regulations and stud book organization

‘Fédération nationale des courses frangaises’: Responsible for harmonization of racing
regulations

10 regional federations

Horse racing
industry

‘Fédération interprofessionnelle du cheval de sport, loisir travail’: Cross-sector
organization; promotes horse-related activities

‘Fédération nationale de cheval’: Breeders’ association

‘Association syndicale des étalonniers particuliers’: Stallion raisers’ association
‘Chambre syndicale du commerce des chevaux de France’: Professional traders’ association
‘Groupement hippique nationale’: Riding centers’ association

‘Syndicat National des Exploitants d’établissements Professionnels Enseignant
I’équitation’: Riding centers’ association

‘Société hippique francaise’: Coordinates genetic selection; riders’ association
‘Fédération frangaise d’équitation’: Issues required licenses and complementary
certificates; develops regulations for competitions

‘Acteurs et cavaliers de sauts d’obstacles en France’: Riders’ association

‘Haras nationaux’: Confirms the origins of horses; promotes horse industry development

Sport and leisure
industry

‘Interbev equin’: Promotes horse meat, develops marketing and production rules
Butchery industry ‘France trait’: Union of nine French associations of draft horses; coordinates genetic
selection

Different breed-specific stud books: coordinate horse selection and genetic improvement;

Breeding industry promote purebred horses

1.3. Disease surveillance in French horses

The French surveillance system for equine diseases is mainly passive. The diseases for which mandatory
reporting to the French ministry is in place are reported in Table 2. In addition to this classical passive
reporting system, the French network for the surveillance of equine diseases, or ‘RESPE’

(http://www.respe.net/), collects declarations from veterinary practitioners registered as sentinels

throughout France. RESPE, which was established in 1999, also issues alerts on equine diseases, such as
information on diseases detected in French horses or in neighboring countries. More than 500 sentinel
veterinarians are involved and cover 92 out of 96 French regions (see Figure 2). The veterinarians fill out a

standardized questionnaire online and send standardized samples for laboratory diagnosis.

Table 2: Mandatory notifiable diseases to the French ministry. Category 1 = diseases of serious concern for
public health and/or for the industry and that require preventive and control measures for the general
interest, Category 2 = other diseases that also require preventive and control measures for the collective
interest.

Horse specific: equine infectious anemia, African horse sickness, western and eastern
equine encephalitis viruses, Venezuelan equine encephalitis virus

Category 1 — - - ; - -
Non-horse specific: rabies, botulism, brucellosis, anthrax, Aujeszky’s disease,

tuberculosis, Japanese encephalitis, West Nile virus, vesicular stomatitis virus

Category 2 Equine viral arteritis, contagious equine metritis, glanders, trichinosis

10
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Active testing of horses is performed by private partners prior to sale and by public partners prior to
export for three diseases: equine viral arteritis, equine infectious anemia, and contagious equine metritis.
Active surveillance is also performed by private and public partners on breeding stock for certain breeds
and on all stallions used for semen collection. No further active surveillance system exists for the

surveillance of equine diseases in France.

Région lle-de-France

1

Nombre de VS par département
LB
B s

549 Vétérinaires Sentinelles
sur 92 départements

Source des RESPE
Saurce cartographiaus - © Aticque

Figure 2: Geographic distribution of the French sentinel veterinarians involved in RESPE.

2. Diseases of interest

2.1. African horse sickness

Like the Bluetongue and Schmallenberg viruses, African horse sickness (AHS) is a Culicoides-borne disease,
and it has recently been highlighted as a potential threat for Europe (Zimmerli et al. 2010)(MacLachlan
and Guthrie 2010). The disease is caused by a virus belonging to the Orbivirus genus of the Reoviridae
family (Mellor and Hamblin 2004). There are nine different serotypes that confer some degree of cross-
protective immunity (Mellor and Hamblin 2004). The virus is considered endemic in sub-Saharan
countries, with rare outbreaks in North Africa and western Asia (MacLachlan and Guthrie 2010). The last
AHS outbreak in Europe occurred between 1987 and 1990 in the Iberian Peninsula and resulted from the

importation of infected zebras (Rodriguez et al. 1992a).

AHS is a non-zoonotic disease that affects all extant Equidae, although morbidity and mortality vary
among species: as many as 90% of infected horses die within one week, while infection is largely
subclinical in zebras (Mellor and Hamblin 2004; Wilson et al. 2009). It is considered to be one of the most

devastating diseases that affect equids. Four forms of the disease exist: horse sickness fever (moderate
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fever and no mortality), cardiac form (subcutaneous edema, particularly of the head, neck, chest, and
supraorbital fossae, mortality 50%), mixed form (combination of the cardiac and pulmonary forms,
mortality 70%) and pulmonary form (sudden death, severe dyspnea, mortality 95%) (Mellor and Hamblin

2004). The incubation time is from 3 to 15 days (Theiler 1910).

2.2. Equine encephalosis

Equine encephalosis (EE) is caused by a virus of the Orbivirus genus of the Reoviridae family, and
encompasses seven different serotypes (Dhama et al. 2014; Viljoen and Huismans 1989). Similarly to AHS,
EE has been recently highlighted as a potential threat for Europe (MaclLachlan and Guthrie 2010; Zimmerli
et al. 2010). Indeed, AHS and EE viruses are similar in many aspects: both are non-zoonotic Culicoides-
borne members of genus Orbivirus that share the same vectors (Venter et al. 2002; Venter et al. 2000) and
more or less the same geographical distribution. Like AHS, EE is also considered to be endemic in sub-
Saharan countries, with rare outbreaks in North Africa and western Asia (Mildenberg et al. 2009; Wescott
et al. 2013). The last major outbreak was reported in Israel in 2009 (Mildenberg et al. 2009). EE has never

been observed in Europe (Dhama et al. 2014).

The epidemiology of EE is similar to AHS but the pathogenicities of the two viruses are different. The
incubation time of EE is shorter (2-6 days (Theiler 1910)) and its transmission rate is higher (Lord et al.
2002). Moreover, despite the fact that EE was initially described as a “fever in horses simulating horse-
sickness” (Theiler 1910), the symptoms of the two diseases are different. In particular, the mortality rate
of EE is always low. In contrast to AHS, which causes severe cardiac and pulmonary symptoms, EE is
characterized by a wide range of symptoms, such as abortions during the first 5-6 months of gestation,

respiratory signs (e.g., nasal discharge, cough), and encephalitis (Dhama et al. 2014).

2.3. West Nile virus

West Nile virus (WNV) is a mosquito-borne arbovirus belonging to the genus Flavivirus (family Flaviviridae)
and mainly transmitted by mosquitoes from the genus Culex (family Culicidae). Two distinct lineages exist:
lineage 1 causes outbreaks throughout the world, while lineage 2 was limited to Africa until 2008, when it
was introduced to Europe. Since the discovery of WNV in 1937 in Uganda (Smithburn et al. 1940), the
geographic distribution of the virus has expanded and the disease is now considered endemic in Africa,
Asia, Europe, Australia, the Caribbean, and the Americas (Campbell et al. 2002; Ozdenerol et al. 2013). In
Europe, WNV emerged in the 1960s and several outbreaks have subsequently been documented in many
European countries (Calistri et al. 2010). Even if the virus is now endemic in large parts of Europe, the
number of reported outbreaks is presently increasing in Southern and Eastern Europe (e.g., Italy, Greece,
Bulgaria, Croatia, Serbia, Albania)(Di Sabatino et al. 2014). This increase in the number of outbreaks,

combined with the recent introduction and spread of lineage 2 in Europe (which has been associated with
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severe cases in humans, horses, and birds (Bakonyi et al. 2006; Calzolari et al. 2013; Hernandez-Triana et

al. 2014)), contribute to the growing concern about WNV in Europe.

The enzootic cycle of WNV is driven by its continuous transmission to susceptible bird species through
adult mosquitoes. Its main hosts are birds, but the virus also affects more than 30 non-avian species. The
susceptibilities of birds to WNV infection differ, with those in the order Passeriformes being most
susceptible, followed by birds in the order Charadriiformes and domestic geese (order Anseriformes).
Psittacine and gallinaceous birds are less susceptible. WNV in birds is usually asymptomatic, but may
cause nonspecific clinical signs, neurological signs, and death (Pérez-Ramirez et al. 2014; Steele et al.
2000). Of non-avian species, the most affected are humans and horses (Kramer and Bernard 2001; Van der
Meulen et al. 2005). In horses the clinical signs of WNV are almost exclusively neurological and reflect its
pathology in the central nervous system (Cantile et al. 2000; Castillo-Olivares and Wood 2004). In humans
two presentations of the disease are reported: uncomplicated WN fever (headache and myalgia, often
accompanied by gastrointestinal symptoms) and WN meningoencephalitis (typical meningitis or

encephalitis) (Campbell et al. 2002; Colpitts et al. 2012).
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D. OUTLINES OF THE WORK

Chapter 1 presents the context of this work and the associated research question. Chapter 2 gives first a
brief presentation of the methods used for spatiotemporal quantitative risk assessments of the entry and
establishment of VBDs in France, then presents spatiotemporal risk analyses that were performed to
assess the probabilities of AHS and EE entry and establishment. Two routes of viral entry were considered

together and two methods were used to assess the probability of viral establishment.

Chapter 3 first provides an overview on current approaches in syndromic surveillance. Then, an
application of a classical method is presented which explores the impact of pre-processing methods on
surveillance system performance. Finally, we discuss the application of Bayes’ rules to syndromic
surveillance with the goal of generating a quantitative output from syndromic surveillance and combining

this with other epidemiological information.

Chapter 4 presents the combination of risk assessments with syndromic surveillance data using a Bayesian
approach. We present a combination of various sources of epidemiological information, which originate

from different syndromic surveillance systems and/or from syndromic surveillance and risk analysis.

Chapter 5 concludes with a discussion of the reliability and transparency of these complex surveillance

systems and their usefulness in supporting decision-making.
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CHAPTER II: QUANTITATIVE RISK ASSESSMENTS

This chapter explores quantitative risk assessments as a way to assess the risk of potential newly
introduced VBDs in horses. Early detection of an exotic vector-borne pathogen can reduce the impact of
the disease. It relies on two factors: the probability of pathogen entry and the probability of pathogen
transmission and establishment. In fact, the probability of spatial and numeric spread is irrelevant to this
process, as it is related more to the assessment of a disease’s impact after early detection has already
failed to detect and prevent the outbreak. The parameters needed to assess these probabilities are
specific to each VBD, given that a vector’s biology is closely linked to season and environment. A brief
overview of the methods used for quantitative risk assessments of a VBD’s entry, transmission, and
establishment is presented in Chapter II.A. This review highlighted that combination of probability of
entry, probability of transmission and probability of establishment is still rarely implemented in animal
health, as is a thorough study of multiple routes of pathogen entry. Building on this review, we thus
developed a quantitative model to assess the probability of entry and establishment of AHS, one of the
most devastating equine diseases known (Chapter 11.B). We implemented spatiotemporal analysis to take
into account the close link between VBDs and season/environment, and to consider other non-biological
fluctuations related to features of international trade and animal production. Then, we evaluated the
feasibility of adapting this model to other VBDs in horses (Chapter II.C). For that purpose, we focused on
equine encephalosis (EE), as this disease is similar to AHS. The respective probabilities of entry into France
were compared for each disease. Finally, we discuss the advantages and drawbacks of our model in

assessing the risks of newly introduced VBDs in horses (Chapter I1.D).
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A. OVERVIEW

This section aims to present the general principle of risk assessment and explain how the probabilities of
pathogen entry, transmission, and establishment can be assessed in the specific context of VBDs. We

restrict ourselves to quantitative risk assessment and to the most popular methods for risk estimation.

1. General principle of risk assessment

1.1. Definitions and objectives

Risk assessment is the component of risk analysis that estimates the risk associated with a hazard (OIE
2014). The OIE has defined a hazard as a “biological, chemical, or physical agent in, or condition of, an
animal or animal product with the potential to cause an adverse health effect” and a risk as “the likelihood
of the occurrence and the likely magnitude of the biological and economic consequences of an adverse

event or effect to animal or human health”.

The purpose of risk assessment is not so much to predict the introduction of a hazard but rather to help
managers to better understand the associated risks (e.g., relative contributions of various factors, current
areas of distribution, pathways for introduction, effectiveness of risk prevention actions). Risk assessment
is clearly separated from risk management, but actively collaborates to achieve the ultimate goal:

implement measures that ensure the appropriate level of protection (Giovannini et al. 2004; OIE 2014).

Risk assessment may focus on different components, such as assessment of the entry, exposure, or
consequences of a VBD, or on an estimation of the total risk by combining the results of these separate
components in an overall assessment. To our knowledge, only a few papers in the animal health literature
have linked these different probabilities in a quantitative manner: in a literature search, only three papers
were found that addressed a combination of the probability of entry of a virus and its probability of
establishment (EFSA 2009; Napp et al. 2012; de Vos et al. 2012). Similarly, a comprehensive approach to
the routes of entry is rarely used; we found only one paper that analyzed a combination of routes of virus

entry (Kilpatrick et al. 2004).

The entry assessment is conducted using the probability that the pathogen of interest enters the area at

risk via any possible pathway, without regard to later steps of transmission.

The exposure assessment includes analysis of various factors, as presented by de Vos and colleagues (de
Vos et al. 2011): (1) the probability of transmission, which is defined as the probability that the pathogen
is able to spread to susceptible hosts in the area at risk, (2) the probability of establishment, which is the
probability that the pathogen is able to spread to susceptible hosts and to susceptible vectors (and vice

versa) given the conditions of introduction, and (3) the probability of extended spread, which is the

19



probability that the pathogen is able to spread in time and space, considering both local and long-distance

dispersal.

The consequence assessment rates the impact of the disease and includes health, economic, social,
ethical, and environmental considerations (Vose 2008). Disease persistence to next season won’t be

considered in this work.

1.2. Method

The preliminary step of any risk assessment is to identify the hazard of interest. Hazard identification is
fundamental in defining the objective of the risk assessment and must be carefully implemented (Vose

2008).

To perform risk assessment, several guidelines are available (see for example (Codex Alimentarius 1999;
EFSA 2010; OIE 2014; USDA 2012; de Vos et al. 2011)) and no single method is applicable to all risk
assessments. However, the following principles identified by OIE in the International Animal Health Code
(OIE 2014) should ensure the quality of risk assessment:

e  Risk assessment should be flexible enough to deal with the complexity of real-life situations.

e The risk assessment should be based on the best available information that is in accord with
current scientific thinking. The assessment should be well-documented and supported with
references to the scientific literature and other sources, including expert opinion.

e Consistency in risk assessment methods should be encouraged and transparency is essential in
order to ensure fairness and objectivity, consistency in decision making, and ease of
understanding by all interested parties.

e  Risk assessments should document the uncertainties, the assumptions made, and the effect of
these on the final risk estimate.

e The risk assessment should be amenable to updates when additional information becomes

available.

Risk assessments can be either qualitative or quantitative, and both approaches are valuable. Qualitative
assessments describe the risk in words (e.g., low, moderate, high), whereas quantitative assessments
express the risk in numeric terms. Qualitative assessments are performed when no proper evaluation of
the order of magnitude of uncertainties is possible while these uncertainties are typically high. Since there
is no quantitative evaluation, there is also no proper mathematical model. Qualitative assessments are
often used for routine decision making (OIE 2014). However, qualitative assessments do not provide
sufficient information to accurately discriminate between small and large risks (Cox et al. 2005).
Quantitative assessments provide more detailed information on the risk and can be more useful in
distinguishing periods and areas at higher risk. However, the performance of a quantitative risk analysis is

limited by the quality of data available. In addition, quantitative risk assessment can be deterministic or
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stochastic. Deterministic approaches produce a single outcome from a given set of parameters,
uncertainty can be included but stochastic effects are usually ignored or crudely estimated. Stochastic
approaches directly calculate the risk while also taking into account uncertainty and/or variability due to
stochastic variation in input parameters. They produce a probability distribution of possible outcomes

distinguishing impact via uncertainty and stochasticity.

2. Probability of entry

2.1. Definition

The probability of entry was previously referred to as the probability of release (OIE 2010). In 2014, the
new version of the OIE’s Terrestrial Animal Health Code (OIE 2014) specified this a bit further and adopted
the following definition: “Entry assessment consists of describing the biological pathway(s) necessary for
an importation activity to introduce pathogenic agents into a particular environment, and estimating the

probability of that complete process occurring”.

2.2. Estimation for VBDs

2.2.1.Routes of entry

The first step of the assessment of pathogen entry is to identify the potential routes available for
introduction of the pathogen. Considering the specific case of VBDs, de Vos and colleagues (de Vos et al.
2011) listed the following pathways which should be considered in assessing the probability of VBD entry:

e Entry of infected live animals via importation of livestock, zoo animals, pets, wildlife, or
migratory birds;

e Entry of an infected vector or its eggs or larvae through expansion of the vector’s habitat or
transport with wind, tires, plant materials, transport vehicles, animals, humans, manure, or
soil;

e Import of contaminated biological material, such as semen, ova, embryos, serum, plasma,
and modified live vaccines;

e Import of contaminated animal products such as meat, milk, eggs, bush meat, and animal by-
products (feathers, animal proteins, animal fats);

e Entry of infected humans.

The importation of animals and transport of materials or other products can be legal or illegal. Illegal
imports could contribute substantially to the probability of entry, but are obviously difficult to estimate
and to quantify, and will therefore not be discussed further in this work (Chaber et al. 2010; Hartnett et

al. 2007; Smith et al. 2012).
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2.2.2.Calculation

The scenario tree, or scenario pathway, approach is commonly used to estimate the probability of
pathogen entry (Vose 2008). Several examples are available for vector-borne pathogens, in particular for
Rift Valley fever (Abdo-Salem et al. 2011), West Nile fever (Bessell et al. 2014; Douglas et al. 2007;
Kilpatrick et al. 2004), equine infectious anemia (Asseged et al. 2012), and bluetongue (Hoar et al. 2004).
Other examples are also available for non-vector-borne pathogens like classical swine fever (Bronsvoort et

al. 2008) and foot-and-mouth disease (Yu et al. 1997).

The principle is first to describe all consecutive steps that result in disease entry. The complexity of these
steps can vary according to the routes of entry considered (de Vos et al. 2011). For example, when an
infected animal is legally imported, the animal must be viraemic (or latently infected) and the infection
not detected during import procedure. However, when an infected wild bird enters the country via
migratory routes, the only step to be considered in the probability of pathogen entry is that the animal is
viraemic or latently infected. Each step has a conditional probability of occurrence and the probability of

entry is calculated by multiplying the probabilities of all steps along the tree.

Model calculations can be used to quantitatively combine all these probabilities. These are especially
useful when there is uncertainty and/or variability due to the presence of stochastic parameters, which is

often the case in risk analysis.

3. Probabilities of transmission and establishment

3.1. Probability of transmission

3.1.1.Definition

The probability of transmission can be evaluated by calculating the basic reproductive number (Ro) (see for
example (de Koeijer et al. 2002) and (Fischer et al. 2013)), which represents the expected number of

III

secondary cases produced, in a completely susceptible population, by a “typical” infected individual during
its entire period of infectiousness (Diekmann et al. 1990). The probability of transmission is thus not a

probability but the number of new cases generated from one initial infected case.

If Ro > 1, then, on average, each infected animal will generate more than one infected animal, and the
infection will increase exponentially. If Ry < 1, an infected animal is not able to infect more than one other
animal, on average, and the infection should die out.

Due to the ease of interpretation of Ry, it is very useful in distinguishing at-risk situations from those not at

risk. This is one of the reasons why it has become an important parameter in risk assessment. In particular,
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Ry is often used to assess the transmission of exotic infectious diseases for which, by definition, the only

infected individual in a population is the introduced one.

3.1.2.Estimation for VBDs

Numerous approaches are available to estimate R, but with vector-borne infection, the estimation of R is
slightly more complicated than for diseases with direct transmission. Indeed, with VBDs there is not only
one population of infected/susceptible individuals to be considered, but at least two: hosts and vectors.
Thus two transmission steps must be assessed: one infectious host with a fully susceptible vector
population, and one infectious vector with a fully susceptible host population.
The following parameters must be considered to assess the probability of VBD transmission (de Vos et al.
2011):

e Host density;

e Vector abundance;

e  Biting rate;

e Transmission probability per bite from host to vector and from vector to host;

e Vector biology (e.g., survival rate, extrinsic incubation period).

Moreover, the vector-related data are highly dependent on environmental and climatic factors. Thus the
R, for VBDs also depends on the time period and the geographical location in which the pathogen enters

the area at risk.

Classical models for the assessment of VBD transmission probabilities are based on systems with one host
and one vector or with two hosts and one vector. More details can be found, for example, in studies
conducted on malaria (Macdonald 1955; Pongon et al. 2008), African horse sickness (Backer and Nodelijk
2011; Lord et al. 1996), Rift valley fever (Fischer et al. 2013), and bluetongue virus (Brugger and Rubel
2013; Gubbins et al. 2008; Hartemink et al. 2009; de Koeijer et al. 2011). However, other authors have also

proposed approaches based on two-host, two-vector models (Turner et al. 2013).

3.2. Probability of establishment

3.2.1.Definition

The probability of establishment represents what happens in terms of pathogen survival and growth
during a transition phase between a pathogen’s entry and its actual spread. Establishment can be
considered the initial spread of the disease and is expressed as the probability that “the infection has
passed from a host via a vector to an indigenous host, while the basic reproduction number, Ry, is higher

than 1” (de Vos et al. 2011).
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First, the probability of establishment depends on the route of pathogen entry. Beyond this, it depends on
environmental and climatic conditions and therefore on the time period and the location in which the

pathogen enters the area at risk.

3.2.2.Estimation for VBDs

Methods such as those already presented in the previous section on the probability of entry assessment
(i.e. the scenario tree method) can be used to estimate the probability of establishment. As previously

presented, the principle is to describe all consecutive steps that result in disease establishment.

For VBDs, the following steps must be taken into particular consideration (de Vos et al. 2011):
e  Pathway for introduction: route of exposure of indigenous host or vector;
e Time of disease entry: temperature, humidity, and other parameters that may influence
pathogen transmission;
e  Geographic location of disease entry: host density, vector abundance;
e Vector-host interaction: biting rate, transmission probability per bite from vector to host and
from host to vector.
Studies conducted on African horse sickness (de Vos et al. 2012), bluetongue (Napp et al. 2012), and
epizootic hemorrhagic disease (EFSA 2009) provide examples of the assessment of the probability of VBD

establishment using different routes of pathogen introduction (e.g., infectious host or infectious vector).

4. Conclusion

Quantitative risk assessments are common methods used to assess the risk posed by exotic pathogens.
Various methods are available to implement risk assessment. Notably, different components of risk
assessment (i.e. probabilities of entry, transmission, and establishment) can be assessed independently or
together according to the objective of the risk assessment. Considering the case of VBDs, specific
parameters have to be taken into account to deal with the two steps of virus transmission (from vector to
host and from host to vector). In particular, the time and the area of pathogen entry are important in
assessments of the probabilities of pathogen transmission and establishment as a vector’s biology is
closely linked to season and environment. However, analyses that combine the probabilities of entry,
transmission, and establishment are still rarely implemented in animal health; the same is true regarding
studies of combinations of different routes of entry. The development of such models could be a way to

better understand and manage the risk associated with a disease.
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B. PROBABILITIES OF ENTRY AND ESTABLISHMENT

1. Introduction

In this section we present a spatiotemporal assessment of the probability of introduction of African horse
sickness (AHS) to France. We developed a model that combined the probability of entry with the
probability of establishment and included two routes of virus entry, expecting that such a model would
enable a greater understanding of the risk associated with AHS in France compared to risk assessments

involving only a single probability parameter or a single route of introduction.

This work was published in BMC Vet Research (see below for the main text and Appendix 1, Appendix 2,
and Appendix 3 for the additional files of the paper), two professional publications in French journals (see
Appendix and Appendix 5), and one poster presentations at the EPIZONE meeting in 2013 (see Appendix
6).
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Abstract

Background: African horse sickness (AHS) is a major, Culicoides-borne viral disease in equines whose introduction
into Europe could have dramatic consequences. The disease is considered to be endemic in sub-Sahlaran Africa.
Recent introductions of other Culicoides-borne viruses (bluetongue and Schmallenberg) into northern Europe have
highlighted the risk that AHS may amive in Europe as well. The aim of our study was to provide a spatiotemporal
quantitative risk model of AHS introduction into France. The study focused on two pathways of introduction:

the arrival of an infectious host (PW-host) and the arrival of an infectious Culicoides midge via the livestock trade
(PW-vector). The risk of introduction was calculated by determining the probability of an infectious animal or vector
entering the country and the probability of the virus then becoming established: i.e, the virus's arrival in France
resulting in at least one local equine host being infected by one local vector. This risk was assessed using data from
three consecutive years (2010 to 2012) for 22 regions in France,

Results: The results of the model indicate that the annual risk of AHS being introduced to France is very low but
that major spatiotemporal differences exist. For both introduction pathways, risk is higher from July to October and
peaks in July. In general, regions with warmer climates are more at risk, as are colder regions with larger equine
populations; however, regional variation in animal importation patterns (number and species) also play a major role
in determining risk. Despite the low probability that AHSV is present in the EU, intra-EU trade of equines contributes
most to the risk of AHSV introduction to France because it involves a large number of horse movements.

Conclusion: It is important to address spatiotemporal differences when assessing the risk of ASH introduction and
thus also when implementing efficient surveillance efforts. The methods and results of this study may help develop
surveillance techniques and other risk reduction measures that will prevent the introduction of AHS or minimize
AHS' potential impact once introduced, both in France and the rest of Europe.

Keywords: African horse sickness, Equine movements, Import risk assessment, Risk of introduction, Culicoides,
Quantitative risk, Midge

Background

African Horse Sickness (AHS) is a highly fatal viral
vector-borne disease that is transmitted among equine
hosts by Culicoides midges (Diptera: Ceratoponidae) [1, 2].
It affects all extant Equidae, but morbidity and mortality
vary among species: as many as 90 % of infected horses die
within one week, while infection is largely subclinical in
zebras (3, 4]. AHS virus (AHSV) is an orbivirus, and there
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are nine different ASHV serotypes that confer some degree
of cross-protective immunity [4]. AHS is considered to be
endemic in sub-Saharan Africa, where the zebra acts as a
reservoir [5]. Rare outbreaks have occumed in North
Africa, western Asia, and the Iberian Peninsula, where they
have persisted for only a few years [6]. The last outbreak in
Europe occurred in the Iberian Peninsula, between 1987
and 1990, and caused the death of more than 1,350 horses,
either directly or as a result of control measures [7].

The recent introduction into northern Europe of blue-
tongue virus (specifically BTV-8, in 2006 [8]) and
Schmallenberg virus (in 2011 [9]), both transmitted by

© 2015 Faverjon et al; licensee BioMed Central This is an Open Access articke distributed under the temms of the Creative
Commons Attribution License [hitpy//creativecommons org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the criginal work is properly credited. The Creative Commaens Public Domain

Dedication waiver {http.//geativecommaons org/publicdomain/zerc/1 ) applies to the data made available in this article,

unless othenwise stated.
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Culicoides midges, highlights the relevance of assessing
the risk that AHSV will be introduced to Europe [10]. It
is particularly crucial to conduct a risk assessment ana-
lysis for France, as the country encompasses different
ecosystems, including Mediterranean zones, where Culi-
coides imicola—considered to be the major vector of AHSV
worldwide—is very abundant, and non-Mediterranean
temperate zones, where Culicoides obsoletus—a potential
AHSV vector—is dominant [11, 1, 12]. Moreover, France
contains between 900,000 and 1 million equines, is the
world’s 4th largest exporter of horses, and has a horse
industry that produces around 12 billion euros of rev-
enue per year [13]. If AHS arrived in France, it could
have devastating consequences, similar to those predicted
for other EU members such as the United Kingdom (UK)
[14], Ireland [15], and the Netherlands [16].

Introduction risks have recently been quantitatively
assessed for similar vector-borne diseases, such as BTV
[17-19], West Nile Virus [20, 21] and eastern and
western equine encephalomyelitis [22], Venezuelan
equine encephalitis [22], and Japanese encephalitis [22].
However, these studies mostly took into account only
one pathway of introduction; different introduction
pathways have rarely been examined in tandem. To ex-
plore AHSV in particular, a qualitative risk assessment
analysis that accounted for multiple pathways of intro-
duction was conducted in the UK [23]; the results sug-
gested that the most likely pathway of introduction
would be the arrival of an infectious host. This pathway
of introduction was also examined by a quantitative risk
assessment analysis of the likelihood that AHSV would
be introduced to the Netherlands [24]. As AHSV is
closely related to BTV and shares the same vectors,
information on BTV introduction pathways could be
helpful when assessing the risk that AHSV will be intro-
duced to Europe. Several studies have indicated that
long-distance, wind-mediated transport of Culicoides
might have played a role in the introduction and spread of
several BTV strains in Europe [25-27]. In particular, stud-
ies aimed at understanding the introduction of BTV-8
have indicated that the legal importation of an infec-
tious host is unlikely to have caused the epidemic ob-
served in 2006 [28, 29]. It is thought that the risk
presented by other pathways of introduction, such as
the introduction of a single Culicoides midge through
intracontinental transport and trade networks [19], is
low. Integrative studies are required to quantify and
combine information on different pathways of introduc-
tion to better understand and confront the risks posed
by vector-borne diseases [30].

In this study, we performed a quantitative risk assess-
ment analysis of the introduction of AHSV to France.
We focused on two pathways of introduction: the arrival
of an infectious host and the arrival of an infectious
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Culicoides midge via the livestock trade. Introduction is
defined here as the probability that an infectious host
or vector will be released in such a way that at least
one local host ends up infected by one local vector
(establishment). The subsequent spread of the disease
is not examined. As the initial infection of a local host
will depend on spatial (e.g., the number of local hosts)
and temporal factors (e.g., seasonal vector abundance),
the probability of establishment will vary depending on
location and time period. The objective of this study was
to quantify the risk of introduction associated with a
given time period and region for the two pathways of
introduction under consideration, which could thus offer
insight into temporal and regional variation in introduc-
tion risk. Furthermore, evaluating these two pathways of
introduction could help optimize risk-mitigating control
and surveillance measures.

Methods

Risk associated with introduction pathways and initial
assumptions

To quantify the risk of AHSV introduction associated
with the two introduction pathways, risk assessment
analysis was conducted using the framework developed
by de Vos et al. [31]. Although other potential pathways
of introduction exist [23], we restricted ourselves to the
two most probable: the arrival of an infectious equine
and the arrival of an infectious Culicoides midge. Only
the legal, registered horse trade was taken into account
because no data exist on the illegal horse trade. In the
analysis, only the introduction of an adult vector was
considered since transovarial transmission of the virus
has not been observed in Culicoides [1, 11, 15]. Culi-
coides midges are hematophagous and tend to stay close
to their mammalian hosts (mainly large mammals
[32, 33]). They are rarely found in vehicles of trans-
port (such as aircraft or trucks) or merchandise when
insect surveys are conducted [21, 34]. It is also uncom-
mon to find Culicoides associated with plants or plant
material [29, 35]. As a result, only Culicoides entering the
country via the livestock trade were included in the
analysis. Hence, the two main pathways of AHSV intro-
duction examined in this study were: the legal import-
ation of infectious equines (PW-host) and the arrival of
infectious Culicoides as a consequence of livestock trade
(PW -vector).

An introduction pathway was constructed to detail all
the steps required for AHSV to be successfully released
and become established in France (Fig. 1). This intro-
duction pathway was evaluated using a stochastic risk
simulation model. Monthly introduction probabilities
were calculated using data from three consecutive years
(2010 to 2012) for each area of arrival within France. A
total of 22 such areas were defined.
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Fig. 1 Introduction pathways. Steps reguired for the successful release and establishrment of AHSV resulting in at least one local host infected by
one local vector

Sources of risk

First, the world's countries were grouped into three cat-
egories as per De Vos et al. [24]: (1) high-risk regions
where the disease is considered to be endemic; (2) low-
risk regions that have experienced AHS outbreaks in the
past and/or where the main vector, C imicola, is present;
and (3) very-low-risk regions (all other countries). Since
the main vector is not present in very-low-risk regions, we
assumed that it is very unlikely that they would produce
exports containing infectious vectors; consequently, very-
low-risk regions were ignored for this pathway of intro-
duction. In addition, because EU regulations differ for
imports arriving from EU versus non-EU countries [36],
we also distinguished between (a) EU members and (b)
non-EU members. Five departure regions were thus de-
fined (Fig. 2). Imports from non-EU countries were placed
in one of two categories based on their point of arrival in
Europe: whether they were shipped directly to France or
whether they arrived via another EU country, because ani-
mals stopping in another country were considered to
experience longer traveling times. Furthermore, equine
imports were grouped according to species: (1) horses;
(2) donkeys, mules, and hinnies; and (3) zebras.

The model

PW-host: introduction via an infectious host

The probability of AHSV being introduced by species
i from region j to area & in month m via an infectious

host (PW-host), (introHy,,), was defined as the prob-
ability of at least one infectious host of species i from re-
gion j arriving in area k in month m and of this arrival
being followed by virus transmission to a local vector
and host. This overall probability was defined as:

P(introH ) = 1= [1-P(relH g, ) x P(estH g, )| “*
(1)

Where P(relH;y,,) is the probability of an infectious
equine of species { from region j being released in
area k in month m; PlestHyy,,) is the probability of
an infection becoming established in month m given
the release of one infectious equine of species i from
region j in region &k and egk, is the number of
equines of species { imported from region j arriving
in area k in month m.

Release probabilities, P(relH,,,), were species specific
since virus prevalence is different in different equines
across the areas of origin, and different species show dif-
ferences in their susceptibility to the disease. For in-
stance, the release probability of horses is lower because
horses have a shorter viremic period than do donkeys
and zebras. P(relH,,) also depended on the moment z
of infection; the protective measures implemented be-
fore embarkation [36, 37]; and the duration of transport
from region j to area k (f;). For imports coming from
non-EU countries, ¢y was assumed to equal 1 day for
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Vety low risk & non EU member - Low risk & non EU member - Hagh risk
B Low risk & EU member

Very low risk & EU member

Fig. 2 Countries of the world classified regarding AHS occurrence and import regulations
.

animals coming directly to France (mainly air travel) and
2 days for animals arriving via another EU country
(initial air travel followed by land transport or subse-
quent air travel). For intra-EU trade, t; was assumed to
be between 1-2 days (uniform distribution) because air
and land transport are supposed to be used with equal
frequency and France is assumed to be a maximum of
2 days away from everywhere else in EU [38]. P(relH,,,)
was defined as :

Z::I [(length period z) x P(relHjjm)]

P(relHz,,) =
(relHisom) Z:ﬂl(length period z)

(2)

where P(relH,,,.) is the probability of release for an
equine i infected during z. For a given region j, there
were a total of w different time periods z during which
an equine could become infected, depending on the
importation procedures implemented for region j (e.g.,
before quarantine or during quarantine but before the
first serological test, etc.). If j was a high-risk region,
then P(relH,,,.) was defined as:

P(relH jonz) = P(inf ) % P(virime)
x (1-P(CF1g)) x (1-P(CF2:))
% (1-P(clinym:)) » (1-P(transy:))
(2.bis)

Where P(inf;,,.) is the probability of equine i being in-
fected during time period z P(virju) is the probability

of equine i infected during z becoming viremic after
transport; (1 - P(CF1;,)) and (1 - P(CF2.)) are the prob-
abilities of equine i infected during z not being detected
by the first and second serological tests, respectively;
(1 - P(cling,,,)) is the probability of equine i infected
during z not being detected by the clinical exam; and
(1 - P(transij:)) is the probability of equine i infected
during z not being detected during transport.

The probability of establishment via PW-host was
defined as:

L™

P(estHi;;,,,) =1- [I—AHV X P(survign) x begui, x Avy|
(3)

where Ay and Ay, are, respectively, the probabilities
of a vector feeding on an infectious host becoming
infected and of a host bitten by an infectious vector
becoming infected; P(survy,,) is the probability of an
infected Culicoides midge surviving until its first in-
fectious blood meal; culiz,, is the number of vectors
feeding on an infectious imported host; and b, is
the probability of a Culicoides midge biting an
equine in area k b, depends on the vector’s prefer-
ence for equines as hosts and on the cattle-to-equine
ratio in area k.

The overall national and annual median probabilities
were calculated based on the monthly regional values.
The monthly national median probability of introduction
was thus defined as:

P(introt ) = 1-[ [, (1-P(introH ) (4)
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and the annual national median probability of introduc-
tion was defined as:

Plintroty) = 1-T] " (1-P(introH ) (5)

The same formulas were used to define the probabil-
ities of release and establishment at the national and
annual levels. Using these formulas, the extreme values
of these probabilities were determined by using the esti-
mated the 5th and 95th percentiles for each region and
month.

For a more detailed description of the probabilities
and parameters used, see Additional files 1 and 2.

PW-vector: introduction via an infectious vector

Few data were found on the number of Culicoides
midges transported with livestock (equines and cattle)
over the distances of interest here; as a consequence, we
assumed that the numbers could not be very high with-
out having spurred notice and thus calculated the risk of
release assuming that one Culicoides was transported
with each animal. We defined the probability of estab-
lishment as the probability that this single vector was
able to cause the infection of at least one local equine
host by one local vector. P(introVyy,,) was thus define as:

P(introV ) = 1-[1-P(rel Vi) x P(estV i, )] ™
(6)

where P(relVy,,) is the probability of a single infected
Culicoides from region j being released in region k in
month w1 PlestVy,,) is the probability of establishment;
and #y,,, is the number of livestock (equines and bovines)
transported from region j to area k during month .

The probability of release was defined as:

P(relVim) = P(inf culij) x P(cransmﬁ“)

x P (gurvimrrsj*m) E?)

where P(inf culiy,,) is the probability of a vector in re-
gion j becoming infected in month m; P(crammﬁ“) is
the probability of a vector being transported post in-
fection; and P(surv,m,,s;.km) is the probability of a
Culicoides surviving transport from region j to region
k. P(surv,mm;.km) was calculated assuming that transport
conditions do not affect Culicoides viability (worst case
scenario because the survival of insects is supposed to be
optimal during transport). If pest control is implemented
in region j, we reduced survival probabilities depending
on the efficiency of the pest control product (Prot,..)
used. This was only the case for equines coming from
high-risk regions [36]. Since bovines are not consistently
and systematically disinfected before transport, we as-
sumed that no pest control was implemented for them.
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The probability of establishment via an infectied vector
was defined as:

P{estV‘&M} = P(survamw.“n} % Baguiy % Avi

x [1— [l—lw; o P(SUIVigy) % Deguiy * AHV] mﬁ*“]
(8)

where P(survﬁm-mw) is the probability of an infected

vector surviving to its first infectious blood meal follow-
ing its arrival in area k.

The overall national and annual median probabilities
were calculated using the same procedures used to cal-
culate the PW-host probabilities.

For a more detailed description of the probabilities
and parameters used, see Additional files 2 and 3.

Input data

Because accurate registration data for horses were lack-
ing, the ratio of bovines to equines per area k (p; ) was
estimated by combining information from different
databases. The 2010 census conducted by the French
Ministry of Agriculture [39] was the source for cattle
and equine abundances (horses kept in agricultural
settings) for each area and the IFCE-SIRE database [40]
provided additional estimates of equine abundance in
each area. Because it became mandatory to identify all
equines in France in 2012, this database is considered to
include all of the countrys equines; however, dead
horses are still present in the database and, as a result,
the number of equines is overestimated. Two ratios
were calculated—one using each of the values of equine
abundance—and p, was estimated in our model as a
uniform distribution that ranged from the smallest to
the largest ratio calculated.

The number of bovines and equines transported to
France were obtained from TRACES, the TRAde
Control and Expert System, which monitors the trans-
port of animals and products of animal origin both into
and within the EU [41]. In our analysis, we only included
animals whose final destination was France.

Vector abundance was estimated using data from the
national surveillance system implemented in France
from 2009 to 2012—approximately 160 locations were
surveyed to follow the activity of Culicoides populations
[42]. The number of competent vectors feeding on a
given equine in area k& during month m (Cy,,) was mod-
eled using a truncated normal distribution; g was the
average monthly number of Culicoides collected per
overnight trap (Culicoides imicola and members of the
Obsoletus complex), o was the standard deviation, and
the minimum and maximum values observed were the
lower and upper bounds of the distribution, respectively.
Similar parameters were used in modeling efforts by de
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Koeijer et al. [43]. The average monthly temperature
during month m in area k (T},,) was modeled using a
truncated normal distribution; g was the average
temperature of each month for each year (based on daily
average temperatures obtained from MARS-Agridcast),
and o was the standard deviation, and the 1st and 99th
percentile values were the lower and upper bounds of
the distribution, respectively.

Analyses were performed for the three consecutive
years included in the study: 2010, 2011, and 2012.

Calculations

Model caleulations were performed in Microsoft Office
Excel 2010 and @Risk 6.1 [44]; 10,000 iterations were
run. The sensitivity analysis tool in @Risk was used to
evaluate the impact of stochasticity and uncertainty in
the input parameters on model results. The correlation
between the values of the input parameters and the
pathway-specific probabilities of introduction were cal-
culated (Spearman’s rank correlation coefficients).

The sensitivity of the model to the values of the input
parameters should have been very similar across all re-
gions and months because we used the same model
and input parameter estimates, except in the case of
the bovine-to-equine ratio, the temperature data, and
vector abundance. Indeed, the values of these three
parameters varied across regions and months (i.e, in a
given month, the vector abundance could vary greatly
in one region and little in another). Larger amounts of
variation could have a greater impact on the model
than lesser amounts of variation. The reasoning is the
same for the bovine-to-equine ratio, which also varied
across regions. When determining the overall prob-
ability of introduction, we thus chose to focus our sen-
sitivity analysis on the region-time period combinations
associated with the highest levels of risk and/or
uncertainty.

Results

Data on equine and bovine imports

TRACES data for 2010-2012 show that, on average,
1,300 equines arrived every year in France from non-EU
countries, including about forty donkeys (and no zebras).
Most of these animals (close to 80 %) passed through
another EU country before arriving in France. Imports
from high-risk regions represented an average of 1.6 %
of the total imports; imports from low- and very-low-
risk regions occurred at similar levels: 456 % and
52.4 %, respectively. By law, bovines cannot be imported
from non-EU countries.

The trading of registered horses within the EU is not
required to be reported to TRACES [36]. However, it is
nonetheless regularly disclosed: in the TRACES data-
base, more than 40 % of the equines traveling from other

Page 6 of 15

EU countries to France were registered horses. It is im-
portant to note that, in most of the data on the equine
trade within the EU, no distinction is made between
horses and donkeys. As a consequence, the TRACES
database is somewhat limited in its ability to reveal
equine movements within the EU. These concerns aside,
according to the database, an average of 9,350 equines
arrived in France every year from 2010 to 2012; 65 %
came from very-low-risk regions, and 35 % came from
low-risk regions. In the case of bovines, all movements
are registered in the TRACES database. An average of
145,500 bovines arrived in France every year from 2010
to 2012; 61 % came from very-low-risk regions, and
39 % came from low-risk regions.

Probability of release

The probability of release is defined as the probability of
an infectious equine or vector being released in a given
area. The overall annual median probability of release in
France was 3x107° for an infectious host (PW-host) and
ranged from 14 x107* to 3.6x107* for an infectious vec-
tor (PW-vector). Seasonal variation mostly resulted from
the fact that the risk of release is negligible during the
first half of the year, when low- and very-low-risk re-
gions are considered to be unlikely to experience AHS
outbreaks and equine imports from high-risk regions are
very rare. From July to December across all years, the
probability of release remained relatively constant; the
monthly median probability that an infectious host
would be released (PW-host) varied from 2.6x107* to
9.5x107% and the monthly median probability that an in-
fectious vector (PW-vector) would be released ranged
from 1.1x107 to 6.9x107%. An exceptionally high peak
was observed in July 2011 due to arrival of several
horses from a high-risk country.

Areas varied greatly in their median release probabil-
ities due to differences in the type and number of
imports, but the annual probability of release for a given
area was similar over time. As a result, for a given path-
way of AHSV introduction, the areas most at risk
remained the same (see Fig. 3).

Probability of establishment

We determined the probability of establishment for each
area of France, which was the probability that at least
one local host would be infected by a local vector after
the release of a single infectious host or vector. The
probability of establishment varied as a function of
temperature, vector abundance, the length of the equine
host’s viremic period, and the bovine-to-equine ratio
in arrival area & In the case of the infectious vector,
P(esc V,;;k,,,} also depended on the life span of the specific
Culicoides being transported. The risk of establishment
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was highest from May to October and peaked between
June and August (Fig. 4). Temporal and regional differ-
ences were observed—owing to variation in temperature
and relative host abundance—but some areas clearly faced
greater risks than others (Fig. 3).

Overall risk assessment

The probability of introduction was obtained by combin-
ing the probability of release and the probability of
establishment. The median annual risk of introduction
due to an infectious host was almost constant across
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time (approximately 5x10~%). The median annual risk of
introduction due to an infectious vector varied from
4x107° to 6x10°°, These figures mean that, currently, the
annual risk that an infectious host will introduce AHSV
into France is approximately 1 in 2,000; there is a 1 in
16,666 to 25,000 chance that AHSVY introduction will be
caused by an infectious vector. At the national scale, the
monthly probability of introduction was similar over
time, but the level of uncertainty was large (Fig. 5). The
probability of introduction was the highest in the sum-
mer; it peaked in July for both pathways of introduction
and in all three years. From November to June, the
probability of intreduction was nil, except when animals
were imported from high-risk regions to the warmest
areas of France (eg, Languedoc Roussillon in March
2012). When animals were imported to colder areas, the
probability of establishment was zero, making the prob-
ability of introduction zero (e.g., Basse Normandie in
March 2012). Introduction risk varied greatly across
space and time (see, for example, year 2012 in Fig. 6 and
Additional files 4 and 5) but, over the three years exam-
ined, some areas consistently had a higher probability of

introduction (see Fig. 3). If it is assumed that an average
of one midge accompanies each large animal being
transported, both pathways can be combined to yield a
single probability of introduction (Fig. 7), to which infec-
tious hosts appear to be the main contributors.

The average contribution of each region of origin to
introduction risk is shown in Table 1. Intra-EU trade
contributes most to the risk of AHSV introduction via
the infectious host pathway; low-risk EU countries are
the largest contributors even though they are responsible
for a lower volume of imports compared with very-low-
risk EU countries. This pattern is explained by the high
number of equines traded within the EU and by the fact
that regulations governing intra-EU trade are less strict.
No zebras were brought into France during the period
we studied, and donkeys represented only 0.3 % of
recorded equine imports. Their average relative contri-
bution to AHSV introduction risk was 1.2 %. Animals
imported from high-risk regions account for only 0.02 %
of the large livestock arriving in France, and their
average contribution to AHSV introduction risk via in-
fectious vectors was 1.5 %. As a result, imports from
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low-risk regions made the largest contribution to AHSV
introduction risk via infectious wvectors. Furthermore,
cattle cannot be imported from outside the EU and, con-
sequently, most of the transport of large livestock takes
place within the EU (99.3 %). Given this fact and the fact
that regulations regarding vector control are identical in
all low-risk regions (EU and non-EU countries alike),
trade of large livestock within the EU is the main con-
tributor when it comes to the risk of AHSV being intro-
duced by an infectious vector.

Sensitivity analysis

A sensitivity analysis was performed for the two areas
identified in Fig. 7 as being at risk for AHSV introduc-
tion via the two introduction pathways: Ile de France
and Provence. The level of uncertainty surrounding the
risk of introduction was rather constant for both areas,
with one exception: the level of uncertainty was far

higher than average in Provence in October 2012 as a
result of major wvariation in local temperatures. The
results of the analysis are summarized in Figs. 8 and 9,
respectively, for the infectious host pathway and the in-
fectious vector pathway for July (higher risk month) and
October (late summer; characterized by lower risk and
large uncertainty for one area) in 2012.

As expected, the values of the input parameters had a
constant impact on the model’s results over time and
space, with only few exceptions. Furthermore, the most
important input parameters mainly encompassed vari-
ability due to stochasticity (7 out of 10 parameters for
PW-host and 6 out of 8 for PW-vector) and, to a lesser
extent, uncertainty. Nevertheless, compared to its effects
in other areas and months, average monthly temperature
had a greater impact on the results for Provence in
October for both pathways of introduction. This pattern
was due to the fact that temperatures varied greatly in
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this area during this month. This result explains the high
level of uncertainty associated with the probability of
introduction in this area in this month and highlights
the large influence of temperature on the model’s
results.

Discussion

The model revealed that the annual risk of AHSV being
introduced to France was very low and relatively con-
stant for the pathways and years examined. The median
value for the introduction risk via imported infectious
equines (PW-host) was 0.0005; for infectious vectors
(PW-vector), median introduction risk varied from
4x107° to 6x107° across years, assuming that one
Culicoides midge arrived with each imported animal.
The PW-host estimate was very similar to that obtained
by de Vos and colleagues when they assessed the risk of
AHSV being introduced to the Netherlands [24]. The lat-
ter study did not distinguish between EU countries and
non-EU countries and only took into account competi-
tion horses; however, it did include horses traveling
through the Netherlands to reach other countries. The
PW-vector estimate was highly dependent on our as-
sumption that only one Culicoides midge was associated
with each imported animal. Indeed, the higher the num-
ber of associated Culicoides, the higher the probability of
introduction. If it is the case that, on average, one Culi-
coides is associated with each imported animal, then the
risk tied to this pathway of introduction is ten times
lower than that tied to infectious hosts. As a result, AHS-
free countries only face significant introduction risks if
the number of Culicoides being transported is large as

that required for BTV, as shown by Napp et al. for Spain
[19]. On the one hand, our assumption of one Culicoides
per animal could be overly pessimistic because midges
could exit the transport vehicle after feeding and thus
not reach the animal’s final destination. On the other
hand, it could be an overly optimistic assumption be-
cause large numbers of Culicoides may be found on large
animals. Because data are lacking on the number of Culi-
coides being transported with mammalian hosts, it is
difficult to determine how each pathway of introduction
contributes to overall introduction risk.

Our study indicates AHSV establishment in France
may be favored from May to October. This finding is
consistent with the results obtained by Lo Iacono et al
for the UK [45], by Martinez-Lopez et al. for Spain [46]
and by de Vos et al. for the Netherlands [24]. In France,
the favorable period for AHSV establishment is longer
than in the UK (June to September) and the Netherlands
(June to August) but shorter than in Spain (April to
December), which is a logical consequence of climatic
differences. Such differences should be taken into ac-
count when AHSV introduction within Europe is ad-
dressed at a larger scale.

Major differences were found among French regions
and between introduction pathways. As expected, the
coldest regions with the smallest equine populations had
the lowest risk of AHSV introduction (e.g., Centre and
Auvergne). In contrast, the warmest regions were most
at risk for AHSV introduction (e.g., Aquitaine and Midi-
Pyrénées), as were colder regions with larger equine
populations (e.g., Basse Normandie and Ile de France).
Warmer regions faced higher levels of risk mostly
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Table 1 Average contribution (96) of departure regions to the AHSV introduction risk for France. Results are presented for both
pathways and compared to the total number of imports to France which are, for PW-host, the equine imports and, for PW-vector,
the large animals imports (equine and bovine)

Exporting region High risk Low risk Very low risk TOTAL
non-£U member EU member non-EU member EU member non-£U member EU member
PW-host Risk 0.82 33 63.2 43 28 76 91.2
Import 013 375 326 5.1 584 8.81 9
PW-vector Risk 1.5 985 / / /
Import 0.02 9998 / / /
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because of their favorable climatic conditions, while lar-
ger equine populations increased risk in colder regions.
Nevertheless, if spatial differences were mainly deter-
mined by the probability of establishment, import-
related variation (number and species imported) also
played an important role, as seen in the Corse region:
even if climatic conditions are favorable, the probability
of introduction will be low if there are very few imported
animals. These results emphasize that it is important to
analyze spatiotemporal variation in risk when developing
efficient surveillance systems and optimizing control
measures. For instance, if there is a high risk that a
pathogen will be introduced by an infectious vector, in-
secticides should be applied before animals are
imported. In contrast, if there is a high risk that a patho-
gen will be introduced by an infectious host, quarantine
measures should be more stringent and/or extra tests

should be performed on horses coming from low-risk
regions.

We found that seasonal variation in temperature can
have a large impact on the risk of introduction because
it exerts a strong influence over vector abundance and
biology, which, taken together, determine a vector’s
capacity to transmit AHSV [3, 47]. The risk of ASHV
introduction was higher during periods characterized by
higher than average temperatures. This finding concurs
with results from work examining the introduction of
BTV-8 to northwestern Europe: the extreme temper-
atures during July 2006 may have contributed to its
widespread diffusion [48]. Therefore, rare, extreme
climatic events and, more generally, global warming
should have a large influence on the probability of
AHSYV establishment, as has been shown for BTV [49, 50].
Given the progression of global warming, risk assessments
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Culicaides infected whan fed an an infactious host {1,

Mumber of Cullcoides per eguine [C,.)

Susceptible hast is infacted when fed upon by an
infectious vactor (1)

Ratio ruminants to m‘m 1&_
Temperature [T,.)
Length af Viremic period in harses (Vir)

otif FAHS —

to stochasticity; the others are only variable due to stochasticity

vy ] October |

Fig. 9 Correlation of the model input parameters with the probability of intreduction of AHSV via PW-vector. Results are presented for lle de
France {light blue) and Provence (dark blug) in July and October 2012, Only input parameters with at least one correlation 2 ]0.1] have been
included in the tornado charts. The underline parameters are the uncertain parameters; the bold parameters are both uncertain and variable due
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should be regularly updated to account for climatic
changes.

Our study reveals that complete and accurate data on
the movements and distribution of the EU%s equine
population are not available: it is hard to trace horses
within the EU. The introduction of mandatory horse
passports in 2008 improved the situation but, apart from
rare exceptions [46], it is still difficult to follow the EU's
equine population [51] and assessing the population’s
distribution and fluxes remains a challenge (see the UK
[52]). for an example). This is a major concern given that
the distribution of the equine population had an import-
ant impact on our results (see the ratio of bovines to
equines in Figs. 8 and 9); moreover, the number of
equines being imported is obviously highly correlated
with introduction probabilities. Furthermore, several
equine viruses are zoonotic (e.g., eastern and western
equine encephalomyelitis viruses, Venezuelan equine
encephalitis virus, and West Nile virus), and the risk that
they will be introduced to and spread within the EU is
definitely not negligible [22]. It is, in fact, currently
increasing; indeed, West Nile virus has already become
endemic in some regions [53]. Improving the traceability
of horses within the EU would thus be advantageous
when it comes to better assessing the risk posed by
AHSV and other zoonotic diseases.

The risk assessment model described in this paper ad-
dresses the risk of AHSV being introduced to France by
two pathways of introduction considered to be of
importance [23]. However, other pathways may also sub-
stantially contribute to introduction risk. Several studies
have highlighted that the wind may efficiently transport
Culicoides over long distances, both across sea [25, 54]
and land [55]; it might have been involved in the spread
of BTV in Europe [25-27]. Wind-mediated dispersal of
infected vectors might also have resulted in AHSV being
introduced to Cape Verde Island in 1944, Cyprus in
1960, the Middle East in 1960 and Spain in 1966 [56].
An extensive assessment of the role played by the wind
in spreading Culicoides midges and Culicoides-borne in-
fections across the Mediterranean Basin would elucidate
the importance of this pathway for AHS introduction.
However, the wind-mediated dispersal of AHSV is
most likely to occur in the south of France close to
low-risk regions, which is also where AHSV intro-
duction is most likely to occur via the pathways ex-
amined in this study. Therefore, we think that this
study accurately identifies the regions of France that
face the greatest risk of AHSV introduction. Further-
more, the risk that AHSV will be introduced via
wind-borne infectious Cuficoides cannot be mitigated
by direct preventive measures, such as importation
restrictions. Instead, to be effective, control measures
would have to influence the probability of establishment;
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for instance, insecticides could be used to protect local
hosts against wind-borne vectors.

Our model provides a basis for creating a risk-based
surveillance system in France that focuses on the regions
and time periods associated with higher levels of AHSV
introduction risk. The model could also be used for
assessing risk and establishing surveillance procedures in
other European countries. This application is especially
important because our study has revealed that European
countries make the largest contribution to France's
AHSYV introduction risk (eg., PW-host: 91.2 %). Indeed,
if an infection occurs in one European country but is
not detected, then it can easily spread to other European
countries because there is little verification and tracking
of equine movements within the EU. By implementing
a risk-based surveillance strategy in each country in the
EU, infections would have a higher probability of being
detected early on; as a consequence, the contribution of
fellow EU countries to introduction risk would decline
(see the probabilities of non-notified AHS occurrence
in low- and very-low-risk regions in Figs. 8 and 9).
By reinforcing the tracking of equine movements
within the EU, infection would also have less chance
to disseminate and the policy implications of an AHS
introduction will be more limited. Such strategies
could be a means of minimizing the risk and impact
of an AHSV outbreak for the entire European equine
industry.

Conclusion

We have developed a quantitative risk assessment model
to estimate the risk of AHSV being introduced to France
via the importation of infectious equines and infectious
Culicoides midges associated with large livestock. The
risk that AHS will be introduced to France is very low;
however, risk varies tremendously among the different
regions of the country due to variation in temperature
and equine population size. The regions most at risk are
those with the warmest climates as well as those that are
colder but that harbor larger equine populations. Intro-
duction risk is greatest from July to October and peaks
in July. Despite the low probability that AHSV is present
in the EU, intra-EU trade of equines contributes most to
the risk of AHSV introduction to France because it is
responsible for a large number of horse movements.
Spatiotemporal differences need to be addressed when
assessing the risk that AHSV will be introduced to a
given location and when developing and implementing
risk-based surveillance procedures. The methods and re-
sults of this study may help guide surveillance programs
and other risk-reduction measures aimed at preventing
the introduction of AHSV or minimizing its potential
impact once it has been introduced, both in France and
in other European countries.
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CHAPTER Il: QUANTITATIVE RISK ASSESSMENTS

C. COMPARISON OF DISEASES RISKS

This study aimed first to evaluate the feasibility of adapting the model developed in Chapter I1.B to
another disease. For that purpose, we chose equine encephalosis (EE) as this disease is similar to AHS.
Then, we compared the probabilities of entry into France of both diseases in order to better understand

and manage the risk associated with AHS and EE.

This part of the work resulted in two poster presentations at the Conference of the Society for Veterinary
Epidemiology and Preventive Medicine (SVEPM) in Ghent (2015) and at the Journée de I’Ecole doctorale in
Clermont-Ferrand (2015) (posters available in Appendix 7 and Appendix 8, respectively) and in one oral

presentation at the final workshop of the EMIDA-VICE project (February 2015).

1. Introduction

In Europe, African horse sickness (AHS) and equine encephalosis (EE) have been recently highlighted as
potential threats (MaclLachlan and Guthrie 2010; Zimmerli et al. 2010). Like bluetongue and
Schmallenberg viruses, both are borne by biting midges in the genus Culicoides, and both are non-zoonotic
equid diseases caused by viruses belonging to the Orbivirus genus of the Reoviridae family (Dhama et al.
2014; Mellor and Hamblin 2004; Viljoen and Huismans 1989). Both viruses have more or less the same
geographical distribution and are considered endemic in sub-Saharan countries, with rare outbreaks in
North Africa and western Asia (MacLachlan and Guthrie 2010; Mildenberg et al. 2009; Wescott et al.
2013). Likewise, the epidemiology of these diseases are also similar, with both sharing the same vectors
(Venter et al. 2002; Venter et al. 2000), although EE has a higher transmission rate (Lord et al. 2002).
However, the two viruses differ in pathogenicity: AHS is one of the most devastating diseases in equids,
with a mortality rate approaching 90% (Mellor and Hamblin 2004), whereas EE induces only sporadic
symptoms with a correspondingly low mortality rate (Dhama et al. 2014). At first glance, the epidemiology
and transmission patterns of AHS and EE are very similar; however, more detailed information on the

respective probabilities of entry of the two diseases is needed.

The aim of this study was to determine the extent to which AHS and EE differ in their probabilities of
entry, despite their similar patterns of epidemiology and transmission. We also identified the most
appropriate measure for risk mitigation for each disease. The probabilities of entry into France of both
AHS and EE were evaluated and compared for two routes of virus entry: an infectious host imported via

legal trade and an infectious vector imported via the large animal trade.
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2. Method

2.1. Model for risk assessment of viruses entry

The probability of entry is defined as the probability that a virus reaches an area, without consideration of
later steps of transmission (OIE 2014). The stochastic spatiotemporal model of AHS introduction
presented in the previous section (Chapter 2, section B)(Faverjon et al. 2015b) was used to assess the
probability of AHS entry. The model was adapted by Evelyn Pamela Martinez Lopez, a Master’s student
from CVI, to assess the probability of EE introduction to the Netherlands and subsequently adapted by us
to assess the probability of EE entry into France. Two pathways were considered: the introduction of an

infectious host via legal trade and the introduction of an infectious vector through the large animal trade.

2.2. Parameters

The models for AHS and EE entry differ only in the disease parameters. The parameters not related to the
diseases, such as transport time, were identical to those defined in the previous section (Chapter 2,
section B) (Faverjon et al. 2015b). The disease-specific parameters were, for AHS, those used in the
previous section (Chapter 2, section B) (Faverjon et al. 2015b) and, for EE, the parameters used by Evelyn
Pamela Martinez Lopez. The differences between the diseases are reported in Table 3 and Table 4. All
other parameters are identical in both models; in particular, there is no quarantine and no laboratory test

implemented for either disease for horses traveling within the EU.

Table 3 : import procedure for African horse sickness and equine encephalosis

African horse sickness Equine encephalosis ‘
Quarantine: 40 days Quarantine: 40 days
2 ELISA tests with minimum 21 days and maximum 30 2 ELISA tests with minimum 21 days and maximum 30
days between them (Sensitivity: Beta(60, 4), days between them (Sensitivity: 1, Specificity: 1)
Specificity: Beta(62, 2)) Vectors protection (efficacy Uniform(0.5,0.9))
Vectors protection (efficacy Uniform(0.5,0.9)) Time to clinical inspection: day of embarkation
High risk Time to clinical inspection: day of embarkation
Israel:

Quarantine: 40 days

No ELISA test.

Vectors protection (efficacy Uniform(0.5,0.9))
Time to clinical inspection: day of embarkation

Quarantine: 40 days Quarantine: 40 days
Low risk 2 ELISA tests with minimum 21 days and maximum 30 No laboratory test. No vector protection
(non EU days between them (Sensitivity: Beta(60, 4) Time to clinical inspection: day of embarkation
. Specificity: Beta(62, 2))
countries) ;
No Vectors protection
Time to clinical inspection: day of embarkation
Verv low No quarantine, No laboratory test, No vector No quarantine, No laboratory test, No vector
risI:y(non EU protection protection
. Time to clinical inspection: at least 48h before Time to clinical inspection: at least 48h before
countries) . .
embarkation embarkation
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Table 4 : Parameters specific of diseases and used for African horse sickness and Equine encephalosis in
the model of viruses entry. The parameters used for African horse sickness come from (Faverjon et al.
2015b); The parameters used for equine encephalosis have been estimated following the same
assumptions than those used in (Faverjon et al. 2015b) but adapted according to the specificities of the
disease presented in (Aharonson-Raz et al. 2011) (Crafford et al. 2003)(Crafford et al. 2011)(Mildenberg et

al. 2009)(Paweska and Venter 2004)(Venter et al. 1999)

Mortality rate for hosts

African horse sickness
Horse: 70%, Donkey: 10%, Zebra: 1%

Equine encephalosis
All equidae: 5%

Length of viraemia (days)

When animal died:

Horse: Gamma(20.25, 0.22)
Donkey: 12

Zebra: 28

When animal survived:
Horse: Gamma(29.75, 0.20)
Donkey: 28

Zebra: 40

All equidae: Pert(7, 30) Mean 19

Incubation period (days)

Pert(2, 10) Mean 6

Pert(2, 6) Mean 4

Time between infection and
seroconversion (days)

Uniform(10, 14)

Uniform(length of incubation, length of viraemia)

High risk Sub-Saharan countries Sub-Saharan countries + Israel

Definiti § Regions that have experienced AHS outbreaks Regions that have experienced AHS outbreaks in
N ‘|n| fon o Low risk in the past and/or where the main vector, C. the past and/or where the main vector, C.
at risk area . R . .
imicola, is present imicola, is present

Very low risk Al the other countries All the other countries
Rate of L. .
Culicoides High risk 0.014 Uniform(0.0005,0.23)
infected
during an Low risk 0.00014 Uniform(0.0005,0.23)/100
outbreak

« ) ) . )

Low risk 2 flnc:ban&n pgrlod flobr AH; + t|1n;fct|ll next 70 days
High risk infectious blood meal based on
period (days) Very low risk 2*Incubation period for AHS + time till next 70 davs

ry infectious blood meal based on 12°C ¥

Low risk Gamma(AHS High risk period in Low risk Gamma(7*365, 1/(365*47)) Mean: 0.14
Probability of region*15, 1/(365*60)) Mean: 0.016 ! T
disease
occurrence Very low risk Gamma(AHS High risk period in Very Low risk Gamma(EE High risk period in Very Low risk

ry region, 1/(365*61)) Mean: 0.0027 region ,1/(365*48)) Mean: 0.0033
Horse: Pert(4x10°®, 5.02x10™, 1x10°)

High risk Donkey: 1.2x107 All equidae: 1-exp(Uniform(0.29,0.67))
Cumulative Zebra: 1.6)(10-2
incidence Low risk 2x10™ 0.0951

Very low risk  2x10™ 0.0487

2.3. Input data

To calculate the probability of virus release, the numbers of bovines and equines transported to France

were obtained from TRACES, the TRAde Control and Expert System, which monitors the transport of

animals and products of animal origin both into and within the EU. In our analysis, we only included

animals whose final destination was France.
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2.4. What-if scenarios

To evaluate the impact of manageable parameters on the probability of entry of AHS and EE into France,
we used the average annual number of animals imported into France between 2010 and 2012 to evaluate
different scenarios and compare them to the default. Seven scenarios were tested: five tested the effects
of changes to existing legislation, and two evaluated the consequences of changing import procedures

from non-EU countries. A description of the scenarios is available in Table 5.

Table 5 : Description of scenario tested. Scenarios 1 to 5 changed the existing legislation, scenarios 6 to 7
changes imports from third countries.

Scenario 1 Quarantine period of 60 days instead of 40

Scenario 2 Quarantine period of 20 days instead of 40

Same regulation implemented in Low risk EU state than in low risk non-
EU state
1. AHS: Quarantine of 40 days, 2 ELISA tests with minimum 21 days
and maximum 30 days between them (Sensitivity: Beta(60, 4)

Scenario 3 o . L
Specificity: Beta(62, 2)), no Vectors protection, and clinical
inspection the day of embarkation.

2. EE: Quarantine of 40 days, no laboratory test, no vector protection,
and clinical inspection the day of embarkation.

Scenario 4 No serological test implemented

Scenario 5 Vector protection implemented on all animals coming from low risk area

Scenario 6 No legal importation from high risk region

Scenario 7 No legal importation from low risk region and non-EU states

2.5. Calculations

Model calculations were performed in Microsoft Office Excel 2010 with @Risk 6.1 (Palisade Corporation
2013); 10,000 iterations were run. The sensitivity analysis tool in @Risk was used to evaluate the impact
of stochasticity and uncertainty in the input parameters on model results. The correlations between the
values of the input parameters and the pathway-specific probabilities of introduction were calculated

(Spearman’s rank correlation coefficients).

The sensitivity of the model to input parameter values could be expected as very similar across all regions
and months because we used the same model and input parameter estimates in every case, with the
exception of the bovine-to-equine ratio, the temperature data, and vector abundance. The values of these
three parameters varied substantially across regions and months (e.g., in a given month, vector
abundance could vary greatly in one region and little in another; the bovine-to-equine ratio also varied
across regions). Parameters subject to larger amounts of variation are more likely to substantially

influence model results more than those subject to lesser amounts of variation. When determining the
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overall probability of introduction, we thus chose to focus our sensitivity analysis on the combinations of

region and time period that were associated with the highest levels of risk and/or uncertainty.

3. Results

3.1. Spatiotemporal probability of entry

The overall annual median probability of EE entry in France was much higher than that for AHS for both
pathways and for each of the three years considered (EE: PW-host = 0.9 and PW-vector = 0.4 to 0.5, AHS:
PW-host = 3x10°° and PW-vector = 1.4 x10” to 3.6x10'2). The route most susceptible to virus entry differed
between diseases: for AHS, infectious vectors represented the route by which entry into France was most

likely, while for EE, infectious hosts represented the most at-risk route of entry (see figure 3).

Seasonal effects were similar for both diseases, with a lower-risk period from January to June. This was
the result from the assumption fact that the low- and very-low-risk regions (i.e. the exporting regions)
were considered to be unlikely to experience AHS and EE outbreaks during this time and that animal

import from high-risk regions is very rare in general (see Figure 3).

2,50E-02 ]
Infectious host
African horse sickness || 2010
2,00E-02 A
2011
""" 2012
1,50E-02 .
Infectious vector
................... 2010
1,00E-02 -
2011
VA 2012
5,00E-03
0,00E+00 — — . )
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
7,00E-01
Equine encephalosis
6,00E-01
5,00E-01
4,00E-01
3,00E-01
2,00E-01
1,00E-01
0,00E+00 ———cm e ; .
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Figure 3 : National median probability of EE and AHS viruses entry to France.
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Probability of entry varied greatly across space and time (see for example Figure 4 and Figure 5) but, over
the three years considered, some areas consistently had a higher probability of virus entry, e.g., the
southern and north-western regions of France. These areas were the most at-risk for both diseases and

both entry pathways (see Figure 6).

July September

.

AHS

EE

<10 [10»04, 10-03]
[10%, 10 [10%,10%
(107, 10 [10%2, 107
[10%, 10 510

Figure 4 : Median probabilities of viruses entry via an infectious host. Example of the year 2012.

September October

AHS

EE

Figure 5 : Median probabilities of viruses entry via an infectious vector. Example of the year 2012.
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African horse sickness Equine encephalosis

Legend

Probabilities of entry bellow 10 over the three years
Probabilities of entry between 10 and 102 over the three years
Probabilities of entry between 10%and 107 over the three years
Probabilities of entry between 102 and 10™ over the three years
Probabilities of entry above 10 over the three years

| | DR

Figure 6 : At risk areas for viruses entry when entry via an infectious host and via an infectious vector are
considered together.

3.2. Sensitivity analysis

The parameters with the greatest impact on the output differed between diseases and pathways. A

summary of the input parameters with the greatest influence on the results is presented in Figure 7 and

Figure 8.
AHS EEV
time of clinical inspection for
equidae coming from low 0,14 length of incubation period 0,15
risk countries
length of viremia in horses - 0,2 ¥ probability of outbreak
occurrence in very low risk - 0,19
probability of outbreak countries
ccurrence in very low risk _ 0,43 i
countries | time needed for - a1
*probability of outbreak seroconversion
occurrence in low risk 0,9: i
countries
- * probability of outbreak

) ) ) occurrence in low risk 0,58
length of incubation period mo,w countries

Figure 7 : Correlation of the model input parameters with the probability of entry of AHS and EE via an
infectious host. Results are presented for Basse Normandie in July 2012. Only input parameters with at
least one correlation > |0.1| have been included in the table. Parameters with black star are the uncertain
parameters. The others are the variable parameters.
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Figure 8 : Correlation of the model input parameters with the probability of entry of AHS and EE via an
infectious vector. Results are presented for Basse Normandie in July 2012. Only input parameters with at
least one correlation > |0.1| have been included in the table. Parameters with black star are the uncertain
parameters. The others are the variable parameters.

3.3. What-if scenarios

The what-if scenarios tested had similar effects on both diseases when the routes of introduction were
considered separately (see Table 6). For example, the probability of importing an infectious vector
decreased when systematic vector control was implemented during quarantine (a change of more than -
40% for both diseases). Instead, changes to the length of the quarantine period and the use, or not, of
laboratory tests had only a minor impact on the probability of introducing an infectious host (and
obviously no impact on the importation of an infectious vector). Although the impact of the what-if
scenarios was broadly similar (again, when considering each route of introduction separately) one
difference should however be pointed out: a strategy of prohibiting imports from high-risk regions was
much more successful in controlling AHS risk than EE risk. Indeed, in this scenario, the probability of
importing an infectious vector decreased by 31.67% for AHS and by 3.40% for EE, and the probability of
importing an infectious host decreased by 3.53% for AHS and 0.03% for EE.

When both entry pathways were considered together, the impact of the what-if scenarios on the overall
probability of disease entry differed between AHS and EE. For example, when testing regulations were
implemented in all low-risk countries, the overall probability of AHS introduction decreased by 4.99%
while the probability of EE introduction decreased by 15.35%. Similarly, the systematic implementation of
vector control on animals coming from low-risk countries had a greater impact on AHS probability of entry
than on EE probability of entry (-46.13% for AHS and only -2.07% for EE). The most influential protective
measures were thus disease-specific. To reduce the probability of AHS introduction, the most efficient
protective measure was to implement vector protection on all animals coming from low-risk regions. To
reduce the probability of EE introduction, the most effective measure was to implement the same
regulation in all low-risk regions: quarantine before import for horses coming from both EU and non-EU

countries, which resulted in a 15.36% reduction in the probability of disease entry.
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Table 6 : Change (in %) on median probabilities of viruses entry to France compared to the default
scenario.

African horse sickness Equine encephalosis ‘

Infectious  Infectious Overall Infectious Infectious  Overall
host vector risk host vector risk
Quarantine period of 60
days instead of 40 1.74 0 0.17 0.3 0 0.10
Quarantine period of 20, 0 +0.27 +0.08 0 +0.03
days instead of 40
Same regulation
implemented in Low risk EU -, 5, 0 4.90 -46.26 0 -15.36
state than in low risk non-EU
state
Noserologicaltest ), 0 +0.02 +0.03 0 0.00

implemented

Vector protection
implemented on all animals -2.87 -51.07 -46.13 -0.35 -57.26 -2.07
coming from low risk area
No importation from high
risk region
No importation from low
risk region and non-EU states

-3.53 -31.67 -28.78 -0.03 -3.40 -0.12

-2.88 -0.45 -0.69 -0.29 -0.70 -0.12

4. Discussion

Our study showed that the probabilities of entry for AHS and EE into France are similar in terms of
seasonality and, in both cases, the highest-risk period is from July to December. This is mainly due to a
decrease in the estimated risk from exports from low-risk countries from January to June, when the
probability of having an outbreak was calculated as negligible (outbreaks never reported). The regions
most susceptible to AHS and EE entry were also similar, with the highest probabilities of virus entry in the

southern and northwestern regions of France.

However, the probabilities of AHS and EE entry differed in magnitude, with the latter much higher than
the former. In addition, the main probability contributors also differed between diseases. For AHS, the
most important pathway for virus entry was through an infectious vector, but for EE, the appearance of an
infectious host was the most important contributor to the overall probability. These patterns were due to
the less-strict trade regulations concerning EE (i.e. no serological tests in low-risk non-EU states), the
higher probability of EE occurrence in low-risk regions (mean value 0.14) compared to AHS (mean value
0.016), the difficulties of detecting EE symptoms during clinical inspection, and longer high-risk periods for
EE, which can be explained by the longer asymptomatic period of EE, during which time the disease is not
reported in the exporting country. These aspects together explain why preventive measures for high risk

areas are more effective for AHS than for EE.
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The sensitivity analysis revealed that the fraction of infectious Culicoides during an EE outbreak in high-risk
regions had a significant impact on EE entry via increasing the number of infectious vectors. This
parameter was estimated as a constant in the AHS model due to the limited information available and
thus did not appear in the sensitivity analysis. However, this result for EE suggests that the impact of this
parameter would be not negligible for AHS entry. Considering the probability of virus entry via an
infectious host, the time for seroconversion was highlighted as an important input parameter for EE

(coeff. correlation equal to 0.31), but not for AHS (coeff. correlation equal to 0.01). This result can be
explained by the increased relative importance of serological tests in detecting EE, as this disease is mainly
asymptomatic. In addition, there was much more uncertainty regarding estimates of the time for
seroconversion for EE than there was for AHS. This also contributed to the importance of this parameter in

the EE model.

The what-if scenarios tested here showed that the most effective protective measures were not the same
for the two diseases, because the main probability contributors differed. Thus, even if the impact of each
scenario was similar between diseases for a given route of introduction, its impact on the overall
probability of disease introduction varied. To specifically decrease the probability of importing an
infectious host, the most efficient measure for both diseases was to implement the same regulations in all
low-risk countries, EU and non-EU states alike. This pattern can be explained by the fact that relatively few
horses are imported into France from either high-risk or low-risk non-EU states (respectively 0.08% and
2.8% of the total number of imported horses to France) compared to the number of horses imported from
low-risk EU states (34.4% of total imports to France). These results were consistent with those obtained by
de Vos and colleagues (de Vos et al. 2012). To specifically decrease the probability of importing an
infectious vector, the most efficient measure was, as expected, the implementation of systematic vector

control during quarantine, which is currently only mandatory for horses coming from high-risk areas.

The model allowed us to distinguish which disease posed the greatest threat in a given time and place
even though, a priori, the diseases are similar in term of biological origin and epidemiological patterns.
Our method also clearly identified the main probability contributors and the most efficient measures for
risk mitigation. However, it does not take into account the assessment of the consequences of each
disease, which would be useful in objectively allocating the limited resources for disease surveillance. For
example, the probability of EE entry appears higher than that of AHS, but the consequences of AHS
introduction would be more severe, given the pathogenicity of the disease. To aid in the allocation of
resources, then, other approaches should be considered (e.g., (Cardoen et al. 2009; Havelaar et al. 2010;

Krause 2008; McKenzie et al. 2007; Ruzante et al. 2010; Valenciano 2001)).
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D. DISCUSSION AND CONCLUSION

1. Discussion

The approach used in this chapter provided a complete and detailed picture of the probability of having an
outbreak. In particular, the spatiotemporal risk analysis highlighted important spatiotemporal variations in
probability of introcution. This is consistent with the non-homogeneity of the horse population and
movements and with the link between VBDs and climate/environment. Performing a spatiotemporal
analysis is thus useful for identifying the regions and time periods that are most at risk. In addition, by
combining the probability of entry and probability of establishment for two routes of virus introduction,
we provided a more complete picture of the risk posed by a pathogen compared to risk assessments that
involve only a single route of introduction or a single probability. The risk maps provided in section B
(figure 3 in the paper) present a good illustration of these differences: the spatiotemporal probabilities are
different according to the probability of release/entry, the probability of establishment, the probability of

introduction, and the routes of virus introduction under consideration.

Our method can be easily adapted to other Culicoides-borne diseases, as illustrated by the work
conducted on equine encephalosis (section C). However, the method can also be easily adapted to other
vector-borne diseases as long as vector-related data (extrinsic incubation period, survival rate, abundance,
etc.) and host-related data (viremia, incubation period, etc.) are available (keeping in mind, of course, that
more adaptations would be required for models of diseases that are less similar to AHS). In particular, the
probability of virus establishment in our example was quite simple to estimate, but could be more
complicated for diseases with more complex transmission cycles (e.g., diseases with vertical transmission,
multiple hosts and vector species, and/or vectors with a slow biological cycle, such as ticks). Careful
consideration must thus be taken in adapting the model to another disease. This is especially true given
our finding that even very similar diseases, such as EE and AHS, lead to quite different risk assessment

outputs (see section C).

Despite its advantages, the approach applied in this chapter is still rarely implemented in animal health.
The low number of publications found in the literature that combine routes of pathogen entry and
probabilities of entry and establishment can be explained by two factors. Firstly, the propagation of bias
and uncertainty that results from combining multiple data sources (Hoffman and Hammonds 1994) can
complicate the interpretation of results. Secondly, each process requires a different estimate of
probability and different measures of risk mitigation, which some researchers prefer to keep separate
(Stevens et al. 2009). Indeed, a large amount of data is needed to build such a complex spatiotemporal
risk model. These data were hard to obtain, and not initially ready to use. When data are routinely
collected, most of the time they are not formatted for use in the context of risk assessment, and thus an
important step of data preprocessing is often needed. As an example, the TRACES database contains data

on horse movements, but it was not straightforward to extract the relevant information. The method
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implemented in this chapter is thus time- and data-consuming, which constitutes one of the major
obstacles to its wider implementation in risk estimation. This limitation may also restrict efforts to update

the model and its outputs.

2. Conclusion

The approach used in this chapter provided a complete and detailed picture of the probability of
experiencing an outbreak. However, a low probability does not mean that an outbreak is not occurring,
and risk assessments do not predict with certainty the origin of an infection. This approach merely gives
an estimate of the likelihood and the most likely sources of an outbreak. To ensure the early detection of
a newly introduced disease, it would also be useful to consider other approaches for estimating the

probability of experiencing an outbreak.
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CHAPTER Ill: SYNDROMIC SURVEILLANCE

This chapter explores the possibility of implementing a syndromic surveillance approach to assess the
probability of occurrence of a newly introduced VBD in horses. There is no single commonly accepted
methodology for the execution of syndromic surveillance. We thus started by summarizing current
methods and definitions used in syndromic surveillance and, in particular, in veterinary syndromic
surveillance (Chap Ill.A). Based on this short review, we developed a syndromic surveillance system for the
early detection of West Nile virus (WNV) (Chap I1l.B). WNV was chosen because it is currently a major
concern in Europe for both human and equine populations. The syndromic surveillance system was
developed using nervous symptoms in horses that are known to be early indicators of WNV. The output of
this syndromic surveillance system was simple to understand, but also potentially complicated to use
when data were close to the alarm threshold. In addition, it was difficult to combine the output with other
epidemiological knowledge such as disease seasonality or environmental risk factors, parameters which
are fundamental when working with VBDs like WNV. Indeed, how can we interpret a small outbreak
occurring within the vector season versus a large outbreak occurring outside the vector season? To
address this question, we tested an application of Bayes’ rules to syndromic surveillance (Chap 1lI.C). The
objective was firstly to use syndromic surveillance to provide a quantitative assessment of the probability
that an outbreak is in progress, and secondly to be able to combine syndromic surveillance with other
epidemiological knowledge. The advantages and drawbacks of both approaches (classical and Bayesian
approaches) in the assessment of the probability of a current VBD outbreak are discussed in the final

section (Chapter III.D).
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A. OVERVIEW

This section aims to present current methods and definitions used in syndromic surveillance and, in

particular, in veterinary syndromic surveillance.

1. Overall principle of syndromic surveillance

1.1. History

1.1.1.Syndromic surveillance and human health

Syndromic approaches first gained momentum in human health applications, when the bioterrorist
anthrax attacks of 2001 in the USA drew attention to the need for early detection of pathogen
introduction (Buehler et al. 2003; Nordin et al. 2005). Concomitant outbreaks of new emerging infectious
diseases, such as West Nile virus in 1999 (Henderson et al. 2001) and SARS in 2002 (Abdullah et al. 2003),
reinforced the necessity of developing more timely surveillance systems. Real-time surveillance systems
were then developed based on the automatic collection and transmission of pre-diagnostic and unspecific
data, under the primary assumption that the behavior of these data change when a population’s health is

affected (Mandl et al. 2004a).

Syndromic surveillance was thus first used to enhance traditional passive surveillance, which is ineffective
in detecting rare or emerging diseases due to the limited ability of clinicians to recognize the signs of
unknown, or poorly known, diseases (Shaffer 2007). However, a syndromic approach is now also applied
in the monitoring of well-known diseases such as human flu (Ginsberg et al. 2009; Hiller et al. 2013) in

order to implement protective measures early and limit the impact of the disease.

1.1.2.Syndromic surveillance and animal health

In veterinary medicine, the development of syndromic surveillance systems followed a parallel path to
that in human medicine. In particular, the recent focus on the ‘One medicine’ concept has contributed to
increased awareness of early disease detection in animal populations (Dérea et al. 2011). However,
compared to human medicine, syndromic surveillance in veterinary medicine poses its own unique
problems. The great diversity of animal species and the types of production that must be considered
constitute an impediment to the development of syndromic surveillance systems due to the lack of
common vocabulary, practices, and data collection systems (Shephard 2006). In addition, animal data are
subject to more variation stemming from non-disease factors, as a decision to seek care for livestock is
mainly driven by a cost/benefit relationship and not, as in human medicine, by disease severity (Kosmider
et al. 2006). Moreover, data regarding animal health are still scarce due to less frequent data collection

and less developed data standards. All of these elements complicate efforts to monitor animal diseases.
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Although the number of syndromic surveillance systems or initiatives is increasing (at least 27 systems
were identified in 12 European countries in 2013 (Dupuy et al. 2013a)), fully operational and validated

systems are still rare in veterinary medicine (Dérea et al. 2011).

1.2. Definition and objectives

The term ‘syndromic surveillance’ derives from the word ‘syndrome’, a set of clinical signs and symptoms
that are correlated with each other. However, any data can be used, provided they are sensitive to
changes in disease incidence in a population and contain an early signature of a disease outbreak.
Syndromic surveillance can thus use either real syndromic data (e.g., data from emergency departments
(Hiller et al. 2013), estimates of mortality in cattle (Perrin et al. 2010)) or other health-related data (e.g.,
milk yield (Madouasse et al. 2013), search query data on Google (Dugas et al. 2013; Dugas et al. 2012;
Ginsberg et al. 2009) and Twitter (Gesualdo et al. 2013; Signorini et al. 2011)).

The Triple-S project defines syndromic surveillance as “the real-time (or near real-time) collection,
analysis, interpretation and dissemination of health related data to enable the early identification of the
impact (or absence of impact) of potential human or veterinary public health treats which require
effective public health action” (Triple S Project 2011). Beyond this, there is no single and commonly
accepted definition for syndromic surveillance. The main underlying objectives can nonetheless be
summarized with the following points (Katz et al. 2011):
- Early detection of and response to an outbreak, or at least detection of a probability of an
outbreak high enough to warrant further investigation;
- Use of continuously acquired pre-diagnostic information;
- Possible applications during an outbreak, through the provision of tools for following the course
of outbreaks;

- Providing assurance that an outbreak is not in progress;

The primary objective of all syndromic surveillance systems is thus to detect the signal, even a weak one,

of an outbreak prior to its formal diagnosis.

1.3. Overall approach

There is no commonly accepted method or framework for the implementation of a syndromic surveillance
system, and different approaches can be used. However, following preliminary steps, three main steps
should be always implemented: 1) description and preprocessing of the data, 2) choice and
implementation of an appropriate detection algorithm, and 3) evaluation of the system’s performance.
Figure 9 summarizes the overall process of implementing a syndromic surveillance system. Each

component is detailed in subsequent sections.
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Preliminary steps
Definition of objectives Overview of data available Definition of syndrome

2

Data description and preprocessing

Data description Data preprocessing

. 4

Development of detection algorithm

Historical baseline modelling and Detecting signal: comparing observed and
prediction predicted values

S 4

System’s performance evaluation

Figure 9 : Overall method to implement syndromic surveillance.

2. Preliminary steps

2.1. Definition of objectives

Like for all surveillance system, the first step of any syndromic surveillance system is to set clear objectives
(i.e., disease(s) of interest, system users, desired balance between the sensitivity, specificity, and
timeliness of detection). The geographic, demographic, and temporal coverage of the system must be also
carefully assessed (Vial et Berezowski 2014). This step is essential as it will influence the performance of

the surveillance system and its future organization.

2.2. Overview of data available

The essential data needed to achieve all surveillace objectives while minimizing the amount of data
collected should be defined (Vial et Berezowski 2014). Then, as one of the key objective of syndromic
surveillance system is to use of continuously acquired pre-diagnostic information, an inventory of the data
sources available has to be made and evaluated in order to identify the data which can be used by the

system.
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2.3. Definition of syndrome

Then, it is important to set a clear definition for the group of clinical signs, or any other data considered,
that constitutes an event of interest. This step is essential and has to be carefully considered, as it will
influence the performance of the surveillance system (lvanov et al. 2002; Shaffer 2007 ; Vial et Berezowski
2014). Various methods can be used for data classification. For example, Dupuy and colleagues (Dupuy et
al. 2013b) used multiple factor analysis, while Ddrea and colleagues (Ddrea et al. 2013b) used naive Bayes

learning and decision trees.

This preliminary step poses unique problems in veterinary syndromic surveillance compared to human
medicine. In particular, standards for data classification are not unified in veterinary medicine and each
veterinary syndromic system develops and validates its own classification system (Ddrea et al. 2011). This
lack of standardized data constitutes a challenge in the definition of syndrome groups and of the rules for

characterizing events of interest.

3. Data description and preprocessing

3.1. Data description

After the definitions of the syndrome and events have been determined, the data must be carefully
analyzed in order to identify their main variations and characteristics. Potential aberrations due to past
outbreaks or other events must be identified. The data must also be decomposed in order to identify
systematic and stochastic variations. When considering time series, one must take into account systematic
variations due to trends (long-term movements in the time series) or seasonality (cyclic variations). This
preliminary work is important in order to determine which detection algorithm will be best-adapted to the

data and if data preprocessing will be necessary (see Table 7).

3.2. Data preprocessing

Depending on the results of data decomposition, data can also be preprocessed. Two main examples of

data preprocessing are presented: removal of aberrations and stationarity transformation.

3.2.1. Aberrations removal

As a result of past outbreaks or other events, raw data may contain unusual values (to which we refer as
“aberrations”) which can disturb data modeling. To improve data modeling, and thus outbreak detection,
these aberrations can be removed, either manually, based on historical data from previous outbreaks, or

automatically, based on implemented procedures.
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In particular, considering the specific case of time series data, Tsui and colleagues (Tsui et al. 2001)
proposed removing data points above the 95% confidence interval of model predictions. This was based
on the assumption that, after fitting the entire dataset to a regression model, data points above the 95%

confidence interval of model predictions represent data from an epidemic.

Another option is to use a reweighting procedure to reduce the influence of high baseline counts, as
proposed by Farrington and colleagues (Farrington et al. 1996). A weighting function is used on empirical
grounds to assign very low weights to counts with large residuals. The residuals (s;) are obtained based on
the initial estimates (W;) and the dispersion parameters (¢). The weight of each value (w;) equals a

constanty. If s;is above 1, and y*s{2 if s;is below 1, the weighted data are refitted.

3.2.2. Stationarity transformation

The detection of outbreaks can sometimes be implemented only on stochastic variations of the data. This
is especially true for time series which can be transformed into a stationary process. Such a
transformation is essential in order to implement certain detection algorithms, such as control charts. In a
stationary process, systematic variations have been removed from the data in order to keep only the

stochastic variations.

4. Detection algorithms

There is no commonly accepted classification for algorithms used to detect abnormal patterns, but they
are often presented according to the nature of the clusters they identify, i.e. temporal, spatial, or
spatiotemporal clusters (Buckeridge et al. 2008). As our work centers on equine populations, in which
spatial information is rarely available and/or accurate, we focus in this section on temporal methods for
cluster detection. Following a summary of how to choose the most appropriate detection algorithm, we

briefly present the algorithms commonly used in the detection of temporal clusters.

4.1. Choice of detection algorithm

The choice of the algorithm for detecting a signal is fundamental in determining the quality of detection.
The choice must be based on (Ddrea et al. 2011):
- the type of data available: single or multiple time series, data monitoring with rates or counts,
long-term historical data available or not;
- the nature of the disease considered: sudden or slow increase in the number of cases;

- the desired balance between the sensitivity, specificity, and timeliness of detection.

The main detection algorithms used in temporal cluster detection are historical limits, control charts, and

regression methods. A recent review showed that regression methods were the most popular methods
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used in veterinary syndromic surveillance in Europe (Dupuy et al. 2013a). Indeed, among the 23 systems

found, eight used regression methods (of which four used autoregressive moving average models

(referred to as “time series methods”) and the remaining four used other methods), four systems used

historical limits, and only one used control charts. Control charts are, however, more frequently used

outside Europe (Ddrea et al. 2011).

The popularity of regression methods might be explained by their ability to easily deal with data involving

trends or seasons. Nevertheless, the drawback is that these methods require a long historical baseline,

which is often not available. Conversely, control charts do not require a long historical baseline, but they

also require preconditioning to remove seasonality, trends, and other variations, which adds complexity to

the analysis. Historical limits algorithms are the simplest methods but they suffer from numerous

drawbacks which may compromise outbreak detection (e.g., no adjustment for trends or disease clusters).

A summary of the main advantages and limitations of these different detection algorithms is presented in

Table 7.

Table 7 : Summary of the advantages and limitations of the main detection algorithms in the time series

analysis.

Detet':tlon Advantages Limitations
algorithm
Regression
ARMA Needs long historical baseline; requires
preconditioning to remove seasonality, trends,
and other variations
ARIMA  Trends taken into account Needs long historical baseline
SARIMA  Seasons taken into account Needs long historical baseline
HW  Needs short historical baseline; easily Only one type of seasonality allowed
automatable; adaptable to local changes
Im and gim  Explanatory variables present; several type of  Needs long historical baseline
seasons possible
Historical Easy to implement Needs long historical baseline; no adjustment
limits possible for trends, disease clusters, or

aberrations; no consideration of reporting
delays; inconsistent case inclusion criteria

Control chart

Shewhart Needs short historical baseline; peak-shaped Requires preconditioning to remove
chart outbreak seasonality, trends, and other variations;
detection only based on the last previous value
EWMA Needs short historical baseline; outbreak in Requires preconditioning to remove
the form of a slow increase seasonality, trends, and other variations
CUSUM Needs short historical baseline; outbreak in Requires preconditioning to remove

the form of an increase longer than one time
unit

seasonality, trends, and other variations
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4.2. Historical limits

One simple method to detect outbreaks is based on historical limits and was first applied in the United

States by Stroup and colleagues (Stroup et al. 1989).

An alarm is triggered when:
fos142xE
n n

where X, is the number of cases in the most recent four-week interval and u and o, are the mean
and the standard deviation, respectively, of the previous 15 historical four-week periods (from X;

to Xis).

This method is simple to implement but presents major bias due to a lack of adjustment for gradual trends
or disease clusters, a lack of consideration for reporting delays, and inconsistency in case inclusion criteria
between current and historical data. Although a method for bias reduction was recently proposed (Levin-

Rector et al. 2015), no real evaluation of the detection performance of a historical limits algorithm was

conducted.

4.3. Control charts

4.3.1.Principle

Control charts are based on graphical representation of data and are commonly used when no solid
baseline is available. Control charts rely on cumulative differences between observed data in a time
window and a threshold (Mandl et al. 2004a), which is set at some multiple of the standard deviation of
the sample’s mean (Carpenter 2002; Hutwagner et al. 2005). The value of the multiplier is chosen to
optimize tradeoffs between sensitivity, specificity, and timeliness in order to meet the objectives of
surveillance. However, the assumptions behind these methods are that the data are independent and
distributed according to a known hypothesis, assumptions that are not met by most surveillance data
(Lotze et al. 2008). In order to use control charts, then, significant preconditioning must be applied to

transform the data into a stationary process.

4.3.2.Methods

Different kinds of control charts are available: Shewhart charts, cumulative sums (CUSUM), and

exponential weighted moving average (EWMA) methods.

Shewhart charts are appropriate when a single peak is expected, and are simply based on the difference
between observed values and average values calculated within a moving window (Shewhart 1931). Only

the last mean recorded value is used for anomaly detection.
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The CUSUM and EWMA methods rely on cumulative differences between observed data in a time window
and a threshold (Mandl et al. 2004a). They are better-adapted to detect small but repeated lags between
observed and expected values. Model parameters are empirically set to the best balance between

sensitivity, timeliness, and specificity that is chosen to meet the objectives of the surveillance.

The CUSUM method is based on the calculation of a cumulative asymmetric sum and is especially useful in
detecting outbreaks that are longer than one time unit (O’Brien and Christie 1997). It is sensitive to small
shifts in deviations from the mean and also detects deviations more quickly than some other statistical
process control methods. Two examples of the use of CUSUM are presented in (Maciejewski et al. 2007;
Shaffer 2007), who both used CUSUM methods to detect syndromic aberrations in pets. This method is

based on the equation:
Ci=max {0, (D¢ + Ce4)}

where t is the current time point and D is the standardized difference between the current observed
value and the expected value. The differences are accumulated daily (for each point t, the statistic
incorporates the value at point t-1) over the baseline but reset to zero when the standardized value is

negative.

The EWMA method is based on exponential smoothing and is especially useful in the detection of a
gradual increase in a signal (Hunter 1986). One example of the application of EWMA methods to the
detection of aberrations in veterinary laboratory data is presented in (Ddrea et al. 2013a). EWMA is based

on the equation:
Ev=(1-N)Eo+ 3iea(1=A) Ay

where A is the smoothing parameter (>0) that determines the relative weight of current data to past

data, I, is the observed value at time t, and E, is the starting value.

4.4. Regression methods

4.4.1. Principle

Regression methods can be used when long-term historical data are available (e.g., (Kosmider et al. 2006);
(Dérea et al.); (Perrin et al. 2010)). They utilize statistical methods for fitting a model to observed data in
order to make predictions. The benefit of such an approach is that seasonal effects and trends that are
observed in the dataset can be readily incorporated into the equation. The models are usually assessed
based on an analysis of residuals and goodness-of-fit, and compared using AIC and root-mean-squared
error within and outside the calibration period. In veterinary syndromic surveillance, these methods are
still mainly used to perform retrospective analyses in order to assess their potential for prospective

modeling (Dérea et al. 2011).

62



CHAPTER Ill: SYNDROMIC SURVEILLANCE

4.4.2. Regression models

Typical models are regression-type models (e.g., generalized linear models), autoregressive moving
average (ARMA) models, and exponential smoothing. The different regression models are briefly

presented in this section.

e Linear and Generalized linear models

Linear models (LMs) and generalized linear models (GLMs) are common tools for fitting data. In syndromic
surveillance, they are especially useful when time series show trends and/or seasonal variations and when
explanatory variables are used. Indeed, these types of information can be directly included in the model
without additional data preprocessing. Two examples of their use in veterinary syndromic surveillance are
shown in (Perrin et al. 2010) and (Kosmider et al. 2006), who applied Poisson regression on cattle-related

data (mortality and number of laboratory isolations of Salmonella, respectively).

e Autoregressive moving average models

Autoregressive moving average models (ARMA) are based on two processes: one for the auto-regression
(AR) and another for the moving average (MA) (Box et al. 2008). ARMA models require data to be
stationary, i.e. without trends and with a mean and variance that do not change over time. If the data are
not stationary, a common solution is to use a difference variable to transform the time series into a
stationary process. Another option is to use an autoregressive integrated moving average (ARIMA) or
seasonal ARIMA (SARIMA) model. The first aims to incorporate non-stationarity in the mean and the

second attempts to take into account seasonal variations (Box et al. 2008).

e  Exponential smoothing

Exponential smoothing involves exponentially decreasing the weights of observations over time, such that
oldest observations have the smallest weight (Gardner 1985). The forecast is continuously revised

according to more recent observations. The EWMA, or exponential weighted moving average, approach is
the simplest form of exponential smoothing and is used when data do not have trends and/or seasonality.

Instead, if trends are present, double exponential smoothing is used.

Triple exponential smoothing, also called Holt-Winters exponential smoothing (HW), aims to take into
account both trends and seasonality. The seasonality can be either multiplicative or additive, but there
can be only one type of seasonal pattern. If more than one kind of ‘seasonal’ pattern is present (e.g.,
monthly and daily seasonality), another smoothing method must be chosen. HW incorporates three
components: a level term, a trend term, and a seasonality term, respectively defined by the smoothing
constants a, B, and y. The main advantage of this technique is that it is easily automatable and adaptable
to local changes in the data (Lotze et al. 2008). One example of the use of HW in veterinary syndromic

surveillance is found in (Dérea et al. 2013a).
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4.4.3. Threshold values

The threshold values that trigger an alarm are typically a multiple of the standard error of the prediction
(Mandl et al. 2004a), based on Serfling’s approach (Serfling 1963). This constant is determined by the best
compromise between sensitivity and specificity for a given case, as illustrated, for example, by Muscatello
et al. (Muscatello et al. 2008). The authors explored excess mortality due to influenza and discussed the
optimal threshold to balance the false positive alarm rate and true positive alarm rate. In general, a value
between 2- and 3.5-times the standard error is often chosen to ensure the false alarm rate is below 5%

(Mandl et al. 2004a).

Farrington and colleagues (Farrington et al. 1996) also proposed the use of an exceedance score based on
the upper limit of the 99% prediction interval. An alarm is triggered when:
= (a)) -1
U-up)
U; is the upper limit of the 99% prediction interval, ; is the initial estimated value, and y is a

constant.

5. Assessment of performance

Assessment of syndromic surveillance systems is essential for determining the validity of conclusions. The
assessment can be either qualitative or quantitative. However, in veterinary syndromic surveillance,
assessment of the system’s performance is still rarely carried out (Dérea et al. 2011). Moreover, when
assessment is performed, it mainly focuses on data quality rather than real system performances (Dupuy

et al. 2013a).

5.1. Performance metrics

Quantitative evaluation of a syndromic surveillance system’s performance can be implemented in a similar
way to the evaluation of the performance of individual diagnostic tests. Sensitivity, specificity, predictive
positive values, and predictive negative values are commonly used as evaluation metrics of outbreak
detection algorithms (Buckeridge et al. 2005; Choi et al. 2010). Regarding sensitivity, two approaches can
be considered: the outbreak-day approach and the outbreak-detection approach (Mandl et al. 2004b). The
outbreak-day approach considers each day (or time period considered) within an epidemic period to be an
independent case. A true positive alarm is thus produced for each outbreak-day detected. The outbreak-
detection approach considers each outbreak to be a single entity and thus, a true positive alarm is
produced when at least one outbreak-day is detected. Various other quantitative parameters can be used

to compare detection algorithms, according to the objectives of the surveillance system (see Table 8).
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In their “Framework for evaluating public health surveillance systems for early detection of outbreaks”,
Buhler et al. (Buhler et al. 2004) suggested a list of criteria, such as usefulness, flexibility, and acceptability,
to qualitatively describe and evaluate each system component. Regarding veterinary syndromic
surveillance, other criteria should be added, including population coverage, automation of data capture
and transfer, benefit to users, detection efficiency of programmed algorithms, and contribution to claims

of disease freedom (Ddrea et al. 2011).

Table 8 : Metrics used for evaluation of outbreak detection algorithms
(Buckeridge et al. 2005, Choi et al. 2010)

Parameters Definition

Sensitivity Probability of alarm given that an outbreak is occurring. Can be based on overall
outbreak detection or on the outbreak day number (each day considered a separate
and independent case)

Specificity Probability of no alarm given that an outbreak is not occurring

Predictive Probability that an alarm signals a true outbreak

positive value

Predictive Probability that no alarm corresponds to a true absence of an outbreak

negative value

ROC curve Plots sensitivity (or true positive rate) against 1-Specificity (or false positive rate) for a
range of algorithm settings

Area under Summarizes the detection performance of an algorithm. Values larger than 0.5 indicate

ROC curve that the algorithm is better than a random detection scheme.

AMOC curve Plots a summary measure of time-to-alarm (given an outbreak is occurring) against the
false positive rate

FROC curve Plots the fraction of outbreak detected against the false positive detection rate

ARL Expected time until the first detected event - ARLO; the expected time-to-alarm when
there is an ongoing outbreak at the initiation of surveillance - ARL1

PSD Probability of an alarm before some critical point in the outbreak given that the
outbreak is detected

Time lag Average number of weeks between the first of a consecutive number of outbreaks and
the first alarm raised by each method

Missing rate Number of missed outbreaks/total number of outbreaks

5.2. Test data

Generally, models are built using a calibration period and their predictions are then tested using a
validation period. The role played by validation data in algorithm research is a crucial one and determines
the validity of conclusions, especially when attempting a quantitative assessment of the system’s
performance (Buckeridge et al. 2005). Authentic baseline and outbreak data can be used but the scarcity
of such data means that it is often not possible to generate a quantitative assessment of the detection

algorithm. Simulations of background data and/or outbreaks are therefore often required.

To simulate the background of a time series, different methods can be implemented. One of the simplest

methods is to set the predicted value for each time period as the mean of a Poisson distribution. This
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distribution is then sampled randomly to determine the value for a week of a given year, as proposed by
Dérea et al. (Ddrea et al. 2013a). For outbreak data, most studies have used naturally occurring signals
from one or more real outbreaks to evaluate outbreak detection performance (Buckeridge 2007).
However, given the limited availability of high-quality data from known outbreak periods, such signals can
also be simulated. The methods for doing so range from simple mathematical functions to more complex
stochastic simulation. Outbreak simulation has to consider the duration of an outbreak, spacing between
outbreaks, temporal progression, outbreak magnitude, and spatial features (Mandl et al. 2004b). The

advantages and disadvantages of each set of tests are presented in the Table 9.

Table 9 : Advantages and disadvantages of types of test data (Buckeridge et al. 2005)

Type of set Advantages Disadvantages
Wholly authentic Face validity; Sufficient resources required to define
authentic background and outbreak outbreaks; validity and reliability of outbreak
signals indications may be poor and difficult to assess;
limited number and variety of outbreaks

Wholly simulated Exact specification of outbreak signal;  Complexity of simulating baseline and outbreak
large number of test data possible; signal;
can be simple to develop; validity may be poor and difficult to assess;
enables sensitivity analyses can require many parameter values

Simulated Greater face validity than wholly Complexity of simulating outbreak signal;

outbreaks simulated test sets; validity may be poor and difficult to assess;

superimposed onto  exact specification of outbreak signal;  can require many parameter values
authentic data large number of test sets possible;
enables sensitivity analyses

6. Conclusion

There is no single commonly accepted method or framework for the implementation of a syndromic
surveillance system, and different approaches can be used to detect temporal clusters of abnormal
events. However, three main steps should always be included: 1) description and preprocessing of the

data, 2) choice of an appropriate detection algorithm, and 3) assessment of the system’s performance.

Considering the use of syndromic surveillance in veterinary medicine, some specific points can be
highlighted. Firstly, it can be challenging to define syndromes and abnormal events due to the lack of
standards of data classification. Secondly, the most commonly used detection algorithms are control
charts which, despite their limitations, are useful when a long-term baseline is not available. Regression
methods are a priori more robust and flexible but are often only used for retrospective analyses because
of the absence of long-term historical data. Finally, assessment of system performance in veterinary
syndromic surveillance remains rare and, when it is performed, it mainly focuses on data quality rather

than system performance.
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B. COMPARISON OF PRE-PROCESSING METHODS

In this section, one of the above-described classical methods is applied to the detection of West Nile virus
in horses. This part of the work resulted in a poster presentation at the Conference of the Society for
Veterinary Epidemiology and Preventive Medicine (SVEPM) in Ghent (2015). The poster is available in
Appendix 9.

1. Introduction

The passive French surveillance system ‘RESPE’ (introduced in Chapter I.C.1.3) has collected data on
nervous symptoms observed in French horses since 2006. Although the sentinel veterinarians involved in
this system are present in most French regions (92 of 96), the nervous symptoms collected are mainly
reported from areas with high horse densities (see Figure 10). Diagnostic tests for West Nile virus (WNV),
equine herpes virus serotype 1 (EHV-1), and consensus equine herpes virus (EHV-sp) (Léon et al. 2008) are

systematically implemented for each declaration.

Currently, the collected data are mainly used to produce alerts when cases with positive laboratory
diagnoses are identified. The data are also used for basic syndromic surveillance: an alarm is triggered
when four syndromes are reported in the same week, or three declarations reported in each of two
consecutive weeks. This alarm threshold was set arbitrarily and alarms may result in the initiation of
epidemiological investigations depending on the context of the declarations. However, the reliability of
this threshold has never been assessed and the ability of the RESPE nervous syndrome database to serve

as a routine syndromic surveillance system is currently unknown.

Nervous syndromes in horses are considered to be an early indicator of WNV outbreaks (Leblond et al.
2007). Using routinely collected RESPE data in an early detection surveillance system could lead to the
timelier implementation of protective measures, thereby limiting the consequences of a WNV outbreak
for both equine and human populations. Therefore, there is a need to assess the capacities in which the

RESPE nervous database can be used to detect WNV outbreaks.

The RESPE nervous syndrome dataset presents several aberrations that can be mainly explained by EHV-1
and EHV-sp outbreaks. As discussed in Chapter IlI.A, different methods can be used to remove these
unusual data (manual or automatic procedures). To date, though, little work has been done on the

potential impact of the choice of pre-processing method on a surveillance system’s ultimate performance.

In this section, we use several preprocessing methods and detection algorithms to model time series data
from the RESPE nervous symptoms database. The objectives were (i) to evaluate the impact of these
methods and algorithms on system performance, and (ii) to assess whether or not these data can be used

as a routine syndromic surveillance system for the detection of WNV outbreaks.
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Figure 10 : Number of nervous symptoms cases declared to RESPE from 2006 to 2013.

2. Methods

2.1. Data characterization

In the RESPE database, nervous symptoms in horses are defined as any signs of impairment of the central
nervous system, i.e. ataxia, paresis, paralysis and/or recumbency, and/or behavioral disorder. Cases, or an

|II

unusual cluster of cases, with “atypical” expression (colic, lameness, excitement, falling, muscular atrophy)
can also be considered after the most common etiology of these symptoms has been excluded, since
these signs can sometimes be the clinical manifestation of an affected central nervous system. Nervous

disorders with evidence of traumatic or congenital origins are excluded.

Data on nervous symptoms in horses were available from RESPE for every calendar day from January 1%,
2006 to December 31“, 2013, totaling 532 declarations. An initial data characterization was performed
using the daily data in order to identify explainable patterns such as global linear trends and seasonality.
However, in the remainder of the study, the time series was aggregated into weekly counts due to the low
per-day count. Monthly aggregation was not considered, as the main objective of this surveillance system

was early detection.

Tests for WNV and EHV are routinely carried out on horses that present nervous symptoms, and the
database contains 80 positive laboratory results, mainly for EHV-1 (only two positive cases of ELISA-IgG
West Nile virus). The EHV-1 positive cases were either isolated cases —i.e. not associated with other

positive cases — or from a cluster of cases that could represent a true outbreak.

2.2. Data pre-processing

We split the data into two time periods: data from 2006 to 2010 were used to train the model (see next

section) and data from 2011 to 2013 were used to validate the model.
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The raw time series used for model training was called TSO. We investigated three options for the removal
of aberrations present in TSO in order to obtain an outbreak-free baseline. In the first method, we retained
only the 452 cases with no positive laboratory results (TS1). The second method consisted of removing all
data linked to historical EHV-1 outbreaks, based on information from the RESPE website (TS2). This
method did not remove single positive cases but only the positive cases associated with a cluster of other
positive cases. In our third method, extreme values from TSO were removed using the approach of Tsui
and colleagues (2001)(Tsui et al. 2001), which assumes that, after the data have been fitted to a
regression model, data points above the 95% confidence interval of the model prediction represent an
outbreak (TS3). The authors used Serfling’s regression model (Serfling 1963), which is a linear regression
model that uses sine and cosine terms to account for seasonal variation. With our own data, we followed
the proposal of Dérea and colleagues (Dérea et al.) and used a Poisson regression, which they considered
an appropriate method to capture baseline activity while minimizing the influence of aberrations present
in the dataset. The data were thus first fitted to a Poisson distribution and then values above the 95%
confidence interval were removed. In TS1, TS2, and TS3, the values of weeks considered to be part of an

outbreak were not removed but instead replaced by the average of the four previous weeks.

The four time series are shown in Figure 11.
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Figure 11 : Four time series used with datapreprocessing used from 2006 to 2010 and raw data used from
2011 to 2014. TSO = raw data, TS1 = only the cases with no positive laboratory results, TS2 = outbreaks
removed based on historical data, TS3 = extreme values above the 95% confidence interval deleted.

The explainable patterns (such as global linear trends and seasonality) were investigated in each time
series (TS0, TS1, TS2, and TS3) in order to assess the impact of preprocessing methods on the dataset. We
generated summary statistics by month and year, and performed moving average and autocorrelogram

analysis (Lotze et al. 2008).

69



2.3. Forecasting

Forecasting was attempted using generalized linear regression models (GLMs) that were appropriate for
count data (Poisson and negative binomial (NB) regressions) and Holt-Winters generalized exponential
smoothing (HW). For GLMs the evaluated models included different types of seasonality through the use
of sinod models with 1, 2, or 3 periods/year and season or month as factorial variables. To account for
differences between years, we calculated the average counts for 53 consecutive weeks (histmean). To
ensure that an ongoing outbreak would not influence the estimate, we used a 10-week guard band for the

calculation of histmean.

Training data from 2006 to 2010 (TSO, TS1, TS2, TS3) were used to train the models, while data from 2011
to 2013 were used to validate the quality of the predictions. Alternative GLMs were evaluated for training
data using the Akaike information criterion (AIC) (Bozdogan 1987). For HW, the optimal parameters were

determined through minimization of the squared prediction error (Kalekar 2004).

The best models were then evaluated and compared using the autocorrelation and partial autocorrelation
functions of the residuals (ACF and PACF, respectively) and the root-mean-squared error (RMSE). ACF and
PACF are used to find repeating patterns (e.g., seasons) in a dataset. ACF is the linear dependence of a
variable on itself at two points in time and PACF is the autocorrelation between two points in time after
removing any linear dependence between them (Box et al. 2008). RMSE is a measure of the difference
between the values predicted by a model and the values actually observed from the environment that is
being modeled (Chai and Draxler 2014). This criterion was calculated for the differences between the
observations and the predicted values within both the calibration period (RMSE.) and the validation
period (RMSE,). In either case, the lower the criterion, the better the predictive performance of the

model.

2.4. Detection algorithm

Finally, all eight combinations of pre-processing (4) and forecasting methods (2) were evaluated on their
ability to detect simulated disease outbreaks: GLM applied to TS0, TS1, TS2, and TS3; and HW applied to
TS0, TS1, TS2, and TS3. A six-week guard band was used to ensure that previous outbreaks would not
influence the estimate of the baseline. The outbreak detection method used was based on a multiple of
the standard error of the prediction. The action threshold was defined as the predicted number of cases in
a given week plus a constant multiple of the standard error of the model prediction. If the actual observed
value was above the threshold, an alarm was triggered. The constant multiple was empirically defined

according to the best balance between sensitivity and specificity.

Baseline data from 2011, 2012, and 2013 were used for the assessment of the detection algorithms’
performance. We simulated WNV outbreaks based on historical data from three previous European

outbreaks: French outbreaks in 2000 (Murgue et al. 2001) and 2004 (Leblond et al. 2007) and an Italian
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outbreak in 1998 (Autorino et al. 2002). The average weekly count of nervous-symptom cases in horses
was calculated from the three historical outbreaks for an epidemic period covering a total of 11 weeks,
from the first positive case detected to the last positive case detected (see Figure 12). The number of
cases for each week of an epidemic period was sampled randomly between the extreme values obtained

from historical data.

o _|
o™

Nervous cases
15

week of outbreak

Figure 12 : West Nile virus outbreaks. solid line = outbreak Italy 1998 (Autorino et al. 2002), dotted line =
outbreak in France 2004 (Leblond et al. 2007), dashed line = outbreak in France 2000 (Murgue et al. 2001).
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Figure 13 : Two examples of simulated outbreaks inserted in TSO. Positions of outbreaks identified with
dotted lines above the peak.

To test our detection method, three simulated outbreaks were randomly inserted in the baseline data
from 2011, 2012, and 2013, with at least 15 weeks between each outbreak in order to avoid overlap (see
example in Figure 13). The process was repeated 25 times, for a total of 75 years containing a total of 75

outbreaks.

71



2.5. Quantitative assessment

We first calculated sensitivity based on the number of outbreaks detected out of all inserted outbreaks
and denoted this Se_out. An outbreak was detected when it triggered at least one true alarm, defined as a

week that produced an alarm and that was a part of an epidemic period. Se_out was calculated as:
Se_out = Out / (Out + No_Out)

where Out is the number of outbreaks detected and No_Out is the number of outbreaks not

detected.

We also calculated Se_wk, the sensitivity based on the number of weeks in an epidemic period in which an

alarm was triggered. Se_wk and specificity (Sp) were calculated as:
Se_wk=TP /(TP+FN)
Sp=TN /(TN +FP)

where TP is the number of true positive alarms, TN the number of true negative alarms, FP the

number of false positive alarms, and FN the number of false negative alarms.

A receiver operating characteristic (ROC) curve was generated in R by testing various alarm thresholds,
and the area under each curve (AUC) was also calculated (Hanley and McNeil 1982). The time to the first
true alarm within an epidemic period was also evaluated in order to assess the efficiency of early

detection.

2.6. Implementation

Models were implemented in R x64 version 3.0.2. Dynamic regression was performed with the functions
glm (package {stats}), gim.nb (package {MASS}), and stIf (package {forecast}). The expected numbers of
counts at time t were estimated with the predict functions of the respective packages. The expected
numbers of outbreak-related cases were estimated with the fitdist function of the package {fitdistrplus}.

AUCs were estimated with the auc function of the package {flux}.

3. Results

3.1. Baseline characterization

For the initial data characterization, we worked with the daily time series data. The autocorrelograms
showed high autocorrelation at lag 7, 14, 21, etc., indicative of a day-of-week effect. Not surprisingly, the

number of declarations was significantly lower on Saturday and Sunday.
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At the weekly level, all baselines except TS2 showed a significant positive trend: TSO had +0.07
declarations per month (p-value = 0.0001), TS1 had +0.06 declarations per month (p-value = 0.01), and TS3

had +0.07 declarations per month (p-value = 0.000). However, this trend was mainly due to the first years

of data collection (see Figure 14).
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Figure 14 : Decomposition of time series. For each decomposition, the upper graph represents the
observed data, the second graph shows the trend identified in the data, the third graph indicates the
seasonal pattern found in the data and the fourth graph shows the residuals after deletion of trend and
seasonal components.

A significant seasonal effect was also present in all time series: the number of declarations appeared
highest in November, December, and January compared to other months. However, this seasonality was
weak and principally apparent in the raw TSO data, due to EHV-1 and EHV-sp outbreaks present in the
dataset during the winters of 2008, 2011, and 2013 (see Figure 14).

3.2. Smoothing and forecasting

From 2006 to 2010, the data from each time series were fitted to their respective appropriate regression
model, using variables that accounted for seasonal effects. For the Poisson as well as the NB regression,

the best fit was obtained for all time series with the simple model:
Number_of_cases ~ sin(2n*week/53) + cos(2mt *week/53) + log(histmean)

NB and Poisson regressions performed equally well for all time series, with the exception of TS0 (raw

data), for which the NB model provided a better fit (AIC 749 vs. 761).
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The details of differences between the smoothing performance of the best generalized linear models

obtained and HW are presented in Table 10 and Table 11. In all regression methods used, TSO produced

the worst results, while TS1 generated the best fitting parameters. TS2 and TS3 yielded intermediary

results, with better performances for TS3 than for TS2.

Table 10 : Smoothing and forecasting performance of GLMs. ACF and PACF are, respectively, the

autocorrelation and partial autocorrelation functions of the residuals. Residuals are theoretically assumed
to have an ACF and PACF that have no correlation for all lags. RMSEc and RMSEv are measures of root-
mean-squared error within the calibration period and the validation period, respectively. In both cases,

lower values are better.
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Table 11 : Smoothing and forecasting performance of Holt-Winters models. ACF and PACF are,
respectively, the autocorrelation and partial autocorrelation functions of the residuals. Residuals are
theoretically assumed to have an ACF and PACF that have no correlation for all lags. RMSE. and RMSE, are
measures of root-mean-squared error within the calibration period and the validation period, respectively.
In both cases, lower values are better.

ACF and PACF RMSE, RMSE,
ACF of Residuals PACF of Residuals
-] ‘D— B SEET e e R LT
22 : ES o i
% ~ S 8 Ll L T 1
TSO < o7 g ©° | |IJ1|' N 1.07 1.55
il & o
& AT I a5 el
0 el T - Pl ey
| I T T T I I I T
0.0 02 04 01 03
Lag Lag
ACF of Residuals PACF of Residuals
e
] G0 feadbeessa]iusaas
a | T
L o 8: g i ‘
(0] oy T ™ L1y
TS1 e = _l [l ‘ “' ’1| | 0.77 1.23
(o T o i e e =
LT ) N 1 B2 A1 P T TR IRV TR
T T T T T g T T T T
0.0 02 04 01 03
Lag Lag
ACF of Residuals PACF of Residuals
Q O e
- B, O |
sl o 1| T |
S s 8] TITTT]
TS2 < o | £ o 0.85 1.32
o ] 1 e e e © —
|II||I Ll_ll‘ I'LIII |- o o _'----- TR T A i [
('\! - i i i
QE T T g = T T T T
0.0 0.2 04 01 03
Lag Lag
ACF of Residuals PACF of Residuals
= N
il G 1O :
. B s gLl L1,
2 o s s [T 71T
TS3 < o | = . 0.80 1.21
O THeeom e S |
I e e it i I S
Q@ T T T 1 Q T T T
00 02 04 01 03
Lag Lag

75



3.3. Outbreak detection

The results showed that, for a given method, there was no difference between the different time series
tested. However, the generalized linear model always outperformed the Holt-Winters method in terms of

detection performance (see details in Table 12).

The AUCs of all methods and time series were low, but it is important to note that the sensitivity used
here was based on the number of weeks within an epidemic period that produced an alarm (Se_wk). By
using instead the percentage of outbreaks detected (with at least one alarm) among all the outbreaks

inserted (Se_out), the AUCs for all combinations of time series and methods improved to 0.95.

With the generalized linear model, the optimal balance between Se_wk, Se_out, Sp, and the time-to-
detection within an epidemic period was obtained when the alarm threshold exactly equaled the value of
the standard error of the model prediction (see details in Table 13). This alarm threshold detected more
than 95% of the inserted outbreaks, with an average time to the first true alarm of less than 3 weeks from
the start of the outbreak, with the exception of TSO. Specificity varied according to the smoothing method
used, but ranged from 0.80 to 0.94 for all generalized linear models. Alarm thresholds that were based on
a value higher than the standard error of the model prediction (K>1) had the same detection rate but took
more time to produce the first true alarm (> 3 weeks). Instead, an alarm threshold based on a value lower
than the standard error of the model prediction (K<1) had the same detection rate and required less time
to produce the first true alarm, but resulted in the lowest specificity of all models (from 0.71 to 0.57). The
alarm threshold equal to the standard error of the model prediction (K=1) detected from 3 to 6 nervous

cases depending on the time series, the smoothing method, and the time period considered.

With the Holt-Winters approach, the optimal balance between Se_wk, Se_out, Sp, and the time-to-
detection in an epidemic period was obtained when the alarm threshold equaled the standard error of the
model prediction multiplied by a constant of 0.5 (see details in Table 14). This alarm threshold detected
more than 95% of the inserted outbreaks and the average time-to-detection was less than 3 weeks from
the start of the outbreak. The associated specificity had an average value of 0.87. Alarm thresholds that
were based on constants higher than 0.5 had the same detection rate but needed more time to produce

the first true alarm (> 3 weeks).
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Table 12 : System’s detection performances. Se_wk = sensitivity based on detection of each week which is
a part of an epidemic period, Sp = specificity based on the number of true negative and false positive
alarms, ROC = receiver operating characteristic, AUC = Area Under the receiver operating characteristic

curve.
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Table 13 : system’s detection performances for time series fitted with generalized linear models. K =
constant multiple of the standard error of the model prediction, Se_wk = sensitivity based on detection of
each week which is a part of an epidemic period, Se_out = sensitivity based on the number of outbreaks
detected, Sp = specificity based on the number of true negative and false positive alarms, Average time of
detection = Average number of weeks needed to produce the first alarm within an outbreak.

K Se_wk \ Se_out \ Sp Average time of detection (weeks)
TSO 0.68 0.96 0.71 1.83
0.5 TS1 0.76 0.96 0.57 1.56
TS2 0.76 0.96 0.57 1.57
TS3 0.76 0.96 0.57 1.56
TSO 0.48 0.96 0.94 3.13
1 TS1 0.60 0.96 0.80 2.36
TS2 0.62 0.96 0.80 2.16
TS3 0.56 0.96 0.86 2.75
TSO 0.33 0.96 0.99 3.68
15 TS1 0.44 0.96 0.98 3.27
TS2 0.44 0.96 0.97 3.25
TS3 0.41 0.96 0.97 3.33
TSO 0.22 0.88 1 4.10
2 TS1 0.37 0.96 0.99 3.38
TS2 0.39 0.96 0.99 3.34
TS3 0.31 0.94 0.99 3.73
TSO 0.11 0.74 1 4.72
25 TS1 0.26 0.92 1 3.85
TS2 0.27 0.93 1 3.77
TS3 0.20 0.84 1 4.21
TSO 0.07 0.60 1 4.38
TS1 0.21 0.89 1 4.23
3 TS2 0.22 0.89 1 4.01
TS3 0.15 0.80 1 4.69
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Table 14: system’s detection performances for time series fitted with Holt-Winters. K = constant multiple
of the standard error of the model prediction, Se_wk = sensitivity based on detection of each week which

is a part of an epidemic period, Se_out = sensitivity based on the number of outbreaks detected, Sp =

specificity based on the number of true negative and false positive alarms, Average time of detection =

Average number of weeks needed to produce the first alarm within an outbreak.

Average time of detection (weeks)

TSO 0.53 0.96 0.88 2.79
0.5 TS1 0.52 0.96 0.87 2.73
TS2 0.52 0.96 0.87 2.73
TS3 0.52 0.96 0.87 2.73
TSO 0.33 0.96 0.98 3.57
1 TS1 0.33 0.94 0.98 3.52
TS2 0.33 0.94 0.99 3.55
TS3 0.33 0.94 0.99 3.58
TSO 0.18 0.86 0.99 4.27
15 TS1 0.17 0.84 0.99 4.39
TS2 0.17 0.84 0.99 4.39
TS3 0.16 0.84 0.99 4.39
TS0 0.09 0.64 0.99 4.45
2 TS1 0.09 0.65 0.99 4.63
TS2 0.09 0.65 0.99 4.63
TS3 0.09 0.65 0.99 4.66
TSO 0.06 0.50 1 4.36
25 TS1 0.03 0.32 1 4.19
TS2 0.05 0.48 0.99 4.14
TS3 0.05 0.48 0.99 4.17
TS0 0.03 0.37 1 4.09
TS1 0.017 0.18 1 4.50
3 TS2 0.03 0.32 1 4.19
TS3 0.03 0.32 1 4.19

4. Discussion

As expected, the preprocessing methods that were used to remove past outbreaks present in the dataset

modified the seasonality of the time series. Indeed, outbreaks of EHV-1 that were present in TSO were

mainly reported during winter, which is consistent with reports of seasonal patterns of disease outbreaks

from a recent consensus statement (Lunn et al. 2009). Removing these outbreaks from the TSO data

decreased the impact of season on the baseline and improved the smoothing performance of the two

forecasting methods tested. The raw data (TSO) produced the worst results compared to all time series in

which outbreaks were removed. Regarding the impact of preprocessing methods on system performance,

no impact was observed when Holt-Winters smoothing was used. Conversely, the detection performance

differed between time series fitted with glm: TSO obtains always the worst results (longest time-to-

detection and lowest Se_wk/Sp).
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RESPE currently uses raw data (TS0) and an alarm threshold of four declarations per week for the
detection of outbreaks. According to the analysis performed in this study with TS0, this alarm threshold is
close to the standard error of our model prediction using GLMs (between four and five cases, depending
on season). The current detection performance of the RESPE system is thus: weekly sensitivity close to
0.48, specificity close to 0.94, and average time-to-detection close to 3.13 weeks. These values are lower
than those obtained here with preprocessed data (TS1, TS2, TS3) and reveal the importance of data

preprocessing in improving outbreak detection for syndromic surveillance.

When we use values of Se_wk to evaluate overall system’s performance, it is clear that the syndromic
surveillance system suffers from low sensitivity. This is not surprising as, during a WNV outbreak, the
number of cases observed per week of the outbreak is generally low, especially during the initial and final
stages of the outbreak (see figure 12). When considering the system’s ability to detect an outbreak as a
single entity (Se_out), all combinations of time series and methods used were able to detect more than
95% of the inserted outbreaks. However, compared to HW, GLM enabled earlier outbreak detection, with
a better Se_wk, for a given Sp. In the end, the best performances were obtained using GLMs associated
with preprocessing methods TS1, TS2, or TS3, and an alarm threshold set to the standard error of the
model prediction. With these settings, the surveillance system can detect 96% of outbreaks, with an
average time-to-detection of 2.16 to 2.75 weeks, weekly sensitivity (Se_wk) between 0.56 and 0.62, and
specificity ranging from 0.80 to 0.86. A K value (multiple of the standard error) between 2 and 3.5 is often
chosen to ensure a false alarm rate below 5% (Mandl et al. 2004a) but, in our case, this threshold
increased the time-to-detection to between 3 and 5 weeks, an undesirable outcome when striving for
early detection. In this study, we did not determine which time series (TS1, TS2, or TS3) was the most
efficient, as such a decision would be made in real life by decision makers and would depend on the

objectives of the surveillance.

Our study shows that the RESPE data on nervous symptoms in horses can be used as an alarm system for
WNYV outbreaks in France and the full assessment of system’s performance was possible thanks to
simulated data. This is the first time that a real assessment of system performance has been implemented
for WNV surveillance. Previous early warning systems developed for WNV only identified risk factors of
WNV outbreaks, but did not evaluate the detection performances of those systems (Adlouni et al. 2007;
Bellini et al. 2014a; Brown 2012; Chaskopoulou et al. 2013; Gosselin et al. 2005; Rosa et al. 2014; Shuai et
al. 2006; Valiakos et al. 2014). Timeliness has occasionally been evaluated but only based on a limited
number of real WNV outbreaks, and has not been associated with a further assessment of system
performance (Calzolari et al. 2013; Chaintoutis et al. 2014; Eidson et al. 2001; Johnson et al. 2006;
Mostashari et al. 2003; Veksler et al. 2009). Only one attempt (Leblond et al. 2007) to assess the sensitivity
and specificity of surveillance has been made but the parameters of interest were only evaluated based on
a limited number of outbreaks, which did not allow any conclusions to be drawn regarding overall system
performance. The outbreaks were simulated using real data and should thus be consistent with the course

of a real WNV outbreak. However, there is always the risk that the conditions used here to evaluate
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system performance were unrealistic, and thus other outbreaks, differing in magnitude and form, should

be also tested in order to confirm our results.

5. Conclusion

A classical syndromic surveillance approach based on nervous symptoms in horses can be implemented
using RESPE data in order to detect WNV outbreaks. The results produced in our study are better than
those obtained with the current detection system and argue in favor of data preprocessing for the

improvement of outbreak detection.

The output of the syndromic system produced here was a yes/no qualitative output: “No, there is no
outbreak” or “Yes, something unusual is happening in the population”. This output has the advantage of
simplicity, but its interpretation/utilization may be complex when data are close to the alarm threshold.
This output also has a low specificity. Indeed, we can detect WNV but probably also equine herpesvirus. It
would be interesting to combine the output from syndromic surveillance with other information to reach
a better specificity. However, it is currently complicated to combine this output with other
epidemiological knowledge, such as disease seasonality or environmental risk factors, parameters that are
fundamental when working with vector-borne diseases like WNV. This dilemma will be addressed in the

next section.
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C. VALUE OF EVIDENCE

1. Introduction

To address the problems associated with the qualitative outputs of syndromic surveillance and the
difficulties of combining syndromic surveillance with other epidemiological knowledge, we tested a new
approach for outbreak detection based on Bayes’ rule. Bayes’ rule is already used in a wide range of
disciplines to combine information and provide numerical estimation of a likelihood ratio. In the
framework of Bayesian analyses, this likelihood ratio is used to test hypotheses and clearly specify the

strength of forensic evidence for/against a hypothesis.

In the next section, we evaluate the applicability of the Bayesian likelihood ratio framework to the
detection of outbreaks in syndromic surveillance. Two examples are considered: nervous syndromes in
horses as an early warning of WNV outbreaks, and respiratory syndromes in horses for the detection of
equine influenza. The objective was, first, to build a more objective, flexible, and easily interpretable
output for syndromic surveillance and, second, to combine syndromic surveillance with other

epidemiological knowledge.

This part of the work was implemented in collaboration with Gunnar Andersson (SVA, Sweden) and
published in PLOSOne (see below). This work also resulted in one oral presentation at the annual
conference of AEEMA (“Association pour I'étude de I'épidémiologie des maladies animales”, a
Francophone association dedicated to veterinary epidemiology) and one publication in their journal,

‘Bulletin Epidémiologie et Santé Animale’ (text available in French in Appendix 10).
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outbreak of disease is recorded [4,6] in order to be able to detect
abnormal events overlaid on top of the background nose during
an outbreak situation. In raditional aberration detection methods,
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concern is simple but it may not always be adequate or useful for
decision makers who may often find themselves in grey areas
([indicator values close to the epidemic threshold). Moreover,
binary result can also be difficult o combine with other
epidemiological knowledge such as a probability of disease
ntroducion or other complex parameters which  influence
decision making [8]. The development of syndromic surveillance
quantitative outputs, which are more objective, {lexible and easily
mterpretable, is a promising area of research.

The art of presenting scientific evidence to decision makers
has been more extensively studied in forensic sciences in which
legal certainty requires statements that clearly specify how
strong the evidence for/against an hypothesis is and how the
expert reached that conclusion. In recent years, the state of the
art in forensic interpretation has been to evaluate forensic
evidence using likelihood ratios in the framework of Bayesian
hypothesis testing. Within this framework, it evaluates the extent
to which results from forensic investigations speak in favor of the
prosecutors or defendants hypotheses [9,10]. The Bayesian
approach has been applied o a wide range of forensic problems
including evidence based on DNA analysis [10], mass spectros-
copy [11], transfer of glass, fibers and paint [10] and microbial
counts [12]. However, although initially developed for the legal
system, the approach has been identified as useful for supporting
decision making in other sitwations such as the tracing of
Salmonella spp [13].

The aim of this study is to test the applicability of the
Bayesian likelihood ratio framework to the early detection of
outbreaks in a syndromic surveillance system. Transferability of
the method is demonstrated by using two examples based on
real data coming from RESPE, the French surveillance network
on equine diseases, The first example makes use of data on
French horses presenting nervous symptoms (NeurSy) and aim
to test the ability of our approach to detect simulated outhreaks
of an exotic disease, West Nile Virus (WNV). West Nile disease
is an important zoonotic disease and syndromic surveillance
applied in horses could be used as an early warning system to
protect the human population [14]. The second example focuses
on data on French horses with respiratory symptoms (RespSy)
and is used to detect outhbreaks of divergent strains of equine
influenza (New-Influenza), a non-zoonotic disease leading to
vaccine failure [15-18].

Materials and Methods

Background theory and proposed framework

Forensic evaluaton of evidence is based on Bayesian hypothesis
testing. In a syndromic surveillance context, this would mean that, in
a particular week, there are two mutually exclusive hypotheses that
should be evaluated, for example: Hy “There s an ongoing outbreak
of disease x” and Hy “There s NOT an ongoing outhreak of disease
%7, Without any extra information, the relative probability of the two
hypotheses may be expressed as the a priort odds:
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(Eq.1)

where

P(H,j: The a friori probability for hypothesis H). Typically the
probability of an ongoing outhreak of the disease of interest in a
particular region.

P(Hyj: The a priov probability for hypothesis Hy, which is the
complementary hypothesis to Hy. Typically the probability of an
outhreak NOT going on.

In other words, the a prion odds define our prior belief about the
disease status in the region. In a typical situation, the prior odds
would be low (e.g. 1:1000) but under some circumstances, it might
be higher {e.g. if an outbreak is ongoing in a neighboring country).
When we are presented evidence (E) of some kind pointing in favor
for against) of H,, this wil make us update our belief. This
posterior belief is expressed as the a pasterion odds.

_ P(H|E)

o, ==
P P(H | E)

(Eq2)

Where:

P(H,| E} 1 the probability of hypothesis H, given the evidence
).

P(Hg| E) 1 the probability of hypothesis Hy, given the evidence
(E).

In syndromic surveillance, the evidence (E) is typically the
number of reported suspected cases in a given time period. The
degree to which the posterior beliel differs from the prior belief will
depend on the strength of the evidence. I the evidence is weak, the
posterior odds will be similar to the prior odds whereas strong
evidence in favor of Hy would result in posterior odds being much
higher than the prior odds. At this point, it is important to note
that the hypotheses to evaluate (H)) may differ and that the
interpretation of the same piece of evidence would depend on the
choice of Hy. For example 10 reported cases of syndromes in
horses may be a strong evidence that there is something unusual
going on if these are nervous cases (H, = “ongoing outbreak of
some nervous disease (Le. WNV)”) but only weak evidence in favor
of an equine influenza in the case of a respiratory syndrome (H, =
“ongoing outhreak of equine influenza®™), since in the latter case
we might have expected far more reported cases.

‘This intuitive reasoning can be formalized by the application of
Bayes” theorem:

B _ P(HL|E)  P(E|Hy)  P(HY)
Opant =V Onri = g, By~ PEIHy) ™ PUH0)

(Eq3)

Where:

E is the number of reported cases of a syndrome in the
partcular week.

PE|H,) is the probability of observing the evidence (E) given
that H, 1s true.

PE|Hy) is the probability of observing the evidence (E] given
that Hy, is true

In order to estimate P(E|H, ) and P(E| Hy) we need information
on the probability distribution for the number of reported cases in
a non-outhreak and outhreak situatdon. The probability of
observing # cases given that H, is true can be estimated using
statistical modeling of baseline data [19]. When the cases are
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independent (Le. not clustered), the data can be modeled wing a
general dynamic Poisson model [19]. When cases are clustered
(overdispersion), the Poisson model will underestimate  the
probability of observing very high or very low number of cases,
and insuch cases, the data can be modeled by continuous mixtures
of the Poisson distribution including Negative Binomial (NB)
distribution or Poisson-log-normal (PLN) distribution [19].

The probability of E (observation of 7 cases) during an outhreak
is calculated as:

P(EVHY) = Praseli) % Poun—1) (Eq4)
i=0

Where

Phaselll = Probability of drawing i cases from the baseline
distribution (e.g. Poisson{h) or NB{mu = muy,.., size = theta,,..))

Pyl = Probability of drawing i cases from the outhreak
distribution {e.g. NB{mu =mu,,,, size = theta,,])

The outbreak distribution may be estimated by fitdng an
appropriate  probability  distribution o data from  historical
outhreaks. In the absence of data, the outbreak distribution may
be defined based on expert knowledge about the disease in
question or assumptions about the distribution of a new disease. In
most cases there would be a large uncertanty about the shape of
the outhreak distribution.

The next estimate s the probability of observing the Evidence
(E) that i the actual number of reported cases. In forensics, the
value of evidence (V) is defined as the ratio between the posterior
and prior odds for Hy versus Hy. The value of evidence (Fig. 1,
line Log(V)) can be caleulated from the two distributions by
dividing the probabiliies for each number of observed cases using
equation

_ PEH))

= PEH,) (Eq:5)

As lustrated in Fig 1 the value of evidence will depend on the
assumptions about the outbreak. In the examples A to D, 10 cases
are reported from a region where the baseline prevalence i
around 3 cases per week. IFit is expected that an outhreak may be
small, resulting in only a small number of extra cases, 10 reported
cases would speak in favor of an outbreak (Fig. 1, A, C). I on the
other hand, the diseasels) of interest are expected to yield a
relatively large number of cases the evidence would speak against
an outbreak (Fig. 1, B, D).

In addition, the strength of the evidence will depend on the
precision on the estmates for the number of outhreak-related
cases, If the distributions are wide (ow theta, Fig 1A, 1B), the
absolute value of log(V) is smaller whereas more narrow
distributions (high theta, Fig 1C, 11 result in higher values of
log(V). This i intuitive: the more we know about what we expect
to see during an outbreak, the stronger conclusions we will make
from the observed evidence.

Using the value of evidence for decision making

In contrast to traditional outbreak detection algorithms, the value
of evidence approach does not have a built-in decision threshold,
Typically a decision maker would not act upon syndromic
surveillance data alone but rather combine it with other available
knowledge. Cameron [20] proposed several approaches to disease
freedom questions: (1) population or surveillance sensitivity, (2)
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probability of freedom from disease, and (3] expected cost of error
Le., consequences of false posiive and false negative results. All
approaches underline how the value of inspection findings will be
avgmented when interpreted in a broader context to complement
other monitoring and surveillance systems [MOSS) activities. One
option for a decision maker would be to set an action threshold for
the posterior odds. We might, for example, want to initiate an
epidemiological investigation if the odds that there is an ongoing
outbreak are larger than 1:1 or 1:100. Ideally the decision maker
would make a cost-benefit analysis taking into account the expected
costs for taking action versus not taking action. For example the
decision maker may initiate control measures {vaccination program
ete) when the odds are such that, on average, the reduced loss from
the ecarly detection of the outbreak would exceed the extra costs
from iniating control measures (or vaccination programs) in
response to false alarms,

The combination of evidence evaluation and decision theory i
discussed in [21]. The expected utility (@) of action a; i the average
amount of loss that we expect to incur with this action. In the
context of diseases surveillance, an action could be to implement
movement restrictions, vaceination, sampling, control of vectors or
to do nothing. The loss could be the direct financial losses (e.g.
animal infection, disease and production losses) but also the
indirect losses (eg. surveillance and control costs, compensation
costs, potential trade losses, social consequences). Since an
unmanaged outhreak as well as actions will result in costs, the
expected utility will always be zero or negative. In this framework
the expected utlity (@) of action a; is defined as:

1
ual)= " u(Cyp(H, 1) (Eq.6)
j=0

where

H, = Outhreak

Hg= No outhreak

ap= No action

a; = Action

G = Different scenarios with respect to hypothesis on outbreak
status (Hg, Hy) and acton (ag, a;) Cyy represents the case with no
disease and no action implemented. Cy; s no disease but action
implemented, Cg disease but no action and Cyy is disease and
action implemented)

p(H; |+)= probability of hypothesis j given all available
knowledge (Prior probability & evidence)

uCy) = expected utlity for each possible situation Gy Since
gain is zero the utdity is determined by economical and socio-
economical loss.

According to this framework it is favorable to act when the
expected utility of action (@fa;|-)) is higher than the expected
utility of no action (@fgg|*). The reladon between posterior
probability (P{Hi| Ej and posterior odds {O,..) 1s defined by:

P(H\|E)

Ome = TP By

(Eq.7)

and

o 51
P(H|E)=—2"—

T+ Opon (Eq.8)

Thus equation 6 can be reformulated as
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Figure 1. Value of evidence (V) and probability of observing 10 cases during a non-outbreak (Base) and outbreak situation (Out)
with different assumptions about the magnitude of an outbreak. The baseline cases are distributed according to NB mu =5, theta =2.55.
The value of evidence, log(V) is calculated as log,qlpin|outbreak)/pin|baseline)). The distribution during an outbreak (Tot) is the sum of baseline cases
and outbreak cases. In the examples A to D outbreak related cases are distributed according to (A) NB(mu=10, theta =2), (B) NB(mu =30, theta =2),

(C) NB{mu =10, theta =5), (D) NB(mu =30, theta =5).
doi:10.1371/journal.pone0111335.9001

1
a(a]) =" u(Cy) x — 22— (Eq9)
=0

(1 4+ Opost)

For each value of O, the expected utility for action a, and a,
is defined by eq. 9. The expected loss for each situation Gjj s based
on expert opinion as indicated in table 1. An acton threshold for
posterior odds {O,,,*) can be defined as the value of O, where

ala|) =ulag|-)

In this work O™ was determined by numerical optimization.
The derwved acton threshold for the value of evidence V* 1
calculated as:

o
V== (Eq.10)
pri
where the prior odds for an ongoing outbreak Logio(Oy,q) is based
on historical experience as well as knowledge about risk factors.
To make a decision, the risk manager would multiply the prior
odds with the value of evidence wsing eq.3 to obtain the posterior
odds for an outbreak O (H) [E). If this odds goes over the action
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threshold ]_.ugm[()]m,"_] where the expected utility from acting
exceeds the utlity for not acting, a decision would be taken to act.

Performance assessment

Sensitivity, specificity and predictive values of posidve and
negative tests are important concepts when planning animal health
monitoring. In the syndromic surveillance context a true positive
(TP) s when the system alerts when an outbreaks is ongoing. A
true negative (I'N) is no alert and no outhreak. A false negative
(FN) & when the system does not alert when an outbreak is
ongoing, and, false posidve (FP) s when the system alerts in the
absence of an outhreak

Sensitivity (SE) is the probability that a true outbreak triggers an
alert:

SE="F)rp 1 pw) (Eq.11)

Specificity (SP) is the probability the there 15 no alert when no
outhbreak is ongoing:

SP= TNK(TN+ FP) (Eq.12)

The posiove predictive value (PPV) is the probability of an
indicated outhreak being a true outbreak:
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Table 1. Expected utility associated with different actions and the derived decision threshold & decision.

Scenario A

Scenario B Scenario C Large

small outbreak in Autumn

Medium outbreak in Winter outbreak in Spring

u(Cyql Out— act— 0

u(Cro) Out— act+ —0.5 M€

ulCqsq) Out+ act— ~51 ME

ulCy,) Out+ act+ -39 M€

Action threshold Log, o(0p0.:") -038

Logol0p) -099

Action Threshold Log.(*) 061

Weeks w36 w39
Cases observed per week 3 4
LogsalV) 023 067
LoG6(0 pose) -076 -034
Action? V=V No Yes

0 (1]

=0.5 M€ —0. 5 M€

~53 M€ =101 ME

—41 M€ —6.3 ME

~0.38 —-0.88

=303 -1.78

2.65 0.9

w1l wid w25 w28
5 7 5 7
1.30 277 177 E|
-1.71 ~0.34 -0.01 163
No Yes Yas Yas

doi:10.1371/journal pone.0111335.4001

PPV ="F7p | pp) (Eq.13)

The Negative predictive value (NPV) is the probability that no
signal of outhreak is true absence of an outbreak:

NPV =TNjgy  pay (Eq.14)

The PPV and NPV depend on the (prior) probability of an
outhreak and in the performance assessment PPV was calculated
a8

PPV = P, xSE
T —Pp) % (I —SP)+SE x Py

(Eq.15)

where:

Pyi= prior probability of ongoing outbreak in the week of

interest

Implementation

Muodels were implemented in R x64 version 3.0.2 [22]. TheR-
Scripts are included as part of the material (Script S1, 82, 53, 54).

Dynamic regression was performed with function gl (package
{stats) [22] for Poisson regression and glm.nb (package {MASS})
[23]. The expected number of counts at dme * were estimated
with the frediet function of the respective package. Alternative
regression models were evaluated using the Akaike information
criterion (AIC). In addition adjusted deviance [Deviance/df) was
wsed as a measure of goodness of fit (GOF).

The recewver operating characteristic (ROC) curve was gener-
ated in R by simulation. Counts for negative weeks were sampled
from a Poisson distribution (function rfiois in package {stats}) with
lambda equal to the predicted value for each week in 2011 and
2012 (n=53000). Counts for posiive weeks were generated by
sampling values from the fitted outbreak distribution (function
mbinom in package {stats}) and adding to the baseline.
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SE and SP were calculated for values of LoglO(V) between -1
and +3 in steps of 0.01. The expected PPV for each value of V was
caleulated as above using the prior odds for outhreak from three

SCENATIOS.
Threshold values for posterior odds {()]_H,‘) were  estimated
wsing the Solver function of Microsolt Excel 2007,

Sources of data

As a proofl of principle the value of evidence framework was
applied to neurological and respiratory syndromes in French
horses. The associated time series are named NeurSy and RespSy,
respectively. These data are collected  through  the  passive
surveillance  system “RESPE”, the French network for the
surveillance of equine  diseases  (hitp://www.respenet/). This
system  collects the declarations from  veterinary practiioners
registered as sentinels who fill online a standardized questionnaire
depending on the syndrome  concerned. Along  with  their
declaration, veterinarians send  standardized  samples for the
laboratory diagnosis. Tests for equine influenza, equine herpes 1
and 4 and equine arteritis viruses are implemented in the case of a
respiratory syndrome, West Nile and equine herpes 1 viruses in the
case of a nervous syndrome. In our study, we used these weekly
dme series.

Data from 2006 o 2010 were used to train our models and
define the background noise of each time series when no outhreak
occurs. We only used the data on the number of cases with no
positive laboratory test result in order to remove the outbreaks
from our datasets and obtain these outbreak free baselines. Then,
different regression models were tested.

No real outbreak of West Nile disease and divergent strains of
equine influenza (New-Influenza) occurred during this tme.
Instead fictve test data were used for demonstrating outbreak
detection. The baselines in the test data were based on NeurSy
and RespSy data from 2011 w 2012 where unexplained
aberrations, not related to the diseases of interest, were filtered
out and ficuve outbreaks inserted based on hstorical data. The
weekly counts from several real outbreaks were fitted together to
model the outbreaks of each disease. The prior odds for each
example are based on our knowledge on the epidemiology and risk
factors for transmission of the disease. New-Influenza is supposed
to have the same probability of occurrence over the year and the
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prior odds is thus considered as constant over time. West Nile
disease transmission is linked to the vector’s level of activity and i
thus a seasonal disease. Different prior odds are set for each season
for this disease.

Data Accessibility

The datasets supporting this article have been uploaded as part
of the Material. The baseline data for NeurSy and RespSy are
included in Table SI and Table 52 respectively. The outhreak
data for NeurSy and RespSy are included in Table S3 and Table
54 respectively.

The software R can be freely downloaded from the CRAN
homepage (hittp://cran.r-project.org/).

Results

Case study — Neurological syndromes and WNV (NeurSy)
Non-outbreak situation. To define the background noise of
the NeurSy time series when no outbreak ocourred, we fitted
alternative regression models based on Poisson and NB distribu-
tions from years 2006-2010 on data containing only cases with no
positive laboratory results (figure SI). The models evaluated
ncluding sinod models with 1, 2 and 3 periods/year and season or
month as factoral variables. To account for differences between
years we dynamically calculate the average counts for 33
consecutive weeks (hzstmean). To ensure that an ongoing outbreak
will not influence the estimate, we wed a 10 week guard band [24]
for caleulation of histmean. For the Poison as well as the NB
regression the best fit were obtained with the simplest model:

counts ~ sin(2nt) 4 cos(2ne) ++ log(histmean)

where tis tme in years. For the Poisson regression we obtained:
AIC =637 .8, GOFladjusted dev) = 1.1536. For NB regression the
corresponding parameters were: AIC: 639; GOF = 1.080. The
inverse theta of the NB model was 10,45, Considering that the NB
distribution converges to the Poisson distribution when inverse
theta approaches infinity and that the GOF and AIC for the
Poisson and NB models were very similar we conclude that the
Poisson model adequately describes the random distribution in this
data.

Outbreak definition. Three observed WNWV outbreaks were
used to simulated the outbreaks in our model: French outbreaks in
horses in 2000 [25] and 2004 [14] where 76 and 32 confirmed
cases were reported respectively among 131 and 72 horses
presenting nervous symptoms, and the Italian outbreak in 1998
[26] where 14 cases of WNV in horses were investigated by week
of onset.

The weekly counts from these three outhreaks were fitted to the
NBE  distribution.  The  resulting  outbreak  distribution was
NB{mu = 4.43, theta = 0.94). Based on this we predicted a median
number of outbreak-related cases per week during an outbreak to
be 3 with a 93% confidence interval of 0 to 18 cases.

Outbreak detection, Three scenaros were tested. The
probability of an outhreak is not constant over the year, instead
the relative probability of an outbreak occurning in spring (week 10
to 30), summer/autumn (week 31 to 46) and winter (week 47 to 9)
is approximately 1:5:0.04. We chose to test one scenario per dme
period. Le. the scenario A ocours in autumn, scenario B in winter
and the scenario Cin spring. For each scenario, the Polsson model
was applied on the test set and one simulated peak/outbreak was
inserted into the baseline (Figure 2). For each week the value of
evidence was calculated using Eq3 where the probability of the
observed number of cases during no outhreak p(E| H,) and during
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Figure 2. Application of NeurSy model on the test dataset. The
vertical lines bounds peaks inserted during Year 1, week 36 to 39
(Scenario A), Year 2, week 1to 4 (Scenario B) and Year 2, weeks 24 to 28
(Scenario C).

doi:10.1371/journal.pane 01113359002

outbreak p(E|Hp) were calculated wsing the fitted model.
Examples of the calculation of V during a non outhreak {scenario
A) and during outbreaks (scenarios B and C) are shown in
Figure 3.

Decision scenarios

The decision making in the outhreak scenaros for both
examples 1 summarized in table 1.

The expected utility u(Cy) for each scenario considered are
given together with the action thresholds for posterior odds (O, %)
and value of evidence (V¥ in favor of an outhreak. That is the
situation for which the decision to act and not act have the same
expected utility.

The expected utlity of taking action in response to false alert
W(Cqy)) represents the costs for increased surveillance and
preventive actions such as mosquito control for WNV. The utlity
of not taking action when there is an outbreak (u(C)g)) represents
the costs for control and economical and socio-economical
consequences of an outbreak when the response to the outhreak
was delayed. The losses may depend on season and in the example
we have assumed that a WNV outbreak in summer or spring in
the south of France results in extra costs due to its impact on
tourism. Finally the udlity of taking action when there is an
outbreak (u(C)] represents the costs for surveillance plus the
ecconomical and socio-cconomical impact in case of a tmely
response to the outhreak.

For NeurSy (Scenarios A to C), the prior odds in the table are
based on the assumption that an outbreak of WNV is likely to
oceur every 3 years over an averageol 5 weeks. The costs used are
ficional but proportional to their expected relative contributions.

During the most at risk season regarding the probability of
disease occurrence (Highest O ), the alarm threshold is low and 4
cases are sufficient to wrigger an action (See Table 1. scenario A).
For the season less at resk, the expected utdites are similar than
during the most at risk season Oy, * are equal), but no action
implemented even i 7 cases are reported because they are unlikely
due to WNV (Low Oy, (See Table 1. scenario B).

Sensitivity, specificity and receiver operating
characteristics

The sensitivity and specificity of a surveillance system is defined
by the chosen action threshold. The tadeofl’ between sensitivity
and specificity of a model may be summanzed in a receiver
operating characterisics (ROC) curve [27]. The ROC curve
corresponding to the case WNV case study is shown in figure 4A,
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Figure 3. Value of evidence (V) and probability of observing n cases of neurological syndromes in a week during a non-outbreak
(Base) situation and during a WNV outbreak (Out). Out is the distribution of outbreak related cases and Tot is the total number of observed
cases per week during an outbreak. (A) Scenario A, year 1 week 36, L= 108, (B) Scenario B, year 2 week 1. 1. =1.08, (C) Scenario C, year 2 week 27,

L=081.
doi:10.1371/journal.pone 0111335.g003

The values of SE and SP ans
indicated by letters. The PPV ie. the probability that an alarm
corresponds to a real outhreak [28] depends not only on SE and
SP but also on the prior probability of an outbreak as indicated in

g from scenarios A to C are

figure 4B.

Case study 2- Respiratory syndromes and equine
influenza (RespSy)

The same approach was successiully applied to the RespSy
dataset. However, in this case the analysis indicated a significant
degree of overdispersion in the weekly counts. Using the same
regression model (counts ~ sin{2m t) + cos(2nt) + log{histmean)) the
NB model had lower AIC {1141 vs 1284) and GOV closer to one
(.14 wvs 254) compared to the Poisson model. The theta
parameter for the NB distribution was 1.78, and resuling in a

much wider confidence interval for the expected number of cases
in a non-outhreak situation (Figure 52) compared to the Poisson
model (Figure 53). When the NB and Poisson models are applied
to the same test dataset (Figure 54, 53) the latter will report a value
of evidence for the inserted peaks D, E) that is several orders of
magnitude higher than does the NB model. The Poisson model
also reports peaks with Log(V) close to 2 several times per year
(Figure S5). An underlying assumption in the Poisson model is the

1
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absence of overdispersion and, when this assumption does not
hold, the Poisson model underestimates the probabiity of
obtaining a large number of reported cases in the non-outbreak
situation. Consequently it overestimates the value of evidence in
favor of an outbreak. The overdispersion may be due to clustering
in reporting. In the survellance protocol veterinanans are
encouraged not only to declare the diseased horse but also 1 to
3 addidonal horses {from the same stable), suspected to be in the
incubation phase of influenza.

Discussion

In this work we have demonstrated how the value of evidence
concept may be incorporated in a decision support system for
syndromic surveillance and how the output may be used for risk
assessment and informed decision making. According to the OIE -
Terrestrial Animal Health Code [29] the decision to take action
involves balancing costs for activities against economical and social
consequences of a delayed response to an outbreak is the
responsibility of the sk manager and should be separate from
nsk assessment.

Thus, although it is perfectly possible to build a system that
outputs a best deckion, the proposed approach is in concordance

w
=1
w
=
a
L
o
o
o
=]
-1 a 1 2 3
Log10(V)

Figure 4. (A) ROC curve for outbreak detection of WNV based on neurological symptoms. Letters A-C indicate the decision threshold for Log(V*) in
scenario A-C respectively (B). Positive Predictive Value (PPV) for different thresholds of Log,,(V*) given the prior probabilities of scenario A, B and C.
The position of the letters indicate the action threshold for the respective scenario.

doi:10.1371/journal.pone 0111335.9004
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with the risk analysis framework [29] by offering  explicit
separation of assumptions (Pp;,), scientific evidence (V) and
criteria for decisions and a transparency of how the evidence i
evaluated. In forensics, the value of evidence 1s typically presented
to the court as a qualitative statement in which fixed verbal
expressions correspond to specified intervals for 'V [10,30]. This
approach may be useful also when presenting epidemiological
results. For example a value of Logio(V) in the range 1-2 may he
expressed as “results provide moderate evidence to support that an
outbreak is ongoing”. Alternatively intervals for V and/or O,
could be expressed using a color scale to produce maps
representing  the results from surveillance and risk of ongoing
outhreaks of different diseases.

The model presented here is intended as a proof of concept and
when setting up an operatonal syndromic surveillance system it
will, as usual, be necessary to perform a careful evaluation of the
baseline model to ensure that the regression model does not overfit
to the baseline data. When designing the current model it was
evident that high dimensional regression models were prone to
find artefactual seasonal patterns that could severely bias the
estimated  probability of observing a number of counts in a
particular week (results not shown). In the current implementation
the model learns seasonal patterns and distribution of residuals
(Inverse theta parameter of NB distrbution) from manually
curated data whereas the expected yearly average (histmean) i
continuously updated from outbreak-filtered weekly data. Natu-
rally the value of evidence concept may also be applied to a system
where the baseline model is automatically retrained on new data.
However, since the dstrbution parameter (theta) of the NB
distribution would determine the cutoff in the filtering algorithm
we argue that it
the same parameter without prior inspection of the data. The same
conclusion holds for seasonal patterns.

The overdispersion in the RespSy dataset is largely due to
veterinarians sampling several horses in a stable upon suspicion.
Thus, in this special case it might be possible to handle the
overdispersion by pre-processing the data to remove redundant
cases, provided that the same pre-processing is applied o new data
on weekly basis. However, when the mechanism behind over-
dispersion in baseline counts i not so transparent that automatic
filtering out redundant cases is possible the NB model will support
a correct interpretation of the value of the peak in the count data.

As indicated in Figure 4 the radeofl between SE and SP differs
between seasons, This s natural since in case the (prior)
probability of an outbreak differs between seasons the average
sensitivity SE,,, and specificity SP,,, will be given by:

Doy (di % SE; x Py)

SEqw = n
Ei=1{di)

(Eq.16)

Y dix SPix (1= Py))
SPy= i P
2o (d)

(Eq.17)

where:
SE; = sensitivity in season 1
SP; = specificity in season 1
P,= (prior) probability of outbreak in season i
di = ([relative) duration of season 1

Thus, by incorporating prior knowledge about the seasonality of

the diseases of interest it is possible to achieve a high average
sensitivity without sacrificing the PPV and SP. Another important
attribute of outhreak detection is timeliness, Whereas there s no

PLOS ONE | www.plosone.org
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general measure of tmeliness [28] the number of cases are often
small in the first week(s) of an outbreak, increasing the sensitivity
(i.e. lowering the threshold for V and thus n) in the high risk season
will result in improved timeliness as well as average sensitivity.

In this work we have introduced the framework using models
that evaluate evidence from each week independentdy. Although
this simple approach is suitable for presenting the framework and a
reasonable choice for an early wamning system, the evaluation of
evidence from one week at a time s not a fundamental limitation
of the approach. A model accounting for accumulation of evidence
over several weeks may, for example, be constructed by
considering, for cach week in the interval [0...)] the conditional
probability

P(E Hui)

Where

tis the week of interest

Hyiis the hypothesis that an outbreak started 1 weeks before t

E., 1s the number of reported cases in week [t-1... t]

The probability of observing 1 outhreak-related cases will not be
uniform throughout the outbreak but depend on whether the
outbreak is in its first, second or third week etc. When accounting
for evidence from several weeks the value of evidence in favor of
the hypothesis Hy “An outbreak is going on” against Hy “An
outhreak is not going on” will be dependent on the prior
probability of an outhreak starting in any of the preceding weeks.
This is due to the fact that Hy & composed of several sub-
hypotheses:

H, ;- . An outhreak started in week t

H,; ;= An outhreak started in week t-1

Hyi=j An outbreak started in week t-]

Consequently p(H ) depends on the relative probability of these
sub-hypotheses. The value of evidence in favor of an outbreak
going on in week of interest (V) can be caleulated as the Bayes
factor (B):

[
V=B= OL” (Eq.18)
ori
where
(}],m is the posterior odds of an outbreak going on in week of
interest

Oy 15 the prior odds of an outbreak going on in week of interest

Although in the more complex models the calculaton of the
value of evidence would depend on the prior probability of
outhreak, the framework is still applicable for communicating the
evidence to decision makers. Essentially any Markow Chain model
could be applied in the evaluation of evidence framework and the
choice of complexity is a radeoll between on the one hand realism
and on the other hand simplicity and wansparency. However, we
anticipate that in most situations there will not be sufficient data to
support very complex models.

Supporting Information

Figure 81 Fitted baseline and one sided 95% confidence
interval for weekly counts for case NeurSy Years 2006-
2010. Poisson regression using model: counts ~ sin(2m t) + cos(2n
t) + log{histmean).

(T1F)
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Figure 82 Fitted baseline and one sided 95% confidence
interval for weekly counts for case RespSy Years 2006—
2010. NB regression using model: counts ~ sin(2r t) +
cos(2n t) + log(histmean).

(TIF)

Figure 83 Fitted baseline and one sided 95% confidence
interval for weekly counts for case RespSy Years 2006~
2010. Poisson regression using model: counts ~ sin{27 t) + cos(2m
t) + log{histmean).

(TIF)

Figure 4 Application of RespSy NB-model on the fictive
test dataset. The vertical lines bounds peaks nserted during
Year 1, week 36 to 39 (D), Year 2, week 24 10 28 (E). The gray
points indicate historical data used to calculate the historical
average (histmean).

(TIF)

Figure 85 Application of RespSy Poisson-model on the
fictive test dataset. The vertical lines bounds peaks inserted
during Year 1, week 36 to 39 (D), Year 2, week 24 to 28 |
gray points indicate historical data used to calculate the historical
average (histmean).

(T1F)

Table S1 NeurSy baseline 2006-2012.
(CSV)

Table S2 RespSy baseline 2006-2012.
(CSV)
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CHAPTER Ill: SYNDROMIC SURVEILLANCE

D. DISCUSSION AND CONCLUSION

1. Discussion

This chapter showed that syndromic surveillance based on data collected by RESPE is able to detect signals
suggestive of the presence of an outbreak of WNV or equine influenza in French horses (through the
monitoring of nervous and respiratory symptoms, respectively). Although the system appears to be
effective, syndromic surveillance is still rarely implemented in horses, probably due at least in part to the
lack of data available for this population (e.g., few centralized databases on horse health, mainly due to
the diversity of activities in the equine industry). In Europe, we have only been able to identify three
syndromic surveillance initiatives for horses, based on a recent review by Dupuy et al. (Dupuy et al. 2013a)
and an additional literature search. One such initiative is present in the UK, associated with the Equine

Quarterly Surveillance Reports (DEFRA/AHS/BEVA 2015), another is in the Netherlands (Rockx et al. 2006),

and the third is in Switzerland, linked to the Equinella network (https://www.equinella.ch/). At the time of
writing, none of these systems (RESPE included) uses statistical tools to detect the signal of an outbreak
prior to its formal diagnosis. Instead, the alarm threshold is typically set at an arbitrary level using raw
data. However, our results indicate that data preprocessing and analysis improve detection performance

compared to such subjective methods.

In syndromic surveillance, Bayesian approaches have previously been mainly used for spatiotemporal
outbreak detection and/or to assess unknown posterior probabilities by using hierarchical Bayesian
models that involve inferences (Chan et al. 2010, Banks et al. 2012, Neill et al. 2006, Schmidt and Pereira
2011, Zou et al. 2010). The simple Bayesian approach developed in this chapter is less robust, from a
mathematical point of view, than full inference-based Bayesian models, which take into account the
uncertainties of parameter estimation. However, our approach is also much easier to implement and to
understand. This is an advantage compared to more complex approaches, which are often too
complicated for decision makers who lack experience with these methods to understand (Banks et al.
2012). The simple Bayesian approach used here could thus be a good compromise between rigor and

ease-of-understanding in presenting results.

In this chapter, two types of detection algorithms were tested: classical methods based on regression
models and an algorithm based on the empirical Bayesian approach. Classical approaches generated good
detection performance and were simple to apply, a great advantage in veterinary medicine where
syndromic surveillance systems are still difficult to implement (Shephard 2006). However, compared to an
empirical Bayesian approach, classical approaches have three main shortcomings: they do not provide a
guantitative output, they are not able to easily take into account other epidemiological information
available on a disease, and they are very unspecific. This last point, however, can be an advantage in
detecting an unknown disease, as no a priori hypotheses are required. The empirical Bayesian approach is

more disease-specific, but the drawback is that knowledge of the disease must be available. However, this
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is not a fundamental limitation to the approach, as a vague probability distribution can also be used. The
choice of an approach should be made according to the objective of the surveillance and the data
available. In addition, it would be useful to perform a formal and quantitative comparison of the detection

performances of both approaches before reaching a conclusion about their advantages and drawbacks.

The representativeness of the RESPE data was not evaluated here, but was recently investigated by that
organization (Daix 2014). The study identified 430 sentinel veterinarians who truly participated in the
reporting system. They are not equally distributed all over France, but rather present in 92 (of 96) French
regions and concentrated in areas with high horse densities. The questionnaires filled out by 63% of the
active sentinel veterinarians revealed that 26% do not declare all suspect cases to RESPE. The reasons
cited were: no consent from owner, omission, lack of time, and definitive diagnosis obtained without
laboratory analysis. Most of the sentinel veterinarians reported seeing only a few suspect cases, which
explained the low number of declarations reported per veterinarian. These elements suggest that the
representativeness of the RESPE data is probably acceptable. However, it is unknown how these factors
specifically affect the reporting of nervous and respiratory symptoms. Indeed, some veterinarians seem to
declare only certain symptoms and not others. Therefore, it would be important to perform a detailed

assessment of the RESPE system in order to ensure optimal outbreak detection performance.

2. Conclusion

This chapter describes a useful tool for determining if there is an ongoing VBD outbreak in French horses.
In particular, the Bayesian approach enabled us to merge syndromic surveillance with knowledge of risk

factors, which can be especially useful for VBDs as they are closely related to season and environment.

Despite these advantages, an outbreak may also occur without generating a detectable signal in the
syndromic surveillance system. This is of particular concern given the unknown representativeness of the
data used. In addition, even if there is a significant signal, the lack of specificity in the system means that it
could be a false alarm. It will thus be useful going forward to consider other approaches for estimating the

probability of an outbreak in order to ensure the early detection of a newly introduced disease.
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CHAPTER IV: MULTIPLE INDICATORS OF RISK

Risk assessments and syndromic surveillance provide an estimate of the probability of an outbreak, but
they do not prove the presence of the disease. The accumulation of evidence from a combination of these
approaches can be a way to improve confidence in the prediction that a newly introduced epidemic is in
progress. More generally, combining all available information in a multivariate algorithm should give

better results for outbreak detection than univariate methods do.

In this chapter, we explore the combination of multiple risk indicators in order to improve assessment of
the probability of occurrence of a newly introduced VBD in horses. We first direct our attention to WNV,
which infects a wide range of species and induces different types of symptoms. Therefore, combining
information from different species or from different syndromic groups could help in outbreak detection.
We thus worked first on a multivariate syndromic surveillance system in order to improve the detection of
WNV outbreaks (Chapter IV.A). However, as already highlighted, VBDs are closely linked to season and
environment. In addition, the probability that an outbreak occurs is also linked to the probability that the
disease enters an area. Combining syndromic surveillance with assessments of the probabilities of virus
entry and establishment may thus also improve confidence in the prediction that a new VBD has been
introduced. This approach has the potential to be much more useful than syndromic surveillance alone, as
the latter may fail to detect an outbreak of a disease that causes few symptoms. To test this approach, we
worked to combine syndromic surveillance data with quantitative risk analysis and we applied this
approach to the detection of equine encephalosis (EE) outbreaks. We chose EE because it has few
symptoms and should be more difficult to detect using a single approach than AHS and WNV, both of
which manifest themselves in a more specific clinical picture (Chapter IV.B). The advantages and

drawbacks of combining these risk indicators to detect VBDs in horses are also discussed (Chap. IV.C).
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CHAPTER IV: MULTIPLE INDICATORS OF RISK

A. MULTISTREAM SYNDROMIC SURVEILLANCE

1. Introduction

One limit of univariate syndromic surveillance is that no single data source captures all the individuals
involved in the outbreak, and that diseases may cause a wide variety of symptoms in different individuals
(Kulldorff et al. 2007). In addition, the data collected are often vague, and univariate syndromic
surveillance systems can suffer from this lack of specificity. However, by simultaneously assessing
information from different data sources related to different populations and/or symptoms, one can

improve outbreak detection and, in particular, the specificity of the detection.

Multivariate syndromic surveillance can be purely temporal (see, for example, (Schidler and Frisén 2011),
(Fan et al. 2014), and (Lau et al. 2008)), purely spatial, or spatiotemporal (see, for example, (Kulldorff et al.
2007) and (Greene et al. 2012)). Different methods exist for the aggregation of data sources, but the two
main approaches are the reduction method and the parallel method (Frisén et al. 2010; Sonesson and
Frisén 2005). The reduction method considers several variables that are reduced to a single statistic, using
for example the sum for each time period, p-value aggregation (Roure et al. 2007), or multivariate control
charts (MacGregor and Kourti 1995; Stoto et al. 2006)). The parallel method uses multiple univariate
systems which are then assessed in parallel. An alarm is triggered if any of the univariate systems gives an
alarm (e.g., (Fan et al. 2014, Schitler and Frisén 2011)). The reduction approach gives a better detection
performance when all changes occur simultaneously in the different processes under consideration. When

the changes occur separately, the parallel approach yields better results (Frisén et al. 2010).

In this section, we consider a multivariate syndromic surveillance system applied to the detection of West
Nile virus outbreaks. WNV typically affects different hosts, which makes it a particularly interesting case in
determining if multivariate surveillance can improve outbreak detection. To combine the different

variables, we used a reduction method based on a Bayesian approach.

This work resulted in a scientific paper submitted to Vector-borne and zoonotic diseases (see below for the

main text).
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CHAPTER IV: MULTIPLE INDICATORS OF RISK

ABSTRACT

Background: Various methods are currently used for the early detection of West Nile virus (WNV) but
their output is either not quantitative or does not take into account all available information. Our study
aimed to test a multivariate syndromic surveillance system in order to improve early detection of WNV.
Method: Weekly time series data on nervous syndromes in horses and mortality in both horses and wild
birds were used. Baselines were fitted to the three time series and used to simulate 100 years of
surveillance data. WNV outbreaks were simulated and inserted into the baselines based on historical data
and expert opinion. Univariate and multivariate syndromic surveillance systems were tested in order to
gauge how well they detected the outbreaks; detection was based on an empirical Bayesian approach.
The systems’ performances were compared using measures of sensitivity, specificity, and area-under-ROC-
curve (AUC).

Result: When data sources were considered separately (i.e. univariate systems), the best detection
performance was obtained using the dataset of nervous symptoms in horses compared to those of bird
and horse mortality (AUCs respectively equal to 0.80, 0.75, and 0.50). A multivariate outbreak detection
system that used nervous symptoms in horses and bird mortality generated the best performance (AUC =
0.87).

Conclusion: The proposed approach is suitable for performing multivariate syndromic surveillance of WNV
outbreaks. This is particularly relevant given that a multivariate surveillance system performed better than
a univariate approach. Such a surveillance system could be especially useful in serving as an alert for the
possibility of human viral infections. This approach can be also used for other diseases for which multiple

sources of evidence are available.

KEY WORDS: West Nile, syndromic surveillance, Bayes, horses, multivariate detection
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INTRODUCTION

West Nile virus (WNV) is a mosquito-borne arbovirus mainly transmitted by mosquitoes from the genus
Culex (family Culicidae). Its main hosts are birds but the virus also affects various non-avian species
including horses and humans, with dramatic consequences for public health and for the equine industry,
i.e. potentially fatal encephalitis in humans and horses (Campbell et al. 2002; Castillo-Olivares and Wood
2004). In Europe, WNV emerged in the 1960s and several outbreaks have been documented since that
time (Calistri et al. 2010). Even if the virus is now considered endemic in a large part of Europe, the
number of reported outbreaks is presently increasing in southern and eastern Europe, particularly in Italy,
Greece, and Bulgaria (Di Sabatino et al. 2014). This increasing number of outbreaks, combined with the
recent introduction and spread in Europe of WNV lineage 2, which induces severe symptoms in humans,
horses, and birds (Bakonyi et al. 2006; Calzolari et al. 2013; Hernandez-Triana et al. 2014), has resulted in
growing concern about WNV in Europe. In addition, the implementation of prevention plans for WNV
outbreaks is difficult (Zeller 2010) because the environmental factors and meteorological interactions
underlying the increase in WNV circulating in mammals are still poorly understood. To improve early
detection of WNV outbreaks, then, the major challenge is to develop more integrated and quantitative

approaches (Beck et al. 2013; Bellini et al. 2014b).

Syndromic surveillance is currently a popular approach for the early detection of health-related
phenomena (Dérea et al. 2011) and has already been implemented for WNV. In Europe, the surveillance
of nervous syndromes in horses has been shown to detect early indicators of WNV outbreaks (Leblond et
al. 2007; Saegerman et al. 2014) and is one of the most cost-effective surveillance systems in the
European context (Chevalier et al. 2011). In the USA, instead, increased mortality in wild birds is one of the
most timely indicators of virus activity (Brown 2012). Mortality in wild birds had rarely been reported in
Europe until the recent explosive spread of lineage 2 in 2008-2009 in Hungary and Austria, which suggests
that this parameter could be also incorporated into future monitoring systems in Europe (Bakonyi et al.
2013). This is consistent with recent experimental infections of European wild birds with various WNV
strains, which generated an average mortality rate of 43% (Del Amo et al. 2014a; Del Amo et al. 2014b;
Dridi et al. 2013; Sotelo et al. 2011; Ziegler et al. 2013). Apart from mortality in wild birds and nervous
symptoms in horses, WNV is also associated with mortality in horses, which could constitute another
signal of a WNV outbreak. Combining all available information in a multivariate algorithm should give
better results for outbreak detection than univariate methods alone. However, at the time of writing,

multivariate syndromic surveillance has never been implemented for the detection of WNV outbreaks.

The aim of our study was to evaluate the performance of a multivariate syndromic surveillance system in
detecting WNV using three datasets: nervous syndromes in horses and mortality in horses and wild birds.
We focused on the French Mediterranean coast, which is a particularly high-risk area for WNV outbreaks.
Indeed, in France, WNV has only ever been identified in this area, which is home to mammalian and avian

hosts, bridging vectors, and large protected wetlands with numerous migratory birds.
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MATERIALS AND METHODS

1. Data sources
1.1. Nervous syndromes in horses
Data on nervous syndromes in horses are collected through the passive surveillance system “RESPE”. This

French network for the surveillance of equine diseases (http://www.respe.net/) collects standardized

declarations from veterinary practitioners registered as sentinels. All the samples sent for laboratory
diagnosis are systematically tested for WNV and equine herpes virus, and results are registered in the
RESPE database. To obtain an outbreak-free baseline dataset, we used data from 2006 to 2013 that
included only the 44 declarations without positive laboratory test results from the region of the French
Mediterranean coast. The time series of nervous syndromes in horses is designated NervSy in subsequent

sections.

1.2. Mortality in horses
Data on mortality in horses have been centralized since 2010 in the “EDI-SPAN” database, managed by all
the French fallen stock companies and the French Ministry of Agriculture (Perrin et al. 2012). As WNV does
not produce perinatal mortality, we only considered the 8 742 dead adult horses collected around the
French Mediterranean coast between 2010 and 2014. The time series of mortality in adult horses is

designated DeadHorse in subsequent sections.

1.3. Mortality in wild birds
Data on mortality in wild birds are collected through the event-based surveillance system “SAGIR”, the
national French surveillance network of diseases in wild birds and mammals, which collects declarations
from field workers (e.g., hunters, technicians from departmental hunting federations, and environmental
inspectors from the French National Hunting and Wildlife Agency (ONCFS)). Surveillance relies on
diagnosis at a local veterinary laboratory (Decors et al. 2014). Between 2007 and 2013, 292 dead wild
birds were collected and necropsied around the French Mediterranean coast. The time series of the

number of necropsied wild birds is designated DeadBird in subsequent sections.

2. Data modeling and simulation

2.1. Baselines
All time series were aggregated weekly. Using visual examination, abnormal peaks were observed only in
DeadBird. These extreme values were removed based on a method adapted from Tsui et al. (Tsui et al.
2001): the entire dataset was first fitted to a Poisson distribution and then values above the 95%

confidence interval were deleted and replaced with the average value of the four previous weeks.

To calibrate the models, we used NervSy data from 2006 to 2010, DeadHorse data from 2011 to 2013, and
DeadBird data from 2007 to 2011. Instead, to validate the quality of predictions, we used NervSy data
from 2011 to 2013, DeadHorse data from 2014, and DeadBird data from 2012 to 2013. To define the

background noise of the time series without outbreaks, we fitted alternative regression models based on
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Poisson and negative binomial (V) distributions. Models were implemented in R x64 version 3.0.2.
Dynamic regression was performed with the functions gim (package {stats}) and gim.nb (package {MASS}).
The expected number of counts at time t was estimated with the predict functions of the respective

packages.

Models were evaluated using the Akaike information criterion (AIC) (Bozdogan 1987), and the adjusted
deviance (deviance/degree of freedom) was used as a measure of goodness-of-fit (GOF). The agreement
between predicted and observed values was assessed according to the root-mean-squared error (Chai and
Draxler 2014). The criterion was assessed within the calibration period (RMSE,) and within the validation

period (RMSE,). In either case, the lower the value, the better the predictive performance of the model.

For each time series, the best regression model was used to predict the expected value of each week of
the next simulated year. Distribution of cases for each week was defined as a Poisson distribution with
lambda equals to the predicted value for the same week. Weekly samples from 100 fictive years were
generated by random sampling from the previous distributions as proposed by Dérea et al. (Dérea et al.

2013a).

2.2. WNV outbreaks
Data on real WNV outbreaks are scarce, so we thus used simulated outbreaks to evaluate our detection
system. For each syndrome, the distribution of the number of cases during an outbreak was estimated
with the fitdist function of the package {fitdistrplus}. Time series for each syndrome during 100 fictive
outbreaks were simulated by randomly sampling the corresponding distribution. One simulated outbreak
was inserted in each simulated baseline. The outbreaks related to nervous cases in horses were randomly
inserted, followed by the corresponding outbreaks related to wild bird mortality, such that the time lag
between the first dead bird and the first nervous case in horses due to WNV was 0, 1, or 2 weeks
(Kulasekera et al. 2001). The corresponding horse mortality outbreaks were inserted such that half of the
affected horses died the week of onset of clinical signs and half died the week after (Bunning et al. 2002;

Cantile et al. 2000; Trock et al. 2001; Ward et al. 2006).

The weekly counts of cases of five real European WNV outbreaks (Anonymous 2007; Autorino et al. 2002;
Kutasi et al. 2011; Leblond et al. 2007; Murgue et al. 2001) were fitted to the N3 distribution and the
resulting distribution of the additional number of nervous cases due to WNV during an outbreak was
NB(mu=3.12, theta=1.150). The mortality among horses clinically affected by WNV was fitted to a normal
distribution (mean=0.384, standard deviation=0.128) based on (Autorino et al. 2002; Leblond et al. 2007;
Murgue et al. 2001; Ward et al. 2006). The NervSy dataset did not provide the real number of clinically
affected horses, so we assumed that only 50% of horses with nervous symptoms were declared to RESPE.
To estimate the real number of clinically affected horses, we simulated RESPE declarations of nervous
symptoms associated with 100 WNV outbreaks and doubled the counts of horses obtained. The related

weekly count of dead adult horses was then deduced and fitted to the N3 distribution MB(mu=3,
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theta=2.005). The distribution of the weekly number of dead birds was estimated by expert opinion to be
NB(mean=2.23, theta=3.34).

3. Outbreak detection

3.1. Bayesian framework

Bayesian hypothesis testing is based on two mutually exclusive hypotheses which can be expressed in the
syndromic surveillance context as H;, “there is an ongoing outbreak of WNV (or another disease with
similar symptoms)”, and H,, “there is no ongoing outbreak” (Andersson et al. 2014). The relative
probability of the two hypotheses can be expressed as a ratio (O) which represents our a priori belief
about the disease status:

_P(H)

Eq.l P =
“ " P(Hy)

When evidence in favor (or not) of each hypothesis is observed, we can build the a posteriori belief about
the disease’s status (Opost):
_P(H,IE)

Eq.2 ost =
| Pt P(H, | E,)

where P(H; |E,) is the probability of H, given the evidence E observed in time series x and P(Hq | E,) is the

probability of H, given the evidence E observed in time series x.

Using this general framework with the application of Bayes’ theorem, O, can be calculated as:

_P(E,IH)  P(H)
~ P(E,|Hy) P(Hy)

Eq.3 Opost :Vx ><()pri

where V, is the value of evidence, P(E,|H;) is the probability of observing the number of reported cases of
syndrome x in a particular week given that H, is true, and P(E,|Ho) is the probability of observing the

number of reported cases of syndrome x in a particular week given that Hyis true.

In order to estimate P(E,|H,) and P(E,|Ho), information on the probability distribution for the number of
reported cases in non-outbreak and outbreak situations is used. The probability of E, (observation of n

cases in time series x) during an outbreak is calculated as:
n

Eq.4 P(E, |Hy) =D P (D) x P, (n—i)
i=0

where Py.(i) is the probability of drawing i cases from the baseline distribution in time series x and P(i)
is the probability of drawing i cases from the outbreak distribution in time series x based on the shape of

the outbreak, as previously simulated.
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3.2. Combining time series

When the three time series were combined, V., incorporated evidence from NervSy, DeadHorse, and
DeadBird, respectively denoted as Enernsy, Epeadhorser aNd Epeadsira: ASsuming that the three sources of

evidence were independent, V., was calculated as:

— P(ENervSyEDeadHors’eEDeadBi rfliHl) —
o P(ENervSyEDeadl-brs’eEDeadBir-liHO)

and Ot tor Was calculated as:

Eq.5 Vt VNervS)%VDeadHorsg(VDeadBi r

P(Hl | ENervSy EDeadI—brse EDaadBi r() _ P(Hl)

Eq.6 Oos ot— _Vox_
post.tet P(HO | ENervSy EDaadH)rse EDaadBi r() o P(HO)

4. Performance assessment
Sensitivity (Se) and specificity (Sp) were calculated as:

Eq.7 Se = TP/ (TP+FN)
Eq.8 Sp=TN /(TN +FP)

where TP is the number of true positive alarms, TN the number of true negative alarms, FP the number of

false positive alarms, and FN the number of false negative alarms.

The receiver operating characteristic (ROC) curve was generated in R by testing various alarm thresholds,
and the areas under the curves (AUC) were calculated with the auc function of the package {flux}. A larger

AUC represented a better detection performance.
RESULTS

1. Modeling time series and simulating data

For all time series the best fits were obtained for AB distributions. The resulting models’ parameters are
summarized in table 1 and corresponding baselines and predictions are shown in figure 1. The
probabilities of observing n cases and the resulting value of V (p(E|H1)/ p(E|Ho)) during a non-outbreak

(p(E|Ho)) and an outbreak (p(E|H,)) situation for each time series are summarized in figure 2.
2. Outbreak detection

We estimated the respective performance of each univariate system (NervSy, DeadHorse, and DeadBird)
in detecting WNV outbreaks without considering any a priori values for disease status (O,=1). Examples
of simulated baselines with inserted outbreaks and associated variations in log10(V) are presented in

Appendix I.

The best results for univariate outbreak detection were obtained for NervSy, which outperformed

analyses using DeadHorse and DeadBird (figure 3 and table 2). DeadBird models yielded intermediary
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detection performances whereas models using DeadHorse were not able to discriminate between

outbreak and non-outbreak situations (AUC=0.50).

The best results for multivariate outbreak detection were obtained for analyses that combined NervSy
with DeadBird data, which gave similar results to a combination of the three time series (figure 3 and table
2). The results of using NervSy combined with DeadBird were also better than those obtained with each
time series alone. For example, for a specificity set at 0.80, the sensitivity of the detection reached 0.80
with the combined NervSy and DeadBird series whereas it was 0.67 with NervSy and 0.60 with DeadBird

alone.

DISCUSSION

Our results indicated that the best detection performance was obtained using multivariate syndromic
surveillance based on reports of nervous symptoms in horses (NervSy) and wild bird mortality (DeadBird).
To our knowledge, this is the first time that multivariate syndromic surveillance has been implemented for
WNYV detection. However, when using a univariate detection method, NervSy was the best indicator of
WNYV outbreaks. This is consistent with the number of expected cases during an outbreak compared to the
baseline of each time series considered (i.e. high number of case for NervSy, moderate number of cases
for DeadBird, and low number of cases for DeadHorse). Indeed, models based only on the DeadHorse data
resulted in poor detection performance at the regional level because mortality in horses is mainly due to
causes other than WNV. However, before ruling on the usefulness of this datasource for WNV
surveillance, it would be interesting to test whether an outbreak generates local clusters of deaths in
horses that may be used as a signal of a VNW outbreak. However, the quality of geographical information

of reported cases are currently insufficient to test this hypothesis.

This is the first time that a real assessment of system performance has been implemented for WNV
surveillance. Previous early warning systems developed for WNV only identified risk factors of WNV
outbreaks, but did not evaluate the detection performances of those systems (Adlouni et al. 2007; Bellini
et al. 2014a; Brown 2012; Chaskopoulou et al. 2013; Gosselin et al. 2005; Rosa et al. 2014; Shuai et al.
2006; Valiakos et al. 2014). Timeliness has occasionally been evaluated but only based on a limited
number of real WNV outbreaks, and has not been associated with a further assessment of system
performance (Calzolari et al. 2013; Chaintoutis et al. 2014; Eidson et al. 2001; Johnson et al. 2006;
Mostashari et al. 2003; Veksler et al. 2009). Only two attempts to assess the sensitivity and specificity of
surveillance have been made (Andersson et al. 2014; Leblond et al. 2007) but the parameters of interest
were only evaluated based on a limited number of outbreaks, which did not allow any conclusions to be

drawn regarding overall system performance.

To assess the surveillance systems and compare them, we simulated baselines and outbreaks using
parameters from data observed in Europe (Anonymous 2007; Autorino et al. 2002; Bakonyi et al. 2013;

Leblond et al. 2007; Ward et al. 2006). To expand upon this, patterns of outbreaks in other locations
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should be tested in order to evaluate the performance of multivariate syndromic surveillance in more
varied situations. Particular attention should be paid to patterns of mortality of wild birds, as the dynamics

of wild bird mortality during a WNV outbreak have only been poorly investigated in Europe.

The Bayesian approach seems well adapted for multivariate WNV detection and can be used for other
diseases. Indeed, Bayesian hypothesis testing is based on two mutually exclusive hypotheses which can be
expressed in the syndromic surveillance context as: Hq, “there is an ongoing outbreak of WNV or of
another disease with similar symptoms”, and Hy, “there is no ongoing outbreak”. It would be theoretically
possible to include every possible differential diagnosis for every syndrome (or group of syndromes)
considered; however, such a system would be difficult to implement and maintain. It would thus be
interesting to first examine the evidence from each time series individually and then together in order to
identify which combination of datasets results in the strongest signal. It would be up to the relevant
decision maker in a given situation to consider appropriate differential diagnoses and the actions that

should be implemented for further investigation.

In our study, we considered three sources of evidence for WNV outbreak detection. Nevertheless,
additional information can be utilized with Bayesian approaches, as it is easy to add such information.
Then, a next step in the early detection of WNV outbreaks should be to test the efficiency of the method
with other data, such as the predicted abundance of mosquitoes (Calistri et al. 2014; Rosa et al. 2014),
environmental risk factors (Tran et al. 2014), and probability of introduction (Bessell et al. 2014; Brown et

al. 2012).

CONCLUSION

The proposed approach is suitable for performing multivariate syndromic surveillance of WNV outbreaks.
Indeed, we found that a multivariate surveillance system using this approach performed better than a
univariate approach in detecting WNV outbreaks in southern France. In particular, a combination of data
regarding nervous symptoms in horses and wild bird mortality was the most efficient in detecting
outbreaks. Such multivariate surveillance systems could be especially useful in serving as early warnings
for possible human viral infections, considering that horses and birds are affected by WNV before humans
(Kulasekera et al. 2001; Leblond et al. 2007). We propose that this methodology is generally applicable to

other diseases for which multiple sources of evidence are available.
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Figure 1: three time series considered. NervSy: number of declaration of nervous syndrome in horses without positive
lab result. DeadHorse: number of dead adult horses collected by French fallen stock companies. DeadBird: number of
dead wild birds autopsied with values above the 95% confidence interval deleted. Dotted lines = training data, solid
black lines = test data, solid blue lines = predicted value, solid red lines = 95% Confidence interval
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Figure 2: Value of evidence and probabilities of observing n cases during a non-outbreak (Base) and an outbreak
(Out) situation. Base= distribution of distribution into the baseline, Out = distribution of cases related to a WNV

outbreak, Tot= distribution of cases during an outbreak (Base + Out), Log(V)= logo(p(n| outbreak)/p(n|baseline)). Out
was based for NervSy on NB(mu= 3.12, theta =1.150), for DeadHorse on NB(mu= 3, theta =2.005), and for DeadBird on

NB(mean= 2.23, theta=3.34).
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Figure 3: ROC curves for univariate and multivariate outbreak detection using NervSy, DeadHorse and DeadBird.

Negative binomial distribution AlC GOE RMSE, | RMSE,
Formulae theta | mean
NervSy ~ sin(2m(t — 4)/18.33) + sin(2wt/26.5) 0.413 | 0.077 | 143 | 0.279 0.30 0.39
DeadHorse ~ 4 X (t —4)/52 + t + sin(2r(t — 12)/53) 176 40.3 | 1063 | 1.016 7.06 8.57
DeadBird ~ 4 X (t —4)/52 + sin(2nt/26.5) 0.373 | 0.520 | 497 | 0.675 1.03 1.05
Table 1: Models and models parameters obtained for the three time series.
. NervSy & NervSy & DeadHorse
NervSy DeadHorse DeadBird DeadBird DeadHorse & DeadBird Total
AUC 0.80 0.50 0.75 0.87 0.80 0.75 0.87
St::iarrd 0.0082 |  0.0097 0.0089 0.0068 0.0081 0.0089 0.0068

Table 2: Area under the ROC curve (AUC) and standard error for univariate and multivariate outbreak
detection using NervSy, DeadHorse and DeadBird.
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Appendix I:

Supplementary figure 1: Examples of simulated baseline with inserted outbreak and
corresponding variation of the value of evidence (V). solid black line = simulated data, solid
blue line = predicted value, solid red line = 95% confidence interval, Dotted lines = log10(V)
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B. COMBINING QUANTITATIVE RISK ASSESSMENT AND SYNDROMIC
SURVEILLANCE

1. Introduction

Risk assessment and syndromic surveillance can both indicate the possibility of a newly introduced
epidemic but they do not prove the presence of the disease. Specifically, both approaches provide
different risk estimations. Risk assessment identifies the respective probabilities of pathogen entry and
establishment according to season and local environment. Syndromic surveillance determines the
probability that an outbreak is in progress based on field observations. Combining both approaches will
thus result in a posterior probability which should improve confidence in the prediction of an outbreak of

a newly introduced VBD. The posterior probability is calculated according to Figure 15.

Probability of disease introduction

Posterior probability

Figure 15: Combining syndromic surveillance and probability of disease introduction to obtain a posterior
probability that there is an ongoing outbreak.

In particular, this approach can be useful for exotic diseases with few and unspecific symptoms. Indeed,
veterinary practitioners are rarely able to detect such diseases and syndromic surveillance might be useful
in enhancing the passive reporting system. However, the incidence of under-reporting is also expected to
be high, which compromises the ability of syndromic surveillance to detect disease. Adding prior

information on the probability of disease introduction can improve the detection of such diseases.

Among exotic diseases, equine encephalosis (EE) typically causes unspecific symptoms that are quite hard
to detect, as illustrated by the example of Israel, where the disease was present for at least 10 years
before it was first officially reported (Wescott et al. 2013). In this study we combined syndromic
surveillance with information on the probability of disease introduction in order to improve early

detection of a potential EE outbreak.

This work will result in a scientific paper in preparation and we only present here preliminary results: Mats

Gunnar Andersson*, Egil Andreas Joor Fischer**, Céline Faverjon, J6rn Gethmann, Maya Gussmann, Yves
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van der Stede, Petter Hopp, René Bgdker, Agnes Leblond. (2015). A joint risk score method for risk-based

surveillance of vector-borne animal diseases. Manuscript in preparation

2. Material and Methods

2.1. Bayesian framework

The analyses were performed with weekly data using counts from a grid in France which consisted of 943

cells of 25x25 kilometers each.

To provide a comprehensive and single indicator of risk, we used spatiotemporal extension of the
empirical Bayes’ approach presented in previous sections (see Chapter I1l.C and Chapter IV.B). Bayesian
hypothesis testing is based on two mutually exclusive hypotheses which can be expressed in the
syndromic surveillance context as: H,, “there is an ongoing outbreak of EE (or another disease with similar
symptoms) in grid cell g during week w” and H,, “there is no ongoing outbreak in grid cell g during week
w” (Andersson et al. 2014). The relative probability of the two hypotheses can be expressed as a ratio
(Ogri) that represents our a priori belief about the disease status:
_P(H)

"7 P(H,)
The probabilities of H; and Hy were estimated based on the spatiotemporal quantitative model for the
assessment of the probability of EE introduction developed in Chapter II.C. The value of evidence (V) was
estimated using syndromic surveillance data. The main symptoms of EE in horses are respiratory and
nervous symptoms (Dhama et al. 2014); we thus considered these two sources of data (NervSy and
RespSy, respectively). We supposed both datasets to be independent and describe them in the next

section. The corresponding value of evidence (V) was calculated as:

I:)(ENervSy | Hl) 5 P(ERespSy | Hl) _ I:)(ENervSy’ ERespSy | Hl)
P(ENervSy | HO) P(ERespSy | HO) P(ENervSy' ERespSy | HO)

where P(Ex|H,) is the probability of observing the number of reported cases of syndrome X in a

V =

particular week in a particular grid cell given that H; is true, and P(Ex|Ho) is the probability of
observing the number of reported cases of syndrome X in a particular week in a particular grid

cell given that Hyis true.

The a posteriori belief about the disease’s status for each week and each grid cell (O,,s) takes into account
both the probability of disease introduction and the results of syndromic surveillance and was calculated
as in (Faverjon et al. 2015a):

P(H,|E E
- _ ( 1 | RespSy) =V Xopri
P(HO | ENervSy! ERespSy)

NervSy 1
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2.2. Simulated EE outbreaks

Two outbreaks were simulated to test our model: one in Aquitaine, and another in Normandy. These
regions were selected due to their large equine population. No spatiotemporal description of EE outbreaks
is currently available, so we used other, indirect, information to estimate the number of expected cases

and the spatiotemporal evolution of an EE outbreak.

First, we assumed that 80% of the susceptible population would be infected, based on the estimated
prevalence of EE in the initial serological data from Israel in 2001 (Wescott et al. 2013). To obtain the
number of horses showing clinical signs for EE, we supposed that around 40% of the infected horses
would show clinical signs and, of these, 90% would be respiratory symptoms and 10% neurological
symptoms (Aharonson-Raz et al, 2011). We then presumed that 25% of respiratory cases and 50% of
neurological cases would be declared to RESPE. In the end, we estimated that, during an EE outbreak, the
percentage of horses with respiratory or nervous symptoms due to EE and declared to RESPE was 7% and

1.6%, respectively, of the general equine population located in an area.

To obtain the distribution of horses that showed clinical signs per week, we used data collected during
African Horse Sickness (AHS) outbreaks, because EE and AHS are very similar and share the same
transmission patterns (Dhama et al. 2014; Lord et al. 2002). Specifically, we used data from outbreaks in
Western Cape in 1999, 2004, and 2011 (Anonymous 2011; Sinclair et al. 2006). These outbreaks occurred
in an area of South Africa that is under surveillance designed to act as an early warning system, but which
lacks systematic vaccination campaigns performed to protect the free zone. Nevertheless, the number of
vaccinated horses is considered to be high in this area (Sinclair et al. 2006), which probably reduced the

size of the outbreaks compared to a situation in which all horses are susceptible.

To estimate the spatial propagation of EE for the outbreak in “Aquitaine”, we used the first six weeks of
location data from a BTV-1 outbreak in southern France, as both viruses share the same vector, Culicoides
(Venter et al. 2002). For the outbreak in “Normandy”, we assumed that the spread of an EE outbreak
would be similar in velocity to that observed during the last BTV-8 outbreak in France: from an index case,
the outbreak gained around 10 kilometers per week (Pioz et al. 2008), with 50% of new cases occurring
less than 5 km from the closest infected animal, and 95% within a radius of 31 km of the closest infected
animal (Hendrickx et al. 2008). The distribution of cases has been made according to local equine

population using data provided by IFCE-SIRE.

The spatiotemporal progression of the outbreak in Aquitaine is presented in Figure 16, while the outbreak

in Normandy is available in Appendix 11.
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2.3. Probability of EE introduction

2.3.1.Data source

To define our a priori belief about the disease status (O,), we reused the spatiotemporal quantitative
model that was developed in Chapter II.C to assess EE introduction. The model served as a basis for
estimations of the probability of disease entry and the probability of disease establishment. The
spatiotemporal model of EE introduction uses monthly data at the regional scale (22 regions) for three

consecutive years (2010, 2011, and 2012).

2.3.2.Data transformation

To transform the monthly and regional data into weekly, grid-based data, we assumed that the monthly
regional probabilities of virus introduction were uniformly distributed in space and time within a given
region and for a given month. The weekly probability of virus release in a grid cell, P(intro,,,), is thus

defined for both routes of introduction as:

1
P(intro,,) = 1 — (1 — P(introy,))"eem-orid

where w belongs to month m, g belongs to region k, week,, equals the number of weeks in month
m, gridy equals the number of grid cells in region k, and P (introg,,) is the monthly regional

probability of virus introduction via an infectious host or vector.

The probability of introduction sometimes equaled zero, due to a lack of importation or to a null
probability of virus circulation in exporting countries. When combining this zero probability with the
syndromic surveillance model, the final output was thus zero as well. We adopted a conservative
approach and assumed that there is always a slight probability of virus introduction and transmission; we
thus chose to replace these zero probabilities of introduction with a value equal to 10% of the lowest

calculated probability of introduction.

2.4. Syndromic surveillance of EE

2.4.1.Data sources

To define the value of evidence (V), two types of syndromes were considered: nervous symptoms and
respiratory symptoms in horses. Both sets of related data are collected by RESPE and have already been
used and presented in Chapter IIl.C. The datasets without positive laboratory diagnoses were used to
obtain an outbreak-free dataset. Syndromic surveillance data collected by RESPE are available on a daily

basis and at the municipal level from 2006 to 2013.
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2.4.2.Spatiotemporal detection

The algorithm used for spatiotemporal detection of clusters of cases was developed and implemented by
Gunnar Andersson (SVA, Sweden) within the framework of the EMIDA-VICE European project (Andersson
et al. 2015). Briefly the seasonal variation of each syndrome/symptom, under outbreak-free conditions
was first modelled for France as a whole. The probability distribution of the number of reported
syndromes/symptoms around each grid-cell was subsequently modelled using the expected number of
cases per host, and local host density as input. The host population horse population around each grid cell

was based on data at commune level provided by IFCE-SIRE (IFCE - les Haras nationaux 2011)).

2.5. Presentation of the concept and first feedback

To evaluate and receive feedback on the proposed approach, the concept was presented during a two-day
workshop organized by the EMIDA-VICE project in Paris in February 2015. Fourteen people not included in
the VICE project from eight countries and one person representing EFSA were present. The participants
were from research centers, state agencies, or veterinary services, and were all involved in surveillance

(data collection and management), risk assessment, and/or risk management.

In addition to the general approach, we also presented the EE example. Practical exercises were provided
to the participants to facilitate their understanding of the concept. Their comments and suggestions on

the concept and method were collected.

3. Results

3.1. Multivariate syndromic surveillance

Models that made use of both syndromes (neurological and nervous) discriminated better between

outbreak and non-outbreak situations than those that considered symptoms separately (see Figure 17).
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Figure 17: Value of evidence in France at week 31 in year 2012 from the simulated outbreak in Aquitaine,
using a detection radius of 50 km. Map on the left = respiratory symptoms, middle map = nervous
symptoms, map on the right = multivariate syndromic surveillance (Andersson et al. 2015)
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CHAPTER IV: MULTIPLE INDICATORS OF RISK

3.2. Combining Risk assessment

The combination of the probability of disease introduction with syndromic surveillance results is

presented in Figure 18. The results for the outbreak in Normandy are presented in Appendix 12.

In both cases, combining prior information on the probability of disease introduction (O,) with a
multivariate syndromic surveillance system (V) allowed us to i) highlight a small number of cases occurring
in an area at high probability for disease introduction, and ii) diminish the significance of a large number of

cases occurring in an area at low probability for disease introduction.

3.3. Workshop output

The workshop organized by the EMIDA-VICE project presented our approach and the EE example to
fourteen participants from eight European countries. The main conclusion of the workshop was that the
approach was of great interest for combining different risk assessments. The participants highlighted the
wide range of opportunities offered by this tool, but were of the opinion that this approach would mainly
be used to increase awareness, rather than to implement active surveillance. Indeed, for the participants,
the approach was helpful for demonstration and should facilitate risk communication (in particular when
different scenarios are tested). The main constraint to the implementation of this approach was,

according to the participants, the current lack of relevant and accurate data.

Despite these advantages, the approach also appeared quite complicated, and the participants advocated
for the automatic generation of output, a user-friendly interface, a list of requirements to run the system,
and an easy-to-use manual. Other criticisms were that the assumptions were not sufficiently explicit and
the uncertainty was not displayed, which complicated the understanding and interpretation of results. The
participants also advocated for the development of sensitivity and cost-efficiency analyses for this

approach.
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Figure 18: Posterior probability of EE outbreak in France in year 2012 during the simulated outbreak in
Aquitaine from week 29 to week 32. Radius for detection is 50 km (Andersson et al. 2015)
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4. Discussion and Conclusion

The results presented are only preliminary but they provide a good example of the concept. In this
example, the approach was applied to detect a known disease (equine encephalosis), but it also presents
multiple other opportunities. Indeed, any kind of prior knowledge can be used and thus the approach
could also be implemented for diseases about which not a great deal is known a priori. Moreover, it can
be used not only in the context of risk assessment, but also in that of risk management. For example, the
approach can be used to test different risk scenarios and increase awareness, and thus support decision-
making. It is particularly adapted for use in decision-making because it can be easily combined with

decision theory, as presented in (Andersson et al. 2014).

The feedback from the EMIDA-VICE workshop emphasized the potential of our approach but also
highlighted a limitation to its practical implementation: the lack of relevant and accurate data. . Indeed,
the approach requires a large amount of data (regarding, e.g., import of animals, temperature, vector
abundances, declarations from veterinarians), which are currently very rarely available all together. At the
European scale, at the time of writing, there is no agreement on data format or on the definition of terms,
especially in syndromic surveillance. Current initiatives to collect and analyze data are thus rarely
transferable between EU countries and the results of these programs are not comparable to each other.
Further efforts should be made to homogenize data collection and the definition of terms at the European
level in order to facilitate the widespread use of the results of the different existing surveillance systems.
However, even if the lack of data is a concern, Bayesian framework allows us to deal with missing data by
combining expert opinion with data driven models. The lack of relevant and accurate data is thus not a

fundamental limitation of the approach.

In this study, the example of equine encephalosis served mainly to illustrate our concept. That is why we
only considered a simple approach for outbreak detection. However, this approach had some limits. In
particular, we assumed that the population at risk remained stable over time, and we detected clusters of
cases based on the size of this baseline population. This assumption can be questioned, particularly
regarding horses, which travel frequently and for which no accurate data exist on numbers and
geographical localization. Other methods of cluster detection should be tested (for a summary of the main
statistical methods available for testing clusters in space, time and space, and time*space (interaction),
see the review by T. Carpenter (Carpenter 2001)) and other detection parameters should be also
considered to optimize outbreak detection. In particular regarding detection parameters, radius’ size on
outbreak detection, temporal units of detection and potential interactions among cluster parameters
(Olson et al. 2005; Ozonoff et al. 2007). From the perspective of a real outbreak detection system, all
these parameters should be carefully investigated and their appropriate values determined, in
collaboration with decision makers, according to the objective of the surveillance and to the disease
considered. Moreover, in this example we used respiratory and nervous symptoms observed in horses,

but it could be interesting to evaluate other symptoms, such as spontaneous abortions, which are often
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present during EE outbreaks (Dhama et al. 2014). Testing combinations of other symptoms would thus be

an important part of optimizing outbreak detection.

Using a Bayesian approach for combining evidence is not new, but it is still rarely implemented in disease
surveillance. To our knowledge, there are only a few examples in the literature of this kind of data
combination in disease surveillance. We can cite the work of Gustafson and colleagues (Gustafson et al.
2010), which proposed using the likelihood ratio to combine expert opinion with surveillance data in
surveys of viral hemorrhagic septicemia, but the work of Burkom and colleagues (Burkom et al. 2011) is
perhaps closer to our concept (i.e. combining health surveillance data and environmental sensors for
monitoring waterborne diseases). Bayesian approaches are thus still new in disease surveillance and offer
great opportunities, but, as highlighted during our workshop, further work must also be conducted. In
particular, a full assessment of the tool is fundamental in order to know more about its sensitivity and
reliability. Moreover, further developments should focus on making our approach more comprehensive
and user-friendly, or it will likely not be adopted by decision-makers and other participants in disease

surveillance.
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C. DISCUSSION AND CONCLUSION

1. Discussion

The complementary approaches used in this chapter (i.e. multivariate syndromic surveillance and the
combination of probability of introduction with syndromic surveillance) were both effective in providing a
better estimation of the probability of an ongoing outbreak compared to estimates based on a single
probability estimation. Similar methods are nonetheless rarely implemented in veterinary public health.
Multivariate syndromic surveillance is still a new approach and, at the time of writing, it has been

reported from only one initiative in this field (Hole et al. 2007), which used multivariate CUSUMs for rabies
surveillance. Instead, combining syndromic surveillance with quantitative risk assessment is a completely
innovative concept and, to date, no similar approach has been presented in the veterinary public health

literature.

Multivariate risk assessment is heuristically better than univariate risk assessment. However, there are a
number of practical issues that make multivariate assessment difficult to implement. For example, the
multivariate syndromic surveillance systems developed in this chapter assumed that the data sources
were independent and that changes during an outbreak occurred simultaneously in all data considered.
These assumptions were simple but justifiable with WNV surveillance that used nervous symptoms in
horses, mortality in wild birds, and mortality in horses. However, adapting the approach to another
disease may require different assumptions and thus models of greater complexity, in order to deal with
interactions between risk sources (Frisén et al. 2010). This is not a fundamental limitation of the approach,
but further complications in model implementation may place limits on its practical use. Similarly, we
combined syndromic surveillance and risk assessment assuming that both were a priori independent, as
they do not utilize the same data sources. However, this was not completely true, and in reality the
simultaneous use of syndromic surveillance and risk assessment is not so simple. As an example, risk
assessment can be used to enhance veterinary practitioners’ awareness through the production of risk
maps, as has already been proposed for some endemic VBDs (e.g., surveillance of West Nile virus in
California (Brown 2012) or tick-borne diseases in Europe (Beugnet et al. 2009)). Enhancing awareness in
this way plays an important role in improving the early detection of disease. However, syndromic
surveillance is closely dependent on practitioners’ awareness, and increased awareness can result in an
increasing number of (potentially spurious) declarations, and thus more false alarms. When combining risk

sources, then, one must be careful to take into account any possible correlation between them.

2. Conclusion

Using a combination of risk estimations provided a better estimation that an outbreak might be ongoing.

However, the interactions between risk estimations must be carefully considered, as they may have an
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impact on the complexity and the performance of the surveillance system. This is of particular concern

regarding the practical implementation of such a combined surveillance system.
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CHAPTER V: DISCUSSION

The objective of this work was to address the challenges of establishing early warning systems for VBDs in
horses by using quantitative risk assessments and syndromic surveillance, alone and in concert. All the
methods developed in this work provided estimates of the probability of a VBD outbreak in horses and
may help to address the challenge of VBDs surveillance in horses. However, many questions were raised in

the implemention of these approaches (i.e. quantitative risk assessments and/or syndromic surveillance).

In this chapter, we start by presenting a brief summary of the main results obtained regarding the specific
case of VBDs in horses, and we balance these against our initial objective and work already conducted on
this topic. Then, from a wider perspective, we address how our approaches may support decision making
and how they relate to demonstrating the absence of disease. Finally, we discuss the practical

implementation of such methods.

1. Early warning system of VBDs in horses

1.1. Quantitative risk assessment

In this work, we showed that combining the probabilities of entry and establishment and taking into
account spatiotemporal aspects in a quantitative assessment of the probability of import were both
essential in obtaining a complete view of the risk posed by a vector-borne pathogen. This is consistent
with the close link between VBDs and their climate and environment. By combining two routes of
pathogen entry, we were able to better understand the risk posed by a pathogen to the equine industry.
Additionally, although quantitative risk assessment is not a new method for assessing the probability of
outbreak occurrence, spatiotemporal analyses and combinations of probabilities and of entry routes are
still rarely implemented in animal health. Our work thus advocates for the wider use of these kinds of
approaches in order to obtain a more detailed and complete picture of the risk. It could also be interesting
to apply this method to studies of other pathogens. In particular, assessments of the probability of
bluetongue virus introduction could be easily implemented, as this virus is Culicoides-borne and is similar
to the viruses responsible for African horse sickness and equine encephalosis. This part of the work also
highlighted some limits specific to the equine industry. In particular, the available data were sometimes
inaccurate because the equine industry is fragmented and poorly tracked, and few databases exist. When
data do exist, they are rarely centralized, which presents problems regarding accessibility and
standardization. Further work should be conducted to improve the quality of data on horses. It would be
particularly helpful to reinforce the tracking of horse movements and to continue with efforts to identify

the location of horses using awareness campaigns or field surveys.
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1.2. Syndromic surveillance

Syndromic surveillance of nervous symptoms in horses using an alarm threshold that was a multiple of the
standard error of prediction was able to detect early signals of a WNV outbreak in French horses.
However, our study represents the first time that a full assessment of this system’s performance has been
carried out. Using a simple Bayesian approach, we were able to provide a quantitative evaluation of the
probability of an outbreak and generate an easy-to-interpret output that was simple to combine with
other epidemiological knowledge, such as disease seasonality. This is especially important for the
surveillance of VBDs, which are closely related to season. The output can be also combined with socio-
economic information in order to facilitate a more transparent and evidence-based decision-making
process. To date, syndromic surveillance has rarely been implemented in animal health and even less
often for diseases in horses, a deficiency that our work seeks to address. In addition to the diseases
studied here, syndromic surveillance could also be used to monitor for the presence of other exotic
diseases that induce nervous symptoms in horses, such as Eastern and Western equine encephalitis,
Venezuelan equine encephalitis, or Japanese encephalitis, which are of serious concern for public health.
It would also be interesting to explore other symptoms occurring in horses. Here, we considered only
nervous and respiratory symptoms, but future surveillance systems could also use data on abortions, for
example, to detect equine arteritis virus, another disease of interest for the equine industry. In the
present work, we did not quantitatively compare the respective performances of both proposed
approaches (i.e., classical approach with an alarm threshold that was a multiple of the standard error of
prediction and Bayesian approach) in outbreak detection, but this step would also be important for future

work.

1.3. Combining risk

To improve confidence in the prediction of an ongoing outbreak, we combined different sources of risk
assessment, first by using multivariate syndromic surveillance. This approach provided better detection
performance than univariate syndromic surveillance, but it is rarely implemented in veterinary public
health. It could however be applied in a wide range of situations. Considering other VBDs that affect horse
populations, it could be also used, for example, to monitor for Japanese encephalitis, by combining
surveillance of nervous symptoms in horses with that of reproductive diseases in swine. As a further step
in risk combination, we also combined assessments of the probability of introduction with syndromic
surveillance. Such integrated surveillance systems already exist in animal health, in particular for WNV
surveillance. For example, the system implemented in California provides updated risk maps in which all
information is gathered together through a scoring system (Brown 2012); similar systems also exist in
Canada (Gosselin et al. 2005), Italy (Bellini et al. 2014a), and Greece (Chaskopoulou et al. 2013). However,
unlike our approach, these integrated surveillance systems do not provide a single and quantitative output
that combines all the collected information. Our approach thus represents a promising way to build a

surveillance system that can quantitatively combine several estimations of risk in a single risk indicator.
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This method could be of particular use for the surveillance of VBDs, as it can include information on
seasonality and environmental risk factors, which are both fundamental parameters of VBD biology. In
addition, combining syndromic surveillance with other epidemiological information is a way to improve
the specificity of detection and could thus strengthen the surveillance of VBDs. This approach could also
be applied to various other exotic diseases, such as equine encephalitis or exotic strains of bluetongue
virus. However, the study presented here of the combination of syndromic surveillance with risk analysis
was only preliminary, and further work should be conducted, especially to investigate tradeoffs between

system performance and system complexity.

2. Support decision-making

The present work was primarily interested in quantitatively combining different sources of risk (i.e. routes
of pathogen entry, probabilities of entry and establishment, syndromic surveillance data sources,
syndromic surveillance and risk assessment). Apart from the obvious benefits of producing more reliable
information, such an approach is also a good way to further support decision making in veterinary public

health, as shown, for example, during the workshop described in Chapter IV.B

At the individual level, decision making is the cognitive process that leads to the selection of a course of
action and ends with a final choice. Decision making is a part of risk management (OIE 2010) and is based
on a complex combination of rational analysis and subjective opinion (Damasio 1995, Slovic et al. 2005). In
public health, there is a consensus that decision making should be strictly rational and based on a
combination of scientific evidence, available resources, and context (Brownson et al. 2010). The concept
of evidence-based practice dates from 1971 (Cochrane 1999). It was initially developed for clinical
medicine but the evidence-based philosophy has now also been adopted in public health. Evidence-based
public health (EBPH) can be defined as a ‘public health endeavour in which there is an informed, explicit,
and judicious use of evidence that has been derived from any of a variety of science and social science
research and assessment methods’ (Rychetnik et al. 2004). EBPH and the related evidence-based
veterinary public health (EBVPH) are still in their early stages (Latham et al. 2013), although guidelines and
tools have recently emerged from international agencies (see, for example, the European Centre for
Disease Prevention and Control (ECDC 2011) and the Center for Disease Control and Prevention (Jacobs et
al. 2012)). The fact remains, though, that in the real world, decisions in public health are rarely made using
empirical-analytical models, but are often conjectures based on crises, hot issues, short-term
opportunities, concerns of organized interest groups, political and practical judgments, and public concern

(Brownson et al. 2010, Head 2010, Rutherford et al. 2010, Sanderson 2002).

Several factors explain the limited use of EBPH, such as the lack of understanding of evidence-based
methodologies by policy makers and the lack of relevant data and formalized systems (Brownson and
Jones 2009, Dobbins et al. 2004, Latham et al. 2013, Lomas 1997, Rutherford et al. 2010), but also the

absence of agreement on how to interpret and compare different types of evidence (Dobbins et al. 2007,
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Latham et al. 2013, Tannahill 2008). Indeed, decision makers in EBPH and EBVPH often have to combine
different types of evidence and the decision process can be very complex (ECDC 2011). This problem has
become particularly acute because the volume of information has increased exponentially and diverse

sources of data are rarely presented together, making gathering, synthesizing, and interpreting them an

increasingly challenging task (Rutherford et al. 2010).

By providing decision makers with a single risk indicator that synthesizes different risk assessments about
the presence of an outbreak, we thus hope to promote the development of EBVPH. Our approach allowed
us to easily combine in a single quantitative risk indicator as much evidence as needed. For example, in
Chapter IV we combined different syndromic surveillance data sources (i.e. multivariate syndromic
surveillance), as well as considering syndromic surveillance together with the probability of pathogen
entry. However, more complex models can be built that involve other risk estimations. The present work
is thus especially relevant for efforts to facilitate decision making. In particular, the work conducted in
Chapter Ill.C illustrates how risk analysis can fit easily with decision theory and cost-efficiency analysis, yet
another way to help decision makers and to promote a more rational decision-making process in
veterinary public health. Nevertheless, further work remains to be done on determining the cost of

diseases and disease surveillance (Babo Martins and Rushton 2014).

3. Demonstrate freedom of disease

Although risk indicators never prove the presence of a disease, they suggest the likelihood of its existence
in a particular place. This is of course particularly true for indicators of combined risks. It can thus be

problematic for decision makers to prove freedom from disease in high-risk areas.

Demonstrating that a country is free from a disease is a complex issue, and it is rare to prove absolute
freedom from disease (with the exception of highly contagious diseases for which, when there is no case,
there is also no disease). According to the OIE Terrestrial Animal Health Code (OIE 2014), a free zone is
defined as a zone in which the absence of the disease under consideration has been demonstrated by the
requirements given in the Code for free status. Given that surveillance does not detect any infected
animal (S-), the probability of freedom (D-) is estimated, with the final result that, if the disease is

nevertheless present, its prevalence will be lower than a set threshold by a certain level of confidence.

Based on (Martin et al. 2007a; Martin et al. 2007b), the FAO manual on risk-based surveillance (FAO 2014)
proposed a method for estimating the probability of freedom (Pfree) using Bayes’ theorem and

accumulated historical information. Pfree is calculated as:

(1 = Prior) x Sp

P =PMD—-[S-)=
free ( 1S =) (1 — Prior) X Sp + Prior X (1 — Se)
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where Sp and Se are the specificity and sensitivity of the surveillance system and Prior is the prior

probability that the country is infected.

However, the resulting probability of freedom is expected to be quite low. An accumulation of historical
information about the probability of freedom over time is thus used to build a better estimate of this
probability. Pfree for the previous time period is calculated and used as the prior for the current time

period of evaluation. In other words, Pfree;calculated at time period t can be estimated with:

(1 = Prior;) X Sp
(1 — Priory) X Sp + Prior; X (1 — Se)

Pfree, =

where Prior; is the resulting probability of two non-exclusive states: “the country was not free from the
disease to begin with” and “the country became infected during the time period considered”. Prior;is thus

calculated as:
Prior, = Pfree_qy + Pintro — Pfree_qy X Pintro

Applying such an approach to the surveillance systems presented in this work is thus a way to calculate
the probability of freedom using evidence that suggests the presence of the disease. In this case, Se and
Sp are the sensitivity and specificity of the syndromic surveillance system and Pintro is the probability of
disease introduction. It would also be possible to use either the combination of syndromic surveillance
and risk analysis or each approach individually to demonstrate freedom from disease. Of course, such an
approach would only be relevant for an exotic infection that spreads slowly and causes few symptoms. For
example, in the work conducted here, this method could be used for equine encephalosis but not for

African horse sickness.

4. Practical implementation of integrated surveillance systems

Providing decision makers with a single risk indicator that synthesizes the different risks related to an
outbreak could potential be very useful, but also results in a complex surveillance system which can be

complicated to put into practice.

Firstly, such a complex surveillance system requires a large amount of data, which is not always easy to
obtain (e.g., animal movements, vector abundance, host geographical localization, declarations from field
workers). In addition, even when data are available, they are often formatted in many different ways,
especially at the European level (e.g., different definitions, different geographical units). This is of concern
for the use of the data (i.e. a lengthy initial step of preprocessing is needed) but also for sharing the results
with partners involved in disease surveillance. However, sharing surveillance results is particularly
important for the European Union, where movements of animals and humans are not (or only poorly)
tracked within the community. Disease surveillance in the EU therefore depends in part on reliable and

up-to-date data-sharing among member countries. The lack of high-quality and standardized data
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constitutes a problem not only for the initial implementation of a system, but also for its maintenance. It is
especially a concern for syndromic surveillance systems in which reporting has to be continuously
stimulated in order to obtain data. Improvements in data collection may be encouraged, however, by
proof that the data are important for disease surveillance. Although initial efforts, such as the present
work, might be complicated to implement due to the lack of good data available, they can also be used to

promote the need for better data collection.

Secondly, the complexity of a surveillance system may result in a reluctance to trust it on the part of
decision makers, given the large amount of information and uncertainties involved. The Bayesian
approach used in the present work partially solved this concern. This approach is transparent and offers
an explicit separation of assumptions, scientific evidence, and criteria for decisions. However, further work
should be conducted to ensure its proper communication and acceptance. Indeed, a complex system that
combines different risk estimations requires several underlying assumptions, and, before any practical
implementation of such a system, it would be necessary to thoroughly explain how to use it and interpret
the output. In addition, future work must include a full assessment of system performance, the only
guarantee of the reliability of the surveillance outputs. However, it remains challenging to evaluate
multivariate surveillance methods due to the several dimensions and complex time relations involved
(Frisén et al. 2010). One potential approach that could help would be the use of Monte Carlo simulations,

as proposed by Frisén and colleagues (Frisén et al. 2010).

Many different issues remain to be solved before such complex surveillance systems can be broadly
applied in veterinary public health. However, the work conducted here shows that these approaches have
huge potential and constitutes a promising initial step. Future work should focus on thorough assessments
of system performance and effective communication to interested parties. However, as more data
become available online and access to data improves, such systems will play an invaluable role in future

disease monitoring efforts.

5. Conclusion

The present work proposed to improve the surveillance of vector-borne diseases in horses though
different approaches that assessed the probability of occurrence of a newly introduced epidemic. First, we
developed a model of quantitative risk assessment to improve estimates of the probability of pathogen
introduction. In particular, we performed a spatiotemporal analysis, simultaneously analyzed two routes
of virus entry, and also combined the probability of virus entry with the probability of virus establishment.
Second, we implemented and assessed syndromic surveillance systems based on two approaches: a
classical approach with an alarm threshold based on the standard error of the prediction, and a Bayesian
approach based on a likelihood ratio. The Bayesian approach was especially useful as it provided a
guantitative assessment of the syndromic surveillance output and was able to combine different

information. We therefore also used this approach to combine various sources of risk estimation in order
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to improve the assessement of the probability of occurrence of a newly introduced epidemic. We
performed multivariate syndromic surveillance and also combined quantitative risk assessment with
syndromic surveillance. Approaches that quantitatively combined evidence provided promising results.
This work, based on risk estimations, strengthens the surveillance of VBDs in horses and has potential in
supporting decision making. In the end, we hope to encourage the improvement of data collection and
data sharing, stimulate the implementation of a full assessment of complex surveillance system
performance, especially in terms of cost-efficiency, and promote the adoption of the approach by decision

makers and other parties involved in disease surveillance through effective communication and training.
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Appendices

Appendix 1: Model calculation for PW-host. Details of calculation regarding the AHSV introduction via the
import of an infectious host.

Every calculus below is made for an equine from species i imported from an areaj to the free area k the
month m. All the parameters used are detailed in the Additional file 2.

The probability of introduction for PW-host is the probability to import at least one infected host able to
transmit the infection to at least one local host and is defined as:

P(introHjm) = 1 — [1 — P(relHjjm ) X P(estHjgn)] 0™

Where P(relHijkm), the probability of release, depends of the importation procedure implemented and
the periods where a host is infected and P(estHi]-km), the probability of establishment, is defined as:
P(estHijm) = 1 — [1 = Iyy X P(Survign) X bequi, X Iuy]“Hm

with culiy,, the number of vectors feeding on an infected viraemic imported host equals at BRy,, x Vir x Cym,

For each category of exporting region, there is different import procedure implemented and thus different
periods z where a host can be infected. For a given region j, there is a total of w different time periods z
where the equine can be infected depending on the import procedure implemented for the region j. The
different periods z for each region j are presented below:
- High risk countries: host can be infected 1) Before quarantine, 2) During quarantine but before
the first serological test CF1, 3) During quarantine but between the both serological tests CF1 and
CF2, 4) During quarantine but after CF2 and before clinical exam, or 5) After clinical exam.
- Low risk countries:

o Non EU country member: host can be infected 1) Before quarantine, 2) During
qguarantine but before CF1, 3) During quarantine but between CF1 and CF2, 4) During
qguarantine but after CF2 and before clinical exam, or 5) After clinical exam.

o EU country member: host can be infected 1) Before clinical exam, or 2) After clinical
exam.

- Very low risk countries:

o Non EU country member: host can be infected 1) Before clinical exam, or 2) After clinical
exam.

o EU country member: host can be infected 1) Before clinical exam, or 2) After clinical
exam.

The probability of release by species i from region j to area k during a specific month m (P(relHiikm)) is
¥=1[(length period z)xP(relAjjimz)]

thus calculated as: P(relAi]-km) = W (length period )

Where P(relHijka) is the probability of release when the animal i is infected during the time period z.
P(relAjm,) is calculated for each period z as:
P(relAjjkmz) = P(infijmz) X P(virijm,) X (1 — P(CF1;,)) X (1 — P(CF2;,)) x (1 — P(clingjy,)) X (1

— P(transyj,))

1. P(infiimz) = Probability for a host to be infected during period z in the month m in area j

The probability of infection during a certain period z (before or during the import procedure) depends on
the fraction of this period z spend in each of the months m, m-1 and m-2.

a. No quarantine and CF test are required
Entire period of being at risk of infection is the high risk period (HRP).

e Probability that the imported host is infected before clin
If HRP < e
= POj, X Cl,
If HRP > e
IfHRP <30 +e
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= Zolif;. X [Cl,, Xe + Cl,_q X (HRP — e)]
IfHRP>30+e
= Zoligl. X [Cl, X e + Cly_q1 X 30 + Cl,_, X (HRP — 30 — e)]

e Probability that the imported host is infected after clin
= POj, X Clp

b. Quarantine and CF tests required

e Probability that the imported host is infected before q
Ifq—e<30
PO,
Inftime
Ifg—e>30

B Inftime

X [Clp—1 X (30 —q+€) + Cl,_, X (Infijne — (30 —q + €))]

X [Clp_2 X (60 —q+€e) + Cl,,_3 X (Infjpe — 60+ q—€)]

e Probability that the imported host is infected between q and cf1

Ife-cfl<0
lfq>30+e
1 — Prot X PO;
_ ¢ - ieztf)l = X [Clyp_g X (30 = cf1 + €) + Cly_, X (q — 30 — )]
lfq<30+e
= (1 — Protyect) X Pojm X Clp_q
ife—cfl1>0
ifq>30+e

__ (1—Protyect) X POjy

X [Cly X (e — cf1) + Clyy_q X 30 + Cly_p X (q — 30 — €)]

q—cf1l
ifqg<30+e
1 — Prot X PO;
_ ( vect) jm [Clm X (e —cfl) + Cl,—1 X (q — E)]
q-—cfl
e  Probability that the imported host is infected between cf1 and cf2
If e < cf2
1 — Prot X PO;
_ ( vect) jm [Clpoqg X (30 —cf2 + e) + Cl_y X (cfl — 30 — )]
cfl — cf2
If e > cf2
ifcfl>30+e
(1 — Prot t) X PO;
_ CﬂVG_C — 2 X [Cly X (e = cf2) + Clip_y X 30 + Clyy_p X (cf1 — 30 —e)]
ifcfl<30+e
(1 — Prot t) X PO;
= Cflve_c 5 X [Cly X (e = ¢f2) + Cly_g X (cf1 — €)]

e  Probability that the imported host is infected after cf2

If e < cf2
__ (1—Protyect) X POjy

= X [Cl, X e + Clp_q X (cf2 —e)]

If e >cf2
= (1 = Protyect ) X POjy X Cly

2. P(viriimz) = Probability for a host to be vireamic or incubating when imported to area B given
being infected

Calculation is based on a constant viraemic and latent period, which is equal for each equine of species i.
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a. No quarantine and CF test are required

e  When infected before clin
If In + Vir < tag + clin
=0
If In + Vir > HRP + t55 + clin
=1
If In + Vir < HRP + t55 + clin
In + Vir — t,p
"~ HRP —clin

e When infected after clin
If In > tag + clin
=1
If In < tag + clin
If In + Vir > tpg + clin
=1
If In + Vir < tpg + clin
In + Vir

B tAB + clin

b. Quarantine and CF tests required
e  When infected before q
If In + Vir > Infijme + q + tas
=1
If In + Vir<q+tg
=0
If In + Vir < Infime + q + tas
In + Vir — q — tup

Irlftime

e When infected between q and cf1
If In + Vir>q+tas
=1
If In + Vir < cfl + tpg
=0
If g+ tag >IN+ Vir>cfl + tag
In + Vir — cfl — tp
B q-—cfl

e  When infected between cf1 and cf2
If In + Vir > cfl + tg
=1
If In + Vir < cf2 + tag
=0
If cfl + thg > In + Vir > cf2 + tug
In 4+ Vir — cf2 — tpp
B cfl — cf2

e When infected after cf2
If In + Vir > cf2 + tpg
=1
If In + Vir < tpg
=0
If cf2 + tag > In + Vir > tpg
In + Vir — tap
h cf2

Appendices
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3. P(cliny,) = Probability for an infected host to be detected during importation procedure

a. No quarantine and CF test are required

Probability to be detected during importation procedure = Probability to be detected by clinical inspection

o  When infected before clin
If In>HRP —clin
=0
If In < HRP —clin

If In + Vir < HRP —clin

Vir X Segin
~ HRP —clin
If In + Vir > HRP —clin
(HRP — clin — In) X Segin
B HRP — clin

e When infected after clin
=0

b. Quarantine and CF tests required

i. P(CF1;,) = Probability for an infected host to be detected by cf1
e When infected before q

If g —cfl < Sero

=Se

If Infyme + g — cfl < Sero

=1-Sp

If Infyme + g — cfl > Sero

_ (Infime — Sero 4+ q —cfl) X Se 4 (Sero — q + cfl) x (1 — Sp)

Irlftime Irlftime

e  When infected between q and cf1
If g —cfl < Sero
=1-Sp
if g —cfl > Sero
(q — cfl — Sero) x Se  Sero X (1 — Sp)

q—cfl q—cfl

ii. P(CF2;,) = Probability for an infected host to be detected by cf2
Assumption: ¢f1 and cf2 are independent

e  When infected before q

if g —cf2 > Sero

=Se

If Infyme + g — cf2 < Sero

=1-Sp

If Infime + g — cf2 > Sero

_ (Infime — Sero 4+ q — cf2) x Se 4 (Sero — q + cf2) x (1 — Sp)

Irlftime Inftime

e When infected between q and cf1
if g —cf2 < Sero
=1-Sp
If g —cf2 > Sero
If cfl — cf2 > Sero
=Se
If cf1 — cf2 < Sero
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_ (q—cf2 — Sero) x Se 4 (Sero — cfl + cf2) x (1 — Sp)

q—cfl

e  When infected between cf1 and cf2
If cf1 —cf2 < Sero

=1-Sp

If cf1 —cf2 > Sero

_ (cf1 —cf2 — Sero) X Se = Sero X (1 —Sp)

cfl — cf2 cfl — cf2

iii. ~ P(clin) = Probability for an infected host to be detected by clinical inspection

e  When infected before q

If In + Vir<g—clin or In > Inf_time + g —clin

=0
If In + Vir > Inf_time + q —clin
If In<g—clin
= SecIin
If In >q—clin
_ (In — q + clin) X Segiy
Inftime
If Inf_time + g —clin > In + Vir > q —clin
If In<q—clin
_ (In 4 Vir — q + clin) X Segip,

Inftime
If In>q—clin
_ Vir x Seclin

Inftime

e  When infected between q and cf1
If In + Vir < cfl —clinorIn > q —clin
=0
If In + Vir>q—clin

If In < cfl —clin

= Seqjin

If In > cfl —clin

(In — cf1 + clin) X Segjy

h q — cfl
If g —clin > In + Vir > cf1 —clin

If In < cfl —clin

_ (In+ Vir — cfl + clin) X Se;,

q-—cfl
If In > cfl —clin
_ Vir X Seclin
~ q-—cfl

e When infected between cf1 and cF2
If In + Vir < cf2 —clin or In > cf1 —clin
=0
If In + Vir > cfl —clin

If In < cf2 —clin

= secIin

If In > cf2 —clin

(In — cf2 + clin) X Seg;p

B cfl — cf2
If cf1 —clin > In + Vir > cf2 — clin

If In < cf2 —clin
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_ (In+ Vir — cf2 + clin) X Sej;y

cfl — cf2
If In > cf2 —clin
_ Vir xSeclin
T cfi-cf2

When infected after cf2

If In > cf2 —clin

=0

If In < cf2 —clin

a.

If In + Vir > cf2 —clin
_ (cf2— clin—In)x Secjip

cf2—clin
If In + Vir < cf2 —clin
Vir X Seclin

cf2 — clin

No quarantine and CF test

When infected before clin

If In > HRP + tpg - clin

=0

If INn<HRP + Tpg - clin

If In + Vir < HRP —clin
_ Vir X Seclin
" HRP — clin
If In + Vir > HRP —clin

_ (HRP —clin + typ — In) X Seg;,

P(trans;;,,) = Probability for an infected host to be detected during transport from A to B
given having passed the examinations and testing prior to embarkation.

HRP — clin

When infected after clin

If In > tpg + clin

=0

If In < tpg + clin

b.

If In + Vir < clin + tag
Vir X Sec“n
B tAB - Clin
If In + Vir > clin + tag
(Clin + tAB - In) X Secnn
B tAB - clin

Quarantine and CF tests required

When infected before q

If In+Vir<qg+tagorin>Inf_time+q+ta

=0

If In + Vir > Inf_time + g + tas

IfIn>q+tas

_ (In—q—tap) X Segin
B Inftime
IfIn<qg+tyg

= secIin

If Inf_time + g + tag> In + Vir > q + tag

IfIn>q+tas
Vir X Seclin

Inftime
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IfIn<qg+tas
— (In —q- tAB) X Se(:lin
Inftime

e  When infected between q and cf1
IfIn+Vir<cfl+tpgorin>q+tp
=0
If In + Vir>q+tas
If In>cfl + tpg
(In — cfl — tpg) X Segin
B q—cfl
If In < cfl + tpg
= SecIin
If g +tag> In + Vir > cfl + tag
If In>cfl + tpg
Vir X Sein
- gq-—cft
IfIn<cfl +tpp
(In + Vir — cf1 — tag) X Segin
B q-—cfl
e  When infected between cf1 and cf2
If In+ Vir < cf2 + tag or In > cfl + tpg
=0
If In + Vir > cfl + tg
If In>cf2 + tpg
(In — cf2 — tpg) X Segin
h cfl — cf2
If In<cf2 +tpg
= SecIin
If cfl + tag> In + Vir > cf2 + tg
If In>cf2 + tpg
Vir x Seclin
T cft —cf2
If In<cf2 + tpg
(In + Vir — cf2 — tp5) X Segin
B cfl — cf2
e When infected after cf2
If In>cf2 + tpg
=0
If In<cf2 +tpg
If In + Vir > cf2 + tag
(sz + tAB - In) X Seclin
- cf2
If In + Vir>cf2 + tag
Vir X Seclin

B cf2

Appendices

5. P(survy,) = Probability that the vector survives to the EIP and can have a blood meal during

the month m

P(Survkm) = e‘(NkaGCkaMka)
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Appendices

Appendix 2: Model calculation for PW-vector. Details of calculation regarding the AHSV introduction via
the import of an infectious vector.

All the parameters used are detailed in the Appendice 3.

The probability to introduce a single vector from j to k during the month m which is able to induce an
entire transmission cycle in which at least one local host is infected by a local vector is defined as:
P(intrijkm) = P(relBjxm) X P(estBjyy)

Where P(relB]-km) =P (transculiim) X P (Survtrans]'km) X P(inf_culi]-m) X Nransjj

And P(estB]km) =P (survarn-,,aljkm) X bequik X IVH X [1 - [1 - IVH X P(SurVkm) X bequik X IHv]Cu“km]

With culiy, the number of vector feeding on an infected viraemic imported host calculated as:
culigm = BRym X Vir x Cy,

1. P(inf _culiim) = Probability for a vector to be infected the month m in area j
P(inf_culijy,) = POjy X Iy

2. P (transculijm) = Probability for a vector to be transported after infection from area j

Only a vector which is infected and transported poses a risk, therefore we only consider those vectors that
are infected and transported during their life time. We assume that an infected vector will be infected at a
uniformly distributed time during its life, D;,;. Additionally, we assume that a vector is transported at a
uniformly distributed moment during its life time, which is exponentially distributed with mean 1/MR;,.
The probability that the moment of transportation occurs after the infection event is equal to the part of

the total lifetime of the vector that it is infected. Thus P (transculijm) is estimated, as made by Napp et al.
(Napp et al. 2012), as:
_ (l/Mij - Dinf)

p (transculijm) = 1/MR;,, =1 — Djys MR,

NB: Temperature in departure area j was assumed to be constant over months and thus MR;, is here also
constant over months.

3. P (survtmnsikm) = Probability for a vector to stay alive from j until the arrival in area k during the

month m
The conditions during travel (e.g. temperature) are assumed to not affect the viability of culicoides except
when pest control is applied (worst case scenario). There is no data available on survival rate of culicoides
in an unfavorable context as assumed to occur during transport. Moreover the conditions during
transports have a high variability and information are impossible to collect.
The probability to stay alive until the arrival is the probability to survive until transport and during the
time of transport.

— o—MRi;n X(Derans+tik)
P (survtransjkm) = e~ TmFransTHK) % (1 — Protyect)

4. P (survarrivalikm) = The vector survives to the transport from j, the EIP and can have at least a
blood meal after the end of EIP and when arrives in the area k the month m

If Tg < O culicoides are assumed to not survive
=0
If (Nm-Gij) > (Dtransp + tjk)
— eMkaX(Dtrans+tjk)_NmXGij
If (Nm-Gij) < (Dtransp + tjk)
If ty > GCjry
we assume that the last GC,, is spent half during transport and half in the arrival area k.
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GCjm
2

— e—MkaX

If tj < GCjm

we assume that the last GC,, is spent half in the departure area j and half in the arrival area k.
MR chm‘tjk

= e MRkmX————

NB : if T, < T_min (9.5°C), where T_min is the minimal temperature for formulae for MR and GC (if T, is

lower, the formulae are not valid), we will use the T_min in our calculus (worst case scenario).

5. P(survy,) = Probability that the local vector survives to the EIP and can have a blood meal during
the month min the area k

P(survyy,) = e~ Nkm>XGCkm>MRym)
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Appendix 3: Model parameters. Description of all parameters used in the model calculation

Preliminary definitions:

Tm is the average monthly temperature during the month m in the area k (details of the
estimation available in the main text)

Ckm is the number of competent vectors feeding on one equine in area k during the month m
(details of the estimation available in the main text)

Py is the ratio of the number bovines to the number of equines per area k (details of the
estimation available in the main text)

e is defined as the day of embarkation (set the 12" of each month)

g is the length of quarantine (40 days given EU regulation)

clin is the day of the clinical exam before embarkation (equals zero, one or two days depending
on the departure region given EU regulation).

Cf1 is the day when the first test is performed (35 days before embarkation given EU regulation)
Cf2 is the day when the second test is performed (10 days before embarkation given EU
regulation)

PARAMETER ESTIMATION

Vertebrate hosts

l;

Incubation period (days) All equines: Pert(2,6,10) (de Vos et al. 2012)

(Kazeem et al. 2008)

REFERENCES

Vir; Viraemic period (longer for Horses: Discrete({Gamma(29.75,0.20). (de Vos et al. 2012)
surviving animals than for Gamma(20.25,0.22)};{0.3,0.7}) (Backer and Nodelijk
animals succumbing from Donkeys: Discrete({28,12};{0.9,0.1}) 2011)
disease) Zebras: Discrete({40,28};{0.99,0.01})

Sero; Time to seroconvertion (days) All equines: Uniform(10,14) (de Vos et al. 2012)

Vectors

GCyn Length of the gonotrophiccycle  =-1.98 + 0.07217x Ty, + (Wittmann et al. 2002)
during the month m (days) 2516.65/Tm”

BR» Biting rate = reciprocal of the =0.015 x Ty, — 0.125 (Wittmann et al. 2002)
blood feeding interval (= (Backer and Nodelijk 2011)
Gonotrophic cycle)

EIP,, Length of the EIP (days) =0.0085 x T, — 0.0821 (Wittmann et al. 2002)
MR, Mortality rate of the vector =0.015 x exp(0.063 x Ty) (de Vos et al. 2012) (Backer
(days™) and Nodelijk 2011)

(Wittmann et al. 2002)
Nim  Number of gonotrophic cycles = Roundup(EIPm/GCym)

to complete an EIP + time to
next blood meal

Interaction host vector

Ayy  Probability for a vector to All equines: Beta(1.05,39.6) with a (lacono et al. 2013)
become infected after feeding mean value of 0.02 (Venter et al. 2010)
on a viraemic host
Avy  Probability for a host to become  All equines: Beta(6,2) with a mean (de Vos et al. 2012) (Baylis
infected after being bitten by an  value of 0.77 et al. 2008) (Backer and
infectious vector Nodelijk 2011)
Export regulations
Se Sensitivity of the CF test Beta(60,4) (de Vos et al. 2012)
Sp  Specificity of the CF test Beta(62,2) (de Vos et al. 2012)
Seqin  Sensitivity of clinical ) ) (de Vos et al. 2012)
examination Horses 0.7; Donkeys 0.1; Zebras 0.01 (Wilson et al. 2009)
Prot,..; Efficiency of protection against Uniform (0.5,0.9) (de Vos et al. 2012)
vectors
Duansy  Day of vector transportation

after infection

Uniform(Deyi inf; 1/MRim)
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Departure region j

PO;,, Probability of disease Endemic: 1 (de Vos et al. 2012)
occurrence Low risk: Gamma [(15 x HRP,), 1/(60 x 365)]
Very low risk: Gamma [HPR;, 1/(61 x 365)]

Arrival area k

begi Probability for a vector to bitea = 1/(ax py +1) (Gubbins et al. 2008)
susceptible host With, a the vector preference for equidae (Ninio et al.
(We assume that the vector has no host 2011)(Viennet et al.
preference between cattle and horse and 2013)
thata=1)

Inf.ime = Period when a horse can be infected before the start of import procedure such as quarantine or
clinical exam when there is no quarantine

If a quarantine applied: if HRP — g > 0, Inf;ne = HRP — g but if HRP — q < 0, Infime = 0.
If no quarantine applied: Inf,e = HRP —clin

HRP = High risk period

The HRP is the time between virus introduction and the first formal detection. In low and very low risk
region, we assumed that the first infected horse won’t be detected but that the secondary cases will be.
Thus the time needed to detect the second case is estimated as the time required for two incubation
periods plus the time till the next infectious blood meal of a vector. In low risk regions HRP, is assumed
equal at 22 days (based on a temperature in the region j of 18°C). In very low risk region, HRP; is assumed
equal at 60 days (based on a temperature in the region j of 12°C). As in high risk region the virus is
supposed endemic, there is no real HRP; because an equine can be infected at any time (during or before
quarantine). We thus choose to set a period of 30 days before the start of quarantine (thus 70 days before
embarkation) as the earliest stage when a host can be infected.

D.,ii ins = Day of vector becomes infected

To estimate the day where the vector becomes infected (D, jns ), We first only take into account the
Culicoides susceptible to the infection. When a Culicoides is susceptible, one blood meal on a vireamic
host is assumed sufficient for this vector to become infected (Jones and Foster 1971). Assuming a uniform
distribution of the viraemic host and a constant monthly temperature T, in each departure area j, the
moment (or day) of Culicoides infection follows a Uniform distribution between 1 (the Culicoides is
infected the first day of its life) and 1/MR., (the Culicoides is infected the last day of its life).

Clj» = Cumulative monthly number of infectious hosts i in each departure area j

Equidae have a seasonal foaling period but the foaling season depends on the geographical area
considered (North or South hemisphere). We thus assumed that Clj;,, was a constant for all species in all
departure region j. For low and very low risk regions, Cl;, was considered as equals at 2x10™ for all species
based on AHSV epidemic in Spain (Rodriguez et al. 1992a; Rodriguez et al. 1992b) (de Vos et al. 2012). For
high risk region, Cl;, was estimated for horses as a Pert distribution based on data from WAHID and FAO
used by de Vos et al. (de Vos et al. 2012): Pert(4x10'6, 5.02x107, 1x10’3). For donkeys and zebras, Clj, in
high risk region were respectively assumed equal at 1.2x10” and 1.6x10” based on rate of seroconversion
in foals, the surviving foaling rate and the offspring rate (Barnard 1993) (Penzhorn 1985).

Iim = Prevalence of infected vectors during an outbreak in the region j

We applied for the prevalence of infected vector the same process than for infected host. Thus r;, is
considered as a constant in all region j. In high risk region r;,, is assumed at 0.014 based on data from
South Africa (Scheffer et al. 2012). In low risk region, as for equidae the number of infectious animal is
divided by 107 between high risk regions and low risk regions, the rate was here estimated as 1.4x10™.

144



Appendices

Appendix 4: Article in a Professional journal published in ‘Bulletin épidémiologique du RESPE’. Juillet 2013.
C. Faverjon, S. Lecollinet, S. Zientara, A. Leblond. ‘Peste équine, quel risque pour la France ?’
(http://www.respe.net/node/1604).

Peste équine, quel risque pour la France ?

mercredi 17 Juillet 2013
par Céline FAVERJON (1), Sylvie LECOLLINET (2), Stéphan ZIENTARA (2), Agnés LEBLOND (1)

Agent pathogeéne et historique de la maladie

Le virus de la peste équine appartient a la famille des Reoviridae, genre Orbivirus, compte 9 sérotypes
différents et affecte I'’ensemble des équidés. Le virus est transmis par des insectes hématophages. Les
principaux vecteurs sont les Culicoides (notamment Culicoides imicola, Culicoides bolitinos et le groupe
Obsoletus).

La maladie est considérée comme enzootique en Afrique Sub-saharienne ol les 9 sérotypes sont présents
mais de fréquentes incursions du virus ont été observées au Maghreb et dans la péninsule arabique
(sérotype 9 impliqué). La derniére introduction du virus sur le territoire européen date de 1987 en
Espagne et concernait le sérotype 4. Cet épisode a fait suite a I'importation de zébres infectés et
asymptomatiques de Namibie et a engendré la mort d’au moins 1500 chevaux. Le foyer s’est étendu au
Portugal et au Maroc et a nécessité la mise en place de mesures d’isolement et de vaccinations massives
qui ont couté plus de 30 millions de dollars avant de parvenir a éradiquer la maladie.

Derniéres nouvelles du monde : cas de ’Afrique du Sud

En Afrique du Sud 8 des 9 sérotypes circulent de fagon enzootique. Un dispositif spécifique a ce pays avait
été mis en place par les autorités vétérinaires sud-africaines en collaboration avec I’'Union Européenne.
Ainsi, I'UE avait demandé qu’une zone de surveillance sans vaccination autour de Cap Town et

gu’une zone de protection avec vaccination autour de cette derniére ait été mise en place. Les chevaux
qui devaient étre exportés vers I'UE devaient subir une quarantaine (40 jours) en station confinée a Cape
Town. En 2011, un foyer dans la zone de surveillance avait entrainé I'arrét des exportations vers I'UE. En
mai 2013, soit 2 ans apres cet épisode, une visite de controle a été effectuée par les représentants de I'UE.
Cependant, les conditions ne semblent pas encore réunies pour que les échanges directs de chevaux vers
I’'UE puissent reprendre dans des conditions satisfaisantes.

Risque d’introduction en France

Les principaux vecteurs du virus, les Culicoides, sont présents sur I'ensemble du territoire frangais. Une
introduction et diffusion du virus en France est donc théoriquement possible. L’apparition en 2006 dans le
nord de I'Europe du virus de la fievre catarrhale ovine (ou Bluetongue), virus qui a un cycle
épidémiologique trés semblable a celui de la peste équine (méme famille virale, mémes vecteurs, méme
modes de transmission et caractéristiques physio-pathologiques similaires), a renforcé I'idée que le risque
d’introduction et de diffusion de la peste équine en France était loin d’étre nul. L'émergence en 2011 du
virus Schmallenberg, lui aussi transmis par des Culicoides, contribue également a illustrer la potentialité
d’apparition en Europe de ce type de maladies vectorielles.

Depuis I'épisode espagnol de 1987 a 1990, la réglementation européenne relative a I'importation
d’équidés vivants a beaucoup évolué afin de prévenir I'introduction du virus via des hotes infectés.
Cependant, en ce qui concerne la Bluetongue, la cause de son émergence en 2006 n’a toujours pas été
élucidée et les importations légales d’animaux infectés semblent étre hors de cause. D’autres voies
d’introduction moins aisément contrélables sont ainsi actuellement envisagées (introduction d’un vecteur
infecté via les vents ou les transports commerciaux (avions, bateaux, trains etc.), commerce illégal
d’animaux...). Le virus de la peste équine pourrait emprunter des voies similaires pour parvenir jusqu’au
territoire francais. Il est donc important de bien garder en mémoire le tableau clinique de la maladie car
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une détection précoce est un élément clef dans le controle de ce type d’infection dont les conséquences
pourraient étre dévastatrices pour I'ensemble de la filiere.

Rappels : tableau clinique, diagnostic différentiel et diagnostic

La période d’incubation varie entre 2 et 14 jours et les premiers signes cliniques apparaissent
généralement entre 5 et 7 jours aprées I'infection. La sensibilité de chaque espéce d’équidé est trés
variable : Chevaux, taux de létalité dépassant les 90% - Zebres, infection typiquement asymptomatique -
Anes et mules, sensibilité intermédiaire et variable selon les individus.

Quatre formes de la maladie peuvent étre rencontrées :

- Forme pulmonaire ou suraigué (parfois foudroyante) : hyperthermie (40-41°C), dyspnée séveére,
cedéme sus-orbitaire et périorbitaire, pétéchies, jetage spumeux et mort en 24 a 72 heures.

- Forme cardiaque ou subaigué : hyperthermie (39-40°C), insuffisance respiratoire, péricardite
exsudative, évolution en 3 a 15 jours.

- Forme mixte : signes semblables aux deux formes précédentes.

- Forme atypique : signes nerveux ou forme fébrile pure.

Diagnostic différentiel : selon les formes, encéphalites équines, premiers stades d’une piroplasmose,
purpura hémorragique, artérite virale, anémie infectieuse, autres causes d’insuffisance respiratoire,
d’cedéme pulmonaire et de péricardite.

Diagnostic : nécropsie (type septicémique a dominante respiratoire et cardiaque, hémorragies et
pétéchies viscérales), sérologie (anticorps détectables des 10 a 15 jours apres infection) ou virologie. Le
seul laboratoire agréé pour effectuer ces analyses est le laboratoire de santé animale d’Alfort (notamment
I'unité de virologie).

Pour aller plus loin

- Zientara S., Pongon N., Martinez-Lépez B., Sdnchez-Vizcaino J.M., 2012 (Avril). « La peste équine : de
I’expérience espagnole au risque pour la France. ». Bulletin épidémiologique, santé animale et
alimentation n°49 spécial équidés : 26 — 29. http://www.ansespro.fr/bulletin-
epidemiologique/Documents/BEP-mg-BE49-ar...

- Mellor, Philip. Scott, et Christopher Hamblin. 2004. « African horse sickness ». Veterinary research 35
(4) (ao(it): 445-466. doi:10.1051/vetres:2004021.

- Monographie Peste équine : http://agriculture.gouv.fr/sites/guide_epizooties/monographies/f-
pe.htm
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Appendix 5: Article in a Professional journal published in ‘N° spécial de Pratique Vétérinaire Equine’.
Octobre 2014, 142-151. S. Zientara, C. Faverjon, A. Leblond, S. Lecollinet. La peste équine : épidémiologie,
diagnostic et prévention.
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des équidés, caractérisée par une évolution

grave, le plussouvent mortelle, de roubles
fébriles intenses, associés 4 des atteintes sévéres
des fonctions cardiaque et respiratoire. Elle est
devenue une véritable entité nosologique avec
'érablissernent en différentes régions du continent
africain d’un peuplement d’équidés européens.
L’histoire de la peste équine refléte en quelque
sorte I'exploration de ce continent et I'introduc-
tion concomitante & équidés sensibles. Plusieurs
épizooties spectaculaires ont porté la peste hors

FIGURE 1: ZONE D’ENZOOTIE POUR LE
VIRUS DE LA PESTE EQUINE

I a peste équine estune maladie saisonniére

[0 Sémtyped préck minant, au moirs jusgwen 2007
I Cifférents sérotypes présents
I Heuf sérotypes de peste équine présents

La diversité génétique desvirus de la peste douine
suit un gradient croissant du nordau sud du conti-
nentafricain (voir le dégradé de rouge: au nord,
historiguement, le séroty pe 9 était prédo minant
alors que les neuf séroty pes sont réguligrement
décrits en Afrique du Sud et de I'Est).
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de son berceau africain et atiré I'anention des
autorités vétérinaires sanitaires sur la menace
qu’elle constitue pour le cheptel équin mondial
en raison de son pouvoir de diffusion rapide.

—Répartition géographique

et importance économique

La peste équine est enzootigue sur le continent
africain au sud d'une ligne allant du Sénégal
et de la Gambie 4 l'ouest 4 PEthiopie 4 I'est
el jusqu’en Afrique du Sud (figure 1). La peste
équine est certainement présente depuis long-
temps en Afrigue du Sud, mais elle n'y a &
signalée qu'aprés la premiére grande épizootie
de 1719, provoquant la mort de 1 700 chevaux
[22]. Elle pewt sortir hors de cette zone d'enzoatie
et provoque dans les nouvelles régions ol elle
apparait des flambées épizootiques meurtriéres 4
titre d’exernples, les trois épizooties de 1943-1944
en Eg}rpte, en Palestine, en Syrie, en Jordanie et
au Liban, de 1959-1960 au Moyen-Orient et
en Asie, qui entraina la mort de 300 000 équi-
dés (Chypre, Turquie, Liban, Iran, Trak, Syrie,
Jordanie, Palestine, Pakistan et Inde), et de 1965-
1966 dans le Maghreb et en Espagne. Ces trois
épizooties ont outes éé causées par des virus
de sérotype 9.

L'Europe et PAfrique du Nord sont restées
indemnes jusqu'en 1987, o un fover, di 4 un
virus de sérotype 4, a été confirmé dans la pro-
vince de Madrid (encadré et figure 2 complé mentaires
sur www.le pointveterinairefr) [16].

Depuis 2007, des incursions inattendues de virus
de sérotypes 2 et 7 ont été décrites dans plusieurs
pays d’Afrique centrale (Sénégal, Mali, Gambie,
eic.) o historiquement seuls des virus de sérotype
9 avaient éré isolés (figure 3). Cette expansion
récente de deux sérotypes viraux aux confins des
pays du Maghreb est particuliérernent ingui éante,
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Eléments A retenir

+ La peste équine est une maladie virale
non contagieuse présente en Afrique et
transmise par des moucherons du genre
Culicoides.

+ La peste équine est une affection gra-
vissime des chevaux, avec des taux de
mortalité pouvant atteindre 100 % dans

+ Des mesures de quarantaine et de
contréles aux frontiéres sécurisent les
mouvements de chevaux vers I'Europe.

+ La lutte contre des foyers de peste
équine repose sur des mesures de pro-
phylaxie sanitaire et sur une vaccination
adaptée.

les formes pulmonaires de I'infection.

I AHSV-2
[ R
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D'aprés les rapports OIE/Promed et une revue de la littérature [ 3,12, 24]. AHSY : acronyme du virus de la peste équine (African horse
sickness vimus).

les expériences récentes avec le virus proche de la
fidwre catarrhale ovine ayant moniré qu'une fois
ce type de virus présent en Afrique du Nord, il
peut facilernent et rapidemnent disséminer dans
le bassin méditerranéen.

—Epidémiologie

Espéces affectées

La peste équine est une maladie qui n’affecte,
dans les conditions naturelles, que les équidés,
et principalement le cheval, de loin le plus sen-
sible (formes aigués et suraigués fréquemment
mortelles), puis le mulet et le bardot (formes
curables généralement), et, enfin, I'ine (formes
volonters asymptomatiques).

En dehors des équidés, seuls les chiens sont
hautement sensibles 4 la peste équine et peuvent
développer une forme pulmonaire fatale [21]. Ces
formes restent cependant rares, de nombreux
chiens présentant aprés infection une sérocon-
version sans signes dirigues. De plus, les caridés
ne joueraient qu'un role anecdotique dans le
cycle de ransmission de la peste équine et sont
actuellement considérés comme des culs-de-sac
épidémiologiques.

Sensibilité

Llige et le sexe ont peu ou pas dlinfluence sur
I'évolution de I'infection : les sensibilités indi-
viduelles de chevaux dgés de 4 mois 4 plus de
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FIGURE 4 : STRUCTURE DU VIRUS DE LA PESTE EQUINE

A »
v

5
B VPT
P S [
Complexe de ransription
- VPG
- VP Pol)
- VP4 (CAP)

’ 10 segments dARNID

50nm

La capside externe est

composéede VP2 etde VPS5, La
Pl capside interne, ou core, com-
prend deux protéines majeures,
VPZ et VP7, et trois protéines
mireures, VP, VP4 et VPE [29].
Le génome, |ocalise dans la cap-
W5 sideinterne estconstitué dedix
segments dARM doublebrin de
tailles différentes numé rotés de
1410 en fonction de leur ordre

* ‘:"E]T de migration en gal de polya-

= NG crylamide (& droite) et classés en
segments bngs (L pourlange, L1
aL3), moyens (M pour medium,

e NSIA 0 M aMBletcourts (S pourshort,
57 & 5100 [25).

15 ans, des deux sexes, sont identiques [13].
L'influence du patrimoine génétique est, en
revanche, illustrée par la grande résistance des
zébres et des fnes, et par observation que les
races de chevaux import ées sont beaucoup plus
réceptives et sensibles que les races locales, et ne
semblent pas acquérir de résistance, méme aprés
plusieurs générations en région infectée, De plus,
Laegreid et coll. ont monré que trois isolats clonés
de virus éguipestique provoguaient des formes
cliniques caractéristigues (formes pulmonaire avec
100 % demortalité en 6 4 & jours, cardiaque avec
60 % de mortalité en 12 4 14 jours etfébrile sans
mortalité) chez des chevaux qui n'ont jamais éré
en contactavec ce virus [14]. Ainsi, le phénotype
viral est bier, expérimentalernent, le facteur déter-
minant primaire de la forme clinique provoquée
par I'infection chez ces chevaux.

Agent pathogéne

Le virus équipestique appartient au genre
Orbivirus de la famille des Reoviridae, comme
le wirus de la fiévre catarrhale ovine (ou BTV
pour Muetongue virus).

Structure

Le virus équipestque posséde sept protéines
structurales différentes, de VP1 aVP7, réparties
en deux capsides [6] (figure 4). De plus, cing pro-
téines non structurales, NS1, NS2,NS3 (NS3A)
et NS84, sont identifiées dans les cellules infec-
tées. Sur la base de la variabilité génétique de la
protéine de capside externe VP2, neuf sérotypes
du virus de la peste équine ont pu étre définis
par neutralisation virale [11].

Réassortiment de segments génomigues
L’organisation du génome viral en plusieurs
segments génomiques autorise les échanges de
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segments (ou réassortiments) entre les virus au
cours d'infections simultanées d'un méme animal
par deux virus de la peste équine. Ce phénoméne
de réassortiment participe l'évolution génétique
rapide des Orbivine. b vitro, des virus réassorts
de la peste équine ont été obtenus par co-infec-
ton de cellules par des virus de sérotypes 2, 3
et 4 [18]. Des données suggérent qu’ie vito les
événements de réassortiment seraient plus fré-
quents chez I'insecte que chez Ihite vertébré,
et qu'ils sont plus difficiles 4 documenter chez
I'hite vertébré pour le virus de la peste équine
que pour la figvre catarrhale ovine [28].

Sources de virus, transmission

Ibies de contamination

ATexception du casparticulier des canidés géné-
ralement contaminés par ingestion de matiéres
virulentes (viandes ou abats d"équidés infectés),
la peste équine se transmet chez les équidés de
fagonindirecte par I'intermédiaire d’arthropodes
hématophages. De nombreux vecteurs semblent
potentiellernent capables de transmetire la peste
équine (notamment les moustiques des genres
Aedes, Caddex: et Anopheles, oules iques des genres
Hyalonmaet Riipicephalus) [20). Cependant, le
vecteur biologique majeur est un moucheron du
genre Culicoides [8]. Les espéces de Culicoides
(C.imicola, C. bolitinos en Afrique, C. sonorensis
en Amérique, C.obsoletus et C. pulicaris) dont le
rdle dans la transmission de la peste équine est
prouvé ou trés fortement suspecté sont auss
impliquées dans la ransmission de la fiévre
catarrhale ovine, Parmi ces espéces vectrices,
C. imicola est décrit depuis 2000 en Corse et
plus largement en Europe du Sud et C. obsoletus
est abondant en Europe de 'Ouest et du Nord.
Une quantité importante de particules virales
infectieuses dans le sang de P'équidé est nécessaire
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pour gu'une contamination de I'insecte vecteur
puisse s'éablir (titre de 10*a 107 DMISO/002 ml
sang pour C. fmicola).

Réservoir de virus

Llapparition explosive de la maladie certaines
années, supposant la contamination simultanée
d'un grand nombre d'insectes avant 'apparition
des premiers cas équins, plaide en faveur de
Iexistence d'unréservoir de virus prés entant une
virémie persistante ou 4 éclipse. Les chevaux ne
seraient que les révélateurs d'une virose entrete-
nuea bas bruitchez au moins un hdte réservoir
(zébres, nes africains, etc.).

La persistance de la peste équine en Espagne
pendant 4 ans pourrait, d aprés Mellor, 8" expliquer
par la capacité de survie de C.dmicola en hiver,
saison particuliérement tempérée dans le sud de
I'Espagne [19]. Une autre hypothése avancée
voudrait que les fnes ou les mules infectés aient
servis de réservoirs. Ainsi le virus pourrait-il circu-
lerentre la population d’insectes vecteurs dont la
densité est excessivernent réduite pendant la saison
froide et la population d'ines ou de mules chez
laquelle la virémie est plus longue (virémiede 10 4
27 jours) que chez le cheval (virémie plus intense
de 4 4 8 jours,au maximum 18 jours) [9,17,19].

Evolution

L'évoluton dans le temps des épizooties de peste
équine est directernent liée aux périodes d'activité
des vecteurs en saison chaude et humide :

- enrégionsubtropicale, aprés la saison des pluies ;
- en région tempérée, dés le printemps et jusqu’a
la fin de I'automne.

L'évolution dans l'espace est tributaire des
zones de pullulation des vecteurs. Celles-ci se
rencontrent surtout dans les régions basses et
humides (marécages, bords des fleuves et cours
d’eau) et 4 proximité des points d’eau, ou le
couvert végétal entretient les conditions d’hygro-
métrie favorables au développement des larves
etd la survie des adultes.

—Pathogénie

Aprés inoculation par le vecteur, le virus équi-
pestique se réplique intialernent dans les neeuds
lymphatiques régionaux. Puis il dissémine par
voie sanguine, entrainant une phase de virémie
intense pendant laquelle le virus est lié fortement
aux hématies [5, 27].

Une fois dans la circulation générale, le virus
se multplie dans les cellules endothéliales et
mononucléées qui consttuent le site de répli-
cation secondaire [26]. Les organes dbles sont
multiples, incluant les poumons, le ceeur, la rate
etle tssulymphoide, La réplication du virus dans
ces organes cibles entraine une seconde phase de
virérnie, des lésions des cellules endothéliales et
uneactvation des macrophages avec libération de
cytokines (telles que linterleukine 1 et le TINFw).
Ces cytokines pro-inflammatoires et I'action
directe ou indirecte du virus se traduisent par
une augmentation de la perméabilité vasoulaire
avec transsudation du plasma dans les tssus
sous-cutanés et pulmonaire et les cavités, Ce
phénomeéne est particuliérement grave dans le
parenchyme pulmonaire (edéme, jetage mous-
setx, asphyxie) et le coeur (défaillance cardiaque).
Le wopisme des virus équipestiques pour les cel-
Iules endothéliales pulmonaires ou cardiagues est
variable, et permet d'expliquer les diverses formes
diniques observées de la maladie. Des travaux
récentsont montré existence d'une corrélation
entre le pouveir infectieux des souches in vitro
et 'intensité des lésions anatomo-pathologiques
découvertes @ vivo [27]. La virulence est asso-
dée i des phénoménes thrombocytopériques, &
Faugmentation du temps de coagulation et 4 la
présence de produits de dégradation de la fibrine.
Ces mécanismes sont la conséguence de la lyse
et de I'acivation des cellules endothéliales et
des macrophages, qui aboutit & une coagulation
intravasculaire disséminée.

—Symptémes

Llincubation est de durée variable selonla viru-
lence de la souche et la réceptivité de I'équide,
en moyerne de 3 4 15 jours.

La maladie survient aprés une poussée fébrile
irréguliére et progressivement ascendante. Elle
peut ensuite évoluer sous des formes quelque peu
différentes selon la prédominance de latteinte
pulmoenaire ou cardiaque (photos 14 3) [27].

Forme pulmonaire
Clest la forme la plus grave et la plus dramatique.
Elle débute par une ascension thermique rapide

Formes diniques de peste
équine

0. et 02, Fome respirmtoire,
avec un jeta ge séeux
abondant. La présence
de sang dans ke jetage
signe des émormgies
pulmonaines,

03, Forme cand Bque, avec
des cedémes de la
face, des saliéres, des
paupiéres et de l'encolume.

Clichés : J.-P. Gani&re, Onirs,

et 5. Zientara, Ansas
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(40 4 42°C en 2 44 jours) assodée i un syndrome
febrile avec une tachyeardie, une congestion des
muguenses (parfois des pétéchies) et une anorexie
plus ou moins brutale. Une sudation, diversement
localisée (naseaws base des oreilles, faces latérales de
I'encolure,aine, anus, eic. ), est notée chez certains
individus [22]. La fréquence respiratoire s’accélére
et une dyspnée s'installe : le fadés est angoissé, la
langue pendante, et les naseau sont dilarés, T 'animal
se tient immaohile, la tére tendue sur I'encolure, les
membres antérieurs écartés et le dos volé. La
tachycardie devient marnifeste, le pouls rés discret,
signant I'évolution vers un état de choc.
Ladifficulté respiratoire s"accentue rapidementet
unjetage séreux vient encombrer les naseaux june
toux forte, spasmodique et douloureuse secoue
Panimal. Trés vite, sa fréquence augmente et elle
se transformeen quintes prolongées irrépressibles.
Le jetage prend alors un aspect spumewux de
“blanc d’ceuf en neige™ 4 cause de son brassage
avec I'air dans les voies respiratoires.

A cestade, 'animal maintient avec peine son équi-
libre, il se couche ou tombe brutalement et meurt
par asphyxie sans agitation. Dans les minutes
qui précédent la mort, de grandes quantités de
jetage mousseux peuvent s'écouler des naseau.
Chez certains individus, il §"écoule moins d'une
demi-heure entre 'apparition de la dyspnée et
la mort. Cependant, en général, I'issue fatale se
produiten 24 4 48 heures.

Forme cedémateuse ou cardiaque

Elle se rencontre chezles individus plusrésistants
ou infectés par une souche de pouvoir pathogéne
plus faible [4].

La poussée thermique initale est, ici, plus pro-
gressive el moins intense (acmé 4 39 4 40 °C
atieint en 104 12 jours). Elle se maintient ensuite
en plateau ou, le plus souvent, diminue progres-
sivernent. Les signes généraux sont plus discrets
el 'appétit peut étre conser vé,

Vers le 14=4 15¢jour, alors que 1a baisse de tem-
pérature est amorcée, apparaissent des cedémes
sous-cutangés. Ils débutent dans les fosses tempo-
rales par une déformation en saillie de la région
sus-orbitale, qui peut atteindre le volume d’une
mandarine en 3 4 4 jours. La précocité d'appa-
rition de ces eedémes en cours de phase fébrile
est un élément de gravité du pronostic.
Parfois, ce gonflement disparait en quelques
jours, Il peut cependant persister, s'étendre et
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atteindre les paupiéres qui, uméfiées, se ferment
avec parfois une éversion de la conjonctive. Le
globe oculaire est exorbité par I'eedéme sous-
jacent, il fait saillie et devient fixe. Un épiphora
abondant souille les joues, les régions des mas-
séters et intermandibulaire, le chanfrein et les
naseaux, L' eedéme atteint parfois le larynx et un
bruit de cornage, prindpalement inspiratoire au
début, peut étre audible. La téte présente alors
un aspect méfié. Dans certains cas, I'eedéme
envahit aussi l'encolure et descend le long des
membres antéri eurs, Il s’agit dun cedéme froid,
indolore, ferme au début : le “signe du godet”
n'apparait qu’en quelques jours.

Les bruits du ceeur deviennent plus faibles en
raison de la formation d’une péricardite exsu-
dative. Le pouls, jusque-la fort et bien frappé,
devient filiforme et imperceptible.

Dans les cas graves, le processus cedémateux
peut s'étendre a I'appareil respiratoire (accé-
lération du rythme, expiraton biphasique et
phase expiratoire augmentée ), mais la dyspnée
n'est jamais aussi intense que dans la forme
pulmonaire, et la toux et le jetage demeurent
absents. I animal, jusque-ld apathique, finit par se
coucher. L’ état de choc s’aggrave, et 'apparition
de sueurs froides, le refroidissement des oreilles,
des mouvements désordonnés (simulant des
coligues) et une détresse respiratoire annoncent
Parrét cardiaque.

Llévoludonmortelle se fait en 3 4 10 jours aprés
le développement des cedémes sous-cutanés,
mais la guérison est également possible quelle
que soit 'importance des cedémes sous-cutanés,

Forme intermédiaire

Dans ce cas,les signes pulmonaires etles cedémes
sous-cutanés apparaissent simultanément ou
successivement dans un ordre indéterminé. La
défalllance cardiaque ou I'asphyxie emporte
Panimal. I’examen nécropsique révéle la coexis-
tence trés fréquente des atteintes pulmonaire
et cardiaque malgré un tableau clinique plus
sélectif.

Formes fébriles

Une réaction thermique (hyperthermie de 394
40 °C) qui s 'accompagne d'une légére polypnée,
d'une tachycardie, d'une inappétence et d'une
nonchalance s'estompe en 10 4 15 jours avec
retour & un habitus normal.
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—Examens complémentaires

Examens de laboratoire

Quelle que soit la forme clinique, les résultats des
numération et formule sanguines montrent une
leucopénie caractérisée par une neutropénie, une
thrombocytopénie et une hémoconcentration.
La biochimie sanguiner évéle des anomalies non
spécifiques, avec, selon les cas, une élévation de
la créatine kinase, de la lactate déshydrogénase,
de la phosphatase alcaline, de la créatinine etjou
de la bilirubine.

Radiographies, échographie

Les radiographies des poumons permettent
d’objectiver I'cedéme pulmonaire, et I'échogra-
phie thoracique de quantifier les épanchements
pleuraux et/ou péricardique.

—Leésions

Lésions macroscopiques

Le mbleau nécropsique est de type septicémique
4 dominante edémateuse 4 la fois respiratoire
et cardiaque [4].

Forme pulmonaire

Les lésions essentielles intéressent la cavité tho-
radgue qui, 4 'ouvermure, apparait totalerment
remplie par des poumons mrgescents. La plévre
viscérale est luisante, humide, épaissie, parfois
semée de pétéchies, et présente des plagues géla-
tineuses ou fibrineuses, surtout prés de la base
du ceeur et autour des vaisseaux du hile. Le
parenchyme pulmonaire est ferme, irés humide,
d'aspect irrégulier et bosselé en raison dela saillie
des cloisons interlobulaires gorgées de sérosité.
Des foyers emphysémateux déforment son bord
ventral . Une sérosité claire, rose péle, sourd abon-
damment & lacoupe etun liguide blanc mousseux
s'échappe 4 la pression. Les bronches, la rachée,
le larynx et les cavités nasales sont encombrés
d'une spumosité blanchitre recouvrant une
mugqueuse congestionnée porteuse de pétéchies.
Les neeuds lymphatiques sont hypertrophiés,
infiltrés, enrobés d’un cedéme gélatineux qui
s’étale dans le médiastin, porteur de suffusions
oun d’ecchymoses. La cavité pleurale renferme
un épanchement clair, jaunétre, plus ou moins
abondant (de quelques millilitres 4 plusieurs
litres) . La muguense del'estomac, vers le cul-de-
sac glandulaire et la région pylorique, est épaissie

par I'edéme, congestormée (de fagon diffuse
ou par plagues) et des lésions hémorragiques
(notamment en région fundique) sont observées,
Le foie, la rate et les reins sont congestionnés,
mméfiés 4 des degrés divers (photo ).

Forme cardiaque

Leslésions essennelles intéressent le tssu conjoncaf
sous-cutané et I'appareil cardiovasculaire. Dians les
tunéfactions, les dssus comjonctf et conjonctivo-
adipeux sontimprégnés d’une sérosiié gélatineuse
pouvant infilirer les différents tssus o espaces
de la téte, deencolureet de la région axillaire. La
section des muscles de la téte etdu cou laisse exsu-
der un liquide jaunfitre, méme en région profonde.
De plus, une péricardite exsudative bien dévelop-
pée est de régle. La graisse épicardique d’aspect
hémorragique peutétre remplacée par un cedéme
gélatineux. L’ épicarde etl’endocarde sont le siége
dhémorragies diffuses ou localisées. Ces derniéres
se retrouvent également au sein du myocarde qui
présente des cedémes et une myositedégénérative
avec des zones de nécrose focale.

Les lésions digestives, hépatiques, spléniques
el rénales sont identiques a4 celles de la forme
pulmonaire, mais souvent plus accusées,

Forme mixte

Cette forme est caractérisée par la coexistence des
lésions pulmonaires, cardiaques, cedémateuses
et digestives précédernment décrites.

Lésions microscopiques

1 n’extiste aucune lésion microscopigue camciéris-
tique de la peste égquine. Des lésions histologi ques
de congestion, d'cedéme et d hémorragie en rapport
avec les lésions macroscopiques sont observées.

—Recommandations
thérapeutiques et pronostic

Il nexiste pas de traitement antiviral spécifique.
Letraiternent de soutien indutI'immobilisation en
box et la favorisation de la diurése pour contriler
I';edéme pulmonaire. Cependart, il ne semble
pas influer sur 'évolution d’aucune des formes
cliniques, etcompte tenu de la gravité de la maladie
et durisque d'infection de nouveaux moucherons
4 partirdes équidés infectés ou malades, le traite-
ment de la peste équine n’est pas recormmandé.
La morbidité et la mortalité associées al'infection
varient selon'espéce et le statut immunitaire des

04, Hémorragies
dars la région fundigue
de l'estormac.

Cliché: & Zientara, Anses
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animaux infectés, Les chevaux sont les plus sen-
sibles, avec un taux de mortalité de 504 95 %, selon
la forme dinique présentée. La forme pulmonaire
est invariablement fatale, le taux de mortalité est
supérieur 4 80 % pour la forme mixte, de 50 &
70 % pour la forme cardiaque, et les chevaux qui
présentent seulement de b figvre meurent rarement.
De plus, le taux de mortalité est d’environ 50 %
chez les mules et de 54 10 % chez les dnes euro-
péens et asiatiques. Les dnes africains etleszébres
meurent rarement des suites de cetie infection.

—Diagnostic

Critéres de suspicion

En plus de la fievre &evée, les ééments del'anam-
nése, et en particulier un historique récent de
voyage dans unpays  risque pour le cheval malade
ou I'un de ses congénéres dans I'écurie ou une
écurie voisine, sont déterminants pour éablir la
suspicion. Les autres facteurs de risque incluent la
proximité avec un aéroport ou un port, associée 4
la présence de vecteurs potentiels dans la région.

Diagnostic clinique

et anatomo-pathologique

Les symptdmes et les lésions de la peste équine
nesont pas pathognomonigues, mais les ableaws
clinique et nécropsique, ains que le caractére
épizootique de la maladie permettent d'orienter
le diagnostic.

Diagnostic différentiel

La peste équine peut cependant ére confon-
due, nommment au début de la maladie, avec
certaines formes d'anémie infecieuse éguine ou
d’artérite virale, I'anaplasmose granulocytique,
la pneumonie équine & virus Hendra (maladie
exotique), I'infection par le virus de I'encéphalose
équine (maladie exotique), la babésiose ou la
theilériose, la figvre charbormeuse, le purpura
hémorragique ou encore une défaillance car-
diaque congestive. Face & une infection d’allure
Epidémique, la piste toxicologique est également
investiguée, avec en particulier la recherche dans
I'environnement ou dans I'alimentation du cheval
de substances toxiques entrainantdes défaillances
cardiovasculaires ou respiratoires, ou des morts
subites. L'intoxication par I'if, la contamination
delaliment par des ionophores ou encore Iinges-
ton d’hypoglycine A, présente dans les graines
de plusieurs arbres du gerre Aeer (Cest-d-dire
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les érables), powrront éire évoquées dans cette
hypothése.

Diagnostic de laboratoire

Le recours au laboratoire est donc nécessaire
afin de confirmer le diagnostic et identifier le
sérotype du virus (crucial pour la mise en place
des mesures de prophylaxie médicale).

Prélévements

Le virus peut étre isolé 4 partir d’un échantillon
de tissu splénique, de poumon, de ceeur ou,
chez 'animal virémique, de sang total prélevé
suranticoagulant (EDTA) et conservéd + 4 °C.

Mise en évidence de Pagent pathogéne

+ Lisolement du virus deit étre tenté le plus ot
possible. Si la virémie atteint un titre maximal
pendant la période fébrile initale, les chances
d'isolement diminuent dés 'apparition et I'évo-
lution des signes cliniques.

L'isolementdu virus est classiquement effectué :
- s0it par inoculation 4 des cultures de cellules.
Les suspensions d’hématies lavées sont inoculées
4 des cultures de cellules VERO ou BHK21.
Lleffet cytopathique apparait 3 4 7 jours aprés
inoculation ou aprés plusieurs passages en aveugle.
Lisolement et l'identification du virus nécessitent
un délai minirmal de 74 14 jours ;

- soit par inoculation intracérébrake 4 des souriceaux
nouveau-nés. Aprés une période dincubation de 4
420 jours, les souriceaux présententdes signes de
prostration, de parésie, d'incoordination motrice,
etmeurenten 4 4 5 jours [11]. Linoculation aux
ceufs embryormés peut aussi ére employée.

+ L'identification du virus peut faire appel a
des réactions sérologiques utilisant le virus isolé
comme antigéne :

-la fixation du complément ou I'immuno-
fuorescence directe ou indirecte pemmettent 'iden-
tification du virus en culture de dssus. Ce test est
spédfique de groupe. Il peut ére e ffectué 4 partir
de tssu splénique, mais manque de sensibilité ;
-le test de nentralisadon virale 4 'aide dantisé-
rums spécifiques de type permet 'identification
du type de virus encause. Iln'y a pas de neutra-
lisation croisée entre les neufvirus,  exception
des sérotypes 6 et9 (mais aussi, dans une moindre
mesure, entre les sérotypes 1-2, 3-7 et 5-8) ;

- des techniques récentes de polymmerase chain
reaction en temps réel (RT-PCR) permettent
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désormais dlidentifier etjou de typer le virus
en quelques heures. Elles amplifient soit des
segments génomiques conservés (1, 3,7) pour
metire en évidence un virus équipestique, soit
des segments hautement variables (segment 2,
VP2) pour le typage[1, 3, 24].

Diagnostic sérologique
Lediagnosticbiologique d’une suspicion de peste
équine ne doit pas ére fondé sur Mudlisation des
tests sérologiques, mais sur 'solement du virus.
En effet, de nombreux chevaux vont mourir
avant d’avoir développé une réponse immuni-
taire 4 médiation humorale puisque les anticorps
n'apparaissent que 104 14 jours aprés 'infection.
Cependant, les techniques sérologiques per-
mettent, 4 1"échelon d'un pays ou d’une région et
enl'absence d'isolement du virus, de confirmer
la suspidon d'une épizootie.

+ La réaction de fixadon du complément est
une des méthodes sérologiques de référence
recommandées par "Organisation mondiale de
la santé animale (OIE) [23]. La présence d’anti-
corps fixant le cornplément dans le sémum d'un
animal traduit ' évolution d'une infection récente
par un virus appartenant au groupe de la peste
équine et peut aider 4 la confirmer du vivant
de I'animal lorsque les techriques de diagnos-
tic direct sont peu performantes. Cependant,
l'anticomplémentarité des sérums ddnes et de
certains sérums de chevaux rend Iuilisaton de
cefte méthode parfois délicate, voire impossible.
+ Les anticorps neurralisants sont décelés 4 partir
de la woisiéme semaine et persistent pendant
plusieurs années.

+ Dees tests Elisa indirects ou par compétition, qui
sont largementutlisés dans les laboratoires de dia-
gnostic, ont &é développés ces 20 dernidnes années.
Ils mettent en ceuvre des anticorps polyclonaux
oumonodonaux et des antigénes constitués de
virus purifié oude protéines exprimées en systéme
procaryote ou eucar yote. Ces technigues détectent
des anticorps de groupe et permettent d'identfier
spécifiquement une infection ou une vacdnation
parun virus équipestique [21]. Laviada et coll . ont
développé un test Elisa qui détecte les anticorps
anti-N53 [15]. Ces anticorps permettraient de
différencier les animaux infectés ou vaccinés avec
un vacdn vivant atténué (présence d’anticorps)
des animaux vacdnés avec un vaccin inactvé
(absence d'anticorps anti-NS3).

—Prophylaxie

La harte contre la peste équine consiste a ermpécher
I'introduction de la maladie dans une région ou
un pays (prophylaxie sanitaire), ou 4 imiter son
extension & partir d’un foyer déclaré (prophylaxie
meédico-sanitaire).

Prophylaxie sanitaire

Elle comprend un ensermble de mesures qui ont
pour objectifs de prévenir 'introduction du virus
dans un pays indemne, d’empécher I'extension
d’une épizootie a des régions voisines indemnes,
de limiter, de circonscrire et d'isoler les fovers de
la maladie et d’en assurer |'éradication.

En région accidentellement infectée, I'abattage
des anirmaue atteints et contarmings, la destruction
rationnelle de leurs cadavres et une désinsec-
tsation sont mis en ceuvre dans les foyers. Le
Code zoosanitaire international de I'OIE définit
les notions de pays ou de région indemne de
peste éguine ou infecté par la maladie, ainsi que
les garanties sanitaires exigées lors de Iimpor-
tation d'équidés en provenance de ces zones.
Des directives de 'Union européenne précisent
les conditions de police sanitaire régissant les
mouvements et les importatons d’équidés en
provenance des pays ters, les régles de controle
et les mesures de lutte contre la peste équine.
Lautorization d'importation en provenance de
pays infectés est conditiormée a la mise en ceuvre
d'une quarantaine eta ' obtentionde deux résultais
négatifs 4 deux épreuves sérologiques (4 uninter-
valle d'au moins 21 jours et dau plus 30 jours),
la seconde épreuve étantréalisée 1 4 joursan plus
tard avant le chargement des animaux.

Prophylaxie médicale

Elle consiste en la protection des es péces sensibles
par une immuri sation spéd fique active (vaccins
monovalents ou polyvalents) ou passive (sémopro-
phylaxie). 1 conwient de déterminer le sérotype
en cause avant foute immunisation, puisqu’il
n'existe pas ou peu de protection croisée entre
les neuf sérotypes du virus de la peste équine.
La prophylasie médicale repose,a Pheure acmelle,
sur I'emnplod de vacdns vivants atténués obtenus
par passage des souches vaccinales en culture
cellulaire. Ces vacdns cellulaires sont encore
largement utilisés, 4 l'image des vaccins atténués
multivalents produits par OBP (Onderstepoort
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Biologicals Products, Afrique du Sud) et permet-
tant de vacciner contre huit des neuf sérotypes
décrits (1 a4 et 6 49). Cependant, ils présentent
quelques inconvénients :

- la réversion éventuelle de la souche vaccinale &
la virulence {chez I'hdte ou linsecte vecteur) [5]
- le dévelo ppement d'une virémie postvaccinale
suffisante pour permettre I'infection du vecteur ;
- le risque potentiel d’ap pariton de virus réassortis
parrecombinaisonlors de la multiplicati on simul-
tanée chez un méme animal de plusieurs virus
vaccinaux oude virus vacanal et de virus sauvage ;
- le faible pouvoir antigénique de certains séro-
types (sérotype 4 notamment) utilisés dans ces
vaceins, nécessitant des immunisations répétées ;
- l'impossibilité de différencier les anticorps pos-
tinfectieux et postvaccinaux ;

- des effets tératogénes possibles, interdisant leur
utilisation chez la pouliniére.

Enconséquence, ks vacdns vivants aténués peuvent
érre utilisés dans Iurgence, pour contrbler une
infection émergente en Europe, mais ne présentent
pas une sécurité satisfaisante pour les employer dans
un objectif§ d éradication de la maladie.

Lors de I'épizootie équine 4 la fin des années
1980 en Espagne et an Portugal, un vacdn i
virus inactivé monovalent a été développé par
inactivaion de la souche vacdnale de sérotype
4 d’Afrigque du Sud [7]. Ce vaccin a induit une
protection satisfaisante et de longue durée, mais
n’est plus disponible actuellernent.

De plus, des candidats vaccing en cours de
développement semblent prometteurs. Ils sont
fondés sur Madministration d'un vecteur pox-
viral exprimant les protéines VP2, seules ou en
association avec VP5, ou de pseudo-particules
virales constituées aprés autoassemblage des
protéines de capside VP2, VPS5 et VP7 exprimées
en systéme baculovirus [2, 10, 25]. Les antigé-
nicité etinnocuité de ces deux types de vaccins
apparaissent trés satisfaisantes.

Prophylaxie médico-sanitaire

Linefficadté des seules mesures sanitaires imp ose
I"association des dispositifs des prophylaxies sani-
taire et médicale en pays infecté. Les mesures de
prophylaxie sanitaire sont appliquées dans les foyers
de lamahdie (ghattage des animanx malades, désin-
sectisati on, interdiction des mouvernents) . Autour
des fovers, la vaccination des équidés est obligatoire.
Ces mesures de prophylaxie médico-sanitaire
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ont été appliquées en Espagne, au Portugal et an
Maroc, et ont finalement permis I'éradication de
l'affection au débur des années 1990,

En France, la peste équine est considérée comme
un danger sanitaire de premiére catégorie et
entraine le déploiement par les autorités sani-
taires d'un plan national d'intervention sanitaire
d'urgence. Dés que I'existence de foyer(s) de
peste équine est confirmée, le préfet prend un
arrété portant dédaration d'infection (APDI) qui
prévoit la mise en ceuvre des mesures suivantes :
-dans D'exploitation, 'euthanasie sans délai
des équidés malades et la destruction de leurs
cadawres (Teuthanasie peut étre étendue, selon
les circonstances épidémiologiques, 4 tous les
animaux présents dans le fover) 3

- des mesures de restriction des mouvements
4 I'ensemble des exploitations siluées dans un
rayon de 20 km autour du troupeau infecté, ains
quaux exploitations en lien épidémiologique ;
- la vaccination systématique de tous les équi-
dés se trouvant dans cetie zone de 20 km.
De plus, la réglementation francaise prévoit la
définition d'une zone de protection d'un rayon
d'au moins 100 km autour de Pexploitation infectée
et d'une zone de surveillance distante d’an moins
50 kam du périmétre de lazone de protection, Dans
ces zones, toutes les exploitaions détenant des
Equidés sont recensées el périodiquement visitées.
La vaccination des équidés peutétre rendue obli-
gatoire dans tout oupartie delazone de protection,
mais elle estinterdite dans la zone de surveillance.

Conclusion

Llincursion du virus de la peste équine en Espagne
4 la fin des années 1980 a servi de legon et la
réglementation européenne relative 4 Fim portation
d'équidés vivants a éérenforcée. Ces adaptations
de la réglementation ont jusque-la porté leurs
fruits puisque aucun nouveau cas n'a depuis éré
rapporté sur le sol européen. Cependant, intro-
duction, en 2006 dans le nord de 'Ewope, du
BTV, malgréles mesures de protection existantes,
aravivé les inquiénudes et remis augo(r du jour
la question d’une possible réapparition de la
peste équine sur leVieux Continent. Ces craintes
sont d’autant plus importantes qu'd ce jour le
mode d'introduction du BTV n'a toujours pas
é1é clairement identifié (les importations légales
d’'animaux vivants semblent &re hors de cause
et d'autres voies d'introduction meins aisément
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contril ables sont actuellernent envisagées, cormime
I'introduction d'un vecteur infecté viales vents ou
les transports commerdaus, le cormmerce ill égal
d’animaux, etc.). Cetie épizootie de BTV illusire
bien les possibilités d'inroduction et de diffusion
de maladies transmises par des Culicoides dans

RESUME/SUMMARY

La peste équine constitue un risque saritaire majeur pour I'éle-
vage du cheval en zone d'endémie {Afrique subsaharienne) et
a eté a l'origine & plusieurs reprises de grandes épizooties en
région méd terrangenne (Afrique du Mord et Europe du Sud,
notamment), & la faveur d'échanges d'équidés. L'émergence
inattendue d'unvirus proche, celui de la figvre catarrhale ovine,
dans le nord de I'Europe, en 2006, rend 1égitime |a crainte d'une
introduction du virus de la peste équine sur le territoire frangais.
Afin de lutter efficacermnent contrela pes te éguine en cas d'émer-
aence, le praticien équin, au coeur du dispositf de surveillance,
devra détecter précocement les premiers cas climiques.

Mots clés : peste équine, Culicoides, Afrique.

I'espace européen. Ainsi, il convient de rester
vigilant face 4 cetie menace dont les conséquences
pourraient ére désastrenses. Cela est notarmment
vrai pourla France qui organise en 2014 les Jeux
équestres mondiaux au mois d'aolt, en pleine
période dactivité vectorielle. //

AFRICAN HORSE SICKNESS: EPID EMIOLOGY, DIAGNQOSIS AND
PREVENTION

African horse sickness (AHS) is a devastating disease of equids
caused by an arthropod-bome virus belonging to the Reoviridae
farmily; genus Orbivirus, AMS is considered as @ major sanitary
threat for horses in endemic areas in sub-5aharan Africa. AHS
virus repea tedly caused large epizootics in the Mediterranean
region (Worth Africa and Southem Eurcpe in partic uar), thanks
to the trade of infected equids. The unexpected emergence ofa
closely related virus, the bluvetongue virus, in northern Europe in
2006 has raised the fears of AHS virus introduction into Europe.
To effectively control future AHS incursions, equine practitioners,
key actors in the surveiflance system will have to eary detect
the first clinical cases.

Keywords: African horse sickness, Culicoides midges, Africa.
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Appendix 6: Poster presented at the 7th EPIZONE meeting in Brussel, 2013.
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INTRODUCTION g Europeansituation

African Horse Sickness (AHS) T Since 1990: strengthening of the eurcpean equids importation regulation

Highly fatal viral vector borne-disease mainly transmitted by Culicoides -’k. . Since 1990: EU is Free of AHSV

midges (C. imicola and C. obsoletus). o . - — @ ==} The 2 last emerging animal diseases in EU: were Bluetongue virus (BTV) &

Orbivirus with 9 serotypes confer some cross-protective immunity. Schmallenberg virus

Affects all equid species but in different ways:
- mortality >90% in horses, “60% in donkeys
- mostly subclinical in zebras.

Both transmitted by Culicoides, BTV is very close to AHS virus
Introduction pathways of diseases are yet not well identified ...

L N ihat about the rsk of an AHS
3 X introduction in France?!
Introduction models for AHS already exist but

most are qualitative, and don’t study variation of AHS risk over space and time .
Our evaluation can serve as a basis for risk-based surveillance.
We define:

Geographical distribution

- Endemic in Subsaharian countries, zebras are reservoirs,
- Rare outbreaks in Northern Africa, the Near East and The Iberian Peninsula,

- Last outbreak in European Union (EU): Spain and Portugal from 1987 to 1990.

Prob 'P.) of AHS introduction = P. release X P. establishment

P, establishment is defined as the probability that an introduced virus can spread to an
indigenous host. This is a key factor in the risk analysis.

OBIJECTIVE
Develop a spatio-temporal quantitative risk analysis model

for the introduction and establishment of AHS in France

METHODOLOGY
Pathway considered: legal importation of equidae (horses, donkeys (hinnies, mules) and zebras)

Stochastic model:

Initial spread
Number of Culicoides feeding on imported infectious equidae in the arrival area
c g F H of AHSV

Number of Culicoides that become infected
Culicoides bites Equidae becomes
c Number of Culicoides to survives until next infectious blood mea ‘ an equidae infected
Temporal scale: Month Softwares:
R, Excel and @Risk running 10000 iterations for each Monte-Carlo

Spatial scale: simulation performed.
France divided into 9 regions based on: Sensitivity analysis:

Administrative areas to bulld an operational model Made by using the sensitivity analysis tool in @Risk.
- 5climatic zones (mediterranean, south-west, oceanic and semi-

oceanic, degraded oceanic, semi-continental and mountain) Data sources: 9 french areas considered
- Relative density of horses and cattle based on 2 data sources (SIRE: Vector density (CIRAD) (graen: limate, blue:

« Systéme d’ldentification Relatif aux Equidés » and AGREST) Monthly temperature (MARS-Agridcast) turquoise: degraded oceanic, orange: south

west climate, red: mediterranean)

RESULTS

APR _MAY JUN JUL AUG SEF  OCT NOV DEC
7 0013 0,161 0,195 0,204 0,076
. Establishment of AHS virus in France 0063 0,162 011 0,173 0319 0,047 0,086
0038 01 0329 0217 0118 001
0,028 0,183 0,023 0,271 0,014

Average Probability of Establishment in France via legal import of equidae 0,032 0,385 0,307 0,265 0,414 0014 0,015
0,033 0072

: 0, 4l o,
zo — Median Horses
g Sth Perc Horses I 147 0,236 0, !
X 95th Perc Harses ) >
) per zone and per year ,
y —Median Donkeys 013 0,192 10,65 0,58 0021 0,033
5th Perc Donkeys 0138 0028 007 0358 052 0297 0614 0,029
95th Perc Donkeys 0019 038 0,231 0062 0034
% 0,022 0,158 0327 0,373 0,073 0,009
01 - 0074 0,032 0,047 016 0,147 009 0083 0,122
: 0,002 003 0131 0,051 0,028 0013
o 0,0024 0,005 0177 0,567 0,483 016 0.068 0,008

AN FEB MAR APR MAY IUN JUL AUG SEP OCT NOV DEC 052 0319 0,207 0,394 0,365 0158 0056 0,013
0,134 0,017 0,138 0,461 0,269 0,108 0021

At-risk period for AHS initial spread

Sensitivity Analy:

Average P imtml:preaa‘un importation of an infectious horse

Correlation of model input parameters with annual risk of AHS initial
spread in France via legal importation of an infectious equidae DISCUSSIONICDNCLUSION
The risk for initial spread of AHS in France e Is rather variable between region
I o5: = Simuleted Temperature in menth "m” LGkl i LT
Periods at higher risk are April to October
| 028 Probability that culicoides is infected when - Regions at higher risk are the Z9 (Mediterranean basin), Z8 (South-West)
| 0,19 fed on an infectious host and 26 (Nermandy) which count the highest number of months with A
Number of Culicoides per equine in month o
. 0,07 - initial spread above 0,3.
. 0,06 M Length of viraemic period in horses Our results highlight the importance of a dynamic analysis with frequent
’ updates of risk assessment.
00f] m Probability that susceptible host is infected
when fed upon by an infectious vectar The next step will consist of combining P. initial spread with P. release, to
W Ratio of ruminants to equines. assess the P. introduction per time and region.
Acknowledgments: Entomological data were collected by the funded by the French Ministry in charge of agricuure, the Cirad, the paur I
and the Institut de. de b the Directions de la protection des population . data was kindly pr by MARS-Agri at for

Sustainabilty, European Commission. Authors want 1o thank the General Direction for Food [DGA) of the French Ministry of Agriculture and all these institutes for providing the data.
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Appendix 7: Poster presentation at the Conference of the Society for Veterinary Epidemiology and
Preventive Medicine (SVEPM) in Ghent, 2015.

Quantitative RA of equine encephalosis V|rus
(EEV) introduction into the Netherlands

Evelyn Pamela Martinez Lépez*, Céline Faverjon®, Clazien J. de Vos*, Egil A.]. Fischer*.»
*Department of Epidemiology, Crisis organisation and Diagnostics, Central Veterinary Institute, part of Wageningen
UR, The Netherlands & INRA UR346 Animal Epidemiology, VetagroSup, Marcy L'Etoile, France, p = presenting author “ -

Y e
. s vy ey

SCIENCE & IMPACT

What is the probability of introduction of EEV in the Netherlands?

Equine encephalosis is a midge-borne disease of equines caused by EEV (Orbivirus, Reoviridae) exotic to the Netherlands. EEV is related
to African horse sickness Virus.

« What is the probability of EEV introduction into the Netherlands by either vectors or equines?

« What is the contribution of different source areas?

« What is the effectiveness of sanitary regimens?

Rk of EEV aceurencs and aantory regime

1 carried on each non-susceptible

lmwmdmm ants
Probability of release
" _ 03
| L o

0 z 1
! | !
B 1
= '
i i ,

) /{J P ‘f'; f f
"f*‘ S ¢jj”//" Probability of Establishment

- I ] =

f'!.‘g‘f"i‘fii!

number R in the

[P —————

VIR

4———Arobability of introduction

Icethly robaseaty ot sersduction

Wz 27

Probability of introductioﬁ\ >

Introduction by source region and pathway

£
H
i
,E The annual probability of EEV introduction is, given an outbreak every
H ; : : 7 ? :
H 6.7 years in low risk regions, 0.24 via equines and 0.02 via vectors,
meaning an introduction each 4 years or 50 years. For equines 39
§.§z§é times more often than AHSV (5.1 10-4in De Vos et al, 2012, PVM).
H
552 Equine movements from low risk regions contribute most to the
HER : " 3
% iz introduction risk of EEV into NL
i Equestrian events can pose an important risk of introduction of EEV.
::: Quarantine is important to mitigate the probability of introduction
Very low sk
Central Veterinary Institute, part of ingen UR We would like to thank Dr Klaas Frankena for his supervision of EPML atthe Qve  EPidémiologie animale UR 346
PO, Box 65, 8200RA Lelystad, The Netheriands group of the Wageningen UR. This study was financially support through the EMIDA-ERANET project INRA / VetAgro Sup
Contact: e-mail: egil@egilfischer.o). VICE by a visit of CF to the Central Veterinary Institute, part of Wageningen UR and the Ministry of Gpaiice
T + 31 (0)320 237380 Economic Affairs of the Netherlands (BO 20-009-009). EPML was supported by a scholarship of the www.vetagro-sup.fr

www.wageningenUR.nl Ecuadorian Secretaria Nacional de Educacién Superior, Ciencia, Tecnologia e Innovacién.
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Appendix 8: Poster presentation at the Journées de I'Ecole doctorale SVSAE in Clermont-Ferrand, 2015.

Quantitative Risk Analysis of Equine encephalosis
virus (EEV) entry into France

WAGBENINBEN UNIVERSITY
waGE (o]

Equine encephalosis (EE) is a Culicoides-borne disease caused by an Orbivirus (Reovirirae) exotic to France and affecting all equidae. The
disease is mainly asymptomatic but EE virus is related to African horse sickness virus , one of the most devastating disease for equine

(mortality >90%), and to Bluetongue virus which was recently introduced and largely spread into Europe.

Risk of EE Virus introduction to France?

EE virus infected areas

Virus transported with
an infected host via
legal trade

Virus transported with an
infected Culicoides associated
with large animal trade

Softwares: @Risk running 10000 iterations for each
Meonte-Carlo simulation performed.
Data sources: TRACES (2010, 2011, 2012)

Probability of virus entry via an infectious host Probability of virus entry via an infectious vector

(e.g. 2012 but similar over the 3 years) (e.g. 2012 but similar over the 3 y

Median national probability (& 1 95%)

Median national probability (& CI 95%) . . 0.5
0,8 Sensitivity analysis Sensitivity analysis ’ "
06 (coef spearman >0,1); (coef spearman >0,1): 0,4 v
. probability of EE Day when the vector is Ora
04 occurrence un low and Infected n high risk 0,2
very low risk regions region (-0,65) and low ’
0,2 {respectively 0,93 and risk region (-1,14), rate of 0,1
0,28) wvectors infected in high 0
N risk region (0,64) ’ FEeSF £y & g
FEFTSF SIS S PPN
July August September October November  December July August September October November  December

KEERSE TERGLE

Overall probability of virus entry

Legend
July August September October November December [ <IE08
[ e 1e08
v w v [ o mon
. T [ 05 1E04)
I 04 €03
‘ i e.g. 2012 W e 0z E0n)
B
.
A | Conclusion: \
Y - At national and yearly levels, we can identify most at risk season (July to
Most at risk ﬁ;"’;g;iﬁ””""”"’ December ) and most at risk regions (South and North-West of France).
(red = high proba over the three years, orange . . . N
= medium prob aver the three years, yeliow = However, important variations exist at the monthly and regional levels.
low proba aver the three years)
- Main risk contributor: Infectious host >> infectious vector
—
Acknowledgments: French Ministry of Agriculture, especially SIVEP and BICMA, | . . . . . |
who provided the data \ - Still need to identify the most effective protective measures /
.
';3 i ERA-NET This project is financed within the EMIDA program of ERA-NET Poster presented at ‘Journée de |'Ecole doctorale’ SVAE — May, 21st and 22nd, 2015
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Appendix 9: Poster presentation at the Conference of the Society for Veterinary Epidemiology and
Preventive Medicine (SVEPM) in Ghent, 2015.

~ West Nile Virus surveillance based

\
fg on nervous syndromes in horses ...
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INTRODUCTION

Nervous syndromes in horses can be an early warning signal of WNV
West Nile Virus (WNV) is an emerging vector-borne disease emergence but the possibility to routinely use reported cases for WNV
transmitted by Culex mosquitoes, main hosts are birds but the surveillance is still unknown.
virus also affects more than 30 non-avian species, including
horses and humans, with serious consequences on public
health and on the equine industry.

The RESPE, the passive French network for the surveillance of equine
diseases, collects data from veterinary practitioners on nervous syndromes
in horses and could serve as a basis for WNV syndromic surveillance.

The last French outbreak occurred in 2006 but, recently, more outbreaks have The time series (TS) provided by the RESPE exhibits several aberrations

been recorded in Southern and Eastern Europe resulting from outbreaks of Equine Herpes Virus -1 (EHV-1). Removing such
= Risk of a new WNV emergence in France historical prior to developing a baseline model for the TS should improve
= Need efficient early detection systems ! the surveillance system's ability to detect simulated WNV outbreaks.

OBJECTIVE: to determine the capacity of nervous syndromes in horses to be used to early detect WNV outbreaks in France.

MATERIAL & METHODS Model fit
Data * Training data: 2006 to 2010; Test data: 2011 to 2013.
= Weekly ber of nervous synd in horses b 2006 and 2013 RESPE = Criteria used : AIC, Pacf, Acf, Root Mean Square Error (RMSE),
= All horses tested for EHV-1 and WNV " e Mean Absolute Error (MAE)

3 Pre-p ing methods to the aberrations (TS, TS2, TS3)

Weeks considered as “aberrations” replaced by the average value of the 4 previous weeks.

Simulated WNV outbreaks
= Based on historical data
l = = 3 simulated outbreaks randomly inserted t 2011 and

2013 (at least 15 weeks between each outbreak)
)| = Process repeated 100 times

|

Number of cases
Number of cases

iy .““r i

l \
| i|
° M{n).u":ﬁhﬂ\i”‘fju!"‘%ﬁwﬁ‘\“ ! ) g o
22006 2007 008 209 010 1 2006 2007 2008 2000 2010 2011 Quantitative performance assessment
TS0, raw data 152, outbreaks removed based on istoricaldata = 300 years containing a total of 300 outbreaks used
151, only the cases with no positive laboratory results 153, extreme val d based on Tsui et al. (2001 = Sensitivity (SE)&Speciﬁcity (SP)

2 Forecasting methods X . : : = ROC curves & Area Under the Curve (AUC)
Generalize linear model & Holt-Winters generalized exponential smoothing (HW)

RESULTS
Selection of Generalized linear models (glm)

ROC curves

For the Poisson as well as the NB regression, the best fit was obtained for all TS with the simple model:
Number_of _cases ~ sin(2*pi*week/53) + cos(2*pi*week/53) + year

NB and Poisson regressions performed equally well for all TS, with the exception of TSO (raw data) for which
the NB model provided a better fit (AIC 732 vs. 741)

Comparison HW and glm selected

Autocorrelations

present in Acf / Pacf |

glm (NB) No / No 732
HW No / Yes

glm (poisson) No / No | 624
HW Yes / Yes

glm (poisson) Yes / Yes | 689
HW Yes / Yes

glm (poisson) Yes / Yes 668
HW Yes / Yes

AlC

Ts1

TS2

Ts3

Table1: Smoothing performances (RMSE and MAE are better when smaller) L
Table2: Detection performances

DISCUSSION & CONCLUSION

» The glm outperformed HW for all TS in terms of smoothing and detection performances.

» The best fit was obtained when only cases with no positive laboratory results (TS1 ) were retained and modeled using a Poisson regression

» The impact of the pre-processing methods on the performance seems weak (AUC ~ constant over TS). Further work should be done to test this impact on
different situations and time series.

» The data collected by RESPE on nervous syndromes in horses could be used for routine syndromic surveillance for WNV in France.

Acknowledgements: The authors want to thanks the RESPE, the passive French network for the surveillance of equine diseases ) who provided the data.

V?E Poster presented at the SVEPM meeting held in Ghent the 25 to 27 March 2015 This project is financed within the EMIDA program of ERA-NET ERA-NET
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Appendix 10: Article in a Professional journal published in ‘Bulletin Epidémiologie et Santé Animale’ by
AEEMA. 2015. Epidémiol. et santé anim., 2015, 67, 87-95

AIDE A LA DECISION EN SURVEILLANCE SYNDROMIQUE PAR LE CALCUL
DE LA PROBABILITE DE CIRCULATION D’UN AGENT PATHOGENE *

Céline Faverjon', Mats Gunnar Andersson’, Flavie Vial’,
Loic Legrand®’ et Agnés Leblond>®

RESUME

Dans ce travail nous proposons d’appliquer le cadre statistique utilisé lors de I'évaluation des piéces a
conviction au cas de la surveillance syndromique. Nous avons utilisé cet outil pour évaluer les résultats de
la surveillance syndromique en tant que « preuves » circonstancielles d’'une épizootie. L'idée de base est
d’exploiter les distributions de cas attendues afin de calculer le ratio entre la probabilité d’observer n cas
lorsqu’une épizootie est en cours et la probabilité d’observer ce méme nombre de cas lorsqu’il n’y a pas
d’épizootie. Le rapport de vraisemblance ainsi obtenu correspond a la valeur de la preuve. D’aprés la regle
de Bayes, en multipliant ce rapport avec les probabilités a priori que la maladie circule, on obtient une
connaissance a posteriori sur le statut de la maladie. Cette approche a été appliquée a des séries
temporelles représentant le nombre de chevaux présentant des symptomes nerveux. La séparation claire
entre connaissance a priori et évaluation de la valeur de la preuve permet un raisonnement transparent
apte a s’intégrer dans un processus de décision. Par ailleurs, I'approche bayésienne permet d’intégrer
facilement les données de surveillance syndromique avec d’autres sources d’information telles que des
évaluations de risque d’introduction et/ou de transmission d’agents pathogénes.

Mots-clés : Bayes, surveillance syndromique, West Nile
ABSTRACT

In this work we propose the adoption of a statistical framework to be used in the evaluation of forensic

|ll

evidence as a tool for evaluating and presenting circumstantial “evidence” of a disease outbreak from
syndromic surveillance. The basic idea is to exploit the predicted distributions of reported cases to
calculate the ratio of the likelihood of observing n cases given an ongoing outbreak over the likelihood of
observing n cases given no outbreak. The likelihood ratio defines the Value of Evidence. Using Bayes’ rule,

the prior odds for an ongoing outbreak are multiplied with V to obtain the posterior odds.

* Texte de la communication orale présentée au cours de la Journée scientifique AEEMA, 20 mars 2015

! INRA UR346 Epidémiologie animale, VetagroSup, F-69280 Marcy I’Etoile, France ; celine.faverjon@vetagro-sup.fr
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Sweden
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This approach was applied to time series on the number of horses showing nervous symptoms. The
separation between prior beliefs about the probability of an outbreak and the strength of evidence from
syndromic surveillance offers a transparent rational process suitable for supporting decision making.
Furthermore, a Bayesian approach makes it possible to combine data from syndromic surveillance with
results from predictive modeling and with information from other sources such as assessments of risks of

disease introduction.

Keywords: Bayes, syndromic surveillance, West Nile

I - INTRODUCTION

1. RAPPELS SUR LA
SYNDROMIQUE

SURVEILLANCE

La surveillance syndromique est un concept apparu
a la fin des années 90 et est devenue de plus en
plus populaire en santé humaine mais également
ces derniéres années en santé animale [Dérea et
al., 2011]. Il n’existe a ce jour pas de définition
unigue et communément acceptée de Ia
surveillance syndromique. Cependant, en général,
la surveillance syndromique utilise des données
pré-diagnostiques, souvent peu spécifiques,
collectées en routine et analysées en temps réel
[Katz et al., 2011]. La surveillance syndromique a
ainsi pour vocation de détecter précocement des
maladies connues, comme la grippe saisonniére
humaine (Hiller et al. 2013) ; (Ginsberg et al. 2009)
ou inconnues, comme les attaques bioterroristes
(Buehler et al. 2003). La surveillance syndromique
ne remplace pas les approches traditionnelles de
surveillance des maladies mais elle est un outil
complémentaire intéressant de par sa rapidité, sa
flexibilité et son bon rapport colt-bénéfice.

Les approches actuellement utilisées en
surveillance syndromique cherchent d'abord a
définir les propriétés normales de la série de
données considérée lorsqu’aucun foyer de maladie
n’est enregistré. L'objectif est de pouvoir ensuite
détecter des évenements anormaux tels que des
épidémies ou des épizooties. Les méthodes de
détection traditionnelles produisent une alarme
lorsque les données observées dépassent les
valeurs attendues en l'absence d’épidémie. Les
algorithmes utilisés définissent ainsi un seuil

épidémique et fournissent une réponse finale de
type oui/non : « non, aucune épidémie en cours »,
« oui, un événement inhabituel est en cours ».

Cette vision binaire d’une situation
épidémiologique est simple mais elle n’est pas
toujours suffisante et peut étre compliquée a
interpréter notamment lorsque les résultats de
I’'analyse sont dans une zone « grise » proche du
seuil épidémique. De plus, ces résultats qualitatifs
binaires sont également difficiles a combiner avec
d’autres connaissances épidémiologiques, tels que
le risque d’introduction ou la saisonnalité d’une
maladie, qui entrent pourtant en compte
lorsqu’une décision d’intervenir (ou non) doit étre
prise suite a la production d’une alarme.
Développer des méthodes quantitatives
transparentes, plus spécifiques, et facilement
utilisables dans un processus de décision s’avere

ainsi étre un domaine de recherche prometteur.
2. OBIJECTIFS DE L'ETUDE

L’objectif de ce travail est de tester I'applicabilité
du cadre statistique bayésien pour la détection
précoce d’épidémies en surveillance syndromique.
Ces approches sont déja utilisées notamment pour
I’évaluation des pieces a convictions dans un cadre
juridique (Foreman et al. 2003)(Drygajlo et al.
2003) ; (Morrison 2012) ; (Taroni et al. 2006)].

Nous détaillerons dans un premier temps le cadre
théorique de la méthode développée, puis nous
présenterons une application concréte de la
méthode au cas de la surveillance de la fievre de
West Nile (WN). Le virus West Nile est un arbovirus
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du genre Flavivirus (famille Flaviviridae). 1l est
principalement transmis par des moustiques du
genre Culex (famille Culicidae). Les hotes
principaux sont les oiseaux mais le virus peut
également affecter 'homme et plus de 30 espéces
animales parmi lesquelles les équidés. Chez les
personnes comme chez les chevaux, le virus peut
provoquer des encéphalites mortelles et Ia
présence de la maladie dans un territoire a ainsi
des conséquences importantes en termes de santé
publique et sur la filiere équine.

Le virus a été identifié en Europe pour la premiere
fois dans les années 60 et depuis, de nombreuses
émergences ont été rapportées un peu partout sur
le continent (Calistri et al. 2010). Méme si le virus
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est actuellement considéré comme endémique
dans une grande partie de I'Europe (Ozdenerol et
al. 2013), de plus en plus de cas sont rapportés ces
dernieres années dans le sud-est de I'Europe
(exemple : Italie, Gréce, Bulgarie, Croatie, Serbie,
Albanie) (Di Sabatino et al. 2014). L'impact de la
maladie est plus limité en Europe que ce qui est
observé en Amérique du Nord. Cependant, le
nombre croissant d’émergences associé a la
récente introduction de la lignée 2 en Europe font
du virus WN une menace d’intérét constant pour
les pays européens (Hernandez-Triana et al. 2014) ;
(Bakonyi et al. 2006)(Calzolari et al. 2013).
Développer des méthodes innovantes pour
améliorer la détection d’émergences de WN
s’avéere ainsi particulierement intéressant.

Il - METHODE : CADRE THEORIQUE

1. CADRE STATISTIQUE BAYESIEN

La formule de Bayes se définit initialement comme
suit :

P(M+) , P(n|M+) _ P(M+|n)
P(M-) " P(IM-) ~ P(M-|n)

Appliquée au cas de la surveillance syndromique,
on peut définir M+ comme le fait que la maladie
soit présente, M- comme le fait que la maladie soit
absente et n comme le nombre de syndromes
observés a un moment t.

P(M+)
P(M-)
aux connaissances a priori qu'on a du statut

Le premier terme est un odds qui correspond

présence vs absence de la maladie dans un
territoire a un moment t. Il tient notamment
compte des facteurs de risque connus tels que la
saison ou la circulation du pathogéne dans une
région voisine. Il sera noté O, dans les
paragraphes suivants.

P(n|M+)
P(n|M-)
deux probabilités. p(n/M+) est la probabilité

Le second terme représente le rapport de

d’observer n cas de syndromes lorsque la maladie
est présente et p(n/M-) correspond a la probabilité
d’observer le méme nombre de syndromes lorsque
la maladie est absente. Ce second terme

correspond au rapport de vraisemblance noté V
dans les paragraphes suivants.

La combinaison des connaissances a priori sur la
maladie avec les informations obtenues a partir

des observations de terrain permet d’obtenir le

troisieme terme P+l n) . Cet odds correspond a la
P(M—|n)

connaissance a posteriori sur le statut de la
maladie dans le territoire. Il sera noté O, dans les
paragraphes suivants.

2. INTEGRATION DANS UN PROCESSUS DE
DECISION

Le rapport de vraisemblance O, construit a partir
du cadre statistique bayésien donne une
appréciation quantitative de la probabilité de
circulation de la maladie. Cependant, il est
important de pouvoir déterminer a partir de quel
seuil de probabilité il est utile (ou non) de
déclencher une alarme et de mettre en place des
mesures de contréles et/ou d’investigation de la
maladie.

La théorie de la décision évalue comment
s’effectue une prise de décision rationnelle en
présence d’incertitude (Gittelson 2013). La
difficulté ici vient du fait que le résultat de I'option
choisie est déterminé par I'élément incertain qui
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ne peut étre connu (et ce parfois méme aprés que
la décision ait été prise). Pour prendre une
décision, il est donc nécessaire d’évaluer les
conséquences de chaque action (en termes
d’utilité ou de pertes) et leur probabilité de se
produire. Le choix rationnel est celui pour lequel
I'utilité est maximale c’est-a-dire, celui comportant
les pertes attendues les plus faibles.

Ainsi, 'utilité d’'une action A (noté U(A)) se définit
comme la somme des utilités de I'action A dans la
situation i (noté chacune U(A))), multipliée par la
probabilité estimée d’étre effectivement dans la
situation i (noté p(A))) :

UGA) = D UCA) X p(A)
i=0

Nous avons appliqué ce raisonnement au cas de la
prise de décision en surveillance syndromique. Ici
seuls deux types d’action sont possibles : A1, mise
en ceuvre de mesures de contrdle de la maladie et
A0, pas d’action de controle. Leurs utilités
respectives sont évaluées en fonction du contexte
épidémiologique : soit M1 la maladie est présente,
soit MO la maladie est absente. Les pertes relatives

a chaque couple U(A,M;) sont fondées sur des
évaluations socio-économiques. Les connaissances
a priori sur le contexte sont fournies par Opost.

Ainsi, I'utilité de mettre en place des actions de
contrble (U(A1)) et I'utilité de ne rien faire (U(A0))
peuvent étre définies comme suit :

U(A1) = (U(A1, M1) + U(A1, M0)) x Opost

=( ’ (41, M0)) 1+ Opost

U(40) = (U(A0, M1) + U(A0, M0)) x —2POSt
= ( ’ (40, M0)) 1+ Opost

Les valeurs de Op.s: pour lesquelles il sera utile
d’agir plutét que de ne rien faire, sont les valeurs
situées au-dessus du seuil Opost* défini pour
U(A1) = U(AO0).

Il - CAS PRATIQUE : SURVEILLANCE DE LA FIEVRE DE WEST NILE

Ce cas propose d’utiliser la méthode développée
afin de détecter les émergences de virus WN en
France. Nous utiliserons pour cet exemple les
données de syndromes nerveux chez les chevaux
qui sont des indicateurs intéressants d’émergence
de la maladie (Leblond et al. 2007). Les données de
syndromes nerveux sont collectées en routine
depuis 2006 par le réseau d’épidémiosurveillance
en pathologie équine (RESPE).

1. CONNAISSANCES A PRIORI

La fievre de WN est une maladie a transmission
vectorielle. La probabilité de circulation du virus a
des niveaux épizootiques est ainsi fortement liée a
la dynamique de population de son vecteur
principal, les moustiques du genre Culex. Ainsi les
épizooties de WN présentent une saisonnalité
marquée avec de nombreuses occurrences
rapportées en été et a I'automne, des cas moins

fréquents au printemps et seulement quelques cas
sporadiques en hiver.

En utilisant les données historiques relatives aux
épizooties de WN rapportées en Europe ces
derniéres années, nous avons ainsi établi des O
de la maladie, différents selon les saisons. Les
probabilités de circulation relatives au printemps,
automne/été et hiver sont ainsi respectivement de
1:5:0,04.

2. RESULTATS DE LA
SYNDROMIQUE

SURVEILLANCE

2.1. SITUATION NON- EPIZOOTIQUE

Pour déterminer la probabilité d’observer un
nombre de cas n lorsque la maladie est absente,
p(n|M-), nous avons utilisé les données collectées
par le RESPE depuis 2006. Des traces d’épizooties
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sont cependant présentes dans ces données et

sont principalement dues aux émergences
d’herpesvirus de type 1. Afin de modéliser au
mieux la série de données en situation non-

épizootiques, nous les avons supprimées en
utilisant uniquement les données provenant de
chevaux qui n’ont pas obtenu de résultat de
laboratoire positif. Les données de 2006 a 2010 ont
été utilisées pour calibrer le modéle et les données

de 2011 a 2012 pour le valider.

Plusieurs modéles ont été testés mais celui qui a
obtenu les meilleures performances est celui
utilisant une loi de poisson (AIC =637,8 et GOF
(déviance ajustée) =1,156):

Nombre de cas ~ sin(2m*t) + cos(2m*t) +

log(histmean)

ou ‘histmean’ représente la moyenne des 53
semaines précédant t sans tenir compte des 10
semaines juste avant t afin de ne pas incorporer
des données d’'une épizootie éventuellement en
cours.

2.2. SITUATION EPIZOOTIQUE

Figure 1
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Afin de déterminer la probabilité d’observer un
nombre de cas n lorsque la maladie est présente,
p(n|M+), nous avons utilisé les données trouvées
dans la littérature sur des épizooties de WN ayant
entrainé des symptomes nerveux chez les chevaux.
Nous avons ainsi utilisé les nombres de symptémes
rapportés chez les chevaux lors des émergences
francaises de 2000 (Murgue et al. 2001) et 2004
(Leblond et al. 2007) et lors de I'épisode de WN en
Italie en 1998 (Autorino et al. 2002).

Le nombre de observés en situation
épizootique a été modélisé avec une loi négative
binomiale de parametre mu égal a 4,45 et theta

égal a 0,94. Le nombre médian de cas attendus par

cas

semaine en cas d’épizootie a ainsi été estimé a 3
(1IC 95 %: 0-18).

2.3. RAPPORT DE VRAISEMBLANCE

Le rapport de vraisemblance noté V correspond au
rapport entre p(n|M+) et p(n|M-) et peut se
représenter graphiquement comme présenté en
figure 1.

Rapport de vraisemblance (V) et probabilités d’observer n cas de syndromes nerveux chez les chevaux
lorsque la maladie est présente (p(n|M+)) et lorsque la maladie est absente (p(n|M-))

v_-o-g. 5 =
o ‘.:: 3
E:-E o
of 3 p(n| M+)
o i
' o
A . p(n| M-) -
£ 3
=8 log(V) e
o O ¥ S
& \
i =
3 i
2 ;
-
gl I - i .
o .
) 10 20 20 40 50
Cases
3 SCENARIO DE DECISION absente (U(AO0,MO0)) entraine, quelle que soit la

Afin de déterminer un seuil d’action, nous avons
estimé des couts fictifs mais proportionnels a leurs
contributions (tableau 1).
L'utilité de ne rien faire lorsque la maladie est

relatives attendues

saison, des pertes nulles. L'utilité de ne rien faire
(U(AO,M1))
lors des

lorsque la maladie est présente

entraine des colts plus importants
périodes a risque a cause de I'impact de la maladie

sur le tourisme et des colts liés aux animaux
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malades. L'utilité de mettre en place des mesures
de contréle alors que la maladie est absente
(U(A1,M0)) entraine quant a elle des pertes
identiques quelle que soit la saison et liées
uniguement aux actions mises en place pour
controler la maladie (ex: démoustication,

vaccination). L'utilité de mettre en place des

mesures de contréle lorsque la maladie est
effectivement présente (U(A1,M1)), entraine, elle,
des pertes liées aux actions de contréle mises en
place ainsi que des pertes indirectes et directes
liées a la diffusion de la maladie qui sont estimées
moins importantes que lorsqu’aucune mesure de
controle n’est mise en places.

Tableau 1
Estimation du seuil d’action Opost* a partir des couts estimés d’'une émergence de WN en fonction des saisons.
A0 représente le fait de ne rien faire et Al représente le fait de mettre en place des mesures de contréle.
MO correspond au fait que la maladie soit absente et M1 que la maladie soit présente.

Utilités Automne/Eté Printemps Hiver
U(A0, MO) 0 0 0
U(A1, MO0) -0.5 M€ -0.5 M€ -0.5 M€
U(AO, M1) 5.1 M€ -10,1 M€ 5,3 M€
U(A1, M1) -3.9 M€ -6,3 M€ -4,1 M€
Log,o(Opost*) -0,38 -0,88 -0,38
a. EVALUATION ET MISE EN CEUVRE DU émergence en automne d’un petit nombre de cas,

SYSTEME

Les données de 2011 a 2012 du RESPE ont été
utilisées pour détecter les épizooties. Afin
d’illustrer notre méthode, trois épizooties ont été
arbitrairement insérées dans les données: A.

Figure 2

B. émergence de taille « moyenne » en hiver et C.
émergence « importante » au printemps. Pour
chaque semaine de 2011 a 2012 ; le rapport de
vraisemblance V a été calculé en fonction des
données observées et attendues (cf. figure 2).

Données de syndromes nerveux des chevaux et calcul du rapport de vraissemblance pour chaque semaine.
Trois épizooties fictives insérées : A. insertion entre les semaines 36 et 39 ;B. insersion entre les semaines 1 et 4 ;
C. insersion entre les semaines 24 et 28.
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Un détail des cas observés par épizootie et des
rapports de vraisemablance associés est présenté
dans le tableau 2. Combiné avec les connaissances
a priori sur la saisonnalité de la maladie (O,) défini
précédement, nos connaissances a posteriori
(Opost) sur la maladie sont déduites. Combinée avec

le seuil d’action défini a partir des couts estimés, la
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valeur seuil du nombre de cas a partir de laquelle il

est utile d’intervenir est déduite. Ainsi, en
automne/été, quatre cas de syndromes nerveux
suffisent a déclencher une action alors qu’en hiver,
sept cas de syndromes nerveux observés ne
déclenchent toujours pas d’action vis-a-vis d’une

alerte WN.

Tableau 2
Détails des épizooties fictives insérées et valeurs seuils pour le déclenchement d’une action
en fonction du nombre de syndromes observés et de la saison

A. Automne/Eté B. Printemps B. Hiver
Log10(Opri) -0,99 -1,78 -3,03
Nombre de cas observés 3 4 5 7 5 7
Logio(V) 0,26 0,74 1,54 3,11 1,24 2,6
Log10(Opost) -0,73 -0,25 -0,24 1,33 -1,77 -0,43
Seuil d’Action Logo(Opost™) -0,38 -0,88 -0,38
Alerte? Opost > Opost™ Non Oui Oui Oui Non Non

IV - DISCUSSION

Dans ce travail, nous avons montré comment le
cadre statistique bayésien peut étre incorporé
dans un systeme d’aide a la décision en
surveillance syndromique et comment il peut étre
utilisé pour I’évaluation des risques et la prise de
décision éclairée. L'approche proposée est en
accord avec le guide d’analyse de risque (OIE 2010)
puisqu’elle permet une séparation explicite des
hypothéses (O,y), des preuves scientifiques (V) et
des critéres pour la prise de décision (U(AO) et
U(A1)). Par ailleurs, la maniére dont les preuves
scientifiques sont évaluées est également
transparente et quantitative, ce qui limite les
interprétations subjectives. Les criteres utilisés
pour la prise de décision sont également en accord
avec ce qui est préconisé par I'OIE. En effet, le code
sanitaire pour les animaux terrestres recommande
de fonder la décision de mise en place de mesures
de controle sur [I'équilibre entre le co(t des
activités de lutte et les conséquences économiques

et sociales d'une réponse retardée.

L’approche utilisée permet de combiner facilement
les données de surveillance syndromique avec
d’autres sources d’information épidémiologiques.
Dans I'exemple développé ici, la prise en compte

des données de saisonnalité dans I'interprétation

des résultats de la surveillance syndromique
permet ainsi de déclencher des alertes pour la
fievre de WN préférentiellement dans les périodes
a haut risque. La détection des émergences est
ainsi plus sensible en période a haut risque et plus
spécifique en période a faible risque. Par exemple,
en automne/été, quatre cas de syndromes nerveux
suffisent a déclencher une alerte pour WN alors
gu’en hiver sept cas de syndromes nerveux
observés ne déclenchent pas d’alerte pour WN.
de

I'interprétation des résultats de la surveillance

Notre approche permet donc rendre
syndromique plus spécifique sans pour autant
diminuer la sensibilité. Ceci est particulierement
intéressant lorsqu’il faut détecter des maladies

connues.

Dans [I'exemple développé ici, seules les
connaissances sur la saisonnalité de la circulation
du virus WN ont été intégrées. Cependant, des
données quantitatives beaucoup plus complexes
peuvent étre utilisées comme par exemple les
résultats de modeles de risque d’introduction ou
de risque de diffusion. De méme, nous avons

travaillé uniquement a une échelle temporelle
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mais le modeéle pourrait étre adapté pour détecter
des agrégats spatio-temporels de cas. Cette
approche offre ainsi des perspectives d’utilisation
et de développement ultérieurs intéressants en
permettant de passer d’informations
épidémiologiques morcelées a une vision plus
synthétique et intégrée.

Si la méthode offre des perspectives prometteuses,
certaines limites sont cependant a considérer. Le
cadre statistique bayésien a ici été appliqué en
estimant les probabilités a priori de maniere
probabiliste a partir des données disponibles et
non par le biais d’inférence bayésienne. L'approche
probabiliste est relativement simple a mettre en
place et a présenter. Elle a cependant le défaut de
ne pas completement rendre compte de
I'incertitude des hypothéses de départ. Des
approches utilisant les méthodes d’inférence ont
été proposées par plusieurs auteurs pour détecter
des agrégats spatio-temporels de cas (Banks et al.
2012); (Zou et al. 2010). Cependant, si ces

approches sont techniquement réalisables et plus
robustes d’un point de vue mathématique, elles
restent encore assez théoriques et compliquées a
présenter a un public non familier des méthodes
bayésiennes tel que les décideurs politiques (Banks
et al. 2012).

Concernant I'exemple développé, il est important
de noter que nous avons ici considéré que les
semaines étaient indépendantes les unes des
autres. Cette hypothese simple a été choisie pour
présenter au mieux la méthode et ne constitue pas
une limite a son application. En effet, il est tout a
fait possible de construire un systeme plus
complexe considérant non pas les semaines de
maniére séparées mais les preuves cumulées sur
plusieurs semaines. Par ailleurs, si un systéme de
surveillance de WN fondé sur cette approche
devait effectivement étre implémenté, il faudrait
nécessairement mieux préciser les estimations de
nombre de cas utilisées, la saisonnalité des
données ainsi que les estimations colts-bénéfice.

V - CONCLUSION

L'utilisation du cadre statistique bayésien en surveillance syndromique est donc une approche prometteuse

pour lI'amélioration de la surveillance des maladies connues. Elle permet de synthétiser de maniére

quantitative les diverses sources d’informations épidémiologiques disponibles et de les intégrer aisément dans

un processus de décision rationnel prenant en compte des analyses couts bénéfices. Des travaux ultérieurs

pourront permettre de perfectionner la méthode et d’évaluer son intérét dans des systémes de surveillance

complexes. L’'ensemble des analyses détaillées est disponible dans I'article publié par Anderson, Faverjon et al.

(Andersson et al. 2014).
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Appendices

Appendix 11: EEV simulated outbreak in Normandie.
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Appendix 12: Posterior probability of EE outbreak in France in year 2012 during the simulated outbreak in
Normandie from week 36 to week 41. Radius for detection is 50 km (Andersson et al. 2015)
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ABSTRACT

Emerging vector-borne diseases are a growing concern, especially for horse populations, which are at
particular risk for disease spread. In general, horses travel widely and frequently and, despite the health
and economic impacts of equine diseases, effective health regulations and biosecurity systems to ensure
safe equine movements are not always in place. The present work proposes to improve the surveillance of
vector-borne diseases in horses through the use of different approaches that assess the probability of
occurrence of a newly introduced epidemic. First, we developed a spatiotemporal quantitative model
which combined various probabilities in order to estimate the risk of introduction of African horse sickness
and equine encephalosis. Such combinations of risk provided more a detailed picture of the true risk
posed by these pathogens. Second, we assessed syndromic surveillance systems using two approaches: a
classical approach with the alarm threshold based on the standard error of prediction, and a Bayesian
approach based on a likelihood ratio. We focused particularly on the early detection of West Nile virus
using reports of nervous symptoms in horses. Both approaches provided interesting results but Bayes’ rule
was especially useful as it provided a quantitative output and was able to combine different
epidemiological information. Finally, a Bayesian approach was also used to quantitatively combine various
sources of risk estimation in a multivariate syndromic surveillance system, as well as a combination of
guantitative risk assessment with syndromic surveillance (applied to West Nile virus and equine
encephalosis, respectively). Combining evidence provided promising results. This work, based on risk
estimations, strengthens the surveillance of VBDs in horses and can support public health decision making.
It also, however, highlights the need to improve data collection and data sharing, to implement full
performance assessments of complex surveillance systems, and to use effective communication and
training to promote the adoption of these approaches.

Key words: syndromic surveillance, West Nile, quantitative risk analysis, African horse sickness, equine
encephalosis, vector-borne diseases, risk-based surveillance

RESUME

Les maladies émergentes a transmission vectorielle sont une préoccupation croissante et particulierement
lorsqu’elles affectent les chevaux, une population spécirfiquement a risque vis-a-vis de la propagation de
maladies. En effet, les chevaux voyagent fréquemment et, malgré I'impact sanitaire et économique des
maladies équines, les reglementations sanitaires et les principes de biosécurité et de tracgabilité censés
assurer la sécurité des mouvements d'équidés ne sont pas toujours en place. Notre travail propose
d'améliorer la surveillance des maladies a transmission vectorielle chez les chevaux en utilisant différentes
méthodes pour estimer la probabilité d'émergence d'une maladie. Tout d'abord, nous avons développé
un modele quantitatif et spatio-temporel combinant différentes probabilités pour estimer les risques
d'introduction de la peste équine et de I’'encéphalose équine. Ces combinaisons permettent d’obtenir une
image plus détaillée du risque posé par ces agents pathogénes. Nous avons ensuite évalué des systemes
de surveillance syndromique par deux approches méthodologiques: I'approche classique avec un seuil
d'alarme basé sur un multiple de I'erreur standard de prédiction, et I'approche bayésienne basée sur le
rapport de vraisemblance. Nous avons travaillé ici principalement sur la détection précoce du virus West
Nile en utilisant les symptomes nerveux des chevaux. Les deux approches ont fourni des résultats
prometteurs, mais I'approche bayésienne était particulierement intéressante pour obtenir un résultat
guantitatif et pour combiner différentes informations épidémiologiques. Pour finir, I'approche bayésienne
a été utilisée pour combiner quantitativement différentes sources d'estimation du risque : surveillance
syndromique multivariée, et combinaison de la surveillance syndromique avec les résultats d’analyses de
risques. Ces combinaisons ont données des résultats prometteurs. Ce travail, basé sur des estimations de
risque, contribue a améliorer la surveillance des maladies a transmission vectorielle chez les chevaux et
facilite la prise de décision. Les principales perspectives de ce travail sont d'améliorer la collecte et le
partage de données, de mettre en ceuvre une évaluation compléte des performances des systemes de
surveillance multivariés, et de favoriser I'adoption de ce genre d’approche par les décideurs en utilisant
une interface conviviale et en mettant en place un transfert de connaissance.

Mots clefs : surveillance syndromique, West Nile, analyse de risques quantitative, peste équine,
encéphalose équine, maladies a transmission vectorielle, surveillance basée sur le risque
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