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CHAPTER I: INTRODUCTION 

 

A. CONTEXT AND NEEDS 

1. Vector-borne diseases, a major concern 

The incidence of emerging infectious diseases has increased during recent decades due to changing socio-

economic, environmental, and ecological factors (Jones et al. 2008). This is especially true for vector-borne 

diseases (VBDs), which represent almost 29% of emerging infectious diseases in the last decade (Jones et 

al. 2008). The introduction and spread into Europe in the 1979 of Aedes albopictus, an efficient vector for 

at least 22 arboviruses (Gratz 2004), of bluetongue virus (specifically BTV-8) in 2006 (Zientara and 

Sánchez-Vizcaíno 2013), and Schmallenberg virus in 2011 (Doceul et al. 2013) are good examples of the 

problem posed by VBDs. The specific emergence of VBDs is probably due in part to climate anomalies that 

occurred during the 1990s (Jones et al. 2008), as has been shown for BTV in Europe (Guis et al. 2012; 

Purse et al. 2005). Indeed, as explained by Massad and colleagues (Massad et al. 2011), “increased spread 

of insect-borne diseases is likely in a warmer world”. In the context of global warming, emerging VBDs are 

thus a growing concern, all the more so because of their huge economic and social impact (Marsh et al. 

2008). To address this challenge, Lindgren and colleagues (Lindgren et al. 2012) argue in favor of 

developing novel approaches for risk assessment and surveillance in order to enhance preparedness and 

to facilitate public-health decision making.  

2. Equine industry, risk and specificities 

2.1. Population at risk 

Horses, unlike livestock, typically travel frequently over short and long distances around the world for 

competition, training, and/or reproduction. These movements increase the risk of the dissemination of 

infectious diseases (Robin et al. 2011). This is a concern not just for the equine industry but also for public 

health. Indeed, numerous equine viruses are zoonotic (e.g., rabies, brucellosis, anthraw, glanders, 

leptospirosis, Hendra virus). However, controlling diseases spread by equines is not only important from a 

sanitary point of view but also with regard to the important economic weight of the equine industry, 

particularly in Europe (Liljenstolpe 2009). As an example, in 2010, the European equine industry 

encompassed 3.7 million horses, generated 100 billion euros a year, and provided the equivalent of 

400,000 full-time jobs (Leadon and Herholzt 2009). Furthermore, the sector is growing, with an increase in 

the number of horse riders of 5% per annum. The introduction of exotic infectious disease may thus have 
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huge economic consequences, as was seen with the 13-week outbreak of African horse sickness in 

Portugal in 1990, whose total cost was estimated around US $2 million (Portas et al. 1999). 

2.2. Population not well tracked 

Despite the sanitary and economic impacts of equine diseases, effective health regulations and biosecurity 

systems to ensure safe equine movements are not always in place at the national and international level 

(Leadon and Herholzt 2009; Murray et al. 2013). This was illustrated by the outbreak of equine influenza in 

Australia in 2007. Here, the authorities failed to contain the infection in quarantine following the 

importation of one or more infected horses (Webster 2011). The horse population is also not well-tracked, 

which complicates the control and surveillance of diseases. In the EU, the implementation of mandatory 

passports for horses in 2008 has improved the tracking of horses. However, the database that contains the 

information on animal movements and deaths is not regularly updated. This has two consequences. 

Firstly, the exact number of horses and their geographical location is unknown, which is an obstacle for 

disease surveillance and control. Secondly, the exact number of horses transported between EU member 

states or within a country is still not available. Indeed, although the EU’s Trade Control and Expert System 

(TRACES) (Commission Decision 2003) provides information on the number of horses imported to and 

within the EU, several movements are not recorded in the database due to the absence of mandatory 

transport notification.  

The difficulties of implementing proper health regulations and tracking systems can be explained by the 

complex reality of the world of horses. The equine industry includes a myriad of activities (e.g., tourism, 

equestrian sports, breeding and slaughtering of horses) and the various stakeholders engaged in each 

activity do so with different expectations, ranging from professional to leisure (Castejón-Montijano and 

Rodríguez-Fernández 2011).  

Considering the potential health and financial risks posed by horses, it is especially important to develop 

novel approaches for the surveillance of exotic infectious diseases, such as VBDs. However, this also 

constitutes an additional challenge given the structure of the equine industry.  

3. Early warning  

A key point in controlling emerging or reemerging VBDs is early warning. Indeed, dealing with a disease 

outbreak in its early stages is easier and more economical than once it has become widespread (FAO-OIE-

WHO Collaboration 2013; FAO-OIE-WHO Collaboration 2006). Early warning systems are timely 

surveillance systems aimed at predicting the probability that an outbreak is spreading to new areas in 

order to trigger prompt public health interventions (FAO-OIE-WHO Collaboration 2006). Different 

strategies such as active and/or passive surveillance are used to ensure the timeliness of detection.  
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3.1. Active surveillance 

Active surveillance refers to the active role of health authorities in data collection. The advantage is that 

active sampling may detect a disease without the observation of clinical signs. However, one of the major 

drawbacks is that, to detect rare diseases like a newly introduced exotic disease, active sampling has to be 

very large and redundant, which can be very costly (Doherr and Audigé 2001). To mitigate costs, it is 

possible to implement a specific type of active surveillance, known as risk-based surveillance. Risk-based 

surveillance is defined by Stärk and colleagues (Stärk et al. 2006) as the allocation of surveillance activities 

based on the probability of events with or without consideration of the consequences of the event, the 

management of the event, or the process of communication of the event. The term “targeted 

surveillance” is also used (Doherr and Audigé 2001; de Koeijer et al. 2002; Salman 2003). The simple idea 

behind the concept is to collect samples from the segments of the population that have the highest 

probabilities of being infected, thus increasing the probability of disease detection (Salman 2003). In this 

way, this process decreases the required sample size without reducing the probability of detecting the 

disease. Risk-based surveillance is based on the concept of looking for something where it is most likely to 

be found; this approach thus requires reliable and thorough prior information on at-risk populations in 

order to ensure the appropriate representativeness of the sampling (FAO 2014; Oidtmann et al. 2013; 

Stärk et al. 2006). 

3.2. Passive surveillance 

In many countries, passive surveillance is one of the most common forms of surveillance for rare and 

exotic diseases. The term refers to any passive disease reporting systems in which veterinarians, farmers, 

or any other stakeholders notify authorities when they have sick animals. These surveillance systems are 

used to identify numerous diseases since they have several significant advantages: they cover a large part 

of the animal population and the costs associated with data collection and analysis are relatively low 

(Doherr and Audigé 2001; FAO 2014; Salman 2003). However, the performance of passive surveillance 

systems suffers from frequent under-reporting due to the lack of stakeholder awareness regarding a 

disease of interest. This may result in a failure to identify the disease (Hadorn et al. 2008) especially when 

it manifests in few or unspecific clinical signs (Doherr and Audigé 2001). In addition, potential fears of the 

disease’s consequences may also incite stakeholders to not report suspected cases (FAO 2014; Salman 

2003). Under-reporting is especially problematic regarding the surveillance of exotic diseases, as exotic 

diseases have a low probability of occurrence, their symptoms usually not well known by practitioners, 

and the consequences of reporting an exotic disease in a new area may be dramatic.  

3.3. Early warning in horse population 

For the early detection of exotic VBDs in horses, both active and passive approaches could theoretically be 

implemented. However, as previously highlighted, one of the major drawbacks of the active approach is 
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that it can be very costly, especially when a disease is rare like exotic VBDs (Doherr and Audigé 2001). 

Risk-based active sampling could be implemented, but the equine industry suffers from a lack of accurate 

data regarding the populations at risk (e.g., details of animal movements, population size and location) 

which might complicate the planning and the implementation of such an active surveillance system. The 

efficiency of the classical passive surveillance approach in the early detection of an outbreak may also be 

limited due to the high probability of under-reporting, especially for exotic diseases.  

Instead of relying on classical active or passive surveillance to detect new outbreaks, then, new 

approaches for estimating the probability of outbreak occurrence may constitute a promising way to 

improve the early detection of VBDs in horses. Different approaches can be considered in estimating this 

probability: classical risk assessment and syndromic surveillance.  

4. Risk assessments 

Risk assessments are the component of risk analysis that estimates the risks associated with a hazard, 

probability of hazard occurrence and its consequences (OIE 2010). Applied to exotic diseases, they are 

well-known tools for describing the probability of pathogen entry and spread within an area. The 

probability of entry is defined as the probability that a pathogen enters in a given area, considering all 

potential pathways of introduction and without considering the later steps of transmission (OIE 2014). The 

probability of “spread” is a vaguer concept and can include different sub-definitions, as presented by de 

Vos and colleagues (de Vos et al. 2011): (1) the probability of transmission, which is defined as the 

probability that the pathogen is able to spread to susceptible hosts in the area at risk, (2) the probability of 

establishment, which is the probability that the pathogen is able to spread to susceptible hosts and to 

susceptible vectors given the conditions of introduction, and (3) the probability of spread, which is the 

probability that the pathogen is able to spread in time and space, considering both local and long-distance 

dispersal.  Regarding the specific issue of early detection, the probability of spread is irrelevant, as it is 

related more to the assessment of a disease’s impact when early surveillance has already failed to detect 

and control an outbreak. Conversely, the probabilities of transmission and establishment are especially 

interesting for early detection as they indicate the time period and the most suitable area for early spread 

of a pathogen. In particular, the probability of establishment, which takes into account the place and time 

of entry, is an interesting parameter with which to evaluate the likelihood of an infection actually leading 

to local spread. 

The above approach gives a probability of outbreak occurrence based on risk factors such as the suitability 

of an environment and climate for disease transmission, or the presence of risky practices (e.g., 

importation of animals from infected area). It can be used by decision makers for risk mitigation and/or to 

enhance stake-holders’ awareness of rare or emerging diseases through risk maps, as has already been 

proposed for some endemic VBDs (e.g., surveillance of West Nile virus in California (Brown 2012) 



CHAPTER I: INTRODUCTION 

5 
 

(http://www.westnile.ca.gov/) or tick-borne diseases in Europe (Beugnet et al. 2009) 

(http://www.fleatickrisk.com/FR/Pages/Home.aspx)).  

5. Syndromic surveillance 

To enhance traditional passive surveillance systems, methods based on the analysis of pre-diagnostic and 

unspecific routinely collected data were developed at the beginning of the 21
st

 century. Such approaches, 

referred to as syndromic surveillance, aim to identify the early, often weak, signal of an outbreak in the 

absence of an accurate identification of the disease by medical practitioners or laboratories. There is no 

single and commonly accepted definition for syndromic surveillance but it is commonly accepted that it 

focuses on data collected prior to clinical diagnosis or laboratory confirmation (Katz et al. 2011; Shmueli 

and Burkom 2010). First developed in human medicine, it is now also widely used in veterinary medicine 

(Dórea et al. 2011); indeed, a recent review by Dupuy and colleagues (Dupuy et al. 2013a) identified at 

least 27 syndromic surveillance systems or initiatives in 12 European countries. However, regarding 

horses, few syndromic surveillance initiatives are in place and only two have been explicitly identified: one 

in UK with Equine quarterly surveillance reports (DEFRA/AHS/BEVA 2015) and another another in The 

Netherlands with the GD monitor system (Rockx et al. 2006). 

Syndromic surveillance provides a risk of outbreak occurrence based on the abnormal evolution of a 

health-related indicator. Such approaches can be used to rapidly detect a well-known disease or new 

pathogen without a priori consideration and they thus promise to strengthen surveillance of VBDs in 

horses. However, because they rely on health-related indicators, syndromic surveillance usually has a low 

specificity (variations in the indicator might be due to disease or to another event) and it is not able to 

take into account other epidemiological information available for a disease, such as environmental risk 

factors. 

 

  

http://www.westnile.ca.gov/
http://www.fleatickrisk.com/FR/Pages/Home.aspx)
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B. RESEARCH QUESTION 

In the present work we explore various sources of information that shed light on the probability of 

occurrence of a newly introduced epidemic, focusing on exotic VBDs in horses. This is approached from 

various ends: is there a probability of entry? is there a probability of establishment? and is there a change 

in clinical signs, or other health-related indicator, that may signal such an epidemic? 

The risk assessment for pathogen entry and establishment gives a risk profile of outbreak occurrence 

based on risk factors. However, an outbreak may also occur (with low probability) in a lower risk area 

instead of a higher risk area. The value of risk assessment for early detection is therefore more as 

supporting evidence than as formal evidence of an outbreak.  

Similarly, syndromic surveillance gives a risk of outbreak occurrence based on the abnormal evolution of a 

health indicator. However, an outbreak may also occur without modification of such indicators. Even 

when significant modification is detected, the signal is often very unspecific and might occasionally be due 

to random fluctuation or to the effects of another outbreak or similar event. Again, then, the value of 

syndromic surveillance for early detection is more as supporting evidence than as formal evidence of an 

outbreak. 

Risk assessments and syndromic surveillance can both suggest the possibility of a newly introduced 

epidemic, but they do not prove the presence of the disease. Using these approaches in concert, however, 

can increase the amount of evidence available and can be a way to improve confidence in predictions of 

newly introduced epidemics. In doing so, the interaction between risk assessments and syndromic 

surveillance must be considered carefully as these techniques are not fully independent. Indeed, for 

example, increased awareness via risk assessments might change the value of syndromic surveillance, 

because awareness will lead to increased reporting of data and thus to more numerous false alarms. 

All these risk indicators are highly variable over time and space due to the unique nature of VBDs, which 

have a strong spatiotemporal pattern that is influenced by climatic and environmental factors (Altizer et 

al. 2006; Gage et al. 2008; Reisen 2010). Variability can also arise as a result of other non-biological 

fluctuations related to features of international trade, animal production, and so on. Spatial and temporal 

analyses must thus be performed in order to provide accurate data on the probability of occurrence of a 

newly introduced VBD. 

To address the challenges of establishing early warning systems for VBDs in horses, the present work 

explores spatiotemporal risk assessments and syndromic surveillance, alone and in concert. In particular, 

we describe the limits and advantages of both methods in order to arrive at a new and more valuable 

approach for early warning systems.  
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C. CASES STUDIES 

As case studies, we focus on three emerging vector-borne diseases found in French horses: African horse 

sickness, equine encephalosis, and West Nile fever.  

1. French equine industry  

1.1. Equine population 

In France there are between 900,000 and 1,000,000 horses, which are mainly used for sport and leisure. 

The horse population, as estimated by IFCE-SIRE, is more concentrated in Basse-Normandie (10% of the 

population) (IFCE - les Haras nationaux 2011) (see Figure 1). However, the exact number of horses and 

their geographical locations are unknown. 

 

Figure 1: Estimated geographical distribution of horses population (ICFE-SIRE) 

1.2. Organization of the equine industry 

The equine industry in France is an important sector: it represents 4.3% of the full-time-job-equivalent in 

the agricultural sector and produces around 12 billion euros of revenue per year, mainly generated by 

horse-race betting operations (Lebrun 2010). Furthermore, France is the world’s fourth-largest exporter of 

horses and its equine industry is growing, with an increase in both the number of breeders and the size of 

the breeding population since the last decade (IFCE - les Haras nationaux 2011).  

 

Nonetheless, the French equine industry is fragmented, with different organizations in charge of the 

various sub-industries: racing, sport and leisure, breeding, and butchery. All of these sub-industries are 

further subdivided into several sectors, each with its own specific regulations and organizations as 

presented in Erreur ! Source du renvoi introuvable.. The ‘Institut français du cheval et de l’équitation’ 
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(IFCE) is a central institute which manages the SIRE database (‘système d’identification des équidés’) which 

collects all the data available on French microchipped equids. 

Table 1: Main players in the French equine industry 

Horse racing 
industry 

- ‘France galop’: Grants authorization to train and ride horses for gallop racing; updates 
racing regulations and stud book organization 

- ‘Cheval français’: Grants authorization to train and ride horses for harness racing; updates 
racing regulations and stud book organization 

- ‘Fédération nationale des courses françaises’: Responsible for harmonization of racing 
regulations 

- 10 regional federations 

Sport and leisure 
industry 

- ‘Fédération interprofessionnelle du cheval de sport, loisir travail’: Cross-sector 
organization; promotes horse-related activities 

- ‘Fédération nationale de cheval’: Breeders’ association 
- ‘Association syndicale des étalonniers particuliers’: Stallion raisers’ association 
- ‘Chambre syndicale du commerce des chevaux de France’: Professional traders’ association 
- ‘Groupement hippique nationale’: Riding centers’ association 
- ‘Syndicat National des Exploitants d’établissements Professionnels Enseignant 

l’équitation’: Riding centers’ association 
- ‘Société hippique francaise’: Coordinates genetic selection; riders’ association  
- ‘Fédération française d’équitation’: Issues required licenses and complementary 

certificates; develops regulations for competitions 
- ‘Acteurs et cavaliers de sauts d’obstacles en France’: Riders’ association 
- ‘Haras nationaux’: Confirms the origins of horses; promotes horse industry development 

Butchery industry 
- ‘Interbev equin’: Promotes horse meat, develops marketing and production rules 

- ‘France trait’: Union of nine French associations of draft horses; coordinates genetic 

selection 

Breeding industry 
- Different breed-specific stud books: coordinate horse selection and genetic improvement; 

promote purebred horses 

1.3. Disease surveillance in French horses 

The French surveillance system for equine diseases is mainly passive. The diseases for which mandatory 

reporting to the French ministry is in place are reported in Table 2. In addition to this classical passive 

reporting system, the French network for the surveillance of equine diseases, or ‘RESPE’ 

(http://www.respe.net/), collects declarations from veterinary practitioners registered as sentinels 

throughout France. RESPE, which was established in 1999, also issues alerts on equine diseases, such as 

information on diseases detected in French horses or in neighboring countries. More than 500 sentinel 

veterinarians are involved and cover 92 out of 96 French regions (see Figure 2). The veterinarians fill out a 

standardized questionnaire online and send standardized samples for laboratory diagnosis. 

Table 2: Mandatory notifiable diseases to the French ministry. Category 1 = diseases of serious concern for 
public health and/or for the industry and that require preventive and control measures for the general 

interest, Category 2 = other diseases that also require preventive and control measures for the collective 
interest. 

Category 1 

Horse specific: equine infectious anemia, African horse sickness, western and eastern 
equine encephalitis viruses, Venezuelan equine encephalitis virus 

Non-horse specific: rabies, botulism, brucellosis, anthrax, Aujeszky’s disease, 
tuberculosis, Japanese encephalitis, West Nile virus, vesicular stomatitis virus 

Category 2 Equine viral arteritis, contagious equine metritis, glanders, trichinosis 

http://www.respe.net/
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Active testing of horses is performed by private partners prior to sale and by public partners prior to 

export for three diseases: equine viral arteritis, equine infectious anemia, and contagious equine metritis. 

Active surveillance is also performed by private and public partners on breeding stock for certain breeds 

and on all stallions used for semen collection. No further active surveillance system exists for the 

surveillance of equine diseases in France. 

 

Figure 2: Geographic distribution of the French sentinel veterinarians involved in RESPE. 

2. Diseases of interest 

2.1. African horse sickness  

Like the Bluetongue and Schmallenberg viruses, African horse sickness (AHS) is a Culicoides-borne disease, 

and it has recently been highlighted as a potential threat for Europe (Zimmerli et al. 2010)(MacLachlan 

and Guthrie 2010). The disease is caused by a virus belonging to the Orbivirus genus of the Reoviridae 

family (Mellor and Hamblin 2004). There are nine different serotypes that confer some degree of cross-

protective immunity (Mellor and Hamblin 2004). The virus is considered endemic in sub-Saharan 

countries, with rare outbreaks in North Africa and western Asia (MacLachlan and Guthrie 2010). The last 

AHS outbreak in Europe occurred between 1987 and 1990 in the Iberian Peninsula and resulted from the 

importation of infected zebras (Rodriguez et al. 1992a).  

AHS is a non-zoonotic disease that affects all extant Equidae, although morbidity and mortality vary 

among species: as many as 90% of infected horses die within one week, while infection is largely 

subclinical in zebras (Mellor and Hamblin 2004; Wilson et al. 2009). It is considered to be one of the most 

devastating diseases that affect equids. Four forms of the disease exist: horse sickness fever (moderate 
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fever and no mortality), cardiac form (subcutaneous edema, particularly of the head, neck, chest, and 

supraorbital fossae, mortality 50%), mixed form (combination of the cardiac and pulmonary forms, 

mortality 70%) and pulmonary form (sudden death, severe dyspnea, mortality 95%) (Mellor and Hamblin 

2004). The incubation time is from 3 to 15 days (Theiler 1910).  

2.2. Equine encephalosis 

Equine encephalosis (EE) is caused by a virus of the Orbivirus genus of the Reoviridae family, and 

encompasses seven different serotypes (Dhama et al. 2014; Viljoen and Huismans 1989). Similarly to AHS, 

EE has been recently highlighted as a potential threat for Europe (MacLachlan and Guthrie 2010; Zimmerli 

et al. 2010). Indeed, AHS and EE viruses are similar in many aspects: both are non-zoonotic Culicoides-

borne members of genus Orbivirus that share the same vectors (Venter et al. 2002; Venter et al. 2000) and 

more or less the same geographical distribution. Like AHS, EE is also considered to be endemic in sub-

Saharan countries, with rare outbreaks in North Africa and western Asia (Mildenberg et al. 2009; Wescott 

et al. 2013). The last major outbreak was reported in Israel in 2009 (Mildenberg et al. 2009). EE has never 

been observed in Europe (Dhama et al. 2014). 

The epidemiology of EE is similar to AHS but the pathogenicities of the two viruses are different. The 

incubation time of EE is shorter (2-6 days (Theiler 1910)) and its transmission rate is higher (Lord et al. 

2002). Moreover, despite the fact that EE was initially described as a “fever in horses simulating horse-

sickness” (Theiler 1910), the symptoms of the two diseases are different. In particular, the mortality rate 

of EE is always low. In contrast to AHS, which causes severe cardiac and pulmonary symptoms, EE is 

characterized by a wide range of symptoms, such as abortions during the first 5-6 months of gestation, 

respiratory signs (e.g., nasal discharge, cough), and encephalitis (Dhama et al. 2014).  

2.3. West Nile virus 

West Nile virus (WNV) is a mosquito-borne arbovirus belonging to the genus Flavivirus (family Flaviviridae) 

and mainly transmitted by mosquitoes from the genus Culex (family Culicidae). Two distinct lineages exist: 

lineage 1 causes outbreaks throughout the world, while lineage 2 was limited to Africa until 2008, when it 

was introduced to Europe. Since the discovery of WNV in 1937 in Uganda (Smithburn et al. 1940), the 

geographic distribution of the virus has expanded and the disease is now considered endemic in Africa, 

Asia, Europe, Australia, the Caribbean, and the Americas (Campbell et al. 2002; Ozdenerol et al. 2013). In 

Europe, WNV emerged in the 1960s and several outbreaks have subsequently been documented in many 

European countries (Calistri et al. 2010). Even if the virus is now endemic in large parts of Europe, the 

number of reported outbreaks is presently increasing in Southern and Eastern Europe (e.g., Italy, Greece, 

Bulgaria, Croatia, Serbia, Albania)(Di Sabatino et al. 2014). This increase in the number of outbreaks, 

combined with the recent introduction and spread of lineage 2 in Europe (which has been associated with 
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severe cases in humans, horses, and birds (Bakonyi et al. 2006; Calzolari et al. 2013; Hernández-Triana et 

al. 2014)), contribute to the growing concern about WNV in Europe. 

The enzootic cycle of WNV is driven by its continuous transmission to susceptible bird species through 

adult mosquitoes. Its main hosts are birds, but the virus also affects more than 30 non-avian species. The 

susceptibilities of birds to WNV infection differ, with those in the order Passeriformes being most 

susceptible, followed by birds in the order Charadriiformes and domestic geese (order Anseriformes). 

Psittacine and gallinaceous birds are less susceptible. WNV in birds is usually asymptomatic, but may 

cause nonspecific clinical signs, neurological signs, and death (Pérez-Ramírez et al. 2014; Steele et al. 

2000). Of non-avian species, the most affected are humans and horses (Kramer and Bernard 2001; Van der 

Meulen et al. 2005). In horses the clinical signs of WNV are almost exclusively neurological and reflect its 

pathology in the central nervous system (Cantile et al. 2000; Castillo-Olivares and Wood 2004). In humans 

two presentations of the disease are reported: uncomplicated WN fever (headache and myalgia, often 

accompanied by gastrointestinal symptoms) and WN meningoencephalitis (typical meningitis or 

encephalitis) (Campbell et al. 2002; Colpitts et al. 2012).  
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D. OUTLINES OF THE WORK 

Chapter 1 presents the context of this work and the associated research question. Chapter 2 gives first a 

brief presentation of the methods used for spatiotemporal quantitative risk assessments of the entry and 

establishment of VBDs in France, then presents spatiotemporal risk analyses that were performed to 

assess the probabilities of AHS and EE entry and establishment. Two routes of viral entry were considered 

together and two methods were used to assess the probability of viral establishment.  

Chapter 3 first provides an overview on current approaches in syndromic surveillance. Then, an 

application of a classical method is presented which explores the impact of pre-processing methods on 

surveillance system performance. Finally, we discuss the application of Bayes’ rules to syndromic 

surveillance with the goal of generating a quantitative output from syndromic surveillance and combining 

this with other epidemiological information.  

Chapter 4 presents the combination of risk assessments with syndromic surveillance data using a Bayesian 

approach. We present a combination of various sources of epidemiological information, which originate 

from different syndromic surveillance systems and/or from syndromic surveillance and risk analysis. 

Chapter 5 concludes with a discussion of the reliability and transparency of these complex surveillance 

systems and their usefulness in supporting decision-making. 
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CHAPTER II: QUANTITATIVE RISK ASSESSMENTS 

 

This chapter explores quantitative risk assessments as a way to assess the risk of potential newly 

introduced VBDs in horses. Early detection of an exotic vector-borne pathogen can reduce the impact of 

the disease. It relies on two factors: the probability of pathogen entry and the probability of pathogen 

transmission and establishment. In fact, the probability of spatial and numeric spread is irrelevant to this 

process, as it is related more to the assessment of a disease’s impact after early detection has already 

failed to detect and prevent the outbreak. The parameters needed to assess these probabilities are 

specific to each VBD, given that a vector’s biology is closely linked to season and environment. A brief 

overview of the methods used for quantitative risk assessments of a VBD’s entry, transmission, and 

establishment is presented in Chapter II.A. This review highlighted that combination of probability of 

entry, probability of transmission and probability of establishment is still rarely implemented in animal 

health, as is a thorough study of multiple routes of pathogen entry. Building on this review, we thus 

developed a quantitative model to assess the probability of entry and establishment of AHS, one of the 

most devastating equine diseases known (Chapter II.B). We implemented spatiotemporal analysis to take 

into account the close link between VBDs and season/environment, and to consider other non-biological 

fluctuations related to features of international trade and animal production. Then, we evaluated the 

feasibility of adapting this model to other VBDs in horses (Chapter II.C). For that purpose, we focused on 

equine encephalosis (EE), as this disease is similar to AHS. The respective probabilities of entry into France 

were compared for each disease. Finally, we discuss the advantages and drawbacks of our model in 

assessing the risks of newly introduced VBDs in horses (Chapter II.D).  
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A. OVERVIEW 

This section aims to present the general principle of risk assessment and explain how the probabilities of 

pathogen entry, transmission, and establishment can be assessed in the specific context of VBDs. We 

restrict ourselves to quantitative risk assessment and to the most popular methods for risk estimation. 

1. General principle of risk assessment 

1.1. Definitions and objectives 

Risk assessment is the component of risk analysis that estimates the risk associated with a hazard (OIE 

2014). The OIE has defined a hazard as a “biological, chemical, or physical agent in, or condition of, an 

animal or animal product with the potential to cause an adverse health effect” and a risk as “the likelihood 

of the occurrence and the likely magnitude of the biological and economic consequences of an adverse 

event or effect to animal or human health”. 

The purpose of risk assessment is not so much to predict the introduction of a hazard but rather to help 

managers to better understand the associated risks (e.g., relative contributions of various factors, current 

areas of distribution, pathways for introduction, effectiveness of risk prevention actions). Risk assessment 

is clearly separated from risk management, but actively collaborates to achieve the ultimate goal: 

implement measures that ensure the appropriate level of protection (Giovannini et al. 2004; OIE 2014).  

Risk assessment may focus on different components, such as assessment of the entry, exposure, or 

consequences of a VBD, or on an estimation of the total risk by combining the results of these separate 

components in an overall assessment. To our knowledge, only a few papers in the animal health literature 

have linked these different probabilities in a quantitative manner: in a literature search, only three papers 

were found that addressed a combination of the probability of entry of a virus and its probability of 

establishment (EFSA 2009; Napp et al. 2012; de Vos et al. 2012). Similarly, a comprehensive approach to 

the routes of entry is rarely used; we found only one paper that analyzed a combination of routes of virus 

entry (Kilpatrick et al. 2004).  

The entry assessment is conducted using the probability that the pathogen of interest enters the area at 

risk via any possible pathway, without regard to later steps of transmission.  

The exposure assessment includes analysis of various factors, as presented by de Vos and colleagues (de 

Vos et al. 2011): (1) the probability of transmission, which is defined as the probability that the pathogen 

is able to spread to susceptible hosts in the area at risk, (2) the probability of establishment, which is the 

probability that the pathogen is able to spread to susceptible hosts and to susceptible vectors (and vice 

versa) given the conditions of introduction, and (3) the probability of extended spread, which is the 
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probability that the pathogen is able to spread in time and space, considering both local and long-distance 

dispersal.  

The consequence assessment rates the impact of the disease and includes health, economic, social, 

ethical, and environmental considerations (Vose 2008). Disease persistence to next season won’t be 

considered in this work. 

1.2. Method 

The preliminary step of any risk assessment is to identify the hazard of interest. Hazard identification is 

fundamental in defining the objective of the risk assessment and must be carefully implemented (Vose 

2008).  

To perform risk assessment, several guidelines are available (see for example (Codex Alimentarius 1999; 

EFSA 2010; OIE 2014; USDA 2012; de Vos et al. 2011)) and no single method is applicable to all risk 

assessments. However, the following principles identified by OIE in the International Animal Health Code 

(OIE 2014) should ensure the quality of risk assessment:  

 Risk assessment should be flexible enough to deal with the complexity of real-life situations.  

 The risk assessment should be based on the best available information that is in accord with 

current scientific thinking. The assessment should be well-documented and supported with 

references to the scientific literature and other sources, including expert opinion. 

 Consistency in risk assessment methods should be encouraged and transparency is essential in 

order to ensure fairness and objectivity, consistency in decision making, and ease of 

understanding by all interested parties. 

 Risk assessments should document the uncertainties, the assumptions made, and the effect of 

these on the final risk estimate. 

 The risk assessment should be amenable to updates when additional information becomes 

available.  

Risk assessments can be either qualitative or quantitative, and both approaches are valuable. Qualitative 

assessments describe the risk in words (e.g., low, moderate, high), whereas quantitative assessments 

express the risk in numeric terms. Qualitative assessments are performed when no proper evaluation of 

the order of magnitude of uncertainties is possible while these uncertainties are typically high. Since there 

is no quantitative evaluation, there is also no proper mathematical model. Qualitative assessments are 

often used for routine decision making (OIE 2014). However, qualitative assessments  do not provide 

sufficient information to accurately discriminate between small and large risks (Cox et al. 2005). 

Quantitative assessments provide more detailed information on the risk and can be more useful in 

distinguishing periods and areas at higher risk. However, the performance of a quantitative risk analysis is 

limited by the quality of data available. In addition, quantitative risk assessment can be deterministic or 
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stochastic. Deterministic approaches produce a single outcome from a given set of parameters, 

uncertainty can be included but stochastic effects are usually ignored or crudely estimated. Stochastic 

approaches directly calculate the risk while also taking into account uncertainty and/or variability due to 

stochastic variation in input parameters. They produce a probability distribution of possible outcomes 

distinguishing impact via uncertainty and stochasticity.  

2. Probability of entry 

2.1. Definition  

The probability of entry was previously referred to as the probability of release (OIE 2010). In 2014, the 

new version of the OIE’s Terrestrial Animal Health Code (OIE 2014) specified this a bit further and adopted 

the following definition: “Entry assessment consists of describing the biological pathway(s) necessary for 

an importation activity to introduce pathogenic agents into a particular environment, and estimating the 

probability of that complete process occurring”. 

2.2. Estimation for VBDs 

2.2.1. Routes of entry 

The first step of the assessment of pathogen entry is to identify the potential routes available for 

introduction of the pathogen. Considering the specific case of VBDs, de Vos and colleagues (de Vos et al. 

2011) listed the following pathways which should be considered in assessing the probability of VBD entry: 

 Entry of infected live animals via importation of livestock, zoo animals, pets, wildlife, or 

migratory birds; 

 Entry of an infected vector or its eggs or larvae through expansion of the vector’s habitat or 

transport with wind, tires, plant materials, transport vehicles, animals, humans, manure, or 

soil; 

 Import of contaminated biological material, such as semen, ova, embryos, serum, plasma, 

and modified live vaccines; 

 Import of contaminated animal products such as meat, milk, eggs, bush meat, and animal by-

products (feathers, animal proteins, animal fats); 

 Entry of infected humans. 

 

The importation of animals and transport of materials or other products can be legal or illegal. Illegal 

imports could contribute substantially to the probability of entry, but are obviously difficult to estimate 

and to quantify, and  will therefore not be discussed further in this work (Chaber et al. 2010; Hartnett et 

al. 2007; Smith et al. 2012). 
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2.2.2. Calculation 

The scenario tree, or scenario pathway, approach is commonly used to estimate the probability of 

pathogen entry (Vose 2008). Several examples are available for vector-borne pathogens, in particular for 

Rift Valley fever (Abdo-Salem et al. 2011), West Nile fever (Bessell et al. 2014; Douglas et al. 2007; 

Kilpatrick et al. 2004), equine infectious anemia (Asseged et al. 2012), and bluetongue (Hoar et al. 2004). 

Other examples are also available for non-vector-borne pathogens like classical swine fever (Bronsvoort et 

al. 2008) and foot-and-mouth disease (Yu et al. 1997).  

The principle is first to describe all consecutive steps that result in disease entry. The complexity of these 

steps can vary according to the routes of entry considered (de Vos et al. 2011). For example, when an 

infected animal is legally imported, the animal must be viraemic (or latently infected) and the infection 

not detected during import procedure. However, when an infected wild bird enters the country via 

migratory routes, the only step to be considered in the probability of pathogen entry is that the animal is 

viraemic or latently infected. Each step has a conditional probability of occurrence and the probability of 

entry is calculated by multiplying the probabilities of all steps along the tree. 

Model calculations can be used to quantitatively combine all these probabilities. These are especially 

useful when there is uncertainty and/or variability due to the presence of stochastic parameters, which is 

often the case in risk analysis. 

3. Probabilities of transmission and establishment 

3.1. Probability of transmission 

3.1.1. Definition 

The probability of transmission can be evaluated by calculating the basic reproductive number (R0) (see for 

example (de Koeijer et al. 2002) and (Fischer et al. 2013)), which represents the expected number of 

secondary cases produced, in a completely susceptible population, by a “typical” infected individual during 

its entire period of infectiousness (Diekmann et al. 1990). The probability of transmission is thus not a 

probability but the number of new cases generated from one initial infected case.  

 

If R0 > 1, then, on average, each infected animal will generate more than one infected animal, and the 

infection will increase exponentially. If R0 < 1, an infected animal is not able to infect more than one other 

animal, on average, and the infection should die out.  

Due to the ease of interpretation of R0, it is very useful in distinguishing at-risk situations from those not at 

risk. This is one of the reasons why it has become an important parameter in risk assessment. In particular, 
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R0 is often used to assess the transmission of exotic infectious diseases for which, by definition, the only 

infected individual in a population is the introduced one. 

3.1.2. Estimation for VBDs 

Numerous approaches are available to estimate R0, but with vector-borne infection, the estimation of R0 is 

slightly more complicated than for diseases with direct transmission. Indeed, with VBDs there is not only 

one population of infected/susceptible individuals to be considered, but at least two: hosts and vectors. 

Thus two transmission steps must be assessed: one infectious host with a fully susceptible vector 

population, and one infectious vector with a fully susceptible host population.  

The following parameters must be considered to assess the probability of VBD transmission (de Vos et al. 

2011): 

 Host density; 

 Vector abundance; 

 Biting rate; 

 Transmission probability per bite from host to vector and from vector to host; 

 Vector biology (e.g., survival rate, extrinsic incubation period). 

Moreover, the vector-related data are highly dependent on environmental and climatic factors. Thus the 

R0 for VBDs also depends on the time period and the geographical location in which the pathogen enters 

the area at risk. 

Classical models for the assessment of VBD transmission probabilities are based on systems with one host 

and one vector or with two hosts and one vector. More details can be found, for example, in studies 

conducted on malaria (Macdonald 1955; Ponçon et al. 2008), African horse sickness (Backer and Nodelijk 

2011; Lord et al. 1996), Rift valley fever (Fischer et al. 2013), and bluetongue virus (Brugger and Rubel 

2013; Gubbins et al. 2008; Hartemink et al. 2009; de Koeijer et al. 2011). However, other authors have also 

proposed approaches based on two-host, two-vector models (Turner et al. 2013). 

3.2. Probability of establishment  

3.2.1. Definition 

The probability of establishment represents what happens in terms of pathogen survival and growth 

during a transition phase between a pathogen’s entry and its actual spread. Establishment can be 

considered the initial spread of the disease and is expressed as the probability that “the infection has 

passed from a host via a vector to an indigenous host, while the basic reproduction number, R0, is higher 

than 1” (de Vos et al. 2011).  
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First, the probability of establishment depends on the route of pathogen entry. Beyond this, it depends on 

environmental and climatic conditions and therefore on the time period and the location in which the 

pathogen enters the area at risk. 

3.2.2. Estimation for VBDs 

Methods such as those already presented in the previous section on the probability of entry assessment 

(i.e. the scenario tree method) can be used to estimate the probability of establishment. As previously 

presented, the principle is to describe all consecutive steps that result in disease establishment.  

 

For VBDs, the following steps must be taken into particular consideration (de Vos et al. 2011): 

 Pathway for introduction: route of exposure of indigenous host or vector; 

 Time of disease entry: temperature, humidity, and other parameters that may influence 

pathogen transmission; 

 Geographic location of disease entry: host density, vector abundance; 

 Vector-host interaction: biting rate, transmission probability per bite from vector to host and 

from host to vector. 

Studies conducted on African horse sickness (de Vos et al. 2012), bluetongue (Napp et al. 2012), and 

epizootic hemorrhagic disease (EFSA 2009) provide examples of the assessment of the probability of VBD 

establishment using different routes of pathogen introduction (e.g., infectious host or infectious vector). 

4. Conclusion 

Quantitative risk assessments are common methods used to assess the risk posed by exotic pathogens. 

Various methods are available to implement risk assessment. Notably, different components of risk 

assessment (i.e. probabilities of entry, transmission, and establishment) can be assessed independently or 

together according to the objective of the risk assessment. Considering the case of VBDs, specific 

parameters have to be taken into account to deal with the two steps of virus transmission (from vector to 

host and from host to vector). In particular, the time and the area of pathogen entry are important in 

assessments of the probabilities of pathogen transmission and establishment as a vector’s biology is 

closely linked to season and environment. However, analyses that combine the probabilities of entry, 

transmission, and establishment are still rarely implemented in animal health; the same is true regarding 

studies of combinations of different routes of entry. The development of such models could be a way to 

better understand and manage the risk associated with a disease. 
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B. PROBABILITIES OF ENTRY AND ESTABLISHMENT 

1. Introduction 

In this section we present a spatiotemporal assessment of the probability of introduction of African horse 

sickness (AHS) to France. We developed a model that combined the probability of entry with the 

probability of establishment and included two routes of virus entry, expecting that such a model would 

enable a greater understanding of the risk associated with AHS in France compared to risk assessments 

involving only a single probability parameter or a single route of introduction.  

This work was published in BMC Vet Research (see below for the main text and Appendix 1, Appendix 2, 

and Appendix 3 for the additional files  of the paper), two professional publications in French journals (see 

Appendix and Appendix 5), and one poster presentations at the EPIZONE meeting in 2013 (see Appendix 

6). 
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2. Paper 1 
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C. COMPARISON OF DISEASES RISKS 

This study aimed first to evaluate the feasibility of adapting the model developed in Chapter II.B to 

another disease. For that purpose, we chose equine encephalosis (EE) as this disease is similar to AHS. 

Then, we compared the probabilities of entry into France of both diseases in order to better understand 

and manage the risk associated with AHS and EE.  

This part of the work resulted in two poster presentations at the Conference of the Society for Veterinary 

Epidemiology and Preventive Medicine (SVEPM) in Ghent (2015) and at the Journée de l’Ecole doctorale in 

Clermont-Ferrand (2015) (posters available in Appendix 7 and Appendix 8, respectively) and in one oral 

presentation at the final workshop of the EMIDA-VICE project (February 2015). 

1. Introduction 

In Europe, African horse sickness (AHS) and equine encephalosis (EE) have been recently highlighted as 

potential threats (MacLachlan and Guthrie 2010; Zimmerli et al. 2010). Like bluetongue and 

Schmallenberg viruses, both are borne by biting midges in the genus Culicoides, and both are non-zoonotic 

equid diseases caused by viruses belonging to the Orbivirus genus of the Reoviridae family (Dhama et al. 

2014; Mellor and Hamblin 2004; Viljoen and Huismans 1989). Both viruses have more or less the same 

geographical distribution and are considered endemic in sub-Saharan countries, with rare outbreaks in 

North Africa and western Asia (MacLachlan and Guthrie 2010; Mildenberg et al. 2009; Wescott et al. 

2013). Likewise, the epidemiology of these diseases are also similar, with both sharing the same vectors 

(Venter et al. 2002; Venter et al. 2000), although EE has a higher transmission rate (Lord et al. 2002). 

However, the two viruses differ in pathogenicity: AHS is one of the most devastating diseases in equids, 

with a mortality rate approaching 90% (Mellor and Hamblin 2004), whereas EE induces only sporadic 

symptoms with a correspondingly low mortality rate (Dhama et al. 2014). At first glance, the epidemiology 

and transmission patterns of AHS and EE are very similar; however, more detailed information on the 

respective probabilities of entry of the two diseases is needed.  

The aim of this study was to determine the extent to which AHS and EE differ in their probabilities of 

entry, despite their similar patterns of epidemiology and transmission. We also identified the most 

appropriate measure for risk mitigation for each disease. The probabilities of entry into France of both 

AHS and EE were evaluated and compared for two routes of virus entry: an infectious host imported via 

legal trade and an infectious vector imported via the large animal trade. 
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2. Method 

2.1. Model for risk assessment of viruses entry 

The probability of entry is defined as the probability that a virus reaches an area, without consideration of 

later steps of transmission (OIE 2014). The stochastic spatiotemporal model of AHS introduction 

presented in the previous section (Chapter 2, section B)(Faverjon et al. 2015b) was used to assess the 

probability of AHS entry. The model was adapted by Evelyn Pamela Martinez Lopez, a Master’s student 

from CVI, to assess the probability of EE introduction to the Netherlands and subsequently adapted by us 

to assess the probability of EE entry into France. Two pathways were considered: the introduction of an 

infectious host via legal trade and the introduction of an infectious vector through the large animal trade.  

2.2. Parameters 

The models for AHS and EE entry differ only in the disease parameters. The parameters not related to the 

diseases, such as transport time, were identical to those defined in the previous section (Chapter 2, 

section B) (Faverjon et al. 2015b). The disease-specific parameters were, for AHS, those used in the 

previous section (Chapter 2, section B) (Faverjon et al. 2015b) and, for EE, the parameters used by Evelyn 

Pamela Martinez Lopez. The differences between the diseases are reported in Table 3 and Table 4. All 

other parameters are identical in both models; in particular, there is no quarantine and no laboratory test 

implemented for either disease for horses traveling within the EU. 

 

Table 3 : import procedure for African horse sickness and equine encephalosis 

 African horse sickness Equine encephalosis 

High risk 

Quarantine: 40 days 
2 ELISA tests with minimum 21 days and maximum 30 
days between them (Sensitivity: Beta(60, 4), 
Specificity: Beta(62, 2)) 
Vectors protection (efficacy Uniform(0.5,0.9)) 
Time to clinical inspection: day of embarkation 

Quarantine: 40 days 
2 ELISA tests with minimum 21 days and maximum 30 
days between them (Sensitivity: 1, Specificity: 1) 
Vectors protection (efficacy Uniform(0.5,0.9)) 
Time to clinical inspection: day of embarkation 
 
Israel: 
Quarantine: 40 days 
No ELISA test.  
Vectors protection (efficacy Uniform(0.5,0.9)) 
Time to clinical inspection: day of embarkation 

Low risk 
(non EU 
countries) 

Quarantine: 40 days 
2 ELISA tests with minimum 21 days and maximum 30 
days between them (Sensitivity: Beta(60, 4) 
Specificity: Beta(62, 2)) 
No Vectors protection  
Time to clinical inspection: day of embarkation 

Quarantine: 40 days 
No laboratory test. No vector protection  
Time to clinical inspection: day of embarkation 

Very low 
risk (non EU 
countries) 

No quarantine, No laboratory test, No vector 
protection 
Time to clinical inspection: at least 48h before 
embarkation 

No quarantine, No laboratory test, No vector 
protection  
Time to clinical inspection: at least 48h before 
embarkation 
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Table 4 : Parameters specific of diseases and used for African horse sickness and Equine encephalosis in 
the model of viruses entry. The parameters used for African horse sickness come from (Faverjon et al. 

2015b); The parameters used for equine encephalosis have been estimated following the same 
assumptions than those used in (Faverjon et al. 2015b) but adapted according to the specificities of the 

disease presented in (Aharonson-Raz et al. 2011) (Crafford et al. 2003)(Crafford et al. 2011)(Mildenberg et 
al. 2009)(Paweska and Venter 2004)(Venter et al. 1999)  

  African horse sickness Equine encephalosis 

Mortality rate for hosts Horse: 70%, Donkey: 10%, Zebra: 1% All equidae: 5% 

Length of viraemia (days) 

When animal died:  
Horse: Gamma(20.25, 0.22) 
Donkey: 12  
Zebra: 28 
 
When animal survived:  
Horse: Gamma(29.75, 0.20)  
Donkey: 28  
Zebra: 40 

All equidae: Pert(7, 30) Mean 19 

Incubation period (days) Pert(2, 10) Mean 6  Pert(2, 6) Mean 4 

Time between infection and 
seroconversion (days) 

Uniform(10, 14) Uniform(length of incubation, length of viraemia) 

Definition of 
at risk area 

High risk Sub-Saharan countries Sub-Saharan countries + Israel 

Low risk  
Regions that have experienced AHS outbreaks 
in the past and/or where the main vector, C. 
imicola, is present 

Regions that have experienced AHS outbreaks in 
the past and/or where the main vector, C. 
imicola, is present 

Very low risk All the other countries All the other countries 

Rate of 
Culicoides 
infected 
during an 
outbreak 

High risk 0.014 Uniform(0.0005,0.23)  

Low risk  0.00014 Uniform(0.0005,0.23)/100 

High risk 
period (days) 

Low risk  
2*Incubation period for AHS + time till next 
infectious blood meal based on 18°C 

70 days 

Very low risk 
2*Incubation period for AHS + time till next 
infectious blood meal based on 12°C 

70 days 

Probability of 
disease 
occurrence 

Low risk  
Gamma(AHS High risk period in Low risk 
region*15, 1/(365*60)) Mean: 0.016 

Gamma(7*365, 1/(365*47)) Mean: 0.14 

Very low risk 
Gamma(AHS High risk period in Very Low risk 
region, 1/(365*61)) Mean: 0.0027 

Gamma(EE High risk period in Very Low risk 
region ,1/(365*48)) Mean: 0.0033 

Cumulative 
incidence 

High risk 
Horse: Pert(4x10-6, 5.02x10-4, 1x10-3)  
Donkey: 1.2x10-2 
Zebra: 1.6x10-2 

All equidae: 1-exp(Uniform(0.29,0.67)) 

Low risk  2x10-4 0.0951 

Very low risk 2x10-4 0.0487 

 

2.3. Input data 

To calculate the probability of virus release, the numbers of bovines and equines transported to France 

were obtained from TRACES, the TRAde Control and Expert System, which monitors the transport of 

animals and products of animal origin both into and within the EU. In our analysis, we only included 

animals whose final destination was France.  
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2.4. What-if scenarios 

To evaluate the impact of manageable parameters on the probability of entry of AHS and EE into France, 

we used the average annual number of animals imported into France between 2010 and 2012 to evaluate 

different scenarios and compare them to the default. Seven scenarios were tested: five tested the effects 

of changes to existing legislation, and two evaluated the consequences of changing import procedures 

from non-EU countries. A description of the scenarios is available in Table 5.  

Table 5 : Description of scenario tested. Scenarios 1 to 5 changed the existing legislation, scenarios 6 to 7 
changes imports from third countries. 

Scenario 1 Quarantine period of 60 days instead of 40 

Scenario 2 Quarantine period of 20 days instead of 40 

Scenario 3 

Same regulation implemented in Low risk EU state than in low risk non-
EU state 
1. AHS: Quarantine of 40 days, 2 ELISA tests with minimum 21 days 

and maximum 30 days between them (Sensitivity: Beta(60, 4) 
Specificity: Beta(62, 2)), no Vectors protection, and clinical 
inspection the day of embarkation. 

2. EE: Quarantine of 40 days, no laboratory test, no vector protection, 
and clinical inspection the day of embarkation. 

Scenario 4 No serological test implemented 

Scenario 5 Vector protection implemented on all animals coming from low risk area 

Scenario 6 No legal importation from high risk region 

Scenario 7 No legal importation from low risk region and non-EU states 

2.5. Calculations 

Model calculations were performed in Microsoft Office Excel 2010 with @Risk 6.1 (Palisade Corporation 

2013); 10,000 iterations were run. The sensitivity analysis tool in @Risk was used to evaluate the impact 

of stochasticity and uncertainty in the input parameters on model results. The correlations between the 

values of the input parameters and the pathway-specific probabilities of introduction were calculated 

(Spearman’s rank correlation coefficients). 

The sensitivity of the model to input parameter values could be expected as very similar across all regions 

and months because we used the same model and input parameter estimates in every case, with the 

exception of the bovine-to-equine ratio, the temperature data, and vector abundance. The values of these 

three parameters varied substantially across regions and months (e.g., in a given month, vector 

abundance could vary greatly in one region and little in another; the bovine-to-equine ratio also varied 

across regions). Parameters subject to larger amounts of variation are more likely to substantially 

influence model results more than those subject to lesser amounts of variation. When determining the 
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overall probability of introduction, we thus chose to focus our sensitivity analysis on the combinations of 

region and time period that were associated with the highest levels of risk and/or uncertainty. 

3. Results 

3.1. Spatiotemporal probability of entry 

The overall annual median probability of EE entry in France was much higher than that for AHS for both 

pathways and for each of the three years considered (EE: PW-host = 0.9 and PW-vector = 0.4 to 0.5, AHS: 

PW-host = 3x10
-3

 and PW-vector = 1.4 x10
-2

 to 3.6x10
-2

). The route most susceptible to virus entry differed 

between diseases: for AHS, infectious vectors represented the route by which entry into France was most 

likely, while for EE, infectious hosts represented the most at-risk route of entry (see figure 3).  

Seasonal effects were similar for both diseases, with a lower-risk period from January to June. This was 

the result from the assumption fact that the low- and very-low-risk regions (i.e. the exporting regions) 

were considered to be unlikely to experience AHS and EE outbreaks during this time and that animal 

import from high-risk regions is very rare in general (see Figure 3).  

 

Figure 3 : National median probability of EE and AHS viruses entry to France. 
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Probability of entry varied greatly across space and time (see for example Figure 4 and Figure 5) but, over 

the three years considered, some areas consistently had a higher probability of virus entry, e.g., the 

southern and north-western regions of France. These areas were the most at-risk for both diseases and 

both entry pathways (see Figure 6).  

 

Figure 4 : Median probabilities of viruses entry via an infectious host. Example of the year 2012. 

 

Figure 5 : Median probabilities of viruses entry via an infectious vector. Example of the year 2012. 
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Figure 6 : At risk areas for viruses entry when entry via an infectious host and via an infectious vector are 
considered together. 

3.2. Sensitivity analysis 

The parameters with the greatest impact on the output differed between diseases and pathways. A 

summary of the input parameters with the greatest influence on the results is presented in Figure 7 and 

Figure 8.  

AHS EEV 

  

Figure 7 : Correlation of the model input parameters with the probability of entry of AHS and EE via an 
infectious host. Results are presented for Basse Normandie in July 2012. Only input parameters with at 

least one correlation ≥ |0.1| have been included in the table. Parameters with black star are the uncertain 
parameters. The others are the variable parameters. 

0,94 

0,92 

0,43 

0,23 

0,14 

0 0,2 0,4 0,6 0,8 1

length of incubation period

probability of outbreak
occurrence in low risk

countries

probability of outbreak
occurrence in very low risk

countries

length of viremia in horses

time of clinical inspection for
equidae coming from low

risk countries

0,58 

0,31 

0,19 

0,15 

0 0,2 0,4 0,6 0,8 1

probability of outbreak
occurrence in low risk

countries

time needed for
seroconversion

probability of outbreak
occurrence in very low risk

countries

length of incubation period

 
African horse sickness          Equine encephalosis 

 

Probabilities of entry bellow 10-4 over the three years 

Probabilities of entry between 10-4 and 10-3 over the three years 

Probabilities of entry between 10-3 and 10-2 over the three years 

Probabilities of entry between 10-2 and 10-1 over the three years 

Probabilities of entry above 10-1 over the three years 



 

48 
 

AHS EEV 

  

Figure 8 : Correlation of the model input parameters with the probability of entry of AHS and EE via an 
infectious vector. Results are presented for Basse Normandie in July 2012. Only input parameters with at 

least one correlation ≥ |0.1| have been included in the table. Parameters with black star are the uncertain 
parameters. The others are the variable parameters. 

3.3. What-if scenarios 

The what-if scenarios tested had similar effects on both diseases when the routes of introduction were 

considered separately (see Table 6). For example, the probability of importing an infectious vector 

decreased when systematic vector control was implemented during quarantine (a change of more than -

40% for both diseases). Instead, changes to the length of the quarantine period and the use, or not, of 

laboratory tests had only a minor impact on the probability of introducing an infectious host (and 

obviously no impact on the importation of an infectious vector). Although the impact of the what-if 

scenarios was broadly similar (again, when considering each route of introduction separately) one 

difference should however be pointed out: a strategy of prohibiting imports from high-risk regions was 

much more successful in controlling AHS risk than EE risk. Indeed, in this scenario, the probability of 

importing an infectious vector decreased by 31.67% for AHS and by 3.40% for EE, and the probability of 

importing an infectious host decreased by 3.53% for AHS and 0.03% for EE.  

When both entry pathways were considered together, the impact of the what-if scenarios on the overall 

probability of disease entry differed between AHS and EE. For example, when testing regulations were 

implemented in all low-risk countries, the overall probability of AHS introduction decreased by 4.99% 

while the probability of EE introduction decreased by 15.35%. Similarly, the systematic implementation of 

vector control on animals coming from low-risk countries had a greater impact on AHS probability of entry 

than on EE probability of entry (-46.13% for AHS and only -2.07% for EE). The most influential protective 

measures were thus disease-specific. To reduce the probability of AHS introduction, the most efficient 

protective measure was to implement vector protection on all animals coming from low-risk regions. To 

reduce the probability of EE introduction, the most effective measure was to implement the same 

regulation in all low-risk regions: quarantine before import for horses coming from both EU and non-EU 

countries, which resulted in a 15.36% reduction in the probability of disease entry.  
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Table 6 : Change (in %) on median probabilities of viruses entry to France compared to the default 
scenario. 

 African horse sickness Equine encephalosis 

Infectious 
host 

Infectious 
vector 

Overall 
risk 

Infectious 
host 

Infectious 
vector 

Overall 
risk 

Quarantine period of 60 
days instead of 40 

-1.74 0 -0.17 -0.3 0 -0.10 

Quarantine period of 20 
days instead of 40 

+2.69 0 +0.27 +0.08 0 +0.03 

Same regulation 
implemented in Low risk EU 

state than in low risk non-EU 
state 

-49.31 0 -4.90 -46.26 0 -15.36 

No serological test 
implemented 

+0.20 0 +0.02 +0.03 0 0.00 

Vector protection 
implemented on all animals 

coming from low risk area 
-2.87 - 51.07 -46.13 -0.35 - 57.26 -2.07 

No importation from high 
risk region 

-3.53 -31.67 -28.78 -0.03 -3.40 -0.12 

No importation from low 
risk region and non-EU states 

-2.88 -0.45 -0.69 -0.29 -0.70 -0.12 

4. Discussion  

Our study showed that the probabilities of entry for AHS and EE into France are similar in terms of 

seasonality and, in both cases, the highest-risk period is from July to December. This is mainly due to a 

decrease in the estimated risk from exports from low-risk countries from January to June, when the 

probability of having an outbreak was calculated as negligible (outbreaks never reported). The regions 

most susceptible to AHS and EE entry were also similar, with the highest probabilities of virus entry in the 

southern and northwestern regions of France.  

However, the probabilities of AHS and EE entry differed in magnitude, with the latter much higher than 

the former. In addition, the main probability contributors also differed between diseases. For AHS, the 

most important pathway for virus entry was through an infectious vector, but for EE, the appearance of an 

infectious host was the most important contributor to the overall probability. These patterns were due to 

the less-strict trade regulations concerning EE (i.e. no serological tests in low-risk non-EU states), the 

higher probability of EE occurrence in low-risk regions (mean value 0.14) compared to AHS (mean value 

0.016), the difficulties of detecting EE symptoms during clinical inspection, and longer high-risk periods for 

EE, which can be explained by the longer asymptomatic period of EE, during which time the disease is not 

reported in the exporting country. These aspects together explain why preventive measures for high risk 

areas are more effective for AHS than for EE. 
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The sensitivity analysis revealed that the fraction of infectious Culicoides during an EE outbreak in high-risk 

regions had a significant impact on EE entry via increasing the number of infectious vectors. This 

parameter was estimated as a constant in the AHS model due to the limited information available and 

thus did not appear in the sensitivity analysis. However, this result for EE suggests that the impact of this 

parameter would be not negligible for AHS entry. Considering the probability of virus entry via an 

infectious host, the time for seroconversion was highlighted as an important input parameter for EE 

(coeff. correlation equal to 0.31), but not for AHS (coeff. correlation equal to 0.01). This result can be 

explained by the increased relative importance of serological tests in detecting EE, as this disease is mainly 

asymptomatic. In addition, there was much more uncertainty regarding estimates of the time for 

seroconversion for EE than there was for AHS. This also contributed to the importance of this parameter in 

the EE model.  

The what-if scenarios tested here showed that the most effective protective measures were not the same 

for the two diseases, because the main probability contributors differed. Thus, even if the impact of each 

scenario was similar between diseases for a given route of introduction, its impact on the overall 

probability of disease introduction varied. To specifically decrease the probability of importing an 

infectious host, the most efficient measure for both diseases was to implement the same regulations in all 

low-risk countries, EU and non-EU states alike. This pattern can be explained by the fact that relatively few 

horses are imported into France from either high-risk or low-risk non-EU states (respectively 0.08% and 

2.8% of the total number of imported horses to France) compared to the number of horses imported from 

low-risk EU states (34.4% of total imports to France). These results were consistent with those obtained by 

de Vos and colleagues (de Vos et al. 2012). To specifically decrease the probability of importing an 

infectious vector, the most efficient measure was, as expected, the implementation of systematic vector 

control during quarantine, which is currently only mandatory for horses coming from high-risk areas. 

The model allowed us to distinguish which disease posed the greatest threat in a given time and place 

even though, a priori, the diseases are similar in term of biological origin and epidemiological patterns. 

Our method also clearly identified the main probability contributors and the most efficient measures for 

risk mitigation. However, it does not take into account the assessment of the consequences of each 

disease, which would be useful in objectively allocating the limited resources for disease surveillance. For 

example, the probability of EE entry appears higher than that of AHS, but the consequences of AHS 

introduction would be more severe, given the pathogenicity of the disease. To aid in the allocation of 

resources, then, other approaches should be considered (e.g., (Cardoen et al. 2009; Havelaar et al. 2010; 

Krause 2008; McKenzie et al. 2007; Ruzante et al. 2010; Valenciano 2001)).  
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D. DISCUSSION AND CONCLUSION 

1. Discussion 

The approach used in this chapter provided a complete and detailed picture of the probability of having an 

outbreak. In particular, the spatiotemporal risk analysis highlighted important spatiotemporal variations in 

probability of introcution. This is consistent with the non-homogeneity of the horse population and 

movements and with the link between VBDs and climate/environment. Performing a spatiotemporal 

analysis is thus useful for identifying the regions and time periods that are most at risk. In addition, by 

combining the probability of entry and probability of establishment for two routes of virus introduction, 

we provided a more complete picture of the risk posed by a pathogen compared to risk assessments that 

involve only a single route of introduction or a single probability. The risk maps provided in section B 

(figure 3 in the paper) present a good illustration of these differences: the spatiotemporal probabilities are 

different according to the probability of release/entry, the probability of establishment, the probability of 

introduction, and the routes of virus introduction under consideration.  

Our method can be easily adapted to other Culicoides-borne diseases, as illustrated by the work 

conducted on equine encephalosis (section C). However, the method can also be easily adapted to other 

vector-borne diseases as long as vector-related data (extrinsic incubation period, survival rate, abundance, 

etc.) and host-related data (viremia, incubation period, etc.) are available (keeping in mind, of course, that 

more adaptations would be required for models of diseases that are less similar to AHS). In particular, the 

probability of virus establishment in our example was quite simple to estimate, but could be more 

complicated for diseases with more complex transmission cycles (e.g., diseases with vertical transmission, 

multiple hosts and vector species, and/or vectors with a slow biological cycle, such as ticks). Careful 

consideration must thus be taken in adapting the model to another disease. This is especially true given 

our finding that even very similar diseases, such as EE and AHS, lead to quite different risk assessment 

outputs (see section C).   

Despite its advantages, the approach applied in this chapter is still rarely implemented in animal health. 

The low number of publications found in the literature that combine routes of pathogen entry and 

probabilities of entry and establishment can be explained by two factors. Firstly, the propagation of bias 

and uncertainty that results from combining multiple data sources (Hoffman and Hammonds 1994) can 

complicate the interpretation of results. Secondly, each process requires a different estimate of 

probability and different measures of risk mitigation, which some researchers prefer to keep separate 

(Stevens et al. 2009). Indeed, a large amount of data is needed to build such a complex spatiotemporal 

risk model. These data were hard to obtain, and not initially ready to use. When data are routinely 

collected, most of the time they are not formatted for use in the context of risk assessment, and thus an 

important step of data preprocessing is often needed. As an example, the TRACES database contains data 

on horse movements, but it was not straightforward to extract the relevant information. The method 
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implemented in this chapter is thus time- and data-consuming, which constitutes one of the major 

obstacles to its wider implementation in risk estimation. This limitation may also restrict efforts to update 

the model and its outputs. 

2. Conclusion 

The approach used in this chapter provided a complete and detailed picture of the probability of 

experiencing an outbreak. However, a low probability does not mean that an outbreak is not occurring, 

and risk assessments do not predict with certainty the origin of an infection. This approach merely gives 

an estimate of the likelihood and the most likely sources of an outbreak.  To ensure the early detection of 

a newly introduced disease, it would also be useful to consider other approaches for estimating the 

probability of experiencing an outbreak.  
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CHAPTER III: SYNDROMIC SURVEILLANCE  

 

This chapter explores the possibility of implementing a syndromic surveillance approach to assess the 

probability of occurrence of a newly introduced VBD in horses. There is no single commonly accepted 

methodology for the execution of syndromic surveillance. We thus started by summarizing current 

methods and definitions used in syndromic surveillance and, in particular, in veterinary syndromic 

surveillance (Chap III.A). Based on this short review, we developed a syndromic surveillance system for the 

early detection of West Nile virus (WNV) (Chap III.B). WNV was chosen because it is currently a major 

concern in Europe for both human and equine populations. The syndromic surveillance system was 

developed using nervous symptoms in horses that are known to be early indicators of WNV. The output of 

this syndromic surveillance system was simple to understand, but also potentially complicated to use 

when data were close to the alarm threshold. In addition, it was difficult to combine the output with other 

epidemiological knowledge such as disease seasonality or environmental risk factors, parameters which 

are fundamental when working with VBDs like WNV. Indeed, how can we interpret a small outbreak 

occurring within the vector season versus a large outbreak occurring outside the vector season? To 

address this question, we tested an application of Bayes’ rules to syndromic surveillance (Chap III.C). The 

objective was firstly to use syndromic surveillance to provide a quantitative assessment of the probability 

that an outbreak is in progress, and secondly to be able to combine syndromic surveillance with other 

epidemiological knowledge. The advantages and drawbacks of both approaches (classical and Bayesian 

approaches) in the assessment of the probability of a current VBD outbreak are discussed in the final 

section (Chapter III.D). 
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A. OVERVIEW 

This section aims to present current methods and definitions used in syndromic surveillance and, in 

particular, in veterinary syndromic surveillance.  

1. Overall principle of syndromic surveillance 

1.1. History 

1.1.1. Syndromic surveillance and human health 

Syndromic approaches first gained momentum in human health applications, when the bioterrorist 

anthrax attacks of 2001 in the USA drew attention to the need for early detection of pathogen 

introduction (Buehler et al. 2003; Nordin et al. 2005). Concomitant outbreaks of new emerging infectious 

diseases, such as West Nile virus in 1999 (Henderson et al. 2001) and SARS in 2002 (Abdullah et al. 2003), 

reinforced the necessity of developing more timely surveillance systems. Real-time surveillance systems 

were then developed based on the automatic collection and transmission of pre-diagnostic and unspecific 

data, under the primary assumption that the behavior of these data change when a population’s health is 

affected (Mandl et al. 2004a). 

Syndromic surveillance was thus first used to enhance traditional passive surveillance, which is ineffective 

in detecting rare or emerging diseases due to the limited ability of clinicians to recognize the signs of 

unknown, or poorly known, diseases (Shaffer 2007). However, a syndromic approach is now also applied 

in the monitoring of well-known diseases such as human flu (Ginsberg et al. 2009; Hiller et al. 2013) in 

order to implement protective measures early and limit the impact of the disease.  

1.1.2. Syndromic surveillance and animal health 

In veterinary medicine, the development of syndromic surveillance systems followed a parallel path to 

that in human medicine. In particular, the recent focus on the ‘One medicine’ concept has contributed to 

increased awareness of early disease detection in animal populations (Dórea et al. 2011). However, 

compared to human medicine, syndromic surveillance in veterinary medicine poses its own unique 

problems. The great diversity of animal species and the types of production that must be considered 

constitute an impediment to the development of syndromic surveillance systems due to the lack of 

common vocabulary, practices, and data collection systems (Shephard 2006). In addition, animal data are 

subject to more variation stemming from non-disease factors, as a decision to seek care for livestock is 

mainly driven by a cost/benefit relationship and not, as in human medicine, by disease severity (Kosmider 

et al. 2006). Moreover, data regarding animal health are still scarce due to less frequent data collection 

and less developed data standards. All of these elements complicate efforts to monitor animal diseases. 
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Although the number of syndromic surveillance systems or initiatives is increasing (at least 27 systems 

were identified in 12 European countries in 2013 (Dupuy et al. 2013a)), fully operational and validated 

systems are still rare in veterinary medicine (Dórea et al. 2011).  

1.2. Definition and objectives 

The term ‘syndromic surveillance’ derives from the word ‘syndrome’, a set of clinical signs and symptoms 

that are correlated with each other. However, any data can be used, provided they are sensitive to 

changes in disease incidence in a population and contain an early signature of a disease outbreak. 

Syndromic surveillance can thus use either real syndromic data (e.g., data from emergency departments 

(Hiller et al. 2013), estimates of mortality in cattle (Perrin et al. 2010)) or other health-related data (e.g., 

milk yield (Madouasse et al. 2013), search query data on Google (Dugas et al. 2013; Dugas et al. 2012; 

Ginsberg et al. 2009) and Twitter (Gesualdo et al. 2013; Signorini et al. 2011)).  

The Triple-S project defines syndromic surveillance as “the real-time (or near real-time) collection, 

analysis, interpretation and dissemination of health related data to enable the early identification of the 

impact (or absence of impact) of potential human or veterinary public health treats which require 

effective public health action” (Triple S Project 2011). Beyond this, there is no single and commonly 

accepted definition for syndromic surveillance. The main underlying objectives can nonetheless be 

summarized with the following points (Katz et al. 2011): 

- Early detection of and response to an outbreak, or at least detection of a probability of an 

outbreak high enough to warrant further investigation; 

- Use of continuously acquired pre-diagnostic information;  

- Possible applications during an outbreak, through the provision of tools for following the course 

of outbreaks; 

- Providing assurance that an outbreak is not in progress; 

The primary objective of all syndromic surveillance systems is thus to detect the signal, even a weak one, 

of an outbreak prior to its formal diagnosis. 

1.3. Overall approach 

There is no commonly accepted method or framework for the implementation of a syndromic surveillance 

system, and different approaches can be used. However, following preliminary steps, three main steps 

should be always implemented: 1) description and preprocessing of the data, 2) choice and 

implementation of an appropriate detection algorithm, and 3) evaluation of the system’s performance. 

Figure 9 summarizes the overall process of implementing a syndromic surveillance system. Each 

component is detailed in subsequent sections. 
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Figure 9 : Overall method to implement syndromic surveillance. 

2. Preliminary steps 

2.1. Definition of objectives 

Like for all surveillance system, the first step of any syndromic surveillance system is to set clear objectives 

(i.e., disease(s) of interest, system users, desired balance between the sensitivity, specificity, and 

timeliness of detection). The geographic, demographic, and temporal coverage of the system must be also 

carefully assessed (Vial et Berezowski 2014). This step is essential as it will influence the performance of 

the surveillance system and its future organization. 

2.2. Overview of data available  

The essential data needed to achieve all surveillace objectives while minimizing the amount of data 

collected should be defined (Vial et Berezowski 2014). Then, as one of the key objective of syndromic 

surveillance system is to use of continuously acquired pre-diagnostic information, an inventory of the data 

sources available has to be made and evaluated in order to identify the data which can be used by the 

system. 

Preliminary steps 

Data description and preprocessing 
 

Development of detection algorithm 

Detecting signal: comparing observed and 
predicted values 

System’s performance evaluation 

Data preprocessing Data description 

Historical baseline modelling and  
prediction 

Definition of objectives Definition of syndrome  Overview of data available  
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2.3. Definition of syndrome  

Then, it is important to set a clear definition for the group of clinical signs, or any other data considered, 

that constitutes an event of interest. This step is essential and has to be carefully considered, as it will 

influence the performance of the surveillance system (Ivanov et al. 2002; Shaffer 2007 ; Vial et Berezowski 

2014). Various methods can be used for data classification. For example, Dupuy and colleagues (Dupuy et 

al. 2013b) used multiple factor analysis, while Dórea and colleagues (Dórea et al. 2013b) used naïve Bayes 

learning and decision trees.  

This preliminary step poses unique problems in veterinary syndromic surveillance compared to human 

medicine. In particular, standards for data classification are not unified in veterinary medicine and each 

veterinary syndromic system develops and validates its own classification system (Dórea et al. 2011). This 

lack of standardized data constitutes a challenge in the definition of syndrome groups and of the rules for 

characterizing events of interest.  

3. Data description and preprocessing 

3.1. Data description 

After the definitions of the syndrome and events have been determined, the data must be carefully 

analyzed in order to identify their main variations and characteristics. Potential aberrations due to past 

outbreaks or other events must be identified. The data must also be decomposed in order to identify 

systematic and stochastic variations. When considering time series, one must take into account systematic 

variations due to trends (long-term movements in the time series) or seasonality (cyclic variations). This 

preliminary work is important in order to determine which detection algorithm will be best-adapted to the 

data and if data preprocessing will be necessary (see Table 7).  

3.2. Data preprocessing 

Depending on the results of data decomposition, data can also be preprocessed. Two main examples of 

data preprocessing are presented: removal of aberrations and stationarity transformation. 

3.2.1.  Aberrations removal 

As a result of past outbreaks or other events, raw data may contain unusual values (to which we refer as 

“aberrations”) which can disturb data modeling. To improve data modeling, and thus outbreak detection, 

these aberrations can be removed, either manually, based on historical data from previous outbreaks, or 

automatically, based on implemented procedures.  
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In particular, considering the specific case of time series data, Tsui and colleagues (Tsui et al. 2001) 

proposed removing data points above the 95% confidence interval of model predictions. This was based 

on the assumption that, after fitting the entire dataset to a regression model, data points above the 95% 

confidence interval of model predictions represent data from an epidemic.  

Another option is to use a reweighting procedure to reduce the influence of high baseline counts, as 

proposed by Farrington and colleagues (Farrington et al. 1996). A weighting function is used on empirical 

grounds to assign very low weights to counts with large residuals. The residuals (si) are obtained based on 

the initial estimates (μi) and the dispersion parameters (φ). The weight of each value (wi) equals a 

constant γ. If si is above 1, and γ*si
-2

 if si is below 1, the weighted data are refitted. 

3.2.2.  Stationarity transformation 

The detection of outbreaks can sometimes be implemented only on stochastic variations of the data. This 

is especially true for time series which can be transformed into a stationary process.  Such a 

transformation is essential in order to implement certain detection algorithms, such as control charts. In a 

stationary process, systematic variations have been removed from the data in order to keep only the 

stochastic variations.  

4. Detection algorithms 

There is no commonly accepted classification for algorithms used to detect abnormal patterns, but they 

are often presented according to the nature of the clusters they identify, i.e. temporal, spatial, or 

spatiotemporal clusters (Buckeridge et al. 2008). As our work centers on equine populations, in which 

spatial information is rarely available and/or accurate, we focus in this section on temporal methods for 

cluster detection. Following a summary of how to choose the most appropriate detection algorithm, we 

briefly present the algorithms commonly used in the detection of temporal clusters. 

4.1. Choice of detection algorithm 

The choice of the algorithm for detecting a signal is fundamental in determining the quality of detection.  

The choice must be based on (Dórea et al. 2011): 

- the type of data available: single or multiple time series, data monitoring with rates or counts, 

long-term historical data available or not;  

- the nature of the disease considered: sudden or slow increase in the number of cases; 

- the desired balance between the sensitivity, specificity, and timeliness of detection. 

The main detection algorithms used in temporal cluster detection are historical limits, control charts, and 

regression methods. A recent review showed that regression methods were the most popular methods 



 

60 
 

used in veterinary syndromic surveillance in Europe (Dupuy et al. 2013a). Indeed, among the 23 systems 

found, eight used regression methods (of which four used autoregressive moving average models 

(referred to as “time series methods”) and the remaining four used other methods), four systems used 

historical limits, and only one used control charts. Control charts are, however, more frequently used 

outside Europe (Dórea et al. 2011). 

The popularity of regression methods might be explained by their ability to easily deal with data involving 

trends or seasons. Nevertheless, the drawback is that these methods require a long historical baseline, 

which is often not available. Conversely, control charts do not require a long historical baseline, but they 

also require preconditioning to remove seasonality, trends, and other variations, which adds complexity to 

the analysis. Historical limits algorithms are the simplest methods but they suffer from numerous 

drawbacks which may compromise outbreak detection (e.g., no adjustment for trends or disease clusters). 

A summary of the main advantages and limitations of these different detection algorithms is presented in 

Table 7. 

 

Table 7 : Summary of the advantages and limitations of the main detection algorithms in the time series 
analysis. 

Detection 
algorithm 

Advantages Limitations 

Regression 

ARMA  Needs long historical baseline; requires 
preconditioning to remove seasonality, trends, 
and other variations 

ARIMA Trends taken into account Needs long historical baseline 

SARIMA Seasons taken into account Needs long historical baseline 

HW Needs short historical baseline; easily 
automatable; adaptable to local changes 

Only one type of seasonality allowed 

lm and glm Explanatory variables present; several type of 
seasons possible 

Needs long historical baseline 
 

Historical 
limits 

Easy to implement Needs long historical baseline; no adjustment 
possible for trends, disease clusters, or 
aberrations; no consideration of reporting 
delays; inconsistent case inclusion criteria  

Control chart 

Shewhart 
chart 

Needs short historical baseline; peak-shaped 
outbreak 

Requires preconditioning to remove 
seasonality, trends, and other variations; 
detection only based on the last previous value 

EWMA Needs short historical baseline; outbreak in 
the form of a slow increase 

Requires preconditioning to remove 
seasonality, trends, and other variations 

CUSUM Needs short historical baseline; outbreak in 
the form of an increase longer than one time 
unit 

Requires preconditioning to remove 
seasonality, trends, and other variations 
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4.2. Historical limits 

One simple method to detect outbreaks is based on historical limits and was first applied in the United 

States by Stroup and colleagues (Stroup et al. 1989).  

An alarm is triggered when: 

𝑋0

μ
> 1 + 2 ×

𝜎𝑥

μ
    

where Xo is the number of cases in the most recent four-week interval and μ and σx are the mean 

and the standard deviation, respectively, of the previous 15 historical four-week periods (from X1 

to X15).  

This method is simple to implement but presents major bias due to a lack of adjustment for gradual trends 

or disease clusters, a lack of consideration for reporting delays, and inconsistency in case inclusion criteria 

between current and historical data. Although a method for bias reduction was recently proposed (Levin-

Rector et al. 2015), no  real evaluation of the detection performance of a historical limits algorithm was 

conducted.   

4.3. Control charts  

4.3.1. Principle  

Control charts are based on graphical representation of data and are commonly used when no solid 

baseline is available. Control charts rely on cumulative differences between observed data in a time 

window and a threshold (Mandl et al. 2004a), which is set at some multiple of the standard deviation of 

the sample’s mean (Carpenter 2002; Hutwagner et al. 2005). The value of the multiplier is chosen to 

optimize tradeoffs between sensitivity, specificity, and timeliness in order to meet the objectives of 

surveillance. However, the assumptions behind these methods are that the data are independent and 

distributed according to a known hypothesis, assumptions that are not met by most surveillance data 

(Lotze et al. 2008). In order to use control charts, then, significant preconditioning must be applied to 

transform the data into a stationary process.  

4.3.2. Methods 

Different kinds of control charts are available: Shewhart charts, cumulative sums (CUSUM), and 

exponential weighted moving average (EWMA) methods.  

Shewhart charts are appropriate when a single peak is expected, and are simply based on the difference 

between observed values and average values calculated within a moving window (Shewhart 1931). Only 

the last mean recorded value is used for anomaly detection. 
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The CUSUM and EWMA methods rely on cumulative differences between observed data in a time window 

and a threshold (Mandl et al. 2004a). They are better-adapted to detect small but repeated lags between 

observed and expected values. Model parameters are empirically set to the best balance between 

sensitivity, timeliness, and specificity that is chosen to meet the objectives of the surveillance. 

The CUSUM method is based on the calculation of a cumulative asymmetric sum and is especially useful in 

detecting outbreaks that are longer than one time unit (O’Brien and Christie 1997). It is sensitive to small 

shifts in deviations from the mean and also detects deviations more quickly than some other statistical 

process control methods. Two examples of the use of CUSUM are presented in (Maciejewski et al. 2007; 

Shaffer 2007), who both used CUSUM methods to detect syndromic aberrations in pets. This method is 

based on the equation: 

Ct = max {0, (Dt + Ct-1)}   

where t is the current time point and Dt is the standardized difference between the current observed 

value and the expected value. The differences are accumulated daily (for each point t, the statistic 

incorporates the value at point t-1) over the baseline but reset to zero when the standardized value is 

negative.  

The EWMA method is based on exponential smoothing and is especially useful in the detection of a 

gradual increase in a signal (Hunter 1986). One example of the application of EWMA methods to the 

detection of aberrations in veterinary laboratory data is presented in (Dórea et al. 2013a). EWMA is based 

on the equation: 

Et = (1 – λ)
t 
E0 + ∑

t
i=1(1 – λ)

t
 λIt   

where λ is the smoothing parameter (>0) that determines the relative weight of current data to past 

data, It is the observed value at time t, and E0 is the starting value. 

4.4. Regression methods 

4.4.1.  Principle  

Regression methods can be used when long-term historical data are available (e.g., (Kosmider et al. 2006); 

(Dórea et al.); (Perrin et al. 2010)). They utilize statistical methods for fitting a model to observed data in 

order to make predictions. The benefit of such an approach is that seasonal effects and trends that are 

observed in the dataset can be readily incorporated into the equation. The models are usually assessed 

based on an analysis of residuals and goodness-of-fit, and compared using AIC and root-mean-squared 

error within and outside the calibration period. In veterinary syndromic surveillance, these methods are 

still mainly used to perform retrospective analyses in order to assess their potential for prospective 

modeling (Dórea et al. 2011).  
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4.4.2.  Regression models 

Typical models are regression-type models (e.g., generalized linear models), autoregressive moving 

average (ARMA) models, and exponential smoothing. The different regression models are briefly 

presented in this section. 

 Linear and Generalized linear models 

Linear models (LMs) and generalized linear models (GLMs) are common tools for fitting data. In syndromic 

surveillance, they are especially useful when time series show trends and/or seasonal variations and when 

explanatory variables are used. Indeed, these types of information can be directly included in the model 

without additional data preprocessing. Two examples of their use in veterinary syndromic surveillance are 

shown in (Perrin et al. 2010) and (Kosmider et al. 2006), who applied Poisson regression on cattle-related 

data (mortality and number of laboratory isolations of Salmonella, respectively).  

 Autoregressive moving average models 

Autoregressive moving average models (ARMA) are based on two processes: one for the auto-regression 

(AR) and another for the moving average (MA) (Box et al. 2008). ARMA models require data to be 

stationary, i.e. without trends and with a mean and variance that do not change over time. If the data are 

not stationary, a common solution is to use a difference variable to transform the time series into a 

stationary process. Another option is to use an autoregressive integrated moving average (ARIMA) or 

seasonal ARIMA (SARIMA) model. The first aims to incorporate non-stationarity in the mean and the 

second attempts to take into account seasonal variations (Box et al. 2008).  

 Exponential smoothing 

Exponential smoothing involves exponentially decreasing the weights of observations over time, such that 

oldest observations have the smallest weight (Gardner 1985). The forecast is continuously revised 

according to more recent observations. The EWMA, or exponential weighted moving average, approach is 

the simplest form of exponential smoothing and is used when data do not have trends and/or seasonality. 

Instead, if trends are present, double exponential smoothing is used.  

Triple exponential smoothing, also called Holt-Winters exponential smoothing (HW), aims to take into 

account both trends and seasonality. The seasonality can be either multiplicative or additive, but there 

can be only one type of seasonal pattern. If more than one kind of ‘seasonal’ pattern is present (e.g., 

monthly and daily seasonality), another smoothing method must be chosen. HW incorporates three 

components: a level term, a trend term, and a seasonality term, respectively defined by the smoothing 

constants α, β, and γ. The main advantage of this technique is that it is easily automatable and adaptable 

to local changes in the data (Lotze et al. 2008). One example of the use of HW in veterinary syndromic 

surveillance is found in (Dórea et al. 2013a). 



 

64 
 

4.4.3.  Threshold values 

The threshold values that trigger an alarm are typically a multiple of the standard error of the prediction 

(Mandl et al. 2004a), based on Serfling’s approach (Serfling 1963). This constant is determined by the best 

compromise between sensitivity and specificity for a given case, as illustrated, for example, by Muscatello 

et al. (Muscatello et al. 2008). The authors explored excess mortality due to influenza and discussed the 

optimal threshold to balance the false positive alarm rate and true positive alarm rate. In general, a value 

between 2- and 3.5-times the standard error is often chosen to ensure the false alarm rate is below 5% 

(Mandl et al. 2004a). 

Farrington and colleagues (Farrington et al. 1996) also proposed the use of an exceedance score based on 

the upper limit of the 99% prediction interval. An alarm is triggered when:  

𝑋𝑖 =
(𝛾−𝜇𝑖)

(𝑈−𝜇𝑖)
> 1   

Ui is the upper limit of the 99% prediction interval, μi is the initial estimated value, and γ is a 

constant. 

5. Assessment of performance 

Assessment of syndromic surveillance systems is essential for determining the validity of conclusions. The 

assessment can be either qualitative or quantitative. However, in veterinary syndromic surveillance, 

assessment of the system’s performance is still rarely carried out (Dórea et al. 2011). Moreover, when 

assessment is performed, it mainly focuses on data quality rather than real system performances (Dupuy 

et al. 2013a). 

5.1. Performance metrics 

Quantitative evaluation of a syndromic surveillance system’s performance can be implemented in a similar 

way to the evaluation of the performance of individual diagnostic tests. Sensitivity, specificity, predictive 

positive values, and predictive negative values are commonly used as evaluation metrics of outbreak 

detection algorithms (Buckeridge et al. 2005; Choi et al. 2010). Regarding sensitivity, two approaches can 

be considered: the outbreak-day approach and the outbreak-detection approach (Mandl et al. 2004b). The 

outbreak-day approach considers each day (or time period considered) within an epidemic period to be an 

independent case. A true positive alarm is thus produced for each outbreak-day detected. The outbreak-

detection approach considers each outbreak to be a single entity and thus, a true positive alarm is 

produced when at least one outbreak-day is detected. Various other quantitative parameters can be used 

to compare detection algorithms, according to the objectives of the surveillance system (see Table 8).  
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In their “Framework for evaluating public health surveillance systems for early detection of outbreaks”, 

Bühler et al. (Bühler et al. 2004) suggested a list of criteria, such as usefulness, flexibility, and acceptability, 

to qualitatively describe and evaluate each system component. Regarding veterinary syndromic 

surveillance, other criteria should be added, including population coverage, automation of data capture 

and transfer, benefit to users, detection efficiency of programmed algorithms, and contribution to claims 

of disease freedom (Dórea et al. 2011). 

 

Table 8 : Metrics used for evaluation of outbreak detection algorithms 
 (Buckeridge et al. 2005, Choi et al. 2010) 

 

Parameters Definition 

Sensitivity Probability of alarm given that an outbreak is occurring. Can be based on overall 
outbreak detection or on the outbreak day number (each day considered a separate 
and independent case) 

Specificity Probability of no alarm given that an outbreak is not occurring 

Predictive 
positive value 

Probability that an alarm signals a true outbreak 

Predictive 
negative value 

Probability that no alarm corresponds to a true absence of an outbreak 

ROC curve Plots sensitivity (or true positive rate) against 1-Specificity (or false positive rate) for a 
range of algorithm settings 

Area under 
ROC curve 

Summarizes the detection performance of an algorithm. Values larger than 0.5 indicate 
that the algorithm is better than a random detection scheme. 

AMOC curve Plots a summary measure of time-to-alarm (given an outbreak is occurring) against the 
false positive rate 

FROC curve Plots the fraction of outbreak detected against the false positive detection rate 

ARL Expected time until the first detected event - ARL0; the expected time-to-alarm when 
there is an ongoing outbreak at the initiation of surveillance - ARL1 

PSD Probability of an alarm before some critical point in the outbreak given that the 
outbreak is detected 

Time lag Average number of weeks between the first of a consecutive number of outbreaks and 
the first alarm raised by each method 

Missing rate Number of missed outbreaks/total number of outbreaks 

 

5.2. Test data 

Generally, models are built using a calibration period and their predictions are then tested using a 

validation period. The role played by validation data in algorithm research is a crucial one and determines 

the validity of conclusions, especially when attempting a quantitative assessment of the system’s 

performance (Buckeridge et al. 2005). Authentic baseline and outbreak data can be used but the scarcity 

of such data means that it is often not possible to generate a quantitative assessment of the detection 

algorithm. Simulations of background data and/or outbreaks are therefore often required.  

To simulate the background of a time series, different methods can be implemented. One of the simplest 

methods is to set the predicted value for each time period as the mean of a Poisson distribution. This 
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distribution is then sampled randomly to determine the value for a week of a given year, as proposed by 

Dórea et al. (Dórea et al. 2013a). For outbreak data, most studies have used naturally occurring signals 

from one or more real outbreaks to evaluate outbreak detection performance (Buckeridge 2007). 

However, given the limited availability of high-quality data from known outbreak periods, such signals can 

also be simulated. The methods for doing so range from simple mathematical functions to more complex 

stochastic simulation. Outbreak simulation has to consider the duration of an outbreak, spacing between 

outbreaks, temporal progression, outbreak magnitude, and spatial features (Mandl et al. 2004b). The 

advantages and disadvantages of each set of tests are presented in the Table 9. 

Table 9 : Advantages and disadvantages of types of test data (Buckeridge et al. 2005) 

Type of set Advantages Disadvantages 

Wholly authentic Face validity; 

authentic background and outbreak 

signals 

Sufficient resources required to define 

outbreaks; validity and reliability of outbreak 

indications may be poor and difficult to assess; 

limited number and variety of outbreaks 

Wholly simulated Exact specification of outbreak signal; 

large number of test data possible; 

can be simple to develop; 

enables sensitivity analyses 

Complexity of simulating baseline and outbreak 

signal; 

validity may be poor and difficult to assess; 

can require many parameter values 

Simulated 

outbreaks 

superimposed onto 

authentic data 

Greater face validity than wholly 

simulated test sets; 

exact specification of outbreak signal; 

large number of test sets possible;  

enables sensitivity analyses 

Complexity of simulating outbreak signal; 

validity may be poor and difficult to assess; 

can require many parameter values 

6. Conclusion 

There is no single commonly accepted method or framework for the implementation of a syndromic 

surveillance system, and different approaches can be used to detect temporal clusters of abnormal 

events. However, three main steps should always be included: 1) description and preprocessing of the 

data, 2) choice of an appropriate detection algorithm, and 3) assessment of the system’s performance.  

Considering the use of syndromic surveillance in veterinary medicine, some specific points can be 

highlighted. Firstly, it can be challenging to define syndromes and abnormal events due to the lack of 

standards of data classification. Secondly, the most commonly used detection algorithms are control 

charts which, despite their limitations, are useful when a long-term baseline is not available. Regression 

methods are a priori more robust and flexible but are often only used for retrospective analyses because 

of the absence of long-term historical data. Finally, assessment of system performance in veterinary 

syndromic surveillance remains rare and, when it is performed, it mainly focuses on data quality rather 

than system performance. 
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B. COMPARISON OF PRE-PROCESSING METHODS 

In this section, one of the above-described classical methods is applied to the detection of West Nile virus 

in horses. This part of the work resulted in a poster presentation at the Conference of the Society for 

Veterinary Epidemiology and Preventive Medicine (SVEPM) in Ghent (2015). The poster is available in 

Appendix 9. 

1. Introduction 

The passive French surveillance system ‘RESPE’ (introduced in Chapter I.C.1.3) has collected data on 

nervous symptoms observed in French horses since 2006. Although the sentinel veterinarians involved in 

this system are present in most French regions (92 of 96), the nervous symptoms collected are mainly 

reported from areas with high horse densities (see Figure 10). Diagnostic tests for West Nile virus (WNV), 

equine herpes virus serotype 1 (EHV-1), and consensus equine herpes virus (EHV-sp) (Léon et al. 2008) are 

systematically implemented for each declaration.  

Currently, the collected data are mainly used to produce alerts when cases with positive laboratory 

diagnoses are identified. The data are also used for basic syndromic surveillance: an alarm is triggered 

when four syndromes are reported in the same week, or three declarations reported in each of two 

consecutive weeks. This alarm threshold was set arbitrarily and alarms may result in the initiation of 

epidemiological investigations depending on the context of the declarations. However, the reliability of 

this threshold has never been assessed and the ability of the RESPE nervous syndrome database to serve 

as a routine syndromic surveillance system is currently unknown.  

Nervous syndromes in horses are considered to be an early indicator of WNV outbreaks (Leblond et al. 

2007). Using routinely collected RESPE data in an early detection surveillance system could lead to the 

timelier implementation of protective measures, thereby limiting the consequences of a WNV outbreak 

for both equine and human populations. Therefore, there is a need to assess the capacities in which the 

RESPE nervous database can be used to detect WNV outbreaks.  

The RESPE nervous syndrome dataset presents several aberrations that can be mainly explained by EHV-1 

and EHV-sp outbreaks. As discussed in Chapter III.A, different methods can be used to remove these 

unusual data (manual or automatic procedures). To date, though, little work has been done on the 

potential impact of the choice of pre-processing method on a surveillance system’s ultimate performance.   

In this section, we use several preprocessing methods and detection algorithms to model time series data 

from the RESPE nervous symptoms database. The objectives were (i) to evaluate the impact of these 

methods and algorithms on system performance, and (ii) to assess whether or not these data can be used 

as a routine syndromic surveillance system for the detection of WNV outbreaks. 
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Figure 10 : Number of nervous symptoms cases declared to RESPE from 2006 to 2013. 

2. Methods 

2.1. Data characterization 

In the RESPE database, nervous symptoms in horses are defined as any signs of impairment of the central 

nervous system, i.e. ataxia, paresis, paralysis and/or recumbency, and/or behavioral disorder. Cases, or an 

unusual cluster of cases, with “atypical” expression (colic, lameness, excitement, falling, muscular atrophy) 

can also be considered after the most common etiology of these symptoms has been excluded, since 

these signs can sometimes be the clinical manifestation of an affected central nervous system. Nervous 

disorders with evidence of traumatic or congenital origins are excluded.  

Data on nervous symptoms in horses were available from RESPE for every calendar day from January 1
st

, 

2006 to December 31
st

, 2013, totaling 532 declarations. An initial data characterization was performed 

using the daily data in order to identify explainable patterns such as global linear trends and seasonality. 

However, in the remainder of the study, the time series was aggregated into weekly counts due to the low 

per-day count. Monthly aggregation was not considered, as the main objective of this surveillance system 

was early detection.  

Tests for WNV and EHV are routinely carried out on horses that present nervous symptoms, and the 

database contains 80 positive laboratory results, mainly for EHV-1 (only two positive cases of ELISA-IgG 

West Nile virus). The EHV-1 positive cases were either isolated cases – i.e. not associated with other 

positive cases – or from a cluster of cases that could represent a true outbreak.  

2.2. Data pre-processing  

We split the data into two time periods: data from 2006 to 2010 were used to train the model (see next 

section) and data from 2011 to 2013 were used to validate the model. 
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The raw time series used for model training was called TS0. We investigated three options for the removal 

of aberrations present in TS0 in order to obtain an outbreak-free baseline. In the first method, we retained 

only the 452 cases with no positive laboratory results (TS1). The second method consisted of removing all 

data linked to historical EHV-1 outbreaks, based on information from the RESPE website (TS2). This 

method did not remove single positive cases but only the positive cases associated with a cluster of other 

positive cases. In our third method, extreme values from TS0 were removed using the approach of Tsui 

and colleagues (2001)(Tsui et al. 2001), which assumes that, after the data have been fitted to a 

regression model, data points above the 95% confidence interval of the model prediction represent an 

outbreak (TS3). The authors used Serfling’s regression model (Serfling 1963), which is a linear regression 

model that uses sine and cosine terms to account for seasonal variation. With our own data, we followed 

the proposal of Dórea and colleagues (Dórea et al.) and used a Poisson regression, which they considered 

an appropriate method to capture baseline activity while minimizing the influence of aberrations present 

in the dataset. The data were thus first fitted to a Poisson distribution and then values above the 95% 

confidence interval were removed. In TS1, TS2, and TS3, the values of weeks considered to be part of an 

outbreak were not removed but instead replaced by the average of the four previous weeks.  

The four time series are shown in Figure 11. 

 

 

Figure 11 : Four time series used with datapreprocessing used from 2006 to 2010 and raw data used from 
2011 to 2014. TS0 = raw data, TS1 = only the cases with no positive laboratory results, TS2 = outbreaks 

removed based on historical data, TS3 = extreme values above the 95% confidence interval deleted. 

 

The explainable patterns (such as global linear trends and seasonality) were investigated in each time 

series (TS0, TS1, TS2, and TS3) in order to assess the impact of preprocessing methods on the dataset. We 

generated summary statistics by month and year, and performed moving average and autocorrelogram 

analysis (Lotze et al. 2008). 
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2.3. Forecasting  

Forecasting was attempted using generalized linear regression models (GLMs) that were appropriate for 

count data (Poisson and negative binomial (NB) regressions) and Holt-Winters generalized exponential 

smoothing (HW). For GLMs the evaluated models included different types of seasonality through the use 

of sinod models with 1, 2, or 3 periods/year and season or month as factorial variables. To account for 

differences between years, we calculated the average counts for 53 consecutive weeks (histmean). To 

ensure that an ongoing outbreak would not influence the estimate, we used a 10-week guard band for the 

calculation of histmean.  

Training data from 2006 to 2010 (TS0, TS1, TS2, TS3) were used to train the models, while data from 2011 

to 2013 were used to validate the quality of the predictions. Alternative GLMs were evaluated for training 

data using the Akaike information criterion (AIC) (Bozdogan 1987). For HW, the optimal parameters were 

determined through minimization of the squared prediction error (Kalekar 2004).  

The best models were then evaluated and compared using the autocorrelation and partial autocorrelation 

functions of the residuals (ACF and PACF, respectively) and the root-mean-squared error (RMSE). ACF and 

PACF are used to find repeating patterns (e.g., seasons) in a dataset. ACF is the linear dependence of a 

variable on itself at two points in time and PACF is the autocorrelation between two points in time after 

removing any linear dependence between them (Box et al. 2008). RMSE is a measure of the difference 

between the values predicted by a model and the values actually observed from the environment that is 

being modeled (Chai and Draxler 2014). This criterion was calculated for the differences between the 

observations and the predicted values within both the calibration period (RMSEc) and the validation 

period (RMSEv). In either case, the lower the criterion, the better the predictive performance of the 

model. 

2.4. Detection algorithm 

Finally, all eight combinations of pre-processing (4) and forecasting methods (2) were evaluated on their 

ability to detect simulated disease outbreaks: GLM applied to TS0, TS1, TS2, and TS3; and HW applied to 

TS0, TS1, TS2, and TS3. A six-week guard band was used to ensure that previous outbreaks would not 

influence the estimate of the baseline. The outbreak detection method used was based on a multiple of 

the standard error of the prediction. The action threshold was defined as the predicted number of cases in 

a given week plus a constant multiple of the standard error of the model prediction. If the actual observed 

value was above the threshold, an alarm was triggered. The constant multiple was empirically defined 

according to the best balance between sensitivity and specificity. 

Baseline data from 2011, 2012, and 2013 were used for the assessment of the detection algorithms’ 

performance. We simulated WNV outbreaks based on historical data from three previous European 

outbreaks: French outbreaks in 2000 (Murgue et al. 2001) and 2004 (Leblond et al. 2007) and an Italian 
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outbreak in 1998 (Autorino et al. 2002). The average weekly count of nervous-symptom cases in horses 

was calculated from the three historical outbreaks for an epidemic period covering a total of 11 weeks, 

from the first positive case detected to the last positive case detected (see Figure 12). The number of 

cases for each week of an epidemic period was sampled randomly between the extreme values obtained 

from historical data. 

 

Figure 12 : West Nile virus outbreaks. solid line = outbreak Italy 1998 (Autorino et al. 2002), dotted line = 
outbreak in France 2004 (Leblond et al. 2007), dashed line = outbreak in France 2000 (Murgue et al. 2001). 

 

Figure 13 : Two examples of simulated outbreaks inserted in TS0. Positions of outbreaks identified with 
dotted lines above the peak. 

To test our detection method, three simulated outbreaks were randomly inserted in the baseline data 

from 2011, 2012, and 2013, with at least 15 weeks between each outbreak in order to avoid overlap (see 

example in Figure 13). The process was repeated 25 times, for a total of 75 years containing a total of 75 

outbreaks.  

 

 

2011 

2011 2012 

2012 2013 

2013 2014 

2014 



 

72 
 

2.5. Quantitative assessment 

We first calculated sensitivity based on the number of outbreaks detected out of all inserted outbreaks 

and denoted this Se_out. An outbreak was detected when it triggered at least one true alarm, defined as a 

week that produced an alarm and that was a part of an epidemic period. Se_out was calculated as: 

 Se_out = Out / (Out + No_Out) 

where Out is the number of outbreaks detected and No_Out is the number of outbreaks not 

detected.  

We also calculated Se_wk, the sensitivity based on the number of weeks in an epidemic period in which an 

alarm was triggered. Se_wk and specificity (Sp) were calculated as: 

 Se_wk = TP / (TP+ FN) 

Sp = TN / (TN + FP) 

where TP is the number of true positive alarms, TN the number of true negative alarms, FP the 

number of false positive alarms, and FN the number of false negative alarms.  

A receiver operating characteristic (ROC) curve was generated in R by testing various alarm thresholds, 

and the area under each curve (AUC) was also calculated (Hanley and McNeil 1982). The time to the first 

true alarm within an epidemic period was also evaluated in order to assess the efficiency of early 

detection.  

2.6. Implementation 

Models were implemented in R x64 version 3.0.2. Dynamic regression was performed with the functions 

glm (package {stats}), glm.nb (package {MASS}), and stlf (package {forecast}). The expected numbers of 

counts at time t were estimated with the predict functions of the respective packages. The expected 

numbers of outbreak-related cases were estimated with the fitdist function of the package {fitdistrplus}. 

AUCs were estimated with the auc function of the package {flux}.  

3. Results 

3.1. Baseline characterization 

For the initial data characterization, we worked with the daily time series data. The autocorrelograms 

showed high autocorrelation at lag 7, 14, 21, etc., indicative of a day-of-week effect. Not surprisingly, the 

number of declarations was significantly lower on Saturday and Sunday.  
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At the weekly level, all baselines except TS2 showed a significant positive trend: TS0 had +0.07 

declarations per month (p-value = 0.0001), TS1 had +0.06 declarations per month (p-value = 0.01), and TS3 

had +0.07 declarations per month (p-value = 0.000). However, this trend was mainly due to the first years 

of data collection (see Figure 14).   

 

Figure 14 : Decomposition of time series. For each decomposition, the upper graph represents the 
observed data, the second graph shows the trend identified in the data, the third graph indicates the 

seasonal pattern found in the data and the fourth graph shows the residuals after deletion of trend and 
seasonal components. 

 

A significant seasonal effect was also present in all time series: the number of declarations appeared 

highest in November, December, and January compared to other months. However, this seasonality was 

weak and principally apparent in the raw TS0 data, due to EHV-1 and EHV-sp outbreaks present in the 

dataset during the winters of 2008, 2011, and 2013 (see Figure 14).  

3.2. Smoothing and forecasting 

From 2006 to 2010, the data from each time series were fitted to their respective appropriate regression 

model, using variables that accounted for seasonal effects. For the Poisson as well as the NB regression, 

the best fit was obtained for all time series with the simple model:  

Number_of_cases ~ sin(2π*week/53) + cos(2π *week/53) + log(histmean) 

NB and Poisson regressions performed equally well for all time series, with the exception of TS0 (raw 

data), for which the NB model provided a better fit (AIC 749 vs. 761).  
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The details of differences between the smoothing performance of the best generalized linear models 

obtained and HW are presented in Table 10 and Table 11. In all regression methods used, TS0 produced 

the worst results, while TS1 generated the best fitting parameters. TS2 and TS3 yielded intermediary 

results, with better performances for TS3 than for TS2. 

Table 10 : Smoothing and forecasting performance of GLMs. ACF and PACF are, respectively, the 
autocorrelation and partial autocorrelation functions of the residuals. Residuals are theoretically assumed 

to have an ACF and PACF that have no correlation for all lags. RMSEc and RMSEv are measures of root-
mean-squared error within the calibration period and the validation period, respectively. In both cases, 

lower values are better. 

  ACF and PACF AIC RMSEc RMSEv 

TS0 glm (NB) 

 

735 1.29 1.33 

TS1 
glm 

(poisson) 

 

635 0.93 1.36 

TS2 
glm 

(poisson) 

 

700 1.,02 1.34 

TS3 
glm 

(poisson) 

 

681 0.96 1.32 
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Table 11 : Smoothing and forecasting performance of Holt-Winters models. ACF and PACF are, 
respectively, the autocorrelation and partial autocorrelation functions of the residuals. Residuals are 

theoretically assumed to have an ACF and PACF that have no correlation for all lags. RMSEc and RMSEv are 
measures of root-mean-squared error within the calibration period and the validation period, respectively. 

In both cases, lower values are better. 

 ACF and PACF  RMSEc RMSEv 

TS0 

 

1.07 1.55 

TS1 

 

0.77 1.23 

TS2 

 

0.85 1.32 

TS3 

 

0.80 1.21 
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3.3. Outbreak detection 

The results showed that, for a given method, there was no difference between the different time series 

tested. However, the generalized linear model always outperformed the Holt-Winters method in terms of 

detection performance (see details in Table 12).  

The AUCs of all methods and time series were low, but it is important to note that the sensitivity used 

here was based on the number of weeks within an epidemic period that produced an alarm (Se_wk). By 

using instead the percentage of outbreaks detected (with at least one alarm) among all the outbreaks 

inserted (Se_out), the AUCs for all combinations of time series and methods improved to 0.95.  

With the generalized linear model, the optimal balance between Se_wk, Se_out, Sp, and the time-to-

detection within an epidemic period was obtained when the alarm threshold exactly equaled the value of 

the standard error of the model prediction (see details in Table 13). This alarm threshold detected more 

than 95% of the inserted outbreaks, with an average time to the first true alarm of less than 3 weeks from 

the start of the outbreak, with the exception of TS0. Specificity varied according to the smoothing method 

used, but ranged from 0.80 to 0.94 for all generalized linear models. Alarm thresholds that were based on 

a value higher than the standard error of the model prediction (K>1) had the same detection rate but took 

more time to produce the first true alarm (> 3 weeks). Instead, an alarm threshold based on a value lower 

than the standard error of the model prediction (K<1) had the same detection rate and required less time 

to produce the first true alarm, but resulted in the lowest specificity of all models (from 0.71 to 0.57). The 

alarm threshold equal to the standard error of the model prediction (K=1) detected from 3 to 6 nervous 

cases depending on the time series, the smoothing method, and the time period considered. 

With the Holt-Winters approach, the optimal balance between Se_wk, Se_out, Sp, and the time-to-

detection in an epidemic period was obtained when the alarm threshold equaled the standard error of the 

model prediction multiplied by a constant of 0.5 (see details in Table 14). This alarm threshold detected 

more than 95% of the inserted outbreaks and the average time-to-detection was less than 3 weeks from 

the start of the outbreak. The associated specificity had an average value of 0.87. Alarm thresholds that 

were based on constants higher than 0.5 had the same detection rate but needed more time to produce 

the first true alarm (> 3 weeks). 
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Table 12 : System’s detection performances. Se_wk = sensitivity based on detection of each week which is 
a part of an epidemic period, Sp = specificity based on the number of true negative and false positive 

alarms, ROC = receiver operating characteristic, AUC = Area Under the receiver operating characteristic 
curve. 

 AUC ROC curves 

TS0 

Glm(NB) 

0.765617 

 

HW 

0.747400 

 

TS1 

Glm(poisson) 

0.763103 

 

HW 

0.7452638 

 

TS2 

Glm(poisson) 

0.764747 

 

HW 

0.7450518 

 

TS3 

Glm(poisson) 

0.7632676 

 

HW 

0.745603 
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Table 13 : system’s detection performances for time series fitted with generalized linear models. K = 
constant multiple of the standard error of the model prediction, Se_wk = sensitivity based on detection of 
each week which is a part of an epidemic period, Se_out = sensitivity based on the number of outbreaks 

detected, Sp = specificity based on the number of true negative and false positive alarms, Average time of 
detection = Average number of weeks needed to produce the first alarm within an outbreak. 

K  Se_wk Se_out Sp Average time of detection (weeks) 

0.5 

TS0 0.68 0.96 0.71 1.83 

TS1 0.76 0.96 0.57 1.56 

TS2 0.76 0.96 0.57 1.57 

TS3 0.76 0.96 0.57 1.56 

1 

TS0 0.48 0.96 0.94 3.13 

TS1 0.60 0.96 0.80 2.36 

TS2 0.62 0.96 0.80 2.16 

TS3 0.56 0.96 0.86 2.75 

1.5 

TS0 0.33 0.96 0.99 3.68 

TS1 0.44 0.96 0.98 3.27 

TS2 0.44 0.96 0.97 3.25 

TS3 0.41 0.96 0.97 3.33 

2 

TS0 0.22 0.88 1 4.10 

TS1 0.37 0.96 0.99 3.38 

TS2 0.39 0.96 0.99 3.34 

TS3 0.31 0.94 0.99 3.73 

2.5 

TS0 0.11 0.74 1 4.72 

TS1 0.26 0.92 1 3.85 

TS2 0.27 0.93 1 3.77 

TS3 0.20 0.84 1 4.21 

3 

TS0 0.07 0.60 1 4.38 

TS1 0.21 0.89 1 4.23 

TS2 0.22 0.89 1 4.01 

TS3 0.15 0.80 1 4.69 

  



CHAPTER III: SYNDROMIC SURVEILLANCE 

79 
 

Table 14: system’s detection performances for time series fitted with Holt-Winters. K = constant multiple 
of the standard error of the model prediction, Se_wk = sensitivity based on detection of each week which 

is a part of an epidemic period, Se_out = sensitivity based on the number of outbreaks detected, Sp = 
specificity based on the number of true negative and false positive alarms, Average time of detection = 

Average number of weeks needed to produce the first alarm within an outbreak. 

K  Se_wk Se_out Sp Average time of detection (weeks) 

0.5 

TS0 0.53 0.96 0.88 2.79 

TS1 0.52 0.96 0.87 2.73 

TS2 0.52 0.96 0.87 2.73 

TS3 0.52 0.96 0.87 2.73 

1 

TS0 0.33 0.96 0.98 3.57 

TS1 0.33 0.94 0.98 3.52 

TS2 0.33 0.94 0.99 3.55 

TS3 0.33 0.94 0.99 3.58 

1.5 

TS0 0.18 0.86 0.99 4.27 

TS1 0.17 0.84 0.99 4.39 

TS2 0.17 0.84 0.99 4.39 

TS3 0.16 0.84 0.99 4.39 

2 

TS0 0.09 0.64 0.99 4.45 

TS1 0.09 0.65 0.99 4.63 

TS2 0.09 0.65 0.99 4.63 

TS3 0.09 0.65 0.99 4.66 

2.5 

TS0 0.06 0.50 1 4.36 

TS1 0.03 0.32 1 4.19 

TS2 0.05 0.48 0.99 4.14 

TS3 0.05 0.48 0.99 4.17 

3 

TS0 0.03 0.37 1 4.09 

TS1 0.017 0.18 1 4.50 

TS2 0.03 0.32 1 4.19 

TS3 0.03 0.32 1 4.19 

4. Discussion 

As expected, the preprocessing methods that were used to remove past outbreaks present in the dataset 

modified the seasonality of the time series. Indeed, outbreaks of EHV-1 that were present in TS0 were 

mainly reported during winter, which is consistent with reports of seasonal patterns of disease outbreaks 

from a recent consensus statement (Lunn et al. 2009). Removing these outbreaks from the TS0 data 

decreased the impact of season on the baseline and improved the smoothing performance of the two 

forecasting methods tested. The raw data (TS0) produced the worst results compared to all time series in 

which outbreaks were removed. Regarding the impact of preprocessing methods on system performance, 

no impact was observed when Holt-Winters smoothing was used. Conversely, the detection performance 

differed between time series fitted with glm: TS0 obtains always the worst results (longest time-to-

detection and lowest Se_wk/Sp).  
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RESPE currently uses raw data (TS0) and an alarm threshold of four declarations per week for the 

detection of outbreaks. According to the analysis performed in this study with TS0, this alarm threshold is 

close to the standard error of our model prediction using GLMs (between four and five cases, depending 

on season). The current detection performance of the RESPE system is thus: weekly sensitivity close to 

0.48, specificity close to 0.94, and average time-to-detection close to 3.13 weeks. These values are lower 

than those obtained here with preprocessed data (TS1, TS2, TS3) and reveal the importance of data 

preprocessing in improving outbreak detection for syndromic surveillance.  

When we use values of Se_wk to evaluate overall system’s performance, it is clear that the syndromic 

surveillance system suffers from low sensitivity. This is not surprising as, during a WNV outbreak, the 

number of cases observed per week of the outbreak is generally low, especially during the initial and final 

stages of the outbreak (see figure 12). When considering the system’s ability to detect an outbreak as a 

single entity (Se_out), all combinations of time series and methods used were able to detect more than 

95% of the inserted outbreaks. However, compared to HW, GLM enabled earlier outbreak detection, with 

a better Se_wk, for a given Sp. In the end, the best performances were obtained using GLMs associated 

with preprocessing methods TS1, TS2, or TS3, and an alarm threshold set to the standard error of the 

model prediction. With these settings, the surveillance system can detect 96% of outbreaks, with an 

average time-to-detection of 2.16 to 2.75 weeks, weekly sensitivity (Se_wk) between 0.56 and 0.62, and 

specificity ranging from 0.80 to 0.86. A K value (multiple of the standard error) between 2 and 3.5 is often 

chosen to ensure a false alarm rate below 5% (Mandl et al. 2004a) but, in our case, this threshold 

increased the time-to-detection to between 3 and 5 weeks, an undesirable outcome when striving for 

early detection. In this study, we did not determine which time series (TS1, TS2, or TS3) was the most 

efficient, as such a decision would be made in real life by decision makers and would depend on the 

objectives of the surveillance.  

Our study shows that the RESPE data on nervous symptoms in horses can be used as an alarm system for 

WNV outbreaks in France and the full assessment of system’s performance was possible thanks to 

simulated data. This is the first time that a real assessment of system performance has been implemented 

for WNV surveillance. Previous early warning systems developed for WNV only identified risk factors of 

WNV outbreaks, but did not evaluate the detection performances of those systems (Adlouni et al. 2007; 

Bellini et al. 2014a; Brown 2012; Chaskopoulou et al. 2013; Gosselin et al. 2005; Rosà et al. 2014; Shuai et 

al. 2006; Valiakos et al. 2014). Timeliness has occasionally been evaluated but only based on a limited 

number of real WNV outbreaks, and has not been associated with a further assessment of system 

performance (Calzolari et al. 2013; Chaintoutis et al. 2014; Eidson et al. 2001; Johnson et al. 2006; 

Mostashari et al. 2003; Veksler et al. 2009). Only one attempt (Leblond et al. 2007) to assess the sensitivity 

and specificity of surveillance has been made but the parameters of interest were only evaluated based on 

a limited number of outbreaks, which did not allow any conclusions to be drawn regarding overall system 

performance. The outbreaks were simulated using real data and should thus be consistent with the course 

of a real WNV outbreak. However, there is always the risk that the conditions used here to evaluate 
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system performance were unrealistic, and thus other outbreaks, differing in magnitude and form, should 

be also tested in order to confirm our results.   

5. Conclusion 

A classical syndromic surveillance approach based on nervous symptoms in horses can be implemented 

using RESPE data in order to detect WNV outbreaks. The results produced in our study are better than 

those obtained with the current detection system and argue in favor of data preprocessing for the 

improvement of outbreak detection. 

The output of the syndromic system produced here was a yes/no qualitative output: “No, there is no 

outbreak” or “Yes, something unusual is happening in the population”. This output has the advantage of 

simplicity, but its interpretation/utilization may be complex when data are close to the alarm threshold. 

This output also has a low specificity. Indeed, we can detect WNV but probably also equine herpesvirus. It 

would be interesting to combine the output from syndromic surveillance with other information to reach 

a better specificity. However, it is currently complicated to combine this output with other 

epidemiological knowledge, such as disease seasonality or environmental risk factors, parameters that are 

fundamental when working with vector-borne diseases like WNV. This dilemma will be addressed in the 

next section. 

  



 

82 
 

  



CHAPTER III: SYNDROMIC SURVEILLANCE 

83 
 

C. VALUE OF EVIDENCE 

1. Introduction 

To address the problems associated with the qualitative outputs of syndromic surveillance and the 

difficulties of combining syndromic surveillance with other epidemiological knowledge, we tested a new 

approach for outbreak detection based on Bayes’ rule. Bayes’ rule is already used in a wide range of 

disciplines to combine information and provide numerical estimation of a likelihood ratio. In the 

framework of Bayesian analyses, this likelihood ratio is used to test hypotheses and clearly specify the 

strength of forensic evidence for/against a hypothesis.  

In the next section, we evaluate the applicability of the Bayesian likelihood ratio framework to the 

detection of outbreaks in syndromic surveillance. Two examples are considered: nervous syndromes in 

horses as an early warning of WNV outbreaks, and respiratory syndromes in horses for the detection of 

equine influenza. The objective was, first, to build a more objective, flexible, and easily interpretable 

output for syndromic surveillance and, second, to combine syndromic surveillance with other 

epidemiological knowledge. 

This part of the work was implemented in collaboration with Gunnar Andersson (SVA, Sweden) and 

published in PLOSOne (see below). This work also resulted in one oral presentation at the annual 

conference of AEEMA (“Association pour l’étude de l’épidémiologie des maladies animales”, a 

Francophone association dedicated to veterinary epidemiology) and one publication in their journal, 

‘Bulletin Epidémiologie et Santé Animale’ (text available in French in Appendix 10). 
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D. DISCUSSION AND CONCLUSION 

1.  Discussion 

This chapter showed that syndromic surveillance based on data collected by RESPE is able to detect signals 

suggestive of the presence of an outbreak of WNV or equine influenza in French horses (through the 

monitoring of nervous and respiratory symptoms, respectively). Although the system appears to be 

effective, syndromic surveillance is still rarely implemented in horses, probably due at least in part to the 

lack of data available for this population (e.g., few centralized databases on horse health, mainly due to 

the diversity of activities in the equine industry). In Europe, we have only been able to identify three 

syndromic surveillance initiatives for horses, based on a recent review by Dupuy et al. (Dupuy et al. 2013a) 

and an additional literature search. One such initiative is present in the UK, associated with the Equine 

Quarterly Surveillance Reports (DEFRA/AHS/BEVA 2015), another is in the Netherlands (Rockx et al. 2006), 

and the third is in Switzerland, linked to the Equinella network (https://www.equinella.ch/). At the time of 

writing, none of these systems (RESPE included) uses statistical tools to detect the signal of an outbreak 

prior to its formal diagnosis. Instead, the alarm threshold is typically set at an arbitrary level using raw 

data. However, our results indicate that data preprocessing and analysis improve detection performance 

compared to such subjective methods.  

In syndromic surveillance, Bayesian approaches have previously been mainly used for spatiotemporal 

outbreak detection and/or to assess unknown posterior probabilities by using hierarchical Bayesian 

models that involve inferences (Chan et al. 2010, Banks et al. 2012, Neill et al. 2006, Schmidt and Pereira 

2011, Zou et al. 2010). The simple Bayesian approach developed in this chapter is less robust, from a 

mathematical point of view, than full inference-based Bayesian models, which take into account the 

uncertainties of parameter estimation. However, our approach is also much easier to implement and to 

understand. This is an advantage compared to more complex approaches, which are often too 

complicated for decision makers who lack experience with these methods to understand (Banks et al. 

2012). The simple Bayesian approach used here could thus be a good compromise between rigor and 

ease-of-understanding in presenting results. 

In this chapter, two types of detection algorithms were tested: classical methods based on regression 

models and an algorithm based on the empirical Bayesian approach. Classical approaches generated good 

detection performance and were simple to apply, a great advantage in veterinary medicine where 

syndromic surveillance systems are still difficult to implement (Shephard 2006). However, compared to an 

empirical Bayesian approach, classical approaches have three main shortcomings: they do not provide a 

quantitative output, they are not able to easily take into account other epidemiological information 

available on a disease, and they are very unspecific. This last point, however, can be an advantage in 

detecting an unknown disease, as no a priori hypotheses are required. The empirical Bayesian approach is 

more disease-specific, but the drawback is that knowledge of the disease must be available. However, this 

https://www.equinella.ch/
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is not a fundamental limitation to the approach, as a vague probability distribution can also be used. The 

choice of an approach should be made according to the objective of the surveillance and the data 

available. In addition, it would be useful to perform a formal and quantitative comparison of the detection 

performances of both approaches before reaching a conclusion about their advantages and drawbacks. 

The representativeness of the RESPE data was not evaluated here, but was recently investigated by that 

organization (Daix 2014). The study identified 430 sentinel veterinarians who truly participated in the 

reporting system. They are not equally distributed all over France, but rather present in 92 (of 96) French 

regions and concentrated in areas with high horse densities. The questionnaires filled out by 63% of the 

active sentinel veterinarians revealed that 26% do not declare all suspect cases to RESPE. The reasons 

cited were: no consent from owner, omission, lack of time, and definitive diagnosis obtained without 

laboratory analysis. Most of the sentinel veterinarians reported seeing only a few suspect cases, which 

explained the low number of declarations reported per veterinarian. These elements suggest that the 

representativeness of the RESPE data is probably acceptable. However, it is unknown how these factors 

specifically affect the reporting of nervous and respiratory symptoms. Indeed, some veterinarians seem to 

declare only certain symptoms and not others. Therefore, it would be important to perform a detailed 

assessment of the RESPE system in order to ensure optimal outbreak detection performance. 

2. Conclusion 

This chapter describes a useful tool for determining if there is an ongoing VBD outbreak in French horses. 

In particular, the Bayesian approach enabled us to merge syndromic surveillance with knowledge of risk 

factors, which can be especially useful for VBDs as they are closely related to season and environment. 

Despite these advantages, an outbreak may also occur without generating a detectable signal in the 

syndromic surveillance system. This is of particular concern given the unknown representativeness of the 

data used. In addition, even if there is a significant signal, the lack of specificity in the system means that it 

could be a false alarm. It will thus be useful going forward to consider other approaches for estimating the 

probability of an outbreak in order to ensure the early detection of a newly introduced disease. 
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CHAPTER IV: MULTIPLE INDICATORS OF RISK 

 

Risk assessments and syndromic surveillance provide an estimate of the probability of an outbreak, but 

they do not prove the presence of the disease. The accumulation of evidence from a combination of these 

approaches can be a way to improve confidence in the prediction that a newly introduced epidemic is in 

progress. More generally, combining all available information in a multivariate algorithm should give 

better results for outbreak detection than univariate methods do. 

In this chapter, we explore the combination of multiple risk indicators in order to improve assessment of 

the probability of occurrence of a newly introduced VBD in horses. We first direct our attention to WNV, 

which infects a wide range of species and induces different types of symptoms. Therefore, combining 

information from different species or from different syndromic groups could help in outbreak detection. 

We thus worked first on a multivariate syndromic surveillance system in order to improve the detection of 

WNV outbreaks (Chapter IV.A). However, as already highlighted, VBDs are closely linked to season and 

environment. In addition, the probability that an outbreak occurs is also linked to the probability that the 

disease enters an area. Combining syndromic surveillance with assessments of the probabilities of virus 

entry and establishment may thus also improve confidence in the prediction that a new VBD has been 

introduced. This approach has the potential to be much more useful than syndromic surveillance alone, as 

the latter may fail to detect an outbreak of a disease that causes few symptoms. To test this approach, we 

worked to combine syndromic surveillance data with quantitative risk analysis and we applied this 

approach to the detection of equine encephalosis (EE) outbreaks. We chose EE because it has few 

symptoms and should be more difficult to detect using a single approach than AHS and WNV, both of 

which manifest themselves in a more specific clinical picture (Chapter IV.B). The advantages and 

drawbacks of combining these risk indicators to detect VBDs in horses are also discussed (Chap. IV.C). 
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A. MULTISTREAM SYNDROMIC SURVEILLANCE 

1. Introduction  

One limit of univariate syndromic surveillance is that no single data source captures all the individuals 

involved in the outbreak, and that diseases may cause a wide variety of symptoms in different individuals 

(Kulldorff et al. 2007). In addition, the data collected are often vague, and univariate syndromic 

surveillance systems can suffer from this lack of specificity. However, by simultaneously assessing 

information from different data sources related to different populations and/or symptoms, one can 

improve outbreak detection and, in particular, the specificity of the detection. 

Multivariate syndromic surveillance can be purely temporal (see, for example, (Schiöler and Frisén 2011), 

(Fan et al. 2014), and (Lau et al. 2008)), purely spatial, or spatiotemporal (see, for example, (Kulldorff et al. 

2007) and (Greene et al. 2012)). Different methods exist for the aggregation of data sources, but the two 

main approaches are the reduction method and the parallel method (Frisén et al. 2010; Sonesson and 

Frisén 2005). The reduction method considers several variables that are reduced to a single statistic, using 

for example the sum for each time period, p-value aggregation (Roure et al. 2007), or multivariate control 

charts (MacGregor and Kourti 1995; Stoto et al. 2006)). The parallel method uses multiple univariate 

systems which are then assessed in parallel. An alarm is triggered if any of the univariate systems gives an 

alarm (e.g., (Fan et al. 2014, Schiöler and Frisén 2011)). The reduction approach gives a better detection 

performance when all changes occur simultaneously in the different processes under consideration. When 

the changes occur separately, the parallel approach yields better results (Frisén et al. 2010).  

In this section, we consider a multivariate syndromic surveillance system applied to the detection of West 

Nile virus outbreaks. WNV typically affects different hosts, which makes it a particularly interesting case in 

determining if multivariate surveillance can improve outbreak detection. To combine the different 

variables, we used a reduction method based on a Bayesian approach.  

This work resulted in a scientific paper submitted to Vector-borne and zoonotic diseases (see below for the 

main text). 
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ABSTRACT 

Background: Various methods are currently used for the early detection of West Nile virus (WNV) but 

their output is either not quantitative or does not take into account all available information. Our study 

aimed to test a multivariate syndromic surveillance system in order to improve early detection of WNV.  

Method: Weekly time series data on nervous syndromes in horses and mortality in both horses and wild 

birds were used. Baselines were fitted to the three time series and used to simulate 100 years of 

surveillance data. WNV outbreaks were simulated and inserted into the baselines based on historical data 

and expert opinion. Univariate and multivariate syndromic surveillance systems were tested in order to 

gauge how well they detected the outbreaks; detection was based on an empirical Bayesian approach. 

The systems’ performances were compared using measures of sensitivity, specificity, and area-under-ROC-

curve (AUC). 

Result: When data sources were considered separately (i.e. univariate systems), the best detection 

performance was obtained using the dataset of nervous symptoms in horses compared to those of bird 

and horse mortality (AUCs respectively equal to 0.80, 0.75, and 0.50). A multivariate outbreak detection 

system that used nervous symptoms in horses and bird mortality generated the best performance (AUC = 

0.87). 

Conclusion: The proposed approach is suitable for performing multivariate syndromic surveillance of WNV 

outbreaks. This is particularly relevant given that a multivariate surveillance system performed better than 

a univariate approach. Such a surveillance system could be especially useful in serving as an alert for the 

possibility of human viral infections. This approach can be also used for other diseases for which multiple 

sources of evidence are available. 

KEY WORDS: West Nile, syndromic surveillance, Bayes, horses, multivariate detection 
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INTRODUCTION 

West Nile virus (WNV) is a mosquito-borne arbovirus mainly transmitted by mosquitoes from the genus 

Culex (family Culicidae). Its main hosts are birds but the virus also affects various non-avian species 

including horses and humans, with dramatic consequences for public health and for the equine industry, 

i.e. potentially fatal encephalitis in humans and horses (Campbell et al. 2002; Castillo-Olivares and Wood 

2004). In Europe, WNV emerged in the 1960s and several outbreaks have been documented since that 

time (Calistri et al. 2010). Even if the virus is now considered endemic in a large part of Europe, the 

number of reported outbreaks is presently increasing in southern and eastern Europe, particularly in Italy, 

Greece, and Bulgaria (Di Sabatino et al. 2014). This increasing number of outbreaks, combined with the 

recent introduction and spread in Europe of WNV lineage 2, which induces severe symptoms in humans, 

horses, and birds (Bakonyi et al. 2006; Calzolari et al. 2013; Hernández-Triana et al. 2014), has resulted in 

growing concern about WNV in Europe. In addition, the implementation of prevention plans for WNV 

outbreaks is difficult (Zeller 2010) because the environmental factors and meteorological interactions 

underlying the increase in WNV circulating in mammals are still poorly understood. To improve early 

detection of WNV outbreaks, then, the major challenge is to develop more integrated and quantitative 

approaches (Beck et al. 2013; Bellini et al. 2014b). 

Syndromic surveillance is currently a popular approach for the early detection of health-related 

phenomena (Dórea et al. 2011) and has already been implemented for WNV. In Europe, the surveillance 

of nervous syndromes in horses has been shown to detect early indicators of WNV outbreaks (Leblond et 

al. 2007; Saegerman et al. 2014) and is one of the most cost-effective surveillance systems in the 

European context (Chevalier et al. 2011). In the USA, instead, increased mortality in wild birds is one of the 

most timely indicators of virus activity (Brown 2012). Mortality in wild birds had rarely been reported in 

Europe until the recent explosive spread of lineage 2 in 2008-2009 in Hungary and Austria, which suggests 

that this parameter could be also incorporated into future monitoring systems in Europe (Bakonyi et al. 

2013). This is consistent with recent experimental infections of European wild birds with various WNV 

strains, which generated an average mortality rate of 43% (Del Amo et al. 2014a; Del Amo et al. 2014b; 

Dridi et al. 2013; Sotelo et al. 2011; Ziegler et al. 2013). Apart from mortality in wild birds and nervous 

symptoms in horses, WNV is also associated with mortality in horses, which could constitute another 

signal of a WNV outbreak. Combining all available information in a multivariate algorithm should give 

better results for outbreak detection than univariate methods alone. However, at the time of writing, 

multivariate syndromic surveillance has never been implemented for the detection of WNV outbreaks. 

The aim of our study was to evaluate the performance of a multivariate syndromic surveillance system in 

detecting WNV using three datasets: nervous syndromes in horses and mortality in horses and wild birds. 

We focused on the French Mediterranean coast, which is a particularly high-risk area for WNV outbreaks. 

Indeed, in France, WNV has only ever been identified in this area, which is home to mammalian and avian 

hosts, bridging vectors, and large protected wetlands with numerous migratory birds.  
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MATERIALS AND METHODS 

1. Data sources 

1.1. Nervous syndromes in horses 

Data on nervous syndromes in horses are collected through the passive surveillance system “RESPE”. This 

French network for the surveillance of equine diseases (http://www.respe.net/) collects standardized 

declarations from veterinary practitioners registered as sentinels. All the samples sent for laboratory 

diagnosis are systematically tested for WNV and equine herpes virus, and results are registered in the 

RESPE database. To obtain an outbreak-free baseline dataset, we used data from 2006 to 2013 that 

included only the 44 declarations without positive laboratory test results from the region of the French 

Mediterranean coast. The time series of nervous syndromes in horses is designated NervSy in subsequent 

sections.  

1.2. Mortality in horses 

Data on mortality in horses have been centralized since 2010 in the “EDI-SPAN” database, managed by all 

the French fallen stock companies and the French Ministry of Agriculture (Perrin et al. 2012). As WNV does 

not produce perinatal mortality, we only considered the 8 742 dead adult horses collected around the 

French Mediterranean coast between 2010 and 2014. The time series of mortality in adult horses is 

designated DeadHorse in subsequent sections. 

1.3. Mortality in wild birds 

Data on mortality in wild birds are collected through the event-based surveillance system “SAGIR”, the 

national French surveillance network of diseases in wild birds and mammals, which collects declarations 

from field workers (e.g., hunters, technicians from departmental hunting federations, and environmental 

inspectors from the French National Hunting and Wildlife Agency (ONCFS)). Surveillance relies on 

diagnosis at a local veterinary laboratory (Decors et al. 2014). Between 2007 and 2013, 292 dead wild 

birds were collected and necropsied around the French Mediterranean coast. The time series of the 

number of necropsied wild birds is designated DeadBird in subsequent sections.  

2. Data modeling and simulation 

2.1. Baselines 

All time series were aggregated weekly. Using visual examination, abnormal peaks were observed only in 

DeadBird. These extreme values were removed based on a method adapted from Tsui et al. (Tsui et al. 

2001): the entire dataset was first fitted to a Poisson distribution and then values above the 95% 

confidence interval were deleted and replaced with the average value of the four previous weeks. 

To calibrate the models, we used NervSy data from 2006 to 2010, DeadHorse data from 2011 to 2013, and 

DeadBird data from 2007 to 2011. Instead, to validate the quality of predictions, we used NervSy data 

from 2011 to 2013, DeadHorse data from 2014, and DeadBird data from 2012 to 2013. To define the 

background noise of the time series without outbreaks, we fitted alternative regression models based on 

http://www.respe.net/
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Poisson and negative binomial (NB) distributions. Models were implemented in R x64 version 3.0.2. 

Dynamic regression was performed with the functions glm (package {stats}) and glm.nb (package {MASS}). 

The expected number of counts at time t was estimated with the predict functions of the respective 

packages. 

Models were evaluated using the Akaike information criterion (AIC) (Bozdogan 1987), and the adjusted 

deviance (deviance/degree of freedom) was used as a measure of goodness-of-fit (GOF). The agreement 

between predicted and observed values was assessed according to the root-mean-squared error (Chai and 

Draxler 2014). The criterion was assessed within the calibration period (RMSEc) and within the validation 

period (RMSEv). In either case, the lower the value, the better the predictive performance of the model.  

For each time series, the best regression model was used to predict the expected value of each week of 

the next simulated year. Distribution of cases for each week was defined as a Poisson distribution with 

lambda equals to the predicted value for the same week. Weekly samples from 100 fictive years were 

generated by random sampling from the previous distributions as proposed by Dórea et al. (Dórea et al. 

2013a). 

2.2. WNV outbreaks 

Data on real WNV outbreaks are scarce, so we thus used simulated outbreaks to evaluate our detection 

system. For each syndrome, the distribution of the number of cases during an outbreak was estimated 

with the fitdist function of the package {fitdistrplus}. Time series for each syndrome during 100 fictive 

outbreaks were simulated by randomly sampling the corresponding distribution. One simulated outbreak 

was inserted in each simulated baseline. The outbreaks related to nervous cases in horses were randomly 

inserted, followed by the corresponding outbreaks related to wild bird mortality, such that the time lag 

between the first dead bird and the first nervous case in horses due to WNV was 0, 1, or 2 weeks 

(Kulasekera et al. 2001). The corresponding horse mortality outbreaks were inserted such that half of the 

affected horses died the week of onset of clinical signs and half died the week after (Bunning et al. 2002; 

Cantile et al. 2000; Trock et al. 2001; Ward et al. 2006). 

 

The weekly counts of cases of five real European WNV outbreaks (Anonymous 2007; Autorino et al. 2002; 

Kutasi et al. 2011; Leblond et al. 2007; Murgue et al. 2001) were fitted to the NB distribution and the 

resulting distribution of the additional number of nervous cases due to WNV during an outbreak was 

NB(mu=3.12, theta=1.150). The mortality among horses clinically affected by WNV was fitted to a normal 

distribution (mean=0.384, standard deviation=0.128) based on (Autorino et al. 2002; Leblond et al. 2007; 

Murgue et al. 2001; Ward et al. 2006). The NervSy dataset did not provide the real number of clinically 

affected horses, so we assumed that only 50% of horses with nervous symptoms were declared to RESPE. 

To estimate the real number of clinically affected horses, we simulated RESPE declarations of nervous 

symptoms associated with 100 WNV outbreaks and doubled the counts of horses obtained. The related 

weekly count of dead adult horses was then deduced and fitted to the NB distribution NB(mu=3, 
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theta=2.005). The distribution of the weekly number of dead birds was estimated by expert opinion to be 

NB(mean=2.23, theta=3.34).  

3. Outbreak detection  

3.1. Bayesian framework 

Bayesian hypothesis testing is based on two mutually exclusive hypotheses which can be expressed in the 

syndromic surveillance context as H1, “there is an ongoing outbreak of WNV (or another disease with 

similar symptoms)”, and H0, “there is no ongoing outbreak” (Andersson et al. 2014). The relative 

probability of the two hypotheses can be expressed as a ratio (Opri) which represents our a priori belief 

about the disease status: 

Eq.1   

 

When evidence in favor (or not) of each hypothesis is observed, we can build the a posteriori belief about 

the disease’s status (Opost): 

Eq.2   

where P(H1 |Ex) is the probability of H1 given the evidence E observed in time series x and P(H0 |Ex) is the 

probability of H0 given the evidence E observed in time series x. 

 

Using this general framework with the application of Bayes’ theorem, Opost can be calculated as:  

Eq.3   

where Vx is the value of evidence, P(Ex|H1) is the probability of observing the number of reported cases of 

syndrome x in a particular week given that H1 is true, and P(Ex|H0) is the probability of observing the 

number of reported cases of syndrome x in a particular week given that H0 is true.  

In order to estimate P(Ex|H1) and P(Ex|H0),  information on the probability distribution for the number of 

reported cases in non-outbreak and outbreak situations is used. The probability of Ex (observation of n 

cases in time series x) during an outbreak is calculated as: 

Eq.4   

where Pbase(i) is the probability of drawing i cases from the baseline distribution in time series x and Pout(i)  

is the probability of drawing i cases from the outbreak distribution in time series x based on the shape of 

the outbreak, as previously simulated. 
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3.2. Combining time series 

When the three time series were combined, Vtot incorporated evidence from NervSy, DeadHorse, and 

DeadBird, respectively denoted as ENervSy, EDeadHorse, and EDeadBird.  Assuming that the three sources of 

evidence were independent, Vtot was calculated as: 

Eq.5   

and Opost_tot was calculated as: 

Eq.6   

 

4. Performance assessment 

Sensitivity (Se) and specificity (Sp) were calculated as: 

Eq.7  Se = TP / (TP+ FN) 

Eq.8  Sp = TN / (TN + FP) 

where TP is the number of true positive alarms, TN the number of true negative alarms, FP the number of 

false positive alarms, and FN the number of false negative alarms.  

The receiver operating characteristic (ROC) curve was generated in R by testing various alarm thresholds, 

and the areas under the curves (AUC) were calculated with the auc function of the package {flux}. A larger 

AUC represented a better detection performance. 

RESULTS 

1. Modeling time series and simulating data 

For all time series the best fits were obtained for NB distributions. The resulting models’ parameters are 

summarized in table 1 and corresponding baselines and predictions are shown in figure 1. The 

probabilities of observing n cases and the resulting value of V (p(E|H1)/ p(E|H0)) during a non-outbreak 

(p(E|H0)) and an outbreak (p(E|H1)) situation for each time series are summarized in figure 2.  

2. Outbreak detection 

We estimated the respective performance of each univariate system (NervSy, DeadHorse, and DeadBird) 

in detecting WNV outbreaks without considering any a priori values for disease status (Opri=1). Examples 

of simulated baselines with inserted outbreaks and associated variations in log10(V) are presented in 

Appendix I. 

The best results for univariate outbreak detection were obtained for NervSy, which outperformed 

analyses using DeadHorse and DeadBird (figure 3 and table 2). DeadBird models yielded intermediary 
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detection performances whereas models using DeadHorse were not able to discriminate between 

outbreak and non-outbreak situations (AUC≈0.50). 

The best results for multivariate outbreak detection were obtained for analyses that combined NervSy 

with DeadBird data, which gave similar results to a combination of the three time series (figure 3 and table 

2). The results of using NervSy combined with DeadBird were also better than those obtained with each 

time series alone. For example, for a specificity set at 0.80, the sensitivity of the detection reached 0.80 

with the combined NervSy and DeadBird series whereas it was 0.67 with NervSy and 0.60 with DeadBird 

alone.  

DISCUSSION 

Our results indicated that the best detection performance was obtained using multivariate syndromic 

surveillance based on reports of nervous symptoms in horses (NervSy) and wild bird mortality (DeadBird). 

To our knowledge, this is the first time that multivariate syndromic surveillance has been implemented for 

WNV detection. However, when using a univariate detection method, NervSy was the best indicator of 

WNV outbreaks. This is consistent with the number of expected cases during an outbreak compared to the 

baseline of each time series considered (i.e. high number of case for NervSy, moderate number of cases 

for DeadBird, and low number of cases for DeadHorse). Indeed, models based only on the DeadHorse data 

resulted in poor detection performance at the regional level because mortality in horses is mainly due to 

causes other than WNV. However, before ruling on the usefulness of this datasource for WNV 

surveillance, it would be interesting to test whether an outbreak generates local clusters of deaths in 

horses that may be used as a signal of a VNW outbreak. However, the quality of geographical information 

of reported cases are currently insufficient to test this hypothesis. 

This is the first time that a real assessment of system performance has been implemented for WNV 

surveillance. Previous early warning systems developed for WNV only identified risk factors of WNV 

outbreaks, but did not evaluate the detection performances of those systems (Adlouni et al. 2007; Bellini 

et al. 2014a; Brown 2012; Chaskopoulou et al. 2013; Gosselin et al. 2005; Rosà et al. 2014; Shuai et al. 

2006; Valiakos et al. 2014). Timeliness has occasionally been evaluated but only based on a limited 

number of real WNV outbreaks, and has not been associated with a further assessment of system 

performance (Calzolari et al. 2013; Chaintoutis et al. 2014; Eidson et al. 2001; Johnson et al. 2006; 

Mostashari et al. 2003; Veksler et al. 2009). Only two attempts to assess the sensitivity and specificity of 

surveillance have been made (Andersson et al. 2014; Leblond et al. 2007) but the parameters of interest 

were only evaluated based on a limited number of outbreaks, which did not allow any conclusions to be 

drawn regarding overall system performance.  

To assess the surveillance systems and compare them, we simulated baselines and outbreaks using 

parameters from data observed in Europe (Anonymous 2007; Autorino et al. 2002; Bakonyi et al. 2013; 

Leblond et al. 2007; Ward et al. 2006). To expand upon this, patterns of outbreaks in other locations 
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should be tested in order to evaluate the performance of multivariate syndromic surveillance in more 

varied situations. Particular attention should be paid to patterns of mortality of wild birds, as the dynamics 

of wild bird mortality during a WNV outbreak have only been poorly investigated in Europe. 

The Bayesian approach seems well adapted for multivariate WNV detection and can be used for other 

diseases. Indeed, Bayesian hypothesis testing is based on two mutually exclusive hypotheses which can be 

expressed in the syndromic surveillance context as: H1, “there is an ongoing outbreak of WNV or of 

another disease with similar symptoms”, and H0, “there is no ongoing outbreak”. It would be theoretically 

possible to include every possible differential diagnosis for every syndrome (or group of syndromes) 

considered; however, such a system would be difficult to implement and maintain. It would thus be 

interesting to first examine the evidence from each time series individually and then together in order to 

identify which combination of datasets results in the strongest signal. It would be up to the relevant 

decision maker in a given situation to consider appropriate differential diagnoses and the actions that 

should be implemented for further investigation.  

In our study, we considered three sources of evidence for WNV outbreak detection. Nevertheless, 

additional information can be utilized with Bayesian approaches, as it is easy to add such information. 

Then, a next step in the early detection of WNV outbreaks should be to test the efficiency of the method 

with other data, such as the predicted abundance of mosquitoes (Calistri et al. 2014; Rosà et al. 2014), 

environmental risk factors (Tran et al. 2014), and probability of introduction (Bessell et al. 2014; Brown et 

al. 2012).  

CONCLUSION  

The proposed approach is suitable for performing multivariate syndromic surveillance of WNV outbreaks. 

Indeed, we found that a multivariate surveillance system using this approach performed better than a 

univariate approach in detecting WNV outbreaks in southern France. In particular, a combination of data 

regarding nervous symptoms in horses and wild bird mortality was the most efficient in detecting 

outbreaks. Such multivariate surveillance systems could be especially useful in serving as early warnings 

for possible human viral infections, considering that horses and birds are affected by WNV before humans 

(Kulasekera et al. 2001; Leblond et al. 2007). We propose that this methodology is generally applicable to 

other diseases for which multiple sources of evidence are available. 
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Figure 1: three time series considered. NervSy: number of declaration of nervous syndrome in horses without positive 
lab result. DeadHorse: number of dead adult horses collected by French fallen stock companies. DeadBird: number of 
dead wild birds autopsied with values above the 95% confidence interval deleted. Dotted lines = training data, solid 
black lines = test data, solid blue lines = predicted value, solid red lines = 95% Confidence interval 
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Figure 2: Value of evidence and probabilities of observing n cases during a non-outbreak (Base) and an outbreak 

(Out) situation. Base= distribution of distribution into the baseline, Out = distribution of cases related to a WNV 

outbreak, Tot= distribution of cases during an outbreak (Base + Out), Log(V)= log10(p(n|outbreak)/p(n|baseline)). Out 

was based for NervSy on NB(mu= 3.12, theta =1.150), for DeadHorse on NB(mu= 3, theta =2.005), and for DeadBird on 

NB(mean= 2.23, theta=3.34). 
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Figure 3: ROC curves  for univariate and multivariate outbreak detection using NervSy, DeadHorse and DeadBird.  

 

 

Negative binomial distribution 
AIC GOF RMSEc RMSEv Formulae theta mean 

NervSy ~ sin(2𝜋(𝑡 − 4) 18.33⁄ ) + sin(2𝜋𝑡 26.5⁄ ) 0.413 0.077 143 0.279 0.30 0.39 

DeadHorse ~ 4 × (𝑡 − 4) 52⁄ + 𝑡 + sin(2𝜋(𝑡 − 12) 53⁄ ) 176 40.3 1063 1.016 7.06 8.57 

DeadBird ~ 4 × (𝑡 − 4) 52⁄ + sin(2𝜋𝑡 26.5⁄ ) 0.373 0.520 497 0.675 1.03 1.05 

Table 1: Models and models parameters obtained for the three time series.  

 

 

 NervSy DeadHorse DeadBird 
NervSy & 
DeadBird 

NervSy & 
DeadHorse 

DeadHorse 
& DeadBird 

Total 

AUC 0.80 0.50 0.75 0.87 0.80 0.75 0.87 

Standard 
error 

0.0082 0.0097 0.0089 0.0068 0.0081 0.0089 0.0068 

Table 2: Area under the ROC curve (AUC) and standard error for univariate and multivariate outbreak 
detection using NervSy, DeadHorse and DeadBird.  
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Appendix I:  

Supplementary figure 1: Examples of simulated baseline with inserted outbreak and 
corresponding variation of the value of evidence (V). solid black line = simulated data, solid 
blue line = predicted value, solid red line = 95% confidence interval, Dotted lines = log10(V) 
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B. COMBINING QUANTITATIVE RISK ASSESSMENT AND SYNDROMIC 

SURVEILLANCE 

1. Introduction 

Risk assessment and syndromic surveillance can both indicate the possibility of a newly introduced 

epidemic but they do not prove the presence of the disease. Specifically, both approaches provide 

different risk estimations. Risk assessment identifies the respective probabilities of pathogen entry and 

establishment according to season and local environment. Syndromic surveillance determines the 

probability that an outbreak is in progress based on field observations. Combining both approaches will 

thus result in a posterior probability which should improve confidence in the prediction of an outbreak of 

a newly introduced VBD. The posterior probability is calculated according to Figure 15. 

 

 

 

 

 

 

 

Figure 15: Combining syndromic surveillance and probability of disease introduction to obtain a posterior 
probability that there is an ongoing outbreak. 

In particular, this approach can be useful for exotic diseases with few and unspecific symptoms. Indeed, 

veterinary practitioners are rarely able to detect such diseases and syndromic surveillance might be useful 

in enhancing the passive reporting system. However, the incidence of under-reporting is also expected to 

be high, which compromises the ability of syndromic surveillance to detect disease. Adding prior 

information on the probability of disease introduction can improve the detection of such diseases.  

Among exotic diseases, equine encephalosis (EE) typically causes unspecific symptoms that are quite hard 

to detect, as illustrated by the example of Israel, where the disease was present for at least 10 years 

before it was first officially reported (Wescott et al. 2013). In this study we combined syndromic 

surveillance with information on the probability of disease introduction in order to improve early 

detection of a potential EE outbreak.  

This work will result in a scientific paper in preparation and we only present here preliminary results: Mats 

Gunnar Andersson*, Egil Andreas Joor Fischer*
+
, Céline Faverjon, Jörn Gethmann, Maya Gussmann, Yves 

Probability of disease entry Probability of disease establishment 

Probability of disease introduction 
Relative risk of ongoing outbreak 

according to syndromic surveillance 

Posterior probability 
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van der Stede, Petter Hopp, René Bødker, Agnès Leblond. (2015). A joint risk score method for risk-based 

surveillance of vector-borne animal diseases. Manuscript in preparation 

2. Material and Methods 

2.1. Bayesian framework 

The analyses were performed with weekly data using counts from a grid in France which consisted of 943 

cells of 25x25 kilometers each.  

To provide a comprehensive and single indicator of risk, we used spatiotemporal extension of the 

empirical Bayes’ approach presented in previous sections (see Chapter III.C and Chapter IV.B). Bayesian 

hypothesis testing is based on two mutually exclusive hypotheses which can be expressed in the 

syndromic surveillance context as: H1, “there is an ongoing outbreak of EE (or another disease with similar 

symptoms) in grid cell g during week w” and H0, “there is no ongoing outbreak in grid cell g during week 

w” (Andersson et al. 2014). The relative probability of the two hypotheses can be expressed as a ratio 

(Opri) that represents our a priori belief about the disease status: 

)(
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0

1

HP

HP
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The probabilities of H1 and H0 were estimated based on the spatiotemporal quantitative model for the 

assessment of the probability of EE introduction developed in Chapter II.C. The value of evidence (V) was 

estimated using syndromic surveillance data. The main symptoms of EE in horses are respiratory and 

nervous symptoms (Dhama et al. 2014); we thus considered these  two sources of data (NervSy and 

RespSy, respectively). We supposed both datasets to be independent and describe them in the next 

section. The corresponding value of evidence (V) was calculated as: 
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where P(EX|H1) is the probability of observing the number of reported cases of syndrome X in a 

particular week in a particular grid cell given that H1 is true, and P(EX|H0) is the probability of 

observing the number of reported cases of syndrome X in a particular week in a particular grid 

cell given that H0 is true. 

The a posteriori belief about the disease’s status for each week and each grid cell (Opost) takes into account 

both the probability of disease introduction and the results of syndromic surveillance and was calculated 

as in (Faverjon et al. 2015a): 
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2.2. Simulated EE outbreaks 

Two outbreaks were simulated to test our model: one in Aquitaine, and another in Normandy. These 

regions were selected due to their large equine population. No spatiotemporal description of EE outbreaks 

is currently available, so we used other, indirect, information to estimate the number of expected cases 

and the spatiotemporal evolution of an EE outbreak.  

First, we assumed that 80% of the susceptible population would be infected, based on the estimated 

prevalence of EE in the initial serological data from Israel in 2001 (Wescott et al. 2013). To obtain the 

number of horses showing clinical signs for EE, we supposed that around 40% of the infected horses 

would show clinical signs and, of these, 90% would be respiratory symptoms and 10% neurological 

symptoms (Aharonson-Raz et al, 2011). We then presumed that 25% of respiratory cases and 50% of 

neurological cases would be declared to RESPE. In the end, we estimated that, during an EE outbreak, the 

percentage of horses with respiratory or nervous symptoms due to EE and declared to RESPE was 7% and 

1.6%, respectively, of the general equine population located in an area. 

To obtain the distribution of horses that showed clinical signs per week, we used data collected during 

African Horse Sickness (AHS) outbreaks, because EE and AHS are very similar and share the same 

transmission patterns (Dhama et al. 2014; Lord et al. 2002). Specifically, we used data from outbreaks in 

Western Cape in 1999, 2004, and 2011 (Anonymous 2011; Sinclair et al. 2006). These outbreaks occurred 

in an area of South Africa that is under surveillance designed to act as an early warning system, but which 

lacks systematic vaccination campaigns performed to protect the free zone. Nevertheless, the number of 

vaccinated horses is considered to be high in this area (Sinclair et al. 2006), which probably reduced the 

size of the outbreaks compared to a situation in which all horses are susceptible. 

To estimate the spatial propagation of EE for the outbreak in “Aquitaine”, we used the first six weeks of 

location data from a BTV-1 outbreak in southern France, as both viruses share the same vector, Culicoides 

(Venter et al. 2002). For the outbreak in “Normandy”, we assumed that the spread of an EE outbreak 

would be similar in velocity to that observed during the last BTV-8 outbreak in France: from an index case, 

the outbreak gained around 10 kilometers per week (Pioz et al. 2008), with 50% of new cases occurring 

less than 5 km from the closest infected animal, and 95% within a radius of 31 km of the closest infected 

animal (Hendrickx et al. 2008). The distribution of cases has been made according to local equine 

population using data provided by IFCE-SIRE.  

The spatiotemporal progression of the outbreak in Aquitaine is presented in Figure 16, while the outbreak 

in Normandy is available in Appendix 11. 
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2.3. Probability of EE introduction 

2.3.1. Data source 

To define our a priori belief about the disease status (Opri), we reused the spatiotemporal quantitative 

model that was developed in Chapter II.C to assess EE introduction. The model served as a basis for 

estimations of the probability of disease entry and the probability of disease establishment. The 

spatiotemporal model of EE introduction uses monthly data at the regional scale (22 regions) for three 

consecutive years (2010, 2011, and 2012). 

2.3.2. Data transformation 

To transform the monthly and regional data into weekly, grid-based data, we assumed that the monthly 

regional probabilities of virus introduction were uniformly distributed in space and time within a given 

region and for a given month. The weekly probability of virus release in a grid cell, 𝑃(𝑖𝑛𝑡𝑟𝑜𝑤𝑥), is thus 

defined for both routes of introduction as:   

 𝑃(𝑖𝑛𝑡𝑟𝑜𝑤𝑔) = 1 − (1 − 𝑃(𝑖𝑛𝑡𝑟𝑜𝑘𝑚))
1

𝑤𝑒𝑒𝑘𝑚∗𝑔𝑟𝑖𝑑𝑘     

where w belongs to month m, g belongs to region k, weekm equals the number of weeks in month 

m, gridk equals the number of grid cells in region k, and 𝑃(𝑖𝑛𝑡𝑟𝑜𝑘𝑚) is the monthly regional 

probability of virus introduction via an infectious host or vector.  

The probability of introduction sometimes equaled zero, due to a lack of importation or to a null 

probability of virus circulation in exporting countries. When combining this zero probability with the 

syndromic surveillance model, the final output was thus zero as well. We adopted a conservative 

approach and assumed that there is always a slight probability of virus introduction and transmission; we 

thus chose to replace these zero probabilities of introduction with a value equal to 10% of the lowest 

calculated probability of introduction.  

2.4. Syndromic surveillance of EE 

2.4.1. Data sources 

To define the value of evidence (V), two types of syndromes were considered: nervous symptoms and 

respiratory symptoms in horses. Both sets of related data are collected by RESPE and have already been 

used and presented in Chapter III.C. The datasets without positive laboratory diagnoses were used to 

obtain an outbreak-free dataset. Syndromic surveillance data collected by RESPE are available on a daily 

basis and at the municipal level from 2006 to 2013.  
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2.4.2. Spatiotemporal detection  

The algorithm used for spatiotemporal detection of clusters of cases was developed and implemented by 

Gunnar Andersson (SVA, Sweden) within the framework of the EMIDA-VICE European project (Andersson 

et al. 2015). Briefly the seasonal variation of each syndrome/symptom, under outbreak-free conditions 

was first modelled for France as a whole. The probability distribution of the number of reported 

syndromes/symptoms around each grid-cell was subsequently modelled using the expected number of 

cases per host, and local host density as input.  The host population horse population around each grid cell 

was based on data at commune level provided by IFCE-SIRE (IFCE - les Haras nationaux 2011)). 

2.5.  Presentation of the concept and first feedback 

To evaluate and receive feedback on the proposed approach, the concept was presented during a two-day 

workshop organized by the EMIDA-VICE project in Paris in February 2015. Fourteen people not included in 

the VICE project from eight countries and one person representing EFSA were present. The participants 

were from research centers, state agencies, or veterinary services, and were all involved in surveillance 

(data collection and management), risk assessment, and/or risk management.  

In addition to the general approach, we also presented the EE example. Practical exercises were provided 

to the participants to facilitate their understanding of the concept. Their comments and suggestions on 

the concept and method were collected. 

3. Results 

3.1. Multivariate syndromic surveillance 

Models that made use of both syndromes (neurological and nervous) discriminated better between 

outbreak and non-outbreak situations than those that considered symptoms separately (see Figure 17). 

 

 
Figure 17: Value of evidence in France at week 31 in year 2012 from the simulated outbreak in Aquitaine, 

using a detection radius of 50 km. Map on the left = respiratory symptoms, middle map = nervous 
symptoms, map on the right = multivariate syndromic surveillance  (Andersson et al. 2015) 
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3.2. Combining Risk assessment 

The combination of the probability of disease introduction with syndromic surveillance results is 

presented in Figure 18. The results for the outbreak in Normandy are presented in Appendix 12.  

In both cases, combining prior information on the probability of disease introduction (Opri) with a 

multivariate syndromic surveillance system (V) allowed us to i) highlight a small number of cases occurring 

in an area at high probability for disease introduction, and ii) diminish the significance of a large number of 

cases occurring in an area at low probability for disease introduction. 

3.3. Workshop output 

The workshop organized by the EMIDA-VICE project presented our approach and the EE example to 

fourteen participants from eight European countries. The main conclusion of the workshop was that the 

approach was of great interest for combining different risk assessments. The participants highlighted the 

wide range of opportunities offered by this tool, but were of the opinion that this approach would mainly 

be used to increase awareness, rather than to implement active surveillance. Indeed, for the participants, 

the approach was helpful for demonstration and should facilitate risk communication (in particular when 

different scenarios are tested). The main constraint to the implementation of this approach was, 

according to the participants, the current lack of relevant and accurate data. 

Despite these advantages, the approach also appeared quite complicated, and the participants advocated 

for the automatic generation of output, a user-friendly interface, a list of requirements to run the system, 

and an easy-to-use manual. Other criticisms were that the assumptions were not sufficiently explicit and 

the uncertainty was not displayed, which complicated the understanding and interpretation of results. The 

participants also advocated for the development of sensitivity and cost-efficiency analyses for this 

approach.  

 

 

 

 

 

 

 

 



 

118 
 

Week 
Probability of disease 

introduction (Opri) 
Multivariate syndromic 

surveillance (V) 
Posterior probability (Opost) 

29 

   

30 

   

31 

   

32 

   

 

Figure 18: Posterior probability of EE outbreak in France in year 2012 during the simulated outbreak in 
Aquitaine from week 29 to week 32. Radius for detection is 50 km (Andersson et al. 2015) 
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4. Discussion and Conclusion 

The results presented are only preliminary but they provide a good example of the concept. In this 

example, the approach was applied to detect a known disease (equine encephalosis), but it also presents 

multiple other opportunities. Indeed, any kind of prior knowledge can be used and thus the approach 

could also be implemented for diseases about which not a great deal is known a priori. Moreover, it can 

be used not only in the context of risk assessment, but also in that of risk management. For example, the 

approach can be used to test different risk scenarios and increase awareness, and thus support decision-

making. It is particularly adapted for use in decision-making because it can be easily combined with 

decision theory, as presented in (Andersson et al. 2014).  

The feedback from the EMIDA-VICE workshop emphasized the potential of our approach but also 

highlighted a limitation to its practical implementation: the lack of relevant and accurate data. . Indeed, 

the approach requires a large amount of data (regarding, e.g., import of animals, temperature, vector 

abundances, declarations from veterinarians), which are currently very rarely available all together. At the 

European scale, at the time of writing, there is no agreement on data format or on the definition of terms, 

especially in syndromic surveillance. Current initiatives to collect and analyze data are thus rarely 

transferable between EU countries and the results of these programs are not comparable to each other. 

Further efforts should be made to homogenize data collection and the definition of terms at the European 

level in order to facilitate the widespread use of the results of the different existing surveillance systems. 

However, even if the lack of data is a concern, Bayesian framework allows us to deal with missing data by 

combining expert opinion with data driven models. The lack of relevant and accurate data is thus not a 

fundamental limitation of the approach. 

In this study, the example of equine encephalosis served mainly to illustrate our concept. That is why we 

only considered a simple approach for outbreak detection. However, this approach had some limits. In 

particular, we assumed that the population at risk remained stable over time, and we detected clusters of 

cases based on the size of this baseline population. This assumption can be questioned, particularly 

regarding horses, which travel frequently and for which no accurate data exist on numbers and 

geographical localization. Other methods of cluster detection should be tested (for a summary of the main 

statistical methods available for testing clusters in space, time and space, and time*space (interaction), 

see the review by T. Carpenter (Carpenter 2001)) and other detection parameters should be also 

considered to optimize outbreak detection. In particular regarding detection parameters, radius’ size on 

outbreak detection, temporal units of detection and potential interactions among cluster parameters 

(Olson et al. 2005; Ozonoff et al. 2007). From the perspective of a real outbreak detection system, all 

these parameters should be carefully investigated and their appropriate values determined, in 

collaboration with decision makers, according to the objective of the surveillance and to the disease 

considered. Moreover, in this example we used respiratory and nervous symptoms observed in horses, 

but it could be interesting to evaluate other symptoms, such as spontaneous abortions, which are often 
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present during EE outbreaks (Dhama et al. 2014). Testing combinations of other symptoms would thus be 

an important part of optimizing outbreak detection. 

Using a Bayesian approach for combining evidence is not new, but it is still rarely implemented in disease 

surveillance. To our knowledge, there are only a few examples in the literature of this kind of data 

combination in disease surveillance. We can cite the work of Gustafson and colleagues (Gustafson et al. 

2010), which proposed using the likelihood ratio to combine expert opinion with surveillance data in 

surveys of viral hemorrhagic septicemia, but the work of Burkom and colleagues (Burkom et al. 2011) is 

perhaps closer to our concept (i.e. combining health surveillance data and environmental sensors for 

monitoring waterborne diseases). Bayesian approaches are thus still new in disease surveillance and offer 

great opportunities, but, as highlighted during our workshop, further work must also be conducted.  In 

particular, a full assessment of the tool is fundamental in order to know more about its sensitivity and 

reliability. Moreover, further developments should focus on making our approach more comprehensive 

and user-friendly, or it will likely not be adopted by decision-makers and other participants in disease 

surveillance. 
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C. DISCUSSION AND CONCLUSION 

1. Discussion 

The complementary approaches used in this chapter (i.e. multivariate syndromic surveillance and the 

combination of probability of introduction with syndromic surveillance) were both effective in providing a 

better estimation of the probability of an ongoing outbreak compared to estimates based on a single 

probability estimation. Similar methods are nonetheless rarely implemented in veterinary public health. 

Multivariate syndromic surveillance is still a new approach and, at the time of writing, it has been 

reported from only one initiative in this field (Höle et al. 2007), which used multivariate CUSUMs for rabies 

surveillance. Instead, combining syndromic surveillance with quantitative risk assessment is a completely 

innovative concept and, to date, no similar approach has been presented in the veterinary public health 

literature.  

Multivariate risk assessment is heuristically better than univariate risk assessment. However, there are a 

number of practical issues that make multivariate assessment difficult to implement. For example, the 

multivariate syndromic surveillance systems developed in this chapter assumed that the data sources 

were independent and that changes during an outbreak occurred simultaneously in all data considered. 

These assumptions were simple but justifiable with WNV surveillance that used nervous symptoms in 

horses, mortality in wild birds, and mortality in horses. However, adapting the approach to another 

disease may require different assumptions and thus models of greater complexity, in order to deal with 

interactions between risk sources (Frisén et al. 2010). This is not a fundamental limitation of the approach, 

but further complications in model implementation may place limits on its practical use. Similarly, we 

combined syndromic surveillance and risk assessment assuming that both were a priori independent, as 

they do not utilize the same data sources. However, this was not completely true, and in reality the 

simultaneous use of syndromic surveillance and risk assessment is not so simple. As an example, risk 

assessment can be used to enhance veterinary practitioners’ awareness through the production of risk 

maps, as has already been proposed for some endemic VBDs (e.g., surveillance of West Nile virus in 

California (Brown 2012) or tick-borne diseases in Europe (Beugnet et al. 2009)). Enhancing awareness in 

this way plays an important role in improving the early detection of disease. However, syndromic 

surveillance is closely dependent on practitioners’ awareness, and increased awareness can result in an 

increasing number of (potentially spurious) declarations, and thus more false alarms. When combining risk 

sources, then, one must be careful to take into account any possible correlation between them. 

2. Conclusion 

Using a combination of risk estimations provided a better estimation that an outbreak might be ongoing. 

However, the interactions between risk estimations must be carefully considered, as they may have an 
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impact on the complexity and the performance of the surveillance system. This is of particular concern 

regarding the practical implementation of such a combined surveillance system. 
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CHAPTER V: DISCUSSION  

 

The objective of this work was to address the challenges of establishing early warning systems for VBDs in 

horses by using quantitative risk assessments and syndromic surveillance, alone and in concert. All the 

methods developed in this work provided estimates of the probability of a VBD outbreak in horses and 

may help to address the challenge of VBDs surveillance in horses. However, many questions were raised in 

the implemention of these approaches (i.e. quantitative risk assessments and/or syndromic surveillance).  

In this chapter, we start by presenting a brief summary of the main results obtained regarding the specific 

case of VBDs in horses, and we balance these against our initial objective and work already conducted on 

this topic. Then, from a wider perspective, we address how our approaches may support decision making 

and how they relate to demonstrating the absence of disease. Finally, we discuss the practical 

implementation of such methods.  

1. Early warning system of VBDs in horses 

1.1. Quantitative risk assessment 

In this work, we showed that combining the probabilities of entry and establishment and taking into 

account spatiotemporal aspects in a quantitative assessment of the probability of import were both 

essential in obtaining a complete view of the risk posed by a vector-borne pathogen. This is consistent 

with the close link between VBDs and their climate and environment. By combining two routes of 

pathogen entry, we were able to better understand the risk posed by a pathogen to the equine industry. 

Additionally, although quantitative risk assessment is not a new method for assessing the probability of 

outbreak occurrence, spatiotemporal analyses and combinations of probabilities and of entry routes are 

still rarely implemented in animal health. Our work thus advocates for the wider use of these kinds of 

approaches in order to obtain a more detailed and complete picture of the risk. It could also be interesting 

to apply this method to studies of other pathogens. In particular, assessments of the probability of 

bluetongue virus introduction could be easily implemented, as this virus is Culicoides-borne and is similar 

to the viruses responsible for African horse sickness and equine encephalosis. This part of the work also 

highlighted some limits specific to the equine industry. In particular, the available data were sometimes 

inaccurate because the equine industry is fragmented and poorly tracked, and few databases exist. When 

data do exist, they are rarely centralized, which presents problems regarding accessibility and 

standardization. Further work should be conducted to improve the quality of data on horses. It would be 

particularly helpful to reinforce the tracking of horse movements and to continue with efforts to identify 

the location of horses using awareness campaigns or field surveys. 
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1.2. Syndromic surveillance 

Syndromic surveillance of nervous symptoms in horses using an alarm threshold that was a multiple of the 

standard error of prediction was able to detect early signals of a WNV outbreak in French horses. 

However, our study represents the first time that a full assessment of this system’s performance has been 

carried out. Using a simple Bayesian approach, we were able to provide a quantitative evaluation of the 

probability of an outbreak and generate an easy-to-interpret output that was simple to combine with 

other epidemiological knowledge, such as disease seasonality. This is especially important for the 

surveillance of VBDs, which are closely related to season. The output can be also combined with socio-

economic information in order to facilitate a more transparent and evidence-based decision-making 

process. To date, syndromic surveillance has rarely been implemented in animal health and even less 

often for diseases in horses, a deficiency that our work seeks to address. In addition to the diseases 

studied here, syndromic surveillance could also be used to monitor for the presence of other exotic 

diseases that induce nervous symptoms in horses, such as Eastern and Western equine encephalitis, 

Venezuelan equine encephalitis, or Japanese encephalitis, which are of serious concern for public health. 

It would also be interesting to explore other symptoms occurring in horses. Here, we considered only 

nervous and respiratory symptoms, but future surveillance systems could also use data on abortions, for 

example, to detect equine arteritis virus, another disease of interest for the equine industry. In the 

present work, we did not quantitatively compare the respective performances of both proposed 

approaches (i.e., classical approach with an alarm threshold that was a multiple of the standard error of 

prediction and Bayesian approach) in outbreak detection, but this step would also be important for future 

work. 

1.3. Combining risk 

To improve confidence in the prediction of an ongoing outbreak, we combined different sources of risk 

assessment, first by using multivariate syndromic surveillance. This approach provided better detection 

performance than univariate syndromic surveillance, but it is rarely implemented in veterinary public 

health. It could however be applied in a wide range of situations. Considering other VBDs that affect horse 

populations, it could be also used, for example, to monitor for Japanese encephalitis, by combining 

surveillance of nervous symptoms in horses with that of reproductive diseases in swine. As a further step 

in risk combination, we also combined assessments of the probability of introduction with syndromic 

surveillance. Such integrated surveillance systems already exist in animal health, in particular for WNV 

surveillance. For example, the system implemented in California provides updated risk maps in which all 

information is gathered together through a scoring system (Brown 2012); similar systems also exist in 

Canada (Gosselin et al. 2005), Italy (Bellini et al. 2014a), and Greece (Chaskopoulou et al. 2013). However, 

unlike our approach, these integrated surveillance systems do not provide a single and quantitative output 

that combines all the collected information. Our approach thus represents a promising way to build a 

surveillance system that can quantitatively combine several estimations of risk in a single risk indicator. 
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This method could be of particular use for the surveillance of VBDs, as it can include information on 

seasonality and environmental risk factors, which are both fundamental parameters of VBD biology. In 

addition, combining syndromic surveillance with other epidemiological information is a way to improve 

the specificity of detection and could thus strengthen the surveillance of VBDs. This approach could also 

be applied to various other exotic diseases, such as equine encephalitis or exotic strains of bluetongue 

virus. However, the study presented here of the combination of syndromic surveillance with risk analysis 

was only preliminary, and further work should be conducted, especially to investigate tradeoffs between 

system performance and system complexity.  

2. Support decision-making 

The present work was primarily interested in quantitatively combining different sources of risk (i.e. routes 

of pathogen entry, probabilities of entry and establishment, syndromic surveillance data sources, 

syndromic surveillance and risk assessment). Apart from the obvious benefits of producing more reliable 

information, such an approach is also a good way to further support decision making in veterinary public 

health, as shown, for example, during the workshop described in Chapter IV.B 

At the individual level, decision making is the cognitive process that leads to the selection of a course of 

action and ends with a final choice. Decision making is a part of risk management (OIE 2010) and is based 

on a complex combination of rational analysis and subjective opinion (Damasio 1995, Slovic et al. 2005). In 

public health, there is a consensus that decision making should be strictly rational and based on a 

combination of scientific evidence, available resources, and context (Brownson et al. 2010). The concept 

of evidence-based practice dates from 1971 (Cochrane 1999). It was initially developed for clinical 

medicine but the evidence-based philosophy has now also been adopted in public health. Evidence-based 

public health (EBPH) can be defined as a ‘public health endeavour in which there is an informed, explicit, 

and judicious use of evidence that has been derived from any of a variety of science and social science 

research and assessment methods’ (Rychetnik et al. 2004). EBPH and the related evidence-based 

veterinary public health (EBVPH) are still in their early stages (Latham et al. 2013), although guidelines and 

tools have recently emerged from international agencies (see, for example, the European Centre for 

Disease Prevention and Control (ECDC 2011) and the Center for Disease Control and Prevention (Jacobs et 

al. 2012)). The fact remains, though, that in the real world, decisions in public health are rarely made using 

empirical-analytical models, but are often conjectures based on crises, hot issues, short-term 

opportunities, concerns of organized interest groups, political and practical judgments, and public concern 

(Brownson et al. 2010, Head 2010, Rutherford et al. 2010, Sanderson 2002).  

Several factors explain the limited use of EBPH, such as the lack of understanding of evidence-based 

methodologies by policy makers and the lack of relevant data and formalized systems (Brownson and 

Jones 2009, Dobbins et al. 2004, Latham et al. 2013, Lomas 1997, Rutherford et al. 2010), but also the 

absence of agreement on how to interpret and compare different types of evidence (Dobbins et al. 2007, 
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Latham et al. 2013, Tannahill 2008). Indeed, decision makers in EBPH and EBVPH often have to combine 

different types of evidence and the decision process can be very complex (ECDC 2011). This problem has 

become particularly acute because the volume of information has increased exponentially and diverse 

sources of data are rarely presented together, making gathering, synthesizing, and interpreting them an 

increasingly challenging task (Rutherford et al. 2010).  

By providing decision makers with a single risk indicator that synthesizes different risk assessments about 

the presence of an outbreak, we thus hope to promote the development of EBVPH. Our approach allowed 

us to easily combine in a single quantitative risk indicator as much evidence as needed. For example, in 

Chapter IV we combined different syndromic surveillance data sources (i.e. multivariate syndromic 

surveillance), as well as considering syndromic surveillance together with the probability of pathogen 

entry. However, more complex models can be built that involve other risk estimations. The present work 

is thus especially relevant for efforts to facilitate decision making. In particular, the work conducted in 

Chapter III.C illustrates how risk analysis can fit easily with decision theory and cost-efficiency analysis, yet 

another way to help decision makers and to promote a more rational decision-making process in 

veterinary public health. Nevertheless, further work remains to be done on determining the cost of 

diseases and disease surveillance (Babo Martins and Rushton 2014). 

3.  Demonstrate freedom of disease 

Although risk indicators never prove the presence of a disease, they suggest the likelihood of its existence 

in a particular place. This is of course particularly true for indicators of combined risks. It can thus be 

problematic for decision makers to prove freedom from disease in high-risk areas.  

Demonstrating that a country is free from a disease is a complex issue, and it is rare to prove absolute 

freedom from disease (with the exception of highly contagious diseases for which, when there is no case, 

there is also no disease). According to the OIE Terrestrial Animal Health Code (OIE 2014), a free zone is 

defined as a zone in which the absence of the disease under consideration has been demonstrated by the 

requirements given in the Code for free status. Given that surveillance does not detect any infected 

animal (S-), the probability of freedom (D-) is estimated, with the final result that, if the disease is 

nevertheless present, its prevalence will be lower than a set threshold by a certain level of confidence.  

Based on (Martin et al. 2007a; Martin et al. 2007b), the FAO manual on risk-based surveillance (FAO 2014) 

proposed a method for estimating the probability of freedom (Pfree) using Bayes’ theorem and 

accumulated historical information. Pfree is calculated as: 

𝑃𝑓𝑟𝑒𝑒 = 𝑃(𝐷 − |𝑆 −) =
(1 − 𝑃𝑟𝑖𝑜𝑟) × 𝑆𝑝

(1 − 𝑃𝑟𝑖𝑜𝑟) × 𝑆𝑝 + 𝑃𝑟𝑖𝑜𝑟 × (1 − 𝑆𝑒)
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where Sp and Se are the specificity and sensitivity of the surveillance system and Prior is the prior 

probability that the country is infected.  

However, the resulting probability of freedom is expected to be quite low. An accumulation of historical 

information about the probability of freedom over time is thus used to build a better estimate of this 

probability. Pfree for the previous time period is calculated and used as the prior for the current time 

period of evaluation. In other words, Pfreet calculated at time period t can be estimated with: 

𝑃𝑓𝑟𝑒𝑒𝑡 =
(1 − 𝑃𝑟𝑖𝑜𝑟𝑡) × 𝑆𝑝

(1 − 𝑃𝑟𝑖𝑜𝑟𝑡) × 𝑆𝑝 + 𝑃𝑟𝑖𝑜𝑟𝑡 × (1 − 𝑆𝑒)
 

where Priort is the resulting probability of two non-exclusive states: “the country was not free from the 

disease to begin with” and “the country became infected during the time period considered”. Priort is thus 

calculated as: 

𝑃𝑟𝑖𝑜𝑟𝑡 = 𝑃𝑓𝑟𝑒𝑒(𝑡−1) + 𝑃𝑖𝑛𝑡𝑟𝑜 − 𝑃𝑓𝑟𝑒𝑒(𝑡−1) × 𝑃𝑖𝑛𝑡𝑟𝑜 

Applying such an approach to the surveillance systems presented in this work is thus a way to calculate 

the probability of freedom using evidence that suggests the presence of the disease. In this case, Se and 

Sp are the sensitivity and specificity of the syndromic surveillance system and Pintro is the probability of 

disease introduction. It would also be possible to use either the combination of syndromic surveillance 

and risk analysis or each approach individually to demonstrate freedom from disease. Of course, such an 

approach would only be relevant for an exotic infection that spreads slowly and causes few symptoms. For 

example, in the work conducted here, this method could be used for equine encephalosis but not for 

African horse sickness.  

4. Practical implementation of integrated surveillance systems 

Providing decision makers with a single risk indicator that synthesizes the different risks related to an 

outbreak could potential be very useful, but also results in a complex surveillance system which can be 

complicated to put into practice. 

Firstly, such a complex surveillance system requires a large amount of data, which is not always easy to 

obtain (e.g., animal movements, vector abundance, host geographical localization, declarations from field 

workers). In addition, even when data are available, they are often formatted in many different ways, 

especially at the European level (e.g., different definitions, different geographical units). This is of concern 

for the use of the data (i.e. a lengthy initial step of preprocessing is needed) but also for sharing the results 

with partners involved in disease surveillance. However, sharing surveillance results is particularly 

important for the European Union, where movements of animals and humans are not (or only poorly) 

tracked within the community. Disease surveillance in the EU therefore depends in part on reliable and 

up-to-date data-sharing among member countries. The lack of high-quality and standardized data 
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constitutes a problem not only for the initial implementation of a system, but also for its maintenance. It is 

especially a concern for syndromic surveillance systems in which reporting has to be continuously 

stimulated in order to obtain data. Improvements in data collection may be encouraged, however, by 

proof that the data are important for disease surveillance. Although initial efforts, such as the present 

work, might be complicated to implement due to the lack of good data available, they can also be used to 

promote the need for better data collection. 

Secondly, the complexity of a surveillance system may result in a reluctance to trust it on the part of 

decision makers, given the large amount of information and uncertainties involved. The Bayesian 

approach used in the present work partially solved this concern. This approach is transparent and offers 

an explicit separation of assumptions, scientific evidence, and criteria for decisions. However, further work 

should be conducted to ensure its proper communication and acceptance. Indeed, a complex system that 

combines different risk estimations requires several underlying assumptions, and, before any practical 

implementation of such a system, it would be necessary to thoroughly explain how to use it and interpret 

the output. In addition, future work must include a full assessment of system performance, the only 

guarantee of the reliability of the surveillance outputs. However, it remains challenging to evaluate 

multivariate surveillance methods due to the several dimensions and complex time relations involved 

(Frisén et al. 2010). One potential approach that could help would be the use of Monte Carlo simulations, 

as proposed by Frisén and colleagues (Frisén et al. 2010). 

Many different issues remain to be solved before such complex surveillance systems can be broadly 

applied in veterinary public health. However, the work conducted here shows that these approaches have 

huge potential and constitutes a promising initial step. Future work should focus on thorough assessments 

of system performance and effective communication to interested parties. However, as more data 

become available online and access to data improves, such systems will play an invaluable role in future 

disease monitoring efforts. 

5. Conclusion 

The present work proposed to improve the surveillance of vector-borne diseases in horses though 

different approaches that assessed the probability of occurrence of a newly introduced epidemic. First, we 

developed a model of quantitative risk assessment to improve estimates of the probability of pathogen 

introduction. In particular, we performed a spatiotemporal analysis, simultaneously analyzed two routes 

of virus entry, and also combined the probability of virus entry with the probability of virus establishment. 

Second, we implemented and assessed syndromic surveillance systems based on two approaches: a 

classical approach with an alarm threshold based on the standard error of the prediction, and a Bayesian 

approach based on a likelihood ratio. The Bayesian approach was especially useful as it provided a 

quantitative assessment of the syndromic surveillance output and was able to combine different 

information. We therefore also used this approach to combine various sources of risk estimation in order 
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to improve the assessement of the probability of occurrence of a newly introduced epidemic. We 

performed multivariate syndromic surveillance and also combined quantitative risk assessment with 

syndromic surveillance. Approaches that quantitatively combined evidence provided promising results. 

This work, based on risk estimations, strengthens the surveillance of VBDs in horses and has potential in 

supporting decision making. In the end, we hope to encourage the improvement of data collection and 

data sharing, stimulate the implementation of a full assessment of complex surveillance system 

performance, especially in terms of cost-efficiency, and promote the adoption of the approach by decision 

makers and other parties involved in disease surveillance through effective communication and training. 
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Appendix 1: Model calculation for PW-host. Details of calculation regarding the AHSV introduction via the 
import of an infectious host. 

Every calculus below is made for an equine from species i imported from an area j to the free area k the 
month m. All the parameters used are detailed in the Additional file 2. 
 
The probability of introduction for PW-host is the probability to import at least one infected host able to 
transmit the infection to at least one local host and is defined as:  

P(introHijkm) = 1 − [1 − P(relHijkm) × P(estHijkm)]
eqijkm 

Where P(relHijkm), the probability of release, depends of the importation procedure implemented and 

the periods where a host is infected and P(estHijkm), the probability of establishment, is defined as:  

P(estHijkm) = 1 − [1 − 𝐼𝑉𝐻 × 𝑃(𝑠𝑢𝑟𝑣𝑘𝑚) × 𝑏𝑒𝑞𝑢𝑖𝑘
× 𝐼𝐻𝑉]𝑐𝑢𝑙𝑖𝑘𝑚   

with culikm the number of vectors feeding on an infected viraemic imported host equals at BRkm x Vir x Ckm 
 
For each category of exporting region, there is different import procedure implemented and thus different 
periods z where a host can be infected. For a given region j, there is a total of w different time periods z 
where the equine can be infected depending on the import procedure implemented for the region j. The 
different periods z for each region j are presented below: 

- High risk countries: host can be infected 1) Before quarantine, 2) During quarantine but before 
the first serological test CF1, 3) During quarantine but between the both serological tests CF1 and 
CF2, 4) During quarantine but after CF2 and before clinical exam, or 5) After clinical exam. 

- Low risk countries: 
o Non EU country member: host can be infected 1) Before quarantine, 2) During 

quarantine but before CF1, 3) During quarantine but between CF1 and CF2, 4) During 
quarantine but after CF2 and before clinical exam, or 5) After clinical exam. 

o EU country member:  host can be infected 1) Before clinical exam, or 2) After clinical 
exam. 

- Very low risk countries: 
o Non EU country member: host can be infected 1) Before clinical exam, or 2) After clinical 

exam. 
o EU country member: host can be infected 1) Before clinical exam, or 2) After clinical 

exam. 
 

The probability of release by species i from region j to area k during a specific month m (P(relHijkm)) is 

thus calculated as: P(relAijkm) =
∑ [(length period z)×P(relAijkmz)]w

z=1

∑ (length period z)w
z=1

 

Where 𝑃(𝑟𝑒𝑙𝐻𝑖𝑗𝑘𝑚𝑧) is the probability of release when the animal i is infected during the time period z. 

P(relAijkmz) is calculated for each period z as: 

P(relAijkmz) = P(infijmz) × P(virijmz) × (1 − P(CF1iz)) × (1 − P(CF2iz)) × (1 − P(clinijmz)) × (1

− P(transijkz))  

 

1. 𝐏(𝐢𝐧𝐟𝐢𝐣𝐦𝐳) = Probability for a host to be infected during period z in the month m in area j  

 
The probability of infection during a certain period z (before or during the import procedure) depends on 
the fraction of this period z spend in each of the months m, m-1 and m-2. 
 
a. No quarantine and CF test are required 
Entire period of being at risk of infection is the high risk period (HRP).  
 

 Probability that the imported host is infected before clin  
If HRP < e 
= POjm × CIm  

If HRP > e  
 If HRP < 30 + e 
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 =
POjm

HRP
 × [CIm  × e +  CIm−1 × (HRP −  e)]  

 If HRP > 30 + e 

 =
POjm

HRP
 × [CIm × e +  CIm−1 × 30 + CIm−2 × (HRP − 30 − e)] 

 

 Probability that the imported host is infected after clin  
= POjm × CIm 

 
b. Quarantine and CF tests required 

 

 Probability that the imported host is infected before q   
If q – e < 30 

=
POjm

Inftime

 × [CIm−1 × (30 − q + e) + CIm−2 × (Inftime − (30 − q + e))] 

If q – e > 30 

=
POjm

Inftime

 × [CIm−2 × (60 − q + e) + CIm−3 × (Inftime − 60 + q − e)] 

  
 Probability that the imported host is infected between q and cf1   
If e – cf1 < 0 

If q > 30 + e 

=
(1 − Protvect) × POjm

q − cf1
 × [CIm−1 × (30 − cf1 + e) + CIm−2 × (q − 30 − e)] 

If q < 30 + e 
= (1 − Protvect) × POjm × CIm−1 

if e – cf1 > 0 
 if q > 30 + e 

 =
(1−Protvect) × POjm

q−cf1
 × [CIm × (e − cf1) + CIm−1 × 30 + CIm−2 × (q − 30 − e)] 

 if q < 30 + e 

=
(1 − Protvect)  × POjm

q − cf1
 × [CIm × (e − cf1) + CIm−1 × (q − e)] 

   

 Probability that the imported host is infected between cf1 and cf2   
If e < cf2 

=
(1 − Protvect)  × POjm

cf1 − cf2
 × [CIm−1 × (30 − cf2 + e) + CIm−2 × (cf1 − 30 − e)] 

If e > cf2 
 if cf1 > 30 + e 

=
(1 − Protvect)  × POjm

cf1 − cf2
 × [CIm × (e − cf2) + CIm−1 × 30 + CIm−2 × (cf1 − 30 − e)] 

if cf1 < 30 + e  

=
(1 − Protvect)  × POjm

cf1 − cf2
 × [CIm × (e − cf2) + CIm−1 × (cf1 − e)] 

 

 Probability that the imported host is infected after cf2  
If e < cf2 

 =
(1−Protvect) × POjm

cf2
 × [CIm × e + CIm−1 × (cf2 − e)] 

If e > cf2 
= (1 − Protvect )  ×  POjm × CIm  

 
 

2. 𝐏(𝐯𝐢𝐫𝐢𝐣𝐦𝐳) = Probability for a host to be vireamic or incubating when imported to area B given 

being infected 
 
Calculation is based on a constant viraemic and latent period, which is equal for each equine of species i.  
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a. No quarantine and CF test are required 

 When infected before clin  
If In + Vir < tAB + clin 
= 0 
If In + Vir > HRP + tAB + clin 
= 1 
If In + Vir < HRP + tAB + clin 

=
In + Vir − tAB

HRP − clin
 

 

 When infected after clin  
If In > tAB + clin 
= 1 
If In < tAB + clin 
 If In + Vir > tAB + clin 
 = 1 

If In + Vir < tAB + clin 

=
In + Vir

tAB + clin
 

 
b. Quarantine and CF tests required 

 When infected before q  
If In + Vir > Inftime + q + tAB 

= 1 
If In + Vir < q + tAB 
= 0 
If In + Vir < Inftime + q + tAB 

=
In + Vir − q − tAB

Inftime

 

 

 When infected between q and cf1  
If In + Vir > q + tAB 

= 1 
If In + Vir < cf1 + tAB 
= 0 
If q + tAB > In + Vir > cf1 + tAB  

=
In + Vir − cf1 − tAB

q − cf1
 

 

 When infected between cf1 and cf2  
If In + Vir > cf1 + tAB 

= 1 
If In + Vir < cf2 + tAB 
= 0 
If cf1 + tAB > In + Vir > cf2 + tAB  

=
In + Vir − cf2 − tAB

cf1 − cf2
 

 

 When infected after cf2  
If In + Vir > cf2 + tAB 

= 1 
If In + Vir < tAB 
= 0 
If cf2 + tAB > In + Vir > tAB  

=
In + Vir − tAB

cf2
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3. 𝐏(𝐜𝐥𝐢𝐧𝐢𝐣𝐦𝐳) = Probability for an infected host to be detected during importation procedure  

 
a. No quarantine and CF test are required 
Probability to be detected during importation procedure = Probability to be detected by clinical inspection 

 When infected before clin  
If In > HRP – clin  
= 0 
If In < HRP – clin 

If In + Vir < HRP – clin 

=
Vir × Seclin

HRP − clin
 

 If In + Vir > HRP – clin 

             =
(HRP − clin − In) × Seclin

HRP − clin
 

 

 When infected after clin  
= 0 
  
b. Quarantine and CF tests required 

 
i. 𝑃(𝐶𝐹1𝑖𝑧) = Probability for an infected host to be detected by cf1  

 When infected before q  
If q – cf1 < Sero 
= Se 
If Inftime + q – cf1 < Sero 
= 1 – Sp 
If Inftime + q – cf1 > Sero 

=
(Inftime − Sero + q − cf1) × Se

Inftime

+
(Sero − q + cf1) × (1 − Sp)

Inftime

 

 

 When infected between q and cf1  
If q – cf1 < Sero 
= 1 – Sp 
if q – cf1 > Sero 

=
(q − cf1 − Sero) × Se

q − cf1
+

Sero × (1 − Sp)

q − cf1
 

 
ii. 𝑃(𝐶𝐹2𝑖𝑧) = Probability for an infected host to be detected by cf2 
Assumption: cf1 and cf2 are independent 

 When infected before q  
if q – cf2 > Sero 
= Se 
If Inftime + q – cf2 < Sero 
= 1 – Sp 
If Inftime + q – cf2 > Sero 

=
(Inftime − Sero + q − cf2) × Se

Inftime

+
(Sero − q + cf2) × (1 − Sp)

Inftime

 

 

 When infected between q and cf1  
if q – cf2 < Sero 
= 1 – Sp 
If q – cf2 > Sero 
 If cf1 – cf2 > Sero 
 = Se 
 If cf1 – cf2 < Sero 
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=
(q − cf2 − Sero) × Se

q − cf1
+

(Sero − cf1 + cf2) × (1 − Sp)

q − cf1
 

 

 When infected between cf1 and cf2  
If cf1 – cf2 < Sero 
= 1 – Sp 
If cf1 – cf2 > Sero 

=
(cf1 − cf2 − Sero) × Se

cf1 − cf2
+

Sero × (1 − Sp)

cf1 − cf2
 

 
 

iii. P(clin) = Probability for an infected host to be detected by clinical inspection  

 When infected before q  
If In + Vir < q – clin or In > Inf_time + q – clin 
= 0 
If In + Vir > Inf_time + q – clin 
 If In < q – clin 
 = Seclin 

If In > q – clin 

=
(In − q + clin) × Seclin

Inftime

 

If Inf_time + q – clin > In + Vir > q – clin 
If In < q – clin 

=
(In + Vir − q + clin) × Seclin

Inftime

 

If In > q – clin 

=
Vir × Seclin

Inftime

 

 

 When infected between q and cf1  
If In + Vir < cf1 – clin or In > q – clin 
= 0 
If In + Vir > q – clin 
 If In < cf1 – clin 
 = Seclin 

If In > cf1 – clin 

=
(In − cf1 + clin) × Seclin

q − cf1
 

If q – clin > In + Vir > cf1 – clin 
If In < cf1 – clin 

=
(In + Vir − cf1 + clin) × Seclin

q − cf1
 

If In > cf1 – clin 

=
Vir × Seclin

q − cf1
 

 

 When infected between cf1 and cF2  
If In + Vir < cf2 – clin or In > cf1 – clin 
= 0 
If In + Vir > cf1 – clin 
 If In < cf2 – clin 
 = Seclin 

If In > cf2 – clin 

=
(In − cf2 + clin) × Seclin

cf1 − cf2
 

If cf1 – clin > In + Vir > cf2 – clin 
If In < cf2 – clin 
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=
(In + Vir − cf2 + clin) × Seclin

cf1 − cf2
 

 If In > cf2 – clin 

=
Vir ×Seclin

cf1−cf2
  

 

 When infected after cf2  
If In > cf2 – clin 
= 0 
If In < cf2 – clin 
 If In + Vir > cf2 – clin 

 =
(cf2− clin−In)× Seclin

cf2−clin
 

If In + Vir < cf2 – clin 

=
Vir ×  Seclin

cf2 − clin
 

 
4. 𝐏(𝐭𝐫𝐚𝐧𝐬𝐢𝐣𝐤𝐳) = Probability for an infected host to be detected during transport from A to B 

given having passed the examinations and testing prior to embarkation. 
a. No quarantine and CF test 

 

 When infected before clin  
If In > HRP + tAB - clin 
= 0 
If In < HRP + TAB - clin 
 If In + Vir < HRP – clin  

=
Vir ×  Seclin

HRP − clin
 

 If In + Vir > HRP – clin  

=
(HRP − clin + tAB − In) ×  Seclin

HRP − clin
 

 

 When infected after clin 
If In > tAB + clin 
= 0 
If In < tAB + clin 
 If In + Vir < clin + tAB   

=
Vir ×  Seclin

tAB − clin
 

 If In + Vir > clin + tAB  

=
(clin + tAB − In) × Seclin

tAB − clin
 

 
b. Quarantine and CF tests required 

 

 When infected before q  
If In + Vir < q + tAB or In > Inf_time + q + tAB 
= 0 
If In + Vir > Inf_time + q + tAB 
 If In > q + tAB   

=
(In − q − tAB) ×  Seclin

Inftime

 

 If In < q + tAB 

= Seclin 

If Inf_time + q + tAB > In + Vir > q + tAB 
 If In > q + tAB 

=
Vir ×  Seclin

Inftime
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If In < q + tAB 

=
(In − q − tAB) ×  Seclin

Inftime

 

 

 When infected between q and cf1  
If In + Vir < cf1 + tAB or In > q + tAB 
= 0 
If In + Vir > q + tAB 

If In > cf1 + tAB  

=
(In − cf1 − tAB) ×  Seclin

q − cf1
 

 If In < cf1 + tAB 

= Seclin 

If q + tAB > In + Vir > cf1 + tAB 
 If In > cf1 + tAB 

=
Vir ×  Seclin

q − cf1
 

If In < cf1 + tAB 

=
(In + Vir − cf1 − tAB) ×  Seclin

q − cf1
 

 When infected between cf1 and cf2  
If In + Vir < cf2 + tAB or In > cf1 + tAB 
= 0 
If In + Vir > cf1 + tAB 
 If In > cf2 + tAB  

=
(In − cf2 − tAB) ×  Seclin

cf1 − cf2
 

 If In < cf2 + tAB 

= Seclin 

If cf1 + tAB > In + Vir > cf2 + tAB 
 If In > cf2 + tAB 

=
Vir ×  Seclin

cf1 − cf2
 

If In < cf2 + tAB 

=
(In + Vir − cf2 − tAB) ×  Seclin

cf1 − cf2
 

 When infected after cf2  
If In > cf2 + tAB 

= 0 
If In < cf2 + tAB 

  If In + Vir > cf2 + tAB 

=
(cf2 + tAB − In) ×  Seclin

cf2
 

If In + Vir > cf2 + tAB 

=
Vir ×  Seclin

cf2
 

    
5. 𝐏(𝐬𝐮𝐫𝐯𝐤𝐦) = Probability that the vector survives to the EIP and can have a blood meal during 

the month m  

P(survkm) =  𝑒−(𝑁𝑘𝑚×𝐺𝐶𝑘𝑚×𝑀𝑅𝑘𝑚)  
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Appendix 2: Model calculation for PW-vector. Details of calculation regarding the AHSV introduction via 
the import of an infectious vector. 

All the parameters used are detailed in the Appendice 3. 
 
The probability to introduce a single vector from j to k during the month m which is able to induce an 
entire transmission cycle in which at least one local host is infected by a local vector is defined as: 

𝑃(𝑖𝑛𝑡𝑟𝑜𝐵𝑗𝑘𝑚) = 𝑃(𝑟𝑒𝑙𝐵𝑗𝑘𝑚) × 𝑃(𝑒𝑠𝑡𝐵𝑗𝑘𝑚) 

Where P(relBjkm) = P (transculijm
) × P (survtransjkm

) × P(inf _culijm ) × ntransjkm
 

And P(estBjkm) = P (surv𝑎𝑟𝑟𝑖𝑣𝑎𝑙jkm
) × bequik

× IVH × [1 − [1 − IVH × P(survkm) × bequik
× IHV]

culikm] 

With culikm the number of vector feeding on an infected viraemic imported host calculated as: 
culikm = BRkm x Vir x Ckm 
 

1. 𝐏(𝐢𝐧𝐟 _𝐜𝐮𝐥𝐢𝐣𝐦) = Probability for a vector to be infected the month m in area j  

 

P(inf _culijm) = POjm × rjm 

 

2. 𝐏 (𝐭𝐫𝐚𝐧𝐬𝐜𝐮𝐥𝐢𝐣𝐦
) = Probability for a vector to be transported after infection from area j  

Only a vector which is infected and transported poses a risk, therefore we only consider those vectors that 
are infected and transported during their life time. We assume that an infected vector will be infected at a 
uniformly distributed time during its life, Dinf. Additionally, we assume that a vector is transported at a 
uniformly distributed moment during its life time, which is exponentially distributed with mean 1/MRjm. 
The probability that the moment of transportation occurs after the infection event is equal to the part of 

the total lifetime of the vector that it is infected. Thus P (transculijm
) is estimated, as made by Napp et al. 

(Napp et al. 2012), as: 

P (transculijm
) =

(1/MRjm − Dinf)

1/MRjm

= 1 − Dinf MRjm 

 
NB: Temperature in departure area j was assumed to be constant over months and thus MRjm is here also 
constant over months. 
 

3. 𝐏 (𝐬𝐮𝐫𝐯𝐭𝐫𝐚𝐧𝐬𝐣𝐤𝐦
) = Probability for a vector to stay alive from j until the arrival in area k during the 

month m 
The conditions during travel (e.g. temperature) are assumed to not affect the viability of culicoides except 
when pest control is applied (worst case scenario). There is no data available on survival rate of culicoides 
in an unfavorable context as assumed to occur during transport. Moreover the conditions during 
transports have a high variability and information are impossible to collect.  
The probability to stay alive until the arrival is the probability to survive until transport and during the 
time of transport.  

P (survtransjkm
) = e−MRjm×(Dtrans+tjk) × (1 − Protvect) 

 

4. 𝐏 (𝐬𝐮𝐫𝐯𝐚𝐫𝐫𝐢𝐯𝐚𝐥𝐣𝐤𝐦
) = The vector survives to the transport from j, the EIP and can have at least a 

blood meal after the end of EIP and when arrives in the area k the month m 
 
If TB < 0 culicoides are assumed to not survive 
= 0 
If (Nm.GCjm) > (Dtransp + tjk) 

= eMRkm×(Dtrans+tjk)−Nm×GCjm 
If (Nm.GCjm) < (Dtransp + tjk) 

If tjk > GCjm 

we assume that the last GCm is spent half during transport and half in the arrival area k. 
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= e−MRkm×
GCjm

2  
If tjk < GCjm 
we assume that the last GCm is spent half in the departure area j and half in the arrival area k.  

= e−MRkm×
GCjm−𝑡𝑗𝑘

2  
 
NB : if Tk < T_min (9.5°C), where T_min is the minimal temperature for  formulae for MR and GC (if Tk is 
lower, the formulae are not valid), we will use the T_min in our calculus (worst case scenario). 
 
5. 𝐏(𝐬𝐮𝐫𝐯𝐤𝐦) = Probability that the local vector survives to the EIP and can have a blood meal during 

the month m in the area k  
 

P(survkm) =  𝑒−(𝑁𝑘𝑚×𝐺𝐶𝑘𝑚×𝑀𝑅𝑘𝑚) 
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Appendix 3: Model parameters. Description of all parameters used in the model calculation
 

Preliminary definitions: 
- Tkm is the average monthly temperature during the month m in the area k (details of the 

estimation available in the main text) 
- Ckm is the number of competent vectors feeding on one equine in area k during the month m 

(details of the estimation available in the main text) 
- ρk is the ratio of the number bovines to the number of equines per area k (details of the 

estimation available in the main text) 
- e is defined as the day of embarkation (set the 12

th
 of each month) 

- q is the length of quarantine (40 days given EU regulation) 
- clin is the day of the clinical exam before embarkation (equals zero, one or two days depending 

on the departure region given EU regulation). 
- Cf1 is the day when the first test is performed (35 days before embarkation given EU regulation) 
- Cf2 is the day when the second test is performed (10 days before embarkation given EU 

regulation) 
 

PARAMETER ESTIMATION  REFERENCES 

Vertebrate hosts 

Ii Incubation period (days) All equines: Pert(2,6,10)  (de Vos et al. 2012) 
(Kazeem et al. 2008) 

Viri Viraemic period (longer for 
surviving animals than for 
animals succumbing from 
disease) 

Horses: Discrete({Gamma(29.75,0.20). 
Gamma(20.25,0.22)};{0.3,0.7})  
Donkeys: Discrete({28,12};{0.9,0.1})  
Zebras: Discrete({40,28};{0.99,0.01}) 

(de Vos et al. 2012) 
(Backer and Nodelijk 
2011) 

Seroi Time to seroconvertion (days) All equines: Uniform(10,14) (de Vos et al. 2012) 

Vectors 

GCkm Length of the gonotrophic cycle 
during the month m (days) 

= -1.98 + 0.07217 Tkm + 
2516.65/Tkm

2
 

(Wittmann et al. 2002) 

BRkm Biting rate = reciprocal of the 
blood feeding interval (= 
Gonotrophic cycle) 

= 0.015  Tkm – 0.125 (Wittmann et al. 2002) 
(Backer and Nodelijk 2011) 

EIPkm Length of the EIP (days) = 0.0085  Tkm – 0.0821 (Wittmann et al. 2002) 

MRkm Mortality rate of the vector  
(days

-1
) 

= 0.015  exp(0.063  Tkm) (de Vos et al. 2012) (Backer 
and Nodelijk 2011) 

(Wittmann et al. 2002) 

Nkm Number of gonotrophic cycles 
to complete an EIP + time to 
next blood meal 

= Roundup(EIPkm/GCkm)  

Interaction host vector 

λHV Probability for a vector to 
become infected after feeding 
on a viraemic host 

All equines: Beta(1.05,39.6) with a 
mean value of 0.02 

(Iacono et al. 2013) 
(Venter et al. 2010) 

λVH Probability for a host to become 
infected after being bitten by an 
infectious vector 

All equines: Beta(6,2) with a mean 
value of 0.77 

(de Vos et al. 2012) (Baylis 
et al. 2008) (Backer and 
Nodelijk 2011) 

Export regulations 

Se Sensitivity of the CF test Beta(60,4) (de Vos et al. 2012) 

Sp Specificity of the CF test Beta(62,2) (de Vos et al. 2012) 

Seclin Sensitivity of clinical 
examination 

Horses 0.7; Donkeys 0.1; Zebras 0.01 
(de Vos et al. 2012) 
(Wilson et al. 2009)  

Protvect Efficiency of protection against 
vectors 

Uniform (0.5,0.9) 
(de Vos et al. 2012)  

Dtransp Day of vector transportation 
after infection 

Uniform(Dculi_inf ; 1/MRkm) 
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Departure region j 

POjm Probability of disease 
occurrence  

Endemic: 1  
Low risk: Gamma [(15 x HRP2), 1/(60 x 365)]  
Very low risk: Gamma [HPR3, 1/(61 x 365)] 

(de Vos et al. 2012) 

Arrival area k 

bequi Probability for a vector to bite a 
susceptible host 

=  1/(a x ρk + 1) 
With, a the vector preference for equidae 
(We assume that the vector has no host 
preference between cattle and horse and 
that a = 1) 

(Gubbins et al. 2008) 
(Ninio et al. 
2011)(Viennet et al. 
2013) 

 

Inftime = Period when a horse can be infected before the start of import procedure such as quarantine or 
clinical exam when there is no quarantine 

If a quarantine applied: if HRP – q > 0, Inftime = HRP – q but if HRP – q < 0, Inftime = 0. 
If no quarantine applied: Inftime = HRP – clin 

HRP = High risk period 

The HRP is the time between virus introduction and the first formal detection. In low and very low risk 
region, we assumed that the first infected horse won’t be detected but that the secondary cases will be. 
Thus the time needed to detect the second case is estimated as the time required for two incubation 
periods plus the time till the next infectious blood meal of a vector. In low risk regions HRP2 is assumed 
equal at 22 days (based on a temperature in the region j of 18°C). In very low risk region, HRP3 is assumed 
equal at 60 days (based on a temperature in the region j of 12°C). As in high risk region the virus is 
supposed endemic, there is no real HRP1 because an equine can be infected at any time (during or before 
quarantine). We thus choose to set a period of 30 days before the start of quarantine (thus 70 days before 
embarkation) as the earliest stage when a host can be infected. 

Dculi_inf = Day of vector becomes infected 
To estimate the day where the vector becomes infected (Dculi_inf ), we first only take into account the 
Culicoides susceptible to the infection. When a Culicoides is susceptible, one blood meal on a vireamic 
host is assumed sufficient for this vector to become infected (Jones and Foster 1971). Assuming a uniform 
distribution of the viraemic host and a constant monthly temperature Tjm in each departure area j, the 
moment (or day) of Culicoides infection follows a Uniform distribution between 1 (the Culicoides is 
infected the first day of its life) and 1/MRkm (the Culicoides is infected the last day of its life). 

CIijm = Cumulative monthly number of infectious hosts i in each departure area j  
Equidae have a seasonal foaling period but the foaling season depends on the geographical area 
considered (North or South hemisphere). We thus assumed that CIijm was a constant for all species in all 
departure region j. For low and very low risk regions, CIijm was considered as equals at 2x10

-4
 for all species 

based on AHSV epidemic in Spain (Rodriguez et al. 1992a; Rodriguez et al. 1992b) (de Vos et al. 2012). For 
high risk region, CIijm was estimated for horses as a Pert distribution based on data from WAHID and FAO 
used by de Vos et al. (de Vos et al. 2012): Pert(4x10

-6
, 5.02x10

-4
, 1x10

-3
). For donkeys and zebras, CIijm in 

high risk region were respectively assumed equal at 1.2x10
-2

 and
 
1.6x10

-2 
based on rate of seroconversion 

in foals, the surviving foaling rate and the offspring rate (Barnard 1993) (Penzhorn 1985). 

rjm = Prevalence of infected vectors during an outbreak in the region j 
We applied for the prevalence of infected vector the same process than for infected host. Thus rjm is 
considered as a constant in all region j. In high risk region rjm is assumed at 0.014 based on data from 
South Africa (Scheffer et al. 2012). In low risk region, as for equidae the number of infectious animal is 
divided by 10

-2
 between high risk regions and low risk regions, the rate was here estimated as 1.4x10

-4
. 
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Appendix 4: Article in a Professional journal published in ‘Bulletin épidémiologique du RESPE’. Juillet 2013. 
C. Faverjon, S. Lecollinet, S. Zientara, A. Leblond. ‘Peste équine, quel risque pour la France ?’ 

(http://www.respe.net/node/1604). 

Peste équine, quel risque pour la France ? 
mercredi 17 Juillet 2013  
par Céline FAVERJON (1), Sylvie LECOLLINET (2), Stéphan ZIENTARA (2), Agnès LEBLOND (1) 

Agent pathogène et historique de la maladie 

Le virus de la peste équine appartient à la famille des Reoviridae, genre Orbivirus, compte 9 sérotypes 
différents et affecte l’ensemble des équidés. Le virus est transmis par des insectes hématophages. Les 
principaux vecteurs sont les Culicoides (notamment Culicoides imicola, Culicoides bolitinos et le groupe 
Obsoletus). 

La maladie est considérée comme enzootique en Afrique Sub-saharienne où les 9 sérotypes sont présents 
mais de fréquentes incursions du virus ont été observées au Maghreb et dans la péninsule arabique 
(sérotype 9 impliqué). La dernière introduction du virus sur le territoire européen date de 1987 en 
Espagne et concernait le sérotype 4. Cet épisode a fait suite à l’importation de zèbres infectés et 
asymptomatiques de Namibie et a engendré la mort d’au moins 1500 chevaux. Le foyer s’est étendu au 
Portugal et au Maroc et a nécessité la mise en place de mesures d’isolement et de vaccinations massives 
qui ont couté plus de 30 millions de dollars avant de parvenir à éradiquer la maladie. 

Dernières nouvelles du monde : cas de l’Afrique du Sud 

En Afrique du Sud 8 des 9 sérotypes circulent de façon enzootique. Un dispositif spécifique à ce pays avait 
été mis en place par les autorités vétérinaires sud-africaines en collaboration avec l’Union Européenne. 
Ainsi, l’UE avait demandé qu’une zone de surveillance sans vaccination autour de Cap Town et 
qu’une  zone de protection avec vaccination autour de cette dernière ait été  mise en place.  Les chevaux 
qui devaient être exportés vers l’UE devaient subir une quarantaine (40 jours) en station confinée à Cape 
Town.  En 2011, un foyer dans la zone de surveillance avait entraîné l’arrêt des exportations vers l’UE. En 
mai 2013, soit 2 ans après cet épisode, une visite de contrôle a été effectuée par les représentants de l’UE. 
Cependant, les conditions ne semblent pas encore réunies pour que les échanges directs de chevaux vers 
l’UE puissent reprendre dans des conditions satisfaisantes. 

Risque d’introduction en France 

Les principaux vecteurs du virus, les Culicoides, sont présents sur l’ensemble du territoire français. Une 
introduction et diffusion du virus en France est donc théoriquement possible. L’apparition en 2006 dans le 
nord de l’Europe du virus de la fièvre catarrhale ovine (ou Bluetongue), virus qui a un cycle 
épidémiologique très semblable à celui de la peste équine (même famille virale, mêmes vecteurs, même 
modes de transmission et caractéristiques physio-pathologiques similaires), a renforcé l’idée que le risque 
d’introduction et de diffusion de la peste équine en France était loin d’être nul. L’émergence en 2011 du 
virus Schmallenberg, lui aussi transmis par des Culicoides, contribue également à illustrer la potentialité 
d’apparition en Europe de ce type de maladies vectorielles. 

Depuis l’épisode espagnol de 1987 à 1990, la réglementation européenne relative à l’importation 
d’équidés vivants a beaucoup évolué afin de prévenir l’introduction du virus via des hôtes infectés. 
Cependant, en ce qui concerne la Bluetongue, la cause de son émergence en 2006 n’a toujours pas été 
élucidée et les importations légales d’animaux infectés semblent être hors de cause. D’autres voies 
d’introduction moins aisément contrôlables sont ainsi actuellement envisagées (introduction d’un vecteur 
infecté via les vents ou les transports commerciaux (avions, bateaux, trains etc.), commerce illégal 
d’animaux…). Le virus de la peste équine pourrait emprunter des voies similaires pour parvenir jusqu’au 
territoire français. Il est donc important de bien garder en mémoire le tableau clinique de la maladie car 

http://www.respe.net/node/1604
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une détection précoce est un élément clef dans le contrôle de ce type d’infection dont les conséquences 
pourraient être dévastatrices pour l’ensemble de la filière. 

Rappels : tableau clinique, diagnostic différentiel et diagnostic 

La période d’incubation varie entre 2 et 14 jours et les premiers signes cliniques apparaissent 
généralement entre 5 et 7 jours après l’infection. La sensibilité de chaque espèce d’équidé est très 
variable : Chevaux, taux de létalité dépassant les 90% - Zèbres, infection typiquement asymptomatique - 
Anes et mules, sensibilité intermédiaire et variable selon les individus. 

Quatre formes de la maladie peuvent être rencontrées : 
- Forme pulmonaire ou suraiguë (parfois foudroyante) : hyperthermie (40-41°C), dyspnée sévère, 

œdème sus-orbitaire et périorbitaire, pétéchies, jetage spumeux et mort en 24 à 72 heures.  
- Forme cardiaque ou subaiguë : hyperthermie (39-40°C), insuffisance respiratoire, péricardite 

exsudative, évolution en 3 à 15 jours. 
- Forme mixte : signes semblables aux deux formes précédentes. 
- Forme atypique : signes nerveux ou forme fébrile pure. 

Diagnostic différentiel : selon les formes, encéphalites équines, premiers stades d’une piroplasmose, 
purpura hémorragique, artérite virale, anémie infectieuse, autres causes d’insuffisance respiratoire, 
d’œdème pulmonaire et de péricardite. 

Diagnostic : nécropsie (type septicémique à dominante respiratoire et cardiaque, hémorragies et 
pétéchies viscérales), sérologie (anticorps détectables dès 10 à 15 jours après infection) ou virologie. Le 
seul laboratoire agréé pour effectuer ces analyses est le laboratoire de santé animale d’Alfort (notamment 
l’unité de virologie). 

 Pour aller plus loin 

- Zientara S., Ponçon N., Martínez-López B., Sánchez-Vizcaíno J.M., 2012 (Avril). « La peste équine : de 
l’expérience espagnole au risque pour la France. ». Bulletin épidémiologique, santé animale et 
alimentation n°49 spécial équidés : 26 – 29. http://www.ansespro.fr/bulletin-
epidemiologique/Documents/BEP-mg-BE49-ar... 

- Mellor, Philip. Scott, et Christopher Hamblin. 2004. « African horse sickness ». Veterinary research 35 
(4) (août): 445-466. doi:10.1051/vetres:2004021. 

- Monographie Peste équine : http://agriculture.gouv.fr/sites/guide_epizooties/monographies/f-
pe.htm 

 

  

http://www.ansespro.fr/bulletin-epidemiologique/Documents/BEP-mg-BE49-art12.pdf
http://www.ansespro.fr/bulletin-epidemiologique/Documents/BEP-mg-BE49-art12.pdf
http://agriculture.gouv.fr/sites/guide_epizooties/monographies/f-pe.htm
http://agriculture.gouv.fr/sites/guide_epizooties/monographies/f-pe.htm
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Appendix 5: Article in a Professional journal published in ‘N° spécial de Pratique Vétérinaire Equine’. 
Octobre 2014, 142-151. S. Zientara, C. Faverjon, A. Leblond, S. Lecollinet. La peste équine : épidémiologie, 

diagnostic et prévention. 
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Appendix 6: Poster presented at the 7th EPIZONE meeting in Brussel, 2013. 
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Appendix 7: Poster presentation at the Conference of the Society for Veterinary Epidemiology and 
Preventive Medicine (SVEPM) in Ghent, 2015. 
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Appendix 8: Poster presentation at the Journées de l’Ecole doctorale SVSAE in Clermont-Ferrand, 2015.  
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Appendix 9: Poster presentation at the Conference of the Society for Veterinary Epidemiology and 

Preventive Medicine (SVEPM) in Ghent, 2015. 
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Appendix 10: Article in a Professional journal published in ‘Bulletin Epidémiologie et Santé Animale’ by 
AEEMA. 2015. Épidémiol. et santé anim., 2015, 67, 87-95 

AIDE A LA DECISION EN SURVEILLANCE SYNDROMIQUE PAR LE CALCUL  

DE LA PROBABILITE DE CIRCULATION D’UN AGENT PATHOGENE * 

Céline Faverjon1, Mats Gunnar Andersson2, Flavie Vial3,  

Loïc Legrand4,5 et Agnès Leblond5,6 

RESUME 

Dans ce travail nous proposons d’appliquer le cadre statistique utilisé lors de l’évaluation des pièces à 

conviction au cas de la surveillance syndromique. Nous avons utilisé cet outil pour évaluer les résultats de 

la surveillance syndromique en tant que « preuves » circonstancielles d’une épizootie. L’idée de base est 

d’exploiter les distributions de cas attendues afin de calculer le ratio entre la probabilité d’observer n cas 

lorsqu’une épizootie est en cours et la probabilité d’observer ce même nombre de cas lorsqu’il n’y a pas 

d’épizootie. Le rapport de vraisemblance ainsi obtenu correspond à la valeur de la preuve. D’après la règle 

de Bayes, en multipliant ce rapport avec les probabilités a priori que la maladie circule, on obtient une 

connaissance a posteriori sur le statut de la maladie. Cette approche a été appliquée à des séries 

temporelles représentant le nombre de chevaux présentant des symptômes nerveux. La séparation claire 

entre connaissance a priori et évaluation de la valeur de la preuve permet un raisonnement transparent 

apte à s’intégrer dans un processus de décision. Par ailleurs, l’approche bayésienne permet d’intégrer 

facilement les données de surveillance syndromique avec d’autres sources d’information telles que des 

évaluations de risque d’introduction et/ou de transmission d’agents pathogènes. 

Mots-clés : Bayes, surveillance syndromique, West Nile 

ABSTRACT 

In this work we propose the adoption of a statistical framework to be used in the evaluation of forensic 

evidence as a tool for evaluating and presenting circumstantial “evidence” of a disease outbreak from 

syndromic surveillance. The basic idea is to exploit the predicted distributions of reported cases to 

calculate the ratio of the likelihood of observing n cases given an ongoing outbreak over the likelihood of 

observing n cases given no outbreak. The likelihood ratio defines the Value of Evidence. Using Bayes´ rule, 

the prior odds for an ongoing outbreak are multiplied with V to obtain the posterior odds.  

…/.. 

______________ 

* Texte de la communication orale présentée au cours de la Journée scientifique AEEMA, 20 mars 2015 

1
 INRA UR346 Épidémiologie animale, VetagroSup, F-69280 Marcy l’Etoile, France ; celine.faverjon@vetagro-sup.fr   

2
 Department of Chemistry, Environment and Feed Hygiene. The National Veterinary Institute, SE- 751 89 Uppsala, 

Sweden 

3
 Veterinary Public Health Institute, DCR-VPH, Vetsuisse Fakultät, CH-3003 Bern, Switzerland 

4
 LABÉO - Frank Duncombe, Unité Risques Microbiens (U2RM), EA 4655, Normandie Université, Caen, France 

5
 Réseau d’EpidémioSurveillance en Pathologie Equine (RESPE), Caen, France. 

6
 INRA UR346 Épidémiologie animale et Département hippique, VetAgroSup, F-69280, Marcy L’Etoile, France 

mailto:celine.faverjon@vetagro-sup.fr
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…/.. 

This approach was applied to time series on the number of horses showing nervous symptoms. The 

separation between prior beliefs about the probability of an outbreak and the strength of evidence from 

syndromic surveillance offers a transparent rational process suitable for supporting decision making. 

Furthermore, a Bayesian approach makes it possible to combine data from syndromic surveillance with 

results from predictive modeling and with information from other sources such as assessments of risks of 

disease introduction. 

Keywords: Bayes, syndromic surveillance, West Nile 

 

I - INTRODUCTION 

1. RAPPELS SUR LA SURVEILLANCE 

SYNDROMIQUE 

La surveillance syndromique est un concept apparu 

à la fin des années 90 et est devenue de plus en 

plus populaire en santé humaine mais également 

ces dernières années en santé animale [Dórea et 

al., 2011]. Il n’existe à ce jour pas de définition 

unique et communément acceptée de la 

surveillance syndromique. Cependant, en général, 

la surveillance syndromique utilise des données 

pré-diagnostiques, souvent peu spécifiques, 

collectées en routine et analysées en temps réel 

[Katz et al., 2011]. La surveillance syndromique a 

ainsi pour vocation de détecter précocement des 

maladies connues, comme la grippe saisonnière 

humaine (Hiller et al. 2013) ; (Ginsberg et al. 2009) 

ou inconnues, comme les attaques bioterroristes 

(Buehler et al. 2003). La surveillance syndromique 

ne remplace pas les approches traditionnelles de 

surveillance des maladies mais elle est un outil 

complémentaire intéressant de par sa rapidité, sa 

flexibilité et son bon rapport coût-bénéfice. 

Les approches actuellement utilisées en 

surveillance syndromique cherchent d'abord à 

définir les propriétés normales de la série de 

données considérée lorsqu’aucun foyer de maladie 

n’est enregistré. L’objectif est de pouvoir ensuite 

détecter des évènements anormaux tels que des 

épidémies ou des épizooties. Les méthodes de 

détection traditionnelles produisent une alarme 

lorsque les données observées dépassent les 

valeurs attendues en l’absence d’épidémie. Les 

algorithmes utilisés définissent ainsi un seuil 

épidémique et fournissent une réponse finale de 

type oui/non : « non, aucune épidémie en cours », 

« oui, un évènement inhabituel est en cours ».  

Cette vision binaire d’une situation 

épidémiologique est simple mais elle n’est pas 

toujours suffisante et peut être compliquée à 

interpréter notamment lorsque les résultats de 

l’analyse sont dans une zone « grise » proche du 

seuil épidémique. De plus, ces résultats qualitatifs 

binaires sont également difficiles à combiner avec 

d’autres connaissances épidémiologiques, tels que 

le risque d’introduction ou la saisonnalité d’une 

maladie, qui entrent pourtant en compte 

lorsqu’une décision d’intervenir (ou non) doit être 

prise suite à la production d’une alarme. 

Développer des méthodes quantitatives 

transparentes, plus spécifiques, et facilement 

utilisables dans un processus de décision s’avère 

ainsi être un domaine de recherche prometteur.  

2. OBJECTIFS DE L’ÉTUDE 

L’objectif de ce travail est de tester l’applicabilité 

du cadre statistique bayésien pour la détection 

précoce d’épidémies en surveillance syndromique. 

Ces approches sont déjà utilisées notamment pour 

l’évaluation des pièces à convictions dans un cadre 

juridique (Foreman et al. 2003)(Drygajlo et al. 

2003) ; (Morrison 2012) ; (Taroni et al. 2006)]. 

Nous détaillerons dans un premier temps le cadre 

théorique de la méthode développée, puis nous 

présenterons une application concrète de la 

méthode au cas de la surveillance de la fièvre de 

West Nile (WN). Le virus West Nile est un arbovirus 
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du genre Flavivirus (famille Flaviviridae). Il est 

principalement transmis par des moustiques du 

genre Culex (famille Culicidae). Les hôtes 

principaux sont les oiseaux mais le virus peut 

également affecter l’homme et plus de 30 espèces 

animales parmi lesquelles les équidés. Chez les 

personnes comme chez les chevaux, le virus peut 

provoquer des encéphalites mortelles et la 

présence de la maladie dans un territoire a ainsi 

des conséquences importantes en termes de santé 

publique et sur la filière équine.  

Le virus a été identifié en Europe pour la première 

fois dans les années 60 et depuis, de nombreuses 

émergences ont été rapportées un peu partout sur 

le continent (Calistri et al. 2010). Même si le virus 

est actuellement considéré comme endémique 

dans une grande partie de l’Europe (Ozdenerol et 

al. 2013), de plus en plus de cas sont rapportés ces 

dernières années dans le sud-est de l’Europe 

(exemple : Italie, Grèce, Bulgarie, Croatie, Serbie, 

Albanie) (Di Sabatino et al. 2014). L’impact de la 

maladie est plus limité en Europe que ce qui est 

observé en Amérique du Nord. Cependant, le 

nombre croissant d’émergences associé à la 

récente introduction de la lignée 2 en Europe font 

du virus WN une menace d’intérêt constant pour 

les pays européens (Hernández-Triana et al. 2014) ; 

(Bakonyi et al. 2006)(Calzolari et al. 2013). 

Développer des méthodes innovantes pour 

améliorer la détection d’émergences de WN 

s’avère ainsi particulièrement intéressant. 

 

II - MÉTHODE : CADRE THÉORIQUE 

1. CADRE STATISTIQUE BAYÉSIEN  

La formule de Bayes se définit initialement comme 

suit : 

𝑃(𝑀+)

𝑃(𝑀−)
 X 

P(𝑛|𝑀+)

P(𝑛|𝑀−)
  = 

𝑃(𝑀+| 𝑛)

𝑃(𝑀−| 𝑛)
 

Appliquée au cas de la surveillance syndromique, 

on peut définir M+ comme le fait que la maladie 

soit présente, M- comme le fait que la maladie soit 

absente et n comme le nombre de syndromes 

observés à un moment t. 

Le premier terme 
𝑃(𝑀+)

𝑃(𝑀−)
 est un odds qui correspond 

aux connaissances a priori qu’on a du statut 

présence vs absence de la maladie dans un 

territoire à un moment t. Il tient notamment 

compte des facteurs de risque connus tels que la 

saison ou la circulation du pathogène dans une 

région voisine. Il sera noté Opri dans les 

paragraphes suivants. 

Le second terme 
P(𝑛|𝑀+)

P(𝑛|𝑀−)
  représente le rapport de 

deux probabilités. p(n|M+) est la probabilité 

d’observer n cas de syndromes lorsque la maladie 

est présente et p(n|M-) correspond à la probabilité 

d’observer le même nombre de syndromes lorsque 

la maladie est absente. Ce second terme 

correspond au rapport de vraisemblance noté V 

dans les paragraphes suivants.  

La combinaison des connaissances a priori sur la 

maladie avec les informations obtenues à partir 

des observations de terrain permet d’obtenir le 

troisième terme 
𝑃(𝑀+| 𝑛)

𝑃(𝑀−| 𝑛)
 . Cet odds correspond à la 

connaissance a posteriori sur le statut de la 

maladie dans le territoire. Il sera noté Opost dans les 

paragraphes suivants.  

2. INTÉGRATION DANS UN PROCESSUS DE 

DÉCISION 

Le rapport de vraisemblance Opost construit à partir 

du cadre statistique bayésien donne une 

appréciation quantitative de la probabilité de 

circulation de la maladie. Cependant, il est 

important de pouvoir déterminer à partir de quel 

seuil de probabilité il est utile (ou non) de 

déclencher une alarme et de mettre en place des 

mesures de contrôles et/ou d’investigation de la 

maladie. 

La théorie de la décision évalue comment 

s’effectue une prise de décision rationnelle en 

présence d’incertitude (Gittelson 2013). La 

difficulté ici vient du fait que le résultat de l’option 

choisie est déterminé par l’élément incertain qui 
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ne peut être connu (et ce parfois même après que 

la décision ait été prise). Pour prendre une 

décision, il est donc nécessaire d’évaluer les 

conséquences de chaque action (en termes 

d’utilité ou de pertes) et leur probabilité de se 

produire. Le choix rationnel est celui pour lequel 

l’utilité est maximale c’est-à-dire, celui comportant 

les pertes attendues les plus faibles.  

Ainsi, l’utilité d’une action A (noté U(A)) se définit 

comme la somme des utilités de l’action A dans la 

situation i (noté chacune U(Ai)), multipliée par la 

probabilité estimée d’être effectivement dans la 

situation i (noté p(Ai)) : 

U(A) = ∑ 𝑈(𝐴𝑖

𝑛

𝑖=0

) × 𝑝(𝐴𝑖) 

Nous avons appliqué ce raisonnement au cas de la 

prise de décision en surveillance syndromique. Ici 

seuls deux types d’action sont possibles : A1, mise 

en œuvre de mesures de contrôle de la maladie et 

A0, pas d’action de contrôle. Leurs utilités 

respectives sont évaluées en fonction du contexte 

épidémiologique : soit M1 la maladie est présente, 

soit M0 la maladie est absente. Les pertes relatives 

à chaque couple U(Ai,Mj) sont fondées sur des 

évaluations socio-économiques. Les connaissances 

a priori sur le contexte sont fournies par Opost. 

Ainsi, l’utilité de mettre en place des actions de 

contrôle (U(A1)) et l’utilité de ne rien faire (U(A0)) 

peuvent être définies comme suit : 

𝑈(𝐴1) = (𝑈(𝐴1, 𝑀1) + 𝑈(𝐴1, 𝑀0)) ×
𝑂𝑝𝑜𝑠𝑡

1 + 𝑂𝑝𝑜𝑠𝑡
 

𝑈(𝐴0) = (𝑈(𝐴0, 𝑀1) + 𝑈(𝐴0, 𝑀0)) ×
𝑂𝑝𝑜𝑠𝑡

1 + 𝑂𝑝𝑜𝑠𝑡
 

Les valeurs de Opost pour lesquelles il sera utile 

d’agir plutôt que de ne rien faire, sont les valeurs 

situées au-dessus du seuil Opost
*
 défini pour 

U(A1)  = U(A0). 

 

III - CAS PRATIQUE : SURVEILLANCE DE LA FIÈVRE DE WEST NILE 

Ce cas propose d’utiliser la méthode développée 

afin de détecter les émergences de virus WN en 

France. Nous utiliserons pour cet exemple les 

données de syndromes nerveux chez les chevaux 

qui sont des indicateurs intéressants d’émergence 

de la maladie (Leblond et al. 2007). Les données de 

syndromes nerveux sont collectées en routine 

depuis 2006 par le réseau d’épidémiosurveillance 

en pathologie équine (RESPE). 

1. CONNAISSANCES A PRIORI 

La fièvre de WN est une maladie à transmission 

vectorielle. La probabilité de circulation du virus à 

des niveaux épizootiques est ainsi fortement liée à 

la dynamique de population de son vecteur 

principal, les moustiques du genre Culex. Ainsi les 

épizooties de WN présentent une saisonnalité 

marquée avec de nombreuses occurrences 

rapportées en été et à l’automne, des cas moins 

fréquents au printemps et seulement quelques cas 

sporadiques en hiver.  

En utilisant les données historiques relatives aux 

épizooties de WN rapportées en Europe ces 

dernières années, nous avons ainsi établi des Opri
  

de la maladie, différents selon les saisons. Les 

probabilités de circulation relatives au printemps, 

automne/été et hiver sont ainsi respectivement de 

1:5:0,04. 

2. RÉSULTATS DE LA SURVEILLANCE 

SYNDROMIQUE 

2.1. SITUATION NON- EPIZOOTIQUE 

Pour déterminer la probabilité d’observer un 

nombre de cas n lorsque la maladie est absente, 

p(n|M-), nous avons utilisé les données collectées 

par le RESPE depuis 2006. Des traces d’épizooties 
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sont cependant présentes dans ces données et 

sont principalement dues aux émergences 

d’herpesvirus de type 1. Afin de modéliser au 

mieux la série de données en situation non- 

épizootiques, nous les avons supprimées en 

utilisant uniquement les données provenant de 

chevaux qui n’ont pas obtenu de résultat de 

laboratoire positif. Les données de 2006 à 2010 ont 

été utilisées pour calibrer le modèle et les données 

de 2011 à 2012 pour le valider. 

Plusieurs modèles ont été testés mais celui qui a 

obtenu les meilleures performances est celui 

utilisant une loi de poisson (AIC = 637,8 et GOF 

(déviance ajustée)  = 1,156):  

Nombre de cas ~ sin(2π*t) + cos(2π*t) + 

log(histmean) 

où ‘histmean’ représente la moyenne des 53 

semaines précédant t sans tenir compte des 10 

semaines juste avant t afin de ne pas incorporer 

des données d’une épizootie éventuellement en 

cours.  

2.2. SITUATION EPIZOOTIQUE 

Afin de déterminer la probabilité d’observer un 

nombre de cas n lorsque la maladie est présente, 

p(n|M+), nous avons utilisé les données trouvées 

dans la littérature sur des épizooties de WN ayant 

entrainé des symptômes nerveux chez les chevaux. 

Nous avons ainsi utilisé les nombres de symptômes 

rapportés chez les chevaux lors des émergences 

françaises de 2000 (Murgue et al. 2001) et 2004 

(Leblond et al. 2007) et lors de l’épisode de WN en 

Italie en 1998 (Autorino et al. 2002). 

Le nombre de cas observés en situation 

épizootique a été modélisé avec une loi négative 

binomiale de paramètre mu égal à 4,45 et theta 

égal à 0,94. Le nombre médian de cas attendus par 

semaine en cas d’épizootie a ainsi été estimé à 3 

(IC 95 %: 0-18). 

2.3. RAPPORT DE VRAISEMBLANCE 

Le rapport de vraisemblance noté V correspond au 

rapport entre p(n|M+) et p(n|M-) et peut se 

représenter graphiquement comme présenté en 

figure 1. 

Figure 1 
Rapport de vraisemblance (V) et probabilités d’observer n cas de syndromes nerveux chez les chevaux 

lorsque la maladie est présente (p(n|M+)) et lorsque la maladie est absente (p(n|M-)) 

 

3. SCÉNARIO DE DÉCISION 

Afin de déterminer un seuil d’action, nous avons 

estimé des couts fictifs mais proportionnels à leurs 

contributions relatives attendues (tableau 1). 

L’utilité de ne rien faire lorsque la maladie est 

absente (U(A0,M0)) entraîne, quelle que soit la 

saison, des pertes nulles. L’utilité de ne rien faire 

lorsque la maladie est présente (U(A0,M1)) 

entraîne des coûts plus importants lors des 

périodes à risque à cause de l’impact de la maladie 

sur le tourisme et des coûts liés aux animaux 

p(n| M+) 
 
p(n| M-) 

log(V) 
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malades. L’utilité de mettre en place des mesures 

de contrôle alors que la maladie est absente 

(U(A1,M0)) entraîne quant à elle des pertes 

identiques quelle que soit la saison et liées 

uniquement aux actions mises en place pour 

contrôler la maladie (ex : démoustication, 

vaccination). L’utilité de mettre en place des 

mesures de contrôle lorsque la maladie est 

effectivement présente (U(A1,M1)), entraîne, elle, 

des pertes liées aux actions de contrôle mises en 

place ainsi que des pertes indirectes et directes 

liées à la diffusion de la maladie qui sont estimées 

moins importantes que lorsqu’aucune mesure de 

contrôle n’est mise en places.

Tableau 1 
Estimation du seuil d’action Opost

* 
à partir des couts estimés d’une émergence de WN en fonction des saisons.  

A0 représente le fait de ne rien faire et A1 représente le fait de mettre en place des mesures de contrôle.  
M0 correspond au fait que la maladie soit absente et M1 que la maladie soit présente. 

Utilités Automne/Eté Printemps Hiver 

U(A0, M0) 0 0 0 

U(A1, M0) -0. 5 M€ -0. 5 M€ -0. 5 M€ 

U(A0, M1) -5.1 M€ -10,1 M€ -5,3 M€ 

U(A1, M1) -3.9 M€ -6,3 M€ -4,1 M€ 

Log10(Opost*) -0,38 -0,88 -0,38 

 

4. ÉVALUATION ET MISE EN ŒUVRE DU 

SYSTÈME 

Les données de 2011 à 2012 du RESPE ont été 

utilisées pour détecter les épizooties. Afin 

d’illustrer notre méthode, trois épizooties ont été 

arbitrairement insérées dans les données : A. 

émergence en automne d’un petit nombre de cas, 

B. émergence de taille « moyenne » en hiver et C. 

émergence « importante » au printemps. Pour 

chaque semaine de 2011 à 2012 ; le rapport de 

vraisemblance V a été calculé en fonction des 

données observées et attendues (cf. figure 2). 

Figure 2 
Données de syndromes nerveux des chevaux et calcul du rapport de vraissemblance pour chaque semaine. 

Trois épizooties fictives insérées : A. insertion entre les semaines 36 et 39 ;B. insersion entre les semaines 1 et 4 ; 
C. insersion entre les semaines 24 et 28. 
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Un détail des cas observés par épizootie et des 

rapports de vraisemablance associés est présenté 

dans le tableau 2. Combiné avec les connaissances 

a priori sur la saisonnalité de la maladie (Opri) défini 

précédement, nos connaissances a posteriori 

(Opost) sur la maladie sont déduites. Combinée avec 

le seuil d’action défini à partir des couts estimés, la 

valeur seuil du nombre de cas à partir de laquelle il 

est utile d’intervenir est déduite. Ainsi, en 

automne/été, quatre cas de syndromes nerveux 

suffisent à déclencher une action alors qu’en hiver, 

sept cas de syndromes nerveux observés ne 

déclenchent toujours pas d’action vis-à-vis d’une 

alerte WN. 

Tableau 2 
Détails des épizooties fictives insérées et valeurs seuils pour le déclenchement d’une action  

en fonction du nombre de syndromes observés et de la saison 

 

A. Automne/Été B. Printemps B. Hiver 

Log10(Opri)    -0,99   -1,78   -3,03 

Nombre de cas observés 3 4 5 7 5 7 

Log10(V) 0,26 0,74 1,54 3,11 1,24 2,6 

Log10(Opost) -0,73 -0,25 -0,24 1,33 -1,77 -0,43 

Seuil d’Action Log10(Opost*)     -0,38   -0,88    -0,38 

Alerte? Opost > Opost* Non Oui Oui Oui Non Non 

IV - DISCUSSION 

Dans ce travail, nous avons montré comment le 

cadre statistique bayésien peut être incorporé 

dans un système d’aide à la décision en 

surveillance syndromique et comment il peut être 

utilisé pour l’évaluation des risques et la prise de 

décision éclairée. L’approche proposée est en 

accord avec le guide d’analyse de risque (OIE 2010) 

puisqu’elle permet une séparation explicite des 

hypothèses (Opri), des preuves scientifiques (V) et 

des critères pour la prise de décision (U(A0) et 

U(A1)). Par ailleurs, la manière dont les preuves 

scientifiques sont évaluées est également 

transparente et quantitative, ce qui limite les 

interprétations subjectives. Les critères utilisés 

pour la prise de décision sont également en accord 

avec ce qui est préconisé par l’OIE. En effet, le code 

sanitaire pour les animaux terrestres recommande 

de fonder la décision de mise en place de mesures 

de contrôle sur l’équilibre entre le coût des 

activités de lutte et les conséquences économiques 

et sociales d'une réponse retardée.  

L’approche utilisée permet de combiner facilement 

les données de surveillance syndromique avec 

d’autres sources d’information épidémiologiques. 

Dans l’exemple développé ici, la prise en compte 

des données de saisonnalité dans l’interprétation 

des résultats de la surveillance syndromique 

permet ainsi de déclencher des alertes pour la 

fièvre de WN préférentiellement dans les périodes 

à haut risque. La détection des émergences est 

ainsi plus sensible en période à haut risque et plus 

spécifique en période à faible risque. Par exemple, 

en automne/été, quatre cas de syndromes nerveux 

suffisent à déclencher une alerte pour WN alors 

qu’en hiver sept cas de syndromes nerveux 

observés ne déclenchent pas d’alerte pour WN. 

Notre approche permet donc de rendre 

l’interprétation des résultats de la surveillance 

syndromique plus spécifique sans pour autant 

diminuer la sensibilité. Ceci est particulièrement 

intéressant lorsqu’il faut détecter des maladies 

connues.  

Dans l’exemple développé ici, seules les 

connaissances sur la saisonnalité de la circulation 

du virus WN ont été intégrées. Cependant, des 

données quantitatives beaucoup plus complexes 

peuvent être utilisées comme par exemple les 

résultats de modèles de risque d’introduction ou 

de risque de diffusion. De même, nous avons 

travaillé uniquement à une échelle temporelle 
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mais le modèle pourrait être adapté pour détecter 

des agrégats spatio-temporels de cas. Cette 

approche offre ainsi des perspectives d’utilisation 

et de développement ultérieurs intéressants en 

permettant de passer d’informations 

épidémiologiques morcelées à une vision plus 

synthétique et intégrée.  

Si la méthode offre des perspectives prometteuses, 

certaines limites sont cependant à considérer. Le 

cadre statistique bayésien a ici été appliqué en 

estimant les probabilités a priori de manière 

probabiliste à partir des données disponibles et 

non par le biais d’inférence bayésienne. L’approche 

probabiliste est relativement simple à mettre en 

place et à présenter. Elle a cependant le défaut de 

ne pas complètement rendre compte de 

l’incertitude des hypothèses de départ. Des 

approches utilisant les méthodes d’inférence ont 

été proposées par plusieurs auteurs pour détecter 

des agrégats spatio-temporels de cas (Banks et al. 

2012) ; (Zou et al. 2010). Cependant, si ces 

approches sont techniquement réalisables et plus 

robustes d’un point de vue mathématique, elles 

restent encore assez théoriques et compliquées à 

présenter à un public non familier des méthodes 

bayésiennes tel que les décideurs politiques (Banks 

et al. 2012).  

Concernant l’exemple développé, il est important 

de noter que nous avons ici considéré que les 

semaines étaient indépendantes les unes des 

autres. Cette hypothèse simple a été choisie pour 

présenter au mieux la méthode et ne constitue pas 

une limite à son application. En effet, il est tout à 

fait possible de construire un système plus 

complexe considérant non pas les semaines de 

manière séparées mais les preuves cumulées sur 

plusieurs semaines. Par ailleurs, si un système de 

surveillance de WN fondé sur cette approche 

devait effectivement être implémenté, il faudrait 

nécessairement mieux préciser les estimations de 

nombre de cas utilisées, la saisonnalité des 

données ainsi que les estimations coûts-bénéfice.  

V - CONCLUSION 

L’utilisation du cadre statistique bayésien en surveillance syndromique est donc une approche prometteuse 

pour l’amélioration de la surveillance des maladies connues. Elle permet de synthétiser de manière 

quantitative les diverses sources d’informations épidémiologiques disponibles et de les intégrer aisément dans 

un processus de décision rationnel prenant en compte des analyses couts bénéfices. Des travaux ultérieurs 

pourront permettre de perfectionner la méthode et d’évaluer son intérêt dans des systèmes de surveillance 

complexes. L’ensemble des analyses détaillées est disponible dans l’article publié par Anderson, Faverjon et al. 

(Andersson et al. 2014). 
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Appendix 11: EEV simulated outbreak in Normandie. 

 

 



 

176 
 

  



Appendices 

177 
 

Appendix 12: Posterior probability of EE outbreak in France in year 2012 during the simulated outbreak in 
Normandie from week 36 to week 41. Radius for detection is 50 km (Andersson et al. 2015) 

Week 
Probability of disease 

introduction (Opri) 
Multivariate syndromic 

surveillance (V) 
Posterior 

probability (Opost) 

36 

   

37 

   

38 

   

39 

   

40 

   

41 

   

42 
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ABSTRACT 
Emerging vector-borne diseases are a growing concern, especially for horse populations, which are at 
particular risk for disease spread. In general, horses travel widely and frequently and, despite the health 
and economic impacts of equine diseases, effective health regulations and biosecurity systems to ensure 
safe equine movements are not always in place. The present work proposes to improve the surveillance of 
vector-borne diseases in horses through the use of different approaches that assess the probability of 
occurrence of a newly introduced epidemic. First, we developed a spatiotemporal quantitative model 
which combined various probabilities in order to estimate the risk of introduction of African horse sickness 
and equine encephalosis. Such combinations of risk provided more a detailed picture of the true risk 
posed by these pathogens. Second, we assessed syndromic surveillance systems using two approaches: a 
classical approach with the alarm threshold based on the standard error of prediction, and a Bayesian 
approach based on a likelihood ratio. We focused particularly on the early detection of West Nile virus 
using reports of nervous symptoms in horses. Both approaches provided interesting results but Bayes’ rule 
was especially useful as it provided a quantitative output and was able to combine different 
epidemiological information. Finally, a Bayesian approach was also used to quantitatively combine various 
sources of risk estimation in a multivariate syndromic surveillance system, as well as a combination of 
quantitative risk assessment with syndromic surveillance (applied to West Nile virus and equine 
encephalosis, respectively). Combining evidence provided promising results. This work, based on risk 
estimations, strengthens the surveillance of VBDs in horses and can support public health decision making. 
It also, however, highlights the need to improve data collection and data sharing, to implement full 
performance assessments of complex surveillance systems, and to use effective communication and 
training to promote the adoption of these approaches. 

Key words: syndromic surveillance, West Nile, quantitative risk analysis, African horse sickness, equine 
encephalosis, vector-borne diseases, risk-based surveillance 

 
RÉSUMÉ 
Les maladies émergentes à transmission vectorielle sont une préoccupation croissante et particulièrement 
lorsqu’elles affectent les chevaux, une population spécirfiquement à risque vis-à-vis de la propagation de 
maladies. En effet, les chevaux voyagent fréquemment et, malgré l’impact sanitaire et économique des 
maladies équines, les règlementations sanitaires et les principes de biosécurité et de traçabilité censés 
assurer la sécurité des mouvements d'équidés ne sont pas toujours en place. Notre travail propose 
d'améliorer la surveillance des maladies à transmission vectorielle chez les chevaux en utilisant différentes 
méthodes  pour estimer la probabilité d'émergence d'une maladie. Tout d'abord, nous avons développé 
un modèle quantitatif et spatio-temporel combinant différentes probabilités pour estimer les risques 
d'introduction de la peste équine et de l’encéphalose équine. Ces combinaisons permettent d’obtenir une 
image plus détaillée du risque posé par ces agents pathogènes. Nous avons ensuite évalué des systèmes 
de surveillance syndromique par deux approches méthodologiques: l'approche classique avec un seuil 
d'alarme basé sur un multiple de l'erreur standard de prédiction, et l'approche bayésienne basée sur le 
rapport de vraisemblance. Nous avons travaillé ici principalement sur la détection précoce du virus West 
Nile en utilisant les symptômes nerveux des chevaux. Les deux approches ont fourni des résultats 
prometteurs, mais l’approche bayésienne était particulièrement intéressante pour obtenir un résultat 
quantitatif et pour combiner différentes informations épidémiologiques. Pour finir, l'approche bayésienne 
a été utilisée pour combiner quantitativement différentes sources d'estimation du risque : surveillance 
syndromique multivariée, et combinaison de la surveillance syndromique avec les résultats d’analyses de 
risques. Ces combinaisons ont données des résultats prometteurs. Ce travail, basé sur des estimations de 
risque, contribue à améliorer la surveillance des maladies à transmission vectorielle chez les chevaux et 
facilite la prise de décision. Les principales perspectives de ce travail sont d'améliorer la collecte et le 
partage de données, de mettre en œuvre une évaluation complète des performances des systèmes de 
surveillance multivariés, et de favoriser l'adoption de ce genre d’approche par les décideurs en utilisant 
une interface conviviale et en mettant en place un transfert de connaissance. 

Mots clefs : surveillance syndromique, West Nile, analyse de risques quantitative, peste équine, 
encéphalose équine, maladies à transmission vectorielle, surveillance basée sur le risque 


