
HAL Id: tel-01264132
https://theses.hal.science/tel-01264132

Submitted on 28 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Equilibria in the multi-criteria traffic networks
Thi Thanh Phuong Truong

To cite this version:
Thi Thanh Phuong Truong. Equilibria in the multi-criteria traffic networks. Networking and Internet
Architecture [cs.NI]. Université d’Avignon, 2015. English. �NNT : 2015AVIG0413�. �tel-01264132�

https://theses.hal.science/tel-01264132
https://hal.archives-ouvertes.fr

ACADEMY OF AIX AND MARSEILLE

UNIVERSITY OF AVIGNON AND THE VAUCLUSE

THESIS

presented at University of Avignon and the Vaucluse
of the requirements for the degree of Doctor of Philosophy

SPECIALITY : Mathematics-Optimisation

Doctoral School (ED 536)

Laboratory of Mathematics of Avignon (EA 2151)

Equilibria in the multi-criteria traffic
networks

by

Thi Thanh Phuong TRUONG

Submitted publicly on May 26th 2015 in front of a committee composed by :

The Luc DINH (Avignon University) Thesis Supervisor
Matthias EHRGOTT (Lancaster University) Reviewer
Cuong LE-VAN (University of Paris I) Reviewer
Pierre MARECHAL (Toulouse University Paul Sabatier) Member
Michel THERA (Limoges University) Member
Michel VOLLE (Avignon University) Member

Contents

1 Introduction . 1

2 Preliminaries . 5
2.0.1 Pareto minimal points . 5
2.0.2 Set-valued maps . 6
2.0.3 Variational inequality problem . 7
2.0.4 Increasing functions . 8

3 Traffic network equilibrium . 13
3.1 Single-criterion Traffic Network . 13

3.1.1 Wardrop’s model . 13
3.1.2 Beckmann, McGuire and Winsten’s model . 13
3.1.3 Michael Florian’s model . 14

3.2 Multi-criteria Traffic Network . 16
3.2.1 Description of multi-product multi-criteria traffic network 16
3.2.2 Single-product multi-criteria supply demand network 18
3.2.3 Multi-product single-criterion supply demand network 21
3.2.4 Multi-product multi-criteria supply demand network 24

4 Equilibrium in a multi-criteria traffic network without capacity
constraints . 29
4.1 Equivalent problems . 29

4.1.1 Scalarization . 30
4.1.2 Vector variational inequalities . 32
4.1.3 Two optimization problems . 33

4.2 Generic differentiability and local calmness of the objective functions 34
4.3 Generating vector equilibrium flows . 41

4.3.1 Description of the algorithm (A) . 41
4.3.2 Convergence of the algorithm . 43
4.3.3 Numerical examples . 45
4.3.4 Smoothing the objective function . 49

4.4 Robust equilibrium . 52

5 Equilibrium in a multi-criteria traffic network with capacity constraints 59
5.1 Single-product multi-criteria traffic network with capacity constraints 59
5.2 Equivalent optimization problem . 60
5.3 Generic differentiability and local calmness of the objective function 61
5.4 Generating vector equilibrium flows . 63

IV Contents

5.4.1 Description of the algorithm . 63
5.4.2 Numerical examples . 64

6 Equilibrium in a multi-product multi-criteria traffic network with
capacity constraints . 67
6.1 Existence conditions . 67
6.2 Equivalent problems . 69

6.2.1 Equilibrium with respect to a family of increasing functions 69
6.2.2 Efficiency . 71
6.2.3 Variational inequality problems . 72

6.3 Algorithms . 74
6.4 Numerical examples . 77

Conclusion . 81

References . 83

Appendices . 87

Summary of the thesis in French . 115

1

Introduction

In recent years multi-product multi-criteria supply demand networks have become a
subject of intensive study. This is because such networks find abounding applications in
several areas of applied sciences such as transport, internet communications, economics,
management etc.

The idea of traffic equilibrium dates back to at least 1920 in the work of Pigou. He
considered a model where there is only one origin and destination pair connected by two
roads: the first one is short and narrow, the second one is wide and long. In the narrow and
short road, travel time depends on the flow of vehicles on it. Meanwhile, in the wide and long
road, travel time does not depend on the flow. Pigou argued that if the amount of vehicles
is equal to the upper bound of capacity on the narrow road, the travel time for each driver
on both roads is the same. If one of drivers diverts from the narrow road to the wide one to
feel more comfortable in spite of spending the same travel time, then the drivers who remain
using the narrow road will perceive a travel time reduction. The more drivers divert to the
wide road, the less travel time the drivers remaining on the narrow road spend. However,
in practice no driver will, altruistically, travel on a road that reduces his benefit in order to
give a spontaneous situation for the network. According to Pigou’s point of view, this calls
for a State intervention in the form of a tax. Then we impose a tax on the narrow road, some
vehicles will be turned away from it towards the wide road. However, all traffic participants
will be indifferent with respect to the original situation, that means, the ones that still use
the narrow road, despite experiencing a shorter travel time, will pay a tax that equivalent
to such travel time reduction. This happens because, otherwise if the toll is greater than
the time reduction the drivers would choose the wide road and, in the contrary, if the toll
is smaller than the time reduction, some drivers will divert back to the narrow road. Hence,
applying a toll policy on the narrow road leads to a situation in which the average cost of
all participants in this network is equal; the only welfare difference between two situations
with and without the tax is the amount of money collected by the tolls, which corresponds
to the net gain to society.

The above mentioned model under conditions of congestions was studied by Knight in
1924 (Some fallacies in the Interpretation of Social cost-Quarterly Journal of Economics).
We quote his simple and intuitively clear description of interaction between different users
in the network:
”Suppose that between two points there are two highways, one of which is broad enough to
accommodate without crowding all the traffic which may care to use it, but is poorly graded
and surfaced, while the other is a much better road but narrow and quite limited in capacity.
If a large number of trucks operate between the two termini and are free to choose either of
the two routes, they will tend to distribute themselves between the roads in such proportions
that the cost per unit of transportation, or effective return per unit of investment, will be
the same for every truck on both routes. As more trucks use the narrower and better road,

2 1 Introduction

congestion develops, until a certain point it becomes equally profitable to use the broader
but poorer highway.”
This demonstrates the following principles of traffic distribution among alternative routes
in equilibrium:
(1) If between an origin and a destination there are at least two routes actually traveled,
the average travel cost to each user must be equal on all these routes.
(2) Since each driver attempts to choose the most convenient route, average cost on all other
possible routes cannot be less than that on the route or routes traveled.
(3) The amount of traffic on the network must equal the demand for transportation which
prevails.

Some twenty-eight years later, Wardrop stated two principles: the first principle is iden-
tical to the notion of equilibrium described by Knight and the second one introduces the
alternative behavior postulate of the minimization of total costs in the network. However,
no mathematical model was proposed by Wardrop to describe the above ideas. In 1956
Beckmann, McGuire and Winsten [3] provided optimization reformulations of the govern-
ing equilibrium conditions, under a symmetry assumption on the underlying user link cost
functions. Subsequently, in a lecture of Micheal Florian in 1984, he presented the elements
of the network models used in transportation planning, reviewed their structural properties
and most commonly used solution methods and outlined potential applications (see [19] for
details). We notice that all these equilibrium models are based on scalar cost, which are
not appropriate to describe real-world situations. Indeed, in practice the choice of paths by
road users depends on several factors including for instance travel time, travel cost, comfort,
safety and many others.

Multicriteria traffic network models, as a class of traffic network equilibrium problems,
were first introduced by Quandt [50] and Schneider [54] in which both travel time and travel
cost were explicitly considered. Further contributions are due to [12, 14, 29, 40, 43, 44] and
[45]. In these works Wardrop’s traffic principle was defined for a weighted sum of the travel
time and the travel cost, and therefore the analysis was presented under the angle of single-
criterion models. Therefore, a model that takes into account different criteria is necessary
to solve traffic network problems.

A vector version of Wardrop’s principle was first given by Chen et Yen [10] and subse-
quently developed by [9, 24, 61] (see also [11, 28, 34, 47, 57, 63]) for supply-demand networks
without capacity constraints. Multi-criteria networks with capacity constraints have recently
been studied by [32, 33, 37, 38] and [51]. Because of the multi-dimensionality of the cost
space several generalizations of Wardrop’s principle have been introduced and their char-
acterizations are given in terms of variational inequalities. There are two approaches to
construct variational inequalities whose solutions may provide equilibrium flows of a multi-
criteria network. The first approach is based on scalarization of the vector cost functions and
leads to usual (scalar) variational inequality problems. Unfortunately, except for Luc and
al. [38], all variational inequality problems in the above cited papers provide weak vector
equilibrium flows only. The second approach constructs directly vector variational inclusions
without converting the vector cost function to a scalar function. A major drawback of this
approach as pointed out in Li and al. [32], is the fact that not every equilibrium can be ob-
tained by solving the associated variational inequality problem. To overcome this defect the
authors of [38] introduced the concept of elementary flows and derived a vector variational
inequality problem over elementary flows which is equivalent to the network equilibrium
problem. We notice that the concept of vector equilibrium treated in Li and al. [32] and Luc
and al. [38] engages the products individually once a pattern flow is given. Other definitions
of equilibrium, which take multi-product aspects into account, have been introduced in Luc
[37]. Namely, this author considered three kinds of equilibrium: weak vector equilibrium,

1 Introduction 3

strong vector equilibrium and ideal vector equilibrium, and constructed equivalent vector
variational inequalities over elementary flows. In the above cited works on multi-criteria
models we find a number of interesting theoretical results about weak and strong vector
equilibria. However, as far as we know, a difficult question of how to compute vector equi-
libria or solutions of the associated vector variational inequality problems was not addressed.

The purpose of this thesis is to study equilibria in multi-criteria traffic networks and
develop numerical methods to find them. The thesis is structured as follows. In the first
chapter we present an introduction of the thesis. Chapter 2 is of preliminary character. We
recall the concept of Pareto minimal points and some notions related to set-valued maps and
variational inequality problem. We introduce some scalarizing functions, in particular the
so-called augmented biggest/smallest monotone functions and augmented signed distance
functions, and establish some properties we shall use later. Chapter 3 describes the traffic
network models to be studied in this thesis. We define equilibrium for each model and de-
termine a relationship between them. We also give some counter examples for some existing
results in the recent literature on this topic. In Chapter 4 we develop a new solution method
for multi-criteria network equilibrium problems without capacity constraints. To this end
we shall construct two optimization problems the solutions of which are exactly the set of
equilibria of the model, and establish some important generic continuity and differentiability
properties of the objective functions. Then we give the formula to calculate the gradient of
the objective functions which enables us to modify Frank-Wolfe’s reduced gradient method
to get descent direction toward an optimal solution. We prove the convergence of the method
which generates a nice representative set of equilibria. Since the objective functions of our
optimization problems are not continuous, a method of smoothing them is also considered
in order to see how global optimization algorithms may help. We shall also introduce the
concept of robust equilibrium, establish criteria for robustness and a formula to compute
the radius of robustness. In Chapter 5 we consider vector equilibrium in the multi-criteria
single-product traffic network with capacity constraints. We apply the approach of Chapter
4 to obtain an algorithm for generating equilibria of this network. In the last chapter we
consider strong vector equilibrium in the multi-criteria multi-product traffic network with
capacity constraints. We establish conditions for existence of strong vector equilibrium. We
also establish relations between equilibrium and efficient points of the value set of the cost
function and with equilibrium with respect to a family of functions. Moreover we exploit
particular increasing functions discussed in Chapter 2 to construct variational inequality
problems, solutions of which are equilibrium flows. The final part of this chapter is devoted
to an algorithm for finding equilibrium flows of a multi-criteria network with capacity con-
straints. Some numerical examples are given to illustrate our method and its applicability.
A list of references and appendices containing the code Matlab of our algorithms follow. We
close up the thesis with a summary of main results in French.

2

Preliminaries

In this chapter we recall the concept of Pareto minimal points, the notions of continuity of
set-valued maps and the variational inequality problem that we shall use throughout this
thesis. We also propose some scalarizing functions including the augmented biggest/smallest
monotone functions and the augmented signed distance functions, and establish some of their
properties, which will be used to prove equivalence between vector equilibrium and scalarized
equilibrium and to construct an equivalent scalar variational inequality problem for vector
equilibrium. These functions will be amply employed in Chapter 6.

2.0.1 Pareto minimal points

In the space Rn with n > 1 we distinguish the following order relations: strict inequality
’<’ is understood as ’componentwise strictly smaller than’, and ’≤’ means ’componentwise
smaller than or equal to’ and not equal to. The binary relations ’<’ and ’≤’ are actually
partial orders generated by the positive orthant Rn+ of the space Rn. Namely, for two vectors
x and y from Rn, one has x ≤ y (respectively x < y) if and only if y − x ∈ Rn+\{0}
(respectively y − x ∈ intRn+), where intRn+ is the interior of Rn+. The relation ’≦’ means
either ’≤’ or ’=’.

We notice that the partial orders in Rn are not complete in the sense that not every
couple of vectors is comparable, and hence the usual notion of minimum or maximum does
not apply. Here we recall the notation of Pareto minimal points.

Definition 2.0.1 Let Q be a nonempty set in Rn. A point y ∈ Q is said to be a (Pareto)
minimal point of the set Q if there is no point y′ ∈ Q such that y′ ≦ y and y′ 6= y. And it is
said to be a Pareto weakly minimal point if there is no y′ ∈ Q such that y′ < y.

The sets of minimal points and weakly minimal points of Q are respectively denoted Min(Q)
and WMin(Q). They are traditionally called the efficient and weakly efficient sets or the non-
dominated and weakly non-dominated sets of Q. The set of maximal points Max(Q) and
weakly maximal points WMax(Q) are called the efficient and weakly efficient sets of Q
too. A set Q ⊂ Rn is called self-minimal if it coincides with the set of its Pareto-minimal
points. If a set is self-minimal, it is self-maximal and vice versa. The terminology efficiency is
advantageous in certain circumstances in which we deal simultaneously with minimal points
of a set as introduced and minimal elements of a family of subsets which are defined to be
minimal with respect to inclusion. In some situations one is interested in an ideal minimal
point or utopia point which is defined as follows: If the infimum of Q, denoted by Inf(Q),
which is the vector whose ith component is the infimum of the projection of Q on the ith
axis, is finite and belongs to the set Q, it is called the ideal minimal element of Q. In the
other words, a point y ∈ Q is called ideal minimal point if it satisfies

6 2 Preliminaries

y ≦ y′ for all y′ ∈ Q.

Such a point is generally not attainable, and if exists it is unique and denoted IMin(Q).
Geometrically, a point y of Q is an efficient (minimal) point if the intersection of the set

Q with the negative orthant shifted at y consists of y only, that is

Q ∩ (y − Rn+) = {y}

and it is weakly minimal if the intersection of Q with the interior of the negative orthant
shifted at y is empty, that is

Q ∩ (y − intRn+) = ∅.
Of course, minimal points are weakly minimal, and the converse is not true in general. We
refer to [16, 39] for more details of the theory of Pareto optimality.

2.0.2 Set-valued maps

Let X and Y be metric spaces and F : X ⇒ Y be a set-valued map. The domain of F is
the set

dom(F) := {x ∈ X|F (x) 6= ∅},
and the graph of F is the subset of the product space X × Y defined by

Graph(F) := {(x, y) ∈ X × Y |y ∈ F (x)}.

We recall some definitions of continuity of set-valued maps.

Definition 2.0.2 The map F is called upper semi-continuous at x ∈ dom(F) if for any
neighborhood U of F (x), there exists η > 0 such that

F (x′) ⊂ U ∀x′ ∈ BX(x, η),

where BX(x, η) is the ball of radius η, centered at x. It is said to be upper semi-continuous
if it is upper semi-continuous at any point of dom(F).

The map F is called lower semi-continuous at x ∈ dom(F) if for any y ∈ F (x) and for
any sequence of elements xn ∈ dom(F) converging to x, there exists a sequence of elements
yn ∈ F (xn) converging to y.
It is said to be lower semi-continuous if it is lower semi-continuous at every point x of
dom(F).

When F is both upper semi-continuous and lower semi-continuous at x, we say that it
is continuous at x, and it is continuous if it is so at every point of dom(F).

We note that when F is single valued, upper semi-continuity and lower semi-continuity
signify continuity. Moreover, the following equivalent definition of lower semi-continuity is
also in use: for any open subset U ⊂ Y such that U ∩F (x) 6= ∅, there exists η > 0 such that
F (x′)∩U 6= ∅ for every x′ ∈ BX(x, η). We shall use the following results in [2] (Proposition
1.4.8, Theorem 1.4.13 and Theorem 1.4.16 respectively).

Proposition 2.0.3 Let X,Y be metric spaces. The graph of an upper semi-continuous set-
valued map F : X ⇒ Y with closed domain and closed values is closed. The converse is true
if we assume that Y is compact.

Theorem 2.0.4 (Generic Continuity) Let F be a set valued-map from a complete metric
space X to a complete separable metric space Y .

2 Preliminaries 7

i) If F is upper semi-continuous, it is continuous on a countable intersection of dense open
subsets An ⊂ X.

ii) If F is lower semi-continuous with compact values, it is continuous on a countable in-
tersection of dense open subsets An ⊂ X.

iii) If F is upper semi-continuous with closed values, then there exists a countable intersection
R of dense open subsets An ⊂ X such that

∀x ∈ R, limsup
x′→x

F (x′) = F (x).

Theorem 2.0.5 (Maximum Theorem) Let metric spaces X,Y , a set valued-map F : X ⇒

Y and a function f : Graph(F) 7→ R be given. If f and F are lower semi-continuous
(respectively upper semi-continuous), the function g : X 7→ R ∪ {+∞} defined by

g(x) := sup
y∈F (x)

f(x, y)

is also lower semi-continuous (respectively upper semi-continuous).

2.0.3 Variational inequality problem

Let K be a closed convex set in Rm and F a continuous function from K to Rn. The finite-
dimensional variational inequality problem, denoted VI(F, K), is to determine a vector
x∗ ∈ K ⊆ Rn, such that

〈F (x∗)T , x− x∗〉 ≧ 0, ∀x ∈ K

where 〈., .〉 denotes the inner product in the n-dimensional Euclidean space Rn. The following
existence result is known.

Theorem 2.0.6 (Existence under compactness and continuity) If K is a compact convex
set and F is continuous from K to Rn, then the variational inequality problem admits at
least one solution x∗.

Proof. Let PK be a projection onto the set K. Since PK and (I − γF) are each continuous,
PK(I − γF) is also continuous. According to Brouwer’s Fixed Point Theorem there is at
least one x∗ ∈ K such that x∗ = PK(I − γF)(x∗). Then

〈x∗T , x− x∗〉 ≧ 〈(x∗ − γF (x∗))T , x− x∗〉 ∀x ∈ K,

and therefore,

〈F (x∗)T , y − x∗〉 ≧ 0 ∀y ∈ K.

�

For the convergence of numerical algorithms a monotonicity property of F is needed.

Definition 2.0.7 F is monotone on K if

〈(F (x1)− F (x2))T , x1 − x2〉 ≧ 0, ∀x1, x2 ∈ K

and it is strictly monotone on K if

〈(F (x1)− F (x2))T , x1 − x2〉 > 0, ∀x1, x2 ∈ K,x1 6= x2.

Under the strict monotonicity the problem VI(F,K) admits at most one solution.

8 2 Preliminaries

Theorem 2.0.8 (Uniqueness) Suppose that F is strictly monotone on K, then the solution
is unique, if one exists.

Proof. Suppose that x1 and x∗ are both solutions and x1 6= x∗. Then since both x1 and x∗

are solutions, they must satisfy

〈F (x1)T , x′ − x1〉 ≧ 0, ∀x′ ∈ K, (2.1)

〈F (x∗)T , x′ − x∗〉 ≧ 0, ∀x′ ∈ K. (2.2)

After substituting x∗ for x′ in (2.1) and x1 for x′ in (2.2), and adding the resulting inequal-
ities, one obtains:

〈F (x1)− F (x∗))T , x∗ − x1〉 ≧ 0. (2.3)

But inequality (2.3) is in contradiction to the definition of strict monotonicity. Hence,
x1 = x∗. �

Details on this subject are found in [43].

2.0.4 Increasing functions

Functions that are increasing with respect to the partial orders in Rn play an important role
in the study of vector optimization problems.

Definition 2.0.9 Let P be a nonempty subset of Rn. A real function f : P → R is said to
be increasing (respectively weakly increasing) if for every a, b ∈ P ,

a ≥ b (respectively a > b) ⇒ f(a) > f(b). (2.4)

Notice that an increasing function is weakly increasing, but the converse is not true.
It is clear that the set of increasing (respectively weakly increasing) functions is a convex
cone without apex. In particular, the sum of two increasing functions is increasing and the
sum of two weakly increasing functions is weakly increasing. Notice further that the sum
of a weakly increasing function and an increasing function is weakly increasing, but not
necessarily increasing (see Example 2.0.10 below).

Example 2.0.10 Consider the function g : R2
+ → R defined by

g(x) =





x1 + x2 + 2 , (x1, x2) > (0, 0);

1

x1 + 1
, x1 > 0, x2 = 0;

1

x2 + 1
, x1 = 0, x2 > 0.

Then the function g is weakly increasing, but not continuous on R2
+. It is not difficult to see

that f + g is not necessarily increasing for any increasing function f on R2
+.

Here is an exception in which the sum of an increasing function and a weakly increasing
function is increasing.

Lemma 2.0.11 If g is a continuous, weakly increasing function and f is an increasing func-
tion on P , then the sum function f + g is increasing on P . Consequently, every continuous,
weakly increasing function is a pointwise limit of a sequence of increasing functions.

2 Preliminaries 9

Proof. Let a, b ∈ P and a ≥ b. Let e be a strictly positive vector. We have a + te > b
for every real number t > 0. Since g is weakly increasing, g(a + te) > g(b) for every t > 0.
Due to the continuity of g, we deduce g(a) ≧ g(b). This together with the monotonicity of
f implies, consequently, (f + g)(a) = f(a) + g(a) > f(b) + g(b) = (f + g)(b) proving that
f + g is increasing.
Now given a continuous, weakly increasing function g, we choose any increasing function f
(for instance f(x) = x1 + ... + xn for x = (x1, ..., xn) ∈ Rn) and put fk = g + f/k. Then
for every x ∈ Rn, we have g(x) = limk→∞ fk(x) with fk increasing. Thus, g is the pointwise
limit of the sequence of fk, k ≧ 1. �

Now we present some weakly increasing and increasing functions frequently used in vector
optimization (see [23, 27, 39, 48]) which we shall use in our thesis.

Biggest and smallest weakly increasing functions. Let e the vector of ones in Rn+ and
a = (a1, ..., an) ∈ Rn. For every x ∈ Rn define

ga(x) = max{t : x ∈ a+ te+ Rn+} = min
i=1, ..., n

(xi − ai).

We are also interested in a counter part of this function when using −Rn+ instead of Rn+:

Ga(x) = min{t : x ∈ a+ te− Rn+} = max
i=1, ..., n

(xi − ai).

These two functions are both continuous weakly increasing, but not increasing. They are
called respectively biggest and smallest continuous weakly increasing functions because of the
following property: For every continuous weakly increasing function g on Rn with g(a) = 0,
one has

{x ∈ Rn : Ga(x) < 0} ⊆ {x ∈ Rn : g(x) < 0} ⊆ {x ∈ Rn : ga(x) < 0},
that is the strict level set at 0 of Ga is the smallest and the strict level set of ga is the biggest
among the strict level sets at 0 of continuous weakly increasing functions taking the zero
value at a.

Signed distance functions. Let A be a nonempty set in Rn. The signed distance function
(see [27]) ∆A is defined by

∆A(x) = ρ(x,A)− ρ(x,Ac),

where ρ(x,A) is the distance from x to A, and Ac is the complement of A. In other words,

∆A(x) =

{
−ρ(x,Ac) if x ∈ A;
ρ(x,A) if x ∈ Ac.

The particular case of this function when A is either the negative or the positive orthant of
the space, is frequently used in vector optimization. Namely, let a ∈ Rn be given. Define

da(x) = ∆(Rn
+)C (x− a) and Da(x) = ∆−R

n
+
(x− a).

Then
da(x) ≦ ga(x) ≦ Ga(x) ≦ Da(x).

We notice that da(.) and Da(.) are continuous weakly increasing functions on Rn with
da(a) = 0 and Da(a) = 0. The following inclusions are clear

{x ∈ Rn : Ga(x) < 0} = {x ∈ Rn : Da(x) < 0} ⊆ {x ∈ Rn : ga(x) < 0},
and

{x ∈ Rn : Ga(x) < 0} ⊆ {x ∈ Rn : da(x) < 0} = {x ∈ Rn : ga(x) < 0}.
Let us characterize the partial order ’>’ by weakly increasing functions.

10 2 Preliminaries

Lemma 2.0.12 Let a and b be two vectors in Rn. The following assertions are equivalent.

(i) a > b;

(ii)Du(a) > Du(b) for every u ∈ Rn;
(iii) du(a) > du(b) for every u ∈ Rn;
(iv) 0 > Da(b);

(v) 0 < db(a).

The above assertions are also true if we replace D by G and d by g.

Proof. We prove equivalence between (i) and (iv). The others equivalences are proven sim-
ilarly. If a > b, then 0 > Da(b) since because the function Da is weakly increasing and
Da(a) = 0. For the converse, Da(b) < 0 implies that b−a ∈ −Rn+ and ρ(b−a, (−Rn+)C) 6= 0,
which means that a > b. For the functions G and g, the proof is similar. �

Let us characterize the partial order ’≥’ by weakly increasing functions, but in a more
complicated way.

Lemma 2.0.13 Let a and b be two vectors in Rn. The following assertions are equivalent.

(i) a ≥ b;

(ii)Du(a) ≥ Du(b) for every u ∈ Rn and a 6= b;
(iii) du(a) ≥ du(b) for every u ∈ Rn and a 6= b;
(iv) Db(a) > 0 ≥ Da(b);

(v) db(a) ≥ 0 > da(b).

The above assertions are also true if we replace D by G and d by g.

Proof. As in Lemma 2.0.12 we establish equivalence between (i) and (iv). If a ≥ b,
then b − a ∈ −Rn+, which implies that Da(b) = −ρ(b − a, (−Rn+)C) ≤ 0 and Db(a) =
ρ(a− b,−Rn+) > 0. For the converse, we observe that Da(b) ≤ 0 implies that either b ≤ a or
a = b, while Db(a) > 0 implies a 6= b. By this a ≥ b. For the functions G and g, the proof is
similar. �

Now we will make use of the following ”small” affine increasing function in which ǫ is a
strictly positive number:

f ǫa(x) = ε

n∑

i=1

(xi − ai)

and apply Lemma 2.0.11 to obtain the following increasing functions which are called re-
spectively augmented biggest/smallest functions and augmented signed distance functions:

gǫa(x) = ga(x) + f ǫa(x)

Gǫa(x) = Ga(x) + f ǫa(x)

dǫa(x) = da(x) + f ǫa(x)

Dǫ
a(x) = Da(x) + f ǫa(x)

which pointwisely converge respectively to ga(x), Ga(x), da(x) and Da(x) as ǫ tends to 0.
The function Ga was used in [11, 32] and some others to find weak vector equilibrium. Like
ga, da and Da, it is weakly increasing but not increasing, hence is not suitable for finding
strong vector equilibrium. The function gǫa was already known, see for instance [37, 38]. To
our knowledge the functions dǫa, G

ǫ
a and Dǫ

a are given here for the first time. As we will see,
they have very nice properties that make them crucial in finding strong vector equilibrium.
They may also be very useful in the study of multi-criteria decision making and vector

2 Preliminaries 11

optimization, particularly in generating the efficient solution set of a vector problem and in
establishing its structure by scalarization. Below are some properties of these functions for
our use.

Lemma 2.0.14 Let a and b be two vectors in Rn. The following assertions hold.

(i) a ≥ b if and only if dǫb(a) > 0 for every ǫ > 0.

(ii)a � b if and only if there is ǫ(a, b) > 0 such that dǫb(a) ≦ 0 for all 0 < ǫ < ǫ(a, b).

The above assertions are also true for gǫb(a).

Proof. If a ≥ b, then dǫb(a) > 0 for all ǫ > 0 because the function dǫb is increasing and
dǫb(b) = 0. For the converse let a � b. If a ≦ b, then dǫb(a) ≦ 0 for every ǫ > 0 because dǫb is

increasing. If a 6≦ b, then either
n∑
i=1

(ai − bi) ≦ 0 or
n∑
i=1

(ai − bi) > 0.

In the first case,

dǫb(a) := −ρ
(
a − b, Rn+

)
+ ε

n∑

i=1

(ai − bi) ≦ 0 for every ǫ > 0

because a− b 6∈ Rn+.
In the last case, set

ǫ(a, b) =
ρ
(
a − b, Rn+

)
n∑
i=1

(ai − bi)
> 0.

Then, for 0 < ǫ < ǫ(a, b), we have dǫa(b) = −ρ
(
a − b, Rn+

)
+ ε

n∑
i=1

(ai − bi) < 0.

The second assertion is obtained from the first assertion by using the proof above. For gǫb(.),
the proof is similar. �

We note that the assertion (ii) of Lemma 2.0.14 is a modified version of the negation of
(i). The first assertion applied to gǫb(.) is a correction of Lemma 4.8 of [38] (the proof given
there is correct) and consequently Corollary 4.9 of that paper must be reformulated in a
similar manner.

Lemma 2.0.15 Let a and b be two vectors in Rn. The following assertions hold.

(i) a ≥ b if and only if Dǫ
a(b) < 0 for every ǫ > 0.

(ii)a � b if and only if there is ǫ(a, b) > 0 such that Dǫ
a(b) ≧ 0 for all 0 < ǫ < ǫ(a, b).

(iii) For every ǫ > 0, one has Dǫ
a(b)+D

ǫ
b(a) ≧ 0. In particular, if Dǫ

a(b) ≦ 0, then Dǫ
b(a) ≧ 0.

The above assertions are also true for Gǫa(.).

Proof. For (i) let a ≥ b. Then Dǫ
a(b) < 0 because the function Dǫ

a is increasing and
Dǫ
a(a) = 0. For the converse, suppose a � b. If a ≦ b, then Dǫ

a(b) ≧ 0 for every ǫ > 0

because Dǫ
a is increasing. If a 6≦ b, then either

n∑
i=1

(bi − ai) ≧ 0 or
n∑
i=1

(bi − ai) < 0.

In the first case,

Dǫ
a(b) := ρ

(
b − a, −Rn+

)
+ ε

n∑

i=1

(bi − ai) > 0 for every ǫ > 0

because b− a 6∈ −Rn+.
In the last case, set

12 2 Preliminaries

ǫ(a, b) =
− ρ

(
b − a, −Rn+

)
n∑
i=1

(bi − ai)
> 0.

Then, for 0 < ǫ < ǫ(a, b), we have Dǫ
a(b) = ρ

(
b − a, −Rn+

)
+ ε

n∑
i=1

(bi − ai) > 0.

The second assertion is obtained from the first assertion and from the proof above. Now we
prove the last assertion. By definition,

Dǫ
a(b) = ρ(b− a,−Rn+)− ρ(b− a, (−Rn+)C) + ε

n∑

i=1

(bi − ai),

and

Dǫ
b(a) = ρ(a− b,−Rn+)− ρ(a− b, (−Rn+)C) + ε

n∑

i=1

(ai − bi).

Then

Dǫ
a(b) +Dǫ

b(a)

= ρ(b− a,−Rn+) + ρ(a− b,−Rn+)−
[
ρ(b− a, (−Rn+)C) + ρ(a− b, (−Rn+)C)

]
.

If a = b, thenDǫ
a(b)+D

ǫ
b(a) = 0. If b−a ≤ 0, then a−b ∈ (−Rn+)C , and henceDǫ

a(b)+D
ǫ
b(a) =

ρ(a− b,−Rn+)− ρ(b− a, (−Rn+)C) = ‖a− b‖ − ρ(b− a, (−Rn+)C) ≧ ‖a− b‖ − ‖b− a‖ ≧ 0. If
b− a � 0, then Dǫ

a(b) +Dǫ
b(a) = ρ(b− a,−Rn+) + ρ(a− b,−Rn+)− ρ(a− b, (−Rn+)C) ≧ 0. For

Gǫa(.), the proof is similar. �

Note that some other interesting properties of the augmented signed functions such as
Lipschitz continuity, quasi-convexity etc. can also be established, but we do not give them
in details here because they will not directly be used in the present work.

3

Traffic network equilibrium

In this chapter we focus on scalar equilibrium and concepts of vector equilibrium in the
existing literature and establish some relationships between them. We point out some mis-
understandings and inadequacies of certain results in recent works on vector equilibrium.

3.1 Single-criterion Traffic Network

3.1.1 Wardrop’s model

Consider a traffic network where there is an origin-destination (O/D for short) pair w con-
nected by m alternative routes named p1, p2, ..., pm. We denote the set of these paths by P .
Let Y = (ypi)pi∈P denote a flow of traffic where ypi is the quantity of drivers following the
route pi. Suppose that there are dw drivers transporting on the O/D pair w. Then we say
that a flow Y is feasible if it satisfies the following conditions:

ypi ≥ 0, pi ∈ P and
∑

pi∈P

ypi = dw.

In this model, drivers only pay attention to travel time. The distribution in the network
is based on the following two principles:

1) The travel time on all routes actually used is equal, and less than those which would be
experienced by a single vehicle on any unused route.

2) The average travel time is minimum.

The first principle is quite a likely one in practice, since it might be assumed that traffic
will tend to settle down into an equilibrium situation in which no driver will want to choose
an alternate route. In this case, we will say the system is at a user equilibrium state. This
principle has been considered as a sound and simple behavioral principle to describe the
spreading of traffics over alternate routes due to congested conditions. On the other hand,
the second principle is the most efficient in the sense that it minimizes the vehicle-hours
spent on the network, when this goal is achieved we will say that the system is at a social
optimum state.

3.1.2 Beckmann, McGuire and Winsten’s model

Although Wardrop discussed the equilibrium conditions for a general network, he did not
propose any method to compute the corresponding flows. Soon after, the first mathemati-
cal model of traffic equilibrium on a network was formulated and analyzed by Beckmann,

14 3 Traffic network equilibrium

McGuire and Winsten [3], which was the starting point for the contributions to follow this
area. Their model was described as follows: Let xx′ be a road on the network and yxx′ be
the number of vehicles entering road xx′ from either end per unit of time, briefly called the
flow on that road. However, the elementary variable will be the flow on a road in a given
direction to a particular destination, written yxx′,k, where the order pair of subscripts xx′

denotes the direction from x to x′ on road xx′, and k denotes the destination. This flow is
distinct from that in the opposite direction and it does not admit of negative values:

yxx′,k ≧ 0, for all xx′, k.

The total flow on a road equals

yxx′ = yx′x =
∑

k

(yxx′,k + yx′x,k), (3.1)

and of course
yxx′ ≧ 0.

The number of vehicles originating at location x with destination k per unit of time is
denoted by yx,k. Since this rate of origination is indicated at x by the excess of the flow to
k on outgoing roads over that on incoming roads we have

yx,k =
∑

x′

(yxx′,k − yx′x,k). (3.2)

The transportation cost c on road xx′ is denoted cxx′ . Since we do not distinguish between
costs in the two directions, we have cxx′ = cx′x. For points x and x′ that are not contiguous,
cxx′ is left undefined. Travel costs from origin x to destination k are denoted by cx,k (notice
that the subscripts are separated by a comma). Now

cx,k = min(cxx1 + cx1x2 + cx2x3 + ...+ cxnk),

that is, the minimum of all chain sums of cxixj
starting at x and terminating at k in which

consecutive elements have one subscript in common. In particular cx,x = 0.

Consider cr,k for two locations r = x and r = x
′

connected by a road xx
′

. Extending the

minimum chain that leads from x
′

to k by adding cxx′ , we have a chain from x to k, but
not necessarily a minimum chain. Thus

cx,k ≦ cxx′ + cx′
,k.

Then equilibrium flow is determined by

cx,k − cx′,k

{
≦ cxx′ if yxx′,k = 0;

= cxx′ if yxx′,k > 0
(3.3)

that is, the quantity of drivers using the road xx′ to a location k not in a shorted one is
zero.

3.1.3 Michael Florian’s model

Basing on the idea of Beckmann, McGuire and Winstern, in 1984, Michael Florian considered
a single-product single-criterion model where the cost function on each path depends on the
traffic flows of the entire network. Consider a transportation network G = [N,A,W] in
which N is a set of nodes, A = {a1, ..., an} is a set of n directed arcs which represent the
transportation infrastructure andW is a set of all origin-destination pairs of nodes x, x′ ∈ N

3.1 Single-criterion Traffic Network 15

such that there is a path from x to x′. For a pair of nodes w = (x, x′), the set of available
paths from the origin x to the destination x′ is denoted by Pw, the index set Iw consists
of all i such that pi ∈ Pw and the set of all available paths of the network is denoted by
P = {p1, ..., pm} =

⋃
w∈W

Pw.

Let va denote the flow of trips on arc a ∈ A and yp denote the flow of trips on path p ∈ P ,
then v = (va)a∈A is the vector of arc flows and Y = (yp)p∈P is the vector of path flows over
the entire network. A relationship between arc flows and path flows is given by

va =
∑

w∈W

∑

p∈Pw

δapyp (3.4)

where

δap =

{
1 if a ∈ p
0 otherwise.

The demand on each w ∈W is denoted by dw. The flow Y = (yp)p∈P on the network is said
to be feasible if it satisfies conservation of flow and nonnegativity

∑

p∈Pw

yp = dw, w ∈W and yp ≧ 0, p ∈ Pw, w ∈W. (3.5)

The set of all feasible path flows is denoted by K.
One assumes that this network permits the flow of one type of traffic (vehicles or passengers)
on its arcs. The cost of travelling in the arc va is denoted by a user cost function ca(v). This
cost function may model the time delay for travel on that arc, in which case it is commonly
referred to as a volume/delay function, it may however model other costs, such as fuel
consumption.
The cost of each path cp = cp(v) is the sum of the user costs of the arcs in the path

cp =
∑

a

δapca(v), p ∈ Pw, w ∈W. (3.6)

Let uw = uw(v) be the cost of the least cost path for any O/D pair w, that means

uw = min
p∈Pw

cp, w ∈W. (3.7)

In this model, the demands dw depends on the vector of least cost travel times for all the
O/D pairs of the network u = (uw)w∈W and are given by function Dw(u)

(0 <)dw = Dw(u), w ∈W. (3.8)

Then the flow Y ∈ K is in equilibrium if for every O/D pair w ∈W , and every path p ∈ Pw,
the following condition holds

cp(Y)

{
= uw(Y) if yp > 0

≧ uw(Y) if yp = 0,
(3.9)

that is all the used directed paths are of equal cost.
It is relatively straightforward to show that (3.9) may be restated in the ”complementarity”
form

uw(Y) ≦ cp(Y) and (cp(Y)− uw(Y))yp = 0, p ∈ Pw, w ∈W (3.10)

and that (3.9) and (3.10) are equivalent to the following statement: For every O/D pair
w ∈W , and paths p, p′ ∈ Pw, one has

cp(Y) ≦ cp′(Y) if yp > 0.

Thus, Wardrop’s first principle for single-class single-criterion model was stated mathemat-
ically in several forms.

16 3 Traffic network equilibrium

3.2 Multi-criteria Traffic Network

As introduced at the beginning, the pattern of the traffic flows through a network is the
result of a subtle and complex interaction between drivers, and in practice their decision in
selecting one route of travel depends on many criteria simultaneously. Therefore, it is im-
portant to extend the basic model to multi-criteria one in which vector-valued cost function
is considered.

3.2.1 Description of multi-product multi-criteria traffic network

Let us consider a supply-demand network G = [N,A,W] in which N is a set of nodes,
A = {a1, ..., an} is a set of n directed arcs and W is a set of all origin-destination pairs of
nodes x, x′ ∈ N such that there is a path from x to x′. For a pair of nodes w = (x, x′), the
set of available paths from the origin x to the destination x′ is denoted by Pw, the index
set Iw consists of all i such that pi ∈ Pw and the set of all available paths of the network is
denoted by P = {p1, ..., pm} =

⋃
w∈W

Pw.

We assume that there are q different classes of products to traverse in the network. Given
a path pi ∈ P , let yjpi ∈ R denote the amount of the jth class of product to transport on the

path pi. The matrix Y = (yjpi)m×q is called a path flow in the network. Thus, each row vector
Ypi = (y1pi , ..., y

q
pi
) of the matrix Y represents the vector of q classes of products to traverse

the path pi, while the column vector Y j = (yjp1 , ..., y
j
pm

)T (here (.)T denotes the transpose)
represents the vector of the jth class of product to traverse m paths of the network.

To evaluate the transportation of products in the network, a cost function for the path
flow Y is given in form of a matrix C(Y) = (cjpi(Y)) with vector entries cjpi(Y) = (cjpi,k(Y)) ∈
Rl, with l > 1. The ith row of entries Cpi(Y) = (c1pi(Y), ..., cqpi(Y)) of the matrix C(Y)

represents the cost for the path pi, and the jth column Cj(Y) = (cjp1(Y), ..., cjpm(Y))T

represents the cost concerning the jth class of product on m paths of the network. For every
origin-destination pair w ∈W , the set C(w) consists of all vectors Cpi(Y) with pi ∈ Pw.

Sometimes arc flows are also considered in association with path flows. If zja denotes
the amount of the jth product to be transported on the arc a, then the matrix Z whose
entries are zja, a ∈ A and j = 1, ..., q represents an arc flow in the network. A vector-valued
cost function for the arc flow Z is given by a matrix Ĉ(Z) with entries ĉja(Z), a ∈ A and
j = 1, ..., q. It is known that given a path flow Y , an associated arc flow Z can be determined
by the formula

Z = ∆Y,

where ∆ is the so-called incident matrix whose entries δap are given by

δap =

{
1 if a belongs to path p
0 otherwise.

The cost functions of the arc flow Z and the path flow Y are then linked by the following
matrix equality:

C(Y) = ∆T Ĉ(Z).

From now on, for a path flow Y , write C and cjpi instead of C(Y) and cjpi(Y) if no
misunderstanding occurs. We further assume that the demand function depends on the
costs for all O/D pairs, that means we can suppose directly that the demand is a function
of the path flow Y . A positive demand function djw(Y) is given which expresses the quantity
of the jth class of product to be transported from the origin x to the destination x′ of the
pair w = (x, x′) ∈W , and that the demand vector dw = (d1w(Y), ..., dqw(Y)) is non null. The
lower and upper capacity constraints on each class of product j and on each path pi are

3.2 Multi-criteria Traffic Network 17

respectively ljpi ∈ R and ujpi ∈ R with ljpi < ujpi . For a path pi, the upper and lower capacity
bound vectors (u1pi , ..., u

q
pi
) and (l1pi , ..., l

q
pi
) are respectively denoted by Upi and Lpi . It is

common to impose the following restrictions on the demand
∑

pi∈Pw

Lpi ≦ dw ≦
∑

pi∈Pw

Upi , ∀w ∈W. (3.11)

Otherwise, the network would have no feasible flows. Moreover, if either of equalities holds
in the above restrictions, then the network has a unique feasible path flow. Moreover if there
exists j ∈ {1, ..., q} such that

djw =
∑

pi∈Pw

ljpi or djw =
∑

pi∈Pw

ujpi , ∀w ∈W, (3.12)

then the feasible flow of the j-th product is unique. These cases are not interesting from the
mathematical point of view. Therefore, from now on we assume

∑

pi∈Pw

Lpi < dw <
∑

pi∈Pw

Upi , ∀w ∈W. (3.13)

We say that a path flow Y is feasible if it satisfies the capacity constraints and the conser-
vation of flows equations:

ljpi ≦ yjpi ≦ ujpi ∀ i = 1, ...,m; ∀j = 1, ..., q; (3.14)

∑

pi∈Pw

yjpi = djw ∀ j = 1, ..., q; ∀w ∈W. (3.15)

The set of all feasible flows for the flow Y is denoted by K and G = [N,A,W] is called the
network with capacity constraints.

We say that a path flow Y is feasible for the flow Y if it satisfies the capacity constraints
and the conservation of flows equations:

ljpi ≦ yjpi ≦ ujpi ∀ pi ∈ P ; ∀j = 1, ..., q; (3.16)

∑

pi∈Pw

yjpi = djw(Y) ∀ j = 1, ..., q; ∀w ∈W. (3.17)

The set of all feasible flows for the flow Y is denoted by K(Y) and G = [N,A,W] is called
the network with capacity constraints and elastic demand with respect to the feasible flow
Y . It is clear that K(Y) is a closed convex set for every fixed Y .

We notice that for a given path flow Y , it may not satisfy demands for oneself, i.e., there
exists j0 and w0 such that ∑

pi∈Pw

yj0pi 6= dj0w0
(Y). (3.18)

When in the network, the value of d changes, the feasible set of flows/demands K(d) can
be defined as follows

K(d) = {(Y, d)|
∑

pi∈Pw

yjpi = djw, l
j
pi

≦ yjpi ≦ ujpi , pi ∈ Pw, w ∈W, j = 1, ..., q},

then we call G = [N,A,W] the network with capacity constraints and elastic demand.
When ljpi = 0 and ujpi = ∞ for all pi and j the network is called without capacity

constraints.
In the subsections 3.2.2 and 3.2.3, we wish to compare different concepts of vector equi-

librium. We restrict ourselves to the case of network without capacity constraints for the
sake of simplicity and compatibility with existing definitions we meet in the literature.

18 3 Traffic network equilibrium

3.2.2 Single-product multi-criteria supply demand network

In this model, there is only one product to traverse in the network. Let za denote the traffic
load on arc a ∈ A and let yp denote the traffic flow on path p ∈ P . As before we have
za =

∑
p∈P ypδap and z = ∆y whose entries are δap for a ∈ A and p ∈ P .

We shall assume throughout this subsection that the demand dw of the traffic flow for
each O/D pair w ∈ W is fixed. A path flow y is said to be feasible if y ≧ 0 and it satisfies
the conservation flow equation

∑

p∈Pw

yp = dw for all w ∈W.

The set of all feasible path flows is denoted K. Assume further that a vector cost function
ĉa is given on each arc a ∈ A, depending on the traffic arc flow z and taking values in a
finite dimensional space Rl with l ≧ 2. In many classical models l = 2, which corresponds to
two criteria: travel time and travel cost. Then the vector cost function cp on path p depends
on the path flow y and is computed by

cp(y) =
∑

a∈A

ĉa(z)δap. (3.19)

Let C(y) denote the l ×m-matrix, the columns of which are cp, p ∈ P and Ĉ(z) the l × n-
matrix, the columns of which are ĉa, a ∈ A. These matrices are linked by the formula

C(y) = Ĉ(z)∆.

We recall below definitions of vector equilibrium and weak vector equilibrium correspond-
ing with this kind of network, which have been originally proposed by Chen and Yen [10] in
1993.

Definition 3.2.1 Let Ȳ be a feasible flow. We say that Ȳ is a vector equilibrium if for every
w ∈W and pα, pβ ∈ Pw one has implication

cpα ≥ cpβ ⇒ ypα = 0.

And Ȳ is a weak vector equilibrium if for every w ∈W and pα, ppβ ∈ Pw one has implication

cpα > cpβ ⇒ ypα = 0.

It is clear that every vector equilibrium is weak vector equilibrium, but the converse is not
true in general. These two kinds of equilibrium are natural generalizations of the Wardrop
equilibrium for a scalar valued cost in which inequality cpα ≥ cpβ means cpα > cpβ , and
therefore there is no distinction between weak vector equilibrium and vector equilibrium.

In 1999 Chen, Goh and Yang in [9] introduced Ga-equilibrium, where the function Ga is
given in Chapter 1.

Definition 3.2.2 A feasible flow Ȳ is said to be Ga-equilibrium if there exists a ∈ Rl+ such
that for every w ∈W, pα, pβ ∈ Pw,

Ga(cpα) > Ga(cpβ) ⇒ ypα = 0.

The authors of the above mentioned work proved the following result (Theorem 4.5).

Theorem 3.2.3 A feasible flow is weak vector equilibrium if and only if it is Ga-equilibrium.

3.2 Multi-criteria Traffic Network 19

Unfortunately this theorem is not always true. Actually the ”if” part is true. In fact, by
assuming that the feasible flow y is Ga-equilibrium. If for some pα, pβ ∈ Pw we have cpα >
cpβ , then for a ∈ Rl+, Ga(cpα) > Ga(cpβ) by weakly increasing property of the function Ga.

By hypothesis, we obtain ypα = 0. It deduces that Y is weak vector equilibrium. The ”only
if” part is not always true which is seen in the next counterexample.

Example 3.2.4 Consider a network problem with one pair of origin-destination nodes w =
(x, x′) and three available paths: Pw = {p1, p2, p3}. Assume that the travel demand for w is
dw = 15, and

cp1(y) = (3yp1 + 2yp2 , yp1 + yp2)
T

cp2(y) = (yp1 + 5yp2 , 2yp2)
T

cp3(y) = (yp1 + yp3 , 2yp1 + yp3)
T .

With the feasible flow yp1 = 3, yp2 = 7, yp3 = 5, we have

cp1 = (23, 10)T cp2 = (38, 6)T cp3 = (12, 11)T .

Clearly, Y is weak vector equilibrium. Nevertheless, Y is not Ga-equilibrium. In fact, take
any a ∈ R2, we obtain either

Ga(cp1) < Ga(cp2)

or
Ga(cp1) < Ga(cp3)

and yp2 = 7 > 0, yp3 = 5 > 0.

Consequently neither Corollary 4.7 [9] which gives necessary and sufficient conditions
for weak vector equilibrium, nor Theorem 3.2 and Corollary 3.1 in Chen [8] are correct. In
2006 Li, Yang and Chen [31] proposed another kind of Ga-equilibrium flow, which is called
weak Ga-equilibrium and established a necessary and sufficient condition of a weak vector
equilibrium.

Definition 3.2.5 A feasible flow Ȳ is said to be weak Ga-equilibrium if for every w ∈
W, pα, pβ ∈ Pw one has

Gcpα (cpβ) < 0 ⇒ ypα = 0.

It is clear that every Ga-equilibrium is weak Ga-equilibrium, but the converse is not true in
general. Here is an example.

Example 3.2.6 Consider a network problem with one pair of origin-destination nodes w =
(x, x′) and three available paths: Pw = {p1, p2, p3}. Assume that the travel demand for w is
dw = 20, and

cp1(y) = (2yp1 , 5yp1 + 3yp2)
T

cp2(y) = (3yp2 , yp1 + yp3)
T

cp3(y) = (2yp2 + yp3 , 3yp3)
T .

With the feasible flow yp1 = 3, yp2 = 10, yp3 = 7, we have

cp1 = (6, 45)T cp2 = (30, 17)T cp3 = (27, 21)T .

Then
GC1

(C2) = max {30− 6, 17− 45} = 24,

GC1
(C3) = max {27− 6, 21− 45} = 21,

GC2
(C1) = max {6− 30, 45− 17} = 28,

GC2
(C3) = max {27− 30, 21− 17} = 4,

GC3
(C1) = max {6− 27, 45− 21} = 24,

GC3
(C2) = max {30− 27, 17− 21} = 3.

20 3 Traffic network equilibrium

Therefore y is weak Ga-equilibrium. Nevertheless, y is not Ga-equilibrium. In fact, for any
a = (a1, a2) ∈ R2, we have

Ga(C1) = max {6− a1, 45− a2} ,
Ga(C2) = max {30− a1, 17− a2} ,
Ga(C3) = max {27− a1, 21− a2} .

If Ga(C3) = 27− a1, then we have Ga(C3) < Ga(C2) and yp2 = 10 6= 0.

If Ga(C3) = 21− a2, then we have Ga(C3) < Ga(C1) and yp1 = 3 6= 0.

It turns out that weak vector equilibrium and weak Ga-equilibrium are equivalent, which
was proved in [31].

Proposition 3.2.7 [31] A flow y ∈ K is a weak vector equilibrium if and only if y ∈ K is
a weak Ga-equilibrium.

To go further we recall some notations.

Λ =

{
λ = (λ1, ..., λl)

T ∈ Rl|λi ≧ 0,
l∑
i=1

λ = 1

}
,

ri(Λ) =

{
λ = (λ1, ..., λl)

T ∈ Rl|λi > 0,
l∑
i=1

λ = 1

}
,

Cw(y) = {cp(y) : p ∈ Pw},
V−min(Cw(y)) =

{
cp(y) | ∄cp′(y) ∈ Cw(y) such that cp(y)− cp′(y) ∈ Rl+\{0}

}
.

Goh and Yang [24] introduced parametric equilibrium (λ−equilibrium).

Definition 3.2.8 A feasible flow Ȳ is said to be a parametric equilibrium if for every w ∈
W, pα ∈ Pw and for a parametric λ ∈ Λ given, there exists cw ∈ Min(Cw) such that

λT cpα > λT cw ⇒ ypα = 0.

They proved the following sufficient and necessary condition for a vector equilibrium.

Proposition 3.2.9 [24] Let the following assumption hold

Min(Cw) ⊂ Min(co(Cw)), where co(Cw) is the convex hull of Cw, (3.20)

Then the following assertions hold:

i) If a feasible flow y is a vector equilibrium and assumption 3.20 holds, then there exists
λ ∈ Λ such that it is a parametric equilibrium.

ii) If a feasible flow y is a parametric equilibrium for some λ ∈ ri(Λ), then it is a vector
equilibrium.

Again the assertion i) does not always hold. This is seen in the next example. We notice also
that Example 2.1 in [31] fails because the assumption 3.20 in that example does not hold.

Example 3.2.10 Consider a network problem with one pair of origin-destination nodes
w = (x, x′) and three available paths: Pw = {p1, p2, p3}. Assume that the travel demand for
w is dw = 10, and

c1(Y) = (2y1 + 2y2, y1 + 2y2)
T

c2(Y) = (y1 + 2y2 + y3, 3y2)
T

c3(Y) = (y1 + y2 + 2y3, y3)
T .

3.2 Multi-criteria Traffic Network 21

With the feasible flow y1 = 3, y2 = 2, y3 = 5, we have

c1 = (10, 7)T c2 = (12, 6)T c3 = (15, 5)T .

Clearly, Y is a vector equilibrium. Nevertheless, Y is not a parametric equlibrium. In fact,
although C(w) = Min(C(w)) = {c1, c2, c3} and assumption 3.20 holds, for any λ ∈ Λ, we
have λT c3 > λT c1 and y3 = 5 > 0.

To obtain a complete characterization for a vector equilibrium, Li, Yang and Chen [31]
introduced another parametric equilibrium, which is called ”weakened parametric equilib-
rium”.

Definition 3.2.11 A feasible flow Ȳ is said to be a weakened parametric equilibrium if for
every w ∈W, pα ∈ Pw and for any λ ∈ Λ, there exists cw ∈ Min(Cw) such that

λT cpα > λT cw ⇒ ypα = 0.

Under the assumption 3.20 they obtained a necessary condition for vector equilibrium.

Proposition 3.2.12 [31] Let y be a feasible pattern flow on the network G and assumption
3.20 holds. Then if y is a vector equilibrium, it is a weakened parametric equilibrium.

We summarize a relationship between the aforementioned concepts of equilibrium in the
following diagram.

Parametric equilibrium Ga-equilibrium

Vector equilibrium Weak vector equilibrium

Weakened parametric equilibrium Weak Ga-equilibrium

3.2.3 Multi-product single-criterion supply demand network

The multi-product single-criterion supply demand network can be explained as a network in
which certain goods are produced by suppliers and need to be shipped to destination points
according to given demand. The cost of transporting different products along an arc may
differ.

Consider a supply demand model without capacity constraint. Let Ȳ be a feasible flow.
We are interested in the following conditions which can also be considered as different types
of equilibrium.

• (B1) For every w ∈W and pα ∈ Pw,

Y pα ≥ 0 ⇒ Cpα = Inf(C(w)),
Y pα = 0 ⇒ Cpα ≧ Inf(C(w)).

• (B2) For every w ∈W and pα, pβ ∈ Pw,

[(C(w)− Cpβ) ∩ (−Rq+) = {0}, Cpα − Cpβ 6= 0] ⇒ Y pα = 0.

• (B3) For every w ∈W and pα, pβ ∈ Pw,

22 3 Traffic network equilibrium

[clcone(C(w) + Rq+ − Cpβ) ∩ (−Rq+) = {0}, Cpα − Cpβ 6= 0] ⇒ Y pα = 0.

• (B4) For every w ∈W and pα, pβ ∈ Pw,

Cpα − Cpβ ≥ 0 ⇒ Y pα = 0.

• (B5) For every w ∈W and pα ∈ Pw,

Cpα /∈ Min(C(w)) ⇒ Y pα = 0.

• (B6) For every w ∈W, pα, pβ ∈ Pw, and j = 1, ..., q,

cjpα − cjpβ > 0 ⇒ yjpα = 0.

Remark 3.2.13
1) Condition (B1) has been introduced by Cheng and Wu [11] and the pattern flow Y satis-
fying it is called a Wardrop equilibrium.
Notice that the second implication of (B1) is superfluous because for any path pα ∈ Pw
inequality Cα ≧ Inf(C(w)) is always true and if there exists an equilibrium satisfying the
condition (B1), that is the unique solution of the network.
2) Condition (B3) has been introduced by Wu and Cheng [66]. They used it to define the
so-called Benson equilibrium which is a kind of Benson proper efficient solutions of vector
optimization problems.
3) Condition (B4) has been studied in [11] for multi-criteria networks. In [51] Raciti called
it a strong vector Wardrop equilibrium.
4) Cheng and Wu [11] proved that the conditions (B1) and (B4) are equivalent. However, if
the set C(w) has no ideal minimal element, the implication (B4) ⇒ (B1) may fail as it is
shown in the next example. Proposition 2.1 of [11] and Proposition 3.2 of [66] are then not
always available.

Example 3.2.14 Consider a network problem with one pair of origin-destination nodes
w = (x, x

′

), two products traverse the network with two available paths: Pw = {p1, p2}. The
other data are given as below d1w = 5, d2w = 2, and

c11(Y) = 10y11 c12(Y) = 2y12 + y22
c21(Y) = 3y11 + y21 c22(Y) = y12 + 10y22

With the feasible flow y11 = 3, y21 = 1, y12 = 2, y22 = 1, we have

C1(Y) = (30, 10) C2(Y) = (5, 12) Inf(C(w)) = (5, 10).

Clearly, Y is an equilibrium according to (B4) as both C1 6≥ C2 and C2 6≥ C1. Nevertheless,
Y does not satisfy (B1) since Y 1 ≥ 0 but C1 6= Inf(C(w)).

As a matter of fact conditions (B1) and (B4) lead to different concepts of equilibrium
whenever the multiplicity of products for transport in the network is present. Moreover the
operation of taking closed cone in (B3) by Wu and Cheng [66] is unnecessary. To see this
let us recall the following result from [37] with its proof.

Lemma 3.2.15 [37] Let D be a finite subset of Rq and d ∈ D. Then the following relations
are equivalent

(i) clcone(D + Rq+ − d) ∩ (−Rq+) = {0}
(ii)(D − d) ∩ (−Rq+) = {0}.

3.2 Multi-criteria Traffic Network 23

Proof. The implication (i)⇒(ii) is clear because the setD−d is a subset of clcone(D+Rq+−d)
and the origin of the space belongs to both of them. For the converse suppose the contrary
that (ii) is true, but (i) is not. There is a nonzero vector a belonging to the intersection on
the left hand side of (i), say

a = lim
α→∞

tα (dα − d+ uα) (3.21)

for some positive numbers tα, some vectors dα from D and uα ∈ Rq+. Since D is a finite
set, we may assume without loss of generality that dα = d0 for some d0 ∈ D. If d0 − d = 0,
we arrive at a contradiction that a ∈ Rq+ ∩ (−Rq+) and a 6= 0. It remains to consider
the case d0 − d 6= 0. We may also assume that the sequence {tα}α converges to some
limit t among three possible values: 1) t = 0, 2) t = ∞, and 3) t ∈ (0,∞). In the first case,
a = limα→∞ tαuα ∈ Rq+, which contradicts the hypothesis. In the second case, it follows from
(3.21) that a = tα (dα − d+ uα) + o(tα) with limα→∞ o(tα)/tα = 0. By dividing the latter
equality by tα and passing to the limit as α tends to ∞, we obtain d0 − d = limα→∞ uα ∈
−Rq+\{0} which contradicts (ii). In the case 3), a similar argument yields

d0 − d =
a

t
− lim
α→∞

uα ∈ −Rq+\{0} (3.22)

which is a contradiction too. �

We remark that the conclusion of Lemma 3.2.15 remains true under a milder condition
on D. For instance, when D is not finite, but the set cone(D − d) has a compact base,
which means that there is a compact set B not containing the origin of the space such that
cone(D−d) = cone(B), then the argument of the proof above goes through. In particular, the
conclusion of Lemma 3.2.15 is true when D is a polyhedral set. Here are some relationships
between (B1)-(B6).

Proposition 3.2.16 [37] Given a feasible pattern flow Y on the network G. The following
assertions hold:

(i) (B1) ⇔ (B2) ⇔ (B3).
Each of these conditions implies that for every w ∈ W , the set C(w) has ideal minimal
elements. Moreover, under the latter condition on C(w), all conditions (B1) through (B5)
are equivalent.

(ii)(B4) ⇔ (B5)
(iii)(B1) ⇒ (B6).

The converse (B6) ⇒ (B1) is true provided q = 1.

Proof. We note that for every w ∈ W , the set C(w) is finite, hence in view of Lemma
3.2.15, conditions (B2) and (B3) are equivalent. To prove the first part of (i), it suffices
to establish equivalence between (B1) and (B2). We assume (B1). Since for each w ∈ W
the demand vector dw is non null, there must be some path pβ0

on which the flow ypβ0
is

non null. Hence the cost Cpβ0
is an ideal minimal element of C(w). Let pβ ∈ Pw satisfy

(C(w)−Cpβ)∩−Rq+ = {0}. Then Cpβ = Cpβ0
= Inf(C(w)), and Cpα ≥ Inf(C(w)) for every

pα ∈ Pw with Cpα −Cpβ 6= 0. By (B1), ypα = 0, which shows that (B2) holds. Now assume

(B2). Since the set C(w) is finite, it has minimal elements. Let Cpβ be one of them. Then

(C(w) − Cpβ) ∩ −Rq+ = {0}. For any pα ∈ Pw, if Cpα is not minimal, then Cpα − Cpβ 6= 0

and by (B2), the corresponding flow ypα is null. If Cpα is minimal, but Cpα − Cpβ 6= 0,

then we also have ypα = 0 by (B2). With Cpα minimal, switching the roles of Cpα and Cpβ
we obtain ypβ = 0 too. Thus, if the set Min(C(w)) consists of more than two elements,
the flow y is null on every path joining w, which is impossible because the demand is not
null. Consequently, the set Min(C(w)) has only one value, say C∗. We deduce Cpα = C∗ for

24 3 Traffic network equilibrium

all pα ∈ Pw, which shows that C∗ is the ideal minimal element of C(w) and (B1) follows.
For the second part of (i), assume that for every w ∈ W , the set C(w) has ideal minimal
elements. It suffices to prove equivalence between (B1) and (B4), because the equivalence
between (B4) and (B5) will be given in (ii). Let pα, pβ ∈ Pw satisfy Cpα − Cpβ ≥ 0. Then

Cpα is not ideal minimal. Under (B1), one has ypα = 0 and obtains (B4). Conversely, if

(B4) holds and if ypα ≥ 0, then Cpα must be ideal minimal, which shows that (B1) is true.

Indeed, if Cpα were not ideal minimal, there would exist some ideal element Cpβ such that

Cpα − Cpβ ≥ 0 which yields ypα = 0, a contradiction. By this, (B4) is equivalent to (B1).

We proceed to (ii) by assuming (B4). Let Cpα /∈ Min(C(w)). By definition, there is some
Cpβ ∈ C(w) such that Cpα ≥ Cpβ . In view of (B4) one has ypα = 0 and (B5) follows.

Conversely, if (B5) holds and if Cpα − Cpβ ≥ 0 for some pα, pβ ∈ Pw, then Cpα is not a

minimal element of C(w) and in view of (B5) the flow ypα is null. Thus, (B4) is true and
we obtain the equivalence between (B4) and (B5). Finally, suppose (B1). Strict inequality

cipα > ci
′

pα
for some i, i′ ∈ {1, ..., q} and pα ∈ Pw in (B6) implies that Cpα is not an ideal

minimal element of c(w). By (B1), one has ypα = 0. In particular, yipα = 0 and (B6) follows.

When q = 1 inequality ypα ≥ 0 means y1pα > 0, and so under (B6) one has c1pα ≦ c1pβ for all

pβ ∈ Pw, that is c
1
pα

= Inf(C(w)). Thus, for q = 1, conditions (B1) and (B6) are equivalent. �

In multi-product networks, equilibra defined via (B4) and (B6) do not follow from each
other. We can see that in the following examples:

Example 3.2.17 Consider a network consisting of four nodes {Ni : i = 1, ..., 4}, one ori-
gin destination pair w = (N1, N4) and two paths p1 and p2 connecting w via N2 and N3

respectively. We assume there are two products in the network. Let a feasible pattern flow Y
be given by its rows Y1 = (20, 320) and Y2 = (10, 500) representing the quantities of the two
products to traverse the paths p1 and p2 respectively. Assume further that the cost matrix
associated to the path flow Y has its rows C1 = (2, 16) and C2 = (1, 25). Then (B4) holds,
but not (B6) because C1

1 = 2 > 1 = C1
2 with y1p1 = 20 6= 0.

Example 3.2.18 Consider the network of the previous example. Let a feasible pattern flow
Y be given by its rows Y1 = (0, 830 and Y2 = (30, 0) representing the quantities of the two
products to traverse the paths p1 and p2 respectively. Assume further that the cost matrix
associated to the path flow Y has its rows C1 = (2, 16) and C2 = (2, 25). Then (B6) holds,
but not (B4) because C2 ≥ C1 with Y2 6= 0.

3.2.4 Multi-product multi-criteria supply demand network

In this subsection we study a multi-product multi-criteria supply demand network which is
one of the topics of our attention. In the definition below inequality of matrices is understood
as vector inequality in the space Rl×q, and the negation of strict inequality Ypα 6> Lpα means
there is at least one component of Ypα less than or equal to the corresponding component
of Lpα .
Let Ȳ be a feasible solution. We consider the following conditions:

• (H1) For every w ∈W and pα ∈ Pw,

Cpα ≥ InfC(w) =⇒ Y pα = Lpα ;

• (H2) For every w ∈W and pα ∈ Pw,

Cpα ≥ InfC(w) =⇒ either Y pα = Lpα or Y pβ = Upβ

for all pβ ∈ Pw with Cpβ = InfC(w);

3.2 Multi-criteria Traffic Network 25

• (H3) For every w ∈W and pα ∈ Pw,

Cpα ≥ InfC(w) =⇒ either Y pα = Lpα or Y pβ = Upβ

for some pβ ∈ Pw with Cpβ = InfC(w).

The following implications are clear:

(H1) =⇒ (H2) =⇒ (H3).

Note that the converse implications are not true in general. Actually these conditions are
closely related to the existence of ideal minimal costs.

Proposition 3.2.19 If the feasible pattern flow Y satisfies either of (H1), (H2) and (H3),
then for every origin destination pair w ∈W the set of vector costs C(w) has ideal minimal
elements.

Proof. Due to the implications of (H1), (H2) and (H3) we have mentioned, it suffices to
prove the proposition when the flow Y satisfies (H3). Suppose to the contrary that for
some origin destination pair w ∈ W the set C(w) has no ideal elements. This means that
Cpα ≥ InfC(w) for all pα ∈ Pw. In view of (H3), we have Y pα = Lpα . Summing up Y pα over
all paths pα joining w, we obtain

dw =
∑

pα∈Pw

Y pα =
∑

pα∈Pw

Lpα

which contradicts (3.13). �

Since in most situations, ideal elements of a set of vectors do not exist, conditions (H1),
(H2) and (H3) are very difficult to be fulfilled. Instead, we offer a better choice for equilib-
rium in multi-product multi-criteria models with capacity constraints. We consider also the
following conditions:

• (H4) For every w ∈W and pα, pβ ∈ Pw,

Cpα ≥ Cpβ =⇒ either Y pα = Lpα or Y pβ = Upβ

• (H5) For every w ∈W and pα, pβ ∈ Pw,

Cpα ≥ Cpβ =⇒ either Y pα ≯ Lpα or Y pβ ≮ Upβ

• (H6) For every w ∈W and pα, pβ ∈ Pw,

Cpα > Cpβ ⇒ either Y pα = Lpα or Y pβ = Upβ .

Remark 3.2.20
1) In a model without capacity constraints, condition (H4) collapses to (B4) of the previous
subsection.
2) Again in a model without constraints condition (H5) is named in [51] as a weak vector
Wardrop principle. It was introduced by Oettli in [47] to express a necessary condition for a
vector variational equilibrium.
3) Conditions (H1)-(H6) given above were developed for networks with capacity constraints
by Luc [37].

26 3 Traffic network equilibrium

For networks with capacity constraints, the following notion of equilibrium introduced by Li,
Teo and Yang has received a lot of attention (see [32, 33, 38] for instance): a feasible pattern
flow y is said to be a vector equilibrium if for every j = 1, ..., q, w ∈W and pα, pβ ∈ Pw one
has implication

cjpα ≥ cjpβ =⇒ either yjpα = ljpα or yjpβ = ujpβ .

Observe that this concept of equilibrium and the ones given in (H4) and (H5) are equivalent
when q = 1, but they are not comparable when q > 1 as it is shown by Examples 3.2.21 and
3.2.22. Because the implication in the definition of vector equilibrium involves individually
q products, its analysis is much similar to single product multi-criteria models (see [32]).
In contrast to this, equilibrium in conditions (H4) and (H5) consider collectively different
kinds of products and seem to be more suitable in the models in which a certain proportion
between the products to transport is to be kept (for instance, we cannot transport cows
without dried grass on a long distance even if on a route the cost for cows is cheaper and
the cost for dried grass is more expensive than on another route).

Example 3.2.21 Consider a network problem with only one pair of origin-destination nodes
w = (x, x

′

), two criteria and two products to traverse the network with two available paths:
Pw = {p1, p2}. Assume that d1w = 6, d2w = 13, ljpi = 2, ujpi = 10 for pi ∈ Pw, j = 1, 2, and

y1p1 = 2 y2p1 = 3 c1p1 = (20, 10)T c12 = (15, 8)T

y1p2 = 4 y2p2 = 10 c1p2 = (15, 9)T c2p2 = (10, 7)T

Since c1p1 ≥ c1p2 and y1p1 = l1p1 = 2; c2p1 ≥ c2p2 and y2p2 = u2p2 = 10, Y is a vector equilibrium.

However, Y is not a strong vector equilibrium. In fact, Y p2 6= Up2 and Y p1 6= Lp1 , although
Cp1 ≥ Cp2 .

Example 3.2.22 Consider a network problem with only one pair of origin-destination nodes
w = (x, x

′

), two criteria and two products to traverse the network with three available paths:
Pw = {p1, p2, p3}. Assume that d1w = 15, d2w = 20, ljpi = 2, ujpi = 10 for pi ∈ Pw and j = 1, 2,
and

y1p1 = 3 y2p1 = 6 c1p1 = (12, 20)T c2p1 = (19, 10)T

y1p2 = 3 y2p2 = 9 c1p2 = (20, 18)T c2p2 = (15, 12)T

y1p3 = 9 y2p3 = 5 c1p3 = (18, 12)T c2p3 = (10, 19)T

Since Cpα 6≦ Cpβ and Cpα 6≧ Cpβ , ∀pα, pβ ∈ Pw and Li < Y pi < Upi , ∀pi ∈ Pw, Y is a

strong vector equilibrium. However, Y is not a vector equilibrium. In fact, c1p2 > c1p3 but

y1p2 6= l1p2 and y
1
p3

6= u1p3 .

In a similar vein, Raciti [51] studies equilibrium for a model without capacity constraints
by requiring that for every k ∈ {1, ..., l}, w ∈W and pα, pβ ∈ Pw one has implication

cjpα,k ≥ cjpβ ,k =⇒ yjpα = 0 for all j = 1, ..., q.

In this definition not only products are considered individually, but the criteria too. So its
study belongs to the category of single-product single-criterion network equilibria. Here are
some relationships between the conditions of equilibrium.

Proposition 3.2.23 Let Y be a feasible pattern flow. The following assertions hold.

i) (H1) ⇒(H4)⇒ (H5).
ii) (H4) ⇒ (H1) provided that for every w ∈ W , the set C(w) has ideal minimal elements

and that
dw �

∑

pβ∈Pw:Cpβ
=InfC(w)

Upβ +
∑

pα∈Pw:Cpα 6=InfC(w)

Lpα .

3.2 Multi-criteria Traffic Network 27

Proof. The implication (H4) ⇒ (H5) is obvious. For the implication (H1) ⇒ (H4), let
Cpα ≥ Cpβ for some pα, pβ ∈ Pw. Then Cpα is not ideal minimal, and Y pα = Lpα by (H1).

This shows that (H4) is satisfied. To prove (ii), we assume (H4). Let Cpα ≥ InfC(w) for
some pα ∈ Pw. Picking any Cpβ = InfC(w), we obtain Cpα ≥ Cpβ which implies that either

Y pα = Lpα or Y pβ = Upβ . If Y pα = Lpα ,, we obtain (H1). If not, Y pγ = Upγ for all pγ ∈ Pw
with Cpγ = InfC(w). Consequently,

dw =
∑

pα∈Pw

Y pα

=
∑

pβ∈Pw:Cpβ
=InfC(w)

Upβ +
∑

pα∈Pw:Cα 6=InfC(w)

Y pα

≥
∑

pβ∈Pw:Cpβ
=InfC(w)

Upβ +
∑

pα∈Pw:Cpα 6=InfC(w)

Lpα

which contradicts the hypothesis. �

Remark 3.2.24
1) The implication (H5) ⇒ (H4) is not true except for the case q = 1, in which the two
conditions (H4) and (H5) coincide. Of course, both of them generalize Wardrop’s equilibrium
[64] when q = 1 and l = 1.
2) The results obtained in Proposition 3.2.19 and Proposition 3.2.23 of Luc [37] suggest
to call a feasible flow satisfying (H1), (H4) and (H5) as an ideal equilibrium, a strong
equilibrium and a weak equilibrium respectively.
3) Condition (H6) is a general version of weak vector equilibrium defined in Li, Teo, Yang
[33] with respect to the number of considered products.

Note that a multi-product network hardly possesses ideal equilibrium flows, the con-
cept of strong equilibrium seems to be most appropriate for multi-product networks. Weak
equilibrium is particularly interesting in networks in which products are transported by bun-
dles. For instance, machines sending from a factory to a destination are accompanied by a
number of accessories. It is possible that on a path lower limits for certain accessories are
reached while lower limits for other accessories are not. In such a model, strong equilibria
infrequently exist and weak equilibria turn to be good substitutes.

4

Equilibrium in a multi-criteria traffic network without

capacity constraints

In this chapter, we develop a new method to generate the set of equilibrium flows of a
multi-criteria traffic network. To this end we introduce two optimization problems by using
a vector version of the Heaviside Step function and the distance function to Pareto minimal
elements and show that the optimal solutions of these problems are exactly the equilibria of
the network. We study the objective functions by establishing their generic differentiability
and local calmness at equilibrium solutions. Then we present an algorithm to generate a
representative set of equilibrium solutions by using a modified Frank-Wolfe reduced gradi-
ent method and prove its convergence. We give some numerical examples to illustrate our
algorithm and show its advantage over a popular method by using linear scalarization. A
method of smoothing the objective functions by analytic approximations of the Heaviside
Step function is also considered. Finally, we introduce the concept of robust equilibrium and
obtain a formula to compute the radius of robustness together with an algorithm to find
robust equilibrium flows.

The following concept of equilibrium is known as a vector version of Wardrop’s famous
user principle (see [24]).

Definition 4.0.25 A feasible path flow y is said to be a vector equilibrium (respectively a
weak vector equilibrium) of G if for every O/D pair w ∈ W and for every couple of paths
p, p′ ∈ Pw one has implication

cp(y)− cp′(y) ≥ 0 (respectively cp(y)− cp′(y) > 0) =⇒ yp = 0.

It is clear that every vector equilibrium is weak vector equilibrium, and the converse is
not true in general. Note that the set of weak vector equilibria is closed if the vector cost
functions are continuous, while it is not always the case for the set of vector equilibria (see
Example 4.3.2). Further, if we denote by Cw(y) the set of all vectors cp(y), p ∈ Pw for an
O/D pair w ∈W , then the above definition is equivalent to the implication

cp(y) 6∈ Min(Cw(y)) (respectively cp(y) 6∈ WMin(Cw(y))) =⇒ yp = 0,

for every p ∈ Pw and every w ∈W .

4.1 Equivalent problems

A common technique to find equilibrium of a multi-criteria traffic network is to transform it
to an equivalent problem the solution methods of which are already known. In this section we
discuss two well-known approaches of such transformations: an approach by scalarization and
an approach by variational inequalities. Then we introduce a new approach by constructing
two optimization problems the solutions of which are exactly the vector equilibria of the
network.

30 4 Equilibrium in a multi-criteria traffic network without capacity constraints

4.1.1 Scalarization

The first method for solving a multi-criteria traffic network equilibrium problem is to convert
it to a single-criterion problem by scalarizing the vector cost function. Namely, let h be a real-
valued function on the set {cp(y) : y ∈ K, p ∈ P} which satisfies a monotonicity (respectively
weak monotonicity) condition: for every w ∈W, p and p′ ∈ Pw,

h(cp(y)) > h(cp′(y)) if cp(y) ≥ cp′(y) (respectively cp(y) > cp′(y)).

By considering the network G equipped with the scalar cost function

πp(y) = h(cp(y))

one says that a feasible path flow ȳ is a π-equilibrium if for every w ∈ W and for every
p, p′ ∈ Pw, one has implication

πp(y)− πp′(y) > 0 =⇒ yp = 0.

It is clear that if h is monotone, then a π-equilibrium is a vector equilibrium and if h is
weakly monotone, then a π-equilibrium is a weak vector equilibrium. The converse is not
true in general. Here are some typical instances of scalarization.

1) Linear scalarization. In the classical bi-criteria models of [12, 14, 44, 45] the authors
consider a vector cost function on arcs

ĉa(z) =

(
ta(z)
ua(z)

)

where ta(z) is the travel time function and ua(z) is the travel cost function on arc a ∈ A.
They choose nonnegative weights λ1a and λ2a associated with ta and ua respectively on each
arc a ∈ A and define the scalarized cost function on paths as follows

πp(y) =
∑

a∈A

(
λ1a, λ

2
a

)
ĉa(∆y)δap =

∑

a∈A

(
λ1a ta(∆y) + λ2a ua(∆y)

)
δap

for every flow y ∈ K and every path p ∈ P .
Since cp(y) =

∑
a∈A ĉa(z)δap, the vector cost function cp on path p can be written as

cp(y) =
∑
a∈A

(
ta(∆y)
ua(∆y)

)
δap. (4.1)

Assume there is some weight vector (α, β) ≥ 0 such that (λ1a, λ
2
a) = (α, β) for all a ∈ A, that

is, the weights (λ1a, λ
2
a) are common on all arcs and equal to (α, β). Then the scalarized cost

function πp can be written as
πp(y) = (α, β)cp(y).

The (linear) scalarizing function h defined by

h(cp(y)) = (α, β)cp(y)

is monotone if (α, β) > 0 and weakly monotone if (α, β) ≥ 0. Consequently, a π-equilibrium
is a vector equilibrium or a weak vector equilibrium depending on whether (α, β) > 0 or
(α, β) ≥ 0.
It is worthwhile noting here that when the weights (λ1a, λ

2
a) are distinct on arcs, a π-

equilibrium is not necessarily a vector equilibrium or a weak vector equilibrium.

4.1 Equivalent problems 31

2) Nonlinear scalarization. As it was already said a weak vector equilibrium is not neces-
sary a π-equilibrium when h takes a linear form. In other words, without any specific prop-
erties of the cost functions, not all weak vector equilibria of G may be obtained by solving
network equilibrium problems in which the cost functions are of type h(cp(y)) = (α, β)cp(y)
with (α, β) ≥ 0. To fulfill this gap nonlinear scalarizing functions are widely used in recent
models ([24, 32, 37, 38]). Namely, for every path flow y and path p ∈ Pw, w ∈ W we define
a scalarized relative cost function rp(y) to be

rp(y) = max
p′∈Pw

min
j=1, ··· , l

(cp,j(y)− cp′,j(y))

where cp,j(y) denotes the jth component of cp(y). The function h defined by

h(cp(y)) = rp(y)

is weakly monotone. Indeed, let p, p′ ∈ Pw, w ∈ W with cp(y) > cp′(y). Let p
′′ ∈ Pw such

that
h(cp′(y)) = min

j=1, ··· , l
(cp′,j(y)− cp′′,j(y)).

We have

min
j=1, ··· , l

(cp,j(y)− cp′′,j(y)) = min
j=1, ··· , l

[(cp,j(y)− cp′,j(y)) + (cp′,j(y)− cp′′,j(y))]

≧ min
j=1, ··· , l

(cp,j(y)− cp′,j(y)) + min
j=1, ··· , l

(cp′,j(y)− cp′′,j(y))

> min
j=1, ··· , l

(cp′,j(y)− cp′′,j(y)),

and deduce
h(cp(y)) ≧ min

j=1, ··· , l
(cp,j(y)− cp′′,j(y)) > h(cp′(y)).

As before, we say that a feasible path flow y is r-equilibrium if for every w ∈ W and
p, p′ ∈ Pw, one has implication

rp(y) > rp′(y) =⇒ yp = 0. (4.2)

We observe that (4.2) is equivalent to (4.3) below

rp(y) > 0 =⇒ yp = 0. (4.3)

Indeed, since rp(y) ≧ 0 for all p ∈ P , implication (4.3) =⇒ (4.2) is clear. For the converse
implication, suppose rp(ȳ) > 0 for some p ∈ Pw. There exists some p′ ∈ Pw such that

rp(ȳ) = min
j=1, ··· , l

(cp,j(y)− cp′,j(y)) > 0.

This shows that cp(ȳ) > cp′(ȳ) and implies rp(ȳ) > rp′(ȳ) because h is weakly monotone. In
view of (4.2), we deduce ȳp = 0.
The following property demonstrates an important role of nonlinear scalarization: a feasible
path flow is a weak vector equilibrium if and only if it is an r-equilibrium. Indeed, the
function h being weakly monotone, the ”if” part is clear. For the ”only if” part, suppose ȳ
is not r-equilibrium. By (4.3) there exist some w ∈W and p′ ∈ Pw such that rp(ȳ) > 0 and
ȳp 6= 0. Let p′ ∈ Pw be such that

rp(ȳ) = min
j=1, ··· , l

(cp,j(ȳ)− cp′,j(ȳ)) > 0.

Then cp(ȳ) > cp′(ȳ), and hence ȳ is not a weak vector equilibrium.

32 4 Equilibrium in a multi-criteria traffic network without capacity constraints

3) Augmented nonlinear scalarization. We notice that an r-equilibrium is not necessarily
a vector equilibrium. In order to obtain vector equilibria we consider a new scalarized relative
cost function Rǫp(y) defined by

Rǫp(y) = max
p′∈Pw

min
j=1, ··· , l

[cp,j(y)− cp′,j(y) + ǫ

l∑

j=1

(cp,j(y)− cp′,j(y))]

for every y ∈ K and p ∈ Pw for some w ∈ W , where ǫ > 0 is a small constant. Using an
argument similar to the case of rp, we may prove that the function h defined by

h(cp(y)) = Rǫp(y)

is a monotone function. A feasible path flow y is said to be Rǫ-equilibrium if for every path
p ∈ P, one has implication

Rǫp(y) > 0 =⇒ yp = 0.

It can also be proven that a feasible path flow is a vector equilibrium if and only if there is
some ǫ > 0 such that it is an Rǫ-equilibrium. Notice that the constant ǫ depends on each
equilibrium flow. Therefore, in order to generate the set of vector equilibria by this approach
one has to find the set of Rǫ-equilibria for all ǫ > 0.

4.1.2 Vector variational inequalities

Another approach in solving a multi-criteria traffic network equilibrium problem is to con-
struct a suitable vector variational inequality the solutions of which are vector equilibria
of the model, see [32]. We consider two vector variational inequality problems, denoted
respectively (VI) and (WVI): Find ȳ ∈ K such that

C(ȳ)(y − ȳ) 66≤ 0 for all y ∈ K

and
C(ȳ)(y − ȳ) 66< 0 for all y ∈ K.

The first variational inequality can be written as C(ȳ)(y − ȳ) 6∈ −Rl+ \ {0} and the second
one is written as C(ȳ)(y − ȳ) 66∈ intRl+. The following claim is also clear (see [32]): If ȳ
solves (VI) (respectively (WVI)), then it is a vector equilibrium (respectively a weak vector
equilibrium). The converse is not true, that is, a vector equilibrium (respectively weak vector
equilibrium) is not necessarily a solution of (VI) (respectively (WVI)). By considering the
set of the so-called elementary flows one is able to construct an equivalent vector variational
inequality for the multi-criteria network equilibrium problem. Namely, let us denote by K(ȳ)
the set of flows y ∈ K such that y − ȳ is elementary in the sense that there are w ∈ W
and p, p′ ∈ Pw such that [y − ȳ]p′′ = 0 for p′′ ∈ P \ {p, p′} and [y − ȳ]p = −[y − ȳ]p′ , where
[y − ȳ]p′ is the traffic load on path p′. It was proven in [38] that ȳ is a vector equilibrium if
and only if it is a solution of the following vector quasi-variational inequality problem

C(ȳ)(y − ȳ) 6≤ 0 for all y ∈ K(ȳ).

A similar result is true for weak vector equilibria. Notice that finding a feasible flow satisfying
the above mentioned vector variational inequality is hard and as far as we know, up to now
there is no efficient method to solve it.

4.1 Equivalent problems 33

4.1.3 Two optimization problems

In this part we develop a new approach to solve a multi-criteria traffic equilibrium problem.
Specifically we shall construct two optimization problems the solutions of which are exactly
the vector equilibria of the network. The following notations will be used:

• d[x,B] is the Euclidean distance from a point x to a set B in Rl.
• e ∈ Rl is the vector of ones and H+ : Rl → Rl is defined by

H+(x) =

{
e if x ≧ 0
0 else.

The functionH+ is vector version of the Heaviside Step function, which can also be expressed
by

H+(x) =

(
l∏

i=1

h+(xi)

)
e for all x ∈ Rl,

where h+ is the scalar Heaviside Step function, that is h+(t) = 1 for t ∈ R+ and h+(t) = 0
for t < 0. Let us define two functions on the set of feasible flows:

φ(y) :=
∑

p∈Pw,w∈W

ypd[cp(y),Min(Cw(y))]

ψ(y) :=
∑

p∈Pw,w∈W

yp
∑

p′∈Pw

[cp(y)− cp′(y)]
TH+[cp(y)− cp′(y)].

In general these functions are not continuous, but still have nice properties that we shall
develop in the next section. We now show that the problems of minimizing them on the
feasible set K are equivalent to the multi-criteria network equilibrium problem.

Theorem 4.1.1 Let ȳ be a feasible flow. The following statements are equivalent:

(i) ȳ is a vector equilibrium.
(ii)ȳ is an optimal solution of the following problem, denoted (P1):

minimize φ(y)

subject to y ∈ K

and the optimal value of this problem is zero.
(iii)̄y is an optimal solution of the following problem, denoted (P2):

minimize ψ(y)

subject to y ∈ K

and the optimal value of this problem is zero.

Proof. We first prove that (i) and (ii) are equivalent. Let ȳ be a vector equilibrium. Since
φ(y) ≧ 0 for every y ∈ K, it suffices to prove φ(ȳ) = 0 in order to deduce (ii). In fact, for
every p ∈ Pw, w ∈ W one has either cp(ȳ) ∈ Min(Cw(ȳ)) or there is some p′ ∈ Pw such
that cp(ȳ) − cp′(ȳ) ≥ 0. In the first case, d[cp(ȳ),Min(Cw(ȳ))] = 0, and in the second case,
ȳp = 0 by definition. Thus, the terms ȳpd[cp(ȳ),Min(Cw(ȳ))], p ∈ P are all equal to zero,
which implies φ(ȳ) = 0. Conversely, assume ȳ is an optimal solution of (P1) with φ(ȳ) = 0.
Since all terms in the sum defining φ are nonnegative, we have ypd[cp(ȳ),Min(Cw(ȳ))] = 0
for all p ∈ Pw, w ∈ W . If for some p and p′ from Pw, w ∈ W one has cp(ȳ) − cp′(ȳ) ≥ 0,
then cp(ȳ) 6∈ Min(Cw(ȳ)). Hence d[cp(ȳ),Min(Cw(ȳ))] 6= 0 and ȳp = 0. This proves that ȳ is
a vector equilibrium.

34 4 Equilibrium in a multi-criteria traffic network without capacity constraints

Next we show equivalence between (i) and (iii). Let ȳ be a vector equilibrium. Since ψ(y) ≧ 0
for every y ∈ K, as before, it suffices to prove ψ(ȳ) = 0 in order to deduce (iii). Let
p ∈ Pw, w ∈W . Consider the term

∑
p′∈Pw

ȳp[cp(ȳ)− cp′(ȳ)]TH+[cp(ȳ)− cp′(ȳ)], denoted bp. If

cp(ȳ)− cp′(ȳ) ≥ 0 for some p′ ∈ Pw, then by definition, ȳp = 0. If cp(ȳ)− cp′(ȳ) = 0 for some
p′ ∈ Pw, it is clear that the corresponding term of the above sum is zero. If cp(ȳ)−cp′(ȳ) 6≧ 0
for some p′ ∈ Pw, then H+[cp(ȳ) − cp′(ȳ)] = 0. Therefore bp = 0. Consequently, ψ(ȳ) = 0
as requested. Conversely, assume ȳ solves (P2) and ψ(ȳ) = 0. It follows that bp = 0 for
every p ∈ P . If for some p and p′ from Pw, w ∈ W one has cp(ȳ) − cp′(ȳ) ≥ 0, then
[cp(ȳ) − cp′(ȳ)]TH+[cp(ȳ) − cp′(ȳ)] > 0. Consequently, ȳp = 0. We deduce that ȳ is a vector
equilibrium. �

We note that problems (P1) and (P2) belong to the class of nonconvex problems under
linear constraints. Their significance resides in the fact that the set of optimal solutions is
exactly the set of vector equilibrium flows. Therefore these problems will be used to develop
algorithms to generate vector equilibrium flows of the network.
Furthermore, by using the same method of proof we may establish a similar result for weak
vector equilibria. Namely, a feasible ȳ is a weak vector equilibrium if and only if it solves
each of the following problems

minimize φw(y) :=
∑

p∈Pw,w∈W

ypd[cp(y),WMin(Cw(y))]

subject to y ∈ K

and

minimize ψw(y) :=
∑

p∈Pw,w∈W

yp
∑

p′∈Pw

[cp(y)− cp′(y)]
THw

+ [cp(y)− cp′(y)]

subject to y ∈ K

and the optimal values are equal to zero, where Hw
+ is defined by

Hw
+(x) =

{
e if x > 0
0 else.

And finally, we observe that the conclusion of Theorem 5.2.1 remains true when the function
H+ defining the objective function of (P2) is substituted by the function

H̃+(x) =

(
l∏

i=1

h̃+(xi)

)
e for all x ∈ Rl,

where h̃+(t) = h+(t) for all t ∈ R \ {0} and h̃+(0) = 1/2.

4.2 Generic differentiability and local calmness of the objective

functions

The objective functions φ and ψ of problems (P1) and (P2) are not only nonconvex, but also
not continuous as we have already noticed. This defect causes major difficulties in applying
global optimization tools to solve (P1) and (P2). However, as we shall see in this section, these
functions enjoy certain generic properties on continuity and differentiability. Specifically, we
shall show that they are discontinuous or nondifferentiable only on a negligible subset.

We first need some preliminary lemmas in order to establish generic properties of the
functions φ and ψ. Let b1, · · · , bk be vector-valued functions from Rm to Rl. For every y ∈ Rm
and j ∈ {1, · · · , k} denote

4.2 Generic differentiability and local calmness of the objective functions 35

I(y) =
{
i ∈ {1, · · · , k} : bi(y) ∈ Min{b1(y), · · · , bk(y)}

}

Jj(y) =
{
i ∈ {1, · · · , k} : bj(y) ≧ bi(y)

}
.

Thus, y 7→ I(y) and y 7→ Jj(y), j ∈ {1, · · · , k} are set-valued maps from Rm to the topo-
logical space {1, · · · , k} equipped with the discret topology. In this case the map I is lower
semi-continuous at y if there is a neighborhood U of y in Rm such that I(y′) ⊇ I(y) for
every y′ ∈ U , and it is upper semi-continuous if there is a neighborhood U of y in Rm such
that I(y′) ⊆ I(y) for every y′ ∈ U .

Lemma 4.2.1 Assume that the functions b1, · · · , bk are continuous. The following state-
ments hold.

(i) The set-valued map y 7→ I(y) is lower semi-continuous at every point y ∈ Rm at which
the vectors b1(y), · · · , bk(y) are distinct from each other.

(ii)The set-valued maps y 7→ Jj(y), j = 1, · · · , k are upper semi-continuous.

Proof. To prove (i), let i ∈ I(y). Since all vectors bj(y), j ∈ {1, · · · , k} are distinct, by
definition one has bj(y) 6∈ bi(y)−Rl+ for j 6= i. Moreover, because b1, · · · , bk are continuous,
there exists an open neighborhood U of y such that

bj(y
′) 6∈ bi(y

′)− Rl+ for j 6= i, y′ ∈ U.

Hence bi(y
′) ∈ Min{b1(y′), · · · , bk(y′)} for all y′ ∈ U , which means i ∈ I(y′). We conclude

I(y) ⊆ I(y′) for all y′ ∈ U.
To prove (ii) we show that for any fixed index j, the map y 7→ Jj(y) is closed. Indeed, let
{yν}ν≧0 be a sequence in Rm converging to y and iν ∈ Jj(y

ν) converging to i. Then iν = i

for ν sufficiently large, which means that bj(y
ν) ≧ bi(y

ν) for ν large. By continuity, when ν
tends to ∞, we obtain bj(y) ≧ bi(y), which proves that i ∈ Jj(y). Since the image space of
Jj is finite, in view of Proposition 1.4.8 of [2], the map Jj is upper semi-continuous. �

We note that in general the map y 7→ I(y) is not upper semi-continuous and it is not
lower semi-continuous without the condition that the vectors b1(y), · · · , bk(y) are distinct
from each other. Similarly the maps y 7→ Jj(y), j ∈ {1, · · · , k} are not lower semi-continuous.
This observation is seen in the following example.

Example 4.2.2 Let vector-valued functions b1, b2, b3, b4 from R3 to R2 be defined as follows

b1(y) = (y1 + y2, y1 + y3)
T ,

b2(y) = (y2, y2 + y3)
T ,

b3(y) = (y1 + y2 + 2y3, y3)
T ,

b4(y) = (y1 + 2y2 + y3, y2)
T .

Consider the family {b1(y), b2(y), b3(y)} at the point y = (3, 3, 3)T . We have b1(y) =
(6, 6)T , b2(y) = (3, 6)T , b3(y) = (12, 3)T . By definition, I(y) = {2, 3}. We claim that the map
y 7→ I(y) is not upper semi-continuous at y. Indeed, for ν > 1, set yν = (3−1/ν, 3+1/ν, 3)T .
Then yν converges to y as ν tends to ∞, while I(yν) = {1, 2, 3} for every ν > 1.
For the family {b2(y), b3(y), b4(y)}, the hypothesis of (i) of Lemma 4.2.1 does not hold
at y = (3, 3, 3)T . We have I(y) = {2, 3, 4} and J3(y) = {3, 4}. However, for yν =
(3, 3 + 1/ν, 3 − 1/ν)T with ν > 1, we have I(yν) = {2, 3} and J3(y

ν) = {3} for all ν > 1.
Since yν converges to y as ν tends to ∞ we conclude that the maps y 7→ I(y) and y 7→ J4(y)
are not lower semi-continuous at y.

According to a generic theorem (Theorem 1.4.13 of [2]) the set-valued maps y 7→
Jj(y), j ∈ {1, · · · , k} and y 7→ I(y) are continuous on a dense subset of Rn. Below we
establish a stronger result which says that the set of discontinuity of these maps is nowhere
dense.

36 4 Equilibrium in a multi-criteria traffic network without capacity constraints

Lemma 4.2.3 Assume that the functions b1, · · · , bk are continuous. For every open set
U ⊆ Rm there is an open subset U ′ such that

(i) I(y) = I(y′) for every y, y′ ∈ U ′

(ii)Jj(y) = Jj(y
′) for every y, y′ ∈ U ′ and j ∈ {1, · · · , k}.

Proof. For each couple bi and bj , i 6= j, either bi(y) = bj(y) for all y ∈ U , or there is some
y ∈ U such that bi(y) 6= bj(y), in which case, due to continuity, there is a small neighborhood
U1 of y in U such that bi(y

′) 6= bj(y
′) for all y′ ∈ U1. Applying this argument to all possible

couples from the family {b1, · · · , bk} we may assume the existence of an open subset U2 in
U and an index set I ⊆ {1, · · · , k} such that the vectors bi(y

′), i ∈ I are all distinct from
each other and for every i ∈ {1, · · · , k} there is some j ∈ I such that bi(y

′) = bj(y
′), y′ ∈ U2.

Let y ∈ U2. In view of Lemma 4.2.1 one find some neighborhood U3 of y in U2 such that
I(y) ⊆ I(y′) for all y′ ∈ U3 with I(y) and I(y′) being subsets of I. It follows from the
definition of I that the latter statement is true for the family b1, · · · , bk. Let us now consider
the set of all index sets I(y′) ⊆ {1, · · · , k}, y′ ∈ U3. We find an index set I(y′) for some
y′ ∈ U3 which is maximal with respect to inclusion. Apply again Lemma 4.2.1 to this y′ we
may find a smaller neighborhood U ′ ⊆ U3 such that I(y′) ⊆ I(y′′) for all y′′ ∈ U ′. But I(y′)
was chosen to be maximal, we have I(y′) = I(y′′) for all y′′ ∈ U ′ as requested.
To prove (ii), let us consider a point y ∈ U . In view of Lemma 4.2.1 (ii) for each j ∈ {1, · · · , k}
there exists an open set U1 of y in U such that

Jj(y
′) ⊆ Jj(y) for all y

′ ∈ U1.

For j = 1, consider the family of index set J1(y
′), y′ ∈ U1 and let y1 ∈ U1 be a point at

which J1(y
1) is minimal with respect to inclusion. Then there is an open set U2 of y1 in U1

such that
J1(y

′) ⊆ J1(y
1) for all y′ ∈ U2.

Because of the choice of y1, the above inclusion is equality. The same argument is applied
to J2(.) on U2. We obtain an open set U3 ⊆ U2 such that

J1(y
′) = J1(y

′′)

J2(y
′) = J2(y

′′) for all y′, y′′ ∈ U3.

Continuing this process we arrive at an open set U ′ ⊆ U in which

Jj(y
′) = Jj(y

′′) for all y′, y′′ ∈ U ′ and j = 1, · · · , k

as requested. �

We recall that the Hausdorff distance between two bounded closed sets B and B′ in Rl
is defined by

H(B,B′) = min{t ≧ 0 : B ⊆ B′ + tB, B′ ⊆ B + tB} = max{max
x∈B

d(x,B′), max
x′∈B′

d(x′, B)},

where B denotes the unit ball centered at 0 in Rl. Now we are in position to present and
prove the main result of this section.

Theorem 4.2.4 Assume that the vector cost functions cpi , i = 1, · · · ,m are continuous
(respectively locally Lipschitz or differentiable). Then every open set in Rm contains an open
subset where the objective functions φ and ψ of problems (P1) and (P2) are continuous
(respectively locally Lipschitz or differentiable).

4.2 Generic differentiability and local calmness of the objective functions 37

Proof. Let U be an open set in Rm. Let w ∈ W . In view of Lemma 4.2.3 there is an open
subset Uw ⊆ U and an index set I ⊆

{
i ∈ {1, · · · ,m} : pi ∈ Pw

}
such that

Min(Cw(y)) = {cpi(y) : i ∈ I} for all y ∈ Uw.

Then for y, y′ ∈ Uw we have

H[Min(Cw(y)),Min(Cw(y
′))] ≦ max{max

i∈I
d(cpi(y),Min(Cw(y

′)),

max
i∈I

d(cpi(y
′),MinCw(y))}

≦ max
i∈I

‖cpi(y)− cpi(y
′)‖.

If the functions cpi , pi ∈ P are continuous, then the set-valued map y 7→ Min(Cw(y)) is also
continuous on Uw with respect to the Hausdorff distance. In view of Theorem 1.4.16 [2] we
deduce that the functions d[cpi(y),Min(Cw(y))], pi ∈ Pw are continuous on Uw. By choosing
another O/D pair w′ fromW and applying the same argument as above on the open set Uw′

we obtain an open set U ′ ⊆ U such that all functions d[cpi(y),Min(Cw(y))], pi ∈ Pw, w ∈W
are continuous, which implies the same property for φ on U ′.
If the functions cpi , pi ∈ P are locally Lipschitz, then the set-valued map y 7→ Min(Cw(y))
is also locally Lipschitz on Uw. The method of proof of Theorem 1.4.16 [2] can be applied to
show that the functions d[cpi(y),Min(Cw(y))], pi ∈ Pw, w ∈ W are locally Lipschitz on Uw,
and then one obtains an open set U ′ ⊆ U on which φ is locally Lipschitz.
Assume now the functions cpi , pi ∈ P are differentiable. We consider the family Cw on the
open set Uw. Then for every pi ∈ Pw and y ∈ Uw one has

d[cpi(y),Min(Cw(y))] = min{d[cpi(y), cpi′ (y)] : i′ ∈ I}.

If cpi(y) ∈ Min(Cw(y)) for all y ∈ Uw, then d[cpi(y),Min(Cw(y))] = 0 on Uw, and so this
function is differentiable on Uw. If cpi(y) 6∈ Min(Cw(y)) for all y ∈ Uw, we denote by I ′(y)
the set of indices i′ ∈ I such that the above distance is attained. We claim that the set-valued
map y 7→ I ′(y) is upper semi-continuous. Indeed, let y ∈ Uw and let {yν}ν≧0 be a sequence

of elements in Uw converging to y. Let i′ν ∈ I ′(yν). Since I
′(yν) ⊆ I and I is finite, we may

assume without loss of generality that i′ν = i0 for some i0 ∈ I and for all ν ≧ 0. We have

d[cpi(yν), cpi0 (yν)] ≦ d[cpi(yν), cpi′ (yν)] for all i
′ ∈ I.

By passing to the limit as ν tends to ∞, we obtain

d[cpi(y), cpi0 (y)] ≦ d[cpi(y), cpi′ (y)] for all i
′ ∈ I

which proves that i0 ∈ I ′(y), and hence the map I ′(y) is upper semi-continuous. Let
y0 ∈ Uw be a point such that I ′(y0) is minimal with respect to inclusion among the in-
dex sets I ′(y), y ∈ Uw. Then, there is an open neighborhood U1 of y0 in Uw such that
I ′(y′) = I ′(y0) for all y

′ ∈ U1. By choosing any i′ ∈ I ′(y0) we obtain d[cpi(y),Min(Cw(y))] =
d[cpi(y), cpi′ (y)] > 0 for all y ∈ U1. Hence d[cpi(y),Min(Cw(y))] is differentiable on U1. Ap-
ply this argument to other paths and other O/D pairs to obtain an open set U ′ ⊆ U where
φ is differentiable.
Now we consider ψ. First we prove that for p, p′ ∈ Pw there is an open set U ′ ⊆ U such
that the function H+[cp(y)− cp′(y)] is constant on U ′. Indeed, If cp(y)− cp′(y) ≧ 0 for every
y ∈ U , then by definition H+[cp(y

′)− cp′(y′)] = e on U . If cp(y)− c′p(y) 6≧ 0 for some y, then
it is clear that there is some neighborhood U ′ of y in U such that

cp(y
′)− cp′(y

′) 6≧ 0 for all y′ ∈ U ′.

38 4 Equilibrium in a multi-criteria traffic network without capacity constraints

By definition H+[cp(y
′)− cp′(y

′)] = 0 on U ′. Applying the above argument to all p, p′ ∈ Pw
and w ∈ W , we find an open set U ′ ⊆ U on which the functions H+[cp(y) − cp′(y)] are
constant. Hence the function ψ is continuous (respectively Lipschitz continuous or differen-
tiable) on U ′ whenever the functions cpi , i = 1, · · · ,m are continuous (respectively Lipschitz
continuous or differentiable). �

For a path pi in P let us denote w(i) the O/D pair for which the set Pw(i) contains this
path. Thus, w(i) = w(i′) if the paths pi and pi′ connect the same O/D pair. We will also
adopt a convention that for two vectors b, b′ ∈ Rl, (b− b′)/‖b− b′‖ = 0 if b = b′.

Theorem 4.2.5 Assume that the vector cost functions cpi , i = 1, · · · ,m are differentiable.
Then for every point y outside of some nowhere dense subset and for every path pi, there
exists a path pν(i) from Pw(i) such that

(i) cpν(i)
(y) ∈ MinCw(i)(y)

(ii)d[cpi(y),MinCw(i)(y)] = ‖cpi(y)− cpν(i)
(y)‖

(iii)φ is differentiable at y and its gradient is computed by

∇φ(y) =




‖cp1(y)− cpν(1)
(y)‖

· · ·
‖cpm(y)− cpν(m)

(y)‖


+

m∑

i=1

ypi




cpi (y)−cν(i)(y)

‖cpi (y)−cpν(i)
(y)‖

(∂cpi
∂yp1

(y)− ∂cpν(i)

∂yp1
(y)
)

· · ·
cpi (y)−cpν(i)

(y)

‖cpi (y)−cpν(i)
(y)‖

(∂cpi
∂ypm

(y)− ∂cpν(i)

∂ypm
(y)
)




Proof. Let U be any open set in K. According to the proof of Theorem 4.2.4 there are an
open set U ′ ⊆ U and index sets Iw(i), i = 1, · · · ,m such that

d[cpi(y),MinCw(i)(y)] = ‖cpi(y)− cpi′ (y)‖

for all y ∈ U ′, i′ ∈ Iw(i), i ∈ {1, · · · ,m}. Choose ν(i) to be any i′ from Iw(i) for i = 1, · · · ,m,
we have

φ(y) =
m∑

i=1

ypi‖cpi(y)− cpν(i)
(y)‖

for all y ∈ U ′. If i ∈ Iw(i), then ‖cpi(y) − cpν(i)
(y)‖ = 0 for all y ∈ U ′. If i 6∈ Iw(i), then

‖cpi(y) − cpν(i)
(y)‖ > 0 for all y ∈ U ′. In any case every term in the sum of the function φ

is differentiable on U ′. A direct calculation produces the formula for the gradient of φ given
in (iii). �

In the next theorem we set
∑
j∈J

(
cpi(y) − cpj (y)

)
= 0 if the index set J is empty

and keep the notation Iw(i) for the set of all indices j such that pj ∈ Pw(i) satisfying
d[cpi(y),MinCw(i)(y)] = ‖cpi(y)− cpj (y)‖.

Theorem 4.2.6 Assume that the vector cost functions cpi , i = 1, · · · ,m are differentiable.
Then for every point y outside of some nowhere dense subset and for every path pi, there
exists a subset Ji(y) ⊆ Iw(i) such that

(i) cpi(y) ≥ cpj (y) for every j ∈ Ji(y)
(ii)ψ(y) =

∑m
i=1 ypi

〈∑
j∈Ji(y)

(
cpi(y)− cpj (y)

)
, e
〉

(iii)ψ is differentiable at y and its gradient is computed by

∇ψ(y) =




∑
j∈J1(y)

〈cp1(y)− cpj (y), e〉
· · ·∑

j∈Jm(y)〈cpm(y)− cpj (y), e〉


+

m∑

i=1

ypi




∑
j∈Ji(y)

〈 ∂cpi
∂yp1

(y)− ∂cpj
∂yp1

(y), e〉
· · ·

∑
j∈Ji(y)

〈 ∂cpi
∂ypm

(y)− ∂cpj
∂ypm

(y), e〉




4.2 Generic differentiability and local calmness of the objective functions 39

Proof. We apply an argument similar to the proof of Theorem 4.2.5. Given any open set U ,
there are an open set U ′ ⊆ U and index sets J1, · · · , Jm such that for y ∈ U ′, i ∈ {1, · · · ,m}
and pj ∈ Pw(i) one has cpi(y)− cpj (y) ≥ 0 if and only if j ∈ Ji. We deduce that

ψ(y) =

m∑

i=1

ypi
∑

j∈Ji

〈cpi(y)− cpj (y), e〉

for all y ∈ U ′. Consequently, ψ is differentiable on U ′. A direct calculation gives us the
formula (iii) for the gradient of ψ. �

To establish some more continuity properties of the objective functions we recall that a
function f on K is said to be locally calm at y ∈ K if there are some constants δ > 0 and
κ > 0 such that |f(y)− f(y)| ≦ κ‖y − y‖ for all y ∈ K with ‖y − y‖ ≦ δ (see [15]).

Proposition 4.2.7 Assume that the vector cost functions cp1 , · · · , cpm are continuous. Then
the functions φ and ψ are continuous at every vector equilibrium. If in addition cp1 , · · · , cpm
are locally calm at a vector equilibrium, then φ and ψ are also locally calm there.

Proof. Let y ∈ K be a vector equilibrium of G. Assume that cp1 , · · · , cpm are continuous
on K and locally calm at y. The case where these functions are merely continuous is proven
by a similar argument. We wish to show that there exist some δ > 0 and κ > 0 such that
|φ(y) − φ(y)| ≦ κ‖y − y‖ and |ψ(y) − ψ(y)| ≦ κ‖y − y‖ for every y ∈ K with ‖y − y‖ ≦ δ.
Because φ and ψ take nonnegative values and as y is equilibrium, by Theorem ??, φ(y) =
ψ(y) = 0, the above inequalities are equivalent to

φ(y) ≦ κ‖y − y‖ (4.4)

and
ψ(y) ≦ κ‖y − y‖. (4.5)

We establish (4.4) first. Recall that for i ∈ {1, ...,m}, w(i) denotes the O/D pair connected
by the path pi and Pw(i) denotes the set of all paths connecting this O/D pair. We make
also use of the following notations

I0 = {i ∈ {1, · · · ,m} : ȳpi = 0}
I+ = {i ∈ {1, · · · ,m} : ȳpi > 0}
D = max{dw : w ∈W}
T = max{‖cpi(y)‖ : y ∈ K, i = 1, · · · ,m}.

The following inequalities are clear

ypi ≦ ‖y‖ ≦ D (4.6)

d[cpi(y),Min(Cw(i)(y))] ≦ 2T (4.7)

for every y ∈ K and pi ∈ P. Consider the terms

fi(y) := ypid[cpi(y),Min(Cw(i)(y))], i = 1, ...,m.

If i ∈ I0, then (4.6) and (4.7) yield

|fi(y)− fi(ȳ)| = fi(y) ≦ 2Typi ≦ 2T‖y − y‖. (4.8)

If i ∈ I+, then we have d[cpi(ȳ),Min(Cw(i)(ȳ))] = 0. Consider the family of functions

40 4 Equilibrium in a multi-criteria traffic network without capacity constraints

Q := {cpj ∈ Cw(i) : cpj (ȳ) = cpi(ȳ)}.

We have
(Cw(i)(ȳ)\Q(ȳ)) ∩ (Q(ȳ)− Rl+) = ∅.

Because the set Cw(i)(y)\Q(ȳ) is finite and the set Q(ȳ) − Rl+ is closed, there exists some
γ > 0 such that

[(Cw(i)(ȳ) + γB)\(Q(ȳ) + γB)] ∩ (Q(ȳ) + γB− Rl+) = ∅.

By continuity there exists δi > 0 such that

Cw(i)(y) ⊆ Cw(i)(ȳ) + γB

Q(y) ⊆ Q(ȳ) + γB

for every y ∈ K with ‖y − y‖ ≦ δi. We deduce for such y and for every cpj ∈ Q that

[Cw(i)(y)\Q(y)] ∩ (cpj (y)− Rl+) = ∅. (4.9)

Consider the set Min(Q(y)). It is nonempty because Q(y) is finite. We claim that

Min(Q(y)) ⊆ Min(Cw(i)(y)). (4.10)

Indeed, let a ∈ Min(Q(y)). For each pj ∈ Pw(i), if cpj (y) /∈ Q(y), then by (4.9), one has

cpj (y) /∈ a− Rl+. (4.11)

If cpj (y) ∈ Q(y)\{a}, then (4.11) is true because a is an efficient element of Q(y). By this,
a ∈ Min(Cw(i)(y)) and (4.10) follows. Furthermore, by the calmness hypothesis there are
some constants δ′ > 0 and κ′ > 0 such that

‖cpj (y)− cpj (y)‖ ≦ κ′‖y − y‖ (4.12)

for every y ∈ K with ‖y−y‖ ≦ δ
′

and j = 1, · · · ,m. By using (4.10) we obtain the following
estimation

d[cpi(y),Min(Cw(i)(y))] ≦ d[cpi(y),Min(Q(y))]

≦ max
cpj∈Q

‖cpi(y)− cpj (y)‖

≦ max
cpj∈Q

‖cpi(y)− cpi(y) + cpj (y)− cpj (y)‖

≦ 2κ′‖y − y‖.

This and (4.6) imply
|fi(y)− fi(y)| = fi(y) ≦ 2Dκ′‖y − y‖ (4.13)

for all y ∈ K with ‖y − y‖ ≦ min(δi, δ
′

). By setting δ = min{min(δi, δ
′

) : i ∈ I+} and
κ = 2T |I0|+ 2Dκ′|I+| we obtain (4.4) from (4.8) and (4.13).
To prove (4.5), we proceed in a similar manner. Consider the terms

gi(y) := ypi
∑

pj∈Pw(i)

[cpi(y)− cpj (y)]
TH+[cpi(y)− cpj (y)], i = 1, ...,m.

Observe first that

0 ≦ [cpi(y)− cpj (y)]
TH+[cpi(y)− cpj (y)] ≦ 2lT,

4.3 Generating vector equilibrium flows 41

for all pi, pj ∈ P and y ∈ K. Therefore, if i ∈ I0, then

|gi(y)− gi(y)| = gi(y) ≦ 2mlTypi ≦ 2mlT‖y − y‖. (4.14)

If i ∈ I+, we have

∑

pj∈Pw(i)

[cpi(y)− cpj (y)]
TH+[cpi(y)− cpj (y)] = 0,

which implies that for pj ∈ Pw(i)\{pi}, either cpi(y) � cpj (y) or cpi(y) = cpj (y). In the first

case, due to the continuity hypothesis, there exists some δ
′′

i > 0 such that cpi(y) � cpj (y)

for all y ∈ K with ‖y − y‖ ≦ δ
′′

i . In the second case, by the calmness hypothesis (4.12), we
have

‖cpi(y)− cpj (y)‖ = ‖cpi(y)− cpi(y) + cpj (y)− cpj (y)‖
≦ 2κ′‖y − y‖

for all y ∈ K with ‖y − y‖ ≦ δ′. Set γi = min{δ′, δ′′

i }. We deduce

|gi(y)− gi(y)| = gi(y) ≦ lD
∑

pj∈Pw(i)

‖cpi(y)− cpj (y)‖ ≦ 2lmDκ′‖y − y‖ (4.15)

for y ∈ K with ‖y − y‖ ≦ γi. It remains to choose δ = min{γi : i ∈ I+} and κ = 2mlT |I0|+
2mlDκ′|I+| to obtain (4.5) from (4.14) and (4.15). The proof is complete. �

4.3 Generating vector equilibrium flows

In this section we propose an algorithm based on Theorem 4.1.1 to generate a subset of
vector equilibrium flows of the network we described in Section 2. This algorithm, denoted
(A), consists of two procedures. The first procedure is to create a net of feasible flows with
which the second procedure will start. The second procedure is aimed at solving problem
(P2) which is equivalent to the network equilibrium problem as stated in Theorem 4.1.1
by starting from an initial point from the net obtained by the first procedure. Even if
the vector cost functions are linear or differentiable, problem (P2) belongs to the class of
nonconvex global optimization problems and is hard to solve. The main difficulty in solving
this problem is caused by the fact that the index sets Ji in the definition of the function
ψ (Theorem 4.2.6) change from point to point. To overcome this we modify Frank-Wolfe’s
reduced gradient method to find descent direction at each iteration in order to construct a
decreasing sequence of feasible values.

4.3.1 Description of the algorithm (A)

Assume that W consists of r elements w1, · · · , wr in the network and for each pair wi there
are |Pwi

| paths connecting its origin to its destination. We denote also Ij = {i ∈ {1, · · · ,m} :
pi ∈ Pwj

}.

Step 0 (initialization). Choose a positive integer q and a tolerance level ǫ ≧ 0.

Procedure A1.

Step 1. Set δj = dwj
/(q|Pwj

|), j = 1, · · · , r.

42 4 Equilibrium in a multi-criteria traffic network without capacity constraints

Step 2. Choose (k1, · · · , km)T ∈ Nm satisfying

∑

i∈Ij

ki = q|Pwj
|, j = 1, · · · , r.

Step 3. Store y = (y1, · · · , ym)T in Y 0 where

yi = kiδj for i ∈ Ij , j = 1, · · · , r

and return to Step 2 for other vectors (k1, · · · , km) unless no one left.

Procedure A2.

Step 4. Choose a feasible flow y0 from Y 0 to start. Set k = 0, uk−1 = yk, αk−1 = ∞,
Y 0 = Y 0 \ {y0} and Eǫq = ∅.

Step 5. Compute Ji(y
k) = {i′ ∈ {1, · · · ,m} : pi′ ∈ Pw(i), cpi(y

k) − cpi′ (y
k) ≧ 0} for every

i ∈ {1, · · · ,m}. Set

ψk(y) :=

m∑

i=1

ypi
∑

i′∈Ji(yk)

〈cpi(y)− cpi′ (y), e〉.

Compute ψk(y
k).

If ψk(y
k) ≦ ǫ, store yk in Eǫq and return to Step 4 until no element of Y 0 left.

Otherwise go to the next step.

Step 6. If |ψk(yk) − αk−1| ≦ ǫ, go to Step 4 to choose another feasible solution from Y 0 to
restart the procedure.
If ψk(y

k) < αk−1 − ǫ, set αk = ψk(y
k) and go to Step 7.

If ψk(y
k) > αk−1 + ǫ, replace yk = yk−1 + (yk − yk−1)/2 and return to Step 5.

Step 7. Compute ∇ψk(yk). Solve (Pk)

minimize uT∇ψk(yk)
subject to u ∈ K

|ui − y0i | ≦ δw(i), i = 1, · · · ,m.

Let uk be an optimal solution.
If |ψk(yk)−ψk(u

k)| ≦ ǫ, go to Step 4 to choose another feasible solution from Y 0 to restart
the procedure until no element of Y 0 left.
Otherwise, set yk+1 = uk. Update k = k + 1 and return to Step 5.

Some comments on the implementation of the algorithm are in order.
1) By using the notation Ji(y) defined in Lemma 4.2.1 for the system of vector-valued
functions cp1 , · · · , cpm we have equality

ψ(yk) =
m∑

i=1

ykpi

∑

i′∈Ji(yk)

〈cpi(yk)− cpi′ (y
k), e〉 = ψk(y

k).

Note, however, that the functions ψ and ψk may differ from each other around yk.
2) If the vector cost functions cpi , i ∈ {1, · · · ,m} are differentiable, then the function ψk is
differentiable and its gradient is given in Theorem 4.2.6.
3) If ψk(y

k) = 0, then yk is a vector equilibrium. If ǫ > 0 and |ψk(yk)| ≦ ǫ, we call yk a

4.3 Generating vector equilibrium flows 43

vector ǫ-equilibrium.
4) Problem (Pk) is considered as a linearized problem of (P2) at yk. Therefore, when
ψk(u

k) = ψk(y
k) or ψ(uk) = ψ(yk), the current solution yk is called a stationary point

of (P2), which includes also the case ∇ψk(yk) = 0. It is a local optimal solution of (P2) if
in addition ψ is locally convex, but not a global optimal solution whenever the network has
equilibrium because ψ(yk) = ψk(y

k) 6= 0. When |ψk(uk) − ψk(y
k)| ≦ ǫ with ǫ > 0, we call

yk an ǫ-stationary point of (P2). We notice that ψ(yk) = ψk(y
k), but ψ(uk) may differ from

ψk(u
k).

4.3.2 Convergence of the algorithm

We have already noticed that the objective function ψ is not continuous, and in general the
limit of a sequence of vector ǫ-equilibrium flows is not necessarily a vector ǫ-equilibrium.
However, the continuity of ψ at vector equilibria (Proposition 4.2.7) allows us to cover all
vector equilibrium flows by the output Eǫq. We recall that the outer limit of a sequence

{Aq}q≧1 of sets in Rl, denoted lim supq→∞Aq, consists of all cluster points of sequences

{aq}q≧1 with aq ∈ Aq for all q ≧ 1. The sets of vector equilibrium flows and weak vector
equilibrium flows are denoted respectively E and WE.

Theorem 4.3.1 Assume the vector cost functions cpi , i = 1, · · · ,m are differentiable. For
a fixed ǫ > 0, the algorithm terminates after a finite number of iterations and the output Eǫq
contains vector ǫ-equilibrium flows. Moreover, the following inclusions hold true

E ⊆
⋂

ǫ>0

lim sup
q→∞

Eǫq ⊆WE.

Proof. By definition the output Eǫq collects vector ǫ-equilibrium flows obtained at Step 5 of
Procedure A2. Moreover, because the set Y 0 generated by Procedure A1 is finite, to prove
the first part of the theorem it suffices to show that for a given y0 ∈ Y 0 Procedure A2
terminates after a finite number of iterations. Assume this procedure does not terminate at
iteration k ≧ 1. We claim that

ψi+1(y
i+1) ≦ ψi(y

i)− ǫ for i = 0, · · · , k − 1. (4.16)

Indeed, let us consider the case of y0 and y1 in details when k ≧ 1. Because the procedure
does not terminate, we have ǫ < ψ0(y

0) < ∞− ǫ and go to Step 7. By the same reason we
have

ψ0(y
0)− ψ0(y

1) > ǫ (4.17)

and either of the following conditions is true

ψ1(y
1) < ψ0(y

0)− ǫ (4.18)

ψ1(y
1) > ψ0(y

0) + ǫ. (4.19)

If (4.19) holds, then according to our algorithm y1 is replaced by y0+(y1−y0)/2 until (4.18)
is satisfied. Indeed, if (4.18) does not hold, then after some cycles y1 is so close to y0 that
by Lemma 4.2.1 we may assume that Ji(y

0) ⊇ Ji(y
1) for every i = 1, · · · ,m. It follows that

ψ0(y)− ψ1(y) =

m∑

i=1

ypi
∑

i′∈Ji(y0)\Ji(y1)

〈cpi(y)− cpi′ (y), e〉 ≧ 0 for all y ∈ K.

Combining this with (4.17) we deduce

ψ0(y
0) > ψ0(y

1) + ǫ ≧ ψ1(y
1) + ǫ

44 4 Equilibrium in a multi-criteria traffic network without capacity constraints

which contradicts (4.19). Thus, (4.18) is true. By applying the same argument to y2, · · · , yk
we obtain (4.16), and by observing ψ(yi) = ψi(y

i) for i = 0, · · · , k we deduce the following
inequalities

ψ(yk) < ψ(yk−1)− ǫ < · · · < ψ(y0)− kǫ.

It is clear that for k sufficiently large, the procedure must be over because ψ takes nonneg-
ative values only.
We now turn to the second part of the theorem. Let ȳ be a vector equilibrium. We know
ψ(ȳ) = 0. By Proposition 4.2.7 there is some δ > 0 sufficiently small such that ψ(y) < ǫ for
every y with ‖y − ȳ‖∞ < δ (we are in a finite dimensional space, therefore the norm ‖.‖∞
is equivalent to the Euclidean norm ‖.‖). Choose q sufficiently large so that δw(i) < δ/2 for
all i = 1, · · · ,m. By the construction of Y 0, there is y0 ∈ Y 0 such that ‖y0 − ȳ‖∞ < δ.
It follows that ψ(y0) < ǫ which implies that y0 is an ǫ-equilibrium and collected in Eǫq. By
this ȳ belongs to the outer limit of Eǫq when q tends to infinity and for very fixed ǫ > 0.
This proves the first inclusion. To prove the second inclusion let ȳ be any element of the
intersection of the outer limits of Eǫq and suppose to the contrary that it is not a weak vector
equilibrium. There exist some paths pi and pj ∈ Pw(i) such that cpi(ȳ) − cpj (ȳ) > 0 and
ȳpi > 0. By continuity, there exists δ > 0 and t > 0 such that cpi(y)− cpj (y) > t and ypi > t
for all y ∈ K satisfying ‖y− ȳ‖ < δ. We have then ψ(y) > t2 for all such y, and so y cannot
belong to Eǫq once ǫ < t2. This completes the proof. �

We note that the inclusions in the above theorem are generally strict as it is shown by the
two examples below. Actually in the first example we prove that the set of vector equilibrium
flows is not closed, hence the first inclusion is strict, for the outer limit is a closed set. In
the second example we present a network in which there is a weak vector equilibrium that is
not a vector equilibrium. At this equilibrium the value of the function ψ is strictly positive,
hence whenever ψ is continuous at it, there is no ǫ-equilibrium nearby with ǫ sufficiently
small.

Example 4.3.2 Consider a network equilibrium problem with one pair of origin-destination
nodes w = (x, x

′

), two criteria: travel time and travel cost, two available paths: Pw = {p1, p2}
with the travel demand dw = 10. Assume that travel time and travel cost functions on the
paths are given as follows

cp1,1(y) = 5yp1 + 3yp2 cp2,1(y) = yp1 + 3yp2 + 9
cp1,2(y) = yp1 + 2yp2 cp2,2(y) = 2yp1 + yp2 + 6

Let ν ∈ N \ {0}. Define yν = (2− 1/ν, 8 + 1/ν)T . It is a vector equilibrium because

cp1(y
ν) − cp2(y

ν) =

(
34− 2/ν
18 + 1/ν

)
−
(
35 + 2/ν
18− 1/ν

)
=

(
−1− 4/ν

2/ν

)
/∈ R2

+.

When ν tends to ∞, yν converges to the feasible flow y = (2, 8)T . However, y is not a vector
equilibrium because cp2(y) = (35, 18)T ≥ cp1(y) = (34, 18)T while yp2 = 8 6= 0.

Example 4.3.3 We consider the network with one pair of origin-destination nodes as de-
scribed in Example 4.3.2. The travel demand is dw = 10. The travel time and travel cost are
given as below

cp1,1(y) = 8yp1 + 6yp2 cp2,1(y) = 3yp1 + yp2
cp1,2(y) = 7yp1 + yp2 cp2,2(y) = 7yp1 + yp2

We observe that in this model every feasible flow is a weak vector equilibrium because
cp1,1(y) > cp2,1(y) and cp1,2(y) = cp2,2(y) for every y ≥ 0. Moreover, the function ψ is
given by

4.3 Generating vector equilibrium flows 45

ψ(y) = yp1(cp1,1(y)− cp2,1(y)) = yp1(5yp1 + 5yp2) = 50yp1 .

Consider the flow y = (1, 9)T and choose ǫ ∈ (0, 1). Then every feasible flow y = (yp1 , yp2)
T

satisfying |yp1 − yp1 | ≤ 1/2 has ψ(y) ≥ 25. Consequently, y cannot be an ǫ-equilibrium.

4.3.3 Numerical examples

In this section we present some numerical examples to illustrate the algorithm described
in the preceding section. We use the MATLAB Optimization Toolbox to compute a rep-
resentative set of vector equilibria and vector ǫ-equilibria for networks in which the cost
functions are linear or nonlinear and the number of criteria is at least two. We also compare
our method with the method by scalarization in each example. For the readers’ convenience,
let us briefly recall the scalarization method of [44] to find a vector equilibrium. It is to
underline that [44] gave a method to find one vector equilibrium, but not the entire set of
equilibria or a representative part of it. Without loss of generality we assume l = 2 and
choose some α ∈ (0, 1). As we already discussed in Section 4.1, the scalarizing function
h(cp(y)) = (α, 1−α)cp(y) is monotone, which ensures that every equilibrium of the network
equipped with the scalarized cost functions πp(y) = h(cp(y)) is a vector equilibrium. In
order to find an equilibrium of the scalarized network the author of [44] solves the following
variational inequality problem: Find y ∈ K such that

〈F (y, y − y〉 ≧ 0 for all y ∈ K,

where F (y) = ((α, 1− α)cp1(y), · · · , (α, 1− α)cpm(y))
T
. This later problem is solved by a

modified projection method which is known to be convergent when F is Lipschitz continuous
and monotone on K in the sense that

〈F (y′)− F (y), y′ − y〉 ≧ 0, for all y, y′ ∈ K.

In general, for a weight vector (α, 1−α) the modified projection method yields one solution
of the variational inequality problem which is also a vector equilibrium of the network.
Therefore, in order to generate a set of vector equilibria by this method we use a finite
family of equally distributed weight vectors in our examples. The number of weight vectors
is chosen to be equal to the number of initial points of our method so that the comparison
of computing time has sense.
Apparently the scalarization method has an advantage over our method that the function
F has nice structure when the vector cost functions are linear or differentiable and one may
hope to utilize a lot of existing optimization algorithms to obtain a solution of the variational
inequality problem, while the function ψ used in our method is even not continuous. However,
there are at least three drawbacks of the scalarization method. First, there exist vector
equilibria that are not solutions of the variational inequality problem whatever weight vector
(α, 1 − α) be chosen. This is seen in Example 4.3.7. Hence there may be a large portion of
vector equilibria that cannot be generated by the scalarization method. Second, even when
the weight vectors are chosen to be equally spaced, there is no guarantee that the set of
solutions of the variational inequality problems associated with these weight vectors is well
distributed among the set of vector equilibria. Third, the modified projection method and
some recent improvements [6, 26, 41, 56, 62] converge only under a certain monotonicity or
generalized monotonicity property, which generally is not satisfied by network cost functions.
This is illustrated in Example 4.3.6.

Example 4.3.4 Consider a network problem with one pair of origin-destination nodes w =
(x, x′), two criteria: travel time and travel cost, two available paths: Pw = {p1, p2} with the

46 4 Equilibrium in a multi-criteria traffic network without capacity constraints

travel demand dw = 30. Assume that travel time and travel cost functions on the paths are
linear and are given as follows

cp1,1(y) = yp1 + 2yp2 cp2,1(y) = yp1 + 6yp2
cp1,2(y) = 6yp1 + 2yp2 cp2,2(y) = 6yp1 + 8yp2 .

We tested our program for the zero tolerance ǫ = 0 and q = 2 which yields 5 initial points.
The results are displayed in the table below.

Initial point Numbers of iterations Vector equilibrium CPU Time (seconds)
(0, 30)T 3 −

0.256515
(7.5, 22.5)T 4 −
(15, 15)T 3 −

(22.5, 7.5)T 100 −
(30, 0)T 1 (30, 0)T

We remark that starting from the first four initial points our algorithm finds no vector equi-
librium because after some iterations either the value ψk(y

k) is almost the same as αk−1 at
Step 6 or the value ψk(y

k) is almost the same as ψk(u
k) at Step 7, which enforces us to go

to Step 4 to choose another initial point to restart. Moreover, when the tolerance is strictly
positive, the program runs much faster. For instance with ǫ = 10−4, the algorithm finds two
vector ǫ−equilibria in 0.069872 seconds, one of which is (30, 0)T and the other is very near
to it.
To apply the scalarization method of [44] we solve the following scalarized variational in-
equality problem: Find y ∈ K such that

〈F (y)T , y − y〉 ≧ 0, ∀y ∈ K,

where F (y) = (α(y1 + 2y2) + (1 − α)(6y1 + 2y2), α(3y1 + 6y2) + (1 − α)(9y1 + 8y2)) and
α ∈ (0, 1). Since F is monotone and Lipschitz continuous on K, the modified projection
method is convergent. For any weight vector (α, 1− α), it yields exactly the unique solution
(30, 0)T of the problem. The CPU time to obtain the vector equilibrium by this method and
the one by our method are almost the same.

In the following example, we shall see that the method by scalarization is slower in compar-
ison with our method and it produces a not very well distributed set of equilibria.

Example 4.3.5 Consider the network described in Example 4.3.4 with one pair of origin-
destination nodes, two paths and two criteria. We assume dw = 10 and the travel time and
travel cost functions on the paths p1 and p2 are given as follows

cp1,1(y) = 3yp1 + yp2 cp2,1(y) = yp1 + yp2
cp1,2(y) = 5yp1 + 3yp2 cp2,2(y) = 3yp1 + 5yp2 .

With q = 10 we have 21 initial points. Using the algorithm (A) we obtain 9 vector equilibria
in 0.293389 seconds.
The scalarization method of [44] consists of solving the following variational inequality prob-
lem: Find y ∈ K such that

〈F (y)T , y − y〉 ≧ 0, ∀y ∈ K,

where

F (y)T =

(
α (3yp1 + yp2) + (1− α) (5yp1 + 3yp2)
α (yp1 + yp2) + (1− α) (3yp1 + 5yp2)

)
withα ∈ (0, 1) .

Since the function F is monotone and Lipschitz continuous, the modified projection method
to solve this variational inequality problem is applied and produces a vector equilibrium for

4.3 Generating vector equilibrium flows 47

each weight vector (α, 1− α) with α ∈ (0, 1). We performed this method for the initial point
(3, 7)T and 21 weight vectors from the family

{(
1
21 ,

20
21

)
,
(

2
21 ,

19
21

)
, ...,

(
19
21 ,

2
21

)
,
(
20
21 ,

1
21

)}
and

obtained 21 vector equilibria in 11.497309 seconds.
It can be seen that the set of all vector equilibria is the segment between (0, 10)T and (5, 5).
The vector equilibrium sets obtained by the two approaches are graphically presented be-
low. The set obtained by our method is uniformly distributed, while the set obtained by the
scalarization method is getting more condensed as we are approaching the point (5, 5)T .

In the next example the travel time and travel cost functions are nonlinear. The scalariza-
tion method of [44] fails in finding even one equilibrium because the function defining the
corresponding variational inequality is not monotone, while our algorithm works quite well
and gives a satisfactory result.

Example 4.3.6 Consider a network problem with only one pair of origin-destination nodes
w = (x, x′), two criteria: travel time and travel cost, three available paths: Pw = {p1, p2, p3}
with the travel demand dw = 18. Assume that travel time and travel cost functions on the
paths are given as follows

cp1,1(y) = y2p1 + y2p2 + y3p3 cp2,1(y) = 8yp1yp2 + y2p2
cp1,2(y) = 2yp1 + 5yp2 + 3yp3 cp2,2(y) = yp2 + 10yp3

cp3,1(y) = yp1 + y2p2 + y3p3
cp3,2(y) = 10y3p3 .

With ǫ = 0 and q = 20 we have 1888 initial points. Using the algorithm (A) we obtained
1017 vector equilibria in 67.938183 seconds which are presented in the next figure.

48 4 Equilibrium in a multi-criteria traffic network without capacity constraints

The variational inequality problem of the scalarization method of [44] is the following: Find
y ∈ K such that

〈F (y)T , y − y〉 ≧ 0, ∀y ∈ K,

where

F (y)T =



α
(
y2p1 + y2p2 + y33

)
+ (1− α) (2yp1 + 5yp2 + 3yp3)

α
(
8yp1yp2 + y2p2

)
+ (1− α) (yp2 + 10yp3)

α
(
yp1 + y2p2 + y3p3

)
+ (1− α)10y3p3


withα ∈ (0, 1).

It is clear that this function is Lipschitz, but not monotone on K. We run a program to
solve it by starting from the point (5, 5, 8)T and taking weight vectors from the family

{(
1

1888
,
1887

1888

)
,

(
2

1888
,
1886

1888

)
, ...,

(
1886

1888
,

2

1888

)
,

(
1887

1888
,

1

1888

)}
.

However, after 549.238187 seconds no solution is found. In this example the modified pro-
jection algorithm does not converge.

We have also tested our program for a number of networks with more than three paths
connecting an O/D pair. Our experience is that when the cost functions are linear both the
scalarization method and our method work well with advantage in computing time of our
method, and when the cost functions are not linear, in most cases the scalarization method
is not convergent. For instance in one test with 6 paths we used 456 initial points and found
2 equilibrium flows in about two minutes, and in another test with 7 paths we used 6182
initial points and found 33 equilibrium flows in about 25 minutes. In both tests the scalar-
ization method is not convergent and yields no equilibrium.

As we already mentioned at the beginning of this section, not every vector equilibrium of a
multi-criteria network can be obtained by linear scalarization. Here is an example.

Example 4.3.7 In this example we consider a network problem with one pair of origin-
destination nodes, two criteria, three available paths: Pw = {p1, p2, p3} and the travel demand
dw = 7. The travel time and travel cost functions on the paths are given as follows

cp1,1(y) = 4yp1 + 3 cp2,1(y) = 3yp1 + 1
cp1,2(y) = 3yp1 + yp2 + yp3 + 2 cp2,2(y) = 3yp1 + 2yp2 + yp3 + 5

cp3,1(y) = 4yp1 + 5
cp3,2(y) = 3yp1 + yp2 + yp3 + 1.

Let us consider the feasible flow y∗ = (3, 2, 2)T . It is clear that it is a vector equilib-
rium. We claim that whatever a vector weight (α, 1 − α) be chosen, this flow cannot be
an equilibrium of the network equipped with the scalarized cost functions (α, 1− α)ci, where
cp1(y) = (cp1,1(y), cp1,2(y))

T , cp2(y) = (cp2,1(y), cp2,2(y))
T and cp3(y) = (cp3,1(y), cp3,2(y))

T .
In fact, let α ∈ (0, 1). We know that a feasible flow is an equilibrium of the network with the
scalar cost functions (α, 1 − α)cpi , pi ∈ Pw if and only if it solves the following variational
inequality problem

(α, 1− α)C(y)(y − y)T ≧ 0, ∀y ∈ K, (4.20)

where

C(y) =

(
4yp1 + 3 3yp1 + 1 4yp1 + 5
3yp1 + yp2 + yp3 + 2 3yp1 + 2yp2 + yp3 + 5 3yp1 + yp2 + yp3 + 1

)
.

By setting y = y∗ = (3, 2, 2)T ∈ K, inequality (4.20) is equivalent to

4.3 Generating vector equilibrium flows 49

15 (yp1 − 3) + (20− 10α) (yp2 − 2) + (14 + 3α) (yp3 − 2) ≧ 0, ∀y ∈ K.

It is easy to see that this latter inequality cannot hold for α ∈ (0, 1), for instance with
y = (4, 2, 1)T one has α ≦ 1/3 in contradiction with α ≧ 5/7 when y = (0, 0, 7)T . Thus, for
any α ∈ (0, 1), y∗ cannot be a solution of (4.20).

4.3.4 Smoothing the objective function

The function H̃+ we defined in Section 4 admits the following analytic approximations

H̃ν(x) =

(
l∏

i=1

1 + tanh(νxi)

2

)
e for ν ≧ 1,

which produce also smooth approximations of the objective function ψ when the cost func-
tions are smooth:

ψν(y) :=
∑

p∈Pw,w∈W

yp
∑

p
′∈Pw

[cp(y)− cp′(y)]
T H̃ν [cp(y)− cp′(y)].

The corresponding optimization problems, denoted (P2ν), are given below

minimize ψν(y)

subject to y ∈ K.

Note that unlike ψ, the function ψν may take negative values on K and an optimal solution
of (P2ν) is not necessarily a weak vector equilibrium.

Example 4.3.8 We consider the case ν = 1. Examples for ν > 1 are constructed in a
similar manner. Suppose we have one pair w of origin-destination nodes, two paths p1 and
p2 joining them, two criteria and the demand dw = 10. Let cp2(y) = (cp2,1(y), cp2,2(y))

T

be a continuous vector cost function on p2. We define a vector cost function on p1 to be
cp1(y) = cp2(y) + α(y)(p1, 1)

T , where α(y) is the function given by

α(y) =

{
0.4 if 0.3 ≦ yp1 ≦ 10

−0.4yp1 + 1.6 if 0 ≦ yp1 < 0.3.

Then for every flow y = (yp1 , yp2)
T with yp1 + yp2 = 10 we have

ψ1(y) = 2α(y)yp1

(
1 + tanh(α(y))

2

)2

− 2α(y)yp2

(
1 + tanh(−α(y))

2

)2

= 2α(y)yp1

((
1 + tanh(α(y))

2

)2

+

(
1 + tanh(−α(y))

2

)2
)

−20α(y)

(
1 + tanh(−α(y))

2

)2

.

It is clear that ψ1(0.3, 9.7) < ψ1(0, 10) < 0, which proves that the optimal value of (P21)
is strictly negative and at every optimal solution y = (yp1 , yp2)

T one has yp1 > 0, while
cp1(y) > cp2(y). Hence optimal solutions of (P21) cannot be weak vector equilibria.

Theorem 4.3.9 Assume that the cost functions cp1 , ..., cpm are continuous. If for every
ν ≧ 1, yν ∈ K is an optimal solution of (P2ν), then every cluster point y of the sequence
{yν}ν≧1 is a weak vector equilibrium.

50 4 Equilibrium in a multi-criteria traffic network without capacity constraints

Proof. We keep the notations D and T defined in the proof of Proposition 4.2.7 and conduct
the proof by contradiction. Suppose that y is not a weak vector equilibrium. There exist
some w ∈W and pi, pj ∈ Pw such that

ypi > 0 and cpi(y)− cpj (y) > 0. (4.21)

Claim 1. There exists some δ > 0 and ν0 ≧ 1 such that

ψν(y
ν) ≧ δ for all ν ≧ ν0. (4.22)

To prove this claim let us fix a small ǫ > 0 and consider any two paths p, p′ ∈ Pw for w ∈W .
Denote

γν(t) :=
1 + tanh(νt)

2

βp,p′(y
ν) := yνp

(
l∏

r=1

γν (cp,r(y
ν)− cp′,r(y

ν))

)
〈cp(yν)− cp′(y

ν), e〉 .

We distinguish three possible cases concerning the components cp,r(y)− cp′,r(y), r = 1, ..., l
of the vector cp(y)− cp′(y).
Case 1: cp,r(y)− cp′,r(y) > 0. By continuity there exists some ν1 ≧ 1 such that

cp,r(y
ν)− cp′,r(y

ν) ≧
1

2
(cp,r(y)− cp′,r(y)) ,

γν (cp,r(y
ν)− cp′,r(y

ν)) ≧
1

4
(4.23)

for all ν ≧ ν1. If in addition yp > 0 and cp(y)− cp′(y) > 0, then there is ν′1 ≧ ν1 such that

yνp ≧
1

2
yp,

βp,p′(y
ν) ≧

1

4l+1
yp 〈cp(y)− cp′(y), e〉 (4.24)

for every ν ≧ ν′1.
Case 2: cp,r(y)− cp′,r(y) = 0. Again, by continuity there exists some ν2 ≧ 1 such that

|cp,r(yν)− cp′,r(y
ν)| ≦ ǫ for ν ≧ ν2. (4.25)

In particular, if cp(y)− cp′(y) ≧ 0 and cp(y)− cp′(y) ≯ 0, then there exists ν′2 ≧ ν2 such that

βp,p′(y
ν) ≧ −Dlǫ for ν ≧ ν′2. (4.26)

Case 3: cp,r(y)− cp′,r(y) < 0. As in the first case, one may find some ν3 ≧ 1 such that

cp(y
ν)− cp′(y

ν) ≦
1

2
(cp,r(y)− cp′,r(y)) ,

γν (cp,r(y
ν)− cp′,r(y

ν)) ≦ ǫ for ν ≧ ν3.

We deduce that if cp(y)− cp′(y) � 0, then there exists some ν′3 ≧ ν3 such that

βp,p′(y
ν) ≧ −2lDTǫ for ν ≧ ν′3. (4.27)

Let us now evaluate ψν(y
ν) by using (4.24-4.27). We have

ψν(y
ν) =

∑

p∈Pw,w∈W

∑

p
′∈Pw

βp,p′(y
ν).

4.3 Generating vector equilibrium flows 51

We decompose this sum into three sums
∑1

,
∑2

and
∑3

. The first sum
∑1

collects all terms

βp,p′(y
ν) with p, p′ ∈ Pw for some w ∈W such that cp(y)− cp′(y) > 0. The second sum

∑2

collects all terms βp,p′(y
ν) with p, p′ ∈ Pw for some w ∈ W such that cp(y) − cp′(y) ≧ 0,

but cp(y)− cp′(y) ≯ 0, and the last sum
∑3

contains all terms βp,p′(y
ν) with p, p′ ∈ Pw for

some w ∈W such that cp(y)− cp′(y) � 0.
We may choose ν′1, ν

′
2 and ν′3 depending on ǫ so that the relations (4.24-4.27) hold true for

all components of the vectors cp(y) − cp′(y), p, p
′ ∈ Pw and w ∈ W . It follows from the

hypothesis (4.21) that the sum
∑1

contains βpi,pj (y
ν) and the other terms of this sum are

positive for ν large. Moreover, in view of (4.24), there exists ν4 ≧ ν′1 such that

∑1
≧

1

4l+1
ypi
〈
cpi(y)− cpj (y), e

〉
for ν ≧ ν4. (4.28)

Furthermore, because the sum
∑2

contains at most m terms βp,p′(y
ν) in which at most l

components of cp(y) − cp′(y) are equal to zero and the others are strictly positive, in view

of (4.26), there exists ν5 ≧ ν
′

2 such that

∑2
≧ −mDlǫ for ν ≧ ν5. (4.29)

As to the sum
∑3

we apply (4.27) to find ν6 ≧ ν
′

3 such that

∑3
≧ −mlDTǫ for ν ≧ ν6. (4.30)

We set ν0 = max{ν4, ν5, ν6} and deduce from (4.28), (4.29) and (4.30) that

ψν(y
ν) ≧

1

4l+1
ypi
〈
cpi(y)− cpj (y), e

〉
− 3mlD(T + 1)ǫ for ν ≧ ν0.

It remains to choose

ǫ =
ypi
〈
cpi(y)− cpj (y), e

〉

4l+23mlD(T + 1)

to obtain q0 and then set

δ =
1

4l+2
ypi
〈
cpi(y)− cpj (y), e

〉

to satisfy Claim 1.
Claim 2. Let y∗ ∈ K be a vector equilibrium. Then lim

ψ→∞
ψ(y∗) = 0. Indeed, since y∗ is a

vector equilibrium, we have y∗p > 0, p ∈ Pw, w ∈ W only when either cp(y) − cp′(y) = 0 or

cp(y)− cp′(y) � 0 for every p′ ∈ Pw. In the first case,

y∗p [cp(y
∗)− cp′(y

∗)]T H̃ν [cp(y
∗)− cp′(y

∗)] = 0. (4.31)

In the second case, there is some r ∈ {1, ..., l} such that cp,r(y
∗)− cp′,r(y

∗) < 0. Because

lim
ν→∞

γν(cp,r(y
∗)− cp′,r(y

∗)) = 0,

we deduce
lim
ν→∞

y∗p(cp(y
∗)− cp′(y

∗))T H̃ν [cp(y
∗)− cp′(y

∗)] = 0. (4.32)

It follows from (4.31) and (4.32) that lim
ν→∞

ψν(y
∗) = 0 as requested.

To complete the proof we choose a vector equilibrium y∗ ∈ K, which evidently exists. By
hypothesis ψν(y

ν) ≦ ψν(y
∗) for every ν ≧ 1. This implies

52 4 Equilibrium in a multi-criteria traffic network without capacity constraints

lim inf
ν→∞

ψν(y
ν) ≦ lim

ν→∞
ψν(y

∗).

and, in view of Claims 1 and 2, we arrive at a contradiction that δ ≦ 0. The proof is complete.
�

We have used the Matlab Global Optimization ToolBox to find optimal solutions of
(P2ν), ν = 1, · · · , 10 for Examples 4.3.5 and 4.3.6. The numerical results are encountered
below.
For Example 4.3.5 we chose three initial points (0, 10)T , (5, 5)T and (10, 0)T and obtained
corresponding optimal solutions, which are all vector equilibrium.

Initial point (0, 10)T (5, 5)T (10, 0)T

ν = 1 (3.3621, 6.6379)T (3.3624, 6.6376)T (3.3617, 6.6383)T

ν = 2 (2.4865, 7.5135)T (2.5128, 7.4872)T (3.6852, 6.3148)T

ν = 3 (1.7666, 8.2334)T (2.5127, 7.4873)T (3.9860, 6.0140)T

ν = 4 (1.4403, 8.5597)T (2.5127, 7.4873)T (4.1482, 5.8518)T

ν = 5 (1.1060, 8.8940)T (2.5126, 7.4874)T (4.2404, 5.7596)T

ν = 6 (1.0053, 8.9947)T (2.5137, 7.4863)T (4.2915, 5.7085)T

ν = 7 (1.1353, 8.8647)T (2.5135, 7.4865)T (4.3150, 5.6850)T

ν = 8 (0.7096, 9.2904)T (2.5134, 7.4866)T (4.3184, 5.6816)T

ν = 9 (0.6348, 9.3652)T (2.5133, 7.4867)T (4.3057, 5.6943)T

ν = 10 (0.6347, 9.3653)T (2.5132, 7.4868)T (4.2789, 5.7211)T

For Example 4.3.6 we chose three initial points (12, 6, 0)T , (0, 12, 6)T and (6, 6, 6)T . By using
the first initial point, for ν = 1, the optimal solution is (7.0158, 2.9657, 8.0185)T and for
every ν = 2, · · · , 10 we arrive at the same optimal solution (7.0178, 2.9657, 8.0165)T . With
the second and the third initial points the toolbox produced the same optimal solutions for
every ν = 1, · · · , 10 :

(0.9675, 13.9921, 3.0404)T and (4.5458, 4.5046, 8.9496)T .

Fortunately, they are all vector equilibria. This, however, is not true in general as the next
example shows.

Example 4.3.10 Consider a network problem with one pair of origin-destination nodes,
two criteria, six available paths and the travel demand dw = 100. The travel time and travel
cost functions on the paths are given as follows

cp1,1(y) = 2y2p1 + 7y2p2 cp2,1(y) = 8yp1yp2 + y2p2 cp3,1(y) = yp1 + y2p2 + y2p3
cp1,2(y) = 2yp1 + 5yp2 + 3y3 cp2,2(y) = 3yp2 + 10y2p3 cp3,2(y) = yp3 + 10y3p3

cp4,1(y) = y3p1 + yp4y5 cp5,1(y) = yp2 + yp5 + yp6 cp6,1(y) = yp3 + yp6
cp4,2(y) = 2yp2 + y2p4 cp5,2(y) = yp1yp5 + yp3yp6 + 10 cp6,2(y) = yp1 + y2p6

With q = 1 we have 462 initial points to start with in finding optimal solutions of (P2ν).
For ν = 10 the Global Optimization Toolbox produced 403 local optimal solutions and 59
global optimal solutions. Direct checking proves that there are 206 solutions which are vector
equilibria. Meanwhile using the algorithm (A) for the problem (P2) with the same initial
points we obtained one vector equilibrium (37.5, 4.1667, 4.1667, 8.3333, 16.6667, 29.1667)T .

4.4 Robust equilibrium

In this section we are interested in vector equilibrium flows that are not affected by small
perturbation of the cost functions. We shall write (G,C) to indicate the network G equipped

4.4 Robust equilibrium 53

with the vector cost functions cp(y), p ∈ P . Let y be a feasible path flow. We say that it is
a robust vector equilibrium if there is some ǫ > 0 such that it is a vector equilibrium of the
network (G, C̃) for any perturbed cost functions c̃p satisfying ‖cp(y)− c̃p(y)‖ ≦ ǫ, p ∈ P . In
other words, y is a robust vector equilibrium if there is ǫ > 0 such that for every O/D pair
w ∈ W , for every couple of paths p, p′ ∈ Pw and functions c̃p, c̃p′ with ‖c̃p(y) − cp(y)‖ ≦ ǫ
and ‖c̃p′(y)− cp′(y)‖ ≦ ǫ one has implication

c̃p(y)− c̃p′(y) ≥ 0 =⇒ yp = 0.

The biggest value of ǫ for which the above implication holds is called radius of robustness at
y. In robust optimization one considers a parametric maximization problem and defines a
robust feasible solution as a solution that is feasible for all instances of parameter. A robust
feasible solution is optimal if it maximizes the worst value of the objective function over
the robust feasible set (see [4]). The concept of robust equilibrium we defined above can be
considered as a particular version of robust solutions in optimization when the constraint
set does not depend on the parameter and all instances of the objective function realize its
maximum at the solution under consideration.
It is clear from the definition that a robust vector equilibrium is a vector equilibrium,
but not all vector equilibria are robust. Moreover, as we know a multi-criteria network
with continuous cost functions always has a vector equilibrium, but this is not true for
robust equilibrium. For instance, the unique vector equilibrium y = (30, 0)T of the network
described in Example 4.3.4 is not robust. Indeed, a small perturbation of cp1 by

cǫ1(y) =

(
yp1 + 2yp2 + ǫ
6yp1 + 2yp2

)
with ǫ > 0

makes y non-equilibrium.
We shall make use of the following notation: for w ∈ W and y ∈ K, Iw(y) denotes the set
of indices i such that pi ∈ Pw and cpi(y) ∈ Min(Cw(y)) and define a function ρ on K to be

ρ(y) :=
∑

p∈Pw,w∈W

yp
(
d[cp(y),Min(Cw(y))] +

∑

i∈Iw(y),pi 6=p

χ{0}(‖cp(y)− cpi(y)‖)
)

where χ{0} is the characteristic function of {0}, that is χ{0}(t) = 0 if t 6= 0 and χ{0}(t) = 1
if t = 0.

Theorem 4.4.1 Let y ∈ K be a vector equilibrium of G. The following statement are equiv-
alent.

(i) y is robust.
(ii)y is an optimal solution of the following optimization problem, denoted (P

′

1)

minimize ρ(y)

subject to y ∈ K,

and the optimal value of this problem is equal to zero.
(iii)There exists an ǫ > 0 such that for every w ∈W, p ∈ Pw with yp > 0, one has

(c̃p(y)− Rl+) ∩ (C̃w(y)\{c̃p(y)}) = ∅

for all c̃pi , pi ∈ Pw satisfying ‖c̃pi(y)− cpi(y)‖ ≦ ǫ.

Proof. To prove implication (i) ⇒ (ii), let y ∈ K be a robust vector equilibrium. We know
by Theorem 4.1.1 that φ(y) = 0. Suppose to the contrary that ρ(y) > 0. There are some
w ∈W and p ∈ Pw such that

54 4 Equilibrium in a multi-criteria traffic network without capacity constraints

yp


d[cp(y),Min(Cw(y))] +

∑

i∈Iw(y),pi 6=p

χ{0}(‖cp(y)− cpi(y)‖)


 > 0.

In particular, yp > 0 and because d[cp(y),Min(Cw(y))] = 0, there is some i ∈ Iw(y) such
that pi 6= p and cp(y) = cpi(y). For every ǫ > 0 define

c̃pj =

{
cpj if pj 6= p
cp + (ǫ/l)e if pj = p.

It is clear that ‖c̃pj − cpj‖ ≦ ǫ, pj ∈ P and y is not a vector equilibrium of (G, C̃) because
c̃p(y) > c̃pi(y) while yp > 0. For implication (ii) ⇒ (iii) assume ρ(y) = 0 and yp > 0 for some
p ∈ Pw, w ∈W . We deduce that cp(y) ∈ Min(Cw(y)) and

∑
i∈Iw(y),pi 6=p

χ{0}(‖cp(y)−cpi(y)‖) =

0.
In particular,

cpi(y) /∈ cp(y)− Rl+ for all pi ∈ Pw, pi 6= p. (4.33)

Then we can find ǫp > 0 such that

c̃pi(y) /∈ c̃p(y)− Rl+ (4.34)

for all pi ∈ Pw, pi 6= p, and ‖c̃pi(y) − cpi(y)‖ ≦ ǫp and ‖c̃p(y) − cp(y)‖ ≦ ǫp. It remains to
choose ǫ = min{ǫp : p ∈ P, yp > 0} to obtain (iii).
In order to prove the implication (iii) ⇒ (i), we observe that for the perturbed cost functions
satisfying (iii), c̃p(y) ∈ MinC̃w(y) for every p ∈ Pw with yp > 0. By this, y is a vector

equilibrium of the network (G, C̃). Consequently, y is a robust vector equilibrium. �

Corollary 4.4.2 Assume that y is a vector equilibrium and for every w ∈ W the elements
cpi(y), i ∈ Iw(y) are all distinct from each other. Then y is a robust vector equilibrium.

Proof. Under the hypothesis of the corollary, one has

∑

i∈Iw(y),pi 6=p

χ{0}(‖cp(y)− cpi(y)‖) = 0

for every p ∈ P . Therefore, ρ(y) = 0 and by Theorem 4.4.1, y is robust. �

Let y be a given feasible flow of G. We denote by C(y) the set of l × m-matrices of
continuous cost functions on K such that y is a vector equilibrium of (G,C), C ∈ C(y). It is
clear that C(y) is nonempty, for it contains all constant functions. We consider the subset
CR(y) consisting of all C ∈ C(y) such that y is a robust vector equilibrium of (G,C). It
is clear that CR(y) is a proper subset of CR(y), for y is not robust of (G,C) when C is a
constant cost function and G has at least two paths joining an O/D pair. We shall see that
CR(y) is dense in C(y).

Lemma 4.4.3 Let q1, · · · , qm ∈ Rl with q1 = · · · = qk ∈ Min{q1, · · · , qm} for some k ≦ m
and qk 6= qj for j > k. Then for every ǫ > 0 there exists q̃1, · · · , q̃k such that

(i) ‖q̃i − qi‖ ≦ ǫ for i = 1, · · · , k
(ii) q̃i − q̃j /∈ Rl+ ∪ (−Rl+), i, j ∈ {1, · · · , k}, i 6= j
(iii)Min{q̃1, · · · , q̃k, qk+1, · · · , qm} = {q̃1, · · · , q̃k} ∪

(
(Min{q1, · · · , qm})\{q1, · · · , qk}

)
.

4.4 Robust equilibrium 55

Proof. Let ǫ > 0 be given. As before ei ∈ Rl denotes the unit ith vector and e the vector of
ones. Since q1 = · · · = qk 6= qj for j > k, there exists a positive ǫ′ ≦ ǫ/(3l) such that

qi − ǫ′e /∈ qj − Rl+ for all qj ∈ Min{q1, · · · , qm}, j > k, i = 1, · · · , k. (4.35)

Define

q̃i = qi − ǫ′e+ ǫ′
(i
k
e1 + (1− i

k
)el
)
, i = 1, · · · , k.

Then

‖q̃i − qi‖ = ǫ′‖ − e+
i

k
e1 + (1− i

k
)el‖ ≦ 3lǫ′ ≦ ǫ,

which prove (i). Moreover for i, j ∈ {1, · · · , k}, i 6= j one has

q̃i − q̃j = ǫ′
(i− j

k
e1 +

j − i

k
el
)
/∈ Rl+ ∪ (−Rl+)

which is (ii). Finally, since qi ∈ Min{q1, · · · , qm} we have qj /∈ qi−Rl+ and hence qj /∈ q̃i−Rl+
for all j > k. This and (ii) prove that q̃i ∈ Min{q̃1, · · · , q̃k, qk+1, · · · , qm}, i = 1, · · · , k. For
j > k such that qj ∈ Min{q1, · · · , qm} one observes that

qj − Rl+ ⊆ qj + ǫ′
(i
k
e1 + (1− i

k
)el
)
− Rl+

and deduces from (4.35) that q̃i /∈ qj − Rl+, for i ∈ {1, · · · , l}. By this qj belongs to the set
Min{q̃1, · · · , q̃k, qk+1, · · · , qm}.
For j > k such that qj 6∈ Min{q1, · · · , qm} we find some qi ∈ Min{q1, · · · , qm} such that
qi ≤ qj . If i > k, then it is clear that qj 6∈ Min{q̃1, · · · , q̃k, qk+1, · · · , qm}. If i ≦ k, then we
have q̃i ≤ qi ≤ qj , which again implies that qj 6∈ Min{q̃1, · · · , q̃k, qk+1, · · · , qm}. By this (iii)
follows. �

Corollary 4.4.4 Let y be a feasible flow of G. Then the set CR(y) is open and dense in
C(y).

Proof. The fact that CR(y) is open is immediate from the definition of robust vector equi-
librium. To prove the density let ǫ > 0 and assume y is a vector equilibrium of (G,C) for
some C ∈ C(y), but it is not robust. In view of Theorem 4.4.1 there exist some w ∈ W and
pi ∈ Pw such that ypi > 0 and the set {j ∈ Iw(y) : cpi(y) = cpj (y) ∈ MinCw(y)} consists
of at least two elements. Applying Lemma 4.4.3 to the set Cw(y) we find cost functions
c̃p, p ∈ P such that ‖c̃p(y)− cp(y)‖ ≦ ǫ for all p ∈ P , all elements of MinCw(y) are distinct

from each other and Iw(y) is unchanged for C̃(y). We deduce that d[c̃p(y),MinC̃(y)] = 0
and χ{0}(‖c̃pi(y)− c̃pj (y)‖) = 0 for j 6= i and j ∈ Iw(y). This argument applied to all path
on which the flow y has a nonzero component, we deduce

ρ̃(y) =
∑

p∈Pw,w∈W

yp


d[c̃p(y),MinC̃w(y)] +

∑

i∈Iw(y),pi 6=p

χ{0}(‖c̃p(y)− c̃pi(y)‖)


 = 0.

which, in view of Theorem 4.4.1, implies that y is robust for (G, C̃). �

When a robust vector equilibrium y ∈ K is given, we wish to know how far we can
perturb the cost function C so that y remains equilibrium for the perturbed costs. In other
words we wish to find the radius of robustness at this equilibrium. For a feasible flow y ∈ K
we denote

I+w (y) = {i ∈ Iw(y) : ypi > 0}.

56 4 Equilibrium in a multi-criteria traffic network without capacity constraints

Corollary 4.4.5 Let y ∈ K be a robust vector equilibrium. Then the radius of robustness
at y is computed by

r(y) =

√
l

2
min

w∈W,i∈I+w (y)
min

p′∈Pw\{pi}
‖(cp′(y)− cpi(y))

+‖

where (cp′ (y)− cpi(y))
+ denotes the positive part of the vector cp′ (y)− cpi(y).

Proof. It follows from the proof of Theorem 4.4.1 that y is a vector equilibrium of (G, C̃)
as soon as (4.34) is true which is equivalent to

(c̃pi(y)− c̃p(y))
+ 6= 0,

where p ∈ Pw with yp > 0 and pi ∈ Pw. Let ǫ < r(y) and ‖c̃pi(y) − cpi(y)‖ ≤ ǫ, ‖c̃p(y) −
cp(y)‖ ≤ ǫ, one has

(c̃pi(y)− c̃p(y))
+ ≧ [(cpi(y)− ǫe)− (cp(y) + ǫe)]+ ≥ 0,

proving that y is a vector equilibrium of (G, C̃).
Let ǫ > r(y) and let

r(y) =

√
l

2
‖(cp′(y)− cpi(y))

+‖

for some i ∈ I+w (y), p
′ ∈ Pw\{pi}. Define a perturbed cost C̃ by

c̃p(y) =





cp(y) if p 6= p′, p 6= pi
cpi(y) + (ǫ/

√
l)e if p = pi

cpi(y)− (ǫ/
√
l)e if p = p′.

Then ‖c̃p(y) − cp(y)‖ ≦ ǫ for all p ∈ P and c̃p′(y) − c̃pi(y) = cp′(y) − cpi(y) − 2ǫ ≤ 0.

Consequently c̃pi(y) /∈ MinC̃w(y). This and the fact that ypi > 0 implies that φ̃(y) > 0. By

Theorem 4.1.1, y is not a vector equilibrium of (G, C̃). �

We complete this section by presenting an algorithm to find robust vector equilibria
among the vector equilibria obtained by the algorithm (A) of Section 5 and to compute the
radius of robustness at it.

Description of the algorithm
We denote Eq the set of vector equilibria, S×R = {(y, r(y)) : y is robust equilibrium and r(y)
is radius of robustness corresponding with robust equilibrium}.

Step 1. Choose a vector equilibrium y1 from Eq to start. Set k = 1, S = ∅ and R = ∅.

Step 2. Determine Iw(y
k).

Calculate
ρ(yk) =

∑

p∈Pw,w∈W

ykp
∑

i∈Iw(yk),pi 6=p

χ{0}(‖cp(yk)− cpi(y
k)‖).

If ρ(yk) 6= 0, then return to Step 1 and choose another vector equilibrium from Eq to restart
the algorithm until no element of Eq left.
If ρ(yk) = 0, then determine I+w (y

k) and calculate

r(yk) =

√
l

2
min

w∈W,i∈I+w (yk)
min

p′∈Pw\{pi}
‖(cp′(yk)− cpi(y

k))+‖.

4.4 Robust equilibrium 57

Store (yk, r(yk)) in S ×R and go to Step 1 until no element of Eq left.

We tested this algorithm for Examples 4.3.4 and 4.3.5. In Example 4.3.4 the unique vector
equilibrium (30, 0)T is not robust. Therefore, S = ∅ and R = ∅. In Example 4.3.5, the
obtained robust vector equilibria and radius of robustness are given in the table below.

Robust vector equilibria Radius of robustness Robust vector equilibria Radius of robustness
(0.5, 9.5)T 0.7071 (3, 7)T 4.2426
(1, 9)T 1.4142 (3.5, 6.5)T 4.2426

(1.5, 8.5)T 2.1213 (4, 6)T 2.8284
(2, 8)T 2.8284 (4.5, 5.5)T 1.4142

(2.5, 7.5)T 3.5355

5

Equilibrium in a multi-criteria traffic network with

capacity constraints

The purpose of this chapter is to study a single-product multi-criteria traffic network with
capacity constraints. We construct an optimization problem the solutions of which are ex-
actly the set of equilibria of the model. We establish some important generic continuity and
differentiability properties of the objective function and give the formula to calculate the
gradient of the objective function. Then we apply the algorithm proposed in Chapter 4 with
some modifications in order to obtain a subset of optimal solutions which are equilibria of
our model. Numerical examples are also presented to illustrate our approach.

5.1 Single-product multi-criteria traffic network with capacity

constraints

We consider a traffic network G = [N,A,W] that consists of a set of nodes N , a set of n
directed arcs or links A = {a1, · · · , an} and a set W of r origin/destination (O/D for short)
pairs of nodes w = (x, x′) with x, x′ ∈ N such that there is a path from x to x′. For a pair
of nodes w = (x, x′), the set of available paths from the origin x to the destination x′ is
denoted by Pw, and the set of all available paths of the network is denoted by

P = {p1, · · · , pm} = ∪w∈WPw.

As in the preceding chapter, yp denotes the traffic flow on path p ∈ P . We assume throughout
this chapter that the demand dw of the traffic flow for each O/D pair w ∈ W is fixed and
there are capacity constraints on each path of the network. Namely, for every p ∈ P we have
two nonnegative numbers lp ∈ R and up ∈ R with lp < up that represent the lower and the
upper capacity constraint on thepath p. A path flow y is said to be feasible if it satisfies the
capacity constraints and the conservation of flows equations:

lp ≦ yp ≦ up ∀ p ∈ P ; (5.1)

∑

p∈Pw

yp = dw ∀w ∈W. (5.2)

The set of all feasible path flows is denoted K. Assume further that a vector cost function
ĉa is given on each arc a ∈ A, depending on the traffic arc flow z and taking values in a
finite dimensional space Rl with l ≧ 2. Then the vector cost function cp on path p depends
on the path flow y and is computed by

cp(y) =
∑

a∈A

ĉa(z)δap, (5.3)

60 5 Equilibrium in a multi-criteria traffic network with capacity constraints

as we already knew in the model without capacity constraints in Chapter 4. We recall that
C(y) denotes the l ×m-matrix, the columns of which are cp, p ∈ P and Ĉ(z) denotes the
l × n-matrix, the columns of which are ĉa, a ∈ A. Then these matrices are linked by the
formula

C(y) = Ĉ(z)∆,

with ∆ the incident matrix. In this chapter we study the concept of equilibrium introduced
in [24] which is a vector version of Wardrop’s famous user principle.

Definition 5.1.1 A feasible path flow y is said to be a vector equilibrium (respectively a
weak vector equilibrium) of G if for every O/D pair w ∈ W and for every couple of paths
p, p

′ ∈ Pw one has implication

cp(y)− cp′(y) ≥ 0 (respectively cp(y)− cp′(y) > 0) =⇒ either yp = lp or yp′ = up′ .

It is clear that every vector equilibrium is weak vector equilibrium, and the converse is not
true in general. When lp = 0 and up = +∞, that is, there are no capacity constraints, the
aforementioned definition coincides with the one given in Definition 4.0.25.

5.2 Equivalent optimization problem

In this section we construct an optimization problem the optimal solutions of which are
equilibria of the traffic network with capacity constraints we described above. For every
feasible flow y define

ψ(y) :=
∑

p,p′∈Pw,w∈W

(yp − lp)(up′ − yp′)[cp(y)− cp′(y)]
TH+[cp(y)− cp′(y)].

where the function H+ is a vector version of the Heaviside Step function, which was given
in Chapter 4. Since in the case of network without capacity constraints the upper capacity
constraint is set equal to +∞, the function ψ introduced in Chapter 4 cannot be obtained
from this function. However, most of properties of that function we established in Chapter
4 remain true. The following theorem is important for the further developments.

Theorem 5.2.1 Let ȳ be a feasible flow. The following statements are equivalent:

(i) ȳ is a vector equilibrium.
(ii)ȳ is an optimal solution of the following problem, denoted (P):

minimize ψ(y)

subject to y ∈ K

and the optimal value of this problem is zero.

Proof. Let ȳ be a vector equilibrium. Since ψ(y) ≧ 0 for every y ∈ K, as before, it suf-
fices to prove ψ(ȳ) = 0 in order to deduce (ii). Let p ∈ Pw, w ∈ W . Consider the term
(ȳp − lp)(up′ − ȳp′)[cp(ȳ)− cp′(ȳ)]

TH+[cp(ȳ)− cp′(ȳ)], denoted bp,p′ . If cp(ȳ)− cp′(ȳ) ≥ 0 for
some p′ ∈ Pw, then by definition, either ȳp = lp or ȳp′ = up′ . If cp(ȳ)− cp′(ȳ) = 0 for some
p′ ∈ Pw, it is clear that the corresponding term of the above sum is zero. If cp(ȳ)−cp′(ȳ) 6≧ 0
for some p′ ∈ Pw, then H+[cp(ȳ)− cp′(ȳ)] = 0. Therefore bp,p′ = 0. Consequently, ψ(ȳ) = 0
as requested. Conversely, assume ȳ solves (P) and ψ(ȳ) = 0. It follows that bp,p′ = 0 for
every p ∈ P . If for some p and p′ from Pw, w ∈ W one has cp(ȳ) − cp′(ȳ) ≥ 0, then
[cp(ȳ) − cp′(ȳ)]

TH+[cp(ȳ) − cp′(ȳ)] > 0. Consequently, either ȳp = lp or ȳp′ = up′ . We

5.3 Generic differentiability and local calmness of the objective function 61

deduce that ȳ is a vector equilibrium. �

By using the same method of proof we may establish a similar result for weak vector
equilibria. For this purpose let us define

ψw(y) :=
∑

p,p′∈Pw,w∈W

(yp − lp)(up′ − yp′)[cp(y)− cp′(y)]
THw

+ [cp(y)− cp′(y)]

for every y ∈ K, and consider the optimization problem (Pw):

minimize ψw(y)

subject to y ∈ K,

where Hw
+ is defined by

Hw
+(x) =

{
e if x > 0
0 else.

Theorem 5.2.2 Let ȳ be a feasible flow. Then ȳ is a weak vector equilibrium if and only if
it solves the problem (Pw) with the optimal value equal to zero.

Proof. Apply the method of proof of Theorem 5.2.1. �

Finally we observe that the conclusion of Theorem 5.2.1 remains true when the function
H+ defining the objective function of (P) is substituted by the function

H̃+(x) = (

l∏

i=1

h̃+(xi))e for all x ∈ Rl,

where h̃+(t) = h+(t) for all t ∈ R \ {0} and h̃+(0) = 1/2.

5.3 Generic differentiability and local calmness of the objective

function

We apply the methods of proof of Chapter 4 to establish some properties of the function ψ.

Theorem 5.3.1 Assume that the vector cost functions cpi , i = 1, · · · ,m are continuous (re-
spectively locally Lipschitz or differentiable). Then every open set in Rm contains an open
subset where the objective function ψ of problem (P) is continuous (respectively locally Lip-
schitz or differentiable).
Proof. The general term of this ψ is obtained from the general term of the function ψ
of Chapter 4 by substituting yp by (yp − lp)(up − yp) which is continuous (or locally Lips-
chitz/differentiable). Therefore the proof of Theorem 4.2.4 applies. �

Theorem 5.3.2 Assume that the vector cost functions cpi , i = 1, · · · ,m are differentiable.
Then for every point y outside of some nowhere dense subset and for every path pi, there
exists a subset Ji(y) ⊆ Iw(i) such that

(i) cpi(y) ≥ cpj (y) for every j ∈ Ji(y)
(ii)ψ(y) =

∑m
i=1(ypi − lpi)

〈∑
j∈Ji(y)

(
upj − ypj

)(
cpi(y)− cpj (y)

)
, e
〉

62 5 Equilibrium in a multi-criteria traffic network with capacity constraints

(iii) ψ is differentiable at y and its gradient’s components are computed by

∂ψ(y)
∂yk

=
m∑
i=1

(ypi − lpi)
∑

j∈Ji(y)

(upj − ypj)
〈
∂cpi (y)

∂yk
− ∂cpj (y)

∂yk
, e
〉

+
m∑
i=1
i 6=k

(lpi − ypi) 〈cpi(y)− cpk(y), e〉

+
∑

j∈Jk(y)

(upj − ypj)
〈
cpk(y)− cpj (y), e

〉

for k = 1, ...,m.

Proof. The same proof of Theorem 4.2.6 goes through for (i) and (ii). The formula given
in (iii) is obtained by a direct calculation. �

We notice that in general the objective function of the problem (P) is not continuous.
Again we are able to prove its calmness at a point that is a vector equilibrium.

Proposition 5.3.3 Assume that the vector cost functions cp1 , · · · , cpm are continuous. Then
the function ψ is continuous at every vector equilibrium. If in addition cp1 , · · · , cpm are locally
calm at a vector equilibrium, then ψ is also locally calm there.

Proof. Let y ∈ K be a vector equilibrium of G. Assume that cp1 , · · · , cpm are continuous
on K and locally calm at y. The case where the function ψ is merely continuous is proven
by a similar argument. We wish to show that there exist some δ > 0 and κ > 0 such that
|ψ(y) − ψ(y)| ≦ κ‖y − y‖ for every y ∈ K with ‖y − y‖ ≦ δ. Because ψ takes nonnegative
values and as y is equilibrium, by Theorem 5.2.1, ψ(y) = 0, the above inequality is equivalent
to

ψ(y) ≦ κ‖y − y‖. (5.4)

Recall that for i ∈ {1, ...,m}, w(i) denotes the O/D pair connected by the path pi and Pw(i)

denotes the set of all paths connecting this O/D pair. We make also use of the following
notations

I0 = {i ∈ {1, · · · ,m} : ȳpi = lpi}
I+ = {i ∈ {1, · · · ,m} : lpi < ȳpi ≦ upi}
D = max{dw : w ∈W}
T = max{‖cpi(y)‖ : y ∈ K, i = 1, · · · ,m}
U = max{‖upi(y)‖ : y ∈ K, i = 1, · · · ,m}.

The following inequality is clear
ypi ≦ ‖y‖ ≦ D (5.5)

for every y ∈ K and pi ∈ P. Consider the terms

gi(y) := (ypi − lpi)
∑

pj∈Pw(i)

(upj − ypj)[cpi(y)− cpj (y)]
TH+[cpi(y)− cpj (y)]

for i = 1, ...,m.

Observe first that

0 ≦ (upj − ypj)[cpi(y)− cpj (y)]
TH+[cpi(y)− cpj (y)] ≦ 2lTU,

for all pi, pj ∈ P and y ∈ K. Therefore, if i ∈ I0, then

|gi(y)− gi(y)| = gi(y) ≦ 2mlTU(ypi − lpi) ≦ 2mlTU‖y − y‖. (5.6)

5.4 Generating vector equilibrium flows 63

If i ∈ I+, we have

∑

pj∈Pw(i)

(upj − ypj)[cpi(y)− cpj (y)]
TH+[cpi(y)− cpj (y)] = 0,

which implies that for pj ∈ Pw(i)\{pi}, either ypj = upj or cpi(y) � cpj (y) or cpi(y) = cpj (y).
In the first case, there exists some pi ∈ Pw(i) such that cpi(y) ≥ cpj (y). Due to the continuity

hypothesis, there exists some δ
′

i > 0 such that cpi(y) ≥ cpj (y) for all y ∈ K with ‖y−y‖ ≦ δ
′

i.

In the second case, also due to the continuity hypothesis, there exists some δ
′′

i > 0 such that

cpi(y) � cpj (y) for all y ∈ K with ‖y−y‖ ≦ δ
′′

i . In the third case, by the calmness hypothesis,
there are some constants δ′ > 0 and κ′ > 0 such that

‖cpj (y)− cpj (y)‖ ≦ κ′‖y − y‖ (5.7)

for every y ∈ K with ‖y − y‖ ≦ δ
′

and j = 1, · · · ,m. We have

‖cpi(y)− cpj (y)‖ = ‖cpi(y)− cpi(y) + cpj (y)− cpj (y)‖
≦ 2κ′‖y − y‖

for all y ∈ K with ‖y − y‖ ≦ δ′. Set γi = min{δ′, δ′

i , δ
′′

i }. We deduce

|gi(y)− gi(y)| = gi(y) ≦ lDU
∑

pj∈Pwi

‖cpi(y)− cpj (y)‖ ≦ 2lmDUκ′‖y − y‖ (5.8)

for y ∈ K with ‖y−y‖ ≦ γi. It remains to choose δ = min{γi : i ∈ I+} and κ = 2mlTU |I0|+
2mlDUκ′|I+| to obtain (5.4) from (5.6) and (5.8). The proof is complete. �

5.4 Generating vector equilibrium flows

In this section we present an algorithm based on the one in Chapter 4 with some modifica-
tions to obtain a subset of vector equilibria of the network. We also present some numerical
examples to illustrate the algorithm.

5.4.1 Description of the algorithm

Assume that W consists of r elements w1, · · · , wr in the network and for each pair wi there
are |Pwi

| paths connecting its origin to its destination. We denote also Ij = {i ∈ {1, · · · ,m} :
pi ∈ Pwj

}.

Step 0 (initialization). Choose a positive integer q and a tolerance level ǫ ≧ 0.

Procedure A1.

Step 1. Enter L = (lp)p∈P and U = (up)p∈P . Set δj = dwj
/(q|Pwj

|), j = 1, · · · , r.

Step 2. Choose (k1, · · · , km)T ∈ Nm satisfying

∑

i∈Ij

ki = q|Pwj
|, and lpi ≦ ki.δj ≦ upi for i ∈ Ij ; j = 1, · · · , r.

Step 3. Store y = (y1, · · · , ym)T in Y 0 where

64 5 Equilibrium in a multi-criteria traffic network with capacity constraints

yi = kiδj for i ∈ Ij , j = 1, · · · , r

and return to Step 2 for other vectors (k1, · · · , km) unless no one left.

Procedure A2.

Step 4. Choose a feasible flow y0 from Y 0 to start. Set k = 0, uk−1 = yk, αk−1 = ∞,
Y 0 = Y 0 \ {y0} and Eǫq = ∅.

Step 5. Compute Ji(y
k) = {i′ ∈ {1, · · · ,m} : pi′ ∈ Pw(i), cpi(y

k) − cpi′ (y
k) ≧ 0} for every

i ∈ {1, · · · ,m}. Set

ψk(y) :=

m∑

i=1

(ypi − lpi)
∑

i′∈Ji(yk)

(upi′ − ypi′)〈cpi(y)− cpi′ (y), e〉.

Compute ψk(y
k).

If ψk(y
k) ≦ ǫ, store yk in Eǫq and return to Step 4 until no element of Y 0 left.

Otherwise go to the next step.

Step 6. If |ψk(yk) − αk−1| ≦ ǫ, go to Step 4 to choose another feasible solution from Y 0 to
restart the procedure.
If ψk(y

k) < αk−1 − ǫ, set αk = ψk(y
k) and go to Step 7.

If ψk(y
k) > αk−1 + ǫ, replace yk = yk−1 + (yk − yk−1)/2 and return to Step 5.

Step 7. Compute ∇ψk(yk). Solve (Pk)

minimize uT∇ψk(yk)
subject to u ∈ K

|ui − y0i | ≦ δw(i), i = 1, · · · ,m.

Let uk be an optimal solution.
If |ψk(yk)−ψk(u

k)| ≦ ǫ, go to Step 4 to choose another feasible solution from Y 0 to restart
the procedure until no element of Y 0 left.
Otherwise, set yk+1 = uk. Update k = k + 1 and return to Step 5.

5.4.2 Numerical examples

The examples below are modified versions of Examples 4.3.4-4.3.6 of Chapter 4 to which we
add lower and upper capacity constraints. They are coded and computed on Matlab Version
2014a.

Example 5.4.1 Consider a network problem with one pair of origin-destination nodes w =
(x, x

′

), two criteria: travel time and travel cost, two available paths: Pw = {p1, p2} with the
travel demand dw = 30. Assume that

lp1 = 1 lp2 = 1 up1 = 20 up2 = 25

cp1,1(y) = yp1 + 2yp2 cp2,1(y) = yp1 + 6yp2
cp1,2(y) = 6yp1 + 2yp2 cp2,2(y) = 6yp1 + 8yp2 .

We tested our program for the zero tolerance ǫ = 0 and q = 3 which yields 4 feasible initial
points. The results are displayed in the table below.

5.4 Generating vector equilibrium flows 65

Initial point Numbers of iterations Vector equilibrium CPU Time (seconds)
(5, 25)T 100 −

0.285410
(10, 20)T 100 −
(15, 15)T 3 (20, 10)T

(20, 10)T 1 (20, 10)T

We remark that starting from the first two initial points our algorithm finds no vector equi-
librium because after some iterations either the value ψk(y

k) is almost the same as αk−1 at
Step 6 or the value ψk(y

k) is almost the same as ψk(u
k) at Step 7, which enforces us to go

to Step 4 to choose another initial point to restart. Moreover, when the tolerance is strictly
positive, the program runs much faster. For instance with ǫ = 10−4, the algorithm finds two
vector ǫ−equilibria in 0.053571 seconds, one of which is (20, 10)T and the other is very near
to it.

Example 5.4.2 Consider the network described in Example 5.4.1 with one pair of origin-
destination nodes, two paths and two criteria with the travel demand dw = 1. Assume that

lp1 = 1 lp2 = 2 up1 = 8 up2 = 7

cp1,1(y) = 3yp1 + yp2 cp2,1(y) = yp1 + yp2
cp1,2(y) = 5yp1 + 3yp2 cp2,2(y) = 3yp1 + 5yp2 .

With q = 10 we have 11 feasible initial points, we obtain 5 vector equilibria in 0.814601
seconds. It can be seen that the set of all vector equilibria is the segment between (3, 7)T and
(5, 5). The vector equilibrium set is graphically presented below.

In the next example the travel time and travel cost functions are nonlinear.

Example 5.4.3 Consider a network problem with only one pair of origin-destination nodes
w = (x, x

′

), two criteria: travel time and travel cost, three available paths: Pw = {p1, p2, p3}
with the travel demand dw = 18. Assume that

lp1 = 1 lp2 = 0 lp3 = 3 up1 = 10 up2 = 15 up3 = 12

cp1,1(y) = y2p1 + y2p2 + y3p3 cp2,1(y) = 8yp1yp2 + y2p2
cp1,2(y) = 2yp1 + 5yp2 + 3yp3 cp2,2(y) = yp2 + 10yp3

66 5 Equilibrium in a multi-criteria traffic network with capacity constraints

cp3,1(y) = yp1 + y2p2 + y3p3
cp3,2(y) = 10y3p3 .

With ǫ = 0 and q = 20 we have 839 feasible initial points. Using the algorithm we
obtained 659 vector equilibria in 18.809593 seconds which are presented in the next figure.

6

Equilibrium in a multi-product multi-criteria traffic

network with capacity constraints

The purpose of this chapter is to study a multi-product, multi-criteria network with capacity
constraints in which all products and all criteria are simultaneously considered. We establish
existence conditions for strong vector equilibrium and a relationship between strong vector
equilibrium and Pareto efficient elements of the value set of the vector cost function. The
main attention is paid to constructing equivalent variational inequality problems with the
help of particular classes of increasing functions. An algorithm is proposed to solve multi-
criteria network equilibrium problems and numerical examples are presented to illustrate
our approach.

Let us now recall some principal concepts of equilibrium in a multi-product multi-criteria
network.

Definition 6.0.4 [37] A feasible flow Y is said to be a strong vector equilibrium of the
network G if for every w ∈W and pα, pβ ∈ Pw one has implication

Cpα(Y) ≥ Cpβ (Y) ⇒ either Ypα = Lpα or Ypβ = Upβ .

It is said to be a weak vector equilibrium if for every w ∈ W and pα, pβ ∈ Pw one has
implication

Cpα(Y) ≥ Cpβ (Y) ⇒ either Ypα 6> Lpα or Ypβ 6< Upβ .

The aforementioned implications were already given in Chapter 3 in which we gave a number
of comments on their relations with other concepts of equilibrium.

6.1 Existence conditions

It is known that in a single-criterion traffic model, Wardrop’s equilibrium exists under rather
mild conditions (the continuity of the cost function and the compactness of the feasible set
for instance). This, however, is not true in the case of multi-criteria networks. A simple
example below gives a network without strong vector equilibrium flows in which the cost
function is linear.

Example 6.1.1 Consider a network problem with only one pair of origin-destination nodes
w = (x, x′), two criteria and two products to traverse the network with two available paths:
Pw = {p1, p2}. Assume that d1w = y1p1 + y1p2 = 10, d2w = y2p1 + y2p2 = 10 and

l1p1 = l2p1 = 1 l1p2 = 3.5 l2p2 = 2 u1p1 = u2p1 = 10 u1p2 = u2p2 = 12

68 6 Equilibrium in a multi-product multi-criteria traffic network with capacity constraints

c1p1(Y) = (y1p1 , y
1
p1
)T c2p1(Y) = (y2p1 , y

2
p1
)T

c1p2(Y) = (3y1p2 , 2y
1
p2
)T c2p2(Y) = (3y2p2 , 2y

2
p2
)T

There does not exist any feasible flow Y satisfying the following condition: Cpα(Y) ≥ Cpβ (Y)
implies either Ypα = Lpα or Ypβ = Upβ for pα, pβ ∈ Pw. That means this problem does not
have any strong vector equilibrium.

To establish existence conditions for strong vector equilibrium flows we need the concept
of elementary flows [38], which we suggest to call elementary flow variations in reference
to the well known concept of elementary variations in the theory of optimal control. A
path flow Y of the network G is said to be an elementary flow variation if there are some
origin-destination pair w ∈W and paths pα, pβ ∈ Pw such that

Ypα = −Ypβ
Ypi = 0 for pi ∈ Pw\{pα, pβ}.

From now on, let us fix a path flow Ȳ , write C̄ and c̄jpi instead of C(Ȳ) and cjpi(Ȳ) if no
misunderstanding occurs. We use also upper index r to indicate the rth component of each
vector cjpi and set

K+(Y) = {Y ∈ K : Y − Y is elementary with (Y − Y)pα ≥ 0 for some pα} ∪ {Y }.

We shall need also the following result (Theorem 5.4 [37]): If a feasible flow Y is a strong
vector equilibrium flow, then it satisfies the following vector variational inequality




m∑
i=1

c1pi,1(Ypi − Y pi) . . .
m∑
i=1

cqpi,1(Ypi − Y pi)

...
. . .

...
m∑
i=1

c1pi,l(Ypi − Y pi) · · ·
m∑
i=1

cqpi,l(Ypi − Y pi)



/∈
(
−Rq+

)l×q \{0} (6.1)

for all Y ∈ K+(Y). Conversely, if Y is a solution of the above variational inequality and
satisfies the following condition: For every origin-destination pair w ∈ W and for every
couple of paths pα, pβ ∈ Pw one has implication

Lpα ≤ Ypα and Ypβ ≤ Upβ ⇒ lkpα < ykpα and ykpβ < ukpβ for some k ∈ {1, ..., q}, (6.2)

then Y is a strong vector equilibrium flow. We notice that condition (6.2) holds trivially
when the network is without capacity constraints, or more generally when the upper bound
on each path is sufficiently large with regard to the demand. For instance, it is the case when
djw < ujpi for every pi ∈ Pw, j ∈ {1, ..., q}.

Theorem 6.1.2 Assume that the feasible set K is nonempty. The network G admits a weak
vector equilibrium flow if the cost function C(.) is continuous with respect to the variables
yjp1 , ..., y

j
pm

for some j ∈ {1, ..., q}. Moreover, if C(.) is continuous, then the vector vari-
ational inequality (6.1) has a solution, which is also a strong vector equilibrium when it
satisfies condition (6.2).

Proof. Without loss of generality we may assume j = 1. We fix a feasible flow y and con-
sider the network G with a single product j = 1 and a single-criterion cost function on
path i: fi(z) =

∑l
r=1

∑q
s=1 c

s
pi,r

(z, y2, ..., yq). The feasible set K1 for this model consists of

flows z = (z1p1 , ..., z
1
pm

)T satisfying the constraints: l1pi ≦ z1pi ≦ u1pi for pi ∈ P = {p1, ..., pm}
and

∑
pi∈Pw

z1pi = d1w for every w ∈ W . By hypothesis the cost function f = (f1, ..., fm)

6.2 Equivalent problems 69

is continuous, and therefore the network admits an equilibrium z in the classical sense:
fα(z) > fβ(z) ⇒ either z1pα = l1pα or z1pβ = u1pα . We claim that the flow Z = (z, y2, ..., yq)

is a weak vector equilibrium flow of the original network. Indeed, it is clear that Z be-
longs to K. If for some w ∈ W , pα, pβ ∈ Pw one has Cpα(Z) ≥ Cpβ (Z), then all com-

ponents of Cpα(Z) are bigger than or equal to the corresponding components of Cpβ (Z),

and at least one inequality is strict, which yields fα(z) =
∑l
r=1

∑q
s=1 c

s
pα,r

(z, y2, ..., yq) >∑l
r=1

∑q
s=1 c

s
pβ ,r

(z, y2, ..., yq) = fβ(z). It follows that either z1pα = l1pα or z1pβ = u1pβ , which

implies either Zpα 6> Lpα or Z 6< Upβ . This shows that Z is a weak vector equilibrium.
To prove the second part of the theorem we consider the following variational inequal-
ity problem: Find z ∈ Rmq such that 〈φ(z), z − z〉 ≧ 0 for every z ∈ Q, where
z ∈ Q if and only if z = (y1p1 , ..., y

q
p1
, ..., y1pm , ..., y

q
pm

) for some Y ∈ K, and φ(z) =
(φ1(z), ..., φ1(z), ..., φm(z), ..., φm(z)) ∈ Rmq for z ∈ Q, in which

φi(z) =
∑q
j=1

∑l
r=1 c

j
pi,r

(Y) with Y generating z as above. Since K is a compact set and φ
is continuous by hypothesis, this variational inequality admits a solution. Let y be a feasible
flow corresponding to this solution. Then one can check that it is a solution to a vector
variational inequality (6.1). Due to the condition (6.2) we may apply Theorem 5.4 of [37] to
conclude that y is a strong vector equilibrium flow of the original network. �

We notice also that if the condition (6.2) is not satisfied, then a solution of (6.1) is not
necessarily a strong vector equilibrium. This is seen by the following example.

Example 6.1.3 Consider a network problem with only one pair of origin-destination nodes
w = (x, x

′

), two criteria and two products to traverse in the network with two available
paths: Pw = {p1, p2}. Assume that dw1 = 4, d2w = 20, ljpi = 2, ujpi = 10 for pi, pj ∈ Pw and

y1p1 = 2 y2p1 = 10 c1p1 = (15, 35)T c2p1 = (25, 20)T

y1p2 = 2 y2p2 = 10 c1p2 = (10, 20)T c2p2 = (15, 12)T

Then, Y does not satisfy the condition (8). In fact Y p1 ≥ Lp1 , Y p2 ≤ Up2 , and there is not
any j ∈ {1, 2} such that yjp1 > ljp1 and yjp2 < ujp2 . And for all Y ∈ K+(Y) one has



c1p1,1(Yp1 − Y p1) + c1p2,1(Yp2 − Y p2) c2p1,1(Yp1 − Y p1) + c2p2,1(Yp2 − Y p2)

c1p1,2(Yp1 − Y p1) + c1p2,2(Yp2 − Y p2) c2p1,2(Yp1 − Y p1) + c2p2,2(Yp2 − Y p2)




=




5(y1p1 − 2) 10(y1p1 − 2)
5(y2p1 − 10) 10(y2p1 − 10)
15(y1p1 − 2) 8(y1p1 − 2)
15(y2p1 − 10) 8(y2p1 − 10)


 /∈

(
−R2

+

)2×2 \{0}

which shows that Y is a solution of the problem (6.1).
However, Y is not a strong vector equilibrium as Cp1 = (c1p1 c2p1) ≥ Cp2 = (c1p2 c2p2) but

Y p1 6= Lp1 and Y p2 6= Up2 .

6.2 Equivalent problems

6.2.1 Equilibrium with respect to a family of increasing functions

Let F be a family of real functions on Rl×q. We say that a feasible flow Y is
F-equilibrium if for every w ∈W and pα, pβ ∈ Pw, one has

70 6 Equilibrium in a multi-product multi-criteria traffic network with capacity constraints

f(Cpα) > f(Cpβ), ∀f ∈ F ⇒ either Y pα = Lpα or Y pβ = Upβ . (6.3)

The next result is a version of Theorem 4.2 of [37] for strong vector equilibrium.

Lemma 6.2.1 Let a feasible flow Y be given. If the family F consists of increasing functions
on {Cpi , pi ∈ P}, then every F-equilibrium is a strong vector equilibrium. Conversely, if F
satisfies the following condition: For every w ∈W and pi, pi′ ∈ Pw one has implication

f(Cpi) > f(Cpi′) ∀ f ∈ F ⇒ Cpi ≥ Cpi′ , (6.4)

then every strong vector equilibrium is an F-equilibrium.

Proof. Assume that the feasible flow Y is an F-equilibrium. If for some w ∈ W and
pα, pβ ∈ Pw, we have Cpα ≥ Cpβ , then for every increasing function f ∈ F , we obtain

f(Cpα) > f(Cβ). By definition, we have either Y pα = Lpα or Y pβ = Uβ . Hence, Y is a
strong vector equilibrium.
Conversely, let Y be a strong vector equilibrium. If for some w ∈ W and pα, pβ ∈ Pw, we
have f(Cpα) > f(Cpβ) for all f ∈ F , then by the assumption, it implies that Cpα ≥ Cβ . We

deduce that either Y pα = Lpα or Y pβ = Upβ which shows that Y is an F-equilibrium. �

We notice that if the family F does not satisfy (6.4), then a strong vector equilibrium
is not necessarily an F-equilibrium as it is shown by the example below.

Example 6.2.2 Consider a network problem with only one pair of origin-destination nodes
w = (x, x′), two criteria and two products to traverse the network with three available paths:
Pw = {p1, p2, p3}. Assume that d1w = 10, d2w = 18, ljpi = 2, ujpi = 10 for pi ∈ Pw and j = 1, 2,
and

y1p1 = 3 y2p1 = 7 c1p1 = (2, 2)T c2p1 = (2, 6)T

y1p2 = 2 y2p2 = 9 c1p2 = (7, 5)T c2p2 = (6, 2)T

y1p3 = 5 y2p3 = 2 c1p3 = (5, 5)T c2p3 = (8, 2)T

and consider the family G consisting of one increasing function Gǫ
Cp1

for an ǫ > 0 fixed.

More precisely,

Gǫ
Cp1

(Cpi) = max
k=1,2
n=1,2

{
ε

2∑

s=1

2∑

t=1

(ctpi,s − ctp1,s) + cnpi,k − cnp1,k

}
, pi ∈ Pw.

Then the condition (6.4) does not hold, that is Gǫ
Cp1

(Cp3) = 8ǫ + 6 > Gǫ
Cp1

(Cp2) = 8ǫ + 5

and Cp3 6≥ Cp2 . Obviously, Y is a strong vector equilibrium, but not a G-equilibrium.

We now show that families of increasing functions satisfying the condition (6.4) do exist.

Lemma 6.2.3 Let a feasible flow Y be given. There exists ǫ0 > 0 such that for every
ǫ ∈ (0, ǫ0), each of the families below of increasing functions satisfies the condition (6.4):
F1 = {Dǫ

Cpi

: pi ∈ P}, F2 = {Gǫ
Cpi

: pi ∈ P}, F3 = {dǫ
Cpi

: pi ∈ P} and F4 = {gǫ
Cpi

: pi ∈
P}.

Proof. Consider the pairs (pi, pj) with pi, pj ∈ P and define ǫij = +∞ if Cpi ≥ Cpj and

ǫij = ǫ(Cpi , Cpj) if Cpi � Cpj , where ǫ(Cpi , Cpj) is obtained by Lemma 2.0.15. Then set
ǫ0 = min {ǫij : pi, pj ∈ P}. We show that for all ǫ ∈ (0, ǫ0), F1 satisfies the condition (6.4).
Indeed, let pj , pj′ ∈ P be such that Dǫ

Cpi

(Cpj) > Dǫ
Cpi

(Cpj′) for every pi ∈ P . If Cpj � Cpj′ ,

then for pi ≡ pj we have, in view of Lemma 2.0.15, 0 = Dǫ
Cpj

(Cpj) > Dǫ
Cpj

(Cpj′) ≧ 0, which

6.2 Equivalent problems 71

is impossible.
The proof for F2 is similar with use of Lemma 2.0.15 for Gǫ

Cpi

. The same argument is applied

to the families F3 and F4 with the help of Lemma 2.0.14 instead of Lemma 2.0.15. �

Corollary 6.2.4 Let a feasible flow Y be given. Then it is a strong vector equilibrium if
and only if it is an Fi-equilibrium for some i ∈ {1, ..., 4}.

Proof. It follows from Lemmas 6.2.1 and 6.2.3. �

6.2.2 Efficiency

We wish to express strong vector equilibrium flows in terms of efficient points of the value
set of the criteria function. This result is an improvement of Theorem 6.1 of [38] and will be
used in the algorithm of Section 6.3. For w ∈W , let us denote

Lw :=
{
pi ∈ Pw such that Y pi = Lpi

}

Uw :=
{
pi ∈ Pw such that Y pi = Upi

}

Ew :=
{
pi ∈ Pw such that Lpi ≤ Y pi ≤ Upi

}

and for an index set I, CI = {Ci, i ∈ I}.

Theorem 6.2.5 Let Y be a feasible flow. It is a strong vector equilibrium if and only if for
every w ∈W the following conditions hold
(i) (CLw

+ Rl×q+ \{0}) ∩ (CUw
∪ CEw

) = ∅;
(ii) (CUw

− Rl×q+ \{0}) ∩ (CLw
∪ CEw

) = ∅;
(iii)CEw

is self-maximal.

Proof. We prove first the ”if” part. Assume that Y satisfies the three conditions of the
theorem. Let w ∈ W and pα, pβ ∈ Pw such that Cpα ≥ Cpβ . If pα ∈ Lw or pβ ∈ Uw, we are
done. If not, we consider four possible cases:
a) pα ∈ Uw and pβ ∈ Ew. This implies Cpβ belongs to the intersection of

(CUw
− Rl×q+ \{0}) ∩ CEw

, contradicting (ii).

b) pα ∈ Ew and pβ ∈ Ew. This case is impossible because CEw
is self-maximal.

c) pα ∈ Uw and pβ ∈ Lw. Then Cpα belongs to (CLw
+ Rl×q+ \{0}) ∩ CUw

, contradicting (i).

d) pα ∈ Ew and pβ ∈ Lw. Similarly, Cpα belongs to (CLw
+Rl×q+ \{0})∩CEw

, contradicting
(i) too.
For the converse, let Y be a strong vector equilibrium of the network. If (i) does not hold,
then one can find pα ∈ Lw and pβ ∈ Ew ∪ Uw such that Cpα ≤ Cpβ . The latter inequality
implies either pα ∈ Uw or pβ ∈ Lw which is not the case. Similarly, if (ii) does not hold,
then one can find pα ∈ Uw and pβ ∈ Ew ∪Lw such that Cpα ≥ Cpβ , which leads to the same

contradiction. Finally, if (iii) does not hold, then one has Cpα ≥ Cpβ for some pα, pβ ∈ Ew.
This is in contradiction with the definition of strong vector equilibrium. �

It is worthwhile noticing that conditions (i) and (ii) can be substituted respectively by

(i′) (Min(CLw
) + Rl×q+ \{0}) ∩ (CUw

∪ CEw
) = ∅;

(ii′) (Max(CUw
)− Rl×q+ \{0}) ∩ (CLw

∪ CEw
) = ∅.

Indeed, as the sets CLw
and CUw

are finite, one has CLw
+Rl×q+ \{0} = Min(CLw

)+Rl×q+ \{0}
and CUw

−Rl×q+ \{0} = Max(CUw
)−Rl×q+ \{0}. We also observe that applying Theorem 6.2.5

with (i
′

) and (ii
′

) above to each product j, we deduce Theorem 6.1 of [38] (Remark that in
Theorem 6.1 of [38], Rl+\{0} should be instead of Rl+).

72 6 Equilibrium in a multi-product multi-criteria traffic network with capacity constraints

6.2.3 Variational inequality problems

Scalarization is a method widely used in the theory of multiple criteria decision making and
in vector optimization. It has already been developed in the existing literature [24, 33, 31]
and [38]. However, all variational inequality problems obtained in these works produce only
solutions which are weak equilibrium flows. In this section we employ augmented increasing
functions to construct variational inequality problems which are equivalent to the problem
of finding strong vector equilibrium flows. For a given feasible flow Y ∈ K, we shall make
use of the following notations:

Γ := {(pi, w, j) : j ∈ {1, ..., q}, w ∈W, pi ∈ Pw}
Aw :=

{
pα ∈ Pw such that Y pα ≥ Lpα

}

Bw :=
{
pβ ∈ Pw such that Y pβ ≤ Upβ

}

Let h be a real function of the variables (a, b) for a, b ∈ {Cpi(Y) : pi ∈ P, Y ∈ K}. Consider
the following variational inequality problem: Find Y such that

∑

(pi,w,j)∈Γ

(
min
pα∈Aw

h(Cpα , Cpi)

)(
yjpi − yjpi

)
≧ 0 for every Y ∈ K. (6.5)

We wish to prove that this problem is equivalent to the network equilibrium problem under
our consideration in the sense that a feasible flow Y is a strong vector equilibrium if and
only if it is a solution to (6.5) under a suitable hypothesis.

Lemma 6.2.6 If the function h is increasing with respect to the second variable and if the
condition (6.2) is satisfied, then every solution of the variational problem (6.5) is a strong
vector equilibrium. Conversely, if the function h satisfies the condition: a � b⇔ h(a, b) ≧ 0,
then every strong vector equilibrium is a solution of the variational problem (6.5).

Proof. Suppose that Y is not a strong vector equilibrium. Then there exists w0 ∈ W and
pα0 , pβ0 ∈ Pw0 such that

Cpα0
≥ Cpβ0

, ypα0
≥ Lpα0

, ypβ0
≤ Upβ0

.

By (6.2), there exists j0 ∈ {1, ..., q} such that lj0pα0
< yj0pα0

and yj0pβ0
< uj0pβ0

. Construct a flow
Y as follows

yjpi =





yjpi if pi 6∈ {pα0
, pβ0

}, j ∈ {1, ..., q}, or pi ∈ {pα0
, pβ0

}, j ∈ {1, ..., q}\{j0}
yjpi − δ if pi = pα0 , j = j0
yjpi + δ if pi = pβ0

, j = j0

where 0 < δ ≦ min{yj0pα0
− lj0pα0

, uj0pβ0
− yj0pβ0

}. It is clear that Y is a feasible flow. Moreover,

∑
(pi,w,j)∈Γ

(
min
pα∈Aw

h(Cpα , Cpi)

)(
yjpi − yjpi

)
=
∑

pi

(
min

pα∈Aw0

h(Cpα , Cpi)

)(
yj0pi − yj0pi

)

=

(
min

pα∈Aw0

h(Cpα , Cpα0
)

)(
yj0pα0

− yj0pα0

)
+

(
min

pα∈Aw0

h(Cpα , Cpβ0
)

)(
yj0pβ0

− yj0pβ0

)

= δ

(
min

pα∈Aw0

h(Cpα , Cβ0
)− min

pα∈Aw0

h(Cpα , Cpα0
)

)

≦ δ min
pα∈Aw0

[h(Cpα , Cβ0
)− h(Cpα , Cα0

)]

< 0,

6.2 Equivalent problems 73

in which the last inequality follows from the fact that h(Cpα , .) is increasing with respect to
the second variable for every fixed Cpα . This shows that y is not a solution of (6.5).
For the converse, suppose that Y is a strong vector equilibrium. It follows that Cpα �
Cpβ for all pα ∈ Aw, pβ ∈ Bw. According to our assumption, we have h(Cpα , Cpβ) ≧ 0 for

every pα ∈ Aw and pβ ∈ Bw. Let Y be a feasible flow. Set tw := min
pα∈Aw, pβ∈Bw

h(Cpα , Cpβ) ≧ 0,

and for each path pi ∈ Pw consider three possible values of the difference min
pα∈Aw

h(Cpα , Cpi)−
tw. Case 1: min

pα∈Aw

h(Cpα , Cpi)− tw < 0. Then pi /∈ Bw and yjpi − yjpi = yjpi −ujpi ≦ 0. Hence,

one has (min
pα∈Aw

h(Cpα , Cpi)− tw)(y
j
pi
− yjpi) ≧ 0. Case 2: min

pα∈Aw

h(Cpα , Cpi)− tw > 0. Then

min
pα∈Aw

h(Cpα , Cpi) > 0. Moreover, as min
pα∈Aw

h(Cpα , Cps) ≦ 0, ∀ps ∈ Aw, we deduce pi /∈ Aw

and hence yjpi −yjpi = yjpi −ljpi ≧ 0. This implies that (min
pα∈Aw

h(Cpα , Cpi)−tw)(yjpi −yjpi) ≧ 0.

Case 3: min
pα∈Aw

h(Cpα , Cpi)− tw = 0. It is clear that (min
pα∈Aw

h(Cpα , Cpi)− tw)(y
j
pi
− yjpi) = 0.

By taking the constraint (3.15) into account we deduce that

∑

(pi,w,j)∈Γ

(
min
pα∈Aw

h(Cpα , Ci)

)(
yjpi − yjpi

)
≧

∑

(pi,w,j)∈Γ

tw
(
yjpi − yjpi

)

≧
∑

(pi,w,j)∈Γ

tw(d
j
w − djw) = 0,

which proves that y is a solution of (6.5). �

We are now able to construct specific variational inequality problems to obtain strong
vector equilibrium flows by using augmented signed distance functions.

Theorem 6.2.7 Let Y be a feasible flow. If it satisfies the condition (6.2) and

∑

(pi,w,j)∈Γ

(
min
pα∈Aw

Dǫ
Cpα

(Cpi)

)(
yjpi − yjpi

)
≧ 0 for every Y ∈ K, (6.6)

for some ǫ > 0, then it is a strong vector equilibrium. Conversely, if Y is a strong vector
equilibrium, then there is ǫ0 > 0 such that it satisfies (6.6) for all ǫ ∈ (0, ǫ0).

Proof. For the first part of the theorem, we set h(a, b) = Dǫ
a(b). By the definition this

function is increasing with respect to b. In view of Lemma 6.2.6 every solution of (6.6) is a
strong vector equilibrium. To prove the second part of the theorem we apply Lemma 2.0.15
to find some ǫ0 > 0 such that for every ǫ ∈ (0, ǫ0), a, b ∈ {Cpi : pi ∈ P} one has that a 6≥ b
if and only if Dǫ

a(b) ≧ 0. The proof now follows from Lemma 6.2.6. �

The same argument of proof shows that the above theorem is true when the augmented
signed distance functions Dǫ

a(b) are replaced by the augmented smallest increasing functions
Gǫa(b). In the next result we have a variational inequality problem obtained by augmented
biggest functions.

Theorem 6.2.8 Let Y be a feasible flow. If it satisfies the condition (6.2) and

∑

(pi,w,j)∈Γ

(
max
pβ∈Bw

gǫ
Cpβ

(Cpi)

)(
yjpi − yjpi

)
≧ 0 for every Y ∈ K, (6.7)

74 6 Equilibrium in a multi-product multi-criteria traffic network with capacity constraints

for some ǫ > 0, then it is a strong vector equilibrium. Conversely, if Y is a strong vector
equilibrium, then there is ǫ0 > 0 such that it satisfies (6.7) for all ǫ ∈ (0, ǫ0).

Proof. Apply the same argument as in the proof of the preceding theorem with a suitable
arrangement of Lemma 2.0.14. �

This result is a correction to Theorem 5.1 of [38], in which ”min” was mistakenly em-
ployed instead of ”max”. Again, it remains true when the functions gǫa(b) are substituted
by the functions dǫa(b). In the above theorems, if the condition (6.2) is not satisfied, then
a solution of the variational inequality problem (6.6) (or (6.7)), is not necessarily a strong
vector equilibrium. This is seen by the following example.

Example 6.2.9 Consider a network problem with only one pair of origin-destination nodes
w = (x, x′), two criteria and two products to traverse the network with two available paths:
Pw = {p1, p2}. Assume that d1w = 7, d2w = 19, ljpi = 2, ujpi = 10 for pi, pj ∈ Pw and

y1p1 = 2 y2p1 = 9 c1p1 = (15, 35)T c2p1 = (25, 20)T

y1p2 = 5 y2p2 = 10 c1p2 = (10, 20)T c2p2 = (15, 12)T

Then, Y does not satisfy the condition (6.2). In fact, Y p1 ≥ Lp1 and Y p2 ≤ Up2 , and there
is not any j ∈ {1, 2} such that yjp1 > ljp1 and yjp2 < ujp2 . Moreover, Dǫ

Cp1
(Cp2) < 0 since

Cp1 ≥ Cp2 . Then, for all Y ∈ K one has

∑

(pi,w,j)∈Γ

(
min
α∈Aw

Dǫ
Cpα

(Cpi)

)(
yjpi − yjpi

)
= Dǫ

Cp1

(Cp2)
(
y1p2 − y1p2

)
+ Dǫ

Cp1

(C2)
(
y2p2 − y2p2

)

= Dǫ
Cp1

(Cp2)
(
y1p2 − 5

)
+ Dǫ

Cp1

(Cp2)
(
y2p2 − 10

)
.

We have y1p2 ≦ 5 since y1p1 ≧ 2. Hence,

∑

(pi,w,j)∈Γ

(
min
α∈Aw

Dǫ
Cα

(Cpi)

)(
yjpi − yjpi

)
≧ 0 for all Y ∈ K,

which shows that the path flow Y solves the variational inequality problem (6.6). However,
Y is not a strong vector equilibrium as Cp1 ≥ Cp2 but Y p1 6= Lp1 and Y p2 6= Up2 .

6.3 Algorithms

As we saw in Section 6.1 finding a weak vector equilibrium of a multi-product and multi-
criteria network is quite clear. It suffices to fix one product and to consider a model with
this single product while keeping the other products unchanged and with a single cost func-
tion being the sum of all components of the vector cost function. This amounts to saying
that the problem of finding a weak vector equilibrium is computationally equivalent to a
classical network equilibrium problem, or a variational inequality problem. The situation
is more complicated with strong vector equilibrium. In fact, firstly, strong vector equilib-
rium does not always exist even when the cost function is linear and the set of feasible
flows is compact (see Example 6.1.1). Secondly, almost all equivalent variational inequality
problems in our disposal do not satisfy sufficient conditions needed for convergence of ex-
isting algorithms, namely the functions determining the associated variational inequalities
are not monotone. Thirdly, a solution to a variational inequality problem is not necessar-
ily a strong vector equilibrium, which requests an additional computational effort to check

6.3 Algorithms 75

certain sufficient conditions for strong vector equilibrium. Because of these reasons, solving
a multi-product and multi-criteria network equilibrium problem is a challenging task. In
this section we develop an algorithm for finding a strong vector equilibrium by using the
variational inequality generated by the augmented signed distance function and discuss its
implementability through a number of numerical examples. As in multi-objective program-
ming, by solving a multi-criteria network equilibrium problem we mean generating the entire
set of equilibrium flows or at least a representative part of it. In this sense our algorithm
can be seen as a first step towards a complete resolution of the problem.

We begin with expressing the variational inequality problem (6.6) in the standard form:

〈
F (Y), Y − Y

〉
≧ 0 ∀Y ∈ K. (6.8)

To obtain an explicit form of F , we assume that W = {w1, ..., ws}, that is there are s
origin-destination pairs in the network. For each wt, t = 1, ..., s we define

Kwt
= {Ywt

∈ R|Pwt
|×q : ljpi ≦ yjpi ≦ ujpi , j = 1, ..., q; pi ∈ Pwt

and
∑

pi∈Pwt

yjpi = djwt
, j = 1, ..., q},

where
s∑
t=1

|Pwt
| = m with |.| denoting the cardinality of a set. Then the feasible set K is

decomposed by

K =
s∏

t=1

Kwt
. (6.9)

We may assume that the components of Y are grouped according to origin-destination pairs:
Y = (Yw1

, Yw2
, ..., Yws

) and define F (Y) = (Fw1
(Y), ..., Fwt

(Y), ..., Fws
(Y)) with

Fwt
(Y) = (F 1

wt
(Y), ..., F

|Pwt |
wt (Y)) (6.10)

where for each pi ∈ {p1, ..., p|Pwt |}, the vector F
i
wt
(Y) has q components, which are all equal

to min
pα∈Awt

Dε
Cpα (Y)(Ci(Y)).

Below we propose an algorithm to find a strong vector equilibrium of our model in which the
modified projection method (see [5, 42, 43, 46]) is applied to solve the associated variational
inequality problem (6.8):

Step 0: Initialization
Start with a feasible flow Y 0 ∈ K. Select a coefficient ρ ∈ (0, 1) for the modified projection
method, a positive coefficient ǫ and a small error tolerence δ > 0. Set k := 1.
Step 1: Solving (6.8)
a) Find Awt

and compute Dǫ
Cα(Y k−1)(Cpi(Y

k−1)) for all α ∈ Awt
, pi ∈ Pwt

, wt ∈W.

b) Compute the functions Fwt
(Y k−1) for all wt ∈W

Fwt
(Y k−1) =

(
min
α∈Awt

Dǫ
Cα(Y k−1)(Cp1(Y

k−1)), ..., min
α∈Awt

Dǫ
Cα(Y k−1)(Cp1(Y

k−1)),

..., min
pα∈Awt

Dǫ
Cpα (Y k−1)(C|Pwt

|(Y
k−1)), ..., min

pα∈Awt

Dǫ
Cpα (Y k−1)(C|Pwt

|(Y
k−1))

)
.

c) Solve s linearized variational inequality subproblems:

〈[
Fwt

(Y k−1) +
(
U − Y k−1

wt

)]T
, U

′ − U
〉
≧ 0, ∀U ′ ∈ Kwt

(6.11)

by using the modified projection method. Let

76 6 Equilibrium in a multi-product multi-criteria traffic network with capacity constraints

U = Y k−1
wt

− ρ[Y k−1
wt

− PKwt
(Y k−1
wt

− ρFwt
(Y k−1))] (6.12)

be a solution.
Set Y kwt

= U and Y k = (Y kwt
)wt∈W .

Step 2: Convergence verification
If
∥∥Y k − Y k−1

∥∥ ≦ δ, then stop and go to Step 3; otherwise, set k := k+1 and go to Step 1.
Step 3: Final verification
For Y k obtained in Step 2, compute C(Y k) and check three conditions (i)−(iii) of Theorem
6.2.5. If three conditions are satisfied, then Y k is a strong vector equilibrium. Otherwise, set
ǫ = ǫ/2 and return to Step 1. If ǫ < δ and no strong vector equilibrium is found, then stop.
It is considered that the network has no strong vector equilibrium.

Before presenting numerical examples we discuss some convergence aspects of the algo-
rithm. We assume throughout that the cost function C(.) is continuous, which is a sufficient
condition for existence of solutions to the variational inequality problem (6.8).

Convergence under condition (6.2)

It follows from the definition of the functions F that with q > 1 it is never strictly monotone.
Therefore the uniqueness of solution to the variational inequality problem (6.8) is not guar-
anteed [43]. However, if the condition (6.2) is satisfied, then any solution of (6.8) is a strong
vector equilibrium (Theorem 6.2.7). Under this hypothesis the last step of the algorithm is
unnecessary. Moreover, for every δ > 0 the algorithm will terminate after a finite number
of iterations and yields an approximate solution of (6.8) which is considered as an approx-
imate strong vector equilibrium of the network. When δ tends to zero, that approximate
solution converges to an exact solution of (6.8), which is also a strong vector equilibrium of
the network.

Convergence without condition (6.2)

The network may have a strong vector equilibrium without condition (6.2). According to
Theorem 6.2.7 at least one of the solutions of the variational inequality problem (6.8) is a
strong vector equilibrium when ǫ is sufficiently small. Of course, if a solution of the variational
inequality problem (6.8) with ǫ small is unique, it must be a unique strong vector equilibrium
and as before no verification at Step 3 is requested. When a solution to (6.8) is not unique, the
last step that verifies the necessary and sufficient conditions for strong vector equilibrium,
is needed.

Nonexistence of strong vector equilibrium

Except for the models without capacity constraints (or when uij are large), verification of
condition (6.2) is not easy, and therefore it is not known a priori whether a strong vector
equilibrium exists or not. We observe that if the model has no strong vector equilibrium,
then at each iteration we decrease ǫ by half because the conditions of Theorem 6.2.7 are not
satisfied, and so, after a finite number of iterations we have ǫ < δ, by which the algorithm
terminates. When the algorithm stops without producing strong vector equilibrium, there
are two possible situations: either the solution obtained by the projection method is a wrong
solution of (6.8) and cannot be a strong vector equilibrium, or that solution is a solution
of (6.8), but it is not a strong vector equilibrium. Therefore, in the implementation of the
algorithm, when no strong vector equilibrium is detected in Step 3 with ǫ < δ, we restart it
with a new initial flow. If after a number of trials no equilibrium is found, we may consider
that the network has no strong vector equilibrium.

6.4 Numerical examples 77

6.4 Numerical examples

In this subsection we give some examples to illustrate the algorithm. In Example 6.4.1, with
ǫ > 0 relatively large, a solution of the variational inequality problem (6.8) obtained in Step
2 is not a strong vector equilibrium, but with ǫ > 0 small, we do obtain a strong vector
equilibrium after some iterations.

Example 6.4.1 Consider a network problem with only one pair of origin-destination nodes
w = (x, x′), two criteria and two products to traverse the network with three available paths:
Pw = {p1, p2, p3}. Assume that d1w = 20, d2w = 25 and

l1p1 = 1 l1p2 = 0 l1p3 = 1 l2p1 = 2 l2p2 = 2 l2p3 = 3
u1p1 = 12 u1p2 = 15 u1p3 = 10 u2p1 = 10 u2p2 = 11 u2p3 = 15

c1p1(Y) = (y1p1 + 10y2p1 + y1p2 + 50y2p3 , 2y
1
p1

+ 10y2p1 + y1p2 + 9y2p3)
T

c1p2(Y) = (3y1p2 + 8y2p3 , 2y
1
p1

+ 9y1p2)
T

c1p3(Y) = (y1p1 + 3y1p3 , 8y
1
p3
)T

c2p1(Y) = (y2p1 + y1p2 , y
2
p1

+ 5y1p2)
T

c2p2(Y) = (y1p1 + 3y2p2 , y
2
p2
)T

c2p3(Y) = (5y2p3 , 5y
2
p3
)T

Set the initial path flow (y1p1)
0 = 3, (y1p2)

0 = 7, (y1p3)
0 = 10, (y2p1)

0 = 5, (y2p2)
0 =

10, (y2p3)
0 = 10, ρ = 0.6 and δ = 0.0001. For ǫ = 2.5, after 42 iterations, we obtain the fol-

lowing solution of the variational inequality (6.8): y1p1 = 1, y1p2 = 9.5968, y1p3 = 9.4032, y2p1 =

2, y2p2 = 8.3058, y2p3 = 14.6942 which is not a strong vector equilibrium.
Nevertheless, when we reduce the value of ǫ until it is sufficiently small, for example

ǫ = 0.1, after 13 iterations, we obtain the following solution of the variational inequality
(6.8): y1p1 = 1, y1p2 = 15, y1p3 = 4, y2p1 = 2, y2p2 = 11, y2p3 = 12 which is a strong vector
equilibrium.

Note that without condition (6.2) a solution of (6.8) is not necessarily a strong vector
equilibrium, but another initial flow may lead to a good solution (which is a strong vector
equilibrium). In Example 6.4.2, we show that the time for finding strong vector equilibrium
depends largely on the choice of the initial path flow Y 0.

Example 6.4.2 Consider a network problem with only one pair of origin-destination nodes
w = (x, x′), three criteria and three products to traverse in the network with three available
paths: Pw = {p1, p2, p3}. Assume that dw1 = 25, d2w = 30, d3w = 20 and

l1p1 = l2p2 = l3p2 = l2p3 = l3p3 = 1 ; l2p1 = l1p2 = 0 ; l3p1 = l1p3 = 2
u1p1 = u2p1 = u3p1 = u1p3 = u2p3 = u3p3 = 20 ; u1p2 = u2p2 = 25 ; u3p2 = 15

78 6 Equilibrium in a multi-product multi-criteria traffic network with capacity constraints

c111(Y) = 18y1p1 + y1p2 + 14y1p3 + 13y2p1 + 19y2p2 + 17y2p3 + 17y3p3 ;
c211(Y) = 20y1p1 + 6y1p2 + 3y1p3 + 18y2p1 + 12y2p2 + 17y3p1 + 6y3p2 + 7y3p3 ;
c311(Y) = 14y1p1 + 13y1p3 + y2p2 + 11y3p1 + 7y3p2 + 17y3p3 ;

c112(Y) = 9y1p1 + 9y1p2 + y1p3 + 16y2p1 + 8y2p2 + 15y2p3 + 19y3p1 + y3p2 + 13y3p3 ;
c212(Y) = 11y1p1 + 5y1p2 + 5y1p3 + 18y2p1 + 5y2p2 + 3y2p3 + 5y3p2 ;
c312(Y) = 7y1p1 + 2y1p2 + 15y1p3 + 5y2p1 + 8y2p2 + 6y2p3 + 17y3p2 + 12y3p3 ;

c113(Y) = 3y1p2 + 17y1p3 + 3y2p1 + 6y2p3 + 18y3p1 + 4y3p2 + 8y3p3 ;
c213(Y) = 8y1p2 + 9y1p3 + 9y2p1 + 4y2p3 + 20y3p1 + 9y3p2 ;
c313(Y) = 12y1p1 + 7y2p1 + 7y2p3 + 14y3p3 ;

c121(Y) = 18y1p1 + 4y1p2 + 16y1p3 + 9y2p1 + y2p2 + 15y2p3 + 17y3p1 + 12y3p2 + 6y3p3 ;
c221(Y) = 7y1p1 + 9y1p2 + 4y1p3 + 4y2p1 + 3y2p2 + 13y2p3 + 5y3p2 + 10y3p3 ;
c321(Y) = 17y1p1 + 13y1p2 + 6y2p1 + 7y2p2 + 9y2p3 + 8y3p1 + 11y3p2 ;

c122(Y) = 15y1p1 + 11y1p2 + 7y1p3 + 19y2p1 + 2y2p2 + 12y2p3 + 16y3p1 + 7y3p2 + 5y3p3 ;
c222(Y) = 17y1p1 + 12y1p2 + 20y1p3 + 4y2p1 + 10y2p2 + 4y2p3 + 7y3p1 + 12y3p2 + 17y3p3 ;
c322(Y) = 18y1p1 + 8y1p2 + 11y2p1 + 20y2p2 + 8y2p3 + 6y3p1 + 9y3p2 + 18y3p3 ;

c123(Y) = 16y1p1 + 8y1p2 + 9y1p3 + 16y2p1 + 20y2p2 + 4y2p3 + 3y3p1 + y3p2 + 13y3p3 ;
c223(Y) = 20y1p1 + 12y1p2 + 5y2p1 + 15y2p2 + 8y2p3 + 12y3p1 + 20y3p2 + 15y3p3 ;
c323(Y) = 6y1p1 + 13y1p2 + 12y1p3 + 20y2p1 + 10y2p2 + 13y2p3 + 14y3p1 + 11y3p2 + 6y3p3 ;

c131(Y) = 17y1p1 + 2y1p2 + 20y1p3 + 9y2p1 + 8y2p2 + 13y2p3 + 16y3p1 + 5y3p3 ;
c231(Y) = 15y1p3 + 4y2p1 + 4y2p2 + 2y2p3 + 11y3p1 + 2y3p2 + 16y3p3 ;
c331(Y) = 17y1p1 + 4y1p2 + 10y1p3 + 7y2p1 + 5y2p3 + 13y3p1 + 20y3p3 ;

c132(Y) = 7y1p1 + 13y1p2 + 16y1p3 + y2p1 + 5y2p2 + 8y2p3 + 5y3p3 ;
c232(Y) = 3y1p2 + 17y1p3 + 7y2p1 + 5y2p2 + 19y2p3 + 14y3p2 + 5y3p3 ;
c332(Y) = y1p1 + 9y1p2 + 15y1p3 + 9y2p3 + 8y3p2 + 12y3p3 ;

c133(Y) = 20y1p1 + 2y1p2 + 11y1p3 + 9y2p2 + 11y3p2 + y3p3 ;
c233(Y) = 2y1p2 + 20y2p1 + 12y2p2 + 11y3p2 + 2y3p3 ;
c333(Y) = 9y1p2 + 15y2p1 + 13y2p3 + 7y3p2 + 5y3p3 .

With the initial path flow (y1p1)
0 = 2, (y1p2)

0 = 6, (y1p3)
0 = 17; (y2p1)

0 = 3, (y2p2)
0 =

20, (y2p3)
0 = 7, (y3p1)

0 = 15, (y3p2)
0 = 3, (y3p3)

0 = 2, ǫ = 0.4, ρ = 0.1, tolerance δ = 0.0001,

we obtain a solution of the variational inequality (14): y1p1 = 5.6863, y1p2 = 0.0002, y1p3 =

19.3135, y2p1 = 10.3780, y2p2 = 1.0006, y2p3 = 18.6214, y3p1 = 9.8743, y3p2 = 1.0001, y3p3 =
9.1256 after 98 iterations and it is a strong vector equilibrium.

However the number of loops decreases a lot when we use another initial path flow.
Particularly, with the initial path flow (y1p1)

0 = 3, (y1p2)
0 = 7, (y1p3)

0 = 15; (y2p1)
0 =

7, (y2p2)
0 = 10, (y2p3)

0 = 13, (y3p1)
0 = 1, (y3p2)

0 = 5, (y3p3)
0 = 14, ǫ = 0.4, ρ = 0.1, toler-

ance δ = 0.0001, after 55 iterations, we obtain a solution of the variational inequality (14):
y1p1 = 6.2591, y1p2 = 0.8254, y1p3 = 17.9156, y2p1 = 10.6192, y2p2 = 2.3925, y2p3 = 16.9883, y3p1 =

3.2446, y3p2 = 1.2637, y3p3 = 15.4917 and it is also a strong vector equilibrium.

In the proof of Theorem 6.1.2 we used a variational inequality problem in which the
function is given by the sum of all components of the cost function of q products, which
corresponds to the weighted method with equal weight for every criterion and every product.
This problem seems to be much simpler than the ones developed in Subsection 6.2.3 and

6.4 Numerical examples 79

in our algorithm. However, in general it is not sufficiently subtle to solve multi-criteria
network equilibrium problems because of lack of convexity. The example below shows that
the weighted sum method does not find strong vector equilibrium, while the method by
augmented increasing functions does.

Example 6.4.3 Consider a network problem with only one pair of origin-destination nodes
w = (x, x′), two criteria and two products to traverse the network with three available paths:
Pw = {p1, p2, p3}. Assume that d1w = 15, d2w = 20 and

l1p1 = 1 l1p2 = 0 l1p3 = 2 l2p1 = 1 l2p2 = 1 l2p3 = 1
u1p1 = 15 u1p2 = 20 u1p3 = 10 u2p1 = 20 u2p2 = 17 u2p3 = 25

c1p1(Y) = (18y1p1 , 29y
1
p1
)T c2p1(Y) = (37y2p1 , 32y

2
p1
)T

c1p2(Y) = (34y1p2 , 30y
1
p2
)T c2p2(Y) = (39y2p2 , 32y

2
p2
)T

c1p3(Y) = (23y1p3 , 26y
1
p3
)T c2p3(Y) = (39y2p3 , 32y

2
p3
)T

Set the initial path flow (y1p1)
0 = 5, (y1p2)

0 = 8, (y1p3)
0 = 2, (y2p1)

0 = 10, (y2p2)
0 =

5, (y2p3)
0 = 5, ρ = 0.5 and δ = 0.0001. When using the method of taking the sum of all

components of the cost function, after 200 iterations, we obtain the following solution of the
associated variational inequality: y1p1 = 5.0000, y1p2 = 6.8571, y1p3 = 3.1429, y2p1 = 5.8571,

y2p2 = 10.1429, y2p3 = 4.0000 which is not a strong vector equilibrium.
Nevertheless, using our algorithm with ǫ sufficiently small, for example ǫ = 0.0001, after

42 iterations, we obtain the following solution of the variational inequality (6.8): y1p1 =

4.9946, y1p2 = 4.4553, y1p3 = 5.5501, y2p1 = 7.0112, y2p2 = 5.6238, y2p3 = 7.3650 which is a
strong vector equilibrium.

In the last example we randomly generate the cost functions to see what is the percentage
of problems that have strong vector equilibrium flows according to our algorithm.

Example 6.4.4 Consider a network problem with one pair of origin-destination nodes w =
(x, x′), two criteria and two products to traverse the network with three available paths:
Pw = {p1, p2, p3}. The other data are given as below d1w = 15, d2w = 20, ljpi = 2, ujpi = 15
for pi ∈ Pw and j = 1, 2, and

c1p1(Y) = (a111y
1
p1
, a211y

1
p1
)T c2p1(Y) = (a112y

2
p1
, a212y

2
p1
)T

c1p2(Y) = (a121y
1
p2
, a221y

1
p2
)T c2p2(Y) = (a122y

2
p2
, a222y

2
p2
)T

c1p3(Y) = (a131y
1
p3
, a231y

1
p3
)T c2p3(Y) = (a132y

2
p3
, a232y

2
p3
)T

in which the positive coefficients akij , i = 1, 2, 3; j, k = 1, 2 are randomly generated. With
ǫ = 0.01, ρ = 0.5 and δ = 0.0001, we carried out about 100 tests and obtained a strong vector
equilibrium only in less than half of them.

7

Conclusion

In this thesis we studied several concepts of equilibrium in multi-criteria traffic networks.
For us solving a multi-criteria network equilibrium problem means finding the set of all
equilibria of the network or a representative part of it. This problem is very hard, and by
our knowledge, there exists no numerical method to solve it because multi-criteria models
generally do not have necessary properties for convergence of existing numerical methods.

In the thesis, we applied two approaches to this problem. The first approach constructs
an optimization problem the solutions of which are equilibria of the network and the second
approach proposes an equivalence between the vector variational inequality problem and the
vector equilibrium problem under some appropriate assumptions.

The main results of this thesis are presented in the three Chapters 4, 5 and 6.
In the fourth and fifth chapters, we concentrated our attention on studying the opti-

mization problems based on a vector version of the Heaviside Step function and the distance
function to Pareto minimal elements. We proved that the optimal solutions of these prob-
lems are exactly the equilibria of the single-product multi-criteria traffic network with and
without capacity constraints. Due to the generic differentiability of the objective functions
of these optimization problems, we developed an algorithm based on modified Frank-Wolfe
gradient method and obtained a representative set of equilibria. A method of smoothing
the objective functions by analytic approximations of the Heaviside Step function was also
considered in order to see how global optimization may help. We also investigated the ro-
bustness of equilibrium and gave a formula to calculate the radius of robustness. Many
numerical examples were given to illustrate the above algorithms.

In the sixth chapter we analyzed a complex model of multi-product, multi-criteria net-
works with capacity constraints, constructed an equivalent variational inequality problem
and presented an algorithm to find strong vector equilibria of the model. We also gave suffi-
cient and necessary conditions for strong vector equilibrium in terms of efficient elements of
the value set of the criteria function. Major difficulty we face when solving a multi-criteria
network equilibrium problem are due to the fact that the conditions for convergence of
variational inequality methods are not satisfied, the function determining the associated
variational inequality problem is generally not monotone. Nevertheless, the use of a partic-
ular class of scalarizing functions in the algorithm, which are proposed in Chapter 2 seems
to be quite successful.

In future research we wish to develop an algorithm for multi-product, multi-criteria
networks with capacity constraints where convergence conditions can be found. Stability
and robustness of equilibrium in the above models will be of our attention. Applications to
real models of urban transportation in big cities such as Hanoi and Ho Chi Minh City will
be also of interest.

References

1. R. K. Ahuja , T. L. Magnanti and J. B. Orlin, Network Flows: Theory, Algorithms, and Ap-

plications. Prentice-Hall, Englewood Cliffs, NJ, 1993.

2. J-P. Aubin and H. Frankowska, Set-valued Analysis, Birhhauser Boston, 1990.

3. M. Beckmann, C. B. McGuire and C. B. Wisten, Studies in the Economics of Transportation,

Yale University Press (1956).

4. A. Ben-Tal, L. E. Ghaoui and A. Nemirovski, Robust Optimization, Princeton University Press,

Princeton, 2009.

5. G. Bigi, M. Castellani, M. Pappalardo and M. Passacantando, Existence and solution methods

for equilibria, European Journal of Operational Research. 227 (2013), pp. 1-11.

6. G. Bigi and B. Panicucci, A successive linear programming algorithm for nonsmooth monotone

variational inequalities, Optimization Methods and Software, 25 (2010), pp. 29-35.

7. G. Bigi and M. Passacantando, Gap functions and penalization for solving equilibrium problems

with nonlinear constraints, Comput Optim. Appl. DOI 10.1007/s10589-012-9481-z. 53 (2012),

pp. 323-346.

8. G. Chen, On vector network equilbrium problems, Journal of Systems Science and Systems

Engineering, 14 (2005), pp. 454–461.

9. G. Y. Chen, C. J. Goh and X. Q. Yang, Vector network equilibrium problems and nonlinear

scalarization methods, Mathematical Methods of Operations Research. 49 (1999), pp. 239-253.

10. G. Y. Chen and N. D. Yen, On the variational inequality model for network equilibrium, Internal

Report 3.196 (724), Departement of Mathematics, University of Pisa, Pisa (1993).

11. T. C. E. Cheng and Y. N. Wu, A multiclass, multicriteria supply-demand network equilibrium

model, Operations Research, 53 (2006), pp. 544–554.

12. S. Dafermos, A multicrieria route-mode choice traffic equilibrium model, Lefschetz Center for

Dynamical Systems, Brown University, Providence, RI (1981).

13. D. Daniele, A. Maugeri and W. Oettli, Variational inequalities and time-dependent traffic equi-

libria, C.R. Acad. Sci. Paris Sér. I. Math., 326 (1998), pp. 1059–1062.

14. R. B. Dial, A model and algorithms for multicriteria route-mode choice, Transportation Re-

search 13B (1979), pp. 311-316.

15. A. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings: A View From

Variational Analysis, Springer, New York, 2009.

16. M. Ehrgott, Multicriteria Optimization, Originally published as volume 491 in the series: Lec-

ture Notes in Economics and Mathematical Systems, 2nd ed. 2005.

17. M. Ehrgott, A discussion of scalarization techniques for multiple objective integer programming,

Ann Oper Res 147 (2006), pp. 343-360.

18. R. Ferrentino, Variational inequalities and optimization problems, Applied Mathematical Sci-

ences 1 (2007), no. 47, pp. 2327-2343.

19. M. Florian, An introduction to network models used in transportation plannings, Transporta-

tion Planning Models, Elsevier Science Publishers (1984), pp. 137-152.

84 References

20. M. Gendreau and P. Marcotte (eds.), Transportation and Network Analysis: Current Trends,

Kluwer Academic Publishers, 2002.

21. F. Giannessi, Vector Variational Inequalities and Vector Equilibria, Kluwer Academic Publish-

ers, Dordrecht, Netherlands, 2000.

22. F. Giannessi and A. Maugeri, Variational inequalities and network equilibrium problems, in

Proceedings of the Conference Held in Erice, Plenum Press, New York, 1994.

23. C. Gert and P. Weidner, Nonconvex separation theorems and some applications in vector op-

timization, J. Optim. Theory Appl. 67 (1990), pp. 297-320.

24. C. J. Goh, and X. Q. Yang, Vector equilibrium problem and vector optimization, European

Journal of Operational Research, 116 (1999), pp. 615-628.

25. V. V. Gorokhovich, Convex and Nonsmooth Problems of Vector Optimization, Nauka i

Tekhnika, Minsk, 1990.

26. D. Han and W. Sun, A new modified Gold Stein-Levitin-Dolyak projection method for vari-

ational inequality problems, Computers and Mathematics with Applications, 47 (2004), pp.

1817-1825.

27. J. B. Hiriart-Urruty, New concepts in non-differentiable programming, Bull. Soc. Math. France,

60 (1979), pp. 57-85.

28. I. V. Konnov, Vector network equilibrium problems with elastic demands, J. Global Optim.

DOI 10.1007/s 10898-011-9798-7.

29. F. Leurent, Multicriteria assigment modeling: Making explicit the determinants of mode or

path choice (1998).

30. S. Li and G. Chen, On relations between multiclass, multicriteria traffic network equilibrium

models and vector variational inequalities, J Syst Sci Eng. 15 (2006), pp. 284-297.

31. S. J. Li, X. Q. Yang and G. Y. Chen, A note on vector network equilibrium principles, Math.

Meth. Oper. Res. 64 (2006), pp. 327-334.

32. S. J. Li, K. L. Teo, and X. Q. Yang, Vector equilibrium problems with elastic demands and

capacity constraints, Journal of Global Optimization, 37 (2007), pp. 647–660.

33. S. J. Li, K. L. Teo, and X. Q. Yang, A remark on a standard and linear vector network

equilibrium problems with capacity constraints, European Journal of Operational Research

184 (2008), pp. 13-23.

34. C. Li and G. Chen, Multiclass, two-criteria traffic network equilibrium models and vector vari-

ational inequalities, Systems Engineering-Theory & Practice. 28 (2008), pp. 141-145.

35. Z. Lin, On existence of vector equilibrium flows with capacity constraints of arcs, Nonlinear

Analysis: Theory, Methods and Applications. 72 (2010), pp. 2076-2079.

36. Z. Lin, The study of traffic equilibrium problems with capacity constraints of arcs, Nonlinear

Analysis: Real World Applications. 11 (2010), pp. 2280-2284.

37. D. T. Luc, Multi-product supply demand networks with elementary flows, Acta Mathematica

Vietnamica 36 (2011), no. 2, pp. 299-317.

38. D. T. Luc, M. Rocca and M. Papalia, Equilibrium in a vector supply demand network with

capacity constraints, Applicable Analysis 90 (2011), no. 6, pp. 1029-1045.

39. D. T. Luc, Theory of Vector Optimisation, Lecture Notes in Economics and Mathematical

Systems 319 (1989), Springer-Verlag, Berlin, New York.

40. P. Marcotte and S. Nguyen (Eds.), Equilibrium and advanced transportation modelling, Kluwer

Academic Publishers, Bostons, MA, pp. 153-174.

41. G. Mastroeni, Gap functions and descent methods for Minty variational inequality, Optimiza-

tion and Control with Applications, 96 (2005), Appl. Optim., Springer, New York, pp. 529–547.

42. V. S. Michael and T. Paul, Modified projection-type methods for monotone variational inequal-

ities, SIAM Journal on Control and Optimization. 34 (1998), no. 5, pp. 1814-1830.

43. A. Nagurney, Network Economics, A Variational Inequality Approach, Kluwer Academic, Dor-

drecht (1999).

44. A. Nagurney, A multiclass, multicriteria traffic network equilibrium model, Mathematical and

Computer Modelling, 32 (2000), pp. 393-411.

References 85

45. A. Nagurney, J. Dong, A multiclass, multicriteria traffic network equilibrium model with elastic

demand, Transportation Researche Part B, 36 (2002), pp. 445–469.

46. M. A. Noor, A modified projection method for monotone variational inequalities, Applied Math-

ematics Letters (1999), pp. 83-87.

47. W. Oettli, Necessary and sufficient conditions of Wardrop type for vectorial traffic equilibria, in:

GIANNESSI F., MAUGERI A. and PARDALOS P. (eds), Equilibrium Problems: Nonsmooth

Optimization and Variational Inequality Models, Nonconvex Optimization and Applications,

58 (2001), pp. 223–228.

48. A. Pascoletti and P. Serafini, Scalarizing vector optimisation problems, J. Optim. Theory Appl.

42 (1984), pp. 499-524.

49. A. Pigou, The Economics of Welfare, McMillian (1920).

50. R. E. Quandt, A probabilistic abstract mode model, In studies in Travel Demand VIII (1967),

pp. 127-149, Mathematica, Inc., Princeton, NJ.

51. F. Raciti, Equilibrium Conditions and Vector Variational Inequalities: A Complex Relation, J

Glob Optim. 40 (2008), pp. 353-360.

52. A. Raith and M. Ehrgott, On vector equilibria, vector optimization and vector variational

inequalities, Journal of Multi-Criteria Decision Analysis 18 (2011), pp. 39-54.

53. Y. Sheffi, Urban Transportation Networks, Prentice-Hall, Englewood, NJ, 1985.

54. M. Schneider, Access and land developement, Urban Developement Models. Highway Research

Board Special Report 97 (1968), pp. 164-177.

55. M. V. Solodov and P. Tseng, Modified projection-type method for monotone variational in-

equalities, SIAM J. Control and Optimization 34 (1996), no. 5, pp. 1814-1830.

56. M. V. Solodov and B. F. Svaiter, A new projection method for variational inequality problems,

SIAM J. Control Optim., 37 (1999), pp. 765–776.

57. Z. Tan, H. Yang and R. Guo, Pareto efficiency of reliability-based traffic equilibria and risk-

taking behavior of travelers, Transportation Research Part B: Methodological, In Press, Cor-

rected Proof (2014).

58. X. Q. Tian and Y. D. Xu, Traffic network equilibrium problems with capacity constraints of arcs

and linear scalarization methods, Journal of Applied Mathematics, DOI 10.1155/2012/612142

(2012).

59. T. T. P. Truong and D. T. Luc, Equilibrium in multi-criteria supply and demand networks with

capacity constraints, Mathematical Methods of Operations Research, DOI 10.1007/s00186-014-

0487-4 (2014).

60. Y. D. Xu, S. J. Li and K. L. Teo, Vector network equilibrium problems with capacity constraints

of arcs, Transportation Research Part E. 48 (2012), pp. 567-577.

61. X. Q. Yang and C. J. Goh, On vector variational inequalities: application to vector equilibria,

Journal of Optimization Theory and Applications 95 (1997), no. 2, pp. 431-443.

62. M. Wand and D. P. Ertsekas, Incremental Constraint Projection Methods for Variational In-

equalities, Massachusetts Institute of Technology, Cambridge, MA Laboratory for Information

and Decision Systems, Report LIDS-P-2898 (2012).

63. J. Y. T. Wang and M. Ehrgott, Modelling route choice behaviour in a tolled road network

with a time surplus maximisation bi-objective user equilibrium model, Procedia, Social and

Behavioral Sciences. 80 (2013), pp. 266-288.

64. J. G. Wardrop and J. I. Whitehead, Correspondence. Some theoretical aspects of road traffic

research, ICE Proceedings: Engineering Divisions 1 (1952).

65. A. P. Wierzbicki, A mathematical basis for satisficing decision making, Mathematical Modelling,

3 (1982), pp. 391–405.

66. Y. Wu and T. C. E. Cheng, Benson efficiency of a multi-criterion network equilibrium model,

Pacific Journal of Optimization 5 (2009), pp. 443-458.

8

Appendices

Appendix A. Description of the algorithm (A)-Section 4.3

A1. For the model in which the cost functions are linear.
Main Program.
q = input (’A positive integer number q = ’);
epsilon = input (’A tolerance level epsilon = ’);
m = input (’Number of paths m = ’);
dw = input (’Demand value dw = ’);
delta = dw/(q ∗m);
Y 0 = Matrix K2(q)∗delta (If we consider two paths in the model)
Y 0 = Matrix K3(q)∗delta (If we consider three paths in the model)
Y 0 = Matrix K6(q)∗delta (If we consider six paths in the model)
Y 0 = Matrix K7(q)∗delta (If we consider seven paths in the model)
s=size(Y 0, 2)
n = input (’Number of loops n= ’);
l = input (’Number of criteria l = ’);
C = input (’Cost coefficient matrix C = ’)
Solution = zeros(0);
tic;
for j=1:s
y0 = Y 0(1 : m, j);
[T i] = FindSolution(m, dw, delta, y

0, C, l, epsilon, n)
if size(T)== [0, 0]
P = [ones(m, 1); i];
Solution=[Solution P];
else
Solution=[Solution [T;i]];
end
end
Solution
Final.Solution = zeros(0);
for ii=1:s
B= Solution(1:m,ii)- ones(m,1);
if MatrixO(B) == 0
Final.Solution = [Final.Solution Solution(1:m+1,ii)];
end
end
SO = Final.Solution

88 8 Appendices

wtime =toc;
fprintf(1, ’Elapsed CPU time = f\n’, wtime)
The following code lines are to simulate the set of vector equilibrium in the
two-dimension space.
for i=1:size(SO,2)
plot(SO(1,i),SO(2,i),’b.’)
hold on
end
grid on
xlabel(’Number of products on the first path’)
ylabel(’Number of products on the second path’)
title(’Optimization Method ’)
hold on
The following code lines are to simulate the set of vector equilibrium in the
three-dimension space.
for i=1:size(SO,2)
plot3(SO(1,i),SO(2,i),SO(3,i),’b.’)
hold on
end
grid on
xlabel(’Number of products on the first path’)
ylabel(’Number of products on the second path’)
zlabel(’Number of products on the third path’)
title(’Optimization Method ’)
hold on
Triangle3D(dw);
hold on
1. Subprogram
function K= Matrix K2(q)
k1= 0:1:2*q;
k2= 0:1:2*q;
S=zeros(0);
for i1=1:2*q+1
for i2=1:2*q+1
if (k1(1,i1)+ k2(1,i2)==2*q)
S=[S;k1(1,i1) k2(1,i2)];
end
end
end
K = S.′;
end

2. Subprogram
function K= Matrix K3(q)
k1= 0:1:3*q;
k2= 0:1:3*q;
k3= 0:1:3*q;
S=zeros(0);
for i1=1:3*q+1
for i2=1:3*q+1
for i3=1:3*q+1
if (k1(1,i1)+ k2(1,i2) + k3(1,i3)==3*q)

8 Appendices 89

S=[S;k1(1,i1) k2(1,i2) k3(1,i3)];
end
end
end
end
K=S.’;
end

3. Subprogram
function K= Matrix K6(q)
k1= 0:1:6*q;
k2= 0:1:6*q;
k3= 0:1:6*q;
k4= 0:1:6*q;
k5= 0:1:6*q;
k6= 0:1:6*q;
S=zeros(0);
for i1=1:6*q+1
for i2=1:6*q+1
for i3=1:6*q+1
for i4=1:6*q+1
for i5=1:6*q+1
for i6=1:6*q+1
if (k1(1,i1)+ k2(1,i2) + k3(1,i3)+ k4(1,i4)+ k5(1,i5)+ k6(1,i6)==6*q)
S=[S;k1(1,i1) k2(1,i2) k3(1,i3) k4(1,i4) k5(1,i5) k6(1,i6)];
end
end
end
end
end
end
end
K=S.’
end

4. Subprogram
function K= Matrix K7(q)
k1 = 0 : 1 : 7 ∗ q;
k2 = 0 : 1 : 7 ∗ q;
k3 = 0 : 1 : 7 ∗ q;
k4 = 0 : 1 : 7 ∗ q;
k5 = 0 : 1 : 7 ∗ q;
k6 = 0 : 1 : 7 ∗ q;
k7 = 0 : 1 : 7 ∗ q;
S=zeros(0);
for i1=1:7*q+1
for i2=1:7*q+1
for i3=1:7*q+1
for i4=1:7*q+1
for i5=1:7*q+1
for i6=1:7*q+1
for i7=1:7*q+1

90 8 Appendices

if (k1(1,i1)+ k2(1,i2) + k3(1,i3)+ k4(1,i4)+ k5(1,i5)+ k6(1,i6)+ k7(1,i7)==7*q)
S=[S;k1(1,i1) k2(1,i2) k3(1,i3) k4(1,i4) k5(1,i5) k6(1,i6) k7(1,i7)];
end
end
end
end
end
end
end
end
K = S.′

end

5. Subprogram
function [Solution i] = FindSolution(m, dw, delta, y

0, C, l, epsilon, n)
Aeq = ones(1,m);
beq= dw;
lb=Comparetwovectors(y0, delta,m);
ub= Samecoefficient(m, delta) + y0;
alpha = inf;
Matrix.si = zeros (0);
A= zeros (0);
Solution=zeros(0);
for i=1:n
A = [A y0]
y=A(1:m,i)
Cost=C*y;
CY=Transfer.cost.matrix(Cost, l,m);
si=Compute.function.si(CY,A(1 : m, i))
Matrix.si=[Matrix.si si]
if si <= epsilon
disp (’The present value is a vector epsilon-equilibrium’)
Solution = [Solution;A(1:m,i)]
i
return
end
if ((si-alpha) <= epsilon) && (-epsilon <= (si-alpha))
return
elseif si <(alpha-epsilon)
alpha = si
Gradient = Gradient.si(C,A(1 : m, i), l,m)
u = linprog(Gradient,[],[],Aeq,beq,lb,ub)
ProductCu= C*u;
Cu= Transfer.cost.matrix(ProductCu, l,m)
siu=Compute.function.siuk(CY,Cu, u)
while ((si-siu) <= epsilon) && (-epsilon <= (si-siu))
break
end
while ((si-siu) ¿ epsilon) —— (-epsilon ¿ (si-siu))
disp (’Return to Step 2 with received uk’)
y0 = uk

break

8 Appendices 91

end
else
yk = (A(1:m,i-1) + A(1:m,i))/2
disp (’Return to Step 2 with received yk’)
y0 = yk

end
i
end
Solution;
end

6. Subprogram
function V=Comparetwovectors (y,delta,m)
V=zeros(0);
for i=1:m
if (y(i,1) - delta) ¿ 0
V=[V;y(i,1) - delta];
else
V=[V;0];
end
end
end

7. Subprogram
function Same= Samecoefficient (m,a)
Same = zeros(0);
for i=1:m
Same=[Same;a];
end
end

8. Subprogram
function Cost = Transfer.cost.matrix (CY,k,m)
Cost=zeros(0);
for i = 1 : m
Cost=[Cost CY((i-1)*k+1:i*k,1)] ;
end
end

9. Subprogram
function Compute.si=Compute.function.si (CY, Y)
[k,m] = size(CY);
Compute.si=0;
for j=1:m
J = Jj(CY,j);
Compute.si=Compute.si+ Y(j,1)* Compute.partial.function.si(CY, J, j);
end
end

10. Subprogram
function Compute.partial.sum= Compute.partial.function.si (CY, Jj, j)
l=size(CY,1);

92 8 Appendices

n=size(Jj,1);
Compute.partial.sum=0;
for s=1:n
i=Jj(s,1);
Compute.partial.sum = Compute.partial.sum + sum(CY(1:l,j)-CY(1:l,i));
end
end

11. Subprogram
function Jj= Jj (CY,j)
Jj=zeros (0);
[k,m]=size (CY);
for i=1:m
Subtraction.two.matrix = CY(1:k,j)-CY(1:k,i);
if Matrixnonnegative(Subtraction.two.matrix) == 1;
Jj = [Jj ; i];
end
end
Jj=Jj ;
end

12. Subprogram
function n= Matrixnonnegative (A)
sizeA = size(A, 1);
B=zeros (0);
for i = 1: size (A)
if A(i,1) ¿= 0
B = [B;1];
end
end
if size (B,1) == size(A)
n=1;
else n=0;
end
end

13. Subprogram
function d = Gradient.si(C,Y,k,m)
Cost=C*Y;
CY= Transfer.cost.matrix(Cost, k,m);
g1=zeros(0);
for i=1:m
J1 = Jj(CY, i);
g1=[g1; Compute.partial.function.si(CY, J1, i)];
end
g1
g2=0;
g3=zeros(0);
for t=1:m
g2 = The.second.part.si(C, Y,m, k, t);
g3 = [g3; g2];
end

8 Appendices 93

d = g1 + g3;
end

14. Subprogram
function G= Compute.partial.gradient.si (C,Y,i,k,t)
m=size(C,2);
Cost=C*Y;
CY=Transfer.cost.matrix(Cost, k,m);
Jj=Jj(CY,i);
n=size(Jj,1);
G=0;
for s=1:n
j=Jj(s,1);
G = G + sum(C((i-1)*k+1 :i*k,t)- C((j-1)*k+1 :j*k,t));
end
end

15. Subprogram
function g3= The.second.part.si(C,Y,m,k,t)
Cost=C*Y;
CY= Transfer.cost.matrix(Cost, k,m);
g2=0;
g3=zeros(0);
for i=1:m
J2 = Jj(CY,i);
g2 = g2+ Y(i,1)*Compute.partial.gradient.si(C, Y, i, k, t);
end
g3 = [g3; g2];
end

16. Subprogram
function Compute.siu=Compute.function.siuk (CY,Cu,u)
[l,m] = size(Cu);
Compute.siu=0;
for j=1:m
J = Jj(CY,j);
Compute.siu=Compute.siu+ u(j,1)* Compute.partial.function.si(Cu, J, j);
end
end

17. Subprogram
function n=Matrix.O (A)
k=size (A,1);
B=zeros (0);
for i = 1: k
if A(i,1) == 0
B = [B;1];
end
end
if size (B,1) == k
n=1;
else n=0;

94 8 Appendices

end
end

A2. For the model in which the cost functions are not linear.
Main program
epsilon = input (’A tolerance level epsilon= ’);
m = input (’Number of paths m = ’);
q = input (’q = ’);
dw = input (’Demand value dw = ’);
delta = dw/(q*m);
Y 0 = Matrix K2(q)∗delta (If we consider two paths in the model)
Y 0 = Matrix K3(q)∗delta (If we consider three paths in the model)
Y 0 = Matrix K6(q)∗delta (If we consider six paths in the model)
Y 0 = Matrix K7(q)∗delta (If we consider seven paths in the model)
s=size(Y0,2)
n = input (’Number of loops n= ’);
l = input (’Number of criteria l = ’);
Solution = zeros(0);
tic;
for j=1:s
y0 = Y 0(1:m,j);
T = FindSolution.nl(m, dw, delta, y

0, l, epsilon, n);
if size(T)==[0,0]
P=ones(m,1);
Solution=[Solution P];
else
Solution=[Solution T]
end
end
Final.Solution = zeros(0);
for i=1:s
B= Solution(1:m,i)- ones(m,1);
if Matrix.O(B) == 0
Final.Solution =[Final.Solution Solution(1:m,i)];
end
end
SO = Final.Solution
wtime =toc;
fprintf(1, ’Elapsed CPU time = f\ n’, wtime)

1. Subprogram
function Solution =FindSolution.nl(m, dw, delta, y

0, l, epsilon, n)
Aeq = ones(1,m);
beq= dw;
lb=Comparetwovectors(y0, delta,m);
ub= Samecoefficient(m, delta) + y0;
alpha = inf;
Matrix.si = zeros (0);
A= zeros (0);
Solution=zeros(0);
for i=1:n
A = [A y0]

8 Appendices 95

y=A(1:m,i)
Cost=C6(y)
CY=Transfer.cost.matrix(Cost, l,m)
si=Compute.function.si(CY,A(1 : m, i))
Matrix.si=[Matrix.si si]
if si ¡= epsilon
disp (’The present value is a vector epsilon-equilibrium’)
i;
Solution = [Solution;A(1:m,i)];
return
end
if ((si-alpha) ¡= epsilon) && (-epsilon ¡= (si-alpha))
return
elseif si ¡ (alpha-epsilon)
alpha = si
Gradient = Gradient.si.nl(A(1 : m, i), l,m)
u = linprog(Gradient,[],[],Aeq,beq,lb,ub)
ProductCu= C6(u);
Cu= Transfer.cost.matrix(ProductCu, l,m);
siu=Compute.function.siuk(CY,Cu, u)
while ((si-siu) ¡= epsilon) && (-epsilon ¡= (si-siu))
break
end
while ((si-siu) ¿ epsilon) —— (-epsilon ¿ (si-siu))
disp (’Return to Step 2 with received uk ’)
y0 = uk;
break
i;
end
else
yk = (A(1 : m, i− 1) +A(1 : m, i))/2
disp (’Return to Step 2 with received yk’)
y0 = yk ;
i;
end
i
end
Solution;
end

2. Subprogram function d = Gradient.si.nl(Y,l,m)
Cost = C6(Y)
CY= Transfer.cost.matrix(Cost,l,m);
g1=zeros(0);
for i=1:m
J1 = Jj(CY,i);
g1=[g1; Compute.partial.function.si(CY, J1, i)];
end
g1
g2 = 0;
g3=zeros(0);
for t=1:m

96 8 Appendices

g2=The.second.part.si.nl(Y,m, l, t);
g3 = [g3; g2]
end
d = g1 + g3;
end

3. Subprogram
function g4= The.second.part.si.nl(Y,m,l,t)
g2=0;
g4=zeros(0);
for i=1:m
g2 = g2+ Y(i,1)*Compute.partial.gradient.si.nl(Y, i, l,m, t);
end
g4 = [g4; g2];
end

Appendix B. Smoothing the objective function (Subsection 4.3.4)

Main Program.
q = input (’A positive integer number q= ’);
m = input (’Number of paths m = ’);
dw = input (’Demand value dw = ’);
l = input (’Number of criteria l = ’);
delta = dw/(q*m);
Y 0= Matrix K2(q)*delta (apply for in Example 4.3.5)
Y 0= Matrix K3(q)*delta (apply for in Example 4.3.6)
Y 0= Matrix K6(q)*delta (apply for in Example 4.3.10)
s=size(Y 0,2)
Aeq = ones(1,m)
beq= dw;
lb=zeros(m,1);
ub=Samecoefficient(m,+Inf);
opts = optimoptions(@fmincon,’Algorithm’,’interior-point’)
Solution = zeros(0);
tic;
for j=1:s
y0 = Y 0(1:m,j);
problem= createOptimProblem(’fmincon’,’x0’,y0,’objective’,@Compute.function.si.nu,
’Aeq’,Aeq,’beq’,beq,’lb’,lb,’ub’,ub,’options’,opts);
[y fval] = fmincon (problem)
z=[y;fval];
Solution=[Solution z];
end
Solution
wtime =toc;
fprintf(1, ’Elapsed CPU time = f \ n, wtime)

1. Subproblem
function Same= Samecoefficient (m,a)
Same = zeros(0);
for i=1:m
Same=[Same;a];

8 Appendices 97

end
end

2. Subproblem
function Compute.si.nu=Compute.function.si.nu (y)
m=size(y,1);
l=2;
nu=1, ..., 10;
Cost = [3 ∗ y(1, 1) + y(2, 1); 5 ∗ y(1, 1) + 3 ∗ y(2, 1); y(1, 1) + y(2, 1); 3 ∗ y(1, 1) + 5 ∗ y(2, 1)]
(the cost function in Example 3.3.4)
Cost= [y(1, 1)2 + y(2, 1)2 + y(3, 1)2; 2 ∗ y(1, 1) + 5 ∗ y(2, 1) + 3 ∗ y(3, 1); 8 ∗ y(1, 1) ∗ y(2, 1) +
y(2, 1)2; y(2, 1) + 10 ∗ y(3, 1); y(1, 1) + y(2, 1)2 + y(3, 1)2; 10 ∗ y(3, 1)3] (the cost function in
Example 3.3.5)
Cost= [2 ∗ y(1, 1)2 + 7 ∗ y(2, 1)2; 2 ∗ y(1, 1) + 5 ∗ y(2, 1) + 3 ∗ y(3, 1); 8 ∗ y(1, 1) ∗ y(2, 1) +
y(2, 1)2; 3 ∗ y(2, 1) + 10 ∗ y(3, 1)2; y(1, 1) + y(2, 1)2 + y(3, 1)2; y(3, 1) + 10 ∗ y(3, 1)3;
y(1, 1)3 + y(4, 1) ∗ y(5, 1); 2 ∗ y(2, 1) + y(4, 1)2; y(2, 1) + y(5, 1) + y(6, 1); y(1, 1) ∗ y(5, 1) +
y(3, 1) ∗ y(6, 1) + 10; y(3, 1) + y(6, 1); y(6, 1)2 + y(1, 1)] (the cost function in Example 3.3.8)
CY=Transfer.cost.matrix(Cost, l,m);
[k,m] = size (CY);
Compute.si.nu=0;
for j=1:m
Compute.si.nu=Compute.si.nu+ y(j,1)* Partial.sum.function.si.nu(CY, j,m, nu);
end
end

3. Subproblem
function Partial.sum= Partial.sum.function.si.nu (CY, j, m, nu)
l=size(CY,1);
Partial.sum=0;
for i=1:m
a = H.tilde.nu (CY, i, j, nu);
Partial.sum = Partial.sum + (CY(1:l,j)-CY(1:l,i))’*a;
end
end

4. Subproblem
function Htildenu= H.tilde.nu (CY, i, j, nu)
l=size(CY,1);
a=1;
for k=1:l
a = a * (1+tanh(nu*(CY(k,j)-CY(k,i))))/2;
end
Htildenu= Samecoefficient(l, a);
end

Appendix C. Description of the algorithm (Section 4.4)
Main Program.
t= size(SO,2); (SO is the matrix of vector equilibria)
S-Ra=zeros(0);
for i=1:t
Yi=SO(:,i);
D=Transfer.cost.matrix(C ∗ Y i, l,m);

98 8 Appendices

Cw=D’;
Rho= Rhofunction(Y i, Cw, l);
if Rho == 0
Ra= RadiusRobustness(Cw, l)
S-Ra=[S-Ra; Yi’ Ra]
end
end
P= S-Ra’

1. Subproblem
function Rho= Rhofunction (Y,Cw,l)
m=size(Y,1);
Rho=0;
for i=1:m
Rho= Rho + Y(i,1)* Khifunction(Cw(i, :), Cw, i, l);
end
end

2. Subproblem
function SumKhi= Khifunction (c,Cw,k,l)
[I1 MinA] =MinMatrix(Cw, l);
n1=size(I1,1);
SumKhi=0;
for j=1:n1
i= I1(j,1);
n0= norm (c - Cw(i,:));
if (n0==0) && (i = k)
SumKhi=SumKhi+1;
else
SumKhi=SumKhi+0;
end
end
end

3. Subproblem
function [I1 MinA]= MinMatrix(A,l)
r1=size(A,1);
MinA=zeros(0);
B1=zeros(0);
I1=zeros(0);
for i=1:r1
for j=1:r1
B=A(j,1:l)-A(i,1:l);
B1=[B1;B];
end
end
s1=size(B1,1)/r1;
for i=1:s1
B2=B1((i-1)*r1+1:i*r1,1:l);
s2=size(B2,1);
t=TextMin(B2, l);
if t==s2

8 Appendices 99

MinA=[MinA;A(i,1:l)];
I1=[I1;i];
else MinA=[MinA;zeros(0)];
end
end
end

4. Subproblem
function a = TextMin(D,l)
r1=size(D,1);
a=0;
s1=r1;
for i=1:s1
D1=D(i,1:l);
if DauMTTMin(D1)==1—D1==zeros(1,l)
a=a+1;
end
end
end

5. Subproblem
function SignMT = SignMTTMin(D1)
[r1, r2]=size(D1);
E1=D1¡zeros(r1,r2);
E2=D1¿zeros(r1,r2);
if (SumMatrix(E1)¿=1 & SumMatrix(E2)¿=1)—SumMatrix(E2)¿=1
SignMT = 1;
else SignMT = 0;
end
end

6. Subproblem
function summatrix = SumMatrix(A)
summatrix = 0;
for i = 1:size(A,1)
for j = 1:size(A,2)
summatrix = summatrix + A(i,j);
end
end
end

7. Subproblem
function Ra= RadiusRobustness (Cw,l)
m= size(Cw,1);
[IwMinA]= MinMatrix(Cw, l);
n= size(Iw,1);
A=zeros(0);
for j=1:n
i= Iw(j,1);
for ii=1:m
if ii = i
a= NormPositiveMatrix(Cw(ii, :)− Cw(i, :));

100 8 Appendices

A=[A a];
end
end
end
Ra=sqrt(l)/2* min(A);
end

8. Subproblem
function PE= NormPositiveMatrix (C)
l= size(C,2);
Cplus = zeros(0);
for i=1:l
if C(1,i) ¿ 0
Cplus = [Cplus C(1,i)];
end
end
PE=norm (Cplus);
end

Appendix D. Description of the algorithm (Chapter 5)
Main Program.
q = input (’A positive integer number q= ’);
epsilon = input (’A tolerance level epsilon= ’);
m = input (’Number of paths m = ’);
dw = input (’Demand value dw = ’);
n = input (’Number of loops n= ’);
l = input (’Number of criteria l = ’);
C = input (’Cost coefficient matrix C = ’)
lb = input (’Lower bound matrix lb = ’)
ub = input (’Upper bound matrix ub = ’)
delta = dw/(q*m);
Y 0= Matrix K2(q,lb,ub,dw,m)*delta
s=size(Y 0,2)
Solution = zeros(0);
tic;
for j=1:s
y0 = Y 0(1:m,j);
[T i] = FindSolutionConstraint(m, dw, delta, y

0, C, l, epsilon, n, lb, ub)
if size(T)==[0,0]
P=[ones(m,1);i];
Solution=[Solution P];
else
Solution=[Solution [T;i]];
end
end
Final.Solution = zeros(0);
for ii=1:s
B= Solution(1:m,ii)- ones(m,1);
if Matrix.O(B) == 0
Final.Solution =[Final.Solution Solution(1:m+1,ii)];
end
end

8 Appendices 101

SO = Final.Solution
wtime =toc;
fprintf(1, ’Elapsed CPU time = f\ n’, wtime)

1. Subproblem
function K= Matrix K2(q,lb,ub,dw,m)
delta = dw/(q*m)
k1= 0:1:2*q;
k2= 0:1:2*q;
S=zeros(0);
for i1=1:2*q+1
for i2=1:2*q+1
if (k1(1,i1)+ k2(1,i2)==2*q) && (lb(1,1)¡=k1(1,i1)*delta)&&(k1(1,i1)*delta¡=ub(1,1)) &&
(lb(2,1)¡=k2(1,i2)*delta)&&(k2(1,i2)*delta¡=ub(2,1))
S=[S;k1(1,i1) k2(1,i2)];
end
end
end
K=S.’;
end

2. Subproblem
function [Solution i] = FindSolutionConstraint (m,dw,delta,y

0,C,l,epsilon,n,lb,ub)
Aeq = ones(1,m);
beq= dw;
lbb= Comparetwolowerbounds(y0, delta, lb,m);
ubb= Comparetwoupperbounds(y0, delta, ub,m);
alpha = inf;
Matrix.si = zeros (0);
A= zeros (0);
Solution=zeros(0);
for i=1:n
A = [A y0]
y=A(1:m,i)
Cost=C*y;
CY=Transfer.cost.matrix(Cost, l,m);
si=Compute.si.constraint(CY, y, lb, ub)
Matrix.si=[Matrix.si si]
if si ¡= epsilon
disp (’The present value is a vector epsilon-equilibrium’)
Solution = [Solution;A(1:m,i)]
i
return
end
if ((si-alpha) ¡= epsilon) && (-epsilon ¡= (si-alpha))
return
elseif si ¡ (alpha-epsilon)
alpha = si
Gradient = Gradient.function.si(A(1 : m, i), lb, ub, C, l)
u = linprog(Gradient,[],[],Aeq,beq,lbb,ubb)
ProductCu= C*u;
Cu= Transfer.cost.matrix(ProductCu, l,m)

102 8 Appendices

siu=Compute.function.siuk.constraint(CY,Cu, u, lb, ub)
while ((si-siu) ¡= epsilon) && (-epsilon ¡= (si-siu))
break
end
while ((si-siu) ¿ epsilon) —— (-epsilon ¿ (si-siu))
disp (’Return to Step 2 with received uk’)
y0=u
break
end
else
yk = (A(1:m,i-1) + A(1:m,i))/2
disp (’Return to Step 2 with received yk’)
y0 = yk

end
i
end
end
3. Subproblem
function V=Comparetwolowerbounds (y,delta,lb,m)
V=zeros(0);
for i=1:m
if (y(i,1) - delta) ¿ lb(i,1)
V=[V;y(i,1) - delta];
else
V=[V;lb(i,1)];
end
end
end

4. Subproblem
function Z=Comparetwoupperbounds (y,delta,ub,m)
Z=zeros(0);
for i=1:m
if (y(i,1) + delta) ¡ ub(i,1)
Z=[Z;y(i,1) + delta];
else
Z=[Z;ub(i,1)];
end
end
end

5. Subproblem
function Compute.si=Compute.si.constraint (CY,Y,lb,ub)
[k,m] = size (CY);
Compute.si=0;
for i=1:m
Ji = Jj(CY,i);
Compute.si=Compute.si+ (Y(i,1)-lb(i,1))* Compute.partial.function.si.constraint
(CY, Ji, i, Y, ub);
end
end

8 Appendices 103

6. Subproblem
function Compute.partial.sum= Compute.partial.function.si.constraint (CY, Jj, i, y, ub)
l=size(CY,1);
n=size(Jj,1);
Compute.partial.sum=0;
for s=1:n
j=Jj(s,1);
Compute.partial.sum = Compute.partial.sum + (ub(j,1)-y(j,1))*sum(CY(1:l,i)-CY(1:l,j));
end
end

7. Subproblem
function d = Gradient.function.si(Y,lb,ub,C,l)
g1=zeros(0);
for i=1:size(Y,1)
g1=[g1; derivative.si(Y, lb, ub, C, i, l)];
end
d=g1;
end

8. Subproblem
function x3= derivative.si(Y,lb,ub,C,k,l)
x4=0;
for i=1:size(Y,1)
x4=x4+ith.part.of.derivative(Y, lb, ub, C, k, i, l)
end
x3=x4 - ith.part.of.derivative(Y, lb, ub, C, k, k, l)+Part2(Y, ub, C, k, l)+(Y (k, 1)−lb(k, 1))∗
Part1(Y, ub, C, k, k, l)
end

9. Subproblem
function f= ith.part.of.derivative (Y,lb,ub,C,k,i,l)
m=size(C,2);
Cost=C*Y;
CY=Transfer.cost.matrix(Cost, l,m);
Ji=Jj(CY,i);
n=size(Ji,1);
if belongtoamatrix(Ji, k)==0
f= (Y(i,1)-lb(i,1))*Part1(Y, ub, C, k, i, l)
else
f=(Y(i,1)-lb(i,1))*Part1(Y, ub, C, k, i, l)+ (Y(i,1)-lb(i,1))*(-1)*sum(CY(1:l,i)- CY(1:l,k))
end
end

10. Subproblem
function a = belongtoamatrix(A,k)
B=zeros(0);
for i=1:size(A,1)
if k==A(i,1)
B=[B;1];
end
end

104 8 Appendices

if sum(B)==1
a=1;
else a=0;
end
end

11. Subproblem
function x1= Part1(Y,ub,C,k,i,l)
m=size(C,2);
Cost=C*Y;
CY=Transfer.cost.matrix(Cost, l,m);
Ji=Jj(CY,i);
n=size(Ji,1);
x1=0;
for s=1:n
j=Ji(s,1);
x1 = x1 + (ub(j,1)-Y(j,1))* sum(C((i-1)*l+1 :i*l,k)- C((j-1)*l+1 :j*l,k));
end

12. Subproblem
function x2= Part2(Y,ub,C,k,l)
m=size(C,2);
Cost=C*Y;
CY=Transfer.cost.matrix(Cost, l,m);
Jk=Jj(CY,k);
n=size(Jk,1);
x2=0;
for s=1:n
j=Jk(s,1);
x2 = x2 + (ub(j,1)-Y(j,1))*sum(CY(1:l,k)-CY(1:l,j));
end
end

Appendix E. Description of the algorithm (Chapter 6)
Main Program.
s = input (’Number of pairs s = ’);
l = input (’Number of criteria l = ’);
q = input (’Number of products q = ’);
M0 = zeros(0);
for i=1:s
mi = input (’Enter mi = ’);
M0 = [M0 mi];
end
M=M0;
L = zeros(0);
for i=1:s
Li = input (’Enter Li = ’);
L = [L ; Li];
end
L=L;
U = zeros(0);
for i=1:s

8 Appendices 105

Ui = input (’Enter Ui = ’);
U = [U ; Ui];
end
U=U;
UL=U-L;
for i=1 : summ(M,s)
for j = 1:q
if UL(i,j) ¡ 0
error(’Verify the coefficients of the matrix L and U’)
end
end
end
d = zeros(0);
for i=1:s
dwi = input (’Enter dwi = ’);
d = [d ; dwi];
end
for i=1 : s
for j = 1:q
if d(i,j) ¡ min(L(summ(M,i-1)+1:summ(M,i),j))*M(1,i) — d(i,j) ¿ max(U(summ(M,i-1)+1:summ(M,i),j))*M(1,i)
error(’Verify the coefficients of the demand matrix d’)
end
end
end
epsilon = input (’Epsilon = ’);
delta = input (’Delta = ’);
gamma = input (’Gamma = ’);
tol = input (’Tol = ’);
nn=input(’nn = ’);
t = input(’t = ’);
Lc = ArrangeLMCtotal(L,M, q, s);
Uc = ArrangeUMCtotal(U,M, q, s);
beq = zeros(0);
for i=1:s
beqi = d(i,1:q)’;
beq = [beq ; beqi];
end
beq=beq;
Y01=linprog(zeros(M(1,1)*q,1),[],[],FindAeq(M(1, 1), q), Collumdw(M(1, 1),q,
beq(1:q,1)),Lc(1:M(1,1)*q,1),Uc(1:M(1,1)*q,1));
Y0i = zeros(0);
for i=2:s
Yi = linprog(zeros(M(1,i)*q,1),[],[],FindAeq(M(1, i), q), Collumdw(M(1, i),q,
beq((i-1)*q+1:i*q,1)),Lc(summ(M,i-1)*q+1:summ(M,i)*q,1),Uc(summ(M,i-1)*q+1:
summ(M,i)*q,1));
Y0i = [Y0i ; Yi];
end
Y0=[Y01;Y0i];
Y00 = ArrangeY 0total(Y 0,M, q, s)
C = zeros(0);
for i=1:s
Cwi = input (’Cwi = ’);

106 8 Appendices

C = [C ; Cwi];
end
Y = Soluptionoptgeneralfdistance(C, nn, delta, rho, s, l, q, L, U,M, epsilon, beq, Y 00) Time
= cputime-t
CC=MatrixCYNewtotal(M,q,l,Y,C,s);
for i=1:s
Ci=CC((summ(M, i− 1))*l+1:(summ(M, i))*l,1:q);
Yi=Y(summ(M, i− 1)+1:summ(M, i), 1 : q);
Li=L(summ(M, i− 1)+1:summ(M, i), 1 : q);
Ui=U(summ(M, i− 1)+1:summ(M, i), 1 : q);
CLw=zeros(0);
for ii = 1: M(1,i)
if Yi(ii,1:q)==Li(ii,1:q)
CLw=[CLw;Ci((ii-1)*l+1:ii*l,1:q)];
end
end
CLw;
CUw=zeros(0);
for i1 = 1: M(1,i)
if Yi(i1,1:q)==Ui(i1,1:q)
CUw=[CUw;Ci((i1-1)*l+1:i1*l,1:q)];
end
end
CUw;
CEw=zeros(0);
for i2 = 1: M(1,i)
if (Count(Y i(i2, 1 : q), Li(i2, 1 : q))¿=1)&(Count(Ui(i2, 1 : q), Y i(i2, 1 : q))¿=1)
CEw=[CEw;Ci((i2-1)*l+1:i2*l,1:q)];
end
end
CEw;
y1=size(CUw,1);
y2=size(CEw,1);
y3=size(CLw,1);
z1=y1/l;
z2=y2/l;
z3=y3/l;
b1=0;
for i3=1:z1
for j=1:z3
if Count(CUw((i3− 1) ∗ l + 1 : i3 ∗ l, 1 : q), CLw((j − 1) ∗ l + 1 : j ∗ l, 1 : q))¿=1
b1=b1+1;
end
end
end
if b1¿=1
disp(’The first and second conditions are not satisfied’)
end
b2=0;
for i4=1:z2
for j=1:z3
if Count(CEw((i4− 1) ∗ l + 1 : i4 ∗ l, 1 : q), CLw((j − 1) ∗ l + 1 : j ∗ l, 1 : q))¿=1

8 Appendices 107

b2=b2+1;
end
end
end
if b2¿=1
disp(’The first condition is not satisfied’)
else disp(’The first condition is satisfied’)
end
b3=0;
for i5=1:z1
for j=1:z2
ifCount(CUw((i5− 1) ∗ l + 1 : i5 ∗ l, 1 : q), CEw((j − 1) ∗ l + 1 : j ∗ l, 1 : q))¿=1
b3=b3+1;
end
end
end
if b3¿=1
disp(’The second condition is not satisfied’)
else disp(’The second condition is satisfied’)
end
if size(CEw,1) = 0
A2=MaxMatrixA(CEw, l, q);
A1=MinMatrixA(CEw, l, q);
if (size(CEw)==size(A1))—(size(CEw)==size(A2))
disp(’The third condition is satisfied’)
else
disp(’The third condition is not satisfied’)
end
disp(’The next O/D pair’)
else
disp(’The third condition is satisfied’)
disp(’The next O/D pair’)
end
end

1. Subproblem
function LchangeMCtotal = ArrangeLMCtotal(L,M,q,s)
L1=ArrangeMCL(L(1 :M(1, 1), 1 : q),M(1, 1), q);
LL=zeros(0);
for i=2:s
Larrange=[LL;ArrangeMCL(L(summ(M,i-1)+1:summ(M,i),1:q),M(1,i),q)];
LL=Larrange;
end
LchangeMCtotal=[L1;LL];
end

2. Subproblem
function LchangeMC = ArrangeMCL(L,m,q)
LchangeMC=zeros(0);
for i=1:q
LchangeMC=[LchangeMC;L(1:m,i)];
end

108 8 Appendices

end

3. Subproblem
function UchangeMCtotal = ArrangeUMCtotal(U,M,q,s)
U1=ArrangeMCU(U(1 :M(1, 1), 1 : q),M(1, 1), q);
UU=zeros(0);
for i=2:s
Uarrange=[UU;ArrangeMCU(U(summ(M, i− 1) + 1 : summ(M, i), 1 : q),M(1, i), q)];
UU=Uarrange;
end
UchangeMCtotal=[U1;UU];
end

4. Subproblem
function UchangeMC = ArrangeMCU(U,m,q)
UchangeMC=zeros(0);
for i=1:q
UchangeMC=[UchangeMC;U(1:m,i)];
end
end

5. Subproblem
function Aeq=FindAeq(m,q)
Aeq0 = zeros(1);
for i=1:m
Aeq0 = [Aeq0 1];
end
Aeq0(:,1)=[];
Aeq=zeros(m*q);
for j=1:q
Aeq(j,(j-1)*m+1:j*m)=Aeq0;
end
end

6. Subproblem
function dwi = Collumdw(m,q,beq)
dwi=[beq;zeros(m*q-q,1)];
end

7. Subproblem
function Yn = FindSolutionoptfdistance(m,s,nn,delta,rho,q,l,L,U,epsilon,C,
Aeq,beq,Y,M,Ytotal)
Loop=0;
B=Solutionoptfdistance(m, s, rho, q, l, L, U, epsilon, C,Aeq, beq, Y,M, Y total);
for i=1:nn
diff=norm(B(m*q+1:2*m*q,1)-B(1:m*q,1),2);
if (diff ¿= delta)
B=Solutionoptfdistance(m, s, rho, q, l, L, U, epsilon, C,Aeq, beq, ArrangeB(B(m ∗ q + 1 :
2 ∗m ∗ q, 1),m, q),M,ArrangeB(B(m ∗ q + 1 : 2 ∗m ∗ q, 1),m, q));
Y1=B(m*q+1:2*m*q,1);
Loop=Loop+1;
a=Loop

8 Appendices 109

else
Y1=B(m*q+1:2*m*q,1);
a=Loop;
break
end
end
Y2=Y1;
Z1=zeros(0);
for k=1:q
Z1=[Z1 Y2((k-1)*m+1:k*m,1)];
end
Tolerance=diff
Yn=Z1;
The numbers of loops=a
end

8. Subproblem
function B = Solutionoptfdistance(m,s,rho,q,l,L,U,epsilon,C,Aeq,beq,Y,M,Ytotal)
C1=MatrixCY (m, q, l, Y total, C,M, s);
B=ArrangeMCL(Y,m, q);
Calpha = zeros(0);
for i = 1:m
if Count(Y (i, 1 : q), L(i, 1 : q))¿=1
Calpha = [Calpha ; C1(i*l-(l-1):i*l,1:q)];
end
end
n=size(Calpha,1)/l;
F=zeros(0);
for j=1:m
fd=zeros(0);
for ii = 1:n
D=C1((j-1)*l+1:j*l,1:q)- Calpha((ii-1)*l+1:ii*l,1:q);
if (D ¿=0)==zeros(l,q)
fCalphaCj = −distancene(D)+ epsilon*SumMatrix(D);
else
fCalphaCj = distancepo(D)+ epsilon* SumMatrix(D);
end
fd=[fd;fCalphaCj];
end
fd1=min(fd);
fd2=zeros(0);
for i = 1:q
fd2=[fd2;fd1];
end
F=[F;fd2];
end
Fchange=[];
for i=1:m
Fchange=[Fchange;F((i-1)*q+1:i*q,1)’];
end
Frechange=ArrangeMCL(Fchange,m, q);
Y1=ArrangeMCL(Y,m, q);

110 8 Appendices

S1= Y1 - rho*Frechange;
lb=ArrangeMCL(L,m, q);
ub=ArrangeMCL(U,m, q);
S2=lsqlin(eye(m*q),S1,[],[],Aeq,beq,lb,ub);
Yn=(1-rho)*Y1+rho*S2;
B=[B;Yn]; end

9. Subproblem
function CY=MatrixCY(m,q,l,Y,C,M,s)
CY=zeros(m*l,q);
for i=1:m*l
for j=1:q
CY(i,j)=sum(sum(C((i-1)*summ(M,s)+1 : i*summ(M,s),(j-1)*q+1:j*q).*Y));
end
end
end

10. Subproblem
function a = Count(Y,L)
s=(Y-L);
b=(s¿0);
[s1 s2]=size(s);
Count=zeros(0);
for i=1:s2
if b(1,i)==1
Count=[Count,1];
end
end
a=size(Count,2);
end

11. Subproblem
function diss = distancene(x)
[s1, s2]=size(x);
c=zeros(0);
for i=1:s1
c=[c;x(i,1:s2)’];
end
d=c;
diss=norm(d,-Inf);
end

12. Subproblem
function dis = distancepo(x)
a=zeros(0);
for i=1:size(x,1)
for k=1:size(x,2)
if x(i,k)¿0
a=[a;x(i,k)];
end
end
end

8 Appendices 111

b=a;
sum=0;
for j=1:size(b,1)
for l=1:size(b,2)
sum=sum+b(j,l).2;
end
end
dis=sqrt(sum);

13. Subproblem
function Bchange = ArrangeB(B,m,q)
Bchange=zeros(0);
for i=1:q
Bchange=[Bchange B((i-1)*m+1:i*m,1)];
end
end

14. Subproblem
function sum = summ(M,s)
sum=0;
for i=1:s
sum=sum+M(1,i);
end
end

15. Subproblem
function summatrix = SumMatrix(A)
summatrix = 0;
for i = 1:size(A,1)
for j = 1:size(A,2)
summatrix = summatrix + A(i,j);
end
end
end

16. Subproblem
function Y0total = ArrangeY0total(Y0,M,q,s)
Y1=ArrangeY0(Y0(1:M(1,1)*q,1),M(1,1),q);
YY=zeros(1,q);
for i=2:s
Yarrange=[YY;ArrangeY 0(Y 0(summ(M, i− 1) ∗ q + 1 : summ(M, i) ∗ q, 1),M(1, i), q)];
YY=Yarrange;
end
YY(1,:)=[];
Y0total=[Y1;YY];
end

17. Subproblem
function Ychange = ArrangeY0(Y0,m,q)
Ychange=zeros(m,1);
for i=0:(q-1)
Ychange=[Ychange Y0(m*i+1:m*(i+1),1)];

112 8 Appendices

end
Ychange(:,1)=[];
end

18. Subproblem
function Ys = Soluptionoptgeneralfdistance(C,nn,delta,rho,s,l,q,L,U,M,epsilon,beq,Y)
Z1=zeros(0);
for k=1:s
beqk=[beq((k-1)*q+1:k*q,1);zeros(M(1,k)*q-q,1)];
Ck=C(summ(M,k-1)*l*summ(M,s)+1:summ(M,k)*l*summ(M,s),1:q*q);
Yk=Y(summ(M,k-1)+1:summ(M,k),1:q);
Lk=L(summ(M,k-1)+1:summ(M,k),1:q);
Uk=U(summ(M,k-1)+1:summ(M,k),1:q);
Y0k=FindSolutionoptfdistance(M(1, k), s, nn, delta, rho, q, l, Lk, Uk, epsilon,
Ck, F indAeq(M(1, k), q), beqk, Y k,M, Y);
Z1=[Z1;Y0k];
end
Ys=Z1;
end

19. Subproblem
function CY=MatrixCYtotal(M,q,l,Y,C,s)
CY1=MatrixCY (M(1, 1), q, l, Y, C(1 :M(1, 1) ∗ l ∗ summ(M, s), 1 : q ∗ q),M, s);
CY=zeros(0);
for i=2:s
Ci=C(summ(M, i− 1) ∗ l ∗ summ(M, s) + 1 : summ(M, i) ∗ l ∗ summ(M, s), 1 : q ∗ q);
CYi=MatrixCY (M(1, i), q, l, Y, Ci,M, s);
CY=[CY;CYi];
end
CY=[CY1;CY];
end

20. Subproblem
function MaxA= MaxMatrixA(A,l,q)
[r1, r2]=size(A);
s1=r1/l;
MaxA=zeros(0);
B1=zeros(0);
for i=1:s1
for j=1:s1
B=A((j-1)*l+1:j*l,1:q)-A((i-1)*l+1:i*l,1:q);
B1=[B1;B];
end
end
s2=size(B1,1)/r1;
for i=1:s2
B2=B1((i-1)*r1+1:i*r1,1:q);
s4=size(B2,1)/l;
t=TextDMax(B2, q, l);
if t==s4
MaxA=[MaxA;A((i-1)*l+1:i*l,1:q)];
else MaxA=[MaxA;zeros(0)];

8 Appendices 113

end
end
end

21. Subproblem
function MinA= MinMatrixA(A,l,q)
[r1, r2]=size(A);
s1=r1/l;
MinA=zeros(0);
B1=zeros(0);
for i=1:s1
for j=1:s1
B=A((j-1)*l+1:j*l,1:q)-A((i-1)*l+1:i*l,1:q);
B1=[B1;B];
end
end
B1;
s2=size(B1,1)/r1;
for i=1:s2
B2=B1((i-1)*r1+1:i*r1,1:q);
s4=size(B2,1)/l;
t=TextDMin(B2, q, l);
if t==s4
MinA=[MinA;A((i-1)*l+1:i*l,1:q)];
else MinA=[MinA;zeros(0)];
end
end
end

22. Subproblem
function a = TextDMax(D,q,l)
r1=size(D,1);
a=0;
s1=r1/l;
for i=1:s1
D1=D((i-1)*l+1:i*l,1:q);
if DauMTTMax(D1)==1—D1==zeros(l,q)
a=a+1;
end
end
end

23. Subproblem
function DauMT = DauMTTMax(D1)
[r1, r2]=size(D1);
E1=D1¡zeros(r1,r2);
E2=D1¿zeros(r1,r2);
if (SumMatrix(E1) >= 1&SumMatrix(E2) >= 1)|SumMatrix(E1) >= 1
DauMT = 1;
else DauMT = 0;
end

114 8 Appendices

end

24. Subproblem
function a = TextDMin(D,q,l)
r=size(D,1);
a=0;
s1=r/l;
for i=1:s1
D1=D((i-1)*l+1:i*l,1:q);
if DauMTTMin(D1)==1—D1==zeros(l,q)
a=a+1;
end
end
end

25. Subproblem
function DauMT = DauMTTMin(D1)
[r1, r2]=size(D1);
E1=D1¡zeros(r1,r2);
E2=D1¿zeros(r1,r2);
if (SumMatrix(E1)¿=1 & SumMatrix(E2)¿=1)—SumMatrix(E2)¿=1
DauMT = 1;
else DauMT = 0;
end
end

9

Summary of the thesis in French

L’objectif de cette thèse est d’étudier des propriétés des points d’équilibre dans des
réseaux de transport multicrière et de développer des méthodes numériques permettant de
trouver l’ensemble de tous les points d’équilibre ou une partie représentative de cet ensem-
ble. Le travail comporte cinq chapitres.

Le chapitre 2 est un rappel de certaines notions que nous utilisons dans les autres. Nous y
rappelons le concept de point optimal de Pareto, les fonctions multivoques et les problèmes
d’inégalité variationnelle. Nous introduisons certaines fonctions de scalarisation, en partic-
ulier les fonctions monotones augmentées et les fonctions distance signées augmentées, puis
éstablissons quelques propriétés que nous allons utiliser plus tard. Voici ces fonctions.

Les fonctions monotones augmentées:

gǫa(x) = min
i=1, ..., n

(xi − ai) + ε

n∑

i=1

(xi − ai)

Gǫa(x) = max
i=1, ..., n

(xi − ai) + ε

n∑

i=1

(xi − ai)

Les fonctions distance signées augmentées:

dǫa(x) = ∆(Rn
+)C (x− a) + ε

n∑

i=1

(xi − ai)

Dǫ
a(x) = ∆−R

n
+
(x− a) + ε

n∑

i=1

(xi − ai)

où pour A un sous-ensemble non vide de Rn, ∆A est la fonction distance signée qui est
définie par

∆A(x) = d(x,A)− d(x,Ac),

où d(x,A) est la distance euclidienne de x à A, et Ac est le complémentaire de A de Rn.

Dans le chapitre 3, nous décrivons les réseaux de transport qui sont étudiés dans cette
thèse. Dans chaque modèle, nous rappelons les définitions des points d’équilibre et donnons
une relation entre ces définitions. Nous présentons également certains contre-exemples pour
certains résultats existant dans la littérature récente sur ce sujet.

116 9 Summary of the thesis in French

Dans le chapitre 4 nous traitons les réseaux de transport multi-criteriès mono-produit
sans constraintes de capacité. Notons que K dans ce chapitre est l’ensemble de tous les flots
faisables Y satisfaisant les conditions suivantes:

yp ≧ 0 ∀ p ∈ P ; (9.1)

∑

p∈Pw

yp = dw ∀w ∈W. (9.2)

Dans un premier temps, nous construisons deux problèmes d’optimisation dont les solu-
tions sont exactement l’ensemble des points d’équilibre du modèle initiale. Ce résultat est
présenté dans le Théorème 4.1.1. comme suit.

Théorème 4.1.1 Si ȳ est un flot faisable, alors les assertions suivantes sont équivalentes:

(i) ȳ est un équilibre vectoriel.
(ii)ȳ est une solution optimale du problème suivant, noté (P1):

minimiser
∑

p∈Pw,w∈W

ypd[cp(y),Min(Cw(y))]

sous la constrainte y ∈ K

et la valeur optimale de ce problème est nulle.
(iii) ȳ est une solution optimale du problème suivant, noté (P2):

minimiser
∑

p∈Pw,w∈W

yp
∑

p′∈Pw

[cp(y)− cp′(y)]
TH+[cp(y)− cp′(y)].

sous la constrainte y ∈ K

et la valeur optimale de ce problème est nulle, et où la fonction H+ : Rl → Rl est la
version vectorielle de la fonction de Heaviside Step qui est définie par

H+(cp(y)− cp′(y)) =

{
(1, ..., 1)T si cp(y)− cp′(y) ≧ 0
0 sinon.

Dans un second temps, nous établissons certaines propriétés importantes de continuité
et dérivabilité génériques des fonctions objectifs, qui sont introduites dans le Théorème 4.2.4
et la Proposition 4.2.7:

Théorème 4.2.4 Supposons que les fonctions de coût vectorielles cpi , i = 1, · · · ,m
sont continues (respectivement Lipschitz ou localement differentiables). Alors chaque en-
semble ouvert dans Rm contient un sous-ensemble ouvert où les fonctions objectifs φ et ψ
des problèmes (P1) et (P2) sont continues (respectivement Lipschitz ou differentiable locale-
ment).

Proposition 4.2.7 Supposons que les fonctions de coût vectorielles cp1 , · · · , cpm sont
continues. Alors la fonction φ et ψ sont continues en chaque équilibre vectoriel. Si en outre
cp1 , · · · , cpm sont localement calmes en un équilibre vectoriel, alors φ et ψ sont également
localement calmes en cet équilibre.

Dans un troisième temps, nous donnons une formule permettant de calculer le gradient
des fonctions objectifs, qui nous permet de modifier la méthode de gradient réduit de Frank-
Wolfe pour obtenir une direction de descente vers une solution optimale. Ces résultats sont
présentés dans le Théorème 4.2.5 et le Théorème 4.2.6:

Théorème 4.2.5 Supposons que les fonctions de coût vectorielles cpi , i = 1, · · · ,m sont
differentiables. Alors pour chaque point y en dehors de certain sous-ensemble négligable et
pour chaque chemin pi, il existe un chemin pν(i) de Pw(i) tel que

9 Summary of the thesis in French 117

(i) cpν(i)
(y) ∈ MinCw(i)(y)

(ii)d[cpi(y),MinCw(i)(y)] = ‖cpi(y)− cpν(i)
(y)‖

(iii) φ est differentiable en y et son gradient est donné par

∇φ(y) =




‖cp1(y)− cpν(1)
(y)‖

...
‖cpm(y)− cpν(m)

(y)‖




+

m∑

i=1

ypi




cpi (y)−cν(i)(y)

‖cpi (y)−cpν(i)
(y)‖

(∂cpi
∂yp1

(y)− ∂cpν(i)

∂yp1
(y)
)

...
cpi (y)−cpν(i)

(y)

‖cpi (y)−cpν(i)
(y)‖

(∂cpi
∂ypm

(y)− ∂cpν(i)

∂ypm
(y)
)


 .

Théorème 4.2.6 Supposons que les fonctions de coût vectorielles cpi , i = 1, · · · ,m sont
differentiables. Alors pour chaque point y en dehors de certain sous-ensemble négligable et
pour chaque chemin pi, il existe un sous-ensemble Ji(y) ⊆ Iw(i) tel que

(i) cpi(y) ≥ cpj (y) pour chaque j ∈ Ji(y)
(ii)ψ(y) =

∑m
i=1 ypi

〈∑
j∈Ji(y)

(
cpi(y)− cpj (y)

)
, e
〉

(iii) ψ est differentiable en y et son gradient est donné par

∇ψ(y) =




∑
j∈J1(y)

〈cp1(y)− cpj (y), e〉
...∑

j∈Jm(y)〈cpm(y)− cpj (y), e〉




+

m∑

i=1

ypi




∑
j∈Ji(y)

〈 ∂cpi
∂yp1

(y)− ∂cpj
∂yp1

(y), e〉
...

∑
j∈Ji(y)

〈 ∂cpi
∂ypm

(y)− ∂cpj
∂ypm

(y), e〉


 .

Dans un quatrième temps, nous proposons un algorithme et prouvons sa convergence
pour générer une représentation de l’ensemble des points d’équilibre. Puisque les fonctions
objectifs de nos problèmes d’optimisation ne sont pas continues, une méthode de lissage est
également considérée afin d’utiliser quelques techniques d’optimisation globale. En partic-
ulier, nous utilisons les approximations analytiques suivantes

H̃ν(x) =

(
l∏

i=1

1 + tanh(νxi)

2

)
e for ν ≧ 1,

qui produisent ainsi des approximations lisses de la fonction objectif ψ quand les fonctions
de coût sont continues:

ψν(y) :=
∑

p∈Pw,w∈W

yp
∑

p
′∈Pw

[cp(y)− cp′(y)]
T H̃ν [cp(y)− cp′(y)].

Le problème d’optimisation notée (P2ν), est obtenu à partir de (P2) en remplacant ψ par ψν .

Enfin, nous introduisons le concept de point d’équilibre robuste, puis nous établissons
des critères de robustesse et une formule permettant de calculer le rayon de robustesse. Ces
résultats sont présentés dans le Théorème 4.4.1 et le Corollaire 4.4.5 comme suivants.

Théorème 4.4.1 Soit y ∈ K un équilibre vectoriel de G. Les assertions suivantes sont
équivalentes.

118 9 Summary of the thesis in French

(i) y est robuste.
(ii)y est une solution optimale du problème d’optimization suivant, noté (P

′

1)

minimiser
∑

p∈Pw,w∈W

yp
(
d[cp(y),Min(Cw(y))]

+
∑
i∈Iw(y),pi 6=p

χ{0}(‖cp(y)− cpi(y)‖)
)

sous la constrainte y ∈ K,

et la valeur optimale de ce problème est égale à zéro, où pour w ∈ W et y ∈ K, Iw(y)
désigne l’ensemble des indices i telle que pi ∈ Pw et cpi(y) ∈ Min(Cw(y)), et χ{0} est la
fonction charactéristique de {0}.

(iii) Il existe ǫ > 0 tel que pour chaque w ∈W, p ∈ Pw avec yp > 0, on a :

(c̃p(y)− Rl+) ∩ (C̃w(y)\{c̃p(y)}) = ∅

pour tous c̃pi , pi ∈ Pw satisfaisant ‖c̃pi(y)− cpi(y)‖ ≦ ǫ.

Corollaire 4.4.5 Soit y ∈ K équilibre vectoriel robuste. Alors le rayon de robustesse en
y est donné par

r(y) =

√
l

2
min

w∈W,i∈I+w (y)
min

p′∈Pw\{pi}
‖(cp′(y)− cpi(y))

+‖

où (cp′ (y) − cpi(y))
+ désigne la partie positive du vecteur cp′ (y) − cpi(y) et I+w (y) = {i ∈

Iw(y) : ypi > 0}.

Dans le chapitre 5 nous étudions des points d’équilibre vectoriel dans le réseau de trans-
port multi-critère mono-produit sous constraintes de capacité. Tout d’abord, nous proposons
un problème d’optimisation équivalent et nous établissons également certaines propriétés im-
portantes de continuité et dérivabilité génériques de la fonction objectif. En suite, nous don-
nons une formule permettant de calculer le gradient de la fonction objectif qui est présenté
dans le Théorème 5.3.2 ci-dessous. Puis nous appliquons l’algorithme proposé dans le chapitre
4 avec quelques modifications permettant d’obtenir un sous-ensemble des solutions optimales
qui sont des points d’équilibre de notre modèle. Des exemples numériques sont également
présentés afin d’illustrer notre approche.

Théorème 5.3.2 Supposons que les fonctions de coût vectorielles cpi , i = 1, · · · ,m sont
differentiables. Alors pour chaque point y en dehors de certain sous-ensemble négligable et
pour chaque chemin pi, il existe un sous-ensemble Ji(y) ⊆ Iw(i) tel que

(i) cpi(y) ≥ cpj (y) pour chaque j ∈ Ji(y)
(ii)ψ(y) =

∑m
i=1(ypi − lpi)

〈∑
j∈Ji(y)

(
upj − ypj

)(
cpi(y)− cpj (y)

)
, e
〉

(iii)ψ est differentiable en y et son gradient est donné par

∂ψ(y)
∂yk

=
m∑
i=1

(ypi − lpi)
∑

j∈Ji(y)

(upj − ypj)
〈
∂cpi (y)

∂yk
− ∂cpj (y)

∂yk
, e
〉

+
m∑
i=1
i 6=k

(lpi − ypi) 〈cpi(y)− cpk(y), e〉+
∑

j∈Jk(y)

(upj − ypj)
〈
cpk(y)− cpj (y), e

〉

pour k = 1, ...,m.

Dans le dernier chapitre nous considérons des points d’équilibre fort dans le réseau de
transport multi-critère multi-produit sous constraintes de capacité. Alors K dans ce chapitre
est l’ensemble de tous les flots faisables Y satisfaisant les conditions suivantes:

9 Summary of the thesis in French 119

lp ≦ yp ≦ up ∀ p ∈ P ; (9.3)
∑

p∈Pw

yp = dw ∀w ∈W. (9.4)

Nous établissons des conditions d’existence des points d’équilibre fort. Nous produis-
sons des relations entre des points d’équilibre fort et des points d’équilibre par rapport à
une famille de fonctions. Ces résultats sont présentés dans les Lemmes 6.2.1 et 6.2.3 et le
Corollaire 6.2.4 comme suit:

Lemme 6.2.1 Soit un flot faisable Y donné. Si la famille F contient des fonctions
croissantes en {Cpi , pi ∈ P}, alors chaque F−équilibre est un équilibre vectoriel fort. In-
versement, si F satisfait la condition suivante: Pour chaque w ∈ W et pi, pi′ ∈ Pw on a
l’implication

f(Cpi) > f(Cpi′) ∀ f ∈ F ⇒ Cpi ≥ Cpi′ , (9.5)

alors chaque équilibre vectoriel fort est un F−équilibre.
Lemme 6.2.3 Soit un flot faisable Y donné. Il existe ǫ0 > 0 tel que pour tous ǫ ∈ (0, ǫ0),

chacune des familles de fonctions croissantes ci-dessous satisfait à la condition (9.5): F1 =
{Dǫ

Cpi

: pi ∈ P}, F2 = {Gǫ
Cpi

: pi ∈ P}, F3 = {dǫ
Ci

: pi ∈ P} et F4 = {gǫ
Cpi

: pi ∈ P}.
Corollaire 6.2.4 Soit un flot faisable Y donné. Alors il est équilibre vectoriel si et seule-

ment s’il est un Fi−équilibre pour certain i ∈ {1, ..., 4}.

Nous éstablissons également une relation entre des points d’équilibre fort et les points
efficaces de l’ensemble des valeurs de la fonction de coût, qui est présentée dans le Théorème
6.2.5 comme suit:

Théorème 6.2.5 Soit Y un flot faisable. Il est un équilibre vectoriel fort si et seulement
si pour tout w ∈W les conditions sont satisfaites
(i) (CLw

+ Rl×q+ \{0}) ∩ (CUw
∪ CEw

) = ∅,
(ii) (CUw

− Rl×q+ \{0}) ∩ (CLw
∪ CEw

) = ∅,
(iii)CEw

est auto-maximal,
où pour w ∈W ,

Lw :=
{
pi ∈ Pw tel que Y pi = Lpi

}

Uw :=
{
pi ∈ Pw tel que Y pi = Upi

}

Ew :=
{
pi ∈ Pw tel que Li ≤ Y pi ≤ Upi

}

et pour un ensemble I, CI = {Cpi , pi ∈ I}.

En plus nous utilisons les fonctions croissantes déjà discutées au chapitre 2 pour constru-
ire des problèmes d’inéqualité variationnellle, dont les solutions sont les points d’équilibre
fort. Ces résultats sont présentés dans le Théorème 6.2.7 et le Théorème 6.2.8:

Théorème 6.2.7 Soit Y un flot faisable. S’il satisfait la condition: Cpα(Y) ≥ Cpβ (Y)
implique soit Ypα = Lpα ou Ypβ = Upβ pour pα, pβ ∈ Pw et

∑

(i,w,j)∈Γ

(
min
α∈Aw

Dǫ
Cα

(Ci)

)(
yij − yij

)
≧ 0 pour tout Y ∈ K, (9.6)

pour certain ǫ > 0, alors il est un équilibre vectoriel fort. Inversement, si Y est un équilibre
vectoriel fort, alors il existe ǫ0 > 0 tel que Y satisfait (9.6) pour tout ǫ ∈ (0, ǫ0).
Théorème 6.2.8 Soit Y un flot faisable. S’il satisfait la condition: Cpα(Y) ≥ Cpβ (Y) im-
plique soit Ypα = Lpα soit Ypβ = Upβ pour pα, pβ ∈ Pw et

120 9 Summary of the thesis in French

∑

(i,w,j)∈Γ

(
max
β∈Bw

gǫ
Cβ

(Ci)

)(
yij − yij

)
≧ 0 pour tout Y ∈ K, (9.7)

pour certain ǫ > 0, alors il est un équilibre vectoriel fort. Inversement, si Y est un équilibre
vectoriel fort, alors il existe ǫ0 > 0 tel que Y satisfait (9.7) pour tout ǫ ∈ (0, ǫ0).

La dernière partie de ce chapitre est consacrée à un algorithme permettant de trouver des
points d’équilibre d’un réseau multi-critère sous constraintes de capacité. Certains exemples
numériques sont donnés pour illustrer notre méthode.

Nous fermons la thèse avec une liste de références et appendix contenant le code matlab
de nos algorithmes.

