N

N

Performance Monitoring of Throughput Constrained
Dataflow Programs Executed On Shared-Memory
Multi-core Architectures

Manuel Selva

» To cite this version:

Manuel Selva. Performance Monitoring of Throughput Constrained Dataflow Programs Executed
On Shared-Memory Multi-core Architectures. Computer Science [cs]. Institut National des Sciences
Appliquées de Lyon, 2015. English. NNT: . tel-01264258v1

HAL Id: tel-01264258
https://theses.hal.science/tel-01264258v1
Submitted on 29 Jan 2016 (v1), last revised 24 Feb 2016 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01264258v1
https://hal.archives-ouvertes.fr

These

Pour obtenir le grade de
Docteur

Présentée devant
L’institut national des sciences appliquées de Lyon

Par
Manuel Selva

Performance Monitoring of Throughput
Constrained Dataflow Programs Executed On
Shared-Memory Multi-core Architectures

Encadré par Stéphane FRENOT, Lionel MOREL et Kevin MARQUET
Laboratoire CITI, INSA Lyon
Ecole Doctorale Informatique et Mathématiques
Spécialité Informatique

En partenariat avec
Frédéric SOINNE, Bull
Stéphane ZENG, Bull

Soutenue le 02 juillet 2015

Jury
Jean-Frangois NEZAN Professeur des Universités, INSA Rennes Rapporteur
Eduard AYGUADE Full professor, University of Catalunya Rapporteur
Albert COHEN Directeur de recherche, Inria Président
Marco MATTAVELLI Maitre d’enseignement et de recherche, FPFL Examinateur
Stéphane FRENOT Professeur des Universités, INSA Lyon Directeur
Lionel MOREL Maitre de conférences, INSA Lyon Co-directeur

Kevin MARQUET Maitre de conférences, INSA Lyon Encadrant

Contents

|Contents|

[List of Figures|

[List of Tables

~lossar

(1__Introduction|

(1.1 The Multi-core Jungle| oo oo
(1.2 Datatlow Programming|

(1.3 Problematics and Proposals|

(1.4 Thesis Organization|,

2

Context and Objectives|

2.1 Introductionl. o

[2.3.1 Computing Homogeneity|

[2.3.1.1 Homogeneous Computing

[2.3.1.2 Heterogeneous Computing]

[2.3.2 Memory Organization|
[2.3.2.1 Centralized Shared-Memory Architectures|.

[2.3.2.2 Distributed Shared-Memory Architectures|

[2.3.2.3 Distributed Private-Memory Architectures|

[2.4 Concurrent Programming Models|

[2.4.2 Concurrent Tasks with Message Passing|
[2.4.3 The Datatlow Approach|
[2.4.3.1 Dataflow Models ot Computation|

2.5 Objectives|
[2.5.1 Dataflow Applicative Domaing

[2.5.2 Throughput Constraints in Dataflow Programs|

[2.5.3 Proposal and Hypotheses|

1ii

iii

vii

ix

xi

|3 Throughput Constraints in Dataflow Programs|
[B.1 Introductionl.

[3.3.2 SDF Schedulinglo oo
13.3.2.1 Sequential Schedules|.
13.3.2.2 Schedules Properties|. 0oL,
[3.5.2.3 Multi-core Schedules|. 00000

3.4 Extending SDF With Throughput|

13.4.1 Extensions at MoC Levell

[3.4.2.1 The Streamlt Languagel

3.4.2.2 Language Extensions|

13.4.2.3 Streamlt Graph’s Transformations Follow-up|

3.5 SDF Throughput Propagation|.
13.5.1 Propagation By Graph Traversal|
13.5.2 Propagation Using SDF Repetition Vector|.

4.3.1 Dataflow Compilation Overview|
4.3.2 Sequential Execution Model| o000

4.4 'Throughput Profiling|.
4.4.1 Global Throughput|.,
[4.4.2 Identity Bottleneck Actors In SDF Graphs|.

4.5 System-Level Profiling| 0000
451 CoresLoadl
4.5.2 Memory Subsystem Load|,

4521 PMU
[4.5.2.2 Memory Controllers Imbalance]

|4.5.2.3 Sampling of Memory Accesses|
4.6 Discussionl

[5 Profiling Mechanisms Exploitation| 67

b1 Introductionl.o 68
5.2 SDF Throughput-Aware Runtime| 68
9.2.1 Language Compiler And Runtime Support|. 69
[5.2.2 Runtime Monitoring| L oL 70
5.2.2.1 Monitoring The Global Throughput| 71

[5.2.2.2 Monitoring Actors Execution Times 72

5.2.2.3 Monitoring Cores Imbalance| 72

15.2.3 Reporting and Adaptations| 72
B24 Resultd o oo 73
[5.2.4.1 Scenario 1: Reaction To Preemption By Other Applications| 74

[5.2.4.2 Scenario 2: Identification Of Bottleneck Actors| 76

5.2.4.3 Runtime Monitoring And Adaptation Overhead| 76

5.2.5 Discussionl. 77

b.3 DDF Programs Profiling| 79
b.3.1 ORCC Extensions| 79
b.3.1.1 Throughput Constraint Expression|. 79

b.3.1.2 Profilingl 79

9.3.2 Experimental Setup| oo 80
B33 HEVC . . . oo 81
[5.3.3.1 Scaling| 81

5.3.3.2 Memory Profiling] 85

[5.3.4 MPEG4-part2] 88
9.3.5 Perspectives|. 89

[6 Conclusion and Perspectives| 93
6.1 Summary| e e 93
6.1.1 SDF Throughput Propagation| 93
6.1.2 SDF Throughput Aware Runtime|. 94
6.1.3 DDEF Profilingl 95

6.2 Perspectives| 96
6.2.1 Throughput Constraints in Quasi Static Dataflow Models| 96
6.2.2 Towards a Dataflow Aware Operating System| 97
6.2.3 An Open NUMA Profiling Library| 98

6.3 Thoughts on the Dataflow Programming Paradigm| 98

[References| 101

List of Figures

[2.1 Centralized shared-memory architecture overview| 9
2.2 Intel’s example of a dual processors NUMA architecture| 10
2.3 NUMA remote memory accesses| 11
2.4 NUMA shared data synchronization| 12
2.5 MPEG-4 AVC decoder expressed as a datatlow graphl. 17
[2.6 Parallelism available in an MPEG-4 AVC decoder as a dataflow graph| . . 18
3.1 SDF graphs examples| oo 0o 29
3.2 SDF graph example with Tg:p constraintl 32
3.3 Streamlt graph example oo oo 34
[3.4 Streamlt language extensions| 34
3.5 SDF tfusion transformation|. L oo 35
3.6 Data parallelism introduction| 35
3.7 Data parallelism introduction follow-up to propagate expected throughput| 36
3.8 t&, propagation in SDF|. 38
3.9 Throughput propagation result| 39
13.10 DDF non deterministic merge actor|. 42
13.11 ORCC program annotated with throughput constraint| 42
4.1 Dataflow compilation|. o o 50
4.2 SDF example] 51
4.3 SDF sequential execution main loop| 51
4.4 SDF actors step function|o oL 52
4.5 DDF sequential execution main loop|o 53
4.6 SDF parallel execution model| 0oL 54
4.7 SDF global throughput profilingl 56
4.8 DDF global throughput profiling| 56
4.9 SDF t% profilingl 57
470 Dataflow graph example used to illustrate tasks imbalance] 58
|4.11 Cores imbalance caused by wrong estimation of actors execution time| . . 59
|4.12 Cores imbalance caused by preemption fro mother applications| 59
|4.13 Cores imbalance profiling using actors execution time|. 60
|4.14 Performance monitoring counters on an Intel NUMA architecture|. 61
4.15 PMU usage on top of Linux| 62
4.16 End of function label used to identify PMU samples source] 63
.1 Throughput aware [Streamlt| runtime system overview| 70

vii

[5.2 Monitoring stages overview| 71

5.3 CPU load balancing heuristic| 73
5.4 Scenario 1 - filterbank| oo oo 75
5.5 Scenario 2 - fftl 75
5.6 HEVCscaling|. 82
.7 HEVC dataflow tasks load balancing| 83
5.8 HEVC memory load samples analysis|. 88

9.9 MPEG4 dataflow tasks load balancing and memory accesses analysis| . . . 90

List of Tables

2.1 Dataflow MoCs properties| 19
[3.1 Notations about throughput|. 37
4.1 Expected and observed notations about throughput| 55
[>.1 System configuration| 74
(.2 Actors execution times 76
[>.3 Local monitoring overhead|. 77
[(.4 HEVC work lIoad by actors] 84
[>.5 HEVC measured speedup vs optimum speedup| 85
(.6 HEVC memory bandwidth usage| 87

ix

Glossary

numap Non Uniform Memory Access Profiling (numap) is a thin Linux library built on
top of the perf_event_open system call dedicated to memory profinling on NUMA

architectures.

AVC Advanced Video Coding (AVC) is a widspread video coding standard also known
as H.264.

CSDF Cyclo Static Dataflow (CSDF) is a dataflow computation model where actors
rates are statically known and can vary periodically in a cyclic fashion.

DDF Dynamic DataFlow (DDF) is the most general dataflow computation model.
21} 28} [32; B0 A3}, [46}, (A9} B0} 54} B3] B8} B9} [64} [65] [68} [80}, [93} 951 [96]

DPN Dataflow Process Networks (DPN) is a synonym of DDF.

FIFO a First In First Out (FIFO) data structure is a list of elements where elements

are removed in arrival order (hence the name).
A1} 6} {8} B0} T} [55} [56 [60, 63 64 68} 69} [79}82} [88} [89}, [0} [95} [P7]

HEVC High Efficiency Video Coding (HEVC) is the new video coding standard fol-
lowing H.264. 30},

KPN Kahn Process Networks (KPN) is is a simple model originally developed for
modeling distributed systems.

MoC a Model of Computation (MoC) defines the set of allowable operations and con-
straints used by programs conforming to the model. 43, [46]
A9} [62} [63} [65} 06|

MPI Standard defining the syntax and the semantic of a set of library routines for
writing portable message-passing programs.

MPPA Many-core processor (256 or 512 cores) commercialized by Kalray. @],

NUMA Non Uniform Memory Access (NUMA) is a memory organization where mem-
ory access latency depends on the location of the requesting core and the location

of the physical memory requested. [64] [39] 98

Xi

ORCC Open RVC-CAL Compiler (ORCC) is an open-source Integrated Development
Environment based on Eclipse dedicated to dataflow programming.

B0, b1} B4 [65} (68, [11 78182} [88}, P11 P5} 96} [09)

PAPI Performance API (PAPI) is a library specifying a standard application program-
ming interface (API) for accessing hardware performance counters available on
most modern microprocessors.

PMU Performance Monitoring Unit (PMU) is a piece of hardware built into almost all

modern processors providing hardware profiling capabilities. [60}
95

QPI Quick Path Interconnect (QPI) is the name of Intel’s point to point processor

interconnect. [IT], [91]

RVC Reconfigurable Video Coding (RVC) is an initiative from the MPEG group to
provide an innovative framework of video coding developmen.

RVC-CAL Reconfigurable Video Coding Caltrop Actor Language (RVC-CAL) is a high
level programming language for writing dataflow actors.
89, BT} 93]

SADF Scenario Aware DataFlow (SADF) is an extension to SDF allowing an appli-
cation to be described as several SDF graphs referred to as scenario. Runtime
mechanisms allows to switch between scenario.

SAS Single Appearance Schedule (SAS) is an SDF schedule where each actor appears
only once.

SDF Synchronous DataFlow (SDF) is a dataflow computation model where actors rates

are statically known. [21I] 28434}, 36l [37 [39H43}, 46l [49] [0} H3H55! 62 [64]
65} [68, [78}, [80}, [94}, [96]

SPDF Schedulable Parametric Dataflow (SPDF) is a dataflow computation model
where actors rates may vary at runtime according to parameters changes.

23} F3} 96} 7]

StreamlIt Dataflow framework developped byt the MIT including a language rooted in
the Synchronous Dataflow Model and a compiler performing agressive transforma-

tions with several backends. [46] [74] [77]

9d

I8 Introduction

Estimer correctement son degré d’ignorance est une étape saine et
nécessaire

in “Patience dans l'azur” by Hubert Reeves

I started my PhD with hundreds of questions. I answered almost all of them, and now
have thousands of new ones. This thesis summarizes my PhD work on performance mon-
itoring of throughput constrained dataflow programs executed on shared-memory multi-
core architectures. It presents the concepts, technologies and tools I learned about and
the contributions I made during the last three years. Because I strongly agree with the
epigraph above, this document also discusses about the new interrogations I now have
regarding computer science.

This work has been done in the context of a collaboration between Bull and the Inria
Socrate team from the CITI (Centre d’Innovation en Télécommunications et Intégration
de services) at INSA de Lyon. From Bull’s side, this work took place in the context of a
project focusing on improving programmer efficiency when targeting parallel hardware
with a focus on performances guarantees. The purpose of my work was to investigate
and extend the dataflow programming model. I had to identify how the concepts from
the dataflow programming model could be integrated in the programming model in use
in the project. From the Socrate team’s side, dataflow programming is a promising
model to express the telecommunication applications being studied in the team.

1.1 The Multi-core Jungle

Because of physical limits, hardware designers have switched to parallel systems to
exploit the still growing number of transistors per square millimeter of silicon. Indeed,
since the beginning of the 21st century designers were not able to reduce the operating
voltage as they did since the creation of the first computer while transistors were still
smaller and faster. It resulted in an increase of the amount of waste heat to be dissipated
by the processor from each square millimeter of silicon. Around 2004, the so-called Power
Wall was reached. This wall corresponds to the point where systems can’t reasonably
dissipate the heat due to the impedance of the electronic circuits. In parallel designs,
the heat to be dissipated is kept under acceptable limits by using maximum operating
frequencies in the order of 3 GHz for each core. Additional performance comes from the
ability to execute simultaneously several instruction flows on several cores. Today this

1 Introduction

hardware parallelism is not only used to build super computers. It has reached other
domains of computer science:

e All processors designed for the desktop market are multi-core processors;

e Smart-phones are almost all made of several cores;

This parallelism can be either homogeneous: all the cores of a system are the same,
or heterogeneous: different kinds of cores are used in a single system. Moreover, the
communication between cores can be handled in different ways depending on the memory
architecture of the system. The contribution of this thesis that depends on the memory
architecture focuses on homogeneous shared memory systems.

From the software perspective, this parallelism has a deep impact on programming
and on performance analyses. How should we program these parallel systems? Most of
the software in use today has been written using imperative sequential programming.
In other words, programs are written has a single flow of dependent instructions. One
solution to exploit parallelism is to perform automatic parallelization of these existing
sequential programs. A large amount of work has been done in this area, nevertheless
this is not a universal solution. There are some contexts where automatic parallelization
can’t find enough parallelism to fully exploit the available hardware resources. As a
consequence, new programming models exposing parallelism have to be used if we want
to efficiently exploit the capabilities of the forthcoming processors made of hundreds of
cores. These models are called concurrent programming models. Moreover, software
performance analysis is also impacted by hardware parallelism. Profiling mechanisms
have to be developed to correlate low level hardware events with the concepts exposed
by the concurrent programming model used to write applications. This work focuses on
performance analyses for one of these concurrent programming model, namely dataflow
programming.

1.2 Dataflow Programming

Dataflow programming consists in describing an application as a graph of actors commu-
nicating only through the use of explicit data dependencies with the usage of channels
with a [First In First Out (FIFO)| semantic. Compared to sequential imperative pro-
gramming where the programmer specifies the application’s control flow, in dataflow as
the name suggests, only the flow of data is specified.

I don’t believe that a single ideal concurrent programming model can be used to
program any application to be executed on any architecture. Nevertheless, I strongly
believe that there are many places where dataflow programming has a strong role to
play for the following reasons:

e The model matches killer applications: multimedia, big data processing, software
defined radio, cryptography are all domains where algorithms are naturally de-
scribed as dataflow graphs;

e The model provides different kinds of parallelism allowing compilers and runtimes
to efficiently exploit hardware resources;

1.3 Problematics and Proposals

e The actors communication primitives provided by dataflow alleviates the burden
of developers and allows to automatically compile programs for parallel systems
with different communication architectures;

e Some restricted dataflow models provide interesting properties such as determin-
ism, memory bounding, the possibility to identify deadlocks or minimum runtime
overhead.

1.3 Problematics and Proposals
In the context of dataflow programming, many applications have intrinsic throughput
constraints. It’s the case for example for video decoders/transcoders, for software im-
plementation of telecommunication protocols or for big data processing algorithm that
must process inputs in real-time. The main questions I address in this work are how
to profile dataflow applications and how can we satisfy there throughput re-
quirements when they are executed on shared-memory multi-core architectures along
with non dataflow applications 7 Even if dataflow programming cannot be asserted as
the only concurrent programming model, I strongly believe it can help in many con-
texts. I attach importance to scenarios with the presence of other applications because
I believe that for dataflow to be widely accepted it needs to be integrated in existing
general purpose systems.

To give a first answer to these questions, I make the following contributions in this
thesis:

e | introduce mechanisms to express throughput requirements on dataflow pro-
grams [I],

I show how to take the throughput requirements into account in compilation tool
chains and exploit it along with static information when available [2} 3];

I show how to profile dataflow applications to check whether or not throughput
constraints are satisfied [3];

I present profiling mechanism for system resources usage and correlate profiling
information with the dataflow graph of the application to identify bottlenecks [3];

e I propose a library called [Non Uniform Memory Access Profiling (numap)| abstract-
ing away the differences between processors micro-architectures about hardware
performance counters for [Non Uniform Memory Access (NUMA)|architectures pro-

filing[Section |4.5.2].

1.4 Thesis Organization

This thesis is organized in four main chapters. Chapters [2| introduces the context for
this work. It focuses on the description of general purpose parallel hardware and gives
an overview of some widely used concurrent programming models including dataflow
programming. Finally, this chapter presents our motivation for focusing on dataflow
and details the problematic I address in this work.

3

1 Introduction

Chapter [3 introduces the notion of throughput constraints for dataflow programs. It
shows how I extend dataflow languages to express this constraint and how this additional
information can be propagated all along the dataflow graph in the case of static dataflow
models.

Chapter {| then presents how dataflow programs can be profiled. I first present
in this chapter application-level profiling mechanisms dedicated to identify throughput
constraints violation and their bottlenecks. Then, I introduce system-level profiling used
to identify how dataflow programs exploit hardware resources when executed on top of
homogeneous shared-memory multi-core architectures.

Chapter [5| shows how I applied and use together the concepts and mechanisms intro-
duced in Chapters [3] and [4] in two different scenarios. The first one consists in building
a throughput aware dataflow runtime system for a static dataflow language while the
second one consists in a dataflow profiler for a dynamic dataflow language.

Finally, Chapter [6] concludes this thesis. It summarizes the contributions I made
during the PhD before introducing the numerous perspectives for this work.

1 Context and Objectives

Chapter’s outline

One early vision was that the right computer language would
make parallel programming straightforward. There have been hun-
dreds—if not thousands—of attempts at developing such languages

Some made parallel programming easier, but none has made
it as fast, efficient, and flexible as traditional sequential program-
ming. Nor has any become as popular as the languages invented
primarily for sequential programming

David Patterson

2.1 Introduction|. L 6
22 General Context] 6
2.3 Parallel Architectureso 7
[2.3.1 Computing Homogeneity] 8
[2.3.1.1 Homogeneous Computing| 8

[2.3.1.2 Heterogeneous Computingl 8

[2.3.2 Memory Organization| 9
[2.3.2.1 Centralized Shared-Memory Architectures. 9

[2.3.2.2 Distributed Shared-Memory Architectures|] 10

[2.3.2.3 Distributed Private-Memory Architectures| 12

[2.4 Concurrent Programming Models| 13
2.4.1 ncurrent Tasks with Shared Statel 14
[2.4.2 Concurrent Tasks with Message Passingl 16
[2.4.3 The Dataflow Approachl 16
[2.4.3.1 Dataflow Models of Computation] 19

2.4.5.2 Dataflow Fxecution Modell 22

[2.5 Objectives| e 22
[2.5.1 Dataflow Applicative Domains| 22
[2.5.2 Throughput Constraints in Dataflow Programs| 23
[2.5.3 Proposal and Hypotheses| 24

2 Context and Objectives

2.1 Introduction

This chapter introduces the context and the objectives for this work. Section first
places this work in the global context of computer science. Section highlights the
main motivations leading the hardware industry to the development of more and more
parallel systems and then reviews the current status of general purpose parallel hardware.
Section gives a broad overview of some widely used programming models for parallel
hardware before introducing dataflow programming which is the model we consider in
this work. Finally, Section presents the objectives of our work in the context of
dataflow programs executed on modern parallel hardware.

2.2 General Context

Computers are today omnipresent in our lives. 39% of the world population is using
Internet according to the International Telecommunication Union [4]. There are more
than 1 billion smart-phones in use and current middle-of-the-range cars have at least 30
embedded processors [5]. Depending on the targeted usage, the size of computers can
vary greatly. It ranges from more than 5 billions of computing units for supercomputers
used in domains such as molecular dynamics simulations or weather forecasting to few
processors in desktop computers, mobile phones or modern bike computers. Except for
very small embedded systems, all the systems at both extremes of this size’s range are
parallel. The actual trend of the computer industry leads us to think that the number of
computing units in all these systems will increase in the coming years. Indeed, to keep
up increasing performances using the still growing number of available transistors on a
single chip, hardware designers have shifted from sequential to parallel architectures.

This trend towards more and more parallel systems has a deep impact on the soft-
ware community. How should programmers write code to be executed efficiently on
parallel hardware? It’s widely accepted [6] [7, 8, @] that simple extensions to languages
primarily designed for sequential systems is not a practical solution: the human brain
can’t apprehend the complexity of a huge number of possible interleaving resulting from
the parallel execution of several tasks. As stated by the epigraph opening this chap-
ter, numerous programming languages specially designed for parallel systems have been
proposed in the past decades. Unfortunately, none of these languages has been widely
accepted and “none has made it as fast, efficient, and flexible as traditional sequential
programming”. Nevertheless, some of these languages have made parallel programming
easier, particularly when they were dedicated to a particular class of applications and
to specific hardware. Among these languages, we can mention for example Erlang [10]
that was invented for programming distributed fault-tolerant non-stop applications and
OpenCL [11] that was designed to program heterogeneous systems made of central pro-
cessing units and graphics processing units.

This work focuses on dataflow programming, another approach for programming
parallel architectures, first introduced in 1974 both in Europe by Kahn [I2] and by
Dennis [I3] in North America. Kahn’s work was dedicated to the creation of a simple
programming language targeting distributed systems allowing to write only deterministic
programs whereas the goal of Dennis was to alleviate bottlenecks of Von Neumann
hardware by creating a dataflow computer and a programming language for it.

In the dataflow approach, an application is described as a graph of computing entities
operating over data exchanged only through explicit dependencies. Many of the killer

6

2.3 Parallel Architectures

applications in use today are intrinsically dataflow applications and there popularity
is increasing. Among numerous applications that exhibit dataflow processing we can
mention:

e Video encoding/decoding;
e Image processing such as face recognition or analyses in medical images;
e Cryptographic algorithms;

e Software defined radio: software implementation of telecommunication protocols
to reduce building costs and time to market and to increase flexibility;

e Big data processing commonly found in data centers used by Internet companies.

In addition to programming facility, the dataflow approach allows to efficiently ex-
ecute applications on top of modern parallel architectures. The next section draws a
global taxonomy for these parallel architectures. Section then presents the dataflow
approach in details and shows how it can answer to the programming challenges intro-
duced by these modern architectures.

2.3 Parallel Architectures

For decades, computer scientists relied on the Moore’s law, stating that the number of
transistors in a dense integrated circuit doubles approximately every two years. Perfor-
mance improvements came from increased processor frequencies and new logic enabling
processors to carry out several operations at once, such as pipelining. Unfortunately,
designers were not able to reduce the operating voltage as they did since the creation
of the first computer while transistors were still smaller and faster. It resulted in an
increase of the amount of waste heat to be dissipated by the processor from each square
millimeter of silicon. Around 2004, the so-called Power Wall was reached. This wall
corresponds to the point where systems can’t reasonably dissipate the heat due to the
impedance of the electronic circuits.

At this time, hardware vendors started to shift to multi-core processors designs. In
these designs, the heat to be dissipated is kept under acceptable limits by using maximum
operating frequencies in the order of 3 GHz for each core. Additional performance comes
from the ability to execute simultaneously several instruction flows on several cores. In
the rest of this dissertation we’ll use the term core to refer to the smallest hardware unit
capable of executing a single instruction flow. We’ll use the term processor to refer to
a single chip made of one or more cores with additional components such as caches and
memory controllers.

Executing several instruction flows in parallel is not a new idea. Parallel computers
with two or more processors have been built since the earliest days of computer science.
Nevertheless, these parallel systems were expensive and dedicated to very specific mar-
kets. The shift operated in 2004, brought parallel computers into the desktop market.
Multi processors systems are still built today, but they are made of several multi-core
processors. The predicted follow-up of Moore’s law in the next decade leads to think that
processors are going to include more and more cores to improve performances. Hard-
ware used today in markets ranging from big servers to embedded systems are almost
all made with multi-core processors.

2 Context and Objectives

To get a global picture of the different kinds of parallel systems in use today, we
propose to look at two criteria:

e The homogeneity criterion distinguishes parallel systems made only of identical
cores from systems containing cores with different properties such as the instruction
set or the operating frequency;

e The memory organization criterion distinguishes systems with a single central
physical memory from systems with several distributed memories.

2.3.1 Computing Homogeneity

Parallel systems where historically homogeneous for practical reasons. It’s easier to build
a computer made of identical cores than one made of different cores. Nevertheless, with
the advances of hardware technologies, heterogeneous systems are more and more used
to handle very efficiently specific algorithms.

2.3.1.1 Homogeneous Computing

Homogeneous systems are systems where all computing units are identical. They are
widely used in desktop computers, servers and supercomputers. All desktop computers
are today made of a single processor with at least two identical cores. For example,
an Apple MacBook Pro is today available with either an Intel Core i5 processor with 2
cores or an Intel core i7 processor with 4 cores.

In the server market, Intel’s largest multi-core processors [14] include 14 cores. A
single multi-processor-multi-core computer system, i.e. packaged in a single physical
machine and managed by a single operating system, can be made by 4 of such processors
resulting in a total of 56 physical cores.

In the supercomputers domain, many servers are used together to build very large
machines. Centralized massively parallel supercomputers are clusters of homogeneous
multi-processor-multi-core servers connected through an high speed network. The TERA-
100 [15] jointly developed by Bull and CEA is such an example. It’s one of the fastest
computer in Europe, and it’s made only of Intel Xeon multi-core processors. These Intel
Xeon processors are the same than the one used in the desktop market. Homogeneous
systems are easier and cheaper to built than the heterogeneous ones described below.

2.3.1.2 Heterogeneous Computing

Heterogeneous systems are systems made of different cores. This heterogeneity can be
either at processor level, i.e. different cores are collocated into the same processor chip
or at a higher level, i.e. different processors are collocated in the same machine. A
famous example of an heterogeneous processor is the Cell [I6] used in the PlayStation
3. This processor is made of one host core and eight co-processing cores dedicated to
multimedia and vector processing. The widespread Exynos 5 Octa processor developed
by Samsung for high-end smart-phones is an example of heterogeneous system made of
different processors based on the ARM big. LITTLE architecture. In this architecture, a
quad core processor cadenced at 1.6GHz is used in conjunction with another quad core
processor cadenced at 1.2GHz. Depending on computing needs, either the big only, the
little only, or both processors are activated. Recent supercomputers also started to use
heterogeneous designs. The actual world’s fastest supercomputer, Tianhe-2 [I7], is made

8

2.3 Parallel Architectures

Processor
| Core 1 | | Core 4 |
domain 1|~ [T1]
| L2 | | L2 |
Uncore ‘ L3 ‘

v

Figure 2.1: Centralized shared-memory architecture overview. In such architectures, all
the cores share the same central physical memory and access it with the same latency.

of 16.000 computer nodes, each comprising two Intel Ivy Bridge Xeon processors and
three Xeon Phi co-processor [18] chips. These heterogeneous systems are usually harder
to program than homogeneous ones because software developers needs to care about the
differences between the cores.

2.3.2 Memory Organization

The second criterion we propose to look at for the classification of parallel architectures
concerns the memory organization and depends on the number of cores. This criterion
is orthogonal to the homogeneous vs heterogeneous one. When the number of cores
reaches a given limit, the centralized memory organization becomes a bottleneck and
needs to be replaced with a distributed organization. We now describe in more details
the differences between these memory organizations and their impact on software to
understand the main challenges that applications and operating systems programmers
face when targeting such architectures.

2.3.2.1 Centralized Shared-Memory Architectures
Centralized shared-memory architecture is a design where all cores access the same
unique physical memory with the same latency. Historically, systems with centralized
shared-memory organization were systems with several single core processors. Today,
almost all systems made of a single multi-core processor have a centralized shared-
memory organization as depicted on Figure The current version of Intel processors,
micro-architecture code name Haswell [I4], has a maximum of 14 cores. AMD’s biggest
processors, micro-architecture code name Bulldozer, contain a maximum of 6 cores.
Cores have small private caches, two in Figure [2.1] example and a last level cache is
shared by all the cores. Inter-core communication is handled through the centralized
shared memory. Moreover, most of centralized shared-memory architectures are cache
coherent. In this case, the cache coherency system is responsible to ensure that cores see a
coherent view of the memory. If a core requests for data being modified in another core’s
private cache, the cache coherency mechanisms must bring the data in the requesting
core’s private cache.

We also find a centralized shared-memory organization in upcoming many-core ar-
chitectures. The Intel Xeon Phi co-processor [I§] has a centralized shared-memory or-
ganization for all its cores and the Kalray |(Multi-Purpose Processor Array (MPPA)

9

2 Context and Objectives

Xeon X5650 Xeon X5650
| Core 1 | | Core 6 | | Core 7 | |Core 12|
Sore ([Tm |- L1] 1 || 11|
omain
| 2 | [L2 | | 2 | [L2 |
Uncore ‘ , s ‘ ‘ S , ‘
domain [Mem, Corl +—{QPI] | QPI[+—{Mem. Ctrl|
! !
’ Memory Bank 1 ‘ ’ Memory Bank 2 ‘

Figure 2.2: Intel’s example of a dual processors NUMA architecture. The two processors
can access the two memory banks through a unique physical address space. Memory accesses
going outside the requesting processor are achieved by the inter processor network.

256 many-core [19] processor is made of several 16 cores clusters having a centralized
shared-memory organization.

Compared to single core systems, programming a multi-core system having a cen-
tralized shared-memory organization requires a deep understanding of the underlying
memory consistency model [20]. Fortunately, system libraries and high level languages
have been developed to alleviate application’s programmers dealing with low level con-
cerns. Languages providing a lock based shared-state concurrent programming model
and dataflow programming described in Section abstract away these low level con-
cerns.

2.3.2.2 Distributed Shared-Memory Architectures

The Memory Wall With the increase of the number of cores in multi-core processors,
the so called memory wall becomes more problematic. This wall represents the disparity
between the frequency of cores and the time required to access main memory located
outside the processor. The increase in core numbers accessing the same centralized
memory puts more pressure on the memory subsystem. One of the proposed solutions by
hardware designers is the use of distributed shared-memory organization. This memory
organization is also referred to as [NUMA] because memory access time depends on the
location of the requesting core. Instead of having all cores accessing the same memory
through the same controller, the global memory is split in several physical parts. Any
core of the system can address all the memory through a single physical address space
with memory access time depending on the physical memory location. Because the
whole memory is directly addressable by all cores of the system, programs written for
centralized shared-memory architectures can be executed without any modification on
distributed shared-memory architectures.

Two kinds of NUMA] architectures are used. In the first one depicted on Figure
several processors are used together in the same machine. Machines hosting web servers,
or workstation used to perform mechanical simulations typically use a [NUMA| architec-
ture because they require high computing power and execute applications that are easily
expressed in a parallel way. In these machines, each processor has an attached memory
controller /memory bank pair. On these architectures there are as many memory banks
available as there are processors. Processors are connected through a point to point net-

10

2.3 Parallel Architectures

Xeon X5650 Xeon X5650
| Core 1 | | Core 6 | | Core 7 | |Core 12 |
Sore [T][L1 1 || 11|
omain
| 12| | | L2 | | 2 | | 12 |
Uncore ‘ , 5 ‘ ‘ 3 , ‘
domain [Nem, | Corl k] QPI] |QPI+—/Mem. Cirl]
! !
’ Memory Bank 1 ‘ ’ Memo¥ Bank 2 ‘

Figure 2.3: NUMA remote memory accesses. A request from core 1 to memory physically
located on memory bank 2 must go through the processors interconnect network.

work. This network is used to communicate memory accesses going to memory outside
the requesting processor.

Figure [2.2] is an example of Intel architecture where the processor intercon-
nect technology is called |Quick Path Interconnect (QPI)l AMD proposes comparable
architectures with an interconnect technology called Hypertransport.

The second kind of [NUMA| architecture is referred to as on-chip [NUMA] In such
architectures, several memory controllers are collocated on the same processor chip. It
is used in processors such as the IBM power 7 [§] at the heart of a supercomputer made
by the Defense Advanced Research Projects Agency (DARPA) but is today less frequent

than multi processors NUMA]

NUMA Concerns The memory organization results in memory bandwidth
improvements. On our example with two processors, the memory bandwidth is doubled
without the need of complex modifications in the memory controller. Nevertheless, even
if parallel programs written for centralized shared-memory can be executed without
modification on [NUMA] architectures, special care should be taken into account to fully
exploit the memory subsystem [21I]. We now explain the three main concerns about the
usage of the memory subsystem.

The first concern depicted in figC is to avoid remote memory accesses as much
as possible. Indeed, because these accesses require sending information over the inter-
processor network, they have a greater latency. This overhead is about 30% on modern
two-processors systems built today by Intel and AMD architectures |22, 23], [24].

The second consideration concerns shared data and is depicted on figC On both
centralized and distributed shared-memory architectures, the cache coherency protocol
is responsible of keeping data synchronized between caches. In the case of distributed
shared-memory, special care must be taken by the hardware if the producer and the
consumer of shared data are located on different processors. In this case, as for remote
memory accesses, the interconnect network has to be crossed to bring the correct version
of the data in the consumer’s local cache. Crossing the sockets has been identified as
a “killer” feature [24]. The overhead of a remote cache access compared to a local one
depends on the memory block cache coherency state. For Intel processors worst case,
loading from a cache on a remote processor can be 5 times more expensive than loading
from local cache [22] 24].

11

2 Context and Objectives

Xeon X5650 Xeon X5650
| Core 1 | | Core 6 | | Core 7 | | Core 12|
Sore [T m |- L1] L || 11|
omain
| 2| | [L2 | |k | [L2 |
Uncore : L3 L3 :
domain [Nem. | Cert k] QPI] QP l«—{Mem. Ctal
! !
’ Memory Bank 1 ‘ ’ Memory Bank 2 ‘

Figure 2.4: NUMA shared data synchronization. The cache coherency protocol ensuring
that cores see a coherent view of the data has to cross the inter process network when a
modified copy of the requested data is located in memory attached to another processor.

Finally, for memory intensive scenarios, memory controllers and processor intercon-
nects may be saturated [25 20, 27, 28]. This situation may arise when many cores
are simultaneously accessing the memory and these accesses are not correctly balanced
between the different memory banks. With the advances of hardware technologies, this
last problem is becoming the more and more important compared to remote memory
latency. Indeed, remote accesses were in the past 4 to 10 times slower than local ones
[29] whereas they are in the order of 30% today as already stated.

The Impact of NUMA on Software The concerns introduced above have to be ad-
dressed by the software. This can be done at different levels. Applications can explicitly
be written with the memory architectures in mind. Said differently, programmers may
explicitly specify where data and code should be located. The memory architecture can
also be taken into account by compilers to generate more efficient code or at runtime
by operating systems to take better scheduling and memory allocations decisions. From
these concerns, we can classify parallel applications running on top of hardware
as either latency-or bandwidth-sensitive. Latency sensitive applications are applications
that don’t cause many simultaneous memory accesses. These applications don’t saturate
memory controllers but their performances may depend on the memory access time and
thus on the location of accessed data relatively to the requesting core. On the other
hand, bandwidth sensitive applications are applications that reach the memory band-
width limit of the underlying hardware. To speed up latency sensitive applications on
INUMA| hardware, memory latency must be reduced, and this is usually done by collo-
cating threads and memory on the same processor. To speed up bandwidth sensitive
applications, all the available memory banks must be equally used to exploit all the
available bandwidth provided by the hardware.

2.3.2.3 Distributed Private-Memory Architectures

To further increase cores number and alleviate the bottlenecks of shared memory or-
ganizations described in the previous sections, computer systems designers rely on a
third memory organization called distributed private-memory. In such organization,
cores can only access a subset of the memory that is distributed other several physical
parts. Communication between cores that don’t share any memory is handled through

12

2.4 Concurrent Programming Models

message passing. This new communication style has a strong impact on programming.
Indeed, the concurrent tasks with shared state model described in Section need to
be replaced with message passing models as described in Section

The spectrum of distributed shared-memory architectures ranges from very large
scale parallel systems to on-chip parallel architectures. Clusters are a famous example
of large scale parallel systems with such memory organization. The communication be-
tween the different machines in the cluster are handled through message exchanges over
an Ethernet network. The Kalray 256 many-core architecture [19] uses both cen-
tralized shared-memory and distributed private-memory organizations. On the [MPPA]
chip, cores are grouped in clusters of 16 and must explicitly use hardware primitives
to send messages across the cluster boundaries. Inside each cluster, cores communicate
through a centralized shared-memory. Between large scale and on-chip systems we find
on-machine systems also using a distributed private-memory organization. The Intel
Xeon Phi co-processor [18] is dedicated to be used along with a general purpose pro-
cessor in an on-machine distributed private-memory system. Communication between
cores in the Xeon Phi is handled through shared memory while communication between
the general purpose processor and the co-processor must be handled explicitly through
message passing.

2.4 Concurrent Programming Models

From the application’s programmer’s point of view, programming parallel systems is a
complex problem facing two major hurdles. The first challenge comes from Amdahl’s
law shown on Equation This law gives a prediction of the theoretical maximum
global speedup that can be achieved when parallelizing a sequential application. PF
(Parallel Fraction) represents the fraction of the initial sequential application that can
be parallelized. PSS (Parallel Speedup) quantifies the speedup of the parallelized regions.
A perfect parallel speedup corresponds to the situation where splitting a piece code in
n parallel tasks leads to code n times faster and where all the code can be parallelized.
In this case PS = n and PF =1 leading to a global speedup equal to n.

1
Global Speedup = -

BE +(1- PF) (2.1)

To understand how a small amount of code that can’t be parallelized impacts the
global speedup we consider an example. To achieve a speedup of 80 with 100 cores
while considering that the parallel version scales ideally (i.e. is 100 times faster than the
sequential one, PS = 100), Equation shows that PF must not exceed 0.25%. In
other words, only 0.25% of the original program must be sequential.

The second hurdle concerns communication’s overhead. In the Amdahl’s law given
above, this communication overhead is hidden in the PS term. The time used to ex-
change information between the parallel parts of an application must not shadow the
time gained from parallel execution. In other words, if this overhead is too large PS
will approach 1 as will the global speedup.

From these two hurdles, compilers and runtimes must identify as much parallelism
as possible while taking care of communication overhead to exploit hardware parallelism
inside applications. This can be done either automatically by extracting instruction level
parallelism from sequential programming models or by exploiting parallelism provided

13

2 Context and Objectives

by concurrent models. The main challenge for these concurrent models is thus to provide
parallelism for compilers and runtimes while helping programmers and tools to reason
on programs [0, 30]. This section reviews the following concurrent programming models:

o Concurrent tasks communicating with shared state: applications are defined as a
set of tasks explicitly created by the programmer and inter tasks communication
is done through shared memory;

e Concurrent tasks communicating with message passing: applications are also de-
fined as a set of tasks explicitly created by the programmer but inter tasks com-
munication is done with explicit send and receive requests;

e Dataflow: applications are defined as a graph of computing entities called actors
and communicating only through explicit channels.

Each of these models has its own origins and motivations. The concurrent tasks com-
municating with shared state model is the simplest extension that can be done to the
traditional sequential programming model with a program counter and a global memory.
Explicit message passing requests was proposed as a replacement of the shared memory
to let tasks communicate in parallel architectures with distributed private memory or-
ganization. Finally, dataflow programming is rooted both in distributed programming
and in the signal processing domain. To understand the differences between these pro-
gramming models and to highlight how it can be difficult to reason on programs, we
propose the following criteria to classify them:

e Determinism: a concurrent programming model is said to be deterministic if pro-
grams written in the model are always deterministic. A deterministic program is
a program where the outputs depend only on the input. For example, programs
which outputs depend on the interleaving of concurrent tasks that may vary upon
executions are not deterministic;

e Targeted architectures: programming models may be dedicated to a given type of
architecture or may be used to write applications at a high level of abstraction
allowing compilers to target different architectures;

o Targeted applications class: in addition to be dedicated to some architectures,
programming models may be dedicated to a class of applications. Dataflow pro-
gramming, for example, is dedicated to program applications focusing on data
processing.

According to these criteria, we now review the three programming models mentioned
above.

2.4.1 Concurrent Tasks with Shared State

The thread abstraction is probably one of the most used concurrent programming model
when targeting both centralized and distributed shared-memory architectures. The
model behind threads belongs to the concurrent tasks with shared state class of con-
current programming models. C/C++ with the Pthread library, Java and Python are

14

2.4 Concurrent Programming Models

famous examples of programming languages providing the thread abstraction. General
purpose processors and operating systems have been designed to support this model effi-
ciently and sequential imperative languages require little syntactic changes to support it.
This model directly reflects systems with shared memory where threads are concurrent
execution flows communicating through this shared memory.

Unfortunately, programming with threads discards the determinism of sequential
programs if synchronization is not correctly handled. The result of a threaded applica-
tion’s execution may depend on the execution order of threads usually decided by the
operating system upon varying factors. Such factors are for example the interaction
with other concurrent applications or the complex optimization mechanisms built into
modern processors such as memory accesses reordering impacting the timing of instruc-
tions execution. The main goal of multi-thread programming is thus to remove this
observable non determinism usually using synchronization primitive. When the number
of threads needs to be increased (to keep improving performances with increasing hard-
ware parallelism) the growing complexity of removing non determinism becomes a strong
argument against the usage of threads [6], [30]. The human brain can’t apprehend the
growing complexity of a very large number of possible tasks interleaving. Programming
a multi-thread application to be executed on a quad-cores processor is already a difficult
task requiring a lot of care to ensure correct synchronization between tasks. With the
upcoming general purpose processors made of more than 12 cores, programming will be
even more difficult.

As a consequence, a large part of the parallel programming community argues for the
use of deterministic models everywhere non determinism is not required [6, 30]. More
recently [9], proposals investigate a solution limiting the non determinism to few different
possible execution schedules. The idea behind this solution is that the problem with non
determinism is not non determinism itself but the huge amount of different execution
schedules allowed by non determinism. Reducing non determinism to few special cases
allows the application developers to focus only on these cases.

To avoid rewriting legacy sequential applications using new deterministic models and
to avoid the complexity of manually synchronizing threads, tools have been proposed
to automatically create threads from sequential programs annotations. OpenMP is a
widespread example of such a tool. It’s an application programming interface consisting
of a set of compiler directives, library routines and environment variables used to anno-
tate and modify existing sequential applications in order to indicate to the compiler and
to the runtime where and how the application should be parallelized. OpenMP mainly
targets shared memory multiprocessors and implementations exist for the C, C++ and
Fortran languages. In other words, programmers specify compiler directives and then the
compiler along with runtime mechanisms are responsible to handle concurrency properly.
With OpenMP, data parallelism (that execute the same code with different data) itera-
tions is easily expressed with only one compiler directive. For example, heavy computing
loops without dependencies between iterations can be data parallelized. Expressing task
parallelism (different execution flows executing different pieces of code) among indepen-
dent pieces of code is also done with simple compiler directive. Unfortunately, when
parallelizing existing sequential code without clearly independent tasks, programmers
must refactor existing code. Despite its widespread usage for scientific computing, it
has been shown [7] that some common applications can’t scale without large refactoring

15

2 Context and Objectives

using OpenMP because they don’t contain independent loops or tasks.

2.4.2 Concurrent Tasks with Message Passing

Message passing programming models are used to program systems with distributed
private-memory organization. [Message Passing Interface (MPI)| is probably the most
widely used standard conforming to this model. It provides both synchronous and asyn-
chronous message passing and targets a wide variety of parallel computers. The standard
defines the syntax and the semantic of a set of library routines useful to a wide range
of users writing portable message-passing programs in different computer programming
languages such as Fortran, C, C4++ and Java. Implementations of the standard
exists for different kind of distributed private-memory architectures. The most used
implementation targets clusters of machines communicating through an Ethernet
network. Other implementations target on-machine distributed private-memory archi-
tectures such as a computer made of an Intel Xeon general purpose processor and an
Intel Xeon Phi co-processor and on-chip distributed private-memory architectures such
as Kalray MPPA 256. As with the concurrent tasks with shared state model it is possible
to write programs with observable non determinism with this model because it doesn’t
specify when messages between concurrent activities are exactly sent and received. In
other words, reasoning on programs is not as easy as reasoning on programs based
on a deterministic concurrent programming model.

2.4.3 The Dataflow Approach

In this work we focus on dataflow programming. A dataflow program is defined by a
directed graph where vertices represent functional computation to be applied on data
tokens feed by edges. In the following we use the word actor when referring to a node
of a dataflow graph. The edge of the dataflow graph used to connect actors are [FIFO|
channels and theoretically infinite. Actors pop tokens from input channels and push
tokens to output ones. Actors without input channels are called source actors, and actors
without output channels are called sink actors. Actors execution, also called firing, is
an atomic step consisting in consuming an arbitrary number of tokens on input edges
to produce another arbitrary number of data on output edges. The number of tokens
consumed and produced by actors firings is either static or dynamic depending on the
dataflow [Model of Computation (MoC)| as described in Section Theoretically,
to fire an actor, input tokens availability is the unique constraints to be satisfied. In
practice, because [FIFO| channels are not infinite, enough room must be present on the
output channels to fire the actor. Moreover, a computing resource must also be available
to effectively fire the actor. Actors without any self dependency between consecutive
firings are called stateless actors. These actors play an important role in parallelism
extraction. Executing a dataflow graph consists in an infinite loop, or a loop running
while there are more inputs to be proceed, executing actors when they can be fired.
Figure [2.5] shows a high level dataflow description of an MPEG-4 [Advanced Video|
decoder also known as H.264. The first actor, called parser is a source
actor reading the input stream (e.g. from a file or the network) and splitting the data to
be decoded into the three Y, U and V image components. Once the parser has started to
produce tokens, the texture decoding actors can be executed and then motion decoding
actors. Finally, a merger actor construct back the final picture to be displayed from the

16

2.4 Concurrent Programming Models

Text Y|— Mot Y

w\ m — Mot U) [Merger] —_— [Display]

Text V|— Mot A%

Figure 2.5: MPEG-4 AVC decoder expressed as a dataflow graph.

three Y, U and V decoded components.
The explicit and unique dependencies between dataflow actors allow the dataflow
compiler and the dataflow runtime to exploit different kinds of parallelism among:

o Tusk parallelism: actors operate independently, each one encapsulating its own
state, and thus can be executed concurrently;

e Data parallelism: stateless actors can be split into separate identical instances that
operate over subsets of data;

e Pipeline parallelism: producer/consumer relationship are explicit allowing to let
producer go ahead from consumer.

Figure[2.6]illustrates these three kinds of parallelism on the [AVC|decoder dataflow graph
example of Figure 2.5 Figure shows task parallelism where the texture and the
motion decoding can be done in parallel on the three image components as expressed
by the parallel branches in the dataflow graph. Figure [2.6b|shows the addition of data
parallelism. For the sake of clarity we consider that the parser actor is stateless and can
thus be executed concurrently on different data. Finally, Figure [2.6c| shows the addition
of pipeline parallelism. A first initialization stage fills the plpehne and from there the
merger and the display actors can be executed in parallel. As depicted by this example,
dataflow compilers and runtimes can mix the different forms of parallelism to achieve
the best performance possible.

Because many killer applications in the near future will be intrinsically focused on
data processing, we believe that this model has a strong role to play in the coming
years. Such applications include video encoding and decoding, big data processing, face
recognition algorithms and software defined radio protocols. Moreover, the communi-
cation abstraction provided by dataflow models allows dataflow compilers and runtimes
to compile and execute applications on any one of the architectures introduced in Sec-
tion This is a strong advantage over many other concurrent programming models.
To sum-up, we clearly identify three advantages to this model:

e Applications focused on data processing are naturally described as dataflow graphs;

e By decoupling computation from communication, this paradigm naturally exposes
parallelism in several ways;

e Dataflow applications can be compiled and executed on many different architec-
tures.

We now review the most influential dataflow models conform to the general model
described in this section.

17

2 Context and Objectives

A
Q
[}
=
@
w0

Time

Time
g
gl =
E 8
—

=
=

o Yamn
—
=

—J
)
—
9
—/
)
=)
51
—/

=
=
—
=
=<
—/

Mer;

gl 2
Nz

—
5
)
—
S
—/
)
—
5
—/

el | B
a a.
[} =

N\)
=
5
—
=
S
—
=
5
e/

ol =
e

MGI"Q
DiSQ

<

(a) Task parallelism. The parallel branches (b) Task and data parallelism. Consider-
of the dataflow graph are executed concur- ing that the parser actor is stateless we can
rently. execute it in parallel on different data.

Cores

>

Time

Y

(c) Task, data and pipeline parallelism.
Once pipeline has been filled, merger and
the display can be executed in parallel.

Figure 2.6: The three kinds of parallelism available in an MPEG-4 AVC decoder expressed
as a dataflow graph.

2.4 Concurrent Programming Models

MoC Determinism Scheduling Deadlock Det. Bounded FIFOs Year

KPN Yes Dynamic No No 1974
DDF No Dynamic No No 1993
SADF Yes Quasi-static Yes Yes 2006
SPDF Yes Quasi-static Yes Yes 2012
CSDF Yes Static Yes Yes 1995
SDF Yes Static Yes Yes 1987

Table 2.1: Dataflow MoCs properties. Recently, new MoCs have been proposed to extend
expressiveness of static models while keeping as many properties as possible.

2.4.3.1 Dataflow Models of Computation
Several specific dataflow conform to the general model described above have been
proposed in the last decades. These models define the set of operations used inside
dataflow actors to describe the firing behavior and the properties required for actors to
be fired. The main constraint specified by a dataflow is the number of tokens to
be present on input ports for an actor to be fired. The execution order of actors, also
called scheduling, the mapping of actors to hardware computing units and communica-
tions implementation are not specified by the model. All these concerns are under the
responsibility of the execution model as described in Section Even if the model
of computation doesn’t specify the scheduling, different models allow two main kinds
of scheduling. The first one, called static scheduling is possible only for models where
enough information is available to let the compiler decides actors execution order. The
second one, for other is called dynamic scheduling and consist in checking and
choosing fireable actors at runtime.

We now review the properties summed-up in Table[2.1]of the most influential dataflow
models.

Kahn Process Networks [Kahn Process Networks (KPN)| [12, 31] is a simple model
originally developed for modeling distributed systems. Since the first paper in 1974, this
model has also proven its convenience for modeling signal processing systems. [KPN]is not
a dataflow model of computation in the sense described above, because the firing notion
doesn’t exist in the model. In [KPN] nodes represent sequential processes and edges are
unbounded [FIFO] channels. Writing to a channel is non-blocking, i.e. it always succeeds
and does not stall the process. Reading from a channel is blocking, i.e. a process that
reads from an empty channel stalls until the channel contains sufficient tokens. Processes
are not allowed to test an input channel for existence of tokens without consuming them.
Given a specific input tokens history for a process, the process must be deterministic so
that it always produces the same output tokens. Timing or execution order of processes
must not affect the result and therefore testing input channels for tokens is forbidden.
Kahn processes have been shown to be monotonic; receiving more input at a process
can only provoke it to send more output tokens and not change the one already sent.
Also, a process does not need to have all of its input to start computing. Assuming

19

2 Context and Objectives

that each node performs a deterministic computation as required above, and using the
monotonic property, it has been proven that the entire network is deterministic; the
sequence of data items observed on the output channels is a deterministic function of
those submitted to the input channels. However, it is not possible in the general case to
statically:

e Schedule processes;
e Determine the amount of memory needed on the channels;

e Check whether the computation might deadlock or not.

Dynamic Dataflow Models [Dynamic DataFlow (DDF)| also called
lcess Networks (DPN)| formally described by Lee [32] is the most general dataflow model.
This model allows to express any application including data processing applications re-
quiring frequent reconfigurations leading to dynamic consumption and production rates.
Cutting edge video codecs and upcoming telecommunication protocols such as the next
generation of mobile protocol (5G) are typical examples of such applications.

In this model, each actor may have one or more input channels and one or more
output channels and a set of firing rules. A firing rule specifies a number of tokens for
each input channel required for one actor’s execution. This number also specifies the
number of tokens that will be consumed by the actor’s execution. In [DDF] the number
of tokens consumed may be specified only at runtime. The firing of an actor removes
tokens on its input edges and produces tokens on its output edges as specified by the
firing rule.

Compared to have the notion of actors firings conforming to the dataflow
model. In other words, actors invocations are atomic meaning that once an actor firing
is started the firing rules guaranty that enough tokens are present on input channels to
complete the firing. [DDF| implementations then needs to save only actors state when
switching between actors. In this firing notion doesn’t exist. As a consequence,
when an actor is blocked on a pop operation the current execution state of the actor
must be saved before switching. can thus be seen as an extension of with
this notion of atomic firings for processes. Another fundamental difference with [KPN]
is that DDF] allows to write non deterministic programs by the use of non deterministic
actors. Intuitively, non deterministic actors are actors with output depending on the
time at which inputs are produced. See Section for details.

The [DDF| model is the most expressive of the dataflow computation models. The
model doesn’t enforce any restriction on the number of tokens consumed and produced
by each actor firing. As a consequence this model is also the less analyzable, as for KPNk
it is not possible to statically:

e Schedule actors
e Determine the amount of memory needed on the channels;

e Check whether the computation might deadlock or not.

20

2.4 Concurrent Programming Models

Static Dataflow Models |Synchronous DataFlow (SDF)| first introduced by Lee [33]
34], rooted in the signal processing domain, can be seen as a specialization of
even if it has been formally described before it. It is typically used to model static
kernel functions such as fast Fourier transforms, finite impulse response filters, Cholesky
decomposition, CRC encoders. It can also be used to described complete applications
that don’t require production and consumption rates reconfiguration at all such as a
DES encryption or a 802.11a transmitter [35].

In graphs, actors always consume (respectively produce) the same number of
tokens on each input (respectively output) [FIFO|channel. These numbers are called the
popRate and the pushRate of the [SDEF] actors.

[SDEF| is the most restricted dataflow model, allowing several static analyses. First,
tools can statically identify graphs that can’t be executed with finite memory.
These graphs are called inconsistent graphs. Tools can also statically detect graphs
that will deadlock because of insufficient initial tokens in channels along cycles.
Finally, [SDF]| graphs can also be scheduled statically avoiding the overhead of runtime
scheduling.

|Cyclo Static Data Flow (CSDF)| [36] is a generalization of where the number
of tokens produced and consumed by a single node is also known at compile time, but
can change periodically. The work by Bilsen, Engels, Lauwereins & al. [36] extends
the consistency notion of graphs to ones and proposes a way to compute a
parallel schedule. Using this model, some applications difficult to be expressed in [SDEF]
can be expressed more easily while keeping the static properties of

Extended Static Dataflow Models In recent years, several new dataflow [MoCs
have been introduced to extend expressiveness of static models while trying to keep the

static properties of

|Scenario Aware DataFlow (SADF)| [37] is an extension to with the notion of
scenario. A scenario represents an execution mode for the application and is itself
described by an [SDF]|graph. At runtime, application can switch between scenarios. The
static knowledge for all the possible execution modes of an application allows to keep

static properties of [SDF]

ISchedulable Parametric Dataflow (SPDF)| [38] is another extension to As for
the main goal is to increase modeling capabilities while keeping as many
static analyses as possible. In [SPDF] actors production rates can be defined as rela-
tional equations of parameters. These parameters can be changed by one single actor.
Because schedules for graphs depend on these parameters, runtime mechanisms
are required to adapt the schedule when the parameters change. Such a schedule is
called a quasi-static schedule. Static analyses to check boundedness from rate consis-
tency and parameters change periods and to ensure liveness of an[SPDF|graph have been
proposed. When graphs are consistent, a quasi-static schedule can be computed
statically. This model of computation allows for example to express variable-length
encoder/decoders present in almost all video standards or next generation telecommu-
nication protocols such as the Long Term Evolution Advanced standard [39].

21

2 Context and Objectives

2.4.3.2 Dataflow Execution Model

The dataflow execution model is responsible to execute dataflow applications expressed
in a dataflow language itself based on a given [MoC| described in the previous section.
The execution model is responsible to preserve the semantic of the [MoC]in order to en-
sure applications correctness. As stated in Section we believe that the concurrent
tasks with shared state model is not a good choice to write applications. Neverthe-
less, this model is widespread and hardware and operating system have evolved toward
mechanisms allowing to create an efficient execution model for it. As a consequence,
dataflow execution models are often implemented on top of the concurrent tasks with
shared state execution model, in other words on top of threads.

Dataflow execution models are implemented by the dataflow compiler and the dataflow
runtime. Many dataflow compilers first convert dataflow programs to multi-thread pro-
grams. Theses multi-thread programs are then linked against a dataflow runtime. In
the case of dataflow computation models where scheduling can be and is done statically,
the runtime role is only to ensure data synchronization. In this case, the schedule is
defined inside the multi-thread program generated by the compiler. It corresponds to
the order of actors execution in the program. For computation models requiring run-
time scheduling, the runtime also has the responsibility to choose when to fire actors.
Dataflow execution models will be described in detail in Section

2.5 Objectives

Dataflow programming is one of the concurrent programming model that can help pro-
gramming modern parallel architectures. This work focuses on this model because we
believe that it has a strong play in the near future. We aim at providing mechanisms
to ensure that throughput constraints expressed on dataflow programs are respected at
runtime. Before introducing our proposal, we first recall the applicative domains where
dataflow programming makes sense and present why our approach differ from existing
work.

2.5.1 Dataflow Applicative Domains

Even if the dataflow model is forty years old, there is an increasing interest in dataflow
with the recent advent of parallel architectures. Dataflow has been and is successfully
used today in different domains.

First, the video codec community heavily uses the dataflow model. The
jurable Video Coding (RVC)| [40] initiative from the MPEG group provides an innovative
framework for video coding development. Based on the dataflow programming model,
this framework offers a way to overcome the lack of interoperability between the dif-
ferent video codecs deployed in the market. Because all the codec standards rely on
a common set of basic computing elements the framework provides a standard-
ized version for them using the [Reconfigurable Video Coding Caltrop Actor Language]
dataflow language [4I]. The framework also provides a standardized way
to connect dataflow actors together to define a codec. A set of mature development
tools including dataflow analyses and compilation for different targets are available for
this framework [42]. Operational codec implementations targeting different architectures
based on this framework are available [43] 44] 45|, 46].

A second domain where dataflow is widely used is software defined radio. This

22

2.5 Objectives

domain aims at providing software implementations of telecommunication protocols to
reduce building costs and time to market and to increase flexibility. Many work based
on different dataflow depending on the protocol needs have been proposed recently.
Dardaillon, Marquet, Risset & al. [39] propose a based implementation of the 3
GPP LTE-Advanced demodulation for heterogeneous architectures. Salunkhe, Moreira
and Van Berkel [47] propose a dataflow based modeling of a 4G-LTE receiver and Pelcat,
Aridhi, Piat & al. [48] propose a dataflow based approach for the LTE physical layer.

Dataflow is also used in many other domains. Among these domains we can mention
cryptographic algorithms. Such algorithms naturally describe computation on input
data and thus are easily expressed in a dataflow language [35, 49]. We can also mention
distributed real-time processing frameworks [50] based on the dataflow model and used
in companies such as Twitter and Spotify for big data processing.

2.5.2 Throughput Constraints in Dataflow Programs

Independently of the considered application domain, almost all dataflow applications
have natural throughput requirements. In the video codec domain, decoders must pro-
duce a minimum number of frames per second. Regarding the next generation telecom-
munication protocols, receivers must process input frames at a given rate. The current
frame must be fully processed before the next one comes in. Finally, in the big data
processing domain, many applications must process dynamic events with real time con-
straints. Because Tweeter for example, generates hundreds millions of tweets each day,
a tweet processing system used to forward messages according to hash tags must ensure
a minimum throughput to be able to process all the new incoming messages.

In this context, we aim at ensuring, through runtime mechanisms, that dataflow
applications respect a given throughput constraint which is specified by the application
developer/administrator/deployer. Our work differ from existing work in the following
ways:

e We don’t rely on static estimations of actors execution time;
e We don’t suppose that dataflow applications are executed alone;

e We propose application- and system-level profiling mechanisms to understand why
the throughput constraint is not met and allowing to take decisions;

e We don’t want to maximize the throughput but to ensure a minimum.

Existing works based on static estimations of actors execution time maximizing
throughput of dataflow applications are numerous [51, 52, 53, 54, [B5]. Static estimation
of the time required to execute a piece of code is a complex domain research made even
more difficult in the context of modern hardware used in open systems where applica-
tions may come in and out. Deep cache hierarchy, branch prediction mechanisms and
unpredictable applications make these static analyses unusable in practice. For these
reasons, in this thesis, we take a runtime approach relying on actors effective execution
time measured by profiling mechanisms.

To alleviate the problem of static estimation of actors execution time and to take
dynamic dataflow models into consideration, runtime mechanisms have been proposed
recently [56, 57, 58, 59]. As the solutions proposed in this thesis, all these mechanisms

23

2 Context and Objectives

rely on runtime profiling to increase the throughput of dataflow applications. Com-
pared to these works, we propose fine grain system-level mechanisms to understand how
the dataflow applications interact with the underlying hardware. Moreover, instead of
maximizing the throughput, we focus on ensuring a specified throughput constraints.
In many contexts, going further a given throughput constraint may not be interesting.
Indeed, when the applicative requirements only specify a minimal throughput we can
save processing resources and energy by only ensuring this minimal constraint.

Finally, in the case of non respect of the constraints we propose mechanisms allowing
to identify the sources of the bottlenecks. To the best of our knowledge, this problem
is not yet addressed in the particular case of dataflow applications. These bottleneck
identification mechanisms aim at providing valuable information for runtime adaptation
heuristics.

2.5.3 Proposal and Hypotheses

With the throughput guaranteeing objective in mind, the first question we need to ad-
dress is how to express throughput constraints on dataflow programs and how these con-
straints can be exploited depending on the underlying [MoC| Expressing the throughput
is a simple question of syntax extensions in the considered language but the exploitation
of this constraint leads to interesting questions. As will be demonstrated in Chapter
static dataflow allow to take into account the throughput in the compilation tool
chain. As a result, the compiler is able to provide useful information for the runtime to
identify where bottlenecks are in the dataflow graph. In the case of dynamic run-
time mechanisms are required to detect bottlenecks. These runtime mechanisms have to
inspect the time spent by actors waiting for input tokens or waiting for room in output
channels.

Our second goal is to set-up profiling mechanisms for dataflow programs to avoid
relying on static actors execution time analyzes and to identify where are the bottlenecks
and what is there origin. These profiling mechanisms can serve two purposes. They can
be used to provide feedback to either programmers or compilers in order to improve
generated code efficiency. The profiling results can also be used by dataflow runtime
adaptation mechanisms for throughput constraint achievement. In the context of dy-
namic dataflow models it is clear that profiling mechanisms may be required to identify
how applications behave at runtime. Indeed, even in scenarios where the dataflow appli-
cations to be executed on a given platform are all statically known, the compiler can’t
anticipate the dynamism inherent to the model. In the case of static dataflow models,
we argue that profiling mechanisms are also required for several reasons. First, even if
actors consumption and production rates are statically known, the internal behavior of
actors may still be data dependent. Secondly, as stated in the previous section, the com-
plexity of modern hardware mechanisms such as multi level caches, branch prediction
and deep instruction pipelines make static analyses of actors execution time very com-
plex. Finally, our ultimate goal is to create a dataflow aware general purpose operating
system where applications may come in and out at any time. In such context, profil-
ing mechanisms are required to understand the impact on hardware of the interaction
between dataflow and non dataflow applications.

The profiling mechanisms we propose can be classified as either architecture depen-
dent or architecture independent. As stated in Section thanks to the communica-

24

2.5 Objectives

tion abstraction provided by the model, dataflow programs can be compiled and executed
on both centralized [40} [60} [61] and distributed memory architectures [39) [56] 62 63].
In this work we focus on architectures with a centralized memory organization for archi-
tecture dependent profiling mechanisms. These architectures are the most widespread
in the desktop and servers markets targeted by the industrial context of this work. We
attach a particular importance to homogeneous architectures with a distributed shared-
memory memory organization as these architecture are the de-facto standard in the
server market. On such architectures the dataflow compiler and the dataflow runtime
need to take the memory organization into consideration to fully exploit the memory
subsystem. To that end, the coarse grained communication information provided by the
dataflow programming model has to be exploited.

25

2 Context and Objectives

26

8 Throughput Constraints in
Dataflow Programs

Chapter’s outline

BI1 Tntroductionl.

.................................
B31 SDEF MoCl.
[3.3.2 SDF Scheduling] 0oL

[3.3.2.1 Sequential Schedules|.o 000
[3.3.2.2 Schedules Properties|.
3.3.2.3 Multi-core Schedules.,

[3.4 Extending SDF With Throughput|
;i,4,l “le!llsig!lls a! I&lszgz l‘ffyffl

[3:4.2.1 The StreamlIt Language]

[3.4.2.2 Language Extensions|

[3.4.2.3 Streamlt Graph’s Transformations Follow-up|

[3.5 SDF Throughput Propagation|.
[3.5.1 Propagation By Graph Traversall
[3.5.2 Propagation Using SDF Repetition Vector|.

[3.6 Extending DDF With Throughput|
............................

3 Throughput Constraints in Dataflow Programs

3.1 Introduction

The previous chapter introduced the motivations leading to new concurrent program-
ming models and justified our choice to focus on the dataflow model. We also presented
our motivations to add throughput constraints to dataflow programs. In this chapter we
show how these constraint can be expressed and how they can be statically exploited in
the case of graphs. is widely used in the signal processing community to write
complete applications [35] but can also be used in larger contexts to write the static
parts of dynamic applications [64] [65]. Our main goal is, assuming that application
developers or integrators will specify throughput constraints at very high granularity
level, to take benefits from static information to produce valuable information for
throughput aware dataflow runtime systems. Adding throughput constraints to an [SDE]
graph leads to new interesting static analyses. In particular, we show how we are able
to propagate the throughput information provided with the application along the edges
of the [SDF] graph to compute timing requirements for all the actors of an [SDF] graph.

This chapter first presents existing work related to throughput constraints in dataflow
graphs. It then introduces the [SDF| model in details and shows how [SDF| programs are
scheduled on parallel architectures in Section[3.3] Section[3.4]then presents how through-
put can be conceptually expressed on [SDF| programs and how we implemented these
extension in the framework. Section then demonstrates how throughput
constraints expressed on an [SDF] dataflow program can be propagated along the edges
of the dataflow graph using the schedule in order to compute local throughput
values. Then Section [3.6] introduces the model and shows how we extend the [Openl
IRVC-CAL Compiler (ORCC)| framework to express throughput constraints. Finally,
we conclude the chapter with several perspectives showing how our proposal could be
extended to more expressive dataflow models.

We chose to illustrate our extensions because it includes both a
language with many applications available and a compiler infrastructure targeting dif-
ferent architectures and performing aggressive optimization transformations. Regarding
the [DDF] extensions, we illustrate our proposal with the ORCC|framework which is more
and more used in the dynamic dataflow community.

3.2 Related Work

To the best of our knowledge, no existing work has proposed to express throughput
constraints on programs and use this information to provide timing requirements
used by a throughput aware dataflow runtime system.

Nevertheless, statically computing the maximal theoretical throughput that can be
achieved by an [SDF| program supposing an hardware platform with enough resources is
an old research problem [66]. Indeed, a solution to compute the throughput consists in
first converting the graph to an Homogeneous graph, a graph where all the
consumption and production rates are equal to one, and then computing the maximum
cycle mean of this transformed graph. The transformation from to an homogeneous
graph (a graph where all the consumption and production rates are equals) is always
possible [33] and the throughput is the invert of the maximum cycle mean. More recent
works [51], [53] propose a method to compute the theoretical maximal throughput directly
on the graph. Other works [52] 54} [55] [67] propose static solutions to find multicore
[SDEF|schedules trying to maximize the throughput. All these works rely on the execution

28

3.3 The SDF Model

Number of

- initial tokens
O O @

D@
RO a/'\l/'

(a) Acyclic basic SDF graph (b) Cyclic SDF graph with initial tokens

Figure 3.1: SDF graphs examples

time of the actors composing the application. This execution time can either be obtained
from profiling or code analysis.

In contrast to static works, Tan’s proposal [68] defines runtime mechanisms to mea-
sure [SDF] actors effective execution times do perform online remapping. Compared to
our work, Tan’s main goal is to increase throughput where as we want to ensure a min-
imal throughput by using static information provided at applications level. Runtime
identification of bottleneck actors along with adaptations consisting in adding par-
allelism for these bottleneck actors have been proposed recently [56, 57]. In these works,
bottleneck actors identification is based on channels filling levels and not on static
information as in our proposal.

3.3 The SDF Model

first introduced by Lee [33, 34] is a specialization of the general dataflow model
rooted in the signal processing domain.

3.3.1 SDF MoC

In graphs, nodes always consume (respectively produce) the same number of tokens
on each input (respectively output) channel. These numbers are called respectively
the popRate and the pushRate of the actors. Figure shows two examples of
[SDEF| graphs. [SDF] actors may have zero, one or more input and output ports. [SDEF]
graphs may also contain cycles. In the following we note:

e popRate(act,in) the number of tokens consumed by the actor act on the input
channel in

e pushRate(act, out) the number of tokens produced by the actor on the output
ETEO| channel out.

Static rates allow different static analyses on programs. The first one checks if
an [SDF] graph is consistent or not. The consistency property means that the program
can be executed infinitely without requiring infinite memory. The second analysis, for
consistent graphs, identifies if the execution of an [SDF| graph can deadlock or not.
Indeed, cyclic graphs may deadlock because of insufficient initial tokens on backward
edges inside the graph such as the edge from actor D to actor C' in Figure

29

3 Throughput Constraints in Dataflow Programs

3.3.2 SDF Scheduling
[SDEF| graphs can be scheduled statically with bounded memory requirements. These
schedules statically generated can be either sequential or parallel.

3.3.2.1 Sequential Schedules

A valid sequential schedule is an ordered list of actor firings guarantying finite memory
usage and the absence of deadlocks. To compute a schedule, the dataflow compiler must
first compute the minimum repetition vector noted p. This vector defines the minimum
number of times each actor must be executed so that the number of tokens in all the
of the application falls back to its initial state. The repetition vector can be
derived by finding the minimum positive integer solution to the balance equations for
the graph specifying that for every edge e in the graph connecting actors src and
dest p must satisfy:

p(src) x pushRate(src,e) = p(dest) x popRate(dest, e) (3.1)

Executing a [SDF| graph consists in an infinite loop, or a loop running while there are
more inputs to be proceed, executing each actor according to the repetition vector p.
For any repetition vector ¢ different from p we define the blocking factor noted J with

Equation
g=Jx*p (3.2)

As described in the next paragraph, this blocking factor can help in the generation of
more efficient parallel schedules by increasing the execution overlap between cores. repl
(respectively rep2) shown below is the minimal repetition vectors for the example of

Figure (respectively of Figure [3.1D)).
repl = (1,2,2,2) for actors (A, B,C, D)
rep2 = (1,1,1,1,3,4,1) for actors (A,B,C,D,E, F)

From the repetition vector, the compiler computes a steady-state schedule or iter-
ation that satisfies actors data dependencies. This schedule consists in a sequence of
components. Each component act® indicates to execute x times actor act. schedla and
sched1b shown below are two valid steady-state schedules for example of Figure and
sched2a and sched2b are two valid steady-states schedules for example of Figure |3.1b
Actors may appear only once in schedules such as in schedla and sched2a or several
times interleaved with other actors execution such as in schedlb and sched2b.

schedla = A'B2C?D?
schedlb = A'B'C'D'B'C' D!

sched2a = A'B'C'D3E*F!
sched2b = A'B'\C'D'E?2D?E?F!

In the remainder of this thesis, because the compiler checks for graphs’ consistency
when computing the repetition vector, we consider only consistent graphs and we use
the following notations:

30

3.3 The SDF Model

e ¢(act) denotes the entry corresponding to actor act in the repetition vector ¢; e.g.
q(B) in the vector repl above is 2 ;

e activ(comp) denotes the number of activation of a component comp in the steady-
state schedule, i.e. activ(act®) = z; e.g. in sched2a above activ(E*) = 4;

3.3.2.2 Schedules Properties

Two notable properties of [SDF| schedules are code memory requirements and
channels memory requirements. To minimize code memory requirement, the compiler
must compute a [Single Appearance Schedule (SAS)|schedule. are schedules where
each actor only appears once. They implement the full repetition inherent in an
graph without requiring subroutines or code duplication. For acyclic graphs, a topolog-
ical sort of the graph along with the repetition vector gives the[SAS| For cyclic graph, it
has been shown that an [SAS|exists only if the graph is weakly connected and algorithms
to compute these schedules have been proposed [69].

[FTFO] channels memory requirements is the second notable property for an [SDF]
schedule. It is informally defined as the sum of the maximum amount memory required
for each channel. In our example, schedla has channels memory requirements of 6. This
schedule has a maximum of 2 tokens in channel connecting A and B, 2 tokens in channel
connecting B and C and 2 tokens in channel connecting B and D. sched1b has channels
memory requirements of 4. It has a maximum of 2 tokens in channel connecting A and
B, 1 token in channel connecting B and C and 1 token in channel connecting B and D.
Finding the minimal memory usage schedule has been showed to be an NP-Complete
problem and heuristic must be used to compute efficient memory schedules [69].

3.3.2.3 Multi-core Schedules

When targeting multi-core systems, the sequential schedule introduced above has to
be split between the available cores. A parallel schedule thus consists in a set of sub-
schedules: one for each core of the target system. In sequential schedules, data prece-
dence is enforced by the schedule. In the case of parallel execution of an [SDF| graph,
actors must be synchronized in order to enforce the integrity of the schedule. This is
done by synchronization mechanisms at runtime as described in Section2.4.3.2]

In parallel schedules, the load balancing objective is usually also considered in ad-
dition to code and buffers memory requirements. Intuitively, load balancing aims at
minimizing the longest schedule among all the cores. For this goal to be taken into
account statically, we need to know the execution time of each actor firing. This can
be obtained by static code analyzes or by code profiling. The construction of a paral-
lel schedule is divided in two stages [34]. First, an acyclic precedence graph must be
constructed. Then, this graph can be used to map actors to cores so that precedence re-
lations are satisfied. This need to be done while minimizing the longest schedule among
all the cores. This problem is identical to assembly line problems in operations research.
It can be solved for the optimal schedule, but the problem is NP-complete. This is not
problematic for small graphs. For large ones heuristics have been proposed that
work well in practice. Note that increasing the blocking factor can help in minimizing
the iteration period. We now describe our throughput constraints proposal that is valid
for both sequential and parallel [SDF] schedules.

31

3 Throughput Constraints in Dataflow Programs

Number of

3 o eg.
1 initial tokens
Tg,,=1000/s
/2' hl‘/f ;

Figure 3.2: SDF graph example with &

cxp CONstraint

3.4 Extending SDF With Throughput

Throughput is defined as the rate at which tokens can be processed or the rate at which
something can be produced. In this work we rely on throughput constraints expressed
at dataflow source programs level. These constraints should be specified either by the
programmer or a system integrator with the knowledge of the expected throughput for
the dataflow applications considered. For a dataflow graph G = (V, E) we define the
global expected throughput for a channel ¢ € F, noted fop(c), as the number of
tokens produced per unit of time in the channel. We intentionally don’t specify
the time unit here, because some applications may have requirements at microsecond
granularity whereas others will use seconds. This section first introduces the notion
of global throughput for dataflow programs independently of any specific MoC| or any
specific language. Then we show how we have implemented throughput expression in
with simple syntactic extensions and in the [DDF]language supported by the
framework.

3.4.1 Extensions at MoC Level
G

The global expected throughput value for an |SDF| or a DDFl graph, noted T, (c), is
expressed on one channel of the dataflow graph. Figure[3.2]illustrates the notion of global
expected throughput on an [SDF] example. The program is annotated with information
specifying that the final actor must produce 1000 tokens per second. In the case of
graphs, throughput can be specified on any of the channel of the [SDF] graph because
of the consistency property described in the previous section. As will be described in
the next section, if the graph is consistent the throughput expressed on any channel of
the graph will define all the other channels throughput as described in the Section
If several throughput are defined, we check for their consistency. In the case of
graphs, several throughput constraints can be expressed on the graph, and the runtime
mechanisms described in Chapter [4] will have to check all of them.

Depending on the dataflow language implementation, sink actors may or may not
be have explicit output [FIFO| channels. On the example depicted on Figure [3.2] we
suppose that sink actors have these output channels. If these channels are not
explicitly defined and the throughput constraint is only known for sink actors, extensions
to the language are required to allow the last actor in the graph to express the expected
throughput value or a new identity actor (don’t doing anything) may be added to create
an output channel. This is an implementation concern and we now describe how

we solve it for the language.

32

3.4 Extending SDF With Throughput

3.4.2 Streamlt Extensions

[Streamlt] [60, [70] is a dataflow programming language rooted into bringing some
extensions to the initial model. It allows to write in the same language both the dataflow
network and the actor’s internals. This section briefly introduces the language and then
shows how we extend it to let applications developers specify a throughput constraint.

3.4.2.1 The Streamlt Language

Applications written in are made of actors which are called filters in the
terminology. provides one unique language to write the internal
body of actors and to create the network of filters. The first particularity of
concerns the dataflow graph topology. Filters can’t be connected arbitrarily. They have
one unique input stream and one unique output stream and must be connected through
the use of connectors provided by the language. Figure [3.3| shows that:

e Pipeline connectors allow to connect actors in sequence.

e Split and join connectors are used to create parallel branches in the dataflow
graph. Split can be either duplicating split or round robin split. A duplicate
split just forwards each one of its input tokens to every filter connected to the
split. A round robin split distributes its inputs to its successors according to a
pattern specified statically. On the example of Figure the second split is a
round robin one with a pattern defined by (1,1, 1) specifying that the split equally
distributes its 3 input tokens to the three output channels. Join connectors are
round robin connectors.

e Feedbackloop connectors allow to create cycles in the graph. A loop is constructed
using a split and join pair splitting and joining on exactly two streams as shown
on Figure In this example, the filter B represents the loop’s body and the
filter C' is a filter that may affect or not the token fed back to the loop’s joiner.
C can be an identity filter - a filter just forwarding its inputs - in the case where
the loop output must be provided back without any modification. Loops also have
initial tokens. These tokens are required to initially start the application.

The second extension brought by [StreamTt|to the[SDF|model is the notion of peeking
filter. A filter can read more tokens than the number of consumed tokens to
produce its output. This extension allows to easily write sliding windows actors such as
a moving average. Thus, in addition to their push Rate and popRate information, filters
have a peek Rate information. Compared to the standard model, this extension only
requires an initialization stage at the beginning of execution to ensure enough tokens

are present on to execute the graph.

3.4.2.2 Language Extensions

To specify the expected throughput of applications we extend the part of the
language used to create the network of actors. The language provides a special add
keyword used to add actors to the graph. Figure shows source code used
to create the graph of the example of Figure Figure shows the source code for
the creation of the same graph but with a throughput constraint expressed on the last
channel of the graph. The throughput constraint is expressed using the additional mon

33

3 Throughput Constraints in Dataflow Programs

ll 1 L1 : ‘ X Initial tokens y1'1\l
Lgﬁ&%@ﬁiﬂ
1 1
1 1

Figure 3.3: Streamlt graph example illustrating split/join, pipeline and feedback loop
constructors

add (A ());
add (Feedbackloop () {
add (Join(RR, (1,1)));
add body(B());
add feedback(C());
add (Split (RR, (1,1)));
DM
add(D());
add (SplitJoin () {
add (Split (RR, (1,1,1)));
add(EQ));
add (F()) ;
add (G());
add (Join(RR, (1,1,1)));
»;
add (H(O));

(a) Streamlt original program

add(AQ));
add (Feedbackloop () {
add (Join(RR, (1,1)));
add body (B());
add feedback(C());
add (Split (RR, (1,1)));
B
add (D)) ;

add |mon 1000 s |[(SplitJoin(){

add (Split (RR, (1,1,1)));
add(EQ));
add(FQ));
add(G());
add (Join(RR, (1,1,1)));
)
add(H(O));

(b) Streamlt extended program

Figure 3.4: Streamlt language extensions

(for monitored) keyword with the expected throughput in tokens per time unit when
adding the filter to be monitored. The time unit is chosen among s ms pn and ns. In
this example, we specify Tg’;p = 1000 tokens per second on the channel connecting the
second joiner and H.

3.4.2.3 Streamlt Graph’s Transformations Follow-up

The [Streamlt| compilers performs aggressive graph’s transformations to produce im-
plementations improving throughput or memory usage according to the targeted plat-
form [63], [7T]. Indeed, the static rates along with the structured graph allow to fuse and
split filters. In such cases, the compiler needs to correlate the initial global throughput
information expressed on the application with the final graph produced by the com-
piler [2].

Two kinds of graph transformation are performed by dataflow compilers for
languages. The first one consists in fusing actors. Fusion is used for example when
the number of actors is larger than the number of execution units dedicated to the
application. Fusion can merge consumer/producer pairs of actors into a single actor as
shown on Figure In this case, the compiler puts in sequence in a new actor the code
of the fused actors.

34

3.4 Extending SDF With Throughput

Al 1 11 A2 |2 1] A3
e —_—
<Cy1> <Cyo> <Cyz>

}

2 11 A3
—_—
<Cyz>

Figure 3.5: SDF fusion, consumer and producer filters directly connected can be fused in

one bigger filer.
Al |12 1] A2 |1 2| A3
e —
<Cy1> <Cyo> <Cysz>

!

1 A2]_ 1
k<OA2>J
Al 2—>2[rrs lit)l 1['0111]2—»2 A3
<Cap1> P N, . 1‘] <Cypz>
A2y
I <Cyuo>|1
—_—

Figure 3.6: Data parallelism introduction. Stateless filters can be duplicated to work on
several data tokens in parallel. The compiler ensure that the outputs of the parallel version
of the filter are provided in the same order as the sequential one using a join to downstream
filters.

The second class of transformation adds parallelism to the dataflow graph. Figure[3.6
shows how data parallelism is added to a graph. Stateless actors are duplicated to allow
them to work on several data sets in parallel. The compiler is also able to introduce
pipeline parallelism by splitting one actor into a pipeline of two smaller actors.

When the compiler applies such transformations, the information of throughput on
channels must be correctly preserved.

To handle the fusion case, we simply forbid the compiler to fuse two actors if they
are connected by a channel where a throughput constraint has been expressed.
In practice, as will be described in Chapter [5] this constraint has no impact because we
add an identity actor at the end of the applications to express the throughput.
In other words, this constraint only prevent the fusion of this identity actor with its
predecessor.

Figure [3.7| shows how the compiler preserves the throughput information when a
stateless actor is parallelized. When the initial actor’s output channel is tagged with
throughput information, we add a throughput information on each created duplicate.
In the case of pipeline parallelism introduction, the expected throughput information of
the split actor is reported on the last actor of the created pipeline.

35

3 Throughput Constraints in Dataflow Programs

Al |12 1f A2 |1 2 A3
<Ca1> <Ca2> Tf,;p <C s3>

}

)
A2 1

_

a

L =Cae> iip

Al |2 2 ,) ’ —2 2[A3

Cur> —»[rr spht] /{|301n|—>
C

—

')

A2,

1 T(JI‘, 54
<Cyo>
) —

—_

Figure 3.7: Data parallelism introduction follow-up to propagate expected throughput.
Each duplicate has its output channel tagged with expected throughput information.

3.5 SDF Throughput Propagation

In the case of SDF]|programs, we can use the static consumption and production property

of the actors to statically compute a local expected throughput, noted Tepr(c), for all

FIFO|channels c of the transformed graph from Tg’;p. t%,,(c) is the number of tokens that
must be produced on the [FIFO|channel ¢ per unit of time to satisfy ¢ _. Because actors

exp*

production rates are static in @ computing Tepr(C) values translates to computing
the number of time each actor must be fired per unit of time in order to satisfy wa
We define this required frequency noted f,(act) for an actor act as the required number
of actor’s firings per unit of time. The link between t%_(c) and f,(act) is defined by

exp
Equation [3.3] where act is the actor feeding c.

tl (¢) = f.(act) * pushRate(act, c) (3.3)

erp

From this we can compute an average expected execution time for the actors noted
Kexp(act) and defined by Equation

1 pushRate(act, c)
ex t) = = 3.4
AT R W o4

Depending on how the[SDF|program is executed, this expected execution time maybe
required to take benefit of the propagation. Consider for example a sequential execution
using the [SAS] schedule of an application. If an actor in the middle of the graph
is too slow to produce it’s outputs, it will slow down all the subsequent actors. The
too low throughput on the slow actor’s output channels will automatically lead
subsequent actors to wait for data tokens. We can’t identify which actor among the
guilty actor and its successors is the bottleneck. In this case, measuring the execution
time of one actor firing and comparing this execution time to its kegp values allows us
to identify it as a bottleneck.

Table sums up all the notations introduced so far and used in the next two
sections by two different algorithm for throughput propagation.

36

3.5 SDF Throughput Propagation

Notation Definition
Tg:p(c) global expected throughput on channel ¢
. (c) local expected throughput on channel ¢
Keap(act) expected execution time of actor act

fr(act) required activation frequency of actor act

Table 3.1: Notations about throughput used in this thesis.

3.5.1 Propagation By Graph Traversal
The first algorithm we present to propagate the szp is a naive graph traversal. A depth
first version is presented in Figure The propagate function is first called on the
channel where the Terp is expressed with the actor feeding this channel. This function
first computes (line 2 to 24) the T4,
act where it is not already computed using Té:wp(cmf). The Teme value for a channel ¢
depends on the type of ¢, i.e. if it is an output or an input channel, and on the type of
Cref- The function then marks the actor act as visited (line 25). Finally the function
recursively calls itself (line 26 to 35) on all the neighbors of act not already visited.

Considering weakly connected dataflow graphs, the channel where Terp is expressed
can be any channel of the graph. In any case, this algorithm traverses the graph until
all nodes have been visited. In the particular case where more than one Tg&p values
have been specified, lines 4, 9, 15 and 20 must check that the throughput expressed are
consistent with the computed ones instead of only checking if the channel is already
tagged or not.

Applying the propagate function on the example of Figure leads to a graph
traversal in the order F, D, C, A, B, E. The result is depicted on Figure

erp consisting in using the repetition

for all the input and output channels of actor

We now present a simpler solution to propagate T
vector introduced in Section [3.3.2

3.5.2 Propagation Using SDF Repetition Vector
Tepr values can also be computed from the repetition vector. Because all the dataflow
compilers for[SDF|languages must compile this repetition vector to compute the schedule
as described in Section we favor this solution. This avoids navigating the graph
as described in the previous section.

In this solution, we first compute the required frequency of all the actors. To compute
these required frequency we only need the repetition vector of the schedule and don’t
care about actors firings order. Equation [3.5]defines this required frequency for the actor

where rg;p is defined.

teo) = () 3.5
fr(ac Terp) - puShRarte(aCtngpa f) (')

We can then compute the required frequency for all the actors with Equation
fr(act) = f,,«(actTg;w) * activRatio(act) (3.6)

37

3 Throughput Constraints in Dataflow Programs

: propagate(crer, act):
: if ¢ is an output channel then
for ¢, in act.outputChannels do

if ¢, is not tagged then

1
2
3
4 L
T Cre f)*pushRate(act,co
5 Teme(co) = EIp(pus{L)RSte(act,cre(f))
6
7
8
9

end if
end for
for ¢; in act.inputChannels do

if ¢; is not tagged then
Tézp (C'ref)*pOpRate(act,ci)

10: Tgxp(ci) = pushRate(act,cref)
11: end if

12: end for

13: else

14: for ¢; in act.inputChannels do

15: if ¢; is not tagged then

16: Tesz(Ci) = Tézp;c;pe{%)attiﬁzz?si(;)ct’q)
17: end if

18: end for

19: for ¢, in act.outputChannels do

20: if ¢, is not tagged then
A
22: end if

23: end for

24: end if

25: mark actor visited
26: for inputAct in act.inputF'ifos.sources do
27: if inputAct is not visited then

28: propagate(inputAct)
29: end if
30: end for

31: for outputAct in act.outputF'ifos.dests do
32: if outputAct is not visited then

33: propagate(output Act)
34: end if
35: end for

Figure 3.8: Tgrp propagation in SDF

38

3.5 SDF Throughput Propagation

3000/$3
A 11000/s 3000/51 @ 13000/s
. 1000
¢, =1000/
.{oo/s' m-m S

Figure 3.9: Throughput propagation result

where activRatio(act) denotes the ratio of the number of activation of the actor act
to the number of activation of the actor actg (the actor where Tgcp is expressed) as
shown on Equation

_glact) (3.7)

activRatio(act) =
(4t = Cfactsg,)

The required frequency only gives for an schedule the required frequency at
actor granularity. We now easily compute the final schedule required frequencies at
component level, noted comp, in an schedule using Equation

fr(comp) = f.(act) * compRatio(act) (3.8)

where compRatio(act) denotes the ratio of the number of activation of the actor act
in the component comp to the total number of activation of the actor act as defined by

equation [3.9
activ(comp)
q(act)

We now illustrate the propagation on the example of Figure [3.2] We first compute
the required frequency for the actor F' where Texp is defined using Equation

compRatio(act) = (3.9)

- Tgﬂp(c) = 1000
o) = sk Rate(F,)

Then using Equations and we can compute f.(A4), f-(B), f-(C), rf-(D),
rfr(E). For example for actor C' we get:

1r(C) = fr(F) % activRatio(C') = 1000

Then we can compute the Tezp values for the two output channels of actor C' noted

cop and cop using Equation

Tétp(ccp) = f(C) * pushRate(C, ccp) = 3000 tokens/s
Tesz(CCD) = fr(C) * pushRate(C, ccr) = 4000 tokens/s

We can also compute the required frequency for each component in the two valid
schedules introduced in Section 3.3.2.7] and recalled here:

39

3 Throughput Constraints in Dataflow Programs

sched2a = A'B'C'D*E*F!
sched2b = A'B'C'D'E*D*E°F!
Using Equations [3.8] we get the following results for the first schedule sched2a:
fr(AY) = f.(A) x compRatio(A') = 1000
f+(BY) = f.(B) x compRatio(B*) = 1000
£-(CY) = £.(C) * compRatio(C) = 1000
f(D3) = f.(D) % compRatio(D?) = 1000
fr(EY = f,(E) * compRatio(EY) = 4000
fr(FY) = f.(F) * compRatio(F') = 1000

This results in the same required frequency as the required frequency computed
globally at actors level because sched2a is a [SAS|] For sched2b which is not a [SAS| we
get the following results:

fr(AY) = f.(A) x compRatio(A') = 1000
fr(BY) = f.(B) * compRatio(B') = 1000
£-(CY) = £.(C) * compRatio(C") = 1000
fr(DY) = f,.(D) x compRatio(D') = 1000
fr(E?) = f.(E) x compRatio(E*) = 2000
fr(D*) = f.(D) x compRatio(D?) = 1500
fr(E?) = f.(E) x compRatio(E*) = 2000
fr(FY) = f.(F) * compRatio(F') = 1000

The propagation presented in this section is usable when targeting multi-core ar-
chitectures because it is done at actors components level. Indeed, a multi-core [SDE]
schedule is made of several single core schedules. Each one of this single core schedule
is itself made of actors components.

3.6 Extending DDF With Throughput
The extensions described in Section [3.4.1] are valid for all also valid for graphs.
Nevertheless, the throughput propagation introduced in Section [3.5] can’t be applied to

graph because of their dynamic nature. This section describes the model in
details and show how we extended the [ORCC] framework with throughput constraints.

40

3.6 Extending DDF With Throughput

3.6.1 The DDF Model

Compared to[SDF] actors in a [DDF]graph don’t have to consume and produce the same
number of tokens each time they are fired. This dynamic behavior is expressed through
the use of multiple firing rules. Such a rule specifies a condition on the number of tokens
that must be present on the actors input channels to be fired. Each actor with s
input edges with s > 0 can have N firing rules, where NN is unbounded. The set of firing
rules for an actor is noted:

YT ={Ri,Ry,....,Rn}

A firing rule is a set of patterns, one for each input edge and is noted:
R; ={P1, Py, ..., Ps}

We don’t give here the formal definition for a pattern P;, but intuitively it defines an
acceptable sequence of tokens on the j** input edge. The special wildcard pattern noted
x is used to indicate that at least one token is required on the associated input edge.
The other special symbol I denotes any sequence of tokens, including the empty one.
An actor can fire if and only if one or more of its firing rule is satisfied. When several
rules are available at the same time, the choice of which rule to execute is left to the
runtime implementation.

In practice, in addition to specify input patterns, firing rules specify also output
patterns. Indeed, the theoretical model rely on infinite [FTFO] channels where as imple-
mentation must work with finite memory. Output patterns allow to indicate whether or
not there is enough room in output channels for an actor firing.

A fundamental difference between and [DDE] is that [DDE] allows observable non
determinism by the use of non deterministic actors. Non deterministic actors are actors
with output depending on the time at which inputs are produced. Non determinism may
be desirable to construct dataflow programs interacting with multiple external events.
This non determinism is expressed through the use of non sequential firing rules as
described in [32]. Informally, rules are sequential if they can be tested in a pre-defined
order using only blocking reads. Figure [3.10] shows an example of a non deterministic
merge actor having two inputs and one output. This actor has two non sequential firing
rules, one for each input requiring at least one token on this input:

T = {R1, Ry}
Ry = {[+], L}, R2 = {L, [+]}

For this actor, the sequence of output depends on the time of inputs arrival because
this actor just forwards its inputs in arrival order if it has the time to be fired between
two inputs arrival. Otherwise in the case where the two rules are satisfied at the same
time because there is at least one input on both inputs, the behavior of the actor is
unspecified.

The [DDF| model is the most expressive of the dataflow computation models. Com-
pared to it doesn’t enforce any restriction at all on the number of tokens consumed
and produced by each actor firing (through the use of several firing rules for an actor).
As a consequence, this model is also the least analyzable. It is neither possible to stat-
ically schedule a [DDF| graph nor statically bound [FTFO] sizes nor to statically identify

41

3 Throughput Constraints in Dataflow Programs

\
non det. g
@9

Figure 3.10: DDF non deterministic merge actor. This actor forwards its inputs as soon
as available on its unique output channel. The output flow depends on the time at which
inputs are available.

<XDF name="Top_mpeg4_part2_SP_decoder">
<Instance id="decoder">
<Class name="org.sc29.wgll.mpeg4.part2.sp.RVC_decoder"/>
</Instance>
<Instance id="source">
<Class name="org.sc29.wgll.common.Source"/>
</Instance>
<Instance id="display">
<Class name="org.sc29.wgll.common.DisplayYUV"/>
</Instance>
<Conn dst="decoder" dst-port="bits" src="source" src-port="0"/>
<Conn dst="display" dst-port="B" src="decoder" src-port="VID">
<ExpectedThroughput value="25" unit="second">
</Connection>
<Conn dst="display" dst-port="W" src="decoder" src-port="W"/>
<Conn dst="display" dst-port="H" src="decoder" src-port="H"/>
</XDF>

Figure 3.11: ORCC program annotated with throughput constraint

deadlocks on feedback loops. Because of its dynamic nature, runtime mechanisms are
required to execute correctly a application. The actors scheduler is responsible at
runtime to check which actors can be fired (i.e. having at least one firing rule enabled)
and to fire them. Chapter [4] presents how this scheduling can be implemented.

3.6.2 ORCC extensions

ORCC| [42] is a framework dedicated to write and execute applications. We will
not dig into the details of [ORCC]| in this chapter but we just give an example of an
annotated graph. Chapters [4 and [5| will deeply introduce this framework.

In actors internal is written using the programming language
and actors graphs are described using an xml description called XDF. To express the
throughput constraints on applications we simply extend this xml description
with a new attribute for connection nodes. Figure[3.11|shows an annotated version of the
top level dataflow graph for an MPEG4 part 2 video decoder. The channel connecting
the decoder and the display actors is annotated with a throughput constraint of 25
frames per second.

This section as shown how we implement throughput expression in the
language and in the [ORCC] framework. We now switch back to the general [SDF| model
to show how the throughput information can be propagated all along the dataflow graph
using the static information provided by the model.

42

3.7 Discussion

3.7 Discussion

This chapter has first introduced how a throughput constraint can be expressed on a
dataflow program. Then we showed how this information is exploited at compile time for
programs to propagate a throughput constraint all along the dataflow graph. These
propagated constraints can then be used to compute an average required execution time
for all the dataflow actors of the program. This information provides a simple mean
to let runtime mechanisms identify bottleneck actors. Indeed, comparing the statically
computed average execution time to satisfy the throughput with the measured execution
time indicates if an actor is a bottleneck or not. Chapter [4] describes in details how we
use this information.

The throughput expression introduced in this chapter is valid for any dataflow [MoC]
Indeed, this throughput constraint is just a value on a specific edge of the dataflow
graph, and the concept of edge is present in all the dataflow [MoCsl Nevertheless, the
propagation algorithm is valid only for graphs where consumption and production
rates are statically known. Even if many widespread computations such as a fast Fourier
transform, a finite impulse response filter, a Cholesky decomposition, or CRC encoder
are naturally expressed using real life applications are rarely fully expressible using
this model. As a consequence, extending the proposal introduced in this chapter to
models allowing to express more application and preserving as much static analyzes
as possible seems an attractive perspective. In particular, it would be interesting to
identify how this throughput propagation algorithm allowing to compute statically an
average execution time for all the actors could be extended to|CSDF]| [36] [SADEF| [37] and
[38].

Regarding [DDF| models it’s clear that the expected throughput value can’t be prop-
agated to compute local information about the actors. A first interesting perspective to
extend our proposal to dynamic models consist in studying the impact of including our
proposal in the static sub graphs of DDF]| graphs. Another solution to address dynamic
models consists in setting up runtime mechanisms to identify where are the bottlenecks
in the dataflow graph. The next chapter presents these runtime mechanisms.

43

3 Throughput Constraints in Dataflow Programs

44

“§ Dataflow Programs Profiling

It is a capital mistake to theorize before one has data. Insensibly
one begins to twist facts to suit theories instead of theories to suit
facts

Sherlock Holmes in “A Study in Scarlet” by Arthur Conan Doyle

Chapter’s outline

M1 Introduction|. 46
M2 Related Workl 46
4.3 Dataflow Fxecution Modell. oo 48
[4.3.1 Dataflow Compilation Overview| 49
[4.3.2 Sequential Execution Modello 49
.............................. 49

E322 DD . . .o 50

4.3.3 Parallel Ex ion Modell oo 53
33T SDEl. 53
E332 " DDE 54

4.4 Throughput Profiling]. 55
[4.4.1 Global Throughput|., 55
[4.4.2 Tdentify Bottleneck Actors In SDF Graphg/. 57

.5 System-Level Profiling] oo 57
451 CoresToadl 58
[4.5.2 Memory Subsystem Load| 0. 59
4521 PMUl 60

4.5.2.2 Memory Controllers Imbalance] 61

[4.5.2.3 Sampling of Memory Accesses| 62

4.6 DISCUSSION] . .« + v . o e e e e e e e e 64

4 Dataflow Programs Profiling

4.1 Introduction

Profiling is a crucial activity to get insight of how a program behaves when executed on
the final target. It consists in runtime mechanisms measuring and gathering different
metrics related to the execution of programs. These metrics may then be used either to
provide feedback to programmers or compilers to improve the result of compilation or
by runtime mechanisms to perform adaptations. In the first case, profiling is required
because static tools are not able to model the complete interaction that the program will
have at runtime with the hardware. This is mainly due to several complex mechanisms
built into modern processors such as caches, long instruction pipelines, out of order ex-
ecution or branches prediction. In the second case, profiling allows runtime mechanisms
to handle the dynamism inherent to general purpose systems where applications may
come in and out at of the system any time. Other sources of dynamism such as changes
of computing requirements inside applications may also lead to profiling needs.

The previous chapters introduced the notion of throughput constraints on dataflow
programs and how this information initially expressed on one channel of the pro-
gram could be statically propagated to the whole graph in the case of [SDF]applications.
This chapter focuses on runtime profiling and assumes that for both dynamic and static
dataflow models the dataflow runtime knows at least the expected throughput on one
of the channels of the graph. In this chapter, we also assume that a general pur-
pose best effort operating system is running on top of a homogeneous shared-memory
multi-core hardware.

Using the throughput constraint information alongside the dataflow graph struc-
ture, we introduce runtime mechanisms required to monitor the effective throughput
of dataflow programs during execution and mechanisms required to build meaningful
profiling results. Most of these mechanisms can be used both for [SDF| and [DDF] ap-
plications but with methodologies that vary depending on the As a consequence,
we intentionally don’t specify in details in this chapter how these mechanisms are used
together. Chapter 5] will give details on how we used it to built a throughput
aware runtime and to profile RVC-CAT][DDF] applications.

Section first presents work related to the profiling of dataflow application. Sec-
tion introduces the execution model we consider to run dataflow applications on
multi-core hardware. Section [4.4] then shows how the runtime can measure the effec-
tive throughput for comparison with the expected one in order to check whether the
application’s requirements are satisfied or not. In case of non respect of the expected
throughput we show how to identify bottleneck actors for graphs. Section [4.5] fi-
nally introduces profiling mechanisms at system level regarding processor and memory
usage to identify the source of bottlenecks.

4.2 Related Work

Application profiling is a common practice because it’s the only way to get insight
about how an application behaves when executed on complex general purpose multi-
core processors or alongside other applications. Indeed, processors are now so complex
that statically modeling the exact runtime behavior of an application is a very hard
task. Moreover, static analyses can’t predict the interaction with other applications
that may come in and go out at any time in an open system. In this chapter, we focus
on the profiling of dataflow applications executed on top of general purpose multi-core

46

4.2 Related Work

processors with a shared-memory organization. The profiling mechanisms we present
serve two main goals. We want to identify how the computing resources are distributed
among the dataflow actors and we want to identify communication bottlenecks and
their origins. This section reviews existing work related to these goals starting with the
profiling of dataflow actors computing resources usage.

Turnus [72] is a profiler specifically designed for dynamic dataflow programs written
in the[RVC-CAT]language. This is a high level profiler mainly targeting to identify which
actors of the source program need to be optimized and which mapping of the application
may improve performance. This profiler proposes different analyses all based on an
execution trace, called the causation trace. This causation trace is an acyclic oriented
graph where nodes represent actors firings and edges represent firing dependencies. This
trace is obtained by simulation and concerns only a given run of the application on a given
input stimulus. The dependencies between actors may be either tokens dependencies
between two actors, or actors state dependencies between two firing of the same actor. In
addition to firings dependencies, the causation trace also includes actors firings execution
times. This execution time, represents the number of[RVC-CAL]instructions executed by
the actor. The execution trace is thus a weighted graph. The execution trace contains
only the dependencies required to ensure the correctness of the program. Incidental
dependencies such as the limited number of physical resources able to run the program
are not captured by the causation trace.

From this trace, the compiler computes the critical path. It represents the heaviest
path on the graph between all the combination of source and sink actors. The profiler
also proposes methods to estimate how much the critical path length could be improved
by each actor in the critical path to help the programmer focusing on the actors needing
refactoring. Turnus also proposes heuristics targeting different goals to map the actors
onto computation units of a target platform using the execution trace. Compared to
Turnus, the mechanisms we propose add profiling of application throughput and profiling
of memory usage. Like Turnus, the profiling mechanisms presented in Section aims
at identifying potential imbalance between the computing resources provided by the
hardware.

The TAU (Tuning and Analysis Utilities) Parallel Performance System [73] is a large
framework dedicated to the performance analyses of parallel systems. Compared to the
proposition we make in this chapter focusing on dataflow programs executed on shared-
memory multi-core architectures, the main objective of TAU is to provide abstraction
about performance analyzes in the context of different parallel architectures and different
concurrent programming models.

Regarding memory profiling, many solutions [23] [74, [75] have been proposed in the
context of distributed shared memory. All these tools are dedicated to the profiling of
applications written in C. They mainly aim at identifying remote memory accesses and
pinpoint where in the application source code these accesses come from. They rely on
hardware profiling counters to identify these accesses. The runtime mechanisms proposed
by Carrefour [25] also rely on hardware profiling mechanisms to identify these accesses
and memory controllers overload. From these memory accesses, Carrefour proposes
thread migrations, page migrations or page replications to alleviate the bottlenecks. In
this chapter, we also propose memory profiling based on hardware mechanisms but in
the context of dataflow programs. We aim at identifying memory bottlenecks and at

47

4 Dataflow Programs Profiling

building memory profiles for each actor of a dataflow application.

Recently, the Aftermath tool [76] has been proposed to identify bottlenecks in task-
parallel programs. This tool focuses on applications written using OpenStream [77],
an OpenMP extension to support streaming. Aftermath proposes both application-
and system-level profiling mechanisms based on hardware performance counters. The
work we present in this chapter has the same objectives than Aftermath in the context
of dataflow application without the epxlicit notion of tasks but the notion of actor.
Moreover, we propose to use memory sampling mechanisms to evaluate the cost of
memory accesses.

Farhad et al. also proposed [78] a way to measure communication costs of dataflow
programs executed on top of shared-memory multi-core architectures. Compared to the
memory sampling mechanism that we present in this chapter giving measured commu-
nication overhead, they approximate this communication overhead by comparing the
execution time of an actor when it is executed on the same core than the actors feeding
its inputs channels with the execution time when the actor and its producers are located
on different cores.

4.3 Dataflow Execution Model

The role of the execution model is to describe how to execute dataflow programs while
respecting the semantics of the dataflow model of computation and to fix execution
concerns not specified by the [MoC| In other words, the execution model describes

e How to ensure that actors are fired only when enough input tokens and enough
room in output channels are available

e Ensure actors are executed atomically regarding each others
e Which actor to fire when several actors can be fired at the same time

In addition to the respect of the semantics of the programs, dataflow execution mod-
els often target goals such as optimizing throughput, minimizing latency or minimizing
memory usage. Because profiling aims at understanding how applications behave at
runtime, the execution model can have an impact on profiling.

This chapter introduces both application level profiling regarding application’s through-
put and system level profiling concerning allocation and management of resources. On
the one hand, application level profiling described in Section is not impacted by the
way dataflow applications are executed. As a consequence, it could be implemented on
top of any execution model.

On the other hand, system level profiling described in Section clearly depends on
the execution model. Indeed, the main purpose of this profiling is to make a direct link
between dataflow programs execution and the underlying resources. In Chapter [2| we
argued that the concurrent tasks with shared state programming model, i.e. the thread-
ing model, is not a good candidate to program multi-core architectures. Nevertheless,
as already stated in section hardware and operating systems have evolved toward
mechanisms allowing to create an efficient execution model for the thread programming
model. As a consequence, we rely on this execution model made of tasks running con-
currently and sharing memory to execute dataflow applications. We now review how

48

4.3 Dataflow Execution Model

dataflow programs are compiled into multi-threaded programs to be executed according
to this execution model.

4.3.1 Dataflow Compilation Overview

Many dataflow programming languages are either new languages [40} [60] relying on a
source-to-source compiler or C/C++ extensions through libraries [39,[79]. In the former
case as depicted on Figure dataflow programs are compiled to multi-threaded
programs in a language supporting the thread programming model. In the latter case
shown on Figure people often extend existing compilers. These extensions mainly
consist in extracting the parallelism exposed by the dataflow graph.

In both cases, the code produced by the dataflow compiler is linked to a dataflow
runtime in charge of initializing the graph’s execution and in charge of scheduling actors
in the case of dynamic dataflow In the following we illustrate our proposals
with examples supposing that the dataflow compilation tool chain uses an intermediate
language before generating binary code. We use C as the intermediate language. We take
this hypothesis because the two dataflow tool chains used in our experiments described
in Chapter 5] work this way. Nevertheless, our profiling contributions could be integrated
into dataflow compilers generating binary code directly. The dataflow tool chains we
use also both convert the internal function executed each time an actor is fired into a C
function that we’ll call the actor’s step() function in the following.

On shared-memory architectures, the communication between actors is implemented
through the shared-memory. Actors produce and consumer tokens by writing and read-
ing into the shared-memory. As a consequence, the communication time is hidden behind
memory write and read instructions. Moreover, actors are also using the memory system
for their internal computations, and this usage is not clearly exposed by the dataflow
MoC. Actors internal behavior is often described in an imperative sequential language
for which it’s very difficult to statically compute memory usage. The memory usage
profiling mechanisms proposed in Section aim at identifying how the memory
system is used by actors.

4.3.2 Sequential Execution Model

Before introducing how dataflow programs can be executed in parallel, we introduce
how the dataflow compiler along with the dataflow runtime ensure a correct sequential
execution of the application for both [SDF| and [DDF] programs.

4.3.2.1 SDF
A sequential execution model for[SDF|programs consists in having a single task responsi-
ble to execute all the actors of the dataflow graph. The schedule of the actor is statically
decided by the compiler as explained in Section and encoded into the sequential
generated code. It corresponds to the execution order of actors. No synchronization
at all is required in this case because all the data exchanges and their order are known
statically. As a consequence, communication between actors is implemented by static
arrays which size is computed from the schedule.

To illustrate this execution model, we consider the example depicted on Figure
As described in Section (1,1,1,1,3,4,1) is a repetition vector for the actors
(A, B,C, D, E, F) of this graph and thus A' B'C!'D3E*F! is a valid sequential schedule.

49

4 Dataflow Programs Profiling

.df

DF

compiler

Multi-threaded
program ¢ rt.c ¢ | |df-lib.c| | rt.c
.bin

(a) Dataflow programming with new lan- (b) Dataflow programming in existing lan-
guages guages

C compiler
with extensions

.bin

Figure 4.1: Dataflow programming languages are either new languages relying on a source-
to-source compiler or C/C++ extensions through libraries. In both cases, one of the main
objective for the compiler and the runtime system is to have a binary program able to exploit
the parallelism provided by the underlying hardware.

Choosing this schedule, the dataflow compiler generates the code on Figure for
sequential execution. This example supposes that the compiler has generated a separate
function for the internal work of each actor as shown on Figure [.4] for actor C. We
suppose in this example that the channels between the actors carry float values.
These actors functions pop and push tokens into the channels. The pop and push
functions are implemented by reading and writing to the global communication arrays.
To allow the actor to pop and push tokens from anywhere in the step function, most of
the [SDF| languages implementation rely on an index updated each time a token is read
or written as depicted on this example.

4.3.2.2 DDF

In the case of programs, the static schedule computed by the compiler and encoded
into the generated code presented in the previous section for[SDF|programs doesn’t exist.
A runtime scheduler is thus required to fire actors only when enough input tokens are
available. Moreover, we can’t compute an upper bound for the size of the static arrays
used for communication as in the [SDFE] case.

One solution, available in the framework that we use in the experiments
Chapter [p] is to use a round robin sequential scheduler along with fixed size [FIFO
implementations [80] as shown on Figure channels are implemented with
statically allocated memory, which size is a compiler option. The round robin scheduler

50

4.3 Dataflow Execution Model

Number of

- initial tokens
W, [@

Figure 4.2: Cyclic SDF graph with initial tokens used to illustrate the notion of execution
model. Initial tokens must be present on feedback edges to start the execution.

int [1] AC;
int [2] BC;
int [3] CD;
int [4] CE;
int [3] DC;
int [3] DF;
int [4] EF;
while(true) {
step_AQ);
step_BQ);
step_CQ;
for (int i = 0; i < 3; i++) {
step_D(Q);
}
for (int i = 0; i < 4; i++) A{
step_EQ;
}
step_FQO);
}

Figure 4.3: SDF sequential execution main loop. The loop infinitely executes the chosen
static schedule (1,1,1,1,3,4,1) by calling each actor’s step function the number of times
specified in the schedule.

starts by checking and executing the first actor in topological order if it’s fireable and
then moves to the next actor. When the last actor is reached, the scheduler loops back
to the first one.

Checking if an actor is fireable consists in searching for one firing rule where con-
straints on inputs are satisfied. Moreover, because channels are not infinite in
practice, each firing rule also specifies the number of tokens produced on each output
channel. The scheduler thus also checks that there is enough room on the output
channels before firing the actor. In the framework, the scheduler keeps executing
the same actor while possible. In other words, once chosen by the round robin scheduler,
an actor is executed as long as it has input tokens to be processed and there is space in

output [FTFO| channels.
Another scheduling strategy, also available in the framework, consists in using

a data driven sequential scheduler [80]. In this case, instead of switching to the next

51

4 Dataflow Programs Profiling

int AC_idx, BC_idx, CD_idx, CE_idx;

float pop_AC() {
return AC[AC_idx++];

}

float pop_BC() {
return BC[BC_idx++];

}

void push_CD(float value) {
CD[CD_idx++] = value;

}

void push_CE(float value) {
CE[CE_idx++] = value;

}
step_C(O {
AC_idx, BC_idx, CD_idx, CE_idx
// Pop inputs
int AC1 = pop_ACQ);
int BC1 = pop_BCQ);
int BC2 = pop_BC(O);
//Body computing outputs
// Push results
push_CD(...);
push_CD(...);
push_CD(...);
push_CE(...);
push_CE(...);
push_CE(...);
push_CE(...);
}

Figure 4.4: SDF actors step function. pop and push functions are implemented using
statically allocated arrays. For clarity, the initialization of these arrays (AC, BC,CD,CE)

is not shown here.

52

4.3 Dataflow Execution Model

act = round_robin_next (null);
while (true) {
while(is_firable(act) && enough_output_room(act)) {
step (act) ;
}
act = round_robin_next (act);

}

Figure 4.5: DDF sequential execution main loop. Before executing an actor, we must
check through the is_firable function that enough input tokens are available to fire an
actor.

actor in a round robin fashion, the scheduler switch to one of the actor that will allow
the current actor to be scheduled again. If the execution of the current actor is stopped
because insufficient data on an input channel, the actor producing tokens on this channel
is chosen. If the execution of the current actor is stopped because of insufficient room
in one output channel, the actor consuming these tokens is chosen.

4.3.3 Parallel Execution Model

One of the main motivations for dataflow programming is to efficiently exploit hardware
parallelism using the parallelism exposed by the model. Exploiting this parallelism
requires to map actors to the hardware execution units. Some dataflow frameworks [39]
40,160, [79] fix at compilation time the mapping of actors. Others [56, 57, 58] 62 68, R1l [82]
modify the initial mapping at runtime using information collected during execution. The
profiling mechanisms described in this chapter aim at providing detailed information to

reconsider these mapping choices either at run- or compile-time as will be demonstrated
in Chapter

4.3.3.1 SDF

As stated in Section a parallel schedule consists in one sub-schedule for each
core of the target system. These schedules are computed by the dataflow compiler. A
parallel execution model for graphs thus consists in n tasks where n is the number
of parallel computing units of the underlying hardware to use for the execution of the
graph. In the following we refer to these tasks executing dataflow actors as dataflow
tasks. When these tasks are executed on top of a general purpose operating system,
system primitives are used to pin each task to a specific core of the system.

To execute the parallel schedule computed by the compiler while preserving data
dependencies, the execution model must set-up synchronization mechanisms between
the tasks. For this, the dataflow tasks progress in a synchronized way through the usage
of barrier at the end of the steady state [63]. We call this synchronization mechanism
steady state synchronization. Figure shows how the graph of Figure is executed
by two tasks and steady state synchronization. On this example, the chosen multicore
schedule is A'D3E* for the first task, and B'C'F! for the second.

The horizontal lines represent barriers. We clearly see a first initialization stage
required to fill up the pipeline allowing to execute the multicore schedule above (e.g. ex-
ecuting A and C' in parallel requires pipelining because they are not on parallel branches
in the application graph). Then we see two steady state executions synchronized by the

53

4 Dataflow Programs Profiling

Dataflow Tasks

\

>

(' Time
=)

N

> Fill pipeline

AEEEE

<.

[N =
\ .

Al

D?

—t > Steady state
- /

)

m

—t > Steady state

e/)

Y

Figure 4.6: SDF parallel execution model. The steady state schedule is spitted into several
dataflow tasks and the tasks synchronize through a barrier to ensure data dependencies are
satisfied. The steady state can be executed infinitely in finit memory.

barrier. This steady state can then be executed infinitely without increasing the memory
footprint of the program.

4.3.3.2 DDF

One solution to execute in parallel graphs consists in extending the sequential
round robin scheduling strategy to multiple cores. Again, we focus on the [ORCC| frame-
work scheduling strategies. As for [SDF] the parallel execution model is built using one
dataflow task for each computing unit of the underlying hardware. Each task runs its
own round robin scheduler on a subset of the graph’s actors.

Using this solution, no synchronization other than the checks (i.e. the call to the
is_fireable(...) function in Figure performed by the scheduler before firing an
actor are required. Indeed, an actor is executed only if it has enough inputs and if
enough room is available in output channels.

o4

4.4 Throughput Profiling

Measurement Expected value Observed value
Global throughput TeGIp(C) % (c)
Local throughput . (c) L (c)

Execution time Keap(act) Kops(act)

Table 4.1: Notations about expected throughput used in this thesis. The first column
shows expected statically available values while the second column shows their runtime
equivalent called observed values.

4.4 Throughput Profiling

In this section we first show how the global expected throughput is used by the dataflow
runtime to check whether or not the application’s requirements are satisfied. Then we
demonstrate in the case of [SDF| programs, how bottleneck actors can be identified using
instrumentation of the actors code and the local expected execution time introduced in
Chapter The profiling mechanisms described in this section are independent of the
chosen execution model. Before introducing global throughput monitoring, Table
recalls the notations about throughput introduced in Chapter [3| This table also shows
the pending notations defined in this section used to refer to the values observed by the
profiling mechanisms.

4.4.1 Global Throughput

At runtime, we need a way to observe the effective throughput. In the following we note
T?bs this observed throughput. Comparing this value with the information of expected
throughput provided by the programmer described in Chapter [3| allows us to identify
whether or not the throughput conforms to expectations.

A simple mechanism to compute at runtime the effective throughput consists in
incrementing a counter each time a token is written into the of the actor where ’terp
has been expressed. Figure[4.7b|shows this counter increment for the[SDF|actor depicted
on Figure This actor has a single input channel in and a single output channel out
where Tg’;p has been expressed. Its popRate and pushRate values are respectively 4 and
2. Each time the output token is pushed, the bes counter is incremented by one.

This global throughput monitoring solution is valid for both static and dynamic
dataflow models. In the case of dynamic models, the only difference is the fact that
the number of counter increments can vary between firings. Because actors push rates
may vary, the number of counter increments would also vary. As a consequence, we
need several increment instructions compared to the case where one instruction is
sufficient. Figure m shows an example of how ’tons profiling work for the actor
A depicted on Figure This actor as two input channels data and conf and a single
output channel out where Tgﬁp has been expressed. Each time this actor is fired, its push
and pop rates for the data and the out channels are updated with a value read on the
conf input channel. In this example, loop tokens are pushed each time the actor is fired,

and as a consequence the Tg)s counter is incremented by loop.

For both and cases we extend the dataflow compiler in order to generate
the additional lines in charge of creating and incrementing the global throughput counter

55

4 Dataflow Programs Profiling

step_A Q)
int pl = pop_in();
int p2 = pop_in();
int p3 = pop_in();
int p4 = pop_in();

n —é2—>0ut int resl = ...
¢, = 1000 tk/s int res2 = ...
push_out (resi);
push_out (res?2);
beSCount += 2;
}
(a) SDF actor with ngp constraint (b) SDF 1% profiling

Figure 4.7: SDF global throughput profiling. We add a fixed counter increment in the
code of the step function of the actor where the Tfmp is specified.

int loop = 2; //Init walue
step_AQ) {
for(int i=0;i<loop;i++){
data * % int p = pop_data();

—> int res =
conf =1 1000 tk/s

push_out (res) ;

G = 1.
T, Count += 1;

}
loop = pop_conf ();
}

(a) DDF actor with t¢, constraint (b) DDF <&, profiling

exp obs

Figure 4.8: DDF global throughput profiling. We add a counter increment in the code of

the step function of the actor where the t&, is specified.

as shown on Figures [4.7b] and

Computing the global throughput value consists in reading this counter at different
times. To get the throughput, we just divide the difference of two successive values
of the Tg)s counter by the time elapsed between the two reads. Finally, comparing this
observed Tg’;)s value with the expected Tgcp one provided by the programmer as described
in Chapter [3| allows to identify potential violation of throughput requirements.

When dataflow program profiling is targeted at satisfying a throughput constraint,
identifying such violation is of course the first step done by the dataflow runtime. In
case of non-respect of the throughput constraint, or when the observed value is getting
close to the expected one, the runtime needs to identify bottleneck actors. When to
activate the bottleneck identification mechanism has an impact on the reaction time of
the runtime has will be described in chapter|
The overhead induced by Tgcp monitoring is negligible. Indeed, as shown on Fig-
ures |4.7bland it only adds one increment instruction each time a token is produced
on the channel where ¢ is expressed.

exp

56

4.5 System-Level Profiling

int time = getTime();
for(int i = 0; i < 4; i++){
step_EQ);

}
time = getTime() - time;
Kops = time / 4;

Figure 4.9: SDF Tg’bs profiling. We measure time at component level to reduce the overhead
introduced by the timing call.

4.4.2 Identify Bottleneck Actors In SDF Graphs

When the global throughput value is not conform to the requirements, we want to be
able to identify where the problem comes from. For this, in the context of languages
we use the local expected execution times coming from the propagation introduced in
Chapter [3l Comparing this information with effective actors execution times allows us
to identify bottleneck actors.

Chapter [3] introduced the notion of an actor’s local expected execution time noted
Kexp- We now introduce the runtime equivalent, called actors effective observed execu-
tion time noted kqps. When dataflow applications are executed alongside non dataflow
applications not under our control, the dataflow tasks can be preempted. To be com-
parable with k¢, computed statically, k.5 must represents the execution time of the
actor only. In other words, it must exclude preemption time. Excluding preemption
time allows to distinguish cases where a dataflow actors is intrinsically too slow from
cases where the actor has not been provided enough processor time to execute by the
operating system scheduler. This is explained in Section [4.5.1]

To compute Tg’bs (c), the compiler generates some additional code. Timing measure-
ments are performed before and after each loop executing a component of the
schedule as shown on Figure [4.9] In this example, the [SDEF| schedule leads to 4 exe-
cution’s of actor E. To compute the average T4 (c), we divide the measured time by
the number of times the actor act has been fired in the component. Measuring outside
the loop allows to reduce the number of system calls and thus the overhead introduced
by timing measurements. Chapter [5| evaluates the overhead of these system calls for
different use cases.

To identify bottleneck actors in an graph, we compare Kegp(act) and kops(act)
values for all the actors. Such actors are intrinsically too slow. Their execution time,
excluding preemption, is not conform to execution times required to satisfy the global
throughput constraint.

4.5 System-Level Profiling

In the context of shared-memory multi-core architectures, the different computing units
(i.e. the cores) are shared by all the running applications. The hardware required to
access the memory is also shared by all the applications. The system-level profiling
mechanisms we described in this section aim at identifying how these shared resources
are used by all these applications. To exploit hardware parallelism on shared-memory
multi-core architectures, the computing resources must be equally used and the memory
subsystem must not be saturated. This section first describes how we identify imbalance

o7

4 Dataflow Programs Profiling

3
\[A

Figure 4.10: Dataflow graph example used to illustrate tasks imbalance. We use the same
graph than the one in Figure but without the static consumption and production rates
because the mechanisms described in this section are valid for both SDF and DDF dataflow
graphs.

problems between the cores. We then show how memory bottlenecks can be identified
and related to dataflow actors.

4.5.1 Cores Load

The parallel execution model introduced in Section needs a mapping between
actors and cores. The initial static mapping decided by the compiler can be changed at
runtime. In other words actors can be migrated between dataflow tasks to balance the
load. Imbalance between dataflow tasks load can be caused by either imbalance between
the dataflow actors executed by the tasks or because the dataflow tasks are preempted
by other applications. To illustrate our claims, we use in this section again the same
example depicted on Figure Actors static consumption and production rates have
been removed because the mechanism we propose in this section is valid for both
and [DDF] graphs.

In a scenario where a dataflow application is executed alone on a multi-core plat-
form using one task per core, imbalance between dataflow tasks leads to CPU waste.
Independently of the underlying model or [DDF)), under-loaded cores will have to
wait for the over-loaded ones. For static dataflow models, this imbalance is caused by
the inaccuracy of the actors execution time used in the compiler’s mapping algorithm.
It can also be the result of actors with data dependent computing requirements. For
example, the step function of an actor may contain a loop which upper bound is a value
provided by one input channel. In this case, the execution time is dependent on this
value that change at runtime.

In the case of dynamic dataflow models, the unknown number of firings for each actor
is another source of imbalance. Figure shows an example of poor static execution
time estimation for the example of Figure [4.10] On this example, we consider that the
dataflow graph is executed alone on dual core system with the one task per core and
steady state synchronization execution model. The execution of actor F' is shorter than
estimated. In this case, migrating A from its initial dataflow task to the second one will
lead to better performances by reducing the time lost by the second task.

The second source of imbalance we consider occurs when the system runs dataflow
applications along with other dataflow and non dataflow applications. Figure shows
an example of such preemption for the example of Figure On this example, we
consider that the dataflow graph is executed on dual core system along with other

o8

4.5 System-Level Profiling

-
=S

Tasks DF T

Q

%)
\W‘

9]

Time
Time

=)EE
C=J)0OE
==E

ostaaa

Y A

<

(a) Static estimation (b) F is shorter than estimated

Figure 4.11: Dataflow tasks imbalance caused by wrong static estimation of actors execu-
tion times. F' is shorter than estimated, a better load balancing exists.

o DF Tasks
=
., DE Tasks a
= E
pje
A
17
a E el |9
v Y
(a) Static estimation (b) F is shorter than estimated

Figure 4.12: Dataflow tasks imbalance caused by preemption by other applications.

applications and with the one task per core and steady state synchronization execution
model. On the first core, the dataflow task is preempted by another application. This
leads to CPU time lost on the second core.

In both cases of imbalance, the dataflow runtime needs a way to measure actors
execution times and preemption time to compute the load for each dataflow task. For
actors execution time profiling in the case of SDF]|programs, we use the same mechanisms
than the one introduced in Section for actors bottleneck identification. Actors
firing are surrounded with time measurement calls as shown on Figure [4.13al For [DDF|
programs, we also surround actors firing with timing calls as shown on Figure

For preemption time we also rely on operating system services. On Linux, we read
the /proc/stat virtual file to get this information.

4.5.2 Memory Subsystem Load

When targeting multi-core systems with a distributed shared-memory architectures, the
software has to take care of memory usage. In the dataflow programming context, it
means that the dataflow compiler along with the dataflow runtime must take into account

59

4 Dataflow Programs Profiling

‘int time = getTime();

for(int i = 0; i < 4; i++){
step_EQ);
}

‘time = (getTime() - time) / 4;

(a) SDF actors

act = round_robin_next (null);
while (true) {
while(is_firable(act) &&
enough_out_room(act)) {

int time = getTime();
| |

step (act) ;
‘time = getTime() - time;‘
}
act = round_robin_next (act);

(b) DDF actors

Figure 4.13: Cores imbalance profiling using actors execution time. For SDF programs we
surround components execution as we did to identify bottleneck actors. For DDF programs
we surround actors firing with timing calls.

the underlying memory organization to efficiently use it. As shown by recent work [25],
on modern distributed private-memory architectures, memory system overload can be
an important source of performance degradation.

As a consequence, we need a way to identify whether dataflow programs are facing
memory congestion or not. In the case of memory controllers overload, by correlating ac-
tors execution with memory usage we can exploit the dataflow programming to alleviate
bottlenecks by changing actors mapping and/or channels mapping. To identify
perform memory subsystem profiling we rely on the processor’s |[Performance Monitoring]

Unit (PMU

4.5.2.1 PMU

The [PMU]| provides software means to characterize hardware usage through hardware
performance counters. Intel, AMD and ARM all include a [PMU]in their processors.

The counters provided by the can be configured by software to count some
specific hardware events among a huge number of possibilities. As shown on Figure[4.14
these counters are either located at the level of cores or at the level of memory controllers.
At core level, example of hardware events that can be profiled are instruction cycles,
number of floating point instruction, number of level 1 cache misses or number of branch
mispredictions. At memory level, counters can be configured to count for example the
exact number of memory read or memory write requests.

In addition to the counting mode, almost all provide a sampling mode. In
sampling mode, instead of counting the number of a specific event, the[PMU]is configured

60

4.5 System-Level Profiling

Sore ([Tma |- L1] 1 || 11|
omain
| 12 | | L2 | | 2 | | 12 |
Uncore L3 L3
domain || Mem. QPI‘ ‘QPI . Ctrl
! !
’ Memory Bank 1 ‘ ’ Memory Bank 2 ‘

Figure 4.14: Performance monitoring counters on an Intel dual processors NUMA archi-
tecture. Performance counters are either located at cores level or at the uncore level. Uncore
counters are not able to distinguish events depending on the originated core.

to generate a sample with detailed information every time the event occurred a specified
number of times. The information provided by the samples allow to perform complex
analyses compared to the ones enabled by counting only.

For example, when sampling mode is activated for a hardware event located at core
level, the sample can contain detailed information about the processor’s state at the time
the event was generated. Among the available detailed information we can mention the
value of the program counter and the core identifier. Moreover, when the sampled
event is a memory event such as a memory read or memory write, the sample can also
provide the memory address involved in the memory access, the memory level in memory
hierarchy where the data was read or written and the latency (i.e. the time required to
serve the memory request) of the memory request. We rely on this information to
construct actors memory profile.

4.5.2.2 Memory Controllers Imbalance

We use the [PMU]|to count the exact number of memory requests reaching each memory
controller. From this we then compute the effective memory bandwidth for each memory
controller. Comparing this effective bandwidth with the maximal bandwidth reachable
allows us to identify overloaded memory controllers.

The usage of the performance monitoring counters requires a deep understanding of
the processor’s architecture and requires very low level code writing. It also requires to
be in processor’s supervisor mode.

In the case where dataflow applications are executed directly on top of the hard-
ware without an operating system, performance counters would have to be manually
programmed to identify memory controllers overload as shown on the left part of Fig-
ure

In our experiments described in Chapter 5] we run dataflow applications on top of
Linux. In this case, there is two ways to access the as shown on Figure 4.15
The first one consists in using the /dev/cpu/msr kernel module as illustrated on the
right part of Figure This module only allows to access the [PMU]| configuration
registers in supervisor mode but doesn’t provide any abstraction at all. The second
solution is to use the perf_event_open system call. This system call provides a first
level of abstraction to access to hardware performance counters. Nevertheless, to start

61

4 Dataflow Programs Profiling

Linux Perf PAPI numap | Intel PCM

Write assembler
Run in supervisor

N |
perf_event_open() | Linux Kernel module
system call Kernel /dev/cpu/msr
I
PAMU Hardware

Figure 4.15: Different PMU usages on top of Linux. The PMU can be accessed either
through the perf_event_open() system call or through a kernel module to access the Model
Specific Registers (MSR) controlling it. For commodity reasons, the numap profiling library
we propose is built on top of perf_event_open().

counting an event using this system call, we still need to setup a lot of complex param-
eters depending on the underlying architecture. For example, to count memory read
and write requests on the particular hardware we use in our experiments, we use the
UNC_QMC NORMAL READS.ANY and UNC_QMC _ WRITES.FULL.ANY events
as described in Intel’s Software Developer Manual chapter 18 [83]. This system call is
used by the Linux Perf command line profiler [84].

To abstract the complexity of using perf_event_open, we implemented a thin li-
brary dedicated to memory profiling called as shown by Figure Compared
to [Performance API (PAPI)| [85], our library abstracts the differences regarding
memory profiling between NUMA|architectures. Another added value provided by numap
compared to [PAP]] is an abstraction of memory sampling using the [PMU] as described
in the next section. Even if the implementation of for our experimental platform
only contains few hundreds of line of code, it was quite complex to get it operational.
Indeed, using the [PMU] requires a deep understanding of the targeted hardware and re-
quires to extract the good information from the Intel Software Developer Manual. This
complexity is the main motivation that lead us to write At the time of writing
this thesis, we are not aware of any open source library providing such an abstraction
and we plan to see how could be released.

4.5.2.3 Sampling of Memory Accesses
The mechanism to detect the memory controller’s overload only allows to identify mem-
ory bottlenecks. In particular, this mechanism doesn’t say anything about the origin
of the memory accesses. The dataflow model itself provides a first level of information
about memory accesses. It indicates which actors communicate together, and in the case
of it also gives the exact amount of information exchanged by actors.
Nevertheless, how the data exchange information provided by the dataflow model
relates to hardware memory access is not trivial. Indeed, the complex memory archi-
tecture, mainly the cache system, prevents dataflow compilers to statically know which
actors pop and push operations will lead to memory accesses. Moreover, as already
stated actors are also using the memory system for their internal computations. This

62

4.5 System-Level Profiling

step_AQ) {

int pl = pop_in();
int p2 = pop_in();
int p3 = pop_in();
int p4 = pop_in();
int resl = ...

int res2 = ...
push_out (resil);
push_out (res2);

A_end_label:

}

Figure 4.16: Additional end of function label on an SDF actor. We use this label to
associate PMU samples to dataflow actors. Even if the example is given on and SDF actor,
this mechanism is valid for both DDF SDF actors.

usage is not clearly exposed by the dataflow [MoC| As a consequence, we propose to
set up actors memory usage profiling mechanisms using the [PMU] memory sampling
mechanisms introduced in Section 4.5.2.11

To correlate memory accesses samples provided by the to dataflow actors,
we have to associate program counters values in the PMU] samples to actors execution
functions. We must also correlate the memory addresses in the samples to either dataflow
[FTFO| channels accesses or actors stack used by the internal of actors execution functions.
In the particular case where dataflow programs are first compiled to C multi-threaded
programs we propose to modify the compiler to generate additional code allowing the
runtime to do the correlation between samples generated by the [PMU]and the dataflow
model.

For the correlation of programs counter values with dataflow actors we rely on a
simple mechanism based on function pointers and an additional end-of-function label
generated by the compiler at the end of each actor’s function. Figure [4.16| shows this
additional label on an example actor called A. The internal of the computing of outputs
from input is not shown but only represented with dotted lines.

From this label and the function’s pointer, we are able to know whether or not a
sample belongs to the actor’s A. At application launch time, we construct a list of actors
functions ordered by addresses. A binary search in this list allows to know which actor
the sample belongs to in O(log(n)) time with n representing the number of actors. In
the case, where the sample doesn’t belong to any actor, it means that it belongs to the
dataflow runtime used to coordinate actors execution.

For the correlation of memory addresses to channels we use a similar mecha-
nism in the case of execution models relying on C as intermediate language. The dataflow
compiler generates either memory allocation calls for the [FIFO| channels in the initial-
ization function of the C files or static arrays. In both cases, we extend the compiler
to generate code that keeps track of the addresses of the memory used to implement
channels. This way, we know exactly where each channel of the graph is allocated
in memory. Based on this and knowing the size allocated in memory for each channel
we can correlate memory samples to channels. Determining the memory size allocated
for the implementation of a dataflow [FIFO] channel is under the responsibility of the

63

4 Dataflow Programs Profiling

execution model, and thus the runtime has access to this information.

To correlate memory addresses with [FIFO| channel, we first search for the actor
associated to the sample using the program counter value provided in the sample. As
described above this is done in O(log(n)) time where n is the number of actors. If
an actor is found, we search if the sample belongs to one of the channel of the actor
also using a binary search in the actor’s channels ordered list. If it’s not the case, we
know that the sample belongs to the actor’s private stack. It concerns internal memory
required by the actor to compute it’s outputs.

Once the memory samples have been associated to actors and channels of
the dataflow graph we propose to compute statistics to analyze these samples to get a
better understanding of the application performances. Using the memory access latency
information provided by the as described in Section we can evaluate for
example, how much is the overhead induced by mapping to actors communicating a lot
on cores from two different nodes.

The memory profiling mechanisms described in this section, allow us to build a mem-
ory profile for each actor and/or for each channel of the graph. This profiling can
be activated on demand. For example, it can be activated from the start to the end
of the execution of an application to construct memory profiles over all the execution
of an application for offline analyses. It can also be activated on demand by runtime
mechanisms to identify if a bottleneck actor identified by mechanisms described in Sec-
tion is facing long memory latency. Section will present how we use memory
sampling profiling results for offline analysis of [DDF]applications and what conclusion
we can draw from these results.

4.6 Discussion
We have presented in this chapter dataflow profiling mechanisms. First, we showed how
to create profiling mechanisms regarding the throughput constraint provided by the pro-
grammer at application level. We showed how to profile the effective throughput of a
dataflow application to check whether or not it conforms to its throughput requirements.
In the case of graphs, we showed how to identify bottleneck actors using the ex-
pected execution time computed statically for each actor. We also presented system-level
profiling mechanisms allowing to identify computing and memory resources contention.
The mechanisms dedicated to profile computing resources usage are all based on tim-
ing information wheras the memory profiling mechanisms rely on hardware performance
counters provided by modern processors.

All the mechanisms presented in this chapter are built in user space on top operating
system primitives, we rely on:

e System timing calls to get actors execution time;
e System timing calls to get preemption time;
e System calls to access to the PMU|

All these system calls have a cost, and we believe that the profiling mechanisms intro-
duced in this section would benefit from being implemented directly in the operating
system kernel. This will first reduce the profiling overhead, and will allow a better
integration between dataflow and non dataflow applications.

64

4.6 Discussion

The memory profiling library we introduced in this chapter is dedicated to
abstract [PMU] differences regarding [NUMA| concerns between different architectures.
We have a functional implementation for a Xeon processor based on the Westmere-
EP micro architecture. It should be interesting to add implementation for other Intel
micro architectures and for other processors such as AMD ones. As already stated,
such implementation work will require to deeply understand the [PMU]of the underlying
architecture to use the right hardware counters to measure effects.

We intentionally didn’t give details on the way these mechanisms can be used together
in this chapter. We introduced these mechanims as general mechanisms that could be
applied to different dataflow programming languages based on different dataflow [MoC.
The next chapter presents how we exploit these mechanisms together along with the
throughput propagation algorithm introduced in Chapter [3]in order to:

e Build a throughput aware dataflow runtime based on the framework;

e Construct profiling results for applications written using the ORCC| IDE.

65

4 Dataflow Programs Profiling

66

5 Profiling Mechanisms Exploita-
tion

Chapter’s outline

If you find that you’re spending almost all your time on theory,
start turning some attention to practical things; it will improve
your theories. If you find that youre spending almost all your time
on practice, start turning some attention to theoretical things; it
will improve your practice

Donald Knuth

bl Introductionl. 68
[5.2 SDF Throughput-Aware Runtime| 68
[>.2.1 Language Compiler And Runtime Support|. 69
[5.2.2 Runtime Monitoring| oo 70
[>.2.2.1 Monitoring The Global Throughput| 71

[>.2.2.2 Monitoring Actors Execution Times| 72

[5.2.2.3 Monitoring Cores Imbalance] 72

[>.2.3 Reporting and Adaptations|00 72
B24 Resultd 73
[>.2.4.1 Scenario 1: Reaction To Preemption By Other Applications| 74

4 Scenario 2: Identification Of Bottleneck Actorsf 76

[>.2.4.3 Runtime Monitoring And Adaptation Overhead 76

5.2.5 Discussion|. 7

[5.3 DDF Programs Profiling| 79
5.3.1 ORCC Extensionsl 79
[>.3.1.1 Throughput Constraint Expression|. 79

[>.3.1.2 Profiling| 79

[5.3.2 Experimental Setup| oL 80
B33 HEVCQ o 81
[6.3.3.1 Scaling] 81

[r.3.3.2 Memory Profiling| 0000 85

[p.3.4 MPEG4-part2 88
[5.3.5 Perspectives|.o 89

5 Profiling Mechanisms Exploitation

5.1 Introduction

This last chapter is not only an experimental validation of the concepts introduced
in the previous chapters. It also describes how we assemble and exploit the profiling
mechanisms proposed in this thesis. The chapter is divided in two distinct sections:

e Section[5.2)introduces a[SDF|throughput aware runtime system built in the[Streamlt|
framework. This runtime system is built on top of Linux and uses profiling results

to perform runtime adaptations for throughput constraint satisfaction.

e Section presents the implementation of our profiling mechanisms into the
[ORCC] framework dedicated to [DDF| programming. The profiling results are used
to provide feedback to the application developer.

We associate in this chapter the runtime adaptations to applications and offline
analyses to [DDF| ones. Nevertheless, this is a practical choice only and our profiling
mechanisms can be used in both cases for offline profiling and for runtime adaptations.
As will be described in Sections [5.2] and we made this choice because the
runtime system was easier to adapt than the [DRCC| one to work in an open system
where other applications can come in and out at any time.

Moreover, we illustrate the memory profiling only in the context of the ORCC]|frame-
work. We decided to focus on the memory analysis of the realistic applications provided
alongside compared to the [StreamIt] micro-benchmarks.

5.2 SDF Throughput-Aware Runtime

In this section we present how we use the concepts introduced in Chapters [3| and 4] to
implement a throughput-aware runtime in the framework. We show how the
profiling mechanisms are used in conjunction with the information computed statically
from the global throughput constraint to identify cases where some actors are bottle-
necks. In cases where no bottleneck actors are found, we show how we use dataflow tasks
profiling to identify imbalance between cores. To build a proof-of-concept validating our
profiling mechanisms, we also present a simple adaptation heuristic.

The choice to prefer [Streamlt] over ORCC] to illustrate how the profiling mechanisms
can be used for runtime adaptations comes from the runtime system implementation.
Both [Streamlt] and [ORCC]| runtime systems are based on the concept of dataflow tasks
as described in Chapter 4, and they both assume that dataflow applications are exe-
cuted alone on the hardware. The two runtime systems use busy waiting to synchronize
dataflow tasks and thus consume 100% of the CPU resources all the time. To use either
[StreamlIt] or [ORCC]in an open environment where applications may come in and out we
have to modify their runtime systems in order to replace busy waiting with mechanisms
allowing to put dataflow tasks in a sleep state and wake them up when they can again
execute some actors. On the one hand, we extend the runtime very easily to
not use 100% of the computing resources. For this, we replace the original busy waiting
barrier at the end of the steady state by a non-busy one using pthread barriers. On the
other hand, because of the dynamic nature of [DDF| the [ORCC| runtime system needs
to be designed differently to not use all the computing resources all the time. Using
one dataflow task each actor could be a solution. In this case, each dataflow task has
to sleep when its actor is blocked waiting for input tokens or for room in output [FIFO|

68

5.2 SDF Throughput-Aware Runtime

channels and to wake-up when new input tokens have been produced or when room has
been made in output channels.

5.2.1 Language Compiler And Runtime Support

We extend the language and compiler as described in Chapter [3] The language
is extended to let application developers specify the global expected throughput. Then,
the compiler takes this information into account to compute the local expected execution
time for each actor.

We also extend the runtime introduced in Section 3.3.1] so that it handles several
applications. The information obtained by the throughput propagation is at-
tached to each application, and includes its global expected throughput and the expected
execution time for each actor. This is done by having the compiler generating a global
data structure including this information.

Figure [5.1] shows an overview of our runtime system. The streaming applications
execute on top of a mainstream operating system (Linux in this instance). Because we are
running on top of a general purpose operating system, some non-dataflow applications
may cohabit in the system with the streaming ones. By default, the compiler
compiles application to n threads, where n is the number of cores of the hardware. We
modified a little bit this behavior to compile applications to n — 1 threads. To avoid
perturbations in our results, we keep the first core available to run all the operating
system tasks that can be moved to a specific core.

We add two components, detailed in the next section, to the original run-
time system. The first one is a runtime Monitor running in a dedicated thread. The
Monitor is responsible to check whether throughput constraint is satisfied or not. In the
case of non respect of this constraint, the Monitor is responsible to identify bottleneck
actors and eventual cores imbalance and could be extended to identify memory system
overload. In the current implementation, the Monitor is pinned on the first core of the
system reserved for the operating system. In the context of multi- and many-core we be-
lieve that it’s affordable to dedicate a core for this kind of tasks. Executing the Monitor
on an other core alongside the applications will lead to additional overhead depending
on the monitoring frequency. Each time the monitor is waked up, the system will have
to perform a context switch.

The second component we add to the original runtime system is a Adapter.
This component is activated on-demand from the Monitor thread and thus also exe-
cutes on the dedicated core. It is responsible to perform adaptations to alleviate the
bottlenecks identified by the Monitor. The Adapter also reports information about the
bottlenecks to the developer.

To support the Adapter, we add mechanisms to to the runtime allowing
to suspend and to resume dataflow applications either individually or globally. This
mechanism is required to safely perform adaptations. We can’t move an actor from one
core to another while it’s being executed. For this, we rely on threading synchronization
primitives provided by the operating system. We also extend the original
runtime system with migration mechanisms. To migrate actors between cores, function
pointers are moved between threads. In the context of runtime system also performing
memory monitoring, we could rely on the pages migration mechanism of the underlying
operating system to migrate [FTFO] channels.

69

5 Profiling Mechanisms Exploitation

StreamApp 1 || StreamApp 2
§5348
O & .
¥ TN O Potential
O O 6 non-streaming
§ %8 § %8 applications
¢ Monitor |—| Adapter i 3
Linux
Core 0 Core 1 Core 2 Core 3

Figure 5.1: Throughput aware runtime system overview. Compared to the origi-
nal StreamlIt runtime system, our runtime system can handle several streaming applications
and includes additional components responsible to monitor and adapt streaming applications
executed alongside non-streaming applications.

5.2.2 Runtime Monitoring
The Monitor is responsible for:

e determining if throughput constraints are satisfied or not (Section [5.2.2.1));
e identifying which actors in the graph are the bottlenecks (Section [5.2.2.2));
e identifying CPU imbalance (Section [5.2.2.3)).

This section describes conditions under which the runtime layer starts monitoring
actors’ activity and how it identifies bottleneck actors and impacted resources. Figure
gives an overview of the job performed by the Monitor component for one dataflow
application.

As already stated and shown on Figure the Monitor runs in a specific thread
pinned on a dedicated core. It is automatically activated at application start-up time
where it enters stage 1. This stage consists of periodically checking the value of Tg};s(c)
as described in Section When the throughput reaches the local monitoring
threshold Tg’;p(c) + ¢, the Monitor enters in stage 2 by activating actors execution time
monitoring. Section discusses about how to fix the value of 6. The Monitor stays
in this stage for a given duration that we call the stage’s period. During this period,
each dataflow task (as defined in Section[4.3.3.1)) records information about the execution
time of its actors. Section describes how we fix the value for the period of stage 2
and gives the details of this stage. At the end of the period of stage 2, depending on the
existence of bottleneck actors or not, the Monitor either enters stage 3 where it performs
memory monitoring as described in Section or stage 4 where it performs CPU
load monitoring as described in Section For the memory monitoring, we use the
Intel Westmere-Ep implementation of the memory profiling library introduced in
Section This implementation uses the [PMU|] memory events available on our
experimental platform as described in the Intel software development manual [83]. As
for stage 2, the Monitor stays in stage 3 or 4 for a given duration, that we also call the
stage’s period. At the end of this period the Monitor either reports information to the
application developer or invokes adaptation mechanisms described in Section [5.2.3

70

5.2 SDF Throughput-Aware Runtime

[Momtor ¢ (c)]

Tope (€) < Ty () +0

\

Monltor Kops(act),Vact € app

Jact, Kops(act) > Keap a/ \ﬁ\ﬂad/ Kobs (act) > Kezp(act)

31

Actors too slow : CPU imbalance
Monitor memory » ' Monltor cores load

Report/Adapt Report/Adapt

Figure 5.2: Monitoring stages overview. The Monitor permanently checks the global
throughput (stage 1). When the global throughput is getting close to the throughput con-
straint, the Monitor starts actors execution time monitoring (stage 2) to identify potential
bottlenecks. Finally, depending on the result of stage two, memory or CPU imbalance
monitoring is started.

The memory monitoring stage has not been integrated into the runtime
system. Nevertheless, the memory profiling extensions to the runtime system
presented in Section can be applied to the runtime system. We made this
choice to focus on memory profiling of realistic complex applications such as the video

decoders provided by the [ORCC] system.

5.2.2.1 Monitoring The Global Throughput

In order to check at runtime if the throughput expected for an application is obtained,
we rely on the monitoring code generated for the actor where the global throughput
constraint Texp has been expressed has explained in Section m

By checking periodically the value of this counter, the runtime layer computes the
global observed throughput Tg;bs(c) of the application. If it is too low, the Monitor en-
ters stage 2. In our experiments, performed on benchmarks provided by the
framework, we set the value of the ¢ parameter (controlling when to enter stage 2) to 0
for simplicity. Our main goal is to demonstrates how our runtime system can identify
throughput constraint violations and their origins. In a production system, this value
should be set depending on expected reaction time for the system. In some cases, we

may want to react before the throughput gets below the specified constraint.

Overhead from this monitoring system comes from two places. Incrementing a
counter each time data is written on the channel where Tg)s is expressed is negligi-
ble. The overhead of the simple arithmetic used to compute Tg)s on regular intervals
using the counter is also negligible since the monitoring thread is executing on a separate

core.

71

5 Profiling Mechanisms Exploitation

5.2.2.2 Monitoring Actors Execution Times

When the Monitor enters stage 2, it activates for all the actors of the graph the monitor-
ing code generated by the compiler introduced in Section This is done through a
boolean flag generated by the compiler that allows to switch on and off actors’ execution
time monitoring. Recalling that k.ps(act) excludes preemption time, bottleneck actors
are the ones where ks is greater than kegp.

At the end of the actor execution time monitoring period, the kps(act) for each
actor is compared to its Kegzp(act) to tag the bottleneck actors. When all actors respect
their expected execution time, that means the dataflow tasks are badly balanced and
the Monitor must identify why. This is discussed in section Otherwise, i.e. there
is at least one actor with kps(act) greater than kg (act), the actors being too slow are
known, and the Monitor tries to identify why. To that end, the Monitor enters stage 3
where it activates the memory profiling mechanisms introduced in Section [4.5.2]

5.2.2.3 Monitoring Cores Imbalance

When the global throughput is too low and all actors respect their execution time (bot-
tom right branch of Figure , we know that we are facing at best a core imbalance,
at worst a globally overloaded system. The later corresponds to scenarios where all the
cores are used 100% of the time. In these cases, there is no room for CPU balancing
improvements and the best we can do is to report the overload information. To identify
cores imbalance cases the Monitor activates the mechanisms introduced in Section 4.5.11
For the execution time of dataflow tasks, this is again done through the boolean flag
generated by the compiler allowing to activate actors execution time monitoring.

For preemption time, on Linux, the Monitor reads the /proc/stat file at the start
and at the end of the cores imbalance monitoring period. Because this file is a virtual
file which holds an image of the kernel structures living in memory, it provides real time
information about cores usage. In other words, each time you read this file, the kernel
simply copies the data structures it holds internally into the provided userland buffer.
For each core, this file gives the time spent in different states since boot time. Among
others, this file include time spent executing:

e normal processes in user mode;
e niced processes in user mode;
e processes in kernel mode;

e nothing (idle time).

We use the idle times to know what are the over-and under-loaded cores. The over-
loaded core is the one with the lowest idle time value where as the under-loaded core is
the one with the highest idle time value.

Then, if we identify cores imbalance, we apply a simple adaptation heuristic consist-
ing in migrating actors from over-loaded cores to under-loaded ones.

5.2.3 Reporting and Adaptations

When the Monitor has identified bottleneck actors, it always reports information to the
application developer. This reporting is done into a file generated by the Monitor. This
file contains for each bottleneck actor:

72

5.2 SDF Throughput-Aware Runtime

int ovld;
int ovldCore;
int unld;
int unldCore;
int toMove;
int moved;
actor_t act;
getLoad (&ovld, &ovldCore, &unld, &unldCore) ;
toMove = (ovld - unld) / 2;
moved = 0;
act = nextHeaviestActor (ovldCore) ;
while (moved < toMove and act != null) A{
if (moved + kKus(act) < toMove) {
move (act, ovldCore, unldCore);
move += Kups(act);
}
act = nextHeaviestActor (ovldCore) ;

3

Figure 5.3: CPU load balancing heuristic. The Adapter moves actors from the over-loaded
to the under-loaded core to balance their load.

e the name of the actor;
e the expected execution time Kegzp;
e the measured execution time Kps.

When the Monitor leaves stage 4, it invokes the Adapter. Using runtime mechanisms
allowing to migrate actors between threads pinned to cores, the Adapter is able to
implement adaptations heuristics.

For now, we only implemented a simple heuristic consisting of migrating actors from
the most overloaded core to the one with the lowest load in the context of a single
dataflow application running along with non-dataflow applications. As stated in the
introduction for this section, the main goal for this heuristic is only to build a proof-of-
concept validating our monitoring proposal. Including state of the art load balancing
algorithms is kept for future work.

Figure [5.3| shows this heuristic. It moves actors between the core with the highest
CPU load to the one with the lowest CPU load using actors measured execution times
to minimize the difference of work amount between theses two cores. The getLoad()
function provides the results of dataflow thread imbalance monitoring introduced in
the previous section. The nextHeaviestActor(int core) function returns actors in
decreasing execution time order (i.e. the actor with the largest kys value is returned
first).

5.2.4 Results

We now present the results of our runtime system under different scenarios illustrat-
ing the different kinds of bottlenecks that dataflow applications may encounter when
executed alongside non dataflow applications. We use applications from the

73

5 Profiling Mechanisms Exploitation

Processors Westmere-EP: 2x Intel Xeon5650 (hexa core)

Core frequency 2.66 GHz
L1d cache size 32 KiB
L1i cache size 32 KiB
L2 cache size 256 KiB

Shared L3 cache size 12 MiB

Memory 6 x 8 GiB DDR3-1333
Operating system Linux kernel 3.11

Table 5.1: System configuration

benchmarks suite [35]. The experiments were conducted on a workstation running Linux
3.11 on top of two hexa-core Intel Westmere-EP processors. Details are shown on Ta-
ble Bl

The hardware platform we use has a total of twelve cores. As already mentioned,
[StreamIt|applications used in the experiments are compiled to 11 threads. We keep core 0
available for running all the system’s processes that can be migrated and the benchmark
scripts in order to minimize the operating system impact on the experimental results.
The monitoring thread is also running on the core 0.

5.2.4.1 Scenario 1: Reaction To Preemption By Other Applications
In this scenario, we run one application with an attached throughput constraint
along another non-dataflow application. This non dataflow-application is executed on
one of the core dedicated to run the application (cores 1-11). For the applications used
in this scenario, Keps(act) values are smaller than kezp(act) values for each actor, i.e.
there are no bottleneck actors. In other words, in this scenario the Monitor threads
always switch to stage 4 at the end of stage 2. We first run the application alone on
the system and save the value of & (c) at an arbitrary frequency of 20 Hz. Because
the monitoring thread is running on a dedicated core, this frequency does not impact
streaming applications performances but only changes the time before the runtime may
react. Then, we run a non-dataflow application, in this case a C micro-benchmark
performing simple arithmetic in an infinite loop that yields the cpu approximately every
microsecond, on core 5 for 10 seconds along with the dataflow application and see how our
runtime reacts. We experimentally evaluated the value of the cores imbalance monitoring
period described in Section to 10 milliseconds. With this value we are able to
correctly identify core 5 as the overloaded core.

Figuresand show the evolution over time of T4 (c) in tokens per microsecond
for two applications (f ft and filterbank) along with the Terp(c) values and the pertur-
bation introduction. Repeating the scenario several times leads to very small throughput
variations but clearly shows the same three phases. First, the application is launched
without any perturbation showing a stable state. During this period, from time 0 to 8,
the Monitor is in stage 1. Then we clearly see a throughput drop when perturbation is
introduced. The Monitor enters stage 2 and because it doesn’t detect any bottleneck

74

5.2 SDF Throughput-Aware Runtime

10
2 ngp = 10tk /us
E o
g =
-4 -
S 3
Nad
5L ol |

G
Tobs
=

0 L | | |

0 2 4 6 8 10 12 14 16 18
Time (s)

Figure 5.4: Scenario 1 - filterbank. Throughput evolution over time along with the ex-
pected throughput value (horizontal line) and the time when perturbation is introduced
(vertical line). We see three phases: a stable state, a throughput drop down when pertur-
bation is introduced, and a throughput rise up after rebalancing.

[[[[[
ol WWWWWMWMMMWMWWWWMWWWW
— &, =13.5tk/us
N
Z 10 2 |
g z
8 s}
< o
Ut—:g 51 |
0 [|

0 2 4 6 8 10 12 14 16 18
Time (s)

Figure 5.5: Scenario 2 - fft. Throughput evolution over time along with the expected
throughput value (horizontal line) and the time when perturbation is introduced (vertical
line). As for the filterbank application, we see three phases: a stable state, a throughput
drop down when perturbation is introduced, and a throughput rise up after rebalancing.

75

5 Profiling Mechanisms Exploitation

Actor Kexp(18) Kobs(s)
fir filter 780 12.231
combine 780 3508.678

down_sample 97.500 16.078

Table 5.2: Actors execution times. combine is identified as a bottleneck because its ob-
served execution time is almost five time longer than its expected execution time.

actor, it moves to stage 4 and to the adaptation. Finally, after balancing we see that
the throughput is reaching back an acceptable value.

For both applications, because the perturbation introduced consumes a lot of CPU
time, all actors of the graph are moved away from the perturbed core. For filterbank, it
results in a new throughput slightly lower than the initial throughput obtained without
any perturbation. This is explained by the fact that this application is compute intensive
with few communications between actors and scales well with the number of core. After
rebalancing, it executes on 10 cores whereas it was previously executed on 11 cores,
which makes a difference in terms of computations for this application. We were not
able to explain the artifact leading to a period of half a second between the end of the
rebalancing and the throughput rise up.

For fft, the new throughput is higher than the original one. This is also explained
by the scaling property of the application. fft steady-state time is small and this
application has a lot of communication. The application is thus more efficient when
mapped to 10 cores than to 11 cores.

5.2.4.2 Scenario 2: Identification Of Bottleneck Actors

In this scenario, we highlight the effectiveness of bottleneck detection mechanisms. For
this purpose we changed the filterbank application used in scenario 1 in order to increase
the execution time for the actor called combine with artificial computing code. In this
case, as soon as the application is started, Tg)s is smaller than ngp and the Monitor
enters stage 2. It then identify a bottleneck actors and because memory monitoring is
not yet implemented, it reports the information. Table shows the average execution
times for 3 actors at the end of the local monitoring period. The local monitoring
clearly identifies the modified combine actor as a bottleneck actor: kqps is almost five
times longer than regp.

Once combine is identified as a bottleneck actor we start memory monitoring as
described in Section In this fictive scenario, our memory monitoring subsystem
does not detect any memory bottleneck. The monitored memory throughput on the two
memory controllers is below 1 gigabyte per second whereas the theoretical maximum
throughput is 32 gigabytes per second. The runtime then concludes that combine exe-
cution time can’t be reduced using memory adaptations and is only able to report the
bottleneck.

5.2.4.3 Runtime Monitoring And Adaptation Overhead
We now evaluate the overhead of the proposed mechanisms.

76

5.2 SDF Throughput-Aware Runtime

App. T8 (tk/us) TG, with local mon(tk/us) Slowdown(%)
audiobeam 2.04 2.44 -19.80
fft 14.85 16.24 -9.36
filterbank 12.69 12.48 3.65
fmradio 3.82 3.88 -1.52

Table 5.3: Local monitoring overhead. The additional timing system call impacts the
performance of applications.

Global throughput monitoring Tg)s As stated in Section the overhead in-
duced by the global monitoring system is negligible because we only add a counter
increment to the original application and because the monitoring thread is executing on
a separate core.

Actors execution time monitoring x.,; To evaluate the overhead of local execu-
tion time monitoring we first evaluated the cost of the system call clock_gettime-
(CLOCK_THREAD_CPUTIME_ID) that we use to monitor actors execution time excluding
preemption. On our platform, the system calls execution time averages to 170 nanosec-
onds. The overhead on our application is thus in theory 2% 170 multiplied by the number
of components in the steady state chosen by the compiler (the system call is made at the
beginning and at the end of the component’s execution). Table shows the average
experimental overhead over 20 runs computed by monitoring Tons with and without local
monitoring activated.

For 3 of the 4 applications shown on this table, activating local monitoring increases
throughput. This is explained by the very short length of the steady-state (the synchro-
nization time is greater than the steady state time for fmradio and audiobeam and equal
to the steady state time for fft). These applications spend a lot of time synchroniz-
ing on the steady-state barrier and adding time measurement affect the synchronization
time positively. We suspect complex mechanisms inside the operating system scheduler
to explain these numbers. For the filterbank application, the steady state is longer and
is about 10 times the synchronization time spent on the barrier. In this case, adding
time measurement increases the steady state length and has a negative impact on the
throughput reaching almost 4%.

Balancing To preserve the application semantic while performing the load balancing,
we need to suspend applications. As a consequence, applications are not able to output
any tokens during balancing. We thus want to minimize the time required to provide a
new mapping of the application. Our simple first balancing algorithm has a complexity
of O(n) where n is the number of actors. In our two examples of scenario 1, the average
balancing times over 20 runs are 489 and 474 microseconds for fft and filterbank
respectively.

5.2.5 Discussion
In this section we demonstrated how to exploit the proposals made in Chapters [3| and
to extend the runtime system with throughput constraint awareness. Using

7

5 Profiling Mechanisms Exploitation

the micro-benchmarks provided by the framework we clearly showed that our
runtime system equipped with a Monitor is able to identify bottleneck actors and per-
turbation introduced by non-dataflow applications.

Several perspectives have been opened by this work. First, we implemented all
our runtime extensions into user space. The operating system kernel has no knowledge
about dataflow applications at all. There are two consequences to that. First, we rely on
system calls to ask the kernel for help, and this has a cost. Second, because our runtime
system has not the control over non-dataflow applications, its choices may interfere and
not be coherent with the choices made by the operating system scheduler. To reduce
this overhead, and more importantly to integrate smoothly with the operating system
scheduler and legacy applications, we believe that the dataflow knowledge should be
added to the operating system kernel.

The second perspective concerns adaptation heuristics. We have only implemented a
basic heuristic as a proof-of-concept for our proposal. Static heuristics to efficiently map
dataflow actors onto multi-core systems have been extensively studied [63, 86l [87]. It
could be interesting to integrate existing work in this domain to our context of dataflow
applications executed alongside legacy applications requiring runtime load balancing.
The main challenge here consists in keeping the balancing time as low as possible in
order to be able to do it at runtime.

A third perspective, linked with the elaboration of more complex adaptation heuris-
tics is to exploit the capability of our runtime system to execute several dataflow appli-
cations at once. Indeed, when several dataflow applications are executed at the same
time, the monitoring system results are available for all the running applications and
global decision have to be taken.

Finally, we want to apply our profiling mechanism to more complex and more realistic
applications. We used in this section the [SDF| model which is quite restrictive in terms
of expressiveness. The benchmarks provided by are only applications or parts
of applications that fit this restrictive model. The next section discusses about the
integration of our profiling mechanisms into the framework that comes with
operational state of the art video decoders.

78

5.3 DDF Programs Profiling

5.3 DDF Programs Profiling

This section describes how we use the mechanisms introduced in Chapters [3| and [4] to
profile applications written and compiled using the IDE [42]. The
profiling results are dedicated to offline optimization. These results aim at identifying
how the parallelism provided by the applications is exploited by the runtime system and
to accurately understand how hardware resources are used. We validate our proposal
using realistic applications provided alongside ORCC]

5.3.1 ORCC Extensions
The profiling mechanisms proposed in this section are integrated into the ORCC|IDE.

5.3.1.1 Throughput Constraint Expression

We extend the framework to allow developers specify throughput constraints on
[RVC-CAL] applications as described in Section This extension is integrated in the
graphical editor provided by [ORCC]|to construct the application’s graph from individual
actors. Throughput constraints can be added on any [FIFO| channel of the dataflow
graph.

We use the throughput constraints to indicate to the compiler which channels
must be profiled. At profiling time, we use the constraints value to report information
about the observed throughput values that we gather during execution and the expected
value.

For all the examples in the following sections, we add this constraint on the last edge
of graph where it is naturally expressed. For example, on image processing applications
the constraint is a frame rate on the channel feeding the display actor responsible
to display the decoded frames. Nevertheless, this profiling mechanism could be used to
annotate more than one [FIFO| channel. It can be used for example to annotate all the
channels for which the developer has an accurate knowledge of the minimal throughput
required to satisfy the global application throughput requirements. The throughput
profiling results for these channels allow to identify more accurately the bottlenecks of
the application and to highlight some actors that can be bottlenecks.

5.3.1.2 Profiling
In addition to the throughput constraint extension, we extend [ORCC] to support the
profiling mechanisms introduced in Chapter

Application-level profiling Regarding application-level profiling, i.e. the profiling of
actors execution time, we rely on a mechanism already proposed by [ORCC]| very similar
to the one introduced in Section It consists in measuring time before and after
firing an actor and saving the information in a per actor data structure of the runtime
system. To understand the results presented in the next sections, it’s worth mentioning
that this execution time is incremented only when the actor is effectively fired. In the
following we refer to this time as work time.

The time spent by the scheduler to see that actors can’t be fired is also measured and
stored in a data structure. In the following we refer to this time as scheduling time. This
information is crucial to understand the scaling behavior of an [RVC-CAT] application.

79

5 Profiling Mechanisms Exploitation

System-level profiling Our[ORCC|extensions for system-level profiling consist mainly
in memory profiling using the library introduced in Section[4.5.21 We don’t profile
here preemption time but only actors execution time because we focus on appli-
cations being executed alone on the targeted system. The memory profiling is made of
two distinct parts:

e Memory accesses sampling;
e Memory bandwidth profiling for each NUMA|node of the underlying hardware.

Because sampling of memory accesses requires additional code generation to enable
the correlation between samples and actors, the compiler that transforms
[RVC-CAL] code to C must be told that we want to do memory sampling. For this
purpose, we extend the code generation dialog provided in the IDE. We also
modified the part of[ORCC|runtime system responsible to start and stop the application.
On application start-up, we instruct pumap| to start memory sampling for all the dataflow
tasks of the application. When the application is stopped, we correlate the samples
recorded by numap to actors and dump the results in a file for offline analysis.

For memory bandwidth profiling we don’t need modifications in the C generated
code. All the modifications are located in the part of[ORCC| runtime system responsible
to start and stop the application. When application starts, we launch a new thread whose
work consists in periodically reading and storing the number of bytes read and written
from and to each node. The period for this thread is chosen through a command
line argument provided when the application is launched. When the application ends,
the recorded memory read and write counts are also dumped to a file for offline analysis.

Our two memory profiling extensions are portable across hardware platforms thanks
to the usage of provided that it has been ported.

5.3.2 Experimental Setup

The hardware platform used to validate our [DDF] profiling mechanisms is the one we
already used for our runtime system described in Section It is an Intel
architecture made of two Xeon hexa-core resulting in a total of twelve cores. See
Table 5.1 for the details.

As described in Section several important parameters have to be decided
when executing [DDF] applications among the mapping of actors to dataflow tasks, the
size of channels and the way to schedule actors on each dataflow task. We now
review the different values we use in our experiments for these parameters.

Actors mapping For the mapping parameter we use two strategies provided by
The first one consists of a simple Round Robin (RR) mapping of actors to
dataflow tasks. The second one, called Weighted Load Balancing (WLB), is based on
actors execution time. To get this information, the application is first executed sequen-
tially (using one dataflow task only) with actors execution recording switched on. Then
from these execution time, the weighed load balancing algorithm sort actors by decreas-
ing execution times and map them onto the dataflow task with the lowest total load. In
both round robin and weighted load balancing cases, the generated mappings are saved
into files provided to the runtime system at application start-up through a command
line parameter.

80

5.3 DDF Programs Profiling

Channels size, actors scheduling and inputs [ORCC|imposes that the size of
channels is a power of two for performances reasons. This size allows to replace a modulo
operation by a less costly right shift operation in the circular buffer implementation of
used by The size unit is a number of tokens (and not number of bytes).

Regarding the scheduling of actors, we report results for the default round robin
scheduler only because the data driven scheduler provided by [ORCC] is still reported
as being in a beta state. Nevertheless, we plan to use our profiling mechanisms on this
scheduler in the short term to see how it impacts performances and resources usage.

Because is first dedicated to image decoding and image processing, the
applications we used in this experiments are image processing applications. We thus
profile these applications using different kinds of input video streams to see their impact
on the performances.

Scripting To choose among all these different parameters and to make our results
easily reproducible we developed a suite of python scripts allowing to:

e Compile applications to C and build the C code;

e Launch the compiled applications;

e Parse the profiling results to generate graphs and table that will be presented in
the next section.

The automatic compilation from to C allows to easily change the compile
time parameters that change the generated C code.

5.3.3 HEVC

Our first experiments are performed on an [High Efficiency Video Coding (HEVC)| video
decoder [8§]. also known as H.265, is the coming standard for video encoding
succeeding to H.264. It is jointly developed by the Moving Picture Experts Group
(MPEG) and the Video Coding Experts Group (VCEG). To handle the constraints
imposed by high image resolutions such as 4k and 8K, improves data compression
rate compared to H.264 while keeping the same video quality. [ORCC| comes with a
standardized version of decoding. We use this decoder in this section [89].

5.3.3.1 Scaling

We first report on the scaling of the video decoder when it’s executed with a number
of dataflow tasks that vary between one and twelve (recall that each dataflow task is
pinned to a specific core of the underlying hardware).

Global tendency Figure |5.6| shows the speedup compared to the sequential version
with four different input video sequences. In addition to the input sequences parameter,
we used two different [FIFO] channels size, 8192 and 65536 tokens, and the two different
mappings introduced previously, round robin and weighted load balancing.

We use this plot to highlight tendencies before looking into the details. First, we
notice that the decoder doesn’t scale well above 5 dataflow tasks for any of the four input
sequences that we used. Even if we are using up to twelve dataflow tasks, the highest

81

5 Profiling Mechanisms Exploitation

3 —e— Kristen&Saral1280x720, WLB, 8192
—m— PartyScene832x480, WLB, 8192
—o— Kimono11920x1080, WLB, 8192
—*— BasketballD1920x1080, WLB, 8192
2.5 || —— Kristen&Sara1280x720, WLB, 65536
--@ - PartyScene832x480, WLB, 65536
-# - Kimonol11920x1080, WLB, 65536
- ® - BasketballD1920x1080, WLB, 65536
-+ - Kristen&Saral280x720, RR, 8192
- - PartyScene832x480, RR, 8192
e Kimono11920x1080, RR, 8192
—m— BasketballD1920x1080, RR, 8192
—o— Kristen&Saral280x720, RR, 65536
—+— PartyScene832x480, RR, 65536
—— Kimonol11920x1080, RR, 65536
--@ - BasketballD1920x1080, RR, 65536

L
9 10 11 12

Figure 5.6: HEVC scaling. The X axis is the number of dataflow tasks used to execute the
decoder and the Y axis is the speedup over the sequential execution. The legend specifies
the video input stream with its resolution, the mapping strategy used (RR or WLB) and
the FIFO channel size (8192 or 65536).

speedup reached is 2.29 for the input sequence PartyScene, with a [FIFO| channels size
of 8192 tokens, weighted load balancing mapping and with five dataflow tasks.

The second conclusion we can draw from this plot is that the speedup tendency is
globally the same for all the input video sequences and the different channels
size. As a consequence, we reduce the number of values for the parameters in the
following when trying to understand why the application doesn’t scale. For the input
video sequence we focus on the Kimono stream because its resolution of 1920x1280
corresponds to the so-called widespread full HD resolution. For channels size, we
keep only the [ORCC]| suggested size of 8192 tokens. For the mapping, we keep the two
different strategies as the following will illustrate the obvious fact that the weighted load
balancing strategy is more efficient than the round robin one.

To understand why the application doesn’t scale above five/six dataflow tasks, we
first propose to look at the work load balancing between the dataflow tasks as described

in Section 4.5.11

Dataflow tasks balancing To compute the work load for a dataflow task we sum the
work load of all the actors mapped onto the task. Figures and [5.7b|show the dataflow
tasks load balancing for both round robin and weighted load balancing strategies when
the number of dataflow tasks vary between one and twelve. For each execution of the
application (a bar in the plot), the Y axis shows how the work load is distributed among
the dataflow tasks. In these two graphs, scheduling time is excluded. The value on top
of the plot, shows how many percents of the total work load are executed by the most
loaded core.

From these plots, we clearly see that for both mapping strategies, there are no more
clear mapping improvements above five dataflow tasks. Said differently, the work done
by the most loaded core doesn’t decrease anymore, or only very slowly. This load ranges
from 34 to 28 percents for the round robin mapping strategies and from 31 to 28 percents

82

5.3 DDF Programs Profiling

050
X X P X o o
OBOLO%C\] o o I~ X X
SR E ss5ER
™M N C\lg -

1

23 456 78 9101112 1 23 45 6 78 9101112
(a) Round robin mapping (b) Weighted load balancing mapping

Figure 5.7: HEVC dataflow tasks load balancing using the Kimono input a fifo size of
8192 tokens for both mapping strategies. The X axis represents the number of dataflow
tasks used to execute the application and the Y axis is the useful work executed by each
dataflow task. The value on top of the plot, shows how many percents of the total work
time are executed by the most loaded core.

for the weighted load balancing one.

Note that, as already mentioned, the weighted load balancing mapping strategy
performs better. As shown by the results for six and seven dataflow tasks in Figures
the round robin strategy can generate mapping to x+1 tasks that are worst than mapping
to x tasks. In this example, the mapping to seven tasks leads to tasks with a maximal
load of 38% whereas the mapping to six tasks leads to a maximal load of 34%. In the
case of the weighted load balancing mapping strategy, a mapping to x + 1 tasks is in
theory always better than a mapping to x tasks. It’s not the case for eleven and twelve
cores in this example. This is certainly due to the fact that some actors are slower in the
twelve mapping scenario than in the eleven one. Indeed, as depicted by these two plots
showing work time only (i.e. excluding scheduling time), the total work time increases
with the number of core. This is in part due to memory effects as will be discussed in
details in the next section.

Using the profiled information of actors execution times and knowing the mapping
from actors to dataflow tasks we now report how the application load is spread among
actors. This will demonstrate why the mapping algorithm is not able to reduce the load
of the most loaded dataflow tasks above a given number of cores.

Table (.4l shows how the load is balanced between actors for the execution of the
decoder with six dataflow tasks and using the weighted load balancing mapping strategy.
We arbitrarily present here the numbers for an execution with six dataflow tasks because
the results don’t vary significantly with the number of dataflow tasks. We clearly see
here that the load of 34% for the most loaded dataflow task shown on Figure is
made of the execution of one single actor, namely the HevcDecoder_InterPrediction
actor. After this actor come three other “big” actors limiting parallelism. Together,
these four actors represent 67% of the application’s load. In order to pretend to better
speedups, these actors need to be refactored in order to expose more parallelism to the

83

5 Profiling Mechanisms Exploitation

Actor Dataflow task Load (%)
HevcDecoder InterPrediction 5 34

—_
(@)

HevceDecoder_DecodingPictureBuffer
HeveDecoder SAO
HevcDecoder DBFilter DeblockFilt
HevceDecoder SelectCU

HevcDecoder_Algo_ Parser
HevcDecoder xIT_Block Merger

HevcDecoder IntraPrediction
HevcDecoder xIT 1T32x32 IT32x32 1d 0
HevcDecoder xIT IT32x32 IT32x32 1d 1

display
HevceDecoder xIT IT Splitter
HevcDecoder_ xIT _IT_Merger

HevcDecoder__generatelnfo MvComponentPred

HevcDecoder DBFilter GenerateBs

N[W I NN DD R WD W |||
R PR R, NN NDWhR] O] OO

Table 5.4: HEVC work load by actors using the Kimono input, F.S = 8192, M = WLB
and six dataflow tasks. The second column shows on which task actors are mapped. Only
the “biggest” actors are shown.

runtime system. Nevertheless, even if not enough parallelism is exposed by the [HEVC|
decoder as demonstrated in this paragraph, the decoder should in theory scale until it
reaches the limit imposed by the available parallelism. We now review why this is not
the case in practice.

Work time versus scheduling time Even in the case of an optimal mapping al-
gorithm, i.e. a mapping able to split the work load into x equal partitions when using
x dataflow tasks, the speedup may be smaller than z. Indeed, getting a speedup of z
implies that all the work between the dataflow tasks can be fully executed in parallel. In
our case of dataflow applications, even if actors are independent from each other, they
require input tokens and room in output channels in order to be fired. As a consequence,
the dataflow tasks will have sometime to wait. Moreover, even if a dataflow task can
always fire an actor, it requires some work to identify which of the actors are fireable.
This scheduling leads to useless time as previously mentioned.

Table reports the measured speedups, the theoretical maximal speedup and the
percentage of useful work among total work. Theses values have been measured on the
Kimono input with weighted load balancing mapping strategy and a channel size of 8192
tokens. The optimum speedup column (Speedup Opt) gives a number on the scaling
limitation resulting from the impossibility of the mapping strategy to parallelize the

84

5.3 DDF Programs Profiling

Nb tasks FPS Speedup Speedup Opt Useful Time%

1 468 1.00 (100.00%) 1.00 98.39
2 776 1.66 (89.01%) 1.86 90.41
3 8.65 1.85 (81.85%) 2.26 84.65
4 9.53 2.03 (78.69%) 2.59 79.52
5 9.79 2.09 (83.06%) 2.52 85.28
6 9.48 2.02 (76.71%) 2.64 77.06
7 9.34 1.9 (76.17%) 2.62 76.31
8 9.13 1.95 (76.00%) 2.57 76.86
9 9.15 1.95 (76.38%) 2.56 76.59
10 8.74 1.87 (74.62%) 2.50 74.64
11 9.44 2.02 (79.08%) 2.55 78.46
12 9.44 2.02 (78.90%) 2.55 78.28

Table 5.5: HEVC measured speedup vs optimum speedup and percentage of useful work
using the Kimono input, F'S = 8192 and M = W LB. The optimum speedup is computed
by dividing the work load of the sequential version by the work load of most loaded dataflow
task.

execution of the big actors. This optimum speedup is computed as following:

Sequential work load

Work load of the mazimaly loaded core

We see that the best speedup that can be achieved by the decoder is 2.64 because
of the HevcDecoder_InterPrediction as already said. The useful work percentage
column gives us additional information to understand why the optimal speedups are not
reached. The runtime system is spending a part of its time doing useless work. This
last column is in accordance with the measured speedup. Spending only X X percent of
time doing useful work leads to a speedup that is X X percent of the optimal speedup.

The scaling results and the balance between actors we introduced above are in perfect
accordance with results recently published by Jerbi et al [46]. Compared to this work, we
presented in this section additional information allowing to better understand why the
decoder doesn’t scale to the theoretical limit imposed by the mapping of actors
to dataflow tasks. Moreover, we highlighted the fact that the time required to do useful
work increases with the number of dataflow tasks used. We now review the results for
our memory profiling mechanisms to understand why the execution time increases with
the number of dataflow tasks.

5.3.3.2 Memory Profiling
As described in Section |5.3.1.2|, we profile memory bandwidth usage and sample memory
accesses to get a better understanding of the application behavior.

85

5 Profiling Mechanisms Exploitation

Memory Bandwidth The hardware platform we use is equipped with two
nodes. Each of these nodes comes with 3 x 8 GiB of DDR3-1333 memory, leading to a
theoretical memory bandwidth of 3 * 1033 x size of memory bus (8 bytes) = 32 GB/s.
Using a micro-benchmark coming from minime [90] and performing 64-bits memory load
instructions, we evaluated in practice a maximal read bandwidth of 23 GB/s. To reach
this value, the benchmark has to use 8 threads, each pinned to a dedicated core. These
threads perform sequential 64 bits memory load instructions. When using more than 8
threads, the memory bandwidth doesn’t increase anymore. For the write bandwidth, we
evaluate, also using Minime, a maximal bandwidth of almost 20 GB/s. These results
are conformed to results published for the same Intel micro architecture [22].

This upper bound on the memory read and write bandwidth allows us to get a
rough idea on the fact that the video decoder could be limited by the memory
bandwidth.

Table [5.6) reports the measured read and write bandwidth for the two nodes
of the platform. Theses values have been measured on the Kimono input with weighted
load balancing mapping strategy and a channel size of 8192 tokens. The bandwidth is
computed by sampling the value of the memory controllers read and write PMU]|register
200 times per second. On our hardware platform, it corresponds to the UNC _QMC-
_ NORMAL READS.ANY and UNC_QMC WRITES.FULL.ANY events as described
in Intel’s Software Developer Manual chapter 18 [83].

From this table, it is clear that the RVC-CAT|[HEVC]| decoder is not limited by the
memory bandwidth. Regarding the write bandwidth, the application maximal traffic is
just below 1.8 GB/s for the first node when we use twelve dataflow tasks. For
the read bandwidth, the maximal bandwidth for a single NUMA]| node is reached when
using ten dataflow tasks. In this case, the average bandwidth on the first NUMA|node is
around 10 GB/s. Nevertheless, this value is only half of the maximal bandwidth we got
with micro benchmarks leading to think that it’s not a bottleneck for this application.

From this table, we can also note that the read memory bandwidth increases sharply
as soon as the second node starts to be used. In this case, we suspect that the
memory traffic is not only incurred directly by data but by the cache coherency protocol
responsible to keep caches between the two nodes coherent.

Memory Load Sampling To get a more accurate understanding of the memory
usage, we now report the results from the memory accesses sampling. On the Intel
hardware platform we use in these experiments, the [PMU] only provides memory loads
sampling. This sampling mechanisms is known as Load Latency Performance Monitoring
Facility in the Software Development Manual chapter 18 [83]. As a consequence we
report only memory load sampling. More recent Intel hardware, also provide memory
write sampling capabilities known as Precise Store Facility.

Figure [5.8) shows how memory loads are distributed according to the level of the
memory hierarchy that served it. Again, the results have been obtained on the Kimono
input with weighted load balancing mapping strategy and a channel size of 8192 tokens.
The X axis represents the number of dataflow tasks used to execute the application and
the Y axis is the percentage of total memory access time for each level of the memory
hierarchy. The value on top of the plot is the average memory load latency in cycles.
This plot only includes memory samples associated to actors firing. In particular, it

86

5.3 DDF Programs Profiling

Nb Dataflow Tasks Numa Node Read Bdw (avg/%RSD) Write Bdw (avg/%RSD)
1 0 116.41/1.13 81.89/1.15
1 1.11/0.88 0.53/3.05
9 0 190.80/0.81 135.16/0.81
1 1.27/0.97 0.55/1.54
3 0 212.54/0.87 150.97/0.88
1 1.46,/0.90 0.63/1.37
4 0 235.12/0.86 166.17/0.87
1 1.33/1.02 0.58/1.80
5 0 248.70/0.85 171.91/0.86
1 0.52/1.14 0.54/19.58
6 0 238.80/0.76 166.09/0.77
1 2.12/0.79 1.12/1.24
7 0 4246.18/0.34 957.00/0.24
1 254.50/0.78 94.50/0.77
N 0 5454.60/0.30 1212.38/0.17
1 3226.28/0.50 698.60/0.30
9 0 6810.68/0.09 1484.24/0.09
1 3898.66,/0.11 869.08/0.11
10 0 10513.84/0.06 2157.43/0.08
1 3046.14/0.19 912.21/0.18
1 0 7264.78/0.07 1768.76/0.05
1 6191.71/0.12 1379.21/0.05
19 0 8546.34/0.07 1757.84/0.04
1 4185.00/0.10 1011.86/0.05

Table 5.6: HEVC read and write memory bandwidth in MiB/s using the Kimono input,
FS = 8192 and M = W LB. The table shows the average bandwidth along with the relative
standard deviation (%RSD) for the two NUMA nodes of the platform.

87

5 Profiling Mechanisms Exploitation

0 O O <+ 0 A — < 10
W m g MmO T o9 Y9
QAL S AN s S S
I~ 00 & ™~ ™~ = = —~ —~ —~ N
E E D L1Hit
O LFBHit
O L2Hit
= E L3Hit
—| || |© E L3Miss
1 || |~
% g Sy — 2 2 lRemoteCachelhopHit
2| o — B LocalRAMHIt

64
57
52

[| RemoteRAM1hopHit

47

47
39
39
37

12 3 45 6 7 8 9 101112

Figure 5.8: HEVC memory load distribution using the Kimono input, M = WLB and
FS = 8192. The X axis represents the number of dataflow tasks used to execute the
application and the Y axis is the percentage of total memory access time for each level of
the memory hierarchy. The value on top of the plot is the average memory load latency.

excludes the accesses generated by the runtime system scheduler. The sampling rate is
50000; i.e. a sample is recorder every 50000 memory loads. Moreover, the[PMU]sampling
mechanism only allows to sample data memory accesses. As a consequence, this plot
doesn’t report memory accesses generated by the instructions fetcher.

From this table, it is clear that the memory sub-system impacts the execution time of
the actors. In the sequential execution, 89 percents of the memory access time is spent
by accesses served by the L1 cache. In the execution with twelve cores, this number
falls to 37 percents and we see that 21 percents of the memory access time is spent
by accesses served by the remote cache. These accesses correspond to reads into [FIFO]
channels connecting two actors that are mapped on a different node. Indeed, the
weighted load balancing algorithm that we used only takes into account actors execution
time and not data exchanges.

The numbers on the top of each bar showing the average memory access time is the
main explication of the increase of actors execution time that we noted from Figure [5.7]
L1 and L2 data caches are private to each core on our platform. Because [FIFO] channels
producer and consumer can be located on different cores, the actors that consume the
data rely on the cache coherency protocol to bring the data in the shared L3 cache.
The cache coherency overhead is the highest when the consumer and the producer are
located on cores from different NUMAI nodes.

5.3.4 MPEG4-part2

We now show how our profiling mechanisms explain the scaling performances on an other
video decoder provided by the [ORCC]| framework, namely the MPEG4-part2 decoder.
Because, this section presents the same graphs has the one introduced for the [HEVC]
decoder we do not detail the graphs here but only present the conclusion that we can
draw from the results.

Figure shows an the MPEG4 decoder scales using two different input streams,

88

5.3 DDF Programs Profiling

two different channels size and weighted load balancing mapping strategy. The
global shape of this scaling plot is the same than the scaling plot for the[HEVC|decoder.
The four curves scale up to 6 dataflow tasks. Then, for three of them we clearly see a
drop down when we start to use the second node (transition from 6 to seven
dataflow tasks). After that the four curves have a different shape, that we can explain
using dataflow tasks balancing profiling and memory accesses sampling. We now dig into
these details for the curve representing the decoding of the oldtowncross input stream
with [FIFO] channels having a capacity of 8192 tokens.

Figure shows the dataflow tasks load balancing for the oldtowncross input, a fifo
size of 8192 tokens and weighted load balancing strategy. Figure [5.9c shows the results
of memory sampling for the same parameters. The three graphs are presented side by
side to make easier the correlation between them.

From Figure we clearly see that as for the [HEVC]| decoder, the work time in-
creases with the number of dataflow tasks. Again, this is partly explained by the memory
accesses time that also increases with the number of dataflow tasks as depicted on Fig-
ure The twelve dataflow tasks bar on Figure height is about twice the height
of the bar for the sequential execution and the twelve dataflow tasks average memory
sample latency is also twice the average memory sample latency for the sequential exe-
cution. Nevertheless, we can’t explain the big jump in total work time from the six to
the seven dataflow tasks using the memory samples latency information only. Indeed,
from six to seven dataflow tasks the average memory latency only changes from 10.20 to
10.76. We explain this big jump in total work time by an increase of the execution time
of the actors’ action scheduler. Indeed, in an actor can be made of several
step functions. The choice of which step function to execute when an actor is given
CPU time by the dataflow task round robin scheduler is left to the actor. It usually
made on the current state of the actor. This hypothesis has to be confirmed by profiling
at action levels instead of doing profiling at actor level.

These graphs also show an interesting point regarding the transition from eight
to nine dataflow tasks. Regarding the speedup, Figure tells us that the decoder
performances are the almost the same for eight and nine dataflow tasks. Figure [5.9b
shows that the mapping is clearly improved when using nine tasks compared to eight
(26% to 18% for the most loaded task) but it also shows that the total work time has
increased a lot. These two factors compensate each other and lead to almost the same
speedup for eight and nine dataflow tasks. In this case, memory samples access time
on Figure [5.9¢| explains the major part of the increase in total work time. The average
memory latency jumps from 11.04 to 13.

5.3.5 Perspectives

We presented in this section the results for our application- and system-levels profiling
mechanisms on the standardized version of the RVC-CATJ[HEVC| decoder. We clearly
identified three important points that may lead to optimizations:

e The parallelism exposed by the application is not sufficient (Figure ;

e The scheduling time spent by the runtime system is not negligible (Table ;

e The architecture has to be taken into account to efficiently exploit the
memory sub-system (Figure [5.8)).

89

5 Profiling Mechanisms Exploitation

—e— oldtowncross, 420x720, WLB, 8192
—— foreman, cif, WLB, 8192

—&— oldtowncross, 420x720, WLB, 65536
—— foreman, cif, WLB, 65536

4 T T T T T T T T T

| L
1 2 3 45 6 7 8 9 1011 12

(a) Scaling. The Y axis is the speedup over the sequential execution. The legend specifies
the video input stream with its resolution, the mapping strategy used is always WLB and the
FIFO channel size (8192 or 65536).

[L1Hit
O LFBHit
O L2Hit
H L3Hit

= RemoteCachelhopHit
B rLocalRAMHIt

o X2 oS © F o v v
o B R VW DM ON~ O DO ®
X O — I == B I T
0 o © I~ 00 0 O — = — o~ — —
—
—
i
= 2 le
| ho ‘_"—c
@@ |

86
81
7
68
67
63
54
53
49
47

1 2 3 45 6 7 8 9 101112 1 2 3 45 6 7 8 9 101112

(b) Dataflow tasks load balancing. The Y axis (¢) Memory accesses cost per memory level.
is the useful work executed by each dataflow The Y axis is the percentage of total memory
task. The value on top of the plot, shows how access time for each level of the memory hi-
many percents of the total work time are exe- erarchy. The value on top of the plot is the
cuted by the most loaded core. average memory load latency.

Figure 5.9: MPEG4 analysis. In all the three graphs the X axis represents the number of
dataflow tasks used to execute the application. The two bottom graphs have been generated
with the oldtowncross input, a fifo size of 8192 tokens and weighted load balancing strategy.

90

5.3 DDF Programs Profiling

Regarding the first point, Jerbi et al [46] recently propose a new version of the
decoder. This version has not yet been standardized but it should be soon. In this
optimized design of the decoder, the big actors we identified using application-
level profiling have been spitted. Currently these actors operate sequentially on the
three image components (Y, U and V). Jerbi and al [46] propose to have one actor
for each image component to expose more parallelism. Moreover, to speedup decoding
time and to get closer to widespread decoders such as ffmpeg, they propose to use
native code relying on x86 SSE instructions instead of using C code generated from
[RVC-CAL] for the critical actors. We started to evaluate this optimized version with our
profiling mechanisms. Application level profiling confirms that the application exposes
more parallelism. For the memory profiling, we need to identify how our profiler could
be extended to take into account the native code coming from a library dynamically
linked to correlate memory samples with actors. Then it will be interesting to see how
the usage of SSE instructions impacts the memory behavior.

For the second point, we plan to apply our profiling mechanisms using the data
driven scheduler provided by the runtime system. The results should give us
accurate information on the efficiency for this scheduling algorithm.

Regarding the third point about the architecture, we strongly believe that
there is room for many performance improvements. First, we plan to apply our memory
profiler on new mapping algorithms recently added to the[ORCC] framework taking into
account the amount of tokens exchanged between actors [59]. The memory sampling
mechanisms will allow us to confirm the efficiency of these algorithms by numbers. Sec-
ond, from preliminary results not presented here, it seems that many memory accesses
are not generated by [FIFO] channels accesses. We plan to extend our profiling mecha-
nisms to associate memory samples with global data and stack data. If this hypothesis
is confirmed, we may be able to optimize the runtime system with a clever allocation
of global data structures to limit the effects. Then, because the provides
the required events to compute the interconnect bandwidth, we plan to extend the
library with support for monitoring this metric. This information will allow to
know whether a given mapping saturates the processor interconnect network or not. Fi-
nally, we plan to extend our profiler to count the number of instructions to build roofline
plots [91]. This performance model recently introduced, makes precise the notions of
memory- and compute-boundness. It provides an insightful visualization of bottlenecks
by plotting the operational intensity (number of instructions per memory access) against
performances along with the memory and the CPU limits imposed by the hardware.

91

5 Profiling Mechanisms Exploitation

92

Conclusion and Perspectives

Tu deviens responsable pour toujours de ce que tu as apprivoisé.
in “Le Petit Prince” by Antoine de Saint-Exupéry

Multi-core processors are today used in almost all desktop computers, all servers,
and in more and more smart-phones. Many-core processors such as Intel Xeon Phi [I§],
Kalray [MPPA|[19] or Tilera’s processors starts to be used in specific contexts. The actual
trend of the computer industry leads us to think that the number of cores in all these
systems will increase in the coming years. From the software perspective, this trend
has a big impact. To exploit the performances provided by these parallel platforms,
the software has to be spitted in many independent activities. To do that, computer
scientists either rely on automatic parallelization of sequential code, or on concurrent
programming model. In the later case, applications are written by programmers as a set
of concurrent activities. This work focused on the dataflow programming model being
one of the many concurrent programming model in use today. We investigated how to
profile dataflow applications executed on shared-memory multi-core architectures with
the objective to ensure a given throughput requirement.

To conclude this thesis, I now summarize the work presented in the three previous
chapters. Then I present the perspectives opened by this work. Finally, I give personal
thoughts about the acceptance of dataflow programming.

6.1 Summary

This section summarizes the work I did during my thesis. It recalls the main contribu-
tions and emphasizes the main difficulties encountered for each of them. I start with the
contribution introduced in Chapter [3] about the propagation of throughput constraints
in SDF graphs. Then I summarize the work concerning the throughput aware
runtime system before discussing about the profiling mechanisms while pinpointing
the difficulties encountered to apply the profiling mechanisms introduced in Chapteifd]

6.1.1 SDF Throughput Propagation

Expressing throughput constraints in dataflow graphs was a question of languages syn-
tax. I proposed extensions for two dataflow languages in this work, but extending any
other dataflow language could be easily done. The only question to answer here is, what
is the most practical language extension from the programmers point of view ?

93

6 Conclusion and Perspectives

The main contribution of the Chapter [3] is the proposition to statically exploit in-
formation provided by the [SDF| model along with a throughput constraint to compute
actors execution times that can be used at runtime to identify bottlenecks. It took time
to mature this simple idea, mainly to identify how to exploit the throughput constraint
propagated on all the edges of the dataflow graph. Indeed, even if this throughput con-
straint on all the edges of the graph is available, it can’t be used directly. An actor
that doesn’t produce enough tokens in the dataflow graph is either to slow or not feed
fast enough for input tokens. A walk-up in the dataflow to chain until finding an actor
producing enough tokens allows to distinguish between these two cases. In the partic-
ular case of dataflow graphs without cycles. To easily use this information in any [SDE]
graph I proposed to compute the so-called actors expected execution time. Because this
information concerns only one firing of the actor, it can be use in any cases.

This contribution is valid for any language conformed to the [SDF| model. It is
clearly independent from any target architecture and independent from the execution
model. In particular, this proposal is independent from the level of parallelism used
to execute the applications, i.e. it works for executed sequentially and for
applications executed in parallel by any number of computing units. As described in
the next section, the main challenge regarding the exploitation of this proposal is an
implementation concern.

6.1.2 SDF Throughput Aware Runtime

Section proposes a [SDF| throughput aware runtime system based on concepts in-
troduced in Chapters [3| and [4l T demonstrated how a throughput constraint statically
propagated on a graph can be used at runtime to identify bottleneck actors.
Even if the throughput propagation algorithms I introduced in Chapter [3|are straightfor-
ward, implementing them into the compiler was challenging. Indeed,
has grown over the last ten years from a basic framework, to a very big infrastruc-
ture targeting many hardware architectures and implementing a lot of different, often
incompatible, optimizations. Many people have contributed to the framework with
different objectives in mind. As result, finding the right places into the compiler source
code where to add the throughput constraint propagation code was quite difficult. More-
over, once | identified where to add this throughput propagation code, it was also very
difficult to effectively do it without breaking the existing compiler’s code.

The runtime system extension implementation was also challenging. The main dif-
ficulty I encountered was about the implementation of mechanism to start and stop
applications required to safely perform runtime adaptations. This mechanism involves
synchronization between dataflow application tasks and the runtime system monitor-
ing tasks. Getting an operational deadlock free implementation for this mechanism
was difficult. These synchronization difficulties I encountered reinforced my belief that
multi-thread programming should be avoided as much as possible and is not a serious
candidate for the incoming more and more parallel processors. The step from sequential
programming to multi-thread programming is definitely not as simple as it seems to
be [6].

Last but not least, because the [SDF| throughput aware runtime is running on top
of Linux which is a very complex piece of software, it was very difficult to properly
integrate with the operating system. As will be discussed in the next section, I strongly

94

6.1 Summary

believe that the dataflow knowledge should be added into the operating system as will
be discussed in Section [6.2.21

Despite these main difficulties, I was able to build a proof-of-concept prototype
showing the interest the approach. With the dataflow structure knowledge, the runtime
system is able to take decisions and to perform adaptation that wouldn’t have been pos-
sible only with legacy threads. Dataflow actors can be migrated between dataflow tasks,
and data placement can be made with the information about who is communicating
with who.

6.1.3 DDF Profiling

In Section I presented a profiler based on mechanisms introduced in Chapter
for applications written and executed using the framework. I first intro-
duced mechanisms allowing to profile actors execution time and the imbalance between
dataflow tasks. Then, compared to the existing dataflow profilers, I introduced memory
profiling mechanisms based on hardware performance monitoring capabilities. This pro-
filer has been applied to two standardized video decoders provided alongside the ORCC|
framework. Using these profiling mechanisms I explained the scaling behavior of these
two video decoders. The memory profiling mechanisms I propose in this thesis allow to
explain with numbers a part of the non scaling behavior observed when using more than
one [NUMA| node of the underlying hardware. Most of the additional time required to
perform the same amount of work when using more cores is caused by memory overhead.

Thanks to the modularity of the ORCC| implementation, extending the framework
to express and take into account throughput constraints was far more easy than in the
framework. The main difficulty encountered to build this profiler was about
the memory profiling. As stated in Chapter [4], it is required to get a deep knowledge of
the underlying hardware and to dig into processors manuals to find the right hardware
monitoring mechanisms to set up. Even between two Intel micro-architectures, the PMU]
can vary significantly and requires a completely different piece of software to analyze
memory behavior. To alleviate the burden on programmer, I proposed the library
providing hardware performance counters abstractions allowing to understand how the
memory system is used by applications in [NUMA] architectures. This thin layer, built
on top of perf_event_open() Linux system call abstracts away these differences behind
a simple API. T implemented for the Intel Westmere-EP micro-architecture that
we used in Chapter [to validate our profiling mechanisms. This implementation
required few decade lines of code, but getting these lines right was quite challenging and
time consuming. I exchanged several mails on the Linux perf_event_open() mailing list
and spent long hours reading the Intel software developer manual [83] before getting the
final version of the implementation for my Westmere-EP experimental platform.

In addition to this difficulty caused by low-level concerns about memory profiling, I
faced an issue related to the compile- and run-time parameters provided by the [ORCC|
framework. To execute applications written with one has to configure many
parameters. These parameters include the size of[FTFO|channels, the mapping algorithm,
the scheduling strategy and some optimization parameters in the generation of C code
from one (such as the use of actors fusion or inlining). Moreover, several
optimized versions of the video decoders exist in addition to the one that have been
standardized. Because of these parameters, a huge number of profiling results had to be

95

6 Conclusion and Perspectives

generated and analyzed. This huge number make difficult the analyze, and make difficult
to find which parameter are the most important ones regarding performances. To face
these difficulties, I developed Python scripts allowing to easily select and generate plots
for any combination of the parameters. As will be discussed in the next section, I also
plan to work in collaboration with the team to better identify the accurate cases
where my memory dataflow profiler should be used.

6.2 Perspectives

In this section I describe the perspectives I see for this thesis work. The section is divided
into three parts. The first one presents the perspective opened by the [SDF| throughput
constraint propagation algorithm introduced in Chapter [3] It discusses how the proposal
could be extended to quasi static dataflow models. I then discuss about the benefits that
could result of the integration of dataflow knowledge inside the operating system kernel.
Finally, I discuss about the need for an open library dedicated to profiling.

6.2.1 Throughput Constraints in Quasi Static Dataflow Models

The throughput constraint propagation algorithm introduced in Chapter [3]is valid for
[SDF| graphs. The main perspective for this proposal consists in considering how it could
be extended to more expressive dataflow models.

An extension to [DDF]is excluded, since this model doesn’t provide any information
about actors consumption and production rates. Nevertheless, this proposal can be
integrated into [DDF] applications by considering static sub-graphs only. This idea of
considering static sub-graphs of applications has already been applied successfully
to statically schedule part of a graph for performances improvements [92]. The
throughput constraint propagation proposal could be applied to each static sub-graph
provided that a throughput constraint is provided for each one of them.

Extending the throughput constraint propagation proposal to the model
should be straightforward. Indeed, this model has been proven equivalent to the [SDF]
Nevertheless, some applications are more easily written using a language based on
than using a language based on [SDF]

With the increase of parallelism and the fact that more and more killer applications
are focused on data processing, new dataflow have been introduced in the last
years. Compared to the old programming model, these models allow to express
more applications while trying to keep the static properties of SDF} Among these mod-
els, we can mention [37]. In this model, an application is described as several
scenarios. Each scenario is itself described by a [SDF| graph. As for the integration into
graphs, the throughput constraint propagation algorithm could be applied to each
scenario provided at least a throughput constraint has been expressed on it.

The throughput constraint propagation algorithm could also be integrated into the
recently introduced model [38]. This model, successfully used to model the next
generation of telecommunication protocols [39], allows express graphs with consumption
and production rates that can vary during the execution of the application. When these
changes can happen depends depend on the particular specification of the model, but in
all cases the changes are based on parameters. Indeed, to keep static properties about
consistency and finite memory usage as in the model can’t allow arbitrary changes.
In [SPDEF] a quasi-static schedule including parameterized consumption and production

96

6.2 Perspectives

rates can be computed statically. Extending the throughput propagation proposal to
[SPDF] will require to take these parameters into account to have actors execution times
that also depend on parameters.

6.2.2 Towards a Dataflow Aware Operating System

The second main perspective for this work concerns the integration of dataflow informa-
tion into the operating system kernel itself. To my opinion, this integration is mandatory
to have a proper integration of dataflow applications into legacy systems and not only in
specific and dedicated contexts. Indeed, all the dataflow runtime systems [42, 58] [68, [77]
I encountered during my thesis, including mine presented in Section were imple-
mented on top of an existing operating system. In my case, the motivation for this
choice was purely practical. It’s far more easy to build a runtime system for scheduling
dataflow actors on top of Linux than directly integrated into the kernel scheduler and
the kernel memory management layer. This choice leads to implement dataflow runtime
systems that either make the assumption that the dataflow applications are the only
one running on the system or relying on operating system primitives. The first case
excludes the usage of dataflow application along side non dataflow applications because
the dataflow runtime system often uses all the hardware resources. In the second case,
as demonstrated in Section relying on kernel primitives induces overhead and can
lead to strange behaviors caused by the kernel scheduler heuristics.

As consequence, and he because operating system is the layer responsible to virtual-
ize hardware resources for applications I believe that the efficient execution of dataflow
programs must be under its responsibility. The kernel is the entity having the knowledge
of all the applications currently running and how they use hardware resources. In addi-
tion to provide concurrent activities through the notion of actors in the same way legacy
applications do with threads, the dataflow programming model provides a fundamental
information about data exchanges. This information has to be taken into account by the
kernel memory management layer for efficient memory usage. This is particularly true
on architectures. Recent Linux kernels implement memory migration heuristics
on architecture [93]. These migration mechanisms are based on a hack in the
virtual memory manager to generate fictive access violation faults on memory pages just
to compute statistics about pages accesses. These information could be provided for free
by the applications, because they are explicit in the programming model, to the kernel
memory management layer of a dataflow aware operating system.

Moreover, compared to thread scheduling which is based on complex heuristics inside
the Linux kernel, the data dependencies exposed by the dataflow programming model
can be exploited to efficiently schedule actors. When an actor is blocked because it
doesn’t have anymore input tokens to produce or because it doesn’t have anymore room
on output channels the actors to be executed are known. In the first case, the
actors feeding the blocked actor must be executed in order to provide new input tokens.
In the second case, the actors consuming the tokens produced by the blocked actor have
to be executed in order to consume tokens in the channels that are full. Dataflow
runtime systems exploiting this information are numerous [58, 59} [77], nevertheless they
are all implemented on top of an existing operating system as already stated. All these
works don’t take into account the cases where dataflow application are executed alongside
non dataflow applications.

97

6 Conclusion and Perspectives

6.2.3 An Open NUMA Profiling Library
The last main perspective for this work concerns the library. As stated in Chap-
ter [4] T implemented it only for the intel Westemer-Ep micro-architecture that I used for
my experiments because this platform was the one used in the industrial context for this
thesis. To prove the benefits for such a library, it must be ported onto other NUMA]
architectures and used to build other profiling tools.

Few months ago, I started a discussion on the [85] mailing list to discuss
about the abstraction provided by Including the abstraction provided by
into [PAP]] seems to require major changes to the [PAPT's existing very basic sampling
interface. These changes were on the todo list for the version 6 of I don’t know
exactly when this next major version is planned and what is the status for the memory
sampling feature in it. I plan to contact again the [PAPI| team for serious discussions on
this subject.

The complexity of setting up memory sampling on a single Intel micro-architecture
was real. Because NUMA] architectures are more and more used, and because the mem-
ory sub-system is the bottleneck for many killer applications, I strongly believe that this
complexity must be abstracted. Moreover, this thesis demonstrated the need for profiling
tools that correlate low level profiling statistics with high level concurrent programming
models. As a consequence, the purpose of the abstraction library I am speaking about,
is not to build yet another profiler [23], [74] [75] but allowing to easily build such

profilers in different concurrent programming model contexts.

6.3 Thoughts on the Dataflow Programming Paradigm

To close this thesis, I want to give few words on my personal belief about the (non)
adoption (yet) of the dataflow programming model from the industry. Indeed, even if
this programming model is theoretically attractive, for the reasons we already mentioned
many times in this thesis, it is not yet widely used in the industry.

During my thesis I had the opportunity to take on some classes at INSA Lyon. From
this experience, and my own one, I noticed that we, in the sense of software engineer,
are not really prepared to get away from the multi-thread programming model. Indeed,
we logically start to learn computer science with the sequential imperative programming
model because it closely matches the Von Neumann architectural model basically made
of global program counter and a global updatable memory. Unfortunately, for the same
reasons that we invoked in the Chapter [2] to explain the wide adoption of multi-thread
programming despite its strong drawback(s), this programming model is the one used
to introduce concurrent programming to future engineers. Indeed, it’s very easy to
start programming a parallel computer just by tweaking a piece of simple sequential
code to add several threads. Paradoxically, I personally put many efforts and a lot of
motivation trying to explain students how to get threads synchronization right where as
I was struggling in my own PhD work with deadlock in the throughput aware
runtime system. I don’t know how a shift towards other deterministic, or at least
less error prone, concurrent programming models could be operated in computer science
teaching, but I think it is required. The choice of which concurrent to use is dependent
on the teaching context and objectives. Hopefully, this shift already started in many
places and I am just saying here that after this personal PhD experience on dataflow
programming, I now totally agree with this shift.

98

6.3 Thoughts on the Dataflow Programming Paradigm

Moreover, to be adopted, dataflow programming languages need to be supported
with mature and efficient compilers, runtime systems, and profilers. All the software
stack should have the data dependency knowledge when applications are written as
dataflow graphs. I believe that the framework provided by the [DRCC] team is a first
promising step in this direction. Indeed, the IDE provides programmers with
fully operational tools.

My PhD was a great experience and as stated in the conclusion’s epigraph, this
work is now under my responsibility forever because “je I’ai apprivoisée”. Nevertheless
as stated in the introduction, even if I answered almost all the questions I had about
computer science before starting this work, I now have many new ones that are more
interesting.

99

6 Conclusion and Perspectives

100

References

1]

MANUEL SELVA, LIONEL MOREL, KEVIN MARQUET, AND STEPHANE FRENOT.
QoS Monitoring System for Dataflow Programs. In Proceedings of the Con-
férence d’informatique en Parallélisme, Architecture et Systéme (ComPAS), CFSE
track, 2013. (p.[3)

MANUEL SELVA, LIONEL MOREL, KEVIN MARQUET, AND STEPHANE FRENOT.
Extending Dataflow Programs with Throughput Properties. In Proceedings
of the First International Workshop on Many-core Embedded Systems, MES 13,
pages 54-57, New York, NY, USA, 2013. ACM. (p.

MANUEL SELVA, LIONEL MOREL, KEVIN MARQUET, AND STEPHANE FRENOT.
A Monitoring System for Runtime Adaptations of Streaming Applica-
tions. In Parallel, Distributed and Network-Based Processing (PDP), 2015 23nd
Euromicro International Conference on, March 2015. (p.

www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx. (p. @
www.nytimes.com/2010/02/05/technology/0O5electronics.html. (p. @

EDWARD A. LEE. The Problem with Threads. Computer, 39(5):33-42, May

2006. (p. [[15, 59)

VICTOR PANKRATIUS, A. JANNESARI, AND W.F. TicHy. Parallelizing Bzip2:
A Case Study in Multicore Software Engineering. Software, IEEE, 26(6):70—

77, 2009. (p.[6]

B. SiNHAROY, R. KarrLa, W. J. STARKE, H. Q. Le, R. CARGNONI, J. A.
VAN NORSTRAND, B. J. RONCHETTI, J. STUECHELI, J. LEENSTRA, G. L.
GUTHRIE, D. Q. NCUYEN, B. BLANER, C. F. MARINO, E. RETTER, AND
P. WiLLiams. IBM POWERT multicore server processor. IBM Journal
of Research and Development, 55(3):1:1-1:29, May 2011. (p.[6]

J Yang, H. Cur, J. Wu, Y. TaNG, AND G. Hu. Determinism is not enough:

Making parallel programs reliable with stable multithreading. Communi-
cations of the ACM, 2014. (p. @,

JOE ARMSTRONG, ROBERT VIRDING, CLAES WIKSTROM, AND MIKE WILLIAMS.
Concurrent Programming in ERLANG, 1993. (p. @

101

http://doi.acm.org/10.1145/2489068.2489077
www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
www.nytimes.com/2010/02/05/technology/05electronics.html

6 References

[11] JouN E. STONE, DAVID GOHARA, AND GUOCHUN SHI. OpenCL: A Parallel

Programming Standard for Heterogeneous Computing Systems. [FEE
Des. Test, 12(3):66-73, May 2010. (p.[6)

[12] GILLES KAHN. The Semantics of Simple Language for Parallel Program-
ming. In IFIP Congress, pages 471-475, 1974. (p. [6]

[13] J.B. DENNIS. First version of a data flow procedure language. In Symposium
on Programming, pages 241-271, 1974. (p. @

[14] http://ark.intel.com/products/codename/42174/Haswelll (p.[8} [9)

[15] www.cea.fr/defense/top500-tera-100-supercalculateur-le-plus-puiss-58066.

(p.

[16] [www.research.ibm.com/cell/. (p.[8)
[17] [www . top500. org/system/177999. (p. [3)

[18] Intel. Intel Xeon Phi Coprocessor Instruction Set Architecture Reference Manual,

2012. (p. [}

[19] BENOIT DUPONT DE DINECHIN, DUCO VAN AMSTEL, MARC POULHIES, AND
GUILLAUME LAGER. Time-critical Computing on a Single-chip Massively
Parallel Processor. In Proceedings of the Conference on Design, Automation &
Test in FEurope, DATE ’14, pages 97:1-97:6, 3001 Leuven, Belgium, Belgium, 2014.
European Design and Automation Association. (p. ,

[20] DANIEL J. SORIN, MARK D. HiLL, AND DAvVID A. WooD. A Primer on Memory
Consistency and Cache Coherence. Morgan & Claypool Publishers, 1st edition,

2011. (p.

[21] ULricH DREPPER. What Every Programmer Should Know About Mem-

ory, 2007. (p.

[22] DANIEL MoLKA, DANIEL HACKENBERG, ROBERT SCHONE, AND MATTHIAS S.
MULLER. Memory Performance and Cache Coherency Effects on an Intel
Nehalem Multiprocessor System. In Proceedings of the 2009 18th International
Conference on Parallel Architectures and Compilation Techniques, PACT 09, pages
261-270, Washington, DC, USA, 2009. IEEE Computer Society. (p.

[23] RENAUD LACHAIZE, BAPTISTE LEPERS, AND VIVIEN QUEMA. MemProf: A
Memory Profiler for NUMA Multicore Systems. In Proceedings of the 2012
USENIX Conference on Annual Technical Conference, USENIX ATC’12, pages 5-5,
Berkeley, CA, USA, 2012. USENIX Association. (p.

[24] TupOR DAVID, RACHID GUERRAOUI, AND VASILEIOS TRIGONAKIS. Everything
You Always Wanted to Know About Synchronization but Were Afraid to
Ask. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP 13, pages 33-48, New York, NY, USA, 2013. ACM. (p.

102

http://dx.doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1109/MCSE.2010.69
http://ark.intel.com/products/codename/42174/Haswell
www.cea.fr/defense/top500-tera-100-supercalculateur-le-plus-puiss-58066
www.research.ibm.com/cell/
www.top500.org/system/177999
http://dl.acm.org/citation.cfm?id=2616606.2616725
http://dl.acm.org/citation.cfm?id=2616606.2616725
http://dx.doi.org/10.1109/PACT.2009.22
http://dx.doi.org/10.1109/PACT.2009.22
http://dl.acm.org/citation.cfm?id=2342821.2342826
http://dl.acm.org/citation.cfm?id=2342821.2342826
http://doi.acm.org/10.1145/2517349.2522714
http://doi.acm.org/10.1145/2517349.2522714
http://doi.acm.org/10.1145/2517349.2522714

[25]

[26]

[27]

[28]

[33]

[34]

[35]

MOHAMMAD DASHTI, ALEXANDRA FEDOROVA, JUSTIN FUNSTON, FABIEN GAUD,
RENAUD LACHAIZE, BAPTISTE LEPERS, VIVIEN QUEMA, AND MARK ROTH.
Traffic Management: A Holistic Approach to Memory Placement on
NUMA Systems. In Proceedings of the Fighteenth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
'13, pages 381-394, New York, NY, USA, 2013. ACM. (p.

ZOLTAN MAJO AND THOMAS R. GROss. Memory System Performance in a
NUMA Multicore Multiprocessor. In Proceedings of the 4th Annual Interna-
tional Conference on Systems and Storage, SYSTOR ’11, pages 12:1-12:10, New
York, NY, USA, 2011. ACM. (p.

ZOLTAN MAJO AND THOMAS R. GROSS. Memory Management in NUMA
Multicore Systems: Trapped Between Cache Contention and Intercon-

nect Overhead. In Proceedings of the International Symposium on Memory Man-
agement, ISMM ’11, pages 11-20, New York, NY, USA, 2011. ACM. (p.

SERGEY BLAGODUROV, SERGEY ZHURAVLEV, MOHAMMAD DASHTI, AND
ALEXANDRA FEDOROVA. |A Case for NUMA-aware Contention Manage-
ment on Multicore Systems. In Proceedings of the 2011 USENIX Conference
on USENIX Annual Technical Conference, USENIXATC’11, pages 1-1, Berkeley,
CA, USA, 2011. USENIX Association. (p.

BEN VERGHESE, SCOTT DEVINE, ANOOP GUPTA, AND MENDEL ROSENBLUM.
Operating System Support for Improving Data Locality on CC-NUMA
Compute Servers. SIGOPS Oper. Syst. Rev., 30(5):279-289, September 1996.

(p.

PETER VAN ROY AND SEIF HARIDI. Concepts, Techniques, and Models of Com-
puter Programming. MIT Press, Cambridge, MA, USA, 2004. (p.

GILLES KAHN AND DAVID MACQUEEN. Coroutines and Networks of Parallel
Processes. Research report, 1976. (p.

EDpwARD A. LEE AND T.M. PARKS. Dataflow process networks. Proceedings
of the IEEE, 83(5):773 =801, may 1995. (p.

EDWARD A. LEE AND D.G. MESSERSCHMITT. Synchronous data flow. Pro-
ceedings of the IEEE, 75(9):1235 — 1245, sept. 1987. (p.

EDWARD ASHFORD LEE AND DAVID G. MESSERSCHMITT. Static Scheduling of
Synchronous Data Flow Programs for Digital Signal Processing. IFEE

Trans. Comput., 36(1):24-35, January 1987. (p.

WILLIAM THIES AND SAMAN AMARASINGHE. An empirical characterization of
stream programs and its implications for language and compiler design.
In Proceedings of the 19th international conference on Parallel architectures and

compilation techniques, page 365, 2010. (p.

103

http://doi.acm.org/10.1145/2451116.2451157
http://doi.acm.org/10.1145/2451116.2451157
http://doi.acm.org/10.1145/1987816.1987832
http://doi.acm.org/10.1145/1987816.1987832
http://doi.acm.org/10.1145/1993478.1993481
http://doi.acm.org/10.1145/1993478.1993481
http://doi.acm.org/10.1145/1993478.1993481
http://dl.acm.org/citation.cfm?id=2002181.2002182
http://dl.acm.org/citation.cfm?id=2002181.2002182
http://doi.acm.org/10.1145/248208.237205
http://doi.acm.org/10.1145/248208.237205

6 References

[36]

[37]

[40]

[41]

[42]

[45]

G. BILSEN, M. ENGELS, R. LAUWEREINS, AND J.A. PEPERSTRAETE. Cyclo-
static data flow. In Acoustics, Speech, and Signal Processing, 1995. ICASSP-95.,
1995 International Conference on, 5, pages 3255 —3258 vol.5, may 1995. (p.

43)

B.D. THEELEN, M.C.W. GEILEN, T. BASTEN, J.P.M. VOETEN, S.V. GHEO-
RGHITA, AND S. STUIJK. A scenario-aware data flow model for combined
long-run average and worst-case performance analysis. In Formal Methods
and Models for Co-Design, 2006. MEMOCODE ’06. Proceedings. Fourth ACM and
IEEFE International Conference on, pages 185-194, July 2006. (p.

P. FRADET, A. GIRAULT, AND P. PorPLAVKO. SPDF: A schedulable paramet-
ric data-flow MoC. In Design, Automation Test in Europe Conference Exhibition

(DATE), 2012, pages 769-774, 2012. (p.

MICKAEL DARDAILLON, KEVIN MARQUET, TANGUY RISSET, JEROME MAR-
TIN, AND HENRI-PIERRE CHARLES. A Compilation Flow for Parametric
Dataflow: Programming Model, Scheduling, and Application to Het-
erogeneous MPSoC. In Proceedings of the 2014 International Conference on
Compilers, Architecture and Synthesis for Embedded Systems, CASES 14, pages

8:1-8:10, New York, NY, USA, 2014. ACM. (p.

I. AMER, C. LucaRrz, G. ROQUIER, M. MATTAVELLI, M. RAULET, J.-F. NEZAN,
AND O. DEFORGES. Reconfigurable video coding on multicore. Signal Pro-
cessing Magazine, IEEE, 26(6):113 —123, november 2009. (p. [49]

JOHAN EKER AND JORN JANNECK. CAL language report. Technical report,
EECS Department, University of California, Berkeley, 2002. (p.

HERVE YVIQUEL, ANTOINE LORENCE, KHALED JERBI, GILDAS COCHEREL,
ALEXANDRE SANCHEZ, AND MICKAEL RAULET. Orcc: Multimedia Devel-
opment Made Easy. In Proceedings of the 21st ACM International Conference
on Multimedia, MM ’13, pages 863-866. ACM, 2013. (p.

J. GORrIN, M. RAULET, Y.-L. CHENG, H.-Y. LiN, N. SIRET, K. SUGIMOTO, AND
G.G. LEE. An RVC dataflow description of the AVC Constrained Base-
line Profile decoder. In Image Processing (ICIP), 2009 16th IEEE International
Conference on, pages 753-756, Nov 2009. (p.

E. BezaTi, M. MATTAVELLI, AND M. RAULET. RVC-CAL dataflow imple-
mentations of MPEG AVC/H.264 CABAC decoding. In Design and Ar-
chitectures for Signal and Image Processing (DASIP), 2010 Conference on, pages
207-213, Oct 2010. (p.

M. CHAVARRIAS, F. PESCADOR, M. GARRIDO, E. JUAREZ, AND M. RAULET.
A DSP-Based HEVC decoder implementation using an actor language
dataflow model. Consumer Electronics, IEEE Transactions on, 59(4):839-847,
November 2013. (p.

104

http://doi.acm.org/10.1145/2656106.2656110
http://doi.acm.org/10.1145/2656106.2656110
http://doi.acm.org/10.1145/2656106.2656110

[46]

[47]

[50]

[51]

[52]

[53]

KHALED JERBI, DANIELE RENZI, DAMIEN DE SAINT-JORRE, HERVE YVIQUEL,
MICKAEL RAULET, CLAUDIO ALBERTI, AND MARCO MATTAVELLI. |Develop-
ment and optimization of high level dataflow programs: the HEVC de-
coder design case. In 48th Asilomar Conference on Signals, Systems and Com-
puters, Pacific Grove, United States, November 2014. (p.

HRISHIKESH SALUNKHE, ORLANDO MOREIRA, AND KEES VAN BERKEL. Mode-
controlled Dataflow Based Modeling & Analysis of a 4G-LTE Re-
ceiver. In Proceedings of the Conference on Design, Automation & Test in Europe,
DATE ’14, pages 212:1-212:4, 3001 Leuven, Belgium, Belgium, 2014. European
Design and Automation Association. (p.

MAXIME PELCAT, SLAHEDDINE ARIDHI, JONATHAN PIAT, AND JEAN-FRANOIS
NEZAN. Physical Layer Multi-Core Prototyping: A Dataflow-Based Approach for
LTE eNodeB. Springer Publishing Company, Incorporated, 2012. (p.

JUNAID JAMEEL AHMAD, SHUJUN LI, AHMAD REZA SADEGHI, AND THOMAS
SCHNEIDER. CTL: A Platform-Independent Crypto Tools Library Based
on Dataflow Programming Paradigm. In in Proceedings of 16th Interna-
tional Conference Financial Cryptography and Data Security (FC 2012). 2012, 2012.

(p-
www.storm.apache.org/. (p.

A.-H. GHAMARIAN, M. C W GEILEN, S. STULJK, T. BASTEN, A. J M MOONEN,
M.J.G. BEkoo1J, B.D. THEELEN, AND M.R. MousaAvi. Throughput Analysis
of Synchronous Data Flow Graphs. In Application of Concurrency to System
Design, 2006. ACSD 2006. Sixth International Conference on, pages 25-36, 2006.

(p- 23, 28)

S. STulJK, T. BASTEN, M. C W GEILEN, AND H. CORPORAAL. Multiprocessor
Resource Allocation for Throughput-Constrained Synchronous Dataflow
Graphs. In Design Automation Conference, 2007. DAC '07. }4th ACM/IEFEE,

pages 777-782, 2007. (p.

A.H. GHAMARIAN, M.C.W. GEILEN, T. BASTEN, AND S. STUIJK. Parametric
Throughput Analysis of Synchronous Data Flow Graphs. In Design, Au-
tomation and Test in Europe, 2008. DATE ’08, pages 116-121, March 2008. (p.

28)

A. BonrIETTI, L. BENINI, M. LOMBARDI, AND M. MILANO. An efficient and
complete approach for throughput-maximal SDF allocation and schedul-

ing on multi-core platforms. In Design, Automation Test in Furope Conference
Ezhibition (DATE), 2010, pages 897-902, March 2010. (p.

SERGIU CARPOV, Loic CUDENNEC, AND RENAUD SIRDEY. Throughput con-
strained parallelism reduction in cyclo-static dataflow applications. Pro-

cedia Computer Science, 18:30-39, 2013. (p. ,

105

https://hal.archives-ouvertes.fr/hal-01120927
https://hal.archives-ouvertes.fr/hal-01120927
https://hal.archives-ouvertes.fr/hal-01120927
http://dl.acm.org/citation.cfm?id=2616606.2616866
http://dl.acm.org/citation.cfm?id=2616606.2616866
http://dl.acm.org/citation.cfm?id=2616606.2616866
www.storm.apache.org/

6 References

[56]

[58]

[59]

[62]

REBECCA L. CorLLiNs AND LucaA P. CARrRLONI. Flexible Filters: Load Bal-
ancing Through Backpressure for Stream Programs. In Proceedings of the
Seventh ACM International Conference on Embedded Software, EMSOFT 09, pages

205-214, New York, NY, USA, 2009. ACM. (p.

YooNsEO CHoOI, CHENG-HONG L1, DiLMA DA SiLvA, ALAN BIVENS, AND Eu-
GEN SCHENFELD. Adaptive Task Duplication Using On-line Bottleneck
Detection for Streaming Applications. In Proceedings of the 9th Conference
on Computing Frontiers, CF ’12, pages 163-172, New York, NY, USA, 2012. ACM.

(p- 23} 29} B3)

CHANGWOO MIN AND YOUNG Ik EoM. DANBI: Dynamic Scheduling of Ir-
regular Stream Programs for Many-core Systems. In Proceedings of the

22Nd International Conference on Parallel Architectures and Compilation Tech-
niques, PACT ’13, pages 189200, Piscataway, NJ, USA, 2013. IEEE Press. (p.

HERVE YVIQUEL, EMMANUEL CASSEAU, MICKAEL RAULET, PEKKA JAASKELAI-
NEN, AND JARMO TAKALA. Towards run-time actor mapping of dynamic
dataflow programs onto multi-core platforms. In International Symposium
on Image and Signal Processing and Analysis (ISPA), pages 725 — 730, Trieste,

Italy, September 2013. (p.

WILLIAM THIES, MICHAL KARCZMAREK, AND SAMAN AMARASINGHE. Streamlt:
A language for streaming applications. In Proceedings of the 11th International

Conference on Compiler Construction, pages 179-196, 2002. (p.

ZHENG FANG, C. VENKATRAMANI, R. WAGLE, AND K. SCHWAN. Cache Topol-
ogy Aware Mapping of Stream Processing Applications onto CMPs. In
Distributed Computing Systems (ICDCS), 2013 IEEE 33rd International Confer-
ence on, pages 52-61, July 2013. (p.

AMIR H. HORMATI, YOONSEO CHOI, MANJUNATH KUDLUR, RODRIC RABBAH,
TREVOR MUDGE, AND SCOTT MAHLKE. Flextream: Adaptive Compilation of
Streaming Applications for Heterogeneous Architectures. In Proceedings of
the 2009 18th International Conference on Parallel Architectures and Compilation

Techniques, pages 214-223, 2009. (p.

MicHAEL I GORDON. Compiler Techniques for Scalable Performance of Stream
Programs on Multicore Architectures. PhD thesis, MIT, 2010. (p.

MATTHIEU WIPLIEZ. [Compilation infrastructure for dataflow programs. Theses,
INSA de Rennes, December 2010. (p.

MATTHIEU WIPLIEZ AND M RAULET. |Classification and transformation of

dynamic dataflow programs. Design and Architectures for Signal and . . ., pages
303-310, 2010. (p.

RicHARD M. KARrRP. A characterization of the minimum cycle mean in a
digraph. In Discrete Mathematics, 1978. (p.

106

https://hal.archives-ouvertes.fr/hal-00909408
https://hal.archives-ouvertes.fr/hal-00909408
https://tel.archives-ouvertes.fr/tel-00598914
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5706280
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5706280

[67]

[68]

[69]

[70]

[71]

[76]

THOMAS W. BARTENSTEIN AND YU DAvID Liu. Rate Types for Stream Pro-
grams. SIGPLAN Not., 49(10):213-232, October 2014. (p.

CERYEN TAN. A hybrid static/dynamic approach to scheduling stream programs.

Master’s thesis, MIT, 2009. (p.

SHUVRA S. BHATTACHARYYA, EDWARD A. LEE, AND PRAVEEN K. MURTHY.

Software Synthesis from Dataflow Graphs. Kluwer Academic Publishers, Norwell,
MA, USA, 1996. (p.[31)

WiLLiAM THIES. Language and compiler support for stream programs. PhD thesis,
MIT, 2009. (p.[33)

MicHAEL I. GORDON, WILLIAM THIES, AND SAMAN AMARASINGHE. Exploit-

ing Coarse-grained Task, Data, and Pipeline Parallelism in Stream Pro-
grams. SIGARCH Comput. Archit. News, 34(5):151-162, October 2006. (p.

S. CASALE-BRUNET, E. BEzATI, C. ALBERTI, G. ROQUIER, M. MATTAVELLI,
J.W. JANNECK, AND J. BOUTELLIER. Design space exploration and imple-
mentation of RVC-CAL applications using the TURNUS framework. In
Design and Architectures for Signal and Image Processing (DASIP), 2013 Confer-
ence on, pages 341-342, Oct 2013. (p.

SAMEER S. SHENDE AND ALLEN D. MALONY. The Tau Parallel Performance
System. Int. J. High Perform. Comput. Appl., 20(2):287-311, May 2006. (p.

CoLLIN MCCURDY AND JEFFREY VETTER. Memphis: Finding and fixing
numa-related performance problems on multi-core platforms. In In Pro-

ceedings of ISPASS, 2010. (p.

Xu Liu AND JOHN MELLOR-CRUMMEY. A Tool to Analyze the Performance
of Multithreaded Programs on NUMA Architectures. In Proceedings of
the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP 14, pages 259-272, New York, NY, USA, 2014. ACM. (p.

ANDI DREBES, PopP ANTONIU, KARINE HEYDEMANN, ALBERT COHEN, AND
NATHALIE DRACH. |Aftermath: A graphical tool for performance analy-
sis and debugging of fine-grained task-parallel programs and run-time
systems. In Seventh Workshop on Programmability Issues for Heterogeneous Mul-
ticores (MULTIPROG-2014), Vienna, Austria, January 2014. (p.

ANTONIU POP AND ALBERT COHEN. OpenStream: Expressiveness and Data-
flow Compilation of OpenMP Streaming Programs. ACM Trans. Archit.
Code Optim., 9(4):53:1-53:25, January 2013. (p.

S. M. FARHAD, YOUSUN KO, BERND BURGSTALLER, AND BERNHARD SCHOLZ.
Profile-guided Deployment of Stream Programs on Multicores. In Proceed-
ings of the 13th ACM SIGPLAN/SIGBED International Conference on Languages,
Compilers, Tools and Theory for Embedded Systems, LCTES ’12, pages 79-88, New
York, NY, USA, 2012. ACM. (p.

107

http://doi.acm.org/10.1145/2714064.2660225
http://doi.acm.org/10.1145/2714064.2660225
http://dx.doi.org/10.1177/1094342006064482
http://dx.doi.org/10.1177/1094342006064482
http://doi.acm.org/10.1145/2555243.2555271
http://doi.acm.org/10.1145/2555243.2555271
https://hal.archives-ouvertes.fr/hal-01136508
https://hal.archives-ouvertes.fr/hal-01136508
https://hal.archives-ouvertes.fr/hal-01136508
http://doi.acm.org/10.1145/2400682.2400712
http://doi.acm.org/10.1145/2400682.2400712
http://doi.acm.org/10.1145/2248418.2248430

6 References

[79]

[83]

[84]

[85]

[86]

[89]

[90]

THIERRY GOUBIER, RENAUD SIRDEY, STEPHANE LOUISE, AND VINCENT DAVID.
Sigma-C: A Programming Model and Language for Embedded Many-
cores. In YANG XIANG, ALFREDO CUZZOCREA, MICHAEL HOBBS, AND WANLEI
ZHOU, editors, Algorithms and Architectures for Parallel Processing, 7016 of Lec-
ture Notes in Computer Science, pages 385-394. Springer Berlin Heidelberg, 2011.

(p- 49, [53)

H. YviQuEL, E. CAsseau, M. WIPLIEZ, AND M. RAULET. Efficient multicore
scheduling of dataflow process networks. In Signal Processing Systems (SiPS),
2011 IEEE Workshop on, pages 198 =203, oct. 2011. (p.

JEREMY SUGERMAN, KAYVON FATAHALIAN, SOLOMON BouLOS, KURT AKELEY,
AND PAT HANRAHAN. GRAMPS: A Programming Model for Graphics
Pipelines. ACM Trans. Graph., 28(1):4:1-4:11, February 2009. (p.

SANDER STULJK, MARC GEILEN, AND TWAN BASTEN. A Predictable Multipro-
cessor Design Flow for Streaming Applications with Dynamic Behaviour.

In Proceedings of the 2010 13th Euromicro Conference on Digital System Design:
Architectures, Methods and Tools, DSD 10, 2010. (p.

INTEL CORPORATION. Intel® 64 and IA-32 Architectures Software Developer’s

Manual. Intel Corporation, January 2015. (p.

https://perf.wiki.kernel.org/index.php/. (p.

JACK DONGARRA, KEVIN LONDON, SHIRLEY MOORE, PHIL Mucci, AND DAN
TERPSTRA. Using PAPI for Hardware Performance Monitoring on Linux
Systems. In In Conference on Linuz Clusters: The HPC Revolution, Linux Clus-

ters Institute, 2001. (p.

PauL M. CARPENTER, ALEX RAMIREZ, AND EDUARD AYGUADE. Mapping
Stream Programs Onto Heterogeneous Multiprocessor Systems. In Pro-
ceedings of the 2009 International Conference on Compilers, Architecture, and Syn-
thesis for Embedded Systems, CASES 09, pages 57-66, New York, NY, USA, 2009.

ACM. (p.

SARDAR M. FARHAD, YOUSUN KO, BERND BURGSTALLER, AND BERNHARD
ScHOLZ. |Orchestration by Approximation: Mapping Stream Programs
Onto Multicore Architectures. SIGPLAN Not., 47(4):357-368, March 2011.

(p.

G.J. SurLivan, J. OaMm, Woo-JIN HAN, AND T. WIEGAND. Overview of the
High Efficiency Video Coding (HEVC) Standard. Circuits and Systems for
Video Technology, IEEE Transactions on, 22(12):1649-1668, Dec 2012. (p.

git://github.com/orcc/orc-apps.git. (p.
https://github.com/fgaud/Minime. (p.

108

http://dx.doi.org/10.1007/978-3-642-24650-0_33
http://dx.doi.org/10.1007/978-3-642-24650-0_33
https://perf.wiki.kernel.org/index.php/
http://doi.acm.org/10.1145/1629395.1629406
http://doi.acm.org/10.1145/1629395.1629406
http://doi.acm.org/10.1145/2248487.1950406
http://doi.acm.org/10.1145/2248487.1950406
git://github.com/orcc/orc-apps.git
https://github.com/fgaud/Minime

[91] G. OFENBECK, R. STEINMANN, V. CAPARROS, D.G. SPAMPINATO, AND
M. PuscHEL. Applying the roofline model. In Performance Analysis of Sys-
tems and Software (ISPASS), 201/ IEEE International Symposium on, pages 7685,

March 2014. (p.

[92] Rutrul Gu, JORNW. JANNECK, MICKAEL RAULET, AND SHUVRAS. BHAT-
TACHARYYA. [Exploiting Statically Schedulable Regions in Dataflow Pro-
grams. Journal of Signal Processing Systems, 63(1):129-142, 2011. (p.

[93] http://kernelnewbies.org/Linux_3.8. (p.

109

http://dx.doi.org/10.1007/s11265-009-0445-1
http://dx.doi.org/10.1007/s11265-009-0445-1
http://kernelnewbies.org/Linux_3.8

	Contents
	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 The Multi-core Jungle
	1.2 Dataflow Programming
	1.3 Problematics and Proposals
	1.4 Thesis Organization

	2 Context and Objectives
	2.1 Introduction
	2.2 General Context
	2.3 Parallel Architectures
	2.3.1 Computing Homogeneity
	2.3.1.1 Homogeneous Computing
	2.3.1.2 Heterogeneous Computing

	2.3.2 Memory Organization
	2.3.2.1 Centralized Shared-Memory Architectures
	2.3.2.2 Distributed Shared-Memory Architectures
	2.3.2.3 Distributed Private-Memory Architectures

	2.4 Concurrent Programming Models
	2.4.1 Concurrent Tasks with Shared State
	2.4.2 Concurrent Tasks with Message Passing
	2.4.3 The Dataflow Approach
	2.4.3.1 Dataflow Models of Computation
	2.4.3.2 Dataflow Execution Model

	2.5 Objectives
	2.5.1 Dataflow Applicative Domains
	2.5.2 Throughput Constraints in Dataflow Programs
	2.5.3 Proposal and Hypotheses

	3 Throughput Constraints in Dataflow Programs
	3.1 Introduction
	3.2 Related Work
	3.3 The SDF Model
	3.3.1 SDF MoC
	3.3.2 SDF Scheduling
	3.3.2.1 Sequential Schedules
	3.3.2.2 Schedules Properties
	3.3.2.3 Multi-core Schedules

	3.4 Extending SDF With Throughput
	3.4.1 Extensions at MoC Level
	3.4.2 StreamIt Extensions
	3.4.2.1 The StreamIt Language
	3.4.2.2 Language Extensions
	3.4.2.3 StreamIt Graph's Transformations Follow-up

	3.5 SDF Throughput Propagation
	3.5.1 Propagation By Graph Traversal
	3.5.2 Propagation Using SDF Repetition Vector

	3.6 Extending DDF With Throughput
	3.6.1 The DDF Model
	3.6.2 ORCC extensions

	3.7 Discussion

	4 Dataflow Programs Profiling
	4.1 Introduction
	4.2 Related Work
	4.3 Dataflow Execution Model
	4.3.1 Dataflow Compilation Overview
	4.3.2 Sequential Execution Model
	4.3.2.1 SDF
	4.3.2.2 DDF

	4.3.3 Parallel Execution Model
	4.3.3.1 SDF
	4.3.3.2 DDF

	4.4 Throughput Profiling
	4.4.1 Global Throughput
	4.4.2 Identify Bottleneck Actors In SDF Graphs

	4.5 System-Level Profiling
	4.5.1 Cores Load
	4.5.2 Memory Subsystem Load
	4.5.2.1 PMU
	4.5.2.2 Memory Controllers Imbalance
	4.5.2.3 Sampling of Memory Accesses

	4.6 Discussion

	5 Profiling Mechanisms Exploitation
	5.1 Introduction
	5.2 SDF Throughput-Aware Runtime
	5.2.1 Language Compiler And Runtime Support
	5.2.2 Runtime Monitoring
	5.2.2.1 Monitoring The Global Throughput
	5.2.2.2 Monitoring Actors Execution Times
	5.2.2.3 Monitoring Cores Imbalance

	5.2.3 Reporting and Adaptations
	5.2.4 Results
	5.2.4.1 Scenario 1: Reaction To Preemption By Other Applications
	5.2.4.2 Scenario 2: Identification Of Bottleneck Actors
	5.2.4.3 Runtime Monitoring And Adaptation Overhead

	5.2.5 Discussion

	5.3 DDF Programs Profiling
	5.3.1 ORCC Extensions
	5.3.1.1 Throughput Constraint Expression
	5.3.1.2 Profiling

	5.3.2 Experimental Setup
	5.3.3 HEVC
	5.3.3.1 Scaling
	5.3.3.2 Memory Profiling

	5.3.4 MPEG4-part2
	5.3.5 Perspectives

	6 Conclusion and Perspectives
	6.1 Summary
	6.1.1 SDF Throughput Propagation
	6.1.2 SDF Throughput Aware Runtime
	6.1.3 DDF Profiling

	6.2 Perspectives
	6.2.1 Throughput Constraints in Quasi Static Dataflow Models
	6.2.2 Towards a Dataflow Aware Operating System
	6.2.3 An Open NUMA Profiling Library

	6.3 Thoughts on the Dataflow Programming Paradigm

	References

