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M. Pedro Ferreira rapporteur

M. Roman Scoccimarro rapporteur

M. Nick Kaiser examinateur

M. Adi Nusser examinateur
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Résumé

De la cosmologie à la formation des galaxies: que nous apprennent les grandes
structures de l’Univers ?

Résumé

Dans cette thèse sur articles, nous nous intéressons aux défis posés aux spécialistes des grandes
structures de l’Univers par les futurs relevés de galaxies tels que la mission Euclid de l’Agence
Spatiale Européenne ou encore le LSST. Ces grandes structures sont la manifestation de l’organisation
spatiale des galaxies qui ne sont pas de simples ı̂les peuplant aléatoirement notre Univers mais
forment un réseau complexe, souvent appelé “toile cosmique”, fait de filaments entourant de
grands vides et s’intersectant pour former des amas de galaxies. L’étude des grandes structures
de l’Univers joue un rôle fondamental pour répondre aux grandes questions posées par l’étude
du cosmos:

• Quels sont les constituants de notre Univers et les lois qui régissent son évolution?

• Comment les galaxies se forment-elles et évoluent-elles? En particulier, quel est l’impact
de l’environnement sur leur structuration?

En effet, les galaxies naissent et grandissent au sein de ces grandes autoroutes cosmiques soule-
vant la question de l’impact sur les propriétés galactiques telles que leur morphologie, de la
dynamique des grands courants cosmiques desquels elles émergent. Pour étudier cette question
fondamentale, nous allons dans un premier temps montrer que dans les simulations numériques
de l’Univers, le spin des galaxies est fortement lié à la direction de leur filament hôte avec
un comportement qui dépend de leur masse. Ces corrélations spin-filament seront expliquées
qualitativement dans le contexte de la formation hiérarchique des structures cosmologiques qui
voit se former en premier lieu les petits objets puis, par fusion des objets de plus en plus mas-
sifs. Un modèle analytique tenant compte de l’anisotropie de la toile cosmique complètera ce
tableau en reproduisant les corrélations observées. Ces idées sont importantes pour comprendre
la morphologie des galaxies mais aussi les alignements intrinsèques émanant de la cohérence de
la toile cosmique et pouvant contaminer certaines sondes cosmologiques basées sur la mesure de
l’astigmatisme cosmique. Nous allons en particulier mesurer cette contamination dans une sim-
ulation hydrodynamique de pointe qui permet la prise en compte de la dynamique non-linéaire
du gaz, la physique baryonique et l’anisotropie des grandes structures.

D’autre part, la croissance des grandes structures est sensible à la fois au taux d’expansion de
l’Univers et à la vitesse à laquelle la gravité produit l’effondrement gravitationnel, ce qui en fait
une source importante d’information pour répondre aux mystères de la cosmologie telles que la
nature de l’énergie noire. Dans la seconde partie de ce manuscrit, nous nous poserons la question
de comment extraire efficacement de l’information de la toile cosmique en mesurant sa topologie
et sa géométrie et en utilisant la théorie perturbative dans un régime quasi-linéaire, la pierre
angulaire de ce travail reposant sur l’étude analytique de l’impact de l’effondrement non-linéaire
des structures et des distorsions en espace des redshifts sur la statistique du champ de densité
cosmique.

Mots Clés: cosmologie, grandes structures de l’Univers, théorie perturbative, lentillage gravi-
tationnel faible, galaxies, halos de matiére noire.
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Abstract

From cosmology to galaxy formation : what can we learn from the
large-scale structure of the Universe ?

Abstract

This thesis by publication is devoted to address some of the challenges that the field of large-
scale structure studies needs to overcome to extract the marrow of the gigantic precision datasets
that will be produced by future galaxy surveys like ESA’s cornerstone Euclid mission and the
Large Synoptic Survey Telescope. This large-scale structure arises as galaxies are not islands
randomly distributed in the Universe but form a complex network – the so-called cosmic web
– made of filaments that bound large voids and intersect at clusters of galaxies. The study
of the large-scale structure of the Universe plays a paramount role in our quest to answer the
fundamental questions at the heart of Cosmology:

• What are the constituents of our Universe and what laws dictate its behaviour?

• How do galaxies form and evolve? In particular, what is the importance of their environ-
ment in shaping them?

Indeed, the birth and evolution of galaxies occur within these large cosmic highways and the
natural question which arises is whether the properties of galaxies, such as their morphology,
retain a memory of the large-scale cosmic flows from which they emerge. To address this
key question, we will first show that in cosmological simulations, the spin of galaxies and the
direction of the filament they are embedded in are correlated and that these correlations are mass-
dependent. This signal will be shown to be qualitatively understood in the context of hierarchical
structure formation, where small galaxies form first and merge together to form larger ones.
An analytic model which explicitly takes into account the anisotropy of the cosmic web will
complement this qualitative understanding by reproducing the measured correlations. Those
ideas are important to understand the evolution of galaxy morphology and also to understand
the intrinsic alignments of galaxies arising from the large-scale coherence of the cosmic web that
contaminate cosmological probes like cosmic shear experiments. We will in particular measure
this contamination directly from a state-of-the-art hydrodynamical simulation that allows us to
take into account non-linear gas dynamics, baryonic physics and the anisotropy of the cosmic
web.

The large-scale structure growth is sensitive to both the cosmic expansion rate and the rate at
which gravity pulls matter together. It therefore constitutes a powerful probe of the fundamental
issues at the core of modern cosmology e.g. dark energy equation of state or modified gravity.
In a second part, we will address the question of how to efficiently use large-scale structure
data to probe the cosmological model describing our Universe by measuring its topology and
geometry and perturbation theory in the weakly and even mildly non-linear regime. The major
contribution of this work is to analytically study the effect of redshift space distortions and
non-linear collapse of structures on the topology, geometry and statistics of the cosmic density
field.

Keywords: cosmology, large-scale structure of the Universe, perturbation theory, weak gravi-
tational lensing, galaxies, dark matter haloes.
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Introduction

If, at first sight, astrophysical objects seem to be uniformly distributed in the sky, deeper
investigations reveal the existence of clusters of stars and our own galaxy – the Milky Way –
that crosses the sky. Astronomers have established the existence of numerous other galaxies
that are not islands uniformly distributed in the sky but gather into clusters and superclusters
of galaxies. Until the end of the previous century, those clusters were believed to be the largest
structures in the Universe and to be organised in a random fashion. The cosmological principle,
on which the standard model of our Universe relies, is built upon an assumption of isotropy and
homogeneity which seems to be valid only on very large scales. Indeed, the eighties revealed
that galaxies are not islands randomly distributed but form a bubble-like network on scales
of hundreds of megaparsecs! The dynamics of matter on very large scales is now quite well
established thanks to numerical simulations and large galaxy surveys. Matter escapes from the
voids towards the walls then flows towards the filaments before accreting onto the over-dense
nodes of this so-called cosmic web. This process takes place simultaneously at multiple scales
and epochs.

Galaxy formation and evolution naturally take place within this large-scale cosmic dynamics,
raising the fundamental question : what is the role of the cosmic web in shaping galaxies?
Galactic masses are highly dependent on their large-scale surrounding as explained by the theory
of biased clustering. High mass objects preferentially form in over-dense environments (dense
filaments and nodes). Beyond their mass, how much are other galaxy properties affected by
their environment? In particular how is the rotation axis of galaxies correlated with the large-
scale filamentary structure of the Universe? These questions are crucial to understanding galaxy
formation and are at the core of the so-called nature versus nurture competition.

The large-scale structure of the Universe is also a key probe of the cosmos. Indeed its evolution
and growth across cosmic time is directly sensitive to the properties of the Universe; studying
them may allow us to answer key questions of modern cosmology : What are the laws driving the
Universe? Was Einstein right or can we measure deviations from the predictions of his theory
of Gravitation namely General relativity? What are the constituents of the cosmos? What is
the engine of cosmic acceleration?

For all the above-mentioned reasons, the large-scale structure of the Universe has become an
active field of research in astronomy and is destined to be crucial for the future with upcoming
large galaxy surveys like Euclid or LSST that will release an impressive amount of data about
the large-scale Universe.

This thesis describes the research carried out during my PhD at the Institut d’Astrophysique de
Paris with my advisor, Christophe Pichon, and co-advisor, Dmitry Pogosyan from September
2011 to September 2015. This work focused on a theoretical study of the large-scale structure of
the Universe and its interplay with, on the one hand, cosmology and, on the other hand, galaxy
formation. This manuscript will mainly present some developments done in trying to answer
two fundamental questions:
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Introduction

• how can we efficiently use large-scale structure to probe cosmology?

• what is the role of the cosmic web in shaping galaxy, in particular regarding galactic spin
acquisition?

More precisely, the manuscript is organised as follows. In the first part of the thesis, we introduce
concepts which are important to understand the genesis of the large-scale structure and its
interplay with cosmology and galaxy formation. In chapter 1, we describe the homogeneous
model of our Universe. Chapter 2 is devoted to a theoretical description of the large-scale
structure of the Universe and the so-called cosmic web as the result of the growth of primordial
small inhomogeneities in the matter distribution under the laws of gravity. In chapter 3, we
give an overview of how galaxies form and evolve with a particular emphasize on mass and spin
acquisition and the role of the environment.

The second part of the thesis focuses on the results obtained during my PhD. Chapter 4 describes
how the spin of simulated dark matter halos and galaxies is correlated with the large-scale
filamentary cosmic web. Those correlations can be understood from first principles when the
standard theory of spin acquisition by tidal torquing takes into account the anisotropic nature of
the large-scale environment of galaxies. Eventually, the correlation between galaxy shapes and
the cosmic web induces a possible contamination for weak lensing experiments (the so-called
intrinsic alignments) that can be measured in simulations. Chapter 5 then presents the results
obtained regarding the topology of the large-scale structure in redshift space and the cosmic
density in concentric spheres, two promising probes of cosmology for the coming years. Finally,
for the interested reader, appendix A gathers other publications of mine that I refer to in the
main text but that I chose to put apart as my contribution was less significant.
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2



1 Cosmology

Our Universe is well described by a simple and successful model, often called Λ-
Cold Dark Matter. In this chapter, we describe its ingredients, its successes and
possible failures.

1.1 The concordant model

1.1.1 Thermal history

Recent years have seen the building of a concordant model of our Universe called Λ-CDM. In
this model, the Universe emerges out of a Big-Bang singularity 13.8 billion years ago.The initial
hot plasma then cools down as the space-time expands. Soon after the singularity (t . 10−35s),
a period of cosmic inflation may have made the Universe flat and homogeneous ([Guth, 1981]),
followed by the electroweak phase transition around t . 10−11s that breaks the SU(2) × U(1)
electroweak symmetry to the present-day U(1) electromagnetic symmetry and by the quark-
hadron transition (t . 10−6s) that converts the quark-gluon plasma into hadrons. The Universe
is now dominated by photons and enters the radiation-dominated era. These primordial phases
of the cosmic thermal history are still very speculative because energies are very high (>GeV)
but the end of the story is much more established, relying on a very well-known low-energy
physics.

Big-Bang nucleosynthesis, between t ∼ 3 and 20 minutes, permits the formation of light atomic
nuclei like Hydrogen, Deuterium, Helium, Lithium and Beryllium. After 70,000 years, the den-
sity of photons and matter are equal and the Universe falls into a matter-dominated era during
which dark matter perturbations start to grow. Recombination then occurs when neutral hydro-
gen can be created as electrons are captured by the atomic nuclei. At the end of recombination,
photons decouple from matter and travel freely : the Universe becomes transparent. This first
light emitted at t . 380, 000 years is called the Cosmic Microwave Background (CMB) and has
been observed and extensively studied since its discovery by Penzias and Wilson in 1965. It is
one of the smoking guns of the Hot Big Bang scenario. The mean temperature of this almost
perfect black body is cooling down as the Universe is expanding and is currently T̄ ≈ 2.725
K for all directions in the sky up to tiny fluctuations of the order of 10−5. This means that
at recombination, the Universe is very homogeneous and isotropic as predicted by the cosmic
inflation scenario. The deviations from homogeneity seen in the CMB are believed to originate
from initial quantum fluctuations and to be the seeds that will form the large-scale structure.

After the dark ages, from 300 million to one billion years after the Big-Bang, the first stars and
galaxies form and the reionization epoch begins. After nine billion years, the Universe starts to
be dark energy dominated and therefore undergoes a late-time period of accelerated expansion.
The large-scale structure continues to form on larger and larger scales and is another paramount
piece of evidence of the cosmological model. This will be developed in the rest of this thesis.
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Chapter 1. Cosmology

1.1.2 Energy budget

The Λ-Cold Dark Matter (ΛCDM) scenario is based on a description of the Gravitation force by
means of Einstein’s theory of General Relativity. It requires the introduction of a component
of dark energy through the constant Λ entering the Einstein equations in order to explain the
acceleration of cosmic expansion and a component of cold dark matter to explain the growth
of structure (and in particular the population of galaxies that we observe today). The energy
content has been constrained to be approximatively 69% in dark energy, 26% in dark matter
and 5% in baryons ([Planck Collaboration et al., 2014c]). Radiation only accounts for 10−5 of
the energy budget today. The minimal number of parameters that describe this cosmological
model is six : three for the energy content i.e physical baryon, dark matter and dark energy
densities; two for the initial power spectrum of fluctuations : scalar spectral index ns and
curvature fluctuation amplitude As; and eventually the reionization optical depth τ . This model
in particular assumes that the spatial curvature is zero.

If we believe in the concordant cosmological model, matter in the Universe is not dominated by
the ordinary – baryonic – matter that we are familiar with on Earth but by a cold – i.e non-
relativistic – component that does interact only through gravity and is called cold dark matter.
This collisionless type of matter does not interact electromagnetically and therefore can not be
directly detected. As it does not interact with radiation, dark matter fluctuations can start to
grow as soon as the Universe becomes matter-dominated. Later, baryonic matter, once decoupled
from photons, falls into the gravitational potential wells produced by the dark matter distribution
which eventually leads to the formation of baryonic structures like galaxies. Therefore, without
dark matter, galaxies would not have time to form. Dark matter candidates are numerous :
weakly interactive massive particles like neutrinos or neutralinos, axions, Kaluza-Klein particles,
etc, but no direct detection has been made so far. Nevertheless, indirect detections strongly agree
on its existence: the first report was made by Zwicky in 1933 ([Zwicky, 1933]) who found that
the dynamics of the Coma cluster could only be explained if it was 300 times more massive
than what observations suggested, then rotation curves of galaxies also provided evidence for
the presence of large dark matter halos surrounding them ([Rubin et al., 1980]), gravitational
lensing and the CMB eventually put tight constraints on the amount of dark matter in the
Universe.

If the matter content of our Universe is mysterious, its energy content is even more so. Indeed,
it should be dominated today by a dark energy that acts as a repulsive force and accelerates the
cosmic expansion. This component is revealed by the CMB which requires a flat space-time and
therefore 70% of dark energy in addition to baryonic and dark matter, and by the evolution of
supernova luminosities with redshift that can only be explained by the existence of dark energy.
It has to be noted that this dark energy component was discovered only two decades ago by
[Riess et al., 1998, Perlmutter et al., 1999]. Its nature is completely unknown : vacuum energy,
dynamical scalar field, modification of gravity, the possibilities are numerous and question the
pillars of our current cosmological model.

1.1.3 Successes and possible failures

This rather simple model is in agreement with plenty of observations especially on large scales.
The power spectrum of density fluctuations that can be observed on a wide range of scales
using the cosmic microwave background, galaxy surveys and cluster abundance is in very good
agreement with the Λ-CDM scenario (see for instance figure 1.1). Wiggles in the power spectrum
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1.1. The concordant model

Figure 1.1: Galaxy power spectrum [Tegmark et al., 2004] measured on different scales using the
CMB, cluster abundance, SDSS galaxies, weak lensing and the Lyman Alpha Forest as labelled.
The solid line shows the Λ-CDM prediction for comparison.

named Baryon Acoustic Oscillations (BAOs) are also a great success of the concordant model
[Blake et al., 2011b]. Those oscillations imprinted in the matter power spectrum come from
the epoch of recombination when baryons were coupled to photons in a plasma and therefore
were participating to acoustic waves propagating at the sound speed since the initial singularity.
At recombination, baryons decouple and form structures preferentially at the location of the
overdensities i.e separated by the sound horizon which is about 500 million light years. This
feature in the matter power spectrum is tiny but the first oscillation has indeed been detected
and constitute a standard ruler that can be measured at different epochs from the CMB (where
several oscillations are visible as shown in figure 1.2) to the local Universe. Gravitational lensing
and the Integrated Sachs-Wolfe effect also constitute strong evidence in favor of the concordant
model.

Despite all the successes, on smaller scales where baryonic physics becomes important, the
validity of this model is more difficult to probe. Three main problems have been emphasized as
of today:

• the missing satellite problem : N-body simulations predict much more dark matter sub-
structures than the observed number of galactic satellites;

• the angular momentum catastrophe : hydrodynamical simulations form disks too small
compared to the observations;

• the cusp-core problem: dark matter simulations predict a central cuspy density profile for
dark matter halos while observations find almost flat density profiles in the inner region
of galaxies.

It is clear that the three above-mentioned problems are small-scale problems resulting from a
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Chapter 1. Cosmology

Figure 1.2: Temperature power spectrum of the CMB as measured by the Planck collaboration
[Planck Collaboration et al., 2014b] and compared to the prediction of the best-fit Λ-CDM
model.

comparison between the dark matter theory and observations of its baryonic counterpart. They
can be resolved using either cosmological solutions or astrophysical arguments. Cosmological al-
ternatives are to modify the small-scale power spectrum, introduce different types of dark matter
(e.g warm dark matter that indeed removes small-scale fluctuations) or modify the Gravitation
theory (e.g MOND that modifies General Relativity in the small acceleration regime). On the
other hand, astrophysical solutions rely on upcoming improvements in our understanding of
galaxy formation and argue that baryonic processes like stellar winds or feedback from active
galactic nuclei may solve the problems. Galaxy formation issues will be developed in section 3.1.

Possible extensions of the Λ-CDM model include: modifications of gravity, other dark energy
models probed through a parametrisation of the dark energy equation of state, inhomogeneous
cosmological models, ...

1.2 The homogeneous Universe

In this section, we formalise the evolution of a homogeneous and isotropic universe which is one
of the assumptions of the Λ-CDM model. The hypothesis of isotropy is well-established as the
CMB and large galaxy surveys show statistical isotropy of the Universe on very large scales.
The statistical homogeneity is then postulated assuming the Copernician Principle which states
that we do not live in a special location of the Universe.
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1.2. The homogeneous Universe

1.2.1 Hubble flow

A homogeneous and isotropic universe can be described using the Fridemann-Lemaitre-Robertson-
Walker metric

ds2 = c2dt2 −R2(t)
[

dr2

1− kr2
+ r2dΩ2

]
(1.1)

where R(t) is the scale factor (a(t) = R(t)/R0 being its dimensionless equivalent) and k = 0,±1
depends on the local curvature of space (flat, spherical or hyperbolic). The cosmic expansion rate
is therefore characterised by the Hubble parameter H = Ṙ/R. The expansion of the Universe,
first discovered by Hubble in 1933, induces a red shift of the observed wavelengths compare to
the emitted wavelengths that can be shown to be directly related to the scale factor

λobs

λem
≡ 1 + z =

a(tobs)
a(tem)

. (1.2)

Radial distances are very difficult to measure. The best estimate we have is the redshift of the
sources which, if they follow the Hubble flow i.e the cosmic expansion, is a direct probe of the
distance. At small distance, the Hubble law that relates the redshift to the distance is recovered

z =
H0d

c
. (1.3)

This assumption is not exactly true in practice as galaxies also have a peculiar velocity that
affects its redshift (see also section 3.2.1).

1.2.2 Friedmann equation

Given the Fridemann-Lemaitre-Robertson-Walker metric, the dynamics of the Universe is then
described by the evolution of R(t) coming from the resolution of the Einstein equations of
General Relativity

Rµν − 1
2
gµνR = 8πGTµν + Λgµν (1.4)

where the stress-energy tensor of a perfect fluid is written

Tµν =


ρc2 0 0 0

0 −P 0 0

0 0 −P 0

0 0 0 −P

 . (1.5)

The resulting Friedmann equations then read Ṙ2 − 8πG
3 ρR2 = −kc2 + Λ

3R
2,

R̈ = −4
3πGR(ρc2 + 3P ) + Λ

3R .
(1.6)

A simple conservation equation can be derived from the Friedmann equations (and is directly
the result of the matter conservation ∇µTµν = 0), ρR3(ω+1) = constant assuming an equation
of state P = ωρ with constant ω. Pressureless matter has ω = 0, while for radiation ω = 1/3. If
Λ is interpreted as a cosmological fluid such that ρΛ = −PΛ/c

2 = Λ/(8πG), then it is described
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Chapter 1. Cosmology

by ω = −1. Finally, the curvature can be interpreted as a fluid with equation of state ω = −1/3
and ρK = −3kc2/(8πGR2). Note that k = 0 corresponds to the concordance LambdaCDM
model.

The critical density is

ρc =
3H2

8πG
. (1.7)

Its current value is 3H2
0/8πG = 1.9×10−29h2 g/cm3 where H0 = 100h km/s. Density parameters

for matter, radiation and vacuum energy (Λ) can then be defined as Ω = ρ/ρc and the first
Friedmann equation reads

Ωm + Ωr + ΩΛ + ΩK = 1 . (1.8)

With the conservation equation, it yields

H(z)
H0

=
√

ΩΛ 0 + ΩK 0(1 + z)2 + Ωm 0(1 + z)3 + Ωr 0(1 + z)4 . (1.9)

1.2.3 Background expansion at different epochs

The matter-dominated era In the matter dominated era where radiation and relativistic mat-
ter do not contribute significantly to the energy budget, pressure can be neglected compared to
the energy density (ω = 0) leading to

ρ(t)R3(t) = ρ0R
3
0,

Ṙ2(t) = c2

|ΩK 0|

[
Ωm 0

R0
R + ΩΛ 0

(
R
R0

)2
+ ΩK 0

]
,

(1.10)

where the index 0 means that the quantities are taken at present time, ΩK = kc2/(H2R2) and
ΩΛ = Λ/(3H2).

When the cosmological constant is zero, three cases appear. For Ωm 0 = 1, the Universe is flat
and infinitely expanding according to a(t) = (3/2H0t)2/3. It is known as the Einstein-de Sitter
Universe. For Ωm 0 > 1, the Universe is closed while it is open for Ωm 0 < 1.

When the cosmological constant is non-zero, the zoology of possible universes is broader and
typically needs to be solved numerically.

The radiation-dominated era If our present-day Universe is matter-dominated, it does not
hold anymore in our past as photons contribute more and more to the total energy density.
Indeed, the matter density ρm is proportional to (1 + z)3 while the radiation density ρr goes
like (1 + z)4 (owing to the volume dilution effect and the wavelength redshift). Therefore, when
z increases, there necessarily exists a time when both components are equal. This equivalence
between both component occurs at z = zeq. Before this, the Universe is radiation-dominated,
with R(t) ∝ t1/2, meaning that the Universe starts from an initial singularity.

The Λ-dominated era If the cosmological constant dominates, for zero curvature, the scale
factor grows exponentially with time R(t) ∝ eHt where H is constant. It is known as the de
Sitter space and the expansion is accelerated.
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1.3. The growth of inhomogeneities

Figure 1.3: Galaxies are not uniformly distributed but form a bubble-like network as seen
here in the CfA Redshift Survey ([de Lapparent et al., 1986]) where filaments of a few tens of
megaparsecs join big clusters like the Coma cluster in the middle. The Coma Cluster looks
elongated along the line-of-sight (creating the so-called “stickman” picture) because of redshift
space distortions.

1.3 The growth of inhomogeneities

The hypothesis of cosmic homogeneity and isotropy if true can only be valid on extremely large
scales. Indeed, large galaxy surveys have revealed the existence of superstructures (clusters of
galaxies, superclusters and filaments and walls connecting them) on scales up to a few tens, as
first seen by de Lapparent, Geller and Huchra in the CfA Redshift Survey ([de Lapparent et al.,
1986]) – see figure 1.3 –, or even hundreds of megaparsecs (1 Mpc ≈ 3.1 × 1022 m) such as
the Great Wall discovered a few years later in the same catalogue ([Geller and Huchra, 1989]).
The existence of large empty regions with size about 20 Mpc/h had already been suggested in
the mid-seventies by [Gregory and Thompson, 1978, Jõeveer et al., 1978] who described them
as large voids or holes with very low galaxy density between superclusters. Those ideas were
reviewed in 1982 by Zel’dovich, Einasto and Shandarin under the title “Giant Voids in the
Universe”([Zeldovich et al., 1982]).

More recent surveys like the Sloan Digital Sky Survey ([Abazajian et al., 2003]) or the 2MASS
redshift survey ([Huchra et al., 2012]) have drastically improved our knowledge of the galaxy
distribution showing with no doubt that galaxies form a complex web-like network on large scales
made of voids, walls and filaments that interconnect with clusters of galaxies (see figure 1.4).
This pattern is known as the cosmic web ([Klypin and Shandarin, 1993, Bond et al., 1996]).

In the standard paradigm of structure formation, the large-scale structures are believed to
originate from initial quantum fluctuations that led to inhomogeneities in the CMB and in
the matter density. Those initial density perturbations then grow under the laws of gravity
and hierarchically form galaxies, clusters and super-clusters of galaxies. The next chapter will
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Chapter 1. Cosmology

Figure 1.4: Catalogue of galaxies from the Sloan Digital Sky Survey. The cosmic web made of
large voids, filaments and dense nodes is clearly visible.

be devoted to the theoretical understanding of the physical processes at play in forming the
superstructures observed in the Universe.
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2 Statistics of the large-scale structure

In this chapter, we review the cornerstones of the study of the large-scale struc-
ture of the Universe. More details are given in various textbooks including [Peebles,
1980, Padmanabhan, 1993, Peacock, 1999] and in the extensive review of [Bernardeau
et al., 2002].

The large-scale structure of the Universe can be studied in a statistical sense as the result of
the growth of primordial fluctuations under the laws of gravity. Those initial perturbations are
characterized by their statistics – usually their power spectrum as they are observed to be almost
Gaussian in the Cosmic Microwave Background (see figure 2.1). The temperature angular power
spectrum of the CMB is shown on figure 1.2. Departure from Gaussianity are indeed shown
[Planck Collaboration et al., 2014e] to be compatible with zero. Those fluctuations are then
described by a random variable evolving under the gravity equations. We will first describe
how gravitational instability leads to the formation of the large-scale structure of the Universe
in section 2.1. Then section 2.2 will be devoted to the statistical description of the large-scale
matter distribution. Finally, in section 2.3, we will describe the birth and growth of the so-called
cosmic web and various ways of extracting this pattern from simulations and real data.

2.1 The gravitational instability

In the current cosmological paradigm, the mechanism that drives the growth of cosmic structures
is gravitational instability : the densest regions attract matter from the rarest, meaning that
peaks are becoming more peaky and voids are getting more empty. The starting point of the
process is the primordial density field that is quasi-homogeneous on top of which tiny fluctuations
grow until the formation of the cosmic structure that are seen in galaxy surveys.

The description of the growth of the primordial fluctuations can be made through Einstein’s
equations for an homogeneous universe perturbed by small density fluctuations δ. Will the
appearance of a local over-density tend to disappear or to grow? In a medium of constant
density, a local matter excess tends, thanks to its own gravitation, to attract the surrounding
matter and therefore to grow. Following Jeans, this growth is exponential in a static space-time.
However, in an expanding Universe, the expansion tends to dilute the fluctuations leading to a
slower growth that is typically polynomial as we will show in the following.

Einstein’s equations are highly non-linear but as far as sub-horizon modes are concerned, the
problem can be reduced to its Newtonian approximation leading to the Vlasov-Poisson system
described in section 2.1.1 Perturbation theory can then be applied for density contrasts much
smaller than unity. The linear solution is well-known and described in section 2.1.2.2. It corre-
sponds to a simple amplification of the fluctuations. Next-order contributions are increasingly
difficult to predict as shown in section 2.1.2.3 and valid only in the weakly non-linear regime.
For large densities (δ > 1) where filaments and clusters form, the strongly non-linear regime can
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Figure 2.1: CMB temperature map measured by the Planck collaboration [Planck Collaboration
et al., 2014a]. This field is shown to be almost Gaussian.

only be captured by numerical simulations (see section 2.1.4). An alternative is to study highly
symmetric configurations that have analytical solutions (see section 2.1.3 for the spherical case)

2.1.1 The Vlasov-Poisson system

Let us study scales smaller than the horizon and much larger than the inter-particular distance.
In this regime, the Newtonian approximation can be used to describe the evolution of a set
of non-relativistic particles of mass m interacting via the gravitation force. In an expanding
universe, we usually define the comoving coordinates x such that the physical distances are
r = ax, the peculiar velocity vp is the difference between the total velocity and the Hubble flow
and the impulsion is p = mavp.

In phase space, the evolution of the phase space density f(x,p) is given by the Vlasov-Poisson
system 

df
dt

=
∂

∂t
f(x,p) +

p
ma2

· ∇xf(x,p)−m∇xΦ(x) · ∇pf(x,p) = 0

∆Φ(x) =
4πGm
a

(∫
d3p f(x,p)− 1

V

∫
d3x d3p f(x,p)

)
.

, (2.1)

where ∆ = ∇2 is the Laplacian and V is the comoving volume. By taking successive moments
of the Vlasov equation with regards to the momentum, a full hierarchy of coupled equations is
obtained. To resolve those equations, one needs to truncate the hierarchy at some order and
add an additional hypothesis to close the system of equations. For instance, let us define the
density field

ρ(x) =
m

a3

∫
d3p f(x,p) , (2.2)

the density contrast

δ(x) =
ρ(x)− ρ0

ρ0
, (2.3)
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2.1. The gravitational instability

where ρ0 is the mean density, the velocity field

u(x) =
∫

d3p p f(x,p)
ma

∫
d3p f(x,p)

, (2.4)

and the velocity dispersion

σij(x) =
∫

d3p pipjf(x,p)
m2a2

∫
d3p f(x,p)

− uiuj . (2.5)

Then, in addition to the Poisson equation, the first two moments of the Vlasov equation give
the continuity and Euler equations



∆Φ(x) = 4πGρ0a
2 δ(x) ,

∂δ

∂t
+

1
a
∇x · [(1 + δ(x))u(x)] = 0 ,

∂ui
∂t

+
ȧ

a
ui +

1
a
ujui,j = −1

a
∇iΦ− 1

ρ a
(ρσij),j .

(2.6)

This system is closed if one assumes for instance that the fluid is thermalised σij = δij
P
ρ and

the pressure P is a simple function of the density through an equation of state.

2.1.2 Eulerian perturbation theories

2.1.2.1 Evolution of a single-flow fluid

Let us consider the gravitational evolution of a fluid in the single-flow regime. This approxima-
tion allows one to study the first stages of gravitational instability but breaks down as soon as
shell-crossing occurs i.e when non-linear structures like filaments and halos form. In this case,
the dynamics of the fluid is described by the following closed system of three coupled equations
(Poisson equation, mass conservation and Euler equation)


∆Φ(x) = 4πGρ0a

2 δ(x) ,
∂δ

∂t
+

1
a
∇x · [(1 + δ(x))u(x)] = 0 ,

∂ui
∂t

+
ȧ

a
ui +

1
a
ujui,j = −1

a
∇iΦ.

(2.7)

Those equations are highly non-linear but can be solved perturbatively as it will be shown in
the two following sections.
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2.1.2.2 Linear theory

At linear order, the hydrodynamical equations describe the evolution of the density contrast δ
and the dimensionless divergence of the peculiar velocity θ = 1

aH∇ · u1 and read
δ̇ +Hθ = 0,

θ̇ + 2Hθ +
Ḣ

H
θ = −4πGρ0

H
δ.

(2.8)

It is then straightforward to obtain the equation of evolution for the density contrast

δ̈ + 2Hδ̇ − 3
2
H2Ωδ = 0 , (2.9)

that has typically one growing and one decaying mode so that

δ(x, t) = D+(t)δ+(x, 0) +D−(t)δ−(x, 0) . (2.10)

The solution for θ(x, t) then reads

θ(x, t) =
∂ logD+

∂ log a
D+(t)δ+(x, 0) +

∂ logD−
∂ log a

D−(t)δ−(x, 0) . (2.11)

For an Einstein-de Sitter universe, the solution is D+(t) ∝ t3/2 and D−(t) ∝ 1/t so that θ(x, t) =
δ+(x, t)− 3/2δ−(x, t).

2.1.2.3 PT kernels

Cosmological perturbation theory allows to go beyond linear theory and to study the effect of
mode couplings on the gravitational dynamics. Starting from equations 2.7, we again neglect
the rotational part of the velocity field and take the divergence of the Euler equation. Going to
Fourier space 2, it yields

a
∂δ(k, a)
∂a

+θ(k, a)=
−1

(2π)
3
2

∫
d3k1 d3k2 δD(k− k1 − k2)α(k1,k2) θ(k1, a) δ(k2, a),

a
∂θ(k, a)
∂a

+
1
2
θ(k, a)+

3
2
δ(k, a)=

−1

(2π)
3
2

∫
d3k1 d3k2 δD(k− k1 − k2)β(k1,k2) θ(k1, a) δ(k2, a),

(2.12)
where α and β are defined as follows

α(k1,k2) = 1 +
k1 · k2

k2
1

and

β(k1,k2) =
k1 · k2

2k2
1

+
k1 · k2

2k2
2

+
(k1 · k2)2

k2
1k

2
2

.

1 It can be shown that in the no-shell crossing regime, the equation of evolution of the vorticity field does not
have any source term, meaning that no vorticity can be created. On top of that, the vorticity is a decaying
mode so that any initial vorticity will be diluted by the expansion.

2this is judicious as linearity in configuration space translates into mode independency in Fourier space
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Note that Fourier transforms are defined so that for instance δ(k) =
∫

d3x δ(x)e−ik·x/(2π)3/2.
Assuming that the fields can be decomposed at all orders into initial fields

δ(x, t) =
∑
n

δ(n)(x, t),

θ(x, t) =
∑
n

θ(n)(x, t),

one can obtain a cosmological perturbation theory described at order n by

δ(n)(x) =
∫

d3k1

(2π)3/2
δ(k1) . . .

d3kn

(2π)3/2
δ(kn) anFn(k1, . . . ,kn),

θ(n)(x) =
∫

d3k1

(2π)3/2
δ(k1) . . .

d3kn

(2π)3/2
δ(kn) anGn(k1, . . . ,kn),

where Fn and Gn kernels can be computed recursively

F1 = −G1 = 1

and for n ≥ 2:

Fn(k1, . . . ,kn) =
n−1∑
i=1

Gi(k1, . . . ,ki)
(2n+ 3)(n− 1)

[
− (2n+ 1)α(p1,p2)Fn−i(ki+1, . . . ,kn)

+ 2β(p1,p2)Gn−i(ki+1, . . . ,kn)
]
,

Gn(k1, . . . ,kn) =
n−1∑
i=1

Gi(k1, . . . ,ki)
(2n+ 3)(n− 1)

[
+ 3α(p1,p2)Fn−i(ki+1, . . . ,kn)

− 2nβ(p1,p2)Gn−i(ki+1, . . . ,kn)
]
,

with p1 = k1 + ... + ki, p2 = ki+1 + ... + kn. While all order of this series can be computed
in principle, in practice each order is increasingly complex to compute so that it allows one at
most to go to second or third order in the computation of low-order moments (mainly power
spectra and bispectra). Note that all results obtained in this section were for an Einstein-de
Sitter Universe for the sake of simplicity but it can be extended to other backgrounds (however
the dependence on cosmology is typically very small).

2.1.2.4 Diagrammatic representation

The use of diagrams allows one to more easily handle perturbation theory orders. It is very
similar to field theory with initial conditions, propagators and vertices. Indeed, it appears
that dynamics equations can be rewritten in a simple matrix form using the vector Ψ(k, η) =
(δ(k, η),−θ(k, η)) where η is a time variable such that η = ln a(τ). Equations 2.12 yield

∂ηΨa(k, η) + ΩabΨb(k, η) = γ
(s)
abc(k,k1,k2)Ψb(k1, η)Ψc(k2, η) (2.13)

with the usual conventions for repeated latin indices and integration on repeated Fourier vari-
ables. In equation 2.13, γ(s)

abc is the symmetrised vertex defined as

γ
(s)
121(k,k1,k2) = δD(k− k1 − k2)α(k1,k2)/2,

γ
(s)
112(k,k1,k2) = δD(k− k1 − k2)α(k2,k1)/2,

γ
(s)
222(k,k1,k2) = δD(k− k1 − k2)β(k1,k2),
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and zero everywhere else and

Ω =

 0 −1

−3/2 1/2

 .

A solution of equation 2.13 can be found using a Laplace transform on η

Ψa(k, η) = gab(η)φb(k) +
∫ η

0
dη′gab(η − η′) γ(s)

bcd(k,k1,k2)Ψc(k1, η
′)Ψd(k2, η

′),

where φb(k) = Ψb(k, η = 0) is the initial condition for a scale factor a(τ) = 1 and gab is the
linear propagator thus describing the linear evolution of density and velocity divergence fields.
It is null by causality for η < 0 and such that for η > 0

gab(η) =
eη

5

 3 2

3 2

− e−3η/2

5

 −2 2

3 −3

 . (2.14)

Equation 2.14 can be easily interpreted in terms of Feynman diagrams, the first term corre-
sponding to the linear evolution of the initial conditions and the second term encoding all the
non-linearities from mode couplings. Eventually, the theory is based on three ingredients to
form diagrams:

• initial fields φa(k),

• a linear propagator gab(η − η′)

• and three-leg vertices γ(s)
abc(k,k1,k2).

Those three bricks will be represented as follows

(η−η )φa(k) :
a

k
1k

k2

1 + k2k = k

a
b

c

k'η
ba

:γabc(k,k k2)1,
(s)

ab :g '
η

The non-linear terms carry all the interactions between pairs of wavevectors k1 and k2 at all
times η′ between 0 and η such that the sum k1 + k2 is k (the so-called mode couplings). This
interaction is characterized by the vertex γ(s)

abc(k,k1,k2) and the resulting wave evolves linearly
following the propagator gab(η−η′). Therefore, to get the order-n diagrams, one has to draw all
possible trees with n − 1 vertices and n initial conditions. Starting from a leaf labelled by the
time η, one can go back in time until a vertex that gives rise to two different branches which
can be followed until either another vertex that itself creates two other branches, or an initial
field at time 0. To interpret the diagram, one has to label all branches by a wavevector ki
(so that there is momentum conservation at each vertex), label all vertices by a time sj , count
each vertex, each branch (and attribute a free propagator for ki between sj and sk) and each
initial field and finally sum over all times and intermediate momenta. For symmetry reasons,
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2.1. The gravitational instability

Figure 2.2: Diagrammatic representation of the field Ψ to fourth order.

each non-symmetric configuration must be counted twice. One example of such a diagram is
displayed in figure 2.2.

For instance, the density field at second order Ψ(2)
1 (k, s) can be computed starting from the

left-hand side of the diagram (i.e. from the time s). g1b(s − s′) for the propagation between s
and s′, γbcd for the vertex at s′, gce(s′−0)×φe(k1) for the upper branch and gdf (s′−0)×φf (k2)
for the other one, have to be integrated for all possible s′ between 0 and s and intermediate
wavevectors k1 et k2 such that k1 + k2 = k. In the end, it gives the following expression for the
density field at second order

Ψ(2)
1 (k, s) =

∫
ds′ d3k1 d3k2 g1b(s− s′)γbcd gce(s′)φe(k1) gdf (s′)φf (k2) δD(k− k1 − k2) .

This formalism allows one to compute the successive moments of the density and velocity diver-
gence fields. Assuming that the initial fields are Gaussian, one can write

φa(k) = uaδ0(k),

with u1 = u2 = 1 for a pure growing mode in the initial conditions. Those initial conditions are
characterized by the initial power spectrum

〈φa(k)φb(k′)〉 = δD(k + k′)ua ub P0(k),

which can be represented as

.

The idea is now to investigate how this initial statistics evolves under gravity and how non-
Gaussianities arise and skew the probability density function. To do so, let us first consider the
power spectrum at time η

〈Ψa(k, η)Ψb(k′, η)〉 = δD(k + k′)Pab(k, η).
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Chapter 2. Statistics of the large-scale structure

Figure 2.3: Part of the diagrams of Pab(k, η) until two-loop order. Dashed lines show the location
where the initial fields of Ψ(m)

a and Ψ(2l+2−m)
a have been glued together.

This power spectrum can be expressed as the sum

Pab(k, η) =
∞∑
l=0

P
(l)
ab (k, η)

of the l-loop power spectra

δD(k + k′)P (l)
ab (k, η) =

2l+1∑
m=1

〈Ψ(m)
a (k, η)Ψ(2l+2−m)

b (k′, η)〉.

In order to draw each diagram of the p-loop power spectrum, one has to choose m between 1
and 2p + 1, put one tree diagram of Ψ(m)

a and one tree diagram of Ψ(2p+2−m)
a face to face and

glue their initial fields together into an initial power spectrum δD(ki +kj)ucudP0(ki), the crucial
point being to properly take into account all combinatory factors. Figure 2.3 illustrates this
procedure. For instance, the contribution from the second diagram to the power spectrum reads

P
diag(2)
ab =

∫
d3q ds1 ds2 gac(η − s1) γcde(k,q,k− q) gdf (s1)uf geg(s1)ug P0(q)P0(|k− q|)

× gbh(η − s2) γhij(−k,−q,q− k) gik(s2)uk gjl(s2)ul . (2.15)

This standard theory of cosmological perturbations is based upon an expansion in powers of the
density field. At tree order and in the large-scale limit (where perturbations are very small),
this expansion is well-justified but as soon as non-linearities arise through p-loop corrections,
this approximation breaks down. Indeed, perturbation theory is not based on a small coupling
constant but the expansion depends in particular on scale and redshift. In particular, the theory
suffers from a lack of convergence as higher order corrections tend to oscillate instead of being
purely additive. However, pushing the predictions beyond linear order is crucial in cosmology
in order to reach the precision required to describe the statistics of the large-scale structure (e.g
baryon acoustic oscillations in the power spectrum). Several attempts have thus been made to
try and cure the convergence problems. One of these propositions is to renormalize the theory
in terms of partial resummations of the series that allow to have a constructive perturbation
theory in the sense that each contribution is positive. This renormalized perturbation theory is
described in [Crocce and Scoccimarro, 2006, Bernardeau et al., 2008, Bernardeau et al., 2010]
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2.1. The gravitational instability

2

6

Figure 2.4: Constructive contributions to the density power spectrum at 0 (purple), 1 (green)
and 2-loop (blue) in the RegPT approach and comparison with the linear prediction (dotted
line). This figure is from [Taruya et al., 2012].

and can be regularised at low-k in the so-called RegPT approach ([Taruya et al., 2012]). An
illustration of the density power spectrum predicted by RegPT is shown in figure 2.4. Other
approaches include time renormalisation group approach ([Pietroni, 2008, Lesgourgues et al.,
2009]), closure theory ([Taruya and Hiramatsu, 2008, Hiramatsu and Taruya, 2009]), effective
field theory ([Carrasco et al., 2012]).

2.1.3 An exact non-linear solution : the spherical collapse

In the hierarchical model, objects of a few million solar masses (star clusters) form first and then
gather by gravitational instability to form galaxies which next form clusters and superclusters.
Their characteristics can be studied in the frame of the spherical model which we now develop.
It allows one to understand how, for instance, a cluster of galaxies can break away from the
cosmic expansion.

Let us assume the existence of a spherical region of size R and spatially constant density ρ.
Birkhoff’s theorem dictates the evolution of the radius of the overdensity:

R̈ = −GM
R2

where M =
4
3
π

(
ρ− Λ

8πG

)
R3.

Equivalently, energy conservation can be written: 1/2Ṙ2 − GM/R = E. If E is negative, the
system is bound and the solution is

R

Rm
=

1
2

(1− cos η) ,
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t

tm
=

1
π

(η − sin η) ,

meaning that the radius R grows until Rm = −GM/E when t = tm = πGM/
√

8(−E)3/2 and
then shrinks until R = 0 for t = 2tm. It is then possible to write the equation of evolution of R
and t for η � 1 – meaning for the initial evolution of the overdensity – and find the first terms
of the development of R(t)

R(t) =
Rm
4

(
6πt
tm

) 2
3

(
1− 1

20

(
6πt
tm

) 2
3

+ ...

)
.

Let us consider an overdensity of initial radius R0 in an Einstein - de Sitter Universe of back-
ground density ρ0, after a time t, ρ = ρ0(1 + δ) and the new radius of the overdensity is R, then
as there is mass conservation

4
3
πρ0R

3
0 =

4
3
πρ0(1 + δ)R3,

so that
R = R0(1 + δ)−

1
3 ,

which becomes, to first order,

R = R0

(
1− δ

3

)
.

Hence, the mean overdensity compared to an Einstein-de Sitter Universe is δ = 3/20 (6πt/tm)
2
3 .

The non-linear collapse of the sphere ends at R = 0 and t = 2tm which corresponds to an
extrapolated linear density of

δcollapse = δ(2tm) ≈ 1.686 = δc .

This critical density will be useful in the Press-Schechter formalism as we often assume that the
entire non-linear collapse occurs when the linear density equals this critical density. A spherical
peak or void can be described in this spherical model as concentric mass shells which never cross
during the collapse (actually it depends on the initial density profile and this description, in
terms of spherical collapse, is valid until first shell-crossing). Each shell acts as an independent
Friedmann universe and we can derive the dynamical equations. Note that the energy E can
be derived as the sum of the initial (ti = 0) kinetic K and potential U energies so that E =
H2(ti)R2

i (1−Ωi(1 + δi))/2 where Ωi is the initial ratio between the background density and the
critical density. As, the mean density within one shell is given by 3M/4πR3, mass conservation
within one shell together with the dynamical evolution of the background density yield the
equation of evolution of the density contrast. A solution is known for Λ = 0 ([Peebles, 1980]).
If δ = ρ/ρ0 − 1 is the density contrast, this solution can be easily written for an Einstein - de
Sitter Universe Ω = 1

• for an initial overdensity (δi > 0),

δi
a(t)
a(ti)

=
3
5

(
3
4

(η − sin η))2/3

1 + δ =
9
2

(η − sin η)2

(1− cos η)3
;

• for an initial underdensity (δi < 0),

δi
a(t)
a(ti)

= −3
5

(
3
4

(sinh η − η))2/3
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1 + δ =
9
2

(sinh η − η)2

(cosh η − 1)3
.

In particular, underdense regions are increasingly emptying and vice versa. For Ω → 0, the
solution reads

1 + δ =
1

(1− 2 ε3)3/2
,

where ε is the linear contrast ε = D+(t)δi. Note that when the spherical collapse solution is
expressed as a function of the linear contrast ε, the dependence on cosmology is very weak as
shown in [Bernardeau et al., 2002].

The next step is to study the collapse of a homogeneous ellipsoidal overdensity to describe
anisotropic objects like filaments or walls. Triaxial overdensities tend to evolve more quickly
along their shortest axis. Hence, the shortest axis tend to collapse first while the others continue
to grow forming flattened structures which are often called pancakes. Notice that this continu-
ous description does not consider substructures. Nevertheless, it allows one to understand the
physical processes which lead to the observed large-scale structure of the Universe. Obviously
real objects will not collapse until a point of infinite density but will reach virial equilibrium after
turn-around. This equilibrium takes place when the total energy is half the potential energy
(E = U(R) + K(R) = U(Rvir)/2). As E = U(Rm), the virial radius Rvir is half the radius at
turn-around Rm, which corresponds to an overdensity at virialization about δvir = 178. This
criterion is traditionally used to define collapsed objects.

Beyond the qualitative description of halo formation, the spherical collapse ([Gunn and Gott,
1972]) is essential to derive analytical results based on perturbation theory. This aspect will be
developed in more details in section 5.1.2.

2.1.4 Numerical simulations

To study the whole non-linear gravitational evolution of the Universe, one is led to consider
numerical simulations. Such simulations are based on two main ingredients: initial conditions
(that represent the Universe as seen in the cosmic microwave background) and a physical theory
to evolve the initial conditions across cosmic time. In the end, it allows one to build robust
predictions that are eventually compared to observations of our Universe in order to study the
physics governing the birth and growth of cosmic structures. Typically, two types of simulations
are used to study galactic and extra-galactic physics: N-body codes, where matter density fluids
are discretized in particles, and hydrodynamical codes.

2.1.4.1 N-body simulations

The first N-body simulations in astrophysics were made in the sixties. In the seventies, the first
simulations of galaxy clusters were run with a few tens of particles ([Peebles, 1970, White, 1976]).
The first cosmological simulations came quickly after ([Press and Schechter, 1974, Aarseth et al.,
1979, Doroshkevich et al., 1980, Efstathiou and Eastwood, 1981a]) with a few thousands particles
leading to the theoretical modeling of the cosmic web ([Centrella and Melott, 1983, Frenk et al.,
1983]).

Starting from the Vlasov-Poisson system (equation 2.1), the equations describing the evolution
of a finite set of particles with comoving coordinate x and peculiar velocity v, and tracing the
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matter distribution, simply read

v = aẋ, (2.16)
dv
dt

+Hv = −∇Φ
a

. (2.17)

The evolution of a(t) is set by the background evolution i.e by the Friedmann equations once
the cosmological parameters are fixed. The solution to this N-body problem then relies on a
numerical scheme. Some of these schemes are described below. The generation of initial con-
ditions for cosmological simulation is also a problem on its own. The basic idea is to generate
a Gaussian perturbation field with a power spectrum given by equation 2.27 and compute the
corresponding displacement field. Particles initially located on the grid are then assigned an
initial velocity given by the Zel’dovich approximation (see also section 2.3.1). Note that im-
provements of this method are numerous. First, particles can be located on an amorphous fully
relaxed distribution instead of a regular grid, the advantage being to avoid preferred directions
([White, 1996]). Then, one can go beyond the Zel’dovich approximation to assign initial veloci-
ties and use Lagrangian perturbation theory at second order ([Jenkins, 2010]). This allows one,
in particular, to start the simulation at a later redshift.

The particle-particle (PP) method The simplest, but most time-consuming, method to solve
the N-body problem is to compute, at each time step, the exact Newtonian forces that act
between two particles of mass mi and mj separated by rij

Fij =
Gmimj

r2
ij

(2.18)

so that each particle has a new velocity and position given by

v(ti + ∆t) = v(ti) +

∑
j Fij∆t
mi

, (2.19)

x(ti + ∆t) = x(ti) + v(ti + ∆t)∆t . (2.20)

The main drawback of this approach is that it scales like the square of the number of particles
N2
p making the resolution very difficult when the number of particles become large. Note that

in practice, a softening parameter ε is introduced to cure the divergence of the gravitational
potential

φ = − Gm√
r2 + ε2

. (2.21)

This can be interpreted as the finite size of each particle. In particular, it reduces the spurious
effect of two-body relaxation. Note also that the accuracy of the PP method resides in the
smallness of the timestep and in the integrator used. Different schemes have been proposed so
far.

The particle-mesh (PM) method Another approach to compute the gravitational forces is to
directly integrate the Poisson equation on a mesh and get the gravitational potential in Fourier
space where Fast Fourier Techniques can be efficiently used. The execution time is drastically
reduced but the accuracy of the method is also degraded in particular on small scales. In more
detail, at each time step, the density on the grid is computed, then Poisson’s equation is solved
to find the gravitational potential, forces are derived from the potential on each grid point and
interpolated to each particle position before the equations of motion are integrated.
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2.1. The gravitational instability

Different interpolation schemes can be used to evaluate the density field on the mesh (and then
to interpolate consistently the force at the particle locations): “NGP” where the mass of the
particle is assigned to the nearest grid point, “cloud-in-cell” where the mass is shared between
the 2D nearest points depending on the inverse distance between them, etc. The solution of the
Poisson equation is the most time-consuming step but Fast Fourier Techniques are very efficient
so that the PM method eventually scales like Np + Ngrid logNgrid depending on the number
of particles Np and grid points Ngrid. Hybrid codes between PM and PP methods have been
developed in order to keep enough resolution on small scales (PP) and be efficient on large scales
(PM). They are called P 3M ([Efstathiou and Eastwood, 1981b]) or AP 3M ([Couchman, 1991])
when they are in addition adaptative i.e when the mesh is refined in large-density regions.

Tree codes Tree codes ([Appel, 1985, Barnes and Hut, 1986]) are now the most widely used
methods to solve N-body problems in cosmology. They are based on a tree algorithm which
describes the matter distribution as a tree. First, a large cubic cell is built that encompasses all
particles. It is then recursively subdivided into eight sub-cells until each cell contain one and
only one particle. The force is then computed by descending the tree and applying a hierarchical
multipole expansion i.e if the angular opening of the cell is less than a fixed acceptation angle
Θ, the cell is considered as a single particle else sub-cells are considered. Depending on the
acceptation angle, this method can be as efficient as O(Np logNp) (Θ ≈ 0.7 rad).

Hybrid methods called Tree-PM that mixes a long-range PM method with tree code on small
scale are very efficient and allows one to run large simulations with very good resolution. Gadget

([Springel, 2005]) is one of them.

Recent simulations It is now possible to simulate the evolution of self-gravitating collisionless
matter (e.g cold dark matter) in cosmological volumes (of several billions light year across) with
a huge dynamical range. For instance, the Horizon 4π simulation ([Teyssier et al., 2009]) maps
half the observable universe, with enough resolution to describe a Milky Way-like galaxy with
more than 100 dark matter particles. Let me also mention the Millenium simulations ([Springel
et al., 2005, Angulo et al., 2012]) run with Gadget and widely used in the community, the
Bolshoi simulation ([Klypin et al., 2011]) run with the AMR code Art, the Horizon Run 3
([Kim et al., 2011]) or the DEUS Full Universe simulations ([Alimi et al., 2012]) that use different
cosmological models (including different models of dark energy like Ratra-Peebles quintessence
or phantom fluid). Recently, the first codes trying to resolve the Vlasov-Poisson system directly
in phase space have been developed ([Hahn and Angulo, 2015], [Colombi et al., 2015]). Those
codes allow one to trace with much more accuracy phase space foldings during shell crossings
but are computationally costly as they require one to follow the evolution of a 3D sheet in a 6D
space. For cold dark matter, they give confidence in the standard N-body solvers that reproduce
with surprising accuracy the results obtained with Vlasov-Poisson solvers. It seems that dark
matter simulations have therefore converged today and are able to provide robust predictions for
some dark matter halo statistics. This conclusion is far from being reached by hydrodynamical
simulations as it will be discussed in section 2.1.4.2.

The Horizon-4π simulation In this manuscript, we will in particular make use of the Horizon 4π
N-body simulation ([Teyssier et al., 2009]). This simulation which contains 40963 DM particles
distributed in a 2 h−1Gpc periodic box is characterized by the following ΛCDM cosmology:
Ωm = 0.24, ΩΛ = 0.76, n = 0.958, H0 = 73 km·s−1·Mpc−1 and σ8 = 0.77 within one standard
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Figure 2.5: The Horizon 4π simulation. The outer region corresponds to a view of the universe
on scales of 16h−1Gpc: it is generated by unfolding the simulation while cutting a slice obliquely
through the cube in order to preserve the continuity of the field (thanks to the periodicity). The
intermediate region corresponds to a slice of 2h−1Gpc, while the inner region is at the original
resolution of the initial conditions. Credits: The Horizon project.
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deviation of WMAP3 results ([Spergel et al., 2003]). These initial conditions were evolved non-
linearly down to redshift zero using the adaptive mesh refinement code Ramses ([Teyssier, 2002]),
on a 40963 grid. The motion of the particles was followed with a multi grid Particle-Mesh Poisson
solver using a Cloud-In-Cell interpolation algorithm to assign these particles to the grid (the
refinement strategy of 40 particles as a threshold for refinement allowed us to reach a constant
physical resolution of 10 kpc, see the above references). The Friend-of-Friend (FoF) Algorithm
([Huchra and Geller, 1982]) was used over 183 overlapping subsets of the simulation with a
linking length of 0.2 times the mean interparticular distance to define dark matter haloes. Only
haloes with more than 40 particles are typically considered, which corresponds to a minimum
halo mass of 3× 1011M� (the particle mass being 7.7× 109M�). The mass dynamical range of
this simulation spans about 5 decades. Overall, 43 million halos were detected at redshift zero.

2.1.4.2 Simulations of baryons and dark matter

On large scales, the effect of baryonic processes is very small and baryons simply follow the
dark matter dynamics. However, on small-to-intermediate scales, baryonic physics cannot be
neglected and should be taken into account. First ideas to study the baryonic counterpart of
dark matter simulations were to rely on dark matter simulations and use recipes to populate
dark matter halos with galaxies. These semi-analytical models are nonetheless not sufficient to
account for the importance of non-linear gas dynamics and baryonic processes. Hydrodynamical
simulations however are able to take into account ab initio these complex baryonic phenomena.
They can be split into two types of codes: SPH and AMR that are described below.

Semi-analytical models Dark matter only simulations are much faster to run that hydrody-
namical ones. However, in order to be compared to observations, they need to be post-processed
and populated with galaxies of different sizes and luminosities. This can be done with semi-
analytical models ([Kauffmann et al., 1999, Springel et al., 2001, Croton et al., 2006, Baugh,
2006]) or halo occupation distribution models ([Seljak, 2000, Ma and Fry, 2000, Peacock and
Smith, 2000, Scoccimarro et al., 2001, Berlind and Weinberg, 2002]). If they are successful to
reproduce some observations, there is a real need to model self-consistently baryons and dark
matter and therefore to rely on hydrodynamical simulations.

Hydrodynamical simulations Baryons are usually described as a perfect fluid that follows the
standard hydrodynamical equations namely Euler and continuity equations and the first law of
thermodynamics that can be written in an expanding Universe

∂v
∂t

+
1
a

(v · ∇)v +
ȧ

a
v = − 1

aρ
∇P − 1

a
∇Φ ,

∂ρ

∂t
+ 3

ȧ

a
ρ+

1
a
∇ · (ρv) = 0 ,

∂(ρU)
∂t

+
1
a
v · ∇(ρU) = −(ρU + P )

(
1
a
∇ · v + 3

ȧ

a

)
,

(2.22)

where P is the pressure and U the internal energy per unit mass. For a monoatomic gas those
quantities are related through P = 2/3ρU . The joint evolution of baryons and dark matter is
often solved using the N-body techniques described in section 2.1.4.1 to model the gravitational
part and specific hydrodynamical methods are designed for the baryonic part. Typically two
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main approaches can be followed: smoothed particle hydrodynamics (Lagrangian view) and grid
codes (Eulerian view).

In smooth particle hydrodynamical codes (SPH), the fluid is discretized into particles. If the
major advantage of such a method is that it is Lagrangian, hence it refines naturally in high
density environment; on the other hand shocks and low-density environment are more difficult
to capture accurately. In order to mitigate the difficulty of describing discontinuities with
smooth particles (self-gravity in cosmological setups induces high complexity like supersonic
motions, shocks and discontinuities), they often need to introduce an artificial viscosity. The
first implementation in cosmology was made by [Evrard, 1988]. Examples of such Lagrangian
codes are e.g Gadget ([Springel, 2005]) and Gasoline ([Wadsley et al., 2004]).

The opposite point of view is to solve equations 2.22 on a (fixed or adaptative) grid. Quantities
inside each cells (like density, temperature, pressure, etc) are updated at each time step once
fluxes are computed for all interfaces. Those methods are very accurate in low and large-density
environments and in describing shocks. Such Eulerian codes include Ramses ([Teyssier, 2002]),
Enzo ([Bryan et al., 1995, O’Shea et al., 2004]), Flash ([Fryxell et al., 2000]), etc.

Hybrid codes like moving mesh are designed to gather the best of the Eulerian and Lagrangian
method (high resolution together with precise shock description) but are difficult to implement
in practice and their error budget is difficult to carry out. They have been shown to behave
closely to AMR codes. A recent example of moving mesh code is Arepo ([Springel, 2010]).

Already at the level of the numerical codes to solve the hydrodynamics, discrepancies – some-
times quite large – between different approaches are found ([Scannapieco et al., 2012]). On
top of that, galaxy formation simulations must also account for non-adiabatic processes such as
cooling and heating and must deal with sub-grid physics and feedbacks as detailed below.

Baryonic processes In addition to gravity and gas dynamics, lots of baryonic processes have
to be taken into account. Some of them have drastic impacts on the physical results and are
central in the study of cosmic structures and galaxy formation. A non-exhaustive list is given
here.

• radiative gas cooling and photoheating from a UV background : In a plasma of hydrogen
and helium, collisions induce excitation, ionisation, recombination and finally free-free
emissions. When optically thin gas and ionisation equilibrium are assumed, the resulting
cooling function Λ(ρ, U) can be computed or extracted from a table and added to the first
law of thermodynamics.

• star formation : In cold and dense regions, stars form. This sub-grid phenomenon is
implemented through a conversion of a fraction of the gas into collision-less star particles
that have the same dynamical behaviour as dark matter particles. The most widely used
recipe is the Schmidt law for which the star formation rate is proportional ρ3/2. The
efficiency of star formation is a parameter of the simulation together with a minimum star
particle mass.

• stellar feedback : it includes UV photons that may couple to the gas component via
radiation pressure, mass loss by stellar winds and supernovae explosions for which energy
can be deposited thermally and kinetically. As those events occur at the parsec scale that
is not resolved by large-scale structure simulations, a sub-grid recipe is required. Various
attempts have been deployed, the first ones led to the so-called cooling catastrophe where
too many stars form. Different models have then been proposed that could prevent from
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this catastrophe but they still remain ad hoc prescriptions that need a better understanding
of the processes driving galaxy formation. This feedback is important as it is energetic
enough to impede galaxy formation at low mass.

• Active Galactic Nuclei (AGN) feedback : supermassive black holes at the centers of galaxies
can have a drastic impact on their large-scale environment through kinematically energetic
outflows and relativistic jets. It is the current preferred scenario that could explain the
properties of massive galaxies.

• chemical enrichment

• thermal conduction

• radiation pressure from young massive stars

• magnetic fields

• etc.

Eventually, galaxy formation simulations have lots of sources of uncertainties coming from the
hydrodynamical code used, the recipes that model sub-grid physics and the number of parame-
ters.

Recent simulations State-of-the-art cosmological hydrodynamical simulations include the Mare
Nostrum simulation ([Ocvirk et al., 2008]), the Horizon-AGN simulation (see figure 2.6) run with
the adaptative mesh refinement code Ramses (see below), Illustris ([Vogelsberger et al., 2014])
run with the Arepo code, Massive Black II ([Khandai et al., 2015]) or EAGLE ([Schaye et al.,
2015]) run with upgraded versions of Gadget3.

The Horizon-AGN simulation The hydrodynamical simulation used in this manuscript is the
Horizon-AGN simulation ([Dubois et al., 2014]). A standard ΛCDM cosmology compatible
with the WMAP-7 cosmology ([Komatsu et al., 2011]) is adopted, with total matter density
Ωm = 0.272, dark energy density ΩΛ = 0.728, amplitude of the matter power spectrum σ8 = 0.81,
baryon density Ωb = 0.045, Hubble constant H0 = 70.4 km s−1 Mpc−1, and ns = 0.967. The
Horizon-AGN simulation has been run with 10243 dark matter (DM) particles in a Lbox =
100h−1 Mpc box, so as to obtain a DM mass resolution of MDM,res = 8×107 M�. The Adaptive
Mesh Refinement code ramses ([Teyssier, 2002]) has been used to run the simulation with an
initial mesh refinement of up to ∆x = 1 kpc (7 levels of refinement). The refinement scheme
follows a quasi-Lagrangian criterion: if the number of DM particles in a cell is more than 8, or
if the total baryonic mass in a cell is 8 times the initial DM mass resolution, a new refinement
level is triggered.

A [Sutherland and Dopita, 1993] model is used to allow gas cooling by means of H and He
cooling down to 104 K with a contribution from metals. Following [Haardt and Madau, 1996],
heating from a uniform UV background takes place after redshift zreion = 10. Metallicity is
modelled as a passive variable for the gas that varies according to the injection of gas ejecta
during supernovae explosions and stellar winds. A Schmidt law is used to model star formation:
ρ̇∗ = ε∗ρ/tff , where ρ̇∗ is the star formation rate density, ε∗ = 0.02 ([Kennicutt, 1998, Krumholz
and Tan, 2007]) the constant star formation efficiency, and tff the local free-fall time of the gas.
Star formation is allowed where the gas Hydrogen number density exceeds n0 = 0.1 H cm−3

according to a Poisson random process ([Rasera and Teyssier, 2006, Dubois and Teyssier, 2008])
with a stellar mass resolution of M∗,res = ρ0∆x3 ' 2× 106 M�.
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Figure 2.6: The Horizon-AGN simulation. A slice of the simulation at redshift z=1.2 is dis-
played with the gas density in green, the gas temperature in red, and the gas metallicity in
blue.
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The stellar feedback is modeled using a [Salpeter, 1955] initial mass function with a low-mass
(high-mass) cut-off of 0.1 M� (100 M�). In particular, the mechanical energy from supernovae
type II and stellar winds follows the prescription of starburst99 ([Leitherer et al., 1999, Lei-
therer et al., 2010]), and the frequency of type Ia supernovae explosions is taken from [Greggio
and Renzini, 1983].

Active Galactic Nuclei (AGN) feedback is modeled according to [Dubois et al., 2012]. A Bondi-
Hoyle-Lyttleton accretion rate onto Black Holes is used ṀBH = 4παG2M2

BHρ̄/(c̄
2
s + ū2)3/2,

where MBH is the BH mass, ρ̄ is the average gas density, c̄s is the average sound speed, ū
is the average gas velocity relative to the BH velocity, and α is a dimensionless boost factor
with α = (ρ/ρ0)2 when ρ > ρ0 and α = 1 otherwise ([Booth and Schaye, 2009]) in order to
account for our inability to capture the colder and higher density regions of the inter-stellar
medium. The effective accretion rate onto BHs is capped at the Eddington accretion rate:
ṀEdd = 4πGMBHmp/(εrσTc), where σT is the Thompson cross-section, c is the speed of light,
mp is the proton mass, and εr is the radiative efficiency, assumed to be equal to εr = 0.1 for the
[Shakura and Sunyaev, 1973] accretion onto a Schwarzschild BH. Two different modes of AGN
feedback are accounted for, the radio mode operating when χ = ṀBH/ṀEdd < 0.01 and the
quasar mode active otherwise. More details are given in [Dubois et al., 2014].

Galaxies are identified with the AdaptaHOP finder ([Aubert et al., 2004]), which relies directly
on the distribution of star particles to construct the catalogue of galaxies. 20 neighbours are used
to compute the local density of each particle. A local threshold of ρt = 178 times the average
total matter density is applied to select relevant densities. Note that the galaxy population does
not depend sensitively on the exact value chosen for this threshold. Our specific choice reflects
the fact that the average density of galaxies located at the centre of galaxy clusters is comparable
to that of their host. The force softening (minimum size below which substructures are treated
as irrelevant) is ∼ 10 kpc. Only galactic structures identified with more than 50 star particles
are included in the mock catalogues. This enables a clear identification of galaxies, including
those in the process of merging. A galaxy catalogues with ∼ 165 000 objects is produced at
z = 1.2 with masses between 1.7 × 108 and 1.4 × 1012 M�. The galaxy stellar masses quoted
in this thesis should be understood as the sum over all star particles that belong to a galaxy
structure identified by AdaptaHOP.

Successes and limitations Even if dark matter only simulations give accurate predictions for
dark matter halo statistics, the effect of baryonic physics must still be taken into account and
can lead to important deviation from dark matter only predictions. For instance, the matter
power spectrum seems to be affected by baryons on scales k & 1h/Mpc. Baryons tend to also
bias the halo mass function and the cosmic shear signal. This means in particular that percent
precision cosmology definitely needs theorists to take into account the effect of baryonic physics
when comparison between theory and observations is made. Given the uncertainties in modelling
galaxy formation, this raises the question of the validity of hydrodynamical simulations on those
scales.

2.2 Statistical estimators

The statistical description of the large-scale structure is based on several major concepts that
this section aims at presenting.
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2.2.1 Poly-spectra

Given a (classical) scalar random field such as the density contrast δ(x), on can define the joint
probability distribution function P(δ1, . . . , δn) so that P(δ1, . . . , δn)dδ1 . . . dδn is the probability
of having δ(x1) between δ1 and δ1 + dδ1... and δ(xn) between δn and δn + dδn. The expectation
value of any function f of the density is then given by

f0 = 〈f〉 =
∫
f(δi)P (δi)dδ1 . . . dδn.

The ergodic principle can be used to replace this average on different realisations of the Universe
by a spatial average

f0 = 〈f(x)〉 =
1
V

∫
f(x) d3x .

Hence, the statistics of a cosmic random field δ can be described by its successive N-point
correlation functions. The first non-trivial such estimator is the two-point correlation function
ξ(r) = 〈δ(x)δ(x + r)〉 that only depends on the magnitude of the separation r if the field
is statistically homogeneous and isotropic. These two assumptions are equivalent to assume
translation and rotation invariance. In Fourier space, it reads

〈δ(k)δ(k′)〉 = δD(k + k′)
∫
ξ(r) exp(ik · r) d3r, (2.23)

= δD(k + k′)P (k), (2.24)

where P (k) is the power spectrum of δ(x). In higher dimensions, the (connected) correlation
function between n planar waves define the successive poly-spectra Pn

〈δ(k1) . . . δ(kn)〉c = δD(k1 + · · ·+ kn)Pn(k1, . . . ,kn).

For Gaussian random fields (such as the initial fields we are considering in this manuscript),
Wick’s theorem simply reads

〈δ(k1) . . . δ(k2n+1)〉 = 0,

〈δ(k1) . . . δ(k2n)〉 =
∑
k

∏
(i,j)∈Σk

〈δ(ki)δ(kj)〉,

where Σ enumerates all the different possibilities of gathering the fields by pairs. This prop-
erty means that Gaussian fields are fully described by their two-point correlation function or
equivalently their power spectrum.

2.2.1.1 The initial power spectrum

Primordial density inhomogeneities are assumed to form a stochastic field as the result of quan-
tum fluctuations in the primordial Universe. The observed near-Gaussianity of the temperature
fluctuations in the cosmic microwave background allows one to assume that the statistics of the
initial density fluctuations are Gaussian so that the initial joint probability distribution function
(PDF) of X = (δ1, . . . , δn) is

P(δ1, . . . , δn) =
1√

det|2πC| exp
[
−1

2
Xt ·C−1 ·X

]
, (2.25)

where C is the covariance matrix describing the correlations of the fluctuation field Cij = 〈δiδj〉.
The power-spectrum of primordial fluctuations has been shown by cosmic microwave background
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experiments to be very close to scale-invariant i.e P (k) ∝ kn, n ≈ 1. This power spectrum is also
known as the Harrison-Zel’dovich spectrum and is such that perturbations in the gravitational
potential are scale-independent. Indeed, the Poisson equation implies that the power spectrum,
PΦ(k), of the gravitational potential goes like kn−4 ≈ k−3 in which case, the amplitude of
perturbations

σ(Φ)2 =
1

(2π)3

∫
d3 kPΦ(k) =

1
2π2

∫
d log k k3PΦ(k) (2.26)

is independent of scale dσ2(Φ)/d log k = cst. This scale-invariant property is often presented
as a prediction of the standard inflationary scenario. Modes that have been stretched to super-
horizon scales by inflation then start growing as soon as they re-enter the horizon. The evolution
of perturbation in the radiation-dominated era can be encoded in a transfer function T that
relates the primordial nearly scale-invariant power spectrum to the power spectrum after the
matter-radiation equivalence. This initial power spectrum (i.e at the beginning of the matter-
dominated epoch) will be called P0(k) in what follows and is given by

P0(k, z) = A(z)knT 2(k, z), (2.27)

where the normalisation A(z) is determined observationally. The transfer function that encodes
the microphysics of the recombination is well-approximated by [Bardeen et al., 1986]

TCDM =
ln(1 + 2.34q)

2.34q
(1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4)−1/4 (2.28)

where q = k/Γh/Mpc and Γ = Ω0h exp
[
−Ωb(1 +

√
2h/Ω0)

]
. On very large scales, the power

spectrum is scale-invariant as set by inflation (fluctuations are frozen). On the other hand,
this power spectrum on small scales goes like k−3. The turnover point occurs at the comoving
Hubble radius around the matter-radiation equivalence rH(teq) = 13.7/(Ωm,0h

2) Mpc.

2.2.1.2 Smoothing

The subsequent gravitational evolution is then fully described by the Newtonian formalism
described in section 2.1.2. The idea is now to investigate how the initial statistics seen in the
CMB evolve under gravity and how non-Gaussianities arise and skew the probability density
function. In order to compare with observations, it is necessary to introduce filter functions that
allow one to go from a point-like distribution of galaxies to a density field smoothed on a given
scale. The two most common smoothing functions are the Gaussian filter

WG(x, R) =
1

(2π)3/2R3
exp

(−|x|2
2R2

)
, (2.29)

and the top-hat filter which averages the matter content in hard spheres of radius R

WTH(x, R) =
3

4πR3
ΘH(R− |x|) . (2.30)

The normalisation of those filter functions is a convention. It is set to one here∫
d3xW (x, R) = 1 . (2.31)
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In Fourier space, the filters read

WG(k,R) =
1

(2π)3/2

∫
d3x exp (−ik · x)WG(x, R) =

1
(2π)3/2

exp
(−k2R2

2

)
, (2.32)

WTH(k,R) =
1

(2π)3/2

3
(kR)2

(
sin(kR)

(kR)
− cos(kR)

)
, (2.33)

where k is the norm of the wavevector k = |k|.

Note that in order to study the same level of non-linearity, one needs to use either one filter
or the other with a different smoothing. To be more precise, let us compute the variance of
fluctuations

σ2(R) =
1

(2π)3

∫
4πk2dk P (k)W 2(k,R) . (2.34)

Then the link between top-hat and Gaussian smoothing lengths is implicitly given by σ2(RTH) =
σ2(RG). For a power-law power spectrum P (k) ∝ kn, we get RTH = α(n)R where

αn+3(n) = 9× 22−nΓ(n− 1) sin(nπ2 )
(n− 3)Γ

(
n+1

2

) . (2.35)

For instance, α(n = 0) = (6
√
π)1/3 ≈ 2.2.

2.2.1.3 Non-linear evolution of the power spectrum

The effect of the dynamical evolution of the density field is already seen in the power spectrum.
Its non-linear evolution can be studied through perturbation theory in the weakly non-linear
regime as described in section 2.1.2.4 or numerical simulations. At linear order, the global
magnitude of the power spectrum grows like D+(t)2 as shown in section 2.1.2.2. Next order cor-
rections can be computed through perturbation theory techniques until two loops. In [Taruya
et al., 2012], we showed how to predict the density power spectrum to two-loop order using the
RegPT approach. Figure 2.7 compares this prediction to the result of dark matter simulations.
Such a construction gives robust and accurate predictions for both the density power spectrum
and the correlation function at percent-level in the weakly non-linear regime. At decreasing
redshift, the clustering non-linearity develops and the applicable range of PT calculations in-
evitably becomes narrower. However, compared to the standard PT predictions, the RegPT
result can reproduce the N-body trend with even wider range. Note that the impact of non-
linear clustering on the baryon acoustic peak of the two-point correlation function is significant
(right panel): the peak position becomes slightly shifted to a smaller scale, and structure of the
peak tends to be smeared as the redshift decreases. The RegPT (similarly to other improved
PT treatments) calculation can describe not only the behavior around the baryon acoustic peak
but also the small-scale behavior of the correlation function. Although the RegPT prediction
eventually deviates from simulations at small scales and the result at z = 0.35 indeed manifests
the discrepancy below r ≈ 30h−1Mpc, the actual range of agreement between RegPT and N-
body results is wider than what is naively expected from the power spectrum results. In fact,
it has been recently advocated by several authors that with the improved PT treatment, the
one-loop calculation is sufficient to accurately describe the two-point correlation function.

All the cosmological information is not contained in the power spectrum because the non-linear
evolution also induces non-Gaussianities that we propose to describe in the following section.
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Figure 2.7: Comparison of density power spectrum (left panel) and two-point correlation function
(right panel) between N-body simulations and RegPT calculations. Note that left panel shows
the ratio of the power spectrum to the smooth linear spectrum, P no-wiggle(k), calculated from
the no-wiggle formula of the linear transfer function. For reference, the linear prediction is also
displayed (dotted line). These figures are reproduced from [Taruya et al., 2012].
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Figure 2.8: Non-linear evolution of the density PDF from an initial Gaussian distribution (red)
to a skewed PDF (blue) as measured in a numerical simulation at redshift z = 0.65 for a top-hat
smoothing on scale RTH = 10 Mpc/h.

2.2.1.4 Non-Gaussianities

When structure grow, peaks are becoming more and more dense in comoving space and voids
are expanding. This can be seen in the density distribution with a long high-density tail and a
pronounced peak at low-density (see figure 2.8). As a consequence, on top of the growth of its
variance, the density PDF is becoming increasingly non-Gaussian and in particular asymmetric
with cosmic time. The skewness (that measures the asymetry of the PDF)

〈
δ3
〉

and other higher
order moments become non-zero and grow.

Let us compute the skewness at leading order in perturbation theory. If initial conditions are
Gaussian ([Peebles, 1980])

〈
δ3
〉

= 3
〈(

δ(1)
)2
δ(2)

〉
+O(σ2) =

34
7
〈
δ2
〉2 +O(σ2) . (2.36)

This result neglects the effect of smoothing. Adding a filter function increases the complexity
of the angular part of the integration. However, in the case of a top-hat filter in real space
(equation 2.30), the properties of Bessel functions allow to analytically compute the skewness
so that ([Bernardeau, 1994a])

〈
δ3(R)

〉
=
(

34
7

+
d log σ2(R)

d logR

)〈
δ2
〉2 +O(σ2) . (2.37)

As the skewness scales like σ4 at tree order (i.e on large scales), it is common to define the S3

parameter as

S3 =

〈
δ3(R)

〉
〈δ2(R)〉2 =

34
7

+
d log σ2(R)

d logR
+O(σ2) . (2.38)

Similarly, one can define the successive Sn factors as the ratio of the n-th order cumulant to
some power of the variance

Sn =
〈δn(R)〉c
〈δ2(R)〉n−1 . (2.39)
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Those factors are pure numbers on large-scales (see [Fry, 1984, Bernardeau, 1994a, Lokas et al.,
1995] for S4, the kurtosis). The reason of this property is twofold: Gaussian initial conditions
and quadratic PT kernels. It can be easily understood from the diagrammatic representation of
a cumulant of order n as described in [Bernardeau et al., 2002].

The effect of the Sn factors on the density PDF can be appreciated via the so-called Edgeworth
expansion of the PDF in powers of σ ([Scherrer and Bertschinger, 1991, Bernardeau and Kofman,
1995, Juszkiewicz et al., 1995])

P(δ) = G(δ)×
[

1 + σ
S3

3!
H3

(
δ

σ

)
+ σ2

(
S4

4!
H4

(
δ

σ

)
+

1
2

(
S3

3!

)2

H6

(
δ

σ

))
+ · · ·

]
, (2.40)

where G(δ) = exp
(−δ2/(2σ2)

)
/
√

2πσ2 is the Gaussian distribution that matches the mean
and variance of P and Sn can be viewed as non-Gaussian perturbations of the PDF around a
Gaussian kernel. This expansion can be derived from the cumulant generating function

ϕ(λ) =
∑
p≥2

(−1)p−1Sp
p!

(2.41)

that is related to the density PDF through

P(δ) =
1

2iπσ2

∫ i∞

−i∞
dλ exp

(
−ϕ(λ)

σ2
+
δλ

σ2

)
. (2.42)

At fixed Sp, this PDF can be computed when σ and λ are small leading to the Edgeworth
expansion.

This Edgeworth series is a re-ordering of a Gram-Charlier expansion ([Cramér, 1946, Kendall
and Stuart, 1958, Chambers, 1967, Juszkiewicz et al., 1995, Amendola, 1996, Blinnikov and
Moessner, 1998]) which allows one to expand a PDF around a (e.g Gaussian) distribution using
the corresponding basis of orthogonal polynomials (here Hermite polynomials)

P(x) = G(x)×
[

1 +
∞∑
n=3

〈xn〉GC

n!
Hn(x)

]
, (2.43)

where for the sake of simplicity x = δ/σ and the Gram-Charlier coefficients can easily be derived
from the orthogonality property of Hermite polynomials

〈xn〉GC = 〈Hn(x)〉 . (2.44)

Let us recall that Hermite polynomials are defined such that

dnexp(−x2/2)
dxn

= (−1)nHn(x) exp(−x2/2) , (2.45)

so that for instance H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − x, etc.

Gram-Charlier expansions suffer from a lack of convergence. This is solved by the Edgeworth
series which re-orders in powers of the variance. However, it has to be noted that both approaches
are valid only in the weakly non-linear regime and are not positive-definite. Nevertheless, it has
been realised that the count-in-cell formalism allows one to predict the density PDF in the
mildly non-linear regime using the spherical collapse model. Those ideas will be developed in
section 5.1.2. Note also that the PDF expansions presented in this section will be an important

37



Chapter 2. Statistics of the large-scale structure

tool to predict topological and geometrical estimators in the weakly non-linear regime (see
section 5.1.1).

The non-Gaussian evolution of the density field is not only encoded in its one-point PDF (or in
the one-point cumulants Sn) but in the full hierarchy of N-point correlation functions. Beyond
the two-point correlation function (or its Fourier counterpart the power spectrum) that is suffi-
cient to fully describe a Gaussian field, in the non-Gaussian regime one is led to also consider
the three-point correlation function (or the bispectrum), the four-point correlation function (or
the trispectrum), etc that are increasingly difficult to measure and predict. One important
question that arises at this point is the building of “optimal” observables that carry as much
cosmological information as possible. One idea is for instance to focus on topological estimators
(see the following section).

2.2.2 Topology of the density field

With upcoming high-precision surveys, it has become necessary to revisit alternative tools to
investigate the statistics of random cosmological fields so as to handle observables with different
sensitivity. Minkowski functionals ([Mecke et al., 1994]) have been being actively used ([Gott
et al., 1987, Weinberg et al., 1987, Melott et al., 1988, Gott et al., 1989, Hikage et al., 2002, Hikage
et al., 2003, Park et al., 2005, Gott et al., 2007, Planck Collaboration et al., 2014d]) as an
alternative to the usual direct measurements of higher-order moments and N-point correlation
functions ([Scoccimarro et al., 1998, Percival et al., 2007, Gaztañaga et al., 2009, Nishimichi
et al., 2010, amongst many other studies]). These functionals describe the topological properties
of random fields. As such, they will present different biases and might be more robust, e.g. with
regards to rare events.

2.2.2.1 Definitions

In order to study the geometry of a field, one can focus on its set of excursions – the volume
above a given threshold – or equivalently on its sets of isocontours (surface of constant value of
the field and therefore boundary of an excursion). Figure 2.9 shows a typical excursion. Then
the study of their topology leads to the so-called Minkowski functionals that we propose to study
here.

The topology of a 2D manifold is characterized via the so-called mathematical genus g which is
its number of handles (zero for the surface of a sphere, one for a torus, two for a double torus,
etc). This quantity is trivially invariant under continuous deformation. In arbitrary dimension,
this notion is replaced by the Euler-Poincaré characteristic χ defined as the alternating sum of
Betti numbers

χ =
∑
i

(−1)ibi, (2.46)

where bi is the rank of the i-th singular homology group Hi (which counts the holes of dimension
i). For the torus, b0 = 1, b1 = 2, b2 = 1 so that the Euler-Poincaré characteristic of a torus
is 1 − 2 + 1 = 0. For 2D manifold, χ is related to the genus by χ = 2 − 2g and the Gauss-
Bonnet theorem states that the 2D Euler-Poincaré characteristic is nothing but the integral of
the Gaussian curvature K allowing to relate the topology to the geometry of the surface

χ =
1

2π

(∫
S
KdA+

∫
∂S
kdS

)
, (2.47)
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Figure 2.9: Excursion above the threshold f = 0 of the 2D Gaussian field f .

where k is the curvature of the boundary of the surface S. Note that in cosmology, we are
interested in the topological features of either the excursions or the isocontours. Their Euler
characteristics are related by

χ(∂M) = (1 + (−1)d−1)χ(M), (2.48)

whereM is a d-dimensional manifold (e.g an excursion) and ∂M its boundary (e.g an isocontour).

A finite number of invariants is sufficient to characterize the topology of random fields, they are
known as Minkowski functionals (and are functions of the threshold ν). More precisely, they
are the only morphological descriptors in Integral Geometry that respect motion-invariance,
conditional continuity and additivity ([Hadwiger, 1957]). As a result, they form a robust and
meaningful set of observables that characterizes the excursion sets or equivalently the isocontours
of the field. In d dimensions, there are d + 1 such functionals (4 in 3D and 3 in 2D), namely
in 3D: the encompassed volume, fV , the surface area, N3, the integral mean curvature and
the integral Gaussian curvature which is closely related to the Euler-Poincaré characteristic,
χ (see also figure 2.10). For random fields these functionals are understood as densities, i.e
quantities per unit volume of space. Especially when studying anisotropic fields, complimentary
information can be obtained by using Minkowski functionals for the field obtained on lower
dimensional sections of the 3D field. For example, in addition to 3D isocontour area statistics,
one can introduce the length of 2D isocontours on a planar sections N2, and contour crossings
by a line through 3D space, N1. These statistics for cosmology were first introduced by [Ryden,
1988, Ryden et al., 1989]. In the isotropic limit, they are trivially related: 2N1 = 4N2/π =
N3; but this relation does not hold anymore for an anisotropic field as it will be shown in
section 5.1.1.1. Similarly, in addition to the full Euler characteristic χ3D of 3D excursion sets,
we shall consider the 2D Euler characteristic, χ2D, on planar sections through the field.

Among all Minkowski functionals, the beauty of the Euler characteristic is that it can be related
to the critical points via Morse theory. Indeed, if the field is smooth enough (in mathematical
terms, if it is a Morse function), the Euler characteristic is nothing but the alternating sum of
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Figure 2.10: In two dimensions, there are three Minkowski functionals: the Euler characteristics
(related to the genus) which counts the number of islands minus the number of holes, the length
of the isocontour (left panel, red line) and the volume above the threshold. Contour crossing
statistics are illustrated on the right panel.

extrema

χ2D(ν) = nmin(ν)− nsaddle(ν) + nmax(ν) , (2.49)
χ3D(ν) = nmin(ν)− nsadw(ν) + nsadf(ν)− nmax(ν) . (2.50)

This equivalence between Euler characteristic and critical points is illustrated in figure 2.11 in
the simple case of a one-dimensional field. It is clear on this figure that maxima indeed create
connected components and minima destroy holes and merge components together.

Similarly to the Euler characteristic, other Minkowski functionals can be expressed as averages
over the joint probability density function (JPDF) of the field and its derivatives. In the follow-
ing, let us call x the field under consideration and, without loss of generality, assume that it has
zero mean. In cosmological applications, this field, for instance, can be the 3D density contrast.

2.2.2.2 Peak theory

For the sake of simplicity, let us first explain how to use the JPDF to study the number count
of peaks in a random field x. The formalism of cosmological density peaks, which builds on the
Kac-Rice formula [Kac, 1943, Rice, 1945] was laid down in [Bardeen et al., 1986]. Following
[Pogosyan et al., 2009b], for a given field ρ, we define the moments

σ0
2 = 〈ρ2〉, σ1

2 = 〈(∇ρ)2〉, σ2
2 = 〈(∆ρ)2〉. (2.51)

Combining these moments, we can build two characteristic lengths R0 = σ0/σ1 and R∗ = σ1/σ2,
as well as the spectral parameter

γ =
σ1

2

σ0σ2
. (2.52)

We choose to normalise the field and its derivatives to have unit variances:

x =
1
σ0
ρ, xi =

1
σ1
∇iρ, xij =

1
σ2
∇i∇jρ. (2.53)
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Figure 2.11: The alternating sum of extrema is nothing but the Euler characteristics.

In terms of these variables, the Gaussian joint PDF for the field and its derivatives, X =
{x, xij , xi} is the multivariate Normal distribution

P(X) =
exp

(−1
2XT ·C0

−1 ·X)
det|C0|1/2 (2π)(d+1)(d+2)/2

, (2.54)

where C0 ≡ 〈X ·XT〉 is the covariance matrix. Eq.(2.54) is sufficient to compute the expectation
of any quantity involving the fields and its derivatives up to second order, in particular the
expected number density of peaks. Indeed the number density of peaks can be written as a sum
of Dirac delta functions centered on the locations ri of the peaks

nmax(r) =
∑

1≥i≥Nmax

δD(r− ri) . (2.55)

Let us now write a Taylor expansion of the density gradient around a peak

∇x(r) = 0 + H(ri) · (r− ri) . (2.56)

where H is the tensor of second derivatives (Hessian matrix) of the field x. The properties of
the Dirac delta function then yields

|det H|δD(∇x) =
∑

1≥i≥Ncrit

δD(r− ri) , (2.57)

where the sum runs on all the critical points (δD(∇x) = 0) of the field.

Combining equations 2.55 and 2.57, one eventually gets the number density of critical points

〈ncrit(r)〉 = 〈|det H|δD(∇x)〉 , (2.58)

and the number density of peaks by adding a constraint on the sign of the eigenvalues λk of the
Hessian H

〈nmax(r)〉 =

〈
|det H|δD(∇x)

∏
k

Θ(−λk)
〉
, (2.59)
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where averages are turned from spatial averages to ensemble averages (by ergodicity)

〈nmax〉 =

〈
|det H|δD(∇x)

∏
k

Θ(−λk)
〉

(2.60)

=
∫

dXP(X)|det H|δD(∇x)
∏
k

Θ(−λk) (2.61)

=
(
σ2

σ1

)d ∫
dXP(X)| detxij

∏
k

Θ(−λk)|δD(xk) . (2.62)

This integral can be exactly calculated for a Gaussian JPDF in two and three dimensions so that
the total number density of peaks (and similarly saddles and minima) is given in two dimensions
by

〈nmax〉 = 〈nmin〉 =
1

8
√

3πR2
?

(2.63)

〈nsad〉 =
1

4
√

3πR2
?

(2.64)

and in three dimensions by

〈nmax〉 = 〈nmin〉 =
29
√

15− 18
√

10
1800π2R3

?

(2.65)

〈nsadf〉 = 〈nsadw〉 =
29
√

15 + 18
√

10
1800π2R3

?

, (2.66)

where filament-type saddle points (two negative eigenvalues) are dissociated from wall-type
saddle points (one negative eigenvalue).

The same formalism can be used to compute the number density of peaks (saddles, minima) of a
given height ν. While in two dimensions the result is still analytical, this is not the case anymore
in three dimensions but integrals can be computed from a numerical point of view. Peak counts
can also be predicted for weakly non-Gaussian fields using a Gram-Charlier expansion of the
JPDF as shown in [Gay et al., 2012].

2.2.2.3 Predicting Minkowski functionals

Minkowski functionals can be predicted from the knowledge of the JPDF, in the same way
as peak counts. Collecting the well-known results from an extensive literature (e.g. [Rice,
1944, Rice, 1945, Ryden, 1988, Matsubara, 1996]) in a compact form, we have for the first two
Minkowski functionals

fV (ν) = 〈Θ(x− ν)〉 , (2.67)
N3(ν) = 〈|∇x|δD(x− ν)〉 , (2.68)
N2(ν) = 〈|∇S x|δD(x− ν)〉 , (2.69)
N1(ν) = 〈|∇L x|δD(x− ν)〉 , (2.70)

where the δD-function in the statistical averaging signifies evaluation at the given threshold
x = ν, while the step function reflects the cumulative averaging over the values above the
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threshold x ≥ ν. We see that the family of threshold-crossing statistics is given by the average
gradient of the field for N3 or its restriction to a plane S or line L for N2 and N1, respectively.

The average of the Gaussian curvature on the isosurface is, via the Gauss-Bonnet theorem, its
topological Euler characteristic χ, which thus can be expressed directly as ([Hamilton et al.,
1986, Matsubara, 1996])

χ(ν) =
〈
δD(x− ν)δD(∇1x)δD(∇2x)∇3x|(∇1∇1x∇2∇2x− (∇1∇2x)2)

〉
. (2.71)

In this thesis, we will use the Euler characteristic, χ3D, of the excursion set encompassed by the
isosurface (which in 3D is just one half of the Euler charasteristic of the isosurface itself, and is
equal to minus the genus for the definitions used in cosmology, see detailed discussions for such
conventions in [Gay et al., 2012]). Being the alternating sum of Betti numbers, χ3D is related
via Morse theory (e.g. [Jost, 2008]) to the alternating sum of the number of critical points in the
excursion volume. For a random field ([Doroshkevich, 1970, Adler, 1981, Bardeen et al., 1986])
3

χ3D(ν)= −〈det(∇i∇jx) δD(∇x)Θ(x− ν)〉 , i, j ∈ {1, 2, 3} . (2.72)

The Euler characteristic of the excursion sets of a 2D field (in particular, 2D slices of a 3D
random field) is given by a similar expression ([Adler, 1981, Bond and Efstathiou, 1987, Coles,
1988, Melott et al., 1989, Gott et al., 1990])

χ2D(ν)= 〈det(∇i∇jx) δD(∇x)Θ(x− ν)〉 , i, j ∈ {1, 2} . (2.73)

Within the same formalism and as shown in section 2.2.2.2, it is easy to compute the critical
points counts ([Adler, 1981, Bardeen et al., 1986]). Equation 2.72 leads to a cumulative counting
above a given threshold for maxima, two type (filamentary and wall-like) saddle points and
minima

nmax,3D(ν) = −〈det(∇i∇jx) δD(∇x)Θ(−λ1)Θ(x− ν)〉 , (2.74)
nsadf,3D(ν) = + 〈det(∇i∇jx) δD(∇x)Θ(λ1)Θ(−λ2)Θ(x− ν)〉 , (2.75)
nsadw,3D(ν) = −〈det(∇i∇jx) δD(∇x)Θ(λ2)Θ(−λ3)Θ(x− ν)〉 , (2.76)
nmin,3D(ν) = + 〈det(∇i∇jx) δD(∇x)Θ(λ3)Θ(x− ν)〉 , (2.77)

where averaging conditions are set by the signs of sorted eigenvalues λ1 ≥ λ2 ≥ λ3 of the Hessian
matrix of the field. Taking alternating sum eliminates the constraints on signs of eigenvalue,
leading to the χ3D statistics. Similar expressions as equations 2.74-2.77 apply for 2D extrema.

Extrema counts provide us with information on peaks (dense regions), minima (under-dense
regions), and saddle points. In some applications there is symmetry between extrema (e.g.
in CMB studies minima and maxima of the temperature field are equivalent); in others, they
describe very different structures, e.g. in large-scale structure dense peaks correspond to gravi-
tationally collapsing objects like galactic or cluster haloes while minima seed the regions devoid
of structures. Saddle-type extrema are also interesting in their own right, being related to the
underlying filamentary structures (bridges connecting peaks through saddles), which in turn can
also be characterized by the skeleton of the cosmic web (see section 2.3). A particular advantage
of the described geometrical and topological statistical estimates is that they are invariant under
monotonic transformation of the underlying field x → f(x), provided one maps the threshold
correspondingly ν → f(ν). For cosmological data this means that these statistics are formally
invariant with respect to any monotonic local bias between the galaxy and matter distributions.

3Note that this expression comes from δD(∇x) =
P
x0|∇x0=0 δD(x − x0)/|det(∇i∇jx) | and the absolute value

of the Hessian can be dropped because we are interested in the alternating sum of critical points.
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Chapter 2. Statistics of the large-scale structure

For Gaussian isotropic fields, the theoretical prediction of Minkowski functionals has long been
known ([Doroshkevich, 1970, Adler, 1981, Bardeen et al., 1986, Hamilton et al., 1986, Bond and
Efstathiou, 1987, Ryden, 1988, Ryden et al., 1989]). For instance, the Euler characteristic in
three dimensions is simply given by

χ3D(ν) =
√

3
36π2

γ3

R3
?

H2(ν) exp
(−ν2/2

)
. (2.78)

For mildly non-Gaussian fields, their expressions have also been computed more recently. The
idea is to expand the JPDF of the field and its derivatives using either the first and second
non-Gaussian corrections of a multivariate Edgeworth expansion ([Matsubara, 1994, Pogosyan
et al., 2009a, Matsubara, 2010]) or the fully non-Gaussian Gram-Charlier expansion ([Gay et al.,
2012]). However, one major assumption in these results has been the isotropy of the underlying
field. In section 5.1.1.1, we extend the theory to partially anisotropic fields that correspond in
particular to the case of cosmological fields in redshift space (where the galaxy distribution is
distorted along the line-of-sight).

The beauty of these estimators resides in their ability to extract cosmological information from
the topological features of different observed fields (galaxy distribution, lensing maps, CMB). In
section 5.1.1.1, we will show how they can be used to extract information on dark energy and
modified gravity models.

2.3 Birth and growth of the cosmic web

Understanding the formation and growth of the cosmic web has important implications in both
galaxy formation and cosmology. Indeed, the large-scale structure is meant to be one of the major
probes of cosmology in the coming years by means of for instance gravitational lensing, structure
growth factor, baryon acoustic oscillations and void analysis. The cosmic web is also paramount
to understanding the role of the environment in galaxy formation and evolution. It induces a
density bias and preferred directions that should have an impact on galaxies. In particular, as
will be discussed later, it has indeed been shown that halo’s properties are correlated to their
environment (see section 4.1.2).

2.3.1 Lagrangian perturbation theories and the Zel’dovich approximation

An interesting approach to understand the genesis of the cosmic web is to adopt a Lagrangian
view dual to the Eulerian description used in section 2.1.2. Instead of expressing quantities at
fixed comoving coordinates (Eulerian view), one can indeed write the cosmic fields as a function
of the initial position q. This initial position is related to the comoving coordinate x at time t
by a displacement term

x(t) = q + ψ(q, t) . (2.79)

Starting from an homogeneous initial density field, the local density at time t then reads

ρ(q, t) =
ρ̄

J
, (2.80)
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where J is the jacobian of the Eulerian-to-Lagrangian transformation J =
∣∣∣dx

dq

∣∣∣ given by

J =
∣∣∣∣δKij +

∂ψi
∂qj

∣∣∣∣ , (2.81)

with δKij the Kronecker delta. The Euler equation for u = aẋ, then yields

ψ̈ + 2Hψ̇ = − 1
a2
∇xΦ , (2.82)

where ∇xΦ is seen as a function of q. Using the Poisson equation to express the gravitational
potential in terms of the density, it yields

∇xψ̈ + 2H∇xψ̇ = −4πGρ̄δ = 4πGρ̄
J − 1
J

, (2.83)

The linear solution for the displacement field is often referred to as the Zel’dovich approximation
([Zel’dovich, 1970]). In this regime, equation 2.83 becomes

∇qψ̈ + 2H∇qψ̇ =
3
2

ΩH2∇qψ , (2.84)

as J ≈ 1 + tr(∂ψi/∂qj) = 1 +∇qψ at linear order. This equation is the same as equation 2.9 so
that the solution – if we neglect the decaying mode – is given by

ψZA(q, t) = D+(t)ψ+(q) (2.85)

and
ρZA(q, t) =

ρ̄

|(1−D+(t)λ1)(1−D+(t)λ2)(1−D+(t)λ3)| , (2.86)

with λ1 > λ2 > λ3 the eigenvalues of −∂ψ+
i /∂qj . Note that the deformation tensor −∂ψ+

i /∂qj
is proportional to the Hessian of the gravitational potential up to a time-dependent factor
2(3D+a

2H2Ω)−1. The Zel’dovich displacement is therefore a rectilinear trajectory that moves
particles along the direction of the initial force. It allows one to probe the mildly non-linear
stages of structure formation and describe the anisotropic collapse of matter that shapes the
cosmic web. Indeed, Equation 2.86 suggests that the first caustics, i.e the first shell crossings,
appears when D+(t)λ1 → 1 and therefore correspond to planar regions, the so-called Zel’dovich
pancakes. This situation occurs when λ1 > 0. If λ2 is also positive, one direction of the wall
will later collapse leading to the formation of a filament. If λ3 is similarly positive, the filament
will eventually contract to form a fully collapsed object (halo, cluster at the nodes of the cosmic
web). The Lagrangian formalism described in this section is therefore a powerful descriptor of
structure formation and allows one to understand how matter evolves on large scales escaping
from the voids to the walls then flowing towards the filaments and finally streaming towards
the nodes. This picture takes place at various scales and epochs, the speed of the successive
collapses being directly encoded in the magnitude of the eigenvalues. It is quite striking that
this very simple model allows one to understand the formation of the cosmic web that is seen
both in observations and in simulations

It has to be noted that the Zel’dovich ballistic approximation breaks down as soon as shell
crossing occurs. Indeed when two flows of matter crosses, the gravity in this high-density
regions tend to capture the streams of matter and form localized structures whereas in the
Zel’dovich approach, the two streams would simply pass through each other and continue their
free streaming motion. Different ideas have been put forward to improve the description of
the cosmic web. The adhesion model ([Gurbatov et al., 1989, Kofman et al., 1990, Shandarin,
1991, Hidding et al., 2012]) for instance proposes to add an artificial viscosity that sticks the
particles in the multi-flow regions and indeed reproduces with better accuracy the cosmic web
seen in numerical simulations.
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Chapter 2. Statistics of the large-scale structure

Figure 2.12: Zoom at different scales in the MareNostrum simulation (2.12) illustrating the
clustering of galaxies in filaments.

2.3.2 Voids, walls, filaments and nodes

The ellipsoidal collapse model developed and studied in particular by [Lynden-Bell, 1964, Lin
et al., 1965, Icke, 1973, White and Silk, 1979, Peebles, 1980, Watanabe and Inagaki, 1991,
Lemson, 1993, Bond and Myers, 1996a], following Zel’dovich’s ideas in the seventies allow one
to understand the anisotropic nature of the gravitational collapse. In particular, they predict
that elongated and flattened structures form. Those ideas led to the concept of cosmic web
([Klypin and Shandarin, 1993, Bond et al., 1996]) that was precisely described in the context
of the peak-patch formalism ([Bond and Myers, 1996a, Bond and Myers, 1996b, Bond and
Myers, 1996c]). The origin of filaments and nodes lies in the asymmetries of the initial Gaussian
random field describing the primordial universe and amplified by gravitational collapse. The
above-mentioned works pointed out the importance of non-local tidal effects in weaving the
cosmic web. The high-density peaks define the nodes of the evolving cosmic web and completely
determine the filamentary pattern in between. In particular, one can appreciate the crucial
role played by the study of constrained random fields in understanding the geometry of the
large-scale matter distribution. This will be one of the major tool used in the rest of the thesis.

The global picture that emerges is therefore the following. The clustering of matter on cosmo-
logical scales follows a complex network made of giant bubble-like voids surrounded by sheets
which intersects into elongated filaments with clusters of galaxies at their nodes. This structure
is seen both in numerical simulations as seen on figure 2.12 and observations (see section 3.2)
and occurs at various scales. The following section will be devoted to the theoretical study of
this cosmic web and in particular its various mathematical definitions.

2.3.3 The skeleton of the large-scale structure

The characterization of the cosmic web is a challenging task that first requires one to elaborate
a proper mathematical definition of the complex cosmic network made of large voids, sheet-like
structures and elongated filaments that our eye easily detects. In the literature, lots of different
definitions and algorithms have emerged and have been applied to simulations and observations
in order to extract the cosmic filamentary pattern together with its corresponding set of walls
and voids.
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2.3. Birth and growth of the cosmic web

2.3.3.1 On the plurality of morphological estimators

Some earlier attempts were based on percolation and graph theory like the minimum spanning
tree ([Barrow et al., 1985]).

More recently, a class of cosmic web classifiers appeared initially designed for simulated data and
relying on the use of a smooth field. The simplest approaches propose to identify the different
components of the cosmic web from the density Hessian matrix ([Aragón-Calvo et al., 2007b]),
tidal field ([Hahn et al., 2007b],[Forero-Romero et al., 2009]) or velocity shear ([Hoffman et al.,
2012]) depending on the sign of their eigenvalues. In this context, the curvature of the density
field is a natural indicator of the local morphology of the matter distribution and one can simply
count the number of positive eigenvalues of the density Hessian matrix in order to define voids (3
positive eigenvalues), walls (2), filaments (1) and nodes (0). Recent developments by [Aragón-
Calvo et al., 2007a] and [Cautun et al., 2013] extract the cosmic web from the joint analysis
of the density field smoothed at different scales. The T and V-web methods classify structures
from a dynamical or kinematic point of view i.e using respectively the tidal or the velocity shear
fields as suggested by the Zel’dovich picture described in section 2.3.1. When the cosmic web
is defined as the locus of shell crossings, a phase space analysis can be carried out in order to
detect the caustics in the density field ([Neyrinck, 2012]) but requires the knowledge of the full
phase space information and is therefore far from being applicable to real data.

Another criterion based on Morse theory was put forward by [Novikov et al., 2006, Sousbie et al.,
2008, Pogosyan et al., 2009b] to define the local skeleton as the set of critical lines joining the
maxima of the (density) field through saddle points following the gradient. It will be developed
in more details in the following section. This definition therefore uses the geometry of the density
field in a more sophisticated way than simple eigenvalues counting. This is also the case of [Bond
et al., 2010] who uses the Hessian eigen-directions to define filaments.

However, in order to get a fully connected cosmic web, one is led to consider non-local definitions.
An interesting approach was followed by [Platen et al., 2007, Platen et al., 2008, Sousbie et al.,
2009, Aragón-Calvo et al., 2010] who used water-shedding to identify voids, filaments and walls.
The global skeleton algorithm by [Sousbie et al., 2009] will be described in the next section.

The intrinsic point-like nature of real data have led to a second class of web identifiers initially
motivated by the observations. For instance, the Candy or Bisous model ([Stoica et al., 2005])
is based on a marked point process and was recently applied to the Sloan Digital Sky Survey
([Tempel et al., 2014]). Another method proposed by [González and Padilla, 2010] relies on
the positions and masses of dark matter haloes. More recently, the state-of-the-art persistent
skeleton by [Sousbie, 2011, Sousbie et al., 2011] allowed the use of the skeleton formalism on
point-like distributions as the result of recent developments in computational topology and in
particular regarding persistent homology and discrete topology.

As a conclusion, the cosmic web can be defined in several very different ways. None of them is
better than the others in all circumstances but each method is optimised for a given purpose,
simulations versus observations for instance.
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2.3.3.2 The skeleton picture

In the rest of this section, the skeleton algorithm is described with a particular emphasize on
the local theory and the global algorithm that will be used in the works presented in part II.
The global definition allows an accurate extraction of the filamentary pattern in numerical
simulations. It will be used to study the impact of the large-scale environment on dark matter
halos and galaxies’ properties. On the other hand, the local skeleton allows one to study the
theoretical properties of the cosmic web from first principles, as shown in section 2.3.3.3.

First, let us define the critical points of a field ρ as the points where ∇ρ = 0. Minima (resp.
maxima) are then the critical points for which λi, the eigenvalues of the Hessian matrix H of
the field, are positive (resp. negative). The third type of critical points are the saddle points
for which at least one eigenvalue is negative and one is positive (in three dimensions, there are
two different types of saddle points depending on the number (1 or 2) of positive eigenvalues).
If one tries to define filaments, one may draw the lines starting at the maxima of the field and
following special lines which seem denser than the others, like the crest lines of a mountain.
This is the basic idea used to define the skeleton.

In mathematical terms, the skeleton of a field ρ is the subset of critical lines (i.e. field lines
which go through critical points) connecting the saddle points and the local maxima of ρ and
parallel to its gradient. Being parallel to the gradient is equivalent to say that you are on a field
line, it means that if you drop a viscous ball, this ball follows one and only one special line, a
field line, defined by the direction of the gradient. This definition is actually equivalent to the
following one. Let me define the peak (resp. void) patches of the density field as the set of points
converging to a specific local maximum (resp. minimum) while following the field lines in the
direction (resp. opposite direction) of the gradient. The skeleton is then the intersection of the
void patches. So as to make this definition more intuitive and concrete, let me use the example
of a landscape, as we often do in the context of Morse theory. In this 2D example, maxima are
the peaks of the mountains, minima are the lake floors. To understand the definition of a peak
patch, let us pour a tin of very high visibility green paint from a peak, the paint will color a
part of the mountain and the border of this patch will pass through minima and saddle points.
This patch is the set of points reached by a field line converging to the given maxima, it means
a peak patch. On the contrary, let us color in red all the points of the landscape from where,
when one pours a drop of paint, the paint flows until reaching a given minimum, this is the void
patch attached to this minimum. The skeleton is then the borders of the void patches, in other
words the crest lines: being on a crest line, a step on one side or on the opposite one, makes one
fall in one valley or the another i.e. towards one minimum or the other. If this definition seems
very natural, it is also strongly non-local. However, it is possible to build a local approximation
of the global skeleton.

2.3.3.3 The local skeleton

By Taylor expanding the field, a second-order approximation of the skeleton is obtained and
called the local skeleton ([Novikov et al., 2006, Sousbie et al., 2008, Pogosyan et al., 2009b])
that we propose to recap here. The local skeleton is the set of points where the modulus of the
gradient of the density field is minimum along an isocontour. In 3D, if one wants to describe a
closed surface (like an isodensity contour) with a coordinate system (u, v), it is not possible to
find one which is not singular in some points. That is why, three coordinate systems si must
be defined so that, if the isocontour is (x1(u, v);x2(u, v);x3(u, v)), then while si is varying, one
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Figure 2.13: Left panel: a 2D density map where red color stands for high densities and blue
color for low-densities. Middle panel: the 2D global skeleton (black solid line) links maxima
through saddle points like the crest line of a landscape. Right panel: the 2D local skeleton
(black solid line) is a local – but not connected – approximation of the global one.

stays in the plane (xj ;xk) for i 6= j 6= k. The condition of isodensity and of extremal gradient
can then be written to obtain for i 6= j  Si

Sj

 = 0 (2.87)

with
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∂2ρ

∂rj∂rk
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∂2ρ

∂ri∂rk

)
. (2.88)

The skeleton condition given by equation 2.87 can alternatively be rewritten in terms of the
Hessian matrix of the density field

H · ∇ρ×∇ρ = 0. (2.89)

This condition is a condition of extremal gradient, not only minimal. The local skeleton of the
density field is therefore obtained via the following condition on the eigenvalues of the Hessian
matrix (λ1 ≥ λ2 ≥ λ3)

λ2 < 0, λ3 < 0, H · ∇ρ = λ1∇ρ . (2.90)

This equation is the starting point of the numerical implementation. First, the discrete point-
like distribution must be smoothed using a cloud-in-cell interpolation (sampling on a grid and
sharing the mass of a particle in a cell to each vertex depending on the distance between the
vertex and the particle) and convolved with a Gaussian window (to smooth on a given scale).
Then, the skeleton of this density field is traced by solving equation 2.90: it can be done by
searching the null isocontour of Si with the marching cube algorithm which computes the value
of Si for the eight vertices of each cell and with this information, finds the intersection of the
isocontour and the cell (a triangle). Then the solution is at the intersection of the three surfaces
defined by the algorithm except when there is a singularity. Therefore, the algorithm chooses
for each cell the two surfaces for which we are far from the situation ∇ρ parallel to ri , i.e.
where it is singular. In practice, it means that the largest det(∇ρ, ri, rj) is selected and the
corresponding intersection computed. Then the eigenvalues of the Hessian matrix are calculated
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Figure 2.14: Construction of the 3D local skeleton at the intersection of three surfaces defined
by Si = 0.

in order to keep only the solutions where λ2, λ3 < 0. An illustration of the construction of the
local skeleton is given in figure 2.14 . This local skeleton is not connected (see the right panel of
figure 2.13). It is therefore best to find a solution to compute the global one. Nevertheless, it is
far from being useless to study the local skeleton as the local theory of the skeleton ([Pogosyan
et al., 2009b]) allows one to analytically predict the properties of the cosmic web (length of the
filaments, connectivity, etc).

2.3.3.4 The global skeleton algorithm

The key-point to compute the global skeleton ([Sousbie et al., 2009]) is to solve the following
equation

dr
dt

= ∇ρ . (2.91)

[Sousbie et al., 2009] implemented the solution of equation 2.91 by a probabilist approach to
identify void patches and then filaments at the intersection of the void patches. The main idea is
the following: starting at the minima of the field, all pixels are considered in increasing density
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order and are given a probability of belonging to each void patches depending on their relative
height to their labelled neighbours. Once finished, each pixel is assigned to its void patch of
higher probability. The main advantage of this method is to provide a fully connected set of
critical lines as shown in figure 2.13 but three shortcomings remain:

• Morse theory formalism deals with Morse functions, it means smooth and non-degenerate
functions. As we work with point-like fields, we need to smooth the density field before
computing its skeleton and therefore to introduce a smoothing length.

• this method does not account optimally for Poisson noise; indeed, a better algorithm
should carry out adaptative smoothing in order to get a more precise skeleton where lots
of data are available and a smoother version where data are less numerous.

• more dramatically, all watershed algorithms implemented on discretized meshes will over
produce filaments as the segmentation is carried at finite resolution, where the underlying
Morse theory is not satisfied.

A recent developments by [Sousbie, 2011, Sousbie et al., 2011] resolved these two issues by
dealing with discrete Morse theory and introducing the notion of persistence that allows one to
mimic an adaptative smoothing depending on the local level of noise.
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3 Observing galaxies

In this chapter, we present some of the basics of the current paradigm of galaxy
formation with a particular emphasis on spin acquisition and we describe two major
observational effects: redshift space distortion and intrinsic alignments.

3.1 Galaxy formation

While the gravitational evolution of the dark matter density field is well known, observations give
access to the galaxy population and there is therefore a real need to link galaxies to the underlying
density field. The common picture is as follows: galaxies reside in large concentrations of dark
matter called dark matter halos which typically host one central galaxy and several satellites.
Those virialised halos are the highly non-linear result of gravitational dynamics. They tend
to form in the high-density peaks of the density field by gravitational instability as described
previously. Galaxies can therefore be associated to the peaks of the density field. Those peaks
are biased tracers of the density field ([Kaiser, 1984, Bardeen et al., 1986]). In addition to peak
bias, galaxy formation is highly non-linear with complex baryonic processes at play (feedback,
etc). This additional complexity is called galaxy biasing ([Dekel and Rees, 1987]).

3.1.1 Dark matter halos

In this section, we propose to describe how dark halos are biased tracers of the underlying
dark matter density field (section 3.1.1.1). We also characterize their mass distribution (sec-
tion 3.1.1.2) and how they acquire angular momentum (section 3.1.1.3) as those two ingredients
– mass and spin – are crucial to understanding galaxy morphology and therefore how the Hubble
sequence is set up.

3.1.1.1 Bias

When the galaxy distribution is to be inferred from the well-known dark matter field, the simplest
idea is to identify them

δg = δDM . (3.1)

However, if galaxies are located at the peaks of the density field, they must necessarily represent
a biased tracer. Indeed, building upon the idea of [Kaiser, 1984] that the density of galaxy
clusters must be strongly clustered compare to the density of galaxies, the work of [Davis et al.,
1985] led to the notion of linear bias

δg = b1δDM , (3.2)
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where b1 is a constant. Indeed [Kaiser, 1984] showed that the correlations between two regions
lying above a threshold ν can be written

1 + ξ>ν =

∫∞
ν dx

∫∞
ν dyP(x, y)(∫∞

ν dxP(x)
)2 , (3.3)

where

P(x, y) =
1

2π
√

1− ξ2
exp

[
−1

2
x2 − 2ξxy + y2

1− ξ2

]
, (3.4)

ξ = ξ(r) being the correlation function of the density field. At large separation (i.e small ξ),
equation 3.3 becomes

1 + ξ>ν =

∫∞
ν dx 1√

2π
exp

(
−x2

2

)
f

(
ν−ξx√

1−ξ2

)
f2(ν)

=

∫∞
ν dx 1√

2π
exp

(
−x2

2

) (
f(ν)− ξxf ′(ν) +O(ξ2)

)
f2(ν)

= 1 + ξ
e−ν2/2

2πf2(ν)
+O(ξ2)

where f(x) =
1
2

Erfc
(
x√
2

)
. In the high ν, high separation limit, the correlation function

between two regions lying above a threshold ν thus reads

ξ>ν ≈ ν2ξ, (3.5)

so that the correlation function of high density regions decreases more slowly than the density
field correlation function with an amplification factor or bias that is proportional to the threshold
squared.

Given the complexity of galaxy formation, the validity of this approximation is likely to be very
narrow. More sophisticated biasing schemes involve stochastic ([Dekel and Lahav, 1999]), time-
evolving ([Nusser and Davis, 1994, Fry, 1996, Tegmark and Peebles, 1998]), non-linear ([Mo and
White, 1996, Pen, 1998, Guo and Jing, 2009]), non-local ([Matsubara, 1999]), scale-dependent
([Lumsden et al., 1989, Mann et al., 1998]) bias. Indeed, a linear bias cannot be preserved by the
non-linear gravitational evolution. This bias is also very likely to depend on the population of
galaxies and to be not only a function of the density but also temperature, merging history and
other galaxy properties, introducing some scatter in the galaxy-matter density relation. Note
that the scale-dependence is strong on small scales but remains weak with typical deviations of
less than a few percents on scales above 20 Mpc/h ([Crocce et al., 2013]).

To account for this bias, different approaches have been applied to galaxy surveys such as a
constant bias per redshift bin or physically motivated bias models. Those bias models typically
take the following functional form known as the generalized time-dependent bias model ([Clerkin
et al., 2015])

b(z) = c+
b0 − c
Dα(z)

. (3.6)

The issue of bias is crucial in astrophysics if one wants to infer cosmological information from
galaxy observations. It is also an interesting quantity to measure on its own as it carries inter-
esting information on the physics of galaxy formation. If analytical studies can hardly be used
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as the sole tool to predict the galaxy bias, numerical simulations are definitely a complementary
way of accurately predict and calibrate galaxy observables. Improvements of our understanding
of galaxy formation and its implementation in simulations is therefore one of the major challenge
of the coming decades for astrophysicists.

3.1.1.2 Press-Schechter mass function

While the full non-linear evolution of dark matter halos requires the use of numerical simulations,
some of their properties are within reach from first principles. For instance, the statistics of
the number and mass of halos can be predicted as a function of cosmic time via the Press
& Schechter formalism ([Press and Schechter, 1974]). This approach relates the population of
collapsed objects to the overdense peaks of the density field. Under spherical symmetry, initial
peaks grow following the spherical collapse model presented in section 2.1.3 until a linearly
extrapolated critical density δc ≈ 1.686. Therefore once peaks reach the critical density, they
collapse to form a halo. Let us sketch here how to use those ideas to investigate the halo mass
function.

Let us first study mass fluctuations in a given volume V0 of mean density ρ0 and mass M0 =
ρ0V0 using a Fourier decomposition and let us call W the filter function normalised such that∫
W (x)dx = V . The variance of the fluctuations is then σ2

M =
〈

(δM/M)2
〉

where the mass
M(x) in the volume V centered on x can be written

M(x) =
∫
ρ(y)W (x− y)dy (3.7)

=
∫
ρ0(1 + δ(y))W (x− y)dy . (3.8)

The variance of the mass fluctuations therefore reads

σ2
M ∝

∫
k2dkP (k)W (k)2 . (3.9)

For a filter that cuts large wavelengths (> 1/R) and a density fluctuation such that P (k) = kn,
this variance becomes

σ2
M =

∫ 1/R

0
k2P (k)dk ∝M−n+3

3 . (3.10)

Hence, for n > −3, the amplitude of fluctuations decreases as perturbation scale grows, it
means that small objects become non-linear first (i.e form first) and later aggregate to form
bigger structures by merging. This bottom-up growth of structures is known as hierarchical
clustering.

The Press-Schechter formalism then states that the fraction of mass clustered in halos of mass
larger than M = 4πR3/3 at redshift z and denoted f(> M, t) corresponds to regions in the initial
condition with (interpolated linear) density above the critical density given by the spherical
collapse δc ≈ 1.686. If δ(k, t0) is known, one can express δ(k, t) its linear interpolation at time
t > t0 such that δ(k, t) = D+(t)/D+(t0)δ(k, t0), then δM(M, t) = D+(t)/D+(t0)δM(M, t0) is
the mass fluctuations at a given scale M. Assuming that initial conditions are Gaussian, it yields

f(> M, t) =
∫ ∞
δc

dδ
1√

2πD(t)σM (M, t0)
exp

(
− δ2

2D2(t)σM (M, t0)

)
, (3.11)
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Figure 3.1: Spin acquisition by tidal torquing. At linear order, the misalignment between the
inertia tensor of the proto-object and the surrounding tidal tensor induces an inhomogeneous
Zel’dovich boost which corresponds to the acquisition of a net intrinsic angular momentum in
Eulerian space.

where for the sake of simplicity we denote D(t) = D+(t)/D+(t0). This can simply be rewritten

f(> M, t) =
∫ ∞
δc/DσM

du
1√
2π

exp
(
−u

2

2

)
=

1
2

[
1− Erf

(
δc√

2D(t)σM (M, t0)

)]
. (3.12)

According to Press and Schechter, f(> M, t) represents the fraction of space which has collapsed
in objects of mass at least M . However when M tends to zero i.e. σM tends to infinity,
this fraction of space tends to 1/2 while it should be one. Consequently, they decided to
arbitrarily multiply f by 2. Assuming this extra factor of 2, the expected number density
of objects of mass M , n(M) can be related to f by f(M) =

∫∞
M n(m)m dm/ρ0 or equivalently

n(M) = −f ′(M)ρ0/M . Therefore,

n(M, t) = −
√

2
π

ρ0

M

δc
σ2(M, t)D(t)

dσ(M, t)
dM

exp
(
− δ2

c

2D2(t)σ2(M, t)

)
. (3.13)

There is an exponential cutoff in the halo mass function for which the associated mass is given
by M?(t) such that δc = D(t)σ(M?(t), t). This mass is called the Press-Schechter mass and
characterizes the typical mass that is collapsing at a given time t. At the current epoch, most
of the mass is now inside galaxies. This mass function reproduces with good accuracy the result
of numerical simulations despite this ad hoc factor of two. The Press-Schechter formalism was
later extended to the excursion set formalism ([Bond et al., 1991]) and to ellipsoidal collapse
([Sheth and Tormen, 2002]).

3.1.1.3 Spin acquisition

In the standard paradigm of galaxy formation, protogalaxies acquire their spin by tidal torquing
coming from the surrounding matter distribution ([Hoyle, 1949, Peebles, 1969, Doroshkevich,
1970, White, 1984, Catelan and Theuns, 1996, Crittenden et al., 2001]). At linear order, this spin
is acquired gradually until the time of maximal extension (before collapse) and is proportional
to the misalignment between the inertia tensor of the protogalaxy and the surrounding tidal
tensor (see [Schaefer, 2009] for a review)

Li = a2(t)Ḋ+(t)
∑
j,k,l

εijkIjlTlk , (3.14)
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where a(t) is the scale factor, D+ the growth factor, Tij the tidal tensor (detraced Hessian
of the gravitational potential), Iij the protogalactic inertia tensor (only its traceless part, Iij
contributes to the spin). Indeed, the spin of a protogalaxy contained in a volume V and with
center of gravity located at position r̄ can be written

L =
∫
V

d3r(r− r̄)× (v(r)− v(r̄))ρ(r) , (3.15)

where the implicitly time-dependent velocity field is denoted v(r) and the mass density ρ(r). In
Lagrangian coordinates, equation 3.15 becomes

L = ρ0a
5

∫
VL

d3q(x− x̄)× (ẋ(q)− ẋ(q̄)) . (3.16)

In the Zel’dovich approximation where x = q − D+∇ψ(q) and ẋ = −Ḋ+∇ψ, ψ being the
displacement field (such that ∆ψ = δ), and assuming that the gradient of the displacement
field is almost constant across the proto-object of Lagrangian volume VL, equation 3.16 can be
evaluated by a second-order Taylor expansion

L ≈ −Ḋ+ρ0a
5

∫
VL

d3q(q− q̄)× [T · (q− q̄)] , (3.17)

where T is the tidal shear tensor Tij = ∂i∂jΨij at the center of gravity. Let us define the inertia
tensor I

Iij = ρ0a
3

∫
VL

d3q(qi − q̄i)(qj − q̄j) , (3.18)

so that the spin of the proto-galaxy can eventually be written as equation 3.14. It is mainly
advected until the time of maximal extension before collapse as the lever arm is then drastically
reduced. This process of spin acquisition by tidal torquing is illustrated on figure 3.1. It is
clear from equation 3.14 that spherical proto-objects can not acquire angular momentum in this
context but it can be shown ([Peebles, 1969]) that spin acquisition in spherically symmetric
settings is possible as a second-order effect.

In the Lagrangian picture, Iij is the moment of inertia of a uniform mass distribution within
the Lagrangian image of the halo, while Tij is the tidal tensor averaged within the same image.
Thus, to rigorously determine the spin of a halo, one must know the area from which matter
is assembled, beyond the spherical approximation. While this can be determined in numerical
experiments, theoretically we do not have the knowledge of the exact boundary of a protohalo.
As such, one inevitably has to introduce an approximate proxy for the moment of inertia (and
an approximation for how the tidal field is averaged over that region).

The most natural approach is to consider that protohaloes form around an elliptical peak in
the initial density and approximate its Lagrangian boundary with the elliptical surface where
the over-density drops to zero. This leads to the following approximation for the inertia tensor
([Catelan and Theuns, 1996, Schäfer and Merkel, 2012])

Iij =
M

5


A2
y +A2

z 0 0

0 A2
z +A2

x 0

0 0 A2
x +A2

y

 , (3.19)

(in the frame of the Hessian) where the mass of the protohalo is M = 4/3πAxAyAzρ0a
3
0 and

the semi-axes of the ellipsoid, Ai, are function of the eigenvalues of the Hessian (negative for a
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peak),

Ai =
√

2νσ2

−λi . (3.20)

with ν the peak overdensity. Note that the traceless part of Iij that is relevant for torques is
then proportional to the traceless part of the inverse Hessian of the density field

Iij =
2
5
νσ2MH

−1
ij . (3.21)

This scenario of spin acquisition by linear tidal torquing has been tested against numerical
simulations. It appears that the spin (in particular its direction) is well-predicted in the early
stages of galaxy evolution (z < 3) before non-linearities beyond Zel’dovich become important
([Efstathiou and Jones, 1979, Barnes and Efstathiou, 1987, Sugerman et al., 2000, Porciani et al.,
2002a, Porciani et al., 2002b, Lee and Pen, 2008]). In particular, they confirm two predictions of
linear tidal torque theory : the spin scales like the mass to the power 5/3 and the spin parameter
λ = L/

√
GRM3 is anti-correlated with the peak height (the higher the peak, the lower the spin

parameter). However at later times, both spin direction and magnitude deviate significantly
from the linear prediction.

3.1.2 Where baryons come into play

Galaxies reside inside dark matter halos. They are made of dark matter but also baryons (dust,
gas, stars) and are therefore sensitive to much more complex physical processes than collision-
less cold dark matter. As developed in section 2.1.4.2, on small scales (typically below a few
megaparsecs), baryonic effects need to be taken into account. This requires to modeling baryonic
processes like feedbacks from stars and black holes. Eventually, the complete understanding of
galaxy formation is still a burning issue in astrophysics. One of the central question is to
understand how the Hubble sequence is set up and in particular what are the main drivers of
galaxy formation and evolution: internal processes or environmental effects (nature vs nurture)?

3.1.3 The role of the environment

It is now well-established that some of the properties of galaxies are observed to be correlated
with their environment. For example, morphology is not independent from the local density:
elliptical galaxies are found preferentially in dense regions and spiral galaxies are found in the
field ([Oemler, 1974, Dressler, 1980, Hermit et al., 1996, Guzzo et al., 1997]). This type of
correlation between galaxies and environment is similarly observed for their colour, luminosity,
surface brightness or spectral type ([Norberg et al., 2002, Hogg et al., 2003, Blanton et al.,
2005, Lee and Lee, 2008, Lee and Li, 2008, Tempel et al., 2011, Yan et al., 2012, Kovač et al.,
2014]). Observations also indicate that the rotation axes of galaxies are correlated with the
filaments in which they are embedded ([Navarro et al., 2004, Trujillo et al., 2006, Lee and
Erdogdu, 2007, Paz et al., 2008, Jones et al., 2010, Tempel et al., 2013, Zhang et al., 2013, Tempel
and Libeskind, 2013]).

Studying the properties of galaxies as a function of their location in the cosmic web yields valu-
able information about the formation and evolution of galaxies. For this reason, it is necessary
to use simulations to investigate how galaxies and halos are correlated to their environment. It
was found by [Hahn et al., 2007b, Hahn et al., 2007a, Hahn et al., 2009, Gay et al., 2010, Metuki
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et al., 2015] that the properties of dark matter halos such as their morphology, luminosity,
colour and spin parameter depend on their environment as traced by the local density, velocity
and tidal field. On top of scalar quantities, it also appeared that their shape and spin were
correlated to the directions of the surrounding filaments and walls both in dark matter ([Aubert
et al., 2004, Bailin and Steinmetz, 2005, Brunino et al., 2007, Hahn et al., 2007b, Hahn et al.,
2007a, Aragón-Calvo et al., 2007b, Paz et al., 2008, Zhang et al., 2009, Codis et al., 2012, Libe-
skind et al., 2013, Aragon-Calvo and Yang, 2014]) and hydrodynamical simulations ([Navarro
et al., 2004, Hahn et al., 2010, Dubois et al., 2014]). The impact of the environment on galaxy
formation will be developed further in the works presented in section 4.

3.2 Observational systematics

The comparison between real observations and theoretical predictions is obviously not straight-
forward. Different observational effects contaminate the signal : completeness, masks, instru-
mental errors among many others. In this section, we will focus on two major observational
systematics that will be central in the rest of the thesis : redshift space distortions and intrinsic
alignments of galaxies.

3.2.1 Redshift space distortion

3D surveys are conveyed in redshift space where the hypothesis of isotropy breaks down. Indeed
in astrophysical observations, the three dimensional positions of structures are frequently not
accessible directly. While angular positions on the sky can be obtained precisely, the radial line-
of-sight (hereafter LOS) position of objects is determined by proxy, e.g., via measurements of the
LOS velocity component. This implies that galaxy distribution data are presented in redshift
space in cosmological studies. Figures 3.2 and 3.3 illustrates the amplitude of such redshift
distortion as a function of scale. On small, non-linear scales, the well-known finger-of-God effect
([Jackson, 1972, Peebles, 1980]) stretches the collapsing clusters along the line-of-sight whereas
on larger scales (see figure 3.3) the redshift space distortion flattens the voids along the LOS
([Sargent and Turner, 1977]), in accordance to the linear result of [Kaiser, 1987].

The estimation of position via redshift assigns to a given object the “redshift” coordinate, s,

s = r +H−1v · r̂ (3.22)

shifted from the true position r by the projection of the peculiar velocity v along the line-of-sight
direction r̂.

On large scales, in the linear regime of density evolution, the mapping to redshift coordinates
induces an anisotropic change in mass density contrast ([Kaiser, 1987]), best given in Fourier
space

δ̂(s)(k) = (1 + fµ2)δ̂(r)(k), (3.23)

that has dependency on the angle µ = k · r̂/k between the direction of the wave k and the
line of sight, and the amplitude, f , tracing the growth history of linear inhomogeneities D(a),
f = d logD/d log a ≈ Ω0.55

m , ([Peebles, 1980]). The main qualitative effect of this distortion is
the enhancement of clustering via the squeezing overdense regions and the stretching underdense
voids along the line of sight. If matter is traced by biased halos (e.g. galaxies), the redshift
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Figure 3.2: Left panel: an example of a slice through a 5123 dark matter particles ΛCDM
simulations at redshift 0 (Ωm = 0.3, ΩΛ = 0.7, σ8 = 0.92) in real space. The boxsize is 100
Mpc/h, the slice thickness 10 Mpc/h. Right panel shows the same field when redshift distortion
has been applied along the ordinate. Fingers of God are quite visible on that slice (see also
figure 3.3).

Figure 3.3: A slice through the Horizon 4π halo catalog at redshift zero without (left panel)
and with (right panel) redshift distortion (along the ordinate). The boxsize is 2 Gpc/h, the slice
thickness 40 Mpc/h. The area is 20×20 larger than the slice presented in figure 3.2. Each dot
represents a halo colour-coded by its mass. Note the clear preferred horizontal elongation of
structures in redshift space.

60



3.2. Observational systematics

space distortion can be modeled using a linear bias b1 factor ([Kaiser, 1984]) so that the galaxy
contrast in redshift space reads

δ̂(s)
g (k) = (1 + βµ2)δ̂(r)

g (k) , β ≡ f/b1 . (3.24)

At linear order, the power spectrum in redshift space can therefore be written in terms of the
real-space density power spectrum Pδδ

P slin(k, µ) = Pδδ(k)
(
1 + 2µ2β + µ4β2

)
(3.25)

and all the information of the corresponding correlation function is enclosed in the coefficients
of the first three even Legendre polynomials L0, L2 and L4

ξs(r, µ) = ξ0(r)L0(µ) + ξ2(r)L2(µ) + ξ4(r)L4(µ) (3.26)

where r is the pair separation and µ the angle between the separation vector and the line-of-
sight. Equation 3.25 is valid only if the velocity field is unbiased which may not be the case in
the context of peak theory for instance. Then, one can rewrite the linear redshift space power
spectrum in a more general setting as

P slin(k, µ) = Pgg(k)− 2µ2Pgθ(k) + µ4Pθθ(k) , (3.27)

where Pgg =
〈
|δ̂(r)
g (̂k)|2

〉
, Pgθ =

〈
δ̂

(r)
g (k)θ̂(k)

〉
and Pθθ =

〈
|θ̂(k)|2

〉
.

In the mildly non-linear regime, redshift space distortions interplay with non-Gaussian correc-
tions that develop with the growth of non-linearities. [Scoccimarro et al., 1999, Bernardeau
et al., 2002] established the framework for a perturbative approach to this regime. The fully
non-linear expression (generalizing equation 3.23) for the Fourier transform of the density in
redshift space is

δ̂s(k) =
∫

d3x
(2π)3

e−ik·xeifkzvz(x)
[
δ(r)(x) + f∇zvz(x)

]
, (3.28)

with vz the peculiar velocity along the LOS, f = d logD/d log a, while assuming the plane-
parallel approximation and that only f∇zvz(x) < 1 terms contribute1. Expanding the expo-
nential in equation 3.28, leads to, using the kernels Zn, the following expression for the density
field in redshift space

δ̂s(k, τ)=
∞∑
n=1

Dn
1 (τ)

∫
d3k1 · · ·

∫
d3knδD(k−k1−· · ·−kn)Zn(k1, · · · ,kn)δ̂l(k1) · · · δ̂l(kn), (3.29)

where µi is the cosine of the angle between ki and the line of sight, k = k1 + k2. The first
kernels are given by (assuming a quadratic local bias model involving b1 and b2)

Z1(k) = (b1 + fµ2) , (3.30)

Z2(k1,k2) = b1F2(k1,k2)+fµ2G2(k1,k2)+
fµk

2

[
µ1

k1
(b1 + fµ2

2)+
µ2

k2
(b1 + fµ2

1)
]

+
b2
2
,(3.31)

1Note that equation 3.28 could be more accurately replaced by δ̂s(k) = −δD(k) +

1/(2π)3
R

d3xe−ik·xeifkzvz(x)
h
δ(r)(x) + 1

i
where no assumption about the amplitude of the radial ve-

locity is made. This gives exactly the same perturbation theory as expected.
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with f = Ωγm
m , γm ' 6/11 and ε ' 3/7 Ω−2/63

m . In particular

δ̂(1)
s (k) = D1(τ)

∫
d3k1δD(k− k1)Z1(k1)δ̂l(k1) = D1(τ)Z1(k)δ̂l(k) , (3.32)

δ̂(2)
s (k) = D2

1(τ)
∫

d3k1

∫
d3k2δD(k− k1 − k2)Z2(k1,k2)δ̂l(k1)δ̂l(k2). (3.33)

The difference compared to the linear regime resides in the coefficients A0,1,2,3 entering the
expansion P s(k, µ) =

∑3
i=0Aiµ

2i. Unfortunately, because redshift space distortions introduce
important couplings between small and large scales, a naive perturbation theory in redshift
space has very bad convergence properties and can only describe scales exceeding several tens
of megaparsecs.

It is in particular necessary to model the large-scale perturbative regime and the small-scale
fingers of God at the same time leading to the study of streaming models ([Scoccimarro, 2004])
that take into account the distribution of random pair velocities in collapsed object through a
multiplicative factor D(k, µ2)

P sNL(k, µ) = D(k, µ2)P slin(k, µ) . (3.34)

Gaussian and Lorentz dampings have been mainly considered in the literature to describe the
small-scale velocity dispersion

DGaussian(k, µ2) = exp
(
− (kσµ)2

)
, (3.35)

DLorentz(k, µ2) =
(

1 + (kσµ)2
)−1

, (3.36)

where σ is the rms velocity dispersion. Improvements of this model include for instance a recent
work by [Taruya et al., 2010] allowing almost percent precision at BAO scale which is necessary
to achieve percent precision on the determination of the cosmological parameters.

It has to be noted that redshift space distortions are not only a source of nuisance but also can
contain interesting information. Indeed, measuring redshift space distortions in galaxy surveys
is believed to be a promising way to study the large-scale structure and constrain dark energy
and modified gravity models through the growth rate of structure formation and the large-scale
velocity field. Correlation functions and power spectra have been extensively used in this context
([Peacock et al., 2001, Percival et al., 2004, Guzzo et al., 2008, Blake et al., 2011a]) and should
play a significant role in future large surveys.

3.2.2 Intrinsic alignments

Weak lensing is often presented as a potential powerful probe of cosmology for the coming years
with large surveys like DES, Euclid or LSST. It relies on the fact that the picture of galaxies
that we observe in the sky is distorted because the light path from background sources towards
us is bent by the gravitational potential well along the line of sight. The apparent deformation
of the shapes of galaxies on the sky can therefore be used to map the gravitational potential or
measure its statistical properties like its power spectrum so that it eventually allows to probe
cosmology (cosmological model, dark matter distribution, etc). The idea is thus to try and
detect coherent distortions of the shapes of galaxies e.g using the two-point correlation function
of the ellipticities of galaxies.
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3.2.2.1 II and GI contaminations

The projected surface mass density, integrated along the line of sight to distant sources is often
preferred over the potential although they are trivially related by the Poisson equation. The
effective convergence κ, which is nothing but the dimensionless projected density, is statistically
described by its power-spectrum Pκ(`) as a function of wavenumber `. For a source at comoving
distance χs, we can write the convergence at an angular position θ ([Bartelmann and Schneider,
2001])2:

κ(θ, χs) =
1
c2

∫ χs

0
dχ

(χs − χ)χ
χs

[
∂2

∂x2
+

∂2

∂y2

]
Φ,

=
3H2

0 Ω0

2c2

∫ χs

0
dχ

(χs − χ)χ
χs

δ(χθ, χ)
a(χ)

, (3.37)

where χ is the comoving distance, a the expansion factor, δ, the density contrast, and Φ, the
three-dimensional gravitational potential, are related by the Poisson equation

∆Φ =
3H2

0 Ω0

2a
δ . (3.38)

This can easily be generalised to a population of sources with a broad redshift distribution
([Bartelmann and Schneider, 2001]).

The relation between Φ and δ can be cast into a relation between the lensing potential φ and
effective convergence κ, and the effective shear γi, which involves the traceless parts of the
projected tidal tensor. All these quantities are defined by:

φ =
2
c2

∫ χs

0
dχ

(χs − χ)χ
χs

Φ , κ =
1
2

(
∂2φ

∂θ2
1

+
∂2φ

∂θ2
2

)
, (3.39)

γ1 =
1
2

(
∂2φ

∂θ2
1

− ∂2φ

∂θ2
2

)
, γ2 =

∂2φ

∂θ1∂θ2
. (3.40)

It is generally suitable to treat the shear in complex notations γ = γ1+iγ2. This quantity is most
easily accessible as it captures the amount of anisotropic distortion a light bundle experiences
on its way from a distant source to the observer. Therefore, the observed ellipticity of such a
source, in the weak lensing regime of small distortions, is directly related to the shear. Indeed,
by also defining a complex ellipticity e = e1 + ie2 = |e|e2iψ, such that |e| = (1− q)/(1 + q) and
q = b/a is the major (a) to minor (b) axis ratio, we have

e = es + γ , (3.41)

where e is the apparent ellipticity and es the intrinsic source ellipticity (the one we would have
observed without lensing).

An important statistics of this cosmic shear distortion field is the two-point correlation of pro-
jected ellipticities that can formally be split into the following components:

〈e(ϑ)e(ϑ+ θ)〉ϑ =
〈
ese
′
s

〉
+ 2

〈
esγ
′〉+

〈
γγ′
〉
, (3.42)

where, for compactness, the prime means at an angular distance θ from the first location. The
cosmological weak lensing signal is commonly decomposed into the ξ+ and ξ− shear correlation
functions. Following [Schneider et al., 2002], ξ± is given by

ξ±(θ) = 〈γ+γ+〉 ± 〈γ×γ×〉 =
1

2π

∫ ∞
0

d` `Pκ(`)J0/4(`θ) ,

2Simplified to a flat Universe case
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Figure 3.4: ξ+ and ξ− shear correlation functions as measured in the CFHTLenS data by
[Kilbinger et al., 2013].

where J0 and J4 are the 0-th and 4-th order Bessel functions for ξ+ and ξ− respectively. In this
expression, γ+ (resp. γ×) is the component of the complex shear orientated 0/90o (resp. ±45o)
with respect to the line connecting two galaxies separated by a projected distance θ. Figure 3.4
displays the ξ+ and ξ− shear correlation functions as measured by [Kilbinger et al., 2013] in the
CFHTLenS data.

The fundamental assumption of weak lensing, which allows one to infer shear properties from
observed ellipticities is that, on average, the intrinsic orientation of sources is completely random.
The breakdown of this hypothesis yields additional terms to 〈γγ′〉 on the right-hand side of
equation (4.1) that have to be carefully accounted for in observations. The weak lensing signal
is therefore contaminated by the two kinds of intrinsic alignments (IA):

• the so-called “II” term 〈ese′s〉 induced by the intrinsic correlation of the shape of galaxies
in the source plane ([Heavens et al., 2000, Croft and Metzler, 2000, Catelan et al., 2001]).
This mostly concerns pairs of galaxies that are at similar redshifts.

• and the so-called “GI” term 〈esγ′〉 coming from correlation between the intrinsic ellipticity
of a galaxy and the induced ellipticity (or shear) of a source at higher redshift ([Hirata
and Seljak, 2004, Heymans et al., 2006, Joachimi et al., 2011]). This non-trivial term is
indirectly explained if the shape of galaxies is correlated with the local gravitational tidal
field, which also contributes to the shear signal experienced by the far source in a given
pair of observed ellipticities.
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3.2.2.2 Observing intrinsic alignments

Much effort has thus been made to control the level of IA of galaxies as a potential source of
systematic errors in weak gravitational lensing measurements although some techniques have
been proposed to mitigate their nuisance by making extensive use of photometric redshifts (e.g.
[Bridle and King, 2007, Joachimi and Schneider, 2008, Joachimi and Schneider, 2010, Joachimi
and Bridle, 2010, Kirk et al., 2010, Blazek et al., 2012]). Direct measurements of the alignment
of the projected light distribution of galaxies in wide field imaging data seem to agree on a
contamination at a level of a few percents in the shear correlation functions, although the
amplitude of the effect depends on the depth of observations, the amount of redshift information
and the population of galaxies considered in the sense that red galaxies seem to show a strong
intrinsic projected shape alignment signal whereas observations only place upper limits in the
amplitude of the signal for blue galaxies (e.g. [Brown et al., 2002, Lee and Pen, 2002, Bernstein
and Norberg, 2002, Heymans et al., 2004, Hirata et al., 2004, Mandelbaum et al., 2006, Hirata
et al., 2007, Mandelbaum et al., 2011, Joachimi et al., 2011, Joachimi et al., 2013a]).

From the theoretical point of view, it has been shown that dark halos ([Aragón-Calvo et al.,
2007b, Paz et al., 2008, Codis et al., 2012] among many others) and galaxies ([Hahn et al.,
2010, Dubois et al., 2014]) are correlated with the cosmic web (see also section 4.1.2). The
consequence of this large-scale coherence of galaxies could then contaminate significantly the
weak lensing observables. Numerical works based on halo model and semi-analytical modelling
(e.g. [Heavens et al., 2000, Croft and Metzler, 2000, Schneider and Bridle, 2010, Schneider et al.,
2012, Joachimi et al., 2013b]) or hydrodynamical simulations ([Codis et al., 2015a, Tenneti
et al., 2015]) together with analytical models (e.g. [Catelan et al., 2001, Hirata and Seljak,
2004]) have therefore tried to examine this effect. Here we give a brief overview of the field but
refer the interested reader to the extensive reviews of [Joachimi et al., 2015, Troxel and Ishak,
2015, Kiessling et al., 2015] for further details.

3.2.2.3 Analytical modelling

Analytical models are all based on the assumption that intrinsic alignments are tidally generated
leading to the so-called tidal alignment models that are typically twofold : a linear model for
elliptical galaxies that can be seen as a tidally distorted stellar spheroid and a quadratic model
for spirals whose spin is believed to emerge from tidal torquing. It has to be noted that linear here
means linear in the tidal field. Other sources of non-linearities include the non-linear dynamics
of the dark matter field and non-linear galaxy bias. The linear model have for instance been
amended so as to take into account the non-linear evolution of the dark matter field, leading to
the so-called non-linear alignment model. This is the basis of the tidal alignment models.

As described in section 3.1.1.3, in the early stage of galaxy formation, the gradient of gravita-
tional forces across a protogalaxy leads to angular momentum generation and tidal stretching of
the shape of the object, both effects being proportional to the misalignment between the inertia
tensor and the tidal tensor.

Linear model In the linear model ([Catelan et al., 2001, Hirata and Seljak, 2004]), the intrinsic
ellipticity of a (typically elliptical) galaxy is proportional to the tidal field, i.e second derivatives
of the gravitational potential smoothed on some scale Ψ, with a coefficient C1 that measures the
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strength of the alignment occurring at redshift zIA e+
s

e×s

 = − C1

4πG

 ∇2
x −∇2

y

2∇x∇y

Ψ(zIA) , (3.43)

as it is assumed that stars and dark matter are in dynamical equilibrium and therefore the
stellar distribution follows the distortion of the galaxy halo spheroid which is tidally distorted.
The strength coefficient was measured in the SuperCOSMOS field C1 ≈ 5 ·10−14(h2 M�Mpc)−1

([Bridle and King, 2007]). This ansatz can be used to predict the GI and II signals for a linearly
evolved potential field. If this model seems to be reasonable on scales above 10 Mpc/h ([Blazek
et al., 2011]), it can be significantly improved on smaller scales by taking into account the non-
linear dark matter evolution ([Bridle and King, 2007]) and other non-linear contributions like
non-linear bias and the effect of weighting by the local density of galaxies ([Blazek et al., 2015]).

Quadratic model For spiral galaxies that have an angular momentum supported disc, one
probably needs to use the prediction for the spin in terms of the tidal fields given by the tidal
torque theory (equation 3.14). Parametrizing the correlation between inertia and shear tensor
by a factor C, [Lee and Pen, 2000] were able to give a prescription for the two-point correlation
function of the spin which was then improved to give a prescription for the two-point correlation
function of the normalised spin vector denoted s ([Lee and Pen, 2001])

〈sαsα′〉 =
1 + aT

3
δαα′ − aT

∑
σ

T̂ασT̂σα′ (3.44)

where T̂ is the normalised traceless tidal shear tensor and aT is a parameter between 0 and
3/5. Assuming that the ellipticity of the spiral is given by the projection of a circular disc
perpendicular to the spin, one can compute the intrinsic ellipticity correlation function and
show that ([Crittenden et al., 2001])

ξII+ ∝ a2
Tξ

2
δδ. (3.45)

3.2.2.4 Intrinsic alignments in simulations

While understanding intrinsic alignments from first principles can give interesting highlights
on large scales, it seems however necessary to combine these analytical models with numerical
simulations in order to be able to predict intrinsic alignments in the strong non-linear regime.

Early investigations focused on dark matter only simulations assuming that galaxy shapes were
following dark halo shapes ([Heavens et al., 2000]). Then halo model and semi-analytical mod-
elling have been used to assign galaxies to their host halo ([Schneider and Bridle, 2010, Joachimi
et al., 2013b]). It is only recently that hydrodynamical simulations have been able to describe
a sufficient large volume with enough resolution so as to measure how numerical galaxies were
intrinsically aligned. Recent works by [Codis et al., 2015a, Tenneti et al., 2015] have paved
the way for this investigation but it has to be remembered that hydrodynamical simulations
nevertheless suffer from a lack of knowledge about galaxy formation meaning that lots of work
need to be done in order to understand how much the predicted intrinsic alignments depend on
sub-grid recipes and numerical schemes.
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4 Intrinsic alignments: numerical and
theoretical insights

In this chapter, I will show how both dark matter and hydrodynamical simulations
predict that the morphology of galaxies is correlated with the cosmic web. This large-
scale coherence of galaxy shapes could possibly induce some non-negligible level of
contamination for future cosmic shear experiments. I will show how this contami-
nation can be measured in simulations. On the theoretical side, I will describe an
analytical Lagrangian model that reproduces qualitatively the correlations between the
intrinsic angular momentum of galaxies and the cosmic filaments. The key ingredi-
ent is to take into account the anisotropy of the cosmic web in the standard theory
of spin acquisition by tidal torquing.
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4.1 Overview

4.1.1 Introduction

Weak lensing is often presented as a potentially powerful probe of cosmology for the coming
years with large surveys like DES 1, Euclid ([Laureijs et al., 2011]) or LSST 2. It relies on the
fact that the picture of galaxies that we observe in the sky is distorted because the light path
from background sources towards us is bent by the gravitational potential well along the line
of sight. Therefore measuring these distortions directly probes cosmology (cosmological model,
dark matter distribution, etc). The idea is thus to try and detect coherent distortions of the
shapes of galaxies e.g using the two-point correlation function of the ellipticities of galaxies.
At this stage, it is important to realize that the apparent ellipticity of a galaxy is induced by
the cosmic shear γ (which is related to the projected gravitational potential along the line of
sight) but also encompasses the intrinsic ellipticity of that galaxy e = es + γ , where e is the
apparent ellipticity and es the intrinsic source ellipticity (the one we would have observed without
lensing). Therefore the (projected) ellipticity-ellipticity two-point correlation function can be
written as the sum of a shear-shear term, intrinsic-intrinsic and intrinsic-shear correlations (see
also section 3.2.2)

〈e(ϑ)e(ϑ+ θ)〉ϑ =
〈
γγ′
〉

+
〈
ese
′
s

〉
+ 2

〈
esγ
′〉 , (4.1)

where, for compactness, the prime means at an angular distance θ from the first location. These
last two contributions that somehow contaminate the shear signal are the two kinds of intrinsic
alignments, one term being the so-called “II” term 〈ese′s〉 induced by the intrinsic correlation of
the shape of galaxies in the source plane ([Heavens et al., 2000, Croft and Metzler, 2000, Catelan
et al., 2001]) and the other one is the so-called “GI” term 〈esγ′〉 coming from correlations between
the intrinsic ellipticity of a galaxy and the induced ellipticity (or shear) of a source at higher
redshift ([Hirata and Seljak, 2004]).

From a theoretical point of view, there is clear evidence that the shape of galaxies is correlated
to the cosmic web. This large-scale coherence should therefore induce some level of intrinsic
alignments and contaminate weak lensing. In this chapter, I propose to describe an anisotropic
extension of the tidal torque theory that allows to take into account the effect of the large-
scale filamentary structure on galactic spin acquisition. I will also show that dark matter and
hydrodynamical simulations predict that galactic spins are indeed correlated with the cosmic
web in a redshift and mass-dependent way consistent with the above-mentioned anisotropic
theory of tidal torques. These correlations lead to some level of intrinsic alignments that will be
explicitly measured in the hydrodynamical Horizon-AGN simulation.

4.1.2 Spin acquisition within the cosmic web

Over the last decade, it has been shown that dark halos ([Aragón-Calvo et al., 2007b, Paz et al.,
2008, Codis et al., 2012] among many others) and galaxies ([Hahn et al., 2010, Dubois et al.,
2014]) are correlated with the cosmic web. In [Codis et al., 2012] (see paper 4.2), I indeed found
in numerical simulations that the spin of dark halos is correlated with the direction of the closest
filament (see also the left-hand panel of figure 4.1). Those results were obtained on the 43 million
dark matter halos of the Horizon 4π simulation and are shown to be mass-dependent. Low-
mass halos tend to have a spin aligned with the filament axis while the more massive ones tend

1http://www.darkenergysurvey.org
2 http://www.lsst.org
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to have a spin perpendicular to the filaments. The transition occurs around Mtr ≈ 5 · 1012M�,
is redshift-dependent, scaling as Mtr(z) ≈ M0(1 + z)−γs with γs = 2.5± 0.2, and varies weakly
with the scale defining filaments.

This signal can be qualitatively understood in the context of hierarchical structure formation,
where small galaxies form first and merge together to form larger ones. Indeed, the first gen-
eration of small galaxies form when the walls wind up to give rise to the filaments and during
this process protogalaxies acquire spin aligned with the filaments. When they later merge inside
filaments by catching up with each other during their race towards the nodes, they naturally
form bigger objects and convert their orbital angular momentum into spin. This spin will tend
to be perpendicular to the filament axis as the impact parameter is aligned itself with the di-
rection of the filament as sketched in the bottom right-hand panel of figure 4.2. In both cases,
the key ingredient is that the acquired spin is perpendicular to the motion direction, which is
in the plane of the wall and perpendicular to the forming filament in the first case and aligned
with the filament in the second one.

The emergence of a vorticity field aligned with the filaments and responsible for the spin orien-
tation of low-mass objects has been studied in [Laigle et al., 2015]. In that work (see paper A.1),
we found that vorticity is confined in filaments, as expected since vorticity can only be generated
in multi-flow regions and is indeed statistically aligned with the filaments. The typical cross-
section perpendicular to a filament is quadrupolar, meaning that four quadrants of opposite
vorticity orientation are found. The frontiers of those four quadrants coincide nicely with the
walls’ direction (with an excess probability of alignment of about 15%), in full agreement with
the winding-of-walls scenario (see top and bottom left-hand panels of figure 4.2): matter escapes
from the walls towards the forming filament before flowing inside the filament and reaching the
nodes. This dynamics creates a vorticity flow aligned with the filament which is partitioned into
four regions with different vorticity direction in order to respect a global zero vorticity. A fila-
ment is typically the crossing of two walls that delimitate the frontiers of the above-mentioned
four regions.

More recently, we investigated in [Dubois et al., 2014] (see paper A.2) how this scenario transpires
to virtual galaxies. For that purpose, we used the Horizon-AGN run, a full-physics cosmological
simulation based on the hydrodynamical code Ramses and found that galactic spins are also
correlated with the direction of the filaments. Low-mass, blue, disk-like, star forming galaxies
tend to have a spin aligned with the filaments while massive, red, elliptical, quiescent galaxies
are more likely to have a spin perpendicular. This result is illustrated on the right-hand panel
of figure 4.1. It has to be noted that recent observations (in particular on the Sloan Digital Sky
Survey) have reported some hints of a correlation between galaxy morphology and the cosmic
web as predicted by dark matter and hydrodynamical simulations (e.g. [Tempel and Libeskind,
2013]).

4.1.3 An anisotropic theory of spin acquisition

The correlations between spins and cosmic web that are predicted by numerical simulations
and confirmed by recent observations can be understood in the context of tidal torque theory
3 when the dynamical influence of filaments on galactic scales is accounted for. The key idea
developed in paper 4.3 ([Codis et al., 2015b]) is to make use of the fact that walls and filaments

3As described in section 3.1.1.3, protogalaxies are believed to acquire most of their spin in the linear stage of
structure formation –before collapse–due to the tidal torques induced by the surrounding matter distribution.
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Figure 4.1: Left-hand panel: excess probability of alignment between the spin and the direction
of the closest filament as measured from the 43 millions halos of the Horizon 4π simulation
([Teyssier, 2002]) at redshift zero. Different colours correspond to different mass bins from
1012( red) to 1014 M� (blue) as labelled. A transition mass is detected at Mcrit(z = 0) '
5(±1)× 1012M�: for halos with M > Mcrit, the spin is more likely to be perpendicular to their
host filament, whereas for halos with M < Mcrit, the spin tends to be aligned with the closest
filament. This figure is from [Codis et al., 2012] (see section 4.2). Right-hand panel: same as
left panel for the 160 000 galaxies of the Horizon-AGN hydrodynamical simulation at z = 1.8
([Dubois et al., 2014]).

are the interference patterns of primordial density fluctuations on large scales, and induce a
corresponding anisotropic boost in overdensity. On top of these modes, constructive interferences
of high frequency modes produce peaks which thus get a boost in density that allows them to
pass the critical threshold necessary to decouple from the overall expansion of the Universe, as
envisioned in the spherical collapse model (see section 2.1.3). This well-known biased clustering
effect has been invoked to justify the clustering of galaxies around the nodes of the cosmic
web ([White et al., 1988]). It also explains why galaxies form in filaments: in walls alone, the
actual density boost is typically not sufficiently large to trigger galaxy formation. The main
nodes of the cosmic web are where galaxies migrate, not where they form. They thus inherit
the anisotropy of their birth place as spin orientation. During migration, they may collide with
other galaxies/halos and erase part of their birth heritage when converting orbital momentum
into spin via merger. In this context, I proposed to re-visit tidal torque theory by explicitly
taking into account the anisotropy of this filamentary environment on various scales in order to
model primordial and secondary spin acquisition. This anisotropic tidal torque theory (ATTT)
is completely analytic and relies on the study of constrained primordial random fields, namely
the gravitational potential and its successive derivatives (see paper 4.3).

The angular momentum generated by linear tidal torquing is traditionally written as (see sec-
tion 3.1.1.3)

Li ∝ εijkIjlTlk , (4.2)

where Tij is the tidal tensor (detraced Hessian of the gravitational potential) and Iij the proto-
galactic inertia tensor (only its traceless part, Iij contributes to the spin). In order to build a
local theory, one is led to adopt some local proxies for the inertia tensor. In this work, I assumed
that the Hessian of the density field is an accurate approximation as protogalaxies form at the
peaks of the density field and should therefore get a shape that is highly correlated with the
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Figure 4.2: Top panel: Vorticity field along a filament colour-coded depending on its algebraic
component parallel to the filament. Red arrows are going towards the left-hand side of the
filament with blue arrows are pointing towards the righ-hand side of that filament. Bottom
left-hand panel: Typical cross section perpendicular to the filament. Bottom right-hand panel:
Sketch of the merger of two halos along the filament. The orbital angular momentum is converted
into an additional spin for the resulting object, that is perpendicular to the motion direction i.e
perpendicular to the filament axis.
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shape of the density peak i.e with the second derivatives of the density field at the peak location.
I therefore chose to study the following spin proxy

si ≡ εijkHjlTlk . (4.3)

This approximation allows to have a local prescription for the spin that only depends on the
second (by means of the tidal tensor) and fourth derivatives (Hessian of the density field) of the
gravitational potential. Note that we assume here that all the fields are rescaled by their variance.
In the initial conditions where the fields are supposingly Gaussian, the joint PDF of the tidal
tensor and the Hessian of the density field (that we gather in a vector X = ({Tij}i≤j , {Hij}i≤j))
is known and simply given by

P(X) =
exp

(−1
2XT ·C0

−1 ·X)
det|C0|1/2 (2π)(d+1)(d+2)/2

, (4.4)

where C ≡ 〈X ·XT〉 is the covariance matrix that can be easily computed. For instance, in two
dimensions, if X = (T11, T12, T22, H11, H12, H22)

C =



3/8 0 1/8 −3γ/8 0 −γ/8
0 1/8 0 0 −γ/8 0

1/8 0 3/8 −γ/8 0 −3γ/8

−3γ/8 0 −γ/8 3/8 0 1/8

0 −γ/8 0 0 1/8 0

−γ/8 0 −3γ/8 1/8 0 3/8


,

with γ = σ2
1

σ0σ2
(=

√
(n+ 2)/(n+ 4) for a scale-invariant density power-spectrum P (k) with

spectral index n) and variances are given by

σ2
n =

∫ ∞
0

∫ 2π

0
dθ dk P (k)k2n+1 .

In this context, it is straightforward to see that the mean spin is 〈si〉 = εijk 〈Hjl〉 〈Tlk〉 = 0
(all the terms entering this antisymmetric contraction are products of Hjl and Tlk that are
uncorrelated e.g H12T23), as expected since there is no preferred direction on average.

However, galaxies are not forming everywhere but preferentially in filaments and nodes which
define the so-called cosmic web. The origin of these structures lies in the asymmetries of the
initial Gaussian random field describing the primordial universe, amplified by gravitational col-
lapse. The presence of such large-scale structure (walls, filaments, nodes) induces local preferred
directions for both the tidal tensor and the inertia tensor of forming objects which will eventu-
ally turn into preferred alignments of the spin w.r.t the cosmic web. It is therefore of interest to
understand what is the expected spin direction (defined by equation 4.3) given the presence of a
typical filament nearby. As a filament is the field line that joins two maxima of the density field
through a filament-type saddle point (where the gradient is null and the density Hessian has two
negative eigenvalues), it is of interest to study the expected spin direction of proto-objects in
the vicinity of a filament-type saddle point with a given geometry (which imposes the direction
of the filament and the wall). This constrained spin 〈si(r)|saddle〉 depends on r, the separation
vector between the proto-object and the saddle point (or equivalently the peak in 2D if we
consider cross sections perpendicular to the filament). This quantity can be computed from the
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joint PDF of the second to fourth derivatives of the potential field in two different locations
separated by r. Note that here we need to introduce the rescaled gradient of the density field
(third derivatives of the potential) q = ∇δ/σ1 in order to impose a critical point constraint
δD(x − ν)|detHij |δD(qi). The geometry of the critical point can also be constrained to have
given values of the density curvatures i.e given eigenvalues for the Hessian λi. Let us gather the
tidal tensor, gradient and Hessian of the density field in a vector X at the proto-object location
(where the spin is computed) and Y at the critical point location (that mimics the presence of
a large-scale filament). This two-point JPDF reads

P(X,Y) =
1√

det|2πC| exp

−1
2

 X

Y

T

·C−1·
 X

Y


 , (4.5)

where C0 ≡ 〈X ·XT〉, Cγ ≡ 〈X ·YT〉 and

C =

 C0 Cγ

CT
γ C0

 .
Again, those covariance matrices can be computed for any power spectrum P (k). For instance
in two dimensions, the coefficients of those matrices read

〈
∂i11 ∂

i2
2 φ, ∂

j1
1 ∂

j2
2 φ
〉

=
∫ ∞

0

∫ 2π

0
dθ dk Pk(k) exp(ık r cos θ)

ıi1+i2(−ı)j1+j2(cosθ)i1+j1(sinθ)i2+j2 k
i1+i2+j1+j2+1

σi1+i2σj1+j2

. (4.6)

Eventually, the expected spin direction of proto-objects in the vicinity of a filament-type saddle
point with a given geometry 〈si(r)|saddle〉 can be analytically computed from the knowledge of
the joint PDF. The result – which is completely analytical – is given in paper 4.3. In short,
in the plane of the saddle point, spins are aligned with the filament’s direction and form four
quadrants of opposite direction. When moving towards the nodes, the spins become more and
more perpendicular to the filament. This geometry is illustrated in figure 4.3.

The anisotropic extension of tidal torque theory (ATTT) presented here therefore predicts a
quadrupolar geometry inside filaments in agreement with the typical four quadrants of opposite
vorticity seen in simulations ([Laigle et al., 2015]). It is striking that such a Lagrangian frame-
work captures naturally the arguably non-linear Eulerian process of spin flip via mergers. In
[Laigle et al., 2015], we showed that angular momentum generation of halos could be captured
in Eulerian space via the secondary advection of vorticity which the formation of the filament
generates, whereas in the context of tidal torque theory, we show that it may also be described
in Lagrangian space via the analysis of the anisotropic tides generated by the filament to be. No
description is more fundamental than the other but are the two (Eulerian versus Lagrangian)
sides of the same coin. The mapping between the two descriptions requires a reversible time
integrator, such as the Zeldovich approximation, which clearly limits its temporal validity to
weakly non-linear scales.

Our proxy for the spin is an approximation which seems to quantitatively capture the relevant
physics. It is remarkable that such an (admittedly approximate) straightforward extension of
tidal torque theory captures what seems to be the driving process of spin orientation acquisition
and its initial evolution.
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Figure 4.3: The velocity and spin flow near a vertical filament (in red) embedded in a (purple) wall
(extracted from [Codis et al., 2015b]) with a flattened saddle point in the center. The purple and green
flow lines trace the (Lagrangian) 3D velocities (upwards and downwards respectively). The red and blue
arrows show the spin 3D distribution, while the three horizontal cross sections show spin flow lines in the
corresponding plane. Note that the spin is along ez in the plane of the saddle point and along eφ away
from it, and that it rotates in opposite direction above and below the plane of the saddle point.
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Indeed, on top of the four quadrants of opposite spin direction, it also predict a spatial transition
for the spin direction: aligned with the filament’s axis close to the saddle point and perpendicular
towards the nodes of the cosmic web. This transition can be transposed into a transition in mass
as seen in numerical simulations (low-mass spins aligned with the filaments and high-mass spins
perpendicular) as soon as one realises that the local mass distribution of halos is expected to
vary along the large-scale filament due to changes in the underlying long-wave density. In the
linear regime, the typical density near the end points (nodes) of the filament, where it joins the
protocluster regions, may exceed the typical density near the saddle point by a factor of two
([Pogosyan et al., 1998]). During epochs before the whole filamentary structure has collapsed,
this leads to a shift in the hierarchy of the forming halos towards larger masses near the filament
end points (the clusters) relative to the filament middle point (the saddle). This can be easily
understood using the formalism of barrier crossing ([Peacock and Heavens, 1990, Bond et al.,
1991, Paranjape et al., 2012, Musso and Sheth, 2012]), which associates the density of objects
of a given mass to the statistics for the random walk of halo density as the field is smoothed
with decreasing filter sizes. This formalism allows to attribute a typical mass for the objects
forming in regions of a given large-scale density boost so that in the end, ATTT predicts a mass-
dependent orientation of the spin in agreement with what has been measured in simulations.
The transition mass, Mtr for spin flip (〈 cos θ 〉 = 0.5) is found to be of the order of 4 · 1012M�,
assuming a smoothing scale of 5 Mpc/h, as used in [Codis et al., 2012]. This mass is in qualitative
agreement with the transition mass found in that paper, all the more so as the redshift evolution
of this transition mass will also be consistent (scaling as the mass of non-linearity).

4.1.4 Intrinsic alignments of virtual galaxies

The above-described large-scale coherence of galaxies could contaminate significantly the weak
lensing observables. Given the inherently anisotropic nature of the large-scale structure and
its complex imprint on the shapes and spins of galaxies together with the dependency on the
physical properties of the galaxies seen in the observation, it is probably difficult to rely on
isotropic linear theory (e.g. [Lee and Pen, 2001]) or dark matter-only numerical simulations as
the sole resort to predict and control intrinsic alignments for weak lensing applications. With
the advent of cosmological hydrodynamical simulations, we are now in a position to try and
measure intrinsic alignments directly into those simulations instead of relying on halo model
or semi-analytical models ([Schneider and Bridle, 2010, Joachimi et al., 2013b]). In paper 4.4
([Codis et al., 2015a]), I used the Horizon-AGN simulation presented in [Dubois et al., 2014]
at redshift z = 1.2 to measure the level of intrinsic alignments taking the spin as a proxy for the
shape of galaxies4.

In this context, I measured on the one hand the correlation as a function of the separation
between the spin of galaxies and the surrounding tidal tensor defined as the tensor of second
derivatives of the gravitational potential. At zero separation, the results obtained in [Codis
et al., 2012, Dubois et al., 2014] are recovered namely that galaxies have a spin correlated with
the direction of the filament (which is very well aligned with the minor direction of the tidal
tensor) in a mass and colour-dependent way. Beyond one-point statistics, it is also of interest
in the context of weak lensing studies to quantify how this signal persists when the tidal field
at a distance r from the galaxy is considered. Because the tidal field in the vicinity of a galaxy
contributes also to the lensing signal carried by more distant galaxies, it is clear that the spin
– tidal tensor cross-correlation is closely related to the GI term. As expected, the spin and the
tidal eigen-directions then de-correlate with increasing separation. However, whereas the signal

4indeed, the spin is believed to be more robust w.r.t resolution effects than inertia tensors
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Figure 4.4: Left: Mean cosine of the angle between the spin of galaxies and the minor (cyan),
intermediate (purple) and major (magenta) eigen-direction of the tidal tensor as a function of the
separation in the Horizon-AGN simulation. Right: Same as left panel for a Gaussian random
field with power-law power spectrum once rescaled so as to match the measured value at zero
separation.

vanishes on scales r > 3 h−1 Mpc for the spin to intermediate tidal eigen-direction correlation,
it persists on distances as large as ∼ 10 h−1 Mpc for the minor and major eigen-directions of the
tidal tensor (which is the typical size of a filament). This is potentially a worry for weak lensing
experiments that could be contaminated by a quite large level of “GI” intrinsic alignments.
A deeper understanding of this contamination requires being able to model projected galaxy
shapes in the simulation and being as close as possible to the real observables by taking into
account observational systematics like dust attenuation on galaxy colours. It is interesting to
note that the behaviour of the two-point correlation function between spin and tidal tensor can
be theoretically understood using a Gaussian random field δ for which we compute the joint PDF
of the second derivatives of its corresponding potential (φij , φ being related to δ by the Poisson
equation). Then the mean angle between the eigen-directions of φij in two locations separated
by r can be computed. Once rescaled so as to match the one-point statistics (here we want to
study the evolution of the two-point function with the separation, not its absolute value), we
find the same qualitative behaviour as what is measured in the simulation (see figure 4.4).

On the other hand, I also measured the auto-correlations of the galaxy intrinsic ellipticities
by means of the spin-spin correlation function. I found a significant spin correlation for blue
galaxies out to at least 10 Mpc/h. Conversely, no significant correlations for red galaxies at
that redshift (z = 1.2) is detected. In order to get closer to weak lensing observables, one
question arises: what fraction of the spin-spin correlations remains after projection on the sky?
To address this issue, I used a thin disk approximation. The spins are projected along a given
line-of-sight direction in the box and the apparent axis ratio is assumed to be well-approximated
by q = |Lz|/|L|, where z is the line of sight direction. The orientation of the major axis of
the projected ellipse is ψ = π/2− arctan(Ly/Lx) so that the complex ellipticity can be written
e = (1 − q)/(1 + q) exp(2iψ) in cartesian coordinates. With this prescription, the projected
correlation functions for a given projected separation θ can be estimated. The spins of blue
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Figure 4.5: Mean square cosine of the angle between semi-minor axes as a function of the
separation for different bins of mass as labelled. Measurements are done at redshift z = 0.5.

galaxies are shown to be correlated on scales about 10 arcminutes while (as expected from
the 3D study) the signal for red galaxies is compatible with zero. Note that this signal is not
contradictory with current observations as it is at a larger redshift.

A follow-up of this work is to investigate the redshift evolution of those intrinsic alignments
together with a better estimation of the projected ellipticities using inertia tensors to define
galaxy shapes instead of spins. Figure 4.5 shows the mean square cosine of the angle between
semi-minor axes as a function of the separation for different bins of mass as labelled. A clear
detection of alignment is found for all bins of mass and this correlation of minor axes pervades
on distances as large as ≈ 10 h−1 Mpc. The signal is very similar to what was obtained using the
spins as expected since spin and minor axis are tightly correlated as shown on figure 4.6 which
displays the cumulative PDF of the cosine of the angle between spin and semi-minor axis. The
main difference between using the spins or the shapes reside in the larger mass bin. Indeed, in
this case, galaxies are expected to be mainly ellipticals and therefore the spin – which is poorly
defined – and the minor axis are less aligned.

The redshift evolution of the spin-spin correlation function is shown on figure 4.7 for three
different redshifts: z = 2, 1.2 and 0.5. Correlations are increasing with time. Similar results are
obtained for the shape-shape correlation function defined by η(r) and inferred from the spins
using an infinitely thin disk approximation (see Fig. 4.8).

The main worry in the study of spin-spin or shape-shape correlations using AMR simulations is
grid locking. Indeed, as forces are evaluated on a grid, the spins and shapes of galaxies in such
simulations are more likely to be aligned with the directions of the grid. This effect generates
spurious correlations that are difficult to remove from the physical signal. Different strategies
can be proposed to evaluate this effect. A simple randomization of galaxy positions is obviously
not sufficient as the effect of grid-locking can be correlated on small scales: two neighbouring
galaxies feel a similar force field and therefore tend to be similarly grid-locked. An alternative
approach could be to select the galaxy sample (by stellar age, colour, mass, etc) that is the least
prone to grid locking but this procedure significantly reduces the number of galaxies considered
and therefore the statistics. Moreover, it is not clear how these selection cuts affect the intrinsic
alignment measurement and its comparison to current observational constraints. However, it is
possible to study another quantity – that is often used in the field of intrinsic alignments – the
orientation-separation correlation as a function of comoving distance r,

ηr(r) = 〈|r̂ · ê(x + r)|2〉 − 1/3 , (4.7)
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where ê is the unit eigenvector of the inertia tensor pointing in the direction of the minor axis
and r̂ is the separation vector. A positive correlation indicates a tendency for the separation
vector and the minor axis of a galaxy to be parallel, hence for the galaxy to be elongated
tangentially with respect to another galaxy. A negative correlation corresponds to a preferential
perpendicular orientation of the minor axis with respect to the separation vector, resulting in a
net radial orientation of galaxy shapes around other galaxies. The advantage of this observable
is that it is much less prone to grid locking as the distribution of galaxies in the simulation is
not expected to be correlated with the grid.

Preliminary results on the correlation between galaxy’s separations and shapes have recently
been obtained (see paper 4.5). In this paper, we focus on the correlation between separation and
shape of galaxies in the Horizon-AGN simulation at low redshift (z ∼ 0.5), where observational
constraints on the intrinsic alignment amplitude and scale-dependence are currently available.
We find that spheroidal galaxies in the simulation show a tendency to be aligned radially towards
overdensities in the dark matter density field and other spheroidals. The qualitative trend in
agreement with observations, but the amplitude of the signal depends strongly on how shapes
are measured and how galaxies are selected in the simulation. Disk galaxies show a tendency to
be oriented tangentially around spheroidals. While this signal is suppressed in projection, we
cannot guarantee that disk alignments can be safely ignored in future weak lensing surveys. We
also characterize the systematics of galaxy shapes in the simulation and show that they can be
safely neglected when measuring the correlation of the density field and galaxy ellipticities.

This work is a first step in the accurate modelling of intrinsic alignments and paves the way
to future more realistic studies. One major improvement that could be done to get closer to
observations would be, for instance, to do light-weighted measurements on the light cone and
take into account observational systematics. This will be the subject of further investigations.
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Figure 4.7: 3D spin-spin two-point correlation function of galaxy as a function of the comoving
separation for a range of stellar masses: 3× 109 < Ms < 4× 1010 M� at z = 2 (top left panel),
z = 1.2 (top center panel), and z = 0.5 (top right panel). Bottom panels: same as top panels
for stellar mass Ms > 4× 1010 M�. Error bars represent the error on the mean. Here we choose
to display the mean square cosine between two spins (separated by the comoving distance r)
as the polarity is not relevant to weak lensing studies. For a uniform random distribution, the
expectation is 1/3 (dashed line).
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4.1.5 Conclusion

In short, we have shown here that dark matter halos and the galaxies they host are expected to be
strongly correlated to the large-scale cosmic web. A particular emphasis was put on their shape
and spin as they are crucial in the context of galaxy formation and intrinsic alignments. Those
correlations are predicted coherently by numerical simulations and analytical calculations. The
fact that tidal torque theory succeeds in explaining the correlations between spin and filaments
seen in simulations is a great success. However it should be noted that those correlations are
generated by the large-scale (linear!) dynamics which is why linear tidal torques are sufficient to
describe them. Non-linearities on small scales necessarily dilute this large-scale coherence so that
there is no reason to think that tidal torque theory is able to predict the low-redshift angular
momentum of galaxies on a one-to-one basis – as already pointed out in numerous papers–. The
individual history of each galaxies including mergers contribute significantly to the late-time
evolution of the spin that will depart from tidal torque theory’s predictions.

The intrinsic alignments of galaxies are therefore nicely understood as the result of the large-
scale cosmic flows. However in order to be able to predict them with high accuracy, there is a
real need to go beyond linear theory or semi-analytical models that can only provide a global
picture. Hydrodynamical simulations seem to be the only way to predict the contamination
by intrinsic alignments expected for future surveys as it is highly sensitive to baryonic physics,
and therefore to any selection effects in the sample of galaxies (w.r.t galaxy properties such
as their colour, mass, morphology), and to observational systematics. Only hydrodynamical
simulations can model all those effects with sufficient accuracy. The worrisome counterpart
of this statement is that those simulations have lots of parameters that encode our lack of
knowledge of subgrid baryonic physics and a natural question that arises is therefore : do intrinsic
alignments’s prediction depend on the codes and subgrid recipes used in the simulation? What is
the effect of using AMR vs SPH schemes? How much does AGN feedback play a role in aligning
– or misaligning – galaxies? All those questions that are left unanswered for now represent a
formidable field of investigation and should be crucial in the coming years.

All the ideas presented in this section are extensively described in four papers (three pub-
lished articles I have signed as first author and one paper accepted for publication in MN-
RAS) that are copied below. Paper 4.2 shows the correlation between spin and filaments
in the Horizon 4π simulation, paper 4.3 then exhibits the anisotropic tidal torque theory
that takes into account the large-scale filamentary structure for spin acquisition. Finally, pa-
pers 4.4 and 4.5 propose an estimation of the level of intrinsic alignments in the state-of-the-art
Horizon-AGN simulation.
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ABSTRACT
We investigate the alignment of the spin of dark matter haloes relative (i) to the surrounding
large-scale filamentary structure, and (ii) to the tidal tensor eigenvectors using the Horizon
4π dark matter simulation which resolves over 43 million dark matter haloes at redshift
zero. We detect a clear mass transition: the spin of dark matter haloes above a critical mass
Ms

0 ≈ 5(±1) × 1012 M� tends to be perpendicular to the closest large-scale filament (with
an excess probability of up to 12 per cent), and aligned with the intermediate axis of the tidal
tensor (with an excess probability of up to 40 per cent), whereas the spin of low-mass haloes is
more likely to be aligned with the closest filament (with an excess probability of up to 15 per
cent). Furthermore, this critical mass is redshift-dependent, scaling as Ms

crit(z) ≈ Ms
0(1+z)−γs

with γ s = 2.5 ± 0.2. A similar fit for the redshift evolution of the tidal tensor transition mass
yields M t

0 ≈ 8(±2) × 1012 M� and γ t = 3 ± 0.3. This critical mass also varies weakly with
the scale defining filaments.

We propose an interpretation of this signal in terms of large-scale cosmic flows. In this
picture, most low-mass haloes are formed through the winding of flows embedded in mis-
aligned walls; hence, they acquire a spin parallel to the axis of the resulting filaments forming
at the intersection of these walls. On the other hand, more massive haloes are typically the
products of later mergers along such filaments, and thus they acquire a spin perpendicular to
this direction when their orbital angular momentum is converted into spin. We show that this
scenario is consistent with both measured excess probabilities of alignment with respect to the
eigendirections of the tidal tensor, and halo merger histories. On a more qualitative level, it
also seems compatible with 3D visualization of the structure of the cosmic web as traced by
‘smoothed’ dark matter simulations or gas tracer particles. Finally, it provides extra support
to the disc-forming paradigm presented by Pichon et al. as it extends it by characterizing the
geometry of secondary infall at high redshift.

Key words: methods: numerical – galaxies: formation – galaxies: haloes – large-scale struc-
ture of Universe.

1 IN T RO D U C T I O N

Over the past decades, numerical simulations and large redshift
surveys have highlighted the large-scale structure (LSS) of our Uni-
verse, a cosmic web formed by voids, sheets, elongated filaments
and clusters at their nodes (Bond, Kofman & Pogosyan 1996). This
structure is believed to be the result of the linear growth of primor-
dial Gaussian fluctuations in a nearly homogeneous density field

�E-mail: pichon@iap.fr

followed by the non-linear collapse of overdense regions into dark
matter (DM) haloes which then accrete mass and merge as de-
scribed by the hierarchical model. The current paradigm of galaxy
formation states that collapsing protogalaxies acquire their spin (i.e.
their angular momentum) by tidal torquing because of a misalign-
ment between their inertia tensor and the local gravitational tidal
tensor at the time of maximum expansion; this is the basis of the
so-called tidal torque theory (hereafter TTT, Hoyle 1949; Peebles
1969; Doroshkevich 1970; White 1984; Catelan & Theuns 1996;
Crittenden et al. 2001; Schäfer 2009, for a recent review). According
to this theory, the spin direction should initially be correlated with
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the principal axes of the local tidal tensor, defined as the traceless
part of the Hessian matrix of the gravitational potential field. One
therefore expects to detect correlations between actual galactic an-
gular momenta and LSSs if non-linear processes have not modified
their direction.

For many years, both observers and theorists have thus endeav-
oured to detect these correlations in real surveys and cosmological
N-body simulations. None the less, the results remain in part contra-
dictory because of the lack in resolution together with the difficulty
of properly defining large-scale filamentary structures.

For instance, using N-body simulations Hahn et al. (2007a),
Sousbie, Colombi & Pichon (2009) and Zhang et al. (2009) found
that halo spins are preferentially oriented perpendicularly to the
filaments whatever their mass, with Faltenbacher et al. (2002) mea-
suring a random distribution of the spin in the plane perpendicular
to the filaments, while Hatton & Ninin (2001) claimed an align-
ment between spin and filament. More recently a consensus seemed
to have emerged when several works (Bailin & Steinmetz 2005;
Aragón-Calvo et al. 2007; Hahn et al. 2007b; Paz, Stasyszyn &
Padilla 2008) reported that LSSs – filaments and sheets – influ-
enced the direction of the angular momenta of DM haloes in a
way originally predicted by Sugerman, Summers & Kamionkowski
(2000) and Lee & Pen (2000). These studies pointed towards the
detection of a mass-dependent orientation of the spin, arguing for
the first time that the spin of high-mass haloes tends to be perpen-
dicular to their host filament, whereas low-mass haloes have a spin
preferentially aligned with their host filament. Nevertheless, the de-
tected correlation remains weak and noisy and no full explanation
for these findings was highlighted except, for example, Bailin &
Steinmetz (2005) who suggested that the spin direction of cluster
and group mass haloes (as opposed to galaxy mass haloes) could
come from mergers along the filaments.

However, Hahn, Teyssier & Carollo (2010) repeated this mea-
surement in a cosmological hydrodynamical resimulation of one
large-scale cosmic filament and found a different result: the spin
of high-mass haloes is aligned with the filament; the spin of low-
mass haloes is along the intermediate eigendirection of the tidal
tensor in low-density regions and along the third eigendirection
(i.e. neither the intermediate direction nor the filament’s) in higher
density regions at higher redshift (z = 1); finally, no signal exists
for high-density regions at low redshift.

Beyond numerical simulations, Lee & Erdogdu (2007), Trujillo,
Carretero & Patiri (2006), Navarro, Abadi & Steinmetz (2004), Flin
& Godlowski (1990, 1986) and Godłowski & Flin (2010) found
correlations in observations between the rotational axis of galaxies
and the surrounding LSSs (e.g voids and local tidal shears) un-
like Dekel (1985) who did not find any correlation. To be more
specific, Flin & Godlowski (1986, 1990) first discovered that the
spin of galaxies is not isotropically oriented with respect to the Lo-
cal Supercluster plane but more likely to be aligned with it; Navarro
et al. (2004) confirmed this observation; Trujillo et al. (2006) found
that in SDSS and 2dFGRS, the rotational axis of the spiral galaxies
located in the walls surrounding voids lie preferentially in the plane
of these voids; Lee & Erdogdu (2007) analysed the galaxies of the
2MASS Redshift Survey and found correlations between their spin
and the local tidal tensor and Godłowski & Flin (2010) focused on
the galaxy groups in the Local Supercluster and found correlations
in their orientation, suggesting that the two brightest galaxies and
then the galaxy groups were hierarchically formed in the same fil-
ament with their major vector aligned with this host filament. The
results of Navarro et al. (2004) and Trujillo et al. (2006) support the
predictions of TTT (Lee & Pen 2000) namely that, assuming that

the inertia and tidal tensors are uncorrelated, galaxies’ spin should
be preferentially aligned with the intermediate eigendirection of the
tidal tensor (in particular in the plane of the voids). Recently, how-
ever, Slosar & White (2009) claimed that in contrast to previous
studies, they found no departure from randomness in SDSS while
studying the orientation of the galaxy spin with regard to the voids
in which they are located. The method used in the latter study has
been improved by Varela et al. (2012) who used the SDSS (DR7)
and morphological classifications from the Galaxy Zoo project and
found that galaxy discs are more likely to lie in the plane of voids,
that is, their spin tends to be perpendicular to the void they are
located in, which seems to be in disagreement with Lee & Erdogdu
(2007), Trujillo et al. (2006) and Navarro et al. (2004).

In short, even if one can claim that a trend is slowly emerging,
quantitative evidence of spin alignment with the filaments and tidal
tensor eigendirections remains at this stage weak and somewhat
inconclusive. Hence, in this paper, we propose to revisit the issue
and quantify the alignment between the spin of DM haloes and
the filamentary pattern in which they are embedded (together with
the alignment between the spin and the tidal tensor principal axes)
using a very efficient topological tool, the Skeleton (Sousbie et al.
2009). This tool provides a robust and mathematically well defined
reconstruction of the cosmic web filaments. We apply it to the
Horizon 4π simulation (Teyssier et al. 2009), a 2 h−1 Gpc on a
side cubic volume of the Universe containing over 67 billion DM
particles which provides an unprecedented catalogue of 43 million
DM haloes with masses >2 × 1011 M�. We then interpret our
results in the framework of the dynamics of large-scale cosmic
flows.

Section 2 briefly presents the Horizon 4π simulation and the
topological tool implemented to identify the loci and orientation
of filaments. It then reports the correlations detected between the
orientation of the spin of DM haloes and filaments and its redshift
evolution. Section 3 is devoted to the physical processes that induce
these correlations. It also illustrates them using DM halo merging
histories, smoothed DM simulations and hydrodynamical simula-
tions. Section 4 provides conclusions and discusses prospects for
our understanding of galaxy formation within its cosmic environ-
ment. Appendix A gives the correlations measured between spin
directions and tidal eigendirections, which are in agreement with
the cosmic dynamics arguments of Section 2. Appendix B presents
a visual quantitative estimation of the spin of the circumgalactic
medium. Appendix C sums up all the tests we have performed to
assess the robustness of the correlations presented in Section 2. Fi-
nally, Appendix D presents the dependence of the transition masses
on the smoothing length and the non-linear mass as a function of
redshift.

2 SP I N – F I L A M E N T C O R R E L AT I O N S

Let us first account for the robust correlation between the DM halo’s
spin and the orientation of the filaments of the cosmic web.

2.1 Virtual data sets

This study uses the Horizon 4π N-body simulation (Teyssier et al.
2009) which contains 40963 DM particles distributed in a 2 h−1 Gpc
periodic box to investigate the spin alignment of DM haloes relative
to their LSS environment. This simulation is characterized by the
following � cold dark matter (�CDM) cosmology: �m = 0.24,
�� = 0.76, n = 0.958, H0 = 73 km s−1 Mpc−1 and σ 8 = 0.77
within 1 standard deviation of WMAP3 results (Spergel et al. 2003).

C© 2012 The Authors, MNRAS 427, 3320–3336
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These initial conditions were evolved non-linearly down to redshift
zero using the adaptive mesh refinement code RAMSES (Teyssier
2002), on a 40963 grid. The motion of the particles was followed
with a multigrid Particle-Mesh Poisson solver using a Cloud-In-
Cell interpolation algorithm to assign these particles to the grid (the
refinement strategy of 40 particles as a threshold for refinement
allowed us to reach a constant physical resolution of 10 kpc; refer
to the above-mentioned two references).

The Friend-of-Friend (FoF) algorithm (Huchra & Geller 1982)
was used over 183 overlapping subsets of the simulation with a
linking length of 0.2 times the mean interparticular distance to de-
fine DM haloes. In this work, we only consider haloes with more
than 40 particles, which corresponds to a minimum halo mass of
3 × 1011 M� (the particle mass is 7.7 × 109 M�). The mass dy-
namical range of this simulation spans about five decades. Overall,
43 million haloes were detected at redshift zero (see Fig. 1). This
simulation was complemented by smaller (10243 particles, box size
200 h−1 Mpc and several 2563 particles, box size 50 h−1 Mpc, lead-
ing to a particle mass of 6.2 × 108 M�) DM-only simulations to
address resolution issues (see Appendix C) and interpret the redshift
evolution of the signal (see Section 2.3).

Several topological techniques (Barrow, Bhavsar & Sonoda 1985;
Stoica et al. 2005; Novikov, Colombi & Doré 2006) have been pro-
posed to identify the complex cosmic network made of large voids,
sheet-like structures and elongated filaments. These techniques rely
on giving a mathematical definition (and a detection algorithm) of
the filamentary pattern that our eye easily detects in the simulations.
One recent criterion to classify structures as clusters, filaments,
sheets or voids uses the number of positive eigenvalues of the Hes-
sian matrix of the density or potential fields (Aragón-Calvo et al.
2007; Hahn et al. 2007b; Forero-Romero et al. 2009). Another inter-
esting approach was followed by Platen, van de Weygaert & Jones

Figure 1. An 80 h−1 Mpc slice of the Horizon 4π simulation at redshift
zero. The box size is 2 h−1 Gpc across. On top of the DM log-density
(colour coded in levels of blue, from dark to light), all haloes in that slice
whose mass is larger than 3 × 1013 M� are shown in the yellow dots. As
expected, these haloes fall on top of the filamentary structure of the cosmic
web.

(2007, 2008) who used Watershed transforms to identify voids, fil-
aments and walls. More recently, González & Padilla (2010) intro-
duced a method which relies on positions and masses of DM haloes,
and Bond, Strauss & Cen (2010) used Hessian eigendirections to
detect filaments. In this paper, we use the (global) 3D Skeleton
introduced by Sousbie et al. (2009). The underlying algorithm is
based on Morse theory and defines the Skeleton as a set of critical
lines joining the maxima of the density field through saddle points
following the gradient. In practice, Sousbie et al. (2009) define the
peak and void patches of the density field as a set of points con-
verging to a specific local maximum/minimum while following the
field lines in the direction/opposite direction of the gradient. The
Skeleton is then a set of intersections of the void patches, that is,
a subset of critical lines connecting the saddle points and the local
maxima of a density field and parallel to the gradient of the field.

For this work, the ∼70 billion particles of the Horizon 4π simu-
lation were sampled on a 20483 Cartesian grid and the density field
was smoothed over 5σ using mpsmooth (Prunet et al. 2008), cor-
responding to a scale of 5 h−1 Mpc and a mass of 1.9 × 1014 M�.
Hence, we are focusing on the LSS of the cosmic web. The corre-
sponding cube was then divided into 63 overlapping subcubes (with
a buffer zone of 100 voxels in each direction, large enough to cover
the largest peak patches of the simulation, see Sousbie et al. 2009),
and the Skeleton was computed for each of these subcubes. It was
then reconnected across the entire simulation volume to produce
a catalogue of segments which locally define the direction of the
Skeleton. This Skeleton is shown in Fig. 2. Note that this Skeleton
(i.e. what we will call filaments in the rest of this paper) depends
on the choice we made for the smoothing length (5 h−1 Mpc). Ap-
pendix D1 investigates the effect of probing smaller smoothing
scales on other sets of simulations.

The hydrodynamical simulations used in this paper are described
in Appendix B.

Figure 2. A 3D view of the Skeleton of the Horizon 4πsimulation measured
from the DM distribution. The size of the box is 2 h−1 Gpc. This paper
analyses the relative orientation of the spin of the 43 million dark haloes
relative to the cosmic web.
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Connecting LSS to the spin of DM haloes 3323

2.2 Correlations between spin and filament axis

In order to study the alignment between the spin of haloes and the
filamentary features of the cosmic web, we compute the Skeleton
of the LSS for the density field smoothed with the above quoted
Gaussian scale R = 5 h−1 Mpc which corresponds to σ (R) = 0.66.
Thus, we are considering the filaments that are mildly non-linear
LSSs at cluster scales.

In this paper, the spin of a given halo is defined as the sum over
its particles denoted by i: mp

∑
i(r i − r̄) × (vi − v̄), where r̄ is

the centre of mass of the FoF halo and v̄ is its mean velocity. We
search for the five DM haloes (regardless of their mass) closest
to each filament segment (see Appendix C for alternative choices).
We then measure the angle between the angular momentum of these
haloes and the direction of the filament segment and estimate the
probability distribution function (PDF) of the absolute value of the
cosine of this angle; this PDF, 1 + ξ , measures the excess probability
of alignment between the halo spin and the direction of the filament
(note in particular that it is normalized for cos θ between 0 and 1;
for aesthetic purpose only, data are symmetrically plotted for cos θ

between −1 and 1; Appendix C briefly discusses the associated
biases). The data are split by halo masses ranging from galactic to
cluster masses and are displayed in Fig. 3, the main result of this
paper.

A clear signal is detected. The orientation of the halo spin depends
on the local anisotropy of the cosmic web, and on the DM halo
mass: the spin of DM haloes is preferably perpendicular to their
host filament at high mass (with an excess probability reaching
12 per cent), but turns into being aligned with the nearest filament

direction at lower masses (with an excess probability of 15 per
cent). This ‘phase transition’ is found to occur at M s

crit(z = 0) �
4(±1) × 1012 M�, where M s

crit is defined as the halo mass for
which 〈cos θ〉 = 0.5. Fig. 4 shows an example segment of the large-
scale filamentary network together with the orientation of spins of
massive haloes that graphically demonstrates for them the effect
of spin–filament anti-alignment. Several sanity checks have been
carried out to assess the robustness of this signal and are summed
up in Appendix C.

These measurements of the spin–filament correlation trend con-
firm the previous results obtained by Bailin & Steinmetz (2005),
Aragón-Calvo et al. (2007), Hahn et al. (2007b) and Paz et al. (2008)
with significantly improved statistics which allow us to quantify the
mass transition.

2.3 Redshift dependence of the transition mass

The redshift dependence of the transition mass was then investi-
gated on a set of smaller �CDM simulations (10243 particles in
200 h−1 Mpc periodic boxes and 2563 particles in 50 h−1 Mpc pe-
riodic boxes). At high redshift we define the filamentary structure
at the smoothing scale, R(z), chosen to maintain the same level of
non-linearity as we had at redshift zero for R0 = 5 h−1 Mpc. Thus,
the smoothing scale R(z) is obtained from the implicit condition
σ 2(R(z), z) = σ 2(R0, 0) (see Appendix D2). The halo spins continue
to exhibit a transition from alignment with the nearest filament at
low mass to anti-alignment at high mass. The critical mass for the
transition, M s

crit(z), is found to decrease with redshift as a power law

Figure 3. Left-hand panel: excess probability of alignment between the spin and the direction of the closest filament as measured from the 43 millions haloes
of the Horizon 4π simulation at redshift zero. Different colours correspond to different mass bins from 1012(red) to 1014 M� (blue) as labelled. Thanks to
the very large number of haloes in each mass bin, the excess probability is quite well sampled and displays a clear departure from a uniform distribution. A
transition mass is detected at Ms

0 = Ms
crit(z = 0) � 5(±1) × 1012 M�: for haloes with M > Ms

0, the spin is more likely to be perpendicular to their host
filament, whereas for haloes with M < Ms

0, the spin tends to be aligned with the closest filament. Right-hand panel: redshift evolution of the filament transition
mass (in blue) and the tidal tensor transition mass (in green) derived from the 200 h−1 Mpc �CDM simulations as discussed in the main text. The (cyan)
dotted line represents the spin–filament mass transition for a larger smoothing length (7.2 h−1 Mpc). The displayed error bar is estimated as one-third of the
bin mass. The dashed lines correspond to the non-linear masses (for a top-hat filter, see Appendix D2) at different σ , in particular σ = 1 (orange) and σ =
1.686 (red). The redshift evolution of the transition masses is in qualitative agreement with that of MNL(σ � 1.686) though they seem to remain close to power
laws throughout the explored range of redshift.

C© 2012 The Authors, MNRAS 427, 3320–3336
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

 at Institut d'astrophysique de Paris on January 6, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 



3324 S. Codis et al.

Figure 4. A very small subset of Skeletons at different redshifts extracted
from the Horizon 4π simulation (see Fig. 2), together with unit vectors
showing the orientation of the spin of the corresponding DM halo with a
mass above the transition mass. The spin is indeed perpendicular to the
filament for these massive haloes.

of z. Namely,

M s
crit ≈ M s

0(1 + z)−γs , γs = 2.5 ± 0.2, M s
0 � 5 × 1012 M�.

(1)

This result is presented in Fig. 3 over the studied range z = 0–4.
Measuring the dependence of the z = 0 transition mass M0 on scale
R0 (see Fig. D1), we find some weak scaling, M s

0 ∝ R0.8
0 . Note that

this dependence significantly depends on redshift.
The existence and redshift dependence of the transition mass in

spin–structure alignment is supported by studying the halo’s spin
direction relative to the orientation of the large-scale gravitational
tidal tensor. The details are given in Appendix A, where we find
that the more massive haloes are preferably aligned with the inter-
mediate principal axis of the tidal tensor, while smaller haloes show
a positive alignment with the minor axis (which near a filament is
the direction in which the filament extends). In this approach, our
measurements give for the transition mass

M t
crit ≈ M t

0(1 + z)−γt , γt = 3 ± 0.3, M t
0 � 8 × 1012 M�, (2)

in good agreement with the Skeleton results, equation (1). The some-
what larger amplitude of M t

0 with respect to M s
0 can be explained

by noticing that the tidal tensor associated with the gravitational po-
tential smoothed on a scale R0 effectively probes larger scales than
the smoothed density field itself. Fig. 3 shows that if we boost the
smoothing scale used to define the Skeleton to R0 = 7.2 h−1 Mpc,
M s

crit and M t
crit will match very closely (see also Appendix D1).

In Fig. 3, we also compare Mcrit(z) to the redshift evolution of the
mass scale MNL(z) that corresponds to the fixed σ (R, z) (defined in
Appendix D2). Several values of the variance are of interest to track.
One is σ (R, z) = 1 which formally defines the scale of non-linearity.
Another is σ (R, z) = 1.686 which corresponds to the characteristic
mass scale, M�, of collapsed gravitationally bound haloes at redshift
z in the spherical top-hat model. Even though it is clear from Fig. 3
that both transition masses M s

crit and M t
crit qualitatively match a non-

linear mass evolution with σ � 1.686 at low redshifts, at high z they
still follow a power-law behaviour, while MNL steepens as it probes

the steepening power spectrum at ever shorter scales. Thus, at high
redshifts, the positive alignment between the halo’s spins and the
nearby filaments extends to masses that are effectively higher, in
terms of the corresponding characteristic non-linear mass. Although
we do not have the full quantitative explanation for this effect, it
may be related to the fact that the filaments at high z are more
pronounced due to a steeper power spectrum, and are correlated
with the shear of the surrounding flow more robustly. Note that
the detection of haloes and filaments at these redshifts may be a
concern for these intermediate-resolution simulations. Whilst we
defer a detailed quantitative understanding of the redshift evolution
of the mass transition, the rest of this paper is devoted to explaining
the origin of these mass transitions.

3 SPI N INDUCED BY LSS DY NA MI CS

The measurements of Section 2.2 strongly suggest that the spin di-
rection of DM haloes is connected to the cosmic web. Indeed, these
dark haloes are embedded in large-scale cosmic flows induced by
the successive formation of walls, filaments and clusters: matter
escapes from the voids to the walls then to the filaments before
flowing along the latter direction towards the nodes (Zel’Dovich
1970; Bond et al. 1996; Pichon et al. 2011). In this framework, let
us now argue that the first generation of haloes are formed during
the winding of walls around filaments, which provides them with a
spin parallel to this direction (and whose amplitude is proportional
to the relative impact parameter of the two walls). Conversely, the
later generations of haloes form by mergers along the filaments, that
is, in the direction parallel to the mean flow (as was first pointed
out by Sousbie et al. 2008) and therefore acquire a spin perpen-
dicular to the filaments (if the orbital angular momentum which is
converted into spin during the merger dominates). In this scenario,
the transition in mass measured in Fig. 3 in fact reflects a trend
in merging generation.1 Note that this behaviour occurs on several
scales simultaneously; this multiscale signal is probed by varying
the smoothing scale used to define the filaments in Appendix D1.

As a first check for this hypothesis, the typical distance of DM
haloes from filaments is computed as a function of their mass. The
more massive haloes are typically found closer to the filaments (on
average at 0.7 h−1 Mpc) than low-mass haloes (found on average
at 2 h−1 Mpc from the core of the filaments), which is consistent
with our assumption because it implies that high-mass haloes have
reached the centre of the filaments, where they are more likely to
merge in the direction of the flow. Conversely, low-mass haloes
(for which large-scale dynamics have been frozen in at an early
stage) are found farther from the core of the filaments where they
are less likely to merge. This is qualitatively consistent with Fig. 1,
which shows the distribution of massive haloes within a slice of the
simulation.

3.1 Winding up of DM flows

Let us have a look at Fig. 5, which displays the temporal evolution
of DM particle trajectories in the vicinity of a DM filament. This
simulation has the special feature that the small-scale modes were

1 Technically, it was not possible to build merging trees a posteriori on
the Horizon 4π simulation as it would have required too many snapshots
and thus too much disc space; so we did carry out the tests described in
Section 3.2 on a smaller simulation to confirm the relevance of merger
generation as the key parameter.
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Figure 5. Trajectory of DM particles, colour coded from yellow (early) to blue (late) via dark red as a function of time. The four panels (from the top to
bottom and left-hand to right-hand side) correspond to different stages of the winding of two walls around a north-eastern-oriented filament. Once DM has
joined the filament, it heads towards the bottom left-hand part of the panel in the direction of a more massive node of the cosmic network. This process is best
seen dynamically at http://www.iap.fr/users/pichon/spin/.

erased from the initial conditions in order to facilitate visualization
of the large-scale flow (see Pichon et al. 2011 for details). We refer
to this simulation as a ‘smoothed’ simulation. Here most of the flow
is in fact embedded in a large wall parallel to the plane of the figure.
The dots with different colours (from yellow to blue via dark red)
correspond to the position of the same DM particle at successive
time-steps, and thus allow us to visually follow the trajectory of
DM particles. The top left-hand panel corresponds to a snapshot
somewhat before the flow has significantly shell crossed around the
north-eastern filament. The DM particles are plunging towards their
filament, while flowing within the two walls. In the top right-hand
panel, some level of shell crossing has occurred in the north-eastern
part of the filament, and the corresponding particles have started
inflecting their trajectories to wind up around the locus of that
filament. Since these particles typically have a non-zero impact
parameter relative to the centre of mass, as they wind up, they
convert their orbital motion into spin while generating a virialized
structure. Later on (bottom left-hand panel) this structure sinks
along the north-eastern filament towards a more massive clump (off
field). Meanwhile, the process of DM winding from the walls around
the main filament continues, and feeds (as a yellow trail) the DM
halo along its current spin axis (which is aligned with the axis of the

filament). Finally, in the bottom right-hand panel, another such halo
has formed farther down the filaments, and we can anticipate that
their upcoming merger will lead to a structure whose spin’s direction
will be a mixture of their initial spin and the spin perpendicular to
their relative orbital plane. In Section 3.3 below, we will revisit this
scenario using hydrodynamical simulations, which will allow us to
visually identify the spin of forming galaxies.

3.2 The progenitors of dark haloes via merging trees

In order to understand the previously described mass transition
and its redshift evolution, we used the code TREEMAKER (Tweed
et al. 2009) to track down the progenitors (both dark haloes and
unresolved flows) of given haloes in conjunction with their spin
orientation relative to the nearest filament. TREEMAKER involves
two steps: first, haloes are identified using a halo finder – in our
case a FoF algorithm (Huchra & Geller 1982; Zeldovich, Einasto
& Shandarin 1982; Davis et al. 1985), while the properties of these
structures (mass, angular momentum, etc.) are measured. As the
second step, the individual DM particles which belong to each halo
are tracked back in time so as to build a merging history tree which
regroups all of its progenitors and their properties as a function of
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time. A relatively large number of merging trees were computed
and the direction of the spin of the progenitors relative to their host
filament was calculated.

After visual inspection of a subset of those merging trees, it was
found that: (i) the high-mass haloes (i.e. above the critical mass)
with a spin perpendicular to their filament tend to have a similar
history: they often acquire a significant amount of mass via a major
merger, which is accompanied by a significant spin adjustment from
a direction initially aligned with their filament to a direction mostly
perpendicular to their filament (and aligned with e2, see Appendix
A); and (ii) in contrast, low-mass haloes (i.e. below the critical
mass) are not the result of major mergers; often no mergers at all
are found at the mass resolution of the N-body simulations; those
who have a spin parallel to the filament seem to have acquired this
spin direction at a time (the so-called formation time) when they
have acquired most of their mass by diffuse accretion.

This behaviour is quite generic as we observed it for a few tens
of randomly chosen haloes. It is illustrated in Fig. 6 where merging
trees of two different haloes (extracted from one of the 50 h−1 Mpc
�CDM simulations) are shown: the evolution of the angle between
the closest filament and the spin of a given halo is plotted as a
function of redshift; the colours encode the fraction of mass of
the progenitor with respect to the final halo mass. The right-hand
panel corresponds to a low-mass halo (2 × 1011 M� at redshift zero
corresponding to more than 300 particles) which forms at redshift
z � 1.5 (when it has already acquired more than one half of its
mass) and suddenly acquires a spin parallel to its closest filament
at a high redshift (�2) close to its formation time. This halo does
not undergo any significant merger afterwards. Conversely, the left-
hand panel provides the merging tree of a high-mass halo (8 ×
1012 M� at redshift zero) which forms at lower redshift (�0.4)
as the result of a major merger between two less massive haloes.
This event corresponds exactly to the time when it acquires a spin
perpendicular to its closest filament. What is striking here is the
clear flip of the spin direction: the two progenitors have a spin
aligned with the filament (this spin is acquired at higher redshift

�1.5) and their merger makes the spin of the resulting halo become
perpendicular to it. These two examples of trees are characteristic
of how haloes below and above the critical mass M s

crit form and
acquire spin. Note that we actually observe a large dispersion of the
histories around this mean behaviour.

To check the statistical robustness of this scenario for low-mass
objects, let us identify a preferred plane of motion at formation
time. The following simple test was implemented: a set of low-
mass haloes ending with a spin parallel to their closest filament are
randomly chosen and only haloes for which a time of significant
accretion (i.e. their formation time) can be determined are retained
(this represents at least one-third of our sample). Their particles are
traced back one time-step before their formation time to quantify
the relative orientation of their velocities compared to the filament’s
direction. The excess probability distribution of alignment, 1 + ξV ,
is shown in Fig. 7 and shows that their velocities (before formation)
are more likely to lie perpendicular to the filament (in particular
it is found that 〈cos θV〉 � 0.47), which is in agreement with the
scenario (see also Fig. A1).

In order to assess the statistical relevance of the scenario for mas-
sive haloes (i.e. above the critical mass at redshift zero), merging
trees can also be used to determine their most recent merger. The
mean cosine of the angle between these haloes and their host fil-
ament just after merging is computed and compared to the mean
cosine of the angle between the closest filaments and the spin of
the progenitors just before merging. This test yields 〈cos θ〉 � 0.51
before and 0.47 after the last merger, which is fully consistent in am-
plitude with the mean cosines found for the Horizon 4π simulation
[for which, for instance, 〈cos θ〉 � 0.510 (0.479) for M � 1012 M�
( M � 1013 M�)]. The 1σ error on the mean is about ±0.02, given
the size of this sample (only � 200 haloes massive enough in this
simulation). This statistical test is in agreement with the fact that
massive haloes acquire a spin perpendicular to their host filament
because of mergers.

Altogether, we are now able to reconstruct the history of spin
acquisition by DM haloes following the large-scale dynamics. The

Figure 6. Left-hand panel: merging tree of a high-mass halo (8 × 1012 M� at redshift zero). The various colours correspond to different mass fractions
(relative to z = 0). The vertical axis corresponds to the angle between the host filament and the spin of this halo, and the horizontal axis to the redshift. Here,
the spin becomes perpendicular to its filament after an important merger at redshift ∼ 0.5. Right-hand panel: merging tree of a low-mass halo (2 × 1011 M�
at redshift zero). Here, the spin becomes suddenly parallel to its host filament when the halo acquires most of its mass by accretion between redshift 1 and 2.
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Figure 7. Excess probability of the velocity–filament alignment just before
the formation time for a sample of 15 low-mass haloes (M < Mcrit). The
average orientation over these 15 haloes is plotted with a dotted line, while
the 1σ deviation away from that mean is displayed in pink. The progenitors’
velocities before formation lie preferentially in a plane perpendicular to the
closest filament (see also Figs 6 and A1).

less massive objects are born by accretion at high redshift during
the winding of the walls into filaments. This process generates a
spin aligned with the filaments. Most of the haloes of low mass at
z = 0 are now formed, and their spin will not change much because
they have already acquired most of their mass while future accretion
will not be important enough to have a strong impact on their spin
direction. This behaviour is illustrated in Fig. 6 (right-hand panel)
where a halo forms and acquires a spin parallel to the direction
of the forming filament, which then remains in the same direction
during accretion until redshift zero.

At lower redshift, filaments are collapsing and thus create a flow
along their direction in which the more massive haloes form by
major mergers. During this process, these massive haloes acquire
a spin which is the superposition of the spin of their progenitors
and the orbital spin from the merger. As the motion is along the
filament, this orbital spin is in a plane perpendicular to it. This
process is shown in Fig. 6 (left-hand panel): the spin of the (less
massive) progenitors is parallel to the filaments and their merger
within the filaments induces a more massive halo whose spin is
now perpendicular to the host filament. For these more massive
DM haloes, a competition between orbital spin and intrinsic spin
during the merger process has just been highlighted and explains the
resulting orientation. Indeed, their spin is not randomly distributed
in a plane perpendicular to the filaments but is shown to be correlated
with one particular eigendirection of the large-scale tidal tensor.
This issue is fully addressed in Appendix A.

It is interesting to compare the picture described above with
Peirani, Mohayaee & de Freitas Pacheco (2004) who focused on
the spin magnitude (instead of its direction). These authors claimed
that spin acquisition was dominated by merger events, rather smooth
accretion; Fig. 6 suggests that this holds true for the spin’s direction
of haloes more massive than the critical mass M s

crit as well.

3.3 Visual inspection using hydrodynamics

For illustrative purposes, let us now turn to a high-redshift hydrody-
namical simulation, as the cold gas that we will analyse here follows
more closely the caustics of the cosmic web than the DM, and thus
provides a clearer visual impression of the process of wall winding
and spin acquisition (in contrast to collisionless DM, cold gas does
not undergo shell crossing but shocks and loses degrees of freedom
– its motion perpendicular to the shock). We are not concerned here
with how much respective angular momentum gas has with respect
to DM acquired, but only use hydrodynamics as a proxy for pin-
pointing more accurately the loci of shell crossing and identifying
the spin axis of galaxies. As we will argue later, it is also of interest
to consider in parallel the environment of low-mass, high-redshift
and high-mass, low-redshift haloes. Following Dubois et al. (2012)
we use tracer particles of the gas in a cosmological hydrodynami-
cal simulation (which is described in Appendix B) to illustrate this
winding of walls and the loci and orientations of galaxies.

Fig. 8 represents the web-like filamentary structure of the gas at
z = 9 in a field of size approximately 50 h−1 kpc across; the ensem-
ble of tracer particles initially makes up a sheet-like structure with
a dominant filament embedded in it. Note that these tracer particles
represent a biased subset of all tracers as they are chosen so as to end
up within the bulge of the main galaxy of this zoom-in simulation
at some later stage. The tracer particles flow from this sheet into
the filaments where they form ‘protogalaxies’. The gas thereby typ-
ically has a non-zero impact parameter relative to the filament and
protogalaxies thus acquire a spin parallel to the filament in which
they form (see the arrows in the figure). These young galaxies then
migrate along their filaments and merge with other galaxies. The
spin of the merger remnant is a combination of the orbital angular
momentum of the collision and the initial spin of the progenitors;
it can therefore depart from the direction of the host filament. We
provide an animation at http://www.iap.fr/users/pichon/spin/ which
allows this to be seen more easily (see also the Supporting Infor-
mation with the online version of the paper). Fig. B1 illustrates
quantitatively the visual impression of Fig. 8 while measuring the
spin of the circumgalactic discs (between 0.1 and 0.25Rvir).

In Fig. 9, a small subset of these tracer particles are randomly
chosen and followed for a while from early (left-hand panel) to late
times (right-hand panel). On large scales (at early times), we note
that the flow is indeed dominated by the winding up of matter from
the main wall around the main filament. The tracers’ trajectories
start perpendicular to the filament within the walls. As they reach
the filament, they take a sharp turn, losing their transverse mo-
tion and flowing along the filament (left-hand panel). In doing so,
since the laminar flows on opposite sides of the wall will typically
have different impact parameters, they generate a spinning struc-
ture whose axis will be aligned with the filament. This spaghetti
structure converges into a quite narrow and elongated plait on ei-
ther side of the forming disc. Given its orientation, the induced disc
will therefore advect secondary infall at its periphery preferentially
along its spin axis (as both the galaxy and its upcoming secondary
infall were assembled via the same winding process).

In a nutshell, the cold gas dynamics of large-scale cosmic flows
provide a much clearer illustration of the scenario we outlined for
the formation of haloes with a spin mostly aligned with the local
filament. We do not discuss any further the properties of the align-
ment of the disc with respect to the filamentary structure, given
that there exist many caveats (though see Section 4.2 below and
Appendix B).
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Figure 8. Distribution of hydrodynamical tracer particles (at z � 9, top panels, and z � 8, bottom panels). The web-like filamentary structure (top left-hand
and right-hand panels) of the gas distribution which ends up in the bulge of a unique galaxy at later times is quite intricate, though one main wall in which
the largest filament is embedded dominates (seen more clearly edge-on, in the top right-hand panel). Note the disc-like features with a spin parallel to the
filament (represented qualitatively as an arrow perpendicular to the disc). Bottom panels: zoom-in at a later stage to visualize the process of a merger along
the filament, before (bottom left-hand panel) and during (bottom right-hand panel) the merger. The spin of the merger remnant is a combination of the orbital
angular momentum and the initial spin of the progenitors; it can therefore depart from the direction of the host filament. Note also the ribbon structure of
filaments which corresponds to the locus of the second shock. Visual inspection suggests these ribbons become broader with time (as predicted by Pichon et al.
2011 as they advect larger and larger amount of angular momenta from the outskirts of the gravitational patch) and tend to lie perpendicular to the main wall;
as they reach the protogalaxy, they twist rapidly on outer shells and build up its outskirts.

4 C O N C L U S I O N S A N D P RO S P E C T S

In this paper, the Horizon 4π N-body simulation was used to in-
vestigate the correlations between the spin of DM haloes and their
large-scale environment. For filaments defined over a smoothing
scale of 5 h−1 Mpc, a statistically significant signal was detected,
indicating that the orientation of the spin of DM haloes is sensitive
to the cosmic environment. A mass dependence of this signal was

also robustly established: low-mass haloes are more likely to be
aligned with large-scale filaments (with an excess probability of
15 per cent), whereas more massive haloes tend to be perpendicular
to these (with an excess probability of 12 per cent). The mass tran-
sition was found to be redshift-dependent and to vary like Mcrit(z)
≈ M0(1 + z)−γ with M s

0 � 5(±1) × 1012 M� and γ s = 2.5 ± 0.2.
This critical mass is also found to increase with smoothing length
(Appendix D1). These results are in agreement with those presented
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Figure 9. Trajectories of tracer particles in the outer region (left-hand panel) and inner region (right-hand panel). On large scales, the gas departs from voids,
flows along the walls (red arrows) and winds up in filaments along well-defined ribbons (green arrows), forming low-mass haloes. In the inner region of the
tracks, the flow is indeed along the filament and spiralling in into a disc whose axis is roughly aligned with the filament.

in Appendix A, which are derived using a more classic approach of
considering excess alignment of the halo spin with the tidal tensor
eigendirections. Since the tidal tensor probes larger scales than the
Skeleton of the density, the mass transition is detected for a larger
mass M t

0 � 8(±2) × 1012 M�, which scales slightly differently
with redshift, that is, γ t = 3 ± 0.3. Both redshift evolutions are
roughly consistent with that of the formal non-linear mass scale.

4.1 Discussion

This unambiguous result confirms and quantifies recent findings
(Bailin & Steinmetz 2005; Aragón-Calvo et al. 2007; Hahn et al.
2007b; Paz et al. 2008). It is also consistent with Sousbie et al.
(2009) who found that the spin of DM haloes tends to be perpendic-
ular to filaments. Indeed, weighting our statistics by the spin magni-
tude (which corresponds to their strategy), we recover their results.
Zhang et al. (2009) found the same result, but did not have enough
statistics to probe the signal above the critical mass. The study of
Faltenbacher et al. (2002) focused on haloes above 1014 h−1 M�,
that is, above the critical mass at redshift zero, which is why, in
agreement with this work, they found a trend for these haloes to have
a spin perpendicular to their closest filament. In contrast, Hatton &
Ninin (2001) considered haloes with mass around 1011–1012 M�,
that is, below the critical mass and thus found an alignment of the
spins with the filaments, again in agreement with this work. This pa-
per also confirms the very recent findings of Libeskind et al. (2012)
who claimed that low-mass haloes (around 1010–1011 M�) tend to
be aligned with the filaments and to lie in the plane of walls.

Note that Appendix A predicts a strong trend for the spin vec-
tor of DM haloes to lie in the plane of large-scale walls. Such a
signal was claimed to have been detected in observations by Lee
& Erdogdu (2007), Trujillo et al. (2006), Navarro et al. (2004)
and should be re-investigated in view of this paper’s predictions.
Furthermore, observers should now also be able to investigate the
spin–filament correlations in a way directly comparable to the the-
oretical predictions for DM presented in this paper (Fig. 3). Indeed,
the code DISPERSE (Sousbie 2011), which identifies filaments using

persistence, can accurately deal with discrete and sparse data sets
and should provide a good estimator for the direction of observed
filaments.

The time evolution of the angular momentum of individual DM
haloes obtained by following their progenitors using merger trees
suggests that the spin direction results, on the one hand, from
the winding of the walls into filaments (first-generation, low-mass
haloes) and, on the other hand, from significant mergers occurring
along those filaments (second-generation, more massive haloes).
More specifically, the arguments we developed throughout this pa-
per strongly suggest that the measured correlations can be under-
stood as a consequence of the dynamics of large-scale cosmic flows.
Indeed, low-mass haloes mostly form at high redshift within the
filaments generated by colliding/collapsing walls. Such a process
naturally produces a net halo spin parallel to the filaments. In con-
trast, high-mass haloes mainly form by merging with other haloes
along the filaments at a later time when the filaments are themselves
colliding/collapsing. Therefore, they acquire a spin which is pref-
erentially perpendicular to these filaments. Visual examination of
‘smoothed’ DM and hydrodynamical simulations lends extra sup-
port to this picture (see also Appendix B). Measurements of the
orientation of the spin relative to the eigenvectors of the tidal tensor
are also consistent with such a scenario, provided one takes into
account the fact that they probe typically larger scales of the density
field.

From the point of view of a large-scale filament, most low-mass
haloes are formed early from patches that are part of a planar, flat-
tened inflow of matter on to that filament. For Gaussian random
fields, the tidal tensor in such patches is correlated with the fila-
ment’s direction (via the shape parameter γ , Pogosyan et al. 2009),
resulting in the preferential alignment of the spin of such haloes
along that filament. This process is related to the theoretical predic-
tions of Pichon & Bernardeau (1999) who demonstrated, using the
Zel’dovich approximation, how vorticity was generated during the
first shell crossing. This vorticity will lie in the plane of the forming
walls. Extending their predictions while focusing now on a 2D flow,
we speculate that secondary shell crossing will lead to the formation
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of vortices aligned with the forming filament (see figs 5 and 7 of
Pichon & Bernardeau 1999, a possible section perpendicular to the
axis of the filament).2 In turn, these vortices could account for the
spin of protogalaxies, as was suggested by the referee of that paper.

The excess probability in Figs 3 and A2 lies at the 15–40 per
cent level. As such it mainly reflects a residual trend of coherence
inherited from the large-scale cosmic environment in which haloes
form. This does not preclude the multiscale hierarchical cluster-
ing process from erasing part of this more orderly dynamics. For
instance, clustering and merging on smaller scales will in part per-
turb large-scale ordered ribbons (as is already visible in the bottom
panels of Fig. 8).

The trend in Fig. 3 is found, on the one hand, in these measure-
ments at the high end of the mass function at redshift zero (whose
dynamics is only mildly non-linear) and, on the other hand, for the
gas (a proxy for DM caustics) at very high z for lower mass galaxies
(again not very far from linear dynamics at this epoch). Hence, we
found in both regimes that some imprint of the LSS geometry and
dynamics is directly responsible for the spin of the forming object
and its post-merger transition. In this paper, we tried and explained
the origin of the statistical signal, but we do not argue that large-
scale dynamics dominate the non-linear regime of galaxy evolution
on an individual object basis.

The remaining task involves understanding in detail the redshift
dependence of the transition masses Mcrit described by equations
(1) and (2) [and also its dependence on the smoothing length, which
might allow us to identify a scale at which the (anti-)alignment is
strongest]. It would also clearly be of interest to further quantify
(using larger samples) the findings of Hahn et al. (2010) regarding
the alignment of the stellar disc/circumgalactic medium with respect
to the LSS and investigate how these results depend on subgrid
physics and feedback processes.

Let us conclude this paper with some speculations about what
these results imply specifically for the process of galaxy formation
at high redshift.

4.2 Implications for galaxy formation

We are now in a position to speculate about the implication of our
findings for high-redshift galaxy formation. In the view of the ro-
bust measurements of Section 2 and Appendix A and the visual
inspections of Section 3, it appears that (i) galaxies form preferen-
tially along filaments; and (ii) their internal dynamics (hence their
morphology) inherit important features from this anisotropic envi-
ronment. The first point is backed by the distribution of filaments
at the virial radius (appendix A of Pichon et al. 2011; Danovich
et al. 2012, and indirectly by Fig. 1) and the second point by the
measurements reported in this paper.

Indeed, filaments can be thought of as loci of constructive in-
terferences from the long-wavelength modes of the initial power
spectrum. On top of these modes, constructive interferences of high-
frequency modes produce peaks which thus get a boost in density
that allows them to pass the critical threshold necessary to decouple
from the overall expansion of the Universe, as envisioned in the
spherical collapse model (Gunn & Gott 1972). This well-known
biased clustering effect has been invoked to justify the clustering
of galaxies around the nodes of the cosmic web (White, Tully &

2 Note, however, that such a typical caustic should have inherited some
level of asymmetry (Pichon et al. 2011), which could imply that one vortex
dominates.

Davis 1988). It also explains why galaxies form in filaments. In
walls alone, the actual density boost is not sufficiently large to trig-
ger galaxy formation. We therefore argue here that, statistically, the
main nodes of the cosmic web are where galaxies migrate, not where
they form; galaxies generally form while reaching filaments from
walls. They thus inherit the anisotropy of their birth place as spin
orientation. During migration, they may collide with other galax-
ies/haloes and erase part of their birth heritage when converting
orbital momentum into spin via merger.

Recently, Pichon et al. (2011) showed how the cold gas drains out
of the prominent voids in the cosmic web into sheets and filaments
before it finally gets accreted on to DM haloes. Interestingly, the
imprint of the larger scale pancake structure of the typical cosmic
web around a filament and a peak allows us to be more specific about
the geometry of this process. Indeed, one of the striking features of
Figs 8 and 9 (probably best seen in the animation available as Sup-
porting Information with the online version of the paper) is those
ribbon-like caustics which feed the central galaxy along its spin
axis from both poles. Generically, the gas inflow in the frame of the
galaxy is double-helix like along its spin axis; this is mostly wiped
out in DM (and hardly visible in Fig. 1) because of shell crossing,
but quite visible for the gas. These ribbons are generated via the
same winding/folding process as for the protogalaxy, and represent
the dominant source of secondary filamentary infall described in
Pichon et al. (2011), which feeds the newly formed galaxy with gas
of well-aligned angular momentum (whose direction was set by the
impact parameter offset of the two neighbouring walls, which can
in turn be attributed to the dissymmetry of the four neighbouring
voids). As such, the larger scale geometry of the LSS (which biases
the formation process) squashes the average neighbourhood of a
peak (six saddles, eight voids, twelve walls) into a simpler effec-
tive geometry (one wall and one embedded filament dominating).
Formally, the most likely ‘crystal’ of the Universe – subject to the
constraint of collapse along two axes on larger scales – differs from
the azimuthally averaged cubic centred crystal found in Pichon et al.
(in preparation): it is quite flattened and dominated by one ridge
(Pichon et al. 2011; Danovich et al. 2012; Dubois et al. 2012). Note
that the gas flowing roughly parallel to the spin axis of the disc
along both directions will typically impact the disc’s circumgalac-
tic medium and shock once more (as it did when it first reached
the wall, and then the filaments, forming those above-mentioned
ribbons), radiating away its vertical momentum (see Fig. 10 and
Tillson, Miller & Devriendt 2011).

Our speculations here have focused on a two-scale process. Given
the characteristics of �CDM hierarchical clustering, one can an-
ticipate that this process occurs on several nested scales at various
epochs – and arguably on various scales at the same epoch.3 In
other words, one expects smaller scale filaments are themselves
embedded in larger scale walls (as discussed in Appendix A to
reconcile our excess alignment with the eigenvectors of the tidal
tensor). The induced multiscale anisotropic flow transpires in the
scaling of transition mass with the smoothing length, as discussed in
Appendix D1.

Another issue would be to estimate for how long this entangle-
ment between the large-scale dynamics and the kinematic properties
of high redshift pervades. Indeed, Ocvirk, Pichon & Teyssier (2008)

3 The scenario we propose for the origin of this signal is, like the signal
itself, relative to the linear scale involved in defining the filaments and, as
such, multiscale. It will hold as long as filaments are well defined in order
to drive the local cosmic flow.
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Figure 10. A meridional projection through the velocity flow and gas den-
sity around the NUT galaxy at redshift 5.1 (Kimm et al. 2011). The disc plane
is along the horizontal axis and the circle marks the virial radius (17.6 kpc).
Note the ribbon-like cold flows seen directly in the gas density and the ve-
locity flow, which hit the galactic disc roughly along its spin axis. Note also
how the gas takes a sharp turn when it reaches the ribbons.

have shown that at lower redshift the so-called hot mode of accretion
will kick in; how will hot flows wash out/disintegrate these ribbons?
Given that they locally reflect the large-scale geometry, will the gas
continue to flow in along preferred directions (as DM does, see
e.g. Aubert, Pichon & Colombi 2004), or does the hot phase erase
any anisotropy? Will the above-mentioned smaller scale non-linear
dynamics eventually wash out any such trace?

Finally, note that the actual spin of the stellar disc at low redshift
need not be trivially related to that of its larger scale gravitational
patch (see, for instance, Hahn et al. 2010), as a significant amount of
angular momentum redistribution takes place in the circumgalactic
medium (Kimm et al. 2011) over cosmic time.
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APP END IX A : SP IN– T IDA L T E N S O R
C O R R E L AT I O N S

Let us present a complementary set of measurements: the correla-
tions between the spin axis of dark haloes and the orientation of
the large-scale gravitational tidal tensor Tij = ∂ij φ − 1

3 
φδij . To
describe the orientation of the tidal tensor, we define e1, e2 and
e3 to be the minor, intermediate and major eigendirections of Tij

according to the sorted eigenvalues λ1 ≤ λ2 ≤ λ3 of the Hessian of
the gravitational potential, ∂ij φ (with which the tidal tensor shares
the eigendirections).

Besides works based on the correlations between spin orienta-
tion and the cosmic web described in the main text (Section 1),
the only numerical study to date looking at the alignment between
halo spin and tidal tensor was done by Porciani, Dekel & Hoffman
(2002) who predicted its orthogonality with the major principal axis
but also found that galactic spins must have lost their initial align-
ment with the tidal tensor predicted by TTT. Direct observations
of the alignment between the spin and the tidal tensor eigenvectors
have also been carried out: the first attempt by Lee & Pen (2002)
studied the correlations between the disc orientation of the galax-
ies from the Tully catalogue and the shear reconstructed from the
Point Source Catalog Redshift Survey and rejected the hypothesis
of randomness at a 99.98 per cent confidence level. More recently,
Lee & Erdogdu (2007) detected some correlations between the spin
and the intermediate eigenvector of the tidal tensor and found that
galactic spins were also preferentially perpendicular to the major
principal axis but this signal remains weak. To overcome this lack
of a clear numerical detection, the use of the 43 million halo sam-
ple of the Horizon 4π simulation presents a tremendous advantage,
as it allows us to very robustly calculate the correlations between
halo spin orientation and the local tidal tensor. We show in this
appendix that these measurements are not only consistent with the
spin–filament correlations, but actually lend additional support to

the interpretation of this paper in terms of large-scale dynamics
along walls and filaments.

At the onset of non-linearity, the gravitational potential tracks the
velocity potential of the matter flow. Thus, the signs of λi determine
whether the flow in the corresponding direction compresses (λi > 0)
or rarifies (λi < 0) matter. At a given smoothing scale, this criterion
can be used to partition space into peak-like 0 < λ1 ≤ λ2 ≤ λ3,
filament-like λ1 < 0, 0 < λ2 ≤ λ3, wall-like λ1 ≤ λ2 < 0, 0 <

λ3 or void-like λ1 ≤ λ2 ≤ λ3 ≤ 0 regions (Pogosyan et al. 1998).
From this point of view, in the peak regions matter compression is
strongest along e3 and weakest along e1. In the filamentary regions,
e1 gives the direction of the filament, while the walls are collapsing
along e3 and extend, locally, in the plane spanned by e1 and e2.

At this stage, it is important to note that the tidal field probes larger
scale structures than the filamentary structure studied in Section 3
as the gravitational potential is a smoother version of the density
field (through Poisson’s equation). In other words, the Skeleton of
the potential (which locally corresponds to the eigendirections of
the tidal tensor) traces the cosmic structures (walls, filaments, etc.)
on scales much larger than the Skeleton of the density. Thus, if we
turn to a formulation in terms of the Skeleton of the potential, the
filaments described in Section 3 are embedded in the large-scale
walls of the potential field (as illustrated in Fig. A1); therefore,
protogalaxy formation begins with the first collapse (namely the
collapse of e3) leading to the formation of the large-scale walls be-
cause it corresponds on smaller scale to the time when the filaments
(of the density field) form by winding.

Note that a stricter definition of a filament in the local theory of
the Skeleton (Sousbie et al. 2008) as a ridge in the density profile
associates its local direction with the minor eigendirection of the
Hessian of the density (here, to match enumeration, taken with a
negative sign) eρ

1 . Thus, as the potential is two derivatives away
from the density, the excess probability of alignment between the

Figure A1. The walls of the potential (in blue) and its filaments (in cyan),
together with the velocities of DM particles (in red) of a 20 h−1 Mpc 5123

DM particle �CDM simulation with WMAP1 cosmogony. At redshift zero,
most DM haloes sit in these walls, while the velocity field empties the
voids and flows within those walls. This divergent flow is best seen in the
top (hence bottom) left-hand void (see also the animations available as
Supporting Information with the online version of the paper).
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halo spin and e1 should be quite similar to that of the alignment
between the halo spin and the filament’s direction.

A1 Alignment between spin and tidal eigendirections

In order to compute the excess probability of alignment between
the spin of DM haloes and the eigenvectors of the tidal tensor, the
density field is again smoothed over 5 h−1 Mpc (for z = 0), Poisson’s
equation is solved via fast Fourier transform in smaller overlapping
boxes (boundary effects are found to be insignificant inside the
boxes), the Hessian matrix of the potential is computed using a fi-
nite difference scheme and this matrix is finally interpolated to halo
positions. We then measure the angle between the angular momen-
tum vector of the halo and each eigendirection of the tidal tensor
and compute the histogram of the absolute value of the cosine of
this angle; after normalization, it gives 1 + ξ , the excess probability
of alignment between the spin and the tidal tensor eigendirections.
As in Section 2.2, the data are then split by halo mass.

Fig. A2 displays these excess probabilities in three panels cor-
responding to the orientation of the spin with respect to e1, e2 and
e3 (top, middle and bottom panels, respectively), at z = 0. Haloes
of all masses have spins that preferentially avoid the direction of
the strongest large-scale compression, e3, at 10 per cent excess
probability (bottom panel). The exception is the very highest mass
bin, which shows an additional halo population with spins aligned
with e3.

For the high-mass, M > M t
0 ≈ 8(±2) × 1012 M�, haloes we

detect a strong trend for the spin to be aligned with e2, the inter-
mediate principal axis of the tidal tensor with an excess probability
of up to 40 per cent (blue and green lines, middle panel), and to be
perpendicular to the minor, e1, principal axis with an excess proba-
bility of up to 20 per cent (blue and green lines, top panel), a result
in agreement with Lee & Erdogdu (2007) and Porciani et al. (2002).

Spins of the lower mass, M < M t
0, haloes tend, in contrast, to

align with e1 (red and orange lines, top panel), thus preferring the
direction of the filamentary structures e1, with an excess probability
of up to 15 per cent, and in a weaker way to align with e2 (with an
excess probability of 5 per cent, see the red and orange lines in the
middle panel).

These results are in exact agreement with our findings using
the Skeleton that the spins of sufficiently large haloes prefer to
be perpendicular to the filament’s direction, while small haloes
show a positive correlation for a spin orientation along the fila-
ments. Indeed, the bottom panel of Fig. A2 is almost identical to the
spin–filament correlation found in Fig. 3. For the tidal tensor, the
transition occurs at a somewhat higher mass, M t

0 ≈ 8 × 1012 M�,
than for the Skeleton probe. This is not surprising because of the ef-
fectively larger scales probed by the tidal tensor and the observation
(see Section 2.2 and Appendix D1) that the critical mass increases
with the smoothing length used to define the LSS.

The redshift dependence of the transition mass was also investi-
gated (as described in the main text, see Section 2.3) and is found
to be

M t
crit ≈ M t

0(1 + z)−γt , γt = 3 ± 0.3, M t
0 � 8(±2) × 1012 M�.

A2 Consistency with LSS cosmic flows

Let us describe this spin acquisition in the framework of large-scale
dynamics and the ellipsoidal collapse model (Lynden-Bell 1964;
Zel’Dovich 1970; Icke 1973; White & Silk 1979; Peebles 1980;

Figure A2. Excess probability of alignment between the spin and the mi-
nor/intermediate/major axis (from the top to bottom) of the tidal tensor
in the Horizon 4π simulation. Different mass bins are colour-coded from
1012 (red) to 1014 M� (blue). A transition is detected: the spin of high-
mass haloes tends to be aligned with the intermediate principal axis (middle
panel), whereas the spin of low-mass haloes tends more likely to point along
the minor axis (top panel).
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Lemson 1993; Bond & Myers 1996; Sheth, Mo & Tormen 2001;
Desjacques 2008, among others). Low-mass haloes form by accre-
tion at high redshift. At this time, sheets and filaments are forming
by the successive collapse of e3 and e2, respectively. When e3 is col-
lapsing, low-mass haloes form by accreting particles whose motion
is along the direction e3. This process induces a spin perpendicular
to this direction, that is, in the plane (e1, e2) which is the plane of
the large-scale wall in which they are located. Then, e2 begins to
collapse and other low-mass haloes form from objects moving in the
plane (e2, e3), thus acquiring a spin perpendicular to this plane, that
is, aligned with e1 (which is the direction of the forming large-scale
filament). The first generation of DM haloes (of typically low mass)
are now formed; as mentioned in Section 3, for low-mass haloes at
redshift zero, the spin will not change much as they have already
acquired most of their mass. Fig. 6 (left-hand panel) provides a
clear illustration for this: a low-mass halo forms and acquires a spin
aligned with e1 as expected. It has been pointed out above that halo
spin orientation must be either aligned with e1 (correlated to the
filament’s direction), or in the plane (e1, e2) depending on the time
when they form. This is in good agreement with the top and middle
panels of Fig. A2 which show an excess probability for their spin
to be aligned with e1 (or with the filaments) and in a weaker way
with e2 (see the red and orange lines which represent the low-mass
haloes at redshift zero, that is, the haloes with a mass between 3 ×
1011 and 3 × 1012 M�).

Later (as described in Section 3 in terms of flows along the fila-
ments), e1 collapses and the haloes located in the filaments of the
potential stream along this direction. Most of the more massive
haloes then form by mergers in this flow and therefore acquire a
spin which combines the spin of their progenitors and the orbital
spin provided by the merger. The orbital spin must be in the plane
perpendicular to e1, that is, (e2, e3) because the progenitors move
along the filaments before merging, whereas the spin of their (less
massive) progenitors is in the plane (e1, e2). The resulting angular
momentum is therefore a superposition of these various spins, sta-
tistically more likely to be aligned with e2, which is what shown
in Fig. 6 (right-hand panel) and which is also in good agreement
with the middle panel of Fig. A2, where the blue and green lines
representing haloes above 2 × 1013 M� reveal a strong trend for
these high-mass haloes to be aligned with e2. For these massive DM
haloes, the competition between the orbital spin and the intrinsic
spin during the merger process was already pointed out in Section 3.
The excess probability for their spin to be aligned with e2 suggests
that neither one nor the other dominates. Nevertheless, very massive
haloes (with masses above 1014 M�) represented with a blue line
in Fig. A2 seem to have their spin less perpendicular to e3: actually
we can observe two modes, one perpendicular and one aligned with
this direction, which can be understood if they are the result of a
further generation of mergers whose intrinsic spins were already
perpendicular to the filament.

Let us emphasize that this explanation and that which was pre-
sented in Section 3 are consistent. Indeed, in Section 3 our claim is
that the winding of the walls is responsible for the direction of the
spin of low-mass haloes. Meanwhile, in this appendix, the focus is
on the first collapse along e3, that is, on the formation of walls. How-
ever, as pointed out in the introduction of this appendix, the tidal
field probes larger scale structures than the filaments of the density
field studied in Section 3. Taking into account this difference, it
turns out that the two analyses are complementary (describing the
large-scale dynamics on different scales). It also helps reconciling
the findings of Porciani et al. (2002) and Lee & Erdogdu (2007)
which rely on the tidal tensor with those of Bailin & Steinmetz

(2005), Aragón-Calvo et al. (2007), Hahn et al. (2007b) and Paz
et al. (2008) which involve the density field filamentary structure.

A P P E N D I X B : C I R C U M G A L AC T I C
MEDI UM SPI N

Let us first describe briefly the hydrodynamical simulation that we
will use to assess the alignment of the gas component surrounding
the galaxies with the large-scale filamentary structure. This sim-
ulation is described in more details in Dubois et al. (2012) and
corresponds to their SHhr run. Let us recall here its basic prop-
erties. The SHhr simulation follows the formation of a massive
(Mvir = 5 × 1011 M� at z = 6) halo within a resimulated re-
gion in a 100 h−1 Mpc box size, its DM mass resolution is 1.3 ×
106 M�, and minimum cell size is 17 pc. The cosmology employed
in that run is slightly different from the parameters of the Hori-
zon 4π simulation, and is compatible with the WMAP7 cosmology
(Komatsu et al. 2011): �m = 0.27, �� = 0.73, �b = 0.045, H0 =
70 km s−1 Mpc−1, n = 0.961 and σ 8 = 0.8. The gas is allowed
to cool down radiatively down to T0 = 100 K, assuming an ini-
tial metal enrichment of 10−3 Z� (Sutherland & Dopita 1993). An
ultraviolet background heating source term is added to the gas en-
ergy equation following Haardt & Madau (1996) with reionization
taking place at zreion = 8.5. Star formation is allowed in gas den-
sity regions above n0 = 50 H cm−3 using a Poisson random process
(Rasera & Teyssier 2006; Dubois & Teyssier 2008) that reproduces
the Schmidt–Kennicutt law ρ̇∗ = ε∗ρ/tff , where ρ̇∗ is the star forma-
tion rate density, ε∗ = 0.01 is the star formation efficiency and tff is
the local free-fall time of the gas with local density ρ. No feedback
from supernovae or active galactic nuclei is accounted for. Tracer
particles that passively follow the motion of the gas are scattered
in the initial conditions and allow us to trace back the Lagrangian
trajectories of gas elements that end up in collapsed structures.

Fig. B1 displays two large-scale views of this hydrodynamical
simulation and its tracer particles at redshift 9 shown in Fig. 8.
Structures and substructures in DM are detected with the Most
massive Sub-node Method (Tweed et al. 2009) and only masses
above 5 × 108 M� are selected. The spin of the circumgalactic
medium (accounting for non-star-forming gas only with gas density
below nH < 50 H cm−3) between 0.1 and 0.25Rvir is then computed
and its orientation is represented with the dark red segments. This
somewhat ad hoc criterion used to define the spin reflects our focus
on the angular momentum of the secondary infall gas, which has
just been or is being accreted; our measurements correspond to an
average of the spin within this subregion of the DM halo. This figure
shows a good alignment of the spins with the circumgalactic polar
filaments (i.e. the filament which visually flows along the polar
axis of the galaxy, in particular for clumps 2, 3, 4 and 5). This is
consistent with visual inspection (Fig. 8, but best viewed via the
online Supporting Information) and with the prediction of Fig. 3,
since the critical mass at that redshift is 6 × 1010 M�. The spin of
a couple of low-mass clumps in that field (noticeably clumps 1 and
6) is in fact poorly estimated automatically, as the DM clump centre
can be offset at that redshift relative to that of the circumgalactic
disc.

A P P E N D I X C : RO BU S T N E S S O F T H E
S P I N – F I L A M E N T C O R R E L AT I O N

Let us assess how robust the spin orientation–filament correlation
found in Section 2.2 is by carrying out a few consistency tests.
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Connecting LSS to the spin of DM haloes 3335

Figure B1. Distribution of hydrodynamical tracer particles (in blue) at
redshift 9 along two different viewing angles. The spin direction of the
circumgalactic medium between 0.1 and 0.25Rvir of some protogalaxies is
plotted in red. On average the spins are more likely to be aligned with the
filaments (as seen with protogalaxies 2, 3, 4 and 5, for example).

In order to check the effect of mass resolution (the spin of very low
mass haloes is poorly defined, for instance, as too few particles are
involved in its measurement), the same measurements are carried
out in a smaller simulation (2563 particles in a 50 h−1 Mpc periodic
box with the same cosmology) for which same physical masses are
represented by higher numbers of particles: mass bins from 3 ×
1011 (red) to 6 × 1012 M� (green) correspond to 30–1400 particles
in Horizon 4π (corresponding to a lower threshold for the FoF
detection) since the mass per particle is 7 × 109 M�; in contrast,
350–15 000 particles are found in haloes of the same mass for the
small simulation since the mass per particle is 6 × 108 M�. The
detection of the same phase transition (see Fig. C1) occurring at
the same halo mass demonstrates that the signal is not induced
by limited mass resolution. This result is also consistent with the
findings of Aragón-Calvo et al. (2007) and Hahn et al. (2007b).

Another simple check involves varying the procedure by choos-
ing for each halo the closest segments of the Skeleton (instead of for
each segment, the closest haloes). The signal we get is very similar
to Fig. 3 (low-mass haloes tend to be parallel to the filaments with

Figure C1. Excess probability of spin–filament alignment in various sim-
ulations. Measurements in the Horizon 4π simulation are plotted with the
dotted lines and measurements in the smaller simulations are plotted with
the solid lines. Different colours correspond to different halo mass bins
from 3 × 1011 (red) to 6 × 1012 M� (green). The signal in the Horizon 4π

simulation is statistically consistent with that of the smaller simulations.

an excess probability of 15 per cent and high-mass haloes perpen-
dicular with an excess probability reaching 20 per cent for the more
massive bin which is even stronger than in Fig. 3), suggesting that
the measured correlations are independent of the detailed procedure
implemented to identify neighbours.

Haloes at the nodes of the Skeleton cannot have a well-defined
closest segment direction, as more than one Skeleton segment typi-
cally qualifies, and could therefore bias our measurements. So as to
quantify this effect, the same algorithm is implemented but with a
new criterion: haloes closer than a certain distance to the nodes are
not considered. An even stronger signal is detected, which leads us
to conclude that nodes introduce extra noise and are not the cause
for the observed signal.

One might also think this result could depend on a density thresh-
old for the underlying filament. Hence, the same data in low-,
intermediate- and high-density filaments were plotted: the excess
probability of spin–filament alignment is found to be the same
whatever the density inside the filaments is. All these tests demon-
strate the overall robustness of the mass-dependent transition of the
relative alignment.

APPENDI X D : C HARACTERI STI C MASSES

In the main text, the density field was smoothed over a scale of
5 h−1 Mpc corresponding to a mass of 1.9 × 1014 M�. The transition
mass found in Section 2.2 is therefore defined relatively to this
mass. In the context of hierarchical clustering, as long as the field is
smoothed on scales where filaments are still well defined, one can
anticipate some scaling of this transition mass with smoothing. This
transition mass should reflect the connection between the geometry
of the larger scale flow and the mass scale corresponding to galaxies
forming and drifting on this cosmic web.
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Figure D1. Evolution of the critical mass as a function of the smoothing
length for the filaments at redshift zero (cyan) and two (grey) and the tidal
tensor at redshift zero (purple). The critical mass increases with the smooth-
ing length with a redshift-dependent slope. The blue dot was measured in
the Horizon 4π simulation for the filaments.

D1 Smoothing dependence of the critical mass

Fig. D1 displays the evolution of the critical mass with smoothing
length. It is found that M s

crit(R) and M t
crit(R) can be well fitted by

power laws, namely

M0(R) � M0(R0)

(
R

R0

)α

, (D1)

where M s
0(R0) � 3.6(±1) × 1012, αs � 0.8 ± 0.1, M t

0(R0) �
4.8(±1)×1012 and αt � 0.28 ± 0.04. This scaling is not inconsistent
with the discussion of the origin of the alignment given in Section 3
in as much as a smoothing length defines a set of filaments and
therefore picks out a halo mass scale corresponding to the haloes
that are flowing/merging along these filaments. Note that in practice
the dependence on smoothing is actually rather weak (expressed in
terms of mass, we have Mcrit ∝ M0.27

smooth for filaments defined via
the Skeleton and Mcrit ∝ M0.09

smooth if structure anisotropy is described
via the shear tensor). Fig. D1 also shows that α depends on redshift.
Note that as expected, the critical mass for the tidal tensor matches
that of the filaments smoothed on a larger scale (�7.5 h−1 Mpc
instead of 5). This confirms the idea that the potential is close to a
smoother version of the density field.

D2 Non-linear mass evolution

It is of interest to compare the transition masses, M s
crit(z) and

M t
crit(z), with the mass scale that tracks the development of non-

linearity in structure formation. The variance of the density field
smoothed on scale R obeys

σ 2(R, z) = D(z)2
∫ ∞

0
P (k)W 2(kR) d3k, (D2)

with P(k) the power spectrum, and the top-hat filter defined by
W2(x) = 9(sin x/x − cos x)2/x2. The growth factor D(z) is given by

D(z) = 5

2
�mH 2

0 H (z)
∫ ∞

z

(1 + z) dz

H (z)3
,

with H (z) = H0

√
�m(1 + z)3 + ��. Here H0, �m and �� are the

Hubble constant, the DM and the dark energy density parameters at
z = 0, respectively.

Fixing the level of (non-)linearity by the condition σ (R(z), z) =
constant implicitly defines the redshift evolution of the smoothing
scale R(z) (expressed in comoving Mpc) that maintains this level of
(non-)linearity. This, in turn, corresponds to the mass scale

MNL(z) ≡ 4

3
πρ̄R(z)3 , (D3)

where ρ̄ is the present-day average density of matter in the Universe.
For the matter-dominated CDM Universe with a scale-free power

spectrum P(k) ∝ kn, MNL(z) ∝ (1 + z)−6/(n +3). In the Universe with
realistic parameters, the redshift dependence of MNL(z) is not a
power law, both due to the influence of the � term that slows down
the growth of the structure at low redshifts, and due to the steepening
of the spectrum as one moves to smaller scale at high redshifts.

S U P P O RT I N G IN F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this article:

Animations. Movie1.mov: a very small subset of skeletons at dif-
ferent redshifts extracted from the Horizon 4π simulation, together
with unit vectors showing the orientation of the spin of the corre-
sponding dark matter halo with a mass above the transition mass.
The spin is indeed perpendicular to the filament for these massive
haloes.
Movie2.mov: time sequence evolution of gas tracer particles trapped
in walls and filaments and coalescing to form a central galaxy.
Movie3.mov and Movie4.mov: same as Movie2.mov from another
projection.
Movie5.mov: gas tracer particles around a forming galaxy; the
ribbon-like filamentary structure feeding the central galaxy is
clearly visible on this circular view.
Movie6.mov: the time line of a set of tracer particles is shown;
each tracer particle is colour coded with a different colour. First the
viewer rotates around the large-scale distribution of the time line
tracer particle; later only the inner region and late times are shown.
Movie7.mov: tracking in towards a set of filaments, colour coded by
tracer particle density at high redshift. The coplanar distribution of
filaments is clearly seen, together with young galaxies which tend
to sit perpendicular to the filament axes. The cold gas describes
ribbons corresponding to the locus of the shocks which feed these
young galaxies.
Movie8.mov: same tracking in at some intermediate redshift; some
galaxies are in the process of merging.
Movie9.mov: same tracking in at some later redshift; the result of
mergers corresponding to galaxies which have a spin perpendicular
to the main axes of the filaments.
Movie10.mov: a zoom over the inner region of Movie7.mov which
illustrates the walls of the large-scale structures, the shock-induced
ribbons and a nice example of a galaxy formed with a spin parallel
to its filament.

Please note: Wiley-Blackwell are not responsible for the content or
functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the
corresponding author for the article.
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ABSTRACT
The geometry of the cosmic web drives in part the spin acquisition of galaxies. This can be
explained in a Lagrangian framework, by identifying the specific long-wavelength correlations
within the primordial Gaussian random field (GRF), which are relevant to spin acquisition.
Tidal torque theory is revisited in the context of such anisotropic environments, biased by the
presence of a filament within a wall. The point process of filament-type saddles represents
it most efficiently. The constrained misalignment between the tidal and the inertia tensors in
the vicinity of filament-type saddles simply explains the distribution of spin directions. This
misalignment implies in particular an azimuthal orientation for the spins of more massive
galaxies and a spin alignment with the filament for less massive galaxies. This prediction is
found to be in qualitative agreement with measurements in GRFs and N-body simulations. It
relates the transition mass to the geometry of the saddle, and accordingly predicts its measured
scaling with the mass of non-linearity. Implications for galaxy formation and weak lensing are
briefly discussed, as is the dual theory of spin alignments in walls.

Key words: galaxies: evolution – galaxies: formation – galaxies: kinematics and dynamics –
cosmology: theory – large-scale structure of Universe.

1 IN T RO D U C T I O N

Modern simulations based on a well-established paradigm of cos-
mological structure formation predict a significant connection be-
tween the geometry and dynamics of the large-scale structure on
the one hand, and the evolution of the physical properties of form-
ing galaxies on the other. Key questions formulated decades ago are
nevertheless not fully answered. What are the main processes which
determine the morphology of galaxies? What is the role played by
angular momentum in shaping them?

Pichon et al. (2011) have suggested that the large-scale coherence
of the inflow, inherited from the low-density cosmic web, explains
why cold flows are so efficient at producing thin high-redshift discs
from the inside out (see also Stewart et al. 2013; Prieto et al. 2015;
Laigle et al. 2015). On the scale of a given gravitational patch,
gas is expelled from adjacent voids, towards sheets and filaments
forming at their boundaries. Within these sheets/filaments, the gas
shocks and radiatively loses its energy before streaming towards
the nodal points of the cosmic network. In the process, it advects
angular momentum, hereby seemingly driving the morphology of
galaxies (bulge or disc). The evolution of the Hubble sequence in
such a scenario is therefore at least in part initially driven by the

⋆ E-mail: codis@iap.fr

geometry of the cosmic web. As a consequence, the distribution
of the properties of galaxies measured relative to their cosmic web
environment should reflect such a process. In particular, the spin
distribution of galaxies should display a preferred mass-dependent
orientation relative to the cosmic web.

Both numerical (e.g. Aragón-Calvo et al. 2007; Hahn et al. 2007;
Sousbie et al. 2008; Paz, Stasyszyn & Padilla 2008; Zhang et al.
2009; Codis et al. 2012; Libeskind et al. 2013; Aragón-Calvo &
Yang 2014; Dubois et al. 2014), and observational evidence (e.g.
Tempel et al. 2013) have recently supported this scenario. In par-
allel, much analytical (e.g. Catelan, Kamionkowski & Blandford
2001; Hirata & Seljak 2004), numerical (e.g. Heavens, Refregier &
Heymans 2000; Croft & Metzler 2000; Schneider & Bridle 2010;
Schneider, Frenk & Cole 2012; Joachimi et al. 2013b; Codis et al.
2015; Tenneti et al. 2015) and observational (e.g. Brown et al. 2002;
Lee & Pen 2002; Bernstein & Norberg 2002; Heymans et al. 2004;
Hirata et al. 2004, 2007; Hirata & Seljak 2004; Mandelbaum et al.
2006, 2011; Joachimi et al. 2011, 2013a) efforts have been invested
to control the level of intrinsic alignments of galaxies as a potential
source of systematic errors in weak gravitational lensing measure-
ments. Such alignments are believed to be a worrisome source of
systematics of the future generation of lensing surveys like Euclid
or Large Synoptic Survey Telescope. It is therefore of interest to
understand from first principles why such intrinsic alignments arise,
so as to possibly temper their effects.
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Hence we should try and refine a theoretical framework to study
the dynamical influence of filaments on galactic scales, via an ex-
tension of the peak theory to the truly three-dimensional anisotropic
geometry of the circum-galactic medium, and amend the standard
galaxy formation model to account for this anisotropy. Towards
this end, we will develop here a filament version of an anisotropic
‘peak-background-split’ formalism, i.e. make use of the fact that
walls and filaments are the interference patterns of primordial fluc-
tuations on large scales, and induce a corresponding anisotropic
boost in overdensity. Indeed, filaments feeding galaxies with cold
gas are themselves embedded in larger scale walls imprinting their
global geometry (Danovich et al. 2012; Dubois et al. 2012).

On top of these modes, constructive interferences of high-
frequency modes produce peaks which thus get a boost in density
that allows them to pass the critical threshold necessary to decouple
from the overall expansion of the Universe, as envisioned in the
spherical collapse model (Gunn & Gott 1972). This well-known
biased clustering effect has been invoked to justify the clustering
of galaxies around the nodes of the cosmic web (White, Tully &
Davis 1988). It also explains why galaxies form in filaments: in
walls alone, the actual density boost is typically not sufficiently
large to trigger galaxy formation. The main nodes of the cosmic
web are where galaxies migrate, not where they form. They thus
inherit the anisotropy of their birth place as spin orientation. During
migration, they may collide with other galaxies/haloes and erase
part of their birth heritage when converting orbital momentum into
spin via merger (e.g. Codis et al. 2012). Tidal torque theory should
therefore be revisited to account for the anisotropy of this filamen-
tary environment on various scales in order to model primordial and
secondary spin acquisition.

In this paper, we will quantify and model the intrinsically 3D
geometry of galactic spins while accounting for the geometry of
saddle points of the density field. Indeed, saddle points define an
anisotropic point process which accounts for the presence of fila-
ments embedded in walls (Pogosyan et al. 1998), two critical ingre-
dient in shaping the spins of galaxies.

Taking them into account will in particular allow us to predict the
biased geometry of the tidal field in the vicinity of saddle points.
This can be formalized using the two-point joint probability of
the gravitational potential field and its first to fourth derivatives
and imposing a saddle-point constraint. For Gaussian (or quasi-
Gaussian) fields these two-point functions are within reach from first
principle (Bardeen et al. 1986). A proper account of the anisotropy
of the environment in this context will allow us to demonstrate
why the spin of the forming galaxies field are first aligned with the
filament’s direction.

We will also show that massive galaxies will have their spin
preferentially along the azimuthal direction. While relying on a
straightforward extension of Press–Schechter’s theory, we will pre-
dict the corresponding transition mass’ scaling with the (redshift-
dependent) mass of non-linearity, while relying on the so-called
cloud-in-cloud problem applied to the filament-background split.

The paper is organized as follows. Section 2 qualitatively presents
the basis of the physical process at work in aligning the spin of dark
haloes relative to the cosmic web. Section 3 then presents the ex-
pected Lagrangian spin distribution near filaments, assuming cylin-
drical symmetry, and explains the observed mass transition while
carrying a multiscale analysis of the fate of collapsing haloes in the
vicinity of 2D saddle points. Section 4 revisits this distribution in
three dimensions for realistic typical 3D saddle points. Section 5
investigates the predictions of the theory using Gaussian random
field (GRF) and N-body simulations, while we finally conclude in

Figure 1. Spin acquisition by tidal torquing. At linear order, the misalign-
ment between the inertia tensor of the proto-object and the surrounding tidal
tensor induces an inhomogeneous Zel’dovich boost which corresponds to
the acquisition of a net intrinsic angular momentum in Eulerian space.

Section 6. Appendix A discusses possible limitations and extensions
of this work. Appendix B presents the dual theory for spin align-
ment near wall saddles. Finally, Appendix C gathers some technical
complements.

2 TI DA L TO R QU I N G N E A R A SA D D L E

Before presenting analytical estimates for the expected spins near
filament in two and three dimensions and their transition mass, let
us discuss qualitatively what underpins the corresponding theory.

2.1 Spin acquisition by tidal torquing

In the standard paradigm of galaxy formation, protogalaxies acquire
their spin1 by tidal torquing coming from the surrounding matter
distribution (Hoyle 1949; Peebles 1969; Doroshkevich 1970; White
1984; Catelan & Theuns 1996; Crittenden et al. 2001). At linear
order, this spin is acquired gradually until the time of maximal
extension (before collapse) and is proportional to the misalignment
between the inertia tensor of the protogalaxy and the surrounding
tidal tensor (see Schaefer 2009, for a review)

Li =
∑
j,k,l

a2(t)Ḋ+(t)ϵijkIjlTlk , (1)

where a(t) is the scale factor, D+ the growth factor, Tij the tidal tensor
(detraced Hessian of the gravitational potential), Iij the protogalactic
inertia tensor (only its traceless part, I ij contributes to the spin). As
this work focuses on the spin direction, the factor a2(t)D+(t) will
henceforth be dropped for brevity. This process of spin acquisition
by tidal torquing is illustrated on Fig. 1.

In the Lagrangian picture, Iij is the moment of inertia of a uniform
mass distribution within the Lagrangian image of the halo, while
Tij is the tidal tensor averaged within the same image. Thus, to rig-
orously determine the spin of a halo, one must know the area from
which matter is assembled, beyond the spherical approximation.
While this can be determined in numerical experiments, theoret-
ically we do not have the knowledge of the exact boundary of a
protohalo. As such, one inevitably has to introduce an approximate
proxy for the moment of inertia (and an approximation for how the
tidal field is averaged over that region).

The most natural approach is to consider that protohaloes form
around an elliptical peak in the initial density and approximate its
Lagrangian boundary with the elliptical surface where the overden-
sity drops to zero. This leads to the following approximation for the

1 Note that in this paper we will call interchangeably ‘spin’ or ‘angular
momentum’ the intrinsic angular momentum of (proto)haloes.
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traceless part of the inertia tensor (e.g. Schäfer & Merkel 2012, see
also equations A2–A4)

I ij = 2
5
νσ2MH

−1
ij = 2

5
νσ2

M

det H
H̃ij , (2)

where H
−1
ij is the traceless part of the inverse Hessian of the density

field, Hij = ∂i∂j δ, ν is the overdensity at the peak and M is the
mass of the protohalo. In the second form we explicitly presented
the inverse Hessian via the (detraced) matrix of the Hessian minors,
H̃ij . While H̃ij is a simple polynomial in second derivatives of
the density, M/det H is not, which is the source of most technical
difficulties when statistical studies of the spin are attempted.

Let us point at the following considerations to bypass these dif-
ficulties. First, the supplementary condition for the halo to be at
a peak of the density yields an extra det H factor in all statistical
measures (see e.g. Bardeen et al. 1986). This factor exactly can-
cels the determinant in the denominator. Secondly, all quantities
in equation (2) are computed after the density field is smoothed
at a particular scale Rh which sets the corresponding mass scale.
Therefore, it is more appropriate to apply equation (2) to haloes
at fixed mass M, determined by that smoothing. Hence, we could
argue for the proxy I ij ∝ νH̃ij for the moment of inertia for haloes
of a given fixed mass, where the change in mass is reflected in the
corresponding change in the smoothing scale. In two dimensions,
we show in Appendix A that this multiscale approximation gives
qualitatively the same statistical results as just using Hij as a proxy.
While this approximation is relatively simple, since we are only
concerned with the direction of the spin, we will now go one step
further and use throughout this paper the Hessian as a proxy for
the inertia tensor, even in three dimensions. Indeed, Iij, H̃ij and Hij

share the same eigen-directions (Catelan & Theuns 1996; Schäfer
& Merkel 2012), so we define the spin for the rest of the paper as

si ≡
∑
j,k,l

ϵijkHjlTlk . (3)

The vector field si is then quadratic in the successive derivatives of
the potential: its (possibly constrained) expectation can therefore be
computed for GRFs. This approximation is further discussed in Ap-
pendix A. Note that equation (3) improves upon simple parametriza-
tions of the mean misalignment between inertia and tidal tensors
(see e.g. Lee & Pen 2000; Crittenden et al. 2001) by ab initio ex-
plicitly taking into account the correlations between both tensors.

2.2 Geometry of the cosmic web

Galaxies are not forming everywhere but preferentially in fila-
ments and nodes which define the so-called cosmic web (Klypin &
Shandarin 1993; Bond, Kofman & Pogosyan 1996). The origin
of these structures lies in the asymmetries of the initial GRF de-
scribing the primordial universe, amplified by gravitational collapse
(Zel’dovich 1970). The presence of such large-scale structure (walls,
filaments, nodes) induces local preferred directions for both the tidal
tensor and the inertia tensor of forming objects which will eventu-
ally turn into preferred alignments of the spin w.r.t the cosmic web.
It is therefore of interest to understand what is the expected spin
direction predicted by equation (3) given the presence of a typical
filament nearby. As a filament is typically the field line that joins
two maxima of the density field through a filament-type saddle point
(where the gradient is null and the density Hessian has two negative
eigenvalues), we choose to study in this paper the expected spin
direction of proto-objects in the vicinity of a filament-type saddle
point with a given geometry (which imposes the direction of the

Figure 2. On top of the density contours (from dark blue to dark red),
the three (red triangle) maxima (resp. the three (green points) minima) are
connected by the crest lines (in solid gold, resp. the through lines in dashed
green) which intersect through saddles points (purple squares). The blue
arrows represent stream lines of the gradient flow. Throughout this paper,
we will assume that the geometry of the regions of intermediate densities
are set by the shape of the (purple) saddles.

filament and the wall). Fig. 2 illustrates the geometry of filaments
near peaks and saddles in a 2D Gaussian field.

2.3 Constrained tidal torque theory in a nutshell

2.3.1 Spin alignments and flips

It has been shown in simulations (among others Bailin & Steinmetz
2005; Aragón-Calvo et al. 2007; Paz et al. 2008; Zhang et al. 2009;
Codis et al. 2012; Libeskind et al. 2013; Forero-Romero, Contreras
& Padilla 2014) that the spin of dark haloes is correlated to the di-
rection of the filaments of the cosmic web in a mass-dependent way.
The alignment between the spin and the closest filament increases
with mass until a mass of maximum alignment (Laigle et al. 2015)
that we call here critical mass. As mass increases, the direction of
the spin becomes less aligned with the filament before becoming
perpendicular to it (Codis et al. 2012). This transition – from aligned
to perpendicular – occurs at a mass that we call here the transition
mass.

This paper will claim that the critical mass is directly related to
the size of the quadrant of coherent angular momentum imposed by
the tides of the saddle point (which are effectively the Lagrangian
counter parts of the quadrant of vorticity found in Laigle et al. 2015).
This mass can be captured using a cylindrical model that would
correspond to the plane perpendicular to the filament at the saddle
point (which amounts to assuming an infinitely long filament). This
2D toy model (see Section 3 below) shows that near a 2D peak
(i.e. near an infinitely long 3D filament), the quadrupolar structure
seen in simulation naturally arises in a Lagrangian framework. We
investigate the size of that quadrants and shows that it qualitatively
predicts the right critical mass.
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3372 S. Codis, C. Pichon and D. Pogosyan

Figure 3. Sketch of main differential alignment between halo shapes and tidal tensor responsible for ez- and eφ-component of momentum. Top: the two
tensors in light and dark red, end up being misaligned as they feel differently the neighbouring wall (blue) and filament (purple), inducing a spin parallel to the
filament (red arrow). Three projections are shown for clarity. Bottom: correspondingly, the differential pull from the filament (purple) and the density gradient
towards the peak (blue) generates a spin (red arrow) along the azimuthal direction. By symmetry, the other peak(s) on the other side of the saddle point will
spin-up massive haloes in the opposite direction.

The second stage of accretion, that flips the spin of more massive
haloes from aligned to perpendicular to the filaments, requires a 3D
analysis (see Section 4). It is shown that indeed small haloes that
form close to the saddle point, acquire spin along the filaments while
more massive haloes that form further from the saddle (i.e. closer to
the peaks/nodes) acquire a spin perpendicular to the filaments (while
accreting smaller haloes). The transition mass will be predicted as
a function of redshift and shown to agree with measurements in
simulations.

2.3.2 The premises of anisotropic tidal torque theory

Let us present here an outline of the extension of tidal torque theory
(TTT) within the context of a peak (or saddle) background split.
Given the anisotropically triaxial saddle constraint, we will argue
that the misalignment between the tidal tensor and the Hessian of the
density field simply explains the transverse and longitudinal anti-
symmetric geometry of angular momentum distribution in their
vicinity. It arises because the two tensors probe different scales:
given their relative correlation lengths, the Hessian probes more
directly its closest neighbourhood, while the tidal field, somewhat
larger scales.

Within the plane of the saddle point perpendicular to the filament
axis (the mid-plane hereafter), the dominant wall (corresponding to
the longer axis of the cross-section of the saddle point) will re-orient
more the Hessian than the tidal tensor, which also feels the denser,
but typically further away saddle point, see Fig. 3, top panels. This
net misalignment will induce a spin perpendicular to that plane,
i.e. along the filament. This effect will produce a quadrupolar, anti-
symmetric distribution of the longitudinal component of the angular
momentum which will be strongest at some four points, not far off-
axis. Beyond a couple of correlation lengths away from those four

points, the effect of the tidal field induced by the saddle point will
subside, as both tensors become more spherical.

Conversely, in planes containing the filament, e.g. containing the
main wall, a similar process will misalign both tensors. This time,
the two anisotropic features differentially pulling the tensors are
the filament on the one hand, and the density gradient towards the
peak on the other. The net effect of the corresponding misalignment
will be to also spin-up haloes perpendicular to that plane, along the
azimuthal direction, see Fig. 3, bottom panels. By symmetry, the
anti-clockwise tidal spin will be generated on the other side of the
saddle point.

Hence, the geometry of angular momentum near filament-saddle
points is the following: it is aligned with the filament in the median
plane (within four anti-symmetric quadrants), and (anti-)aligned
with the azimuthal direction away from that plane. The stronger the
triaxiality the stronger the amplitude. Conversely, if the saddle point
becomes degenerate in one or two directions, the component of the
angular momentum in the corresponding direction will vanish. For
instance, a saddle point in the middle of a very long filament will
only display alignment with that filament axis, with no azimuthal
component. For a typical triaxial configuration, two pairs of four
points define the loci of maximal longitudinal and azimuthal spin.

2.3.3 Geometry of spin flip

Fig. 4 gives a more quantitative account of the geometry of the tidal
field around a given saddle point embedded in a given dominant
wall. We consider here the angular momentum distribution near a
filament-saddle point, S. It is assumed that the three eigenvalues
of the density are such that the filament going through this saddle
point is along the vertical axis and that the other two eigenvalues are
different, reflecting the presence of a dominant wall, in the Sxz plane,
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Anisotropic tidal torque theory 3373

Figure 4. Qualitative geometry of the angular momentum distribution near
a elliptical saddle point S (see also Fig. 12). The shape of a given triaxial
isodensity is shown in purple, together with two cross-sections, resp. in the
Sxy mid-plane and in a plane containing the maxima of transverse angular
momentum. The velocity flow in the Sxz plane is shown in cyan. The locus
of the Lagrangian extent of haloes is shown in orange concentric spheres
centred on M. In the Sxy plane, the four points, Pz correspond to the maxima
of the modulus of angular momentum. They point, respectively, along ez

in the first and third quadrants (in red), and along −ez in the second and
fourth quadrant (in blue). Conversely, the four points, Pφ , correspond to the
maxima of the alignment of s along eφ . Only two (above the mid-plane)
are shown. As the orange sphere capture more than one quadrant, the z-
component of L subside, as it encompasses more of the neighbourhood of
Pφ , and its eφ-component increases. In this Lagrangian framework, the spin
flip as a function of mass is a direct consequence of the geometry of the tidal
field imposed by the saddle point.

in which the filament is embedded. The shape of a given triaxial
isodensity is shown in purple, together with two cross-sections,
resp. in the Sxy mid-plane and in a plane containing the maxima
of transverse angular momentum. As we will demonstrate later, the
spin is mostly confined in the neighbourhood of the Sz-axis, up to a
couple of correlation length of the density. It would in fact vanish,
should the saddle become isotropic. In the Sxy plane, we identify
four quadrants corresponding to regions in which the spin is parallel
to the filament. Within theses quadrant, the spin point, respectively,
along ez in the first and third quadrants, and along −ez in the second
and fourth quadrants. By symmetry, the spin has to vanish along Sx
and Sy.

2.3.4 Towards a transition mass?

The twisted geometry of the spin near the saddle point also allows
us to identify the Lagrangian transition mass corresponding to the
alignment of dark matter (DM) haloes’ spin relative to the direction
of their neighbouring filament. Let us first consider the Lagrangian
counterpart of a low-mass halo and assume it lies near the median
plane. it will typically fall into one of the quadrant corresponding to
an orientation of the spin parallel to the filament axis. Now consider
a halo of larger Lagrangian extent. As long as its size is smaller than
the typical size of a quadrant (which will be defined more precisely
below) the alignment increases, until it overextends the quadrant.
As it does, two things happen (i) it will start capturing tides from the

next quadrant, which would anti-align it; as the Lagrangian patch
radius increases more, it reaches a size comparable to the whole tidal
region of influence of the saddle point. It then encompasses both
the clockwise and anti-clockwise azimuthal regions, and add up to
a net momentum of null amplitude. (ii) it will start capturing the
effect of the azimuthal tide, hence inducing a spin flip. Depending
on the ratio of the eigenvalues of the Hessian, the two might be
concurrent or not. In parallel, as the radius increases, the patch
collects the mean potential gradient which defines the Zel’dovich
boost which will drive it away from the neighbourhood of the saddle
point. The above description clearly accounts for the influence of
only one saddle point. As we consider regions further away from
that saddle, we should account for the influence of other critical
points, as discussed in Section 5.

We have up to now considered a patch centred near the mid-plane
close to the saddle point. Indeed, typically, in the peak-background-
split framework, such patches will collapse preferentially where the
density is boosted, that is within the wall containing the filament,
close to the filament. The rarer (more massive) haloes will form
in turn in the denser regions, away from the saddle point, along
the filament, while the more common lighter haloes will form ev-
erywhere and in particular near the saddle point. The former will
have a spin perpendicular to the filament. The latter will have a spin
parallel to the filament. The relative number of light to small haloes
will depend on curvilinear coordinate along the filament because
consumption is important: object above the transition mass have
swallowed their lighter parents. At a given redshift, the left overs
will decide what matters. This effect is the anisotropic version of
the well-known cloud-in-cloud problem.

2.3.5 Lagrangian dynamics of spin flip

In order to understand how a given halo flips, let us split the origi-
nal Lagrangian patch in two concentric shells. The inner shell will
correspond to the Lagrangian extent of the halo as it initially forms,
while the outer shell will correspond to secondary infall. The rea-
soning presented in Section 2.3.2 can be applied independently to
both the inner and outer shells, and we would typically conclude that
the outer shell would be more likely to have its spin perpendicular
to the filament axis. It follows that, as far as this halo is concerned,
it will undergo a spin flip as it moves towards the core of the fila-
ment and away from the saddle. This process will also correspond
to an acquired net helicity for the secondary infall, which will last
as long as the transverse anisotropy of the saddle point correlates
the local tidal field. In effect, this consistent helicity will build up
the spin of the forming galaxy via secondary infall as it drifts, up
to the point where mergers will re-orient the direction of its spin.
Hence, this constructive build-up of disc should only last so long
as the galaxy drifts within the high-helicity region. Note that the
transverse motion will correspond to the halo entering the vortex
rich caustic corresponding to the multiflow region near the filament,
so that this Lagrangian description remains fully consistent with the
Eulerian discussion given in Laigle et al. (2015). We can anticipate
that the longitudinal motion generates azimuthal vortices as well.

The scenario described in this section can be formalized at two
levels. First, within the framework of constrained random fields,
one can compute the expected geometry of the spin configuration
near a given saddle. This will yield a map of the mean alignment
between spin and filament in the vicinity of the saddle point. We
will then marginalize over the expected distribution of such saddles,
and model correspondingly the evolution of the expected mass of
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dark haloes around the filament. This will allow us to recover the
numerically measured mass transition for spin flip. We may also
test the mass-dependent alignment w.r.t. eφ in GRFs and N-body
simulations. For the sake of clarity, we will proceed in two steps:
first, while assuming cylindrical symmetry we will compute the
expected spin distribution within the most likely cross-section of a
filament of infinite extend (Section 3); then we will compute this
expectation around the most likely 3D saddle point (Section 4).

3 SPIN A LONG INFINITE FILAMENT

Let us first start while assuming that the filament is of infinite
extent, so that we can restrict ourselves to cylindrical symmetry
in two dimensions. This is of interest as the angular momentum is
then along the filament axis by symmetry and its derivation in the
context of TTT is much simpler. It captures already in part the mass
transition, in as much as we can define the mean extension of a
given quadrant of momentum with a given polarity. In this context,
it is of interest to study the spin geometry in the median plane, i.e.
in the vicinity of a 2D peak. This 2D spin is along the filament, and
will be denoted sz in what follows.

3.1 Shape of the spin distribution near filaments

Under the assumption that the direction of the spin along the z di-
rection is well represented by the fully anti-symmetric (Levi Civita)
contraction of the tidal tensor and density Hessian given by equation
(3) (e.g. Schäfer & Merkel 2012), it becomes a quadratic function
of the second and fourth derivatives of the potential. As such, it be-
comes possible to compute expectations of it subject to its relative
position to a peak with a given geometry (which would correspond
to the cross-section of the filament in the mid-plane). Note that, as
mentioned in Section 2.1, standard TTT relies, more correctly, on
the inertia tensor in place of the Hessian. Even though they have
inverse curvature of each other, their set of eigen-directions are lo-
cally the same, so we expect the induced spin direction – which is
the focus of this paper, to be the same, so long as the inertia tensor
is well described by its local Taylor expansion.

3.1.1 Constrained joint PDF near peak

Any matrix of second derivatives fij – rescaled so that ⟨('f)2⟩ = 1
– can be decomposed into its trace 'f, and its detraced components
in the frame of the separation

f + = (f11 − f22)/2 , f × = f12. (4)

Then all the correlations between two such matrices, fij and gij can
be decomposed irreducibly as follows. Let us call ξ''

fg , ξ'+
fg and

ξ××
fg the correlation functions in the frame of the separation (which

is the first coordinate here) between the second derivatives of the
field f and g separated by a distance r:

ξ''
fg (r) = ⟨'f 'g⟩ ,

ξ'+
fg (r) =

〈
'fg+〉

,

ξ××
fg (r) =

〈
f ×g×〉

. (5)

All other correlations are trivially expressed in terms of the above
as〈
f ×'g

〉
= 0,

〈
f +g×〉

= 0,〈
f +g+〉

= 1
4
ξ''
fg (r) − ξ××

fg (r) . (6)

Here, we consider two such fields, namely the gravitational potential
) and the density δ. In the following, these two fields and their first
and second derivatives are assumed to be rescaled by their variance
σ 2

0 = ⟨)2⟩, σ 2
1 = ⟨(∇))2⟩, σ 2

2 = ⟨(δ = '))2⟩, σ 2
3 = ⟨(∇δ)2⟩ and

σ 2
4 = ⟨('δ)2⟩. The shape parameter of the density field is defined

as

γ = σ 2
3 /(σ2σ4). (7)

The rescaled potential and density will be denoted by φ and x and
the rescaled first and second derivatives by φi, xi and φij, xij.

Let us gather the first and second derivatives of the gravitational
field and the first and second derivatives of the density in a vector
denoted by X spatially located in rX and Y located in rY . The
Gaussian joint probability distribution function (PDF) of X and
Y at the two given locations (rX and rY separated by a distance
r = |rX − rY |) obeys

P(X, Y ) = 1√
det|2π C|

exp

⎛⎝−1
2

⎡⎣ X

Y

⎤⎦T

· C−1 ·

⎡⎣ X

Y

⎤⎦⎞⎠ , (8)

where C0 ≡ ⟨X · XT⟩, Cγ ≡ ⟨X · Y T⟩ and

C =

⎡⎣ C0 Cγ

CT
γ C0

⎤⎦ .

All these quantities depend on the separation vector r only because
of statistical homogeneity. This PDF is sufficient to compute the
expectation of any quantity involving derivatives of the potential
and the density up to second order. All the coefficients can easily
be computed from the power spectrum of the potential〈

∂
i1
1 ∂

i2
2 φ,∂

j1
1 ∂

j2
2 φ

〉
=

∫ ∞

0

∫ 2π

0
dθ dk Pk(k) exp(ık r cos θ )

ıi1+i2 (−ı)j1+j2 (cos θ )i1+j1 (sin θ )i2+j2
ki1+i2+j1+j2+1

σi1+i2σj1+j2

, (9)

and

σ 2
n =

∫ ∞

0

∫ 2π

0
dθ dk Pk(k)k2n+1 ,

where the power spectrum of the potential Pk(k) can include a filter
function on a given scale. In this work, we use a Gaussian filter
defined in Fourier space by

WG(k, R) = 1
(2π)3/2

exp
(−k2R2

2

)
. (10)

For instance, the one-point covariance matrix for ('φ, φ+, φ×, 'x,
x+, x×) at a given point simply reads

C02 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 −γ 0 0

0 1/8 0 0 −γ /8 0

0 0 1/8 0 0 −γ /8

−γ 0 0 1 0 0

0 −γ /8 0 0 1/8 0

0 0 −γ /8 0 0 1/8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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Figure 5. Two-point correlation functions as a function of the separation
r in units of the smoothing length for a power-law 2D power spectrum
with spectral index n = −1/2, i.e. γ =

√
3/7. For aesthetic purpose, these

functions have been rescaled by their value in r = 0 as explicitly written in
the legend.

where γ =
√

(n + 2)/(n + 4) for a scale-invariant density power
spectrum with spectral index n (i.e. n − 4 for the potential). Note
that the first derivatives of the density and the potential fields are
decorrelated from the second derivatives meaning that

C0 =

⎛⎝ C01 0

0 C02

⎞⎠ ,

where C01 is the one-point covariance matrix of the gradients of
the potential and the density fields (φ1, φ2, x1, x2) as a function of
γ ′ = σ 2

2 /σ1/σ3

C01 =

⎛⎜⎜⎜⎜⎜⎝
1/2 0 −γ ′/2 0

0 1/2 0 −γ ′/2

−γ ′/2 0 1/2 0

0 −γ ′/2 0 1/2

⎞⎟⎟⎟⎟⎟⎠ .

The two-point covariance matrix, Cγ can be similarly derived.
In particular, its restriction to the second derivatives of the density
and the potential fields can be written as a function of the nine ξ

functions defined in equation (5) (for fg = φφ, φx, xx) (see Fig. 5
and Appendix C2):⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ''
φφ ξ'+

φφ 0 ξ''
φx ξ'+

φx 0

ξ'+
φφ

ξ''
φφ

4 − ξ××
φφ 0 ξ'+

φx

ξ''
φx

4 − ξ××
φx 0

0 0 ξ××
φφ 0 0 ξ××

φx

ξ''
φx ξ'+

φx 0 ξ''
xx ξ'+

xx 0

ξ'+
φx

ξ''
φx

4 − ξ××
φx 0 ξ'+

xx
ξ''
xx

4 − ξ××
xx 0

0 0 ξ××
φx 0 0 ξ××

xx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Once the joint PDF given by equation (8) is known, it is straight-

forward to compute conditional PDFs (in particular subject to a

critical point constraint C(crit) = | det
(
xij

)
|δD(xi)). Given the con-

ditionals, simple algebra then yield the conditional density and spin.
More specifically, relying on Bayes theorem, the conditional can be
expressed in terms of the joint PDF – equation (8) – as

P(X|Y , pk) = P(X, Y , pk)
P(Y , pk)

,

where

P(Y , pk) =
∫

dYP(X, Y )C(pk)

is the marginal distribution describing the likelihood of a given
peak, pk (the transverse cross-section of an infinite filament) with
a given geometry. Once the conditional, P(X|Y , pk) is known, it is
straightforward2 to compute the expectation of any function, f (X)
as

⟨f (X)|pk⟩ =
∫

dX P(X|pk)f (X) , (11)

which, when f (X) is multinomial in the components of X can be
carried out analytically. In the following, we will consider in turn
functions which are indeed algebraic function of X .

3.1.2 Constrained density maps

From equation (8), given a contrast ν and a geometry for the saddle
(or any critical point) defined by κ = λ1 − λ2, I1 = λ1 + λ2 (where
λ1 > λ2 are the two eigenvalues of the Hessian of the density
field H – both negative for a peak), the mean density contrast,
δext = ⟨δ|ext⟩, (in units of σ 2) around the corresponding critical
point can be analytically computed

δ(r|ext, κ, I1, ν) =
I1

(
ξ''
φx + γ ξ''

φφ

)
+ ν

(
ξ''
φφ + γ ξ''

φx

)
1 − γ 2

+ 4(r̂T · H · r̂) ξ'+
φx , (12)

where H is the detraced Hessian of the density and r̂ = r/r so that

r̂T · H · r̂ = κ
cos(2θ )

2
, (13)

r being the distance to the critical point and θ the angle from the
eigen-direction corresponding to the first eigenvalue λ1 of the criti-
cal point. When r goes to zero, given the properties of the ξ functions
(see Fig. 5), the density trivially converges to the constraint ν.

3.1.3 Constrained 2D spin maps

In two dimensions, the spin is a scalar given by

sz(r) =
∑
i,j ,k

ϵij3φikxjk , (14)

where ϵ = ϵij3 is built upon the totally anti-symmetric rank 3 Levi-
Civita tensor ϵijk. Since equation (14) is quadratic in the fields x
and φ, equation (11) can be readily applied to compute analytically
its conditional expectation. The angular momentum generated by
TTT as a function of the polar position (r, θ ) subject to the same
critical point constraint at the origin with contrast ν, and principal

2 see http://tinyurl.com/mmbse3z which describes an implementation in
MATHEMATICA of the conditional probability.
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Figure 6. Left: mean density (contrast) field near a 2D peak of height ν = 1, λ1 = −1 and λ2 = −2 for a power spectrum with index n = 1/2 computed from
equation (12). Contours are displayed from δ = −1 to 1 by step of 1/4 as labelled. The x- and y-axes are in units of the smoothing length. Right: corresponding
mean spin colour coded from blue (negative) to red (positive) computed from equation (14). The flattening of the filament’s cross-section induces a clear
quadrupolar spin distribution in its vicinity.

curvatures (λ1, λ2) is given by the sum of a quadrupole (∝ sin 2θ )
and an octupole (∝ sin 4θ )

⟨sz|ext⟩ = sz(r|ext, κ, I1, ν) ,

= −16(r̂T · ϵ · H · r̂)
(
s(1)
z + 2(r̂T · H · r̂)s(2)

z

)
, (15)

where the octupolar coefficient s(2)
z can be written as

s(2)
z (r) =

(
ξ''
φx ξ××

xx − ξ××
φx ξ''

xx

)
,

and the quadrupolar coefficient s(1)
z reads

s(1)
z (r) = ν

1 − γ 2

[(
ξ'+
φφ + γ ξ'+

φx

)
ξ××
xx −

(
ξ'+
φx + γ ξ'+

xx

)
ξ××
φx

]
+ I1

1 − γ 2

[(
ξ'+
φx + γ ξ'+

φφ

)
ξ××
xx −

(
ξ'+
xx + γ ξ'+

φx

)
ξ××
φx

]
,

while

r̂T · ϵ · H · r̂ = −κ
sin(2θ )

2
. (16)

Equation (15) is remarkably simple. As expected, the spin, sz, is
identically null if the filament is axially symmetric (κ = 0). It is zero
along the principal axis of the Hessian (where θ = 0 mod π/2 for
which r̂T · ϵ · r̂ = 0). Near the peak, the anti-symmetric, sin (2θ ),
component dominates, and the spin distribution is quadrupolar. For
scale-invariant density power spectra with index n (n − 4 for the
potential), sz can be computed explicitly. At small separation, sz

behaves like

sz ∝ κ((n + 2)ν +
√

(n + 2)(n + 4)I1)r2 sin(2θ ), (17)

which shows explicitly that the quadrupolar term dominates.
Fig. 6 displays the mean density and spin map for a power-law

power spectrum with index n = 1/2 around a 2D peak of the density
field with geometry ν = 1, λ1 = −1 and λ2 = −2.

At this stage, it is interesting to understand how much angular
momentum is contained into spheres of increasing radius that would
feed the forming object at different stages of its evolution. For

Figure 7. Evolution of the amount of algebraic angular momentum in
sphere of radius RTH centred on r⋆ The density power-spectrum index is
n = −3/2, the height of the peak in (0, 0) is ν = 1 and principal curvatures
λ1 = −1, λ2 = −2. The amplitude of the spin is normalized by its maximum
value around RTH = r⋆

instance, let us assume there is a small-scale overdensity at (one
of the four) location of maximum angular momentum (denoted r⋆

hereafter) and let us filter the spin field with a top-hat window
function centred on r⋆ and of radius RTH. The resulting amount of
angular momentum as a function of this top-hat scale is displayed
in Fig. 7. During the first stage of evolution, the central object
will acquire spin constructively until it reaches a Lagrangian size
of radius RTH = r⋆ and feels the two neighbouring quadrants of
opposite spin direction. The spin amplitude then decreases and
becomes even negative before it is fed by the last quadrant of positive
spin. The minimum is reached for radius around 2.4r⋆. This result
does not change much with the contrast and the geometry of the
peak constraint. Fig. 7 is the Lagrangian counterpart of fig. 4 of
Laigle et al. (2015, or fig. 7 of Pichon & Bernardeau 1999) which
displays the quadrant of vorticity in the vicinity of filaments.
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Anisotropic tidal torque theory 3377

Figure 8. 2D spin dispersion (defined in equation 18) near a 2D peak of
height ν = 1 and curvatures λ1 = −1 and λ2 = −2 for a power spectrum
with index n = 1/2

3.1.4 Cosmic variance on spin

On top of the mean spin, one can also compute the dispersion of the
spin described by

σ (r) =
√〈

s2
z (r)

〉
− ⟨sz(r)⟩2 . (18)

A map of this spin dispersion is shown on Fig. 8. Comparing Fig. 8
to Fig. 6, we see that spin direction fluctuates along the major axis

of the filament cross-section, and best defined along its minor axis.
As the conditional statistics is Gaussian, the whole spin statistics
(third moments,. . . ) can in principle be similarly computed.

3.1.5 Zel’dovich mapping of the Spin

Fig. 9 displays the image of the initial density field (resp. initial spin
field) translated by a Zel’dovich displacement. The displacement is
proportional to (φ1, φ2) here and its expectation given a central
peak is trivially computed from the conditional PDFs. The result-
ing quadrupolar caustics is qualitatively similar to the quadrupolar
geometry of the vorticity field measured in numerical simulations
(Laigle et al. 2015). Indeed, as discussed in that paper, there is a
dual relationship between such Eulerian vorticity maps and the ge-
ometry of the spin distribution within the neighbouring patch of a
3D saddle point.

3.2 Transition mass for long filaments

Up to know we assumed that the geometry of the critical point was
given. Let us now build the joint statistics of the spin and the mass
near 2D peaks.

3.2.1 Geometry of the most likely cross-section

Let us now study what should be the typical geometry of a peak.
Following Pogosyan et al. (2009), it is straightforward to derive the
PDF for a point to have height ν and geometry κ , I1 as in their
notation J2 = κ2 so that

P(ν, κ, I1)= κ

π
√

1 − γ 2
exp

⎛⎝−1
2

(
ν + γ I1√

1 − γ 2

)2

− 1
2
I 2

1 − κ2

⎞⎠ .

Figure 9. Left: stream lines of the 2D velocity field (defined as the potential gradient) near a 2D peak of height ν = 1 and curvatures λ1 = −1 and λ2 = −2 for
a power spectrum with index n = 1/2. Right: Zel’dovich mapping of the spin distribution. There is a good qualitative agreement between the vorticity section
presented in Laigle et al. (2015) and this spin map.
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Now the PDF for a peak to have height ν and geometry κ , I1

becomes:

P(ν, κ, I1|pk) =
√

3κ|(I1 − κ)(I1 + κ)|
2π

√
1 − γ 2

.(−κ − I1)

× exp

⎛⎝−1
2

(
ν + γ I1√

1 − γ 2

)2

− 1
2
I 2

1 − κ2

⎞⎠ .

(19)

The maximum of this PDF is trivially reached for ν̄ =
√

7/3 γ ,
κ̄ =

√
1/3 and Ī1 = −

√
7/3.

3.2.2 The size and area of constant polarity quadrants

From equation (15), it appears clearly that the extension of the region
of influence of the critical point is limited, and peaks within each
quadrant at some specific (r⋆, θ⋆) position. Moreover, for small
enough κ , the quadrupole dominates, and the extremum is along
θ = π/4. It is therefore possible to use r⋆ to define an area in
which the spin is significantly non-zero within each quadrant. Let
us compute r⋆, as the radius for which sz(θ = π/4) is maximal as a
function of r.3 The area of a typical quadrant, in which the spin has
the same orientation, can then simply be expressed as

A = πr2
⋆ , (20)

where r⋆ = r⋆(ν, κ) is the position of a maximum of angular mo-
mentum from the peak. Because of the quadrupolar anti-symmetric
geometry of the angular momentum distribution near the saddle
point, it is typically twice as small (in units of the smoothing length)
as one would naively expect.

For power-law density power spectrum with spectral index in the
range n ∈ ] − 2, 2], a good fit to its scaling is given by

r⋆

Rs
≈ 3

250
(n − 5)2 + 13

10
, (21)

where r⋆ was computed for the mean geometry given by ν̄ =√
7/3 γ , κ̄ =

√
1/3 and Ī1 = −

√
7/3.

3.2.3 Critical mass scaling

The critical mass is the mass of maximum spin alignment. In simula-
tion, it has been shown by Laigle et al. (2015) to be Mcrit ≈ 1012M⊙
at redshift 0. The authors claimed that the critical mass is related
to the mass contained in a typical quadrant of vorticity. In this
work, we have computed in Lagrangian space the typical area of a
quadrant (see equation 20). This area is a function of the smooth-
ing scale. In order to compute it, we need to define a scale. It is
reasonable that the maximum spin alignment should be reached
for filament that has just collapsed at redshift 0. Indeed, for larger
scale filaments, part of the haloes do not lie inside the filament but
in the nearby wall which will therefore decrease the mean spin-
filament alignment. In previous sections, we focused on ν = 0.9
filaments. The model of the cylindrical collapse then say that those
filaments have just collapsed at redshift 0 for a top-hat initial
smoothing scale σ (RTH) = 1.6 which corresponds to a smoothing
length RTH = 2.2 Mpc h−1. We can therefore compute the corre-
sponding r⋆ which is r⋆ ≈ 1.6Rs ≈ 0.7RTH = 1.5 Mpc h−1 and cor-
responds to the mass Mcrit = 4

3 πr3
⋆ ρc0m ≈ 1.5 1012 M⊙, in good

3 Setting θ = π/4 effectively neglect the octupolar part of sz.

agreement with the value measured in simulations. Its redshift evo-
lution is also predicted by the formalism through the cylindrical
collapse and could be compared to simulation in future works.

Note that this line of reasoning could be made more rigorous
by adding new ingredients in the formalism: a peak constraint at
the location of the spin with a smoothing length Rh < Rs so that
one can vary Rh (without any assumption on the additivity property
of the spin) and see how the spin changes. This formalism can be
implemented in two dimensions (see Appendices A2 and A3) and
leads to the same order of magnitude for r⋆.

4 3 D SP I N N E A R A N D A L O N G FI L A M E N T S

Let us now turn to the truly three dimensional theory of tidal torques
in the vicinity of a typical filament-saddle point. Beyond the obvious
increased realism, the main motivation is that the 3D saddle theory
fully captures the mass transition.

In three dimensions, we must consider two competing processes.
If we vary the radius corresponding to the Lagrangian patch centred
on the running point, we have a spin-up (along ez) arising from
the running to wall running to saddle tidal misalignment and a
second spin-up (along eφ) arising from running to filament-running
peak tidal misalignment. To each position in the vicinity of the
central saddle point, we can assign M(r) together with cos µz(r)
and cos µφ(r), the cosines of the angle between the spin of the
patch and the ez and eφ direction, respectively. Eliminating r yields
cos µz(M) and cos µφ(M) and therefore yields an estimate of the
transition mass.

4.1 Spin distribution along and near filaments

The formalism developed in Section 3 can easily be extended to
three dimensions. A critical (saddle) point constraint is now im-
posed. This critical point is defined by its geometry, namely its
height ν and eigenvalues λ1 ≥ λ2 ≥ λ3. Note that such a critical
point is a filament-type saddle point if λ1 ≥ 0 ≥ λ2 ≥ λ3. In what
follows, we decouple the trace from the detraced part of the den-
sity Hessian and therefore define the three curvature parameters
I1 = λ1 + λ2 + λ3, κ1 = λ1 − λ2 and κ2 = λ2 − λ3.

4.1.1 Mean density field around a critical point

The resulting mean density (contrast) field subject to that critical
point constraint becomes (in units of σ 2):

δ(r|crit, I1, κ1, κ2, ν) =
I1

(
ξ''
φx + γ ξ''

φφ

)
1 − γ 2

+
ν

(
ξ''
φφ + γ ξ''

φx

)
1 − γ 2

+ 15
2

(
r̂T · H · r̂

)
ξ'+
φx , (22)

where again H is the detraced Hessian of the density and r̂ = r/r
and we define in 3D ξ'+

φx as

ξ'+
φx = ⟨'x φ+⟩, (23)

with φ+ = φ11 − (φ22 + φ33)/2. The other ξ functions are defined in
the same way as in two dimensions (see equations 5) and displayed
on Fig. 10. Note also that r̂T · H · r̂ is a scalar defined explicitly
as

∑
ij r̂iH ij r̂j . Fig. 11 displays the mean density field around a

typical filament-type saddle point. The elongation of the filament
along the Oz-axis together with the flattening of the filament in the
plane of the wall (Oxz) are clearly visible on this figure.
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Anisotropic tidal torque theory 3379

Figure 10. Two-point correlation functions as a function of the separation
r in units of the smoothing length for a power-law 3D power spectrum with
spectral index n =−2, i.e. γ =

√
3/3. As in two dimensions, the correlations

are rescaled at the origin. See also Fig. C1.

4.1.2 Mean spin field around a critical point

As in two dimensions, the expected spin can also be computed.
In three dimensions, the spin, s, is a vector which components are
given by

si =
∑
j,k,l

ϵijkxklφlj , (24)

with ϵ the rank 3 Levi-Civita tensor. It is found to be orthogonal to
the separation and can be written as the sum of two terms

s(r|crit, I1, κ1, κ2, ν) = −15(s(1) + s(2)) · (r̂T · ϵ · H · r̂) , (25)

where s(1) is a scalar operator that depends on the height ν and trace
of the Hessian I1

s(1) =
(

ν

1 − γ 2

[(
ξ'+
φφ + γ ξ'+

φx

)
ξ××
xx −

(
ξ'+
φx + γ ξ'+

xx

)
ξ××
φx

]
+ I1

1 − γ 2

[(
ξ'+
φx + γ ξ'+

φφ

)
ξ××
xx −

(
ξ'+
xx + γ ξ'+

φx

)
ξ××
φx

])
I3,

and s(2) a combination of a matricial and a scalar operator that
depends on the detraced part of the Hessian

s(2) = −5
8

[
2

((
ξ'+
φx − ξ''

φx

)
ξ××
xx − (ξ'+

xx − ξ''
xx )ξ××

φx

)
H

+
((

7ξ''
xx + 5ξ'+

xx

)
ξ××
φx −

(
7ξ''

φx + 5ξ'+
φx

)
ξ××
xx

)
× (r̂T · H · r̂)I3

]
with I3 the identity matrix, operating on the vector

r̂T · ϵ · H · r̂ =
∑
ikl

r̂ iϵijk Hkl r̂ l . (26)

Note that the dependence with the distance r is encoded in the
two-point correlation functions, ξ , while the geometry of the critical
point is encoded in the terms corresponding to the peak height,
trace and detraced part of the Hessian and the orientation of the
separation is in r̂ . Equation (25) is also remarkably simple: as
expected the symmetry of the model induces zero spin along the
principal directions of the Hessian (where r̂T · ϵ · H · r̂ = 0) and
a point reflection symmetry (r̂ → −r̂). Note that the correlation
functions, ξ can be evaluated for arbitrary power spectra (such as
power laws, see Appendix C2, or 1 cold dark matter (1CDM), see
Appendix C3), hence equation (25) is completely general.

Figure 11. Mean density around a filament-saddle point of height ν = 1.25γ , λ1 = 0.31, λ2 = −0.56, λ3 = −1 for a power-law 3D power spectrum with
spectral index n = −2, i.e. γ =

√
3/3. The Ox-, Oy- and Oz-axes are in units of the smoothing length and z is the direction of the filament while the wall is in

the plane Oxz. Contours represent the isocontours of the density δ = −0.3, 0, 0.5 from blue to red. A 3D view is displayed on the left-hand panel and a cut in
the plane Oyz is shown on the right-hand panel.
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Figure 12. The velocity and spin flow near a vertical filament (in red)
embedded in a (purple) wall for (x, y, z) ∈ [ − 2Rs, 2Rs]3. The purple
and green flow lines trace the (Lagrangian) 3D velocities (upwards and
downwards, respectively). The red and blue arrows show the spin 3D dis-
tribution, while the three horizontal cross-sections show spin flow lines
in the corresponding plane. Note that the spin is along ez in the mid-
plane and along eφ away from it, and that it rotates in opposite direc-
tion above and below the mid-plane. See also the interactive version at
http://www.iap.fr/users/pichon/AM-near-saddle.html.

For scale-invariant density power spectra with index n (n − 4 for
the potential), s can be computed explicitly. At small separation,
the term proportional to r̂T · H · r̂ goes like r4 and is thus negligible
compare to the rest (that scales like r2). The spin coordinates in the
frame of the Hessian are therefore quadrupolar

s ∝ (f (λi , ν, n)yz, g(λi , ν, n)xz, h(λi , ν, n)xy) . (27)

Fig. 12 illustrates the mean spin geometry around a typical saddle
point. All the symmetry properties (anti-symmetry, octopole,. . . )
described in this section are clearly seen on this figure. In the plane
of the saddle point, spins are aligned with the filament direction.
When moving towards the nodes, the spins become more and more
perpendicular (and more and more along eφ).

4.1.3 Cosmic variance on 3D spin

It is of interest to also study the variance of the spin alignment
σ (r|ext, I1, κ1, κ2, ν) defined as

σ =
√

⟨cos2 θ⟩ − ⟨cos θ⟩2 , (28)

where cos θ = s · ez/||s||. It requires the numerical evaluation of
a 12D integral. In contrast, the mean of the spin s (as computed
in Section 4.1.2) or its square s2 can be analytically computed.

We therefore propose to approximate the dispersion of the spin
alignment with the following related estimator

σ̃ =

√〈
s2
z

〉
− ⟨sz⟩2

⟨s · s⟩
, (29)

where sz is the component of the spin along the z-axis, i.e. along
the filament direction. For the sake of readability, we do not write
down the result of the integration here but display in Fig. 13 the map
of the alignment dispersion σ̃ around a typical saddle point. This
standard deviation is roughly constant around ≈0.6 and decreases
to ≈0.3 in the close vicinity of the saddle point. Note that the spin
direction is again best defined along its minor axis. This would be
the best place to measure spin alignments in observations.

4.2 Mean saddle-point geometry

Here, we want to compute the mean values of ν, λ1 < λ2 < 0 < λ3

of a typical saddle point of filament type. Let us start from the
so-called Doroshkevich formula for the PDF of these variables:

P(ν, λi) = 135 (5/2π)3/2

4
√

1 − γ 2
exp

[
−1

2
ζ 2 − 3I 2

1 + 15
2

I2

]
× (λ3 − λ1)(λ3 − λ2)(λ2 − λ1) ,

where ζ = (ν + γ I1)/
√

1 − γ 2, I1 = λ1 + λ2 + λ3,
I2 = λ1λ2 + λ2λ3 + λ1λ3 and I3 = λ1λ2λ3. Subject to a saddle-point
constraint, this PDF becomes

P(ν, λi |sad) = 540
√

5πP(ν, λi)

29
√

2 + 12
√

3
I3.(λ3).(−λ2) , (30)

after imposing the condition of saddle point
| det ∂i∂j δ|δD(∇δ).(λ3).(−λ2) for which as the gradient is
decoupled from the density and the Hessian, only the condition on
the sign of the eigenvalues and the determinant contribute. From
this PDF, it is straightforward to compute the expected value of the
density and the eigenvalues at a saddle-point position: ⟨ν⟩ ≈ 0.76γ ,
⟨λ1⟩ ≈ −0.87, ⟨λ2⟩ ≈ −0.40 and ⟨λ3⟩ ≈ 0.51. However, this saddle
point does not belong to the skeleton of the density field but to its
inter-skeleton (see Pogosyan et al. 2009). We thus want to impose
an additional constraint which is λ2 + λ3 < 0. Let us call those
saddle points ‘skeleton saddles’. The PDF at those points becomes

P(ν, λi |skl) = 26460
√

5πP(ν, λi)I3.(λ3)

1421
√

2 − 735
√

3 + 66
√

42
.(−λ2 − λ3) . (31)

The expected value of the density and the eigenvalues at a skele-
ton saddle position now becomes ⟨ν⟩ ≈ 1.25γ , ⟨λ1⟩ ≈ −1.0,
⟨λ2⟩ ≈ −0.56 and ⟨λ3⟩ ≈ 0.31.

4.3 Spin flip: from spatial to mass transition

The geometry of the spin distribution near a typical skeleton saddle
point (as defined by equation (31)) allows us to compute the mean
alignment angle between the spin and the filament (see Section 4.3.1
below). In turn, the shape of the density profile in the vicinity of
the same critical point, together with an extension of the Press–
Schechter theory involving a filament-background split, allows us
to estimate the ‘typical’ mass of the DM haloes forming in any
spatial position around the saddle point (Section 4.3.2 below). The
alignment-angle map and the typical-mass map will together yield
a prediction for the transition mass.
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Figure 13. Alignment dispersion σ̃ (defined in equation 29) around a typical filament-type saddle point of height ν = 1.25γ , λ1 = 0.31, λ2 = −0.56, λ3 = −1
for a power-law 3D power spectrum with spectral index n = −2. The left-hand panel displays a cut along the plane, Oxy, of the saddle point and right-hand
panel along the plane, Oxz, of the wall. The uncertainty on spin direction is smallest near the saddle.

Figure 14. measure the height z corresponding to the transition from
aligned to perpendicular to the filaments. The amplitude in both direc-
tion is averaged by plane following equation (32). The transition curvilinear
coordinate is ztr = 1.5Rs.

4.3.1 Spin flip along filaments

Section 4.1 showed that the mean spin flips from alignment in
the plane of the saddle point to orthogonality when going towards
the nodes. This can be quantified by measuring the curvilinear
coordinate along the filament at which the spin flips.

Let us consider the mean modulus of the projection of the spin
along the ez- and eφ-axes within a plane of height z

ˆ̄sz/φ(z) =
∫

dxdy
∣∣s̄z/φ(r)

∣∣ /||s(r)|| . (32)

Fig. 14 displays ˆ̄sz/φ(z) as a function of z along the filament. Let us
define θ̂ the flip angle so that

cos θ̂ (z) =
ˆ̄sz(z)√

ˆ̄sz(z)2 + ˆ̄sφ(z)2
= 1√

2
. (33)

In Fig. 14, this flip angle is found to occurs around z = 1.5Rs which
is very close to the r⋆ measured in two dimensions (see Section 3.2).

Alternatively, one can also compute at each position the mean
alignment with the filament direction ez

cos θ (r) = s(r|crit) · ez

||s(r|crit)||
. (34)

The result is shown on the right-hand panel of Fig. 15. Spins tend
to align with the filament (region in red) in the plane of the saddle
point and becomes perpendicular to it when moving towards the
nodes (region in blue). This is a transition in Lagrangian space.
Section 4.3.2 shows how to convert it into a transition in mass.

4.3.2 Halo mass gradient along filament

The local mass distribution of haloes is expected to vary along the
large-scale filament due to changes in the underlying long-wave
density. In the linear regime, the typical overdensity near the end
points (nodes) of the filament, where it joins the protocluster re-
gions, may exceed the typical overdensity near the saddle point
by a factor of 2 (Pogosyan et al. 1998). During epochs before the
whole filamentary structure has collapsed, this leads to a shift in the
hierarchy of the forming haloes towards larger masses near the fil-
ament end points (the clusters) relative to the filament middle point
(the saddle). This can be easily understood using the formalism
of barrier crossing (Peacock & Heavens 1990; Bond et al. 1991;
Paranjape, Lam & Sheth 2012; Musso & Sheth 2012), which asso-
ciates the density of objects of a given mass to the statistics for the
random walk of halo density as the field is smoothed with decreasing
filter sizes. Specifically, these authors predict the first upcrossing
probability for the critical threshold at the filter scale correspond-
ing to the mass of interest. The precise outcome of the formalism
depends on the spectral properties of the field and the form of the
smoothing filter, however it is clear that, in general, decreasing the
barrier threshold increases the probability that such first upcrossing
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Figure 15. Left: cross-section of Mp(r, z) (in units of 1012 M⊙) along the most likely filament and in the direction x = y. Right: corresponding cross-section
of ⟨cos θ̂ ⟩(r, z), the normalized component of the spin aligned with the filament. The black dot represents the position of the saddle point. The mass of haloes
increases towards the nodes, while the spin flips.

will happen at large smoothings, i.e. large mass. A larger fraction
of the Lagrangian space will then belong to large-mass haloes, at
the expense of the low-mass ones.

Following the presentation of Paranjape et al. (2012) of the
Peacock–Heavens (Peacock & Heavens 1990) approximation – that
was found to fit numerical simulations rather well, the number den-
sity of dark haloes in the interval [M, M + dM] is

dn(M)
dM

dM = ρ

M
f (σ 2, δc)d ln σ 2 , (35)

where f(σ 2, δc) is given by the function

f (σ 2, δc) = exp

(
1
3

∫ σ 2

0

ds ′

s ′ ln p(s ′, δc)

)

×
(

−σ 2 dp(σ 2, δc)
dσ 2

− 1
3

p(σ 2, δc) ln p(σ 2, δc)
)

.

(36)

Here, σ 2 is the variance of the density fluctuations smoothed at the
scale corresponding to M and p(σ 2, δc) ≡ 1/2(1 + erf(δc/

√
2σ )) is

the probability of a Gaussian process with variance σ 2 to yield value
below some critical threshold δc. In equation (36), 3 is the parameter
dependent on the filtering scale and, to less extend the underlying
power spectrum, that specifies how correlated the density values at
the same point when smoothed at different scales are. For Gaussian
filter, the value 3 ≈ 4 is advocated.

The overall mass distribution of haloes is well described by
the choice δc = 3/5 (3π/2)2/3 = 1.681, motivated by the so-called
spherical collapse model. When haloes form on top of a large-scale
structure background, however, the long-wave overdensity δ(z) adds
to the overdensity in the protohalo peaks. The effect on halo mass
distribution, in this so-called peak-background-split approach, can
be approximated as a shifted threshold δc(z) = 1.681 − δ(z) for
halo formation. In Fig. 16, we show that, as expected, the result of
this long-wavelength mode is a shift of the halo mass distribution
towards larger masses. This shift can be characterized by the de-

Figure 16. Mass distribution for three values of density threshold,
δc = 1.681, 1, 0.681 from left (yellow dashed line) to right (blue solid
line). The displayed function f(σ 2) is defined in equation (36).

pendence on the threshold of M∗(δc), defined as σ ∗(M∗) = δc, or of
the mass Mp(δc) that corresponds to the peak of f(σ 2, δc), i.e. the
variance σ 2

p (z) defined by

σ 2
p (z) ≡ argmax

σ 2
(f (σ 2, δc(z))) . (37)

Fig. 17, right-hand axis, shows these two characteristic variances
as functions of the threshold, δc.

The link to cosmology is established by relating the variance
σ 2 to the mass of the objects. If a background field is absent, the
variance is just the integral of the power spectrum P(k) smoothed
over a sphere of mass M

σ 2 = σ 2(M,Z) ≡ D2(Z)
∫

k2dkP (k)W 2
TH

(
(3 M/4πρ̄)1/3) ,

where D(Z) is the linear growing mode of perturbations as a function
of redshift Z and WTH is the top-hat filter. However, when large-scale
structures are considered as fixed background, the variance of the
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Figure 17. Characteristic variances (plain) and M∗ (yellow dashed) and
Mp halo masses (blue dashed) as functions of the large-scale density in the
peak-background-split picture.

relevant small-scale density fluctuations that are responsible for
object formation is reduced, approximately as

σ 2 ≈ σ 2(M) − σ 2(MLSS) , (38)

where σ 2(MLSS), given as well as σ 2(M) by equation (38), is the
unconstrained variance at the scales at which we have defined the
background large-scale density. This correction is negligible when
there is distinct scale separation between non-linear forming objects
and the large-scale density, i.e. δ̄(x) ≪ 1.681 but becomes impor-
tant, truncating the mass hierarchy at MLSS, whenever large-scale
structures are themselves non-linear.

On Fig. 17, left-hand axis, the variances are converted into
masses, M⋆ and Mp according to equation (38). We choose here
σ 8 = 0.8, Z = 0, we define the mass in a 8h−1 Mpc comoving
sphere for the best-fitting cosmological mass density and we ap-
proximate the spectrum with a power law of index n = −2, which
allows to solve equation (38) explicitly, giving the M(σ ) relation
as

M(σ, Z) = 2.6 × 1014 M⊙
(

σ 2 + σ 2(MLSS)
σ 2

8 D(Z)2

)− 3
n+3

. (39)

We consider filaments to be defined with R = 5h−1 Mpc Gaus-
sian smoothing, which gives σ 2(MLSS) ≈ 0.66. The evolution of
Mp(δ̄, Z) follows from putting equation (37) into equation (39).

4.3.3 Spin orientation versus mass

From the above described Mp–δ relation, one can attribute a mass
to each position depending on the value of the mean density at
that location. The result is illustrated in Fig. 15 where the left-
and right-hand panels display, respectively, the mass map and the
spin alignment map around a typical saddle point. Eliminating the
spatial position, r , between these two maps yields ⟨ cos θ ⟩ as a
function of Mp as shown on Fig. 18. The transition mass, Mtr for
spin flip (⟨ cos θ ⟩ = 0.5) is found to be of the order of 4 × 1012 M⊙,
assuming a smoothing scale of 5 Mpc h−1, as used in Codis et al.
(2012). This mass is in qualitative agreement with the transition
mass found in that paper, all the more so as the redshift evolution
of this transition mass will also be consistent (scaling as the mass
of non-linearity).

Figure 18. Mean alignment as a function of mass for a smoothing scale for
filaments of 5 Mpc h−1. Error bars represent the error on the mean cosine
in each bin of mass for the region [ − 2Rs, 2Rs] × [ − 2Rs, 2Rs] × [ −
2Rs, 2Rs] around a typical filament-saddle point. The flip transition mass
corresponds to 4 × 1012 M⊙.

It is quite striking that the geometry of the saddle point alone
allows us to predict this mass. The two main ingredients for success
are the point reflection symmetry of the spin distribution near the
most likely filament-like saddle point on the one hand, and the
peak-background-split mass distribution gradient along the filament
towards the nodes of the cosmic web on the other hand.

5 STATISTIC S

Up to now, we have considered the neighbourhood of a given unique
typical saddle point as a proxy for the behaviour within a GRF. In
view of our finding let us now first analyse the statistics of alignment
for GRF, and then for fields corresponding to their simulated cosmic
evolution down to redshift zero.

5.1 Validation on GRF

Let us consider the following experiment. Let us generate 2D or
3D realizations of GRF smoothed on two successive scales, Lh and
Ls ≫ Lh. In the first maps, let us build a catalogue of positions,
rh and heights, νh corresponding to ‘small-scale’ peaks. From the
second maps, let us identify the loci, rs of the corresponding ‘large-
scale’ peaks (in 2D) and (filament-type) saddles (in 3D), and build
the corresponding fields s(r) (via fft using equation 24). This
field allows us to assign a spin to each ‘halo’ at position rh and a
closest saddle, rs. Given the relative position rh − rs as measured
in the frame defined by the Hessian at rs, we may project the
direction of the spins, ŝ ≡ s/s of all ‘haloes’ in the vicinity along
the corresponding local cylindrical coordinate (eR, eφ, ez). We may
then compute the one-point statistics of µz ≡ ŝ · ez per octant.

5.1.1 2D GRF fields spin flip

In two dimensions, the expectation is that the spin should be aligned
or anti-aligned with ez depending on each quadrant.

Let us first start with a set of 25 2D 20482 maps from a power
spectrum with n = −1/2. The map is first smoothed with Gaussian
filter of width Lh = 4 pixels, and the positions of the peaks are
identified. It is then smoothed again over Ls = 24 pixels, expo-
nentiated (in order to mimic the almost lognormal statistics of the
evolved cosmic density field), and the corresponding Hessian and
tidal fields are computed, together with the momentum map, which
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Figure 19. Top: example of spin map (colour coded by sign) generated
following the prescription of Section 5.1.1. Bottom: the local frame (in
red, long axis and blue) around a couple of ‘saddle’s. The black contours
correspond to the density.

is thresholded above 1/30th of its highest value (see Fig. 19). The
peaks of this second map are identified as ‘saddles’ for contrasts
higher than 2.5. Fig. 20 shows that the average spin of ‘haloes’
in each quadrant is flipping from one quadrant to the next, with a
statistically significant non-zero mean value in each quadrant.

5.1.2 3D GRF fields spin flip

Let us similarly consider a set of 20 three-dimensional 2563 cubes
from a power spectrum with n = −2. The cube is first smoothed
with Gaussian filter of width Lh = 4 pixels, and the positions of the
peaks are identified. It is then smoothed again over Ls = 24 pixels,
exponentiated, and the corresponding Hessian and tidal fields are
computed, together with the spin field, which is thresholded above
1/30th of its highest value. The saddle of this second cube are
identified as for contrasts higher than 1. Only peaks closer than one
smoothing length from the large-scale saddles are kept. The angle
between their spin and the filament axis is computed and stored
depending on the octant they belong to. In this section, the octants
are numbered from 1 to 8 depending on the separation from the peak
to the saddle r = (x, y, z): x, y, z > 0 (#1), x < 0 and y, z > 0 (#2),
x, y < 0 and z > 0 (#3), y < 0 and x, z > 0 (#4), z < 0 and x, y > 0
(#5), x, z < 0 and y > 0 (#6), x, y, z < 0 (#7), and y, z < 0 and x > 0

Figure 20. Alignment of ‘spin’ along ez in two dimensions as a function of
quadrant rank, clockwise. As expected, from one quadrant to the next, the
spin is on average unambiguously flipping sign.

Figure 21. Alignment of the spin along the filamentary direction depending
on the considered octant. As predicted by the theory, the z-component of
the spin is flipping sign from one octant to the other.

(#8). Fig. 21 shows that, as expected, the component of the spin
aligned with the filament axis is flipping sign from one octant to the
other.

5.2 Validation on dark matter simulations at z = 0

Let us now identify the Eulerian implication at redshift zero of
the above sketched Lagrangian theory. For this, we must rely on
N-body simulations. Hence, we now make use of the 43 million
DM haloes detected at redshift zero in the Horizon-4π N-body sim-
ulation (Teyssier et al. 2009) to test some of the outcomes of the
anisotropic tidal torque theory presented in this paper. This simu-
lation contains 40963 DM particles distributed in a 2 h−1Gpc peri-
odic box and is characterized by the following 1CDM cosmology:
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0m = 0.24, 01 = 0.76, n = 0.958, H0 = 73 km s−1 Mpc−1 and
σ 8 = 0.77 within one standard deviation of WMAP3 results (Spergel
et al. 2003). The initial conditions were evolved non-linearly down
to redshift zero using the adaptive mesh refinement code RAM-
SES (Teyssier 2002), on a 40963 grid. The motion of the particles
was followed with a multigrid Particle-Mesh Poisson solver using
a cloud-in-cell interpolation algorithm to assign these particles to
the grid (the refinement strategy of 40 particles as a threshold for
refinement allowed us to reach a constant physical resolution of
10 kpc, see the above-mentioned two references).

The Friend-of-Friend Algorithm (Huchra & Geller 1982) was
used over 183 overlapping subsets of the simulation with a linking
length of 0.2 times the mean inter-particular distance to define DM
haloes. In the present work, we only consider haloes with more
than 40 particles (the particle mass being 7.7 × 109 M⊙). The mass
dynamical range of this simulation spans about five decades.

The filament’s direction is then defined via the global skeleton
algorithm introduced by Sousbie, Colombi & Pichon (2009) and
based on Morse theory. It defines the skeleton as the set of critical
lines joining the maxima of the density field through saddle points
following the gradient. In practice, Sousbie et al. (2009) define
the peak and void patches of the density field as the set of points
converging to a specific local maximum/minimum while following
the field lines in the direction/opposite direction of the gradient.
The skeleton is then the set of intersection of the void patches,
i.e. the subset of critical lines connecting the saddle points and
the local maxima of a density field and parallel to the gradient
of the field. In practice, the ∼70 billion particles of the Horizon-
4π were sampled on a 20483 Cartesian grid and the density field
was smoothed using mpsmooth (Prunet et al. 2008) over a scale of
5 h−1 Mpc corresponding to a mass of 1.9 × 1014 M⊙. This cube
was then divided into 63 overlapping subcubes and the skeleton was
computed for each of these subcubes. It was then reconnected across
the entire simulation volume to produce a catalogue of segments
which locally defines the direction of the filaments.

Fig. 22 demonstrates that the spins of the 43 million dark haloes
of the simulation obey the expected mass-dependent flip predicted
by the theory presented in Section 4. On top of the alignment with
the filament direction found, e.g. in Codis et al. (2012), haloes are
shown to have a spin increasingly perpendicular to eφ at low-mass
(red) and up to the critical mass (≃ 1012 M⊙), while high-mass
haloes have a spin parallel to the eφ direction. The transition from
alignment to orthogonality occurs around Mtr ≃ 5 × 1012 M⊙.

Fig. 23 shows that the spins tend to be more aligned with the
filament axis when getting closer to the saddle point. The alignment
decreases from cos θ = 0.511 at r ≃ 20 Mpc h−1 to cos θ = 0.506
at r < 1 Mpc h−1. This qualitative trend is in full agreement with
the anisotropic tidal torque theory picture presented in Section 4 for
which on average, spins are aligned with the filament axis in the
plane of the saddle point and become misaligned when going away
from this saddle point.

Fig. 24 displays the occupancy of haloes along the filaments. It
appears that the higher the mass, the more concentrated they are
far from the saddles. This is in good agreement with the halo mass
gradient along the filaments described in Section 4.3.2.

Overall, the above GRF experiments as well as the re-analysis
of the Horizon-4π N-body simulation seem consistent with the
prediction of the theory presented in Sections 3 and 4. While the
former demonstrates that interferences from neighbouring saddles
do not wash out the tide correlations, the latter suggests that on
the scales probed by this experiment, this Eulerian measure still
captures features of the underlying Lagrangian theory.

Figure 22. Alignment of ‘spin’ along eφ in the Horizon-4πsimulation. The
normalized histogram of the cosine of the angle between the spins and the
closest filament’s direction is displayed. Deviations from the ξ = 0 uniform
distribution are detected and depends on the dark matter halo mass. Haloes
have a spin aligned with the eφ direction on average at low-mass (red) and
perpendicular to it at larger mass (blue).

Figure 23. Alignment of the spins and the filaments in the Horizon-4π

simulation as a function of the distance to the closest saddle point (from red
– 0 – to blue – 10 Mpc h−1). The alignment decreases with the distance to
the saddle point as predicted by the anisotropic tidal torque theory model.

6 C O N C L U S I O N S A N D P E R S P E C T I V E S

TTT was revisited while focusing on an anisotropic peak-
background-split in the vicinity of a saddle point. Such critical
point captures as a point process the geometry of a typical filament
embedded in a given wall (Pogosyan et al. 1998). The induced mis-
alignment between the tidal tensor and the Hessian of the density
simply explains the surrounding transverse and longitudinal point
reflection-symmetric geometry of the spin distribution near fila-
ments. This geometry of the spin field predicts in particular that
less massive galaxies have their spin parallel to the filament, while
more massive ones have their spin in the azimuthal direction. The
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Figure 24. (log-)fraction of haloes of different mass (from red to blue in
solar mass units) as a function of the distance to the saddle point in the
Horizon-4π simulation. Low-mass haloes (red) lie almost uniformly along
the filaments (with a small concentration – not clearly seen in logarithmic
units – around the saddles due to consumption when going towards the
nodes) while high-mass haloes (blue) are more concentrated far from the
saddles.

corresponding transition mass follows from this geometry together
with its scaling with the mass of non-linearity, in good agreement
with measurements in simulations.

The main findings of this paper are: (i) galaxies form near
filaments embedded in walls, and flow towards the nodes: this
anisotropic environment produces the long wave modes on top of
which galactic haloes pass the turnaround threshold; (ii) a typical
filament is elongated and flattened: as a point process, it is therefore
best characterized by its triaxial saddle points; (iii) the spin geom-
etry is octupolar in the vicinity of the saddle point, displaying a
point reflection symmetry; (iv) the mean spin field is parallel to the
filament axis in the plane of the saddle point and becomes azimuthal
away from it; (v) the constrained tidal torque theory presented in
this paper allows to accurately predict the transition mass of the
spin-filament alignment measured in simulations; (vi) this theory
seems consistent with both GRF experiments and results from N-
body simulations; (vii) a dual theory describes spin alignments in
voids (see Appendix B).

6.1 Discussion

One of the striking features of this anisotropic extension of TTT
is the induced quadrupolar point-symmetric flattened geometry of
the spin distribution near a saddle point, which effectively scales
down by 1 order of magnitude the transition mass away from the
mass of non-linearity, in agreement with the measured scaling. The
qualitative analysis derived from first principles in the vicinity of a
given saddle point seems to hold when considering realizations of
GRF, once proper account of the induced geometry near such points
is taken care of. In effect, we have shown that the geometry of the
saddle point provides a natural ‘metric’ (the local frame as defined
by the Hessian at that saddle point) relative to which we can study
the dynamical evolution of dark haloes along filaments. It should
allow us to study how galactic feeding (via helicoidal cold flow; see

Dubois et al. 2014) should vary with curvilinear coordinate along
the filament. It was indeed found in that paper using hydrodynamical
simulations that such flows were reaching galaxies in the so-called
circum-galactic medium with velocities roughly parallel the polar
axis. Taken at face value, such findings suggest that the flow feeding
galaxies has significant helicity during that phase.

Another striking feature of this Lagrangian framework is that it
captures naturally the arguably non-linear Eulerian process of spin
flip via mergers. Recently, Laigle et al. (2015) showed that angu-
lar momentum generation of haloes could be captured in Eulerian
space via the secondary advection of vorticity which the formation
of the filament generates, whereas we show in this paper that it
may also be described in Lagrangian space via the analysis of the
anisotropic tides generated by the filament to be. No description
is more fundamental than the other but are the two (Eulerian ver-
sus Lagrangian) sides of the same coin. The mapping between the
two descriptions requires a reversible time integrator, such as the
Zel’dovich approximation, which clearly limits its temporal valid-
ity to weakly non-linear scales. Our proxy for the spin, equation
(3), is an approximation which seems to quantitatively capture the
relevant physics. It is remarkable that such an (admittedly approx-
imate) straightforward extension of TTT captures what seems to
be the driving process of spin orientation acquisition and its initial
evolution. It is also sticking that very simple closed form for the
spin orientation distribution in the vicinity of the saddle point are
available for this proxy.

Our theory here has focused on a two-scale process. Given the
characteristics of 1CDM hierarchical clustering, one can anticipate
that this process occurs on several nested scales at various epochs –
and arguably on various scales at the same epoch. The scenario we
propose for the origin of this signal is, like the signal itself, relative
to the linear scale involved in defining the filaments and as such,
multiscale. It will hold as long as filaments are well defined in order
to drive the local cosmic flow. In other words, one expects smaller
scale filaments are themselves embedded in larger scale walls. The
induced multiscale anisotropic flow transpires in the scaling of the
transition mass with smoothing, as discussed in Codis et al. (2012).

Of course, we have here completely ignored the effect of feed-
back, which will play some – yet undefined – role in redistributing
the cosmic pristine gas falling on to forming galaxies. Another is-
sue would be to estimate for how long this entanglement between
the large-scale dynamics and the kinematic properties of high red-
shift pervades, given the disruptions induced by feedback. What
will be the effect of AGN feedback (Dubois et al. 2013; Prieto et al.
2015) on tidally biased secondary infall? Ocvirk, Pichon & Teyssier
(2008) have also shown that at lower redshift, the so-called hot mode
of accretion will kick in; how will hot flows wash out/disintegrate
these ribbons? Given that they locally reflect the large-scale geom-
etry, will the gas continue to flow-in along preferred directions (as
does the DM; see e.g. Aubert, Pichon & Colombi 2004), or does the
hot phase erase any anisotropy? Will the above-mentioned smaller
scale non-linear dynamics eventually wash out any such trace?

6.2 Perspectives

One possibly significant shortcoming of the analysis is the proxy
involved in using the Hessian of the density instead of the inertia
tensor (though see Appendix A1). This is critical in order to retain
a point process for the induced spin, but is achieved at the expense
of having an adequate estimate for the amplitude of the spin, which
is unfortunate because from the point of view of morphology, the
dividing line between spirals and ellipticals is likely to be spin
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amplitude. Let us none the less assume that, e.g. match to simula-
tions or ansatz such as those described in Schäfer & Merkel (2012)
will yield access to reasonable fit to spin amplitude and discuss
briefly implications to galaxy formation within its cosmic web.

6.2.1 Epoch of maximal spin advection?

The inspection of hydrodynamical simulations (e.g. Codis et al.
2012, using tracer particles) shows that ribbon-like caustics feed the
central galaxy along its spin axis from both poles. The gas flowing
roughly parallel to the spin axis of the disc along both directions will
typically impact the disc’s circum-galactic medium and shock once
more (as it did when it first reached the wall, and then the filaments,
forming those above-mentioned ribbons), radiating away its vertical
momentum (see Tillson et al. 2015). These ribbons are generated via
the same winding/folding process as the protogalaxy, and represent
the dominant source of secondary filamentary infall which feeds the
newly formed galaxy with gas of well-aligned angular momentum.

Having computed the most likely spin (direction) as a function
of position, it is therefore of interest to measure its covariant polar
flux through a drifting forming galaxy.

From our knowledge of the spin distribution within the neigh-
bourhood of a given saddle, we may then compute the rate of ad-
vected spin within some galactic volume V = S'z; it reads

ṡ =
∫

d2 S · v ⊗ ρs =
∫
V

d3r ∇ · (ρv ⊗ s) ,

≈ S [ρv ⊗ s]+− ≈ S'z
∂

∂z
(ρvzsz) , (40)

where the last equality assumes that the advection is quasi-polar,
and that the spin is mostly aligned with the filament. In equation
(40), v is the gradient of the potential. Let us identify the curvilinear
coordinate, zup, for which this flux is maximal:

zup = argmaxz
∂

∂z
(ρvzsz) =

{
z

∣∣∣∣ ∂2

∂z2
(ρvzsz) = 0

}
. (41)

The coordinate zup(ν, κ1, κ2) characterizes the most active regions
in the cosmic web for galactic spin-up. Focusing on the most likely
saddle, the argument sketched in Section 4.3.2 allows us to assign a
redshift-dependent spin-up mass, Mup(Z), via equations (37) and
(39). There could be an observational signature, e.g. in terms of the
cosmic evolution of the SFR, as maximum spin-up corresponds to
efficient pristine cold and dense gas accretion, which in turn induces
consistent and steady star formation.

6.2.2 Morphological type versus loci on web?

The magnitude of the spin of galaxies could be taken as a proxy for
morphological type. Indeed, Welker et al. (2014, 2015) have shown
in cosmological hydrodynamical simulations that spin direction and
galactic sizes where sensitive to the anisotropic environment. It is
shown in particular that the magnitude of the spin of simulated
galaxies increases steadily and aligns itself preferentially with the
nearest filament when no significant merger occurs, in agreement
with the first phase of the above described spin-up (see also Pichon
et al. 2011). During that phase, the fraction of larger spirals should
increase. In contrast, following Fig. 24, if we account for the fact
that galactic morphology – the fraction of ellipticals, correlates with
dark halo mass, it should then increase with distance to saddle.

In order to tackle such process theoretically, it would therefore
be worthwhile to revisit Quinn & Binney (1992) in the context

of this constrained theory of tidal torques and quantify how the
dynamics of concentric shells are differentially biased by the tides
of a saddle point. This would allow us to describe the whole timeline
of anisotropic secondary infall.

6.2.3 Implication for weak lensing?

Weak lensing attempts to probe the statistics of the cosmic web
between background galaxies – which shape is assumed to be un-
correlated – and the observer, while assuming that observed shape
statistics reflects the deflection of light going through the interven-
ing web. In view of Fig. 12, if we take as a proxy spin alignment for
shape alignment, we can in principle compute the expectation of
ξ ('r) ≡ ⟨s(r) · s(r ′)| skl ⟩ as a function of 'r = r − r ′. Calling
δs = s − ⟨s(r)| skl ⟩, we have ξ ('r) = ⟨s(r)| skl⟩ · ⟨s(r ′)| skl ⟩ +
⟨δs(r) · δs(r ′)| skl ⟩ + 2⟨δs(r) · s(r ′)| skl ⟩. Let us just focus here on
the first term, ⟨s(r)| skl⟩ · ⟨s(r ′)| skl ⟩. Given equation (25), we can
compute it and find that it will typically be non-zero and vary sig-
nificantly depending on both the magnitude and the orientation of
'r . E.g. if 'r is off-axis along the filament, but if the pair is close
to the saddle and |'r| is small it will be positive (spins will align as
they are both within coherent region of the saddle’s tides), while if
|'r| is somewhat larger it will vanish (spins will be perpendicular).
Conversely, if 'r is transverse to the filament and |'r| is small, it
will be positive, but if |'r| is of the order of the size of one octant it
will typically vanish again. The formalism presented in Section 3.1
can clearly be extended (while considering the joint three points
statistics) to predict exactly all terms involved in ξ ('r) and quan-
tify within this framework the effect of intrinsic alignments on the
spin–spin two-point correlation. This is will be to topic of future
work (Codis et al., in preparation).
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A P P E N D I X A : A M U LT I S C A L E T H E O RY

The proxy we take for the spin direction

si =
∑
j,k,l

ϵijkHjlTlk , (A1)

is, as mentioned in the main text, a (quadratic) approximation. First, because equation (1) is only valid in the linear regime (Porciani, Dekel
& Hoffman 2002), but possibly more importantly because we take the Hessian as a proxy for the inertia tensor. In practice, recall that this
approximation seems nevertheless to capture the essence of the processes at work in aligning spins with the large-scale structure given its
ability to explain observed alignments through the comparison with simulations presented in Section 5.2 together with the measured mass
transition. This suggests experimentally that it is indeed reasonable. Notwithstanding, while Hij and Iij locally share the same eigenframe,
their amplitudes are different, leading to a different weighting of field configurations when computing ensemble averages such as in equation
(14). It is therefore important to investigate this possible shortcoming further in this Appendix.

A1 More realistic spin proxies and peak

For this purpose, one can in principle (i) impose an additional peak constraint at the location where the spin is computed in order to impose
that a protohalo will form there, and (ii) use more realistic spin proxies.
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The peak constraint will typically be at a smaller scale than the filament’s constraint, which requires building a two-scale theory and
therefore increases significantly the complexity of the formalism. An additional difficulty with (ii) is that standard local proxies for the inertia
tensor are highly non-linear and therefore require high-dimensional numerical integrations that are fairly difficult to implement in practice.
For instance, considering the proxy that Schäfer & Merkel (2012) use to locally approximates the inertia tensor, we have

Iij = M

5

⎛⎜⎝ A2
y + A2

z 0 0

0 A2
z + A2

x 0

0 0 A2
x + A2

y

⎞⎟⎠ , (A2)

(in the frame of the Hessian) where the mass is M = 4/3πAxAyAzρ0a
3
0 and the semi-axes of the ellipsoid, Ai, are function of the eigenvalues

of the Hessian (negative for a peak),

Ai =

√
2νσ2

−λi

. (A3)

The traceless part of Iij that is relevant for torques is then proportional to the traceless part of the inverse Hessian

I ij = 2
5
νσ2MH

−1
ij . (A4)

This introduces singular factors like 1/
√

det H in the expectation for ⟨s⟩. Such factors make the numerical evaluation of equation (24) more
challenging as discussed in Section 2. We therefore postpone their evaluation in three dimensions to future work. Let us briefly investigate
their implementation in two dimensions. In Appendix A2, we introduce a multiscale description while in Appendix A3 we take into account
the proxy given by equation (A2) and we add an explicit peak condition.

A2 A 2D multiscale analysis

The evaluation of r⋆, see equation (20), requires to look for the scale that maximizes the spin amplitude. An improvement to the main text’s
approach is to investigate this issue in a two-scale theory where the scale of the central peak is larger than the scale of the halo. In this
section, we propose to describe how to implement this multiscale theory and we show that this more accurate multiscale estimate for r⋆ yields,
following the main text, a very similar value for the critical mass.

More specifically, let us smooth the fields in rY (the location of the spin) on Rh, an additional parameter, characterizing the halo’s size and
the fields in rX on a different scale Rs > Rh in order to impose a large-scale filament (a peak in 2D). If the one-point covariance matrix C0,
does not change for a power-law power spectrum, the two-point covariance matrix Cγ does. In particular, all correlation functions ξ are now
function of r, Rs and Rh. For instance for a power-law density power spectrum, P(k) ∝ kn,

ξ''
φφ (r) =

(
R2

s + R2
h

2RsRh

)− n+2
2

[
F2

1 − 1
8

(n + 2)
r2

R2
s + R2

h
F3

2

]
,

where F j
i = 1F1

(
n/2 + i; j ; −r2/2(R2

s + R2
h)

)
. The mean spin in rY is then given by the expectation of s̃z =

∑
i,j ,k ϵij3φikxjk given a peak

on scale Rs in rX as was computed in the main text. Compared to the main text, the only difference here is that we now also take into account
the two-scale process through the two smoothing scales, Rs and Rh. The maximum spin magnitude as a function of the scale Rs/Rh is then
computed and displayed in Fig. A1. It appears that the spin magnitude is non-monotonic, peaking at Rh = 0.8Rs which is very close to the
value of r⋆ ≈ 0.7Rs (when top-hat smoothing are taken for both lengths).

Note that as we are computing here only the component of the spin along the filament, our magnitude plot does not contain the mass
pre-factor, and our proxy for the moment of inertia, I ≈ H , reflects only its orientation, but not its magnitude. We are able to argue, however,

Figure A1. Maximum of spin as a function of the halo’s scale Rh.
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Figure A2. Mean spin computed via numerical integrations when (i) a central peak with geometry given by ν = 1, λ1 = −1, λ2 = −2 is set, (ii) the inertia
tensor is approximated by equation (A2), (iii) the scale of the central peak Rs is different from the scale of the halo Rh (here we take Rh/Rs = 1/10), (iv) there
is a peak constraint at the location where the spin is computed with height ν = 5/2, negative eigenvalues and zero gradient. The density power spectrum is a
power law here with spectral index n = 1/2.

that Fig. A1 displays a maximum spin alignment with the filament’s direction for some critical value of Rh – as it shows first an increase and
then a fall in the z-component of the spin that is due to Hessian-tidal shear alignment.

A3 A 2D multiscale analysis with peak constraint

Adding a peak constraint at the location of the spin and taking into account the proxy given by equation (A2) is more difficult as it requires a
numerical integration to account for the sign constraints on the eigenvalues. Notwithstanding this shortcoming, we will show now that in two
dimensions, the adjunction of a peak constraint preserves both the qualitative picture (same geometry with four quadrants of opposite spin
direction) as well as the typical scale for r⋆.

Fig. A2 indeed shows the numerical integration of the mean spin when (i) the inertia tensor is approximated by equation (A4) – where
the mass is fixed by the smoothing length Rh –, (ii) the scale of the central peak Rs is different from the scale of the halo Rh (here we take
Rh/Rs = 1/10), (iii) there is a peak constraint at the location where the spin is computed with height ν = 5/2, negative eigenvalues and zero
gradient. In short, the mean spin is now computed as

⟨s̃|pk,pk⟩ =
⟨s̃ det[H] .(−λi)δD(x − ν)δD(xi)|pk⟩
⟨det[H] .(−λi)δD(x − ν)δD(xi)|pk⟩ , (A5)

where s̃i is defined as s̃i =
∑

j,k,l ϵijkH
−1
j l Tlk while the expectations ⟨·|pk⟩ are defined as conditional expectation to a central peak of geometry

ν = 1, λ1 = −1, λ2 = −2. The mean spin map is then obtained by numerical integration. Fig. A2 clearly shows that the four quadrants of
opposite spin direction, as well as the size of these quadrants are preserved. This test strongly suggests that in two dimensions, improvements
beyond the I ≈ H approximation do not change the global picture described in the main text.

Further developments, beyond the scope of this paper, could be to carry out the same analysis in three dimensions, also adding a peak
constraint at the location where the spin is computed in order to impose the existence of a protohalo and use equation (A2) to define its inertia
tensor. While the two-scale analysis is straightforward enough to implement, the adjunction of a peak constraint in three dimensions is much
more tricky and requires in particular the computation of high-dimension numerical integrals (the results will not be analytic anymore) that
are left for future investigations.

A P P E N D I X B : D UA L VO I D T H E O RY

The theory presented in Section 4.1 is algebraic. Effectively no assumption has been made about the signs of the eigenvalues of the saddle
we are considering. It is therefore also perfectly valid in the neighbourhood of a wall-type saddle in order to describe the spin alignments of
dark haloes in that vicinity. At a qualitative level, Fig. 3 applies up to a sign: voids and wall saddles repel. It follows that the spins should
rotate around the wall saddle to void axis and become parallel near the wall with a point symmetric change of polarity. This is indeed what
equation (25) predicts and is shown on Fig. B1.

The statistical significance of these alignments is likely to be reduced as there are much fewer galaxies in voids and near wall saddles.

MNRAS 452, 3369–3393 (2015)
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Figure B1. Top left-hand panel: mean density in the plane of the wall Oxy and centred on a wall-type filament with geometry ν = 0.5, λ1 = 0.8 along the
x-axis, λ2 = 0.6 along the y-axis and λ3 = −0.5 along the z-axis for a power-law density power spectrum with spectral index n = −2. Contours are displayed
from δ = 0.6 to 1.2 as labelled. The filaments are clearly seen around y = ±2Rs. Top right-hand panel: mean spin colour coded by its projection along the
normal to the wall. The spins are aligned with the normal in the plane of the wall and perpendicular to it when going outside the plane of the wall. Bottom
panels: mean spin vectors at z = 0.5Rs (left) and z = 1Rs (right). Contours represent the orientation of the spin with regards to the normal to the wall from −1
(anti-aligned, red) to +1 (aligned, blue) through 0 (perpendicular).

A P P E N D I X C : T E C H N I C A L C O M P L E M E N T S

C1 Codes for density and spin in 2/3D

The expression for the 2 and 3D spin statistics (mean and variance) for scale-invariant power spectra are available both as a math-
ematica package (http://www.iap.fr/users/pichon/spin/code/ATTT.m), and a mathematica notebook (http://www.iap.fr/users/pichon/spin/
code/ATTT-package.nb). The following functions are provided: δ2D, spin2D, var2D, δ3D, spin3D, which correspond, resp. to the
2D density, spin, its variance, and in 3D the density and the spin for scale-invariant power spectra of index n as a function of position r, θ , (φ)
and the geometry of the peak (resp. saddle) ν, λ1, λ2, (λ3). Compiled versions are also provided.

C2 Correlation functions for power-law spectra

The 2D correlation functions defined in equations (5) and (9) can be analytically obtained for density power-law power spectrum Pk(k) ∝ kn

for which the scale parameter is γ =
√

(n + 2)/(n + 4):

ξ''
φφ (r) = F2

1 − 1
16

(n + 2)r2F3
2 ,
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ξ''
φx (r) = γ

(
(n + 4)

16
r2F3

3 − F2
2

)
,

ξ''
xx (r) = F2

3 − 1
16

(n + 6)r2F3
4 ,

ξ'+
φφ (r) = − 1

32
(n + 2)r2F3

2 ,

ξ'+
φx (r) = γ

32
(n + 4)r2F3

3 ,

ξ'+
xx (r) = − 1

32
(n + 6)r2F3

4 ,

ξ××
φφ (r) = 1

8

(
4F2

1 − 3F3
1

)
,

ξ××
φx (r) = −γ

8

(
4F2

2 − 3F3
2

)
ξ××
xx (r) = 1

8

(
4F2

3 − 3F3
3

)
, (C1)

where r is in units of the smoothing length and F j
i = 1F1

(
n/2 + i; j ; −r2/4

)
, with 1F1 the Hypergeometric functions of the first kind. Some

of those correlation functions are plotted in Fig. 5.
The 3D correlation functions can similarly be obtained for power-law power spectrum Pk(k) ∝ kn(some of those correlations are plotted in

Fig. 10) for which the scale parameter is γ =
√

(n + 3)/(n + 5) and we define Gj
i =1 F1

(
n + i/2; j/2; −r2/4

)
:

ξ''
φφ (r) =

−32(n − 1)G3
1 −

(
(2 − 4n)r2 + r4 − 32

)G1
−1 + (n − 2)

(
2nr2 − r4 + 32

)G3
−1

2
(
n2 − 1

)
r2

,

ξ''
φx (r) =

3
(

n+1
2

) (
32(n + 1)G3

3 +
(
−2(2n + 3)r2 + r4 − 32

)G1
1 + n

(
−2(n + 2)r2 + r4 − 32

)G3
1

)
8r2

√
3

(
n+3

2

)√
3

(
n+7

2

) ,

ξ''
xx (r) =

−32(n + 3)G3
5 +

(
2(2n + 7)r2 − r4 + 32

)G1
3 + (n + 2)

(
2(n + 4)r2 − r4 + 32

)G3
3

2(n + 3)(n + 5)r2
,

ξ'+
φφ (r) =

(
4n

(
r2 + 3

)
−

(
r2 + 8

)
r2 − 40

)G1
−1 + 16(n − 1)G3

1 + (n − 2)
(
2(n − 3)r2 − r4 − 28

)G3
−1

2
(
n2 − 1

)
r2

,

ξ'+
φx (r) =

3
(

n+1
2

) (
−16(n + 1)G3

3 +
(
−4n

(
r2 + 3

)
+ r4 + 16

)G1
1 + n

(
−2(n − 1)r2 + r4 + 28

)G3
1

)
8r2

√
3

(
n+3

2

)√
3

(
n+7

2

) ,

ξ'+
xx (r) =

16(n + 3)G3
5 +

(
4(n + 2)r2 + 12n − r4 + 8

)G1
3 + (n + 2)

(
2(n + 1)r2 − r4 − 28

)G3
3

2(n + 3)(n + 5)r2
,

ξ××
φφ (r) =

(
(n − 2)r2

(
r2 + 10

)
− 48

)G3
−1 +

(
−2(n − 6)r2 + r4 + 48

)G1
−1(

n2 − 1
)
r4

,

ξ××
φx (r) = −

3
(

n+1
2

) ((
nr2

(
r2 + 10

)
− 48

)G3
1 +

(
−2(n − 4)r2 + r4 + 48

)G1
1

)
4r4

√
3

(
n+3

2

)√
3

(
n+7

2

) ,

ξ××
xx (r) =

(
(n + 2)r2

(
r2 + 10

)
− 48

)G3
3 +

(
−2(n − 2)r2 + r4 + 48

)G1
3

(n + 3)(n + 5)r4
.

C3 Correlation functions for LCDM spectra

The same ξ correlation functions can also be computed for a 1CDM power spectrum using Bardeen et al. (1986) and equation (9). The
corresponding functions are shown on Fig. C1 for a Gaussian smoothing length of Rs = 5Mpc h−1 and a WMAP-7 cosmology. Note that
those correlation functions are quite similar to n = −2 power-law power spectrum (see Fig. 10). Given these correlations, it would be
straightforward to compute the corresponding spin.
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Figure C1. Two-point correlation functions as a function of the separation r in units of the smoothing length Rs = 5 Mpc h−1 for a 1CDM power spectrum.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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ABSTRACT
The intrinsic alignment of galaxy shapes (by means of their angular momentum) and their
cross-correlation with the surrounding dark matter tidal field are investigated using the 160 000,
z = 1.2 synthetic galaxies extracted from the high-resolution cosmological hydrodynamical
simulation HORIZON-AGN. One- and two-point statistics of the spin of the stellar component are
measured as a function of mass and colour. For the low-mass galaxies, this spin is locally
aligned with the tidal field ‘filamentary’ direction while, for the high-mass galaxies, it is
perpendicular to both filaments and walls. The bluest galaxies of our synthetic catalogue are
more strongly correlated with the surrounding tidal field than the reddest galaxies, and this
correlation extends up to ∼10 h−1 Mpc comoving distance. We also report a correlation of the
projected ellipticities of blue, intermediate-mass galaxies on a similar scale at a level of 10−4

which could be a concern for cosmic shear measurements. We do not report any measurable
intrinsic alignments of the reddest galaxies of our sample. This work is a first step towards
the use of very realistic catalogue of synthetic galaxies to evaluate the contamination of weak
lensing measurement by the intrinsic galactic alignments.

Key words: gravitational lensing: weak – methods: numerical – cosmology: theory –
large-scale structure of Universe.

1 IN T RO D U C T I O N

For the last two decades, weak gravitational lensing has emerged as
one of the most promising cosmological probes of the dark matter
and dark energy contents of the Universe, culminating in the design
of several large surveys like Dark Energy Survey (DES),1 Euclid
(Laureijs et al. 2011) or Large Synoptic Survey Telescope (LSST).2

As the statistical power of weak lensing surveys is ramping up,
more and more attention has to be paid for the control of system-
atic effects. Among the critical astrophysical sources of errors is
the problem of the intrinsic alignments (IA) of galaxies. The fun-
damental assumption upon which galaxies are randomly aligned in
the absence of a shear signal that is coherent on the scales of several
arcminutes is likely to break down for pairs of galaxies observed
at close angular distances (through direct gravitational interactions
or as a result of the same local tidal field they live in). Much ef-

� E-mail: codis@iap.fr
1 http://www.darkenergysurvey.org
2 http://www.lsst.org

fort has thus been made to control the level of IA of galaxies as a
potential source of systematic errors in weak gravitational lensing
measurements (e.g. Croft & Metzler 2000; Heavens, Refregier &
Heymans 2000; Hirata & Seljak 2004), although some techniques
have been proposed to mitigate their nuisance by making extensive
use of photometric redshifts (e.g. Bridle & King 2007; Joachimi
& Schneider 2008, 2010; Joachimi & Bridle 2010; Kirk, Bridle &
Schneider 2010; Blazek et al. 2012).

Direct measurements of the alignment of the projected light dis-
tribution of galaxies in wide field imaging data seem to agree on
a contamination at a level of a few per cent in the shear correlation
functions, although the amplitude of the effect depends on the depth
of observations (stronger for shallower surveys), the amount of red-
shift information and the population of galaxies considered (in the
sense that red galaxies seem to show a strong intrinsic projected
shape alignment signal whereas observations only place upper lim-
its in the amplitude of the signal for blue galaxies; Bernstein &
Norberg 2002; Brown et al. 2002; Lee & Pen 2002; Heymans et al.
2004; Hirata et al. 2004, 2007; Mandelbaum et al. 2006, 2011;
Joachimi et al. 2011, 2013a). Direct observations of the alignment
between the spin and the tidal tensor eigenvectors have also been

C© 2015 The Authors
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Figure 1. The e1 eigenvector (white arrows) of the tidal field within a slice of 25 h−1 Mpc comoving in depth and 12.5 h−1 Mpc comoving horizontally
together with the gas density (from blue to red) within the HORIZON-AGN simulation at z = 1.2. As expected, e1 statistically follows the filaments.

carried out: the first attempt by Lee & Pen (2002) studied the corre-
lations between the disc orientation of the galaxies from the Tully
catalogue and the shear reconstructed from the Point Source Cat-
alogue Redshift Survey and confidently rejected the hypothesis of
randomness. More recently, Lee et al. (2013) detected some cor-
relations between the spin and the intermediate eigenvector of the
tidal tensor and found that galactic spins were also preferentially
perpendicular to the major principal axis but this signal remains
weak.

Cosmological numerical simulations are a natural way of further
refining our models of IA. The imprint of the large-scale dynamics
on to the shapes and spins of galaxies has been extensively studied
using dark matter (DM) simulations (Aubert, Pichon & Colombi
2004; Bailin & Steinmetz 2005; Aragón-Calvo et al. 2007; Hahn
et al. 2007b; Lee et al. 2008; Paz, Stasyszyn & Padilla 2008; Sousbie
et al. 2008; Codis et al. 2012; Laigle et al. 2015; Forero-Romero,
Contreras & Padilla 2014, among others). One can also mention a
numerical study of the alignment between halo spin and tidal tensor
by Porciani, Dekel & Hoffman (2002), who predicted its orthog-
onality with the major principal axis but also found that galactic
spins must have lost their initial alignment with the tidal tensor
predicted by tidal-torque theory (TTT), and by Codis et al. (2012).
However, given the complex dependency on the physical properties
of the galaxies seen in the observation, it is probably difficult to rely
on DM-only numerical simulations as the sole resort to predict and
control IA for weak lensing applications despite some success with
the addition of halo model or semi-analytical models (e.g. Schneider
& Bridle 2010; Joachimi et al. 2013b).

The advent of hydrodynamical cosmological simulations is ar-
guably the best way forward to make better predictions on the
complex relation between halo shape and spin and galaxy shape
and spin. Local studies of the relation between DM and baryonic
spins or inertia tensors have been conducted to measure the degree
of alignment between the inertia tensor of the DM halo and the
stellar component (not weighted by luminosity; Hahn, Teyssier &

Carollo 2010; Tenneti et al. 2014). They find a typical excursion of
the misalignment angle of 30◦–10◦ for haloes ranging in mass from
1010 to 1014 h−1 M�.

More recently, Dubois et al. (2014) measured the alignment
of galaxy spins with the large-scale filamentary network in the
HORIZON-AGN simulation, a state-of-the-art hydrodynamical simula-
tion which produced synthetic galaxies displaying morphological
diversity by redshift z = 1.2. Dubois et al. found that simulated
galaxies have a spin which is either parallel to their neighbouring
filament for low-mass, disc-dominated blue galaxies, or perpendic-
ular to it for high-mass, velocity-dispersion-dominated red galax-
ies, the rapid reorientation of the latter massive galaxies being due
to mergers. This suggests a scenario in which galaxies form in the
vorticity-rich neighbourhood of filaments, and then migrate towards
the nodes of the cosmic web, converting their orbital momentum
into spin. The inherently anisotropic nature of the large-scale struc-
ture (filaments and walls) and its complex imprint on the shape and
spin of galaxies (see also Pichon et al. 2014) may prevent isotropic
approaches from making accurate predictions and suggest that the
imprint of IA might be more severe for higher order statistics of
the cosmic shear signal and definitely not addressable with simple
prescriptions for the relation between the spin or inertia tensor of
haloes and galaxies.

We thus propose here to extend the work of Dubois et al. (2014)
by bringing the findings of the HORIZON-AGN simulation (see Fig. 1)
closer to the framework of weak lensing observables. In particu-
lar we will measure the correlations between galactic spins and
their surrounding tidal field (related to the so-called GI term of
Hirata & Seljak 2004) and the correlations between spins them-
selves (related to the so-called II term of the same reference). We
will also exhibit the variation of this quantity with the mass and
colour of our galaxies, looking for populations where the IA effect
is particularly severe or reduced. Our main finding is an excess
alignment between the bluest galaxies of our synthetic catalogue,
and no detectable alignment for the reddest ones. This conclusion

MNRAS 448, 3391–3404 (2015)

 by guest on M
arch 12, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 



Intrinsic alignment of galaxies 3393

is in apparent contradiction with the works cited above, and we will
discuss how this can be explained mainly by selection effects (on
mass range, redshifts of catalogue, etc.).

Throughout this work, we use the stellar spin as a proxy for the
ellipticity of galaxies, without attempting to project galactic ellip-
ticities perpendicular to a given sightline. This choice differs from
other authors who rather considered the inertia tensor of the stellar
mass (see e.g. Tenneti et al. 2014). We believe spin can give a com-
plementary insight on the apparent luminosity-weighted projected
morphology of a generally star-forming galaxy. In addition, as one
gets closer to the resolution limit of the simulation, we believe that
the reliability of the simulated spin will hold longer than the reli-
ability of the overall shape of the stellar component. Although we
mainly focus on 3D quantities that are better suited to quantify the
physical degree of IA in our simulation, we give some guidelines
for inferring projected quantities, in the usual formalism of weak
lensing.

The paper is organized as follows. Section 2 presents the HORIZON-
AGN simulation and describes our method for measuring spin and
inertia tensor. It also illustrates how much the shape inferred from
spin can be favourably compared to the shape inferred from the
inertia tensor of stars, hence supporting our choice of using the
spin as a proxy for the ellipticity of galaxies. Section 3 defines
how intrinsic alignments are quantified and where they contaminate
the weak lensing observables. In Section 4, we present the cross-
correlation between the principal axes of the tidal tensor and the
spin vector as a function of distance and further show the zero-
lag one-point probability distribution function (PDF) of this angle.
Section 5 investigates the spin–spin two-point correlation as a func-
tion of separation and the projected ellipticity two-point correlation
function. Section 6 checks that grid locking effects do not dominate
the measurements. We finally conclude in Section 7 and discuss
briefly how the statistics depends on the synthetic colours of galax-
ies. We also sketch how our findings can be cast into predictions on
the contamination of weak lensing by IA. Appendix A studies the
corresponding alignments for DM haloes.

2 T H E S Y N T H E T I C U N I V E R S E

Let us shortly describe the HORIZON-AGN simulation (Section 2.1;
see Dubois et al. 2014 for more details) and explain how galaxy
properties are extracted out of it (Section 2.2).

2.1 The HORIZON-AGN simulation

A standard � cold dark matter (�CDM) cosmology compatible
with the 7-year Wilkinson Microwave Anisotropy Probe (WMAP-7)
cosmology (Komatsu et al. 2011) is adopted, with total matter den-
sity �m = 0.272, dark energy density �� = 0.728, amplitude of
the matter power spectrum σ 8 = 0.81, baryon density �b = 0.045,
Hubble constant H0 = 70.4 km s−1 Mpc−1 and ns = 0.967. The
HORIZON-AGN simulation has been run with 10243 DM particles in
a Lbox = 100 h−1 Mpc box, so as to obtain a DM mass resolution
of MDM,res = 8 × 107 M�. The adaptive mesh refinement (AMR)
code RAMSES (Teyssier 2002) has been used to run the simulation
with an initial mesh refinement of up to �x = 1 kpc (seven levels
of refinement). The refinement scheme follows a quasi-Lagrangian
criterion: if the number of DM particles in a cell is more than eight,
or if the total baryonic mass in a cell is eight times the initial DM
mass resolution, a new refinement level is triggered.

A Sutherland & Dopita (1993) model is used to allow gas cool-
ing by means of H and He cooling down to 104 K with a contribu-

tion from metals. Following Haardt & Madau (1996), heating from
a uniform ultraviolet (UV) background takes place after redshift
zreion = 10. We model metallicity as a passive variable for the gas
that varies according to the injection of gas ejecta during super-
novae explosions and stellar winds. A Schmidt law is used to model
star formation: ρ̇∗ = ε∗ρ/tff , where ρ̇∗ is the star formation rate
density, ε∗ = 0.02 (Kennicutt 1998; Krumholz & Tan 2007) the
constant star formation efficiency and tff the local free-fall time of
the gas. We allow star formation where the gas hydrogen number
density exceeds n0 = 0.1 H cm−3 according to a Poisson random
process (Rasera & Teyssier 2006; Dubois & Teyssier 2008) with a
stellar mass resolution of M∗,res = ρ0�x3 � 2 × 106 M�.

We model stellar feedback using a Salpeter (1955) initial mass
function with a low-mass (high-mass) cut-off of 0.1 M� (100 M�).
In particular, the mechanical energy from Type II supernovae and
stellar winds follows the prescription of STARBURST99 (Leitherer et al.
1999, 2010), and the frequency of Type Ia supernovae explosions
is taken from Greggio & Renzini (1983).

Active galactic nuclei (AGN) feedback is modelled according to
Dubois et al. (2012). A Bondi–Hoyle–Lyttleton accretion rate on
to black holes is used ṀBH = 4παG2M2

BHρ̄/(c̄2
s + ū2)3/2, where

MBH is the black hole (BH) mass, ρ̄ is the average gas density,
c̄s is the average sound speed, ū is the average gas velocity rela-
tive to the BH velocity and α is a dimensionless boost factor with
α = (ρ/ρ0)2 when ρ > ρ0 and α = 1 otherwise (Booth & Schaye
2009) in order to account for our inability to capture the colder
and higher density regions of the interstellar medium. The effective
accretion rate on to BHs is capped at the Eddington accretion rate:
ṀEdd = 4πGMBHmp/(εrσTc), where σ T is the Thompson cross-
section, c is the speed of light, mp is the proton mass and εr is
the radiative efficiency, assumed to be equal to εr = 0.1 for the
Shakura & Sunyaev (1973) accretion on to a Schwarzschild BH.
Two different modes of AGN feedback are accounted for, the radio
mode operating when χ = ṀBH/ṀEdd < 0.01 and the quasar mode
active otherwise. More details are given in Dubois et al. (2014).

2.2 Data analysis

2.2.1 Galaxy catalogue

Galaxies are identified with the ADAPTAHOP finder (Aubert et al.
2004), which relies directly on the distribution of star particles
to construct the catalogue of galaxies. 20 neighbours are used to
compute the local density of each particle. A local threshold of
ρ t = 178 times the average total matter density is applied to select
relevant densities. Note that the galaxy population does not depend
sensitively on the exact value chosen for this threshold. Our spe-
cific choice reflects the fact that the average density of galaxies
located at the centre of galaxy clusters is comparable to that of
their host. The force softening (minimum size below which sub-
structures are treated as irrelevant) is of ∼10 kpc. Only galactic
structures identified with more than 50 star particles are included
in the mock catalogues. This enables a clear identification of galax-
ies, including those in the process of merging. A galaxy catalogues
with ∼165 000 objects is produced at z = 1.2 with masses between
1.7 × 108 and 1.4 × 1012 M�. The galaxy stellar masses quoted in
this paper should be understood as the sum over all star particles
that belong to a galaxy structure identified by ADAPTAHOP. Note
that most results are derived from a subsample of galaxies with a
mass above 109 M�, which corresponds to 300 stellar particles.
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3394 S. Codis et al.

Figure 2. Cumulative PDF of the cosine of the angle, cos τ , between the galaxy spin and the minor (green solid), intermediate (red dashed) and major (blue
dot–dashed) axis of the inertia tensor of the galaxy at z = 1.2. Galaxies tend to align their spin with the minor axis. The most massive galaxies, which are more
likely dominated by dispersion rather than rotation, show less correlation.

2.2.2 Spin and shape of galaxies

To assign a spin to the galaxies, we compute the total angular
momentum of the star particles which make up a given galactic
structure relative to the particle of maximum density (centre of the
galaxy). To identify the latter, we use the smoothed stellar density
constructed with the ADAPTAHOP algorithm. We can therefore write
the intrinsic angular momentum vector L or spin of a galaxy as

L =
N∑

α=1

m(α)x(α) × v(α), (1)

where the superscript α denotes the αth stellar particle of mass m(α),
position x(α) and velocity v(α) relative to the centre of mass of that
galaxy. Likewise, we also measure the (reduced) inertia tensor of a
galaxy:

Iij =
∑N

α=1 m(α)x
(α)
i x

(α)
j∑N

α=1 m(α)
. (2)

This inertia tensor is then diagonalized to obtain the eigenvalues
λ1 ≤ λ2 ≤ λ3 and the corresponding unit eigenvectors u1, u2 and u3

(respectively minor, intermediate and major axis of the ellipsoid).
Fig. 2 shows the PDF of the angle τ i between the spin and each

of the principle axes ui of the galaxies:

cos τi = L · ui

|L| . (3)

As expected, galaxies tend to have a spin well aligned with the minor
axis (u1) of the inertia tensor, with a mean value 〈cos τ 1〉 = 0.90.
The correlation is slightly less pronounced for the most massive
galaxies, for which the rotation support is weaker compared to
velocity dispersion, but it still shows a strong degree of alignment
(〈cos τ 1〉 = 0.85).

Owing to the tight alignment between the spin of galaxies and the
minor axis of the inertia tensor, we expect that an analysis of galactic
spin or inertia tensor orientations will capture the physical mech-
anisms producing IA equally well. For weak lensing predictions,
however, we shall pay attention to the modulus of the ellipticity and
not only its direction when turning spins into projected ellipticities.
Namely, the projected ellipticity of an axisymmetric discy galaxy
depends on the disc thickness (e.g. Joachimi et al. 2013a,b). If we
note qd, the disc flattening or axis ratio, the apparent axis ratio qp

of a projected galaxy along the line of sight aligned with the z-axis,
reads

qp = |Lz|
|L| + qd

√
1 − L2

z

|L|2 . (4)

In principle, we could measure the flattening of the simulated
galaxies to infer the projected axis ratios. Unfortunately, the finite
1 h−1 kpc resolution of the HORIZON-AGN simulation overestimates
the thickness of the disc of low-mass galaxies. To alleviate this
problem, we will assume qd = 0 in the remainder of this work, and
thus maximize the moduli of the projected ellipticities. This can be
seen as a conservative approach since we effectively maximize the
implication of spin IA on apparent alignments of projected ellip-
ticities, either for the correlation between spins themselves (II) or
between spins and tidal tensor (GI). We shall come back to the fi-
delity of our simulations at recovering the eigenvalues of the inertia
tensor and not only its eigendirections in a future work.

2.2.3 Rest-frame intrinsic colours

In order to ascertain the sensitivity of our measurements to galaxy
colours, we compute the absolute AB magnitudes and rest-frame
colours of the mock galaxies using single stellar population models
from Bruzual & Charlot (2003) adopting a Salpeter initial mass
function. Each star particle contributes a flux per frequency that
depends on its mass, age and metallicity. The sum of the contribution
of all star particles is passed through u, g, r or i filter bands from
the Sloan Digital Sky Survey (SDSS). Fluxes are expressed as rest-
frame quantities (i.e. that do not take into account the redshifting of
spectra) and, for the sake of simplicity, dust extinction is neglected.
Once all the star particles have been assigned a flux in each of
the colour channels, we build the 2D projected maps for individual
galaxies (satellites are excised with the galaxy finder). Summing
up the contribution of their stars yields the galaxy luminosity in a
given filter band.

Thorough this work, we will investigate the alignment properties
of galaxies filtered by their colours. We separate our catalogue in
three colour bins (in u − r) such that the number of galaxy in each
is identical. Our bluest subset corresponds to u − r < 0.78 while
the reddest one has u − r > 1.1. This choice insures a similar noise
level in all of our measurements.
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3 INTRIN SIC AL I GNM E N T S I N T HE
C O N T E X T O F C O S M I C SH E A R S T U D I E S

Weak lensing uses the apparent deformation of the shapes of galax-
ies on the sky to map the gravitational potential or measure its
statistical properties like its power spectrum. The projected surface
mass density, integrated along the line of sight to distant sources, is
often preferred over the potential although they are trivially related
by the Poisson equation. The effective convergence κ , which is
nothing but the dimensionless projected density, is statistically de-
scribed by its power spectrum Pκ (�) as a function of wavenumber �.
For a source at comoving distance χ s, we can write the convergence
at an angular position θ (Bartelmann & Schneider 2001):3

κ(θ, χs) = 1

c2

∫ χs

0
dχ

(χs − χ )χ

χs

[
∂2

∂x2
+ ∂2

∂y2

]
�,

= 3H 2
0 �0

2c2

∫ χs

0
dχ

(χs − χ )χ

χs

δ(χθ, χ )

a(χ )
, (5)

where χ is the comoving distance, a the expansion factor, δ the
density contrast and � the three-dimensional gravitational potential
are related by the Poisson equation:

�� = 3H 2
0 �0

2a
δ. (6)

This can easily be generalized to a population of sources with a
broad redshift distribution (Bartelmann & Schneider 2001).

The relation between � and δ can be cast into a relation between
the lensing potential φ and effective convergence κ , and the effective
shear γ i, which involves the traceless parts of the projected tidal
tensor. All these quantities are defined by

φ = 2

c2

∫ χs

0
dχ

(χs − χ )χ

χs
�, κ = 1

2

(
∂2φ

∂θ2
1

+ ∂2φ

∂θ2
2

)
, (7)

γ1 = 1

2

(
∂2φ

∂θ2
1

− ∂2φ

∂θ2
2

)
, γ2 = ∂2φ

∂θ1∂θ2
. (8)

It is generally suitable to treat the shear in complex notations
γ = γ 1 + iγ 2. This quantity is most easily accessible as it captures
the amount of anisotropic distortion a light bundle experiences on
its way from a distant source to the observer. Therefore, the ob-
served ellipticity of such a source, in the weak lensing regime of
small distortions, is directly related to the shear. Indeed, by also
defining a complex ellipticity e = e1 + ie2 = |e|e2iψ , such that
|e| = (1 − q)/(1 + q) and q = b/a is the major (a) to minor (b) axis
ratio, we have

e = es + γ, (9)

where e is the apparent ellipticity and es the intrinsic source ellip-
ticity (the one we would have observed without lensing).

An important statistics of this cosmic shear distortion field is the
two-point correlation of projected ellipticities that can formally be
split into the following components:

〈e(ϑ)e(ϑ + θ )〉ϑ = 〈
ese

′
s

〉 + 2
〈
esγ

′〉 + 〈
γ γ ′〉 , (10)

where, for compactness, the prime means at an angular distance
θ from the first location. The cosmological weak lensing signal

3 Simplified to a flat Universe case.

is commonly decomposed into the ξ+ and ξ− shear correlation
functions. Following Schneider et al. (2002), ξ± is given by

ξ±(θ ) = 〈γ+γ+〉 ± 〈γ×γ×〉 = 1

2π

∫ ∞

0
d� �Pκ (�)J0/4(�θ ),

where J0 and J4 are the 0th- and 4th-order Bessel functions for ξ+
and ξ−, respectively. In this expression, γ + (respectively γ ×) is
the component of the complex shear orientated 0/90o (respectively
±45o) with respect to the line connecting two galaxies separated by
a projected distance θ .

The fundamental assumption of weak lensing, which allows to
infer shear properties from observed ellipticities, is that, on aver-
age, the intrinsic orientation of sources is completely random. The
breakdown of this hypothesis yields additional terms to 〈γ γ ′〉 on
the right-hand side of equation (10) that have to be carefully ac-
counted for in observations. The weak lensing signal is therefore
contaminated by the two kinds of IA.

(i) The so-called ‘II’ term
〈
ese

′
s

〉
induced by the intrinsic corre-

lation of the shape of galaxies in the source plane (Croft & Metzler
2000; Heavens et al. 2000; Catelan, Kamionkowski & Blandford
2001). This mostly concerns pairs of galaxies that are at similar
redshifts.

(ii) The so-called ‘GI’ term 〈esγ
′〉 coming from correlation be-

tween the intrinsic ellipticity of a galaxy and the induced ellipticity
(or shear) of a source at higher redshift (Hirata & Seljak 2004;
Heymans et al. 2006; Joachimi et al. 2011). This non-trivial term is
indirectly explained if the shape of galaxies is correlated with the
local gravitational tidal field, which also contributes to the shear
signal experienced by the far source in a given pair of observed
ellipticities.

In this work we propose to measure these two effects in the
HORIZON-AGN simulation, Section 4 being devoted to the ‘GI’ term
(essentially captured by spin–tidal field correlations) and Section 5
to the ‘II’ term (essentially captured by spin–spin correlations).

Before presenting those results, we also give here some guidelines
on the way projected correlation functions are worked out in the
simulation. In Section 2.2.2, we presented our method for relating
three-dimensional galaxy spins L to projected ellipticities in the
plane of the sky. It is based on the ansatz that the axis ratio of our
galaxies is well approximated by q = |Lz|/|L|, where z is the line
of sight direction. The orientation of the major axis of the projected
ellipse is ψ = π/2 − arctan(Ly/Lx). The projected ellipticities can
easily be mapped from Cartesian (1,2) coordinates to the ( +, ×)
frame attached to the separation of a given galaxy pair according to
the geometric transformation:

e+ = −e1 cos(2β) − e2 sin(2β), (11)

e× = e1 sin(2β) − e2 cos(2β), (12)

where β is the angle between the separation and the first Cartesian
coordinate.

With those prescriptions, we can estimate the projected correla-
tion functions for a given projected separation θ . For the II compo-
nent (dropping the subscript s), this reads

ξ II
+(θ ) = 〈

e+e′
+ + e×e′

×
〉
. (13)

Beyond this 2D measurement, and to limit the dilution of the IA
signal with projected angular distances, we will also measure the
correlation as a function of the 3D comoving galaxy separation
whilst still considering 2D ellipticities as the result of the projection
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along a specific line of sight. We call this correlation function η(r)
following the notations of Heymans et al. (2006) and Joachimi et al.
(2013b):

η(r) = 〈e+(x)e+(x + r) + e×(x)e×(x + r)〉x, (14)

where r is the 3D galaxy pair separation.

4 SP I N – T I DA L T E N S O R C O R R E L AT I O N S

In the context of weak lensing surveys, IA can occur through corre-
lations between the shear induced by the gravitational potential in
the lens plane, and the intrinsic ellipticity of galaxies in the source
plane. Here, we aim to assess the extent to which the tidal tensor and
the galactic spins correlate in the HORIZON-AGN simulation described
in Section 2. For this purpose, we first measure in Section 4.1 the
one-point correlation between the spins and the tidal tensor. Then,
Section 4.2 is devoted to the measurements of the two-point corre-
lations between the spins and the tidal tensor as a function of the
separation.

To study the correlations between the spin direction and the sur-
rounding gravitational tidal field of the galaxies resolved in the
HORIZON-AGN simulation, we measure the components of the 3D
(traceless) tidal shear tensor defined as

Tij = ∂ij� − 1

3
�� δij , (15)

where � is the gravitational potential and δij the Kronecker δ func-
tion. The minor, intermediate and major eigendirections of the tidal
tensor Tij are called e1, e2 and e3 corresponding to the ordered
eigenvalues λ1 ≤ λ2 ≤ λ3 of the Hessian of the gravitational poten-
tial, ∂ij� (with which the tidal tensor shares the eigendirections).
In the filamentary regions, e1 gives the direction of the filament (see
Fig. 1), while the walls are collapsing along e3 and extend, locally,
in the plane spanned by e1 and e2 (Pogosyan, Bond & Kofman
1998).

The tidal shear tensor smoothed on scale Rs, Tij = ∂ij�Rs −
��Rs δij /3, is computed via fast Fourier transform of the density
field (including DM, stars, gas and BHs) sampled on a 5123 Carte-
sian grid and convolved with a Gaussian filter of comoving scale
Rs = 200 h−1 kpc:

∂ij�Rs (x) = 3H 2
0 �0

2a

∫
d3k δ(k)

kikj

k2
WG(kRs) exp (i k·x) ,

where δ(k) is the Fourier transform of the sampled density field and
WG a Gaussian filter.

4.1 One-point cross-correlations

We begin with a measurement of the correlations between the spin
and the eigendirections of the tidal tensor at the same spatial po-
sition. In practice, we compute the cosine of the angle between
the spin of the galaxies and the three eigendirections of the local
tidal tensor cos θ = L · ei/|L|. The resulting histogram is shown in
Fig. 3. The spin is preferentially aligned with the minor eigendi-
rection (i.e. the filaments) in agreement with the spin–filament cor-
relations detected by Dubois et al. (2014) at redshift z ∼ 1.83. To
a lower extent, some alignment is found with the direction of the
intermediate axis.

When galaxies are binned in mass (see Fig. 4), it appears that the
most massive galaxies tend to have a spin lying in the plane (e2, e3)
perpendicular to the filaments, while the less massive galaxies have
their spin aligned with e1. The transition occurs at stellar masses

Figure 3. Excess probability of alignment between the spin of galaxies
and the minor, intermediate or major axis (respectively cyan, purple and
magenta) of the tidal tensor in the HORIZON-AGN simulation. The error bars
represent the Poisson noise. The spin of galaxies tends to align with the
minor eigendirection. Figs 4 and 5 investigate how this alignment changes
with, respectively, galactic mass and colour.

about 4 × 1010 M�. We conclude that the spins of galaxies are def-
initely influenced by their surrounding environment differentially
with their mass.

Those findings follow very closely what can be found for DM
haloes, as detailed in Appendix A where a similar analysis for the
alignment of the spin of the DM haloes with the local tidal tensor is
carried out. Fig. A1 clearly exhibits the same qualitative correlation
as galaxies, namely a transition at a halo mass ∼5 × 1011 M� from
spins aligned with e1, at low mass, to spins oriented in the plane
(e2, e3) at high mass. This is consistent with previous works based on
pure DM simulations (Aragón-Calvo et al. 2007; Hahn et al. 2007a;
Paz et al. 2008; Zhang et al. 2009; Codis et al. 2012; Aragón-Calvo
2013; Libeskind et al. 2013, see in particular fig. 3 in Codis et al.
2012).

The colour of galaxies is a quantity more readily accessible to
observations. It is therefore of interest to see how different galaxy
colours implies different IA as it would provide means on how
to leverage this effect. Fig. 5 displays the correlations between
galactic spins, and the tidal field for different colours as labelled (see
Section 2.2.3 for details about the extraction of galactic colours).
The width of the colour bins has been chosen such that there is the
same number of objects in each subset of galaxies. On average, the
bluest galaxies (defined here by u − r < 0.78) are more correlated
with the tidal eigendirections than the red galaxies (u − r > 1.1
here). This can be easily understood from the fact that red galaxies
are typically massive, while blue galaxies are often small-mass
galaxies. At that redshift (z ∼ 1.2), this implies that red galaxies
correspond to objects around the transition mass, whereas blue
galaxies are mostly aligned with e1. At lower redshift, we expect
the population of massive galaxies perpendicular to e1 to increase,
so that red galaxies become more correlated. Obviously, we should
also keep in mind that applying additional selection cuts on the
galaxy samples (mass, luminosity, etc.) would change the level of
correlation. For instance, red galaxies above 4 × 1010 M� are more
correlated than the whole population of red galaxies.
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Figure 4. PDF of the cosine of the angle between the spin of galaxies and the minor/intermediate/major axis (from left to right) of the tidal tensor in the
HORIZON-AGN simulation when the sample is separated into three different mass bins (solid lines for stellar mass between 2 × 108 and 3 × 109 M�, dashed
lines for stellar mass between 3 × 109 and 4 × 1010 M� and dotted lines for stellar mass between 4 × 1010 and 6 × 1011 M�). The error bars represent the
Poisson noise and are only shown for e1 (left-hand panel) since they are the same for e2 (middle panel) and e3 (right-hand panel). The spin of galaxies tends
to align with the minor eigendirection at small mass and becomes perpendicular to it at larger mass.

Figure 5. Same as Fig. 4 but for different galaxy colours as labelled, meaning that the left-hand, middle and right-hand panels, respectively, show the PDF of
the angle between the e1, e2 and e3 directions of the tidal tensor and the galactic spins. The bluer the galaxy, the larger the correlations with the surrounding
tidal field. Hence red galaxies are less sensitive to IA.

4.2 Two-point cross-correlations

While the aforementioned measurements have been performed at
the same spatial location, it is also of interest in the context of
weak lensing studies to quantify how this signal pervades when the
separation between galaxies increases. Because the tidal field in the
vicinity of a galaxy contributes also to the lensing signal carried
by more distant galaxies, it is clear that the spin—-tidal tensor
cross-correlation is closely related to the so-called GI term in the
weak lensing terminology. To address that question, we measure
the correlations between the spins and the eigendirections of the
tidal tensor at comoving distance r. In practice, we compute for
each pair of galaxies–grid cell (the tidal field being sampled on a
5123 Cartesian grid) their relative separation and the angle between
the spin of the galaxy and the three eigendirections of the tidal
tensor in the corresponding grid cell. We finally do a histogram of
these quantities. The results are shown in Fig. 6, which displays the
PDF of the cosine of the angle between the spins and e1, e2, e3 as a
function of the separation, and Fig. 7, which shows on the same plot
the mean angle with e1 (cyan), e2 (purple) and e3 (magenta). As
expected, the spin and the tidal eigendirections de-correlate with
increasing separation. However, whereas the signal vanishes on
scales r > 3 h−1 Mpc for the spin to intermediate tidal eigendirection

correlation, it persists on distances as large as ∼10 h−1 Mpc for the
minor and major eigendirections of the tidal tensor.

5 SP I N – S P I N AU TO C O R R E L AT I O N S

In the previous section, we focused on the correlations between
the spins and the tidal tensor eigendirections as it is related to the
‘GI term’ which is induced by correlations between the ellipticities
and the cosmic shear. We will now investigate the second source
of IA that comes from the autocorrelations of the intrinsic ellip-
ticities of galaxies. For that purpose, we study first the spin–spin
two-point correlation as a function of the galaxy pair separation
(Section 5.1), before turning to the projected ellipticity two-point
correlation function (Section 5.2).

5.1 3D spin–spin autocorrelations

We begin with the autocorrelation of the direction of the spins as
a function of the galaxy pair separation (in other words, the mean
angle between the spin of two galaxies separated by a distance r). We
select galaxies of different stellar masses: 2 × 108 < Ms < 3 × 109,
3 × 109 < Ms < 4 × 1010 and Ms > 4 × 1010 M� and different
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Figure 6. PDF of the cosine of the angle between the spin of galaxies and the tidal tensor (smoothed on 0.4 h−1 Mpc) eigendirections e1 (left-hand panel),
e2(middle panel) and e3 (right-hand panel) at two locations separated by r < 10 h−1 Mpc (comoving), the separation being colour coded from red to blue. For
the sake of readability, the 1σ error on the mean estimating from 32 random resamples is displayed only on the left-hand panel. The spins are more likely to be
aligned with e1 and to a lesser extent with e2 at short distance in agreement with the one-point PDF shown in Fig. 3; this signal decreases when the separation
increases as expected. This de-correlation is faster for e2 than for the other two eigendirections, going from a few to 10 h−1 Mpc.

Figure 7. Mean angle between the spin and the tidal eigendirections as a
function of the separation. Error bars represent the 1σ error on the mean
when cutting the statistics into 32 subsets. The spins are aligned with the
minor direction (cyan) and to some extent with the intermediate eigendi-
rection (purple) at small distance and decorrelate on different scales. The
alignment with e1 and e3 pervade on scales of about 10 h−1 Mpc but is
reduced to ∼3 h−1 Mpc for the intermediate direction.

colours. For each pair of such galaxies separated by a comoving
distance r, we measure the angle between their respective spin, and
compute the square of the cosine of this angle, cos 2α (as the polarity
is of no interest for weak lensing), in Fig. 8. Error bars represent
the error on the mean

√
〈cos4 θ〉 − 〈cos2 θ〉2/N .

We do not detect any significant spin correlation either among red
galaxies or between red and blue galaxies. Conversely we measure
a significant spin correlation for blue galaxies out to at least a
comoving distance of 10 h−1 Mpc. We also see that the correlation
amplitude is strong for low- and intermediate-mass galaxies. The
signal for the most massive galaxies or red galaxies is compatible
with zero correlation at any distance. The importance of grid locking
on these correlation is estimated in Section 6 where it is shown that
it is not significant.

5.2 2D ellipticity–ellipticity correlations

The two quantities ξ II
+ and η(r) defined in Section 3 are measured

on our synthetic data and shown in Fig. 9. The panels in the top row
show our findings for η(r) for three populations of galaxies where
we choose a direction [here (0.34, 0.06, 0.94) in Cartesian coordi-
nates] in the box different from the grid as the line of sight. Like the
previous 3D analysis, there is a striking difference of behaviour be-
tween red and blue galaxies, the latter showing a strong correlation
signal for the statistics of η with a typical amplitude of ∼3 × 10−3

between 1 and 5 h−1 Mpc. On the other hand, the correlation for red
galaxies is compatible with zero. We can therefore anticipate that
blue galaxies at redshift ∼1.2 should be affected by IA, leaving the
possibility of a substantial contamination of the weak lensing signal.
The bottom panels of Fig. 9 show the amplitude of the correlation
function ξ II

+(θ ) as a function of the angular galaxy pairs separation.4

It is significant and comparable to the cosmic shear amplitude all
the way to ∼13 arcmin.

Let us now compare our findings to the recent study of Joachimi
et al. (2013b), which is based on a semi-analytical model of galaxy
formation. At first glance, we draw opposite conclusions, as we
measure a strong level of IA for blue galaxies and no noticeable
signal for red galaxies, whereas Joachimi et al. predict a strong
alignment of red galaxies (η ∼ 10−2 at z = 1.5 and r = 1 h−1 Mpc)
and a low level of alignment of blue galaxies (� 3 × 10−4 at r =
1 h−1 Mpc, compatible with zero correlation). Yet, several important
differences should be emphasized.

(i) All our galaxies are assumed to be thin discs with a value
qd = 0 in equation (4) whereas Joachimi et al. explore two values
qd = 0.1 and 0.25 for late-type galaxies. Recall that our choice of
qd = 0 will tend to maximize the amplitude of projected ellipticities.
We repeated the measurement of ξ II

+ assuming a value of qd = 0.25
which assumes quite a strong thickening of the disc. The net result
shown in Fig. 10 is to decrease the normalization of ξ II

+ for blue
galaxies by a factor of ∼3, to a typical amplitude of ξ II

+ � 2 × 10−4

4 Note that a 1 h−1 Mpc comoving transverse distance corresponds to an
angular size of 1.3 arcmin at this redshift.
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Intrinsic alignment of galaxies 3399

Figure 8. 3D spin–spin two-point correlation function of galaxy as a function of the comoving separation for a range of stellar masses: 2 × 108 < Ms <

3 × 109 M� (top left-hand panel), 3 × 109 < Ms < 4 × 1010 M� (top centre panel) and Ms > 4 × 1010 M� (top right-hand panel), or colours: blue galaxies,
i.e. u − r < 0.78 (bottom left-hand panel), red galaxies, i.e. u − r > 1.1 (bottom right-hand panel) and the cross-correlations between blue and red galaxies
(bottom centre panel). Note that for blue and red galaxies we also apply a mass cut below 109 M� (i.e. 300 star particles). Error bars represent the error on
the mean. Here we choose to display the mean square cosine between two spins (separated by the comoving distance r) as the polarity is not relevant to weak
lensing studies. For a uniform random distribution, the expectation is 1/3 (dashed line). Blue galaxies and small-to-middle mass galaxies are indeed correlated
on the scale of the typical size of filaments, �10 h−1 Mpc, whereas red and high-mass galaxies do not show a significant correlation.

between 1 and 5 h−1 Mpc at z ∼ 1.2 (but for intermediate-mass
galaxies, the amplitude of the correlation remains qualitatively the
same).

(ii) Our distinction of red and blue galaxies may not correspond
exactly to their early- and late-type classification. For instance, our
red galaxies sample is dominated by low-mass red satellite instead
of massive red central galaxies. But this effect cannot fully explain
the difference.

(iii) To assign a spin to their late-type galaxies (somehow equiv-
alent to our blue sample), Joachimi et al. used the results of Bett
(2012) for the alignment between the DM halo spin orientation and
the galaxy spin at redshift zero. These were obtained with several
hydrodynamical zoom simulations in a ∼12.5 or ∼20 h−1 Mpc size
volume. As shown in Fig. A2, we find at redshift z ∼ 1.2 a somewhat
weaker alignment between galaxy and halo spins than Bett (2012).
Naively, this fact should produce weaker two-point galaxy spin–
spin correlation than the Joachimi et al. results. However, Dubois
et al. (2014) showed that the spin of galaxies are in fact as cor-
related with the large-scale filaments as their DM host halo. This
is a consequence of cold flows that advect efficiently the cosmic
angular momentum all the way to galaxies at the centre of dark
haloes (Kimm et al. 2011; Pichon et al. 2011; Danovich et al. 2012;
Stewart et al. 2013). Therefore semi-analytic models, which chain
the de-correlation between the large-scale structure and the halo,

and that between the halo and the disc galaxies, will most certainly
underestimate the correlation of these galaxies with the large-scale
structure.

(iv) Conversely, the most likely explanation for the discrepancy
of the red population is twofold. First, the red galaxies here are
objects around the transition mass. Hence, part of them have their
spin aligned with the surrounding filament (below the transition
mass), while the others have their spin perpendicular to it (above
the transition mass). Therefore, on average no correlation is detected
among that sample. Nevertheless, for larger mass and lower redshift,
this population is expected to become more strongly perpendicular
to the filaments and thus more correlated. Again, one should bear
in mind that any selection (mass, colour, luminosity, etc.) may bias
significantly the two-point ellipticity correlations. Second, spins
alone may not fully capture the shape of non-rotating, mostly triaxial
early-type galaxies. We defer for future work a thorough analysis of
ellipticity alignments with the inertia tensor of galaxies as a proxy
for ellipticity.

Note finally that the coherence of the large-scale structure
is expected to be higher with increasing redshift. We may
therefore speculate that, at later times, the intrinsic correla-
tion of spins will decrease (see also Lee et al. 2008; Joachimi
et al. 2013b).
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Figure 9. Correlation functions of the projected ellipticity η(r) for the ∼58 000 middle-mass (left-hand panels), ∼25 000 blue (middle panels) and ∼25 000
red (right-hand panels) galaxies as a function of the comoving 3D separation r, in the top row, and as a function of the (projected) angular separation θ in the
bottom row; this latter quantity being closer to observations, we call it ξ II+ . Note the change in scale from one row to the other and the additional mass cut below
109 M� (i.e. 300 star particles).

Figure 10. Same as bottom panels of Fig. 9 for thicker discs qd = 0.25.

6 G R I D L O C K I N G E F F E C T O N S P I N
A L I G N M E N T S

Grid locking effects are a concern for spin–spin correlation func-
tions when using grid-based codes such as AMR (see also Dubois
et al. 2014 for details about how spins are correlated with the Carte-
sian grid). The alignments of the spins with the grid are shown in
Fig 11. To investigate this effect on the two-point statistics studied

in this work, we compute the same statistics (spin–spin correlation
functions and its 2D counterpart, ξ II

+) after a random permutation of
the spins in the box. This allows us to keep the same one-point dis-
tribution of spins on the sphere, including the corresponding level
of grid locking, but to remove the physical two-point correlations
(the box size being much larger than the typical correlation length).
Thus any signal in the data, relative to the random permutation of
spins, should be physical and not induced by grid locking. Fig. 12

MNRAS 448, 3391–3404 (2015)

 by guest on M
arch 12, 2015

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 



Intrinsic alignment of galaxies 3401

Figure 11. Excess probability of alignment, ξ , between the spins and the
grid axes for different bins of mass. The most massive galaxies (blue solid
line) are the least prone to grid locking. Note that the displayed plot is the
mean on the PDF obtained for the x, y and z axes.

Figure 12. ξ II+ , the two-point projected ellipticity correlation function for
intermediate-mass, blue and red galaxies when spins are randomly swapped
in the box. The three panels are statistically compatible with non-correlation,
meaning that grid locking does not introduce significant ellipticity correla-
tions. This allows us to assume that the correlations detected in Fig. 9 are
physical and not due to grid locking effects.

shows the result for different populations of galaxies (blue, red and
intermediate mass). It appears that all those correlations are con-
sistent with ξ II

+ = 0, implying that the results presented in the main
text (e.g. Fig. 9) are not significantly biased by grid locking. The
same conclusion holds for spin–spin correlations and η(r).

To be more precise, let us assume that the spin of a galaxy in
the simulation is the superposition of the ‘real’ spin plus a nu-
merical contribution coming from grid locking s = ss + sgl where
we neglect normalizations (all spins are of norm 1 here). Then the
two-point function of the measured spin of galaxies reads

〈s(x)s(x + r)〉 = 〈ss(x)ss(x + r)〉 + 2
〈

ss(x)sgl(x + r)
〉

+ 〈
sgl(x)sgl(x + r)

〉
. (16)

Let us also assume that the spin contributions coming from grid
locking do not depend on spatial location. Then

〈
ss(x)sgl(x + r)

〉
and

〈
sgl(x)sgl(x + r)

〉
do not depend on r , i.e. those terms are

constant. Therefore one can write

〈s(x)s(x + r)〉 = 〈ss(x)ss(x + r)〉 + C. (17)

If one permutes all the spins in the box the physical two-point cor-
relation of spins 〈ss(x)ss(x + r)〉 goes to zero if the box is large
enough and C remains C as it does not depend on the spatial co-
ordinates. We therefore measured this term in the simulation and
found that |C| � 10−4, which is below the statistical uncertainties
currently plaguing our physical measurements. If grid locking does
not depend on spatial location, we can conclude that the measured
spin–spin correlation function is not significantly biased.

Another test that one can perform is to restrict the analysis to the
galaxies that are less grid locked. We therefore measured the spin–
spin correlation function for the most massive galaxies (that were
shown to be the least sensitive to grid locking in Fig. 11). The result
is displayed in Fig. 13. As the signal remains qualitatively the same
(the amplitude is even larger), we conclude that grid locking cannot
be the main source of spin correlations measured in the simulation.
Note that this test does not make any assumption on the physical
origin of grid locking.

The only way to go beyond the tests proposed in this section
would be to compare our results with similar cosmological hydro-
dynamics simulations performed using a technique which does not
suffer from grid locking, but this is clearly beyond the scope of this
paper.

7 SU M M A RY A N D C O N C L U S I O N

Using the HORIZON-AGN simulation, we have shown that low-mass
galaxies tend to have their spin aligned with the local tidal field mi-
nor eigendirection (the filamentary direction), whereas more mas-
sive galaxies (Ms > 4 × 1010 M� at redshift one) have their spin
mostly aligned with the major tidal eigendirection (i.e. perpen-
dicular to walls and filaments). The corresponding two-point cor-
relation decreases with the comoving separation out to scales as
large as ∼10 h−1 Mpc, with a faster de-correlation for the spin-to-
the-intermediate-axis direction (∼3 h−1 Mpc), a result consistent
with Lagrangian theory in this context (Codis et al., in prepara-
tion). Those results depend on the properties of galaxies, in par-
ticular on their mass and intrinsic colour. For instance, it was
clearly found that at z � 1.2 in the HORIZON-AGN simulation, blue
galaxies and intermediate-mass galaxies are significantly corre-
lated with the gravitational tidal field whereas red and massive
galaxies do not show any correlations. We reach identical con-
clusions when studying the alignment of galaxy spins with one
another, namely that the spins of galaxies are also correlated on
similar scales (∼10 h−1 Mpc) and are similarly colour and mass
dependent.

We have also investigated how spin–spin correlations project
into weak lensing observables like the shear correlation function
ξ+, these correlations being cast into the so-called II contributions
to IA. As in 3D, a ξ II

+ correlation at a level of a few 10−4 is found for
blue and intermediate-mass galaxies out to separations of � 10 ar-
cmin for sources at redshift ∼1.2. The results for blue galaxies
are in broad agreement with the recent work of Joachimi et al.
(2013b), who combine observational results on IA from the Cosmic
Evolution Survey (COSMOS) and predictions from semi-analytical
models applied to DM-only simulations. The effect of grid locking
on the two-point functions was shown to be subdominant. However,
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3402 S. Codis et al.

Figure 13. 3D spin–spin two-point correlation function of galaxy as a function of the comoving separation for blue galaxies, i.e. u − r < 0.78 (left-hand
panel) and red galaxies, i.e. u − r > 1.1 (right-hand panel) with a mass cut below 4 × 1010 M�. Same qualitative results as in Fig. 8 are found. Hence, grid
locking should not be the dominant source of the observed spin correlations.

to go beyond this qualitative statement and accurately quantify the
effect of grid locking, one would need to perform a similar simu-
lation using a numerical technique insensitive to this specific sys-
tematic error, such as smoothed particle hydrodynamics (SPH) or
unstructured mesh.

Presently, the ‘spin-gives-ellipticity’ prescription allows one to
quantify the new insights that large volume hydrodynamical cos-
mological simulations bring to the issue of IA. For instance, the
large-scale coherence of gas motions advected all the way to the
centre of galaxies through cold flows regardless of the DM be-
haviour can uniquely be captured by such simulations (Kimm et al.
2011). Large-scale dynamics imprint their coherence and morphol-
ogy (filaments, walls, voids) on to the spin of galaxies. This complex
topology is likely to have an even more prominent impact on higher
order statistics beyond the shear two-point correlation function.
Attempts to capture such effects with simple halo occupancy dis-
tribution prescriptions may therefore fail at high redshift (z � 0.8),
which is the place where galaxies carry more cosmological lens-
ing signal and is also, to large extent, the population of sources
targeted by future surveys like Euclid or LSST. The challenge for
simulations is to cover large cosmological volumes while preserv-
ing a sufficient resolution so that baryonic physics (star formation,
feedback processes, etc.) is correctly treated.

When the HORIZON-AGN simulation reaches redshift zero, we will
be in a good position to compare our findings with existing ob-
servations. In order to get a good match for massive red galaxies,
we will certainly adopt a different ansatz for our recipe – currently
based on a thin disc approximation – and use directly the resolved
shape of massive galaxies as a proxy for the projected elliptici-
ties. However, this concerns only a small fraction of the galaxies
that made up the typical weak lensing catalogues of background
sources. Once the HORIZON-AGN light-cone is completed, we will
estimate more realistic galactic shapes, taking full account of the
spectral energy distribution of young and old stars (giving a non-
trivial weight to the relative contribution of the disc and the bulge)
into a well chosen rest-frame filter (e.g. using the broad Euclid VIS
band), and more precisely mimicking observational selection ef-
fects (i.e. a flux-limited sample of background sources will capture
specific populations of sources at a given redshift). This will allow

us to quantify the amount of contamination from IA expected in real
surveys, and possibly mitigate their nuisance by selecting galaxies
that are less prone to IA based on colour.
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A P P E N D I X A : DA R K M AT T E R H A L O E S

Fig. A1 displays the PDF of the cosine of the angle between the
tidal eigendirections and the spin of DM haloes of different masses.
The same qualitative behaviour as for galaxies is detected: the less
massive haloes have a spin preferentially aligned with e1 (somehow

Figure A1. Same as Fig. 3 for DM haloes in the HORIZON-AGN simulation. The three different axes of the tidal tensor are colour coded from cyan (e1) to
magenta (e3) through purple (e2). Different mass bins are coded from solid (1010–1011 M�) to dotted (1012–1013 M�) through dashed lines (1011–1012 M�).
A transition is detected: the spin of high-mass haloes tends to be aligned with the intermediate (centre purple panel) and with less probability major (right-hand
magenta panel) principal axis, whereas the spin of low-mass haloes is more likely to point along the minor axis (left-hand cyan panel). Those findings are
consistent with previous studies of DM-only simulations.
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Figure A2. PDF of the cosine of the angle between the spin of the DM halo
and that of the galaxy in our simulation at z = 1.2 (solid) and from Hahn
et al. (2010) at z = 1 (red diamonds), from Bett et al. (2010) (pink stars)
and from Deason et al. (2011) (blue triangles) both at z = 0. The dotted
line refers to a uniform isotropic distribution. Error bars are the 1σ standard
deviation for Poisson statistics.

the filaments) while higher masses have their spin perpendicular
to it (in agreement with what previous studies found in DM-only
simulations).

Fig. A2 shows the PDF of the cosine of the angle between the spin
of the DM halo and the spin of the galaxy for ∼32 000 pairs at z= 1.2
for haloes with virial mass Mh > 1011 M�. We compare our result
to that of Hahn et al. (2010) (z = 1, Mh > 1011 M�, 89 pairs), Bett
et al. (2010) (z = 0, Mh > 5 × 109 M�, 99 pairs) and Deason et al.
(2011) (z = 0, 5 × 1011 < Mh < 5 × 1012 M�, 431 pairs). It shows
that galaxies are slightly less aligned with their host DM halo in
our HORIZON-AGN simulation than what is found by other works, and
used in the semi-analytic model of Joachimi et al. (2013b) (based
on Bett et al. 2010; Deason et al. 2011), even though all results
are compatible within 2σ error bars. This slight difference might
originate from AMR (HORIZON-AGN; Hahn et al. 2010) versus SPH
(Bett et al. 2010; Deason et al. 2011), the persistence of cold flows
(Nelson et al. 2013), disc versus elliptical galaxies (Scannapieco
et al. 2012), representativity of their resimulations, etc. Note that
both AMR runs (HORIZON-AGN and that of Hahn et al. 2010 performed
with the RAMSES code as well) at the same redshift are in better
agreement.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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ABSTRACT
The intrinsic alignments of galaxies are recognised as a contaminant to weak gravita-
tional lensing measurements. In this work, we study the alignment of galaxy shapes
and spins at low redshift (z ∼ 0.5) in Horizon-AGN, an adaptive-mesh-refinement hy-
drodynamical cosmological simulation box of 100 h−1 Mpc a side with AGN feedback
implementation. We find that spheroidal galaxies in the simulation show a tendency
to be aligned radially towards over-densities in the dark matter density field and other
spheroidals. This trend is in agreement with observations, but the amplitude of the
signal depends strongly on how shapes are measured and how galaxies are selected
in the simulation. Disc galaxies show a tendency to be oriented tangentially around
spheroidals in three-dimensions. While this signal seems suppressed in projection, this
does not guarantee that disc alignments can be safely ignored in future weak lensing
surveys. The shape alignments of luminous galaxies in Horizon-AGN are in agreement
with observations and other simulation works, but we find less alignment for lower
luminosity populations. We also characterize the systematics of galaxy shapes in the
simulation and show that they can be safely neglected when measuring the correlation
of the density field and galaxy ellipticities.

Key words: cosmology: theory — gravitational lensing: weak – large-scale structure
of Universe — methods: numerical

1 INTRODUCTION

There is mounting observational evidence that galaxies
are subject to ‘intrinsic alignments’, i.e. correlations
of their shapes across large separations due to tidal
effects that act to align them in preferential direc-
tions with respect to one another (Brown et al. 2002;
Aubert, Pichon & Colombi 2004; Mandelbaum et al. 2006a;
Hirata et al. 2007; Joachimi et al. 2011; Heymans et al.
2013; Singh, Mandelbaum & More 2015). These alignments
have been identified as an important systematic to weak
lensing measurements, with the potential to undermine
its capabilities as a probe of precision cosmology if unac-
counted for (Hirata & Seljak 2004, 2010; Bridle & King
2007; Kirk et al. 2012; Krause, Eifler & Blazek 2015).
To fully extract cosmological information from weak
lensing, the alignment signal needs to be mitigated
or marginalized over (Zhang 2010; Joachimi & Bridle
2010; Joachimi & Schneider 2010; Troxel & Ishak
2012). On the other hand, there is cosmological in-
formation to be extracted from the alignment signal

(Chisari & Dvorkin 2013; Chisari, Dvorkin & Schmidt
2014; Schmidt, Chisari & Dvorkin 2015). For these reasons,
this field is emerging as an interesting avenue for improving
our understanding of galaxy formation and the evolution of
the large-scale structure of the Universe. For a set of com-
prehensive reviews on the topic of intrinsic alignments, see
Troxel & Ishak (2015), Joachimi et al. (2015), Kirk et al.
(2015) and Kiessling et al. (2015).

The large-scale alignment signal of the shapes of lu-
minous red galaxies (LRGs) with the matter density field
has been considered the dominant contribution to low red-
shift intrinsic alignments and the main source of con-
cern for weak lensing surveys. This signal has also been
measured in numerical simulations of galaxy formation
(Tenneti et al. 2014, 2015). A theoretical model developed
by Catelan, Kamionkowski & Blandford (2001) suggested
that elliptical galaxies, supported by random stellar mo-
tions, can be subject to large-scale tides, which stretch them
along the direction of the tidal field. Alignments of LRGs
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2 Chisari et al.

are well described by this model (Blazek, McQuinn & Seljak
2011).

Disc galaxies, which have significant angu-
lar momentum, can suffer a torque from the sur-
rounding tidal field, which correlates their orien-
tations (Catelan, Kamionkowski & Blandford 2001;
Hui & Zhang 2002; Schaefer 2009; Schaefer & Merkel
2015). Hydrodynamical and N-body cosmological sim-
ulations have reported alignments of the spins of
dark matter halos and galaxies with the cosmic web
(Bailin & Steinmetz 2005; Aragón-Calvo et al. 2007;
Hahn et al. 2007; Sousbie et al. 2008; Zhang et al.
2009; Hahn, Teyssier & Carollo 2010; Codis et al. 2012;
Libeskind et al. 2012; Dubois et al. 2014) and there
is indeed observational evidence of galaxy spin align-
ments (Pen, Lee & Seljak 2000; Paz, Stasyszyn & Padilla
2008; Jones, van de Weygaert & Aragón-Calvo 2010;
Andrae & Jahnke 2011; Tempel & Libeskind 2013). Indi-
rect evidence also comes from quasar polarizations, which
have also been found to be aligned with the surrounding
large-scale structure (Hutsemékers et al. 2014). However,
at the same time, some works have claimed no alignment of
discs (Slosar & White 2009; Hung & Ebeling 2012).

Disc galaxies have higher star formation than el-
lipticals, hence color information is typically used as a
proxy to distinguish between types and alignment mech-
anisms. Despite evidence of their spin alignments, the
shape alignment of blue (disc) galaxies has been ob-
served to be consistent with null (Mandelbaum et al.
2011; Heymans et al. 2013). Recently, results from an
analysis of the Horizon-AGN hydrodynamical simulation1

(Codis et al. 2015) have suggested that this correlation of
the shapes of blue galaxies could be present at high signif-
icance at redshift of z = 1.2, and it could thus become an
additional contaminant to gravitational lensing. The main
hypothesis behind that investigation was the use of spins as
a proxy for galaxy shapes.

To elucidate the discrepancy between the non-detection
in low-redshift observations of blue galaxy shape alignments
and the prediction of significant spin alignments in simu-
lations at high redshift, it is necessary to explore the re-
lation between projected shapes and spins in the simula-
tion in the redshift range where observational constraints
are available. We therefore propose in this work to concen-
trate on the relationship between shapes and spins in the
Horizon-AGN simulation (Dubois et al. 2014). In particu-
lar, we first explore the correlations between galaxy positions
and orientations to gain insights into the physical processes
that give rise to intrinsic alignments. We further measure
projected correlations of galaxy positions and galaxy shapes,
and auto-correlations of galaxy shapes, in a way that mim-
ics the construction of intrinsic alignment correlations from
observations. Note that all results are obtained at z = 0.5;
the redshift evolution of this effect is left for future work.

In Section 2, we describe the hydrodynamical cosmo-
logical simulation used in this work to study the shape and
spin alignments of galaxies, including the identification of
galaxies in the simulation and the methods used to obtain
their rest-frame colours. Section 3 discusses how shapes and

1 http://horizon-simulation.org

spins are measured from the simulation and their conver-
gence properties. In Section 4, we present the estimators
used for correlation functions between spins, positions and
shapes used in this work. We discuss both three-dimensional
and two-dimensional (projected) correlations. While three-
dimensional correlations give us an insight into the nature
of the alignment process, the ultimate observables in photo-
metric weak lensing surveys are the projected galaxy counts-
ellipticity correlations. Section 5 brings together the results
from the simulation and the theoretical modelling of the
alignment signal. We discuss these results in relation to
works in Section 6 and we conclude in Section 7.

Compared to previous work by Codis et al. (2015), in
this work we lift the assumption that galaxy spins are a
good proxy for galaxy shapes. Instead, we present results
on alignments both for spins and shapes classifying galax-
ies by their kinematic properties. Moreover, we concentrate
in correlations between positions and orientations, rather
than correlations among galaxy orientations. This allows us
to neglect potential systematics arising from spurious align-
ment correlations due to numerical issues (see Appendix A).
Tenneti et al. (2015) measured projected shape correlations
of galaxies in the smoothed-particle-hydrodynamics simula-
tion MassiveBlack-II. This work presents shape and spin cor-
relations measured in the Horizon-AGN simulation, which
has a comparable volume to MassiveBlack-II but uses a dif-
ferent technique: adaptive-mesh-refinement. As the proper-
ties of galaxies might be sensitive to the numerical tech-
nique adopted, the comparison of alignments measured in
Horizon-AGN and MassiveBlack-II is crucial to inform pre-
dictions of intrinsic alignment contamination to future weak
gravitational lensing surveys.

2 THE SYNTHETIC UNIVERSE

In this section, we describe the Horizon-AGN simulation
(see Dubois et al. 2014 for more details) and we explain how
galaxy properties relevant to this study are extracted.

2.1 The Horizon-AGN simulation

The Horizon-AGN simulation is a cosmological hydrody-
namical simulation in a box of L = 100 h−1 Mpc a side.
It is run adopting a standard ΛCDM cosmology compat-
ible with the WMAP-7 cosmology (Komatsu et al. 2011),
with total matter density Ωm = 0.272, dark energy den-
sity ΩΛ = 0.728, amplitude of the matter power spectrum
σ8 = 0.81, baryon density Ωb = 0.045, Hubble constant
H0 = 70.4 kms−1 Mpc−1, and ns = 0.967. There are 10243

dark matter (DM) particles in the box, with a resulting DM
mass resolution of MDM,res = 8× 107 M⊙.

The adaptive-mesh-refinement (AMR) code ram-
ses (Teyssier 2002) has been used to run the simulation
with 7 levels of refinement up to ∆x = 1kpc. The refine-
ment scheme follows a quasi-Lagrangian criterion. A new
refinement level is triggered if the number of DM particles
in a cell is more than 8 or if the total baryonic mass in a cell
is 8 times the initial DM mass resolution.

Star formation is modelled following a Schmidt law:
ρ̇∗ = ǫ∗ρ/tff , where ρ̇∗ is the star formation rate density, ρ is
the gas density, ǫ∗ = 0.02 (Kennicutt 1998; Krumholz & Tan
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2007) the constant star formation efficiency, and tff the local
free-fall time of the gas. We allow star formation wherever
the Hydrogen gas number density exceeds n0 = 0.1 H cm−3

according to a Poisson random process (Rasera & Teyssier
2006; Dubois & Teyssier 2008) with a stellar mass resolution
of M∗,res = ρ0∆x3 ≃ 2× 106 M⊙.

Gas cooling occurs by means of H and He cool-
ing down to 104 K with a contribution from metals
Sutherland & Dopita (1993). Following Haardt & Madau
(1996), heating from a uniform UV background is imple-
mented after the reionization redshift zreion = 10. Metallic-
ity is modeled as a passive variable of the gas, which varies
according to the injection of gas ejecta from supernovae ex-
plosions and stellar winds. We model stellar feedback using a
Salpeter (1955) initial mass function with a low-mass (high-
mass) cut-off of 0.1 M⊙ (100 M⊙). In particular, the mechan-
ical energy from supernovae type II and stellar winds fol-
lows the prescription of starburst99 (Leitherer et al. 1999,
2010), and the frequency of type Ia supernovae explosions is
taken from Greggio & Renzini (1983).

Active Galactic Nuclei (AGN) feedback is modelled
according to Dubois et al. (2012). We use a Bondi-Hoyle-
Lyttleton accretion rate onto black holes, given by ṀBH =
4παG2M2

BHρ̄/(c̄2
s + ū2)3/2, where MBH is the black hole

mass, ρ̄ is the average gas density, c̄s is the average sound
speed, ū is the average gas velocity relative to the black
hole velocity, and α is a dimensionless boost factor. This
is given by α = (ρ/ρ0)

2 when ρ > ρ0 and α = 1 oth-
erwise (Booth & Schaye 2009) in order to account for our
inability to capture the colder and higher density regions
of the interstellar medium. The effective accretion rate onto
black holes is not allowed to exceed the Eddington accre-
tion rate: ṀEdd = 4πGMBHmp/(ǫrσTc), where σT is the
Thompson cross-section, c is the speed of light, mp is the
proton mass, and ǫr is the radiative efficiency, assumed to
be equal to ǫr = 0.1 for the Shakura & Sunyaev (1973) ac-
cretion onto a Schwarzschild black hole. Two different modes
of AGN feedback are implemented: the radio mode, operat-
ing when χ = ṀBH/ṀEdd < 0.01, and the quasar mode,
active otherwise (see Dubois et al. 2014 for details).

2.2 Galaxy catalogue

Galaxies are identified in each redshift snap-
shot of Horizon-AGN using the AdaptaHOP
finder (Aubert, Pichon & Colombi 2004), which relies
directly on the distribution of stellar particles. Twenty
neighbours are used to compute the local density of each
particle. To select relevant over-densities, we adopt a local
threshold of ρt = 178 times the average total matter
density. Note that the galaxy population does not depend
sensitively on the exact value chosen for this threshold.
Our specific choice reflects the fact that the average density
of galaxies located at the centre of galaxy clusters is
comparable to that of the dark matter. The force softening
is of approximately 10 kpc. Below this minimum size,
substructures are treated as irrelevant.

Only galactic structures identified with more than 50
star particles are included in the mock catalogues. This en-
ables a clear identification of galaxies, including those in the
process of merging. At z = 0.5, there are ∼ 146 000 objects
in the galaxy catalogue, with masses between 1.7× 108 and

2.3× 1012 M⊙. The galaxy stellar masses quoted in this pa-
per should be understood as the sum over all star particles
that belong to a galaxy structure identified by AdaptaHOP.

We compute the absolute AB magnitudes and rest-
frame colours of the mock galaxies using single stellar pop-
ulation models from Bruzual & Charlot (2003) adopting a
Salpeter initial mass function. Each stellar particle con-
tributes a flux per frequency that depends on its mass,
metallicity and age. The sum of the contribution of all star
particles is passed through u, g, r, and i filter bands from the
Sloan Digital Sky Survey (SDSS, Gunn et al. 2006). Fluxes
are expressed as rest-frame quantities (i.e. that do not take
into account the redshifting of spectra) and, for simplicity,
dust extinction is neglected. Once all the star particles have
been assigned a flux in each of the colour channels, we build
the 2D projected maps for individual galaxies (satellites are
excised with the galaxy finder). The sum of the contribution
of their stars yields the galaxy luminosity in a given filter
band.

3 SPINS AND SHAPES OF GALAXIES

To assign a spin to the galaxies, we compute the total angu-
lar momentum of the star particles which make up a given
galactic structure relative to the centre of mass. We can
therefore write the intrinsic angular momentum vector L or
spin of a galaxy as

L =

NX
n=1

m(n)x(n) × v(n) , (1)

where n denotes each stellar particle of mass m(n), position
x(n) and velocity v(n) relative to the center of mass of that
galaxy. The total stellar mass of a galaxy is given by M∗ =PN

n=1 m(n). The specific angular momentum is j = L/M∗.
For each galaxy, we also obtain its V/σ, stellar rotation

versus dispersion, that we measure from their 3D distribu-
tion of velocities. V/σ is a proxy for galaxy morphology:
low values of this physical quantity indicate that a galaxy
is more elliptical, pressure-supported by random stellar mo-
tions; high values of V/σ suggest a disc-like galaxy, with
stellar rotation predominantly on a plane. We first compute
the total angular momentum (spin) of stars in order to de-
fine a set of cylindrical spatial coordinates (r, θ, z), with the
z-axis oriented along the galaxy spin. The velocity of each
individual star particle is decomposed into cylindrical com-
ponents vr, vθ, vz, and the rotational velocity of a galaxy is
V = v̄θ, the mean of vθ of individual stars. The velocity dis-
persion of each velocity component σr, σθ , σz is computed
and used for the average velocity dispersion of the galaxy
σ2 = (σ2

r + σ2
θ + σ2

z)/3.
Figure 1 shows the distribution of V/σ for galaxies in

the Horizon-AGN simulation. We see an increase of the ra-
tio V/σ from low-mass M∗ ≃ 109 M⊙ to intermediate-mass
M∗ ≃ 2×1010 M⊙ galaxies, for which this median of the ratio
peaks at 1. For massive galaxies, above 2×1010 M⊙, the V/σ
ratio decreases with stellar mass. Dwarf and massive galax-
ies have low V/σ and hence are pressure-supported, while
intermediate-mass galaxies have wide-spread V/σ values and
are thus a hybrid population of rotation- and pressure-
supported galaxies.
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We also measure the inertia tensor of a galaxy to char-
acterize its three dimensional shape. This tensor is given by

Iij =
1

M∗

NX
n=1

m(n)x
(n)
i x

(n)
j . (2)

and it is then diagonalised to obtain the eigenvalues λ1 6
λ2 6 λ3 and the corresponding unit eigenvectors u1, u2

and u3 (respectively minor, intermediate and major axis of
the ellipsoid). Analogously, we will explore the differences
in measuring galaxy shapes using Equation (2) compared to
the reduced inertia tensor, which is defined by

Ĩij =
1

M∗

NX
n=1

m(n) x
(n)
i x

(n)
j

r2
n

, (3)

where r2
n is the three dimensional distance for the stellar

particle n to the center of mass of the galaxy. The reduced
inertia tensor is a closer representation of the shape of a
galaxy as measured for weak gravitational lensing measure-
ments, where the inner (and more luminous) region is up-
weighted with respect to the outskirts. For the reduced in-
ertia tensor, Tenneti et al. (2014) found that the iterative
procedure reduces the impact of the spherically symmetric
r−2 weights, yielding shapes that are not as round as for
the non-iterative procedure. We will consider here the sim-
ple and the reduced inertia tensor cases, and we expect that
the results from applying iterative procedures to define the
galaxy shapes (Schneider, Frenk & Cole 2012; Tenneti et al.
2014) will lie between the two cases considered.

Projected shapes are obtained by summing over i, j =
1, 2 in Equations (2) and (3), and the semiminor and semi-
major axes are correspondingly defined by the eigenvec-
tors of the projected inertia tensors. The axis ratio of the
galaxy, q = b/a, is defined from the eigenvalues of the pro-
jected inertia tensor as the ratio of the minor to major axes
(b =

√
λb, a =

√
λa, where λa is the largest eigenvalue and

λb, the smallest). The components of the complex ellipticity,
typically used in weak lensing measurements, are given by

(e+, e×) =
1− q2

1 + q2
[cos(2φ), sin(2φ)] , (4)

where φ is the orientation angle, + indicates the radial com-
ponent of the ellipticity and × is the 45 deg-rotated compo-
nent. Intrinsic alignments typically manifest themselves as
a net average e+ ellipticity around over-densities. The total

ellipticity of a galaxy is thus e =
q

e2
+ + e2

×. In this work, ra-

dial alignments have negative e+ and tangential alignments
(as expected from weak gravitational lensing) correspond to
positive e+. No net correlation of the × component with the
matter density field is expected, and this statistic is thus
used to test for systematics in the ellipticity measurement
procedures. We discuss other systematics tests of ellipticity
correlations in detail in Appendix A.

3.1 Convergence tests

Poorly resolved galaxies in the simulation are subject to un-
certainties in their shapes and orientations. We identify two
sources of uncertainties. First, there is the inherent variance
in the shapes that arises from the choice of particles used
in the shape computation. We call this measurement noise,

Figure 1. V/σ as a function of mass for the galaxies used in this
work. The gray circles represent the median and the variance in
10 logarithmic bins of stellar mass. Dwarf and massive galaxies
are pressure-supported, while intermediate-mass have a mixture
of rotation and pressure support. The vertical red dashed lines
represent the cuts corresponding to the different mass bins as in
Codis et al. (2015). The horizontal red dashed lines represent our
cuts in V/σ, chosen such that there is approximately the same
number of galaxies in each V/σ bin.

σmeas, in analogy to the shape measurement from galaxy im-
ages for weak lensing. Second, there is a bias in the ellipticity
and orientation measurement associated to the resolution of
a galaxy, σres. To define the minimum number of particles
needed to obtain the shape of a galaxy, we compare these
two uncertainties to the shape noise that arises from the
dispersion in the intrinsic distribution of the shapes, σe.

The resolution bias is determined by randomly subsam-
pling stellar particles in each galaxy with > 1000 particles.
We compare the ellipticity measured from random subsam-
ples of 50, 100, 300 and 1000 stellar particles for those galax-
ies. The results are shown in Figure 2 and they suggest that
a minimum number of 300 particles in each galaxy has to
be required in order to guarantee that the bias in the el-
lipticity is an order of magnitude below the shape noise:
σ2

res . 0.1 σ2
e . The distributions of galaxy ellipticities are

shown in Figure 3.
We determine σmeas by bootstrap resampling (100

times) the stellar particles used for defining the inertia ten-
sor from the overall population of stellar particles that make
up each galaxy. We compute this uncertainty for galaxies
with > 50, > 100, > 300 and > 1000 particles. Figure 4
shows the distribution of uncertainty in the shape measure-
ment (compared to the rms ellipticity of the galaxy sample
with 1000 particles) for each minimum number of particles
considered. The solid lines correspond to the shape mea-
sured using the simple inertia tensor and the dashed lines,
to those measured using the reduced inertia tensor. The un-
certainties are typically below the 10−3 level and they are
smaller in the case of the reduced inertia tensor. Resampling
has a larger impact on the simple inertia tensor, since there
are few particles in the outskirts of each galaxy, and these
contribute equally to the shape measurement as those par-
ticles in the central part. Nevertheless, σmeas is very small
compared to the shape noise and to the resolution bias, and
hence can be neglected. Notice that in our modelling we do
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Figure 2. Resolution bias, σ2
res = 〈|e50,100,300 −

e1000|2〉/σ2(e1000), as a function of the ellipticity obtained
from the 1000 particle subsample for galaxies with more than
1000 particles. The colours indicate the number of stellar
particles in the subsample: > 50 (black), > 100 (red) and > 300
(blue). The solid lines represent the results for the simple inertia
tensor and the dashed lines, for the reduced inertia tensor.
Subsampling has a larger impact on the simple inertia tensor due
to the fact that particles in the outskirts contribute with equal
weights as particles in the center.

not include surface brightness cuts, attenuation by dust, the
effect of the atmosphere or convolution by telescope optics.
Also, the resampling of stellar particles is carried out over all
stellar particles, which constitute a correlated data set. All
of these could have a significant impact in the estimation of
σmeas but their modelling is outside the scope of this work.

We also estimated the impact of subsampling and re-
sampling on the measurement of the specific angular mo-
mentum of the galaxies. We found that the measurement
noise is insignificant and that the specific angular momen-
tum is less sensitive to the number of particles in the sub-
sample than the projected shapes. While subsampling intro-
duces significant scatter in the measurement of the specific
angular momentum, there is a strong correlation between
this quantity measured with 50, 100, 300 and 1000 stellar
particles. This correlation is shown for 50 versus 1000 par-
ticles in Figure 5.

We conclude that the minimum number of particles re-
quired to perform spin and shape measurements is deter-
mined by the requirements placed on the projected shapes.
A minimum of 300 particles is needed for the uncertainty
in projected shape to be at least one order of magnitude
smaller than the shape noise. From this section onwards, we
will work only with galaxies that have more than 300 stellar
particles in the simulation. Notice that Tenneti et al. (2015)
adopted a cut on 1000 stellar particles, while Velliscig et al.
(2015) adopt similar cuts as in our work on the number of
stellar particles. Figure 6 shows a comparison between the
axis ratios of galaxies in the simulation using the simple (y-
axis) and the reduced (x-axis) inertia tensors for galaxies
with more than 300 stellar particles. The use of the reduced
inertia tensor clearly results in rounder shapes as a result of
up-weighting the inner regions of galaxies.

Figure 3. Distribution of ellipticities for galaxies with > 50
(black), > 100 (red), > 300 (blue) and > 1000 particles (green)
for the simple (solid) and the reduced (dashed) inertia tensors.
The shapes obtained with the reduced inertia tensor are rounder
than those obtained with the simple inertia tensor.

Figure 4. Distribution of measurement uncertainties in the ellip-
ticities for galaxies with > 50 (black), > 100 (red), > 300 (blue)
and > 1000 particles (green) for the simple (solid) and the reduced
(dashed) inertia tensors. The shapes obtained with the reduced
inertia tensor have significantly smaller uncertainties. These un-
certainties are insignificant compared to the resolution bias and
to the shape noise in the sample.

4 CORRELATION FUNCTIONS

4.1 Correlations in three dimensions

Three dimensional correlations of galaxy shapes and spins
can give interesting insights into the formation processes
leading to alignments. In this section, we define the corre-
lation functions of galaxy orientations in three dimensional
space. We define the orientation-separation correlation as a
function of comoving separation r,

ηe(r) = 〈|r̂ · ê(x + r)|2〉 − 1/3 , (5)
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Figure 5. Correlation between the logarithm of the specific an-
gular momentum, j = |L|/M∗, when measured with 50 (y-axis)
and 1000 (x-axis) particles, for galaxies in the simulation with
> 1000 particles.

Figure 6. Axis ratios for galaxies with > 50 particles obtained
with the simple inertia tensor (y-axis) an the reduced inertia ten-
sor (x-axis). Colours indicate the number of galaxies in each bin.
While there is a clear correlation between the estimates obtained
with the two different methods, the reduced inertia tensor tends
to produced rounder shapes.

where ê is the unit eigenvector of the inertia tensor pointing
in the direction of the minor axis and r̂ is the unit separa-
tion vector. A positive correlation indicates a tendency for
the separation vector and the minor axis of a galaxy to be
parallel, hence for the galaxy to be elongated tangentially
with respect to another galaxy. Notice that gravitational
lensing produces a similar correlation for galaxy pairs sepa-
rated by large distances along the line of sight. A negative
correlation corresponds to a preferential perpendicular ori-
entation of the minor axis with respect to the separation
vector, resulting in a net radial orientation of galaxy shapes
around other galaxies. Our treatment of galaxy orientations
corresponds to representing the galaxy with the normal of its
orientation plane and does not take into account the intrinsic

dispersion in ellipticities. In other words, both spheroidals
and discs are infinitely thin in this approach, and the plane
that represents them points in the direction perpendicular
to ê. Alternatively, we will also measure the analogous cor-
relation of separation vectors with spins, ŝ, defined from the
angular momentum of a galaxy, ηs(r).

Grid-locking (studied in detail in Appendix A) mani-
fests itself as a correlation between spin and shapes with the
directions of the simulation box. As a result, spin and ellip-
ticity auto-correlations (presented in Appendix B) can be
contaminated by this effect, as two nearby galaxies formed
from the same stream of infalling gas will be correlated
among themselves and with the grid in which forces are
evaluated and the effect can be enhanced at small distances
because of the correlation length of the force field. On the
contrary, we demonstrate that position-shape, position-spin
and position-orientation correlations presented in the main
body of this work are not affected.

4.2 Projected correlations

Three dimensional information of galaxy shapes and orien-
tations is costly and near-term imaging surveys will be lim-
ited to correlations between projected shapes in broad to-
mographic bins. In this section, we describe projected statis-
tics of alignments. First, we determine the orientation and
ellipticity (Equation 4) of a galaxy from the projected in-
ertia tensor. We obtain the real-space correlation function
of galaxy positions and shapes projecting along one of the
coordinates of the simulation box in a way that mimics the
construction of Landy-Szalay estimators (Landy & Szalay
1993) in imaging surveys.

We label the dataset of tracers of the density field by
D, the set of galaxies with ellipticities by S+ (for the tan-
gential ellipticity component, and analogously for the ×
component) and the set of random points by R. We de-
fine the correlation function of galaxy positions and ellip-
ticities, ξg,+(rp, Π) as a function of projected separation in
the sky, rp, and along the line of sight, Π. This function is
estimated from the sample of galaxies by using a modified
Landy-Szalay estimator (Mandelbaum et al. 2011)

ξg,+(rp, Π) =
S+D − S+R

RR
, (6)

S+D =
X

(rp,Π)

e+,j

2R , (7)

where R is the responsivity factor (Bernstein & Jarvis
2002), R = 1 − 〈e2〉, e+,j is the tangential/radial compo-
nent of the ellipticity vector of galaxy j and the sum is over
galaxy pairs in given bins of projected radius and line of
sight distance. S+R is the sum of galaxy ellipticities around
random points. In the previous expression, we are implicitly
assuming that there is a single random sample, a procedure
which is valid when the galaxy sample and the shape sam-
ple coincide. For the random sample, we use a set of points
uniformly distributed in the simulation box with 10 times
the density of the galaxy sample. For cross-correlations of
different samples, generalization of Equation (6) is straight-
forward (e.g. Singh, Mandelbaum & More 2015).

This correlation function is then projected along the
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line of sight by integration between −Πmax < Π < Πmax
2,

wg+(rp) =

Z Πmax

−Πmax

dΠ ξg+(rp, Π) , (8)

where we take Πmax to be half the length of the simulation
box. We are also interested in the correlation between the
density field and the galaxy shapes, wδ+(rp), for which the
galaxy positions are replaced with the positions of randomly
sampled DM particles in the simulation box.

Two sources of uncertainties can be identified when
measuring projected correlation functions of positions and
shapes. The first one is shot noise coming from the tracers
of the density and shear field. The second source of uncer-
tainty is cosmic variance from the limited volume of the
simulation box. Given that the box is 100 h−1 Mpc on each
side, we limit the measurement of correlations to up to a
quarter the length of the box size, L. However, this does
not guarantee that we will be free from cosmic variance for
the measured separations. The uncertainties in the projected
correlation functions, including both shape noise and cosmic
variance from modes within the box, can be obtained from
jackknife resampling over the simulation box (Hirata et al.
2004; Mandelbaum et al. 2006b). We divide the simulation
box in cubes of L/3 a side. In each jackknife iteration we
remove the tracers corresponding to one of the cubes and
compute a new estimate of the correlation. This allows us
to estimate the variance in the projected correlations in-
cluding the effect of cosmic variance. By contrast, the shape
noise-only variance underestimates the jackknife variance by
a factor of 1 − 4 on small scales (< 1h−1 Mpc) and up to
approximately an order of magnitude on the largest scales
probed in this work. In comparison, the jackknife accounts
for covariance between Π bins and for the finite volume of
the simulation box. Nevertheless, due to the limited size of
the box, it is expected that the error bars could still be un-
derestimated on large scales. We have also confirmed that
using more jackknife regions with L/4 length a side does not
alter the main conclusions of this manuscript.

5 RESULTS

5.1 Relative orientations in three dimensions

In this section, we characterize three dimensional correla-
tions of galaxy positions and orientations at z ≃ 0.5 to shed
light into the physical processes that can lead to alignments.
Since three dimensional shapes are costly (see Huff et al.
2013 for a potential method), we study on-the-sky galaxy-
ellipticity correlations in Section 5.2.

We use all galaxies in the simulation with > 300 stel-
lar particles divided into three subpopulations by their V/σ,
which is obtained as described in Section 3. This allows us

2 Notice that for simplicity we do not include the effect of pecu-
liar velocities in transforming galaxy redshifts into distance along
the line of sight, nor do we incorporate photometric redshift un-
certainties. Both effects decrease the significance of intrinsic align-
ment correlations; however, in this work, we are interested in ex-
tracting as much information as possible from the simulation and
we opt to avoid diluting the alignment signal by including these
effects in the modelling.

to determine whether the alignment trends depend on the
dynamical properties of the galaxies. Disc galaxies are rep-
resented by large values of V/σ, while spheroidals have low
V/σ. As mentioned in Section 1, different alignment mech-
anisms are expected to act on these different populations
(Catelan, Kamionkowski & Blandford 2001). Disc galaxies
are expected to become aligned with the large-scale tidal
field due to torques in their angular momentum, while ellip-
ticals might suffer stretching or accretion along preferential
directions determined by large-scale tides.

The three V/σ bins are constructed to host 1/3 of
the galaxy population in each bin (V/σ < 0.55, 0.55 <
V/σ < 0.79 and V/σ > 0.79). The left panel of Figure 7
shows the three-dimensional correlation function of minor
axis, from the simple inertia tensor, and separation vector.
Error bars correspond to the standard error on the mean
in each bin. We are only interested in a qualitative com-
parison in this section and we thus neglect cosmic vari-
ance except when explicitly mentioned. We observe that
the minor axis orientation-position correlation is only sig-
nificant in the low V/σ bin, suggesting that only galax-
ies with spheroidal dynamics are subject to shape align-
ments. The results imply that these galaxies are elongated
pointing towards each other, in agreement with the quali-
tative behaviour expected from the tidal alignment model
(Catelan, Kamionkowski & Blandford 2001). (Notice that,
by construction, the fraction of spheroidal galaxies at this
redshift is 1/3.) Galaxies with V/σ > 0.55 do not have corre-
lated positions and shapes. Moreover, low V/σ have a lower
degree of correlation between the direction of their minor
axis and the direction of their spin, and this is a mono-
tonic function of V/σ. Finally, we have split the low V/σ
population of galaxies by the mean stellar mass; we find
that both low (log M∗ < 9.5, ∼ 20, 000 galaxies) and high
mass (log M∗ > 9.5, ∼ 8, 000 galaxies) galaxies are sub-
ject to alignments, and that high mass galaxies are more
strongly aligned. Spin alignments are not very significant
among these populations, although there seems to be a small
trend for galaxies being oriented perpendicularly to the sep-
aration, i.e., tangentially around other galaxies. This also
seen in the reduced inertia tensor of low and intermediate
V/σ galaxies.

We also divide the galaxy population into three bins of
mass: low mass (109 < M∗ < 109.5 M⊙, ∼ 30, 000 galax-
ies), intermediate mass (109.5 < M∗ < 1010.6 M⊙, ∼ 40, 000
galaxies) and high mass (M∗ > 1010.6 M⊙, ∼ 7, 000 galax-
ies). The low mass limit is determined by the required
threshold in the number of stellar particles. We first note
that with this selection, both low and high mass galaxies
tend to have low V/σ, while intermediate mass galaxies have
V/σ values more consistent with those of a disc-like popula-
tion, as shown in Figure 1. In Figure 8, we show the correla-
tion between spin or minor axis with the separation vector
for the three mass bins. The left and middle panels show
the minor axis-separation correlation constructed using the
simple (left) and reduced (middle) inertia tensor; and the
right panel shows the spin-separation correlation.The left
panel of Figure 8 shows that there is a significant corre-
lation of the minor axis of high-mass galaxies aligned per-
pendicular to the separation vector towards other high mass
galaxies. In the case of the reduced inertia tensor, the signif-
icance of this signal is decreased, consistently with the fact
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8 Chisari et al.

Figure 7. Correlations between the minor axis (ηe, left for simple inertia tensor and middle panel for reduced inertia tensor) or spin
(ηs, right panel) and separation vector as a function of comoving separation. The sample of galaxies is divided into three bins by their
dynamical classification: V/σ < 0.55, 0.55 < V/σ < 0.79 and V/σ > 0.79. Galaxies with low V/σ show a significant shape-separation
correlation. In the left panel, the dotted lines show the alignment signal for those galaxies split by the mean mass of that population:
log M∗ < 9.5 (black) and log M∗ > 9.5 (gray). Both low and high mass populations have a contribution, and higher mass galaxies have
stronger alignments.

Figure 8. Correlation between the direction of the the minor axis (ηe) obtained from the simple inertia tensor (left panel) and from
the reduced inertia tensor (middle panel) or spin of a galaxy (ηs , left panel) with the separation vector to a galaxy within the same
mass-selected sample as a function of comoving separation. High mass galaxies show a clear radial alignment trend towards other high
mass galaxies.

that the reduced inertia tensor yields rounder shapes for
these galaxies. For low mass galaxies, the results are similar
but with lower significance. For intermediate mass galaxies,
we find a small negative correlation between the minor axis
and the separation vector for the simple inertia tensor, and
a small positive correlation when the reduced inertia ten-
sor is used. This suggests that the reduced inertia tensor
minor axis is correlated with the direction of the spin for
this disc-like population, while this is not the case for the
simple inertia tensor. We interpret this as a decreasing ten-
dency of stellar particles to settle on a disc as a function of
distance to the center of mass of the galaxy, possibly trac-
ing merging structures. Indeed, satellite mergers within the
Horizon-AGN simulation tend to redistribute their angular
momentum significantly within the host (Welker et al., in
prep.).

The overall physical picture that we get from these re-
sults is the following.

• Spin and shape alignments depend on galaxy dynamics,
and these trends also translate into a mass dependence.

• Spheroidal galaxies show a significant trend of radial
alignments with respect to each other that is preserved to
large separations and is more prominent for high mass galax-
ies. The signal decreases in amplitude when the reduced iner-

tia shapes are adopted, as the galaxy shapes become rounder
and less sensitive to tidal debris in the outskirts.
• Spin alignment trends are tangential around other

galaxies and marginal, and seem to be better correlated with
the reduced inertia tensor than with the simple inertia tensor
shapes for intermediate and high V/σ galaxies (correspond-
ingly, also intermediate mass galaxies).

The results presented so far only consider correlations
between galaxies with similar properties. We also explore
whether cross-correlations between subsets exist. Figure 9
shows the cross-correlation of positions of spheroidal trac-
ers (V/σ < 0.55) with the direction of the minor axis (red
circles) and the spins (red triangles) of disc-like tracers
(V/σ > 0.55). Discs show a tendency to align their spins
parallel to the separation vector to spheroidal galaxies (red
dashed curve), as well as their minor axis (red solid curve).
Notice that the direction of the spin and the minor axis of
a disc galaxy (from the reduced inertia tensor) are very well
correlated, and hence the red dashed and solid curves al-
most lie almost on top of each other. Figure 9 also shows
the cross-correlation of the positions of discs with the orien-
tations of the minor axis (black circles) and the spin (black
triangles) of spheroidal galaxies. These galaxies show a pref-
erential elongation of their shapes towards the positions
of discs, while they do not show significant alignment of
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Figure 9. Cross-correlations of galaxy positions and shapes (ηe)
or spins (ηs) for the galaxy population divided in two V/σ bins.
δ indicates tracers of the galaxy density field and s (m) indicates
the sample for which the orientation is measured from the spin
(minor axis). The black solid line shows the correlation between
the positions of disc-like tracers of the density field (V/σ > 0.55)
and the direction of the minor axis of the reduced inertia tensor
of spheroidal galaxies (V/σ < 0.55). The red solid line shows the
correlation between the positions of spheroidal galaxies and the
direction of the minor axis of disc-like galaxies. The red dotted
line shows the correlation between the position of discs and the
spin of spheroidals, and the red line shows the correlation between
the positions of spheroidals and the direction of the spin axis of
discs. (Notice that the red lines almost overlap, showing that the
spin and the minor axis of a disc point along the same direction.)
These results suggest that the discs are preferentially clustered in
the direction of the elongation of spheroidals, while they also tend
to have their spins aligned in the direction of nearby spheroidals.

their spins. When the simple inertia tensor shapes are used,
the spins and shapes of discs become decorrelated and the
significance of the shape alignment trend of discs around
spheroidals is lost. From these results, we conclude that the
discs are preferentially clustered in the direction of the elon-
gation of spheroidals, while they also tend to have their spins
aligned in the direction of nearby spheroidals (also traced
by their reduced inertia tensor shapes). This picture is in
agreement with disc galaxies living predominantly in a fila-
mentary structure that follows the elongation of spheroidal
galaxies at its knots. Furthermore, disc galaxies tend to have
their spins aligned parallel to the direction of these fila-
ments, and perpendicular to the elongation of the central
spheroidal. Figure 10 shows a cartoon picture of alignments
where the effect is exaggerated for visual purposes.

We perform a series of tests to determine the signifi-
cance of the measured signal of disc alignments with respect
to spheroidal tracers. In particular, in this case we adopt a
jackknife procedure (similar to that adopted for projected
correlations) to estimate the uncertainty in the disc align-
ment signal. The significance of the measurement is obtained
from a χ2 test using only the diagonals of the jackknife co-
variance matrix and without modelling the noise in this ma-
trix. We find that the null hypothesis can be rejected at
> 99.99% confidence level (C.L.) level for the alignment of
disc spins around spheroidals (red dashed in Figure 9), and
similarly for the alignment of the minor axes of discs around
spheroidals (red solid line in Figure 9). This level of signif-

Figure 10. A cartoon picture of alignments, as interpreted from

the results of Section 5.1. Discs live in filaments connecting el-
lipticals and they tend to align their spin(s)/minor axes in the
direction of the filament. Ellipticals tend to have their shapes (m
represents the minor axis) aligned towards each other and to-
wards the direction of the filaments. The effect of alignments is
exaggerated for visual purposes by showing all galaxies perfectly
aligned following the measured trends in the simulation.

icance decreases to 92% when the simple inertia tensor is
adopted to measure the shapes. On the contrary, the direc-
tion of the spin of spheroidals is not correlated with the po-
sition of discs (72% C.L. for null hypothesis rejection of the
blue curves), but the minor axis direction of a spheroidal
is anti-correlated with the position of discs with high sig-
nificance (> 99.99% C.L. for both the reduced ans simple
inertia tensor). Finally, we consider whether alignment sig-
nals are still present when the orientation is defined by the
direction of the major axis. We find that the disc alignment
measurement in this case is more sensitive to the choice of
reduced/simple inertia tensor. This result confirms that the
simple inertia tensor is a worse tracer of the spin compared
to the reduced inertia tensor, as the alignment signal loses
significance in that case. On the other hand, the use of the
simple or reduced inertia tensor does not change the sig-
nificance of the alignment of spheroidals in the direction of
discs.

We conclude that:

• discs show a significant tendency for tangential align-
ment around over-densities traced by spheroidal galaxies,
• spheroidals are preferentially elongated towards discs

and other spheroidals,
• and that spin is a good tracer of reduced inertia shapes

for discs, but not for spheroidals.

In the next section, we mimic observations by exploring
projected ellipticity alignments.

5.2 Projected correlations

The intrinsic alignment signal is typically measured in the
literature using the projected correlation function of galaxy
positions and shapes (Equation 8). This quantity is read-
ily accessible using shear measurements from survey galaxy
catalogs. In this work, we also obtain the projected correla-
tion functions of the density field and projected shapes, wδ+

and wδ×, where the density field is obtained from a random
subsampling of 0.007% of the DM particles in the box. This
subsampling guarantees a 10% convergence level in the DM
power spectrum, which is similar to the expected level of
convergence in determining galaxy shape (as we discussed
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from Figure 2). Tenneti et al. (2015) used a similar approach
with a comparable subsampling fraction. The measurement
of wδ+ and wδ× is advantageous in that it allows us to avoid
modelling galaxy bias, or to make any assumption about its
scale dependence. Also, we do not need to model peculiar
velocities, as the DM and galaxy positions in the box are
perfectly known.

We measure the wδ+ correlation function following
Equation (8) for all galaxies with > 300 stellar particles in
the simulation box and replacing the density tracers by the
subsample of DM particles. Grid locking (see Appendix A)
is not expected to contaminate the measurement by spher-
ical symmetry. As a consequence, the S+R term is not ex-
pected to contribute to this correlation and we neglect it in
this section. Section A2 provides confirmation of these as-
sumptions. We show the projected correlation functions of
the density field and the + component of the shape from
the simple inertia tensor and the reduced inertia tensor in
the left panel of Figure 11. As expected from our results
in Section 5.1, we find an anti-correlation between the +
component of the shape and the density field that is sig-
nificant at > 99.99% C.L. level for the simple inertia ten-
sor. The negative sign indicates that the projected shapes of
galaxies are elongated pointing towards other galaxies, i.e.,
that alignments are radial. We find a decreased tendency for
alignments (47% C.L.) when using the reduced inertia ten-
sor, consistently with rounder shapes and with the results
presented in Section 5.1. The right panel of Figure 11 shows
that the δ× correlation is consistent with null (at the ≃ 65%
C.L.).

In Figure 12, we split the sample of galaxies with shapes
into 5 bins of mass (left panel), V/σ (middle panel) and
u − r colour (right panel). All bins have approximately the
same number of galaxies and the legend in each panel indi-
cates the mean of the property considered for the galaxies in
each bin. We find that galaxies in the lowest (highest) V/σ
(u − r colour) bin carry the strongest alignment signal. We
find very similar results when splitting the galaxies by their
g − r colour. In comparison, the split by mass results in a
less clear identification of which galaxies are responsible for
projected shape alignments. Figure 13 shows that there is a
significant correlation between colour and V/σ for galaxies
with redder colours. On the contrary, V/σ and mass are not
monotonically correlated, as shown earlier in Figure 1.

Interestingly, the high V/σ galaxies do not show any sig-
nificant alignment in Figure 12. This is puzzling given the
results presented in Figure 9. To elucidate this discrepancy,
we compute the wg+ statistic using the same selection cuts
as for Figure 9 and show the results in Figure 14. We find
that, while the alignment of spheroids in the direction of the
clustering of discs is still significant in projection, the disc
alignment signal is diluted and consistent with null at the
27% C.L. using the simple inertia tensor, but less so (89%
C.L.) using the reduced inertia tensor. In the latter case, the
signal was more significant from the orientation-separation
correlation of Section 5.1. In projection, a tangential align-
ment is only marginally present. (We remind the reader that
gravitational lensing has the same positive sign for correla-
tions measured between pairs of galaxies with large separa-
tions along the line of sight). Notice that, as discussed in
Section 5.1, a lower level of correlation is expected for the
simple inertia tensor given that this is not a good tracer of

Figure 13. Galaxies in the V/σ vs u− r plane. There is a strong
correlation between V/σ and u − r colour at the red end of the
colour distribution. Galaxies in Horizon-AGN have a bimodal
distribution of colours and V/σ. The red horizontal line represent
our fiducial cuts in V/σ used in Section 5.1.

spin alignment. Moreover, there are several reasons why the
disc orientation correlation observed in Figure 9 can be di-
luted in projection. One factor is the weighting by galaxy
ellipticity in Equation (7). Face-on discs would carry no sig-
nal in this statistic. The second reason for dilution is the fact
that Equation (8) weights the signal in each Π bin equally,
while the alignment signal is expected to lose correlation
as Π increases. In comparison, Figure 9 showed the level
of alignment as a function of three dimensional separation:
pairs with large Π have large r in that figure and lower cor-
relation.

Finally, we also study the cross correlation of galaxy po-
sitions and galaxy shapes, considering all galaxies in the sim-
ulation box. This correlation will include the effect of galaxy
bias, compared to the DM-shape correlation. We show a
comparison of cross correlation of + shapes and DM, and
of + shapes and galaxy positions in the left panel of Fig-
ure 11. We find that the galaxy-shape correlation traces the
DM-shape correlation well within the error bars. There is a
discrepancy in amplitude of the correlation in the first bin
in the case of the simple inertia tensor. The excess power
in the galaxy-shape correlation could arise from tidal debris
on small scales or from the increased clustering compared to
the DM, but we cannot draw firm conclusions from this com-
parison. In general, the similarity between the galaxy-shape
correlation and the DM density-shape correlation suggests
that the bias parameter bg is not very different from unity
for the sample of galaxies considered, and that it does not
have any significant scale dependence.

5.3 Modelling of alignment signal

Early-type galaxy alignments are thought to arise due to
the action of the tidal field. In this model, the tidal field
contributes a small component to the projected ellipticity
of a galaxy, given by (Catelan, Kamionkowski & Blandford
2001)
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Figure 11. wδ+ projected correlation function for all galaxies with > 300 stellar particles (left panel). This cut corresponds to a cut in
mass of log(M∗/M⊙) > 9. The same panel also presents a comparison between the wδ+ correlation and the correlation between galaxy
positions and + component of the shapes wg+. The right panel shows the projected δ× correlation as a test for systematics. In both
panels, results obtained with the simple inertia tensor are indicated with the blue line; while the red line corresponds to shapes obtained
from the reduced inertia tensor. The measured points for wg+ are arbitrarily displaced to larger radii by 5% for visual clarity in the left
panel, and similarly for the reduced inertia tensor in the right panel.

Figure 12. wδ+ projected correlation functions for 5 bins of mass (left panel) and V/σ (middle panel) and u − r colour (right panel).
The legend indicates the mean of the considered property in each bin, and the 5 bins are approximately equally populated. For simplicity,
we only show the correlations that correspond to shape measurements using the simple inertia tensor. The impact of using the reduced
inertia tensor is shown in Figure 11.

γI
(+,×) =

C1

4πG
(∂2

x − ∂2
y , ∂x∂y)S [φp], (9)

where C1 is a proportionality constant that parametrizes
the response of the shape of a galaxy to the tidal field, φp

is the Newtonian gravitational potential at the redshift of
formation of a galaxy and S is a smoothing filter that acts
to smooth the potential over the typical scale of the galactic
halo (∼ 1 Mpc)3. As a consequence, there is a correlation
between galaxy positions and their intrinsic shapes, given
by

Pg+(k, z) = − bgC1ρcritΩm

D(z)

k2
x − k2

y

k2
Pδ(k, z) , (10)

3 Notice that we adopt a different sign convention than
Singh, Mandelbaum & More (2015) and Tenneti et al. (2015),
whereby alignments are negative if they are radial, and positive
if tangential.

where bg is the galaxy bias, ρcrit is the critical density of
the Universe today, D(z) is the growth function (normalized
to unity at z = 0) and Pδ is the matter power spectrum.
While these expressions are not strictly valid in the non-
linear regime, it is customary to approximate the nonlinear
scale alignments by replacing the linear power spectrum in
Equation (10) (Bridle & King 2007) by its nonlinear ana-
logue. Recent observational works are beginning to test this
assumption (Singh, Mandelbaum & More 2015), but most
constraints on the amplitude of alignments are still typically
given in terms of the nonlinear alignment (‘NLA’) approx-
imation of Bridle & King (2007). The g× power spectrum
is not presented because it is expected to average to null in
projection.

Equation (10) can be transformed to redshift space to
give a prediction for the on-the-sky wg+ projected correla-
tion,

© 0000 RAS, MNRAS 000, 000–000



12 Chisari et al.

Figure 14. Cross-correlation of galaxy positions and + compo-
nent of the shape applying the same selection as in Figure 9. The
alignment of low V/σ galaxies in the direction of high V/σ galax-
ies (red) is significant after projection of the shapes and through
the simulation box. On the contrary, the tangential alignment of
high V/σ galaxies around low V/σ tracers of the density field
(black) is diluted in projection, albeit the dashed line still rejects
the null hypothesis at 89% C.L. The error bars in the case of the
black dashed line have been artificially displaced to 5% larger rp

for visual clarity.

wg+(rp) = − bgC1ρcritΩm

π2D(z)

Z ∞

0

dkz

Z ∞

0

dk⊥

k3
⊥

(k2
⊥ + k2

z)kz
Pδ(k, z) sin(kzπmax)J2(k⊥rp), (11)

where bg is the galaxy bias, rp is the projected radius, Πmax

is the line of sight distance over which the projection is
carried out and J2 is the second order Bessel function of
the first kind. Notice that the Kaiser factor (Kaiser 1987;
Singh, Mandelbaum & More 2015) is unnecessary to model
the galaxies in the simulation, since we have access to the
true positions of the galaxies along the line of sight. Simi-
larly, we can safely neglect fingers-of-God effects arising from
peculiar velocities in the nonlinear regime.

Singh, Mandelbaum & More (2015) observed an excess
of power on small scale alignments compared to the best
fit NLA model to the LOWZ galaxy sample of the SDSS.
In this regime, we also consider a halo model developed by
Schneider & Bridle (2010). According to this model, the one
halo power spectrum of galaxy positions and intrinsic shapes
is given by

P 1h
δ,γI (k, z) = −ah

(k/p1)
2

1 + (k/p2)p3
, (12)

where ah is the halo model alignment amplitude on small
scales; p1, p2, and p3 are fixed parameters based on fits
by Schneider & Bridle (2010); and the projected correlation
function is then given by

w1h
g+ = −bg

Z
dk⊥
2π

k⊥P 1h
δ,γI (k⊥, z)J0(k⊥rp). (13)

While the alignments of disc galaxy shapes have not
been detected in observations, and despite the fact that
the tidal alignment model is not expected to describe

their alignments (Catelan, Kamionkowski & Blandford
2001; Hirata & Seljak 2004), the available constraints are
typically phrased in terms of the NLA model as well (e.g.,
Mandelbaum et al. 2011).

We now place quantitative constraints on the goodness-
of-fit of the intrinsic alignment models. We build a model
template of the intrinsic alignment signal, wµ

δ+(rp), at the
positions for which we measure this correlation in the simu-
lation.

Using the diagonals of the jackknife covariance, we de-
termine the χ2 from summing over all radial bins as follows

χ2 =
X
rp

(wδ+(rp)− wµ
δ+(rp))

2

Var[wδ+(rp)]
, (14)

where µ represents the alignment model template to be fit
and we look for the minimum χ2 by varying the parameters
of the fit; and analogously for wg+, in which case only joint
constraints of the product of bg and the alignment ampli-
tude are obtained. We emphasize that we are not modelling
covariances or noise in this matrix when performing the fits.

Notice that while the results presented in the previ-
ous section do not guarantee that disc-like galaxies do not
contribute to the alignment signal, the correlation functions
shown in Section 5.1 suggest that they counter-act the radial
alignment of ellipticals due to their tendency to orient tan-
gentially around over-densities. For this reason, and given
that we do not have sufficient constraining power to bin
the galaxy sample into different populations, we fit different
models to wg+ and wδ+ shown in Figure 11, which include
the contribution of all galaxies with > 109M⊙ stellar masses
in the simulation.

We focus on fits to the signal obtained using the simple
inertia tensor, as in the case of the reduced inertia tensor the
results are consistent with null. A power-law fit as a func-
tion of projected radius (wµ

g+ = bgAIr
β
p ) yields the following

constraints on power-law amplitude and power-law index:
bgAI = −0.13 ± 0.03 and β = −0.75 ± 0.25, respectively.
The error bars quoted correspond to 68% C.L when holding
one of the parameters fixed at the best fit value correspond-
ing to the minimum χ2 (bgAI = −0.17 and β = −1.0). We
find that the linear alignment model is a very poor fit due to
the lack of power on small scales compared to the measured
signal. Similarly, the NLA model also underestimates the
correlation of positions and shapes on small scales4. In this
case, the best fit model is shown in Figure 15. The best fit
NLA model for wg+ in the case of the simple inertia tensor is
represented by the black solid line. In gray, we show the best
fit NLA model for wδ+, also for the simple inertia tensor,
which is comparable to the black line. The black dotted line
shows the best fit to wδ+ in the case of the reduced inertia
tensor, for which the best fit amplitude is consistent with
null at 68% C.L.

Given that the best fit NLA model underestimates the
alignment signal on small scales, we consider fitting a sum
of the NLA model template (across all scales measured) and
the halo model (only at rp < 0.8/h) with the parameters of

4 In this particular work, we do not apply any smoothing to
the tidal field. A smoothing filter would suppress power on small
scales, worsening the comparison of the NLA model to the mea-
sured signal.
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Schneider & Bridle (2010). Notice that the physical inter-
pretation of these results is not straightforward and should
only be considered as phenomenological. The constraints on
the parameters for the NLA and halo model combination
are: bgah = 0.27+0.12

−0.11 , bgAI = 0.58+0.34
−0.35 . The χ2 in this case

is comparable to that of the power-law fit. If we use more
and smaller (L/4 a side) jackknife regions, the error bars
increase slightly yielding bgAI = 0.60+0.51

−0.41 .
Given the limited simulation volume and the corre-

sponding (cosmic) large error bars, we cannot obtain mean-
ingful constraints on mass or luminosity dependence of the
signal. However, we note that, as discussed in Section 5.2,
the mass dependence is not monotonic.

6 DISCUSSION

Theoretical models of intrinsic alignments have in-
deed suggested that the population of galaxies
subject to this mechanism can be split in two
(Catelan, Kamionkowski & Blandford 2001). Disc-like sys-
tems interact with the large-scale structure through torques
to their angular momentum vector, while spheroidals, which
do not have significant angular momentum, would tend to
orient their major axes pointing towards over-densities. In
this work, we have used V/σ as a proxy of galaxy morphol-
ogy, and we have indeed confirmed the existence of two
different alignment mechanisms in play for spheroidals (low
V/σ) and disc-like (high V/σ) galaxies. While V/σ is not
easily accessible to upcoming gravitational lensing surveys,
fortunately there is a strong correlation between u − r and
V/σ (Figure 13) that can help identify the two populations
of galaxies and their alignments. Low V/σ galaxies tend
to have redder colours, while high V/σ galaxies tend to be
bluer.

The alignments of blue galaxy shapes have so far been
consistent with null from observations (Mandelbaum et al.
2011; Heymans et al. 2013), albeit with large error bars
that still allow for a significant level of contamina-
tion from blue galaxy alignments to cosmological observ-
ables in current and future surveys (Chisari et al. 2015;
Krause, Eifler & Blazek 2015). We similarly find that the
projected correlation function of blue galaxy positions and
shapes is consistent with null in Horizon-AGN. Neverthe-
less, while blue galaxies do not align around each other, they
tend to align tangentially around red galaxies in three di-
mensional space, and this signal is washed out in projection
within our error bars. We emphasize that this does not im-
ply that blue galaxy alignments can be neglected for future
surveys. Codis et al. (2015) found that spin-spin alignments
could potentially translate into worrisome levels of contami-
nation for future lensing surveys, particularly for blue galax-
ies. Their results were based on a “spin-gives-ellipticity” pre-
scription for translating spins into shapes for disc-like galax-
ies. We found that the validity of this assumption depends on
the method used to determine ellipticity, with better agree-
ment for the reduced inertia tensor case. The statistics of
spin/shape alignments of disc galaxies in three dimensions
from the simulation can be a useful tool to constrain disc
alignment models and determine the level of contamination
to future surveys.

Several theoretical predictions have been made for the

spin alignments of disc-like galaxies. In simulations, discs
tend to form with their spin correlated with the direction
of filaments (Bailin & Steinmetz 2005; Aragón-Calvo et al.
2007; Hahn et al. 2007; Sousbie et al. 2008; Zhang et al.
2009; Codis et al. 2012; Libeskind et al. 2012; Dubois et al.
2014) and the vorticity of the density field around them
(Laigle et al. 2015). This is consistent with the scenario of
spin acquisition by tidal torquing biased by the large scale
structure filaments. Extended tidal torque theory predicts
that halos with mass below 5 × 1012 M⊙ at redshift z = 0
tend to form with their spin pointing along the direction
of filaments, the center of which are represented by saddle
points of the density field (Codis, Pichon & Pogosyan 2015).
In the plane perpendicular to the filament and containing
the saddle point, halos are predicted to show this prefer-
ential orientation. Away from this plane and closer to the
nodes of the filament where higher mass halos reside, spins
flip direction, becoming perpendicular to the filamentary
axis. Hence, if galactic spins are correlated with halo spins,
we should expect low-mass galaxies to have a spin aligned
with the filamentary axis (as found in Dubois et al. (2014)
for Horizon-AGN galaxies) and therefore also aligned5 with
the separation vector (since we expect a higher number
of galaxies to inhabit within the filament). In contrast,
Codis, Pichon & Pogosyan (2015) predict that very massive
galaxies should have a spin perpendicular to the filament.
However, massive galaxies tend to be supported by random
motions of their stars, and hence the definition of the spin
direction becomes more noisy. The signal predicted by the-
ory could also be diluted due to the fact that not all low
mass galaxies reside in filaments. We found that the spin
and the minor axes of massive galaxies have less tendency
to be aligned than for their lower mass counterparts.

Works by Tenneti et al. (2014, 2015); Velliscig et al.
(2015) have also studied the intrinsic alignments of galax-
ies in hydrodynamical simulations. Tenneti et al. (2015) find
that orientation-position correlations (their ‘ED’ correla-
tion) with the density field have similar strengths and signs
for blue and red galaxies when correlated with the density
field. On the contrary, we find that blue galaxies tend to have
tangential alignments around the locations of red galaxies
(but not around each other). In projection, both works find
the blue galaxy alignments to be suppressed. Those authors
did not study spin alignments, which in this work have been
shown to be significant for disc-like galaxies and to be con-
nected to their shape alignments.

Observational results have shown there is a
strong trend for radial alignment of the ellipticities of
red galaxies (Mandelbaum et al. 2006a; Hirata et al.
2007; Okumura, Jing & Li 2009; Joachimi et al. 2011;
Heymans et al. 2013; Singh, Mandelbaum & More 2015),
which increases for higher mass galaxies. This trend is
also seen in Horizon-AGN for the shapes of spheroidals.
Tenneti et al. (2015) presented NLA and power-law fits to
wδ+ from their simulation as a function of redshift and
luminosity of the galaxy sample using iterative reduced
inertia tensor for the galaxy shapes. We find that their
fits reproduce the alignment signal of luminous galaxies

5 or anti aligned, should the galaxies belong to octants of opposite
polarity, see Codis, Pichon & Pogosyan (2015), section 6.2.3.
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Figure 15. Alignment model fits for wδ+ and wg+ for all galaxies with > 300 stellar particles. Results obtained with the simple inertia
tensor are indicated with the red lines; while the blue line corresponds to shapes obtained from the reduced inertia tensor for wδ+ only.
We show fits from the NLA model to wδ+ (gray solid for simple inertia tensor; black dotted for reduced inertia tensor) and to wg+ (black
solid for the simple inertia tensor). The measured points for wδ+ and simple inertia tensor shapes are arbitrarily displaced to larger
radii by 5% for visual clarity. The NLA model significantly underestimates the power in alignments at small separations (< 1 Mpc/h) in
qualitative agreement with observations by Singh, Mandelbaum & More (2015).

(Mr < −22.6) presented in this work. We show this agree-
ment in Figure 16. The gray curves show their power-law fits
on small scales, and their NLA model fits across all scales
(see their Table 1). Given that Tenneti et al. (2015) match
the observed alignments of LRGs with their simulation
data, it is expected that Horizon-AGN will equally match
observations if the redshift dependence of the signal is
similar to that found in that work. However, we find that
their fits significantly overestimate the alignment amplitude
of the whole galaxy sample presented in Figure 15, and
this could indicate a steeper luminosity dependence of
alignments in Horizon-AGN. Joachimi et al. (2011) indeed
found a steeper luminosity dependence of observed LRG
alignments compared to Tenneti et al. (2015). However,
such a steep luminosity dependence is not sufficient to
reproduce the alignment amplitude of Figure 15. It is
possible that blue galaxy alignments are suppressing our
results in that figure as well.

Codis et al. (2014) found no alignments for red galax-
ies using Horizon-AGN at z = 1.2. In that work, spin was
used as a proxy for galaxy shape. Our results are consistent
with theirs. We have shown that for red galaxies, the spin
alignment signal is very different from the shape alignment
signal, as these galaxies do not carry significant angular mo-
mentum.

Velliscig et al. (2015) studied the galaxy-halo misalign-
ment comparing the shapes of stars and hot gas to that of the
underlying DM halo using the EAGLE smoothed-particle-
hydrodynamics simulation. They found that the alignment
of the stellar component with the entire DM halo increases

Figure 16. Measurement of wδ+ from Horizon-AGN for the
most luminous galaxies, with absolute r-band magnitudes Mr <
−22.6 (∼ 800 galaxies). The blue curve corresponds to shapes
measured using the reduced inertia tensor and the red curve, us-
ing the simple inertia tensor. We also show alignment model fits

from Tenneti et al. (2015) (gray), which are in good agreement
with our results. Tenneti et al. (2015) fit a power-law on small
scales (0.1−1 Mpc/h, shown here in the range 0.1−2 Mpc/h) and
the NLA model on large scales (6− 25 Mpc/h, extrapolated here
over all scales shown). While the agreement is good at high lumi-
nosity, we find that the fits by Tenneti et al. (2015) significantly
overpredict the alignment signal for the whole sample shown in
Figure 15.
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as a function of distance from the center to the subhalo and
as a function of halo mass. This is in qualitative agreement
with our finding that the shape alignment signal is reduced
when using the reduced inertia tensor, which puts more
weights towards the inner regions of galaxy. However, they
also find that misalignment angles between the stellar and
the DM components are larger for early-type than for late-
type galaxies using the simple inertia tensor. This result will
require further comparison, as the DM is expected to have
stronger alignments than the baryons (Okumura, Jing & Li
2009) and given that we find a stronger shape alignment
signal in Horizon-AGN for early-types than for late-types.

7 CONCLUSIONS

We have studied the alignments of galaxies, as traced by
their stellar particles, using the Horizon-AGN simulation.

The main result of this paper is the clear identifica-
tion of two different alignment mechanisms for disc-like
galaxies and spheroidals, in qualitative agreement with the-
oretical expectations (Catelan, Kamionkowski & Blandford
2001; Codis, Pichon & Pogosyan 2015). This is the first
time that these two mechanisms are clearly separated in a
hydrodynamical cosmological simulation. In contrast, pre-
vious work by Tenneti et al. (2014) was unable to dis-
tinguish between red/blue galaxy orientation-separation
alignments. This is likely a consequence of the different
methods used to solve for the hydrodynamics (AMR in
Horizon-AGN compared to smoothed particle hydrodynam-
ics in MassiveBlack II), which result in different galaxy prop-
erties and their evolution with redshift.

We also reached the following conclusions:

• High mass (low V/σ) galaxies are elongated pointing
towards other galaxies. This trend is preserved when pro-
jected correlations of the density field and galaxy shapes
are considered.
• There is a preferential tangential orientation of disc-

like galaxies around spheroidals. This trend is diluted in
projection, possibly due to the equal weighting of the dif-
ferent Π bins in Equation (8) and the reduced contribution
of face-on discs to Equation (7). This suggests that in order
to extract the maximum possible information from intrinsic
alignments in simulations, it could be beneficial to avoid per-
forming projections along the line of sight, and rather access
the full three dimensional information on alignments pro-
vided by the simulations. This would increase the signal-to-
noise ratio in intrinsic alignments constraints from simula-
tions and allow for more accurate forecasts of intrinsic align-
ment contamination to weak lensing in future surveys, such
as Euclid 6 (Laureijs et al. 2011), the Large Synoptic Survey
Telescope7(Ivezic et al. 2008) and WFIRST8 (Green et al.
2011).
• We are able to describe wg+ across all scales probed

and for all galaxies in the simulation with > 109 M⊙ using
a power-law in the case where shapes are obtained with the

6 http://sci.esa.int/euclid
7 http://www.lsst.org
8 http://wfirst.gsfc.nasa.gov/

simple inertia tensor. The NLA and LA model tend to under-
estimate the power on small scales; a conclusion also reached
by Singh, Mandelbaum & More (2015) using low redshift
observations of LRGs. Fits to wg+ in the reduced inertia
tensor case result in an alignment amplitude that is con-
sistent with null for our complete sample of galaxies. This
does not imply that alignments are not potential contam-
inants to weak lensing measurements. It will be necessary
to match the shape measurement and galaxy selection done
in observations to make more quantitative assessments of
contamination from alignment to future surveys. The align-
ments of the most luminous galaxies in Horizon-AGN are,
in fact, in agreement with work by Tenneti et al. (2015) and
the alignments of bright LRGs in SDSS.
• Galactic kinematics, as quantified by V/σ, is a good

proxy for the level of alignment. We also find that, given the
existing correlation between V/σ and u−r colour, the latter
can also be used as proxy to separate galaxy populations
with different sensitivity to alignment. On the contrary, the
amplitude of the intrinsic alignment signal is not monotonic
with stellar mass, which we interpret as a consequence of
the wide distribution of stellar masses at low V/σ.
• We emphasise that correlations of spins (or shapes) and

separation are not contaminated by grid-locking because
this effect averages to null for position-shape correlations
(as shown in Appendix A). This is not necessarily true for
two-point auto-correlations of spins and/or shapes, and so
we refrain from giving these a physical interpretation in the
main body of the manuscript, although we present them in
Appendix B for completeness.
• The choice of shape estimator can have a large impact

on predictions for intrinsic alignments from cosmological
simulations. To make accurate predictions of intrinsic align-
ment impact on weak lensing surveys, we expect that it will
be necessary to create mock images of simulated galaxies in
a manner that takes into account photometric depth, noise
and convolution by the point-spread function. We defer this
and a study of redshift evolution and selection cuts on the
galaxy sample to future work.
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APPENDIX A: GRID-LOCKING

Adaptive-mesh-refinement simulations are thought to be
subject to grid-locking systematics, whereby the galaxy
spins become aligned with the directions of the grid. We
have verified that this effect is indeed present in the
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Horizon-AGN simulation, but we demonstrate in this ap-
pendix that it does not affect position-shape or position-spin
correlations.

A1 Correlations with the box

We consider possible systematics that might arise from cor-
relations of the galaxy orientations with preferential direc-
tions of the simulation box. Figure A1 shows the excess frac-
tion of galaxies as a function of | cos(s · {x,y, z})|, where
s is the galaxy spin and we average over x, y, z. There is
a clear excess of galaxies at directions perpendicular and
parallel/anti-parallel to the grid, and a decrement at inter-
mediate angles. A similar behaviour is observed for the direc-
tion minor axes in the same figure. The higher mass galax-
ies are less affected, but the trend is not monotonic with
mass. We have also considered selecting the galaxy sample
by median stellar age, resolution and colour. While mass
and median stellar age cuts can help remove the system-
atics, it is not possible to define clean sample without re-
moving the vast majority of the galaxies. Moreover, it is not
clear how these selection cuts affect the intrinsic alignment
measurement and its comparison to current observational
constraints. For these reasons, we decide to avoid placing
cuts on the galaxy sample to reduce the grid-locking effects.
Instead, we show in the next section that the correlation be-
tween galaxy shapes, spins and the box have no impact on
the wδ+ statistic presented in Section 4.

We have also considered the grid-locking signal of
shapes obtained through the reduced inertia tensor. In this
case, we find that the grid-locking signal is smaller than for
Figure A1.

A2 Contamination to intrinsic alignments

Grid-locking creates correlations of the spins and shapes
of galaxies with {x, y, z}. However, due to the periodic
boundary conditions of the box, we expect that the grid-
locking will average to null around any arbitrary point
within the box. We test this hypothesis by randomizing the
position of galaxies while computing the relative orienta-
tion of their spins and shapes around these random posi-
tions. Figure A2 shows an example correlation for shapes
defined from the orientation of the minor axis and galax-
ies in three mass bins. We do not find significant correla-
tions when positions are randomized. Notice that this test
is sufficient only under the assumption that the large-scale
structure is not itself locked to the grid. This assumption
was shown to be valid for the dark matter large-scale struc-
ture in Horizon-AGN (Dubois et al. 2014). We further test
this assumption for galaxies in Horizon-AGN in Figure A3,
where we show the excess probability of spin alignments (top
panel) and separation vectors alignments (bottom panel)
with the grid for pairs of galaxies separated by less than 25
Mpc/h in the simulation. Spins are clearly correlated with
the box axes, as demonstrated in Fig. A1, while this is not
the case of the separation vectors.

We apply a similar procedure to confirm that grid-
locking does not contribute to wδ+. We obtain the pro-
jected correlation function of the random positions and the
+ (wr+) and × components of the shapes. Both of these cor-

Figure A2. Correlation between minor axis orientation and
separation vector as a function of separation using random-
ized positions. Black lines correspond to low mass galaxies
(109 M⊙ < M∗ < 109.5 M⊙); red lines, to intermediate mass
galaxies (109.5 M⊙ < M∗ < 1010.6 M⊙); and blue lines, to high
mass galaxies (M∗ > 1010.6 M⊙).

relations are consistent with null. This confirms that spher-
ical averages remove the effect of grid-locking on position-
shape correlations. Figure A4 shows wr+ for five mass bins
as a function of rp.

Notice that this procedure is not applicable to two-point
auto-correlations of the spin or the minor axes. In other
words, the impact of grid-locking on auto-correlations can-
not be fully quantified by randomizing galaxy positions. This
procedure would only measure the impact of uniform corre-
lations of galaxy shapes or spins across {x, y, z}, but two
galaxies clustered together could be increasingly affected by
grid-locking. We present auto-correlations in Appendix B,
along with possible interpretations of the signals as a result
of physical alignments or grid-locking.

APPENDIX B: AUTO-CORRELATIONS

We have so far shown that the spins and shapes of galax-
ies tend to align with the grid, and that these grid-locking
effects do not affect our measurements of position-shape
(or position-spin) correlations. Unfortunately, the symme-
try arguments that apply to position-shape correlations no
longer hold when auto-correlations are considered. As a con-
sequence, it is harder to separate the physical alignment
signal and the grid-locking from auto-correlation of galax-
ies spins or shapes. In this section, we present those auto-
correlations and we give the two possible interpretations of
the signal.

The spin-spin (SS) correlation function measures the
relative orientation of the angular momenta of two galaxies
separated by a comoving distance vector r,

ηS(r) = 〈|ŝ(x) · ŝ(x + r)|2〉 − 1/3 , (B1)

and the ellipticity-ellipticity (EE) correlation function is
given by

ηE(r) = 〈|ê(x) · ê(x + r)|2〉 − 1/3 , (B2)

where ê is the direction of the minor axis. Similarly to ξg+,
defined in Equation (6), we can define the auto-correlation
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Figure A1. Excess fraction of galaxies with respect to a uniform distribution as a function of the angle between the spin/minor axis
with the directions of the box (averaged over j = {x, y, z}). In the left panels, the galaxy sample is split by mass in the following bins:
109 M⊙ < M∗ < 109.5 M⊙ (black), 109.5 M⊙ < M∗ < 1010.6 M⊙ (red) and M∗ > 1010.6 M⊙ (blue). In the left panel, the galaxy sample
is split by V/σ: V/σ < 0.55 (black), 0.55 < V/σ < 0.79 (red) and V/σ > 0.79 (blue). There is an excess of galaxies in directions parallel
and perpendicular to the grid axes, which is less significant for high mass and low V/σ galaxies. This effect averages to null for the
angular and projected correlations of spin/minor axis and separation, but it could give rise to a non-negligible two-point correlation.

Ox-Oy Oy -Ox-Ox

Oz

-Oz

Figure A3. Distribution of spins (top panel) and separation
vectors of galaxy pairs separated by less than 25 Mpc/h (bottom
panel) on the sphere. The excess probability ξ defined so that the
PDF reads P (cos θ, φ) = (1 + ξ)/4π is colour-coded from dark
blue (-1) to dark red (+1). If the spins are clearly correlated with
the box axes, this is not the case of the separation vectors for
which the magnitude of the excess probability is smaller (lighter
colours) and the pattern does not seem to be correlated with the
grid.

function of + components of the ellipticity

ξ++(rp, Π) =
S+S+

RR
, (B3)

and its projection along the line-of-sight, w++; and analo-
gously for ξ×× and w××.

Figure B1 shows the relative orientation of the spins of
two galaxies (right panel) separated by a comoving distance
of r. The correlation is significant for low and intermediate
V/σ galaxies. For pair separations . 10 h−1 Mpc, the spins
tend to align with each other and the alignment decreases on
larger scales. This trend is monotonic with V/σ. The results

Figure A4. Projected correlation function between random posi-
tions and + component of the ellipticity. This result is consistent
with null, which suggests that any systematics coming from grid-
locking is not affecting our δ+ or δ× measurements. The different
colours represent different bins in stellar mass and the points are
slightly displaced to higher rp for each mass bin for visual clarity.
The mean stellar mass in each bin is indicated in the legend.

for the auto-correlation between minor axes or between spins
are very similar when minor axes are computed using the re-
duced inertia tensor (middle panel of Figure B1). The signal
slightly decreases when the simple inertia tensor is used (left
panel). These three dimensional auto-correlations of galaxy
orientations seem to be dominated by the contribution of
disc-like galaxies. In Section 5.1, we saw that disc galaxies
tend orient their spin (also reduced minor axis) tangentially
around over-densities. Figure B1 is qualitatively compatible
with those results. Similarly, we find no auto-correlation be-
tween the shapes of low V/σ galaxies in the left panel of
Figure B1.

We show the orientation-separation correlations as a
function of mass in Figure B2. Intermediate and low mass
galaxies tend to have a stronger auto-correlation than
high mass galaxies. The signal is stronger for interme-
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diate mass galaxies, which is expected both from grid-
locking and from the physical signal due to the contribu-
tion of the high V/σ population. Similar qualitative results
were obtained by Codis et al. (2015) at z = 1.2 using the
Horizon-AGN simulation with the same mass selection (see
their Figure 8 for a direct comparison). The trend with mass
is similar, but the amplitude of the signal is higher in our
case, suggesting that the spin auto-correlation increases at
lower redshift and at fixed mass. Codis et al. (2015) also
found that separating the galaxy population by u− r colour
into red and blue galaxies resulted in a significant spin align-
ment signal for blue galaxies, while no spin alignment was
found for red galaxies. This is also in agreement with our re-
sults, given the strong correlation between colour and V/σ.

The projected auto-correlation functions of galaxy
shapes in three mass bins and three V/σ are shown in Fig-
ure B3 decomposed into E-modes (++) and B-modes (××).
Qualitatively, we observe that the projected auto-correlation
of shapes is more significant for intermediate mass galax-
ies and high V/σ. This is consequence of a selection effect:
galaxies with intermediate masses also tend to have higher
V/σ in Figure 1. We also find that the amplitude of the
auto-correlation decreases when the reduced inertia tensor
is used. We attribute this to the fact that w++ and w××
carry a double weighting by galaxy ellipticities, which are
also more round in the reduced case.

Both E-modes and B-modes are present with similar
amplitudes and scale-dependence in the top middle and right
bottom panels of Figure B3. Using the diagonals of the jack-
knife covariance, we find that the signal is different from null
at the 89% C.L. (85% C.L.) for the E-modes (B-modes) of
intermediate mass galaxies when using the simple inertia
tensor; and higher (99% C.L.) using the reduced inertia ten-
sor. For high V/σ galaxies, the signal is different from null
at the 79% C.L. for E-modes and 81% for B-modes using
the simple inertia tensor; and higher (> 93% C.L.) using the
reduced inertia tensor. All other bins of mass and V/σ have
auto-correlations generally consistent with being null at the
2σ level.

Overall, we find that auto-correlations of galaxy shapes
or spins are dominated by the contribution of disc-like galax-
ies. We find no contribution from spheroidals to these auto-
correlations. Moreover, we find equal contribution of E-
modes and B-modes in the projected correlation functions.
If the signal is to be interpreted as a physical signal, the pres-
ence of an auto-correlation of disc-like tracers is expected,
and the trend with mass/dynamics agrees with that found
in Section 5.1.

On the other hand, the absence of an auto-correlation
for the shapes of spheroidals seems inconsistent with the
presence of auto-correlations for discs. This could suggest
that at least part of this signal is produced by grid-locking.
E-mode and B-mode auto-correlations could also be pro-
duced by both a physical signal or by grid-locking. In the
latter case, B-modes would be a consequence of preferen-
tial alignments of the simulated galaxies with the diago-
nals of the grid. Ideally, two-point correlations such as those
presented in Figures B1 and B3 could potentially be used
to constrain a simulation-dependent model of grid-locking.
However, there is not sufficient evidence that current intrin-
sic alignment models predict the correct relation between
density-shape and shape-shape correlations, especially on

such small scales as probed in this work. Hence separat-
ing the grid-locking from the physical alignment signal in
auto-correlations remains a difficult task for adaptive-mesh-
refinement codes like ramses.
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Figure B1. Correlations between minor axes obtained from the simple inertia tensor (left panel), from the reduced inertia tensor (middle
panel) and between spins (right panel) as a function of comoving separation. Black lines correspond to low V/σ galaxies (V/σ < 0.55);
red lines, to intermediate V/σ galaxies (0.55 < V/σ < 0.79); and blue lines, to high V/σ galaxies (V/σ > 0.79).

Figure B2. Correlations between minor axes obtained from the simple inertia tensor (left panel), from the reduced inertia tensor
(middle panel) and between spins (right panel) as a function of comoving separation. Black lines correspond to low mass galaxies
(109 M⊙ < M∗ < 109.5 M⊙); red lines, to intermediate mass galaxies (109.5 M⊙ < M∗ < 1010.6 M⊙); and blue lines, to high mass
galaxies (M∗ > 1010.6 M⊙).

Figure B3. Projected auto-correlation functions of + and × components of the shape as a function of projected radius in three mass
bins (upper panels) and three V/σ bins (lower panels). In all panels, the ++ correlation is shown in black for shapes measured using
the simple inertia tensor; correspondingly, the ×× correlation is shown in red. All panels show the impact of using the reduced inertia
tensor (blue lines for ++ and green lines for ××). All ×× correlations are arbitrarily displaced to 5% higher rp for visual clarity.
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5 Alternative probes of cosmology using the
large-scale structure of the Universe

In this chapter, I will present two alternative probes of cosmology beyond two-
point correlation fonctions : topological invariants of the density field and count-in-
cells statistics. In a first part, I will show how to predict topological invariants for
Gaussian random fields in real space. Then, I will extend this theory to weakly non-
Gaussian fields and to redshift space where some level of symmetry is broken. This
formalism gives access to D(z) and to f = d logD/d log a- the linear growth rate of
structures- which probe in particular the equation of state of dark energy and possible
modifications of gravity. In a second part, I will exhibit some recent results in the field
of count-in-cells statistics. The idea is to measure the mean density within concentric
spheres and study their joint statistics. Owing to the spherical symmetry, one can
do a mathematical conjecture that leads to surprisingly accurate predictions even in
the mildly non-linear regime where standard perturbation theory calculations break
down. Implications for cosmological measurements with future surveys like Euclid
will be discussed.
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Chapter 5. Alternative probes of cosmology using the large-scale structure
of the Universe

5.1 Overview

In modern cosmology, random fields (3D or 2D) are fundamental ingredients in the description of
the large-scale matter density and the Cosmic Microwave Background (CMB). The large-scale
structure of the matter distribution in the Universe is believed to be the result of the grav-
itational growth of primordial nearly-Gaussian small perturbations originating from quantum
fluctuations. Deviations from Gaussianity inevitably arise due to the non-linear dynamics of
the growing structures, but may also be present at small, but potentially detectable levels in
the initial seed inhomogeneities. Thus, studying non-Gaussian signatures in the random fields
of cosmological data provides methods to learn both the details of early Universe’s physics and
mechanisms for structure’s growth, addressing issues such as the matter content of the Universe,
the role of bias between galaxies and dark matter distributions, and whether it is dark energy
or a modification to Einstein’s gravity that is responsible for the acceleration of the Universe’s
expansion.

With the advent of large galaxy surveys (e.g. SDSS and in the coming years Euclid, LSST),
astronomers have ventured into the era of statistical cosmology and big data. Hence, there is
a dire need for them to build tools that can efficiently extract as much information as possible
from these huge data sets at high and low redshift. In particular, this means being able to probe
the non-linear regime of structure formation. The most commonly used tools to extract statis-
tical information from the observed galaxy distribution are N-point correlation functions which
quantify how galaxies are clustered. In our initially Gaussian Universe the matter density field is
fully described by its two-point correlation function. However departure from Gaussianity occurs
when the growth of structure becomes non-linear (at later times or smaller scales), providing
information that is not captured by the two-point correlation function but is recorded in part
in the three-point correlation function. Obviously N-point correlation functions are increasingly
difficult to measure when N increases. They are noisy, subject to cosmic variance and highly
sensitive to systematics such as the complex geometry of surveys. From a theoretical point of
view, N-point statistics are also increasingly difficult to predict in the context of cosmological
perturbation theory. Figure 5.1 sums up in a table the observables that have been predicted so
far using perturbation theory. Typically, the power spectrum at two-loop order, the bispectrum
at one-loop in some specific configurations and the trispectrum at tree order are within reach
from standard computations but it is highly difficult to go deeper in the non-linear regime and
to higher order statistics.

It is thus essential to find alternative estimators to extract information from the non-linear
regime of structure formation in order to complement these classical probes. This is in particular
critical if we are to understand the origin of dark energy, which accounts for ∼ 70 % of the energy
budget of our Universe! In this section, we propose to focus on two such kinds of very promising
cosmological observables : topological and geometrical estimators in section 5.1.1 and count-in-
cell statistics in section 5.1.2.

5.1.1 Topology and geometry of random fields

5.1.1.1 Minkowski functionnals

The first of these two promising probes involves the topological features of the density field.
The topology of a 3D field can be described by only four functionals –named after Minkowski–
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5.1. Overview

Figure 5.1: State-of-the-art predictions of N-point statistics at different orders in perturbation
theory. Standard calculations have only been carried out for small N and at low order (light
blue). Nevertheless, alternative observables (light orange) can be found such as topological
invariants (that are equivalent to a combination of standard PT results but are supposedly more
robust) and count-in-cell statistics (that can be predicted for higher non-Gaussianities because
of the spherical symmetry). They are the prime focus of this section of the manuscript.

that can be analytically computed when non-Gaussianities are weak enough (see section 2.2.2).
On top of these four topological invariants, it is also of interest to study geometrical estimators
such as extrema counts or the statistical properties of the skeleton (length of filaments, ...).
The advantage of these estimators compared to the usual use of N-point correlation functions
and their counterpart in Fourier space is twofold. First, they are bias-independent in the sense
that they are invariant under any monotonic transformation. This property is clearly seen for
extrema counts as the number of extrema of a field f or of any monotonic transform of this
field is trivially the same (the value of each extremum changes but not its existence). On top
of that, the topological features should by essence be more robust i.e. easier to measure in real
data because for instance less sensitive to masks or noise.

In [Codis et al., 2013] (see paper 5.2), I developed the theory of these estimators to all order
in non-Gaussianity. I also showed how redshift space distortion can be accounted for within
this context. When predicting these estimators, one gets a function of the moments of the
field and its derivative. Perturbation theory then predicts these moments of the field and its
derivatives as a function of the underlying cosmology and in particular as a function of the
variance σ and the redshift distortion parameter β. With upcoming 3D spectroscopic surveys
such as Euclid, the statistical analysis of the topology of our redshift-distorted Universe will
therefore allow us to robustly measure weighted moments of the multi-spectra as a function of
redshift, and henceforth quantify the cosmic evolution of the equation of state of dark energy and
possible departure from General Relativity. In [Codis et al., 2013], I specifically investigated
how topological estimators in redshift space can be used to estimate the cosmic evolution of
the growth of structure (the so-called β parameter). Let me therefore start by connecting the
statistics of non gaussian critical sets to the underlying cumulants of the field. I will then move
on to the growth rate D(z) and finally on how to constrain the equation of state of dark energy
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with these statistics.

From Non-Gaussian critical sets to cumulants Let us first think about the statistical proper-
ties of critical sets such as those described in section 2.2.2. For instance the Euler characteristic
of density contours below a threshold in contrast, or the differential number counts of maxima
within some contrast or the length of the skeleton above a threshold. Their statistical expecta-
tion requires the knowledge of the so-called joint distribution of the field and its one and second
derivatives. Since these descriptors are stationary, they should only involve (partly)-isotropic
combinations of the field variables. For instance, the field x, the modulus square of the rescaled
gradient q2 and the eigenvalues of the rescaled Hessian in real space λ1, λ2, λ3. More invari-
ants are needed in redshift space because there are more degrees of freedom (the invariance by
rotation is replaced by an invariance by rotation on the sky). We choose combinations of these
invariants that are as uncorrelated as possible in the Gaussian limit to simplify the integrals.
We eventually end up with the following Gaussian joint PDF in two dimensions

G(x, q2, ζ, J2) =
1

2π
exp

(
−1

2
x2 − q2 − 1

2
ζ2 − J2

)
, (5.1)

where ζ = (J1 + γx)/
√

1− γ2, J1 = λ1 + λ2 and J2 = (λ1 − λ2)2. It has to be noted that
two variables x and ζ are linear in the fields and therefore follow a Gaussian distribution whose
associated orthogonal polynomials are the Hermite polynomials Hi and the other two variables
q2 and J2 are quadratic in the fields and therefore follow an exponential distribution whose
associated orthogonal polynomials are the Laguerre polynomials Li. The Gaussian PDF in
three dimensions can also be written in the same way as equation 5.1. In redshift space, similar
PDFs are derived that now depend on more variables (6 instead of 4 in 2D and 8 instead of 5 in
3D). Those PDFs are explicitly written in paper 5.2. In order to describe weakly non-Gaussian
fields (such as the evolving density field), a Gram-Charlier expansion of the non-Gaussian joint
PDF can be used (see section 2.2.1.4) so that, in real 2D space, we get

P (x, q2, ζ, J2) = G×
1 +

∞∑
n=3

∑
i+j+2k+2l=n

(−1)j+l

i! j! k! l!

〈
xiq2kζjJ l2

〉
GC

Hi(x)Lk(q2)Hj(ζ)Ll(J2)

 ,
where

〈
xiq2kζjJ l2

〉
GC

= (−1)j+lj! l!
〈
Hi(x)Lk(q2)Hj(ζ)Ll(J2)

〉
are the Gram-Charlier coeffi-

cients of the expansion.

Once the joint PDF is known, the genus and other estimators can be obtained by marginalizing
this joint PDF under some constraints defined in section 2.2.2. For instance, extrema counts and
the Euler characteristic require a condition of zero gradient. After some pages of algebra , we
get the prediction for those estimators to all orders in non-Gaussianity which depends only on
the contrast and the cumulants of the underlying field through the Gram-Charlier coefficients.
Note that redshift space distortions break some level of symmetry and therefore more cumulants
are needed.

For illustration purpose, we propose here to describe the procedure for the particular case of
N3(ν), the area (per unit volume) of a 3D isosurface of the density field in redshift space at level
ν. To compute this functional, it is sufficient to consider the joint PDF of the field and its first
derivatives:

P (x, q2
⊥, x3) =

1
2π

exp
(
−x

2

2
− q2
⊥ −

x2
3

2

)[
1 +

∞∑
n=3

∑
σn

(−1)j

i! j! k!

〈
xiq2j
⊥ x

k
3

〉
GC

Hi(x)Lj(q2
⊥)Hk(x3)

]
,
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where q2
⊥ is the modulus of the gradient perpendicular to the line-of-sight and x3 the component

of the gradient along the line-of-sight. The area of 3D isosurfaces now is

N3(ν) =
1
σ

∫
dq2
⊥dx3P (ν, q2

⊥, x3)
√
σ2

1⊥q
2
⊥ + σ2

1‖x
2
3 . (5.2)

Computing the integrals, we express the results using the anisotropy parameter

βσ ≡ 1− σ2
1⊥/2σ

2
1‖ (5.3)

that measures the difference between the rms values of the line-of-sight and perpendicular com-
ponents of the gradient. In the case of isotropy, βσ = 0. In anisotropic situations, βσ is
positive, spanning the range 0 < βσ ≤ 1, when the field changes faster in the z-direction
(σ1‖ > 1

2σ1⊥) as is the case, for instance, in the linear regime of redshift corrections where
βσ = 4

5β(1 + 3β/7)/(1 + 6β/5 + 3β2/7), with β = f/b1. When the line-of-sight variations are
smaller than the perpendicular one (σ1‖ < 1

2σ1⊥), βσ is negative, −∞ ≤ βσ < 0, as is the case
in the non-linear “finger of God” regime.

At Gaussian order, the expression (5.2) yields the result consistent with [Matsubara, 1996]

N (0)
3 (ν) =

2
π

σ1√
3σ

1−A(βσ)√
1− 2βσ/3

e−ν
2/2, A(βσ) ≡ 1

2

(
βσ − T (βσ) + βσT (βσ)

)
, (5.4)

where the function T is defined as T (βσ) = 1/
√
βσ tanh−1

(√
βσ
) − 1 for βσ ≥ 0 and T (βσ) =

1/
√|βσ| tan−1

(√|βσ|)−1 for βσ < 0. Under this definition A(βσ) describes a ∼ βσ/3+β2
σ/15+

. . . correction at small anisotropy βσ → 0. We see that in the Gaussian limit, the anisotropy
has a very little effect on N3. The amplitude deviates from unity by less that 1% in the range
−1 < βσ < 0.5, as its series expansion ∝ 1− β2

σ/90 . . . attests. Even at extreme anisotropies, it
changes only to ≈ 0.92 at βσ → −∞ and ≈ 0.87 at βσ = 1.

The computation of the n = 3 term corresponding to the first non-Gaussian correction can also
be carried out

N
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and leads to the following result
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To first order in the anisotropy parameter βσ, we therefore get the following explicit expression

N3 =
2e−ν2/2σ1√

3πσ
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Figure 5.2: Left panel: first non-Gaussian correction of the 3D Euler characteristic as a
function of smoothing (as labelled) measured (dotted lines) and predicted (plain line) in
Horizon 4π simulation in real space. Each curve has been normalized by the maximum of
the Gaussian component of the Euler characteristic. Those corresponding to different smooth-
ing lengths have been shifted for clarity. Right panel: same as top left panels, but in redshift
space. For these ranges of smoothing the theory predicts well the Euler characteristic to first
order in non-Gaussianity, in particular for low-intermediate thresholds. The difference in the
Euler characteristic introduced by redshift distortion is rather small. This figure is extracted
from [Codis et al., 2013].

from which the isotropic limit of [Gay et al., 2012] is readily recovered by setting βσ = 0 and〈
xq2
⊥
〉

=
〈
xx2

3

〉
=
〈
xq2
〉
. Anisotropy effects in N3 statistic are almost exclusively concentrated

in the gradient terms ∝ H1(ν). This suggests, for example, that recovery, of skewness 〈x3〉 by
fitting H3(ν) mode to N3 curve will be practically unaffected by redshift distortions. In contrast,
to measure anisotropic effects, one must focus on the H1(ν) mode.

Other Minkowski functionals can be obtained in the same way as for N3.

Comparison to simulations The predictions appear to match the simulated result for large
enough smoothing. As the smoothing length decreases, non-linearities become stronger and the
prediction at first order departs from data in the tails of the distribution while for low contrast
the agreement remains strong. The effect of redshift space distortions on the 3D genus seems tiny
in the Horizon 4π simulation (see figure 5.2). This means that the isotropic theory is sufficient
and could allow one to measure the variance of the density fluctuations using the non-Gaussian
correction of topological estimators ([Gay et al., 2012]). But, it also means that there is no
hope to extract more information from redshift space distortions about cosmology. However, on
slices, the 2D genus is affected by redshift space distortions (see figure 5.3 ) and this effect is
well taken into account by the prediction. This should allow us to measure β and therefore to
possibly get more cosmological information!

From cumulants to cosmology Our aim here is to express the invariant cumulants as functions
of the underlying field variance σ2. For this purpose we need to generalize perturbation theory
and its so-called geometric Sn parameters to combinations of the density field and its derivatives.
The cosmic evolution of the skewness of the field is computed via integrals over configuration
space of the so-called geometric Z2 function. Here, in order to extend this result to other
cumulants, we need to integrate the Z2 function weighted by extra powers of k (that reflect the
differentiations). It is known that the expectation of δ3, scales like σ times some combinations

176



5.1. Overview

¦ to LOS
þ to LOS

-4 -2 0 2 4
Ν

2

4

6

8

10

12

105
Χ2D

H1L

L=24 Mpc�h
L=32 Mpc�h
L=48 Mpc�h

Figure 5.3: Prediction for the 2D Euler characteristic in redshift space along (dashed
lines) and perpendicular (solid lines) to the line-of-sight with cumulants measured in the
Horizon 4π simulation. There is a clear dependence on the angle between the slice and the
line-of-sight, especially for smaller smoothing. This figure is extracted from [Codis et al., 2013].

of hypergeometric functions of the underlying power index (when Gaussian smoothings are
considered). The same result holds for all moments that are cubic in the field variables. For
instance, the expectation of the density field times the gradient squared becomes some other
combinations of hypergeometric functions times σ. Similarly generalized quartic moments would
scale like σ2.

To be more precise, given expansion 3.32, cumulants that are cubic in the field can be computed
at tree order. For conciseness, we denote simply

∫
W the weighted 6D integration∫

W
[ ] =

∫
d3kid3kj [ ]W (kiR)W (kjR)W (|ki + kj |R) . (5.6)

With this notation the cumulant of δ3 reads for instance〈
δ3
〉 ' 3

〈
(δ(1))2δ(2)

〉
= 3D4

1(τ)
∫
W
Z1(k1)Z1(k2)Z2(k3,k4)

〈
δ̂l(k1)δ̂l(k2)δ̂l(k3)δ̂l(k4)

〉
,

= 3(2π)6D4
1(τ)

[∫
W
Z1(k1)Z1(−k1)Z2(k3,−k3)P (k1)P (k3)

+ 2
∫
W
Z1(k1)Z1(k2)Z2(−k1,−k2)P (k1)P (k2)

]
,

where we note that Z2(k3,−k3) = b2/2. This method can be generalized to all relevant cumu-
lants. For instance〈

δq2
⊥
〉

=(2π)6D4
1(τ)

[∫
W
Z1(k1)2Z2(k2,−k2)P (k1)P (k2)k2

1⊥ (5.7)

+ 2
∫
W
Z1(k1)Z1(k2)Z2(k1,k2)P (k1)P (k2)(k1⊥ · k2⊥ + 2k2

1⊥)
]
. (5.8)

In practice, all third order cumulants can be integrated using the decomposition of WG(|k1 +
k2|R) in Legendre polynomials and Bessel functions

WG(|k1 + k2|R) = exp
[
−k

2
1 + k2

2

2
R2

] ∞∑
l=0

(−1)l(2l + 1)Pl

(
k1 · k2

k1k2

)
Il+1/2

(
k1k2R

2
)√ π

2k1k2R2
,
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except one, given by

I =
∫
W
Z1(k1)Z1(k2)fµ2G2(k1,k2)P (k1)P (k2)β(k1,k2). (5.9)

This difficulty was highlighted e.g by [Hivon et al., 1995] but was not analytically solved until
[Codis et al., 2013]. For this purpose, let us use the following trick: if we introduce three different
smoothing lengths W (k1R1), W (k2R2) and W (kR) with a Gaussian filter, then one can see that

− 2
∂I

∂R2
=
∫
W
Z1(k1)Z1(k2)fµ2k2G2(k1,k2)P (k1)P (k2)β(k1,k2) . (5.10)

Now the integration of equation (5.10) over µ2k2(= (k1+k2)·ẑ) is straightforward; the integration
over R2 is also straightforward and involves no constant of integration.

In the regime where standard perturbation theory holds in redshift space, all cumulants entering
the expression of Minkowski functionals can thus be predicted for a given cosmological model.
Measuring those functionals therefore probes the underlying cosmology by means of some partic-
ular combinations of cumulants. Redshift space analysis is in principle capable of mining more
information than real space analysis. Indeed, in redshift space there is a qualitative difference
between cumulants that involve the line-of-sight direction and those that involve directions or-
thogonal to the line-of-sight in the plane of the sky. These differences encode information about
velocities, and reflect the mechanism of how these velocities originated. In principle, estimating
the anisotropic part of such cumulants can be used to test the theory of gravity in the context
of large-scale structures perturbation theory. 3D geometrical statistics, such as χ3D and N3 do
not by themselves allow one to determine separately the line-of-sight and sky cumulants. To
separate these anisotropic contributions one must analyse slices of 3D volume at different angles
θS to the line-of-sight. For instance, measuring the length of the isocontours, N2 (with possible
cross-check from χ2D) yields a separate handle on

〈
xq2
⊥
〉

and
〈
xx2

3

〉
, while the additional anal-

ysis of the 2D Euler characteristic χ2D, as a function of θS , allows us to measure
〈
J1⊥q2

⊥
〉

and〈
J1⊥x2

3

〉
.

Dark energy fiducial experiment As mentioned previously, the angle-dependence of the 2D
Minkowski functionals allows us to probe β. Indeed, the prediction for 1 and 2D Minkowski
functionals display a functional dependence on the angle θS/L between the 2D slice S or 1D line
L and the line-of-sight. At Gaussian order first, it appears that

χ
(0)
2D(ν, θS) ∝

√
1− βσ sin2 θS , (5.11)

so that measuring the Gaussian part of the 2D Euler characteristic in different slices (with
different orientation relative to the line-of-sight) can give access to βσ = 1 − σ2

1⊥/2σ
2
1‖ = 4

5β +
O(β2). For example, in the most favorable case of θ1 = π/2 and θ2 = 0, one have direct access
to

χ
(0)
2D(ν, θ1)

χ
(0)
2D(ν, θ2)

=

√
1− βσ sin2 θ1

1− βσ sin2 θ2
=
√

1− βσ = 1− 2
5
β +O(β2) . (5.12)

Contour crossing statistics have the same angle-dependence as 2D Euler characteristic at Gaus-
sian order. The N2 statistics (area of isocontours) leads in turn

N (0)
2 (ν, θ1)

N (0)
2 (ν, θ2)

=
E(β̃σ(θ1))

√
1− β̃σ(θ2)

E(β̃σ(θ2))
√

1− β̃σ(θ1)
=
π

2

√
1− βσ
E(βσ)

= 1− 1
5
β +O(β2) . (5.13)
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Note that beyond a simple overall amplitude effect (which is enough to measure β alone), this
angle-dependence also arises in the first non-Gaussian correction. If the value of β is important
on its own (e.g to study the bias or to test modifications of gravity), it is also of prime importance
to measure D(z) as it allows us to map the dispersion in redshift space, σ, into its value in real
space, σ0 ∝ D(z). One way to proceed is to use the Gaussian term to put constraints on β and
then the non-Gaussian correction for σ (the amplitude of which is not probed by the Gaussian
part). Indeed, following [Gay et al., 2012], the theory of Minkowski functionals should allow us
to measure the dispersion of the field in redshift space σ from the amplitude of the departure
from non-Gaussianity. As equation 5.13 demonstrates, the comparison of the 2D Minkowski
functionals in planes parallel and perpendicular to the line-of-sight allows us to independently
measure β = f/b. Hence Minkowski functionals in redshift space yield a geometric estimate of
the real-space field dispersion, σ0, via

σ0 = σ/
√

1 + 2β/3 + β2/5. (5.14)

We have applied this scheme to measure β and σ0 in a fiducial experiment. Minkowski functionals
were measured from a set of 19 scale-invariant (n=-1) 2563 dark matter simulations smoothed
over 15 pixels, corresponding to σ0 = 0.18. A first step is to use the Gaussian term of the 1D
and 2D statistics, while varying the angle of the slices to constrain β. For that purpose, we
extract the even part of N2 (to get rid of odd parity effects arising from the next-to-leading
order correction) and restrict ourselves to the intermediate domain −1.2 < ν < 1.2 where the
Gaussian term is dominant. The resulting constraints on β are found to be β̂ = 1.04 ± 0.05 ,
and are illustrated on figure 5.4 (left panel). The same analysis on the other 1D (N1) and 2D
statistics (2D genus) leads to similar constraints, respectively β = 1.13±0.05 and β = 1.0±0.02.
The next step is to fit the first non-Gaussian correction of each statistics with PT predictions in
order to constrain σ. The predictions at first order are expressed as a function of the contrast
ν and σ only. The value of the free parameter σ in the model is then constrained by fitting the
odd part of the data (which is dominated by the first non-Gaussian correction for intermediate
contrasts). The result for N2 is shown in figure 5.4 (right panel) and yields σ̂ = 0.22 ± 0.08.
The other statistics give similar results e.g for the 3D Euler characteristic σ̂ = 0.26 ± 0.06.
Altogether, using σ as measured by a 3D probe, χ3D, and β by a 2D statistics, N2, we finally
get σ̂0 = 0.18± 0.04, which is fully consistent with the underlying dispersion in our mocks. The
accuracy on the measurement of β and D(z) through σ0 can naively be scaled to the expected
accuracy for a Euclid-like survey (assuming one quarter of the sky is observed) leading to a
relative 0.3% precision on β and 1.5% on D(z) at redshift zero. See also [Gay et al., 2012],
which translates this accuracy in terms of estimates for the dark energy parameters w0, wa.

Limitations and prospects In the above-mentioned dark energy fiducial experiment, it has to
be noted that no account of masking, redshift evolution of S/N ratio or finite survey volume,
nor comparison with other dark energy probes was attempted. One of the main limitations of
the work presented in this section is that we assumed that standard perturbation theory (SPT)
reproduces exactly the observations while it is known to perform somewhat poorly in redshift
space. For instance, in the Horizon 4π simulation, only cumulants on scales above 50 Mpc/h
were accurately predicted by SPT. Improvements are therefore critical.

Carrying out the road map sketched here while addressing the above-mentioned issues should
be one of the target of the upcoming surveys that have been planned specifically to probe
dark energy, either from ground-based facilities (eg BigBOSS, VST-KIDS, DES, Pan-STARRS,
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Figure 5.4: Reconstructed β from the Gaussian part of N2 (left panel) and σ from its non-
Gaussian correction (right panel). This figure is extracted from [Codis et al., 2013].

LSST1) or space-based observatories (EUCLID([Laureijs et al., 2011]), SNAP and JDEM2).

Important improvements include

• improving perturbation theory in redshift space (while implementing variations of the
streaming model (see for instance [Scoccimarro, 2004, Taruya et al., 2010]) and/or anisotropic
smoothing); it would be quite interesting, for instance, to check the regime of validity of
the recent model proposed by [Gil-Maŕın et al., 2014] in the context of topological studies;

• departing from the plane parallel approximation while constructing a full-sky prescription
for non-Gaussian Minkowski functionals of realistic catalogues;

• extending the prediction to the statistics of the skeleton and walls;

• propagating to cosmic parameter estimation the residual errors;

• extending the prediction of the JPDF to N-point statistics for non-local analysis (e.g. void
size and non-linear N-points peak statistics);

• exploring alternatives to the Gram-Charlier’s expansion;

• deriving the statistics of errors on one-point statistics such as those presented in this paper;

• implementing the relevant theory on realistic mocks and demonstrating the pros and cons
of geometrical probes (e.g. in the presence of masks), and contrast those to existing dark
energy probes (lensing, SN1a, etc..);

• apply Minkowski functionals to the case of 2D cosmic shear maps.

5.1.1.2 The clustering of peaks

Using the same formalism as section 2.2.2.2, it is possible to go beyond the one-point statistics
of peaks and study their clustering. On large scales, one can use perturbative expansions and
study peak bias. On smaller scales, the two-point correlation function of peaks shows that peaks
present an exclusion zone that prevent them to be infinitely close one to another and alter the
power spectrum that deviates from a Poisson distribution.

1http://bigboss.lbl.gov, http://wtww.astro-wise.org/projects/KIDS, https://www.darkenergysurvey.org,
http://pan-starrs.ifa.hawaii.edu, http://www.lsst.org

2http://sci.esa.int/euclid, http://snap.lbl.gov, http://jdem.lbl.gov
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The exclusion region and the non-linear bias bump beyond are important for precision models
of the halo-halo correlation function in the transition region between the one- and two-halo
terms in the halo model. Thus, a better understanding of these regions will likely improve the
modelling of the matter power spectrum or correlation function in this regime, which is very
important for weak lensing or galaxy-galaxy lensing studies since the signal is large and not yet
dominated by the fully non-perturbative one halo term.

The ideas and results presented in this section are the subject of an article in preparation with
Tobias Baldauf, Vincent Desjacques and Christophe Pichon (see paper 5.3). Some preliminary
results beyond the 1D case are also presented.

Mathematical formalism The mathematical formulation is rather simple and requires the
knowledge of the joint PDF of the field and its first and second derivatives X = {x, xij , xi}
and Y = {y, yij , yi}, at two prescribed comoving locations (rx and ry separated by a distance
r = |rx − ry|). This joint PDF is given by

P(X,Y) =

exp

−1
2

 X

Y

T

·C−1 ·
 X

Y




det|C|1/2 (2π)(D+1)(D+2)/2
, (5.15)

where C0 ≡ 〈X ·XT〉 and Cγ ≡ 〈X ·YT〉 are the diagonal and off-diagonal components of the
covariance matrix

C =

 C0 Cγ

CT
γ C0

 . (5.16)

All these quantities depend only on the separation vector r because of homogeneity. Isotropy
further implies that they depend on the modulus r = |r| solely. From this joint PDF, the two-
point correlation of (signed) critical points separated by r at threshold ν, ξcrit(r, ν), is given
by

ξcrit(r, ν) =
〈(ncrit(rx, ν)− n̄crit(ν))(ncrit(ry, ν)− n̄crit(ν))〉

n̄2
crit(ν)

(5.17)

Therefore,

1 + ξcrit(r, ν) =

〈Bcrit(x, xi, xij)Bcrit(y, yi, yij)
〉〈Bcrit(x, xi, xij)

〉2 , (5.18)

where the condition for a signed critical point reads

Bcrit(x, xi, xij) = det(xij)δD(xi)δD(x− ν) . (5.19)

The denominator 〈Bcrit(x, xi, xij)
〉

=
∫

dXdet(xij)δD(xi)δD(x− ν)P(X) , (5.20)

is the average number density of signed critical points, and

〈Bcrit(x, xi, xij)Bcrit(y, yi, yij)
〉

=
∫∫

dXdYP(X,Y)

× det(xij)δD(xi)δD(x− ν)det(yij)δD(yi)δD(y − ν) (5.21)
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is the cross-correlation. This correlation function of signed critical points differs from the correla-
tion function of critical points because the absolute values around the determinant are dropped.
The nice property of signed critical points is that since the integrant simply is a polynomial func-
tion of the variables, the integral can be fully carried out analytically. For peaks, an additional
constraint on the sign of the second derivatives is required. As a consequence, the peak-peak
correlation becomes

1 + ξpeak(r, ν) =

〈Bpk(x, xi, xij)Bpk(y, yi, yij)
〉〈Bpk(x, xi, xij)

〉2 . (5.22)

where Bpk(x, xi, xij) is the peak condition given by

Bpk(x, xi, xij) = |det(xij)|δD(xi)ΘH(−λi)δD(x− ν) . (5.23)

Here |det(xij)| = −det(xij) because the determinant is negative at the peaks and it is understood
that, for D > 1, δD(xi) stands for

∏
i≤D δD(xi), while ΘH(−yii) means

∏
l≤D ΘH(−λl) with

{λl}l the eigenvalues of the Hessian. Because of these inequalities, the integral typically is not
analytical anymore.

We therefore choose to resort to Monte-Carlo methods in order to evaluate numerically equa-
tion 5.22. Namely, we draw random numbers of dimension (D + 1)(D + 2)/4− 2− 2D from the
conditional probability that xij and yij satisfy the PDF, subject to the condition that xi = 0 and
x = y = ν (using RandomVariate). For each draw (k) if λl(x

(k)
ij ) < 0 and λl(y

(k)
ij ) < 0 (l ≤ D)

we keep the sample and evaluate det(x(k)
ij )det(y(k)

ij ) and otherwise we drop it; eventually,〈
Bcrit(x, xi, xij)Bcrit(x, xi, xij)

〉
≈ 1
N

∑
k∈S

det(x(k)
ij )det(y(k)

ij ) , (5.24)

where N is the total number of draws, and S is the subset of the indexes of draws satisfying the
constraints on the eigenvalues. The same procedure can be applied to evaluate the denominator,
〈det(xij)δD(xi)δD(x− ν)〉. Equation 5.22 then yields ξpeak(r, ν). This algorithm is embarrass-
ingly parallel and can be easily generalized, for instance, to the computation of the correlation
function ξpeak(r,> ν) of peaks above a given threshold in density. In practice it is fairly efficient
as the draw is customized to the shape of the underlying Gaussian PDF.

1D peaks For the sake of simplicity, let us start with the theory in 1D which corresponds to
a pancake geometry . The variable are X = {x, x1, x11} and Y = {y, y1, y11}. Calling

C0 =


1 0 −γ
0 1 0

−γ 0 1

 , Cγ =


γ00 γ01 γ02

γ01 γ11 γ12

γ02 γ12 γ22

 ,

where the γij ’s represent the correlations between the field and its derivatives at two points
separated by a comoving distance r, e.g. γ22 = 〈x11y11〉. These γij ’s are not independent. The
following relations are established via integrations by part: γ10 = −γ01, γ21 = −γ12, γ20 =
−γγ11.

The γij(r) are known function of r given by the moments of the two fields and their derivatives:

γij(r) =
1

σiσj

∫
dk exp(ıkr)(ık)i(−ık)jPk(k) i ≤ j ,
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Figure 5.5: Left panel: 1D correlation function as a function of r/R? for n = 0 at a threshold
ν = 1 evaluated by a Monte Carlo method. Right panel: Corresponding power spectrum.
Because of the exclusion zone seen on the left panel, peaks are sub-Poissonian on small scales.

with Pk(k) the power spectrum of δ that includes a filter function (Gaussian in this work). On
expanding γij(r) at small separations r � 1 and substituting the spectral moments

σ2
l = 2

∫ ∞
0

k2lPk(k)dk , (5.25)

it follows that

γij(r)=
(−1)l−i

σiσj

∞∑
k=0

(−1)k
r2k

(2k)!
σ2
l+k (i+ j = 2l)

γij(r)=
(−1)1+l−i

σiσj

∞∑
k=0

(−1)k
r2k+1

(2k + 1)!
σ2
l+k+1 (i+ j = 2l + 1)

where r is in units of the smoothing length. The determinant of the covariance matrix is given
at first order in the separation r by

det C =r18

(
σ6

2 −
(
2σ2

1σ
2
3 + σ2

0σ
2
4

)
σ2

2 + σ2
0σ

4
3 + σ4

1σ
2
4

)× (σ6
3 −

(
2σ2

2σ
2
4 + σ2

1σ
2
5

)
σ2

3 + σ2
1σ

4
4 + σ4

2σ
2
5

)
74649600σ4

0σ
4
1σ

4
2

+O(r19) .

Indeed, three eigenvalues of C are singular, respectively scaling like r10, r6 and r2 and corre-
sponding to the eigen-directions given by (x− y), (x1 − y1) and (x11 − y11) ). This singularity
proportional to r−18 is the reason why the limit r → 0 is difficult to handle numerically. Ana-
lytically it means that a series expansion to eighteenth order is needed for all terms.

Integrating equation 5.18 over the six field variables leads to the two-signed critical point cor-
relation function of same height ν and separated by r, ξcrit

1D (r, ν), the result being completely
analytical for any power spectrum. For the sake of readability, we do not display this result here.
This function tends to zero at ν → ∞ and to minus infinity at ν = 0. It has two symmetric

maxima at ν2(r) =
√
A2 + 2AB −A where A(r) = γ11(1+γ11)

2γ2(1−γ11)
and B(r) = γ00 + γ11γ2

1+γ11
. The low-r

limit of this two-point correlation function of signed critical points separated by r is given by

1+ξcrit
1D (r, ν) =

e
(1−2γ2)ν2

2(1−γ2) (1− γ2∗)3/2

12γγ3∗(1− γ2)5/2

(
1+

1
ν2
×
(
1− γ2

) (
γ2

#γ
2∗γ2

(
2− γ2∗

)
+ 1− γ2

# − γ2
)

γ2γ2
# (1− γ2∗)

2

)
+O(r),
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Figure 5.6: Left panel: 1D correlation function of peaks of height ν = 1 as a function of r/R? for
different spectral index n using MCMC. Right panel: Same as left panel for n = 0 and different
values of ν from 0 to 2.5 as labelled. The dashed lines correponds to the analytical 1D signed
critical point correlation function. For ν > 2, both are in perfect agreement. Note that for
ν = 0, the signed critical point correlation functions diverges and is not shown on this plot.

where we define the following shape parameters γ = σ2
1/σ0/σ2, γ∗ = σ2

2/σ1/σ3 and γ# =
σ2

3/σ2/σ4.

For scale-invariant power spectra, Pk(k) ∝ kn, n > −1 and Gaussian smoothing, the γij(r) are
given by

γ00(r) = 1F1

(
n+ 1

2
;
1
2

;−r
2

4

)
(5.26)

γ11(r) = 1F1

(
n+ 3

2
;
1
2

;−r
2

4

)
γ22(r) = 1F1

(
n+ 5

2
;
1
2

;−r
2

4

)
,

and γ02(r) = −γγ11(r). Here, r is in units of the smoothing length, 1F1 is the Kummer confluent
hypergeometric function, and

σl =

√
Γ (l + 1/2 + n/2)

2π
. (5.27)

The determinant of C therefore scales like γ2
(
2− γ2

) (
1− γ2

)−3
r18/18662400. In the case

where n = 0, the low-r behaviour of this function can be written as follows

1+ξcrit
1D (r, ν, n = 0) =

e
ν2

4

(
3ν2 + 8

)
8
√

3ν2
+
e
ν2

4

(
128− 15ν4

)
r2

1280
√

3ν2
+
e
ν2

4

(
15ν4 − 64

)
r4

81920
√

3
+O

(
r5
)
. (5.28)

Figure 5.5 displays on the left panel the 1D peak correlation function (evaluated by numerical
integrations) as a function of r/R? for n = 0 at a threshold ν = 1. The result for different
heights and power spectrum indices is plotted on figure 5.6. Note that as we imposed here that
the peaks have the same height, the exclusion zone is reduced (not 0 at the origin). Note also
that the peak-peak correlation function (solid lines) can be very accurately approximated by its
genus-like counterpart (dashed lines on the right panel of figure 5.6) for ν > 2. The right panel
of figure 5.5 shows the corresponding power spectrum.

Figure 5.7 displays the 1D peak correlation function as a function of r/R? for n = 0 for different
peak heights ν1 = 1 − ∆ν/2 and ν2 = 1 + ∆ν/2, ∆ν being between 0 and 1. It appears that
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Figure 5.7: 1D correlation function as a function of r/R? for n = 0 for peaks of height ν1 =
1 −∆ν/2 and ν2 = 1 + ∆ν/2 using MCMC. The height difference varies from ∆ν = 0 to 1 as
labelled.

Figure 5.8: 2D (left panel) and 3D (right panel) peak correlation function as a function of r in
units of R? for n = −1 and −2 respectively and peak heights ν1 = 1 and ν2 as labelled.

the peak-peak correlation function for peaks of different heights tends to 0 at small separation
whereas it gives a finite non-zero limit when peaks are of the same height. The convergence
of this limit thus seems to depend on the height separation. This can be easily understood as
the fact that in order to have two peaks infinitely close to each other, one needs big constraints
on the first and second derivatives of the field; the larger the height difference the bigger the
constraints on the derivatives, the more unlikely the configuration.

The same behaviour is expected to hold for peaks on different scales (different smoothings).

Results in two and three dimensions The same formalism can be applied in two and three
dimensions but the complexity of the numerical integration increases. Preliminary results are
shown in figure 5.8 and 5.9 where MCMC with one million draws have been used for each point.
Obviously cumulative correlation functions are more noisy compare to differential correlation
function and the noise increases with the peak height as the events become rarer. Like in one
dimension, one can note that the larger the height difference the more pronounced the exclusion
zone.
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Figure 5.9: 2D (left panel) and 3D (right panel) peak correlation function as a function of r in
units of the smoothing length for n = 0 and −3/2 respectively and peak height between ν and
ν + 1 using MCMC for different values of ν as labelled.

5.1.1.3 Multiscale peak-peak correlations in 2D

In the context of CMB analysis, it is of great interest to understand how peaks are correlated
on different scales. This is particularly important for the study of extreme value statistics that
can shed light on the occurence of rare events like cold spots.

In this section we therefore propose to present some preliminary results along this line that were
obtained as part of an ongoing project with Stéphane Colombi. In particular, we compute the
correlation function ξPj−1,j(θ, νth) between peaks above νth of the CMB map at scales j − 1 and
j. We use the power spectrum C` as measured by the Planck collaboration filtered with the
following needlet defined in harmonic space as

bj(`) =
√
h(`/2j) (5.29)

with

h(x) = 1− s(2x), x ∈ [1/2, 1],
= s(x), x ∈]1, 2],
= 0, x ∈]−∞, 1/2[∪]2,+∞[,

and
s(x) = 2x3 − 9x2 + 12x− 4 .

The shape parameter at scale j is given by

γj =
σ2
j (1)

σj(0)σj(2)
with σ2

j (i) =
1

4π

∑
`

(2`+ 1)[`(`+ 1)]ibj(`)2C` . (5.30)

In the following, we use the plane-parallel approximation in the regime of small angular separa-
tions θ and we study the joint statistics of the normalized field νj = δj/σj(0) and its normalized
first ν,aj = δ,aj /σj(1) and second derivatives ν,abj = δ,abj /σj(2) collected in the 6-dimensional vec-
tor Nj = (νj , ν

,1
j , ν

,11
j , ν,22

j , ν,2j , ν
,12
j ). The frame used here is the one attached to the separation

so that the first direction is along the separation and the second one perpendicular to it. The
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auto-correlation of Nj is then trivially given by

Σj =



1 0 −γj
2 −γj

2 0 0

0 1
2 0 0 0 0

−γj
2 0 3

8
1
8 0 0

−γj
2 0 1

8
3
8 0 0

0 0 0 0 1
2 0

0 0 0 0 0 1
8


(5.31)

and the cross-correlation between Nj−1 and Nj in two locations separated by an angle θ

Σj−1,j =



γ1,1 γ1,2 γ1,3 γ1,4 0 0

−γ1,2 −γ1,3/γj γ2,3 γ2,4 0 0

γ1,3 −γ2,3 γ3,3 γ3,4 0 0

γ1,4 −γ2,4 γ3,4 γ4,4 0 0

0 0 0 0 −γ1,4/γj γ2,4

0 0 0 0 −γ2,4 γ3,4


(5.32)

where in particular the two-point correlation function of the density field, its gradient and its
Laplacian are given by

ξ0(θ) = 〈νj−1(ϑ)νj(ϑ+ θ)〉 =
∑
`

2`+ 1
4π

bj−1bjC`P`(cos θ) = γ1,1 , (5.33)

ξ1(θ) =

〈∑
i=1,2

ν,ij−1(ϑ)ν,ij (ϑ+ θ)

〉
=
∑
`

2`+ 1
4π

`(`− 1)bj−1bjC`P`(cos θ) = −1
γ

(γ1,3 + γ1,4) ,

ξ2(θ) =

〈 ∑
i,i′=1,2

ν,iij−1(ϑ)ν,i
′i′

j (ϑ+ θ)

〉
=
∑
`

2`+ 1
4π

`2(`−1)2bj−1bjC`P`(cos θ) = γ3,3+γ4,4+2γ3,4 .

Going to a continuous description in Fourier space, where wavevectors are ` = `(cosβ, sinβ) in
the frame of the separation, yields for i ≤ j

γm,n(θ) =
∫
`d`dβ C(`)bj−1(`)bj(`)ei ` θ cosβ(i l cosβ)pm(i l sinβ)qm(−i l cosβ)pn(−i l sinβ)qn

4π2σj−1(pm + qm)σj(pn + qn)

where pi (resp. qi) are the number of derivatives of Nj(i) along (resp. perpendicular to) the sep-
aration. At this stage, the angular integration is performed analytically and gives trivial Bessel
functions and the remaining integration over the wavenumber is done numerically. Fig 5.10
shows how the small angle approximation compares to the full spherical computation of the
two-point correlation function of the density field.

Consequently, one can easily compute the cross-correlation matrix Σj−1,j(θ) given by equa-
tion 5.32 for different values of the scale j and the angular separation θ and the resulting
Gaussian probability density function of Nj is

P (Nj) =
1√

(2π)6 det Σj

exp
(
−1

2
N t
j · Σj ·Nj

)
(5.34)
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Figure 5.10: The two-point correlation function of the density field computed from equation 5.33
or Fourier transform for different values of the scale j. For large enough j > 5, the agreement
between both methods is very good and justifies the use of Fourier space for the rest of the
paper. At large scale (j ≤ 4), this approximation breaks down.

0.2 0.4 0.6 0.8 1.0
Θ

1

2

3

4

ΞP j, j#1!Θ,Ν"
j%5,Ν%0
j%5,Ν%1
j%5,Ν%2

0.1 0.2 0.3 0.4 0.5 0.6
Θ

0.5

1.0

ΞP j, j#1!Θ,Ν"
j%5,Ν%1
j%6,Ν%1
j%7,Ν%1

Figure 5.11: The peak-peak correlation function of the density field computed from equation 5.37
for different values of the density contrast (top panel) and different values of the scale j (bottom
panel).
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while the joint PDF of Nj and N ′j−1 in two locations separated by θ becomes

P (Nj , N
′
j−1) =

1√
(2π)12 det Σ

exp
(
−1

2
(Nj , N

′
j−1)t · Σ−1 · (Nj , N

′
j−1)

)
(5.35)

with

Σ =

 Σj Σj−1,j(θ)

Σt
j−1,j(θ) Σj−1

 . (5.36)

The peak-peak correlation function is then given by

1 + ξPj−1,j(β, νth) =
〈npk(ϑ, νth, j − 1)npk(ϑ+ θ, νth, j)〉ϑ

n̄pk(νth, j)n̄pk(νth, j − 1)
(5.37)

where the number density of peaks above νth at scale j is given by

n̄pk(νth, j) =
∫

d6Nj P (Nj)Bpk(Nj , νth) (5.38)

and the joint probability of having two peaks above νth separated by θ can be written

〈npk(ϑ, νth, j − 1)npk(ϑ+ θ, νth, j)〉ϑ =
∫

d6Nj d6N ′j−1 P (Nj , N
′
j−1)Bpk(Nj , νth)Bpk(N ′j−1, νth)

where the peak condition is written following [Bardeen et al., 1986] by adding a condition of zero
gradient, of negative eigenvalues and contrast above νth while multiplying by the determinant
of the Hessian matrix of the density field

Bpk(Nj , νth) = δD(ν,ij )Θ(νj > νth) det ν,mnj Θ(det ν,mnj )Θ(−tr ν,mnj ) . (5.39)

Fig 5.11 shows the resulting two-point correlation function of peaks above νth for different values
of the contrast and the scale j.

This ongoing project now requires to : i) compare the results with simulations, ii) get the
correlations for a wide range of scales and peak heights and iii) possibly investigate how to
compute peak-peak correlations without the plane parallel approximation.

5.1.2 Count-In-Cell statistics

A second method to accurately probe the non-linear regime of structure formation is to im-
plement perturbation theory in a highly symmetric configuration (spherical symmetry) where
non-linear solutions to the gravitational dynamical equations are known (the so-called spherical
collapse model). Highly symmetric observables yield very accurate analytical predictions in the
mildly non-linear regime, well beyond what is usually achievable using other estimators. Such
a configuration is fulfilled when counting galaxies in concentric spheres and studying the joint
distribution of these concentric galaxy densities. It is the sole known statistic which possesses
this property. As such, it will be very promising to apply it to future surveys. In this section, I
will show how to predict with impressive accuracy the density profiles when counting galaxies in
concentric spheres in the mildly non-linear regime and investigate the effect of modified gravity
models on these counts through the parametrisation of the spherical collapse.
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Figure 5.12: Two concentric cells of radii R1 < R2. This section aims at studying the joint
statistics of the cosmic density in concentric spheres P (ρ1, ρ2).

5.1.2.1 Mathematical formalism

The idea of count-in-cells statistics is rather simple. We take n concentric spheres, measure
the density of galaxies ρ̂i inside each sphere of radius Ri and study the joint statistics of those
concentric densities P(ρ̂1, . . . , ρ̂n) (see figure 5.12). Note that here densities are rescaled so that
〈ρ̂i〉 = 1. The key ingredient to predict P(ρ̂1, . . . , ρ̂n) from first principles is to use the moment
generating function

MR1...Rn(λ1, . . . , λn) =
∞∑

p1,...,pn=0

〈ρ̂p11 . . . ρ̂p22 〉
λp11 . . . λpnn
p1! . . . pn!

, (5.40)

=

〈
exp

(∑
i

λiρ̂i

)〉
, (5.41)

that can be related to the cumulant generating function, ϕR1...Rn(λ1, . . . , λn), through

MR1...Rn(λ1, . . . , λn) = exp [ϕR1...Rn(λ1, . . . , λn)] , (5.42)

so that

exp [ϕR1...Rn(λ1, . . . , λn)] =
∫

dρ̂1 . . . dρ̂n P(ρ̂1, . . . , ρ̂n) exp

(∑
i

λiρ̂i

)
. (5.43)

From equation 5.43, the joint PDF of concentric densities can easily be recovered by inverse
Laplace transform of the cumulant generating function

P(ρ̂1, . . . , ρ̂n) =
∫ i∞

−i∞
dλ1

2πi
. . .

∫ i∞

−i∞
dλn
2πi

exp

(
−
∑
i

ρ̂iλi + ϕR1...Rn(λ1, . . . , λn)

)
. (5.44)

Cumulant generating function In order to predict the cumulant generating function, one is
led to consider its Legendre transform in the quasi-linear regime

ΨR1...Rn(ρ1, . . . , ρn) =
∑
i

λiρi − ϕR1...Rn(λ1, . . . , λn), (5.45)
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Figure 5.13: A same present-time density (right-hand side) can arise from very different initial
configurations (left-hand side).

where the densities ρi are determined implicitly by the stationarity conditions

λi =
∂

∂ρi
ΨR1...Rn(ρ1, . . . , ρn) , i = 1, . . . , n . (5.46)

In the limit of zero variance, the Legendre transforms taken at two different times, Ψ(ρ1, . . . , ρn; η)
and Ψ′(ρ1, . . . , ρn; η′), take the same value

ΨR1...Rn(ρ1, . . . , ρn; η) = ΨR′1...R′n(ρ′1, . . . , ρ
′
n; η′) , (5.47)

provided that the mass is preserved ρiR3
i = ρ′iR

′
i
3, and that ρ′i and ρi are linked together through

the nonlinear dynamics of the spherical collapse.

Indeed, it is always possible to express any ensemble average in terms of the statistical properties
of the initial density field so that we can formally write

exp [ϕ]=
∫
Dτ1 . . .Dτn P(τ1, . . . , τn) exp

(∑
i

λiρi(τi)

)
. (5.48)

As the present-time densities ρi can arise from different initial contrasts (see figure 5.18), the
above-written integration is therefore a path integral (over all the possible paths from initial
conditions to present-time configuration) with measure Dτ1 . . .Dτn and known initial statistics
P(τ1, . . . , τn). Let us assume here that the initial PDF is Gaussian so that,

P(τ1, . . . , τn)dτ1 . . . dτn =

√
det Ξ exp [−Ψ(τ1, . . . , τn)]

2π
dτ1 . . . dτn , (5.49)

with Ψ then a quadratic form.

In the regime where the variance of the density field is small, equation 5.48 is dominated by
the path corresponding to the most likely configurations. As the configuration is spherically
symmetric, this most likely path should also respect spherical symmetry. It is therefore bound
to obey the spherical collapse dynamics. Within this regime equation 5.48 becomes

exp [ϕ]'
∫

dτ1 . . . dτn P(τ1, . . . , τn) exp

(∑
i

λiζSC(τi)

)
, (5.50)

where the most likely path, ρi = ζSC(η, τi) is the one-to-one spherical collapse mapping between
one final density at time η and one initial density contrast. The integration on the right-hand
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side of equation 5.50 can now be carried by using a steepest descent method, approximating the
integral as its most likely value, where

∑
i λiρi(τi)−Ψ(τ1, . . . , τn) is stationary. It eventually leads

to the fundamental relation (5.47) which, when applied to an arbitrarily early time η′, yields a
relation between Ψ(ρ1, . . . , ρn; η) and the statistical properties of the initial density fluctuations.
For Gaussian initial conditions, Ψ(ρ1, . . . , ρn; ηi) can easily be calculated and expressed in terms
of elements of covariance matrices,

ΨR1...Rn(ρ1, . . . , ρn; ηi) =
1
2

∑
i,j≤2

Ξij(ρi − 1)(ρj − 1) , (5.51)

where Ξij is the inverse of the matrix of covariances, Σij = 〈τiτj〉, between the initial density
contrasts τi = ρi − 1 in the n concentric spheres of radii Ri. One can then write the cumulant
generating function at any time through the spherical collapse mapping between one final density
at time η in a sphere of radius Ri and one initial contrast in a sphere centered on the same point
and with radius R′i = Riρ

1/3
i (so as to encompass the same total mass); it can be written formally

as
ρi = ζSC(η, τi) ≈ 1

(1−D+(η)τ/ν)ν
, (5.52)

where, for the sake of simplicity, we use here a simple prescription, with D+(η) the linear growth
factor and ν = 21/13 to reproduce the high-z skewness.

The joint PDF In principle, the formalism described here allows one to predict the PDF of
concentric densities in the quasi-linear regime. Recall that only ΨR1,...,Rn(ρ1, . . . , ρn) is easily
computed. The statistically relevant cumulant generating function, ϕR1...Rn(λ1, . . . , λn), is only
accessible via equation 5.45 through an inverse Legendre transform which brings its own com-
plications. In particular note that all values of λi are not accessible due to the fact that the ρi
– λi relation cannot always be inverted. The PDF is then accessible through an inverse Laplace
transform which can be computed analytically in some regimes or from a numerical point of
view. However the inverse Laplace transform generically relies on the analytic continuation
of the predicted cumulant generating function in the complex plane and therefore requires a
good knowledge of the analytic properties of ϕ(λ). Its numerical implementation also appears
extremely challenging and is increasingly complex with the number of cells considered. It is
only recently that the two-cell PDF was successfully computed (see paper 5.5). However, an
analytical low-density approximation can be found in the general n-cell case. It is based on the
use of the saddle point approximation of equation 5.44 assuming the overall variance is small.
It leads to the following condition that should be met at the saddle point {λs}i

∂

∂λk

[∑
i

λiρ̂i − ϕ({λi})
]

= 0 , (5.53)

which leads to
ρ̂i = ρi({λk}) , (5.54)

and with the constraint that

det
[
∂2Ψ
∂ρk∂ρl

]
> 0 (5.55)

at the saddle point position. The resulting expression for the density PDF reads

P({ρ̂k})= 1
(2π)n/2

√
det
[
∂2Ψ
∂ρ̂k∂ρ̂l

]
exp [−Ψ({ρ̂k})] . (5.56)
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Figure 5.14: Log-likelihood for a fiducial experiment involving 5,000 (left panel) and 10,000
(right panel) concentric spheres of 10 and 11 Mpc/h measured in our simulation. The model
here only depends on the variance σ (ν – that parametrizes the spherical collapse – and n – the
spectral index – are fixed). The contours at 1, 3 and 5 sigmas centered on the true value 0.23
are displayed with dark blue dashed lines. The same experiment can be carried out when the
three parameters vary.

This analytic expression is expected to be an approximate form for the exact PDF in underdense
regions. Approximate forms in the large-density regime can also be found as shown in the coming
sections for one and two cells.

Eventually, this PDF of concentric densities is sensitive to cosmology through two ingredients:
the spherical collapse dynamics and the linear power-spectrum, P lin

k , (via the covariance matrix,
Σij =

∫
P lin
k (k)W (Rik)W (Rjk)d3k/(2π)3). It can thus serve as a statistical indicator to test

gravity and dark energy models and/or probe key cosmological parameters. As an illustration,
I implemented a fiducial dark energy experiment on counts derived from ΛCDM simulations as
seen on Fig 5.14. With 10,000 sets of two concentric spheres of 10 and 11 Mpc/h, the experiment
mimics the precision expected from a survey of useful volume of about (350h−1Mpc)3 which is
found to be at the percent level.

We now propose to give more details about the case of one and two cells in the following
sections 5.1.2.2 and 5.1.2.3. Note that in addition to the cosmic density statistics, the n-cell for-
malism presented here also allows to study the slope of the density field defined as the difference
of density between two adjacent cells.

5.1.2.2 One-cell density

For illustrative purpose, let us focus first on the one-cell formalism (e.g. [Bernardeau, 1994b]).
In the one-cell case,

Ψ(ρ) ≡ 1
2σ2(Rρ1/3)

τ(ρ)2 , (5.57)

where
σ2(r) = 〈τ(< r)τ(< r)〉. (5.58)

The Legendre transform is then straightforward and ϕ(λ) takes the form

ϕ(λ) = λρ− 1
2σ2(Rρ1/3)

τ(ρ)2 , (5.59)
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Figure 5.15: A graphical representation of the 1D stationary condition λ = Ψ′[ρ]. There is a
maximum value for λ that corresponds to a critical value ρc for ρ defined in equation 5.62. This
figure is from [Bernardeau et al., 2014].

with ρ computed implicitly as a function of λ via

λ =
∂

∂ρ
Ψ(ρ). (5.60)

Eventually, the density PDF reads

P(ρ̂) =
∫ +i∞

−i∞
dλ
2πi

exp(−λρ̂+ ϕ(λ)) , (5.61)

which can be evaluated either numerically or analytically in the low (see equation 5.56) and
high-density regime. We propose now to present this high-density approximation of the density
PDF.

Figure 5.15 shows graphically that there is a maximum value for λ, λc, that can be reached, so
that the Legendre Transform of Ψ is not defined for λ > λc. It corresponds to a value ρ = ρc.
At this location we have

0 = Ψ′′[ρc] , λc = Ψ′[ρc] . (5.62)

Note that at ρ = ρc, Ψ is regular (in particular, the corresponding singular behavior in ϕ(λ) is
not related to any singularity of the spherical collapse dynamics). The function ϕ(λ) can thus
be expanded at this point. First, equation 5.60

λ = λc +
∑
i

(ρ− ρc)i
i!

πi+1 (5.63)

can be inverted as a series near (ρc, λc) (where equation 5.62 holds). For instance, at order i = 5
and defining ∆λ = λ− λc, it gives

ρ = ρc +
√

2
π3

√
∆λ− π4∆λ

3π2
3

+

(
5π2

4 − 3π3π5

)
∆λ3/2

18
√

2π7/2
3

+

(
45π3π5π4 − 9π2

3π6 − 40π3
4

)
∆λ2

270π5
3

(5.64)

so that ϕ(λ) can finally be expanded around λc by plugging equation 5.64 into

ϕ(λ) = λρ−Ψ(ρ). (5.65)
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Figure 5.16: The path line in the λ complex plane for the computation of the large density
asymptotic forms.

We give here a whole set of sub-leading terms that we will take advantage of in the following,

ϕ(λ) = ϕc + ∆λρc +
2
3

√
2
π3

∆λ
3
2 − π4∆λ2

6π2
3

+

(
5π2

4 − 3π3π5

)
∆λ

5
2

45
√

2π7/2
3

−
(
40π3

4 − 45π3π5π4 + 9π2
3π6

)
∆λ3

810π5
3

+

(
385π4

4 − 630π3π5π
2
4 + 168π2

3π6π4 + 3π2
3

(
35π2

5 − 8π3π7

))
∆λ

7
2

7560
√

2π13/2
3

+ . . . (5.66)

where πn = ∂nΨ/∂ρn(ρc). It is to be noted that the leading singular term scales like (λ− λc)3/2.
The coefficients πi are all related to the function Ψ and are therefore (cosmological) model
dependent. The consequence for the density PDF is as follows. When the condition ρ̂ < ρc is
not satisfied, the singular behavior of ϕ near λc dominates the integral in the complex plane.
This leads to the following expression for P(ρ̂)

P(ρ̂) ≈ exp (ϕc − λcρ̂)

 3=(a 3
2
)

4
√
π (ρ̂− ρc)5/2

+
15=(a 5

2
)

8
√
π (ρ̂− ρc)7/2

+
105

(
=(a 3

2
)a2 + =(a 7

2
)
)

16
√
π (ρ̂− ρc)9/2

+ . . .

 ,

(5.67)
where aj are the coefficients in front of (λ− λc)j in equation 5.66. Indeed, the derivation of the
rare event tail of the density PDF for large positive densities is based on the inverse Laplace
transform of the generating function ϕ(λ) when it is dominated by its singular part, i.e. for
λ ≈ λc. In this case the complex plane contour is pushed along the real axis wrapping around
the singular value λc as depicted on figure 5.16. The general form for the density PDF is
expressed using the form (5.66) following the path shown on figure 5.16. As the contributions
from the two branches of the path lines are complex conjugate, it eventually leads to the form,

P (ρ̂) ≈ =
{∫ iε+∞

iε+λc

dλ
π

exp[ϕc − λcρ̂− (λ− λc)(ρ̂− ρc)]

×
[
1 + a3/2(λ− λc)3/2 + . . .

]}
, (5.68)

where we keep only the dominant singular part in ϕ(λ) and where = denotes the imaginary part.
This integral can easily be computed and it leads to,

P (ρ̂) ≈ exp (ϕc − λcρ̂)

(
3=(a 3

2
)

4
√
π (ρ̂− ρc)5/2

+ . . .

)
. (5.69)
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Figure 5.17: Comparison with simulations (top) with residuals (bottom). The solid line is the
theoretical prediction computed for a variance of σ2

R = 0.47 as measured in the simulation, a
power law index of n = −1.576 and a running parameter α = 0.439 corresponding to the input
linear power spectrum. The measured PDF in the simulation is shown as a band corresponding
to its 1–σ error bar (but different data points are correlated). The residuals show the ratio
of measured PDF in bins with the predictions (computed in bins as well). This figure is from
[Bernardeau et al., 2014].

Sub-leading contributions can be computed in a similar way when exp(ϕ(λ)) is expanded to
higher order. Note that by symmetry, only half integer terms that appear in this expansion
will actually contribute to the final density PDF given by equation 5.67. This PDF has an
exponential cut-off at large ρ̂ scaling like exp(λcρ̂). It also gives a direct transcription of why
ϕ(λ) becomes singular: for values of λ that are larger than λc, the integral

∫
dρ̂P(ρ̂) exp(λρ̂) is

not converging.

However, the asymptotic forms at low and high denisties are not accurate for the full range
of density values; in general one has to rely on numerical integrations in the complex plane
which can be done accurately and quickly in the one-cell case. In figure 5.17, we explicitly show
the comparison between our predictions and a simulation. The predictions show a remarkable
agreement with the measured PDF! In particular the predictions reproduce with an extremely
good accuracy the PDF tails in both the low density and high density regions. The plot of the
residuals shows that the predictions are at the percent level over a large range of density values.
Up to σ = 0.64 (σ2 = 0.41), we see no significant departure from the results of the simulation
in the whole range of available densities, that is in particular up to about the 5σ rare event in
the high density tail. This success is to be contrasted with the Edgeworth expansion approach
which breaks for |δ| ≥ σ.
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Figure 5.18: Contour path of the density ρ (top panel) and the slope s (bottom panel) when
describing the imaginary path of λ at fixed µ (different colours) and conversely when describing
the imaginary path of µ at fixed λ (same colours) .

5.1.2.3 Two-cell density and slope

Let us now turn to the two-cell case in which the PDF is recovered via the following inverse
Laplace transform

P=
∫ i∞

−i∞
dλ1

2πi

∫ i∞

−i∞
dλ2

2πi
exp(−

∑
i=1,2

ρ̂iλi + ϕ(λ1, λ2)) . (5.70)

From equation 5.70, it is straightforward to deduce the joint PDF, P̂(ρ̂, ŝ), for the density, ρ̂ = ρ̂1

and the slope ŝ ≡ (ρ̂2 − ρ̂1)R1/∆R, ∆R being R2 −R1, as

P̂(ρ̂, ŝ) =
∫ i∞

−i∞
dλ
2πi

∫ i∞

−i∞
dµ
2πi

exp(−ρ̂λ− ŝµ+ ϕ(λ, µ)) , (5.71)

with λ = λ1+λ2, µ = λ2∆R/R1. Following this definition, ϕ(λ, µ) is also the Legendre transform
of Ψ(ρ̂1, ŝ = (ρ̂2 − ρ̂1)R1/∆R).

In order to numerically compute equation 5.70 and therefore have the knowledge of the full
two-cell PDF, we simply choose the imaginary path (λ1, λ2) = i(n1∆λ, n2∆λ) where n1 and n2

are (positive or negative) integers and the step ∆λ has been set to 0.15. The maximum value of
λi used here is 75 resulting into a discretisation of the integrand on 10002 points. The resulting
contour path of the density and the slope is shown on figure 5.18. I have also investigated
the convergence of our numerical scheme by varying the number of points and showed that the
proposed numerical integration of the slope PDF has reached 1% precision.

Figure 5.19 compares the result of the numerical integration of equation 5.70 to dark matter
simulations. Once the two-cell PDF is known, conditional statistics can also be easily computed.
This formalism allows to weigh non-uniformly different regions of the universe making possible
to take into account the fact that the noise structure in surveys is not homogenous. For instance,
low density regions are probed by fewer galaxies. Conversely, on dynamical grounds, we also
expect the level of non-linearity in the field to be in-homogenous: low density regions are less
non-linear. Hence it is of interest to build statistical estimators which probe the mildly non
linear regime and that can be tuned to probe subsets of the field, offering the best compromise
between these constraints. In particular, in paper 5.5, we computed density profiles restricted
to underdense and overdense regions at various redshifts. Figure 5.20 for instance shows those
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Figure 5.19: Joint PDF of the slope (s) and the density (ρ) as given by equation 5.71 for
two concentric spheres of radii R1 = 10 Mpc/h and R2 = 11 Mpc/h at redshift z = 0.97.
Dashed contours corresponds to Log P = 0,−1/2,−1, · · · − 3 for the theory. The corresponding
measurements are shown as a solid line. This plot is from [Bernardeau et al., 2015].

profiles at redshift z = 0.65. A very good agreement with simulations is found with some
slight departures in the large slope tail of the distribution. As expected, the underdense slope
PDF peaks towards positive slope, while the overdense PDF peaks towards negative slope. The
constrained negative tails are more sensitive to the underlying constraint, providing improved
leverage for measuring the underlying cosmological parameters.

5.1.2.4 Prospects

In short, count-in-cells statistics prove to be a promising cosmological probe to implement on
future large surveys like Euclid. The agreement between predictions and simulations are shown
to be very good, including in the quasi-linear regime where standard perturbation theory nor-
mally fails. One open question would be to estimate how many concentric cells should be used
to get an optimal constraint for a given set of cosmic parameters but the answer to this question
will probably depend on the geometry of the available survey. However, it has to be noted that
an effective implementation of 3D count-in-cell as a cosmological test would be far fetched. In
particular galaxy catalogues in z-space break the local spherical symmetry in a complex way
making the application of such method impractical. One way to avoid this problem is to stick
to observations for which this method is applicable, such as projected densities along the line
of sight. It can be done either in the context of cosmic shear observations or for photometric
like redshift surveys. In both cases the point is not to reconstruct the spherical 3D statistics
but the circular 2D statistics for which the whole method should be applicable following early
investigations. The accuracy of the predictions have still to be assessed in this context and will
be the subject of future works. Another missing piece that can be incorporated is the large
distance correlation of statistical indicators such as profiles and constrained profiles. Following
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Figure 5.20: Density profiles in underdense (solid light blue), overdense (dashed purple) and all
regions (dashed blue) for cells of radii R1 = 10 Mpc/h and R2 = 11 Mpc/h at redshift z = 0.65.
Predictions are successfully compared to measurements in simulations (points with error bars).

[Bernardeau, 1995], it is indeed within reach of this formalism to compute such quantities. We
would then have a fully working theory that could be exploited in real data sets.

5.1.3 Conclusion

In the context of high-precision cosmology, it is worth developing new observables that i) can be
predicted from first principles; ii) are robust (noise, bias,...); iii) can be computed in the mildly
non-linear regime of structure formation. We have shown that promising such observables include
topological and geometrical estimators (Minkowski functionals, peak statistics) and count-in-
cells statistics (density PDF, void profiles,...).

All the ideas presented in this section are extensively described in four (three published and one
in preparation) papers I have co-signed and that are copied below. Paper 5.2 do the theory of
Minkowski functionals for weakly non-Gaussian fields in redshift space, paper 5.3 then studies
the exclusion zone around peaks. Count-in-cell statistics is finally the subject of papers 5.4 and
5.5 which describe the statistics of cosmic densities and slopes.
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ABSTRACT
In the context of upcoming large-scale structure surveys such as Euclid, it is of prime impor-
tance to quantify the effect of peculiar velocities on geometric probes. Hence, the formalism
to compute in redshift space the geometrical and topological one-point statistics of mildly
non-Gaussian 2D and 3D cosmic fields is developed. Leveraging the partial isotropy of the
target statistics, the Gram–Charlier expansion of the joint probability distribution of the field
and its derivatives is reformulated in terms of the corresponding anisotropic variables. In
particular, the cosmic non-linear evolution of the Minkowski functionals, together with the
statistics of extrema, is investigated in turn for 3D catalogues and 2D slabs. The amplitude
of the non-Gaussian redshift distortion correction is estimated for these geometric probes. In
3D, gravitational perturbation theory is implemented in redshift space to predict the cosmic
evolution of all relevant Gram–Charlier coefficients. Applications to the estimation of the
cosmic parameters σ (z) and β = f/b1 from upcoming surveys are discussed. Such statistics
are of interest for anisotropic fields beyond cosmology.

Key words: methods: analytical – galaxies: statistics – cosmological parameters – large-scale
structure of Universe.

1 IN T RO D U C T I O N

In modern cosmology, random fields (2D or 3D) are fundamental ingredients in the description of the large-scale matter density and the
cosmic microwave background (CMB). The large-scale structure of the matter distribution in the Universe is believed to be the result of the
gravitational growth of primordial nearly Gaussian small perturbations originating from quantum fluctuations. Deviations from Gaussianity
inevitably arise due to the non-linear dynamics of the growing structures, but may also be present at small, but potentially detectable levels in
the initial seed inhomogeneities. Thus, studying non-Gaussian (NG) signatures in the random fields of cosmological data provides methods
to learn both the details of early Universe’s physics and mechanisms for structure’s growth, addressing issues such as the matter content of
the Universe (Zunckel, Gott & Lunnan 2011), the role of bias between galaxies and dark matter (DM) distributions (Desjacques & Sheth
2010), and whether it is dark energy or a modification to Einstein’s gravity (Wang, Chen & Park 2012) that is responsible for the acceleration
of the Universe’s expansion.

With upcoming high-precision surveys, it has become necessary to revisit alternative tools to investigate the statistics of random
cosmological fields so as to handle observables with different sensitivity. Minkowski functionals (Mecke, Buchert & Wagner 1994) have
been actively used (Gott, Weinberg & Melott 1987; Weinberg, Gott & Melott 1987; Melott, Weinberg & Gott 1988; Gott et al. 1989, 2007;
Hikage et al. 2002, 2003; Park et al. 2005; Planck Collaboration 2013) as an alternative to the usual direct measurements of higher order
moments and N-point correlation functions (Scoccimarro et al. 1998; Percival et al. 2007; Gaztañaga et al. 2009; Nishimichi et al. 2010,
amongst many other studies) as they will present different biases and might be more robust, e.g. with regard to rare events. These functionals
are topological and geometrical estimators involving the critical sets of the field. As such they are invariant under a monotonic transformation
of the field (and in particular bias independent if the bias is monotonic!). If their expression for Gaussian isotropic fields has long been known
(Doroshkevich 1970; Adler 1981; Bardeen et al. 1986; Hamilton, Gott & Weinberg 1986; Bond & Efstathiou 1987; Ryden 1988; Ryden et al.
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Figure 1. Left-hand panel: an example of a slice through 5123 DM particles in �CDM simulations at redshift 0 (�m = 0.3, �� = 0.7, σ 8 = 0.92) in real
space. The box size is 100 Mpc h−1 and the slice thickness is 10 Mpc h−1. Right-hand panel: the same field when redshift distortion has been applied along the
ordinate. Fingers of God are quite visible on that slice (see also Fig. 2).

1989), their theoretical prediction has also been computed more recently for mildly NG fields [Matsubara 1994; Pogosyan, Gay & Pichon
2009b; Matsubara 2010, for the first and second NG corrections using a multivariate Edgeworth expansion, and more recently by Gay, Pichon
& Pogosyan (2012) to all orders in non-Gaussianity]. However, one major assumption in these results has been the isotropy of the underlying
field.

Indeed, the assumptions of homogeneity and isotropy of our observable Universe are central to our understanding of the universe. This
focuses our primary attention on statistically homogeneous and isotropic random fields as the description of cosmological 2D and 3D data.
These statistical symmetries provide essential guidance for the theoretical description of the geometry of the cosmological random fields.
Recent papers (Pogosyan et al. 2009b; Pogosyan, Pichon & Gay 2011; Gay et al. 2012) leverage the isotropy of the target statistics to
develop NG moment expansion to all orders for popular and novel statistics such as the above-mentioned Minkowski functionals, but also
extrema counts and the skeleton of the filamentary structures. This formalism, generalizing the earlier works (Bardeen et al. 1986; Matsubara
1994, 2003; Pogosyan et al. 2009a), allows for controlled comparison of the NG deviations of geometrical measures in theoretical models,
simulations and the observations, assuming homogeneity and isotropy. Nevertheless, 3D surveys are conveyed in redshift space where the
hypothesis of isotropy breaks down. Indeed in astrophysical observations, the three-dimensional positions of structures are frequently not
accessible directly. While angular positions on the sky can be obtained precisely, the radial line-of-sight (hereafter LOS) position of objects
is determined by proxy, e.g., via measurements of the LOS velocity component. This implies that galaxy distribution data are presented
in redshift space in cosmological studies. Figs 1 and 2 illustrate the amplitude of such redshift distortion as a function of scale. On small,
non-linear scales, the well-known finger-of-God effect (Jackson 1972; Peebles 1980) stretches the collapsing clusters along the LOS whereas
on larger scales (see Fig. 2) the redshift-space distortion flattens the voids along the LOS (Sargent & Turner 1977), in accordance with the
linear result of Kaiser (1987). But anisotropy in data does not affect only cosmological surveys: this issue is ubiquitous in physics: e.g. the
neutral hydrogen distribution is mapped in position–position–velocity cubes in studies of the interstellar or intergalactic medium, and the
turbulent distribution of magnetic field is mapped via Faraday rotation measure of the synchrotron emission (Heyvaerts et al. 2013). Thus,
as a rule, the underlying isotropy of structures in real space is broken in the space where data are available. Hence, developing techniques to
recover the properties of underlying fields from distorted data sets, anisotropic in the LOS direction, is a fundamental problem in astrophysics.

In this paper, we thus present a theory of the NG Minkowski functionals and extrema counts for z-anisotropic cosmological fields,
targeted for application to data sets in redshift space in the so-called plane-parallel approximation. Hence, this theory is a generalization of
the formalism for mildly NG but isotropic fields of Pogosyan et al. (2009b) and Gay et al. (2012) on one hand, and the theory of anisotropic
redshift-space effects on statistics in the Gaussian limit developed by Matsubara (1996) on the other hand. The effects of anisotropy and
non-Gaussianity are simultaneously important for a precise description of the large-scale structures (LSS hereafter) of the Universe as
mentioned in Matsubara & Suto (1995), where N-body simulations suggest that redshift-space distortion has noticeable impact on the shape
of the genus curve in the weakly non-linear regime. At the same time, the theory presented in this paper is general and applicable to mildly
NG homogeneous and statistically axisymmetric random fields of any origin, for example for extending velocity channel analysis of H I maps
(Lazarian & Pogosyan 2000) to account for NG density compressibility, or describing cosmological perturbations in anisotropic Bianchi
models of the Universe.

As an anticipation, Fig. 3 illustrates the importance of modelling appropriately the anisotropy on the particular example of the 3D Euler
characteristics of a mildly NG scale-invariant cosmological field. Indeed, the theoretical prediction assuming isotropy given in equation (38)
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Figure 2. A slice through the HORIZON 4π halo catalogue at redshift zero without (left-hand panel) and with (right-hand panel) redshift distortion (along the
ordinate). The box size is 2 Gpc h−1 and the slice thickness is 40 Mpc h−1. The area is 20 × 20 larger than the slice presented in Fig. 1. Each dot represents a
halo colour coded by its mass. Note the clear preferred horizontal elongation of structures in redshift space.

Figure 3. Left-hand panel: 3D Euler characteristic of a mildly NG scale-invariant cosmological field (n = −1, f = 1, σ = 0.18). The prediction to first order
in non-Gaussianity given by equation (35) corresponds to the red solid line and the prediction assuming isotropy (see equation 38) to the purple line. The
one-sigma shaded area is the measurement. Right-hand panel: same as the left-hand panel for the first-order correction to the Gaussian distribution only.

below (in purple) significantly fails to describe the measurement unlike the prediction proposed in equation (35) (in red). This suggests
that in redshift space it is of great importance to properly account for anisotropy. This will be the topic of this paper. Section 2 defines
the statistics used in this paper, namely Minkowski functionals and critical point counts. Section 3 introduces the formalism to deal with
the joint probability density function (JPDF) of the density field and its derivatives up to second order in redshift space. In particular, it
shows how rotational invariance is used to introduce a relevant set of variables which diagonalizes the Gaussian JPDF; a Gram–Charlier
(GC) expansion of the NG JPDF is written there. Section 4 presents Minkowski functionals and extrema counts in 2D and 3D. Section 4.2
presents the full NG expression for 2D and 3D Euler characteristic in redshift space, while Section 4.3 is devoted to the last three Minkowski
functionals (area of isosurfaces, length of isocontours and contour crossing) for which we present expressions in redshift space up to first
order in non-Gaussianity. Section 4.4 sketches the derivation for extrema counts in two and three dimensions. Section 4.5.1 re-expresses these
functionals as a function of the filling factor threshold, while Section 4.5.2 investigates the implications of the topological invariance for the
corresponding set of cumulants of the field. Section 5 analyses implication for the estimation of cosmological parameters. It shows how to
compute the relevant three-point cumulants in redshift space (e.g. skewness and its generalization to the derivatives of the density field) at
tree order within perturbation theory (PT). In particular, it provides a way to compute analytically the angular part of the integrals under
consideration. It then discusses which features of the bispectrum are robustly measured using these NG critical sets and sketches two main
applications: measuring σ (hence dark energy) of the possibly masked underlying field and measuring β ≡ f /b1 � �0.55

m /b1. Appendix A
lists the properties of the relevant cumulants. Appendix B presents briefly a set of ‘fnl’ anisotropic NG field toy models which we use to
validate our theory. Finally Appendix C derives the 3D Euler characteristic at all orders in non-Gaussianity.
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2 G E O M E T R I C A L S TATI S T I C S I N 2 D A N D 3 D

Our prime focus is the geometrical and topological properties of cosmological fields. One way to probe these is to look at isocontours of the
field at different thresholds and use Minkowski functionals to describe them (Mecke et al. 1994). These Minkowski functionals are known to
be the only morphological descriptors in integral geometry that respect motion invariance, conditional continuity and additivity (Hadwiger
1957). As a result, they form a robust and meaningful set of observables. In d dimensions, there are d + 1 such functionals (four in 3D and
three in 2D), namely in 3D: the encompassed volume, fV, the surface area,N 3, the integral mean curvature and the integral Gaussian curvature
(closely related to the Euler–Poincaré characteristic, χ ). For random fields these functionals are understood as densities, i.e. quantities per
unit volume of space.

Especially when studying the anisotropic field, complimentary information can be obtained by using the geometrical statistics and
Minkowski functionals for the field obtained on lower dimensional sections of the 3D field. For example, in addition to 3D isocontour area
statistics, one can introduce the length of 2D isocontours on a planar section N2, and contour crossings by a line through 3D space, N1.
These statistics for cosmology were first introduced by Ryden (1988) and Ryden et al. (1989). In the isotropic limit, they are trivially related:
2N1 = 4N2/π = N3; this relation does not hold anymore for an anisotropic field as it will be shown in Sections 4.3.1, 4.3.2 and 4.3.3.
Similarly, in addition to the full Euler characteristic χ3D of 3D excursion sets, we shall consider the 2D Euler characteristic, χ2D, on planar
sections through the field.

All geometrical measures can be expressed as averages over the JPDF of the field and its derivatives. In the following, let us call x the
field under consideration and, without loss of generality, assume that it has zero mean. In cosmological applications, this field, for instance,
can be the 3D density contrast. Collecting the well-known results from an extensive literature (e.g. Rice 1944, 1945; Ryden 1988; Matsubara
1996) in a compact form, we have for the first two Minkowski functionals

fV (ν) = 〈	(x − ν)〉 , (1)

N3(ν) = 〈|∇x|δD(x − ν)〉 , N2(ν) = 〈|∇S x|δD(x − ν)〉 , N1(ν) = 〈|∇L x|δD(x − ν)〉 , (2)

where the δD-function in the statistical averaging signifies evaluation at the given threshold x = ν, while the step function reflects the
cumulative averaging over the values above the threshold x ≥ ν. We see that the family of threshold-crossing statistics is given by the average
gradient of the field for N3 or its restriction to the plane S or line L for N2 and N1, respectively.

The average of the Gaussian curvature on the isosurface is, via the Gauss–Bonnet theorem, its topological Euler characteristic χ , which
thus can be expressed directly as χ (ν) = 〈δD(x − ν)δD(∇1x)δD(∇2x)|∇3x|(∇1∇1x∇2∇2x − (∇1∇2x)2)〉 (Hamilton et al. 1986; Matsubara
1996). In this paper, we use the Euler characteristic, χ3D, of the excursion set encompassed by the isosurface (which in 3D is just one half of
the Euler characteristic of the isosurface itself, and is equal to minus the genus for the definitions used in cosmology; see detailed discussions
for such conventions in Gay et al. 2012). Being the alternating sum of Betti numbers, χ3D is related via Morse theory (e.g. Jost 2008) to the
alternating sum of the number of critical points in the excursion volume. For a random field (Doroshkevich 1970; Adler 1981; Bardeen et al.
1986)1

χ3D(ν) = − 〈
det

(∇i∇j x
)
δD(∇x)	(x − ν)

〉
, i, j ∈ {1, 2, 3}. (3)

The Euler characteristic of the excursion sets of a 2D field (in particular, 2D slices of a 3D random field) is given by a similar expression
(Adler 1981; Bond & Efstathiou 1987; Coles 1988; Melott et al. 1989; Gott et al. 1990)

χ2D(ν)= 〈
det

(∇i∇j x
)
δD(∇x)	(x − ν)

〉
, i, j ∈ {1, 2} . (4)

For an anisotropic 3D field along the third direction, χ2D depends on the angle θS between this direction and the plane (S) under consideration
(Matsubara 1996). Equation (4) is then understood as

χ2D(ν, θS ) = 〈
det

(∇̃i∇̃j x
)
δD(∇̃x)	(x − ν)

〉
, i, j ∈ {1, 2}, (5)

where ∇̃ is the gradient on the plane, i.e. ∇̃1 = ∇1 and ∇̃2 = sin θS∇2 + cos θS∇3. The freedom associated with the choice of plane will be
further discussed in Section 5.

With the same formalism, it is easy to compute the critical point counts (Adler 1981; Bardeen et al. 1986). Equation (3) leads to a
cumulative counting above a given threshold for maxima, two types (filamentary and wall-like) of saddle points, and minima

nmax,3D(ν) = − 〈
det

(∇i∇j x
)
δD(∇x)	(−λ1)	(x − ν)

〉
, (6)

nsadf,3D(ν) = + 〈
det

(∇i∇j x
)
δD(∇x)	(λ1)	(−λ2)	(x − ν)

〉
, (7)

nsadw,3D(ν) = − 〈
det

(∇i∇j x
)
δD(∇x)	(λ2)	(−λ3)	(x − ν)

〉
, (8)

1 Note that this expression comes from δD(∇x) = ∑
x0|∇x0=0 δD(x − x0)/| det

(∇i∇j x
) | and the absolute value of the Hessian can be dropped because we are

interested in the alternating sum of critical points.
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nmin,3D(ν) = + 〈
det

(∇i∇j x
)
δD(∇x)	(λ3)	(x − ν)

〉
, (9)

where averaging conditions are set by the signs of sorted eigenvalues λ1 ≥ λ2 ≥ λ3 of the Hessian matrix of the field. Taking alternating sum
eliminates the constraints on signs of eigenvalue, leading to the χ3D statistics. Similar expressions as equations (6)–(9) apply for 2D extrema.

Extrema counts provide us with information on peaks (dense regions), minima (underdense regions) and saddle points. In some
applications, there is symmetry between extrema (e.g. in CMB studies, minima and maxima of the temperature field are equivalent); in
others, they describe very different structures, e.g. in LSS dense peaks correspond to gravitationally collapsing objects such as galactic or
cluster haloes while minima seed the regions devoid of structures. Saddle-type extrema are also interesting in their own right, being related
to the underlying filamentary structures (bridges connecting peaks through saddles), which in turn can also be characterized by the skeleton
(Novikov, Colombi & Doré 2003; Gay et al. 2012) of the cosmic web. A particular advantage of the described geometrical statistical estimates
is that they are invariant under the monotonic transformation of the underlying field x → f(x), provided one maps the threshold correspondingly
ν → f(ν). For cosmological data, this means that these statistics are formally invariant with respect to any monotonic local bias between the
galaxy and matter distributions. We demonstrate this formally, order by order, in Section 4.5.2.

3 TH E J P D F : ROTATI O NA L IN VA R I A N C E A N D G R A M – C H A R L I E R EX PA N S I O N

Evaluating the expectations in equations (1)–(9) requires a model for the JPDF of the field and its derivative up to second order,
P(x, ∇ ix, ∇ i∇ jx). Let us now proceed to developing this JPDF for a mildly NG and anisotropic field such as the cosmological density
field in redshift space, starting with a formal definition of redshift space.

3.1 Statistically anisotropic density field in redshift space

In an astrophysical context, we focus on the statistics of isodensity contours of matter in the redshifted Universe. The estimation of position
via redshift assigns to a given object the ‘redshift’ coordinate, s,

s = r + H−1v · r̂ (10)

shifted from the true position r by the projection of the peculiar velocity v along the LOS direction r̂ .
On large scales, in the linear regime of density evolution, the mapping to redshift coordinates induces an anisotropic change in mass

density contrast (Kaiser 1987), best given in Fourier space

δ̂(s)(k) = (1 + f μ2)δ̂(r)(k), (11)

that has dependence on the angle μ = k · r̂/k between the direction of the wave k and the LOS, and the amplitude, f, tracing the growth history
of linear inhomogeneities D(a), f = d log D/d log a ≈ �0.55

m (Peebles 1980). The main qualitative effect of this distortion is the enhancement
of clustering via the squeezing overdense regions and the stretching underdense voids along the LOS. If matter is traced by biased haloes
(e.g. galaxies), the redshift-space distortion δg can be modelled by a linear bias b1 factor (Kaiser 1984),

δ̂(s)
g (k) = (1 + βμ2)δ̂(r)

g (k), β ≡ f /b1. (12)

Depending on context, we shall use either f or β to parametrize the linearized redshift distortions, and either equation (11) or (12) to generate
maps.

In the mildly non-linear regime, the focus of this investigation, redshift distortions interplay with NG corrections that develop with
the growth of non-linearities. Scoccimarro, Couchman & Frieman (1999) and Bernardeau et al. (2002) established the framework for a
perturbative approach to this regime, which we built upon in Section 5.3. In redshift space, the density field is statistically anisotropic, with
LOS expectations differing from expectations in the perpendicular directions (in the plane of the sky). We shall consider the Minkowski
functionals and extrema statistics in the plane-parallel approximation, where the LOS direction is identified with the Cartesian third, ‘z’,
coordinate. As the first step, we extend the NG formalism introduced in Pogosyan et al. (2009b) and Gay et al. (2012) to partly anisotropic,
axisymmetric fields, establishing several formal results for all orders in non-Gaussianity.

3.2 3D formalism

Following Pogosyan et al. (2009b), we choose an NG GC expansion of the JPDF (Cramér 1946; Kendall & Stuart 1958; Chambers 1967;
Juszkiewicz et al. 1995; Amendola 1996; Blinnikov & Moessner 1998) (for a first application to CMB, see, e.g., Scaramella & Vittorio
1991) using polynomial variables that are invariant with respect to the statistical symmetries of the field. In the presence of anisotropy in the
direction along the LOS, all statistical measures should be independent with respect to sky rotations in the plane perpendicular to the LOS.

Let us denote the field variable as x for the density contrast and xi, xij for its first and second derivatives. These field variables are
separated into the following groups based on their behaviour under sky rotation: x and x33 are scalars, x3 is a pseudo-scalar, (x1, x2) and
(x13, x23) are two vectors and (x11, x22, x12) is a symmetric 2 × 2 tensor. We can construct eight 2D sky rotation invariant polynomial quantities:
four linear ones x, x33, x3 and J1⊥ ≡ x11 + x22; three quadratic: q2

⊥ ≡ x2
1 + x2

2 , Q2 ≡ x2
13 + x2

23 and J2⊥ ≡ (x11 − x22)2 + 4x2
12; and one cubic,
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ϒ ≡ (x2
13 − x2

23)(x11 − x22) + 4x12x13x23, which is directly related to the 2D polar angle ψ between the (x13, x23) vector and the eigendirection
of the (x11, x22, x12) matrix,2 ϒ = Q2

√
J2⊥ cos 2ψ .

To build the GC expansions, we start with the Gaussian limit to the one-point JPDF of all the invariant variables, which then serves as a
kernel for defining orthogonal polynomials into which the deviations from Gaussianity are expanded (see Gay et al. 2012 for further details).
The Gaussian limit is determined as the limit in which the distribution of field variables x, xi, xij is approximated by the Gaussian JPDF. The
field variables are defined to have zero mean. Their covariance matrix in the anisotropic case contains the variances, defined as〈
x2

〉 ≡ σ 2,
〈
x2

1

〉 = 〈
x2

2

〉 ≡ 1

2
σ 2

1⊥,
〈
x2

3

〉 ≡ σ 2
1‖,

〈
x2

11

〉 = 〈
x2

22

〉 ≡ 3

8
σ 2

2⊥,

〈
x2

12

〉 ≡ 1

8
σ 2

2⊥,
〈
x2

33

〉 ≡ σ 2
2‖,

〈
x2

13

〉 = 〈
x2

23

〉 ≡ 1

2
σ 2

Q, (13)

and the cross-correlations, amongst which the non-zero are

〈xx11〉 = 〈xx22〉 ≡ −1

2
σ 2

1⊥, 〈xx33〉 ≡ −σ 2
1‖, 〈x11x22〉 ≡ 1

8
σ 2

2⊥, 〈x11x33〉 = 〈x22x33〉 = 1

2
σ 2

Q. (14)

These properties translate into the following lowest moments for 2D rotation invariant quantities

〈x〉 = 〈J1⊥〉 = 〈x33〉 = 〈ϒ〉 = 0,
〈
x2

〉 = σ 2, 〈J 2
1⊥〉 = σ 2

2⊥,
〈
x2

33

〉 = σ 2
2‖, 〈q2

⊥〉 = σ 2
1⊥,

〈
Q2

〉 = σ 2
Q, 〈J2⊥〉 = σ 2

2⊥. (15)

The cross-correlations of invariants are limited to the x, J1⊥, x33 subset, 〈xJ1⊥〉 = −σ 2
1⊥, 〈xx33〉 = −σ 2

1‖, 〈J1⊥x33〉 = σ 2
Q and the coupling

of ϒ with Q2 and J2⊥. The scalar part of the gradient x3 remains uncorrelated with the rest of the variables due to its pseudo-scalar nature
(changing sign when z flips). From now on, we shall consider field variables to be normalized by the corresponding σ , σ 1⊥, σ 1‖, σ 2⊥, σ 2‖ and
σ Q. The linear invariant combinations are normalized by their standard deviations and the quadratic ones by their mean values. Correlations
are then described by the dimensionless coefficients γ⊥ ≡ σ 2

1⊥/(σσ2⊥), γ‖ ≡ σ 2
1‖/(σσ2‖) and γ2 ≡ σ 2

Q/(σ2⊥σ2‖), corresponding to generalized
shape parameters (Bernardeau et al. 2002). Note that in the isotropic limit,

σ 2
1⊥ = 2/3σ 2

1 , σ 2
1‖ = 1/3σ 2

1 , σ 2
2⊥ = 8/15σ 2

2 , σ 2
2‖ = 1/5σ 2

2 , σ 2
Q = 2/15σ 2

2 , γ⊥ =
√

5/6γ, γ‖ =
√

5/9γ, γ2 = 1/
√

6, (16)

where σ 2
1 ≡ 〈x2

1 + x2
2 + x2

3 〉 = 〈∇x · ∇x〉, σ 2
2 = 〈(x11 + x22 + x33)2〉 = 〈(�x)2〉 and γ ≡ σ 2

1 /(σσ2).
Let us now also introduce a decorrelated set of invariant variables (x, ξ , ζ ) with the following combinations of x, J1⊥, x33:

x33 = ξ

√
1 − γ 2

⊥ − γ 2
‖ − γ 2

2 + 2γ⊥γ‖γ2

1 − γ 2
⊥

+ γ2 − γ‖γ⊥√
1 − γ 2

⊥
ζ − γ‖x , J1⊥ = ζ

√
1 − γ 2

⊥ − γ⊥x. (17)

The resulting Gaussian distribution G = G(x, q2
⊥, x3, ζ, J2⊥, ξ,Q2, ϒ) then simply reads in terms of these variables

G dx dq2
⊥dx3 dζ dJ2⊥dξ dQ2dϒ = 1

4π3
e− 1

2 x2−q2
⊥− 1

2 x2
3 − 1

2 ζ 2−J2⊥− 1
2 ξ2−Q2

dx dq2
⊥dx3 dζ dJ2⊥dξ dQ2 dϒ√

Q4J2⊥ − ϒ2
, (18)

where x, x3, ξ , ζ vary in the range ] −∞, ∞[, q2
⊥, Q2, J2⊥ span positive values [0, ∞[ and ϒ is limited to [−Q2

√
J2⊥, Q2

√
J2⊥].

The GC polynomial expansion for an NG JPDF is then obtained by using polynomials that are orthogonal with respect to the kernel
provided by equation (18). The remaining coupling between ϒ and the (Q2, J2⊥) variables in equation (18) introduces a technical complexity
in building an explicit set of such polynomials. Fortunately, for most of the geometrical statistics considered in this paper, the ϒ dependence
is trivial and we can limit ourselves to probability density functions (PDFs) marginalized over ϒ . After ϒ marginalization, all the remaining
variables are uncorrelated in the Gaussian limit, and the NG JPDF, P (x, q2

⊥, x3, ζ, J2⊥, ξ,Q2), can be expanded in a series of direct products
of the familiar Hermite (for which we use the ‘probabilists’ convention) and Laguerre polynomials

P = G

[
1 +

∞∑
n=3

∑
σn

(−1)j+l+r

i! j ! k! l! m! r! p!

〈
xiq

2j
⊥ ζ kJ l

2⊥xm
3 Q2r ξp

〉
GC

Hi(x)Lj

(
q2

⊥
)
Hk(ζ )Ll(J2⊥)Hm(x3)Lr

(
Q2

)
Hp(ξ )

]
, (19)

where
∑

σn
is the sum over all combinations of indices σn = {(i, j , k, l, m, p, r) ∈ N7|i + 2j + k + 2l + m + 2r + p = n} such that powers

of the field add up to n, and G is given by equation (18) after integration over ϒ . The terms within the expansion (19) are sorted in the order
of the power in the field variable n. The GC coefficients are defined by〈

xiq
2j
⊥ ζ kJ l

2⊥xm
3 Q2r ξp

〉
GC

≡ (−1)j+l+r j ! l! r!
〈
Hi(x)Lj (q2

⊥)Hk(ζ )Ll(J2⊥)Hm(x3)Lr (Q2)Hp(ξ )
〉

, (20)

normalized so that 〈xiq
2j
⊥ ζ kJ l

2⊥xm
3 Q2r ξp〉GC = 〈xiq

2j
⊥ ζ kJ l

2⊥xm
3 Q2r ξp〉 + products of lower order moments. The advantage of using strictly

polynomial variables is that all the moments that appear in the GC coefficients can be readily related to the moments of the underlying field,
and can be obtained if the theory of the latter (for example, PT of gravitational instability) is known. As shown in Gay et al. (2012), at the

2 There is no quadratic combination that would represent this angle via a scalar product of two vectors. The reason is that any ‘vector’ built linearly from xij,
such as the ‘Q,U’ one (x11 − x22, 2x12), rotates with twice the rotation angle when the real vectors, e.g. (x13, x23), rotate normally. The combination ϒ can be
seen to be a scalar product of ‘vectors’ , e.g. (x11 − x22, 2x12) and (x2

13 − x2
23, 2x13x23).
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lowest NG (n = 3) order, the GC coefficients are just equal to the moments of the corresponding variables, while in the next two orders they
coincide with their cumulants, defined as ‘field cumulants’3 if the variable is non-linear (for details, see Gay et al. 2012).

Expression (19) is somewhat simplified under the condition of zero gradient, arising, e.g., when investigating the Euler characteristic
and extrema densities,

Pext(x, ζ, J2⊥, ξ, Q2)=Gext

[
1 +

∞∑
n=3

∑
σn

(−1)j+l+r+m2−m

i! j ! k! l! m! r! p!

〈
xiq

2j
⊥ ζ kJ l

2⊥x2m
3 Q2r ξp

〉
GC

Hi(x)Hk(ζ )Ll(J2⊥)Lr

(
Q2

)
Hp(ξ )

]
, (21)

since Lj(0) = 1, H2m(0) = ( − 1)m(2m)!/(2mm!) and H2m + 1(0) = 0 ; Gext = 1
π

G(x, 0, 0, ζ, J2⊥, ξ,Q2), where the 1/π comes from the use
of polar (q2

⊥) versus Cartesian coordinates (x1, x2). Note that m is then replaced by 2m in the power count in σ n.

3.3 Theory on 2D planes

One of our purposes is to study Minkowski functionals on 2D planar sections of 3D fields. Let us therefore introduce the anisotropic
2D (on the plane) formalism. In a 2D planar slice through anisotropic space no residual symmetries are left, so we may use the field
variables directly. The emphasis then is on relating the field properties on the plane to the three-dimensional ones. Denoting the basis
vectors of 3D space as u1, u2 and u3, with u3 directed along the LOS, let us introduce the coordinate system on the 2D plane using
the pair of basis vectors such that s1 = u1 is perpendicular to the LOS and s2 = cos θSu3 + sin θSu2, where θS is the angle between the
LOS and that plane. We label the field variables on the plane with tilde, using the set (x̃, x̃1, x̃2, x̃11, x̃22, x̃12), where the relation with 3D
spatial derivatives is established by ∂s1 = ∂1 and ∂s2 = cos θS∂3 + sin θS∂2. Hereafter, the first direction corresponds to s1 and the second
direction to s2. Note that x̃, x̃1 and x̃11 coincide with their 3D counterparts. We use variables rescaled by their respective variance denoted,
using the same notation as in the 3D case, as (σ̃ , σ̃1⊥, σ̃1‖, σ̃2⊥, σ̃2‖, σ̃Q). These variances involve the plane orientation in the following
way: σ̃ = σ , σ̃ 2

1⊥ = 〈x2
1 〉 = 1

2 σ 2
1⊥, σ̃ 2

1‖ = 〈x̃2
2 〉 = cos2θSσ 2

1‖ + 1
2 sin2θSσ 2

1⊥, σ̃ 2
2⊥ = 〈x2

11〉 = 3
8 σ 2

2⊥, σ̃ 2
2‖ = 〈x̃2

22〉 = cos4θSσ 2
2‖ + 3

8 sin4θSσ 2
2⊥ +

3 cos2θS sin2θSσ 2
Q and σ̃ 2

Q = 〈x̃2
12〉 = 1

2 cos2θSσ 2
Q + 1

8 sin2θSσ 2
2⊥ . As previously, in order to diagonalize the JPDF, we introduce ξ̃ and ζ̃ such

that

x̃22 =
√

1 − γ̃ 2
⊥ − γ̃ 2

‖ − γ̃ 2
2 + 2γ̃⊥γ̃‖γ̃2

1 − γ̃ 2
⊥

ξ̃ − γ̃‖γ̃⊥ − γ̃2√
1 − γ̃ 2

⊥
ζ̃ − γ̃‖x , x̃11 =

√
1 − γ̃ 2

⊥ζ̃ − γ̃⊥x , (22)

where γ̃⊥ = σ̃ 2
1⊥/(σ̃ σ̃2⊥), γ̃‖ = σ̃ 2

1‖/(σ̃ σ̃2‖) and γ̃2 = σ̃ 2
Q/(σ̃2‖σ̃2⊥). In terms of these variables, the resulting Gaussian distribution is simply

G2D(x̃, x̃1, x̃2, ζ̃ , ξ̃ , x̃12) = 1

8π3
exp

[
−1

2
x̃2 − 1

2
x̃2

1 − 1

2
x̃2

2 − 1

2
ζ̃ 2 − 1

2
ξ̃ 2 − 1

2
x̃2

12

]
, (23)

and the fully NG JPDF can be written using a GC expansion in Hermite polynomials only,

P2D(x̃, x̃1, x̃2, ζ̃ , ξ̃ , x̃12)=G2D

[
1+

∞∑
n=3

∑
σn

1

i! j ! k! l! m! p!

〈
x̃i x̃

j
1 x̃k

2 ζ̃ l ξ̃mx̃
p
12

〉
GC

Hi (x̃) Hj (x̃1)Hk(x̃2)Hl(ζ̃ )Hm(ξ̃ )Hp(x̃12)

]
, (24)

where σn = {(i, j , k, l,m, p) ∈ N6|i + j + k + l + m + p = n} and the GC coefficients are given by 〈x̃i x̃
j
1 x̃k

2 ζ̃ l ξ̃mx̃
p
12〉GC =

〈Hi(x̃)Hj (x̃1)Hk(x̃2)Hl(ζ̃ )Hm(ξ̃ )Hp(x̃12)〉.
Equations (21) and (24) fully characterize the one-point statistics of a possibly anisotropic weakly NG field in 2D and 3D. These

expansions apply whatever the origin of the anisotropy, and in particular for redshift-induced anisotropy in a cosmic environment.

4 PR E D I C T I O N FO R M I N KOW S K I FU N C T I O NA L S A N D E X T R E M A C O U N T S

Topological and geometrical measures in redshift space that we are investigating are obtained by integrating the suitable quantities over
the distributions (21) and (24), in accordance with equations (1)–(9). We first collect the results for Minkowski functionals, for which such
integrals can be carried analytically, and then discuss extrema counts, where one has to resort to numerical integration. The GC expansion
leads to a series representation, e.g. χ3D = χ

(0)
3D + χ

(1)
3D + χ

(2)
3D + · · · for which we give here the zero (Gaussian) and the first (NG) order terms.

χ
(1)
3D correspond to first-order terms in the variance σ in the cosmological perturbation series. The Gaussian terms, e.g. χ

(0)
3D , in redshift space

have been first investigated in Matsubara (1996), while the first NG corrections are novel results of this paper. Higher order terms can also be
readily obtained within our formalism (see Appendix C). Most of our results are general for arbitrary weakly NG fields with axisymmetric
statistical properties.

The presented statistics fall into two families. One group is the statistics of the 3D field as a whole, namely the 3D Euler characteristic,
χ3D(ν), the area of the isosurfaces in 3D space, N3(ν), the volume above a threshold, fV, and the differential count of extrema in 3D. The
other group consists of measures on lower dimensional cuts through 3D volumes. These correspond to measures on a planar 2D cut of the 2D
Euler characteristic, χ2D(ν), and the length of isocontours on a 2D plane,N2(ν), and statistics of zero crossings,N1(ν), along pencil-beam 1D

3 ‘Field cumulant’ means the cumulant computed after expressing the non-linear variable through the field quantities, e.g. 〈q4
⊥〉field c ≡ 〈(x2

1 + x2
2 )2〉c . We drop

the prefix ‘field’, always assuming ‘field’ cumulants.
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lines through the volume, as well as the corresponding differential extrema counts. The lower dimensional statistics in an anisotropic space
give additional leverage to study anisotropy properties, e.g. in the cosmological context, the magnitude of the redshift distortion, through
their dependence on the direction in which the section of the volume is taken. Indeed, we show below [equations (40), (54), . . . ] that these
statistics follow the following generic form (again using χ2D as an example and omitting numerical constant factors):

χ2D(ν, θS ) ∝ P (ν)A(βσ , θS )

(
Hi(ν) + σz

∑
m=±1,±3

(
S̃(m),⊥

χ2D,z + S̃(m),‖
χ2D,z

)
Hi+m(ν) + · · ·

)
, (25)

where the overall amplitude A depends in an angle-sensitive way on the anisotropy parameter,

βσ ≡ 1 − σ 2
1⊥/2σ 2

1‖ , (26)

that measures the difference between the rms values of the LOS and perpendicular components of the gradient, and θS denotes the angle
between the LOS and the 2D slice under consideration. In the case of isotropy, βσ = 0. In anisotropic situations, βσ is positive, spanning the
range 0 < βσ ≤ 1, when the field changes faster in the z-direction (σ1‖ > 1

2 σ1⊥) as is the case, for instance, in the linear regime of redshift
corrections where βσ = 4

5 β(1 + 3β/7)/(1 + 6β/5 + 3β2/7), with β = f/b1. When the LOS variations are smoother than the perpendicular
one (σ1‖ < 1

2 σ1⊥), βσ is negative, −∞ ≤ βσ < 0, as is the case in the non-linear ‘finger-of-God’ regime.
The Gaussian and subsequent contributions have distinct signatures in this Hermite decomposition. While the Gaussian term is described

by an appropriate single Hermite mode Hi(ν), the first-order corrections excite the modes that have parity opposite to that of the leading
Gaussian order. The amplitude of non-Gaussianity is proportional to the variance σ of the field and combinations of third-order cumulants
S̃(m)

χ2D,z that can be different if measured in the directions parallel, S̃(m),‖
χ2D,z, or perpendicular, S̃(m),⊥

χ2D,z , to the LOS (e.g. 〈xq2
⊥〉 versus 〈xx2

3 〉).
This suggests the following strategy: (a) determine the β parameter from the amplitude of the 1D or 2D statistics taken at different angles

to the LOS; (b) determine the amplitude of non-Gaussianity, and correspondingly σ z in redshift space, by comparing the Gaussian and NG
contributions through fitting distinct Hermite functions to the measurements; and (c) determine the real-space σ by combining the results of
the two previous steps. This strategy is implemented on a fiducial experiment in Section 5.5. The 3D statistics have a representation similar
to that of equation (25), but without any control over the angle parameter. Therefore, they are less sensitive to the effects of anisotropy, but
should provide more robust measurements of the NG corrections than any given lower dimensional subset of data.

4.1 PDF of the field and the filling factor, fV

The simplest statistic and Minkowski functional is the filling factor, fV, of the excursion set, i.e. the volume fraction occupied by the region
above the threshold ν. Derived from the PDF of the field alone (Bernardeau & Kofman 1995; Juszkiewicz et al. 1995),

P (ν) = 1√
2π

e−ν2/2

[
1 +

∞∑
i=3

1

i!

〈
xi

〉
GC Hi(ν)

]
= 1√

2π
e−ν2/2

[
1 + σ

S3

6
H3(ν) + σ 2

(
S4

24
H4(ν) + S2

3

72
H6(ν)

)
+ · · ·

]
, (27)

the functional fV (ν) = ∫ ∞
ν

P (x) dx is given by

fV (ν) = 1

2
Erfc

(
ν√
2

)
+ 1√

2π
e−ν2/2

∞∑
i=3

1

i!

〈
xi

〉
GC Hi−1(ν)

= 1

2
Erfc

(
ν√
2

)
+ 1√

2π
e−ν2/2

[
σ

S3

6
H2(ν) + σ 2

(
S4

24
H3(ν) + S2

3

72
H5(ν)

)
+ · · ·

]
, (28)

where the terms from the GC expansion are rearranged in powers of σ (forming the Edgeworth expansion) using the usual skewness
S3 = 〈x3〉/σ , kurtosis S4 = (〈x4〉c − 3)/σ 2 and subsequent scaled cumulants of the field x.

There are several advantages of using the value of the filling factor fV instead of ν as a variable in which to express all other statistics.
Indeed, the fraction of volume occupied by a data set is readily available from the data, whereas specifying ν requires prior knowledge of
the variance σ , a quantity which is typically the main unknown for such investigations. Following Gott et al. (1987, 1989), Gott (1988), Seto
(2000) and Matsubara (2003), let us therefore introduce the threshold νf = √

2 erfc−1(2fV ) to be used as an observable alternative to ν. The
mapping between ν and ν f is monotonic and is implicitly given by the identity

√
2π fV =

∫ ∞

νf

dy e−y2/2 =
∫ ∞

ν

dx e−x2/2 +
∞∑
i=3

1

i!

〈
xi

〉
GC Hi−1(ν)e−ν2/2 , (29)

which when inverted implies

ν = νf + σ
S3

6
H2(νf ) +O(σ 2). (30)

If truncated to the first NG order, this relation remains monotonic for ν f > −3/〈x3〉. All Minkowski functionals derived below will be
re-expressed in terms of ν f in Section 4.5.1.
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4.2 Euler characteristic in two and three anisotropic dimensions

4.2.1 3D Euler characteristic: χ3D

From equation (3), the 3D Euler characteristic reads

χ3D = − 1

σ 2
1⊥σ1‖

∫
dx dζ dJ2⊥dξ dQ2dϒPext(x, ζ, J2⊥ξ, Q2, ϒ)I3 , (31)

where I3 = det xij . In terms of the variables defined in Section 3, the Hessian is

I3 = 1

4
x33

(
J 2

1⊥ − J2⊥
) − 1

2
γ2

(
Q2J1⊥ − ϒ

)
. (32)

The integration is easily performed using the orthogonality properties of Hermite and Laguerre polynomials to give the expression for the 3D
Euler characteristic to all orders in non-Gaussianity that can be found in Appendix C. The result in equation (C4) has the form

χ3D(ν) = 1

2
Erfc

(
ν√
2

)
χ3D(−∞) + χ

(0)
3D (ν) + χ

(1)
3D (ν) + · · · , (33)

where the asymptotic limit χ3D(−∞) is zero in the infinite simply connected 3D space, but can reflect the Euler characteristic of the mask if
data are available only in subregions with a complex mask.4

At Gaussian order, the 3D Euler characteristic reads, in accordance with Matsubara (1996),

χ
(0)
3D (ν) = σ1‖σ 2

1⊥
σ 3

H2(ν)

8π2
e−ν2/2 . (34)

At first NG order, the 3D Euler characteristic is (using relations between cumulants listed in Appendix A2)

χ
(1)
3D (ν) = σ1‖σ 2

1⊥
σ 3

e−ν2/2

8π2

[
H5(ν)

3!

〈
x3
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〈
x
(
q2

⊥ + x2
3/2

)〉 − H1(ν)

γ⊥

〈
J1⊥

(
q2

⊥ + x2
3

)〉]
, (35)

where, when we expand our cumulants in terms of the field variables,

〈
x
(
q2

⊥ + x2
3/2

)〉 = σ 2

σ 2
1⊥

〈
x
(∇⊥x · ∇⊥x

)〉 + σ 2

2σ 2
1‖

〈
x
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)〉
, (36)

〈
J1⊥

(
q2

⊥ + x2
3

)〉 = σ 3

σ2⊥σ 2
1⊥

〈
�⊥x

(∇⊥x · ∇⊥x
)〉 + σ 3

σ2⊥σ 2
1‖

〈
�⊥x

(∇‖x · ∇‖x
)〉

. (37)

Note that the n = 3 GC coefficients are actually equal to the cumulants of field variables; therefore, the brackets without the label GC are
used, meaning these are standard cumulants. This correspondence is preserved at the next order as well, but will eventually be broken for the
higher order GC coefficients. We refer again to Gay et al. (2012) for a detailed discussion.

The isotropic limit can be put in a concise form using equation (16) and the relationships 〈�⊥x (∇‖x · ∇‖x)〉 = 〈�⊥x (∇⊥x · ∇⊥x)〉 =
〈(∇x · ∇x)�x〉/3:

χ iso
3D (ν) = e−ν2/2

(2π)2

σ 3
1

3
√

3σ 3

[
H2(ν) + 1

3!
H5(ν)

〈
x3

〉 + 3

2

σ 2

σ 2
1

H3(ν) 〈x (∇x · ∇x)〉 − 9

4

σ 4

σ 4
1

H1(ν) 〈(∇x · ∇x) �x〉 +O(σ 2)

]
, (38)

which is in exact agreement with Gay et al. (2012) (see Appendix A2).
These predictions for the 3D Euler characteristics are now first validated on toy models for which simulations are straightforward and

cumulants simply analytic (see Appendix B for details about this fnl toy model). In this non-dynamical model, the redshift correction is
simulated by transforming the density according to the linear equation (11) with an f factor chosen freely. Figs B1 and B2 present a good
match between the theoretical predictions of equations (35) and (38) for the 3D NG anisotropic Euler characteristic to simulated fields. They
also show the evolution as a function of fnl (i.e. as a function of the non-Gaussianity) for two values of the anisotropy parameter, f = 0 (real
space) and f = 1 (redshift space).

Fig. 4 summarizes comparison of many results of this section with measurement on the density fields in DM-only, 2563, scale-invariant
LSS simulations with power index n = −1 and �m = 1. To reproduce the redshift effects, the positions of the particles are shifted along
z according to equation (10). For DM, we have f = β = 1. The lowest-right panel in Fig. 4 compares the prediction of equation (35) to
the χ3D statistics. The measurements are done at epochs for which σ = 0.18 in real space. For these fields, non-Gaussianity comes from
gravitational clustering but also from the mapping into redshift space which is intrinsically non-linear. The theoretical formula uses the
cumulants measured from simulation itself, so we do not test how accurately the cumulants can be predicted, e.g. using PT. Fig. 4 shows that
the theoretical prediction at next-to-leading order (NLO; i.e. at first NG order) mimics very well the measurement for intermediate contrasts

4 Here by ‘masking’ we understand the procedure that excludes some regions of space from observations without modifying the underlying statistical properties
of the field.
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Figure 4. Gravity-induced NLO NG corrections for the Minkowski functionals of a mildly non-linear 3D density field (n = −1, σ = 0.18) in redshift space
(f = 1). Theoretical predictions are displayed with solid purple lines and measurements with shaded one-sigma dispersion. Top left: 2D Euler characteristic in
planes parallel to the LOS; top right: 2D Euler characteristic in planes perpendicular to the LOS; central top left: N1 (contour crossing) in planes parallel to
the LOS; central top right:N1 in planes perpendicular to the LOS; central bottom left:N2 (length of isocontour) in planes parallel to the LOS; central bottom
right: N2 in planes perpendicular to the LOS; bottom left: N3 (area of isocontour); bottom right: 3D Euler characteristic. Note that the predicted first-order
correction fits very well the odd part (respectively even for the 2D Euler characteristic) of the measured correction for intermediate contrast (−1.5 � ν � 1.5).
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as expected (note that we plot the odd part of the signal to suppress the Gaussian term and focus on deviation to Gaussianity only). To better
fit the data at the tails of the distribution, one has to take into account higher order corrections, which, as previous real-space studies show,
are non-negligible for σ ≥ 0.18.

4.2.2 2D Euler characteristic: χ2D

Let us now investigate the Euler characteristic of the field on a 2D planar section, S, of a 3D z-anisotropic space. As redshift distortion occurs
along the LOS, this statistics thus depends on the angle θS between the plane S and that LOS. The 2D field restricted to the plane S is denoted
as x̃(s1, s2), where s1 and s2 are two Cartesian coordinates on the plane, chosen so that s1 spans the direction perpendicular to the LOS. From
equation (5), the Euler characteristic on the plane (S) reads

χ2D = 1

σ̃1⊥σ̃1‖

∫
dx̃ dx̃1 dx̃2 dζ̃ dξ̃ dx̃12Ĩ2δD(x̃1)δD(x̃2)P (x̃, x̃1, x̃2, ζ̃ , ξ̃ , x̃12), (39)

where Ĩ2 = σ̃2⊥σ̃2‖(x̃11x̃22 − γ̃2x̃
2
12) is the Hessian determinant on the plane. Rewriting Ĩ2 in terms of x̃, ζ̃ , ξ̃ and x̃12 and using the orthogonality

of Hermite polynomials, one obtains, after some algebra, an all-order expansion,
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, (40)

where σn = {(i, j , k) ∈ N3|i + 2j + 2k = n} and H−1(ν) = √
π/2 Erfc(ν/

√
2). In the Gaussian limit, the Euler characteristic of a 2D plane

then reads

χ
(0)
2D (ν, θS ) = e−ν2/2

(2π)3/2

σ̃1⊥σ̃1‖
σ 2

H1(ν) = e−ν2/2

(2π)3/2

σ1⊥σ1‖√
2σ 2

√
1 − βσ sin2 θS H1(ν) , (41)

where βσ is defined in equation (26). This is in agreement with Matsubara (1996). Note that the amplitude of this Gaussian term is
overestimated when assuming isotropy.

The n = 3 term (i.e. the first correction from Gaussianity) in the expansion gives, in ‘on-plane’ variables,
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2
2

〉]
, (42)

or, using the cumulants of the 3D field,
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, (43)

where σ 2
1⊥q2

⊥ = σ 2(∇⊥x ·∇⊥x), σ 2
1‖x

2
3 = σ 2(∇‖x ·∇‖x) and σ 2⊥J1⊥ = σ �x. For the particular case when the cut is done through an isotropic

3D field, the 2D Euler characteristic to first order in non-Gaussianity is

χ iso
2D (ν) = e−ν2/2

(2π)3/2

σ 2
1

3σ 2

[
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3!
H4(ν)〈x3〉 + σ 2

σ 2
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H2(ν) 〈x (∇x · ∇x)〉 − 3σ 4

4σ 4
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〈�x (∇x · ∇x)〉 +O(σ 2)

]
, (44)

which is in agreement with Gay et al. (2012) (again relying on Appendix A2 for some relations between the cumulants). Figs B1 and B2 show
the dependence of the 2D Euler characteristic on fnl and f following equations (43) and (44). As expected, the effect of redshift distortion is
enhanced in 2D relative to 3D. This is expected since in 3D, two dimensions remain isotropic. Fig. B3 also shows the evolution of the 2D
Euler characteristic as a function of gnl and f. It demonstrates that this set of simulations is well fitted by the sum of the two contributions
from fnl and gnl.

For cosmological fields, Fig. 4 compares the prediction of equation (43) for the χ2D statistics to scale-invariant LSS simulations in
planes parallel and perpendicular to the LOS. Again, this figure shows very good agreement between measurements and predictions at NLO
for intermediate contrasts (−1.5 � ν � 1.5). There is a noticeable angle dependence of the 2D Euler characteristic which suggests that the
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Figure 5. 2D Euler characteristic (top-left panel), 2D extrema counts (top-right panel), length of 2D isocontour (bottom-left panel) and contour crossing
(bottom-right panel) at first NG order as a function of cos θS from 0 (red) to 1 (dark blue). Cumulants used in equations (43), (54) and (60) are measured in
a scale-invariant LSS simulation with σ = 0.18 The prediction for 2D extrema statistics was obtained by numerical integration following Section 4.4. The
noticeable dependence of these functionals on the angle θS gives us a mean to measure β = f/b1 as suggested in Section 5.5.

procedure described in the introduction of Section 4 is feasible. This angle dependence is also illustrated in Fig. 5, where one can see how
the prediction at NLO varies with the angle θS between the LOS and the 2D slice under consideration.

4.3 Other Minkowski functionals

4.3.1 Area of isodensity contours in 3D: N3

One of the Minkowski functionals is N3(ν), the area (per unit volume) of a 3D isosurface of the density field at level ν. To compute this
functional, it is sufficient to consider the JPDF of the field and its first derivatives,

P
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−x2
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)
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]
. (45)

From equation (2), the area of a 3D isosurface is

N3(ν) = 1

σ

∫
dq2

⊥dx3P (ν, q2
⊥, x3)

√
σ 2

1⊥q2
⊥ + σ 2

1‖x
2
3 . (46)

Computing the integrals, we express the results using the anisotropy parameter βσ = 1 − σ 2
1⊥/2σ 2

1‖. At Gaussian order, expression (46) yields
the result, consistent with Matsubara (1996),

N (0)
3 (ν) = 2

π

σ1√
3σ

1 − A(βσ )√
1 − 2βσ /3

e−ν2/2, with A(βσ ) ≡ 1

2
(βσ − T (βσ ) + βσ T (βσ )), (47)

where the function T is defined as T (βσ ) = 1/
√

βσ tanh−1(
√

βσ ) − 1 for βσ ≥ 0 and T (βσ ) = 1/
√|βσ | tan−1(

√|βσ |) − 1 for βσ < 0. Under
this definition, A(βσ ) describes an ∼ βσ /3 + β2

σ /15 + · · · correction at small anisotropy βσ → 0. We see that in the Gaussian limit, the
anisotropy has a very little effect on N3. The amplitude deviates from unity by less than 1 per cent in the range −1 < βσ < 0.5, as its series
expansion ∝ 1 − β2

σ /90, . . . attests. Even at extreme anisotropies, it changes just to ≈0.92 at βσ → −∞ and ≈0.87 at βσ = 1.
The computation of the n = 3 term corresponding to the first NG correction is also straightforward,
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[
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To first order in βσ (the anisotropy parameter), one gets the following explicit expression:
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3 (ν) = 2e−ν2/2σ1√
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]
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β2
σ

)
, (49)

from which the isotropic limit of Gay et al. (2012) is readily recovered by setting βσ = 0 and 〈xq2
⊥〉 = 〈xx2

3 〉 = 〈xq2〉. We note that anisotropy
effects in the N3 statistics are almost exclusively concentrated in the gradient terms ∝ H1(ν). This suggests, for example, that the recovery
of the skewness 〈x3〉 by fitting the H3(ν) mode to N3 will be practically unaffected by redshift distortions. In contrast, one must focus on the
H1(ν) mode to measure anisotropic effects.

Fig. 4 also compares the prediction of equation (49) for theN3 statistics to scale-invariant LSS simulations (2563, n = −1). Once again,
in this mildly non-linear regime (σ = 0.18 in real space), the prediction at NLO matches very well the measurement for intermediate contrasts
(−2 � ν � 2).

4.3.2 Length of isodensity contours in 2D planes: N2

Let us consider the length (per unit volume) of isodensity contours in 2D slices of the density field, N2. This functional is the 2D version
of the Minkowski functional N3 for the 3D field. Here the 2D slice is defined by the angle, θS , it makes with the z-axis, and the statistical
properties of the field depend on this angle. Again, let us start with the JPDF of the field and its gradient on a 2D plane. Using the same
variables as in Section 4.2.2,
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]
, (50)

where σn = {(i, j , k) ∈ N3|i + 2j + k = n}. From equation (2), the length of isodensity contours in 2D planes is now

N2(ν, θS ) = 1

σ

∫
dx̃1 dx̃2P (ν, x̃1, x̃2)

√
σ̃ 2
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2
2 . (51)

We shall proceed similarly to the 3D case, defining the 2D anisotropy parameter β̃σ (θS ) which depends on the orientation of the plane,

β̃σ (θS ) ≡ 1 − σ̃ 2
1⊥

σ̃ 2
1‖

= βσ cos2 θS
1 − βσ sin2 θS

. (52)

At Gaussian order, the evaluation of equation (51) yields, in agreement with Matsubara (1996),
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where E is the complete elliptic integral of the second kind. The amplitude behaves as E(β̃σ )/
√

1 − β̃σ ∼ π/2 + πβ̃σ /8 at small β̃σ and is
thus strongly dependent on the anisotropy parameter. This is distinct from the behaviour of N3.

Then, the first NG correction (corresponding to n = 3) reads
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Here on-plane cumulants are related to 3D ones by 〈x̃x̃2
1 〉 = 〈xq2

⊥〉 and 〈x̃x̃2
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limit, equation (54) becomes

N (1)
2 (ν, θS ) = σ1⊥

2
√

2σ
e−ν2/2

(
1 + 1

4
β̃σ

)⎡⎣H3(ν)

3!

〈
x̃3

〉 + 1

4
H1(ν)

(〈
x̃x̃2

1

〉 + 〈
x̃x̃2

2

〉 − 3

8
β̃σ

(〈
x̃x̃2

1

〉 − 〈
x̃x̃2

2

〉))⎤⎦ +O (
β̃2

σ

)
, (55)

where the isotropic limit of Gay et al. (2012) is readily recognized at β̃σ = 0, 〈x̃x̃2
1 〉 = 〈x̃x̃2

2 〉 = 〈xq2〉 and σ1⊥ = √
2/3σ1. We should stress

that anisotropic effects in equation (55) are contained not only in the β̃σ factors, but also in the deviation of cumulants from their isotropic
values. Note that, with the 3D variables, equation (55) becomes
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. (56)

The most interesting case for theN2 statistics is when the slice is passing through the observer, and, correspondingly, contains the LOS.
This is the case for 2D slices in observational catalogues such as the Sloan Digital Sky Survey. This setup corresponds to θS = 0 and β̃σ = βσ .
Indeed, the measurement ofN2 in such slices gives direct access to the 3D anisotropy parameter βσ and, by extension, �0.6

m /b, even when full
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3D data are not available. The study of 2D slices at different angles θS is possible if the 3D cube of data is available and offers an alternative
way of analysing such cubes. Varying θS allows one to introduce functional dependence of statistics on the parameter, which gives additional
access to β̃σ through variation of the amplitude of the statistics even when the normalization scale σ 1⊥/σ is poorly determined.

Fig. 4 compares the prediction of equation (54) for theN2 statistics to scale-invariant LSS simulations in planes parallel and perpendicular
to the LOS. In both cases, measurements are well fitted by the prediction at the first NG order for intermediate contrasts. One can easily
notice that this statistics varies macroscopically with the angle θS . This dependence is also shown in Fig. 5 for the NLO prediction. Indeed,
Fig. 5 displays the variation of the NG contribution to the N2 statistics as a function of the orientation of the 2D slices relative to the LOS.
Note that anisotropy affects the H1(ν) harmonic of this dependence and can be detected by a linear fit to N (1)

2 (ν, θS ) at different θS .

4.3.3 Contour crossings: N1

Contour-crossing statistics measures the average number of times a given line crosses the isocontours of a field, N1. It is closely related to
the average area of the isocontours per unit volume, N3. It is equivalent to N3 when averaged over all possible orientations of the chosen
line (indeed, the surface area per unit volume N3 can be understood as an average ‘hyperflux’ of isosurfaces, i.e. how many times per unit
length they cross a random line), but has distinct dependence on line orientation if the field is anisotropic. A special advantage of N1 is that
it can be applied when only ‘pencil-beam’ data are available, as for example in Lyα lines, although in this case one is limited to use only
the LOS direction of the field. In general, the behaviour of N1 along lines with arbitrary orientation relative to the LOS contains additional
information.

To compute contour-crossing statistics, we assume (without loss of generality) that the line intersecting the field lies in the (u1, u3)
plane with a direction defined by the unit vector l̂ = (sin θL, 0, cos θL). Then the mean number of intersections between a line (L) and the
isodensity contours is simply the average of the field gradient projection |∇x · l̂| = |σ1⊥x1 sin θL/

√
2 + σ1‖x3 cos θL|. In contrast to the 2D

statistics case, we shall not introduce tilde variables on the line, and write the statistics immediately in terms of the 3D variables. Starting
from the JPDF of the field and two components of its first derivatives
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from equation (2), we write
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At Gaussian order, using again βσ = 1 − σ 2
1⊥/2σ 2

1‖, we find, in agreement with Matsubara (1996),
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Focusing on the next order term (n = 3) and using the relationships 〈xx1x3〉 = 〈x2xi〉 = 0, one gets
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xq2

⊥
〉 + cos2 θL

1 − βσ sin2 θL

(〈
xx2

3

〉 − 〈
xq2

⊥
〉))]

. (60)

In the isotropic limit where βσ = 0 and 〈xq2
⊥〉 = 〈xx2

3 〉 = 〈xq2〉, equations (59) and (60) together becomes

N iso
1 (ν) = e−ν2/2σ1√

3πσ

[
1 + 1

3!
H3(ν)

〈
x3

〉 + 1

2
H1(ν)

〈
xq2

〉 +O(σ 2)

]
. (61)

Fig. 4 compares the prediction of equation (60) for the N1 statistics to scale-invariant LSS simulations in planes parallel and perpendicular
to the LOS. The agreement between the prediction at NLO and measurements is very good for contrasts in the range −2 � ν � 2. The tails
of the distribution are more sensitive to higher order terms in the GC expansion. Planes parallel and perpendicular to the LOS give rise to a
noticeable difference in the first-order correction for the contour-crossing statistics. Fig. 5 also displays the variation of N1 as a function of
the orientation of the 2D slices relative to the LOS.

4.4 Extrema counts

Extrema counts are given by averaging the absolute value of the determinant of the Hessian (I3 and I2 in 3D and 2D, respectively) under the
condition of zero gradient over the range of Hessian eigenvalues space that maintains the correspondent signature of the sorted eigenvalues,
namely, in 3D, λ1 > λ2 > λ3 > 0 for minima, λ1 > λ2 > 0 > λ3 for pancake-like saddle points, λ1 > 0 > λ2 > λ3 for filamentary saddle
points and 0 > λ1 > λ2 > λ3 for maxima. The integral to perform is similar to that for the Euler characteristic, e.g. equation (31) in 3D,

next,3D = 1

σ 2
1⊥σ1‖

∫
fixedλisigns

dx dζ dJ2⊥dξ dQ2dϒPext(x, ζ, J2⊥ξ, Q2, ϒ)|I3| , (62)



Minkowski functionals in redshift space 545

the principal difference being in the limits of integration. The signature of the eigenvalues set changes where I3 changes sign. In terms of the
invariant variables, I3 is given by equation (32). The equation I3 = 0 that follows from equation (32) is more instructive if one writes it in the
form that uses the full 3D Hessian rotation invariants, J1, J2, J3,

J 3
1 − 3J2

(
y, J2⊥,Q2, ϒ

)
J1 − 2J3

(
y, J2⊥, Q2, ϒ

) = 0 , (63)

where J1 = J1⊥ + x33, J2 = y2 + 3J2⊥/4 + 3Q2, J3 = −y3 + 9y(J2⊥ − 2Q2)/4 + 27ϒ/4 with y = J1⊥/2 − x33 where for this equation only, for
the sake of simplicity, variables are not rescaled by their variance. It can be shown that for any values of Q2, J2⊥, ϒ and y in their unrestricted
allowed range, there exist three real roots for this cubic polynomial in J1 that split the integration over J1 in four regions corresponding to
different extrema types. No restriction on other variables arises besides choosing the threshold of the field value for differential counts.

The integral required to predict extrema counts in 2D is given by equation (39) [where P2D(x̃, x̃1, x̃2, ζ̃ , ξ̃ , x̃12) is defined in equa-
tion (24)] and is carried out in terms of the field variables, x̃11, x̃12, x̃22, subject to constraints on the signs of the eigenvalues of the Hessian.

Extrema counts in anisotropic 2D and 3D spaces do not have closed-form expressions (indeed, differential 3D extrema counts do not
lead to analytic results even in the Gaussian limit). Therefore, we shall not present here intermediate expressions for formal expansion, and
instead will be performing the averaging numerically. Recall, however, that in the rare event limit, ν � 1 or ν � −1, nmax/min(ν) � χ (ν), so
that in this limit, equations (40) and (C4) provide an all-order expansion of the extrema counts in redshift space in 2D and 3D, respectively.

We can also establish the following general symmetry relations between extrema counts of different types, valid in a space of arbitrary
dimension N. Let us label the extrema type by its signature S which is the sum of the signs of the eigenvalues of the Hessian that define its
type. In this way, S = N for minima (N positive eigenvalues), S = −N for maxima (N negative eigenvalues) and S changes with a step of two
between 2 − N to N − 2 for saddle points of different types. Then, if we denote by ∂νn

(n)
S the contribution to the differential number count of

extrema of type S of order n (where n = 2 corresponds to the Gaussian term), the following holds

∂νn
(n)
S (ν) = (−1)n∂νn

(n)
−S(−ν) . (64)

These relations allow us to predict the expected behaviour of extrema counts of type S from the measurements of their ‘conjugate’ type −S. In
particular, the minima counts GC terms are equal to the reflected (ν → −ν) maxima counts for even n (including the Gaussian term), and to
minus the reflected maxima counts for odd n (including the first NG correction). The same relation holds between the ‘pancake-like’ (S = 1)
and the ‘filament-like’ (S = −1) saddle points in 3D.

Fig. B4 illustrates the corresponding extrema distribution for a set of anisotropic fields (Gaussian and first-order NG correction) in
2D and 3D. A comparison with extrema counts measured from random realizations of the fields (scale-invariant n = −1 field sampled on
40962 pixels) is also presented there. Fig. 5 demonstrates the angular dependence of the predicted extrema counts at NLO in a scale-invariant
LSS simulation (n = −1, σ = 0.18 in real space).

4.5 Invariance of critical sets

4.5.1 Summary of the Minkowski functionals as functions of ν f

To put the mathematical results derived in Sections 4.2.1–4.3.3 on a practical footing in cosmology, let us collect them expressed as functions
of the observable threshold variable ν f. The ν → ν f remapping is astrophysically motivated by the fact that typically the amplitude of the field
is not known, as it may depend on e.g. the bias factor, whereas ν f can be measured.5 The value of ν f is obtained by inverting equation (29)
for the filling factor, fV, and using it instead of the difficult-to-determine ν, to effectively ‘Gaussianize’ the PDF of the field. Indeed, when the
transformation ν → ν f in equation (30) is applied to perturbative results, the most oscillatory ν modes, which are proportional solely to the
cumulants of the field, are eliminated.

In analogy with the skewness parameter S3 = 〈x3〉/σ , we introduce two other scaled cumulants that involve the derivatives of the field.
For isotropic fields, they are T3 = 〈xq2〉/σ and U3 = −〈J1q2〉/(γ σ ). For anisotropic fields, we use their partial versions T3⊥ = 〈xq2

⊥〉/σ ,
T3‖ = 〈xq2

‖ 〉/σ and U3⊥ = −〈J1⊥q2
⊥〉/(γ⊥σ ), U3‖ = −〈J1⊥q2

‖ 〉/(γ⊥σ ). In the isotropic limit, these partial contributions are summed according
to the rules T3 = 1

3 (2T3⊥ + T3‖) and U3 = 4
9 (U3⊥ + U3‖).6 It is then straightforward to rewrite our statistics, e.g. the 3D Euler characteristic,

as a function of ν f,

χ3D(νf ) = σ1‖σ 2
1⊥

σ 3

e−ν2
f /2

8π2

(
H2(νf ) + σ

[(
T3⊥ + 1

2
T3‖ − S3

)
H3(νf ) + (

U3⊥ + U3‖ − S3

)
H1(νf )

]
+ · · ·

)
. (65)

Note that in contrast to the isotropic case, in redshift space the coefficient of H1, S̃(1)
z = U3⊥ + U3‖ − S3, is non-zero for scale-invariant power

spectra. For the other statistics, we get the following:

5 Note that the choice of νf as an invariant parametrization of the Minkowski functionals is not unique. One could plot Minkowski as a function of e.g. νL, the
threshold corresponding to a given fraction of the total skeleton length as an alternative construction.
6 To see this, we use the relations between isotropic and anisotropic variances and correlation parameters from Appendix A1 as well as the following identities:
γ⊥〈J1‖q2

⊥〉 = γ‖〈J1⊥q2
‖ 〉 and 〈J1‖q2

‖ 〉 = 0.
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Figure 6. Left-hand panel : 3D Euler characteristic as a function of νf in 19 scale-invariant LSS simulations (n = −1, 2563, σ = 0.18). Prediction to first order
in non-Gaussianity is displayed as a solid purple line. The displayed error is the error on the median of the measurements (red shaded area). For comparison,
the 3D Euler characteristic as a function of ν is displayed as a dashed brown line. Right-hand panel: same as the left-hand panel for the first NG correction only
compared to the odd part of the measurements (including the first-order correction). In this mildly non-linear regime, the agreement between measurements
and theory at leading and NLO is very good. Note how the use of νf instead of ν ‘Gaussianizes’ the Euler characteristic.

the area of 3D isocontours

N3(νf ) = N (0)
3 (νf )

(
1 + σH1(νf )

[
1

2

(
1 − A(βσ )/βσ

1 − A(βσ )

)
T3⊥ + 1

2

(
A(βσ )/βσ

1 − A(βσ )

)
T3‖ − S3

]
+ · · ·

)
, (66)

the 2D Euler characteristic

χ2D(νf , θS ) = σ̃1⊥σ̃1‖
σ 2

e−ν2
f /2

(2π)3/2

(
H1

(
νf

) + σ

[
H2(νf )

(
1

2

〈
x̃
[
x̃2

1 + x̃2
2

]〉
σ

− S3

)
+

(
− 1

2γ̃⊥

〈
x̃11x̃

2
2

〉
σ

− S3

)]
+ · · ·

)
, (67)

the length of 2D isocontours

N2(νf , θS ) = N (0)
2 (νf )

(
1 + σH1(νf )

[
1

2

〈
x̃x̃2

1

〉
σ

B(β̃σ ) + 1

2

〈
x̃x̃2

2

〉
σ

(
1 − B(β̃σ )

) − S3

]
+ · · ·

)
(68)

and the frequency of contour crossings

N1(νf , θL) = N (0)
1 (νf )

(
1 + σH1(νf )

[
1

2

(1 − βσ ) sin2 θLT3⊥ + cos2 θLT3‖
1 − βσ sin2 θL

− S3

]
+ · · ·

)
. (69)

Note that 〈x̃x̃2
1 〉, 〈x̃x̃2

1 〉 and 〈x̃11x̃
2
2 〉 are functions of θS/L, T3⊥, T3‖, U3⊥ and U3‖. Using ν f as a threshold variable makes explicit the invariance

of Minkowski functionals and extrema statistics under a monotonic transformation of the field. Indeed, since the filling factor fV is one of the
Minkowski functionals itself, ν f is strictly unchanged under the monotonic transformation. Thus, the other statistics, described by functions
of ν f, are invariant.

Fig. 6 reproduces the 3D Euler characteristic of Fig. 3 but as a function of the filling factor threshold, ν f, defined in Section 4.1.
Agreement between the prediction truncated at NLO and measurements is very good for contrasts ν � −1.5. The effect of using ν f is to
Gaussianize the PDF as seen in Fig. 6: denser regions are brought to the centre whereas wider regions are pushed to the outside.

4.5.2 Formal invariance of Minkowski functionals w.r.t. monotonic transformation

From Section 2, it is straightforward to see that any Minkowski functional as well as extrema counts are invariant under a local monotonic
transformation. This property should also be encoded in the GC expansions of these Minkowski functionals given in Section 4.5.1. Indeed,
the combinations of cumulants which appear at first order in the GC expansion are invariant under a local monotonic transformation taken to
the same first order in σ . Let us illustrate this on the 3D Euler characteristic (given that the same proof can be developed for any Minkowski
functionals). Following Matsubara (2003), let us henceforth study how cumulants evolve under the transformation: y → b x + b2/2(x2 − 〈x2〉),
which represents the local representation of any analytic function of the density field when Taylor expanded. Let us first show how 〈x3〉 evolve
under such a transformation,〈
y3

〉 = b3
〈
x3

〉 + 3

2
b2b2

(〈
x4

〉 − 〈
x2

〉2
)

+ 3

4
b b2

2

(〈
x5

〉 − 2
〈
x3

〉 〈
x2

〉)
= b3

〈
x3

〉
c
+ 3

2
b2b2

(〈
x4

〉
c
+ 2

〈
x2

〉2

c

)
+ 3

4
b b2

2

(〈
x5

〉
c
+ 8

〈
x3

〉
c

〈
x2

〉
c

)
. (70)

Selecting only the first-order term in the PT expansion, the classical expression for the skewness follows from equation (70),〈
y3

〉 = b3
〈
x3

〉
c
+ 3b2b2

〈
x2

〉2

c
+ higher order terms. (71)
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The same construction for other moments and cumulants leads to the following relationships:

〈
y2

〉 = b2
〈
x2

〉 + higher order terms, (72a)

〈∇⊥y · ∇⊥y〉 = b2 〈∇⊥x · ∇⊥x〉 + higher order terms, (72b)〈∇‖y · ∇‖y
〉 = b2

〈∇‖x · ∇‖x
〉 + higher order terms, (72c)〈

y(∇⊥y)2
〉 = b3

〈
x(∇⊥x)2

〉 + 2b2b2

〈
x2

〉 〈
(∇⊥x)2

〉 + higher order terms, (72d)〈
y(∇‖y)2

〉 = b3
〈
x(∇‖x)2

〉 + 2b2b2

〈
x2

〉 〈
(∇‖x)2

〉 + higher order terms, (72e)

〈(∇⊥y · ∇⊥y)�⊥y〉 = b3 〈(∇⊥x · ∇⊥x)�⊥y〉 − b2b2

〈
(∇⊥x)2

〉2 + higher order terms, (72f)〈
(∇‖y · ∇‖y)�⊥y

〉 = b3
〈
(∇‖x · ∇‖x)�⊥y

〉 − 2b2b2

〈
(∇⊥x)2

〉 〈
(∇‖x)2

〉 + higher order terms, (72g)

so that for b �= 0 at leading order,

S̃(1)
χ3D,z(y) ≡ 1〈

y2
〉 (〈

y(∇⊥y)2
〉〈

(∇⊥y)2
〉 +

〈
y(∇‖y)2

〉
2
〈
(∇‖y)2

〉 −
〈
y3

〉〈
y2

〉) = S̃(1)
χ3D,z(x) , (73)

S̃(−1)
χ3D,z(y) ≡ 1〈

y2
〉 (

−
〈
�⊥y(∇⊥y)2

〉〈
(∇⊥y)2

〉 −
〈
�⊥y(∇‖y)2

〉〈
(∇‖y)2

〉 −
〈
y3

〉〈
y2

〉) = S̃(−1)
χ3D,z(x) , (74)

where we denote by S̃(i)
χ3D,z the coefficients in front of the Hermite polynomials in equation (65) [see also equation (25)]. This shows that the

combinations of cumulants in front of the Hermite polynomials are invariant under a local monotonic transformation and so are the Minkowski
functionals. In particular, it demonstrates formally why if the bias is local and monotonic, the Minkowski functionals are bias independent.

5 A PPLICAT ION TO LSS IN REDSHIFT SPAC E

In the context of cosmology, it is of interest to understand what kind of constraints on the cosmological parameters can be drawn from the
prediction of critical sets in redshift space. Redshift-space distortion can be viewed as a nuisance, but in fact potentially opens new prospects
given the broken symmetry induced by the kinematics.

5.1 Estimating cumulants of the field

Table 1 summarizes the cubic cumulants that determine the Minkowski functionals studied in this paper to first NG order. In turn, the
combinations of these cumulants are what can be measured by fitting the correspondent functionals with low-order Hermite modes. Two
main groups of cumulants that Minkowski functionals (to first order) give access to are 〈xq2

⊥〉, 〈xx2
3 〉, which relate the field to its gradient,

and 〈J1⊥q2
⊥〉, 〈J1⊥x2

3 〉 which relate the gradient to the Hessian. Note that 〈x3〉 is not accessible as the amplitude of an independent Hermite
mode if Minkowski functionals are studied as functions of the filling factor threshold ν f. Rather it offsets the modes defined by the other
two groups of cumulants. Redshift-space analysis is in principle capable of mining more information than real-space analysis. Indeed, in
redshift space there is a qualitative difference between cumulants that involve the LOS direction and those that involve directions orthogonal
to the LOS in the plane of the sky. These differences encode information about velocities, and reflect the mechanism of how these velocities
originated. In principle, estimating the anisotropic part of such cumulants can be used to test the theory of gravity in the context of LSS PT.
3D geometrical statistics, such as χ3D and N3, do not allow by themselves to determine separately the LOS and sky cumulants. To separate

Table 1. The cubic cumulants that determine the Minkowski functionals studied in this paper to first NG
order.

H0 H1 H2 H3

χ3D, f – 〈J1⊥q2
⊥〉, 〈J1⊥x2

3 〉, 〈x3〉 – 〈xq2
⊥〉, 〈xx2

3 〉, 〈x3〉
χ2D, f 〈J1⊥q2

⊥〉, 〈J1⊥x2
3 〉, 〈x3〉 – 〈xq2

⊥〉, 〈xx2
3 〉, 〈x3〉 –

N3,f – 〈xq2
⊥〉, 〈xx2

3 〉, 〈x3〉 – –
N2,f – 〈xq2

⊥〉, 〈xx2
3 〉, 〈x3〉 – –

N1,f – 〈xq2
⊥〉, 〈xx2

3 〉, 〈x3〉 – –
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Table 2. Rescaled third-order cumulants written in terms of the bispectrum.

〈x3〉 1

σ 3

∫
d3k1

(2π)3

d3k2

(2π)3
B(k1, k2, |k1 + k2|)

〈xq2
⊥〉 1

2σσ 2
1⊥

∫
d3k1

(2π)3

d3k2

(2π)3
|k1⊥ + k2⊥|2B(k1, k2, |k1 + k2|)

〈xq2
‖ 〉 1

2σσ 2
1‖

∫
d3k1

(2π)3

d3k2

(2π)3
|k1‖ + k2‖|2B(k1, k2, |k1 + k2|)

〈J1⊥q2
⊥〉 − 1

σ2⊥σ 2
1⊥

∫
d3k1

(2π)3

d3k2

(2π)3
|k1⊥ + k2⊥|2(k1⊥ · k2⊥)B(k1, k2, |k1 + k2|)

〈J1⊥q2
‖ 〉 − 1

σ2⊥σ 2
1‖

∫
d3k1

(2π)3

d3k2

(2π)3
|k1⊥ + k2⊥|2(k1‖ · k2‖)B(k1, k2, |k1 + k2|)

anisotropic contributions, one must analyse slices of 3D volume at different angles θS to the LOS.7 For instance, measuring the length of the
isocontours, N2 (with possible cross-check from χ2D), yields a separate handle on 〈xq2

⊥〉 and 〈xx2
3 〉, while the additional analysis of the 2D

Euler characteristic χ2D(ν f), as a function of θS (via the baseline offset ∝ H0, see Fig. 5), allows us to measure 〈J1⊥q2
⊥〉 and 〈J1⊥x2

3 〉. This
procedure is further discussed in Section 5.5 below.

5.2 Which modes of the bispectrum are geometrical statistics probing?

This paper is concerned with geometric probes operating in configuration space. On the other hand, a fair amount of theoretical predictions
(such as PT) for the growth of structure are best described in Fourier space. It is therefore of interest to relate the two and characterize
which feature of the multispectra these probes constrain. For instance, it is straightforward to show via Fourier transform that the third-order
cumulant, 〈x3〉, can be expressed as a double sum over the anisotropic bispectrum, Bz(k1, k2, k3), via〈
x3

〉 = 1

σ 3

∫
d3k1

(2π)3

d3k2

(2π)3
B(k1, k2, |k1 + k2|) .

Measuring 〈x3〉 amounts to constraining the monopole of the bispectrum. Similarly, other geometric cumulants involve different weights
(see Table 2), while higher order cumulants will involve k integrals of multispectra. For instance, the Euler characteristic to all orders
given in equation (C5) involves nth = i + 2j + 2m moments, 〈xiq

2j
⊥ x2m

3 〉, which can be re-expressed via the nth-order multispectrum,
Bn

z (k1, . . . , kn−1, |k1 + · · · kn−1|), as〈
xiq

2j
⊥ x2m

3

〉
= 1

σ iσ
2j
1⊥σ 2m

1‖

∫
d3k1

(2π)3
· · · d3kn−1

(2π)3
Bn

z (k1, . . . , kn−1, |k1 + · · · kn−1|)
∏
j1≤j

|kj1⊥|2
∏

j<m1≤m+j

|km1‖|2 .

Let us first show explicitly how the first-order corrections of the 3D Euler characteristic can be re-expressed in terms of the underlying
bispectrum in redshift space, Bz. Equation (65) shows that it only depends at first order in non-Gaussianity on two numbers (the coefficients
in front of the two Hermite polynomials): σ S̃(1)

χ3D,z = 〈x(q2
⊥ + x2

3/2)〉 − 〈x3〉 and σ S̃(−1)
χ3D,z = −〈J1⊥(q2

⊥ + x2
3 )〉/γ⊥ − 〈x3〉. These quantities can

in turn be expressed as special combinations of the underlying bispectrum using Table 2,

S̃(1)
χ3D,z = 1

σ 4

∫
d3k1

(2π)3

d3k2

(2π)3

(
σ 2|k1⊥ + k2⊥|2

2σ 2
1⊥

+ σ 2|k1‖ + k2‖|2
2σ 2

1‖
− 1

)
Bz(k1, k2, |k1 + k2|) , (75)

S̃(−1)
χ3D,z = − 1

σ 4

∫
d3k1

(2π)3

d3k2

(2π)3

(
σ 4|k1⊥ + k2⊥|2(k1⊥ · k2⊥)

σ 4
1⊥

+ σ 4|k1⊥ + k2⊥|2(k1‖ · k2‖)

σ 2
1⊥σ 2

1‖
+ 1

)
Bz(k1, k2, |k1 + k2|) . (76)

The parentheses in equations (75) and (76) define ‘projectors’ for the bispectrum, (S̃(1)
χ3D,z)B and (S̃(−1)

χ3D,z)B , so that

S̃(i)
χ3D,z = 1

σ 4

∫
d3k1

(2π)3

d3k2

(2π)3
Bz(k1, k2, |k1 + k2|)

(
S̃(i)

χ3D,z

)
B

.

In the isotropic limit, these projectors become, respectively (Matsubara 2003),(
S̃(1)

χ3D,z

)
B

=
(

3

2

σ 2|k1 + k2|2
2σ 2

1

− 1

)
and

(
S̃(−1)

χ3D,z

)
B

=
(

9

4

σ 4|k1 + k2|2(k1 · k2)

σ 4
1

+ 1

)
. (77)

7 Another related approach would be to study the 2D slices orthogonal to LOS field with variable LOS thickness. This latter technique was successfully used
to study ISM turbulence (Lazarian & Pogosyan 2000).
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A multipole expansion of Bz and equation (77) w.r.t. μ = k1 · k2/(k1k2) show for instance that neither S̃(1)
χ3D

nor S̃(−1)
χ3D

would constrain
harmonics of Bz larger than three. For the 2D Euler characteristic, the corresponding projectors read [with βσ defined in equation (26)](
S̃(1)

χ2D,z

)
B
=
(

1 − cos2 θS
2(1 − βσ sin2 θS )

)
σ 2|k1⊥ + k2⊥|2

2σ 2
1⊥

+ cos2 θS
2(1 − βσ sin2 θS )

σ 2|k1‖ + k2‖|2
2σ 2

1‖
− 1 , (78)

(
S̃(−1)

χ2D,z

)
B
=
(

1 − cos2 θS
1 − βσ sin2 θS

)
σ 4|k1⊥ + k2⊥|2(k1⊥ · k2⊥)

σ 4
1⊥

+ cos2 θS
2(1 − βσ sin2 θS )

σ 4|k1⊥ + k2⊥|2(k1‖ · k2‖)

σ 2
1⊥σ 2

1‖
− 1 . (79)

An interesting feature of equations (75) and (76) is that the projectors are now parametric and depend on θS . Via slicing planes e.g.
along and perpendicular to the LOS, it is therefore possible to measure projections of the bispectrum along |k1⊥ + k2⊥|2, |k1‖ + k2‖|2,
|k1⊥ + k2⊥|2(k1⊥ · k2⊥) and |k1⊥ + k2⊥|2(k1‖ · k2‖) independently.

Given equations (66), (68) and (69), one can also easily recover the projectors for N1,f , N2,f and N3,f at first order in non-Gaussianity
as(

S̃
(1)
N3,z

)
B

= σ 2

4σ 2
1⊥

(
1 − A(βσ )/βσ

1 − A(βσ )

)
|k1⊥ + k2⊥|2 + σ 2

4σ 2
1‖

(
A(βσ )/βσ

1 − A(βσ )

)
|k1‖ + k2‖|2 − 1 , (80)

(
S̃

(1)
N2,z(θS )

)
B

= σ 2

4σ 2
1⊥

B(β̃σ )|k1⊥ + k2⊥|2 + 1

4
σ 2 sin2 θS |k1⊥ + k2⊥|2 + 2 cos2 θS |k1‖ + k2‖|2

sin2 θSσ 2
1⊥ + 2 cos2 θSσ 2

1‖

(
1 − B(β̃σ )

) − 1 , (81)

(
S̃

(1)
N1,z(θL)

)
B

= 1

4

(1 − βσ ) sin2 θL|k1⊥ + k2⊥|2σ 2/σ 2
1⊥ + cos2 θL|k1‖ + k2‖|2σ 2/σ 2

1‖
1 − βσ sin2 θL

− 1 , (82)

where the last two are also parametric in θL and θS , respectively. Note that equations (80)–(82) formally yield no new projector, compared to
equation (78), though the weighting differs and might be more favourable for noisy data sets. As no closed form for the extrema counts was
found, it is not possible to extend this analysis to their cumulants.

5.3 Predicting cumulants using gravitational PT

In the previous section, no assumption was made on the shape of the anisotropic bispectrum, Bz. Let us now turn to the context of gravitational
clustering in redshift space and start with a rapid overview of the relevant theory. The fully non-linear expression [generalizing equation (11)]
for the Fourier transform of the density in redshift space is (Scoccimarro et al. 1999; Bernardeau et al. 2002)

δ̂s(k) =
∫

d3x
(2π)3

e−ik·xeif kzvz(x)
[
δ(r)(x) + f ∇zvz(x)

]
, (83)

with vz the peculiar velocity along the LOS, f = d log D/d log a, while assuming the plane-parallel approximation and that only f ∇zvz(x) < 1
terms contribute.8

5.3.1 Derivation of geometrical cumulants for standard gravitational clustering

Expanding the exponential in equation (83) leads to, using the kernels Zn, the following expression for the density field in redshift space
(Verde et al. 1998; Scoccimarro et al. 1999; Bernardeau et al. 2002)

δ̂s(k, τ ) =
∞∑

n=1

Dn
1 (τ )

∫
d3k1 · · ·

∫
d3knδD(k − k1 − · · · − kn)Zn(k1, . . . , kn)δ̂l(k1) · · · δ̂l(kn), (84)

where μi is the cosine of the angle between ki and the LOS, k = k1 + k2. The first kernels are given by (assuming a quadratic local bias
model involving b1 and b2)

Z1(k) = (b1 + f μ2) and Z2(k1, k2) = b1F2(k1, k2) + f μ2G2(k1, k2) + f μk

2

[
μ1

k1

(
b1 + f μ2

2

) + μ2

k2

(
b1 + f μ2

1

)] + b2

2
, (85)

with f = �γm
m , γm � 6/11, ε � 3/7 �−2/63

m and

F2(k1, k2) = 1

2
(1 + ε) + 1

2

k1 · k2

k1k2

(
k1

k2
+ k2

k1

)
+ 1

2
(1 − ε)

(
k1 · k2

k1k2

)2

, (86)

8 Note that equation (83) could be more accurately replaced by δ̂s (k) = −δD(k) + 1/(2π)3
∫

d3xe−ik·xeif kzvz(x)[δ(r)(x) + 1], where no assumption about the
amplitude of the radial velocity is made. This gives exactly the same PT as expected.
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Table 3. α and β coefficients defined via equation (90) for the
relevant cumulants.

α β

〈δ3〉 3 3

〈δ2J1⊥〉 −2k2
1⊥ −(k1⊥ + k2⊥)2 − 2(k2⊥)2

〈δq2
⊥〉 k2

1⊥ k1⊥ · k2⊥ + 2k2
1⊥

〈δq2
‖ 〉 k2

1‖ k1‖k2‖ + 2k2
1‖

〈δI2⊥〉 0 3
4

(
(k1⊥ × k2⊥)2 − (k1⊥ · k2⊥)2 + k2

1⊥k2
2⊥

)
〈J1⊥q2

⊥〉 0 −(k1⊥ × k2⊥)2 + (k1⊥ · k2⊥)2 − k2
1⊥k2

2⊥
〈J1⊥q2

‖ 〉 0 k1zk2z(k1⊥ + k2⊥)2 − 2k2
1⊥k2z(k1z + k2z)

G2(k1, k2) = ε + 1

2

k1 · k2

k1k2

(
k1

k2
+ k2

k1

)
+ (1 − ε)

(
k1 · k2

k1k2

)2

. (87)

In particular

δ̂(1)
s (k) = D1(τ )

∫
d3k1δD(k − k1)Z1(k1)δ̂l(k1) = D1(τ )Z1(k)δ̂l(k) , (88)

δ̂(2)
s (k) = D2

1(τ )
∫

d3k1

∫
d3k2δD(k − k1 − k2)Z2(k1, k2)δ̂l(k1)δ̂l(k2). (89)

Given this expansion, cumulants can be computed at tree order. For conciseness, we denote by simply
∫

W the weighted 6D integration∫
d3kid3kj [ ]W (kiR)W (kjR)W (|ki + kj |R). With this notation, the cumulant of δ3 reads for instance〈

δ3
〉 � 3

〈
(δ(1))2δ(2)

〉 = 3D4
1(τ )

∫
W

Z1(k1)Z1(k2)Z2(k3, k4)
〈
δ̂l(k1)δ̂l(k2)δ̂l(k3)δ̂l(k4)

〉
,

= 3D4
1(τ )

∫
W

Z1(k1)Z1(k2)Z2(k3, k4)
(〈

δ̂l(k1)δ̂l(k2)
〉 〈

δ̂l(k3)δ̂l(k4)
〉 + 2

〈
δ̂l(k1)δ̂l(k3)

〉 〈
δ̂l(k2)δ̂l(k4)

〉)
,

= 3(2π)6D4
1(τ )

[∫
W

Z1(k1)Z1(−k1)Z2(k3, −k3)P (k1)P (k3) + 2
∫

W

Z1(k1)Z1(k2)Z2(−k1, −k2)P (k1)P (k2)

]
,

where we can note that Z2(k3, −k3) = b2/2. This method can be generalized to all relevant cumulants. Let us sum up these results in Table 3,9

where each cumulant is generically written as

〈Y〉 = (2π)6D4
1(τ )

[∫
W

Z1(k1)2Z2(k2,−k2)P (k1)P (k2)α(k1, k2) + 2
∫

W

Z1(k1)Z1(k2)Z2(k1, k2)P (k1)P (k2)β(k1, k2)

]
, (90)

with Y = δ3, δ2J1⊥ , δq2
⊥ , δq2

‖ , δI2⊥ , J1⊥q2
⊥ and J1⊥q2

‖ , respectively. As discussed in the previous section, the Minkowski functionals and
the critical sets described in the main text yield access to (geometrically weighted by α and β) averages of products of the Z1 and Z2 kernels,
which in turn depend on the underlying cosmological parameters via, say, ε in equations (85)–(87). Hence, provided the corresponding
components of the Zi’s do not fall into the null space of the α and β projectors, one should expect to be able to access the values of some
of these cosmic parameters through appropriate combinations of the geometrical sets, 〈Y〉 = 〈Y〉 [�m, b1, b2, γm, D(z)]. In practice, all these
moments can be integrated using the decomposition of WG(|k1 + k2|R) in Legendre polynomials and Bessel functions,

WG(|k1 + k2|R) = exp

[
−k2

1 + k2
2

2
R2

] ∞∑
l=0

(−1)l(2l + 1)Pl

(
k1 · k2

k1k2

)
Il+1/2

(
k1k2R

2
)√

π

2k1k2R2
, (91)

except one, given by

I =
∫

W

Z1(k1)Z1(k2)f μ2G2(k1, k2)P (k1)P (k2)β(k1, k2). (92)

This difficulty was highlighted e.g. by Hivon et al. (1995) but was not analytically solved until now. For this purpose, let us use the following
trick: if we introduce three different smoothing lengths W(k1R1), W(k2R2) and W(kR) with a Gaussian filter, then one can see that

− 2
∂I

∂R2
=

∫
W

Z1(k1)Z1(k2)f μ2k2G2(k1, k2)P (k1)P (k2)β(k1, k2) . (93)

9 Note that these expressions (precisely, the second term in β) can be compared to the results of Gay et al. (2012) in real space. They are found to be in full
agreement. In this table, it is also of interest to notice that 〈δI2⊥〉 = −3/4〈J1⊥q2

⊥〉 as mentioned in Appendix A2.
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Table 4. Predicted σ ’s and three-point cumulants for
power-law power spectra in redshift space using PT.

n = 1 n = 0 n = −1 n = −2

〈x3〉/σ 2.65 2.91 3.36 4.03
〈x2J1⊥〉/σ −2.62 −2.59 −2.62 −2.47
〈xq2

⊥〉/σ 1.87 1.95 2.15 2.49
〈xq2

‖ 〉/σ 1.66 1.94 2.36 2.93
〈xI2⊥〉/σ 0.49 0.41 0.33 0.22

〈J1⊥q2
⊥〉/σ −0.94 −0.81 −0.72 −0.59

〈J1⊥q2
‖ 〉/σ −1.73 −1.54 −1.38 −1.16

Table 5. Predicted σ ’s and three-point cumulants for �CDM power spectra in redshift space using PT.

R (Mpc h−1): 8 16 24 32 40 48 56 64

σ 0.54 0.29 0.19 0.13 0.10 0.081 0.066 0.055
σ 1⊥ 0.047 0.014 0.0063 0.0035 0.0022 0.0015 0.0011 0.000 79
σ 1‖ 0.038 0.011 0.0052 0.0029 0.0018 0.0012 0.000 88 0.000 65
σ 2⊥ 0.0065 0.0010 0.000 32 0.000 14 0.000 070 0.000 040 0.000 025 0.000 016
σ 2‖ 0.0050 0.000 78 0.000 25 0.000 11 0.000 053 0.000 030 0.000 019 0.000 012

〈x3〉/σ 3.68 3.49 3.39 3.34 3.30 3.26 3.22 3.19
〈x2J1⊥〉/σ −3.01 −3.02 −2.97 −2.96 −2.98 −3.00 −3.00 −3.00
〈xq2

⊥〉/σ 2.43 2.32 2.25 2.22 2.20 2.18 2.16 2.14
〈xq2

‖ 〉/σ 2.61 2.45 2.35 2.30 2.27 2.24 2.20 2.17
〈xI2⊥〉/σ 0.35 0.39 0.40 0.41 0.43 0.44 0.46 0.46

〈J1⊥q2
⊥〉/σ −0.76 −0.80 −0.82 −0.83 −0.84 −0.86 −0.87 −0.89

〈J1⊥q2
‖ 〉/σ −1.50 −1.58 −1.61 −1.63 −1.67 −1.70 −1.72 −1.74

Table 6. Predicted σ ’s and three-point cumulants for �CDM power spectra in real space using PT.

R (Mpc h−1): 8 16 24 32 40 48 56 64

σ 0.46 0.25 0.16 0.12 0.088 0.070 0.057 0.047
σ 1⊥ 0.042 0.013 0.0058 0.0032 0.0020 0.0014 0.000 97 0.000 72
σ 1‖ 0.030 0.0089 0.0041 0.0023 0.0014 0.000 96 0.000 67 0.000 51
σ 2⊥ 0.0061 0.000 96 0.000 30 0.000 13 0.000 065 0.000 037 0.000 023 0.000 015
σ 2‖ 0.0038 0.000 59 0.000 19 0.000 079 0.000 040 0.000 023 0.000 014 0.000 0093

〈x3〉/σ 3.70 3.52 3.43 3.38 3.34 3.31 3.28 3.25
〈x2J1⊥〉/σ −3.21 −3.20 −3.15 −3.13 −3.16 −3.17 −3.17 −3.16
〈xq2

⊥〉/σ 2.51 2.39 2.32 2.28 2.25 2.23 2.21 2.19
〈xq2

‖ 〉/σ 2.51 2.39 2.32 2.28 2.25 2.23 2.21 2.19
〈xJ2⊥〉/σ 0.38 0.42 0.43 0.45 0.46 0.48 0.49 0.50
〈J1⊥q2

⊥〉/σ −0.79 −0.83 −0.85 −0.86 −0.88 −0.90 −0.91 −0.92
〈J1⊥q2

‖ 〉/σ −1.58 −1.66 −1.70 −1.73 −1.76 −1.79 −1.82 −1.85

Now the integration of equation (93) over μ2k2(= (k1 + k2) · ẑ) is straightforward; the integration over R2 is also straightforward and involves
no constant of integration. Cumulants integrated numerically on k1, k2 but analytically on the angles as described above are summed up in
Table 4. Here, all variables are rescaled by their respective variance so that for instance x = δ/σ , q2

⊥ = (δ2
1 + δ2

2)/σ 2
1⊥, . . . Note that they are

computed for � = 1 (i.e. f = 1), b1 = 1, P(k) = kn in the plane-parallel approximation and for a Gaussian filter. Skewness can be compared
to Hivon et al. (1995) (where they do not assume a plane-parallel approximation). These cumulants are also computed for a � cold dark
matter (�CDM) power spectrum (�m = 0.27, �� = 0.73, h = 0.7) smoothed over different scales in Table 5 (redshift space) and Table 6
(real space).

In the regime where standard PT holds in redshift space,10 we therefore may assume that all cumulants entering equations (65)–(69) can
be predicted by a given standard cosmological model, while the amplitude of the NG correction scales like σ . For �CDM cosmology, Table 7
provides the predictions for the combinations of cumulants entering 3D Euler characteristic at first NG order, as a function of the smoothing
length in real and in redshift space. The dependence on the linear bias b1 of these particular combinations of cumulants can also be computed:
for a �CDM power spectrum smoothed e.g. over 32 Mpc h−1, it is found that S̃(1)

χ3D,z/S̃
(1)
χ3D,r is slightly varying around 0.8 while S̃(−1)

χ3D,z/S̃
(−1)
χ3D,r

behaves approximately like 1.285 − 0.36/b1 for 1 < b1 < 2.5. Conversely, one may parametrize these cumulants while exploring alternative
theories of gravity and attempt to fit these cumulants using geometric probes.

10 Extensions of PT in redshift space using the streaming model (see Scoccimarro 2004; Taruya, Nishimichi & Saito 2010, for instance) would allow us to
extend the validity of the predicted cumulants to smaller scales, but stand beyond the scope of this paper.
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Table 7. Comparison of the reduced coefficients in front of the Hermite polynomials
in the 3D Euler characteristic at first NG order for �CDM power spectra with different
smoothings.

R (Mpc h−1): 8 16 24 32 40 48 56 64

S̃(1) 0.075 0.062 0.044 0.033 0.036 0.039 0.038 0.035
S̃

(1)
z 0.061 0.053 0.037 0.028 0.033 0.038 0.039 0.037

S̃(−1) 0.015 0.20 0.32 0.38 0.43 0.48 0.53 0.59
S̃

(−1)
z −0.014 0.17 0.29 0.35 0.40 0.46 0.51 0.57

5.3.2 Constraining modified gravity with γ̂ models

Over the last few years, many flavours of so-called modified gravity (MG) models have been presented (see, e.g., Clifton et al. 2012 for a
review). In the context of the upcoming dark energy missions, it is of interest to understand how topological estimators also allow us to test
such extensions of general relativity (GR). Following Bernardeau & Brax (2011), let us consider the so-called γ̂ model as an illustrative
example of how to test MG theories. This model parametrizes modifications of gravity through a change in the amplitude of Euler equation’s
source term. For this set of models, the generalization of equation (87) becomes parametric:

F
γ̂
2 (k1, k2) =

(
3ν̂2(γ̂ )

4
− 1

2

)
+ 1

2

k1.k2

k2
1

+ 1

2

k1.k2

k2
2

+
(

3

2
− 3ν̂2(γ̂ )

4

)
(k1.k2)2

k2
1k

2
2

, (94)

G
γ̂
2 (k1, k2) =

(
3μ̂2(γ̂ )

4
− 1

2

)
+ 1

2

k1.k2

k2
1

+ 1

2

k1.k2

k2
2

+
(

3

2
− 3μ̂2(γ̂ )

4

)
(k1.k2)2

k2
1k

2
2

, (95)

where ν2(γ̂ ) and μ2(γ̂ ) are given by

ν̂2(γ̂ ) = νGR
2 − 10

273

(
γ̂ − γ GR

)
(1 − �m)�γ GR−1

m , μ̂2(γ̂ ) = μGR
2 − 50

273

(
γ̂ − γ GR

)
(1 − �m)�γ GR−1

m , (96)

with

νGR
2 = 4

3
+ 2

7
�−1/143

m , μGR
2 = − 4

21
+ 10

7
�−1/143

m , γGR = 6

11
. (97)

Then

Z
γ̂
2 (k1, k2) = b1F

γ̂
2 (k1, k2) + f μ2G

γ̂
2 (k1, k2) + f μk

2

[
μ1

k1

(
b1 + f μ2

2

) + μ2

k2

(
b1 + f μ2

1

)] + b2

2
, (98)

with f = �γ̂
m and F

γ̂
2 , G

γ̂
2 given by equation (94). Third-order cumulants, e.g. S̃(1)

χ3D,z, in equations (75) and (76) become functions of γ̂ and
can now be fitted for γ̂ to measured departure to Gaussianity in dark energy surveys. We computed numerically these cumulants for �CDM
power spectra (�m = 0.27, h0 = 70, f = �γ̂

m) with different γ̂ . For instance, the values of the observables, σ S̃(1)
χ3D,z and σ S̃(−1)

χ3D,z (that can
be accessed by measuring the 3D Euler characteristic) are typically enhanced by a factor of 1 per cent when γ̂ varies from 0.55 (GR) to
0.67 (DGP models). More generally, any parametrization of MG (illustrated here on γ̂ models) can be implemented in this framework. A
measurement of Minkowski functionals then leads to constraints on the parameters (e.g. γ̂ ) of the theory.

5.4 Illustration on �CDM simulations: DM and halo catalogues

Let us now illustrate our statistics on the HORIZON 4π N-body simulation (Teyssier et al. 2009) which contains 40963 DM particles distributed
in a 2 h−1Gpc periodic box to validate our number count prediction in a more realistic framework. This simulation is characterized by the
following �CDM cosmology: �m = 0.24, �� = 0.76, ns = 0.958, H0 = 73 km s−1 Mpc−1 and σ 8 = 0.77 within one standard deviation of
Wilkinson Microwave Anisotropy Probe 3 results (Spergel et al. 2003). These initial conditions were evolved non-linearly down to redshift
zero using the AMR code RAMSES (Teyssier 2002), on a 40963 grid. The motion of the particles was followed with a multigrid particle-mesh
Poisson solver using a cloud-in-cell interpolation algorithm to assign these particles to the grid (the refinement strategy of 40 particles as a
threshold for refinement allowed us to reach a constant physical resolution of 10 kpc; see the above-mentioned two references).

5.4.1 Minkowski functionals and extrema counts for DM

A measurement of the three-point cumulants in the 4π simulation is displayed in Table 8. It shows that redshift distortion has a small impact
on three-point cumulants. We thus expect 3D Minkowski functionals to be weakly affected by redshift-space distortion. However, let us keep
in mind that even if this difference is small, it should be of great importance to model it properly in the context of high-precision cosmology,
especially since in 2D slices, the effect should be boosted.
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Table 8. Measured cumulants in redshift space (real space) for different smoothings in the HORIZON 4π simulation.
Note that the ratio of the field dispersion in redshift space versus real space at large scales is ≈1.17 which corresponds
to β ≈ 0.5 as expected.

R (Mpc h−1): 16 23 32 45 64

σ 0.28(0.25) 0.20(0.17) 0.14(0.12) 0.090(0.077) 0.057(0.049)
σ 1|| 0.044(0.035) 0.023(0.018) 0.012(0.0092) 0.0057(0.0045) 0.0027(0.0021)
σ 1⊥ 0.054(0.050) 0.028(0.026) 0.014(0.013) 0.0068(0.0062) 0.0032(0.0029)
σ 2|| 0.012(0.0094) 0.0045(0.0035) 0.0017(0.0013) 0.000 59(0.000 45) 0.000 21(0.000 16)
σ 2⊥ 0.016(0.015) 0.0061(0.0057) 0.0022(0.0021) 0.000 76(0.000 72) 0.000 26(0.000 24)
σQ 0.0089(0.0076) 0.0034(0.0029) 0.0012(0.0010) 0.000 43(0.000 36) 0.000 15(0.000 12)

〈x3〉/σ 3.36(3.49) 3.27(3.35) 3.24(3.28) 3.38(3.41) 4.03(4.07)
〈x2J1⊥〉/σ −2.92(−3.19) −2.84(−3.07) −2.75(−2.95) −2.76(−2.95) −3.00(−3.20)
〈xq2

⊥〉/σ 2.27(2.40) 2.28(2.27) 2.09(2.16) 2.05(2.12) 2.19(2.26)
〈xq2

‖ 〉/σ 2.33(2.41) 2.27(2.30) 2.24(2.24) 2.24(2.21) 2.52(2.53)
〈xI2⊥〉/σ 0.39(0.43) 0.39(0.42) 0.37(0.41) 0.37(0.40) 0.42(0.46)

〈J1⊥q2
⊥〉/σ −0.81(−0.87) −0.79(−0.84) −0.76(−0.80) −0.72(−0.76) −0.81(−0.86)

〈J1⊥q2
‖ 〉/σ −1.57(−1.75) −1.55(−1.68) −1.53(−1.64) −1.51(−1.60) −1.53(−1.64)

βσ 0.24(0.0066) 0.26(0.014) 0.28(0.030) 0.30(0.058) 0.33(0.091)

Figure 7. Top-left panel: first NG correction of the 3D Euler characteristic as a function of smoothing (as labelled) measured (dotted lines) and predicted
(plain line) in HORIZON 4π simulation in real space. Each curve has been normalized by the maximum of the Gaussian component of the Euler characteristic.
Those corresponding to different smoothing lengths have been shifted for clarity. Top-right panel: same as the top-left panel, but in redshift space. Bottom-left
panel: same as the top-right panel, but redshift displacements were boosted by a factor of 4. Bottom-right panel: theoretical prediction in real space and
boosted redshift space. For these ranges of smoothing, the theory predicts well the Euler characteristic to first order in non-Gaussianity, in particular for
low-intermediate thresholds. The difference in the Euler characteristic introduced by redshift distortion (even boosted by a factor of 4) is rather small.

Fig. 7 illustrates this for the 3D Euler characteristic. First, note that the theory mimics very well the measurement. This figure also
shows that the difference between real and redshift space is indeed small for the first correction from Gaussianity. But in 2D, this difference
increases as seen in Fig. 8 which shows how the correction from Gaussianity depends on the angle between the LOS and the slice on which
the 2D Euler characteristic is computed.

5.4.2 Minkowski functionals for halo catalogues

The friend-of-friend algorithm (Huchra & Geller 1982) was used over 183 overlapping subsets of the simulation with a linking length of
0.2 times the mean interparticle distance to define DM haloes. In the present work, we only consider haloes with more than 40 particles, which
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Figure 8. Prediction for the 2D Euler characteristic in redshift space along (dashed lines) and perpendicular (solid lines) to the LOS with cumulants measured
in the HORIZON 4π simulation. There is a clear dependence on the angle between the slice and the LOS, especially for smaller smoothing.

corresponds to a minimum halo mass of 3 × 1011 M� (the particle mass is 7.7 × 109 M�). The mass dynamical range of this simulation
spans about five decades. Overall, the catalogue contains 43 million dark haloes. The density of dark haloes in real space and redshift space
was re-sampled over a 5123 grid with box size 2000 Mpc h−1 (in redshift space, after shifting the z-ordinate of the halo by its velocity along
that direction divided by the Hubble constant, H0) and smoothed with a Gaussian filter of width σ = 16, 24, . . . up to 94 Mpc h−1. For each
cube in real and redshift space, the number density of extrema is computed by a local quadratic fit to the function profile with control over the
double counting of the neighbouring extrema [see Pogosyan et al. (2011) for the technique description and Colombi, Pogosyan & Souradeep
(2000) for a first application]. The relevant 35 cumulants are computed via fast Fourier transform. Fig. 9 displays the corresponding predicted
(solid line) and measured (dashed line) number count difference in real space (left-hand panel) and redshift space (right-hand panel). Note
that redshift- and real-space extrema counts are almost indistinguishable. Indeed, for this biased population, b1 is large (∼2) and f/b1 is small
enough.

5.5 A cosmic fiducial experiment: measuring β and σ via slicing along and perpendicular to the LOS

As mentioned in Section 4, the angle dependence of the 2D Minkowski functionals allows us to probe β. Indeed, equations (43), (54) and
(60) display a functional dependence on θS/L. At Gaussian order first, it appears that

χ
(0)
2D (ν, θS ) ∝

√
1 − βσ sin2 θS , (99)

so that measuring the Gaussian part of the 2D Euler characteristic in different slices (with different orientations relative to the LOS) can give
access to βσ = 1 − σ 2

1⊥/2σ 2
1‖ = 4

5 β +O(β2). For example, in the most favourable case of θ1 = π/2 and θ2 = 0, one have direct access to

χ
(0)
2D (ν, θ1)

χ
(0)
2D (ν, θ2)

=
√

1 − βσ sin2 θ1

1 − βσ sin2 θ2
=

√
1 − βσ = 1 − 2

5
β +O(β2) . (100)

Figure 9. Left-hand panel: the distribution of 3D extrema in real space as a function of threshold ν in real space, as predicted (solid) and measured (dashed)
in DM halo catalogue of the HORIZON 4π simulation smoothed over 48 Mpc h−1. Right-hand panel: same as the left-hand panel but in redshift space.
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Figure 10. Reconstructed β from the Gaussian part ofN2 (left-hand panel) and σ from its NG correction (right-hand panel).

Contour-crossing statistics have the same angle dependence as the 2D Euler characteristic at Gaussian order. The N2 statistics (area of
isocontours) leads in turn to

N (0)
2 (ν, θ1)

N (0)
2 (ν, θ2)

= E(β̃σ (θ1))
√

1 − β̃σ (θ2)

E(β̃σ (θ2))
√

1 − β̃σ (θ1)
= π

2

√
1 − βσ

E(βσ )
= 1 − 1

5
β +O(β2) . (101)

Note that beyond a simple overall amplitude effect (which is enough to measure β alone), this angle dependence also arises in the first NG
correction as plotted in Fig. 5.

If the value of β is important on its own (e.g. to study the bias or to test modifications of gravity), it is also of prime importance to
measure D(z) as it allows us to map the dispersion in redshift space, σ , into its value in real space, σ 0 ∝ D(z). One way to proceed is to use the
Gaussian term to put constraints on β and then the NG correction for σ (the amplitude of which is not probed by the Gaussian part). Indeed,
following Gay et al. (2012), the theory presented in Section 4 should allow us to measure the dispersion of the field in redshift space σ from
the amplitude of the departure from non-Gaussianity. As equation (101) demonstrates, the comparison of the 2D Minkowski functionals in
planes parallel and perpendicular to the LOS allows us to measure independently β = f/b. Hence, Minkowski functionals in redshift space
yield a geometric estimate of the real-space field dispersion, σ 0, via

σ0 = σ/
√

1 + 2β/3 + β2/5. (102)

Let us apply this scheme to measure β and σ 0 in a fiducial experiment. Minkowski functionals are measured from our set of 19 scale-invariant
(n = −1) 2563 DM simulations smoothed over 15 pixels, corresponding to σ 0 = 0.18 and displayed in Fig. 4. A first step is to use the
Gaussian term of the 1D and 2D statistics, while varying the angle of the slices to constrain β using equations (100) and (101). For that
purpose, we extract the even part of N2 (to get rid of odd parity effects arising from the first NLO correction) and restrict ourselves to the
intermediate domain −1.2 < ν < 1.2 where the Gaussian term is dominant. The resulting constraints on β are found to be β̂ = 1.04 ± 0.05 ,

and illustrated in Fig. 10 (left-hand panel). The same analysis on the other 1D (N1) and 2D statistics (2D genus) leads to similar constraints.
The next step is to fit the first NG correction of each statistics with PT predictions in order to constrain σ . The predictions at first order

are expressed as a function of the contrast ν and σ only using Table 4. The value of the free parameter σ in the model is then constrained by
fitting the odd part of the data (which is dominated by the first NG correction for intermediate contrasts). The result forN2 is shown in Fig. 10
(right-hand panel) and yields σ̂ = 0.22 ± 0.08. The other statistics give similar results e.g. for the 3D Euler characteristic σ̂ = 0.26 ± 0.06.

Altogether, using σ as measured by a 3D probe, χ3D, and β by a 2D statistics, N2, we finally get σ̂0 = 0.18 ± 0.04, which is fully consistent
with the underlying dispersion in our mocks. The accuracy on the measurement of β and D(z) through σ 0 can naively be scaled to the
expected accuracy for a Euclid-like survey (assuming one quarter of the sky is observed) leading to a relative 0.3 per cent precision on β

and 1.5 per cent on D(z) at redshift zero. See also Gay et al. (2012), which translates this accuracy in terms of estimates for the dark energy
parameters w0, wa.

It is worth noting that in this simple fiducial experiment, several assumptions were made: first, we assumed we knew the contrast, ν,
while in realistic surveys, the accessible quantity is ν f (see Section 4.5.1); for the simulation, the cosmology is not �CDM but Einstein–de
Sitter with a scale-invariant initial power spectrum; finally the error on the estimated σ depends on the accuracy of the theory used to predict
the cumulants (standard PT here, which is known to perform somewhat poorly in redshift space). No account of masking, redshift evolution
of the S/N ratio or finite survey volume, nor comparison with other dark energy probes was attempted. Carrying out the road map sketched
in this section while addressing these issues should be one of the target of the upcoming surveys that have been planned specifically to probe
dark energy, either from ground-based facilities (e.g. BigBOSS, VST-KIDS, DES, Pan-STARRS, LSST11) or from space-based observatories
[Euclid (Laureijs et al. 2011), SNAP and JDEM12].

11 http://bigboss.lbl.gov, http://wtww.astro-wise.org/projects/KIDS, https://www.darkenergysurvey.org, http://pan-starrs.ifa.hawaii.edu, http://www.lsst.org
12 http://sci.esa.int/euclid, http://snap.lbl.gov, http://jdem.lbl.gov
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6 C O N C L U S I O N

This paper has placed on a firm footing the statistical analysis of topological sets in anisotropic spaces. Specifically, it has presented
extensions of Matsubara (1996) and Gay et al. (2012) in two directions: it has accounted for anisotropic fields and non-Gaussianity for
all Minkowski functionals. The main results of this work are as follows: (i) the anisotropic JPDF in 2D and 3D: a new building block for
redshift-space analysis; (ii) the analytical Euler characteristic at all orders in 2D/3D (and therefore the rare event limit for extrema counts);
(iii) other Minkowski functionals and extrema counts to first order in NG correction in anisotropic space; (iv) extension of PT for the
relevant cumulants. The theory presented in Sections 3 and 4 makes no assumption about the origin of the anisotropy and could therefore be
implemented in contexts beyond astrophysics.

In the context of cosmology, the theoretical expectations were robustly derived both in invariant and field variables, and checked against
Monte Carlo simulations of fnl models, scale-invariant DM simulations and �CDM simulations (both for DM and halo catalogues). It was
shown how to use these predictions to measure σ 0 and β as a function of redshift. The implication of the invariance of Minkowski functionals
and extrema counts versus monotonic mapping on the relevant combinations of cumulants (i.e. projections of the bispectrum) was made
explicit. Its relevance for MG probes was discussed. The implementation on DM haloes of �CDM simulations for biased populations with
M > 1011M� allowed us to quantify and formalize the (weak) effect of redshift distortion on the 3D geometric descriptors of the field. This
weak sensitivity reflects the robustness of topological estimates. In contrast, the comparison of 2D slices perpendicular and parallel to the
LOS should allow us to also measure σ (z) and correct it for �γ

m/b1 as demonstrated in a fiducial experiment. At scales above ∼50 Mpc h−1,
it has been found that standard PT allows us to predict the theoretical cumulants at the level of accuracy required to match the measured
cumulants from simulations within a range of contrast ν ∈ [ − 2, 2]. As Minkowski functionals are configuration space probes, we can expect
a better convergence of (extended) PT for these contrasts which are less sensitive to the dynamics of very non-linear regions.

Improvements beyond the scope of this paper include (i) improving PT in redshift space while implementing variations of the streaming
model (see Scoccimarro 2004; Taruya et al. 2010, for instance) and/or anisotropic smoothing; (ii) departing from the plane-parallel approxi-
mation while constructing a full-sky prescription for NG Minkowski functionals of realistic catalogues; (iii) extending the prediction to the
statistics of the skeleton and walls; (iv) propagating to cosmic parameter estimation, the residual misfits; (v) extending the prediction of the
JPDF to N-point statistics for non-local analysis (e.g. void size and non-linear N-point peak statistics); (vi) exploring alternative expansion to
the GC’s; (vii) deriving the statistics of errors on one-point statistics such as those presented in this paper; (viii) implementing the relevant
theory on realistic mocks and demonstrating pros and cons of geometrical probes (e.g. in the presence of masks), and contrast those to existing
dark energy probes (lensing, SN1a, etc.).

In the context of upcoming 3D spectroscopic surveys such as Euclid, the statistical analysis of the geometry of our redshift-distorted
Universe will allow us to robustly measure weighted moments of the multispectra as a function of redshift, and henceforth quantify the cosmic
evolution of the equation of state of dark energy and possible departure from GR.
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Gaztañaga E., Cabré A., Castander F., Crocce M., Fosalba P., 2009, MNRAS, 399, 801
Gott J. R., III, 1988, PASP, 100, 1307
Gott J. R., III, Weinberg D. H., Melott A. L., 1987, ApJ, 319, 1
Gott J. R., III et al., 1989, ApJ, 340, 625
Gott J. R., III, Park C., Juszkiewicz R., Bies W. E., Bennett D. P., Bouchet F. R., Stebbins A., 1990, ApJ, 352, 1
Gott J. R. I., Colley W. N., Park C.-G., Park C., Mugnolo C., 2007, MNRAS, 377, 1668
Hadwiger H., 1957, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer
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A P P E N D I X A : SP E C T R A L PA R A M E T E R S A N D C U M U L A N T S

A1 Relations with the parametrization of Matsubara (1996)

At linear order, the redshift distortion, equation (83), reduces to the Kaiser (1987) result in equation (12). Matsubara (1996) defines the
dispersions and angular moments,

σ 2
j (R) ≡ 1

2π2

∫
dk k2+2jP (r)(k) W 2(kR) , Cj (f /b) = 1

2

∫ 1

−1
dμ μ2j (1 + f b−1μ2)2 , (A1)
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and uses the normalized quantities,

α ≡ δ
(s)
R

σ0
√

C0
, βi ≡ ∂i δ

(s)
R

σ0
√

C0
and ωij ≡ ∂i∂j δ

(s)
R

σ0
√

C0
, (A2)

to describe the smoothed density contrast in redshift space δ
(s)
R and its derivatives. Our variables relate to these as

x = α, xI =
√

C0σ0

σ1⊥
βI , x3 =

√
C0σ0

σ1‖
β3, xIJ =

√
C0σ0

σ2⊥
ωIJ and x33 =

√
C0σ0

σ2‖
ω33, (A3)

where I, J ∈ {1, 2}, so that

σ 2 = C0σ
2
0 , σ 2

1⊥ = (C0 − C1)σ 2
1 , σ 2

1‖ = C1σ
2
1 , σ 2

2⊥ = (C0 − 2C1 + C2)σ 2
2 , σ 2

2‖ = C2σ
2
2 , (A4)

with

C0 = 1 + 2f

3b
+ f 2

5b2
, C1 = 1

3
+ 2f

5b
+ f 2

7b2
, C2 = 1

5
+ 2f

7b
+ f 2

9b2
. (A5)

In terms of these variables, both formulations are in exact agreement. In the isotropic Gaussian limit (i.e. the linear regime with no redshift
correction), C0 = 1, C1 = 1/3 and C2 = 1/5.

A2 Inter-relations between the moments of random fields and simplification of Gay et al. (2012) results

Not all cumulants of the field and its derivatives that appear in the GC expansion are independent. Relations between the cumulants can
be established, for instance, by expressing statistical averages as averages over spatial coordinates using homogeneity of the statistics and
utilizing integration by parts. The details of the results depend on the properties of the manifold; in this paper we limit ourselves to the theory
in the flat infinite Euclidean space. As an example,〈
x2x33

〉 = lim
V →∞

1

V

∫
V

dV x2x33 = −γ‖ lim
V →∞

2

V

∫
V

dV xx2
3 = −2γ‖

〈
xx2

3

〉
, (A6)

where the boundary term vanishes as volume V is taken in the infinite limit. A similar procedure shows that, e.g., 〈x2
1x11〉 = 0.

Proceeding in this manner one can establish for isotropic fields several useful general relations that involve the rotation invariants Is of
the Hessian matrix xij:13

〈xnI1〉 = −nγ
〈
xn−1q2

〉
, (A7)

〈xnI2〉 = −3

4
nγ

〈
xn−1q2I1

〉 − 1

4
n(n − 1)γ 2

〈
xn−2q4

〉
, (A8)

〈xnIs〉 = −1

s

min(s,n)∑
k=1

s + k

(2k)!!

n!

(n − k)!
γ k

〈
xn−kq2kIs−k

〉
, s >= 1, I0 = 1. (A9)

These relations are valid in any dimensions, for correspondingly defined Is’s,14 and also hold for the cumulants as well as the moments.

A2.1 Isotropic 3D Euler characteristic

The relations (A7)–(A9) allow us to simplify the expression for the Euler characteristic given by Gay et al. (2012) for isotropic fields. Indeed,
these authors found15

χ
iso(0)
3D (ν) = e−ν2/2

(2π)2R3
�

√
3

9
γ 3H2(ν) , (A10)

χ
iso(1)
3D (ν) = e−ν2/2

(2π)2R3
�

√
3

9

[
1

6
γ 3

〈
x3

〉
H5(ν) − 3

2

(
γ 3

〈
xq2

〉 + γ 2
〈
x2J1

〉)
H3(ν) + 9

(
1

2
γ 2

〈
q2J1

〉 + γ 〈xI2〉
)

H1(ν)

]
, (A11)

13 Is are the coefficients of the characteristic polynomial of the matrix xij, namely in N dimensions I1 is the trace, IN is the determinant and for 1 < s < N, Is is
the sum of the minors of order s of xij.
14 These relations can be generalized to homogeneous spaces of constant curvature, e.g. 2-sphere, with additional terms that are proportional to the curvature
of the space appearing during some integrations by parts.
15 We shall take this opportunity to correct several unfortunate misprints in expressions for the second-order corrections χ (2) as presented in Gay et al. (2012).
In this text, equations (A12) and (A17) are corrected versions.
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where R� = σ 1/σ 2. Using equations (A7)–(A9), the equations (A10) and (A11) can be rewritten up to NLO as
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which is the form we quote in equation (38). The NNLO, O(σ 2), term can also be simplified from equation (A12) to a more compact form,
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A2.2 Isotropic 2D Euler characteristic

The same procedure holds for the 2D Euler characteristic for which the expression given by Gay et al. (2012) in terms of a 2D isotropic field x

χ
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2R2
�

γ 2H1(ν), (A15)
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can be simplified up to NLO to
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which is to be compared with expression (44) for the Euler characteristic on 2D slices. The NNLO term adds
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APP END IX B: ( fnl, gnl) N G FI E L D TOY M O D E L S

B1 fnl toy model for the field

Let us briefly describe the toy model used in the main text to validate our predictions for extrema counts and Minkowski functionals in 2D
and 3D. If X is a Gaussian (possibly anisotropic) field with zero mean and variance 〈X2〉 = σ 2

0 , let us define the following NG field

XNG = X + fnl

σ0

(
X2 − σ 2

0

) + gnl

σ 2
0

(
X3 − 3σ 2

0 X
)

. (B1)

For the purpose of this paper, let us define X as a Kaiser transform of a Gaussian isotropic field, XG, which can be written in Fourier space,
following equation (11), as

X̂k = (1 + f μ2)X̂G
k , with μ = k‖/k. (B2)

Then any Minkowski functional or extrema count of this NG field can simply be written in terms only of f,
fnl, gnl and σ ’s (or n for a scale-invariant power spectrum). Indeed, one can easily show that the spectral pa-
rameters of the NG field are the following in terms of the spectral parameters of X (in 2D): σ̃ 2 = (1 + 2f 2

nl)σ
2
0 ,

σ̃ 2
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nl)σ
2
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Q, where in turn the spectral parameters of X can be expressed as functions of the spectral parameters of XG: σ 2
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1‖ = 1/16(8 + 12f + 5f 2)σ 2
1 , σ 2

1⊥ = 1/16(8 + 4f + f 2)σ 2
1 , σ 2

2‖ = 1/128(48 + 80f + 35f 2)σ 2
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2 and σ 2
Q = 1/128(16 + 16f + 5f 2)σ 2

2 . In 2D, the three-point cumulants of the NG field can also be computed:
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In 3D, similar relations hold: σ̃ 2 = (1 + 2f 2
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Q, where again it can be related to the spectral parameters of the isotropic
Gaussian field X: σ 2
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Figs B1 and B2 illustrate the interplay between anisotropy and non-Gaussianity that this paper investigates on this example of the ‘fnl’
toy model. It presents the 2D/3D Euler characteristic of a mildly NG anisotropic field for different values of the quadratic parameter fnl and
anisotropy, f. Both predictions derived in Sections 4.2.1 and 4.2.2, and measurements from Monte Carlo realizations of the corresponding
field are shown. The agreement between theory and measurements is very good. As expected, in 2D the effect of anisotropy is larger than in
3D.

Fig. B3 shows how gnl acts in turn. For this purpose, the prediction at NNLO (n = 4 in the GC expansion) is computed from equa-
tion (40). Finally, Fig. B4 displays predictions and measurements for differential extrema counts in these kinds of fnl fields. As mentioned
in the main text, at even orders in the GC expansion (in particular at Gaussian order), the 2D saddle count is even, peak and void counts
are symmetric by reflection across the y-axis meaning ∂νnpeaks(ν) = ∂νnvoids(−ν) and pancake and filament counts are also symmetric by
reflection across the y-axis. On the other hand, at odd orders in the GC expansion (in particular at first NG order), the 2D saddle count is odd in
ν, peak and void counts are symmetric w.r.t. reflection relative to the origin, meaning ∂νnpeaks(ν) = −∂νnvoids(−ν) and pancake and filament
counts are also symmetric by reflection relative to the origin. Fig. B4 thus displays in left-hand panels the even part of the data which should
be dominated by the Gaussian term, namely (∂ nunsad(ν) + ∂νnsad(−ν))/2 for 2D saddle points, (∂νnpeaks(ν) + ∂νnvoids(−ν))/2 for peaks and
(∂νnvoids(ν) + ∂νnpeaks(−ν))/2 for voids (pancakes and filaments accordingly); and in the right-hand panels, the even part of the measurement,
namely (∂νnsad(ν) − ∂νnsad(−ν))/2 for 2D saddle points, (∂νnpeaks(ν) − ∂νnvoids(−ν))/2 for peaks and (∂νnvoids(ν) − ∂νnpeaks(−ν))/2 for
voids. Agreement between measurement and theory to NLO is very good. The small difference between both is due to NNLO correction and
to a bias in the measurement of pancake counts which is yet to be fixed.

B2 fnl model for the potential

In astrophysics, fnl often refers to the potential from which the (density) field derives. Let us thus study in this section the effect of such fnl

non-Gaussianities in the potential on the genus of the density field. If � is a Gaussian (possibly anisotropic) potential field with zero mean
and variance 〈�2〉 = σ 2

0 , let us define the following NG field

�NG = � + fnl

σ0

(
�2 − σ 2

0

)
. (B3)

Then the resulting NG density field reads

δNG = ��NG = �� + 2
fnl

σ0
(��� + ∇� · ∇�) . (B4)
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Figure B1. 2D (left) and 3D (right) Euler characteristic of a mildly NG anisotropic field in a toy model. Top left: comparison with measurements for different
values of the quadratic parameter fnl and anisotropy f, as labelled. The shaded area corresponds to the one-sigma measurement error on realizations of the NG
fields. The overall amplitude has been rescaled by 104. Note both the change in amplitude with f and the distortion in the tails of the distribution with fnl which
are well fitted by the model. Bottom-left panel: theoretical evolution of the 2D Euler characteristic as a function of fnl as labelled for f = 0 and 1. For this level
of anisotropy, the difference in amplitude is less significant. Top-right and bottom-right panels: same as the corresponding left-hand panels in 3D.

Figure B2. NG part of the Euler characteristic of a mildly NG anisotropic field in 2D (left-hand panels) and 3D (right-hand panels). The top panels compare
the theoretical prediction to the measurements of realizations of the NG fields with parameters as labelled, while the bottom panels illustrate the variation of
the theory with the amplitude of fnl. The shaded area corresponds to the one-sigma measurement error. The match to the theory is very good throughout. The
effect of redshift distortion is clearly weaker in 3D, as expected.
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Figure B3. Left: variation with the amplitude of gnl of the predicted Euler characteristic at NLO of a mildly 2D NG anisotropic field. Right: match between a
given realization with fnl and gnl as labelled, and the corresponding model decomposed into first-order (n = 3) and second-order (n = 4) corrections.

Figure B4. Top-left panel: the distribution of 2D extrema (voids, saddles and peaks as labelled) as a function of threshold ν in redshift space for f = 1 as
predicted at Gaussian order (solid) and measured (‘even part’ of the data only, see the main text for more details). Top-right panel: the corresponding NG
correction (fnl = 0.05) estimated from 20 realizations of the corresponding scale-invariant (n = −1) field of dimension 40962 smoothed over 4 pixels as
predicted at first NG order (solid) and measured (‘odd part’ of the data only). Bottom panels: same as the top panels for the distribution of 3D extrema (voids,
wall saddles, tube saddle and peaks as labelled) for NG scale-invariant (n = −1, 2563 smoothed over 4 pixels) anisotropic field (fnl = 0.07, f = 1).

For the purpose of this paper, let us define again the final density field as a Kaiser transform of this field (cf. equation 11) so that in Fourier
space

δ̂k = (1 + f μ2)δ̂NG
k , with μ = k‖/k. (B5)

Then any Minkowski functional or extrema count of this NG field can be written in terms only of f, fnl and σ ’s (or n for a scale-invariant power
spectrum). Fig. B5 (top panels) shows the prediction for the 2D Euler characteristic for different values of fnl between 0 and 1 and for f = 0
(isotropic case) and f = 1 (Kaiser). It also compares (bottom panels) the prediction with some measurements and shows great agreement up
to first order (the difference we observe must come from higher order corrections as the parity in Hermite polynomials is different).
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Figure B5. Top left: 2D Euler characteristic of the density field for fnl between 0 (red) and 1 (yellow) in the potential field and f = 0 (dashed line) or 1 (solid
line). Top right: same as the top-left panel for the first NG correction. Bottom left: 2D Euler characteristic of the density field for fnl = 0.1 in the potential field.
Measurements are displayed in pink with a shaded area representing the 1σ dispersion and prediction in violet. Bottom right: same as the left-hand panel for
the first NG correction.

A P P E N D I X C : 3 D EU L E R C H A R AC T E R I S T I C AT A L L O R D E R S I N N O N - G AU S S I A N I T Y

To compute the 3D Euler characteristics, one needs to take into account the variable ϒ . Given that the GC polynomial expansion for the NG
PDF is obtained by using polynomials orthogonal with respect to the kernel provided by the JPDF in the Gaussian limit, the coupling between
ϒ and Q2, J2⊥ variables in the Gaussian limit, introduces a set of polynomials Flrs such that

1

π

∫
dJ2⊥ dQ2 dϒ√

Q4J2⊥ − ϒ2
e−J2⊥−Q2

Flrs

(
J2⊥, Q2, ϒ

)
Fl′r ′s′

(
J2⊥, Q2, ϒ

) = δll′δrr ′δss′ . (C1)

Here l is the power of J2⊥, r the power of Q2 and s the power of ϒ . In particular, Flr0(J2⊥, Q2, ϒ) = Ll(J2⊥)Lr(Q2) and F001(J2⊥, Q2,
ϒ) = H1(ϒ).

The full expansion of the NG JPDF P = P (x, q2
⊥, x3, ζ, J2⊥, ξ,Q2, ϒ) is a series of products of Flrs and familiar Hermite and Laguerre

polynomials for the rest of the variables, namely
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where σn = {(i, j , k, l,m, p, r, s) ∈ N7|i + 2j + k + 2l + m + 2r + p + 3s = n} and G is given by equation (18). The terms of the expan-
sion (C2) are sorted in the order of power in field variables n. We immediately see that at n = 3 order, the only contribution from ϒ comes
from the term corresponding to i = j = l = m = p = r = 0, s = 1.

The GC coefficients are defined by〈
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where glrs is such that the highest power term in Flrs(J2⊥, Q2, ϒ) is (−1)l+rglrsJ
l
2⊥Q2rϒs/(l!r!s!). Amongst them, we have in particular

glr0 = 1 and g001 = 1. From equation (31), it is clear that the 3D Euler characteristic is the sum of a term where Upsilon can be marginalized
over (so that the formalism introduced in Section 3 can be used) and a term which integrates ϒ under the condition of zero gradient. The
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latter part is simply computed because ϒ = F001(J2⊥, Q2, ϒ) is orthogonal to all other Flrs polynomials in the GC expansion of the JPDF.
After some algebra, it is found that the full 3D Euler characteristic can be eventually written
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with χ
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where I3 = 1
4 x33(J 2

1⊥ − J2⊥) − 1
2 γ2(Q2J1⊥ − ϒ). In equation (C5), the GC coefficients are written in a concise form but must be interpreted

returning from the (x, x33, J1⊥) to the (x, ζ , ξ ) variables and using equation (20). In the isotropic limit, the result is reduced to the following
compact form
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where I1, I2 and I3 are the three invariants of the Hessian matrix xij, namely I1 = J1 = λ1 + λ2 + λ3 = Tr xij, I2 = λ1λ2 + λ2λ3 + λ3λ1

and I3 = λ1λ2λ3 = det xij . Note that equations (C5) and (C6) contain some H−1(ν) = √
π/2 Erfc(ν/

√
2) which are shown to contribute as a

boundary term and can thus be factorized out of the terms χ
(n)
3D as mentioned in equation (33). Moreover, the well-known topological relation

between the Euler characteristics and the genus allows us to compare the above quantity with the curvature integrated along isocontours (as
used in Matsubara (1996)). In an anisotropic space, this surface integral is found to be
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where we use the convention (−2)!/(−1)! = −1/2. Equations (C4) and (C7) were checked to be equivalent up to at least n = 4 using some
detailed relations between the cumulants (which once again can be established via integrations by parts) assuming that everything vanishes
at infinity [in particular χ3D(−∞) = 0]. Note that in this expression ξ , Q2 and ϒ do not appear anymore.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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ABSTRACT

The small-scale exclusion in the two-halo term and the convergence of perturbative
bias expansions is presented. Peaks of a 1D cosmological random field are used as a
proxy for a catalogue of biased tracers. Starting from the two-point correlation function
of peaks of a given height, series approximations are derived that are valid inside the
exclusion zone and emphasize deviations from Poisson noise in the power spectrum
at low frequencies. The convergence of the perturbative bias expansion is discussed.
Finally, we go beyond Gaussian statistics for the initial conditions and investigate the
subsequent evolution of peaks through their Zel’dovich ballistic displacement. Even
though these findings apply to the clustering of one-dimensional tracers, they provide
useful insights into halo exclusion and its impact on the two-halo term.

Key words:

1 INTRODUCTION

Dark matter haloes and the galaxies within them are distinct and extended objects. By definition, they can not overlap and

their centers have to be separated by at least the sum of their virial radii. This exclusion effect is even more important in the

initial conditions or Lagrangian space, before the objects collapsed and fell towards each other. As noted in Mo & White (1996);

Sheth & Lemson (1999), the vanishing probability to find two centers closer than the exclusion radius corresponds to the

correlation function being−1 for small separations. While this effect is localized at small separations in the correlation function,

it can alter the power spectrum at small wavenumbers and results in a modification of Poisson stochasticity (Smith et al.

2007; Baldauf et al. 2013) consistent with the sub-Poissonian noise measured in the clustering of simulated dark matter halos

(Casas-Miranda et al. 2002; Seljak et al. 2009; Hamaus et al. 2010; Manera & Gaztañaga 2011). Exclusion effects strongly

suppress the non-physical k0 tail of the one-halo term (Smith et al. 2011).

Besides the exclusion effects, there are distinct, non-linear bias effects just outside the exclusion region, which, due to their

localization, also contribute to the power spectrum on large scales and for which the bias expansion converges very slowly.

The exclusion region and the non-linear bias bump beyond are important for precision models of the halo-halo correlation

function in the transition region between the one- and two-halo terms in the halo model. Thus, a better understanding of

these regions will likely improve the modelling of the matter power spectrum or correlation function in this regime, which is

very important for weak lensing or galaxy-galaxy lensing studies, since this signal is large and not yet dominated by the fully

non-perturbative one-halo term.

Dark matter haloes are seeded by over-dense regions in Lagrangian space (so called proto-haloes) that subsequently collapse

to form the virialized late-time Eulerian haloes. Various assumptions can be made to describe the relation between the proto-

haloes and the underlying Gaussian density field. Our perfect knowledge of the N-point statistics of the Gaussian field allows

us to calculate all possible statistics of transformations of the Gaussian field. In this paper we will consider the peak model,

in which proto-haloes are associated with the maxima of the smoothed underlying field.

To simplify the calculations and understanding, but without loosing much of the phenomenology, we will consider volume

exclusion effects associated with peaks in one spatial dimension, following Lumsden et al. (1989); Coles (1989).

The paper is organized as follows. In Sec. 2, the mathematical formalism that defines peak-peak correlations functions
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together with their numerical implementation are described. Sec. 3 presents the result on the small-scale exclusion zone of

peaks obtained by numerical integration. The analytical large-scale expansion of the two-point correlation function of peaks

is then discussed in Sec. 4. Sec. 5 incorporates the effect of the Zel’dovich displacement of the peaks. Finally, Sec. 6 wraps up.

2 FORMALISM AND NUMERICAL IMPLEMENTATION

The formalism of cosmological density peaks, which builds on the Kac-Rice formula Kac (1943); Rice (1945) was laid down

in Bardeen et al. (1986). Following Pogosyan et al. (2009), for a given field ρ, we define the moments

σ0
2 = 〈ρ2〉, σ1

2 = 〈(∇ρ)2〉, σ2
2 = 〈(∆ρ)2〉. (1)

Combining these moments, we can build two characteristic lengths R0 = σ0/σ1 and R⋆ = σ1/σ2, as well as the spectral

parameter

γ =
σ1

2

σ0σ2
. (2)

We choose to normalise the field and its derivatives to have unit variances:

x =
1

σ0
ρ, xi =

1

σ1
∇iρ, xij =

1

σ2
∇i∇jρ. (3)

In general, while P(X) designates the one-point probability density (PDF), P(X,Y) will denote the joint PDF for the

normalized field and its derivatives, X = {x, xij , xi} and Y = {y, yij , yi}, at two prescribed comoving locations (rx and ry

separated by a distance r = |rx − ry |). In the particular case of Gaussian initial conditions, this joint PDF is the multivariate

Normal

N (X,Y) =

exp

24− 1
2

 
X

Y

!T

·C−1 ·
 

X

Y

!35
det|C|1/2 (2π)(D+1)(D+2)/2

, (4)

where C0 ≡ 〈X ·XT〉 and Cγ ≡ 〈X ·YT〉 are the diagonal and off-diagonal components of the covariance matrix

C =

 
C0 Cγ

CT
γ C0

!
. (5)

All these quantities depend on the separation vector r only because of homogeneity. Isotropy further implies that they depend

on the modulus r = |r| solely. Eq.(4) is sufficient to compute the expectation of any quantity involving the fields and its

derivatives up to second order. In particular, the two-point correlation ξcrit(r, ν) of (signed) critical points at threshold ν

separated by r is given by

1 + ξcrit(r, ν) =

˙
ncrit(X)ncrit(Y)

¸˙
ncrit(X)

¸2 , (6)

where the Klimontovich or “localized” density for a signed critical point reads

ncrit(X) =

„
σ2

σ1

«D

det(xij)δD(xi)δD(x− ν) . (7)

This density is formally zero unless the condition for a critical point is satisfied. The multiplicative factor of (σ1/σ2)
D, which

has dimension of length−D, ensures that the ensemble average˙
ncrit(X)

¸
=

Z
dXdet(xij)δD(xi)δD(x− ν)P(X) ≡ n̄crit(ν) , (8)

which appears in the denominator of Eq.(6), equals the average number density of critical points at threshold ν. The ensemble

average ˙
ncrit(X)ncrit(Y)

¸
=

Z
dX

Z
dYP(X,Y) det(xij)δD(xi)δD(x− ν)det(yij)δD(yi)δD(y − ν) (9)

is the cross-correlation. Since the integrant simply is a polynomial function of the variables, this integral can be fully carried

out analytically. For peaks, an additional constraint on the sign of the second derivatives is required. As a consequence, the

peak two-point correlation becomes

1 + ξpk(r, ν) =

˙
npk(X)npk(Y)

¸˙
npk(X)

¸2 . (10)

where the localized peak number density npk(X),

npk(X) =

„
σ2

σ1

«D

|det(xij)|δD(xi)ΘH(−λi)δD(x− ν) , (11)
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Figure 1. Left panel: 1D correlation function of peaks of height ν = 1 as a function of r/R⋆ for different spectral index n evaluated
by Monte-Carlo realisations of the peak constraint. Right panel: Same as left panel, but the spectral index is held fixed at n = 0 while
the peak height ν is varied between 0 and 2.5 as labeled. The dashed lines indicate the analytical 1D signed critical point correlation
function. For ν > 2, both the peak and signed critical points correlations are in very good agreement. Note that, for ν = 0, the signed
critical point correlation functions diverges and is thus not shown on this plot.

implements the peak condition. Here |det(xij)| = −det(xij) because the determinant is negative at the peaks and it is

understood that, for D > 1, δD(xi) stands for
Q

i6D δD(xi), while ΘH(−yii) means
Q

l6D ΘH(−λl) with {λl}l the eigenvalues

of the Hessian. Because of these inequalities, the integral typically is not analytical anymore. In dimension D, we define the

conditional probability that xij and yij satisfy the PDF, subject to the condition that xi = 0 and x = y = ν and resort to

Monte-Carlo methods in MATHEMATICA in order to evaluate numerically equation (10). Namely, we draw random numbers

of dimension D(D+1) from the conditional probability that xij and yij satisfy the PDF, subject to the condition that xi = 0

and x = y = ν (using RandomVariate). For each draw (k) if λl(x
(k)
ij ) < 0 and λl(y

(k)
ij ) < 0 (l 6 D) we keep the sample and

evaluate det(x
(k)
ij )det(y

(k)
ij ) and otherwise we drop it; eventually,˙

npk(X)npk(Y)
¸ ≈ 1

N

X
k∈S

h
det(x

(k)
ij )det(y

(k)
ij )
i
× P(x = y = ν, xi = yi = 0) , (12)

where N is the total number of draws, and S is the subset of the indexes of draws satisfying the constraints on the eigenvalues.

The same procedure can be applied to evaluate the denominator 〈npk(X)〉 ≡ n̄pk(ν). Equation (10) then yields ξpk(r, ν). This

algorithm is embarrassingly parallel and can be easily generalized, for instance, to the computation of the correlation function

ξpk(r, > ν) of peaks above a given threshold in density and to higher dimension D > 1. In practice it is fairly efficient as

the draw is customized to the shape of the underlying Gaussian PDF. For D= 1 considered in this work, this brute force

Monte-Carlo method converges relatively quickly, typically we use one million draws for each evaluation of the correlation

function in this work, this number is sufficient to reach percent precision accuracy. Obviously if correlation function above a

given threshold are considered, the required number of draws is larger and increases with the value of the threshold (as the

event x > ν becomes rarer).

3 SMALL SCALES: PEAK-PEAK EXCLUSION

Here and henceforth, we will assume Gaussian initial conditions such that P(X,Y)=N (X,Y). In 1D, the block matrices that

make up the covariance matrix are

C0 =

0B@ 1 0 −γ

0 1 0

−γ 0 1

1CA , Cγ =

0B@ γ00 γ01 γ02

γ01 γ11 γ12

γ02 γ12 γ22

1CA , (13)

where the γij ’s represent the correlations between the field and its derivatives at two points separated by a comoving distance

r, e.g. γ22 = 〈x11y11〉. These γij ’s are not independent. The following relations are established via integrations by part:

γ10 = −γ01, γ21 = −γ12, γ20 = −γγ11.

The γij(r) are known function of r given by the moments of the two fields and their derivatives:

γij(r) =
1

σiσj

Z
dk exp(ıkr)(ık)i(−ık)jPs(k) i 6 j , (14)

with Ps(k) the power spectrum of δ smoothed with a filter function (assumed Gaussian throughout this work). On expanding

γij(r) at small separations r ≪ 1 and substituting the spectral moments

σ2
l =

1

π

Z ∞

0

dk k2lPs(k) , (15)
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Figure 2. Left panel: Monte-Carlo estimation of the two-point correlation function of 1D peaks ξpk(r, ν). The results is shown as a
function of r/R⋆ assuming n = 0 and a threshold ν = 1. Right panel: Corresponding power spectrum Ppk(k, ν). The exclusion zone seen
at short distance in the left panel makes the 1D peak power spectrum sub-Poissonian at small wavenumber (large separation).

it follows that

γij(r)=
(−1)l−i

σiσj

∞X
k=0

(−1)k r̃2k

(2k)!
σ2

l+k (i + j = 2l)

γij(r)=
(−1)1+l−i

σiσj

∞X
k=0

(−1)k r̃2k+1

(2k + 1)!
σ2

l+k+1 (i + j = 2l + 1)

where r̃ = r/R is the separation in units of the smoothing length R. The determinant of the covariance matrix C is given at

first order in the separation r by r̃18 × g({σi}0>i>5) where g =
`
σ6

2 −
`
2σ2

1σ2
3 + σ2

0σ2
4

´
σ2

2 + σ2
0σ4

3 + σ4
1σ2

4

´×`
σ6

3 −
`
2σ2

2σ2
4 + σ2

1σ2
5

´
σ2

3 + σ2
1σ4

4 + σ4
2σ2

5

´
/74649600σ4

0σ4
1σ4

2 does not depend on the separation. Indeed, three eigenvalues of

C are singular, respectively scaling like r̃10, r̃6 and r̃2 and corresponding to the eigen-directions given by (x − y), (x1 − y1)

and (x11 − y11) ). This singularity proportional to r̃−18 is the reason why the limit r̃ → 0 is difficult to handle numerically.

Analytically it means that a series expansion to eighteenth order is needed for all terms.

3.1 Correlation of 1D peaks of same height

We evaluate the two-point correlation function of D = 1 peaks upon applying the Monte-Carlo method described above to

Eq.(10). Results are shown in the left panel of Fig.1 as a function of the spectral index n for a fixed peak height ν = 1.

The exclusion zone shrinks to smaller separations and becomes more pronounced as n is increased because the addition of

small scale power tends to sharpen the profile around local density maxima. In the right panel of Fig.1, we display ξpk(r, ν)

as a function of peak height for a white noise power spectrum n = 0. For comparison, the dashed curves represent the

two-point correlation of 1D signed critical points, which is obtained upon integrating equation (6) over the six field variables.

Unsurprisingly, ξcrit(r, ν) matches ξpk(r, ν) almost perfectly for prominent peaks (ν >∼ 2) since, in this regime, a critical point

is nearly always a local maximum.

Interestingly, the two-point correlation ξcrit(r, ν) is fully analytical regardless of the underlying density power spectrum.

For the sake of readability however, we will not display its full expression here. However, we can take advantage of this analytic

result, together with the fact that ξpk(r, ν) agrees very well with its genus-like counterpart ξcrit(r, ν) at high threshold, to

get insights into the short distance behaviour of the peak correlation function. The low-r limit of the two-point correlation

function of signed critical points separated by r is given by

1 + ξcrit(r, ν) =
e

(2γ2−1)ν2

2(γ2−1)
“
γ2
#

`
γ2γ4

∗
`
γ2 + ν2 − 1

´− 2γ2γ2
∗
`
γ2 + ν2 − 1

´
+ γ2

`
ν2 + 1

´− 1
´

+
`
γ2 − 1

´2”
12γ3 (1− γ2)5/2 ν2γ2

#

p
1− γ2∗γ3∗

+O(r) (16)

where we define the following shape parameters γ = σ2
1/σ0/σ2, γ∗ = σ2

2/σ1/σ3 and γ# = σ2
3/σ2/σ4.

For a power-law power spectrum Pk(k) = Akn, with spectral index n > −1, and a density field filtered with a Gaussian
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kernel of radius R, the γij(r) are given by

γ00(r) = 1F1

„
n + 1

2
;
1

2
;− r̃2

4

«
(17)

γ11(r) = 1F1

„
n + 3

2
;
1

2
;− r̃2

4

«
γ22(r) = 1F1

„
n + 5

2
;
1

2
;− r̃2

4

«
,

and γ02(r) = −γγ11(r). Here, r̃ is the separation in unit of the smoothing length, 1F1 is the Kummer confluent hypergeometric

function and

σ2
l ∝ R−1−n−2l Γ

„
1

2
+

n

2
+ l

«
. (18)

Therefore, the shape parameters are γ = (1+n)/(3+n), γ∗ = (3+n)/(5+n) and γ# = (5+n)/(7+n), and the determinant

of C thus scales like γ2
`
2− γ2

´ `
1− γ2

´−3
r̃18/18662400, as advertised at the beginning of this Section. In the case where

n = 0, the low-r behaviour of this function can be written as follows

1 + ξcrit(r, ν, n = 0) =
e

ν2
4
`
3ν2 + 8

´
8
√

3ν2
+

e
ν2
4
`
128− 15ν4

´
r̃2

1280
√

3ν2
+

e
ν2
4
`
15ν4 − 64

´
r̃4

81920
√

3
+O `r̃5

´
, (19)

which makes clear that ξcrit diverges for ν = 0. The dependence of the low-r expansion with the spectral index n for peaks of

height ν = 1 reads

1 + ξcrit(r, ν = 1, n) =
e

1
4−n

4 (n + 3)
`
n2 + 4n + 11

´
24(n + 1)

√
n2 + 4n + 3

+
e

1
4−n

4 (n + 3)
`−25n4 + 40n3 + 410n2 + 1464n + 1695

´
r̃2

57600(n + 1)
√

n2 + 4n + 3
+O `r̃3´ ,

(20)

which shows that the exclusion zone is more pronounced for high values of the spectral index. The same trend was also seen

for peaks in the left panel of Fig.1. In general, the short distance behaviour of the correlation of critical points is consistent

with a power-law in r, rather than the exponential suppression exp(−R2
∗/r2) advocated in Lumsden et al. (1989).

As shown in Baldauf et al. (2013), the small-scale peak repulsion in the configuration space correlation function can have

a significant impact on the power spectrum at small wavenumbers. To emphasize this point, Fig. 2 displays, in the left panel,

the 1D peak correlation function as a function of r/R⋆ assuming n = 0 and a threshold ν = 1 and, in the right panel, the

corresponding power spectrum obtained by a simple Fourier transform of the real space Monte-Carlo result. In this particular

case, the power spectrum is approximately white for all wavenumbers k . R∗, with Ppk(k . R∗, ν = 1) ≈ −0.5.

3.2 How strong is the small-scale exclusion ?

So far, we have assumed that the peaks under consideration have exactly the same height. This is clearly a very special case,

since a realistic sample of haloes is likely to be made up by a range of masses or smoothing scales and thus of different peak

heights ν. As we have seen in Fig. 1, the exclusion region is often reduced in the sense that 1+ ξpk(r, ν) does not reach zero at

the origin. In order to ascertain whether this is a robust feature, we have also computed the correlation function of 1D peaks

and critical points with different heights ν1 = 1 −∆ν/2 and ν2 = 1 + ∆ν/2, where ∆ν > 0 is the height difference. For the

critical points we have at small separations

1 + ξcrit(r) =

»
23328

√
3∆ν2R8

⋆

r8 (∆ν2 − 4ν2)
+

1296
√

3∆ν2R6
⋆

r6 (∆ν2 − 4ν2)
+

72
√

3∆ν2R4
⋆

r4 (∆ν2 − 4ν2)
+

24
√

3∆ν2R2
⋆

5r2 (∆ν2 − 4ν2)

− 16∆ν2 + 15ν2 + 40

10
√

3 (∆ν2 − 4ν2)

–
exp

»
7∆ν2

80
+

ν2

4
− 324∆ν2R6

⋆

r6
+

27∆ν2R4
⋆

r4
− 9∆ν2R2

⋆

5r2

– (21)

Comparing this expression to Eq. (19) above, we see that for unequal heights, inverse powers of separation arise. The r−6

term in the exponential drives the correlation function to -1 on very large scales. We can estimate where the leading inverse

power in the exponent causes a one percent correction to 1 + ξ from r1% ≈ (180∆ν)1/3 R⋆. Numerical results for peaks are

shown in Fig. 3 for different choices of ∆ν. While the correlation 1 + ξpk(r, ν1, ν2) of peaks of different heights tends towards

zero at small separation, it converges towards a finite non-zero value when the peaks have exactly the same height. In Fig. 4,

we compare the exclusion of peaks and critical points to the approximation of Eq. (21). The scales where the finite separation

results deviate from the equal height case are approximately the same for peaks and critical points and r1% is a good indicator

of this scale. Therefore, the behaviour of ξpk in the limit r → 0 strongly depends on the peak height difference. This can

be easily understood as follows: consider two peaks infinitesimally close to each other. Very stringent constraints on the first

and second derivatives of the density field are thus required to bridge them. Clearly, the constraints will be more draconian

the larger the height difference. Therefore, this configuration becomes increasingly unlikely with increasing ∆ν > 0, and thus
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Figure 3. The two-point correlation function of 1D peaks with height ν1 = 1 − ∆ν/2 and ν2 = 1 + ∆ν/2 is shown as a function of
the height difference ∆ν as labeled in the Figure. A fixed value of ν̄ ≡ (ν1 + ν2)/2 = 1 was assumed. All the correlation functions were
estimated using the Monte-Carlo method described in Sec. 2.
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Figure 4. Correlation function of peaks (red) and critical points (green) for ν̄ = 3/2 and for ∆ν = 0 (solid), ∆ν = 1/10 (dashed) and
∆ν = 1/4 (dot-dashed). The scales, where the ∆ν = 0 and ∆ν 6= 0 cases deviate are similar for peaks and critical points. For the critical
points we overplot the low-r expansion Eq. (21). This expansion provides a good description of the low-r behaviour up to 2-3 R⋆. The
vertical lines indicate the respective r1% scales, and provide a useful estimate of the scale where the ∆ν = 0 and ∆ν 6= 0 cases start to
deviate in the full calculation.

1 + ξpk(r, ν1, ν2) rapidly drops to zero as the separation decreases. The same behaviour is, of course, expected to hold for

peaks with different smoothing scales and for integrals over bins in peak height.

4 LARGE SCALES: PERTURBATIVE BIAS EXPANSION

Perturbative bias expansions have been widely used to predict clustering statistics of dark matter halos and galaxies. However,

no study so far has explored the convergence properties of these series because of the highly non-linear (non-perturbative)

effects induced by small-scale exclusion. In this Section, we wish to address this issue using the clustering of 1D peaks as a

proxy for the two-halo term.

4.1 Methodology

As was shown in Desjacques (2013), the two-point correlation function of 3D peaks can be computed from an perturbative,

local bias expansion in which the coefficients (bias parameters) are computed from a generalized peak-background split Ansatz.

This procedure is fairly general and it applies to any ’point’ process of a Gaussian (and possibly non-Gaussian) random field.

Therefore, it should certainly describe the two-point function of our 1D peak. In 1D, the perturbative bias expansion is

constructed from 3 rotationally invariant quantities, i.e. x = ρ/σ0, η2 = x2
1 and u = −∇2

i ρ/σ2. The “localized” number

density of peaks of height ν then is

npk(X) =
σ2

σ1
|u|δD(η)δD(x− ν) (22)

The knowledge of npk(ν) suffices to derive the bias parameters associated with this point process at all orders. Namely, the

probability density for the variables X = (x, u, η2) is the product of a bivariate normal N (x, u) with a chi-square distribution

χ2
1(η

2) with one degree of freedom. To construct the perturbative bias expansion, we proceed as in Desjacques (2013) and
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Figure 5. Left panel: Comparison between the exact correlation function of 1D peaks and perturbative series obtained upon truncating
the peak bias expansion Eq.(23) at order N = 1, 2, 5 and 10. For illustration, the black curves show linear and quadratic local bias
approximations and perform significantly worse than the peak bias expansion. A white noise power spectrum with Gaussian filtering and
a peak height ν = 1 were assumed. Top right: Exact peak power spectrum (solid) compared to various approximations obtained upon
truncating the bias expansion at order N = 1, 2, 5 and 10. The solid curve is the density power spectrum. Bottom right: same as top
panel but the zero-lag value Ppk(0) has been subtracted off from the power spectra. In all cases, a white noise power spectrum with
Gaussian smoothing and a peak height of unity were assumed.

perturb the central values of the distribution (the peak-background split). This perturbation can be represented as a series

in the appropriate orthogonal polynomials, i.e. Hermite polynomials for N (x, u) and generalized Laguerre polynomials for

χ2
1(η

2). The perturbative bias expansion describing 1D peaks thus is

δpk(r) =
X
i,j,k

σi
0σ

j
2σ

2k
1

i!j!

Γ(1/2)

Γ(k + 1/2)
bijχkxi(r)uj(r)η2k(r)

= σ0b10x(r) + σ2b01u(r) +
1

2
σ2

0b20x
2(r) + σ0σ2b11x(r)u(r) +

1

2
σ2

2b02u
2(r) + σ2

1χ1η
2(r) + . . . (23)

where r is the 1D comoving coordinate. The bias parameters are the ensemble averages

σi
0σ

j
2bij =

1

n̄pk(ν)

Z
dXnpk(X)N (X)Hij(x, u) (24)

σ2k
1 χk =

(−1)k

n̄pk(ν)

Z
dXnpk(X)N (X)L

(−1/2)
k (η2/2) . (25)

The latter evaluates to χk = (−1/2)k(2k − 1)!!/(k!σ2k
1 ). The average peak number density is given by

n̄pk(ν) =
σ2

σ1

Z
dXN (X) |u|δD(η)δD(x− ν) (26)

=
σ2

σ1

1√
2π

Z
du |u| N (ν, u)

=
σ2

σ1


1

2
γν

"
1 + Erf

 
γνp

2− 2γ2

!#
+

r
1− γ2

2π
e
− γ2ν2

2(1−γ2)

ff
e−ν2/2

2π

≡ 1

2πR⋆
G(γ, γν)e−ν2/2 ,

where R⋆ = σ1/σ2. Note that, for these expressions to make sense, we must define δD(η2) = δD(x1)/(2x1).

In 1D, we could also use x1 rather than η2 = x1 as independent variable. x1 is normally distributed, so that the joint

probability distribution reads P1(y) = N (x, u)N (x1), and the bias parameters associated with x1 are

σk
1χk =

1

n̄pk

Z
dXN (X)Hk(x1) (27)

= (−1)k/2 (k − 1)!! if k is even .
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In both cases, we recover the same series expansion. Namely, on perturbing either N (x1) or χ2
1(η

2) with a long-wavelength

perturbation such that x1 → x1 + ηl and η2 → η2 + η2
l , we find Desjacques (2013)

i)
∞X

n=0

1

n!
(σn

1 χn)ηn
l =

∞X
k=0

1

(2k)!
(−1)k(2k − 1)!! η2k

l =
∞X

k=0

(−1)k

2kk!
η2k

l (Hermite)

ii)

∞X
k=0

Γ(α + 1)

Γ(α + k + 1)
(σ2k

1 χk)

„
η2

l

2

«k

=

∞X
k=0

2k

(2k − 1)!!
(−1/2)k (2k − 1)!!

k!

„
η2

l

2

«k

=

∞X
k=0

(−1)k

2kk!
η2k

l (Laguerre) .

In other words, we could equally work with the bias factors χk expressed either as Hermite or Laguerre. We could also

have followed Gay et al. (2012) and works with the variables (z = (x− γu)/
p

1− γ2, u) which have the advantage of being

statistically independent. In what follows, we will stick to the variable η2.

The 1D peak two-point correlation ξpk(r) can be perturbatively computed from Eq.(23). In practice, one evaluates the

ensemble average
˙
δpk(r1)δpk(r2)

¸
, ensuring to discard all the terms involving zero-lag moments. At first order, this is

ξpk(r) = b2
10ξ0(r) + 2b10b01ξ2(r) + b2

01ξ4(r) , (28)

where

ξl(r) =
1

π

Z ∞

0

dk klP (k)×


cos(kr) l even

sin(kr) l odd
. (29)

Note that ξ2i(r) = γii(r), where γij(r) is defined in Eq.(14). For Gaussian initial conditions (which we assume throughout this

paper), the Nth order contribution to ξpk(r) involves N(N + 1)/2 distinct combinations of x and u correlators together with

N2 terms involving correlators of η2. Therefore, the number of terms scales like N2. Consequently, the 1D peak correlation

up to nth order involves O(N3). All these contributions can be expressed as a product of the 6 possible connected two-point

correlators 〈ν1ν2〉, 〈ν1η2〉 etc. (where the subscripts denote the positions r1 and r2). However, the coefficients are product of

Nth order bias parameters and change from term to term. Therefore, the bias perturbative expansion will be of limited use

unless the bias coefficients can be computed quickly. In practice, exploiting the recurrence among the orthogonal polynomials

can help reducing the computational cost.

4.2 Convergence in real and Fourier space

Armed with these results, we can assess the convergence properties of the 1D peak perturbative bias expansion. For illustrative

purposes, we will consider a power-law power spectrum P (k) ∝ kn with n = 0 and a peak height ν = 1. In the left panel of

Fig. 5, we compare the exact result )solid green curve) with the N = 1, 2, 5 and 10th order perturbative approximations (in

color). While the latter capture the excess correlation at a few R⋆ relatively well, the convergence to the exact result is fairly

slow at shorter separations where exclusion effects become important. In any case, the peak bias expansion Eq.(23) perform

significantly better than a “local bias” approximation, in which only the dependence on x(r) is retained in the perturbative

series Eq.(23). The first and second-order “local bias” approximations are shown as the black curves, and clearly furnish a

poor fit to the exact result for r/R⋆ . a few.

The upper right panel of Fig.5 displays the resulting power spectra obtained by taking the Fourier transform of ξpk(r)

and its various perturbative approximations. For sake of comparison, the dotted black curve represents the first order ap-

proximation. Small-scale exclusion translates into a white-noise contribution in the limit k → 0 which makes the shot-noise

non-Poissonian, in agreement with the findings of Smith et al. (2007); Baldauf et al. (2013). Note that such a k0 tail also

arises in the clustering of thresholded regions Beltrán Jiménez & Durrer (2011). The magnitude of the white-noise correction

changes with the order N of the approximation because it receives contributions at all orders. As shown in the previous

Section, deriving an analytic expression valid throughout the exclusion zone is practically impossible and, therefore, there

is no hope to obtain exact expression for these deviations from Poisson noise. The bottom right panel of Fig.5 displays the

power spectra once the white noise correction P (k = 0) (which generally depends on the order N of the approximation) has

been subtracted. The relatively slow convergence of the perturbative approximations to the 1D peak power spectrum towards

the exact result reflects the behaviour seen in configuration space.

This has implications for the convergence of perturbative bias expansions of actual dark matter halos.

5 ZEL’DOVICH DISPLACEMENT OF PEAKS

So far we have been concerned with peaks in Lagrangian space, but haloes are observed in Eulerian space, i.e. after gravitational

evolution. Let us use the Lagrangian displacement Ψ to relate the Lagrangian peak position q to its final Eulerian position x

xpk = qpk + ζΨpk(qpk) , (30)
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where ζ is the linear growth factor and the displacement satisfies the equation of motion

ẍ + Hẋ = −∇xφ . (31)

The linear solution to this equation in three dimensions is known as the Zel’dovich approximation and describes ballistic

evolution following according to the initial velocity. We will assume that the peak displacement is related to the mean dis-

placement of the peak patch, i.e., by Ψ(k) = −ık/k2δ(k)WR(k), where WR(k) is the smoothing window. Conveniently, in one

dimension, the Zel’dovich solution is the exact solution McQuinn & White (2015).1

We can now write the Eulerian halo/peak overdensity as a sum over Eulerian peak positions, which are in turn related

to their respective Lagrangian proto-halo positions

1 + δh(x) =
1

n̄pk

X
h

δD (x− xh) =

Z
dq′δD

ˆ
x− q′ −Ψ(q′)

˜X
pk

δD(q′ − qpk) (34)

=

Z
dq′
Z

dk

2π
exp

ˆ
ık(x− q′ −Ψ(q′))

˜
δD(q′ − qpk) (35)

=

Z
dq′
Z

dk

2π
exp

ˆ
ık(x− q′)

˜
δD(q′ − qpk) exp

ˆ−ıkΨ(q′)
˜

(36)

=

Z
dq′
Z

dk

2π
exp

ˆ
ık(x− q′)

˜ |δ′′(q)|δD

ˆ
δ′(q′)

˜
exp

ˆ−ıkΨ(q′)
˜

(37)

For the correlation of evolved peaks in one dimension we obtain

ξ(r) = 〈δh(x)δh(x + r)〉 =
1

n̄2
pk

Z
dQ

Z
dk

2π

Z
exp [ık(Q− r)]

× 〈exp [−ıkζ(Ψ1 −Ψ2)] |δ′′(q1)||δ′′(q2)|δD

ˆ
δ′(q1)

˜
δD

ˆ
δ′(q2)

˜〉 − 1 (38)

where Q = q2− q1 is the Lagrangian separation of the peaks and Ψ1 and Ψ2 are the displacements at the respective positions.

The displacement field is an additional stochastic variable that needs to be averaged over under the peak constraint. For this

purpose we need to append the covariance matrix by components that describe the auto-covariance of the displacement and

the cross-covariance between displacement and the density field and its derivatives.

Splitting the state vector into X = (m,n) where m = (σ0ν1, 0,−σ2u1, σ0ν2, 0,−σ2u2) and n = (Ψ1, Ψ2), the covariance

matrix takes the following schematic form after shifting the displacement variables to the lower right corner

M =

 
〈m,m〉 〈m,n〉
〈n,m〉 〈n,n〉

!
=

 
A B

BT C

!
=

 
S T

TT V

!−1

(39)

and for the determinant we have detM = detA detV with V = (C −BTA−1B)−1.

We can now write ık(Ψ1−Ψ2) as ıkpT n with pT = (1,−1). The exponential arising from the PDF and the shift can be written

as

YT M−1Y + 2ıkpT n =mT Sm + 2mT Tn + nT V n + 2ıζkpT n

=mT Sm + 2mT Tn + 2µT V n + 2ıζkpT n− µT V µ + (n− µ)T V (n− µ) (40)

where we completed the square to isolate the displacement part of the PDF. Thus we have with µT = −mT T − ıkpT

YT M−1Y + 2ıkpT n = mT A−1m + ζ2k2pT V −1p− 2ıζkmT A−1Bp + (n− µ)T V (n− µ) (41)

The vector of displacements n can be integrated out, yielding unity and leaves us with

〈δh(x)δh(x + r)〉 =
1

n̄2
pk

Z
dQ

Z
dk

2π

Z
dm exp [ık(Q− r)]

1p
(2π)6detA

exp

»
−1

2
mT A−1m− 1

2
ζ2k2pT V −1p− ıζkmT A−1Bp

–
− 1 (42)

1 From [1 + δ(x)]dx = dq we have δ(x) = 1/J − 1 with J = |1 + ∇qΨ|. Then we can take the Eulerian divergence of the equation of
motion

∇x

h
Ψ̈ + HΨ̇

i
=

3

2
H2δ (32)

Rewriting the Eulerian as a Lagrangian derivative ∇x = (1 +∇qΨ)−1∇q we finally have

∇q

h
Ψ̈ + HΨ̇

i
=

3

2
H2∇qΨ (33)

which is a linear equation for Ψ that can be solved exactly by Ψ = ζΨ0 before shell crossing, where ζ is the linear growth.
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Fourier transforming and expanding this expression for small correlations or (i.e. Q →∞) we have

P (k) =
1

n̄2
pk

Z
dQ

Z
dm exp [ıkQ]

n
b10(ν1, q1)b10(ν2, q2)ξ0(Q) + ζ2k2ξvv(Q)− ıζk

ˆ
b10(ν1, q1) + b10(ν2, q2)

˜
ξv0(Q)

o
× exp

ˆ−k2σ2
v,pk

˜Y
i

exp

»
−1

2

(qi − γνi)
2

1− γ2
− 1

2
ν2

i

–
(43)

where we used

pT V p ≈ 2σ2
v,pk − 2

„
ξvv − 2ξv1

σ2
v1

σ2
1

+ ξ1
σ4

v1

σ4
1

«
(44)

mT A−1Bp ≈ 1

σ0

„
ν1 − γq1

1− γ2
+

ν2 − γq2

1− γ2

«
ξv0 + . . . (45)

and defined the peak velocity/displacement dispersion

σ2
v,pk = σ2

−1 − σ4
v1

σ2
1

(46)

Performing the Q integral and the average over peak curvature we have at low wavenumbers and ignoring shotnoise contri-

butions

P (k) ≈ˆb10(ν1) + ζ
˜ˆ

b10(ν2) + ζ
˜
P (k), (47)

i.e., the large scale bias is given by b10 + ζ as one would have expected from Mo & White (1996).

Let us come back to the full expression Eq. (42). Together with the pre factor exp [ık(r −Q)], this is a Gaussian integral in

k, which is readily performed to yield

〈δh(x)δh(x + r)〉 =
1

n̄2
pk

Z
dQ

Z
dm

1p
(2π)6detA

exp

»
−1

2
mT A−1m

–
1p

2πζ2pT V −1p
exp

»
−1

2

(r −Q− ζmT A−1Bp)2

ζ2pT V −1p

–
− 1 (48)

=

Z
dQ F (Q|r)− 1 (49)

This is a convolution between the Eulerian and Lagrangian distances r and Q. For fixed Eulerian distance the integral is

approximately Gaussian peaked at Q = r − ζmT A−1Bp (see Fig. 6). As the growth factor ζ goes to zero the last part of the

above integral becomes a Dirac delta function for Q−r and we recover the Lagrangian expression. The shift term ζmT A−1Bp

is negligible on large scales but can lead to significant corrections on small scales and actually fills the ξ = −1 region on small

scales.

For the calculation of the effect of displacements we have to resort to one dimensional power spectra that grow steeper than

k0 for low wavenumbers since otherwise the velocity correlators diverge. In particular, we need a power spectrum that has a

slope n > 2 and we will choose n = 2 for definiteness. We show the evolved correlation function and bias in Fig. 7.

In Baldauf et al. (2013) it has been shown in simulations that the stochasticity amplitude on large scales is the same

in Lagrangian and Eulerian space. On small scales the corrections to the fiducial 1/n̄ stochasticity have to vanish, and they

do so for haloes in Eulerian and proto-haloes in Lagrangian space. The only change in the behaviour is that the transition

happens at higher wavenumbers in Eulerian space. We would like to explore to what extend our 1D peak model can reproduce

this behaviour. In the left panel of Fig. 8 we show the power spectrum of peaks in Lagrangian space and their stochasticity

estimated as Ppk,pk − b2
10P . We see that the large scale amplitude is the same for initial and evolved haloes. After correction

for the large scale bias in Eulerian space, we see that the transition between the non-zero and zero stochasticity correction

regimes is pushed to higher wavenumbers.

The mean motion of peaks can be understood based on their initial velocity statistics. Let us for this purpose consider

the mean infall 〈(v1 − v2)δ1δ2〉. We see that the mean infall of haloes deviates from the underlying dark matter motion quite

significantly. In a fashion similar to what was presented above for displaced peaks and with p = (1,−1) we have

v12 := 〈(v2 − v1)(1 + δ1)(1 + δ2)〉 =
1

n̄2
pk

Z
dm mT Tp

1p
(2π)6detA

exp

»
−1

2
mT A−1m

–
. (50)

On large scales this quantity can be approximated by its linear (scale dependent) bias expansion

v12 ≈ 2b10

„
ξv0 +

σ2
v1

σ2
1

ξ12

«
+ b01

„
−ξv2 +

σ2
v1

σ2
1

ξ32

«
, (51)

whereas the local bias model yields v12 ≈ 2b10ξv0. In Fig. 8 we show the mean relative velocity of the same sample of peaks

considered for the evolution above, i.e., peaks of height ν̄ = 3/2 and ∆ν = 3/5 in a n = 3 power law density field. For the

underlying matter ditribution we have v12 ≈ −2 〈vδ〉. We clearly see that matter and peak mean streaming differ for scales
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Figure 6. Contribution to the integral over Lagrangian separations in Eq. (49). The vertical lines indicate the Eulerian separation r
and the corresponding curves indicate the support of the integral. We see that for large scales, the evolution merely corresponds to a
convolution with a Gaussian, whereas for small scales there is a an offset in the support to larger scales and the convolution kernel is
skewed.
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Figure 7. Left panel: Small scale correlation function of inital and evolved peaks in a n = 3 power law density field. We have chosen
peaks of height ν̄ = 6/5 and ∆ν = 3/5 to highlight the behaviour in presence of exclusion. The linear growth factor increases from the
initial conditions ζ = 0 to some arbitrary final time ζ = 7. Right panel: Linear bias of the peak correlation functions with respect to
the linear matter correlation function. We clearly see that the bias asymptotes to the expected b10 + ζ behaviour for large separations
indicated by the horizontal lines.

r < 10R⋆. This deviation is captured by the scale dependent peak velocity bias Eq (51) down to r ≈ 7R⋆. Thus, the linear

peak velocity bias has starts to deviate at larger separations than the linear peak density bias.

6 CONCLUSIONS

Halo exclusion is an essential ingredient towards a realistic description of the two-halo term, which encodes most of the

cosmological information that can be extracted from the two-point correlation of biased tracers. Halo exclusion stems from

the fact that one cannot find two peaks of the mass density field (halos) arbitrary close to each other or even overlap. Until

very recently however, this effect had been either completely ignored or crudely modeled by setting ξh(r) = −1 at separations

r less than the sum of the halo virial radii, while sticking to the linear bias approximation at larger distances.

In this paper, we have investigated this small-scale exclusion using a simple, well-motivated approximation: the clustering

of Gaussian density peaks and, more general, critical points in one dimension. After studying the small-r behaviour for various

power-law spectra and its sensitivity to the peak height, we have shown that the two-point correlation function of 1D density

peaks differs significantly from the crude, aforementioned prescription. We have also explored how peak exclusion affects

the convergence of the perturbative bias expansion in real and Fourier space. Finally, we have included the displacement
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Figure 8. Left panel: Evolution of the peak-peak power spectrum and its noise component Ppk,pk − b2P from the initial conditions
to the final configuration at ζ = 7. While the amplitude remains constant on large scales, the infall causes Right panel: Mean relative
velocity v12 of 1D peaks (red solid). The peak velocities clearly deviate from the velocities of random dark matter particles (orange solid)
on small scales. On large scales this deviation can be described by a linear velocity bias (red dashed), which however fails to describe the
non-perturbative behaviour in the exclusion regime. We see that below r = 6R⋆ peaks are moving towards each other and away from
each other for larger separations. The vertical gray line indicates the peak of the correlation function in Fig. 7. Note that on top of this
mean flow, there is also a velocity dispersion.

from the initial to final peak position according to the Zel’dovich approximation to clarify how exclusion effects mix up with

scale-dependencies induced by the nonlinear gravitational evolution.

Our key findings can be summarized in the following points:

(i) the correlation function of equal height peaks or critical points (∆ν = 0) asymptotes to a finite non-zero number at

small scales

(ii) the correlation function of unequal height peaks or critical points (∆ν 6= 0) deviates from the aforementioned case on

small scales and asymptotes to exactly −1, where scale of deviation from (i) scales with the difference in height as r ∝ ∆ν1/3

(iii) the local bias expansion fails to describe the scale dependence starting at very large scales, the peak bias series including

derivative operators fares better but its convergence in the r ≈ R⋆-regime is very slow and it completely fails in the exclusion

regime

(iv) time evolution enhances the large scale clustering according to the well known b10+ζ behaviour and leads to non-trivial

modifications in the exclusion regime

Even though our findings apply, strictly speaking, to the clustering of tracers in one-dimensional density fields, they

provide useful insights into halo exclusion and its impact on the two-halo term in a realistic setting in three dimensions. It

would certainly be interesting but computationally more challenging to study these effects for peaks in three dimensional

density fields.
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The joint probability distribution function (PDF) of the density within multiple concentric spherical cells
is considered. It is shown how its cumulant generating function can be obtained at tree order in perturbation
theory as the Legendre transform of a function directly built in terms of the initial moments. In the context
of the upcoming generation of large-scale structure surveys, it is conjectured that this result correctly
models such a function for finite values of the variance. Detailed consequences of this assumption are
explored. In particular the corresponding one-cell density probability distribution at finite variance is
computed for realistic power spectra, taking into account its scale variation. It is found to be in agreement
with Λ-cold dark matter simulations at the few percent level for a wide range of density values and
parameters. Related explicit analytic expansions at the low and high density tails are given. The conditional
(at fixed density) and marginal probability of the slope—the density difference between adjacent
cells—and its fluctuations is also computed from the two-cell joint PDF; it also compares very well to
simulations. It is emphasized that this could prove useful when studying the statistical properties of voids as
it can serve as a statistical indicator to test gravity models and/or probe key cosmological parameters.

DOI: 10.1103/PhysRevD.90.103519 PACS numbers: 98.80.-k, 98.65.-r

I. INTRODUCTION

With new generations of surveys either from ground-
based facilities (e.g. BigBOSS, DES, Pan-STARRS, LSST
[1]) or space-based observatories (EUCLID [2], SNAP and
JDEM [3]), it will be possible to test with unprecedented
accuracy the details of gravitational instabilities, in par-
ticular as it enters the nonlinear regime. These confronta-
tions can be used in principle to test the gravity models (see
for instance [4,5]) and/or more generally improve upon our
knowledge of cosmological parameters as detailed in [2].
There are only a limited range of quantities that can be

computed from first principles. Next-to-leading-order terms
to power spectra and polyspectra have been investigated
extensively over the last few years with the introduction of
novel methods. Standard perturbation theory calculations, as
described in [6], have indeed been extended by the develop-
ment of alternative analytical methods that try to improve
upon standard calculations. The first significant progress in
this line of calculations in the renormalized perturbation
theory proposition [7] followed by the closure theory [8] and
the time flow equations approach [9]. Latest propositions,
namely MPTbreeze [10] and RegPT [11], incorporate
2-loop-order calculations and are accompanied by publicly
released codes. Recent developments involve the effective
field theory approaches [12].
Alternatively one may look for more global properties of

the fields that capture some aspects of their non-Gaussian
nature. A number of tests have been put forward from peak

statistics (see [13]) that set the stage for Gaussian fields,
to topological invariants. The latter, introduced for instance
in [14] or in [15], aim at producing robust statistical
indicators. This topic was renewed in [16] and [17] with
the introduction of the notion of a skeleton. How such
observables are affected by weak deviations from
Gaussianity was investigated originally in [18] and for
instance more recently in [17,19] with the use of standard
tools such as the Edgeworth expansion applied here to
multiple variable distributions. These approaches, although
promising, are hampered by the limited range of appli-
cability of such expansions and as a consequence have to
be restricted to a limited range of parameters and are
usually confined to the nonrare event region.
There is however at least one counterexample to that

general statement: the density probability distribution
functions in concentric cells. As we will show in detail
in the following it is possible to get a global picture of what
the joint density probability distribution function (PDF)
should be, including in its rare event tails. The size of the
past surveys prevented an effective use of such statistical
tools. Their current size makes it now possible to try and
confront theoretical calculations with observations.
Hence the aim of the paper is to revisit these calculations

and assess their domain of validity with the help of
numerical simulations.
To a large extent, the mathematical foundations of the

calculation of the density probability distribution functions
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in concentric cells are to be found in early works by Balian
and Schaeffer [20], who explored the connection between
count-in-cell statistics and the properties of the cumulant
generating functions. In that paper, the shape of the latter
was just assumed without direct connection with the
dynamical equations. This connection was established in
[21] where it was shown that the leading order generating
function of the count-in-cell probability distribution func-
tion could be derived from the dynamical equations. More
precise calculations were developed in a systematic way in
[22] that takes into account filtering effects, as pioneered in
[23,24] where the impact of a Gaussian window function or
a top-hat window function was taken into account. At the
same time, these predictions were subjected to simulations
and shown to be in excellent agreement with the numerical
results (see for instance [22,25]). We will revisit here the
quality of these predictions with the help of more accurate
simulations. In parallel, it was shown that the same
formalism could address more varied situations: large-scale
biasing in [26], projection effects in [27,28]. A compre-
hensive presentation of these early works can be found
in [6].
Insights into the theoretical foundations of this approach

were presented in [29] that allow to go beyond the
diagrammatic approach that was initially employed. The
key argument is that for densities in concentric cells,
the leading contributions in the implementation of the
steepest descent method to the integration over field
configurations should be configurations that are spheri-
cally symmetric. One can then take advantage of Gauss’s
theorem to map the final field configuration into the initial
one with a finite number of initial variables, on a cell-by-
cell basis. This is the strategy we adopt below. The purpose
of this work is to rederive the fundamental relation that was
obtained by the above mentioned authors, and to revisit the
practical implementation of these calculations alleviating
some of the shortcuts that were used in the literature.
Specifically, the first objective of this paper is to quantity

the sensitivity of the predictions for the one-cell PDF for
the density on the power spectrum shape, its index and the
scale dependence of the latter (the so-called running
parameter). The second objective is to show that it is
possible to use the two-cell formalism to derive the
statistical properties of the density slope defined as the
difference of the density in two concentric cells of (possibly
infinitesimally) close radii and more globally the whole
density profile. More specifically we show that for suffi-
ciently steep power spectra (index less than −1), it is
possible to take the limit of infinitely close top-hat radii and
define the density slope at a given radius. We can then take
advantage of this machinery to derive low-order cumulants
of this quantity as well as its complete PDF. Finally this
investigation allows us to make a theoretical connection
with recent efforts (see for instance [30–36]) in exploring
the low density regions and their properties [37] such as the

constrained average slope and its fluctuations given the
(possibly low) value of the local density. This opens the
way to exploit the properties of low density regions: we
will suggest that the expected profile of low density regions
is in fact a robust tool to use when matching theoretical
predictions to catalogs.
The outline of the paper is the following. In Sec. II we

present the general formalism of how the cumulant gen-
erating functions are related to the spherical collapse
dynamics. In Sec. III, this relationship is applied to derive
the one-point-density PDF; the sensitivity of the predictions
with scale and with the power spectrum shape is also
reviewed there. In Sec. IV, we define the density profile and
the slope, and derive its statistical properties. A summary
and discussion on the scope of these results is given in the
last section.

II. THE CUMULANT GENERATING
FUNCTION AT TREE ORDER

Let us first revisit the derivation of the tree-order
cumulant generating functions for densities computed in
concentric cells.

A. Definitions and connections to spherical collapse

We consider a cosmological density field, ρðxÞ, which is
statically isotropic and homogeneous. The average value of
ρðxÞ is set to unity. We then consider a random position x0

and n concentric cells of radius Ri centered on x0. The
densities, ρi, obtained as the density within the radius Ri,

ρi ¼
1

4πR3
i =3

Z
jx−x0j<Ri

d3x ρðxÞ; ð1Þ

form a set of correlated random variables. For a nonlinearly
evolved cosmic density field, they display non-Gaussian
statistical properties. It is therefore natural to define the
generating function of their joint moments as

MðfλkgÞ ¼
X∞
pi¼0

hΠiρ
pi
i i

Πiλ
pi
i

Πipi!
; ð2Þ

which can be simply expressed as

MðfλkgÞ ¼
�
exp

�X
i

λiρi

��
: ð3Þ

The generating function, MðfλkgÞ, is a function of the
n variables λk. A very general theorem (see for instance
[38,39]) states that this generating function is closely
related to the joint cumulant generating function,

φðfλkgÞ ¼
X∞
pi¼0

hΠiρ
pi
i ic

Πiλ
pi
i

Πipi!
; ð4Þ
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via the relation

MðfλkgÞ ¼ exp ½φðfλkgÞ�: ð5Þ

Note importantly that this makes φðfλkgÞ an observable on
its own [40].
The tree-order expression of such cumulants can be

derived from a direct expansion of the density field, i.e.

ρðxÞ ¼ 1þ δð1Þ þ δð2Þ þ δð3Þ þ � � � ; ð6Þ

where δðpÞ is of order p with respect to the initial density
contrast. For Gaussian initial conditions the leading order
cumulant (that is the connected parts of the moments) can
be derived from the expression of the fields δðpÞ. Formally,
Wick’s theorem imposes [41] that the leading contributions
to the p-order cumulant obtained from the following terms:

hρpic ¼
XP

p
i¼1

ni¼2ðp−1Þ
hΠp

i¼1δ
ðniÞic: ð7Þ

One of the well-known consequences of that property is

that hρpic scales like hρ2i2ðp−1Þc . It is then natural to define
precisely the reduced cumulants, Sp, as

SpðηÞ ¼
hρpi ic

hρ2i i2ðp−1Þc

: ð8Þ

It has been shown in [21,22] that these quantities are
entirely determined by the dynamics of the spherical
collapse. More precisely the function ζ that relates the
initial density contrast τ<r within a given shell of radius r to
the time-dependent (η) nonlinear density contrast, ρ<R

within the shell of radius R ¼ rρ−1=3<R ,

ρ<R ¼ ζðη; τð< rÞÞ; ð9Þ

encodes all the necessary ingredients to compute the tree-
order cumulants. Note that the mere existence of such a
function takes full advantage of Gauss’s theorem, as the
time evolution of the shell radius depends only on the
density contrast at this radius (before shell crossings). More
precisely, if one perturbatively expands ζðη; τÞ with respect
to τ,

ζðη; τÞ ¼
X
p

νpðηÞ
ðDþðηÞτÞp

p!
; ð10Þ

where DþðηÞ is the linear growth factor between the initial
time and time η (with ν0 ¼ 1, ν1 ¼ 1), then each SpðηÞ
parameters can be expressed in terms of νpðηÞ. For instance

S3ðηÞ ¼ 3ν2ðηÞ þ
d loghτ2ðrÞi

d log r
; ð11Þ

S4ðηÞ ¼ 4ν3ðηÞ þ 12ν22ðηÞ

þ ð14ν2ðηÞ − 2Þ d log½hτ
2ðrÞi�

d log r

þ 7

3

�
d log½hτ2ðrÞi�

d log r

�
2

þ 2

3

d2 log½hτ2ðrÞi�
dlog2r

: ð12Þ

The explicit form of ζðη; τÞ or equivalently the values of
νpðηÞ can a priori be predicted for any given cosmology.
They depend on time—although very weakly—and take
simple analytic forms for an Einstein–de Sitter background.
For instance, for such a background, we then have
ν2 ¼ 34=21. A more general expression of ζðη; τÞ can be
found in [21,43,44]. In practice one can use a simple
expression for ζðτÞ:

ζðτÞ ¼ 1

ð1 −DþðηÞτ=νÞν
: ð13Þ

Here we choose ν ¼ 21=13 ≈ 1.6 so that the high z skew-
ness of the density contrast is exactly reproduced [45]. We
checked that this choice of ν reproduces the exact spherical
collapse dynamics for an Einstein–de Sitter background at a
precision level of 0.5% from ζ ¼ 0.3 to ζ ¼ 2.5, which is
typically the range of values we need to cover.
The understanding of the connection between the lead-

ing order statistical properties and the spherical collapse
dynamics has been dramatically improved in [26,28,29]
where it was realized that it could be extended to the
cumulants of any number of concentric cells. We now turn
to the presentation of these results.

B. General derivation

We are here interested in the leading order expression of
φ ¼ φðfλkgÞ for a finite number of concentric cells. In this
section we set the dimension of space to be D, having in
mind that the formulas we derive should be valid forD ¼ 2
or D ¼ 3. For completeness, we sketch here the demon-
stration of the results and refer to [29] for further details. To
derive such an expression let us introduce the joint density
probability distribution functions, PðfρkgÞdρ1…dρn, so
that

exp ½φðfλkgÞ� ¼
Z

dρ1…dρnPðfρkgÞ exp
�X

i

λiρi

�
:

This expression can be written in terms of the statistical
properties of the initial field. Let us define τðxÞ as the initial
density contrast. Formally the quantities ρi are all func-
tionals of the field, τðxÞ [46], so that the ensemble average
of the previous equation can be written as
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exp½φ� ¼
Z

DτðxÞPðfτðxÞgÞ exp
�X

i

λiρiðfτðxÞgÞ
�
;

ð14Þ

where we introduced the field distribution function,
PðfτðxÞgÞ, and the corresponding measure DðfτðxÞgÞ.
These are assumed to be known a priori. They depend on
the initial conditions and in the following we will assume
the initial field is Gaussian distributed [47].
We now turn to the calculation of the generating function

at leading order when the overall variance, σ2, at scale Ri, is
small. The idea is to identify the initial field configurations
that give the largest contribution to this integral. For
convenience, let us assume that the field τðxÞ can be
described with a discrete number of variables τi. For
Gaussian initial conditions, the expression of the joint
probability distribution function of τi reads

PðfτkgÞdτ1…dτp ¼ exp ½−ΨðfτkgÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2πÞp= detΞp dτ1…dτp; ð15Þ

with

ΨðfτkgÞ ¼
1

2

X
ij

Ξijτiτj; ð16Þ

where Ξij is the inverse of the covariance matrix, Σij,
defined as

Σij ¼ hτiτji: ð17Þ

The key idea to transform Eq. (14) using Eq. (15) relies on
using the steepest descent method. Details of the validity
regime of this approach and its construction can be found
in [29]. The integral we are interested in is then dominated
by a specific field configuration for which the following
stationary conditions are verified:

X
i

λi
δρiðfτkgÞ

δτj
¼ δ

δτj
ΨðfτkgÞ; ð18Þ

for any value of j. Up to this point this is a very general
construction. Let us now propose a solution to these
stationary equations that is consistent with the class of
spherically symmetric problems we are interested in. The
main point is the following: the configurations that are
solutions of this equation, that is the values of fτkg, depend
specifically on the choice of the functionals ρiðfτkgÞ. When
these functionals correspond to spherically symmetric
quantities, the corresponding configurations are also likely
to be spherically symmetric. But then Gauss’s theorem is
making things extremely simple: before shell crossing,
each of the final density ρi can indeed be expressed in terms
of a single initial quantity, namely the linear density

contrast of the cell centered on x0 that contained the same
amount of matter in the initial density field. We denote τi
the corresponding density contrast, which means that,
following definition (9), we have

ρi ¼ ζðη; τiÞ; ð19Þ

and τi is the amplitude of the initial density within a specific
radius [49], ri, which obeys ri ¼ Riρ

1=D
i thanks to mass

conservation. The specificity of this mapping implies in
particular that

δρiðfτkgÞ
δτj

¼ δijζ
0ðτiÞ; ð20Þ

so that the stationary conditions (18) now read

λjζ
0ðτjÞ ¼

δ

δτj
ΨðfτkgÞ: ð21Þ

Note that the no-shell crossing conditions imply that if
Ri < Rj, then ri < rj, which in turn implies that

ρi < ρjðRj=RiÞD: ð22Þ

It follows that the parameter space fρkg is not fully
accessible. In the specific example we explore in the
following, this restriction is not significant, but it could
be in some other cases.
We are now close to the requested expression for

φðfλkgÞ as we have

exp ½φðfλkgÞ� ¼
Z

dτ1…dτnPðfτkgÞexp
�X

i

λiρiðfτkgÞ
�
:

To get the leading order expression of this form for
φðfλkgÞ, using the steepest descent method, one is simply
requested to identify the quantities that are exponentiated.
As a result we have

φðfλkgÞ ¼
X
i

λiρi −ΨðfρkgÞ; ð23Þ

where ρi are determined by the stationary conditions (21).
The latter can be written equivalently as

λi ¼
∂
∂ρi ΨðfρkgÞ; ð24Þ

when all quantities are expressed in terms of ρi.
Equation (24) is the general expression that we will exploit
in the following. Formally, note that (21)–(23) imply that
φðfλkgÞ is the Legendre transform of Ψ when the latter is
seen as a function of ρi, that is
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ΨðfρkgÞ ¼
1

2

X
ij

ΞijðfρkgÞτðρiÞτðρjÞ; ð25Þ

where the functional form τðρÞ is obtained from the
inversion of (19) at a fixed time, and Ξij is the inverse
matrix of the cross-correlation of the density in cells of
radius Riρ

1=D
i [cf. Eq. (17)]:

Σij ¼
D
τ
�
< Riρ

1=D
i

�
τ
�
< Rjρ

1=D
j

�E
; ð26ÞX

j

ΣijΞjk ¼ δik: ð27Þ

These coefficients therefore depend on the whole set of
both radii Ri and densities ρi. From the properties of
Legendre transform, it follows in particular that

ρi ¼
∂
∂λi φðfλkgÞ: ð28Þ

Although known for more than a decade, Eqs. (23)–(28)
and their consequences have not been exploited to their full
power in the literature. This is partially what we intend to
do in this paper and in subsequent ones. For now, in order to
get better acquainted with this formalism, let us first
explore some of its properties.

C. General formalism

The relation Eqs. (23)–(28) have been derived for
Gaussian initial conditions. This eases the presentation
but it is not a key assumption. For instance in Eq. (15),
ΨðfτkgÞ does not need to be quadratic in τk as for Gaussian
initial conditions. If the initial conditions were to be non-
Gaussian these features would have to be incorporated in
the expression of ΨðfτkgÞ. It would not however change
the functional relation between φðfλkgÞ and ΨðfτkgÞ,
provided ΨðfτkgÞ is properly defined when the variance
is taken in its zero limit.
One can then observe that the Legendre transform

between these two functions can be inverted [50].
Applying the fundamental relation at precisely the initial
time, in a regime where ρi ≈ 1þDþðηÞτi, will give the
expression of the function ΨðfτkgÞ in terms of the initial
cumulant generating function.
One can actually pursue this idea more generally. Let

us define the nonlinear spherical transform ζρðη; ρ0; η0Þ
that gives the value of the density ρ within a given
radius R at time η knowing the density ρ0 at time η0 within
radius R0 ¼ Rðρ=ρ0Þ1=3. It is obtained after τ has been
eliminated in

ζρðη; ρ0; η0Þ ¼ ζðη; τÞ; ð29Þ

ρ0 ¼ ζðη0; τÞ; ð30Þ

where ζ is defined in Eq. (9). Using the form (13), one
gets

ζðη; ρ0; η0Þ−1=ν − 1 ¼ DþðηÞ
Dþðη0Þ

ðρ−1=ν0 − 1Þ: ð31Þ

Incidentally we can note that the inverse function is
obtained by changing η into η0.
Then the general formulation of our result is that the

Legendre transform of the joint cumulant generating
function for a choice of radii Rk and taken at time η,
which we denote here as Ψðfðρk; RkÞg; ηÞ, can be
expressed in terms of the same Legendre transform taken
at any other time, η0,

Ψðfðρk;RkÞg;ηÞ¼Ψ

�	
ζρðη0;ρk;ηÞ;Rk

ρ1=3k

ζ1=3ρ ðη0;ρk;ηÞ



;η0

�
:

ð32Þ

This is a general formalism that encompasses the result
we just described [51] but can also be applied for any
initial conditions or any time as it does refer explicitly to
the initial conditions.
In this paper we will however use this construction

for initial Gaussian conditions only with explicit use of the
expressions derived in the previous subsection.

D. Scaling relations

It is interesting to note that the cumulant generating
function has a simple dependence on the overall amplitude
of the correlators σ20. Let us denote in this subsection
φσ0ðfλkgÞ the value of the cumulant generating function for
a fixed value of σ0. It is then straightforward to express
φσ0ðfλkgÞ in terms of φ1ðfλkgÞ, the expression of the
generating function when σ0 is set to unity. IndeedΨðfρkgÞ
is inversely proportional to σ20 for fixed values of ρk. As a
result λk scale like 1=σ20 for fixed values of fρkg. Note that
we have the following identity:

φσ0ðfλkgÞ ¼
1

σ20
φ1ðfλk=σ20gÞ; ð33Þ

while the variables ρk are independent of σ0.
In the upcoming applications we will make use of this

property as we will keep the overall normalization as a free
parameter—that will eventually be adjusted on numerical
results, but will use the structural form of φ1ðfλkgÞ as
predicted from the general theory. In particular this struc-
tural form depends on the specific shape of the power
spectrum through the cross-correlation matrix Σij.
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E. The one-cell generating function

Turning back to the application of Eqs. (23)–(28), one
obvious simple application corresponds to the one-cell
characteristic function. In this case

ΨðρÞ≡ 1

2σ2ðRρ1=DÞ τðρÞ
2; ð34Þ

where

σ2ðrÞ ¼ hτð< rÞτð< rÞi: ð35Þ

The Legendre transform is then straightforward and φðλÞ
takes the form

φðλÞ ¼ λρ −
1

2σ2ðRρ1=DÞ τðρÞ
2; ð36Þ

with ρ computed implicitly as a function of λ via Eq. (24).
One way of rewriting this equation is to define τeff ¼
τσðRÞ=σðRρ1=3Þ and the function ζeffðτeffÞ through the
implicit form,

ζeffðτeffÞ ¼ ζðτÞ ¼ ζ

�
τeff

σðRζ1=Deff Þ
σðRÞ

�
: ð37Þ

Then the expression of φðλÞ is given by

φðλÞ ¼ λρ −
1

2σ2ðRÞ τ
2
eff ; ð38Þ

with the stationary condition

τeff ¼ λσ2ζ0effðτ̂Þ: ð39Þ

In [22], the expression of the cumulant generating function
was presented with this form. This is also the functional
form one gets when one neglects the filtering effects (as
was initially done in [21]) or for the so-called nonlinear
hierarchical model used in [52]. Note that it is not possible
however to use such a remapping for more than one cell.
Note finally that this is a precious formulation for practical
implementations, as one may rely on fitted forms for ζeff to
construct the generating function φðλÞ while preserving its
analytical properties. It is indeed always possible, once one
has been able to numerically compute φðλÞ for specific
values of λ, to define ζeff by Legendre transform and
construct a fitted form with low-order polynomials while
this is not possible for φðλÞ which exhibits nontrivial
analytical properties as we will see later on. This approach
was used in [28]. It is also this procedure we use in Sec. IV
for constructing the profile PDF.

F. Recovering the PDF via inverse
Laplace transform

In the following we will exploit the expression for the
cumulant generating function to get the one-point and joint
density PDFs. To avoid confusion with the variables ρi that
appear in the expression of Ψ, we will use the superscriptb
to denote measurable densities, the PDF of which we wish
to compute.
In general, the joint density PDF, P ¼ Pðρ̂1;…; ρ̂nÞ,

that gives the probability that the densities within a set
of n concentric cells of radii R1;…; Rn are ρ̂1;…; ρ̂n within
dρ̂1…dρ̂n is given by

P ¼
Z þi∞

−i∞

dλ1
2πi

� � � dλn
2πi

exp

�
−
X
i

λiρ̂i þ φðfλkÞg
�
: ð40Þ

where the integration in λi should be performed in the
complex plane so as to maximize convergence. This equa-
tion defines the inverse Laplace transform of the cumulant
generating function [53]. In the one-cell case, Eq. (40)
simply reads

Pðρ̂1Þ ¼
Z þi∞

−i∞

dλ1
2πi

expð−λ1ρ̂1 þ φðλ1ÞÞ; ð41Þ

i.e. the PDF is the inverse Laplace transform of the one-
variable moment generating function. This inversion is
known to be tricky, and to our knowledge there are no
known general foolproof methods. One practical difficulty
is that it generically relies on the analytic continuation of the
predicted cumulant generating function in the complex
plane. It is therefore crucial to have a good knowledge of
the analytic properties of φðλÞ, which is typically difficult
since φðλÞ is defined itself as the Legendre transform of
ΨðρÞ. Only a limited set of ΨðρÞ yield analytical φðλÞ,
which in turn can be inverse Laplace transformed.

III. THE ONE-POINT PDF

Up to this point, the whole construction presented in
the previous section would be a mere mathematical trick to
compute explicit cumulants for top-hat window functions
sparing the pain of lengthy integrations on wave modes.
In this paper, we furthermore aim to use the cumulant
generating function computed in the uniform limit Σij → 0
as an approximate form for the exact generating function
when the Σij are finite (but small). Note that this is a
nontrivial extension for which we have no precise math-
ematical justifications. It assumes that the global properties
of φðfλkgÞ—and in particular its analytical properties
(which will be of crucial importance in the following)—
should be meaningful for finite values of λk, and not only in
the vicinity of fλk ¼ 0g.
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We now conjecture without further proof that they
correctly represent the cumulant generating function for
finite values of the variance.

A. General formulas and asymptotic forms

The implementation of the quadrature in Eq. (41) has been
attempted in various papers [21,28,52], relying on different
hypotheses for φðλÞ [54]. Figure 1 yields a graphical
representation of the stationary equation for a power law
model with index n ¼ −1.5. The implicit equation,
Ψ0½ρ� ¼ λ, always has a solution in the vicinity of ρ ≈ 0.
Expanding this equation around this point naturally gives
the low-order cumulants at an arbitrary order.
Figure 1 shows graphically that there is a maximum

value for λ, λc that can be reached, so that the Legendre

transform of Ψ is not defined for λ > λc. It corresponds to a
value ρ ¼ ρc. At this location we have

0 ¼ Ψ00½ρc�; λc ¼ Ψ0½ρc�: ð42Þ

Note that at ρ ¼ ρc, Ψ is regular [in particular, the
corresponding singular behavior in φðλÞ is not related to
any singularity of the spherical collapse dynamics]. The
function φðλÞ can be expanded at this point. In other words,
Eq. (24) can be inverted as a series near ðρc; λcÞ [where
Eq. (42) holds], and integrated for φðλÞ using Eq. (28). We
give here a whole set of subleading terms that we will take
advantage of in the following,

φðλÞ ¼ φc þ ðλ − λcÞρc þ
2

3

ffiffiffiffiffi
2

π3

s
ðλ − λcÞ3=2 −

π4ðλ − λcÞ2
6π23

þ
ð 1π3Þ7=2ð5π24 − 3π3π5Þðλ − λcÞ5=2

45
ffiffiffi
2

p −
ð40π34 − 45π3π5π4 þ 9π23π6Þðλ − λcÞ3

810π53

þ
ð 1π3Þ13=2ð385π44 − 630π3π5π

2
4 þ 168π23π6π4 þ 3π23ð35π25 − 8π3π7ÞÞðλ − λcÞ7=2

7560
ffiffiffi
2

p þ � � � ; ð43Þ

where πn ¼ ∂nΨ=∂ρnðρcÞ. It is to be noted that the leading
singular term scales like ðλ − λcÞ3=2. The coefficients πi are
all related to the function Ψ and are therefore (cosmologi-
cal) model dependent [55].
What are the consequences of this behavior for the PDF

of the density? Let us present analytical forms for the
inverse Laplace transform of expφ. The idea is that the
inverse transform can be obtained via a saddle point
approximation of Eq. (41) assuming the variance is small.
Formally it leads to the conditions that should be met at the
saddle point λs [56],

∂
∂λ ½λρ̂ − φðλÞ� ¼ 0; ð44Þ

∂2

∂λ2 ½λρ̂ − φðλÞ� < 0: ð45Þ

The first condition leads to ρðλsÞ ¼ ρ̂, the second to
λs < λc. This condition simply means that this approxima-
tion can be used if ρ̂ < ρc. The resulting simple expression
for the density PDF is

Pðρ̂Þ ¼ 1ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂2Ψðρ̂Þ
∂ρ̂2

s
exp ½−Ψðρ̂Þ�: ð46Þ

It is valid as long as the expression that appears in the square
root is positive, i.e. ρ̂ < ρc. When this condition is not
satisfied, the singular behavior of φ near λc dominates the
integral in the complex plane. This leads to the following
expression for Pðρ̂Þ as described in Appendix B 2,

Pðρ̂Þ ≈ exp ðφc − λcρ̂Þ
�

3ℑða3
2
Þ

4
ffiffiffi
π

p ðρ̂ − ρcÞ5=2
þ

15ℑða5
2
Þ

8
ffiffiffi
π

p ðρ̂ − ρcÞ7=2

þ
105ðℑða3

2
Þa2 þ ℑða7

2
ÞÞ

16
ffiffiffi
π

p ðρ̂ − ρcÞ9=2
þ � � �

�
; ð47Þ
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'

FIG. 1 (color online). A graphical representation of the one-
dimensional stationary condition λ ¼ Ψ0½ρ�. There is a maxi-
mum value for λ that corresponds to a critical value ρc for ρ
defined in Eq. (42).
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where aj are the coefficients in front of ðλ − λcÞj in Eq. (43),
(e.g. a3=2 ¼ 2=3

ffiffiffiffiffiffiffiffiffiffi
2=π3

p
) and ℑðÞ is the imaginary part.

Equation (47) has an exponential cutoff at large ρ̂ scaling like
expðλcρ̂Þ. This property is actually robust and is preserved
when one performs the inverse Laplace transform for finite
values of the variance, or even large value of the variance
(see [20,57]). It also gives a direct transcription of why φðλÞ
becomes singular: for values of λ that are larger than λc, the
integral

R
dρ̂Pðρ̂Þ expðλρ̂Þ is not converging.

Note that in practice, it is best to rely on an alternative
asymptotic form to Eq. (47) that is better behaved and
remains finite for ρ̂ → ρc. It is built in such a way that it has
the same asymptotic behavior as Eq. (47) at a given order in
the large ρ limit. The following form,

Pðρ̂Þ ¼
3a3

2
exp ðφc − λcρ̂Þ

4
ffiffiffi
π

p ðρ̂þ r1 þ r2=ρ̂þ � � �Þ5=2 ; ð48Þ

where the ri parameters are adjusted to fit the results of the
previous expansion, proved very robust. At next-to-leading
order (NLO) and next-to-next-to-leading order (NNLO) we
have

r1 ¼ −
ℑða5

2
Þ

ℑða3
2
Þ − ρc; ð49Þ

r2 ¼ −
7ð2a2a23

2

þ 2a7
2
a3

2
− a25

2

Þ
4a23

2

: ð50Þ

However, none of these asymptotic forms are accurate for
the full range of density values; in general one has to rely
on numerical integrations in the complex plane which can

be done accurately and quickly, as described in
Appendix B. The comparison between the analytical forms
and the numerical integrations are shown in Fig. 2. Such
comparisons are in fact conversely useful to assess the
precision of the numerical integrations. Note that for the
case explicitly shown, which corresponds to σ2 ¼ 0.45 and
a power law index of n ¼ −1.5, the asymptotic forms (46)
and (48) at NNLO are valid within 2% everywhere but for
the range 1 < ρ < 10, where one must rely on an explicit
integration in the complex plane.

B. Practical implementation, comparisons
with N-body results

We now move to an explicit comparison of these
predictions to N-body results. The simulations are described
in Appendix D. They are determined in particular by the
linear power spectrum PlinðkÞ set for the initial conditions.
The knowledge of the power spectrum determines the values
of the cross-correlation matrix,ΣijðRi; RjÞ, that are explicitly
given by

Σij ¼
Z

d3k
ð2πÞ3 P

linðkÞW3DðkRiÞW3DðkRjÞ; ð51Þ

whereW3DðkÞ is the shape of the top-hat window function in
Fourier space,

W3DðkÞ ¼ 3

ffiffiffi
π

2

r
J3=2ðkÞ
k3=2

; ð52Þ

where J3=2ðkÞ is the Bessel function of the first kind of index
3=2. In three dimensions (3D), it is actually possible to
express W3DðkÞ in terms of elementary functions as

0 2 4 6 8 10 12
10 5

10 4

0.001

0.01

0.1

1

P

FIG. 2 (color online). The PDF of the one-point density. The blue solid line is the numerical integration, the red dashed line the low ρ
asymptotic form of Eq. (46); the other lines correspond to the large ρ asymptotic forms proposed in the text: the dark lines correspond to the
form(47) and the red lines to the form(48) and the formsare computedat leadingorder, at next-to-leading, andnext-to-next-to-leadingorder
for respectively the dotted, dot-dashed and dashed curves. The plots are given for σ2 ¼ 0.45 and a power law index of n ¼ −1.5.

BERNARDEAU, PICHON, AND CODIS PHYSICAL REVIEW D 90, 103519 (2014)

103519-8



W3DðkÞ ¼
3

k2
ðsinðkÞ=k − cosðkÞÞ: ð53Þ

For the one-cell case we only need to know the amplitude
and scale dependence of σ2R defined as

σ2ðRÞ ¼
Z

d3k
ð2πÞ3 P

linðkÞW2
3DðkRÞ: ð54Þ

To a first approximation, σ2ðRÞ can be parametrized with
a simple power law σ2ðRÞ ∼ R−ðnsþ3Þ. It is this functional
form which was used in the previous section. The detailed
predictions of the PDF depend however on the precise scale
dependence of σ2ðRÞ. Such scale dependence can be
computed numerically from the shape of the power
spectrum but then makes it difficult to derive the function
φðλÞ from the Legendre transform. So in order to retain
simple analytic expressions for the whole cumulant gen-
erating function, we adopt a simple prescription for the
scale dependence of σ2ðRÞ given by

σ2ðRÞ ¼ 2σ2ðRpÞ
ðR=RpÞn1þ3 þ ðR=RpÞn2þ3

; ð55Þ

where Rp is a pivot scale. Such a parametrization ensures
that the single-point ΨðρÞ function takes a simple analytic
form as it involves the inverse of σ2ðRÞ. Note that our
ansatz can be extended to an arbitrary (finite) number of
terms in the denominator.
The values of the three parameters, σ2ðRpÞ, n1 and n2 are

then adjusted so that the model reproduces (i) the measured
variance σ2ðRÞ, (ii) the linear theory index

nðRÞ ¼ −3 −
d logðσðRÞÞ
d logR

; ð56Þ

and (iii) its running parameter

αðRÞ ¼ d logðnðRÞÞ
d logR

; ð57Þ

at the chosen filtering scale. It is important to point out that
we do not take the amplitude of σ2ðRÞ as predicted by linear
theory. We consider instead its overall amplitude as a free
parameter and σ2ðRÞ is directly measured from the N-body
results. The reason is that using the predicted value of
σ2ðRÞ would simply introduce too large errors and this
dependence can always be scaled out using the relation of
Sec. II D [58].
In Fig. 3, we explicitly show the comparison between our

predictions following the prescription we just described
to measured PDFs. The predictions show a remarkable
agreement with the measured PDF. Recall that only one
parameter, σR, is adjusted to the numerical data. In
particular the predictions reproduce with an extremely

good accuracy the PDF tails in both the low density and
high density regions. The plot of the residuals shows the
predictions are at the percent level over a large range of
density values. And this result is obtained for a squared
variance close to 0.5.
More extended comparisons with numerical simulations

are shown on Fig. 15 which qualifies in more detail the
validity regime of our predictions. Note that up to σ ¼ 0.64
(σ2 ¼ 0.41), we see no significant departure from the
results of the simulation in the whole range of available
densities, that is in particular up to about the 5σ rare event
in the high density tail. This success is to be contrasted
with the Edgeworth expansion approach which breaks for
jδj ≥ σ (see for instance [59]).
We observe that departures from our calculations start to

be significant, of the order of 10%, when σ2ðRÞ is of the
order of 0.7 or more [60]. These results also show that
taking into account the scale dependence of the local index
through the introduction of the running parameter improves
upon the predictions in the low density region. This aspect
is examined in more detail in Fig. 4 which shows the ratio
of the predicted PDFs with and without taking into account
the running parameter. We see that the PDFs are mostly
affected on their tails. This is related to the fact that the
kurtosis is the lowest order cumulant to be changed when
one introduces a running parameter [24], as can be verified
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FIG. 3 (color online). Comparison with simulations (top panel)
with residuals (bottom panel). The solid line is the theoretical
prediction computed for a variance of σ2R ¼ 0.47 as measured in
the simulation, a power law index of n ¼ −1.576 and a running
parameter α ¼ 0.439 corresponding to the input linear power
spectrum. The measured PDF in the simulation is shown as a
band corresponding to its 1–σ error bar (but different data points
are correlated). The residuals show the ratio of the measured PDF
in bins with the predictions (computed in bins as well). The thin
red symbols show the comparison when the running parameter is
set to zero in the prediction.
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from the relation (12). The effect is actually detectable in
the low density region only and confirms the fact that the
introduction of a running parameter can have a noticeable
impact when comparisons at the percent level are to
be done.

IV. THE STATISTICAL PROPERTIES OF THE
DENSITY SLOPE AND PROFILE

We nowmove to the application of the general formalism
to the two-cell case. Such situations have already been
encountered in [26] to compute effective bias properties,
and in [28] to compute the aperture mass statistics out of
two concentric angular cells of fixed radius ratio. But all
these applications eventually reduce to an effective one-cell
case. We are interested here in genuine two-cell statistics.
Let us first make a remark that may seem trivial. Indeed,

from the very definition of cumulant generating functions,
one should have

φ2−cellðλ1; λ2 ¼ 0Þ ¼ φ1−cellðλ1Þ; ð58Þ
where φ2−cellðλ1; λ2Þ is the cumulant generating function for
cells of radii R1 and R2 and φ1−cellðλ1Þ is the cumulant
generating function for one cell of radius R1. Checking that
the relations (23)–(28) verify this property makes a sound
mathematical exercise. More generally one can show that
our formulation is consistent with radii decimation, that is

when one computes the cumulant generating functions of a
restricted number of variables out of a larger number one
gets a consistent result. The demonstration of this property
is given in Appendix A.
The purpose of this section is now to define the statistical

properties of the density profile, while relying on the fact
that the function φðλ1; λ2Þ has a well-defined, but nontrivial
limit, when one sets ΔR ¼ R2 − R1 ≪ R1.

A. The density slope

From the densities in two concentric cells, it is indeed
always possible to define the corresponding density slope
as

ŝðR1; R2Þ ¼
R1

ΔR
½ρ̂2 − ρ̂1�: ð59Þ

In the limit of a vanishing smoothing radius difference, ŝ
will define the local density slope. In the following we will
in particular see that this is a genuine limit in the sense that
it leads to regular and nontrivial expressions.
Let us start with basic preliminary calculations; to avoid

too complicated notations, let us define

σ2R1
≡ σ2ðR1; R1Þ; ð60Þ

σ2R1R2
≡ σ2ðR1; R2Þ; ð61Þ

σ2R2
≡ σ2ðR2; R2Þ; ð62Þ

which are quantities involved in the expressions of cumu-
lants. The variance of ŝ is then for instance given by

hŝ2i ¼
�
R1

ΔR

�
2

ðσ2R1
− 2σ2R1R2

þ σ2R2
Þ: ð63Þ

From the general theory, Eqs. (23)–(28) implemented for
two cells, one can compute the generating function of joint
density contrasts in concentric cells [61] in the limit of
small λi. Up to third order it is explicitly given by

φðλ1; λ2Þ ¼ λ1 þ λ2 þ
1

2
λ21σ

2
R1

þ 1

2
λ22σ

2
R2

þ λ1λ2σ
2
R1R2

þ λ31

�
1

2
ν2σ

4
R1

þ 1

6
R1σ

2
R1

d
dR1

σ2R1

�
þ λ32

�
1

2
ν2σ

4
R2

þ 1

6
R2σ

2
R2

d
dR2

σ2R2

�
þ λ21λ2

�
1

2
ν2σ

2
R1R2

ðσ2R1;R2
þ 2σ2R1

Þ þ 1

6

�
2R1σ

2
R1

∂
∂R1

σ2R1R2
þ σ2R1R2

�
2R2

∂
∂R2

σ2R1R2
þ R1

d
dR1

σ2R1

���
þ λ1λ

2
2

�
1

2
ν2σ

2
R1R2

ðσ2R1R2
þ 2σ2R2

Þ þ 1

6

�
2R2σ

2
R2

∂
∂R2

σ2R1R2
þ σ2R1R2

	
2R1

∂
∂R1

σ2R1R2
þ R2

d
dR2

σ2R2


��
; ð64Þ

where ν2 ¼ 34=21 for a 3D dynamics in an Einstein–de Sitter background. In Eq. (64), the cumulants and joint cumulants
can be read out using definition (4) or via differentiation. For instance,
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FIG. 4 (color online). Ratio of the one-point density PDF when
the running parameter is taken into account over the PDF when it
is not. The running model is the same as in the previous plot. The
dashed lines are the ratio of the corresponding asymptotic forms
in the low and high density regions.
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hρ̂31ic ¼ 3ν2σ
4
R1

þ σ2R1

R1d
dR1

σ2R1
; ð65Þ

hρ̂21ρ̂2ic ¼ ν2σ
2
R1R2

ðσ2R1R2
þ 2σ2R1

Þ þ 2

3
σ2R1

R1∂
∂R1

σ2R1R2

þ 1

3
σ2R1R2

�
2
R2∂
∂R2

σ2R1R2
þ R1d
dR1

σ2R1

�
; ð66Þ

and the cumulants hρ1ρ22ic and hρ32ic can be obtained
exchanging the role of R1 and R2. It is then also possible
to derive the explicit form for a number of auto- and cross-
cumulants between the density ρ̂≡ ρ̂1 in the first cell and
the slope ŝ as defined in (59). For instance,

hρ̂2ŝic ¼
R1

ΔR
½hρ̂21ρ̂2ic − hρ̂31ic�; ð67Þ

hρ̂ŝ2ic ¼
�
R1

ΔR

�
2

½hρ̂1ρ̂22ic − 2hρ̂21ρ̂2ic þ hρ̂31ic�; ð68Þ

hŝ3ic ¼
�
R1

ΔR

�
3

½hρ̂32ic − 3hρ̂1ρ̂22ic þ 3hρ̂21ρ̂2ic − hρ̂31ic�:
ð69Þ

Following the one-cell case (see for instance [6]) it is
possible to formally define the reduced cross-correlations
that are independent on the overall amplitude of the power
spectrum. More precisely, the reduced cross-correlations
can be defined as

Sp0 ¼
hρ̂pic
hρ̂2ip−1c

; ð70Þ

Spq ¼
hρ̂pŝqic

hρ̂2ip−1c hρ̂ ŝichŝ2iq−1c
; ð71Þ

S0q ¼
hŝqic
hŝ2iq−1c

: ð72Þ

From the previous expressions these quantities can be
computed in the limit of an infinitely small variance.

B. Cumulants and slope in the limit ðΔRÞ=R → 0

Let us now consider the statistical properties of ŝ in
the limit ðΔRÞ=R → 0. To start with, let us compute the
variance of the slope ŝ in the limit ΔR=R → 0. Its variance
is formally given by

hŝ2i ¼ R2
1∂2

∂R1∂R2

σ2R1R2
j
R¼R1¼R2

: ð73Þ

This expression can easily be expressed in terms of the
power spectrum,

hŝ2i ¼
Z

d3k
ð2πÞ3 P

linðkÞ ~W2
3DðkRÞ; ð74Þ

where ~W3DðkÞ is the logarithmic derivative of W3DðkÞ,

~W3DðkÞ ¼
d

d log k
W3DðkÞ; ð75Þ

which for the 3D case can be written,

~W3DðkÞ ¼
1

k3
½ð9k cosðkÞ þ 3ðk2 − 3Þ sinðkÞ�: ð76Þ

Note that for a power law spectrum of index ns this variance
is only defined when ns < −1. For practical application to
cosmological models that resemble the concordant model,
the effective index ns decreases to −3 at small scales and
the variance of ŝ is always finite. This property however
suggests that the amplitude of the slope fluctuations could
be dominated by density fluctuations at scales significantly
smaller than the smoothing radius if the latter is large
enough. This is not expected to be the case however for
the filtering scales we explore in this investigation. More
precisely, provided the power spectrum index is in the
range ½−3;−1�, the amplitude of the variance of ŝ can be
expressed in terms of the variance of the density as

hŝ2i ¼ σ2R
nsðns þ 3Þðns þ 5Þ

4ðns þ 1Þ : ð77Þ

Let us now see how the whole statistical properties of
the variable ŝ can be derived from our formalism. Let us
first explore the consequence of the change of variable,
ðρ̂1; ρ̂2Þ → ðρ̂; ŝÞ. Instead of describing the joint PDF as a
function of the associated variables λ1 and λ2 we can build
it with the variable associated to ρ̂ and ŝ. Noting that
λ1ρ̂1 þ λ2ρ̂2 can be written as

λ1ρ̂1 þ λ2ρ̂2 ¼ ðλ1 þ λ2Þρ̂1 þ
ΔR
R1

λ2ŝ; ð78Þ

as a consequence, the joint cumulant generating function of
ρ̂1 and ŝ is given by φðλ1; λ2Þ when written as a function of

λ ¼ λ1 þ λ2; μ ¼ ΔR
R1

λ2; ð79Þ

which are the variables associated with the Laplace and
inverse Laplace transform of Pðρ̂1; ŝÞ. One can also check
that, following this definition, φðλ; μÞ is the Legendre
transform of Ψðρ1; s ¼ ðρ2 − ρ1ÞR1=ΔRÞ.
Let us then explore the whole statistical properties of ŝ in

the limit of a vanishing radius difference ðΔRÞ=R → 0.
First note that the reduced skewness of ŝ is still finite [62]
and has a nontrivial value. It is given by
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SΔR→0
03 ¼2þ

∂
∂R1

σ2R1R2

R1∂2∂R1∂R2
σ2R1R2


R¼R1¼R2

ð6ν2−ð ~nþ3ÞÞ; ð80Þ

where the effective index, ~n, is defined as

1

hŝ2i
d

d logR
hŝ2i ¼ −ð ~nþ 3Þ: ð81Þ

We will see in the following that this feature, the fact that
reduced cumulants remain finite, extends to the whole
generating function.

C. Analytic properties of φðλ;μÞ
Let us now turn to the full analytical properties of

φðλ; μÞ, for a finite radius difference to start with, and then
in the limit of vanishing radius difference. It is to be noted
that, as for the one-cell case, not all values of λ and μ
are accessible. This is due to the fact that the ρi –λi

relation cannot always be inverted via Eq. (24). The
boundary of the region of interest is signaled by the fact
that the determinant of the transformation vanishes, i.e.,
det ½∂2ΨðfρkgÞ=∂ρi∂ρj� ¼ 0. This condition is met for
finite values of both ρi and λi. The resulting critical lines
are shown as thick solid lines in Fig. 5. Note that φðλ1; λ2Þ
is also finite at this location. Within this line φ is defined;
beyond this line it is not. Let us now explore the behavior of
φðλ; μÞ when ΔR=R → 0. This is actually a cumbersome
limit to take. One of the reasons is that the matrix Ξij then
becomes singular. More precisely the determinant of the
cross-correlation function takes the form

det ½ΣijðR;Rþ ΔRÞ� ¼ R−2ð3þnsÞ
�
ΔR
R

�
2 −9þ n2s
4ð1þ nsÞ

at leading order in ΔR=R and when ns < −1. For a power
law spectrum, the actual coefficients read

Ξ11ðR;ΔRÞ ¼
2ðns þ 1ÞRnsþ3

ðΔRR Þ2ðn2s − 9Þ
��

ΔR
R

�
2

ðn2s þ 7ns þ 12Þ − 2
ΔR
R

ðns þ 3Þ þ 2

�
; ð82Þ

Ξ12ðR;ΔRÞ ¼ −
Rnsþ3

2ðΔRR Þ2ðn2s − 9Þ
��

ΔR
R

�
2

ðn3s þ 8n2s þ 23ns þ 24Þ − 4
ΔR
R

ðn2s þ 4ns þ 3Þ þ 8ðns þ 1Þ
�
; ð83Þ

Ξ22ðR;ΔRÞ ¼
4ðns þ 1ÞRnsþ3

ðΔRR Þ2ðn2s − 9Þ : ð84Þ

All these coefficients are diverging like ðR=ΔRÞ2. What we need to compute is however Ψðρ; sÞ for finite values of ρ and s.
In this case ρ2 is also infinitely close to ρ1 with ρ2 − ρ1 ¼ sΔR=R with a fixed value for s. Then the resulting value of
Ψðρ; sÞ is finite in the limit ΔR → 0. Assuming the form (13) for ζðτÞ one gets

FIG. 5 (color online). Contour plot of φðλ; μÞ − λ (left panel) with a finite radius difference ΔR=R ¼ 1=10 and (right panel) with
ΔR=R → 0. We see that the structure of the critical region, although deformed, is preserved. In both cases, the restriction of φðλ; μÞ to
μ ¼ 0 is precisely the one-cell cumulant generating function considered in Sec. III.
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Ψðρ; sÞ ¼ R3þnsρns=3þðν−2Þ=ν

2ðn2s − 9Þðsþ 3ρÞ2 fs
2½ν2n3sðρ1

ν − 1Þ2 þ 3nsð5ν2ðρ1
ν − 1Þ2 þ 16νðρ1

ν − 1Þ þ 12Þ

þ4νn2sðρ1
ν − 1Þð2νðρ1

ν − 1Þ þ 3Þ þ 36ðνðρ1
ν − 1Þ þ 1Þ� þ 9ν2ρ2nsðn2s þ 8ns þ 15Þðρ1

ν − 1Þ2

þ 6sνρðns þ 3Þðρ1
ν − 1Þðνn2sðρ1

ν − 1Þ þ nsð5νðρ1
ν − 1Þ þ 6Þ þ 6Þg: ð85Þ

The function φðλ; μÞ can then be obtained by Legendre
transform. Like for the one-cell case, the transformation
becomes critical when the inversion of the stationary
condition is singular. For the new variables, it is also
occurring when the determinant of the second derivatives of
Ψ vanishes,

det

�∂2Ψðρ; sÞ
∂ρ∂s

�
¼ 0; ð86Þ

which generalizes the condition (42). This condition
defines the location of the critical line which can then
be visualized in the λ − μ plane (thick lines in Fig. 5). Note
that the no-shell crossing condition, which in this limit
reads s > −3ρ, is located beyond this critical line and is
therefore not relevant.
In the regular region, the contour lines of φðλ; μÞ are

shown in Fig. 5 for both a finite ratio ΔR=R and when it is
infinitely small. This figure explicitly shows in particular
that the limit ΔR → 0 is nonpathological, in the sense that
the location of the critical line and the actual value of
the cumulant generating function converge to well-defined
values in that limit. The convergence is however not very
rapid and in practice we will use finite differences for
comparisons with simulations.
Finally, to conclude this subsection we also compare

these contour plots with those measured in simulations.
There, one actually computes the explicit sum

exp½φðλ; μÞ� ¼ 1

Nx

X
x

expðλρ̂x þ μŝxÞ; ð87Þ

where ρ̂x and ŝx are the measured values of ρ̂ and ŝ in a cell
centered on x (in practice on grid points) and Nx is the
number of points used (see Appendix D for details). Then
φðλ; μÞ is always well defined, irrespective of the values of
λ and μ. To detect the location of a critical line one should
then rely on the properties it is associated with. From the
analysis of the one-cell case it appears that for λ > λc, φðλÞ
is ill defined because

R
Pðρ̂Þ expðλρ̂Þdρ̂ diverges. More

precisely when λ → λc the value of φðλÞ becomes domi-
nated by the rare event tail. It makes such a quantity very
sensitive to cosmic variance and in practice the critical line
position is therefore associated with a diverging cosmic
variance. In the two-cell case, we encounter the same
effects. To locate we therefore simply cut out part of the
ðλ − μÞ plane for which the measured variance of φðλ; μÞ
exceeds a significant fraction of its measured value. We set

this fraction to be 20% [63]. This criterium give rises to the
solid line shown in Fig. 6. This figure is now to be
compared to the left panel of Fig. 5. Although the figures
are not identical they clearly exhibit the same patterns.

D. Slope cumulant generating function and PDF

When one wishes to build the PDF of ŝ, one needs to
restrict φðλ; μÞ presented in the previous section to the
λ ¼ 0 axis, i.e. focus on φsðμÞ≡ φðλ ¼ 0; μÞ. Figure 6
shows that φsðμÞ has two extrema points, one correspond-
ing to a positive value of μ, μþc , and one to a negative value
μ−c . The resulting global shape of φsðμÞ is shown in Fig. 7,
where it is also compared to the results whereΔR=R is kept
finite. It actually shows that the limit ΔR=R is genuine at
the level of the cumulant generating function but is reached
for very small values of ΔR=R. When predictions are
compared with simulations for which the slope is measured
with finite differences, it is necessary to use a finite
difference ΔR.
We are now in position to build the one-point PDF of

the density slope via the inverse Laplace transform of the
cumulant generating function. It should be clear from the
singular behavior of φsðμÞ that it will exhibit exponential
cutoffs on both sides, for positive and negative values of ŝ
although not a priori in a symmetric way. In practice, to do
the complex plane integration, we build the function φsðμÞ
for the actual power spectrum of interest, and then build an

FIG. 6 (color online). Contour plot of φðλ; μÞ − λ, from the
simulation. It is to be compared with the left panel of Fig. 5.
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effective form ζeffðτÞ that reproduces the numerical inte-
gration following Eqs. (38)–(39) as explained in [28]. In
practice we use a seventh order polynomial to do the fit.
We then proceed via integration in the complex plane using
the usual approach (see Appendix B). The results for
R ¼ 10h−1 Mpc and z ¼ 1.46 and z ¼ 0.97 is presented
in the top panel of Fig. 8. The figure clearly exhibits the
expected double cutoffs. Discrepancies between numerical
results and theory that can be seen in the bottom panels for
ŝ ≈ −0.5 are not clearly understood (cosmic variance,
numerical artifacts?).

E. The expected constrained slope and profile

Let us finally move to the key result of this paper. In the
previous subsection we built the marginal PDF of ŝ; we
now focus on the conditional properties of ŝ given ρ̂1 ¼
ρ̂ð< R1Þ at a given R ¼ R1, whether ŝ is defined from a
nearby radius of not. Mathematically it can be expressed in
terms of the joint PDF, Pðρ̂1; ρ̂2Þ, as

hŝiρ̂1 ¼ −
R
ΔR

ρ̂1 þ
R

ΔRPðρ̂1Þ
Z

dρ̂2ρ̂2Pðρ̂1; ρ̂2Þ; ð88Þ

given thatZ
dρ̂2ρ̂2Pðρ̂1; ρ̂2Þ

¼
Z þi∞

−i∞

dλ1
2πi

∂φðλ1; λ2Þ
∂λ2


λ2¼0

expð−λ1ρ̂1 þ φðλ1ÞÞ; ð89Þ

which can be obtained by explicit integration in the
complex plane [64]. Note that the solution of the stationary
equations, Eq. (28), yields the identity

∂φðλ1; λ2Þ
∂λ2 j

λ2¼0

¼ ρ2ðλ1; λ2 ¼ 0Þ: ð90Þ

For the saddle point solution corresponding to the low ρ
regime, λ1 and ρ̂1 in Eq. (89) are related through the
stationary condition. In this limit we therefore have

hρ̂2iρ̂1 ¼ ρ̄2ðρ̂1Þ; ð91Þ

where ρ̄2ðρ̂1Þ is the solution of the system

λ1 ¼
∂Ψðρ1; ρ̄2Þ

∂ρ1 ; 0 ¼ ∂Ψðρ1; ρ̄2Þ
∂ρ2 : ð92Þ

These calculations can be extended to the constrained
variance of the slope. The computation follows the same
line of derivation but is slightly more involved. It is
presented in Appendix C.
Let us now present the expected slope from exact

complex plane numerical integration, using the analytical
saddle point approximations and as measured in numerical
simulations. For instance, Fig. 9 shows the expected slope
given by 10: × ½ρ̂ð1.1RÞ − ρ̂ðRÞ� as a function of ρ̂ðRÞ
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FIG. 8 (color online). The PDF of the slope for z ¼ 1.46. The
bottom panels show the residuals for z ¼ 1.46, z ¼ 0.97 and
z ¼ 0.65 from top to bottom.
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FIG. 7 (color online). The slope generating function φsðμÞ for
finite differencesΔR=R ¼ 0.1 andΔR=R ¼ 0.01, and in the limit
ΔR=R → 0. The corresponding curves are respectively in blue,
darker blue and black. The vertical dashed lines show the
locations of the critical points, μ−c and μþc .
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using the same cosmological parameters as for Fig. 2. The
solid lines are the results of complex plane integrations and
the dashed line is the saddle point approximation. The latter
is found to perform very poorly when compared to
simulation. We note also that the low density part of the
prediction can only be accounted for when the running
parameter is taken into account. This is clearly visible in the
middle and bottom panels when one compares the (thick)
blue and the (thin) red marks. These comparisons show that
the analytical predictions are accurate at percent level in a
large range of parameters.
Let us finally turn to the more global properties of the

density in cells and consider the density profile defined as
the constrained density ρ̂ðR2Þ given ρ̂ðR1Þ as a function of
R2. Technically computing expected profiles or slopes is
equivalent. The second point of view allows however to
visualize what should be the radial variation of the density
profile, and its fluctuations, of an underdense or an over-
dense region. The result of such a calculation is presented

in Fig. 10 which shows the expected density as a function
of the radius R2 and for various values of ρ̂ðR1Þ. In the same
plot we also show the expected 1-σ variance about the
expectation values. Both quantities are computed using the
exact complex plane integration and compared to their
saddle point approximation counterparts. The difference is
only significant for ρ̂ðR1Þ ¼ 1.25. Interestingly for low
density prior, e.g. ρ̂ðR1Þ ¼ 0.2 in the figure, the variance is
small (and significantly smaller than the variance of ŝ in the
absence of prior on the density). That implies that all voids
should look similar, probably a good starting point for
exploring the statistical properties of the field while
focussing on these regions.
Comparisons of the latter prediction with numerical

simulations is made in Fig. 11 where we give both the
measurements of the expected profile and their variance for a
given constraint. The only difference with the theoretical
predictions is that the constraints are binned, i.e. the prior is
that the density ρ1 is assigned in a given bin of width 0.2
centered on the values 0.35,0.74,1.13,1.52,1.92. As the
theoretical predictions do not take into account the binning,
there is a noticeable departure between the predicted variance
and itsmeasured value nearR2=R1 ≈ 1 due to thewidth of the
bin. But, this departure notwithstanding, the agreement
between the theoretical predictions and the measured quan-
tities, for both the expected profile and its variance, is just
striking. Only when the constraint density is large (top two
panels) canwe see some slight departure of thevarianceswith
the theory for small radii, which is due to the fact that they
correspond to regions entering the nonlinear regime.

F. Joint n-cells PDF

The results presented in the previous section give us
confidence in the general framework we have adopted here.
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FIG. 10 (color online). The conditional profile as a function of
R2 and for different choices of ρ̂ðR1Þ [to which ρ̂ðR2Þ is equal to
at R2 ¼ R1]. The blue thick solid lines are the results of numerical
integrations; the colored thin lines show the 1-σ variance about
the expectation. The close-by gray lines are the same calculations
but using the saddle point approximations of Eqs. (91) and (C5)
respectively. Note in particular the smaller variance of the
underdense profile near R2 ∼ 0.
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FIG. 9 (color online). (Top panel) The conditional profile,
hŝiρ̂ð<R1Þ as a function of ρ̂ð< R1Þ. The thick blue solid line is the
result of the numerical integration, the thin dashed line the saddle
point approximation Eq. (91). We also present the power law
approximation case as a thin (red) solid line. It is shown to depart
from the exact prediction in the low density region. The agree-
ment between the theory and the measurements near the origin is
quite remarkable. The bottom panels show the residuals com-
puted in bins as a function of the density (with a zoomed plot
below). Again the thick symbols correspond to the exact
calculation, the thin symbols correspond to the power law
approximation.
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It has to be stressed that all of the properties we have
described are simultaneously captured with the shape of the
multiple cell cumulant generating function, φðfλkgÞ, or its
counterpart, the n-cell PDF, Pðfρ̂kgÞ. We should keep in
mind that we could have considered the former only to
compare with simulations but we dramatically lack intu-
ition for such a representation. By contrast we have much
better intuition of what n-cell PDFs are. So far we have
considered only the one-cell PDF. In the following we
succinctly consider the derivation of the multicell PDF in
our framework.
Hence let us consider a set of n concentric cells and its

cumulant generating function φðfλkgÞ. In principle the
corresponding PDF, Pðfρ̂kgÞ, is to be obtained from

inverse Laplace transform. Such a computation appears
extremely challenging to implement and we have not
succeeded yet in producing a full two-cell PDF. We can
however present its low density approximation, the
counterpart of Eq. (46), for a multidimensional case. It
is based on the use of the saddle point approximation
of Eq. (40) assuming the overall variance is small. It leads
to a similar condition that should be met at the saddle
point fλsgi,

∂
∂λk ½

X
i

λiρ̂i − φðfλigÞ� ¼ 0; ð93Þ

which leads to

ρ̂i ¼ ρiðfλkgÞ; ð94Þ

and with the constraint that

det

� ∂2Ψ
∂ρk∂ρl

�
> 0 ð95Þ

at the saddle point position. The resulting expression for the
density PDF generalizes Eq. (46) to

Pðfρ̂kgÞ ¼
1

ð2πÞn=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

� ∂2Ψ
∂ρ̂k∂ρ̂l

�s
exp ½−Ψðfρ̂kgÞ�:

ð96Þ

This analytic expression is expected to be an approximate
form for the exact PDF in underdense regions.
We suggest that in the absence of computable multiple

cell PDFs, this form could be used, provided one makes
sure to restrict its application to its proper region of
validity. It is interesting to note that, in this framework,
the parameter dependence of the mode of that PDF and its
local curvature tensor can be straightforwardly computed
from it analytically. In the concluding section we will
simply sketch a way to constrain key cosmological param-
eters using this form.

V. CONCLUSIONS AND PROSPECTS

A. Summary

In the context of upcoming large wide field surveys
we revisited the derivation of the cumulant generating
functions of densities in spherical concentric cells in the
limit of a vanishing variance and we conjectured that it
correctly represents the generating function for finite values
of the variance. We noted that such a quantity is an
observable in itself and could probably be used as a
cosmological indicator. In this study we however focused
our efforts on its counterpart, the multicell density PDF.
We first computed the resulting one-cell density PDF.

These results were tested with unprecedented accuracy, in
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FIG. 11 (color online). Same quantities as in Fig. 10 measured
here in simulations. The solid lines are the theoretical predictions
and the points with error bars are the measurements for both the
expected value and its variance. The agreement is spectacular in
particular for low density constraints.
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particular taking into account the scale variation of the
power spectrum index. Comparisons to modern N-body
simulations showed that predictions reach percent order
accuracy (when the density variance is measured from
simulations) for a large range of density values, as long as
the variance is small enough. It confirmed in particular that
this formalism gives a good account of the rare event
tails: predictions are in agreement with the numerical
measurements down to numerical precision.
We took advantage of the finite variance generating

function formalism to explore its implications to the two-
cell case in a novel regime. In particular we derived the
statistical properties of the local density slope, defined as
the infinitesimal difference of the density in two concentric
cells of (possibly infinitesimally) close radii. We gave its
mean expectation, and its expectation constrained to a
given density. From the properties of the local slope,
one can also construct the overall expected profile, i.e.
the density as a function of the radius, and its fluctuations.
We found the latter to be of particular interest when
focusing on voids, as in these regions, the variances around
the mean profile are significantly reduced (though the
relative fluctuations less so). In particular we suggest
below a possible method to constrain cosmological and
gravity models from these low density regions. All these
predictions were successfully compared to simulations.

B. Prospects

The full statistical power of the approach presented in
this paper would ultimately be encoded in the shape of the
two-cell density PDF but we do not know at this stage how
to properly invert the exact expression given by Eq. (40) in
this two-cell regime. Despite this limitation, as we do not
have simulations that span different gravity models, let us
use the saddle point form of Eq. (96) assuming it is exact
(hence avoiding the issue of the domain of validity of that
analytic fit to the exact PDF), and use its dependence on
key (cosmic) parameters to infer the precision with which
cosmological parameters could be constrained.
Focusing the analysis on two quantities, the parameter ν

that encodes the spherical collapse dynamics [see Eq. (13)]
and the power law index ns, let us simply consider sets of
about 2 000 and 11 000 independent measurements drawn
in concentric spheres of radii 10 and 11 Mpc=h and such
that 0.05 < ρ1 < 0.5 and −0.02 < Δρ=ρ1 < 0.06 (i.e. near
the peak of the PDF). The samples are drawn directly from
the two-cell PDF for chosen values of the power law power
spectrum and ν parameter starting respectively with ns ¼
−2.5 and ν ¼ 3=2. The likelihood of the models where ns
and ν vary in the range ½−0.12; 0.12� around the reference
value is computed.
The resulting mean (over 25 independent samples) log

likelihood of the data set as a function of Δν=ν and Δns=ns
is displayed in Fig. 12 (at one, three and five sigma
respectively) [65]. As expected, the likelihood contours

are centered on the zero offset values; they yield the
precision that could be reached in a survey of a useful
volume of about ð200h−1 MpcÞ3 (red contours) and
ð360h−1 MpcÞ3 (blue contours). These sample sizes are
not unreasonable. Indeed, the volume span with about 30
000 spheres corresponds to the volume covered by the
simulation and we found that, in doing so, the error bars
on relevant quantities such as profiles (as shown in Fig. 9)
were of the same order as the one measured in the
simulation we used throughout the paper. At face value,
relative accuracies below the percent on ðns; νÞ could be
reached with such surveys. Yet, this numerical experiment
is, at this stage, at best illustrative. We are indeed aware that
in more realistic situations, one would have to properly
account for the domain of validity of the above functional
form, which would take us beyond the scope of this paper.
Another open question would be to estimate how many
concentric cells should be used to get an optimal constraint
for a given set of cosmic parameters, but the answer to this
question will probably depend on the geometry of the
available survey.
Should these problems be alleviated, effective imple-

mentation of such cosmological tests would still be far
fetched. In particular galaxy catalogs in z space break the
local spherical symmetry in a complex way making the
application of such a method impractical. One way to avoid
this problem is to stick to observations for which this
method is applicable, such as projected densities along the
line of sight. It can be done either in the context of cosmic
shear observations or for photometriclike redshift surveys.
In both cases the point is not to reconstruct the spherical 3D

FIG. 12 (color online). The likelihood contours at one, three
and five sigmas around the reference model ðns ¼ −2.5;
ν ¼ 3=2Þ, drawn from ∼11 000 measurements (inner blue con-
tours) and ∼2 000 measurements (outer red contours) of the
densities in concentric shells of radii 10 and 11 Mpc=h.
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statistics but the circular two-dimensional statistics for
which the whole method should be applicable following
early investigations in [27,28]. The accuracy of the pre-
dictions still has to be assessed in this context. Another
missing piece that can be incorporated is the large distance
correlation of statistical indicators such as profiles and
constrained profiles. Following [27] it is indeed within
reach of this formalism to compute such quantities. We
would then have a fully working theory that could be
exploited in real data sets.
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APPENDIX A: RADII DECIMATIONS

The purpose of this appendix is to make sure that the
expression of φðfλgÞ is consistent with variable decima-
tion, i.e. we want to make sure that

φðfλ1;…; λngÞ
¼ φðfλ1;…; λn; λnþ1 ¼ 0;…; λnþm ¼ 0gÞ; ðA1Þ

where the left-hand side is computed from n cells whereas
the right-hand side is computed with nþm cells.
In order to prove this property, let us define a set A of n

cells and a set B of m cells. One can then define the
covariance matrix σijðρi; ρjÞ as in (17) between two any
cells of the union of A and B.
We first need to establish a preliminary relation between

the element of the inverse matrix ΞijðfρkgÞ and the
covariance matrix. FromXn

l¼1

σilðρi; ρlÞΞljðfρkgÞ ¼ δij; ðA2Þ

we indeed can derive the following relation,

σilðρi; ρlÞ
∂
∂ρk ½ΞljðfρkgÞ�σjmðρj; ρmÞ

þ ∂
∂ρk ½σimðρi; ρmÞ� ¼ 0; ðA3Þ

where all the repeated indices run from 1 to nþm. One can
also write this relation when the inverse matrix is defined

from the covariance matrix of the cells restricted in A only.
Let us define by Ξ̂μνðfρρμgÞ this matrix and in the following
restrict the Greek indices from 1 to n. The previous relation
is then transformed into

σμλðρμ; ρλÞ
∂
∂ρκ ½Ξ̂λνðfρμgÞ�σνσðρν; ρσÞ

þ ∂
∂ρκ ½σμσðρμ; ρσÞ� ¼ 0: ðA4Þ

The cumulant generating functions for the n cells in A is
given by

φ̂ðfλμgÞ ¼ λμτμ −
1

2
Ξ̂μντμτν; ðA5Þ

with the stationary conditions

λκ ¼ Ξ̂μκτμ
dτκ
dρκ

þ 1

2

∂Ξ̂μν

∂ρκ τμτν: ðA6Þ

The purpose of the following calculation is to show that it is
identical to the expression of φðλiÞ describing the cumulant
generating function of the nþm cells when the last m − n
values of λi are set to zero. In this case we have

φðfλμ; 0gÞ ¼ λμτμ −
1

2
Ξijτiτj; ðA7Þ

with the stationary conditions

FIG. 13 (color online). The path line in the ρ complex plane.
We superimposed the contour plot of the imaginary part of φðλÞ −
λρ̂ to check that it follows a ℑ½φðλÞ − λρ̂� ¼ 0 line. The starting
point on the real axis correspond to the saddle point value.
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λκ ¼ Ξiκτi
dτκ
dρκ

þ 1

2

∂Ξij

∂ρκ τiτj; ðA8Þ

0 ¼ Ξkiτi
dτk
dρk

þ 1

2

∂Ξij

∂ρk τiτj; ðA9Þ

for k running from nþ 1 to nþm. The second set of
constraints allows to determine the values of τi for i ∈
½nþ 1; nþm� in terms of τν. It is given by

τ̂i ¼ σiμΞ̂μντν; ðA10Þ

where once again repeated Greek indices are summed over
from 1 to n. This expression is actually valid for any values
of i as when i is in the 1 to n range we identically have
τ̂i ¼ τi. One can indeed check that for this expression
the two terms in Eq. (A9) are identically 0: indeed Ξkiτ̂i ¼
δkμ ¼ 0 for k ∈ ½nþ 1; nþm� and ∂Ξij=∂ρkτ̂iτ̂j¼
∂Ξij=∂ρkσiμΞ̂μντνσjμ0 Ξ̂μ0ν0τν0 ¼−∂σμμ0=∂ρkΞ̂μντνΞ̂μ0ν0τν0 ¼0

for k ∈ ½nþ 1; nþm�. Then replacing using this expres-
sion for the τi in Eq. (A8), one gets

λκ ¼ ΞiκσiμΞ̂μντν
dτκ
dρκ

þ 1

2

∂Ξij

∂ρκ σiμΞ̂μντνσjμ0 Ξ̂μ0ν0τν0 :

Its first term can be simplified using the definition of Ξ̂ and
the second by the subsequent use of Eqs. (A3) and (A4),

∂Ξij

∂ρκ σiμΞ̂μνσjμ0 Ξ̂μ0ν0 ¼ −
∂
∂ρκ σμμ0 Ξ̂μνΞ̂μ0ν0 ;

¼ ∂Ξ̂κσ

∂ρκ σκμΞ̂μνσσμ0 Ξ̂μ0ν0 ;

¼ ∂Ξ̂νν0

∂ρκ ; ðA11Þ

so that the expression of λκ coincides with the expression
(A6). Finally τ̂μ ¼ τμ ensures that the property (A1) is valid.

APPENDIX B: INTEGRATION
IN THE COMPLEX PLANE

1. Numerical algorithm

The computation of the one-point PDF relies on the
following expression:

Pðρ̂Þ ¼
Z þi∞

−i∞

dλ
2πi

expð−λρ̂þ φðλÞÞ; ðB1Þ

where we explicitly denote ρ̂ as the value of the density for
which we want to compute the PDF. This is to distinguish it
from the variable ρ that enters in the calculation of φðλÞ out
of the Legendre transform of ΨðρÞ. The idea to achieve fast

convergence of the integral is to follow a path in the
complex plane where the argument of the exponential in
Eq. (B1) is real. The starting point of the calculation is
ρ ¼ ρs. When ρ̂ is small enough (in the regular region) then
we simply have ρs ¼ ρ̂ otherwise one should take ρs ¼ ρc.
At this very location, two lines of vanishing imaginary parts
of −λρ̂þ φðλÞ cross, one along the real axis (obviously)
and one parallel to the imaginary axis (precisely because we
are at a saddle point position). The idea is then to build, step
by step, a path by imposing

δ½φðλÞ − λρ̂� ∈ R: ðB2Þ

This condition can be written as an infinitesimal variation
of λ. Recalling that dφðλÞ=dλ ¼ ρðλÞ, for each step we have
to impose

ðρ − ρ̂Þδλ ∈ R; ðB3Þ

which in turns can be obtained by imposing that the
complex argument of ðδρÞ is that of ½ðρ − ρ̂Þd2Ψ=dρ2��.
This is what we implement in practice. Accurate prediction
for the PDFs are obtained with about 50 points along the
path line that is illustrated on Fig. 13.

2. The large density tails

The derivation of the rare event tail of the density PDF for
large positive densities is based on the inverse Laplace
transform of the generating function φðλÞ when it is domi-
nated by its singular part, i.e. for λ ≈ λc. In this case the
complex plane contour is pushed along the real axis wrapping
around the singular value λc as depicted on Fig. 14.
The general form for the density PDF given by Eq. (B1)

is expressed using the form (43) following the path shown
on Fig. 14. As the contributions from the two branches of
the path lines are complex conjugate, it eventually leads to
the form

Pðρ̂Þ ≈ ℑ

	Z
iϵþ∞

iϵþλc

dλ
π
exp½φc − λcρ̂ − ðλ − λcÞðρ̂ − ρcÞ�

× ½1þ a3=2ðλ − λcÞ3=2 þ � � ��


; ðB4Þ

FIG. 14. The path line in the λ complex plane for the
computation of the large density asymptotic forms.

STATISTICS OF COSMIC DENSITY PROFILES FROM … PHYSICAL REVIEW D 90, 103519 (2014)

103519-19



where we keep only the dominant singular part in φðλÞ and
where ℑ denotes the imaginary part. This integral can easily
be computed and it leads to

Pðρ̂Þ ≈ exp ðφc − λcρ̂Þ
�

3ℑða3
2
Þ

4
ffiffiffi
π

p ðρ̂ − ρcÞ5=2
þ � � �

�
: ðB5Þ

Subleading contributions can be computed in a similar way
when expðφðλÞÞ is expanded to higher order. Note that by
symmetry, only half integer terms that appear in this
expansion will actually contribute.

APPENDIX C: THE CONSTRAINED
VARIANCE

In this appendix we complement the calculations started
in Sec. IV E where we computed the expected slope under a
local density constraint. Pursuing along the same line of
calculations, the variance of ρ̂2 given ρ̂1 can be computed
from the conditional value of ρ̂22. It is given by the second
derivative of the moment generating function, and is
therefore given byZ

dρ̂2ρ̂22Pðρ̂1; ρ̂2Þ

¼
Z þi∞

−i∞

dλ1
2πi

�∂2φðλ1; λ2Þ
∂λ22


λ2¼0

þ
�∂φðλ1; λ2Þ

∂λ2

λ2¼0

�
2
�
expð−λ1ρ̂1 þ φðλ1ÞÞ:

The calculation of its approximate form in the low-ρ saddle
point limit is a bit more cumbersome. Indeed, in the low
variance limit in which this approximation is derived the
two terms in the square brackets are not of the same order,
the first being subdominant with respect the second. It is
nonetheless possible to compute the resulting cumulant in
the low density limit. Formally, differentiating Eq. (90)
with respect to λ2 we have

∂2φðλ1; λ2Þ
∂λ22 ¼ ∂ρ2ðλ1; λ2Þ

∂λ2 ; ðC1Þ

from the Legendre stationary condition, which, after
inversion of the partial derivatives, is formally given by

∂2φðλ1; λ2Þ
∂λ22 ¼ Ψ;ρ1ρ1

Ψ;ρ1ρ1Ψ;ρ2ρ2 −Ψ2
;ρ1ρ2

; ðC2Þ

where Ψ;ρiρj ≡ ∂2Ψ=∂ρi∂ρj are calculated at the station-
ary point. On the other hand ∂φðλ1; λ2Þ=∂λ2 can be
expanded as

∂φðλ1; λ2Þ
∂λ2 ¼ φðλs; 0Þ þ ðλ1 − λsÞ

×
∂2φðλ1; λ2Þ
∂λ2∂λ1 þ 1

2
ðλ1 − λsÞ2

∂3φðλ1; λ2Þ
∂λ2∂λ21 þ � � �

ðC3Þ

near the saddle point value λs. The integration of
∂φðλ1; λ2Þ=∂λ2 in the complex plane therefore leads to
a correction from the ðλ1 − λsÞ2 term. It can be verified
though that this contribution vanishes when one takes
the cumulant. The integration of ð∂φðλ1; λ2Þ=∂λ2Þ
however leads to an extra term due to the second term
in the previous expansion. The resulting term reads
½∂2φ=∂λ2∂λ1�2=∂2φ=∂λ21, so that

hρ22iρ1 − hρ2i2ρ1 ¼
∂2φ

∂λ21 −
� ∂2φ

∂λ2∂λ1
�
2

=
∂2φ

∂λ21
¼

�∂2φ

∂λ21
∂2φ

∂λ22 −
� ∂2φ

∂λ1∂λ2
�

2
�
=
∂2φ

∂λ21 ; ðC4Þ

which can be rewritten more compactly as

hρ̂22iρ̂1 − hρ̂2i2ρ̂1 ¼ 1=Ψ;ρ2ρ2 jρ̂1;ρ̄2ðρ̂1Þ; ðC5Þ

when expressed in terms of Ψ.

APPENDIX D: SIMULATIONS

For the purpose of this paper, we have carried out a
dark matter simulation with GADGET2 [66]. This simulation
is characterized by the following ΛCDM cosmology:
Ωm ¼ 0.265, ΩΛ ¼ 0.735, n ¼ 0.958, H0 ¼ 70 km ×
s−1 ×Mpc−1 and σ8 ¼ 0.8, Ωb ¼ 0.045 within one stan-
dard deviation of Wilkinson Microwave Anisotropy Probe
7 results [67]. The box size is 500 Mpc=h sampled with
10243 particles, the softening length 24 kpc=h. Initial
conditions are generated using MPGRAFIC [68]. The var-
iances and running indexes are measured from the theo-
retical power spectra produced by MPGRAFIC. Snapshots are
saved for z ¼ 0; 0.65; 0.97; 1.46; 2.33 and 3.9. An Octree is
built for each snapshot, which allows us to count very
efficiently all particles within a given sequence of concen-
tric spheres of radii between R ¼ 4; 5… up to 18 Mpc=h.
The center of these spheres is sampled regularly on a grid of
10 Mpc=h aside, leading to 117 649 estimates of the
density per snapshot. All histograms drawn in this paper
are derived from these samples. Note that the cells overlap
for radii larger than 10 Mpc=h.

APPENDIX E: SYSTEMATIC COMPARISONS
WITH SIMULATION

We collect here figures that are too large to be put in the
main text.
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FIG. 15 (color online). (Left panels) The residuals of the expected density PDF from smoothing scale of R1 ¼ 4 (top panel) to
R1 ¼ 20h−1 Mpc. This is for z ¼ 0.97 (same convention as in Fig. 3). The values of σ2 at the smoothing scale is given in the inset. The
value in square brackets is the linear value. (Right panels) The residuals for the expected average profile between scale R1 and
R2 ¼ R1 þ 1h−1 Mpc. From top to bottom we have R1 ¼ 6 to 18h−1 Mpc. Same convention as in Fig. 8.
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ABSTRACT
In the context of count-in-cells statistics, the joint probability distribution of the density in
two concentric spherical shells is predicted from first principle for sigmas of the order of 1.
The agreement with simulation is found to be excellent. This statistics allows us to deduce
the conditional one dimensional probability distribution function of the slope within under
dense (resp. overdense) regions, or of the density for positive or negative slopes. The former
conditional distribution is likely to be more robust in constraining the cosmological parameters
as the underlying dynamics is less evolved in such regions. A fiducial dark energy experiment
is implemented on such counts derived from � cold dark matter simulations.

Key words: methods: numerical – cosmology: theory – large-scale structure of Universe.

1 IN T RO D U C T I O N

With the advent of large galaxy surveys [e.g. the Sloan Digital Sky
Survey and in the coming years Euclid (Laureijs et al. 2011), the
Large Synoptic Survey Telescope], astronomers have ventured into
the era of statistical cosmology and big data. Hence, there is a dire
need for them to build tools that can efficiently extract as much
information as possible from these huge data sets at high and low
redshift. In particular, this means being able to probe the non-linear
regime of structure formation. The most commonly used tools to
extract statistical information from the observed galaxy distribution
are N-point correlation functions (e.g. Scoccimarro et al. 1998)
which quantify how galaxies are clustered. In our initially Gaussian
Universe, the matter density field is fully described by its two-point
correlation function. However departure from Gaussianity occurs
when the growth of structure becomes non-linear (at later times or
smaller scales), providing information that is not captured by the
two-point correlation function but is recorded in part in the three-
point correlation function. Obviously N-point correlation functions
are increasingly difficult to measure when N increases. They are
noisy, subject to cosmic variance and highly sensitive to systematics
such as the complex geometry of surveys. It is thus essential to find
alternative estimators to extract information from the non-linear
regime of structure formation in order to complement these classical
probes. This is in particular critical if we are to understand the origin
of dark energy, which accounts for ∼70 per cent of the energy budget
of our Universe.

� E-mail: codis@iap.fr

One such method to accurately probe the non-linear regime is to
implement perturbation theory in a highly symmetric configuration
(spherical or cylindrical symmetry) for which the full joint cumulant
generating functions can be constructed. Such constructions take
advantage of the fact that non-linear solutions to the gravitational
dynamical equations (the so-called spherical collapse model) are
known exactly. Corresponding observables, such as galaxy counts
in concentric spheres or discs, then yield very accurate analytical
predictions in the mildly non-linear regime, well beyond what is
usually achievable using other estimators. The corresponding sym-
metry implies that the most likely dynamical evolution (amongst all
possible mapping between the initial and final density field) is that
corresponding to the spherical collapse for which we can write an
explicit linear to non-linear mapping. This has been demonstrated
in the limit of zero variance using direct diagram resummations
(Bernardeau 1992, 1994)1 which was later shown to correspond to
a saddle approximation (Juszkiewicz, Bouchet & Colombi 1993;
Valageas 2002; Bernardeau, Pichon & Codis 2014). The key point
on which this whole paper is based upon, is that the zero variance
limit is shown to provide a remarkably good working model for
finite variances (Bernardeau 1994; Bernardeau et al. 2014).

This formalism also allows us to weigh non-uniformly different
regions of the universe making possible to take into account the fact
that the noise structure in surveys is not homogenous. For instance,
low-density regions are probed by fewer galaxies. Conversely, on
dynamical grounds, we also expect the level of non-linearity in

1 The original derivations were actually derived from the hierarchical model
that aimed at describing the fully non-linear regime (Balian & Schaeffer
1989).
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the field to be inhomogenous: low-density regions are less non-
linear. Hence, it is of interest to build statistical estimators which
probe the mildly non-linear regime and that can be tuned to probe
subsets of the field, offering the best compromise between these
constraints. In the context of the cosmic density field, the construc-
tion of conditional distributions naturally leads to the elaboration
of joint probability distribution functions (PDF hereafter) of the
density in concentric cells.

Following Bernardeau, Pichon & Codis 2014 (hereafter BPC),
we propose in Section 2 to extend one-point statistics of density
profiles and to the full joint PDF of the density in two concentric
spheres of different radii. This is obtained using perturbation the-
ory core results on the cumulant generating function, the double
inverse Laplace transform of which is then computed from brute
force numerical integration. From that PDF, we will also present
the statistics of density profiles restricted to underdense (resp. over-
dense) regions, and the statistics of density restricted to positive
(resp. negative) slopes (Section 3). Theoretical predictions will be
shown to be in very good agreement with simulations in the mildly
non-linear regime. Dependence with redshift will also be discussed.
Finally, Section 4 presents a simple fiducial dark energy experiment,
while Section 5 wraps up.

2 THE TWO-CEL L DENSI T Y STAT ISTI C S

For the sake of clarity, let us present and briefly comment the
formalism. We consider two spheres S i of radius Ri (i = 1, 2)
centred on a given location of space x0. Our goal is to derive the
joint PDF of the density in S1 and S2 denoted ρ̂i and rescaled so
that 〈ρ̂i〉 = 1.

2.1 The cumulant generating function

In the cases we are interested in, the joint statistical properties of ρ̂1

and ρ̂2 are fully encoded in their moment generating function

MR1R2 (λ1, λ2) =
∞∑

p,q=0

〈ρ̂p
1 ρ̂

q
2 〉λ

p
1 λ

q
2

p! q!
, (1)

= 〈exp(λ1ρ̂1 + λ2ρ̂2)〉 , (2)

that can be related to the cumulant generating function,
ϕR1R2 (λ1, λ2), through MR1R2 (λ1, λ2) = exp

[
ϕR1R2 (λ1, λ2)

]
, so

that

exp
[
ϕR1R2

] =
∫

dρ̂1dρ̂2PR1R2 exp(λ1ρ̂1 + λ2ρ̂2), (3)

where PR1R2 (ρ̂1, ρ̂2) is the joint PDF of having density ρ̂1 in S1 and
ρ̂2 in S2. We will now exploit a theoretical construction that permits
the explicit calculation of PR1R2 (ρ̂1, ρ̂2).

2.1.1 Upshot

As we will sketch in the following, this theoretical construction
yields the explicit time dependence of the Legendre transform of
ϕR1R2 (λ1, λ2) in the quasi-linear regime. Such a Legendre transform
is defined as

�R1R2 (ρ1, ρ2) = λ1ρ1 + λ2ρ2 − ϕR1R2 (λ1, λ2), (4)

where ρ i are determined implicitly by the stationary conditions

λi = ∂

∂ρi

�R1R2 (ρ1, ρ2) , i = 1, 2 . (5)

The fundamental relation is then that, in the limit of zero variance,
this Legendre transforms taken at two different times, �(ρ1, ρ2; η)
and � ′(ρ1, ρ2; η′), take the same value

�R1R2 (ρ1, ρ2; η) = �R′
1R′

2
(ρ ′

1, ρ
′
2; η′) , (6)

provided that ρiR
3
i = ρ ′

iR
′
i
3, and that ρ ′

i and ρ i are linked together
through the non-linear dynamics of spherical collapse. The origin
of this equation will be sketched in the following Section 2.1.2.

Equation (6), when applied to an arbitrarily early time η′, yields
a relation between �(ρ1, ρ2; η) and the statistical properties of
the initial density fluctuations. In particular, for Gaussian initial
conditions, �(ρ1, ρ2; ηi) can easily be calculated and expressed in
terms of elements of covariance matrices,

�R1R2 (ρ1, ρ2; ηi) = 1

2

∑
i,j≤2

	ij (ρi − 1)(ρj − 1) , (7)

where 	ij is the inverse of the matrix of covariances, 
ij = 〈τ iτ j〉,
between the initial density contrasts τ i in the two concentric spheres
of radii Ri. One can then write the cumulant generating function at
any time through the spherical collapse mapping between one final
density at time η in a sphere of radius Ri and one initial contrast in
a sphere centred on the same point and with radius R′

i = Riρ
1/3
i (so

as to encompass the same total mass); it can be written formally as

ρi = ζSC(η, τi) ≈ 1

(1 − D+(η)τ/ν)ν
, (8)

where, for the sake of simplicity, we use here a simple prescription,
with D+(η) the linear growth factor and ν = 21/13 to reproduce the
high-z skewness.

Recall that only �R1R2 (ρ1, ρ2) is easily computed. The statisti-
cally relevant cumulant generating function, ϕR1R2 (λ1, λ2), is only
accessible via equation (4) through an inverse Legendre transform
which brings its own complications. In particular, note that all values
of λi are not accessible due to the fact that the ρ i–λi relation cannot
always be inverted. This is signalled by the fact that the determinant
of the transformation vanishes, e.g. Det

[
∂ρi∂ρj�(ρ1, ρ2)

] = 0.
This condition is met both for finite values of ρ i and λi. The cor-
responding contour lines of ϕ(λ1, λ2) was investigated in BPC and
successfully compared to simulation.

2.1.2 Motivation

It is beyond the scope of this letter to re-derive equations (4)–(6) –
a somewhat detailed presentation can be found in Valageas (2002)
and in BPC – but we can give a hint of where it comes from: it
is always possible to express any ensemble average in terms of
the statistical properties of the initial density field so that we can
formally write

exp [ϕ] =
∫
Dτ1Dτ2 P(τ1, τ2) exp (λ1ρ1(τ1) + λ2ρ2(τ2)) . (9)

As the present-time densities ρ i can arise from different initial
contrasts, the above-written integration is therefore a path integral
(over all the possible paths from initial conditions to present-time
configuration) with measure Dτ1Dτ2 and known initial statistics
P(τ1, τ2). Let us assume here that the initial PDF is Gaussian so
that

P(τ1, τ2)dτ1dτ2 =
√

det 	 exp [−�(τ1, τ2)]

2π
dτ1dτ2 , (10)

with � then a quadratic form.
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In the regime where the variance of the density field is small,
equation (9) is dominated by the path corresponding to the most
likely configurations. As the constraint is spherically symmetric,
this most likely path should also respect spherical symmetry. It is
therefore bound to obey the spherical collapse dynamics. Within
this regime equation (9) becomes

exp [ϕ] �
∫

dτ1dτ2 P(τ1, τ2) exp (λ1ζSC(τ1)+λ2ζSC(τ2)) , (11)

where the most likely path, ρ i = ζ SC(η, τ i) is the one-to-one spher-
ical collapse mapping between one final density at time η and one
initial density contrast as already described. The integration on the
r.h.s. of equation (11) can now be carried by using a steepest descent
method, approximating the integral as its most likely value, where
λ1ρ1(τ 1) + λ2ρ2(τ 2) − �(τ 1, τ 2) is stationary. It eventually leads
to the fundamental relation (6) when its right-hand side is computed
at initial time (and the fact that (6) is valid for any times η and η′

is obtained when the same reasoning is applied twice, for the two
different times).

The purpose of this letter is to confront numerically computations
of the two-cell PDF derived from the expression of ϕ(λ1, λ2) with
measurements in numerical simulations.

2.2 The two-cell PDF using inverse Laplace transform

Once the cumulant generating function is known in equation (3),
the two-cell PDF, P(ρ̂1, ρ̂2), is obtained by a 2D inverse Laplace
transform of ϕ(λ1, λ2)

P=
∫ i∞

−i∞

dλ1

2πi

∫ i∞

−i∞

dλ2

2πi
exp(−

∑
i=1,2

ρ̂iλi + ϕ(λ1, λ2)) , (12)

with ϕ given by equations (4)–(6). From this equation, it is straight-
forward to deduce the joint PDF, P̂(ρ̂, ŝ), for the density, ρ̂ = ρ̂1

and the slope ŝ ≡ (ρ̂2 − ρ̂1)R1/�R, �R being R2 − R1, as

P̂ =
∫ i∞

−i∞

dλ

2πi

∫ i∞

−i∞

dμ

2πi
exp(−ρ̂λ − ŝμ + ϕ(λ,μ)) , (13)

with λ = λ1 + λ2, μ = λ2�R/R1. Following this definition, ϕ(λ,
μ) is also the Legendre transform of �(ρ̂1, ŝ = (ρ̂2 − ρ̂1) R1/�R).

In order to numerically compute equation (12), we simply choose
the imaginary path (λ1, λ2) = i(n1�λ, n2�λ) where n1 and n2 are
(positive or negative) integers and the step �λ has been set to 0.15.
The maximum value of λi used here is 75 resulting into a discretiza-
tion of the integrand on 10002 points. Fig. 1 compares the result
of the numerical integration of equation (12) to simulations. The
corresponding dark matter simulation (carried out with GADGET2
Springel 2005) is characterized by the following � cold dark mat-
ter (�CDM) cosmology: �m = 0.265, �� = 0.735, n = 0.958,
H0 = 70 km s−1 Mpc−1 and σ 8 = 0.8, �b = 0.045 within one stan-
dard deviation of Wilkinson Microwave Anisotropy Probe 7 results
(Komatsu et al. 2011). The box size is 500 Mpc h−1 sampled with
10243 particles, the softening length 24 kpc h−1. Initial conditions
are generated using MPGRAFIC (Prunet et al. 2008). An Octree is built
to count efficiently all particles within concentric spheres of radii
between R = 10 and 11Mpc h−1. The centre of these spheres is
sampled regularly on a grid of 10 Mpc h−1 aside, leading to 117 649
estimates of the density per snapshot. Note that the cells overlap for
radii larger than 10 Mpc h−1.

The convergence of our numerical scheme is investigated by vary-
ing the number of points. Fig. 2 shows that the numerical integration
of the slope PDF has reached 1 per cent precision for the displayed
range of slopes. Obviously, the integration is very precise for low
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2 cell PDF

Figure 1. Joint PDF of the slope (s) and the density (ρ) as given by equation
(13) for two concentric spheres of radii R1 = 10 Mpc h−1 and R2 = 11
Mpc h−1 at redshift z = 0.97. Dashed contours corresponds to log P =
0, −1/2,−1, . . . ,−3 for the theory. The corresponding measurements are
shown as a solid line.

1000
480

320

3 2 1 0 1 2 3

0.00

0.02

0.04

0.06

0.08

0.10

s slope

L
og
P
s
P
10
00
s

Figure 2. Dependence of the PDF of the slope on the number of points
used in the numerical integration in (12). The reference PDF is computed
using 10002 points (dark blue) and is compared to the result of the numerical
integration when using 3202 (blue) and 4802 (light blue) points.

values of the slope and requires a largest number of points for the
large-slope tails.

3 C O N D I T I O NA L D I S T R I BU T I O N S

3.1 Slope in subregions

Once the full two-cell PDF is known, it is straightforward to derive
predictions for density profiles restricted to underdense

P(ŝ|ρ̂ < 1) =
∫ 1

0 dρ̂ P̂(ρ̂, ŝ)∫ ∞
−∞ dŝ

∫ 1
0 dρ̂ P̂(ρ̂, ŝ)

, (14)
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Figure 3. Density profiles in underdense (solid light blue), overdense
(dashed purple) and all regions (dashed blue) for cells of radii R1 = 10
Mpc h−1 and R2 = 11 Mpc h−1 at redshift z = 0.97. Predictions are success-
fully compared to measurements in simulations (points with error bars).

and overdense regions

P(ŝ|ρ̂ > 1) =
∫ ∞

1 dρ̂ P̂(ρ̂, ŝ)∫ ∞
−∞ dŝ

∫ 1
0 dρ̂ P̂(ρ̂, ŝ)

. (15)

Fig. 3 displays these predicted density profiles in underdense and
overdense regions compared to the measurements in our simulation.
A very good agreement is found with some slight departures in the
large-slope tail of the distribution. As expected, the underdense
slope PDF peaks towards positive slope, while the overdense PDF
peaks towards negative slope. The constrained negative tails are
more sensitive to the underlying constraint, providing improved
leverage for measuring the underlying cosmological parameters.

3.2 Density in regions of given slope

Conversely, one can study the statistics of the density given con-
straints on the slope. For instance, the density PDF in regions of
negative slope reads

P(ρ̂|ŝ < 0) =
∫ 0

−∞ dŝ P̂(ρ̂, ŝ)∫ ∞
0 dρ̂

∫ 0
−∞ dŝ P̂(ρ̂, ŝ)

. (16)

Fig. 4 displays the predicted density PDF in regions of positive
or negative slope. As expected, the density is higher in regions of
negative slope. An excellent agreement with simulations is found.

3.3 Redshift evolution

Fig. 5 displays the density profiles in underdense and overdense
regions as measured in the simulation for a range of redshifts. This
figure shows that the high-density subset for moderately negative
slopes is particularly sensitive to redshift evolution, which suggests
that dark energy investigations should focus on such range of slopes
and regions.

4 FI D U C I A L DA R K E N E R G Y E X P E R I M E N T

Let us conduct the following fiducial experiment. Consider a set
of 10 000 concentric spheres, and measure for each pair the
slope and the density, {ρ̂i , ŝi}. Recall that the cosmology is en-
coded in the parametrization of the spherical collapse on the

Figure 4. Density PDF in negative slope (solid light blue), positive slope
(dashed purple) and all regions (dashed blue) for cells of radii R1 = 10
Mpc h−1 and R2 = 11 Mpc h−1 at redshift z = 0.97. Predictions are success-
fully compared to measurements in simulations (points with error bars).

Figure 5. Same as Fig. 3 for a range of redshifts as labelled. Only the
underdense (ρ < 1) and the overdense (ρ > 1) PDFs are shown.

one hand (ν),2 and on the linear power spectrum, P lin
k , (via the

covariance matrix, 
ij = ∫
P lin

k (k)W (Rik)W (Rjk)d3k/(2π)3 with
W(k) = 3(sin (k)/k − cos (k))/k2) on the other hand. For scale invari-
ant power spectra with power index n, given equation (8), we have
a three parameter (n, ν, σ ) set of models where σ 2 is the variance of
the inner densities σ 2(z) = ρc(z)2

〈
ρ̂2

1

〉
, ρc being the critical density

of the Universe at redshift z. For a parametrized PDF, Pn,ν,σ (ρ̂, ŝ)
given by equation (13), we can compute the log-likelihood of the
set as L(n, ν, σ ) = ∑

i log Pn,ν,σ (ρ̂i , ŝi). Fig. 6 displays the cor-
responding likelihood contours at 1σ , 3σ , and 5σ in the simple
case in which only one parameter (σ here) varies. This experiment
mimics the precision expected from a survey of useful volume of
about (350h−1Mpc)3 which is found to be at the percent level. This
work improves the findings of BPC which relies on a low-density
approximation for the joint PDF.

5 C O N C L U S I O N

Extending the analysis of BPC, predictions for the joint PDF of
the density within two concentric spheres was straightforwardly

2 The dependence of the spherical collapse on cosmology is at the percent
level as discussed in Bernardeau et al. (2002).
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Figure 6. Log-likelihood for a fiducial experiment involving 10 000 con-
centric spheres of 10 and 11 Mpc h−1 measured in our simulation. The
model here only depends on the variance σ (ν and n are fixed). The contours
at 1σ , 3σ , and 5σ centred on the true value 0.23 are displayed with dark
blue dashed lines. The same experiment can be carried out when the three
parameters vary.

implemented for a given cosmology as a function of redshift in
the mildly non-linear regime. The agreement with measurements in
simulation was shown on Figs 1, 3, and 4 to be very good, includ-
ing in the quasi-linear regime where standard perturbation theory
normally fails. A fiducial dark energy experiment was implemented
on counts derived from �CDM simulations and was illustrated on
Fig. 6.

Such statistics will prove useful in upcoming surveys as they
allow us to probe differentially the slope of the density in regions
of low or high density. It can serve as a statistical indicator to test
gravity and dark energy models and/or probe key cosmological pa-

rameters in carefully chosen subsets of surveys. The theory of count
in cells could be applied to 2D cosmic shear maps so as to predict the
statistics of projected density profiles. Velocity profiles and com-
bined probes involving the density and velocity fields should also
be within reach of this formalism.
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Conclusion

During my thesis, my interest has been the theoretical understanding of the large-
scale structure of the Universe, in particular addressing some of the challenges that
the field of large-scale structure studies needs to overcome with the advent of large
galaxy surveys like Euclid, namely redshift space distortion, intrinsic alignments,
non-linear clustering. In this last section, I summarize the main results I obtained,
present concluding remarks and suggest possible extensions.

Galaxy morphology within the cosmic web

I first investigated how the morphology of dark halos and galaxies are correlated with the cosmic
web from a numerical and theoretical point of view.

Spin of simulated galaxies I measured in simulations how the spin of galaxies is correlated
to the direction of the filament they are embedded in and found that these correlations were
mass-dependent ([Codis et al., 2012, Dubois et al., 2014]). This signal can be qualitatively
understood in the context of hierarchical structure formation, where small galaxies form first
and merge together to form larger ones. Indeed, the first generation of small galaxies form when
the walls wind up to give rise to the filaments and during this process protogalaxies acquire spin
mostly aligned with the filaments. When they later merge inside filaments by catching each
other up during their race towards the nodes, they naturally form bigger-size objects with spin
perpendicular to the filaments. It has to be noted that recent observations (in particular on the
SDSS) have reported some hints of a correlation between galaxy morphology and the cosmic
web as predicted by dark matter and hydrodynamical simulations.

Spin acquisition by anisotropic tidal torquing In this manuscript, I also presented a detailed
analytic prediction ([Codis et al., 2015b]) which explicitly takes into account the anisotropy of
the cosmic web to reproduce from first principles the correlation between galactic spins and
filaments as a function of halo mass. The idea was to develop an extension of the theory of
linear tidal torquing where the cosmic web was made explicit by requiring that galaxies do not
form everywhere but only in the filaments. The outcome of such a theory is a mass-dependent
orientation of the spin in agreement with what has been measured in simulations. The typical
quadrants of opposite vorticity seen in simulations ([Laigle et al., 2015]) are also nicely explained
within the context of this Anisotropic Tidal Torque Theory.

Intrinsic alignments The impact of the cosmic web on galaxies is of prime importance in or-
der to understand not only how the Hubble sequence sets up but also to investigate a possible
important contamination of weak lensing surveys : intrinsic alignments. I recently measured
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this contamination directly from the 160,000 galaxies of a state-of-the-art hydrodynamical sim-
ulation that allowed me to take into account non-linear gas dynamics, baryonic physics and the
anisotropy of the cosmic web ([Codis et al., 2015a, Chisari et al., 2015]). A distinctive mass and
colour-dependence has been measured and illustrates the need to use cosmological hydrodynam-
ical simulations to tackle intrinsic alignment effects that could be a concern for future missions
like Euclid.

Cosmological probes

I also studied how the statistics of the large-scale structure can be used to probe the ΛCDM
model – and its extensions – by means of perturbation theory, topology and galaxy number
counts in the weakly and mildly non-linear regime.

Perturbation theory The dynamical equations that govern the evolution of the density field
in the Universe are highly non-linear. They can be analytically solved only in the configuration
of maximal symmetry which is an initially spherically symmetric perturbation, corresponding
to the so-called spherical collapse. In any other regime, there is no known solution and one
has to rely on perturbation theory on large scales or simulations. Standard perturbation theory
is valid on very large scales but breaks down quickly. Resummation schemes have then been
implemented to achieve better convergence and indeed succeeded in extending the regime of
validity for analytical predictions. In [Taruya et al., 2012], we computed the density power
spectrum at next-to-leading order within the Regularised Perturbation Theory, one extension
of the standard approach. An agreement with simulations was found at one-percent level in the
weakly non-linear regime; we produced a fast public code that allows one to quickly compute
the density power spectrum for a wide range of cosmological models.

Topology Another approach is to consider the topological features of the density field which
represent a complementary cosmological probe containing robust information. The topology
of a 3D field can be described by only four functionals – named after Minkowski – that can
be analytically computed when non-Gaussianities are weak enough. In [Codis et al., 2013], I
developed the theory of these estimators to all order in non-Gaussianity. I also showed how
redshift space distortion can be accounted for within this context. The formalism used involves
an expansion of the joint probability density function of the field and its derivatives to all orders
in non-Gaussianity by means of a Gram-Charlier expansion, a rewriting of the equations in terms
of invariant quantities (invariant under 3D rotations for real space and 2D rotations on the sky
for redshift space). With upcoming 3D spectroscopic surveys such as Euclid, the statistical
analysis of the topology of our redshift-distorted Universe will allow us to robustly measure
weighted moments of the multi-spectra as a function of redshift, and henceforth quantify the
cosmic evolution of the equation of state of dark energy and possible departures from General
Relativity. The challenge here is in the lower level of symmetry compared to real space (no longer
isotropic) that complexifies the formalism by adding more degrees of freedom. I specifically
investigated how topological estimators in redshift space can be used to estimate the cosmic
evolution of the growth of structure (the so-called β parameter).

Density profiles Number counts of galaxies in concentric spheres provide another complemen-
tary observable. The joint statistics of these mean concentric densities can be predicted from
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perturbation theory with impressive accuracy even in the mildly non-linear regime as spherical
symmetry and Gauss’ theorem allow one to map initial densities to late-time configurations in
concentric spheres. This unique formalism can be applied to various numbers of spheres. In
[Bernardeau et al., 2014], we predicted the profiles (as the density difference between two con-
centric spheres) in the quasi-linear regime, and studied the effect of modified gravity models on
these counts through a parametrisation of the spherical collapse. In [Bernardeau et al., 2015],
we showed how to compute the conditional density profiles within underdense or overdense
subregions.

Prospects

During my thesis I analysed cosmological simulations – both dark matter only and hydrodynam-
ical simulations – in the context of galaxy formation. The motivation was to understand how
galaxies are shaped by their environment. I also worked on the theory of gravitational clustering
through perturbation theory and its extensions, the topology and geometry of the large-scale
structure and the theory of protogalactic spin acquisition. Interesting prospects include

• galaxy counts and how the theory of count-in-cells could be applied to 2D cosmic shear
maps so as to predict the statistics of projected density profiles in the context of weak
lensing but also to velocity profiles and cosmic variance among others;

• cosmological probes and the finding of optimal observables that can extract non-linear cos-
mological information from the large-scale structure. One promising way is to understand
which (combination of) estimators is best, including topology and galaxy counts and in
particular compare their sensitivity to different models of modified gravity and different
equations of state of dark energy;

• the geometry of the cosmic web. It would be worth developing an Alcock-Paczynski test
based on the length of the filaments. Another interesting analysis could be a theoretical
study of the walls (which is related to the numerical study of voids that is becoming a
burning issue nowadays) and of the connectivity of the filaments. This latter point is also
important to understand how many streams feed galaxies which is one of the cornerstones
of the understanding of galaxy formation;

• intrinsic alignments (e.g in the perspective of Euclid) and how numerical analysis can be
used to define an “optimised strategy” for cosmic shear experiments so as to reduce and
leverage the effect of intrinsic alignments by specific geometrical choices and/or population
selections (on the different properties of galaxies such as their colour).
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ABSTRACT
The kinematic analysis of dark matter and hydrodynamical simulations suggests that the
vorticity in large-scale structure is mostly confined to, and predominantly aligned with, their
filaments, with an excess of probability of 20 per cent to have the angle between vorticity
and filaments direction lower than 60◦ relative to random orientations. The cross-sections of
these filaments are typically partitioned into four quadrants with opposite vorticity sign, arising
from multiple flows, originating from neighbouring walls. The spins of haloes embedded within
these filaments are consistently aligned with this vorticity for any halo mass, with a stronger
alignment for the most massive structures up to an excess of probability of 165 per cent.
The global geometry of the flow within the cosmic web is therefore qualitatively consistent
with a spin acquisition for smaller haloes induced by this large-scale coherence, as argued in
Codis et al. In effect, secondary anisotropic infall (originating from the vortex-rich filament
within which these lower-mass haloes form) dominates the angular momentum budget of these
haloes. The transition mass from alignment to orthogonality is related to the size of a given
multi-flow region with a given polarity. This transition may be reconciled with the standard
tidal torque theory if the latter is augmented so as to account for the larger scale anisotropic
environment of walls and filaments.

Key words: methods: numerical – galaxies: formation – galaxies: haloes – large-scale struc-
ture of Universe.

1 IN T RO D U C T I O N

The standard paradigm of galaxy formation addresses the acqui-
sition of spin via the so-called Tidal Torque Theory (TTT; Hoyle
1949; Peebles 1969; Doroshkevich 1970; White 1984) for which
collapsing protogalaxies acquire their spin because of a misalign-
ment between their inertia tensor and their (local) tidal tensor. There
is ample evidence that for massive (quasi-linear) clusters, TTT pro-
vides a sound theoretical framework in which to describe angular
momentum (AM) acquisition during the linear phase of structure
formation. Conversely, lighter non-linear structures undergo signif-
icant drift within the large-scale tidal field, and move some distance
away from their original Lagrangian patch (see e.g. Schaefer 2009,
for a review). Over the last 10 years, numerical simulations as well
as theoretical consideration (Birnboim & Dekel 2003; Katz et al.
2003; Kereš et al. 2005; Ocvirk, Pichon & Teyssier 2008) have

� E-mail: laigle@iap.fr

accumulated evidence that the intricate cosmic web plays a crit-
ical role in the process of forming high-redshift galaxies. In the
initial phase of galaxy formation, the condition of the intergalac-
tic medium leads to essentially isothermal shocks. Hence cold gas
follows closely the cosmic web while radiating away the thermal
energy gained by the extraction of kinetic energy every time its
trajectory dictates the formation of a shock.

The dynamical relevance of the anisotropy of the cosmic web for
galaxy formation may have been partially underestimated given the
small mass involved (in contrast to the mass in peaks). Indeed, spher-
ical collapse and Press–Schechter theory have been quite success-
ful at explaining the mass function of galaxies (Press & Schechter
1974). On the other hand, the morphology of galaxies, arguably a
secondary feature, is controlled at high redshift by their spin (see
e.g. Dubois et al. 2012) and is very likely driven by later infall of
AM-rich gas. In turn, the critical ingredient must therefore be the
anisotropy of such infall, driven by its dynamics within the cosmic
web, which differ significantly (via the hitherto mentioned shocks)
from that of the dark matter (DM), since cold flows advect the AM

C© 2014 The Authors
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they acquired as they formed during the early phase of large-scale
structure (LSS) formation. A paradigm for the acquisition of disc
AM via filamentary flows was recently proposed by Pichon et al.
(2011) which found a closer connection between the 3D geometry
and dynamics of the neighbouring cosmic web and the properties
of embedded dark haloes and galaxies than originally suggested
by the standard hierarchical formation paradigm (see also Prieto,
Jimenez & Haiman 2013; Stewart et al. 2013). At these scales,
in the surrounding asymmetric gravitational patch gas streams out
from the neighbouring voids, towards their encompassing filaments
where it shocks, until the cold flows are swallowed by the form-
ing galaxy, advecting their newly acquired AM (Kimm et al. 2011;
Tillson et al. 2012). While the gas is streamed out of the walls to-
wards their surrounding filaments it winds up and forms the first
generation of galaxies with a spin parallel to the filaments (Aragón-
Calvo et al. 2007; Hahn et al. 2007; Paz, Stasyszyn & Padilla 2008;
Zhang et al. 2009; Codis et al. 2012; Libeskind et al. 2013, see also
Aubert, Pichon & Colombi 2004; Bailin & Steinmetz 2005, for ear-
lier indication of anisotropic inflows). These authors explored the
link between DM haloes’ spins and the cosmic web to quantify this
alignment. They detected a redshift-dependent mass transition Mcrit,
varying with the scale (or equivalently with the hierarchical level
of the cosmic structure in which the halo is embedded; see Aragón-
Calvo & Forrest Yang 2014). Codis et al. (2012) interpreted the
correlation in terms of large-scale cosmic flows: high-mass haloes
have their spins perpendicular to the filament because they are the
results of major mergers (see also Peirani, Mohayaee & de Freitas
Pacheco 2004); low-mass haloes are not the products of merger
and acquire their mass by accretion, which explains that their spins
are parallel to the filament. Danovich et al. (2011) also studied
the feeding of massive galaxies at high redshift through cosmic
streams using the Horizon-MareNostrum simulation (Ocvirk et al.
2008) and found that galaxies are fed by one dominant stream with
a tendency to be fed by three major streams. All these investiga-
tions suggest the existence of an additional mechanism affecting
first low-mass haloes: mass accretion in an anisotropic, multi-flow
environment.

Tempel, Stoica & Saar (2013) and Zhang et al. (2013) have re-
cently found evidence of such alignment in the Sloan Digital Sky
Survey (an orthogonality for S0 galaxies and a weak alignment for
late-type spirals). The detailed origin of this correlation, while not
strictly speaking surprising, as well as its measured dependence
on mass, has not yet been fully understood. The spin of the dark
halo represents, in essence, the vortical motion of the matter and
as such can be expected to reflect the vorticity in the surround-
ing protogalactic patch of a forming halo. Indeed, to understand
this trend, Libeskind et al. (2013) have argued that the local vor-
ticity was more relevant than the original tidal field in setting up
the direction of dark halo spins. They have explored the link be-
tween vorticity in halo environment and the origin of haloes spin
and found a strong alignment between both. Vorticity tends to be
perpendicular to the axis along which material is collapsing fastest.
A natural tell-tale of such process would be a significant large-scale
vorticity generation in the multiflow regions corresponding to the
interior of filaments. Recently, Wang et al. (2014) revisited this
description by introducing three invariants of the velocity gradient
tensor and concluded that vorticity generation is highly correlated
with large-scale structure before and after shell-crossing, in a way
which depends on the flow morphology. Vorticity arises only after
shell crossing in multi-streaming regions and requires the look in-
side such regions. Pioneering study of Pichon & Bernardeau (1999)
theoretically demonstrated that in the simplest pancake-like multi-

stream collapse the level of the vorticity generated is of the order of
Hubble constant at the collapse stage at the scale of the thickness
of the forming structures. While relying on these theoretical predic-
tions, Codis et al. (2012) speculated that secondary shell-crossing
could lead to the formation of vortices aligned with the forming
filament. In turn, these vortices would account for the spin of these
haloes. There is now indeed ample numerical evidence that the evo-
lution of galaxy morphology is likely to be in part driven by the
geometry of the cosmic web, and in particular its vorticity content.

Hence our focus will be in revisiting these findings with an em-
phasis on where (tracing the filaments) and why (studying the origin
of the vorticity and its orientation) these trends are detected. We
will also tentatively explain the origin of the mass transition for
halo–spin alignment with the LSS’s filaments. This paper aims at
revisiting early stages of AM acquisition corresponding to when
the cold gas/DM is expelled from neighbouring voids and walls.
The main question addressed in this work will be: are there statisti-
cal evidence that swirling filaments are responsible for spinning up
dark haloes and gaseous discs?

The focus will be specifically exclusively on lower mass haloes
(M� < 5 1012) for which secondary anisotropic infall (originating
from the vortex-rich filament within which they form) dominates
their AM budget. To that end, we will in particular make use of
filament and wall tracers in order to quantify the cosmic web, which
is the natural metric for galactic evolution. The virtual data used will
be DM and hydrodynamical simulations.

This paper is organized as follows. Section 2 describes the simu-
lations and the estimators implemented in this paper. Section 3 sums
up robust statistical results of (i) the orientation of the vorticity rel-
ative to the filaments, (ii) the distribution of the vorticity inside the
filament and (iii) the alignment of the spin of dark haloes with the
vorticity. Section 4 explores qualitatively the origin of this vorticity
and uses the link between vorticity and spin to explain the non-
monotonic behaviour of spin–filament alignment for haloes with
masses lower than Mcrit. Section 5 wraps up and discusses implica-
tions. Appendix A finds consistency in alignment with the vorticity
of adiabatic/cooling gas. Appendix B illustrates the transition mass
in the spin/filament alignment via a simple toy model for the typical
vorticity within the caustic. Appendix C studies the effect of persis-
tence and Appendix D the effect of the variation of the smoothing
scale on the alignment. Appendix E analyses the orientation of the
vorticity with respect to the tidal field eigendirections. Appendix F
explains the cleaning of the Friend-of-Friend halo catalogue.

2 DATA SETS AND ESTI MATO RS

All the statistical results of Section 3 rely on a set of DM stan-
dard �cold dark matter (�CDM) simulations presented in Table 1.
These simulations are characterized by the following �CDM cos-
mology: Ωm = 0.24, ΩΛ = 0.76, n = 0.958, H0 = 73 km s−1 Mpc−1

and σ 8 = 0.77 within one standard deviation of 3 year Wilkinson
Microwave Anisotropy Probe results (Spergel et al. 2003).

We use different box sizes: a 100 h−1 Mpc box with an initial
mean spatial resolution of 390 h−1 kpc (2563 DM particles) in order
to build a statistical sample of haloes and filaments, several 50
h−1 Mpc boxes with a mean spatial resolution of 190 h−1 kpc (2563

particles), and a 20 h−1 Mpc box with a mean spatial resolution of 39
h−1 kpc (5123 particles). All these simulations were run with GADGET

(Springel, Yoshida & White 2001), using a softening length of
1/20th of the mean inter-particle distance. We also use the Horizon-
4π simulation, a 2000 h−1 Mpc box SCDM

2000 with 40963 DM particles
(Teyssier et al. 2009).
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Table 1. The set of simulations used in Sections 3 and 4. The so-called �HDM subset corresponds to simulations,
the initial condition of which have been smoothed over 2.3 h−1 Mpc and 0.23 h−1 Mpc. The simulation SCDM

2000
corresponds to the post-processing of an HPC simulation which allowed us to identify over 34 million haloes.
The velocity field, density field, initial conditions were smoothed with Gaussian filter. In this work, we consider
haloes with more than 100 particles.

Name Type Box size Resolution Rvelocity Rdensity RLagrangian Minimum halo mass
h−1 Mpc h−1 Mpc h−1 Mpc h−1 Mpc 1010M�

SCDM
100 �CDM 100 2563 0.39 2.3 – 44

SHDM
100 �HDM 100 2563 0.39 2.3 2.3 –

SCDM
50 �CDM 50 2563 × (20) 0.78 1.2 – 6.2

SCDM
20 �CDM 20 5123 0.039 0.23 – 0.044

SHDM
20 �HDM 20 5123 0.039 0.23 0.23 –

SCDM
2000 �CDM 2000 40963 – 5 – 77

In addition, the �HDM subset corresponds to simulations with
initial conditions that have been smoothed with a Gaussian filtering
on scales of 2.3 and 0.23 h−1 Mpc, respectively, to suppress small-
scale modes for the purpose of visualization and interpretation. All
simulations but the sets SCDM

50 , SCDM
2000 share the same phases.

All the simulations are studied at redshift z = 0. DM haloes are
defined thanks to the Friend-of-Friend Algorithm (or FOF; Huchra
& Geller 1982), with a linking length of 0.2(L3

box/Npart)1/3. In the
present work, we only consider haloes with more than 100 particles,
which corresponds to a minimum halo mass of 62 × 1010 M� in
SCDM

50 . The spin of a halo is defined as the sum over its particles
i:

∑
i(r i − r) × (vi − v) where r is the centre of mass of the FOF

and v its mean velocity. As discussed in Pueblas & Scoccimarro
(2009), for the DM simulations we sample optimally the velocity
field using a Delaunay tessellation.

The FOF is prone to spuriously link neighbouring structures with
tenuous bridges of particles, leading to artificial objects with a very
high velocity dispersion, which could eventually bias the measure
of the spin and consequently the alignment of the spin and the
vorticity. Appendix F investigates the effect of such spurious linkage
on vorticity alignments and allows us to conclude that it does not
impact the result.

The vorticity of the velocity is then measured from the resampled
velocity at each point of the 2563 grid as the curl of the velocity
field ω = ∇ × v, after Gaussian smoothing of the velocity field
with a kernel length of 390 h−1 kpc for SCDM

100 and SHDM
100 , a kernel

length of 780 h−1 kpc for SCDM
50 and a kernel length of 39 h−1 kpc

for SCDM
20 and SHDM

20 . The effect of the smoothing scale on the sta-
tistical alignments presented below is investigated in Appendix D.
The results do not qualitatively depend on the smoothing scale and
the main conclusion remains unchanged, even if the magnitude of
the signal varies slightly (but not monotically) according to the
scale.

A comparison between vorticity maps in SCDM
20 and in SHDM

20 is
shown in Fig. 1. Vorticity along the normal to the section is plotted
in the right panels of this figure. In SHDM

20 , high frequencies features
are suppressed but the low-frequency vorticity remains consistent
with that of the more realistic SCDM

20 . In SHDM
100 , the smoothing is

chosen such that in high-vorticity regions (defined here as being re-
gions where the vorticity is greater than 20 per cent of the maximum
vorticity), the mean vorticity is of the order of 90 h km s−1 Mpc−1,
i.e. it corresponds more or less to one revolution per Hubble time, in
agreement with the theoretical predictions of Pichon & Bernardeau
(1999). The orders of magnitude are similar in SCDM

100 , SHDM
20

and SCDM
20 .

The cosmic network is identified with RSEX and DISPERSE, the
filament tracing algorithms based on either watershedding (Sousbie,
Colombi & Pichon 2009) or persistence (Sousbie 2011; Sousbie,
Pichon & Kawahara 2011) without significant difference for the
purpose of this investigation. The first method identifies ridges as the
boundaries of walls which are themselves the boundaries of voids.
The second one identifies them as the ‘special’ lines connecting
topologically robust (filament-like) saddle points to peaks. In this
paper, the scale at which the filaments are traced (6 pixels Gaussian
for each simulation) corresponds to large enough scales so that we
are investigating the flow relative to the LSS (though see Appendix C
for variations). Filaments are defined as a set of small segments
linking neighbours pixels together. The mean size of the segments
is 0.6 pixels, which means 234 h−1 kpc in SCDM

100 .
For comparison with previous studies (e.g. Libeskind et al. 2013),

walls are defined according to the density Hessian. Given λi the
eigenvalues of the Hessian H = ∂2ρ/∂ri∂rj where ρ is the density
field, with λi > λj if i < j, walls are identified as being the region
of space where λ1 > λ2 > 0 and λ3 < 0. The normal of a wall
is given by the direction of the eigenvector associated with λ3. To
obtain the Hessian, the density field of SCDM

100 is smoothed with a
Gaussian filter of 1.6 h−1Mpc and differentiation of the density field
is performed in Fourier space.

To estimate the number of multi-flow regions within the caustic
and their size, for each segment of the skeleton, the vorticity cube is
cut with a plane perpendicular to the direction of the filament. The
number of multi-flow regions is given by the number of regions of
positive and negative projected vorticity along this direction (with a
given threshold), counted in a small window centred on the filament.
To obtain the size of the regions with a given polarity, the area
where the absolute projected vorticity along the normal is greater
than 10 per cent of the maximum vorticity is measured, and this
area is divided by the number of quadrants. Assuming that these
regions are quarter of discs, it yields the corresponding radius. This
measure is done in SHDM

100 .

3 STAT I S T I C A L A L I G N M E N T S

Let us first present robust statistical results derived from sets of
�CDM simulations and �HDM simulations for comparison.

3.1 Correlation between vorticity and filaments

The alignment of vorticity with the direction of the filaments is
examined inSCDM

100 and inSHDM
100 . The angle μ1 between the direction
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Figure 1. A thin slice (2 h−1 Mpc thickness) of the projected DM density (left panels) and the projected vorticity along the normal to the slice in unit of
h km s−1 Mpc−1 (right panels). DM density is plotted with a logarithmic scale. Vorticity is computed after smoothing of the velocity field with a Gaussian filter
of 160 h−1 kpc for this figure only. The geometry of the vorticity closely follows the LSS, but switches polarity across the walls/filaments (recalling that walls
appear as filaments and filaments as peaks in such a cross-section). Note also how the vorticity is localized around filaments (the 2D peaks, as exemplified in
Fig. 7). The two panels allow for a comparison between a section of SCDM

20 (top) and SHDM
20 (bottom). In SHDM

20 , high-frequency modes are suppressed but the
low-frequency vorticity is qualitatively consistent with that found in the realistic SCDM

20 . On the bottom left panel, the density caustics are quite visible and
correspond to the outer edge of the multi-flow region in the bottom right panel.

of the vorticity and the direction of the filament is measured along
each segment of the skeleton, and μ2 between the direction of the
vorticity and the direction of the normal of the wall. The probability
distribution function (PDF) of the absolute value of the cosine of
these angles is shown in Fig. 2. This PDF is normalized for cos μ

between 0 and 1. A strong detection is achieved. The signal is
stronger in SHDM

100 (because of a smoothing of high frequencies) but
a clear signal is also detected in SCDM

100 . As a check, the alignment
between vorticity and shuffled segment directions is then measured:
no signal is detected.

In the filaments we find an excess of probability of 20 per cent to
have |cos μ1| in [0.5, 1] (that is 0 ≤ μ1 ≤ 60◦) relative to random
orientations. In the walls, we find an excess of probability of 45 per
cent to have |cos μ2| in [0, 0.5] (that is 60◦ ≤ μ2 ≤ 90◦) relative to
random orientations, which means a strong signal for the vorticity
to be aligned with the filament, and perpendicular to the normal of
the surrounding wall.

We conclude that in the neighbourhood of filaments, vorticity
is preferentially aligned with the filament’s axis and perpendicular
to the normal of walls. In other words, vorticity tends to be per-
pendicular to the axis along which material is collapsing fastest.
This result is consistent with that of Libeskind et al. (2013), which
explored the correlation between vorticity and shear eigenvectors.
This correlation is confirmed in Appendix E.

3.2 Geometry of the multi-flow region

Since Section 3.1 showed that vorticity tends to be aligned with
the filamentary features of the cosmic web, we are naturally led to
focus on the structure of high-vorticity regions. The kinematics of
the cross-sections of the filaments is therefore examined, by cutting
our simulation with a plane perpendicular to the direction of the
filament. We represent in this plane the projected vorticity along
the filament. Results are shown in Fig. 3 and can be summarized
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2748 C. Laigle et al.

Figure 2. The PDF of cos μ, the cosine of the angle between the vorticity
and the direction of the filament (orange) and the angle between the vorticity
and the normal of wall (red) measured in the simulations SCDM

100 (solid) and
SHDM

100 (dashed). The black dotted line corresponds to zero excess probability
for reference. The large-scale total vorticity is preferentially aligned with
filament axis.

as follows: (i) vorticity is null outside the multi-flow region, and
so confined to filaments (and walls in a weaker way) which is
consistent with the assumption that cosmic flows are irrotational
before shell-crossing; (ii) the cross-sections of the filaments are
partitioned into typically quadripolar multi-flow regions (see Fig. 4)
where the vorticity is symmetric with respect to the centre of the
(density) caustic such that the global vorticity within that caustic
is null (as expected); the typical size of each quadrant is of the
order of a smoothing scale (as shown in Fig. 4); (iii) high-vorticity
resides in the low-density regions of filaments: vorticity is mainly
located at the edge of the multi-flow region on the caustic (see also

Fig. 10); vorticity is in fact typically null at the peak of density.
(iv) Each quadrant of the multi-flow region is fed by multiple flows,
originating from neighbouring walls (see Fig. 9).

3.3 Correlation between vorticity and spin

The alignment of vorticity with filaments on the one hand, and
previous results about alignment (or orthogonality) of the low-mass
(high-mass) haloes spin with the filament and the shear eigenvectors
(Codis et al. 2012; Libeskind et al. 2012) on the other hand, sug-
gests to revisit the alignment of spin with the vorticity (previously
examined by Libeskind et al. 2012) and to analyse in depth the
correlation between vorticity and AM. The measurement is done
by computing the vorticity at the positions of the haloes and the
projection, cos θ , between both normalized vectors. First note that
haloes typically stand within one quadrant of the vorticity within
filaments and not at the intersection of these quadrants, which is
why the spin/vorticity alignment is strong.

The resulting PDF of cos θ is displayed in Fig. 5. Here the set
of simulations, SCDM

50 are used to compute error bars on the cor-
relation between spin and vorticity. The measured correlations are
noisier as only a finite number of dark haloes are found within
the simulation volume. It was checked that the correlation is not
dominated by the intrinsic vorticity of the haloes themselves by
computing the alignment between the spin and the vorticity of
the field after extruding the FOF haloes, which led to no signif-
icant difference in the amplitude of the correlation. We find an
excess probability of 25 per cent relative to random orientations
to have cos θ in [0.5, 1] for haloes with 10 ≤ log(M/M�) ≤ 11,
55 per cent for 11 ≤ log(M/M�) ≤ 12 and 165 per cent for
12 ≤ log(M/M�) ≤ 13. Note importantly that the intricate geom-
etry of the multi-flow region (see also Figs 7 and G1) strongly
suggests retrospectively that the alignment (including polarity) be-
tween the spin of DM haloes and the vorticity of the flow within
that region cannot be coincidental.

Fig. 6, which presents PDF of the cosine of the angle between
the spin of 43 million dark haloes and the direction of the closest
filament identified in the SCDM

2000 simulation, displays an interesting

Figure 3. Geometry/kinematics of a typical multi-flow region across a filament. Left: density map of a section perpendicular to a given filament in logarithmic
scale. Right: projected vorticity along the filament within that section (towards observer in red and away from the observer in blue) in units of h km s−1 Mpc−1

on which is plotted in dark a contour of the density. Circles are haloes with their corresponding virial radius. The colour of the circles matches to the values of
cos θ between the haloes spins and the normal of the section, positively oriented towards us. SHDM

100 is used here, and for this figure only, vorticity is computed
after smoothing the velocity field with a Gaussian filter of 1.6 h−1 Mpc.
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Figure 4. Top: normalized histogram of the number of multi-flow regions
with different polarity around a filament measured in the simulation SHDM

100 .
The mean corresponds to 〈nmultiflow〉 = 4.6, the median is 4.25. On large
scales, the multi-flow region is therefore typically quadrupolar. Bottom:
normalized histogram of the size of a region in SHDM

100 with a given polarity.
The mean size of such region is 〈R〉 = 1.6 h−1 Mpc, somewhat below the
smoothing length of the initial conditions, Rs = 2.3 h−1 Mpc. It was checked
on SHDM

20 that a similar scaling applies.

Figure 5. The PDF of the angle between the vorticity and the spin measured
in 20 simulations of the SCDM

50 set. Haloes are binned by mass as labelled.
The displayed error bars are 1σ standard deviation on the mean.

Figure 6. The probability distribution of the cosine of the angle between
the spin of dark haloes and the direction of the closest filament as a func-
tion of mass in the SCDM

2000 simulation. The smoothing length over which
filaments are defined is 5 h−1 Mpc. This figure extends the result first re-
ported in Codis et al. (2012) to the mass range log M/M� ∼ 11.5–12.0.
In this mass range one observes that the probability to have a small angle
between the halo’s spin and the filament’s direction first increases (in red)
as mass grows to log M/M� ∼ 12.1, in agreement with the increased spin–
vorticity alignment demonstrated in Fig. 5. At larger masses (from orange to
blue) the statistical spin–filament alignment quickly decays, with a critical
mass (in yellow) corresponding to a transition to predominately orthogonal
orientations (in blue) at log Mcrit/M� ≈ 12.7 as defined by Codis et al.
(2012).

feature at low mass. For the range of mass log M/M� ∼ 11.5-12.5,
the actual alignment between the spin and the direction of the fila-
ment increases with mass, before it becomes abruptly perpendicular
around 5 × 1012 M�. This is fully consistent with the correspond-
ing increase in vorticity shown in Fig. 5, and will be discussed
further in the next section.

4 IN T E R P R E TAT I O N

Let us now turn to the visualization of special purpose simula-
tions, the �HDM set, to identify the origin and implications of
the measured vorticity of Section 3, and explain the observed mass
transition.

4.1 Building up vorticity from LSS flow

Let us first show that density walls are preferentially aligned with
zero-vorticity walls.

Fig. 7 displays the vorticity field in the neighbourhood of the main
filament of the idealized ‘HDM’ simulation, SHDM

20 . The vorticity
bundle is clearly coherent on large scales, and aligned with the
direction of the filament, strongest within its multi-flow core region,
while its essentially quadrupolarity is twisted around it.

Fig. 8 displays the cross-section of the vorticity perpendicular
to the main filament shown in Fig. 7. The velocity field lines (in
blue) converge towards the local walls (in brown) and are visually in
agreement with the vorticity field which is partitioned by these walls.
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2750 C. Laigle et al.

Figure 7. Vorticity field in the neighbourhood of the main filament of the idealized ‘HDM’ simulation, SHDM
20 colour coded through its ‘z’ component.

The vorticity is clearly aligned with the direction of the filament, strongest within its multi-flow core region, while its polarity is twisted around it. Helicity
measurements are consistent with the observed level of twisting. We provide animations online at http://www.iap.fr/users/pichon/spin/.

Figure 8. Left: the cross-section of the vorticity perpendicular to the main filament shown in Fig. 7. The colour coding in the section corresponds to the
vorticity towards us (in blue) and away from us (in red) as shown by the corresponding arrows. The thin blue lines correspond to velocity field lines. The brown
surfaces represent the local walls. The field lines converge towards the local walls and are in agreement with the vorticity field which is partitioned by these
walls. Right: the probability distribution as a function of the cosine angle between the normal to the zero vorticity walls and the normal to the density walls,
cos ψ , computed on the simulation SCDM

100 . The simulation is divided into eight 50 h−1 Mpc sub-boxes. Density walls are computed using DISPERSE, and the
smoothing coefficient of the tessellation is S = 4 (see Appendix H). The plotted signal corresponds to the average of the PDFs for the eight sub-boxes. The
displayed error bars are 1σ standard deviation on the mean.

This picture is qualitatively consistent with the scenario presented
in Codis et al. (2012), as it shows that the filaments are fed via the
embedding walls, while the geometry of the flow generates vorticity
within their core. This vorticity defines the local environment in
which DM haloes form with a spin aligned with that vorticity.
The alignment between the contours of minimal vorticity and the
density walls which is visually observed in Fig. 8 (left panel) is then
quantitatively examined. The probability distribution of the cosine
of the angle between the zero vorticity contour and the wall within
the caustic is plotted on the right panel of Fig. 8 (see Appendix H for
the definition of the zero vorticity contour). An excess of probability
of 15 per cent is observed for cos ψ in [0.5, 1] relative to random
distribution, that is for the alignment of the walls with the minimal

vorticity contours. This alignment increases with the smoothing of
the tessellations, as expected.

4.2 Progenitors of multi-flow region

In a DM (Lagrangian) simulation, it is straightforward to identify
the origin of particles within the multi-flow region. Fig. 9 traces
back in time DM particles ending up within a quadrant of the multi-
flow region. The quadrant is fed by three flows of particles. The
flow is irrotational in the initial phase of structure formation until
the crossing of three flows in the vicinity of the filaments generates
shear and vorticity close to the caustic.
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Figure 9. Left: individual DM particle trajectories ending in a given quad-
rant of the vorticity multi-flow region. In blue are particles ending in a region
of positive projected vorticity along the filament, and in red are the particles
ending in the negative vorticity region. The quadrant is fed by at least three
flows of particles (see also the inset in Fig. 11, which represents qualita-
tively the theoretical expectation of the starting points of these bundles in the
Zel’dovich approximation.). The SHDM

100 simulation is used for this figure.

Note that the sharp rise near the edge of the multi-flow region
at the caustic is qualitatively consistent with catastrophe theory
(Arnold 1992), and is directly related to the prediction of Pichon &
Bernardeau (1999). Fig. 10 illustrates this fact. To obtain this profile,
a filament is cut in slices, corresponding to filament segments: each
slice corresponds to a plane perpendicular to the direction of the
segment. Local vorticity is measured within that plane and stacked.
The amount of vorticity is greater near the caustic. These results
are qualitatively consistent with the above-mentioned theoretical
predictions which characterize the size and shape of the multi-flow
regions after first shell crossing, and estimate their vorticity content
as a function of cosmic time.

In short, having looked in detail at the set of (Lagrangian-)
smoothed simulations allows us to conclude that streaming mo-
tion of DM away from minima and wall-saddle points of the field,
and along the walls of the density field is responsible for generating
the multi-flow region in which vorticity arises. In turn, this vorticity
defines the environment in which lower mass haloes collapse. Such
haloes inherit their spin from this environment, as quantified by
Fig. 5.

4.3 Mass transition for spin–filament alignment

Up to now, we have not considered the mass of the forming halo
within the multi-flow region. The assumption has been that the La-
grangian extension of the progenitor of the dark halo was small
compared to the antecedents of a given vorticity quadrant, so that
the collapse occurs within a quadrant of a given polarization, and
leads to the formation of haloes with a spin parallel to that vortic-
ity. For more massive objects (of the order of the transition mass),

Figure 10. Azimuthal average of the radial profile of the vorticity. The
profile is obtained by averaging on the sections of a complete filament (each
section is associated with a filament segment, to which the section is per-
pendicular). Vorticity is clearly larger towards the caustic, and would theo-
retically become singular (as 1/

√
1 − r/rmax) at the caustic for a Zel’dovich

mapping, as shown in Pichon & Bernardeau (1999). Here the profile is con-
volved by shape variations from one caustic to another and by the azimuthal
average. The indicative error bar was computed as the average over a larger
stack.

we can anticipate that their progenitor patch overlaps future vor-
ticity quadrants of opposite polarity, hence that they will mostly
cancel the component of their vorticity aligned with the filament
as they form. The above-mentioned observed transition mass be-
tween aligned and anti-aligned spins relative to filaments would
then typically correspond to the mass associated with the width
of the quadrant of each caustics. In fact, as argued in Pichon &
Bernardeau (1999, fig. 7) and shown in Fig. 10, the vorticity within
the multi-flow region is mostly distributed near the caustic, on the
outer edge of the multi-flow region. It is therefore expected that,
as the size of the collapsed halo increases, but remains below that
of the quadrant, its vorticity should increase (as it collects more
and more coherent rotating flow as secondary inflow), as shown in
Fig. 5. As it reaches sizes above that of the quadrant, it should start
to diminish significantly1 (see also Fig. 11 and Appendix B where
this transition is illustrated with the help of a toy model).

Let us turn back specifically to Fig. 6. For the range of mass
log M/M� ≈ 11.4–12.1, the alignment between the spin and
the direction of the filament increases with mass peaking at
Mmax ≈ 1012 M�, before it rapidly decreases and changes to
preferably perpendicular one for log M > log Mcrit ≈ 12.7, i.e.
Mcrit ≈ 5 × 1012 M�. This is fully consistent with the correspond-
ing increase in vorticity shown in Fig. 5.

The characteristic masses can be roughly understood by conjec-
turing that the highest alignment occurs for the haloes which are of
the size of vortices in the caustic regions that just undergo collapse.
The measured caustic structure depends on the chosen smoothing
scale, so a recently formed filament corresponds to the vortex that

1 In fact, while investigating the statistics of the vorticity within spherical
shells, Pichon & Bernardeau (1999) showed that if we consider spheres of
size above one quadrant of the multi-flow regions, the total vorticity within
that sphere drops significantly.
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Figure 11. Sketch of the dynamics of a low-mass halo formation and spin-up within a wall near a filament, which are perpendicular to the plane of the
image (in yellow). The tidal sphere of influence of this structure is represented by the pale yellow ellipse. The three bundles of large dots (in green, red, and
blue) represent Lagrangian points (at high redshift) which image, after shell crossing, will end up sampling regularly the lower right quadrant of the Eulerian
multi-flow region; the three progenitor bundles are computed here in the Zel’dovich approximation (see Pichon & Bernardeau 1999, for details; note that this
Eulerian quadrant is not up to scale). Each pair of dots (one large, one small) represents the same DM particle in the initial condition and final condition.
In black, 3/4 of the Eulerian caustic. In light, resp. dark pink, the locus of the Lagrangian and Eulerian position of the halo, which has moved by a distance
displayed by the red arrow, and spun up following the purple arrows while entering the quadrant. The blue and green arrows represent the path of fly-by DM
particles originating from the other two bundles, which will contribute to torquing up the halo (following Codis et al. 2012). Given the geometry of the flow
imposed by the wall and swirling filament, the spin of the DM halo will necessarily be parallel to the direction of the filament and to the vorticity in that
quadrant. In the language of TTT, the tidal field imposed on to the Lagrangian patch of the halo (very light pink, corresponding to secondary infall) should
be evaluated subject to the constraint that the halo will move into the anisotropic multi-flow region (each emphasis imposing a constraint of its own); these
constraints will in turn impose that the corresponding spin-up will be aligned with the vortex.

shows a basic four quadrant structure and, following Pichon &
Bernardeau (1999), which has vorticity close to the Hubble value
H. From our simulations, the typical Lagrangian radius of such
vortex is ≈1.5 h−1 Mpc, which if taken as the top-hat scale gives a
mass estimate Mmax ≈ 1.5 × 1012 M� for the mass of haloes with
maximum spin/filament alignment. The transition to misalignment
will happen at Mcrit ≈ 8 × Mmax where the whole width of the fil-
ament is encompassed. Of course the quantitative accuracy of such
argument should not be over-emphasized. For instance, if we took
the Lagrangian radius of the vortex to be 1.3 h−1 Mpc, we would
get Mmax = 1012 M�, which would fit the transition of Fig. 6 even
closer.

5 D I S C U S S I O N S A N D C O N C L U S I O N S

Let us reframe the findings of Section 3 and 4 in the context of
recent published results in this field before concluding.

5.1 Discussion

Libeskind et al. (2013)’s description of AM acquisition occurs in
two stages (first through TTT, and then through the curl of the em-
bedding velocity field). Results of Sections 3 and 4 seem consistent
with this. In particular the alignment of vorticity with the eigenvec-
tors of the tidal field is confirmed in Appendix E. The connection
between Pichon et al. (2011) and this paper is the following: in
the former, it was shown that the spin up of dark haloes proceeded

in stages: a given collapsing halo would first acquire some specific
AM following TTT, at turn around freezing its amplitude at the TTT
expected value; in a secondary stage (see their fig. 9), it would spin
up again as it acquires specific AM from secondary infall coming
from the larger scale distribution of matter which collapses at the
next stage of hierarchical clustering. For relatively isolated massive
haloes that form from statistically rare density enhancements as
studied in Pichon et al. (2011), this secondary collapse just leads to
a virialized halo of increased mass. The (Eulerian) emphasis of the
current paper and of Codis et al. (2012) (see also Danovich et al.
2011) is to note that for less massive and less rare haloes, form-
ing in large-scale filamentary regions, this secondary infall, coming
late from the turn-around of the encompassing filamentary struc-
ture, is arriving along marked preferred directions and is typically
multi-flow and vorticity rich. Given that the shell crossing occurring
during the later formation of that embedding filament generates vor-
ticity predominantly aligned with the filament, this secondary infall
will contribute extra spin up along the filament direction. Hence
the global geometry of the inflow is consistent with a spin acqui-
sition for haloes induced by the large-scale dynamics within the
cosmic web, and in particular its multi-flow vortices. This scenario
may only be reconciled with the standard (Lagrangian) tidal torque
theory if the latter is augmented so as to account for the larger
scale anisotropic environment of walls and filaments responsible
for secondary infall (see Pichon et al. 2014).

Let us sketch the basis of such calculation. The geometry of the
setting is shown in Fig. 11. For Gaussian random fields, one can
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Table 2. The median and mean cosine values for the set of studied alignments. In parenthesis
are the expected values for random distributions.

Definition Name Mean Median

Alignment between vorticity and Cosmic Web
DM: vorticity/filaments 0.58 (0.5) 0.62
Hydro: vorticity/filaments |cos μ| 0.58 (0.5) 0.63
DM: vorticity/walls 0.34 (0.5) 0.27
Alignment between vorticity and haloes spin
10 ≤ log(M/M�) ≤ 11 0.09 (0.0) 0.14
10 ≤ log(M/M�) ≤ 12 cos θ 0.19 (0.0) 0.29
12 ≤ log(M/M�) ≤ 13 0.53 (0.0) 0.72
Alignment between density walls and 0-vorticity walls

|cos ψ | 0.54 (0.5) 0.56
Alignment between vorticity and tidal tensor eigenvectors
Vorticity/e1 0.62 (0.5) 0.69
Vorticity/e2 |cos γ | 0.48 (0.5) 0.47
Vorticity/e3 0.31 (0.5) 0.23

compute the most likely tidal field and inertia tensor at a given
Lagrangian peak, subject to a Zel’dovich boost which will trans-
late that peak near to a filament at some distance r; this distance
corresponds to the time during which the nearby filament has shell-
crossed multiplied by the original velocity. In turn, the condition of
shell crossing can be expressed as constraints on the eigenvalues of
the shear tensor. We can anticipate that the pre-existing Lagrangian
correlation between the tidal field of the halo-to-be, on the one hand,
and the Hessian of the filament-to-be, on the other hand, imposes
some alignment between the direction of the filament (along the
first eigenvector of the Hessian) and the spin of the collapsing halo
(as set by the corresponding tidal tensor). If the critical condition
that the filament is embedded into a given wall is added, the axial
symmetry of the problem will be broken, and the inertia and tidal
tensor (which are sensitive to different scales) will end up mis-
aligned, reflecting this anisotropy. In this context, the observed spin
(and importantly its polarity) will correlate with the polarity of the
vorticity quadrant the halo ends up into after translation. The up-
shot is that in Fig. 11; the lighter pink sphere will ‘know’ about the
green dots given these constraints. This supplementary requirement
is imposed by the fact that the correlation between spin and vorticity
keeps tract of the direction of both vectors, as shown in Fig. 5. It
appears from this sketch that, as the Lagrangian patch of the proto-
halo becomes of the order of the typical Lagrangian size of the
quadrant, the alignment will increase, and as it becomes larger, it
will fade (see Appendix B for an illustration of this transition). Note
finally that this ‘one slice perpendicular to the filament axis’ picture
cannot address the process of spin flipping to a perpendicular di-
rection to the filament via mergers, as this is a longitudinal process.
This is also the topic of Pichon et al. (2014) which complements
the Eulerian view presented here.

5.2 Conclusions

Using large-scale cosmological simulations of structure formation,
we have analysed the kinematic properties of the velocity flows
relative to the cosmic web. Our findings are the following.

(i) The vorticity in large-scale structures on scales of 0.39
h−1 Mpc and above is confined to, and aligned with, its filaments
with an excess of probability of 20 per cent relative to random ori-
entations, and perpendicular to the normal of the dominant walls at

a similar level. This is consistent with the corresponding direction
of the eigenvectors of the tidal field (and is expected given that the
potential is a smoothed version of the density field).

(ii) At these scales, the cross-sections of these filaments are typ-
ically partitioned into quadripolar caustics, with opposite vorticity
parallel to their filament, arising from multiple flows originating
from neighbouring walls, as would secondary shell crossing along
these walls imply. The radial vorticity profile within the multi-flow
region displays a sharp rise near the caustic, a qualitatively expected
feature of catastrophe theory.

(iii) The spins of embedded haloes within these filaments are
consistently aligned with the vorticity of their host vorticity quad-
rant at a level of 165 per cent. The progenitor of lighter haloes
within the multi-flow region can be traced back to three flows or
more originating from the neighbouring walls, and form within the
filament.

(iv) Appendix A shows that for adiabatic/cooling hydrodynami-
cal simulations within the DM caustics, the gas and the DM share the
same vorticity orientation on large scales. High-resolution cooling
runs show that the small-scale structure of the velocity flow around
forming galaxies does not destroy this larger scale coherence.

(v) The mass transition for spin–filament alignment is set by the
size of sub-caustics with a given polarization (see Appendix B).
The alignment is strongest for Lagrangian patch commensurable
with the sub-caustic as vorticity is strongest on the edge of the
multi-flow region. Once the collapsed halo has a size larger than
any such sub-caustic, it cancels out most of the vorticity within the
caustics.

The focus of this paper was in explaining the ‘where’: pinning
down the locus of vorticity and describing the geometry of multi-
flow infall towards filaments; and the ‘how’: explaining its origin
via shell crossing. It also provided an explanation for the origin of
the mass transition for spin alignment. All measured alignments are
summarized in Table 2.

Improvements beyond the scope of this paper include (i) devel-
oping the sketched anisotropic (filamentary) peak-background-split
theory of spin acquisition; (ii) quantifying the curvilinear evolution
of the vorticity (orientation and amplitude) as a function of distance
to the critical points of the cosmic web and predicting the spin flip
for high masses; (iii) quantifying the helicoidal nature of gas infall
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on galactic scales; (iv) connecting the findings of this paper to the
actual process of galactic alignment.

In turn, this should allow astronomers to shed light on the fol-
lowing problems: how and when was the present Hubble sequence
of galaxies established? How much of the dynamical evolution of
galaxies is driven by environment? What physical processes trans-
forming galaxies dominate morphology: galaxy interactions and
mergers, external accretion and outflows, secular evolution? What
is their respective roles in shaping discs, bulges or spheroids? Is it
the same process at low and high redshift? These are addressed in
part in the companion paper, Dubois et al. (2014), which shows in
particular using state-of-the-art hydrodynamical simulations with
AGN/SN feedback that at high redshifts the large vorticity of the
gas flow is correlated with the direction of the spin of galaxies (their
fig. 12).
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A P P E N D I X A : T H E VO RT I C I T Y O F T H E G A S

We use three hydrodynamical simulations SHA
100 , SHC

100 and Scool
20 (0.7)

(see also Table A1), carried out with the Eulerian hydrodynamic
code RAMSES (Teyssier 2002), which uses an Adaptative Mesh Re-
finement (AMR) technique. For these hydrodynamical runs, the
evolution of the gas is followed using a second-order unsplit Go-
dunov scheme for the Euler equations. The HLLC Riemann solver
with a first-order MinMod Total Variation Diminishing scheme to

Table A1. The set of hydrodynamical simulations used in
Appendix A. The hydro runs come in two categories: adia-
batic and cooling, including one high-resolution run which
was stopped at redshift 0.7.

Name Type Box size Resolution
h−1 Mpc

SHA
100 �HDM adiabatic 100 2563

SHC
100 �HDM cool 100 2563

Scool
20 (0.7) �CDM cool 20 10243
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Swirling filaments 2755

Figure A1. The probability distribution of the cosine of the angle between
the vorticity in the smoothed DM and hydrodynamical simulations and the
direction of the filament (solid line). The same measure is done for random
directions of u (dashed blue line), plotted for the DM in SHDM

100 and for the
gas in SHA

100 (adiabatic gas) and SHC
100 (cooling run). We find an excess of

probability for |cos μ| in [0.5, 1] relative to random orientations, and three
profiles are very similar, which shows that large-scale modes dominate.

reconstruct the interpolated variables from their cell-centred values
is used to compute fluxes at cell interfaces. Collisionless particles
(DM and star particles) are evolved using a particle-mesh solver
with a Cloud-In-Cell interpolation. The initial mesh is refined up
to x = 1.7 kpc according to a quasi-Lagrangian criterion: if the
number of DM particles in a cell is more than eight, or if the
total baryonic mass in a cell is eight times the initial DM mass
resolution.

For the cooling runs Scool
100 , and Scool

20 , gas is allowed to cool by
H and He cooling with an eventual contribution from metals using
a Sutherland & Dopita (1993) model down to 104 K. Heating from
a uniform UV background takes place after redshift zreion = 10
following Haardt & Madau (1996).

On large scales (as probed by the smoothed sets of simulations)
the vorticity of gas shows the same correlations with the filaments as
DM does. Fig. A1 displays the probability distribution of the cosine
of the angle between the vorticity and the direction of the filament
for the DM field (in red), the adiabatic gas (in blue) cooling run
(in yellow). These three simulations quantitatively show the same
preference for their vorticity to be aligned with the filamentary
structure. In a nutshell, differences between the adiabatic and the
cooling run only appear on kpc scales, so that on large scales,
the DM, adiabatic and cooling runs have the same velocity field
structure.

Fig. C1 displays the probability distribution of the cosine of the
angle between the vorticity and the direction of the skeleton for
a range of redshifts. The correlation between the direction of the
filament and the vorticity is significant. As expected, this correlation
decreases with cosmic time (at a fixed smoothing scale). Appendix C
investigates the evolution of this correlation as a function of the
skeleton’s persistence. As long as we consider large enough scales,
the alignment pervades and is consistent with that of the DM. On
smaller scales, the gas is dense enough to allow cooling to operate
and re-structure the velocity flow. Notwithstanding, these smaller

scale structures do not affect the larger scale correlation between
vorticity and the direction of the filaments.

A P P E N D I X B : TOY M O D E L FO R H A L O S P I N

Can a model based on a vorticity field in qualitative agreement with
what was found in the simulation explain why it should lead the
observed evolution of spin alignment with mass? Let us qualita-
tively illustrate with a simple toy model this mass transition for the
spin–filament alignment. In this toy problem, we consider an iso-
lated infinite filament aligned along ez. We define the corresponding
idealized vorticity field as

Ω(r, θ ) = Cε sin(2θ )
1

(ε2 + (r − R)2)
ez ,

with C a constant, R the radius of the caustic and ε a small number.
The vorticity thus defined is largest along the caustic, point reflection
symmetric and tends rapidly to 0 outside the caustic. Should ε tend
to 0, vorticity would become singular on the edge of the caustic
(r → R). The map of the vorticity is displayed in Fig. B1 (top left
panel).

By application of the Helmoltz–Hodge theorem, we find that the
curl component of the velocity field consistent with that vorticity
(i.e. such that Ω = ∇ × v) obeys

v(r, θ ) = 1

4π

∫
V

∇ × Ω(r ′, θ ′)
1

|r − r ′|dV . (B1)

We assume here that the shear part of the curl free component of the
velocity flow is smaller on scales comparable to the halo. We now
consider a spherical halo of radius rh embedded in one of the four
quadrants of the caustic, centred on Ch(xh, yh) with x2

h + y2
h ≤ R.

From equation (B1) we can simply compute its AM J (rh, xh, yh),
and look at the variation of J as a function of its position at fixed
radius, or as a function of its radius at fixed position. Fig. B1
(bottom panel) shows the magnitude of the AM along the z-axis for
a halo centred on Ch(0.5 R/

√
2,0.5 R/

√
2) as a function of the radius.

We observe that the alignment increases until the size of the halo
encompasses the whole quadrant. At a given radius, the position of
the halo which maximizes the AM is the one for which the edge of
the halo coincides with the edge of the caustic, since the vorticity
peaks close to the caustic.

APPENDI X C : PERSI STENCE EFFECTS

Given the characteristics of �CDM hierarchical clustering, one
can anticipate that the process described in the main text occurs
on several nested scales at various epochs – and arguably on var-
ious scales at the same epoch. The scenario we propose for the
origin of vorticity and spin alignment is, like the signal itself, rel-
ative to the linear scale involved in defining the filaments and as
such multi-scale. Indeed in the main text, the two sets of simula-
tions, S�CDM and S�HDM, allowed us to probe different scales of
the vorticity field. The induced multi-scale anisotropic flow also
transpires in the scaling of the spin flipping transition mass with
smoothing presented in appendix of Codis et al. (2012). It will
hold as long as filaments are well defined in order to drive the local
cosmic flow.

Let us now briefly explore the effects of probing different scales
of the LSS via the skeleton level of persistence. Fig. C1 shows
the excess alignment probability as a function of the cosine of the
angle between the vorticity and the filaments as a function of the
persistence level for a range of values. The alignment is strongest
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Figure B1. Top: maps of the vorticity (left) projected along ez and the associated curl component of the velocity (right) computed from the vorticity by
application of the Helmoltz–Hodge theorem. Bottom: magnitude of the AM along ez for a halo embedded in one of the four quadrants. We first consider how it
varies as a function of the radius of the halo (left), the position of this latter being fixed (xh,yh) = (0.5/

√
2, 0.5/

√
2). The alignment of the AM of the halo with

the vorticity increases until the halo size becomes comparable to that of the vorticity quadrant. We study then the magnitude of the AM along ez at fixed radius
(Rh = 0.3) as a function of the position x along the diagonal (right). In this case, the alignment increases up to the point where the halo boundary coincides
with the vorticity caustic, with the halo still being fully contained within the vorticity quadrant (xh,yh) ∼ (0.7/

√
2, 0.7/

√
2).

with the largest scale filamentary structure corresponding to the
least dynamically evolved features of the field. Here the gas density
was sampled over a cube of size 5123. It was then smoothed over
8 pixels (300 kpc) and the persistent skeleton was computed from
the logarithm of that smoothed field normalized to its standard
deviation. Hence the persistence levels 0.06, 0.12, ..., 2 are in units
of this root mean square.

Fig. C2 gives visual impression of the corresponding structure of
the skeleton as a function of these persistence levels: the skeleton
has a tree-like structure, for which each level of lower persistence
contributes smaller branches. Hence the persistence level of 0.5 used
in the main text corresponds to a description of the main filaments
of the simulation.

A P P E N D I X D : T H E E F F E C T O F S M O OT H I N G

Fig. D1 shows the effect of the smoothing of the velocity field
before computing the vorticity on the alignment between the vor-
ticity and the direction of the filament. The amplitude of the ex-
cess of alignment varies slightly with the smoothing scale, but the

main conclusion that an excess of alignment is detected remains
unchanged.

A P P E N D I X E : T I DA L - VO RT I C I T Y L O C K U P

Fig. E1 displays the probability distribution of the cosine of the angle
between the vorticity and the eigenvectors of the tidal field tensor,
cos γ . The vorticity tends to be perpendicular to the minor axis
(e3) of the tidal tensor which corresponds to the axis along which
material is collapsing fastest. It is qualitatively in agreement with
Fig. 2 and with Libeskind et al. (2013) which focus, respectively, on
the eigenvectors of the Hessian of the density, and the eigenvectors
of the shear tensor. For the latter, the description is kinematic, rather
than dynamical for the tidal field.

A P P E N D I X F: FO F H A L O C ATA L O G U E

As mentioned in the main text, FOF is prone to spuriously link
neighbouring structures which could bias the alignment of the spin
and the vorticity. An additional criterion is therefore required to
produce a trustworthy catalogue of haloes. Following Bett et al.
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Figure C1. Left: the probability distribution of the cosine of the angle between the vorticity and the direction of the filament measured in Scool
20 (z = 0.7) for

different persistence threshold. The level of persistence of the main text corresponds to c = 0.5. Right: the probability distribution of the cosine of the angle
between the vorticity and the direction of the skeleton, measured in Scool

20 (0.7) for various redshifts as labelled. The amplitude of the correlation decreases with
cosmic time.

Figure C2. The skeleton measured in Scool
20 (0.7) for increasing persistence

threshold, 0.06, 0.12,. . . , 2, from light blue to red; the skeleton has tree-like
structure where the main branches correspond to the most persistent ones.
The level of persistence of the main text corresponds to the dark blue and
red branches.

(2007), we proceed using the distribution of the spin parameter
defined by Peebles (1969): λ = J |E|1/2/GM

5/2
h , where J is the

magnitude of the spin, E is the total energy of the halo, G is the
gravitational constant and Mh is the halo mass.

Fig. F1 shows the average normalized histogram of the log-
arithm of the spin parameter for the haloes in the simula-

Figure D1. The probability distribution of the cosine of the angle between
the vorticity and the direction of the filament, measured in SCDM

100 for various
smoothing scales of the velocity field before computation of the vorticity.
Smoothing scales are expressed in h−1 Mpc. The smoothing scale adopted
in the main text is 0.39 h−1 Mpc.

tions set SCDM
50 . At high spin we clearly see a long tail, up to

λ = 238.2, due to spurious linking of the structures. We use
the analytical model proposed in Bett et al. (2007) to fit the
log λ-distribution: P(log λ) = A(λ/λ0)3exp [−α(λ/λ0)3/α], where
A = 3ln 10 αα − 1/�(α), with the values λ0 = 0.0341 and α = 2.98
which are providing the best fit. These values are in good agreement
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Figure E1. The probability distribution of the cosine of the angle be-
tween the vorticity and the eigenvectors of the tidal tensor, measured in
SCDM

100 . The vorticity tends to be perpendicular to the minor axis (e3) of
the tidal tensor: the excess of probability to have |cos θ | in [0, 0.5] (i.e.
60 ≤ θ ≤ 90◦) is 50 per cent relative to random orientations. The vorticity
tends also to be aligned with the major axis (e1): the excess probability to
have |cos θ | in [0.5, 1] (i.e. 0 ≤ θ ≤ 60◦) is 25 per cent relative to random
orientations. e3 corresponds to the axis along which material is collapsing
fastest.

Figure F1. The normalized histogram of the logarithm of the spin param-
eter in the simulations set SCDM

50 . The median value of λ is 0.034 ± 0.0005
for the cleaned catalogue. The solid black line is the normalized distri-
bution for all haloes. Notice a tail at high spin parameter which cor-
responds to spuriously linked structures. The solid blue line is the dis-
tribution for haloes with λ ≤ 0.12, with the same normalization as for
all haloes. The dotted lines are the analytical fit described in the text,
red is our best fit to the distribution, and orange is the best fit found by
Bett et al. (2007).

Figure G1. Different kinds of vorticity cross-sections.

with those found by Bett et al. (2007) (λ0 = 0.043 and α = 2.51),
though their way to clean their catalogue (TREEall) is more sophis-
ticated, in particular by taking into account an additional condition
on energy. They showed also that the minimal number of particles
per halo, Np, clearly affects the λ-distribution only for Np lower
than 100. Above this threshold, the change in the median value of
λ stays lower than 10 per cent. Consequently, we keep in our cata-
logue only haloes with more than 100 particles. These haloes are
then selected through a cut in λ. We find that removing haloes with
λ ≥ 0.12 best fits the adopted analytical model. Removed haloes
represent 9.4 ± 1.2 per cent of the total population. Inspection of
some of these removed haloes shows that they generally are multi-
ple objects. We are left with around 5000 haloes in each 50 h−1 Mpc
box of the SCDM

50 simulations set.
We then quantify how the cut in λ affects the vorticity–spin

alignment results. Considering three different catalogues with three
different cuts in λ (λ < 0.08, λ < 0.12, λ < 0.2) we look for each
catalogue and for each bin of mass at the quantity (ζ tot − ζ cut)/
(1 + ζ tot) where 1 + ζ cut is the excess of alignment in the reduced
catalogue and 1 + ζ tot in the full catalogue. This difference is always
<5 per cent. We conclude that including or not the misidentified
structures does not significantly change the measure of the spin
alignment with the vorticity.

A P P E N D I X G : Z O O L O G Y O F C AU S T I C S

Fig. G1 shows a bundle of cross-sections of vorticity computed as
in Fig. 3.

APPENDI X H : D EFI NI NG ZERO VORTI CITY

The algorithm DISPERSE introduced by Sousbie (2011) is used to
defined the density walls and the contours of minimal vortic-
ity. The density walls are computed as being the ascending two–
manifolds of the skeleton calculated on the density field. The con-
tours of minimal vorticity are defined as being the descending two–
manifolds of the skeleton calculated on the norm of the vorticity
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field. Since the vorticity is really well defined only on the neighbour-
hood of caustics, a mask is applied when the walls are computed,
which covers all the regions of space where the density is lower
than 10 per cent of the maximum density and the vorticity lower
than 10 per cent of the maximum vorticity. The results of the com-
putation of the density walls and minimal vorticity contours are
tessellations, which means sets of triangles. For each triangle in the
minimal vorticity tessellation we find its nearest neighbours in the

density tessellation. Smoothing is achieved by averaging the posi-
tion of each vertex with that of its direct neighbours. A smoothing
coefficient S = N means that this operation is repeated N times. The
cosine between the normals of both triangles is then calculated.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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ABSTRACT
A large-scale hydrodynamical cosmological simulation, Horizon-AGN, is used to investigate
the alignment between the spin of galaxies and the cosmic filaments above redshift 1.2. The
analysis of more than 150 000 galaxies per time step in the redshift range 1.2 < z < 1.8 with
morphological diversity shows that the spin of low-mass blue galaxies is preferentially aligned
with their neighbouring filaments, while high-mass red galaxies tend to have a perpendicular
spin. The reorientation of the spin of massive galaxies is provided by galaxy mergers, which
are significant in their mass build-up. We find that the stellar mass transition from alignment to
misalignment happens around 3 × 1010 M�. Galaxies form in the vorticity-rich neighbourhood
of filaments, and migrate towards the nodes of the cosmic web as they convert their orbital
angular momentum into spin. The signature of this process can be traced to the properties of
galaxies, as measured relative to the cosmic web. We argue that a strong source of feedback
such as active galactic nuclei is mandatory to quench in situ star formation in massive galaxies
and promote various morphologies. It allows mergers to play their key role by reducing
post-merger gas inflows and, therefore, keeping spins misaligned with cosmic filaments.

Key words: methods: numerical – galaxies: evolution – galaxies: formation – galaxies: kine-
matics and dynamics – cosmology: theory – large-scale structure of Universe.

� E-mail: dubois@iap.fr

1 IN T RO D U C T I O N

Theoretical models of structure formation by gravitational insta-
bility and numerical simulations have predicted that small fluctua-
tions from the early Universe lead to the formation of a large-scale
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cosmic web made of clustered haloes, filaments, sheets and voids
(e.g. Zeldovich, Einasto & Shandarin 1982; Klypin & Shandarin
1983; Blumenthal et al. 1984; Davis et al. 1985). The resulting
properties of the Universe’s large-scale structure are the interplay
of the planar local collapse, as emphasized in Zel’dovich (1970)
(see also Shandarin & Zeldovich 1989) and the inherent structure
of the Gaussian initial density and velocity shear fields, leading
to the cosmic web picture of dense peaks connected by filaments,
framing the honeycomb-like structure of walls (Bardeen et al. 1986;
Bond, Kofman & Pogosyan 1996).

The extension of the Center for Astrophysics redshift survey
(Huchra et al. 1983) gave spectacular observational evidence (de
Lapparent, Geller & Huchra 1986; Geller & Huchra 1989) for this
picture, triggering a renewed interest for such large-scale galaxy
surveys (Colless et al. 2001; Tegmark et al. 2004).

Modern simulations have established a tight connection between
the geometry and dynamics of the large-scale structure of matter,
on the one hand, and the evolution of the physical properties of
forming galaxies, on the other. Observational information on the
morphology of galaxies and its dependence on environment is rou-
tinely becoming available for galaxies up to redshift 2 and beyond
(Abraham et al. 2007; Oesch et al. 2010; Lee et al. 2013). Matched
samples at low and high redshifts allow for the study of the evolu-
tion of many physical properties of galaxies for most of the history
of our Universe in unprecedented detail. A key question formu-
lated decades ago is nevertheless not satisfactorily answered: what
properties of galaxies are driven by the cosmic environment?

There is ample literature (e.g. Hoyle 1949; Peebles 1969;
Doroshkevich 1970; White 1984; Schaefer 2009) on the tidal torque
theory (TTT). It aims to explain the early acquisition of the spin1 of
haloes, in the regime where the dynamics is well described by the
Zel’dovich approximation, and when it is legitimate to assume that
the tidal and the inertia tensors are uncorrelated. Within this frame-
work, TTT predicts that the spin of haloes should be perpendicular
to the direction of filaments.

Using N-body simulations, which model only dark matter (DM),
Hahn et al. (2007a) and Zhang et al. (2009) found halo spins prefer-
entially oriented perpendicular to the filaments independent of halo
mass. Hatton & Ninin (2001) claimed to detect an alignment be-
tween spin and filament, while Faltenbacher et al. (2002) measured
a random orientation of the spins of haloes in the plane perpen-
dicular to the filaments. More recently, a consensus emerged when
several works (Aubert, Pichon & Colombi 2004; Bailin & Steinmetz
2005; Aragón-Calvo et al. 2007; Hahn et al. 2007b; Paz, Stasyszyn
& Padilla 2008; Sousbie et al. 2008; Libeskind et al. 2012; Trow-
land, Lewis & Bland-Hawthorn 2013) reported that large-scale
structures – filaments and sheets – influence the direction of the
angular momentum of haloes in a way originally predicted by
Sugerman, Summers & Kamionkowski (2000) and Lee & Pen
(2000). These studies pointed towards a mass-dependent orienta-
tion of the spin, arguing for the first time that the spin of high-mass
haloes tends to lie perpendicular to their host filament, whereas low-
mass haloes have a spin preferentially aligned with it. Nevertheless,
the detected correlation remained weak and noisy until Codis et al.
(2012) confirmed it. They quantified a redshift-dependent mass tran-
sition Mtr, h, separating aligned from perpendicular haloes, and in-
terpreted the origin of the transition in terms of large-scale cosmic
flows. Codis et al. (2012) found that high-mass haloes have their
spins perpendicular to the filament because they are the results of

1 Hereafter, the spin is the angular momentum unit vector for simplicity.

mergers, a scenario suggested earlier by Aubert et al. (2004, see also
Bailin & Steinmetz 2005). Low-mass haloes are not the products
of mergers and acquire their mass by gas accretion in the vorticity-
rich neighbourhood of filaments, which explain why their spins are
initially parallel to the filaments (Laigle et al. 2013; Libeskind et al.
2013a).

Tempel, Stoica & Saar (2013) recently found tentative evidence
of such alignments in the Sloan Digital Sky Survey (SDSS) with
an orthogonality for elliptical galaxies and a weak alignment for
spiral galaxies (see also Tempel & Libeskind 2013). Zhang et al.
(2013) found that the major axis of red galaxies is parallel to their
host filaments and is the same for blue galaxies albeit with a weaker
signature. Similar measurements have been done for galaxies and
walls; there is evidence that the spin of galaxies also lies within
the walls in which they are contained (Trujillo, Carretero & Patiri
2006).

Besides those attempts to relate the spins of galaxies with the cos-
mic structure, much observational effort has been made to control
the level of intrinsic alignments of galaxies as a potential source
of systematic errors in weak gravitational lensing measurements
(e.g. Croft & Metzler 2000; Heavens, Refregier & Heymans 2000;
Hirata & Seljak 2004). Such alignments are believed to be the ma-
jor source of systematics of the future generation of lensing surveys
like Euclid or Large Synoptic Survey Telescope (LSST). Direct
measurements of the alignment of the projected light distribution
of galaxies in wide-field imaging data seem to agree on a contam-
ination at a level between a few per cent and ∼10 per cent of the
shear correlation functions, although the amplitude of the effect
depends on the population of galaxies considered (e.g. Lee & Pen
2002; Joachimi et al. 2013). Given this dependence, it is difficult
to use DM-only simulations as the sole resource to predict and
control intrinsic alignments despite some success with the addition
of a semi-analytical model prescription (e.g. Joachimi et al. 2013).
The inherently anisotropic nature of the large-scale structure and its
complex imprint on the shapes and spins of galaxies may prevent
isotropic approaches from making accurate predictions.

Very few attempts have been made to probe the degree of cor-
relation between galaxy spins and their embedding cosmic web
using hydrodynamical cosmological simulations. Hahn, Teyssier &
Carollo (2010) simulated the vicinity of a large-scale cosmic fila-
ment and found that – at odds with the results presented in our paper
– the spin of galaxies within high-mass haloes is aligned with the fil-
ament while the spin of galaxies in low-mass haloes is perpendicular
to the filament. Gay et al. (2010) focused on the colour gradients rel-
ative to the cosmic web using the Horizon-MareNostrum simulation
(Devriendt et al. 2010) which did not display much morphological
diversity. They found evidence of metallicity gradients towards and
along the filaments and nodes of the cosmic web. Danovich et al.
(2012) also studied the feeding of massive galaxies at high redshift
through cosmic streams using the Horizon-MareNostrum simula-
tion. They found that galaxies are fed by one dominant stream (with
a tendency to be fed by three major streams), streams tend to be
co-planar (in the stream plane), and that there is a weak correla-
tion between spin of the galaxy and spin of the stream plane at the
virial radius, which suggests an angular momentum exchange at
the interface between streams and galaxies (see also Tillson et al.
2012).

In this paper, our focus is on the influence of the cosmic web
as an anisotropic vector of the gas mass and angular momen-
tum which ultimately shape galaxies. Our purpose is to determine
if the mass-dependent halo spin–filament correlations of Codis
et al. (2012) can be recovered via the morphology and physical
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properties of simulated galaxies. We aim to test these findings on a
state-of-the-art hydrodynamical simulation, the so-called Horizon-
AGN simulation, which produced over 150 000 resolved galaxies
displaying morphological diversity by redshift z = 1.2, in order to
identify the effect of the environmentally driven spin acquisition on
morphology and to probe the tendency of galaxies to align or mis-
align with the cosmic filaments as a function of galactic properties.

The paper is organized as follows. Section 2 describes the numeri-
cal set-up of our simulation, the post-processing of galaxy properties
and filament tracing. Section 3 presents the excess probability of
alignment as a function of morphological tracers and investigates
its redshift and spatial evolution. Section 4 discusses the origin of
the observed (mis)alignment between galactic spins and filaments.
We finally conclude in Section 5.

2 TH E V IRTUA L DATA SE T

In this section, we describe the Horizon-AGN simulation (Sec-
tion 2.1), how galaxies are identified in it and how the virtual ob-
servables are derived (Section 2.2). We conclude this section with
a description of the tools used to compare the spins of galaxies to
the orientation of the cosmic web (Section 2.3).

2.1 The Horizon-AGN simulation

2.1.1 The code and initial conditions

We adopt a standard � cold dark matter cosmology with total matter
density �m = 0.272, dark energy density �� = 0.728, amplitude of
the matter power spectrum σ 8 = 0.81, baryon density �b = 0.045,
Hubble constant H0 = 70.4 km s−1 Mpc−1 and ns = 0.967 compat-
ible with the Wilkinson Microwave Anisotropy Probe 7 cosmology
(Komatsu et al. 2011). The values of this set of cosmological param-
eters are compatible with those of the recent Planck results within a
10 per cent relative variation (Planck Collaboration 2013). The size
of the box is Lbox = 100 h−1 Mpc with 10243 DM particles, which
results in a DM mass resolution of MDM, res = 8 × 107 M�. The
initial conditions have been produced with the MPGRAFIC software
(Prunet et al. 2008). The simulation was run down to z = 1.2 and
used 4 million CPU hours.

The Horizon-AGN simulation is run with the adaptive mesh re-
finement code RAMSES (Teyssier 2002). The evolution of the gas is
followed using a second-order unsplit Godunov scheme for the Eu-
ler equations. The HLLC Riemann solver (Toro, Spruce & Speares
1994) with MinMod total variation diminishing scheme is used to
reconstruct the interpolated variables from their cell-centred values.
Collisionless particles (DM and star particles) are evolved using a
particle-mesh solver with a cloud-in-cell interpolation. The initial
mesh is refined up to �x = 1 kpc (seven levels of refinement). This
is done according to a quasi-Lagrangian criterion: if the number
of DM particles in a cell is more than 8, or if the total baryonic
mass in a cell is eight times the initial DM mass resolution, a new
refinement level is triggered. In order to keep the minimum cell size
approximately constant in physical units, we allow a new maximum
level of refinement every time the expansion scale factor doubles
(i.e. at aexp = 0.1, 0.2, 0.4 and 0.8).

2.1.2 Gas cooling and heating

Gas is allowed to cool by H and He cooling with a contribution
from metals using a Sutherland & Dopita (1993) model down to
104 K. Heating from a uniform UV background takes place after

redshift zreion = 10 following Haardt & Madau (1996). Metallicity is
modelled as a passive variable for the gas, and its amount is modified
by the injection of gas ejecta during supernova (SN) explosions and
stellar winds. We also account for the release of various chemical
elements synthesized in stars and released by stellar winds and SNe:
O, Fe, C, N, Mg and Si. However, they do not contribute separately
to the cooling curve (the ratio between each element is taken to be
solar for simplicity) but can be used to probe the distribution of the
various metal elements. The gas follows an equation of state for an
ideal monoatomic gas with an adiabatic index of γ = 5/3.

2.1.3 Star formation and stellar feedback

The star formation process is modelled with a Schmidt law:
ρ̇∗ = ε∗ρ/tff, where ρ̇∗ is the star formation rate (SFR) density,
ε∗ = 0.02 (Kennicutt 1998; Krumholz & Tan 2007) the constant
star formation efficiency and tff the local free-fall time of the gas.
Star formation is allowed in regions which exceed a gas hydrogen
number density threshold of n0 = 0.1 H cm−3 following a Poisso-
nian random process (Rasera & Teyssier 2006; Dubois & Teyssier
2008) with a stellar mass resolution of M∗ = ρ0�x3 � 2 × 106 M�.
The gas pressure is artificially enhanced above ρ > ρ0 assuming
a polytropic equation of state T = T0(ρ/ρ0)κ−1 with polytropic in-
dex κ = 4/3 to avoid excessive gas fragmentation and mimic the
effect of stellar heating on the mean temperature of the interstellar
medium (Springel & Hernquist 2003). Feedback from stars is ex-
plicitly taken into account assuming a Salpeter (1955) initial mass
function (IMF) with a low-mass (high-mass) cut-off of 0.1 M�
(100 M�), as described in detail in Kimm et al. (in preparation).
Specifically, the mechanical energy from Type II SNe and stellar
winds is taken from STARBURST99 (Leitherer et al. 1999, 2010), and
the frequency of Type Ia SN explosions is computed following
Greggio & Renzini (1983).

2.1.4 Feedback from black holes

The same ‘canonical’ active galactic nucleus (AGN) feedback mod-
elling employed in Dubois et al. (2012a) is used here. Black holes
(BHs) are created where the gas mass density is larger than ρ >

ρ0 with an initial seed mass of 105 M�. In order to avoid the
formation of multiple BHs in the same galaxy, BHs are not al-
lowed to form at distances less than 50 kpc from each other. The
accretion rate on to BHs follows the Bondi–Hoyle–Lyttleton rate
ṀBH = 4παG2M2

BHρ̄/(c̄2
s + ū2)3/2, where MBH is the BH mass, ρ̄

is the average gas density, c̄s is the average sound speed, ū is the
average gas velocity relative to the BH velocity and α is a dimen-
sionless boost factor with α = (ρ/ρ0)2 when ρ > ρ0 and α = 1 oth-
erwise (Booth & Schaye 2009) in order to account for our inability
to capture the colder and higher density regions of the interstellar
medium. The effective accretion rate on to BHs is capped at the
Eddington accretion rate: ṀEdd = 4πGMBHmp/(εrσTc), where σ T

is the Thompson cross-section, c is the speed of light, mp is the
proton mass and εr is the radiative efficiency, assumed to be equal
to εr = 0.1 for the Shakura & Sunyaev (1973) accretion on to a
Schwarzschild BH.

The AGN feedback is a combination of two different modes,
the so-called radio mode operating when χ = ṀBH/ṀEdd < 0.01
and the quasar mode active otherwise. The quasar mode consists
of an isotropic injection of thermal energy into the gas within a
sphere of radius �x, and at an energy deposition rate: ĖAGN =
εfεrṀBHc2. In this equation, εf = 0.15 is a free parameter chosen
to reproduce the scaling relations between BH mass and galaxy
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1456 Y. Dubois et al.

Figure 1. Projected maps of the Horizon-AGN simulation at z = 1.2 are shown. Gas density (green), gas temperature (red) and gas metallicity (blue) are
depicted. The top image is 100 h−1 Mpc across in comoving distance and covers the whole horizontal extent of the simulation and 25 h−1 Mpc comoving in
depth. The bottom image is a subregion where we see thin cosmic filaments as well as thicker filaments several Mpc long bridging shock-heated massive haloes
and surrounded by a metal-enriched intergalactic medium. Physical scales are indicated on the figures in proper units.

properties (mass, velocity dispersion) and BH density in our local
Universe (see Dubois et al. 2012a). At low accretion rates, the radio
mode deposits AGN feedback energy into a bipolar outflow with
a jet velocity of 104 km s−1. The outflow is modelled as a cylinder
with a cross-sectional radius �x and height 2 �x following Omma
et al. (2004) (more details are given in Dubois et al. 2010). The
efficiency of the radio mode is larger than the quasar mode with
εf = 1.

A projected map of half the simulation volume and a smaller
subregion is shown in Fig. 1. Gas density, gas temperature and gas
metallicity are depicted. One can discern the large-scale pattern
of the cosmic web, with filaments and walls surrounding voids
and connecting haloes. Massive haloes are filled with hot gas, and
feedback from SNe and AGN pours warm and metal-rich gas in
the diffuse intergalactic medium. As demonstrated in Dubois et al.
(2013), the modelling of AGN feedback is critical to create early-
type galaxies and provide the sought morphological diversity (see
Fig. 2 for a snippet of the galaxy sample of the simulation) in
hydrodynamical cosmological simulations (see e.g. Croton et al.
2006 for semi-analytical models).

2.2 Mock observations of galaxies

We describe how we produce various observables that can be com-
pared qualitatively with data from modern observational surveys.
In this paper, we focus on observables which are known to corre-
late with the Hubble type of galaxies, namely mass, V/σ , colour,
morphological parameters like Gini and M20, and age.

2.2.1 Identifying and segmenting galaxies

Galaxies are identified with the AdaptaHOP finder (Aubert et al.
2004, updated to its recent version by Tweed et al. 2009 for build-
ing merger trees) which directly operates on the distribution of star
particles. A total of 20 neighbours are used to compute the local
density of each particle, a local threshold of ρ t = 178 times the av-
erage total matter density is applied to select relevant densities, and
the force softening (minimum size below which substructures are
considered irrelevant) is ∼2 kpc. Only galactic structures identified
with more than 50 particles are considered. It allows for a clear
separation of galaxies (defined as sets of star particles segmented
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Galactic spins within cosmic filaments 1457

Figure 2. Stellar emission of a sample of galaxies in the Horizon-AGN simulation at z = 1.3 observed through rest-frame u, g and i filters. Extinction by
dust is not taken into account. Each vignette size is 100 kpc vertically. The numbers on the left of the figure indicate the galaxy stellar mass in log solar mass
units. The number in the bottom left of each vignette is the g − r rest-frame colour, not corrected for dust extinction. Disc galaxies (galaxies in the centre of
the figure) are shown edge-on and face-on.

by AdaptaHOP), including those in the process of merging. Cata-
logues of around ∼150 000 galaxies are produced for each redshift
analysed in this paper from z = 3 to 1.2.

2.2.2 Synthetic colours

We compute the absolute AB magnitudes and rest-frame colours
of galaxies using single stellar population models from Bruzual &
Charlot (2003) assuming a Salpeter IMF. Each star particle con-
tributes to a flux per frequency that depends on its mass, age and
metallicity. The sum of the contribution from all stars is passed
through the u, g, r and i filters from the SDSS. Fluxes are ex-
pressed as rest-frame quantities (i.e. that do not take into account
the red-shifting of spectra). We also neglect the contribution to the
reddening of spectra from internal (interstellar medium) or exter-
nal (intergalactic medium) dust extinction. Once the flux in each
waveband is obtained for a star particle, we build two-dimensional
projected maps from single galaxies (satellites are excised with the
galaxy finder), and we can sum up the total contribution of their stars
to the total luminosity. A small sample of galaxies representative of
the morphological variety in the simulation is shown in Fig. 2.

2.2.3 Projected stellar kinematics

For each galaxy, we build a field of view centred on the galaxy, which
is made of 256 × 256 pixels over 100 kpc size (corresponding to
a pixel size of 0.4 kpc or 0.05 arcsec at z = 1.83). We compute

the luminosity-weighted velocity along the line of sight (arbitrary
defined as the x-axis of the simulation):

v̄pixel = ivlos,i Ii,filter

iIi,filter
, (1)

where vlos,i is the velocity along the line of sight of the ith star in
the pixel considered and Ii,filter is the intensity in the corresponding
filter bandwidth (u, g, r, i) of the ith star in the pixel considered.
Then, the velocity dispersion along the line of sight is

σ̄ 2
pixel = iv

2
los,i Ii,filter

iIi,filter
− v̄2

pixel . (2)

The velocity maps are then smoothed with a Gaussian kernel of
15 pixels. The position of the fastest (respectively slowest) pixel,
which defines V for that galaxy, is then identified automatically
and a 0.75 arcsec ‘slit’ is put across so as to interpolate through
the kinematic major axis of the galaxy. The smoothed velocity
dispersion map is also interpolated along the same axis, and the
maximum of that curve defines σ (see Fig. 3 for example of a slow
and a fast rotator). V/σ is then straightforwardly the corresponding
ratio.

2.2.4 Specific star formation rate

The calculation of the SFR is done on stars as identified by the
galaxy finder that belong to a given galaxy. To compute the SFR,
we compute the amount of stars formed over the last 100 Myr.
The choice of 100 Myr corresponds to a minimum measurable SFR
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1458 Y. Dubois et al.

Figure 3. Example of integral field spectroscopy for the velocity of a fast
rotator V/σ > 1 (left-hand panel) and a slow rotator V/σ < 1 (right-hand
panel). The thick red line corresponds to the position of the slit, which is
placed along the kinetic major axis. The green isocontours correspond to
the velocity dispersion map. The size of the images is 50 kpc and the mean
velocity (respectively dispersion) amplitude is 150 (respectively 75) km s−1

(left-hand panel) and 50 (respectively 100) km s−1 (right-hand panel).

of M∗/100 Myr = 0.02 M� yr−1. The specific star formation rate
(sSFR) is then calculated by diving the SFR by the galaxy stellar
mass, Ms.

2.2.5 Gini and M20

The morphology of each galaxy is often measured by two non-
parametric parameters: the Gini (G; Abraham, van den Bergh &
Nair 2003) and M20 (Lotz, Primack & Madau 2004). The Gini
parameter is a non-parametric measure of the inequality of fluxes in
pixels, ranging from zero (for a perfectly uniform image) to unity
(for an image with all the flux in one pixel, for instance). M20 is the
second-order momentum of light of the 20 per cent brightest pixels
of a galaxy. It traces the spatial distribution of any bright nuclei,
bars, spiral arms and off-centre star clusters. As shown in Lotz et al.
(2004), galaxies with M20 > −1.1 mainly are extended objects with
double or multiple nuclei, whereas low values of M20(< −1.6) are
relatively smooth with a bright nucleus. Both parameters are known
to correlate well with the concentration parameter (Abraham et al.
1994) for regular shapes, but they are better suited for disturbed
morphologies because of their non-parametric nature. These two
parameters have been used to characterize observations in the local
universe and at high redshift (e.g. Lotz et al. 2004; Abraham et al.
2007; Wang et al. 2012; Lee et al. 2013), and they are well suited
to analyse large samples of galaxies of mixed morphologies. In the
local universe, galaxies with a high Gini value and a low M20 value
are mainly ellipticals, whereas late-type galaxies and irregular have
lower G and larger M20 values. Mergers tend to have large G and
large M20 values.

Images in the i band are obtained from a segmentation of 3D
objects with the galaxy finder. The images are rebinned to 64 ×
64 pixels for a 100 kpc size image in order to avoid star particles
appearing as individual pixels. Then, as in Lee et al. (2013), we
measure the Petrosian radius with an elliptical aperture which is ob-
tained as in SEXTRACTOR (Bertin & Arnouts 1996) from the second-
order moment of light. The Petrosian semi-major axis ap is such
that the ratio of the surface brightness at ap over the mean surface
brightness within ap is decreasing at ap and becomes smaller than
0.2. In practice, we fit a spline to the surface brightness ratio profile
and find the zero of the function μ(ap)/μ(< ap) − 0.2. Galaxies
with ap smaller than 2 pixels are filtered out: they are almost always

associated with low-mass galaxies (Ms < 109.2 M�) with few star
particles, and the G and M20 parameters are very uncertain for these
objects. We also filter out galaxies less massive than Ms < 109.5 M�
for which we suffer the most from resolution effects. A description
of the bivariate distributions of G, M20 and stellar mass is given in
Appendix A.

2.2.6 Ages

The mean ages of galaxies are obtained through the summation of
the mass-weighted age of star particles belonging to the galaxy.

2.2.7 Spin of galaxies

To compute the spin of galaxies, we compute the total angular
momentum of their stars with respect to the particle of maximum
density (centre of the galaxy) from the smoothed stellar density
constructed with the AdaptaHOP algorithm.

We have also tested the effect of grid-locking on the Cartesian
axes of the box (a common issue of Cartesian-based Poisson solvers
for which a numerical anisotropy in the force calculation arises; see
e.g. Hockney & Eastwood 1981) in Appendix B for galaxies and
filaments.

2.3 Tracing large-scale structures via the skeleton

In order to quantify the orientation of galaxies relative to the cos-
mic web, we use a geometric three-dimensional ridge extractor well
suited to identify filaments, called the ‘skeleton’. A gas density cube
of 5123 pixels is drawn from the simulation and Gaussian-smoothed
with a length of 3 h−1 Mpc comoving chosen so as to trace large-
scale filamentary features. Two implementations of the skeleton,
based on ‘watershed’ (Sousbie, Colombi & Pichon 2009) and ‘per-
sistence’ (Sousbie, Pichon & Kawahara 2011), were implemented,
without significant difference for the purpose of this investigation.
The first method identifies ridges as the boundaries of walls which
are themselves the boundaries of voids. The second one identi-
fies ridges as the ‘special’ lines connecting topologically robust
(filament-like) saddle points to peaks.

Fig. 4 shows a slice of 25 h−1 Mpc of the skeleton colour coded by
logarithmic density, along with galaxies contained within that slice.
The clustering of the galaxies follows quite closely the skeleton
of the gas, i.e. the cosmic filaments. Note that, on large scales,
the skeleton built from the gas is equivalent to that built from the
DM as the gas and DM trace each other closely. The rest of the
paper is devoted to studying the orientation of the spin of these
galaxies relative to the direction of the nearest skeleton segment. In
practice, an octree is built from the position of the mid-segment of
the skeleton to speed up the association of the galaxy position to
its nearest skeleton segment. It was checked that our results were
not sensitive to how many such segments were considered to define
the local direction of the skeleton. The orientation of the segment
of the skeleton is used to define the relative angle between the
filament and the spin of the galaxy. The segments are also tagged
with their curvilinear distance to the closest node (where different
filaments merge), which allows us to study the evolution of this
(mis)alignment along the cosmic web. Appendix B investigates the
effect of grid-locking of the skeleton’s segments in the Horizon-
AGN simulation. Large-scale filaments, defined from the skeleton,
do not show any alignment with the grid.
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Figure 4. Top: projection along the z-axis of the Horizon-AGN gas skeleton
(colour coded by logarithmic density as red–yellow–blue–white from high
density to low density) at redshift z = 1.83 of a slice of 25 h−1 Mpc on the
side and 10 h−1 Mpc thickness. Galaxies are superimposed as black dots.
The clustering of the galaxies follows the skeleton quite closely. Bottom:
larger view of the skeleton on top of the projected gas density. This paper
quantifies orientation of the galaxies relative to the local anisotropy set by
the skeleton.

3 SP I N SW I N G E VO L U T I O N

This paper focuses on the orientation of the spin of galaxies relative
to the filaments in which they are embedded and the cosmic evo-
lution. Specifically, we aim to see if its evolution can be traced via
physical and morphological tracers. We investigate in Section 3.1
how this orientation varies with different tracers of the Hubble type
of galaxies, namely stellar mass, V/σ , sSFR, colour, metallicity,
age, M20 and Gini on our sample of 150 000 galaxies. Afterwards,

in Section 3.2, we quantify how this alignment varies as a function
of distance to the filaments and along the filaments to the nodes of
the cosmic web. We study the cosmic evolution of the alignment of
the spin of galaxies and filaments in Section 3.3.

3.1 Alignment of galaxies and filaments

We measure the statistical signature of the (mis)alignment of galax-
ies with their closest filament segment. The alignment is defined as
the angle θ between the spin of the stellar component and the direc-
tion of the filamentary segment. Recall that the spin of the galaxy
is obtained by removing merging substructures using the galaxy
finder, and computing the net angular momentum of its stars with
respect to its centre (defined as the point of highest stellar density).
Note that the filament segments are assumed to have no polarity.
Hence, we impose the angle θ has a π/2 symmetry, and is expressed
in terms of cos θ = [0, 1].

Fig. 5 shows the resulting probability density function (PDF),
1 + ξ , at z = 1.83, where ξ is the excess probability of cos θ in bins
of various quantities: mass, kinematics, sSFR, colour, metallicity,
age, M20 and Gini. A uniform PDF (i.e. random orientations of
galaxies relative to their filament) is represented as a dashed line for
comparison. Galaxies with mass below Ms < 109 M� are removed
from the calculation, except for investigation of alignment as a
function of mass.

More massive galaxies tend to have their spin preferentially per-
pendicular to their filament, while less massive ones have their spin
preferentially parallel. A transition occurs around a stellar mass of
Mtr,s = 3 × 1010 M�. This value is fully consistent with earlier
findings of a mass transition for the orientation of the spin of haloes
of Mtr,h = 5 × 1011 M� at that redshift (Codis et al. 2012) and sug-
gested by the galaxy–halo mass relation determined by abundance
matching techniques (Moster, Naab & White 2013). Using the full
redshift sample, Fig. 6 shows that the mass transition appears to be
reasonably bracketed at Mtr, s � 1010.5±0.25 M�. The mean values
of the PDF 1 + ξ at cos θ = 0.9 are, respectively, 0.98 and 1.02 for
Ms = 1010.75 and 1010.25 M�.

The definition of Hubble type relies on different tracers. Hence, it
is of interest to quantify the alignment or misalignment of galaxies
classified according to these tracers. One should keep in mind that
these tracers are not independent from one another (as illustrated in
Appendix A). Top row, middle column of Fig. 5 shows the excess
probability of alignment for V/σ . Dispersion-dominated galaxies
with small V/σ ratios (i.e. elliptical galaxies) have their spin per-
pendicular to filaments, while centrifugally supported galaxies with
large V/σ (i.e. disc galaxies) have their spins parallel to filaments.
The transition between parallel and perpendicular alignment oc-
curs at V/σ = 0.6. A similar signal, not represented here, is found
for intrinsic (three-dimensional) kinematics. The top-right panel
of Fig. 5 shows ξ as a function of the sSFR of galaxies. Intense
star-forming galaxies that rejuvenate their stellar mass content in
less than 1/sSFR = 1/10−0.5 � 3 Gyr tend to align with filaments.
Conversely, galaxies that are passive (sSFR � 0.1 Gyr−1) show a
random orientation of their spin relative to the filaments. The left
and central panels of the middle row of Fig. 5 show ξ as a function
of the g − r and the r − i colours of galaxies, respectively. Redder
galaxies (g − r > 0.25 or r − i > 0.13) have their spin perpendicular
to their filaments, while bluer galaxies (g − r ≤ 0.25 or r − i ≤
0.13) have their spin parallel to them. The right-hand panel of the
middle row of Fig. 5 shows ξ as a function of the stellar metal-
licity Z. Metal-poor galaxies are more aligned with filaments than
metal-rich galaxies which tend to be misaligned. The bottom-left
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Figure 5. Excess probability, ξ , of the alignment between the spin of galaxies and their closest filament is shown as a function of galaxy properties at
z = 1.83: Ms (top row, left column), V/σ (top row, middle column), sSFR (top row, right column), g − r (middle row, left column), r − i (middle row, middle
column), metallicity Z (middle row, right column), age (bottom row, left column), M20 (bottom row, middle column) and Gini (bottom row, right column).
Half-sigma error bars are shown for readability. Dashed line is uniform PDF (excess probability ξ = 0). Massive, dispersion-dominated, passive, red, smooth
and old galaxies tend to have a spin perpendicular or randomly oriented with the direction of their filament. Low-mass, centrifugally supported, star-forming,
blue, irregular and young galaxies tend to align with the direction of their closest filament.

panel of Fig. 5 shows ξ as a function of the galaxy age. Older
galaxies have their spin more randomly oriented with that of the
filaments, and young galaxies with age below �1.2 Gyr exhibit a
stronger alignment. Finally, the bottom-middle and bottom-right
panels of Fig. 5 show ξ as a function of the M20 and Gini quan-
titative morphological indices. Galaxies with high M20 are more
aligned with filaments than galaxies with low M20. Galaxies with
low Gini are more aligned with filaments than galaxies with high
Gini. Galaxies with low M20 and high Gini tend to trace elliptical

galaxies (Lotz et al. 2008). Note that for age, M20 and Gini, galax-
ies in the Horizon-AGN simulation do not seem to present enough
leverage to identify a complete misalignment (in contrast to the
other tracers).

To summarize, massive, dispersion-dominated, passive, red,
smooth, metal-rich and old galaxies tend to have a spin perpen-
dicular or randomly oriented to filaments. In contrast, low-mass,
centrifugally supported, star-forming, blue, irregular, metal-poor
and young galaxies tend to align with filaments.
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Figure 6. Average values of 1 + ξ (cos θ = 0.9) as a function of redshift
for two different bins of stellar mass Ms = 1010.25 (pluses) and Ms =
1010.75 (squares). Errors bars correspond to half-sigma error. The dotted
(respectively dashed) lines correspond to the mean of the lower (respectively
higher) bin mass. The mean values of 1 + ξ (cos θ = 0.9) are 0.975 for stellar
mass Ms = 1010.75 and 1.023 for Ms = 1010.25, respectively. The transition
mass seems reasonably bracketed at Mtr, s = 1010.5 ± 0.25 M�.

The transitions presented here are more indicative of a trend than
a definite proof that each tracer yields a precise morphological tran-
sition. Amongst the various tracers, V/σ and g − r are those for
which the transition from alignment to perpendicular misalignment
is the most significant. Yet the ensemble allows us to have confi-
dence in the underlying physical picture as they are all consistent
with the expected variations. The above-mentioned consistent anal-
ysis of its redshift evolution (Fig. 6) brings further confidence in
our results. It should also be noted that each estimator is derived
from a fairly crude automated analysis.

3.2 Spin orientation along the cosmic web

We now investigate the orientation of the alignment as a func-
tion of the distance to filaments and nodes. The upper panel of
Fig. 7 shows the evolution of alignment of the spin of galaxies
as a function of distance to the closest filament for a low-mass
subsample. We apply this measurement to low-mass galaxies be-
cause they lie in filaments, sheets and voids, while the most massive
galaxies are usually located at the intersection of the most massive
filaments in the most massive haloes, therefore, with a minimum
scatter in distance to filaments. Galaxies closer to filaments have
their spin more parallel. The lower panel of Fig. 7 shows the evo-
lution of alignment of the spin of galaxies as a function of dis-
tance to nodes (i.e. where filaments intersect) along the filaments.
Galaxies further away from nodes have their spin more parallel
than galaxies closer to nodes. This is consistent with the idea that
galaxies merge while drifting along filaments (which destroys align-
ment), and with the strong colour (curvilinear) gradients found by
Gay et al. (2010).

Figure 7. Excess probability ξ of the alignment between the spin of galaxies
and their closest filament as a function of their distance to the closest filament
(top panel) or node (bottom panel) is shown at z = 1.83. Galaxies closer to
filaments have their spin more parallel, while galaxies closer to nodes are
more randomly oriented. Dashed line is the zero excess probability ξ = 0.

3.3 Redshift evolution

We now investigate the redshift evolution of the excess probability
of alignment. We post-process the Horizon-AGN in the following
redshift range: z = 3.01–1.23. Fig. 8 shows the amplitude of the
alignment of the spin of all galaxies as a function of redshift. The
PDF shows that, on average, galaxies are aligned with their neigh-
bouring filament, because low-mass galaxies dominate in number
over massive galaxies (because the mass function of galaxies is
strongly decreasing with mass). The amplitude of the alignment
decreases with cosmic time (decreasing redshift) which is a re-
sult of more galaxies evolving passively (i.e. for a given mass, the
SFR decreases with time). The lower the redshift, the stronger the
amount of shell crossing and cumulative contribution from mergers
along the filaments which tend to destroy the existing alignment and
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Figure 8. Excess probability ξ of the alignment between the spin of galaxies
(with mass above 108 M�) and their closest filament as a function of redshift
is shown. Dashed line is the zero excess probability ξ = 0. The amplitude
of the correlation shows an alignment which increases with redshift (i.e.
decreases with cosmic time).

convert orbital momentum into spin to orient it perpendicular to that
of the host filament.

4 D ISC U SSION: AG N FEEDBACK PROMOT ES
SPIN SWINGS?

The above analysis suggests that the most massive galaxies, which
are also the reddest, the oldest, the most metal-rich and the most
pressure-supported, tend to have their spin perpendicular to the
axis of filaments. Galaxies on average also show less alignment
with time (i.e. with decreasing redshift). We argue that the origin
of the misalignment is the sudden reorientation of galactic angular
momentum during mergers. This was shown in Codis et al. (2012) to
be the case for the origin of the DM halo–filament misalignment for
massive haloes. Misalignment occurs because orbital momentum is
converted into spin, as DM haloes catch up each other along the
filaments. We also argue that indirect merger rate indicators, such
as those presented in Section 2.2 (galaxy properties), can only be
modelled once an efficient feedback mechanism is implemented to
produce morphological and physical diversity.

4.1 The contribution of cosmic dynamics

Massive galaxies undergo mergers (minor and major) that contribute
to misalignment of their spin with respect to the direction of the
filament. Given the level of significance for this range of galaxy
mass (compatible with a uniform PDF at less than 1σ for Ms �
1010.75 M�, see the top-left panel of Fig. 5), it is still unclear whether
massive galaxies have as strong a preference for a spin orientation
perpendicular to the axis of their neighbouring filament as do their
halo counterparts, or if they tend to be randomly oriented.

First, note that, globally, the excess probability of alignment is al-
ways at values ξ � 0.1 (Figs 5, 7 and 8); therefore, the signal is weak
(not all galaxies align or misalign) but statistically significant. For
instance, the (mis)alignment signal between haloes and filaments
(Codis et al. 2012) or that between the large-scale vorticity and fil-
aments (Laigle et al. 2013) are respectively of somewhat (∼15 per

Figure 9. Average cosine of the angle cos ψ between the galaxy angular
momentum and that of its host halo as a function of the halo mass at z =
1.3 (solid line). Error bars are the standard errors of the mean. Note that the
random distribution (dashed line) is for cos ψ = 0 because vectors can be
pointing towards different directions and, therefore, galaxy spin and halo
spin can be aligned or anti-aligned.

cent) and significantly (∼100 per cent) larger amplitudes. One could
expect that small scales (i.e. galaxies) decouple more strongly from
the large-scale filaments than the intermediate scales (i.e. haloes),
which are the first virialized structures. In particular, there could be
a significant amount of redistribution of angular momentum within
the inner regions of haloes (Kimm et al. 2011; Danovich et al. 2012;
Dubois et al. 2012b; Kassin et al. 2012a,b; Tillson et al. 2012), and
as a consequence, galaxies misalign with the spin of their host halo
(see Fig. 9 for the average cosine of the angle ψ between the an-
gular momentum of the galaxy and that of the host halo), while
they keep a strong alignment with the spin of the dark halo’s cen-
tral region (Hahn et al. 2010). On the other hand, low-mass central
galaxies are fed angular momentum directly by cold flows (Pichon
et al. 2011; Tillson et al. 2012), which connects them more tightly
to their cosmic environment than one would naively expect. The
orientation and amplitude of the stellar component itself reflect
the corresponding cumulative advection of cold gas directly on to
the circumgalactic medium. In contrast, the orientation of the spin
of haloes is more sensitive to the latest stochastic accretion events
at the virial radius. The net outcome of both competing processes,
as traced by the physical properties of galaxies, is summarized in
Figs 5 and 6.

Fig. 9 shows that, because of the above-mentioned redistribu-
tion of angular momentum within the inner region of the halo, the
galactic spin is weakly correlated to that of the whole halo, and the
effect is more pronounced for more massive haloes which merge
more frequently. Satellites end up reaching the central galaxy with
less correlated orbital angular momentum even though they glob-
ally originate from a preferred direction, as set by the cosmic web.
In order to test this hypothesis, we build merger trees from the
catalogue of galactic structures detected by our galaxy finder. For
each galaxy, we measure the stellar mass acquired through the dif-
ferent branches of the tree (satellites) that we quote as a merger,
the main progenitor being excluded from the calculation. Fig. 10
shows that massive galaxies acquire a non-negligible fraction of
their mass by mergers (at least 1000 particles of star particles, up to
20 per cent at z = 1.83), while low-mass galaxies grow their stel-
lar mass content almost exclusively by in situ star formation (e.g.
De Lucia & Blaizot 2007; Oser et al. 2010). Fig. 11 shows exam-
ples of the evolution of the spin orientation for six massive galaxies,
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Figure 10. Average fraction of stellar mass gained through mergers as a
function of the galaxy stellar mass at z = 1.83. The error bars are the standard
errors on the mean. More massive galaxies have a larger fraction of galaxy
mergers contributing to their stellar mass. Lower mass galaxies build up
their stellar mass through in situ star formation only.

Figure 11. Examples of galaxies changing their spin direction during merg-
ers with stellar mass 1.7 × 1011 M� (top left), 7.3 × 1010 M� (top
right), 3.8 × 1010 M� (middle left), 4.8 × 1010 M� (middle right), 1.2 ×
1011 M� (bottom left) and 6.0 × 1010 M� (bottom right) at z = 1.83.
cos α (red curve) is the cosine of the angle between the spin of the galaxy
at the current redshift and the initial spin measured at z = 3.15. The dif-
ferential fraction of mass between two time steps coming from mergers
dm = δMmerge/Ms (in blue) is overplotted. Non-zero values correspond to
rapid changes in spin direction. In the absence of mergers, the galaxy spin
has a steady direction.

Figure 12. Excess probability ξ of the cosine of the angle μ between the
vorticity of the gas and the direction of the spin of the galaxies at z = 1.83.
The dashed line indicates no correlation. Vorticity is computed as the curl
of the velocity field, after a Gaussian smoothing of the velocity field with
a kernel length of 780 h−1 kpc. Note that fewer galaxies are anti-aligned.
Error bars are the standard errors of the mean.

4 × 1010 � Ms � 2 × 1011 M�. They have a significant contribution
from mergers to their stellar mass, which play a significant role in
shaping their spin orientations (Bett & Frenk 2012). In Fig. 11, the
fraction of mass gained by mergers δMmerge/Ms between two time
steps is indicated by dashed blue lines. When no mergers happen,
galaxies keep a steady spin direction. It is only when a companion
galaxy is captured (δMmerge/Ms �= 0) do we see a sudden reorienta-
tion of the spin. An investigation of the relative role of minor, major,
dry and wet mergers is postponed to a companion paper (Welker
et al. 2014) which shows unambiguously that major mergers are
indeed responsible for important spin swings.

In contrast to high-mass galaxies, low-mass galaxies have their
spins preferentially aligned with that of their closest filaments. Gas
embedded within large-scale walls streams into the filaments which
bound them, winding up to form the first generation of galaxies
which have spins parallel to these filaments (Pichon et al. 2011).
Since these galaxies build up their stellar mass in situ without signif-
icant external perturbations, the stars retain the angular momentum
of the cold gas obtained directly from the cosmic web. Fig. 12
shows the excess probability of the cosine of the angle μ between
the vorticity of the gas (as estimated on scales of 200 h−1 kpc) at
the galaxy’s position and the direction of the spin of galaxies (dom-
inated by the low-mass population). As was found in Laigle et al.
(2013) for the spin of DM haloes (see also Libeskind et al. 2013b),
the galactic spin is also strongly correlated with the vorticity of
the surrounding gas. This correlation has polarity: there are fewer
galaxies with their spin anti-aligned with the local vorticity. This dy-
namical and stellar evidence therefore allows us to apply to baryons
the scenario presented in Laigle et al. (2013) on the vorticity-driven
origin of the galactic spin–filament alignment.

4.2 The contribution of AGN feedback

Fig. 13 shows the stellar halo mass relation at z = 1.3 for the
Horizon-AGN simulation. It appears that above Mh � 1012 M�
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Figure 13. Average stellar mass of the central galaxy as a function of the
host halo mass in the simulation at z = 1.3 (red curve) with the 1σ dispersion
together with the abundance matching result from Moster et al. (2013) at
the same redshift assuming a Salpeter IMF (+0.19 dex in stellar mass from
Kroupa to Salpeter IMF) with the 1σ , 2σ and 3σ error bars represented
by the shaded areas. The cyan lines indicate constant stellar efficiencies
defined as feff = Ms/(�b/�mMh). The transition mass between alignment
and misalignment of the galaxy (Mtr, s), respectively, halo (Mtr, h), spin and
the filament are represented as dotted lines.

Figure 14. Diagram of the distribution of galaxies as a function of their
sSFR and stellar mass Ms at z = 1.3. The contours are the number of galaxies
in log units. Red and blue points with error bars are the observations at
z = 1.25 extracted from Behroozi, Wechsler & Conroy (2013) and originally
from Kajisawa et al. (2010) and Whitaker et al. (2012) and rescaled for a
Salpeter IMF (+0.26 dex in stellar mass from Chabrier to Salpeter IMF).
The sSFR decreases with galaxy stellar mass.

the relation is in good agreement with abundance-matching results
from Moster et al. (2013). Note that the stellar masses from Moster
et al. (2013) are rescaled by +0.19 dex to account for a change from
Kroupa to Salpeter IMF. The presence of the feedback from AGN
reduces the amount of stars formed in these massive galaxies, allow-
ing them to agree with observations by reducing the stellar mass up
to one order of magnitude (Dubois et al. 2013; Puchwein & Springel
2013; Martizzi et al. 2014). Note also that the transition mass from
alignment to misalignment is close to the mass (�1011 M�) where
passive galaxies become more abundant than star-forming galax-
ies in observations (Drory et al. 2009; Davidzon et al. 2013; Ilbert
et al. 2013). For massive galaxies, mergers are key in both swing-
ing the spin and changing the morphology. The sSFR decreases
significantly with galaxy stellar mass (see Fig. 14) because of the
quenching of their gas accretion rate – in the shock-heated mode of

accretion for massive haloes (e.g. Birnboim & Dekel 2003; Ocvirk,
Pichon & Teyssier 2008; Dekel et al. 2009) – and because of the
strong suppression of cold gas within galaxies via AGN feedback.
Observational data from Behroozi et al. (2013) at z = 1.3 (originally
from Kajisawa et al. 2010 and Whitaker et al. 2012) are represented
on top of the distribution of our simulations points. Stellar masses
from Behroozi et al. (2013) are rescaled by +0.26 dex to account for
a change from Chabrier to Salpeter IMF. The quenching of the SFR
in massive galaxies through AGN feedback leads to an enhanced
fraction of stars gained through mergers (Dubois et al. 2013). For
lower mass galaxies, the agreement of the stellar halo mass relation
with observational data is less favourable because feedback from
SNe is not strong enough to suppress the star formation in dwarfs.
Some missing physical processes, such as radiation from young
stars, are probably necessary to further suppress the star forma-
tion in low-mass galaxies (e.g. Hopkins, Quataert & Murray 2011;
Murray, Ménard & Thompson 2011; Hopkins et al. 2013). Vogels-
berger et al. (2013) manage to reproduce the low-mass tail of the
stellar-to-halo mass relation by decoupling hydrodynamically the
launched wind gas from the dense star-forming gas (as introduced
by Springel & Hernquist 2003). This decoupling of gas is known
to generate a more efficient transfer of energy from SNe to large-
scale galactic winds, compared to local prescriptions as we have
adopted here (as shown by Dalla Vecchia & Schaye 2008), but it
lacks physical motivation. Note that the choice of the Salpeter IMF
instead of a Chabrier IMF decreases the total energy released by
a stellar particle by a factor of 3 (assuming a minimum and max-
imum mass of 0.1 and 100 M�). However, we are still confident
that stronger feedback in low-mass galaxies should not drastically
change their orientation, since mergers for that class of haloes are
rare enough (Fakhouri, Ma & Boylan-Kolchin 2010; Genel et al.
2010). This is in particular true for the major mergers that are re-
quired to significantly reorient the spins of galaxies (Welker et al.
2014).

The significant contribution from AGN feedback at reducing the
stellar activity in massive galaxies is mandatory to obtain a diver-
sity in the physical properties of galaxies (colours, V/σ , sSFR, etc.)
across the whole mass range (see Appendix A). The effect of AGN
feedback is to also reduce the mass of stars formed in situ, i.e. to
prevent the formation of a rotation-supported component in massive
galaxies and to turn massive galaxies into pressure-supported ellip-
ticals (Dubois et al. 2013). In the absence of a central supermassive
BH, the magnitude of the angular momentum of the stellar compo-
nent of massive galaxies will therefore be larger, as a larger fraction
of their (larger) stellar mass will be distributed in a rotationally
supported disc. Thus, a merging satellite the angular momentum of
which is misaligned with that of the central galaxy produces a vari-
ation in the angle between the pre-merger and the post-merger spin
of the galaxy that is smaller for the disc case (no AGN case) than
for the elliptical case (AGN case). Moreover, for massive galaxies,
the feedback from the central AGN switches off later accretion of
circumgalactic gas (Dubois et al. 2010). Consequently, the possible
realignment of the galactic spin with the filament that could operate
after a merger due the accretion of fresh gas is reduced by the pres-
ence of the AGN feedback from the galaxy remnant. AGN feedback
thereby acts as a catalyst of spin swings.

5 C O N C L U S I O N S

Our analysis of the Horizon-AGN flagship simulation, which mod-
els AGN as well as stellar feedback so as to produce morphological
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diversity, shows that the orientation of the spin of galaxies depends
on various galaxy properties such as stellar mass, V/σ , sSFR, M20,
metallicity, colour and age. The spins of galaxies tend to be preferen-
tially parallel to their neighbouring filaments, for low-mass, young,
centrifugally supported, metal-poor, bluer galaxies and perpendic-
ular for higher mass, higher velocity dispersion, red, metal-rich old
galaxies. The alignment is the strongest, the closer to the filaments
and further from the nodes of the cosmic web the galaxies are. This
is in agreement with the predictions of Codis et al. (2012) for DM
haloes. We find a transition mass, Mtr, s � 3 × 1010 M� which is
also consistent with these authors’ predictions for the correspond-
ing halo transition mass. Due to the weak galaxy–halo alignment,
the amplitude of the correlation with cosmic filaments is somewhat
weaker for galaxies than for haloes. It also decreases with cosmic
time due to mergers and quenching of cold flows and star forma-
tion. Hence, our results suggest that galaxy properties can be used
to trace the spin swings along the cosmic web.

The transition from the aligned to the misaligned case is dy-
namically triggered by mergers (the frequency of which increases
with galaxy mass) that swing the spin of galaxies. AGN feedback
has a key role at preventing further gas inflow and quenching the
in situ star formation after such an event, in order to preserve the
misalignment operated by the merger.

Though it is expected that galaxy modelling will improve over
the next decade – in particular the way feedback is taken into ac-
count in large-scale cosmological simulations – we do not anticipate
that the particular results found in this paper should change qual-
itatively. The finding that the morphological diversity of galaxies
traces populations with different spin–filament alignments, which
in turn is in part inherited from the anisotropy of the embedding
cosmic web, is both robust predictions of the current gravitational
clustering scenario and of our understanding of the dynamics of
elliptical and spiral galaxies.

In a forthcoming paper, we will analyse more realistic mock
catalogues from the Horizon-AGN light-cone down to a lower
redshift to investigate the amount of modification of the signal
induced by dust extinction, projection effects, limited resolution and
finite signal-to-noise ratio. More efficient and robust estimators for
morphology, either intrinsic using the full data set of the simulation
or projected using virtual degraded observables, will be built and
compared. Quantitative comparisons to observations are postponed
to this paper.
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APPENDI X A : PRO PERTI ES O F G ALAXIES

Fig. A1 shows various physical properties of galaxies: V/σ , sSFR,
g − r colour and age as a function of the stellar mass at z =
1.83. There are correlations between the stellar kinematics V/σ

and galaxy masses: more massive galaxies are pressure supported;
their sSFR and mass: more massive galaxies have lower sSFR,
i.e. are more passive; their colour and mass: more massive galax-
ies are redder; and their age and mass: more massive galaxies
are older. Note the quite large scatter at all masses, that is more
pronounced for lower mass objects, which can be explained by
the fact that low-mass field galaxies in low-density environments
evolve differently from low-mass satellites galaxies in high-density
environments.

Fig. A2 shows the relation between Ms and the morphology pa-
rameters Gini and M20 measured in the rest-frame u band. These
morphological estimators allow in principle to separate spirals from
spheroids, ellipticals and merging galaxies. This has been done in
the local universe (Lotz et al. 2004) and at higher redshift (Abraham
et al. 2007; Lotz et al. 2008; Lee et al. 2013). The regions drawn
in the figure are taken from Lotz et al. (2008). Their precise loca-
tions with respect to the distributions measured here should be taken
with caution: extinction by dust is not taken into account, morpho-
logical k-corrections (although quite small) are not accounted for
and the spatial resolution is not matched. Despite all these caveats
which may explain the relatively small number of galaxies classi-
fied as ellipticals or spheroids from these diagrams, there seems to
be, qualitatively, rather good agreement between the distributions
measured in the deep surveys and in the simulation.

A P P E N D I X B : G R I D - L O C K I N G

Fig. B1 displays a Mollweide projection of the orientations of galaxy
spins along Cartesian axes, for a range of halo mass. Galaxies
hosted by haloes lighter or heavier than 5 × 1011 M� are con-
sidered. While the spins of the less massive galaxies are clearly
aligned with the grid, no obvious alignment is seen for the high-
mass galaxies. Lighter galaxies are preferentially locked with the
grid because they are composed of very few grid elements: the
gaseous disc of a galaxy with ∼109 M�, embedded in a halo of
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Galactic spins within cosmic filaments 1467

Figure A1. From top to bottom and left to right: contours of the logarithmic number of galaxies for 2D projected kinematics of the stars V/σ , sSFR, g − r
colour, r − i colour, metallicity Z and age as a function of the stellar mass of the galaxy at z = 1.83. The solid lines with diamonds correspond to the average
values as a function of the stellar mass. The dashed line in the top-left panel corresponds to V/σ = 1.

Figure A2. Bivariate distributions of stellar mass, Gini (G) and M20 mor-
phological parameters for galaxies in the simulation at z = 1.8 in the rest-
frame u filter. Lower panels show the Gini–M20 distributions for stellar
mass selected samples. The zones for elliptical, spiral and merger galaxies
are schematically drawn as tentative locations of local ellipticals, spirals and
mergers at z � 2. See the text for details.

mass ∼1011 M�, tends to be aligned with one of the Cartesian axes
due to the anisotropic numerical errors. However, for more massive
galaxies, the grid-locking is absent due to a larger number of res-
olution elements to describe those objects. This result is consistent
with that of Hahn et al. (2010) and Danovich et al. (2012).

Fig. B2 shows the distribution of the axis of all the elements
of the skeleton on the sphere. There is no preferential direction of
alignment with respect to the box axes.

Figure B1. The effect of grid-locking at redshift z = 1.3 of the spin of
galaxies for haloes more (top panel), respectively less (bottom panel) mas-
sive than 5 × 1011 M� respectively. The white discs represent the directions
of the simulation box as labelled. The colour coding represents relative fluc-
tuations around the mean. The smaller galaxies (bottom panel) show a clear
sign of grid-locking, while the more massive sample (top panel) does not.

Low-mass galaxies (within halo of mass <5 × 1011 M�) show
some preferential alignment along the x-, y- and z-axes of the sim-
ulation box. In order to evaluate the effect of grid-locked galaxies
on the galaxy–filament alignment signal, we have removed galaxies
whose spin is comprised within less than 10◦ of any of the Carte-
sian planes of the box. Fig. B3 shows that the alignment signal
without grid-locked galaxies is comparable to the case where all
galaxies are accounted for. Low-mass galaxies have spin
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Figure B2. The effect of grid-locking of the skeleton segments at z = 1.3.
The colour coding is the same as in Fig. B1. No preferred direction is shown
for the skeleton.

preferentially aligned with their filament, and massive galaxies have
a spin perpendicular to the filament with a transition mass between
1010.25 and 1010.75 M�. This behaviour is expected as filaments do
not suffer from grid-locking; the effect of grid-locking on low-mass
galaxies brings some extra noise to the alignment measurement.
Thus, the signal obtained for alignment of low-mass galaxies, while
probably underestimated, is a robust trend. The same is true for
high-mass galaxies that do not suffer from spurious grid-locking.

Figure B3. Excess probability ξ of the alignment between the spin of
galaxies and their filament for galaxies with different stellar masses. Galaxies
whose spin is contained within an angle smaller than 10◦ from any Cartesian
planes of the box are not taken into account. Dashed line is the zero excess
probability ξ = 0.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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We present a specific prescription for the calculation of cosmological power spectra, exploited here at

two-loop order in perturbation theory, based on the multipoint propagator expansion. In this approach,

density and velocity power spectra are constructed from the regularized expressions of the propagators

that reproduce both the resummed behavior in the high-k limit and the standard perturbation theory results

at low k. With the help of N-body simulations, we particularly focus on the density field, and show that

such a construction gives robust and accurate predictions for both the density power spectrum and the

correlation function at percent level in the weakly nonlinear regime. We then present an algorithm that

allows accelerated evaluations of all the required diagrams by reducing the computational tasks to one-

dimensional integrals. This is achieved by means of precomputed kernel sets defined for appropriately

chosen fiducial models. The computational time for two-loop results is then reduced from a few minutes,

with the direct method, to a few seconds with the fast one. The robustness and applicability of this method

are tested against the power spectrum COSMIC EMULATOR from which a wide variety of cosmological

models can be explored. The FORTRAN PROGRAM with which direct and fast calculations of density power

spectra can be done, REGPT, is publicly released as part of this paper.

DOI: 10.1103/PhysRevD.86.103528 PACS numbers: 98.80.!k, 98.65.Dx

I. INTRODUCTION

Since recombination, the large-scale structure of the
Universe has evolved dominantly under the influence of
both the cosmic expansion and the force of gravity acting
on a pressureless fluid. The statistical nature of its spatial
clustering is therefore expected to bring valuable cosmo-
logical information about the dynamics of the cosmic
expansion and structure formation. Of particular impor-
tance is the measurement of baryon acoustic oscillations
(BAOs) imprinted on the power spectrum or two-point
correlation function (e.g., Refs. [1–5]) from which one
can precisely determine the cosmological distance to the
high-redshift universe, and henceforth clarify the nature of
late-time cosmic acceleration (e.g., Refs. [6–10]). Precious
information regarding the growth of structure are and will
also be obtained from redshift-space distortions (e.g.,
Refs. [11–15]) and weak lensing measurements (see
Refs. [16,17] and review papers [18,19]) at scales ranging
to the linear or quasilinear to the nonlinear regimes.
This could be captured with unprecedented details with
the ongoing and future surveys, thanks to their redshift
depth and large angular area, such as the Sloan Digital Sky
Survey III,1 the WiggleZ survey,2 the Subaru Measurement
of Imaging and Redshifts,3 the Dark Energy Survey,4 the

BigBOSS project,5 the Physics of the Accelerating
Universe collaboration6 and the ESA/Euclid survey.7

With the advent of such wealth of observations, there is
therefore a growing interest in the development of theo-
retical tools to accurately compute the statistical quantities
of the large-scale structure. At decreasing redshift and
scale, the evolution of the large-scale structure however
deviates significantly from the linear theory prediction and
nonlinear gravitational clustering effects have to be taken
into account. While N-body simulations can be relied upon
in specific cases, because of the range of scales to be
covered and the variety of models to explore, they should
be complemented by analytical investigations that aim at
computing the statistical properties of the large-scale struc-
ture from first principles, henceforth extending the validity
range of linear calculations. It is to be noted that even at the
scale of BAOs, linear calculations and one-loop corrections
from the standard perturbation theory (PT) perform poorly
(see e.g., Refs. [20–22]) asking for more advanced PT
calculations. A crucial remark is that while higher-order
PT corrections need to be included to improve the per-
formance of predictions, the applicable range of PT pre-
diction largely depends on the PT scheme itself. Indeed,
the standard PT treatment is known to have bad conver-
gence properties, and it produces ill-behaved higher-order

1www.sdss3.org.
2wigglez.swin.edu.au.
3sumire.ipmu.jp/en/.
4www.darkenergysurvey.org.

5bigboss.lbl.gov/index.html.
6www.pausurvey.org.
7www.euclid-ec.org.
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corrections. The improvement of perturbation theory is
thus a critical issue for the scientific exploitation of the
coming surveys. Various resummation schemes have been
proposed in Refs. [20,22–33] that aim at improving upon
standard schemes. The aim of this paper is not to compare
them but to propose, and test, a specific scheme that can be
used routinely in practice.

In this paper, we are particularly interested in one of the
resummation treatments, advocated in Ref. [34]. In this
approach, the standard PT expansion is reorganized by
introducing the multipoint propagators. These are the en-
semble average of the infinitesimal variation of the cosmic
fields with respect to the initial conditions. A key property
shown in the previous reference is that all the statistical
quantities such as power spectra and bispectra can be
reconstructed by an expansion series written solely in
terms of the multipoint propagators. This is referred to as
the multipoint propagator expansion or ! expansion. The
advantage of this approach is that the nonperturbative
properties, which can be obtained in standard PT by
summing up infinite series of PT expansions, are wholly
encapsulated in the multipoint propagators, including the
effect of vertex renormalization. Furthermore, the ! ex-
pansion has been found to be valid not only for Gaussian
initial conditions, but also for non-Gaussian ones [35]. The
construction of accurate calculation scheme for power
spectra and bispectra can then be split in pieces that can
be tested separately.

The second key property that leads us to consider such
objects is that their global shape, e.g., their whole
k-dependence, can be computed in a perturbation theory
context and compared to N-body results thanks to the
high-k exponential damping tail they all exhibit [34,36].
All these properties make the multipoint propagators the
most important building blocks in the ! expansion and the
focus of our modeling efforts. In the following we will in
particular make full use of the novel regularization scheme
proposed in Ref. [37] that allows to consistently interpolate
between standard PT results at low k and the expected
resummed behavior at high k. This scheme has been ex-
plicitly tested for the two-point propagators up to two-loop
order in Ref. [38] and for (specific shapes of) the three-
point propagators in Ref. [37].

The first objective of this paper is to present an explicit
calculation of the nonlinear power spectrum and correla-
tion function of the cosmic density field based on this
regularized treatment. Of particular interest is the extent
to which the proposed scheme for ! expansion works
beyond standard PT when corrections at next-to-next-to-
leading, i.e., two-loop, order are included. Results will be
checked with N-body simulations. We will see that the !
expansion with the regularized treatment of propagators,
which we hereafter call REGPT, has good convergence
properties and agrees remarkably well with simulations
in the weakly nonlinear regime. Though the applicable

range of PT treatment is still restricted to a certain wave-
number on large scales, the present REGPT treatment in-
cluding the two-loop order is found to entirely cover the
scales of BAOs at any redshift.
The second objective of this paper is to design and

exploit a method to accelerate the power spectrum
computations. Power spectra calculations in the context
of REGPT calculations are rather involved requiring
multidimensional integrations that have to be done with
time-consumingMonte Carlo calculations. Typically, com-
puting the power spectrum at percent level from our
scheme takes several minutes. While this is acceptable
when a handful of models have to be computed, this is
an obstacle when a large domain of parameter space has
to be systematically explored. Making use of the !
expansion functional form, we found though that it is
possible to exploit a novel technique for accelerated
calculation, in which only one-dimensional integrals
need to be evaluated while ensuring the same precision
as rigorous REGPT calculations. The bottom line of this
approach is to see the resulting nonlinear power spectrum
as a functional of the linear power spectrum and then
Taylor-expand this form with respect to the linear
spectrum shape. We found that for well-chosen fiducial
models, it is sufficient to Taylor-expand to first order only.
We are then led to prepare in advance a set of kernel
functions encoding the REGPT results for well chosen
fiducial models, whose normalizations are left floating,
from which the REGPT predictions for the target model can
be calculated. We publicly release the Fortran code,
REGPT, as a part of this paper.8

The organization of this paper is as follows. We begin
by recalling the basic equations for cosmic fluid and
perturbation theory in Sec. II. We introduce the multipoint
propagator and give the power spectrum expression based
on the ! expansion. With the regularized treatment of
multipoint propagators, in Sec. III, we examine the the
power spectrum calculations including the corrections up
to the two-loop order, and investigate their UV and IR
sensitivity in evaluating the PT kernels. Then, in Sec. IV,
a detailed comparison between PT calculation and N-body
simulation is presented, and the accuracy and range of
validity of PT calculation is checked. Based on this,
Sec. V describes in detail the method to accelerate the
power spectrum calculations. Robustness and applicability
of the accelerated REGPT calculations to a wide range of
cosmological models are tested against power spectrum
COSMIC EMULATOR code in Sec. VI. Finally, in Sec. VII, we
conclude and explore practical extensions of this work.
The description of the publicly released code, REGPT, is
presented in Appendix B.

8The code is available at www-utap.phys.s.u-tokyo.ac.jp/
~ataruya/regpt_code.html.
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II. EQUATIONS OF MOTION
AND THE ! EXPANSION

A. Equations of motion

In what follows, we consider the evolution of cold dark
matter (CDM) plus baryon systems neglecting the tiny
fraction of (massive) neutrinos. Owing to the single-stream
approximation of the collisionless Boltzmann equation,
which is thought to be quite accurate an approximation
on large scales, the evolution of the CDM plus baryon
system can be treated as an irrotational and pressureless
fluid system whose governing equations are continuity and
Euler equations in addition to the Poisson equation (see
Ref. [39] for review). In the Fourier representation, these
equations are further reduced to a more compact form. Let
us introduce the two-component multiplet (e.g., Ref. [20])

"aðk; tÞ ¼
!
!ðk; tÞ;!"ðk; tÞ

fðtÞ

"
; (1)

where the subscript a ¼ 1, 2 selects the density and the
velocity components of CDM plus baryons, with ! and
"ðxÞ % r & vðxÞ=ðaHÞ, where a and H are the scale factor
of the Universe and the Hubble parameter, respectively.
The function fðtÞ is given by fðtÞ % d lnDðtÞ=d lna, and
the quantityDðtÞ is the linear growth factor. Then, in terms
of the new time variable # % lnDðtÞ, the evolution equa-
tion for the vector quantity "aðk; tÞ becomes

#
!ab

@

@#
þ#abð#Þ

$
"bðk;#Þ

¼
Z d3k1d

3k2
ð2$Þ3 !Dðk! k1 ! k2Þ%abcðk1; k2Þ

("bðk1;#Þ"cðk2;#Þ; (2)

where we used the summation convention, that is the
repetition of the same subscripts indicates the sum over
the whole multiplet components. In the above, the quantity
!D is the Dirac delta function, and the time-dependent
matrix #abð#Þ is given by

#abð#Þ ¼
0 !1

! 3
2f2

#mð#Þ 3
2f2

#mð#Þ ! 1

 !
(3)

with the quantity #mð#Þ being the density parameter of
CDM plus baryons at a given time. The vertex function
%abc becomes

%abcðk1; k2Þ ¼

8
>>>>>>>>>>><
>>>>>>>>>>>:

1
2

%
1þ k2&k1

jk2j2

&
; ða; b; cÞ ¼ ð1; 1; 2Þ

1
2

%
1þ k1&k2

jk1j2

&
; ða; b; cÞ ¼ ð1; 2; 1Þ

ðk1&k2Þjk1þk2j2
2jk1j2jk2j2 ; ða; b; cÞ ¼ ð2; 2; 2Þ

0; otherwise:

(4)

Equation (2) can be recast as the integral equation
(e.g., Refs. [20,39])

"aðk;#Þ ¼ gabð#;#0Þ&bðkÞ

þ
Z #

#0

d#0gabð#;#0Þ
Z d3k1d

3k2
ð2$Þ3

( !Dðk! k1 ! k2Þ%bcdðk1; k2Þ"cðk1;#0Þ
("dðk2;#0Þ: (5)

The quantity &aðkÞ % "aðk;#0Þ denotes the initial con-
dition, and the function gab denotes the linear propagator
satisfying the following equation,

#
!ab

@

@#
þ#abð#Þ

$
gbcð#;#0Þ ¼ 0; (6)

with the boundary condition gabð#;#Þ ¼ !ab. The statis-
tical properties of the field "a are encoded in the initial
field &a, for which we assume Gaussian statistics. The
power spectrum of &a is defined as

h&aðkÞ&bðk0Þi ¼ ð2$Þ3!Dðkþ k0ÞPab;0ðkÞ: (7)

In what follows, most of the calculations will be made
assuming the contribution of decaying modes of linear
perturbation can be neglected. This implies that the field
&aðkÞ is factorized as &aðkÞ ¼ !0ðkÞua with ua ¼ ð1; 1Þ,
and thus the initial power spectrum is written as
Pab;0ðkÞ ¼ P0ðkÞuaub.
Using the formal expression (5), a perturbative solution

is obtained by expanding the fields in terms of the initial
fields

"aðk;#Þ ¼
X1

n¼1

"ðnÞ
a ðk;#Þ: (8)

The expression of the solution at each order is written as

"ðnÞ
a ðk;#Þ ¼

Z d3k1 & & & d3kn
ð2$Þ3ðn!1Þ !Dðk! k1 ! . . .! knÞ

(F ðnÞ
a ðk1; k2; & & & ;kn;#Þ!0ðk1Þ & & &!0ðknÞ:

(9)

The kernelF ðnÞ
a is generally a complicated time-dependent

function, but can be constructed in terms of the quantities
%abc and gab. Examples of the solutions are shown dia-
grammatically in Fig. 1. Because we are interested in the

FIG. 1. Diagrammatic representation of the standard PT
expansion.
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late-time evolution of large-scale structure only, we can
take the limit #0 ! !1. As a consequence, the fastest
growing term is the only surviving one and the kernel is
simplified into

F ðnÞ
a ðk1; & & & ; knÞ ¼ en#FðnÞ

a;symðk1; & & & ;knÞ; (10)

where the function FðnÞ
a;sym is the symmetrized standard PT

kernel, sometimes written as FðnÞ
a;sym ¼ ðFn;GnÞ, whose

explicit expressions are obtained from recursion relations
as recalled in Ref. [39].

B. ! expansion and regularized PT treatment

In this paper, we are more specifically interested in the
power spectra Pabðk;#Þ, defined as

h"aðk;#Þ"bðk0;#Þi ¼ ð2$Þ3!Dðkþ k0ÞPabðjkj;#Þ:
(11)

Substituting a set of perturbative solutions (9) into the
above definition, it is straightforward to obtain the succes-
sive perturbative expressions for the power spectra. This
is the standard PT treatment where the initial fields values
are seen as the perturbative variables. The standard PT
calculations have, however, been shown to produce ill-
behaved higher-order corrections that lack good conver-
gence properties.

As an alternative to the standard PT framework, it has
been recently advocated by many authors that the PT
expansion can be reorganized by introducing nonperturba-
tive quantities to improve the resulting convergence of the
expansion. The ! expansion is one such nonperturbative
framework, and the so-called multipoint propagators con-
stitute the building blocks of this ! expansion. Denoting
the (pþ 1)-point propagator by !ðpÞ, we define

1

p!

'
!p"aðk;#Þ

!&c1ðk1Þ & & &!&cpðkpÞ

(

¼ !Dðk! k1...pÞ
1

ð2$Þ3ðp!1Þ !
ðpÞ
ac1&&&cpðk1; & & & ; kp;#Þ:

(12)

With these objects, the power spectra is shown to be
expressed as [34],

Pabðjkj;#Þ ¼
X1

t¼1

t!
Z d3q1 & & &d3qt

ð2$Þ3ðt!1Þ !Dðk! q1...tÞ

( !ðtÞ
a ðq1; & & & ; qt;#Þ!ðtÞ

b ðq1; & & & ; qt;#Þ
( P0ðq1Þ & & &P0ðqtÞ; (13)

where we introduced the shorthand notation,

!ðtÞ
a ðq1; . . . ; qt;#Þ ¼ !ðtÞ

ac1&&&ctðq1; . . . ; qt;#Þuc1 & & &uct :
(14)

The diagrammatic representation for multipoint
propagator and the power spectrum is respectively shown
in Figs. 2 and 3.
The construction of the ! expansion is rather transpar-

ent, and like Eq. (13), one easily finds the expressions for
the higher-order statistical quantities such as bispectrum.
Another important point is that one can exploit the asymp-
totic properties of the propagators !ðpÞ beyond perturbation
theory expansions. To be precise, in the high-k limit,
higher-order contributions can be systematically computed
at all orders, and as a result of summing up all the con-
tributions, the multipoint propagators are shown to be
exponentially suppressed [34,36]

!ðpÞ
a ðk1; . . . ;kp;#Þ !

k!1
exp

%
!k2'2

de
2#

2

&
!ðpÞ
a;treeðk1; . . . ;kp;#Þ

(15)

with k ¼ jk1 þ & & & þ kpj. This is the generalization of the
result for the two-point propagator in Ref. [23]. Here, the

quantity !ðpÞ
a;tree is the lowest-order nonvanishing propagator

obtained from the standard PT calculation, and 'd is the
one-dimensional root mean square of the displacement
field defined by

'2
d ¼

1

3

Z d3q

ð2$Þ3
P0ðqÞ
q2

: (16)

The form of Eq. (15) does not however provide a good
description of the propagators at all scale. At low k the
propagators are expected to approach their standard PT
expressions that can be written formally,

!ðpÞ
a ðk1; . . . ;kp;#Þ ¼ !ðpÞ

a;treeðk1; . . . ;kp;#Þ

þ
X1

n¼1

!ðpÞ
a;n! loopðk1; . . . ;kp;#Þ: (17)

For the dominant growing-mode contribution we are inter-
ested in, each correction term is expressed in terms of the
standard PT kernels as,

!ðpÞ
a;treeðk1; . . . ; k2;#Þ ¼ ep#FðpÞ

a;symðk1; . . . ; kpÞ; (18)

for the tree-level contribution, and

FIG. 2. Example of the multipoint propagator, !ð4Þ
a . A large

filled circle symbolically represents all possible contributions
that enter into the fully nonlinear propagator. A part of those
contributions can be seen graphically using PT expansion

(see Figs. 4 and 5 for three-point propagator !ð2Þ
a ).

TARUYA et al. PHYSICAL REVIEW D 86, 103528 (2012)

103528-4



!ðpÞ
a;n!loopðk1; . . . ; kp;#Þ ¼ eð2nþpÞ#cðpÞn

Z d3p1 & & &d3pn

ð2$Þ3n Fð2nþpÞ
a;sym ðp1;!p1; & & & ;pn;!pn;k1; . . . ; kpÞP0ðp1Þ & & &P0ðpnÞ

% eð2nþpÞ# $!ðpÞ
a;n! loopðk1; . . . ;kpÞ (19)

for the n-loop order contributions, where the coefficient
cðpÞn is given by cðpÞn ¼ ð2nþpÞCpð2n! 1Þ!! with ð2nþpÞCp

being the binomial coefficient. The graphical representa-
tion of the standard PT expansion is shown in Fig. 4. The
important remark in Eq. (19) is that each perturbative
correction possesses the following asymptotic form:

!ðpÞ
a;n!loop !k!1 1

n!

!
! k2'2

de
2#

2

"
n
!ðpÞ
a;n!tree; (20)

which consistently recovers the expression (15) when we
sum up all the loop contributions. This indicates the
existence of a matching scheme which smoothly interpo-
lates between the low-k and high-k results for any multi-
point propagator. Such a scheme has been proposed in
Ref [37] where a novel regularized scheme, in which
the low- and high-k behaviors are jointly reproduced, is

derived. The construction of the regularized propagator is
totally unambiguous. They can incorporate an arbitrary
number of loop corrections.
Restricting the results to the growing mode contribu-

tions, the regularized propagators are expressed in a trans-
parent way in terms of the standard PT results, and one gets

!ðpÞ
a;regðk1; . . . ; kp;#Þ

¼ ep#
#
FðpÞ
a;symðk1; . . . ; kpÞ

%
1þ k2'2

de
2#

2

&

þ e2# $!ðpÞ
a;1!loopðk1; . . . ;kpÞ

$
exp

%
! k2'2

de
2#

2

&
; (21)

which consistently reproduces one-loop PT results at low
k. An example of the regularized propagator valid at one-
loop order is diagrammatically shown in Fig. 5. This

FIG. 4. Diagrammatic representation of the standard PT expansion for three-point propagator, !ð2Þ
a . For fastest growing-mode

contribution, the standard PT kernels, FðnÞ
a;sym, form the basic pieces of PT expansion, depicted as incoming lines connected to a single

outgoing line at the shaded circle. In the case of !ð2Þ
a , the leading-order contribution is Fð2Þ

a;sym, and successively the kernels Fð4Þ
a;sym and

Fð6Þ
a;sym appear as higher-order contributions, for which pairs of the incoming lines are glued at the crossed circle, which indicates the

initial power spectrum P0, forming closed loops.

FIG. 3. Diagrammatic representation of the power spectrum by means of ! expansion. Here, the result up to the two-loop order is
shown. In each contribution of the diagrams, the multipoint propagators are glued together at the crossed circles where the initial power
spectra P0ðkÞ are inserted.

FIG. 5. Diagrammatic representation of the regularized three-point propagator, !ð2Þ
a;reg. In the high-k limit, the higher-loop

contribution for three-point propagator behaves like Eq. (20), indicating that each loop diagram (!ð2Þ
a;n! loop) is effectively split into

tree diagram (Fð2Þ
a;sym) and self-loop diagram (f!ðk'dÞ2=2gn=n!), the latter of which is depicted as open loops. Systematically summing

up all the higher-loop contributions, we recover Eq. (15), which is graphically shown as the infinite sum of open-loop diagrams in the
brace. To reproduce the standard PT result at low k, the one-loop diagram is inserted in the bracket, and the tree diagram is multiplied
by the counter term f1þ ðk'dÞ2=2g.
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construction is easily generalized to include the higher-
order PT corrections at low k. For instance, the regularized
propagator including the corrections up to the two-loop
order becomes

!ðpÞ
a;regðk1; . . . ; kp;#Þ

¼ ep;#
#
FðpÞ
a;treeðk1; . . . ; kpÞ

%
1þ k2'2

de
2#

2
þ 1

2

!
k2'2

de
2#

2

"
2
&

þ e2# $!ðpÞ
1!loopðk1; . . . ; kpÞ

%
1þ k2'2

de
2#

2

&

þ e4# $!ðpÞ
2!loopðk1; . . . ; kpÞ

$
exp

%
! k2'2

de
2#

2

&
: (22)

Note that the functions $!ðpÞ
n-loop are the scale-dependent part

of the propagator defined by Eq. (19).

III. POWER SPECTRUM CALCULATION FROM
REGULARIZED ! EXPANSION

A. Power spectrum at two-loop order

Since the proposed regularized propagators preserve
the expected low-k and high-k behaviors, the convergence
of the ! expansion adopting the regularization scheme
would be much better than the standard PT expansion.
In this paper, applying this regularized PT treatment, we
will explicitly demonstrate the power spectrum calcula-
tions at two-loop order. Comparing those predictions with
N-body simulations, the validity and precision of PT treat-
ment are discussed. From Eq. (13), the explicit expression
for the power spectrum valid up to the two-loop order
becomes

Pabðk;#Þ ¼ !ð1Þ
a;regðk;#Þ!ð1Þ

b;regðk;#ÞP0ðkÞ þ 2
Z d3q

ð2$Þ3 !
ð2Þ
a;regðq; k! q;#Þ!ð2Þ

b;regðq; k! q;#ÞP0ðqÞP0ðjk! qjÞ

þ 6
Z d6pd3q

ð2$Þ6 !ð3Þ
a;regðp; q; k! p! q;#Þ!ð3Þ

b;regðp; q; k! p! q;#ÞP0ðpÞP0ðqÞP0ðjk! p! qjÞ (23)

with the regularized propagators given by

!ð1Þ
a;regðk;#Þ ¼ e#

#
1þ k2'2

de
2#

2
þ 1

2

!
k2'2

de
2#

2

"
2

þ e2# $!ð1Þ
a;1!loopðkÞ

%
1þ k2'2

de
2#

2

&

þ e4# $!ð1Þ
a;2!loopðkÞ

$
exp

%
! k2'2

de
2#

2

&
; (24)

!ð2Þ
a;regðq; k! q;#Þ ¼ e2#

#
Fð2Þ
a;symðq;k! qÞ

%
1þ k2'2

de
2#

2

&

þ e2# $!ð2Þ
a;1!loopðq;k! qÞ

$

( exp
%
! k2'2

de
2#

2

&
; (25)

!ð3Þ
a;regðp; q; k! p! q;#Þ ¼ e3#Fð3Þ

a;symðp; q;k! p! qÞ

( exp
%
! k2'2

de
2#

2

&
: (26)

Note that the higher-order contributions up to the two- and
one-loop order of the propagators are respectively included
in the expression of the regularized propagators !ð1Þ

a;reg and
!ð2Þ
a;reg, consistently with the ! expansion at two-loop order.
The power spectrum expression involves many integrals,

but, most of them are reduced to two- or three-dimensional
integrals if one uses the analytic expressions for the kernels
of higher-loop corrections $! in the regularized propagator.

We use the expression in Ref. [38] to evaluate $!ð2Þ
1-loop, and

adopt the fitting functions for the kernel of $!ð1Þ
2-loop (see

Ref. [38]). We then apply the method of Gaussian quad-
rature to the numerical evaluation of the low-dimensional
integrals. A bit cumbersome is the integral containing !ð3Þ.
While it can be reduced to a four-dimensional integral in
principle, the expression of the resulting kernel would be
very cumbersome and might not be suited for practical
calculation. We thus adopt the Monte Carlo technique of
quasirandom sampling using the CUBA library [40], and
evaluate the five-dimensional integral directly.9

Fig. 6 illustrates an example how each correction term in
the regularized ! expansion contributes to the total power
spectrum. The plotted result is the density power spectrum,
P11, and the contribution of the term involving each multi-
point propagator is separately shown. The three corrections
contribute to the power spectrum at different scales, and

the higher-order terms involving !ð2Þ
reg and !ð3Þ

reg are well
localized, each producing one bump. This is a clear mani-
festation of the result of the regularized PT treatment, and
it resembles what the renormalized perturbation theory
calculations by Ref. [24] give.
In the next section, the results of the regularized !

expansion will be compared with N-body simulations.
But, before doing that, we will give several remarks and
comments on the computation of the power spectrum in the
subsequent subsection.

9Since the final result of the integration is expressed as a
function of only the wavenumber k, the integrand possesses an
azimuthal symmetry with respect to the vector, k, indicating that
the integral is reduced to a five-dimensional integral.
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B. Effect of running UV cutoff for !d

Since the shape of the power spectrum given by Eq. (23)
significantly depends on the exponential damping in the
regularized propagators, we first comment on the effect of
this function. As it has been shown, the exponential func-
tion arises from the summation of infinite series of pertur-
bations at all order in the high-k limit. Recently, Ref. [36]
advocated that this exponential function can be interpreted
as the result of resummation at hard part (high k), and the
displacement dispersion 'd in the exponent must be eval-
uated in a consistent way that the domain of the integral is
restricted to a soft part (low k). This implies that depending
on the scale of our interest, the boundary of the soft and
hard domains can be changed, and the resulting quantity
'd should be regarded as a scale-dependent function.

In Fig. 7, we examine the impact of the scale-dependent
'd on the power spectrum at z ¼ 1. Plotted results are the
contributions of the power spectrum corrections (upper)
and the total power spectrum divided by the smooth refer-
ence linear spectrum (bottom). Here, we evaluate 'd by
introducing the running UV cutoff k%ðkÞ

'2
dðkÞ ¼

Z k%ðkÞ

0

dq

6$2 P0ðqÞ: (27)

Various curves in Fig. 7 represent the results with different
prescription for the running UV cutoff. The correction

involving the four-point propagator !ð3Þ
reg is most sensitively

affected by the running cutoff, and the resulting power
spectrum significantly varies at scales k * 0:2h Mpc!1.

This is because the exponential damping manifests itself

at the scale k) 1=ðe#'dÞwhere the contribution from !ð3Þ
reg,

which contains no relevant terms counteracted with the
exponential damping, becomes significant among the three
corrections.
In the bottom panel of Fig. 7, we also plot the result of

N-body simulations (see Sec. IVA). The comparison with
simulation suggests that the PT calculation with running
cutoff k% ) k=2! k=5 is favored, although there is no
clear physical reason why this is so. Strictly speaking,
the running IR cutoff might also be introduced in evaluat-
ing all the integrals in the power spectrum expression, so as
to consistently discriminate between the contributions
coming from soft and hard parts. Moreover, the running
cutoff k% may also depend on the redshift. These compli-
cations mostly come from the ambiguity of the boundary
between soft and hard domains in our regularization
scheme. For practical purpose to the cosmological appli-
cation, we postpone these issues to future investigation,
and take a rather phenomenological approach. Hereafter,
the running cutoff is only introduced in evaluating 'd, and
we evaluate it according to Eq. (27), setting the cutoff scale
to k% ¼ k=2. With this treatment, we will see later that the
PT prediction becomes improved compared to the standard

FIG. 6 (color online). Contribution of multipoint propagators to
the power spectrum, PðkÞ ¼ P11ðkÞ at z ¼ 1. Magenta, green, and
blue curves represent the power spectrum contributions from the
first, second, and third terms at the right-hand side of Eq. (23),
respectively, each of which just corresponds to the diagram in

Fig. 3, involving !ð1Þ
reg, !

ð2Þ
reg, and !ð3Þ

reg. Summing up these contri-
butions, total power spectrum is shown in black solid line. For
reference, linear power spectrum is also plotted as dotted line.

FIG. 7 (color online). Sensitivity of the power spectrum pre-
diction at z ¼ 1 to the UV cutoff in the estimation of 'd. Top
panel shows each contribution of the power spectrum corrections
involving !ð1Þ (magenta), !ð2Þ (green), and !ð3Þ (blue), respec-
tively (from top to bottom, see also Fig. 6). Bottom panel shows
the total sum of power spectrum divided by the smooth reference
power spectrum, Pno-wiggleðkÞ, which is calculated from the no-

wiggle formula of the linear transfer function in Ref. [47]. In
each case, top lines represent the results obtained by setting
'd ¼ 0, while undermost lines show the cases adopting the value
of 'd without UV cutoff. The middle six lines represent the cases
adopting the running UV cutoff in estimating 'd, with cutoff
k%ðkÞ ¼ k, k=2, k=3, k=5, k=10, and k=20 (from bottom to top).
As a reference, linear theory prediction is also plotted in both
panels (dotted).
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PT calculation, and it reproduces the N-body results quite
well at any redshift.

C. Sensitivity to IR and UV cutoff

In computing the power spectrum, except for 'd, the
domains of each integral in Eq. (23) are usually taken
broadly enough so as to ensure the convergence of the
results. In comparison with N-body simulations, however,
a care must be taken because the available Fourier modes
in simulations are restricted depending on the simulation
box size and/or mesh size of Fourier transform, which
affect both the efficiency of mode transfer and strength
of mode coupling. The evolved result of the power spec-
trum would thus be changed, and it should be carefully
compared with PT calculation, taking the finite resolution
into consideration. Here, focusing on the BAO scales, we
briefly discuss the sensitivity of the PT calculation to the IR
and UV cutoff in the integrals.

Figure 8 shows the variation of the power spectra with
respect to the UV (left) and IR (right) cutoff. In general, the
kernel of integrals becomes broader for higher-loop cor-

rections, and thus the two-point propagator !ð1Þ
reg containing

the two-loop contribution is sensibly affected by the UV
cutoff. Note that the signs of one- and two-loop corrections

in !ð1Þ
reg are opposite at BAO scales. Hence, as decreasing

the cutoff wavenumber kmax, the cancellation of each con-
tribution is relatively relaxed, and the power spectrum
amplitude gets increased. On the other hand, due to the
lack of the long-wave modes, the IR cutoff not only
decreases each contribution of the loop integrals, but
also reduces 'd, leading to a slight suppression of the
exponential damping. The net effect of the IR cutoff,
especially at small scales k * 0:2h Mpc!1, is that the

latter overcomes the former, and the total power spectrum
is slightly enhanced.
These results imply that the effect of UV and IR cutoff

not only affects the power spectrum shape at small scales,
but also causes a slight offset in power spectrum amplitude
at moderately large scales, k) 0:1h Mpc!1. The size of
these effects is basically small, but would not be negligible
in a percent-level comparison. Based on this remark, in
what follows, we adopt the cutoff scales ðkmin; kmaxÞ ¼
ð5( 10!4; 10Þh Mpc!1 as default parameters to compute
the power spectra. With this setup, REGPT calculation gives
a mostly convergent result, which can be compared with
high-resolution N-body simulations with a large box size.

D. Comparison with MPTbreeze

In Ref. [41], MPTBREEZE, an alternative scheme has
been proposed for the construction of power spectra that
is based on the same multipoint propagator expansion. This
proposition is, however, based on simplified assumptions
regarding the behavior of the multipoint propagators. More
specifically, in MPTBREEZE, the propagators are assumed to
take the form

!ðpÞ
a;regðq1; . . . ;qp!1;k! q1&&&ðp!1Þ;#Þ
¼ ep#FðpÞ

a;symðq1; . . . ;qp!1;k! q1&&&ðp!1ÞÞ expffaðkÞe2#g;
(28)

where f1ðkÞ and f2ðkÞ are the one-loop corrections to the
density and velocity propagators, respectively. This form
corresponds to the late-time original expression of the
exponentiation scheme initially put forward in Ref. [23].
It is shown in Refs. [37,38] that at one-loop order, this
prescription gives nearly identical result for the two-point

FIG. 8 (color online). Sensitivity of the power spectrum prediction to the UV (left) and IR (right) cutoff. In each panel, the ratio of
power spectrum, PðkÞ=Pno-wiggleðkÞ, is plotted as function of k at z ¼ 1 (left) and 0.35 (right). In evaluating the integrals of the power

spectrum corrections, the maximum wavenumber for the range of the integral is set to 2$ (green), $ (cyan), and $=2 (blue) h Mpc!1

in the left panel, while in the right panel, we change the minimum wavenumber kmin to kmin ¼ 2$=Lbox with Lbox ¼ 2048 (green),
1024 (cyan), and 512 h Mpc!1 (blue) (from second lowest to top). The magenta lines (bottom) indicate the results adopting the default
set of parameters ðkmin; kmaxÞ ¼ ð5( 10!4; 10Þ h Mpc!1.
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propagator to the prescription proposed in Ref. [23]. The
MPTBREEZE prescription, however, ignores the impact of
two-loop PT corrections on the two-point propagators.
From the results presented in Ref. [38], it implies that
MPTBREEZE might be outperformed by REGPT at z * 1.
On the other hand, the predictions of that scheme are
made more robust because they are less sensitive to the
UV part of the linear spectrum as discussed in that paper.
Furthermore, the one-loop correction for the three- and
four-point propagators is treated in an effective way.
These simplified assumptions allow a more rapid calcula-
tions of the set of diagrams. It takes just a few seconds to
get the expected shape in this scheme. The computational
time is, however, rather comparable to the fast implemen-
tation of REGPT which we will present in Sec. V.

IV. COMPARISON WITH N-BODY SIMULATIONS

We are now in position to present quantitative
comparisons between REGPT calculations and N-body
simulations. After briefly describing the N-body simula-
tions in Sec. IVA, we show the results of power spectrum
and two-point correlation function in Sec. IVB and IVC,
respectively. Precision and validity of the PT predictions
are discussed in detail.

A. N-body simulations

To compare REGPT calculations with N-body simula-
tions, we ran a new set of N-body simulations, which
will be presented in more detail with an extensive conver-
gence study in Ref. [42]. This set of simulations can be
regarded as an updated version of the one presented in
Ref. [22] with much larger total volume and a more careful
setup to achieve a smaller statistical and systematic error.
The data were created by a public N-body code GADGET2

[43] with cubic boxes of side length 2; 048h!1 Mpc, and
10243 particles. The cosmological parameters adopted in
these N-body simulations are basically the same as in the
previous one, and are determined by the five-year WMAP
observations [44] (see Table I). The initial conditions were
generated by a parallelized version of the 2LPT code [45],
developed in Ref. [46]. After several tests given in
Ref. [46], a lower initial redshift zinit turns out to give a
more reliable estimate for the power spectrum at BAO
scales, and we thus adopt the initial redshift zinit ¼ 15.
With this setup, we have created 60 independent realiza-
tions and the data were stored at redshifts z ¼ 3, 2, 1,
and 0.35. The total volume at each output redshift is
515h!3 Gpc3, which is statistically sufficient for a detailed
comparison with PT calculations.

We measure both the matter power spectrum and the
correlation function. For the power spectrum, we adopt the
cloud-in-cells interpolation, and construct the Fourier
transform of the density field assigned on the 1; 0243

grids. As for the estimation of the two-point correlation
function, we adopt the grid-based calculation using the fast
Fourier transformation [22]. Similarly to the power spec-
trum analysis, we first compute the square of the density
field on each grid point in Fourier space. Then, applying
the inverse Fourier transformation, we take the average
over separation vectors and realizations, and finally obtain
the two-point correlation function. The implementation of
this method, together with a convergence test, is presented
in more detail in Ref. [22].

B. Power spectrum

Let us first present the power spectrum results. Left
panel of Fig. 9 shows the ratio of the power spectra,
PðkÞ=Pno-wiggleðkÞ, while the right panel plots the fractional
difference between N-body simulations and PT calcu-
lations, defined by ½PN-bodyðkÞ ! PPTðkÞ+=Pno-wiggleðkÞ
(where Pno-wiggleðkÞ is calculated from the no-wiggle for-
mula of the linear transfer function in Ref. [47]). Overall,
the agreement between REGPT and N-body simulations is
remarkable at low k, and a percent-level agreement is
achieved up to a certain wavenumber. For a decreasing
redshift, the nonlinearities develop and the applicable
range of PT calculations inevitably becomes narrower,
however, compared to the standard PT predictions, the
REGPT result can reproduce the N-body trend over an
even wider range. Indeed, the range of agreement with
N-body simulations is rather comparable to other improved
PTs including higher-order corrections, such as closure
theory [22,29], and better than some of those predictions.
For reference, we compute the power spectra from closure
and Lagrangian resummation theory (LRT) [25,48] at
two-loop order, and estimate the range of a percent-level
agreement with N-body simulations, the results of which
are respectively depicted as green and blue vertical arrows
in right panel of Fig. 9. Note that at z ¼ 3, the range of
agreement for closure theory exceeds the plotted range,
and is not shown here.
Although the REGPT treatment gives a very good per-

formance comparable to or even better than other improved
PTs, a closer look at Fig. 9 reveals several subpercent
discrepancies.
(i) One is the low-k behavior at z ¼ 0:35, which exhib-

its a small discrepancy with N-body simulation. Our
investigations indicate that it is probably due to a

TABLE I. Cosmological parameters for N-body simulations (%CDM).

Name Lbox No. of particles zini No. of runs #m #% #b=#m w h ns '8

WMAP5 2; 048h!1 Mpc 1; 0243 15 60 0.279 0.721 0.165 !1 0.701 0.96 0:8159
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poor convergence of standard PT expansion, since
the low-k behavior of regularized propagators heav-
ily relies on the standard PT treatment. To be spe-

cific, the convergence of !ð1Þ
reg is the main source of

this discrepancy. Indeed, if !ð1Þ
reg is computed at one-

loop order only, the power spectrum is enhanced, and
then N-body results at low k lie in between the two
predictions. The impact of the high-order PT correc-
tions to the two-point propagator are specifically
studied in a separate publication, [38].

(ii) Another discrepancy can be found in the high-z
results, which temporally overshoot the N-body
results at mid-k regime (k) 0:2–0:3h Mpc!1). It
is unlikely to be due to a poor convergence of
standard PT expansion. We rather think that the
performances of the N-body simulations might be
responsible for this (small) discrepancy. We have
tested several runs with different resolutions, and
found that the low-resolution simulation with a
small number of particles tends to underestimate
the power at high z. Possible reason for this comes
from the precision of force calculation around the
intervening scales, where the tree and particle-mesh
algorithms are switched, and we suspect that the
discrepancy is mainly attributed to the inaccuracy of

the tree algorithm. Though the intervening scale is
usually set at a sufficiently small scale, with a low-
resolution simulation, it may affect the large-scale
dynamics with noticeable effects at higher redshifts.
Systematic studies on the convergence and resolu-
tion of N-body simulations will be reported else-
where [42].

Apart from the tiny systematics at subpercent level,
REGPT approach can give a reliable power spectrum pre-
diction at rather wider range, which entirely covers the
relevant scales of BAOs at z * 0:35. As we will see later in
Sec. VI B, the applicable range of the REGPT calculation
remains wide enough even in other cosmological models,
and can be empirically described with the criterion (42).

C. Correlation function

We next consider the two-point correlation function,
which can be computed from the power spectrum as

(ðrÞ ¼
Z dkk2

2$2 PðkÞ sinðkrÞ
kr

: (29)

In Fig. 10, left panel focuses on the behaviors around the
baryon acoustic peak, while right panel shows the global
shape of the two-point correlation function plotted in loga-
rithmic scales, for which (ðrÞ has been multiplied by the

FIG. 9 (color online). Comparison of power spectrum results between N-body simulations and REGPT calculations. In each panel, the
results at z ¼ 3, 2, 1, and 0.35 are shown (from top to bottom). Left panel shows the ratio of power spectrum to the smooth linear
spectrum, PðkÞ=Pno!wiggleðkÞ, where the reference spectrum Pno!wiggleðkÞ is calculated from the no-wiggle formula of the linear

transfer function in Ref. [47]. Solid lines are the REGPT results, while dotted lines represent the linear theory predictions. Right panel
plots the difference between N-body and REGPT results normalized by the no-wiggle spectrum, i.e., ½PN!bodyðkÞ !
PRegPTðkÞ+=Pno!wiggleðkÞ. In each panel, the vertical arrows respectively indicate the maximum wavenumber below which a percent-

level agreement with N-body simulation is achieved with Lagrangian resummation theory [25,48] and closure theory [22,29],
including the PT corrections up to two-loop order.
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cube of the separation. The REGPT results agree with
N-body simulations almost perfectly over the plotted
scales. As it is known, the impact of nonlinear clustering
on the baryon acoustic peak is significant: the peak position
becomes slightly shifted to a smaller scale, and the
structure of the peak tends to be smeared as the redshift
decreases (e.g., Refs. [24,25,49,50]). The REGPT calcula-
tion can describe not only the behavior around the baryon
acoustic peak but also the small-scale behavior of the
correlation function. Note that similar results are also
obtained from other improved PT treatments such as
closure and LRT. Although the REGPT predictions eventu-
ally deviate from simulations at small scales—the result
at z ¼ 0:35 indeed manifests the discrepancy below
r) 30h!1 Mpc—the actual range of agreement between
REGPT and N-body results is even wider than what is
naively expected from the power spectrum results. In
fact, it has been recently advocated by several authors
that with several improved PT treatments, the one-loop
calculation is sufficient to accurately describe the two-
point correlation function (e.g., Refs. [22,48,51]). We
have checked that the REGPT treatment at one-loop order
can give a satisfactory result close to the two-loop result,
and the prediction including the two-loop corrections only
slightly improves the agreement with N-body simulations
at small scales. This is good news for practical purposes in
the sense that we do not necessarily have to evaluate the
multidimensional integrals for the accurate prediction of
two-point correlation function in the weakly nonlinear
regime. Nevertheless, in this work, we keep the two-loop
contributions in the computed contributions. The computa-
tional costs of the two-loop order will be addressed in the
following with the development of a method for acceler-
ated PT calculation at two-loop order.

V. REGPT-FAST: ACCELERATED POWER
SPECTRUM CALCULATION

In this section, we present a method that allows accel-
erated calculations of the required diagrams of the two-
loop order REGPT prescription. In principle, the power
spectra calculations in the context of REGPT require multi-
dimensional integrations that cannot be done beforehand as
they fully depend on the linear power spectra. It is however
possible to obtain the required quantities much more
rapidly provided we know the answer for a close enough
model.
The key point in this approach is to utilize the fact that

the nonlinear REGPT power spectrum is a well-defined
functional form of the linear power spectrum. Each of
the diagrams that has to be computed is of quadratic, cubic,
etc. order with respect to the linear power spectrum with a
kernel that, although complicated, can be explicitly given.
It is then easy to Taylor-expand each of these terms with
respect to the linear power spectrum. In principle one then
just needs to prepare, in advance, a set of the REGPT results
for some fiducial cosmological models, and then take the
difference between fiducial and target initial power spectra
for which we want to calculate the nonlinear power spec-
trum. These differences involve only one-dimensional in-
tegrals at the first order in the Taylor expansion.
In the following, we present the detail of the implemen-

tation of this approach illustrating it with the one-loop
calculation case.

A. Power spectrum reconstruction from fiducial model

While our final goal is to present the fast PT calculation
at two-loop order, in order to get insights into the imple-
mentation of this calculation, we consider the power

FIG. 10 (color online). Comparison of two-point correlation function between N-body and REGPT results at z ¼ 3, 2, 1, and 0.35
(from bottom to top). In each panel, magenta solid, and black dotted lines represent the prediction from REGPT and linear theory
calculations, respectively. Left panel focuses on the behavior around baryon acoustic peak in linear scales, while right panel shows the
overall behavior in a wide range of separation in logarithmic scales. Note that in right panel, the resulting correlation function is
multiplied by the cube of the separation for illustrative purpose.
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spectrum at one-loop order. The complete expressions
needed for the fast PT calculation at two-loop order,
together with the prescription how to implement it, is
presented in Appendix A.

Compared to the expressions given in Eq. (23), the
power spectrum at one-loop order of the ! expansion
reduces to

Pabðk;#Þ ¼ !ð1Þ
a;regðk;#Þ!ð1Þ

b;regðk;#ÞP0ðkÞ

þ 2
Z d3q

ð2$Þ3 !
ð2Þ
a;regðq;k! q;#Þ

( !ð2Þ
b;regðq; k! q;#ÞP0ðqÞP0ðjk! qjÞ (30)

with the regularized propagators !ð1Þ
reg and !

ð2Þ
reg valid at one-

loop order being

!ð1Þ
a;regðk;#Þ ¼ e#

#
1þ k2'2

de
2#

2
þ e2# $!ð1Þ

a;1!loopðkÞ
$

( exp
%
! k2'2

de
2#

2

&
; (31)

!ð2Þ
a;regðq; k! q;#Þ

¼ e2#Fð2Þ
a;symðq; k! qÞ exp

%
! k2'2

de
2#

2

&
: (32)

Note that the quantity $!ð1Þ
a;1-loop is defined in Eq. (19), and

explicitly given by

$! ð1Þ
a;1!loopðkÞ ¼ 3

Z d3q

ð2$Þ3 F
ð3Þ
a;symðq;!q;kÞP0ðqÞ: (33)

Thus, in Eq. (30), there apparently appear two contribu-

tions which involve multidimensional integrals; $!ð1Þ
a;1-loop in

the regularized propagator !ð1Þ
a;reg, and the second term at

the right-hand side. Although these contributions are
known to be further reduced to one- and two-dimensional
integrals (e.g., Refs. [23,29,37]), respectively, for the sake
of this presentation we keep the expressions as in their
original form.

As has been mentioned earlier, the key idea of acceler-
ated calculation is to prepare a set of REGPT results for
fiducial cosmological models. Let us denote the initial
power spectrum for fiducial cosmology by P0;fidðkÞ. And
we denote the initial spectrum for the target cosmological
model, for which we want to calculate the nonlinear power
spectrum, by P0;targetðkÞ. For the moment, we assume that
the difference between those spectra is small enough.
Then, we may write

P0;targetðkÞ ¼ P0;fidðkÞ þ !P0ðkÞ: (34)

Hereafter, we focus on the power spectrum of density
field, P11, and drop the subscript. Substituting the above

expression into Eqs. (30)–(32), the nonlinear power spec-
trum for the target model is symbolically written as

Ptargetðk;#Þ ¼ Pun!pert½k;#;'d;target;P0;fidðkÞ+
þ Pcorr½k;#;'d;target;!P0ðkÞ+: (35)

Here, the first term at the right-hand side is the unperturbed
part of the one-loop power spectrum, which is nothing but
the expression (30) adopting the initial power spectrum for
fiducial model, P0;fidðkÞ, but with the cosmological depen-
dence of the time variable, given by # ¼ lnDðzÞ, being
calculated from the target model. Also, the dispersion of
displacement field, 'd, should be replaced with the one for
the targetmodel, i.e.,'d;target ¼ ½RdqP0;targetðqÞ=ð6$2Þ+1=2.
In each term of Eq. (30), the scale and time dependence can
be separately treated, and thus the unperturbed power spec-
trum,Pun-perturbed, is evaluated algebraically by summing up
each contribution, for which we use the precomputed data
set in evaluating the scale-dependent function.
In Eq. (35), the contribution Pcorr includes the nonlinear

corrections originating from the differences of initial
power spectra between fiducial and target cosmological
models. To first order in !P0, we have

Pcorr½k;#;'d;target;!P0ðkÞ+
¼ 2!ð1Þ

regðk;#Þ!!ð1Þ
regðk;#ÞP0;fidðkÞ

þ ½!ð1Þ
regðk;#Þ+2!P0ðkÞ

þ 4
Z d3q

ð2$Þ3 ½!
ð2Þ
regðq; k! q;#Þ+2P0;fidðjk! qjÞ!P0ðqÞ:

(36)

In the above expression, The quantity 'd appearing in the

propagators !ð1Þ
reg and !ð2Þ

reg should be evaluated with the
linear power spectrum for the target cosmological model.

The perturbed propagator !!ð1Þ
reg is expressed as

!!ð1Þ
regðk;#Þ ¼ e3#! $!ð1ÞðkÞe!k2'2

d;targete
2#=2; (37)

where the kernel of integral in ! $!ð1Þ is the same one as in
Eq. (33), but we may rewrite it with

! $!ð1ÞðkÞ ¼
Z dqq2

2$2 Lð1Þ
1 ðq; kÞ!P0ðqÞ (38)

with the kernel Lð1Þ
1 given by

Lð1Þ
1 ðq; kÞ ¼ 3

Z d2q"q

4$
Fð3Þ
1;symðq;!q; kÞ: (39)

Since the kernel Lð1Þ
1 only includes the PT kernel whose

cosmological dependence is extremely weak, we can
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separately prepare the numerical data set for Lð1Þ
1 in ad-

vance.10 Then, we can use it to compute ! $!ð1Þ for arbitrary
!P0, where the remaining integral to be evaluated is
reduced to a one-dimensional integral.

Furthermore, the integral in the last term of Eq. (36) is
rewritten with

Z d3q

ð2$Þ3 ½!
ð2Þ
regðq; k! q;#Þ+2P0;fidðjk! qjÞ!P0ðqÞ

¼ e!k2'2
d;targete

2#

e4#
Z dqq2

2$2 Xð2Þðq; kÞ!P0ðqÞ (40)

with the function Xð2Þ being

Xð2Þðq; kÞ ¼ 1

2

Z 1

!1
d)½Fð2Þ

symðq; k! qÞ+2

( P0;fid

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 ! 2kq)þ q2

q "
; (41)

where the variable ) is the directional cosine defined
by ) ¼ ðk & qÞ=ðkqÞ. In deriving the above expression,

we used the symmetric property of !ð2Þ
reg, i.e., !

ð2Þ
regðk1; k2Þ ¼

!ð2Þ
regðk2; k1Þ. Since the quantity Xð2Þðq; kÞ can be computed

in advance, all the integrals involving the power spectrum
!P0 are shown to be effectively reduced to one-
dimensional integrals. In other words the only remaining
task is to evaluate one-dimensional integrals, which can be
done very efficiently.

The practical implementation of this method makes use
of another important property of the kernel functions. They
indeed have a very simple dependence on a global rescal-
ing of the power spectrum, P0;fid ! cP0;fid. It is then
possible, without extra numerical computation, to choose
the fiducial model among a continuous set of models. The
model we choose, that is the normalization factor c we
take, is such that the difference !P0ðkÞ is as small as
possible in the wave-modes of interest. As we will see in
Sec. VI it makes the use of this method very efficient.

Note that although the treatment depicted here does not
give much impact on the computational cost of the one-
loop calculation, we will explicitly show in Appendix A
that at two-loop order the PT corrections involving
multidimensional integrals can be similarly reduced to

one-dimensional integrals. In the following, we denote
REGPT-FAST the implementation of this approach at two-
loop order.

B. Performances

Let us now illustrate the efficiency of the REGPT-FAST

expansion. Based on the expressions given in Appendix A,
we calculate the power spectrum and correlation function
at two-loop order. We adopt the best-fit parameters deter-
mined by the third-year WMAP result [52] as the fiducial
cosmological model from which we try to reproduce the
REGPT results for the five-year WMAP cosmological
model. Cosmological parameters for the fiducial model is
listed in Table II. Compared to the target model in Table I,
the mass density parameter shows a 20% difference, and
with 7% enhancement in the power spectrum normaliza-
tion ('8), this leads to a 20–30% difference in the initial
power spectrum.
Figure 11 plots the results of the REGPT-FAST calcu-

lation (blue) compared to the target REGPT calculation
(magenta). We plot, for a specific redshift z ¼ 1, the ratio
of the power spectrum to the smooth reference spectrum,
PðkÞ=Pno-wiggleðkÞ, and correlation function multiplied by

the cube of separation, r3(ðrÞ, in left and right panels,
respectively. The REGPT-FAST results perfectly coincide
with REGPT direct calculation, even outside the range of
agreement with N-body simulations.
Note that the perfect match between REGPT and

REGPT-FAST results is due to a large extent to the contribu-
tions of the higher-order PT in the correction, Pcorr or (corr.
This appears clearly in the plots of the linear theory
correction, !P0 ¼ P0;target ! P0;fid and its Fourier counter-
part !(0 (cyan long-dashed). As shown in cyan solid lines,
the total contribution, i.e., the combination of the unper-
turbed part plus linear theory correction, somehow resem-
bles the result with direct REGPT calculation, but exhibits a
rather prominent oscillatory feature with slightly different
phase in power spectrum, leading to a non-negligible dis-
crepancy. Accordingly, in correlation function, the acoustic
peak becomes enhanced, and the position of peak is shifted
to a small separation. Note finally, that these results could
only be achieved with the help of the rescaling properties
of the kernel functions. In this particular case the fiducial
model has been rescaled as P0;fid ! 1:082P0;fid. Rescaling
is a key feature of the REGPT-FAST method. It will be further
discussed in the next section.

TABLE II. Cosmological parameters for fiducial models used for the REGPT-FAST calculation
(see Sec. VIA).

Name #m #% #b=#m w h ns '8

WMAP3 0.234 0.766 0.175 !1 0.734 0.961 0.760
M001 0:4307 0:5692 0.150 !0:816 0:5977 0:9468 0:8161
M023 0:1602 0:8398 0:1817 !1:261 0:8694 0:9016 0:6664

10Indeed, the kernel Lð1Þ
1 is analytically known, and the explicit

expression is given in, e.g., Refs. [23,29,37].
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VI. TESTING REGPT TREATMENT FOR VARYING
COSMOLOGICAL MODELS

The purpose of this section is twofold. Our first goal is to
explore the validity and applicability of the REGPT-FAST

scheme. Having shown that the REGPT-FAST approach can
be used in one specific example, we now want to discuss
the usefulness of this treatment from a more practical point
of view. To be precise, we want to know how well the
REGPT-FAST treatment can reproduce rigorous REGPT cal-
culation in a variety of cosmological models.

Our second and natural goal is to test the REGPT scheme
itself, whether from direct or fast calculations, against N-
body based predictions such that the COSMIC EMULATOR.11

To do that, we have selected the 38 cosmological models
investigated in Ref. [53] for which we can use the publicly
released code, COSMIC EMULATOR, that provides interpo-
lated power spectra derived from N-body simulations. Let
us remind that the cosmological models considered there
are sampled from a wide parameter space for flat wCDM
cosmology, and lie within the range

FIG. 11 (color online). Example of the performances of the REGPT-FAST approach compared to direct REGPT calculation. Left panel
shows the power spectrum divided by the smooth reference spectrum, PðkÞ=Pno!wiggleðkÞ, while right panel plots the correlation

function multiplied by the cube of separation, i.e., r3(ðrÞ. In both panels, the results at z ¼ 1 are shown, together with N-body
simulations. The REGPT-FAST results, computed with prepared data set for fiducial cosmological model, are plotted as magenta solid
lines, which almost coincide with those obtained from the rigorous REGPT calculation (solid magenta). As shown in Eq. (35),
the REGPT-FAST results are divided into two contributions; unperturbed part (Pun!pert or (un!pert) adopting the WMAP3 model as

fiducial cosmology, and the correction part (Pcorr or (corr) evaluated with the power spectrum difference !P0. These are respectively
plotted as green dashed and cyan dashed lines. For reference, we also show the linearly evolved result of power spectrum difference
!P0 (dashed cyan) and the sum of the contributions Pun!pert þ !P0 (solid cyan) in left panel, and their Fourier counterparts in

right panel.

FIG. 12 (color online). Linear power spectra P0ðkÞ for 38
cosmological models [53]. Blue, green, and magenta lines are
respectively the power spectra of fiducial models WMAP3, M001,
and M023 used for the REGPT-FAST calculation (see Table II for
their cosmological parameters).11http://www.lanl.gov/projects/cosmology/CosmicEmu/.
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0:120<#mh
2 < 0:155; 0:0215<#bh

2 < 0:0235;

0:85< ns < 1:05; !1:30<w<!0:70;

0:616< '8 < 0:9:

The concrete values of the cosmological parameters in
each model are not shown here. Readers can find them in
Table 1 of Ref. [53]. Figure 12 shows the linear power
spectra P0ðkÞ for the 38 cosmological models, which have
been all produced with CMB Boltzmann code, CAMB [54].

A. Convergence of REGPT-FAST

Let us first examine the convergence of the power spec-
trum calculations between REGPT and REGPT-FAST treat-
ments. We ran both the REGPT-FAST and REGPT codes, and
evaluated the fractional difference between these power
spectra, defined by PRegPTfastðkÞ=PRegPTðkÞ ! 1. Collecting
the results at z ¼ 1 in each cosmological model, the con-
vergence of the power spectrum calculations for 38 models
is summarized in Fig. 13. In left panel we show the result
when only one fiducial model, WMAP3, is used. In that case
REGPT-FAST results tend to underestimate the results from
rigorous REGPT calculations at increasing k, and most of
them eventually exceed the 1% difference, indicated by the
green dashed line. This is because the shape of the initial
power spectrum in each target model is rather different
from that in the fiducial model, and even adjusting the re-
scaling parameter c cannot compensate a large power
spectrum difference. To be more precise, in most of the
models, the shape parameter, defined by ! ¼ #mh, is
typically larger than the one in the fiducial model. As a
consequence, even if we adjust the power spectrum at large
scales to match the one in the target model, the difference
j!P0j can become large as increasing k, leading to a failure
of the perturbative reconstruction by REGPT-FAST.

To remedy this situation, a simple but efficient approach
is to enlarge our set of fiducial models with ! parameters
that differ from the one of WMAP3 model, i.e., ! ¼ 0:172.
Right panel of Fig. 13 shows the convergence results when
we supply two extra fiducial models whose cosmological
parameters are listed in Table II. As a fiducial model with a
larger shape parameter, we adopt the M001 cosmological
model (! ¼ 0:257). Further, for a secure calculation appli-
cable to general cosmological models, we also supply
another fiducial model, M023, which has a smaller shape
parameter (! ¼ 0:139). The initial power spectra of those
models are plotted in Fig. 12, depicted as green (M001) and
magenta (M023) solid lines. As a result, the convergence of
the power spectrum calculations is dramatically improved,
and the REGPT-FAST now coincides with rigorous REGPT

calculation with & 0:4% precision at k & 0:3h Mpc!1.
Although there still exist exceptional cases, in which the
fractional difference eventually exceeds 1% precision at
k * 0:36h Mpc!1, in practice this is beyond the applicable
range of the REGPT calculation itself.

With this setting, making use of these three fiducial
models, REGPT-FAST reproduces REGPT direct calculations
in a wide range of cosmological models and, also it does
not appear here, for a redshift range of general interest.

B. Comparison with cosmic emulator

It is now time to discuss the accuracy of the overall REGPT
scheme with general COSMIC EMULATOR predictions.
Figures 14 and 15 summarize the results of the comparison
for all 38 models, where we plot the ratios of power spectra,
PðkÞ=Pno-wiggleðkÞ, at specific redshift z ¼ 1. In each panel,
magenta solid and black dashed lines represent the results of
REGPT-FASTand the power spectrum emulator code, respec-
tively. Also, the fiducial model used for the REGPT-FAST

calculation is indicated, together with the label of the cos-
mologicalmodel. The two resultsmostly coincidewith each
other, and are hardly distinguishable at k & 0:2h Mpc!1,
where the linear theory prediction typically produces a 10%
error. At k * 0:2h Mpc!1, the REGPT-FAST results tend to
deviate from the predictions of the emulator code which
probably indicates the the limitation of PT treatment.
However, some models still show a remarkable agreement
at k & 0:3h Mpc!1 (e.g., M009 and M013).
As the range of applicability of the REGPT scheme

depend on both k and the power spectrum amplitude,
following Refs. [22,55], we propose here a phenomeno-
logical rule for the domain of applicability of the REGPT

calculations. The proposed upper value for k is kcrit that can
be obtained from the implicit equation

k2crit
6$2

Z kcrit

0
dqPlinðq; zÞ ¼ C; (42)

where C is a fixed constant, C ¼ 0:7. The resulting values
are depicted as vertical arrows in Figs. 14 and 15. Below
the critical wavenumber, the REGPT scheme indeed agrees
with results of the emulator code, mostly within a percent-
level precision.12 We have also checked that this is also the
case for z ¼ 0:5 with this definition of kcrit.

12We however noticed that some models exhibit non-negligible
discrepancy between the results of REGPT-FAST and the emulator
codes, even well below kcrit. One such is M015, showing a broad-
band discrepancy over the plotted range. This is somewhat
surprising in the sense that the REGPT-FAST result almost con-
verges the linear theory prediction at k & 0:12h Mpc!1, while
the result of the emulator code is still away from it. To better
understand the source of the discrepancy, we have ran N-body
simulations for the M015 model—cosmological parameters of
M015 model were set as #m ¼ 0:2364, #b ¼ 0:0384, w ¼
!1:281, h ¼ 0:7737, ns ¼ 1:0177, and '8 ¼ 0:7692.—with
the same setup as listed in Table I. The resulting power spectrum,
estimated from the ensemble of the 8 independent realizations, is
superposed in the panel of M015 (green symbols with errorbars)
and is shown to faithfully trace the REGPT-FAST result up to the
critical wavenumber. It points to a possible flaw in the power
spectrum emulator, in estimating the smooth power spectrum
from the ensemble of simulation results, or constructing the
interpolated result of the simulated power spectra.
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The REGPT scheme is therefore shown to give a fairly
accurate prediction for the power spectrum in the weakly
nonlinear regime in the sense given above. REGPT direct
calculations, or (almost) equivalently, REGPT-FAST calcula-
tions with the three fiducial models we prepared, can be
applied to a wide range of cosmological models. Though
we did not discuss it here, we expect the same to be also
true for the correlation function. Finally we note that as the
relevant scale of weakly nonlinear regime grows wider for
higher redshifts, the applicability and reliability of the
REGPT scheme is naturally enhanced. On the other hand,
the emulation schemes to build up interpolated results from
large sets of N-body simulations are generally efficient in
predicting the power spectrum at nonlinear scales but are
more likely to fail at high-z, since the requirement for the
force resolution in N-body simulation becomes more and
more severe. In this respect, perturbative reconstruction

FIG. 13 (color online). Convergence between the REGPT-

FAST treatment and the direct REGPT calculations for 38 cosmo-
logical models. The fractional difference of the power spectra
between REGPT-FAST and REGPT direct calculations, PRegPTfastðkÞ=
PRegPTðkÞ!1, is plotted at z ¼ 1. Left and right panels respectively
show the results adopting the one and three fiducial models.
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FIG. 14 (color online). Ratio of power spectra, PðkÞ=Pno!wiggleðkÞ, at z ¼ 1 for the cosmological models M000–M017. Solid and
dotted lines are obtained from the REGPT-FAST and COSMIC EMULATOR codes, respectively. The fiducial model used for the REGPT-FAST

calculation is indicated in each panel. The vertical arrows mean the critical wavenumber kcrit defined by Eq. (42), which roughly gives
an applicable range of REGPT prediction (see text).
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schemes such as REGPT-FAST—but this would also be the
case of MPTBREEZE—are complementary to N-body based
predictions.

VII. CONCLUSION

It is needless to say that future cosmological observa-
tions make the development of cosmological tool aiming at
accurately predicting the large-scale statistical properties
of the universe highly desirable. In the first part of the
present paper, based on a renormalized perturbation theory,
we introduced an explicit computation scheme applied to
the matter power spectrum and correlation function in
weakly nonlinear regime that consistently includes the
PT corrections up to the two-loop order. The construction
of the full expression for the power spectrum is based on
the ! expansion, i.e., makes use of the multipoint propa-
gators which are properly regularized so as to recover their
expected resummed behavior at high k and to match the
standard PT result at low k. We call this regularized
PT treatment REGPT. We have shown that the REGPT

scheme provides an accurate prediction for both the power

spectrum and the correlation function, leading to a percent-
level agreement with N-body simulations in the weakly
nonlinear regime.
In the second half of the paper, we presented a method to

accelerate the power spectrum calculations. The method
utilizes prepared data sets for some specific fiducial models
from which regularized PT calculations can be performed
for arbitrary cosmological models. The main interest of
this method is that the evaluation of the residual PT cor-
rections between fiducial and target cosmological models
can be reduced to mere one-dimensional integrals. This
enables us to dramatically reduce the computational cost,
and even with single-node calculation by a laptop com-
puter, the power spectrum calculation can be done in a few
seconds. We call this method REGPT-FAST, and we have
demonstrated that the REGPT-FAST treatment can perfectly
reproduce the direct REGPT calculations that involve sev-
eral multidimensional integrals.
We then investigated the range of applicability of the

REGPT schemes in a broad class of cosmological models.
For this purpose, we select 38 cosmological models, and
compared the REGPT predictions—eventually incorporating
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FIG. 15 (color online). Same as Fig. 14, but for the models M019–M037.
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the accelerated computations—with results of a power
spectrum emulator code, COSMIC EMULATOR. We show
that with the help of three fiducial models the REGPT-FAST

calculations give reliable predictions for the power spectra
over this range of cosmological models.13 We furthermore
put forward an empirical criterion (42) that gives a good
indication of the applicable range of the REGPT scheme in k.
This can be applied to any cosmological model, and we
found that the applicable range of REGPT scheme remains
fairly wide in awide range of cosmologicalmodels, entirely
covering the relevant scales of BAOs. The REGPT-FAST

treatment, together with the direct REGPT calculation, has
been implemented in a Fortran code that we publicly release
as part of this paper.

Although this paper has focused on precision calcula-
tions of the matter power spectrum, the REGPT framework
as well as the methodology for accelerated calculation can
naturally be applied to the power spectrum of the velocity
divergence and the cross-power spectrum of velocity and
density fields in a similar way. The analysis of the velocity
power spectrum, together with a detailed comparison with
N-body simulations, will be presented elsewhere. Of
particular interest is the application of the REGPT schemes
to the redshift-space power spectrum or correlation
function. In this case, not only the velocity and density
power spectra, but also the multipoint spectra like bispec-
trum, arising from the nonlinear mode coupling, seem to
play important roles, and should be properly modeled.
Significance of the effect of multipoint spectra has been
recently advocated by Refs. [51,56–58], and there appear
physical models that account for this. Combination of these
models with the REGPT schemes would be very important,
and we will discuss it in a near future.
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APPENDIX A: PERTURBATIVE
RECONSTRUCTION OF REGPT POWER
SPECTRUM AT TWO-LOOP ORDER

In this appendix, we present the set of perturbative
expressions that are used for the accelerated power spec-
trum calculation at two-loop order which is implemented
in the REGPT-FAST code.
In a similar manner to the one-loop case described in

Sec. VA, we can expand the power spectrum expression up
to two-loop order around the fiducial cosmological model,
and obtain the perturbative expression for power spectrum
in the target cosmological model. Plugging Eq. (34) into
the two-loop expression (23) and assuming !P0 , P0;fid,
the power spectrum is written like (35), and the correction
Pcorr becomes

Pcorr½k;#;'d;target;!P0ðkÞ+ ¼ 2!ð1Þ
regðk;#Þ!!ð1Þ

regðk;#ÞP0ðkÞ þ ½!ð1Þ
regðk;#Þ+2!P0ðkÞ þ 4

Z d3q

ð2$Þ3 f½!
ð2Þ
regðq; k! q;#Þ+2

( P0ðjk! qjÞ!P0ðqÞ þ !ð2Þ
regðq;k! q;#Þ!!ð2Þ

regðq;k! q;#ÞP0ðjk! qjÞP0ðqÞg

þ 18
Z d3pd3q

ð2$Þ6 ½!ð3Þ
regðp; q; k! p! q;#Þ+2P0ðjk! p! qjÞP0ðpÞ!P0ðqÞ: (A1)

In the above, the perturbations of regularized propagators,
!!ð1Þ

reg and !!ð2Þ
reg, are described as

!!ð1Þ
regðk;#Þ ¼ e3#½ð1þ *kÞ! $!ð1Þ

1!loopðkÞ

þ e2#! $!ð1Þ
2!loopðkÞ+e!*k ; (A2)

!!ð2Þ
regðq;k! q;#Þ ¼ e4#! $!ð2Þ

1!loopðq;k! qÞe!*k ; (A3)

where we define *k % k2'2
d;targete

2#=2. The quantities
! $!ðpÞ

n-loop are defined by

! $!ð1Þ
1!loopðkÞ ¼ 3

Z d3q

ð2$Þ3 F
ð3Þ
symðq;!q;kÞ!P0ðqÞ; (A4)

13Our analysis is however restricted to flat wCDM models.
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! $!ð1Þ
2!loopðkÞ ¼ 30

Z d3q1d
3q2

ð2$Þ6 Fð5Þ
symðq1;!q1; q2;!q2;kÞ

( P0;fidðq1Þ!P0ðq2Þ; (A5)

! $!ð2Þ
1!loopðk1; k2Þ ¼ 6

Z d3q

ð2$Þ3 F
ð4Þ
symðq;!q; k1; k2Þ!P0ðqÞ:

(A6)

The kernels FðpÞ
sym are the symmetrized standard PT kernel

for density field. In the above, the angular integrals are
known to be analytically performed (Refs. [23,37], and
Bernardeau et al. in preparation), one may write

! $!ð1Þ
1!loopðkÞ ¼

Z dqq2

2$2 fðq; kÞ!P0ðqÞ; (A7)

! $!ð1Þ
2!loopðkÞ¼2

Z dq1dq2q
2
1q

2
2

ð2$2Þ2 Jðq1;q2;kÞP0;fidðq1Þ!P0ðq2Þ;

(A8)

! $!ð2Þ
1!loopðk1; k2Þ ¼

Z dqq2

2$2 Kðq; k1; k2; k3Þ!P0ðqÞ (A9)

with the angle-averaged kernels f, J and K defined by

fðq; kÞ ¼ 3
Z d2"q

4$
Fð3Þ
symðq;!q; kÞ; (A10)

Jðq1;q2;kÞ ¼ 15
Z d2"q1d

2"q2

ð4$Þ2 Fð5Þ
symðq1;!q1;q2;!q2;kÞ;

(A11)

Kðq;k1;k2;k3Þ¼ 6
Z d2"q

4$
Fð4Þ
symðq;!q;k1;k2Þ: (A12)

Note that k1 þ k2 ¼ k3.
The expression for the correction Pcorr given above

contains many integrals involving the perturbed linear
power spectrum, !P0, and some of these require multi-
dimensional integrals. However, those multidimensional
integration are separately treated, and can be effectively
reduced to the one-dimensional integrals as follows,

! $!ð1Þ
1!loopðkÞ ¼

Z dqq2

2$2 Lð1Þðq; kÞ!P0ðqÞ; (A13)

! $!ð1Þ
2!loopðkÞ ¼ 2

Z dqq2

2$2 Mð1Þðq; kÞ!P0ðqÞ; (A14)

Z d3q

ð2$Þ3 ½!
ð2Þ
regðq; k! q;#Þ+2P0;fidðjk! qjÞ!P0ðqÞ

¼ e4#
#
ð1þ *kÞ2

Z dqq2

2$2 Xð2Þðq; kÞ!P0ðqÞ

þ 2e2#ð1þ *kÞ
Z dqq2

2$2 Yð2Þðq; kÞ!P0ðqÞ

þ e4#
Z dqq2

2$2 Zð2Þðq; kÞ!P0ðqÞ
$
expf!2*kg; (A15)

Z d3q

ð2$Þ3 !
ð2Þ
regðq; k! q;#Þ!!ð2Þ

regðq; k! q;#Þ

( P0;fidðjk! qjÞP0;fidðqÞ

¼ e6#
#
ð1þ *kÞ

Z dpp2

2$2 Qð2Þðp; kÞ!P0ðpÞ

þ e2#
Z dpp2

2$2 Rð2Þðp; kÞ!P0ðpÞ
$
e!2*k ; (A16)

Z d3pd3q

ð2$Þ6 ½!ð3Þ
regðp; q; k! p! q;#Þ+2

( P0;fidðjk! p! qjÞP0;fidðpÞ!P0ðqÞ

¼ e6#e!2*k

Z dqq2

2$2 Sð3Þðq; kÞ!P0ðqÞ: (A17)

In the above, the kernels of the integrals, L,M, X, Y, Z, Q,
R, and S, additionally need to be computed, but we only
have to evaluate them once for each fiducial cosmological
model,

Lð1Þðq; kÞ ¼ fðq; kÞ; (A18)

Mð1Þðq; kÞ ¼
Z dpp2

2$2 Jðp; q; kÞP0;fidðpÞ; (A19)

Xð2Þðq; kÞ ¼ 1

2

Z 1

!1
d)q½Fð2Þ

symðq; k! qÞ+2

( P0;fid

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 ! 2kq)q þ q2

q "
; (A20)

Yð2Þðq;kÞ ¼ 1

2

Z 1

!1
d)qF

ð2Þ
symðq;k!qÞ $!ð2Þ

1!loopðq;k!qÞ

(P0;fid

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2! 2kq)qþq2

q "
; (A21)

Zð2Þðq; kÞ ¼ 1

2

Z 1

!1
d)q½ $!ð2Þ

1!loopðq; k! qÞ+2

( P0;fid

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 ! 2kq)q þ q2

q "
; (A22)

Qð2Þðp; kÞ ¼
Z d3q

ð2$Þ3 F
ð2Þ
symðq; k! qÞKðp: q; jk! qj; kÞ

( P0;fidðjk! qjÞP0;fidðqÞ; (A23)
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Rð2Þðp; kÞ ¼
Z d3q

ð2$Þ3
$!ð2Þ
1!loopðq; k! qÞKðp; q; jk! qj; kÞ

( P0;fidðjk! qjÞP0;fidðqÞ; (A24)

Sð3Þðq; kÞ ¼ 1

2

Z 1

!1
d)q

Z d3p

ð2$Þ3 ½F
ð3Þ
symðp; q;k! p! qÞ+2

( P0;fidðjk! p! qjÞP0;fidðpÞ; (A25)

with the variable )q defined by )q ¼ ðk & qÞ=ðkqÞ.
Note that similar to the one-loop case, the correction at

two-loop order also possesses a one-parameter degree of
freedom corresponding to a global rescaling of the power
spectrum of fiducial model, P0;fid ! cP0;fid. The power
spectrum difference !P0 can then be made small securing
the efficient convergence of this expansion.

Finally, the data set of kernel functions given above are
supplemented in the REGPT code, with 301( 301 logarith-
mic arrays in ðk; qÞ space. For specific three fiducial mod-
els (i.e., WMAP3, M001, and M023), the data have been
obtained using the method of Gaussian quadrature up to
three-dimensional integrals and Monte Carlo technique for
four-dimensional integral. Together with unperturbed part
of the PT corrections, these can be used as fast calculations
of power spectrum at two-loop order.

APPENDIX B: CODE DESCRIPTION

In this appendix, we present a detailed description of the
Fortran code, REGPT, which computes the power spectrum
and correlation function of density fields valid at weakly
nonlinear regime of gravitational clustering.

1. Overview

The code, REGPT, is compiled with the Fortran com-
pilers, IFORTor GFORTRAN. It computes the power spectrum
in flat wCDM class models based on the REGPT treatment
when provided with either of transfer function or matter
power spectrum. It then gives the multiple-redshift outputs
for power spectrum, and optionally provides correlation
function data. We have implemented two major options for
power spectrum calculations:

- !fast: Applying the reconstruction method de-
scribed in Sec. VA, this option quickly computes
the power spectrum at two-loop level (typically a
few seconds), using the pre-computed data set of PT
kernels for fiducial cosmological models. We provide
the data set for three fiducial models (WMAP3, M001,
and M023, see Table II), and the code automatically
finds an appropriate fiducial model to closely match

the result of rigorous PT calculation with direct-
mode.

- !direct: With this option, the code first applies
the fast method, and then follows the regularized
expression for power spectrum (see Eq. (23) with
regularized propagators (24)–(26)) to directly evalu-
ate the multidimensional integrals (it typically takes a
few minutes). The output results are the power spec-
trum of direct calculation and difference of the results
between fast and direct method. Further, the code
gives the data set of PT diagrams necessary for power
spectrum calculations, from which we can construct
the power spectrum. We provide a supplemental
code, read stfile:f, with which the power spec-
trum and correlation function can be evaluated from
the diagram data set in several PT methods, including
the standard PT and LRT [25,48] as well as RegPT
treatment (see Appendix B 4 c).

In addition, the code supports the option,
!direct1loop, to compute the power spectrum at
one-loop order. Although this is based on the direct calcu-
lation with multidimensional integration (see Eq. (30) with
regularized propagators (31) and (32)), the one-loop expre-
ssion involves two-dimensional integrals at most, and thus
the computational cost is less expensive. It is potentially
useful for the computation of high-z correlation function
and power spectrum.

2. Setup

The REGPT code is available at Ref. [59]. A part of REGPT
code uses the library for Monte Carlo integration, CUBA
[40]. Before compiling the codes, users should download
the library package cuba!1:5, and correctly build the file,
libcuba:a, compatible with the architecture of user’s
platform. This can be done in the directory =Cuba-1:5,
and just type ‘‘:=configure’’ and ‘‘makelib:’’ After
placing the library file libcuba:a at the directory
=RegPT=src, users can use the Makefile to create the
main executable file, RegPT:exe. Note that currently
available compilers are Intel Fortran compiler, ifort,
and GNU Fortran compiler, gfortran.

3. Running the code

Provided with linear power spectrum or transfer function
data, the code runs with a set of options, and computes
power spectrum. Users can specify the options in the
command line, or using the parameter file (suffix of file
name should be :ini). Sample of parameter file is supplied
in the code (see directory =RegPT=example).

For running the code with the command-line options, a simple example is (assuming the code is placed at the
directory, =RegPT)

: =RegPT:exet!spectrumt!infiletmatterpower wmap5:datt!nzt2t0:5t1:0
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In the above example, the code first reads the input data
file, matterpower wmap5:dat, which is assumed to
contain linear power spectrum data consisting of two col-
umns, i.e., k and P0ðkÞ. By default setting, fast mode is
chosen, and the output result of power spectrum is saved to
pk RegPT:dat. With the option!nz 2 0:5 1:0, the out-
put file contains the power spectrum results at two redshifts,
z ¼ 0:5 and 1.0 (see Appendix B 4 a for output format).
Note that by default, the code adopts specific values of
cosmological parameters. Making use of options, users
can change the value of cosmological parameters appropri-
ately, consistently with input power spectrum (or transfer
function) data.

Herewe summarize the available options to run the code:
- Verbose level for output message

!verbose n: This sets the verbose level for output
information on the progress of numerical computation.
The available level n is 1 or 2 (default:!verbose1).
!noverbose: This option suppresses the message
while running the code.

- Input data file
!infile [file]: Input file name of power spectrum or
transfer function data is specified (default:!infile
matterpower:dat).
!path [path to input file]: This specifies the path
to the input file (default: !path:=).
!spectrum: With this option, the code assumes that
the input file is power spectrum data. The data consists
of two columns, i.e., wavenumber (in units
of h Mpc!1) and matter power spectrum (in units of
h!3 Mpc3) (default: !spectrum). The normaliza-
tion of power spectrum amplitude can bemadewith the
option!sigma8.
!transfer: With this option, the code assumes that
the input file is the transfer function data created by
CAMB. The data should contain seven columns, among
which the code uses the first and seven columns (wave-
number in units of h Mpc!1 and matter transfer func-
tion). The normalization of power spectrum amplitude
can be made with either of the option -sigma8 or
!samp and!spivot.

- Specification of cosmological parameters
!sigma8 '8: This option sets the power spectrum
normalization by '8 (default: !sigma8 0:817).
For '8 < 0, the code will skip the '8 normalization.
!samp As: This option sets the amplitude of
power spectrum at pivot scale kpivot (default:

!samp 2:1e!9). This option is used for normaliza-
tion of transfer function data, and is valid when the
option !transfer is specified.
!spivot kpivot: This option sets the pivot scale of

CMB normalization in units of Mpc!1 (default:
!spivot 0:05). This option is used for normaliza-
tion of transfer function data, and is valid when the
option !transfer is specified.

!omegam #m: This option sets the mass density
parameter (default: !omegam 0:279). This is used
to estimate the linear growth factor and to compute
the smooth reference spectrum, Pno-wiggleðkÞ.
!omegab #b: This option sets the baryon density
parameter (default: !omegab 0:165 . omegam).
This is used to compute the smooth reference spectrum,
Pno-wiggleðkÞ.
!ns ns: This option sets the scalar spectral index. This
is used to compute the linear power spectrum from the
transfer function data (option !transfer should be
specified), and to compute the smooth reference spec-
trum, Pno-wiggleðkÞ.
!w w: This option sets the equation of state for dark
energy (default:!w!1:0). This is used to estimate the
linear growth factor.
!h h: This option sets the Hubble parameter
(default:!h 0:701). This is used to compute the power
spectrum from the transfer function data, and to com-
pute the smooth reference spectrum, Pno-wiggleðkÞ.
!camb [output parameter file of camb]: With this
option, the code reads the CAMB output parameter file,
and specifies the cosmological parameters (#m,#b,w,
h, ns, As, kpivot).

- Calculation mode of REGPT
!fast: This option adopts the fast method of power
spectrum calculation to give REGPT results. This is
default setting.
!direct: This option first applies the fast method,
and then follow the direct method for REGPT

calculation.
!direct1loop: With this option, the code adopts
direct method to compute the power spectrum at one-
loop order.

- Setup of fiducial models for fast- and direct-mode
calculations
!datapath [path to data directory]: This option
specifies the path to the data files used for power
spectrum calculation with fast and direct methods
(default: !datapath data=). In the directory
specified with this option, the data set of kernel
functions given in Appendix A and unperturbed part
of power spectrum corrections, as well as the matter
power spectrum should be stored for three fiducial
cosmological models (WMAP3, M001, and M023).
!fiducial [model]: This option sets the specific
fiducial model among the three, WMAP3, M001, and
M023 (in default setting, the code automatically se-
lects an appropriate fiducial model).

- Output data file
!xicompute: With this option, the code computes
the correlation function after power spectrum calcu-
lations, and creates the output file.
!nz n z1 & & & zn: This option specifies the output red-
shifts for power spectrum calculations. The integer n

DIRECT AND FAST CALCULATION OF REGULARIZED . . . PHYSICAL REVIEW D 86, 103528 (2012)

103528-21



specifies the number of redshifts, and subsequent
arguments specify the value of each redshift (default:
!nz 1 1:0).
!pkfile [file]: This option sets the output
file name of power spectrum data (default:
pk RegPT:dat).
!xifile [file]: This option sets the output file name
of correlation function data (default:xi RegPT:dat).
!stfile [file]: This option sets the output file name
of PT diagram data (default: st PT:dat).

4. Output file format

In what follows, wavenumber k and separation r are in
units of h Mpc!1 and h!1 Mpc, respectively. All the power
spectrum data are assumed to be in units of h!3 Mpc3.

a. Power spectrum data

By default, REGPT code creates the output file for the
power spectrum data (default file name is pk RegPT:dat).
The columns of this file include

k; ½data for z1+; ½data for z2+; . . . ; ½data for zn+:
The first column is the wavenumber, while the bracket
½data for zi+ represents a set of power spectra at given
redshift zi and wavenumber k. Number of the data set is
specified with the option!nz, and each data contains

Pno-wiggleðk;ziÞ; Plinðk;ziÞ; PRegPTðk;ziÞ; ErrðkÞ:
Here, the spectrum Pno-wiggle is the smooth reference spec-
trum calculated from the no-wiggle formula of linear
transfer function in Ref. [47], Plin is the linearly extra-
polated spectrum, and PRegPTðk; ziÞ represents the power
spectrum based on the REGPT calculations with fast and/or
direct method (depending on the choice of options,

!fast, !direct or !direct1loop). The last col-
umn, Err, usually sets to zero, but with the option
!direct, it gives the difference of the power spectra
between fast and direct methods.

b. Correlation function data

With the option !xicompute, the code also provides
the output file for correlation function data (default file
name is xi RegPT:dat). Similar to the power spectrum
data, the structure of the data is

r; ½data for z1+; ½data for z2+; . . . ; ½data for zn+

The first column is the separation, while the bracket
½data for zi+ represents a set of correlation functions given
at redshift zi and separation r, containing two columns

(linðr; ziÞ; (RegPTðr; ziÞ:

These are simply obtained from the output results of power
spectrum based on the expression (29). Note that the range
of wavenumber for output power spectrum is restricted to
the wavenumber coverage of input linear spectrum (or
transfer function). To get a convergent result of correlation
functions, users may have to supply the input data file with
a sufficiently wide range of wavenumber (e.g., 10!3 /
k / 10h Mpc!1).

c. Diagram data

When users specify the !direct option, the code
additionally provides a set of PT diagram data necessary
for power spectrum computation, from which we can con-
struct the power spectrum at one- and two-loop order.
The output file (default file name is st PT:dat) includes
the following columns:

k; Pno-wiggleðkÞ; PlinðkÞ; $!ð1Þ
1- loopðkÞ; $!ð1Þ

2- loopðkÞ; Pð2Þtree-tree
corr ðkÞ; Pð2Þtree-1loop

corr ðkÞ; Pð2Þ1loop-1loop
corr ðkÞ; Pð3Þtree-tree

corr ðkÞ:

Here, the power spectra Pno-wiggle and Plin are basically the
same data as contained in the power spectrum file, but
these are the extrapolated data at z ¼ 0 (that is, Plin

corresponds to P0). The function $!ð1Þ
n- loop is the two-point

propagator of the standard PT expansion (see definition
[(19)]). The functions in the remaining four columns,
Pð2Þtree-tree
corr , Pð2Þtree-1loop

corr , Pð2Þ1loop-1loop
corr , and Pð3Þtree-tree

corr , are
defined by

Pð2Þtree!tree
corr ðkÞ ¼ 2

Z d3q

ð2$Þ3 F
ð2Þ
symðq; k! qÞFð2Þ

symðq; k! qÞ

( P0ðqÞP0ðjk! qjÞ; (B1)

Pð2Þtree!1loop
corr ðkÞ ¼ 4

Z d3q

ð2$Þ3F
ð2Þ
symðq;k!qÞ $!ð2Þ

1!loopðq;k!qÞ

(P0ðqÞP0ðjk!qjÞ; (B2)

Pð2Þ1loop!1loop
corr ðkÞ ¼ 2

Z d3q

ð2$Þ3
$!ð2Þ
1!loopðq; k! qÞ

( $!ð2Þ
1!loopðq; k! qÞP0ðqÞP0ðjk! qjÞ;

(B3)

Pð3Þtree!tree
corr ðkÞ ¼ 6

Z d3pd3q

ð2$Þ6 Fð3Þ
symðp; q; k! p! qÞ

( Fð3Þ
symðp; q; k! p! qÞP0ðpÞP0ðqÞ

( P0ðjk! p! qjÞ: (B4)

Provided the data set above, the power spectrum can be
constructed with
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PRegPT
1!loopðk;#Þ ¼ e2#e!2*k½f1þ *k þ e2# $!ð1Þ

1!loopðkÞg2P0ðkÞ þ e2#Pð2Þtree!tree
corr ðkÞ+; (B5)

PRegPT
2!loopðk;#Þ ¼ e2#e!2*k

#%
1þ *k þ

*2
k

2
þ e2# $!ð1Þ

1!loopðkÞð1þ *kÞ þ e4# $!ð1Þ
2!loopðkÞ

&
2
P0ðkÞ þ e2#fð1þ *kÞ2Pð2Þtree!tree

corr ðkÞ

þ e2#ð1þ *kÞPð2Þtree!1loop
corr ðkÞ þ e4#Pð2Þ1loop!1loop

corr ðkÞgþ e4#Pð3Þ1loop!1loop
corr ðkÞ

$
(B6)

for the REGPT calculation at one- and two-loop order,
respectively. Here, *k is given by *k ¼ k2'2

de
2#=2 with

'd being the dispersion of displacement field (see Eq. (16)).
Note that the diagram data set can be also used to compute
the power spectrum in the standard PT calculations

PSPT
1!loopðk;#Þ ¼ e2#P0ðkÞ þ e4#½2P0ðkÞ $!ð1Þ

1!loopðkÞ

þ Pð2Þtree!tree
corr ðkÞ+; (B7)

PSPT
2!loopðk;#Þ ¼ PSPT

1!loopðk;#Þ þ e6#½P0ðkÞf $!ð1Þ
1!loopðkÞg2

þ Pð3Þtree!tree
corr ðkÞ þ Pð2Þtree!1loop

corr ðkÞ
þ 2P0ðkÞ $!ð1Þ

2!loopðkÞ+: (B8)

With the supplemental code, read stfile:f, users
can easily compute the power spectrum in both REGPT and
standard PT treatments. The code also provides the power

spectrum result for LRT [25,48]. A brief instruction on how
to run the code and the output format of data is described in
the header of the code.

5. Limitation

Since the REGPT code is the PT-based calculation code
valid at weakly nonlinear scales, the applicability of the
output results is restricted to a certain range of wavenum-
ber in power spectrum. We provide an empirical estimate
of critical wavenumber kcrit, below which the REGPT results
are reliable and their accuracy can reach a percent level.
This is based on Eq. (42) with constant value C ¼ 0:7ð0:3Þ
for two-loop (one-loop) (see Sec. VI B). With the option
!verbose 2, the code displays the critical wavenumbers
at output redshifts. Note that the value kcrit given here is
just a crude estimate, and the actual domain of applicability
may be somewhat wider or narrower. Users should use the
output results with a great care.

[1] D. J. Eisenstein et al. (SDSS Collaboration), Astrophys. J.
633, 560 (2005).

[2] W. J. Percival et al., Mon. Not. R. Astron. Soc. 401, 2148
(2010).

[3] C. Blake, T. Davis, G. Poole, D. Parkinson, S. Brough
et al., Mon. Not. R. Astron. Soc. 415, 2892 (2011).

[4] H.-J. Seo, S. Ho, M. White, A. Cuesta, A. Ross et al.,
arXiv:1201.2172.

[5] L. Anderson, E. Aubourg, S. Bailey, D. Bizyaev, M. Blanton
et al., arXiv:1203.6594.

[6] H.-J. Seo and D. J. Eisenstein, Astrophys. J. 598, 720
(2003).

[7] C. Blake and K. Glazebrook, Astrophys. J. 594, 665 (2003).
[8] K. Glazebrook and C. Blake, Astrophys. J. 631, 1 (2005).
[9] M. Shoji, D. Jeong, and E. Komatsu, Astrophys. J. 693,

1404 (2009).
[10] N. Padmanabhan and M. J. White, Phys. Rev. D 77,

123 540 (2008).
[11] E. V. Linder, Astropart. Phys. 29, 336 (2008).
[12] L. Guzzo et al., Nature 451, 541 (2008).
[13] K. Yamamoto, T. Sato, and G. Huetsi, Prog. Theor. Phys.

120, 609 (2008).
[14] Y.-S. Song and W. J. Percival, J. Cosmol. Astropart. Phys.

10 (2009) 004.

[15] C. Blake, S. Brough, M. Colless, C. Contreras, W. Couch
et al., Mon. Not. R. Astron. Soc. 415, 2876 (2011).

[16] L. Van Waerbeke, Y. Mellier, T. Erben, J. C. Cuillandre, F.
Bernardeau, R. Maoli, E. Bertin, H. J. McCracken, O. Le
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Compte-Rendu Français

Nous proposons ici une description en langue française des principaux résultats
présentés dans ce manuscrit de thèse.

B.1 Introduction

Les objets astrophysiques que nous observons sur la voûte céleste ne sont pas répartis uni-
formément. En parcourant le ciel, notre regard se pose sur diverses agglomérations d’étoiles et
sur une gigantesque fresque lumineuse qui traverse le ciel: notre galaxie, la Voie Lactée. Les
astronomes ont révélé au monde l’existence d’une multitude d’autres galaxies qui elles-même ne
sont pas agencées de façon uniforme dans l’espace mais se rassemblent en des amas et des super-
amas. Jusqu’à la fin du siècle dernier, on pense que ces amas sont les plus grandes structures
que le cosmos ait vu nâıtre et qu’ils ne suivent aucun motif particulier. Ainsi, le principe cos-
mologique sur lequel repose notre modélisation de l’Univers suppose que celui-ci est homogène
et isotrope mais cette hypothèse semble valide seulement aux plus grandes échelles. En effet, il
apparâıt dans les années 80 que les galaxies ne sont pas de simples ı̂les voguant uniformément
dans l’espace mais forment un véritable réseau en bulles de savon sur des centaines de mega-
parsecs! La dynamique de la matière à ces échelles est désormais bien connue en particulier
grâce aux grands relevés de galaxies et aux simulations numériques. La matière s’échappe des
vides vers les murs puis glisse vers les filaments avant de rejoindre les noeuds sur-denses de cette
toile cosmique (voir la figure B.1).

Les galaxies naissent et grandissent au sein même de ce grand ballet cosmique ce qui soulève
la question du rôle des grandes structures dans les processus de formation des galaxies et en
particulier dans le modelage de leur forme. Leur masse par exemple dépend grandement de
l’environnement à grande échelle comme l’explique la théorie de l’effondrement gravitationnel
biaisé (biased clustering en anglais) selon laquelle les objets les plus massifs se forment de
préférence dans les régions sur-denses telles que les filaments et plus encore les noeuds. Au-
delà de leur masse, la question est ensuite de savoir comment les autres propriétés des galaxies
sont affectées par l’environnement, en particulier leur moment angulaire, si important pour
comprendre la mise en place et l’évolution de leur morphologie (elliptique, spirale) et donc
la séquence de Hubble. Une question qui se pose est donc de comprendre comment les axes
de rotation des galaxies sont corrélés à la direction des grands filaments de la toile cosmique.
Toutes ces questions sont cruciales si l’on souhaite comprendre la formation des galaxies et en
particulier le rôle de l’inné – les processus internes – sur l’acquis – l’environnement – (nature
versus nurture).

Les grandes structures représentent également un enjeu majeur de la cosmologie. En effet, leur
croissance au cours du temps est directement sensible aux propriétés de l’Univers. Les étudier
pourrait donc permettre de répondre aux grandes questions soulevées par la cosmologie moderne:
quelles sont les lois qui régissent l’Univers? Einstein avait-il vu juste ou sommes-nous capables
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Figure B.1: La simulation Horizon 4π . La région extérieure correspond à une vue de l’Univers
sur des échelles de 16h−1Gpc. La région intermédiaire correspond à une tranche de 2h−1Gpc
tandis que la région interne est à la résolution des conditions initiales. Credits: The Horizon
project.

de mesurer des déviations à sa théorie de la Gravitation à savoir le Relativité Générale? Quels
sont les constituants du cosmos? Quel est le moteur de l’accélération de l’expansion cosmique?

Pour toutes les raisons mentionnées ci-avant, l’étude des grandes structures de l’Univers est
devenue un champs de recherche très actif en astrophysique et est promise à un bel avenir avec
notamment l’arrivée de grands relevés comme Euclid ou le LSST qui vont sonder l’Univers à
grande échelle et apporter une gigantesque quantité de données à la communauté, l’opportunité
d’en savoir un peu plus sur notre monde et peut-être de soulever de nouvelles questions.

Cette thèse a pour but d’exposer les travaux de recherche que j’ai menés au cours de mon
doctorat à l’Institut d’Astrophysique de Paris sous la direction de Christophe Pichon et Dmitry
Pogosyan entre septembre 2011 et septembre 2015. Ces recherches s’articulent autour de la
problématique d’une description théorique des grandes structures et de leur rôle d’une part en
cosmologie et d’autre part pour comprendre la formation des galaxies. Ce manuscrit rassemble
plus précisément des résultats obtenus en cherchant à répondre à deux questions fondamentales:

• comment utiliser efficacement les grandes structures pour en apprendre davantage sur le
cosmos?

• quel est l’impact de la toile cosmique sur la formation des galaxies et en particulier sur
leur moment angulaire intrinsèque (spin)?

Nous allons ici donner un compte-rendu en langue française des principaux résultats présentés
dans ce manuscrit. Dans une première partie, nous décrirons comment le spin des halos de
matière noire ainsi que celui des galaxies est corrélé aux filaments de la toile cosmique obtenue
dans des simulations numériques. Ces corrélations peuvent être comprises analytiquement
en partant des premiers principes à condition de tenir compte du caractère anisotrope de la
toile cosmique dans la théorie standard d’acquisition de spin par effet de marée. Enfin, ces

366
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corrélations entre forme des galaxies et environnement induisent une possible contamination
dans les expériences qui utilisent le cisaillement gravitationnel (souvent appelée “alignements
intrinsèques”). Cette contamination sera étudiée dans une simulation numérique de pointe – la
simulation Horizon-AGN – qui modélise la formation des galaxies dans un volume cosmologique.
Dans une seconde partie, nous présenterons des résultats obtenus d’une part sur la topologie des
grandes structures en espace des redshifts (décalages vers le rouge) et d’autre part sur les pro-
priétés statistiques du champ de densité dans des sphères concentriques. Ces deux thématiques
sont des observables prometteuses pour les années à venir.

B.2 Alignements intrinsèques des galaxies au sein de la toile
cosmique

B.2.1 Introduction

L’astigmatisme cosmique ou effet de lentillage gravitationnel faible est souvent présenté comme
une prochaine sonde cosmologique majeure avec l’arrivée de grands relevés tels que DES 1, Euclid
([Laureijs et al., 2011]) ou LSST 2. L’idée est la suivante: parce que la trajectoire des rayons
lumineux depuis une source d’arrière-plan jusqu’à nous est courbée par les puits de potentiel
gravitationnel sur la ligne de visée, les galaxies que nous observons dans le ciel sont distordues.
Ainsi, mesurer ces distorsions permet d’obtenir des informations sur le modèle cosmologique et
la distribution de matière noire. Il s’agit donc d’essayer de mesurer des distorsions cohérentes
dans les formes des galaxies en utilisant par exemple la fonction de corrélation à deux points.
Cependant, il faut ici garder en tête que l’ellipticité apparente d’une galaxie est la somme de
deux effets: une distorsion due au cisaillement gravitationnel que nous venons de mentionner
mais aussi une composante d’ellipticité intrinsèque e = es + γ , où e est l’ellipticité apparente
et es l’ellipticité intrinsèque de la source (celle que nous observerions sans effet de lentille). De
cette façon, nous pouvons décomposer la fonction de corrélation à deux points de l’ellipticité
projetée comme

〈e(ϑ)e(ϑ+ θ)〉ϑ =
〈
γγ′
〉

+
〈
ese
′
s

〉
+ 2

〈
esγ
′〉 , (B.1)

où à des fins de compacité, le prime signifie à une distance angulaire θ de la première locali-
sation. Les deux derniers termes de l’équation B.1 représentent les deux types d’alignements
intrinsèques qui contaminent le signal provenant du cisaillement gravitationnel 〈γγ′〉. Le pre-
mier contaminant 〈ese′s〉 est souvent appelé terme “II” (intrinsèque-intrinsèque) et provient des
corrélations intrinsèques des ellipticités dans le plan source ([Heavens et al., 2000, Croft and
Metzler, 2000, Catelan et al., 2001]). Le deuxième contaminant 〈esγ′〉 est quant à lui appelé
terme “GI” (gravitationnel-intrinsèque) et provient des corrélations entre l’ellipticité intrinsèque
d’une galaxie et l’ellipticité induite d’une source à plus haut redshift ([Hirata and Seljak, 2004]).

D’un point de vue théorique, de solides arguments permettent de montrer que les formes des
galaxies sont corrélées avec la toile cosmique. Cette cohérence à grande échelle devrait donc in-
duire un certain niveau d’alignements intrinsèques et ainsi contaminer les mesures d’astigmatisme
cosmique. Nous nous proposons ici de décrire une extension anisotrope de la théorie des champs
de marée (tidal torque theory) qui permet de tenir compte de l’effet des grandes structures sur
l’acquisition de spin des galaxies. Nous montrerons que les simulations de matière noire pure
et les simulations hydrodynamiques (qui modélisent aussi la matière baryonique: gaz, étoiles)

1http://www.darkenergysurvey.org
2 http://www.lsst.org
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prédisent que les spins sont en effet corrélés à la toile cosmique d’une façon qui dépend de leur
masse et du redshift en accord avec la théorie des champs de marée anisotrope susmentionnée.
Ces corrélations induisent des alignements intrinsèques qui seront explicitement mesurés dans
la simulation hydrodynamique Horizon-AGN .

B.2.2 Spins et grandes structures dans les simulations numériques

Au cours de la dernière décennie, il a été démontré dans des simulations numériques que les halos
de matière noire ([Aragón-Calvo et al., 2007b, Paz et al., 2008, Codis et al., 2012] par exemple)
et les galaxies ([Hahn et al., 2010, Dubois et al., 2014]) sont corrélés avec la toile cosmique.
Dans [Codis et al., 2012], nous montrons que le spin des halos de matière noire est corrélé à la
direction du filament le plus proche (voir le panneau de gauche de la figure B.2). Ces résultats
sont obtenus à partir des 43 millions de halos de la simulation Horizon 4π et montrent qu’il y a
une forte dépendence en masse. Les halos les plus légers tendent à présenter un spin aligné avec
l’axe du filament alors que les halos massifs sont plus enclin à avoir un spin perpendiculaire au
filament. La transition entre ces deux régimes apparâıt pour une masse Mtr ≈ 5 · 1012M�, qui
dépend du redshift comme Mtr(z) ≈ M0(1 + z)−γs avec γs = 2.5 ± 0.2, et qui varie faiblement
avec l’échelle du filament.

Ce signal peut être compris dans le contexte de la formation hiérarchique des structures qui
voit les objets les moins massifs nâıtre en premier puis former de plus grandes structures par
fusions successives. En effet, la première génération de petits halos se forme lorsque les murs
s’intersectent pour former des filaments, processus au cours duquel les proto-galaxies vont avoir
tendance à acquérir du moment angulaire aligné avec l’axe du filament. Quand elles fusionnent
ensuite le long du filament pour former des objets plus massifs, elles convertissent leur moment
angulaire orbital en spin perpendiculaire à la direction du mouvement et donc au filament. Une
illustration de ce processus est donnée en figure B.3. Dans les deux cas (faible ou forte masse),
la clef réside dans le fait que le spin acquis est perpendiculaire à la direction du mouvement qui
est le long du mur et perpendiculaire au filament en formation pour les faibles masses et alignée
avec le filament pour les fortes masses.

L’émergence d’un champ de vorticité aligné avec le filament et responsable de l’orientation du
spin des objets peu massifs a été étudiée dans [Laigle et al., 2015]. Dans cet article, nous avons
trouvé que la vorticité est confinée dans les filaments – ce qui est naturel sachant que l’on
ne peut générer de la vorticité que dans les régions multi-flots – et qu’elle est statistiquement
alignée avec l’axe du filament en accord avec l’idée d’un “enroulement” des murs pour former
les filaments. En moyenne, une coupe perpendiculaire au filament est quadrupolaire dans le
sens où elle révèle quatre quadrants ayant une orientation de la vorticité alternée (+/-/+/-).
Nous montrons aussi que la frontière entre ces quadrants coincide avec la direction des murs
(avec un excès de probabilité d’alignement de 15% environ), ce qui renforce l’idée selon laquelle
le moteur de la génération de vorticité est bien l’enroulement des murs (voir les panneaux de
gauche de la figure B.3). La matière s’échappe des murs en direction des filaments en formation
puis coule le long des filaments jusqu’à rejoindre les noeuds. Cette dynamique crée un flot de
vorticité parallèle au filament et partitionné en quatre régions ayant une direction différente afin
de préserver la symétrie et une vorticité globale nulle. Un filament est ainsi typiquement le
croisement de deux murs qui délimitent les frontières de ces quatre régions.

Plus récemment, nous avons étudié dans [Dubois et al., 2014] comment le scénario décrit dans
le paragraphe précédent se traduit pour non plus des halos mais des galaxies virtuelles. C’est
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Figure B.2: A gauche: excès de probabilité d’alignement entre spin et direction du filament le
plus proche mesuré sur les 43 millions de halos de la simulation Horizon 4π ([Teyssier, 2002]) à
redshift zéro. Les différentes couleurs correspondent à des masses de 1012( rouge) à 1014 masses
solaires (bleu). Une masse de transition est détectée à Mcrit(z = 0) ' 5(±1) × 1012M�: les
halos de masse M > Mcrit ont un spin plutôt perpendiculaire à leur filament hôte alors que les
halos de plus faible masse M < Mcrit ont un spin plutôt aligné avec le filament. Cette figure
est extraite de [Codis et al., 2012]. A droite: même mesure mais avec les 160 000 galaxies de la
simulation Horizon-AGN à redshift z = 1.8 ([Dubois et al., 2014]).

dans ce but que nous avons utilisé la simulation Horizon-AGN – une simulation cosmologique
basée sur le code hydrodynamique Ramses – et avons trouvé que les spins galactiques étaient
eux aussi corrélés avec la direction des filaments. Les galaxies peu massives, bleues, spirales et
qui forment des étoiles tendent à avoir un axe de rotation aligné avec l’axe du filament alors
que les galaxies massives, rouges, elliptiques et peu actives ont plutôt tendance à avoir un spin
perpendiculaire aux filaments. Ce résultat est illustré sur le panneau de droite de la figure B.2. Il
faut noter que de récentes observations (en particulier sur le relevé du Sloan Digital Sky Survey,
par exemple [Tempel and Libeskind, 2013]) ont rapporté des indices en faveur d’une corrélation
entre morphologie des galaxies et toile cosmique comme prédite par les simulations numériques.

B.2.3 Une théorie de l’acquisition de spin au voisinage des filaments cosmiques

Les corrélations entre spin et toile cosmique telles que prédites par les simulations numériques
peuvent être comprises dans le cadre de la théorie des champs de marée – théorie selon laquelle
les proto-galaxies acquièrent leur spin principalement pendant le régime linéaire de croissance
des structures par l’effet du champ de marée de la matière environnante – et ce, à condition de
tenir compte de l’influence des filaments à l’échelle galactique. Il s’agit de réaliser que les murs
et les filaments agissent comme un mode de grande longueur d’onde par dessus lequel les petites
fluctuations, qui vont mener à la formation des halos, naissent. Ce mode à grande échelle induit
un boost anisotrope dans le champ de densité permettant aux pics de passer le seuil critique
d’effondrement nécessaire pour se découpler de l’expansion globale de l’Univers et ainsi former
un objet gravitationnellement lié. C’est cet effet de biais qui est ainsi évoqué pour justifier
de la distribution des galaxies au voisinage proche des noeuds sur-denses de la toile cosmique
([White et al., 1988]). Cela explique pourquoi les galaxies se forment préférentiellement dans les
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Figure B.3: En haut: champ de vorticité le long du filament. La couleur dépend de la composante
algébrique le long du filament (flèches rouges en allant vers la gauche du filament, bleues en allant
vers la droite). En bas à gauche: coupe typique perpendiculaire au filament. En bas à droite:
schémas de la fusion de deux halos le long du filament. Le moment angulaire orbitale avant
fusion est converti en spin pour l’objet résultant.
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filaments: dans les murs, le boost en densité n’est pas suffisant pour permettre leur formation.

Il faut noter que les noeuds de la toile ne sont pas forcément le lieu de naissance des galaxies
mais la destination vers laquelle elles migrent. Elles vont donc en partie garder en mémoire
l’anisotropie du lieu qui les a vu nâıtre, par exemple par le biais de leur spin. Pendant la
migration, les galaxies coalescent et peuvent ainsi perdre une partie de leurs propriétés initiales.

Dans ce contexte, nous avons proposé de revisiter la théorie des champs de marée en tenant
compte de l’anisotropie de l’environnement filamentaire. Cette théorie anisotrope est totalement
analytique et se base sur la théorie des champs aléatoires contraints.

En régime linéaire, le spin généré par les champs de marée peut s’écrire

Li ∝ εijkIjlTlk , (B.2)

où Tij est le tenseur de marée soit le Hessien détracé du potentiel gravitationnel et Iij est le
tenseur d’inertie de la proto-galaxie. Afin de construire une théorie locale, il est nécessaire
d’adopter une prescription locale pour définir le tenseur d’inertie (objet intrinsèquement non-
local). Ici, nous avons fait l’hypothèse que le Hessien du champ de densité est une bonne
approximation, ce que l’on peut justifier par le fait que les proto-galaxies ont tendance à se
former aux pics du champ de densité et devraient donc aussi hériter de leur forme qui est
donnée par le tenseur des dérivées secondes de la densité. Nous choisissons donc de définir le
spin comme

si ≡ εijkHjlTlk . (B.3)

L’avantage de cette prescription est qu’elle ne dépend que des dérivées secondes (tenseur de
marée) et quatrième (Hessien de la densité) du potentiel. Nous supposons ici que tous les
champs sont de variance unité. Dans les conditions initiales supposées Gaussiennes, la PDF
jointe du tenseur de marée et du Hessien de la densité (que nous rassemblons dans un vecteur
X = ({Tij}i≤j , {Hij}i≤j)) s’écrit

P(X) =
exp

(−1
2XT ·C0

−1 ·X)
det|C0|1/2 (2π)(d+1)(d+2)/2

, (B.4)

où C ≡ 〈X ·XT〉 est la matrice des variances-covariances qui peut être facilement calculée. Par
exemple, à 2D, si X = (T11, T12, T22, H11, H12, H22) alors

C =



3/8 0 1/8 −3γ/8 0 −γ/8
0 1/8 0 0 −γ/8 0

1/8 0 3/8 −γ/8 0 −3γ/8

−3γ/8 0 −γ/8 3/8 0 1/8

0 −γ/8 0 0 1/8 0

−γ/8 0 −3γ/8 1/8 0 3/8


,

avec γ = σ2
1

σ0σ2
(=
√

(n+ 2)/(n+ 4) pour un spectre de puissance du champ de densité P (k) en
loi de puissance d’indice n et les variances sont données par

σ2
n =

∫ ∞
0

∫ 2π

0
dθ dk P (k)k2n+1 .
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Il est ainsi aisé de vérifier que l’espérance du spin est nulle 〈si〉 = εijk 〈Hjl〉 〈Tlk〉 = 0 car tous les
termes qui composent cette contraction antisymétrique sont des produits de Hjl et Tlk qui sont
décorrélés (comme par exemple H12T23). C’est un résultat attendu car il n’y a pas de direction
privilégiée dans le problème.

Cependant les galaxies ne se forment pas partout mais préférentiellement dans les filaments et
les noeuds qui trouvent leur origine dans les assymétries du champ aléatoire initial décrivant
l’Univers primordial ensuite amplifiées par l’effondrement gravitationnel. La présence de ces
structures induit des directions privilégiées pour le tenseur de marée ainsi que le tenseur d’inertie
et donc en fin de compte pour le spin. Il est donc naturel de se demander quel est le spin moyen
au voisinage d’un filament typique. Puisqu’un filament peut être défini comme la ligne de
champ joignant deux maxima de la densité en passant par un point selle (gradient nul et deux
courbures négatives), le problème se réduit à l’étude de l’espérance du spin au voisinage d’un
point selle de type filament ayant une géométrie donnée (qui impose la direction du filament et
du mur). Ce spin contraint 〈si(r)|saddle〉 dépend de r, la séparatrice entre le proto-objet et le
point selle (ou pic à 2D si on considère des coupes perpendiculaires au filament). Cette quantité
est facilement déductible de la PDF jointe des dérivées secondes et quatrièmes du potentiel
en deux points séparés par r. Nous devons aussi introduire le gradient de la densité (qui est
une dérivée troisième du potentiel) q = ∇δ/σ1 afin d’imposer une condition de point critique
δD(x− ν)|detHij |δD(qi). La géométrie du point critique peut aussi être imposée par la donnée
des valeurs propres du Hessien de la densité λi. Si nous rassemblons le tenseur de marée, le
gradient et le Hessien de la densité dans un vecteur X à l’emplacement du proto-objet et Y à
l’emplacement du point critique, cette PDF à deux point s’écrit

P(X,Y) =
1√

det|2πC| exp

−1
2

 X

Y

T

·C−1·
 X

Y


 , (B.5)

où C0 ≡ 〈X ·XT〉, Cγ ≡ 〈X ·YT〉 et

C =

 C0 Cγ

CT
γ C0

 .
Encore une fois, ces matrices peuvent être calculées à partir du spectre de puissance P (k).

Finalement, l’espérance du spin, au voisinage d’un point selle de type filament ayant une
géométrie donnée 〈si(r)|saddle〉, peut être évaluée analytiquement à partir de la PDF jointe.
Ce résultat est donné dans [Codis et al., 2015b]. En résumé, dans le plan du point selle, les spins
sont alignés en moyenne avec l’axe du filament et forment quatre quadrants de parité opposée.
En se rapprochant des noeuds, les spins deviennent de plus en plus perpendiculaires au filament.
Cette géométrie est illustrée sur la figure B.4.

L’extension anisotrope de la théorie des champs de marée présentée ici prédit donc une géométrie
quadrupolaire dans les filaments en accord avec les quadrants de vorticité obervés dans les
simulations ([Laigle et al., 2015]). Il est frappant de constater que la théorie Lagrangienne
décrite ici capture les processus Eulériens a priori non-linéaires de bascule de spin par fusions.
En plus des quatre quadrants, cette théorie prédit une transition spatiale de la direction du spin:
alignée avec le filament proche du point selle et perpendiculaire au filament vers les noeuds. Cette
transition dans l’espace peut être traduite en une transition en masse (faibles masses ayant un
spin aligné et objets massifs un spin perpendiculaire) si l’on réalise que la distribution locale des
masses des halos varie le long du filament (faibles masses loin du filament et fortes masses vers les
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Figure B.4: Flots de spin et de vitesse au voisinage d’un filament vertical (en rouge) au sein d’un
mur (mauve). Les flèches rouges et bleues indiquent la distribution de spin alors que les trois coupes
horizontales montrent les lignes de champs du spin projeté dans le plan correspondant.

noeuds). Ceci est dû encore une fois au boost en densité généré par la présence du filament. Le
formalisme de croisement de barrières ([Peacock and Heavens, 1990, Bond et al., 1991, Paranjape
et al., 2012, Musso and Sheth, 2012]) permet alors d’associer une masse typique pour des objets
se formant dans des régions de densité à grande échelle donnée. Dans ce contexte, la théorie
ATTT prédit une orientation du spin qui, en moyenne, dépend de la masse avec une masse de
transition Mtr pour la bascule du spin (〈 cos θ 〉 = 0.5) d’environ 4 · 1012M�, si on choisit de
définir le filament avec une échelle de lissage de 5 Mpc/h, ce qui est en accord avec la mesure
faite dans [Codis et al., 2012].

B.2.4 Vers une quantification des effets d’alignements intrinsèques

La cohérence à grande échelle de certaines propriétés des galaxies telles que le spin peut être un
contaminant important des observables de lentillage faible. Etant donné d’une part la na-
ture anisotrope des grandes structures et son impact complexe sur les formes et spins des
galaxies et d’autre part la dépendance forte avec les propriétés physiques des galaxies, il est
probablement difficile de se reposer uniquement sur le théorie linéaire isotrope (par exemple
[Lee and Pen, 2001]) ou les simulations de matière noire seule pour prédire et contrôler les
alignements intrinsèques. Avec l’avènement des simulations hydrodynamiques cosmologiques,
nous sommes maintenant en position pour mesurer directement cet effet dans ces simulations
plutôt que d’utiliser le modèle du halo ou des modèles semi-analytiques ([Schneider and Bri-
dle, 2010, Joachimi et al., 2013b]). Dans [Codis et al., 2015a]), nous utilisons la simulation
Horizon-AGN présentée dans [Dubois et al., 2014] à redshift z = 1.2 pour mesurer le niveau
d’alignements intrinsèques lorsque l’on prend le spin comme proxy pour la forme des galax-
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ies. Si cette hypothèse permet d’utiliser une quantité – le spin – plus robuste face aux effets
de résolution numérique que le tenseur d’inertie, il faut noter que cette approximation n’est
probablement valable que pour les galaxies de type disque dominées par leur rotation.

C’est dans ce contexte que nous avons donc mesuré dans un premier temps la corrélation en
fonction de la séparation entre le spin des galaxies d’une part et le tenseur d’inertie d’autre part.
A séparation nulle, les résultats de [Codis et al., 2012, Dubois et al., 2014] sont retrouvés à savoir
que les galaxies ont un spin corrélé avec la direction du filament (qui est bien alignée avec l’axe
mineur du tenseur d’inertie) de façon masse et couleur dépendant. Au-delà de la statistique à
un point, il est intéressant d’étudier comment ce signal varie avec la séparation. Parce que le
tenseur de marée au voisinage de la galaxie contribue aussi au signal de lentillage faible porté
par des galaxies plus lointaines, il est clair que les corrélations croisées spin – tenseur de marée
sont étroitement liées au terme GI. Comme on peut l’espérer, l’axe du spin et les directions
propres du tenseur de marée se décorrèlent à mesure que la séparation augmente. Cependant,
alors que les corrélations spin – axe intermédiaire du tenseur de marée deviennent négligeables
sur des échelles r > 3 h−1 Mpc, le signal persiste sur des distances allant jusqu’à ∼ 10 h−1

Mpc pour les axes mineur et majeur du tenseur de marée (ce qui n’est rien d’autre que la taille
typique d’un filament). Ces corrélations à grande portée représentent potentiellement une source
d’inquiétude pour les expériences basées sur la mesure de l’astigmatisme cosmique qui pourraient
donc être contaminées par une dose non-négligeable d’alignements intrinsèques de type “GI”.
Une compréhension plus fine du taux de contamination requiert une modélisation des ellipticités
projetées de galaxies dans la simulation ainsi qu’une modélisation des vraies observables en
tenant compte des systématiques observationnels telles que l’atténuation par la poussière des
couleurs de galaxies. Il est toutefois amusant de noter que le comportement de la fonction de
corrélation à deux points entre spin et tenseur de marée peut être comprise théoriquement par le
simple usage d’un champ aléatoire Gaussien δ pour lequel on calcule la PDF jointe des dérivées
secondes du potentiel associé (φij , φ étant relié à δ par l’équation de Poisson). A partir de
cette PDF, il est trivial de calculer l’angle moyen entre les directions propres de φij calculé en
deux localisations séparées de r. Une fois que cette fonction est multipliée par un facteur ad hoc
permettant de retrouver la valeur de la statistique à un point, on trouve (voir figure B.5, panneau
de droite) le même comportement avec la distance que ce qui est mesuré dans la simulation (voir
figure B.5, panneau de droite).

Une autre quantité intéressante – cette fois reliée au terme II – est la mesure des auto-corrélations
d’ellipticités par le biais de la fonction de corrélation à deux points du spin. Dans [Codis et al.,
2015a], il apparâıt que les axes de rotation des galaxies bleues sont significativement corrélés
sur des distances de l’ordre de 10 Mpc/h mais que les galaxies rouges ne présentent aucune
corrélation notable. Afin de se rapprocher des observables qui utilisent l’astigmatisme cosmique,
la question qui se pose est de savoir quelle fraction du signal perdure après projection sur
le ciel. Pour cela, nous avons utilisé une approximation de disque mince et montré que les
ellipticités projetées ainsi obtenues étaient corrélées sur des distances angulaires de l’ordre de
10 arcminutes pour les galaxies bleues alors qu’ elles ne présentent pas de corrélations pour les
rouges, en adéquation avec l’étude à 3 dimensions. Il est à noter que ce résultat n’est pas en
contradiction avec les observations car il est à plus haut redshift (z = 1.2). Afin d’améliorer ces
premiers résultats, nous nous sommes intéréssés à l’évolution de ces alignements avec le temps et
avons amélioré notre prescription pour les ellipticités des galaxies en utilisant le tenseur d’inertie
plutôt que le spin. La figure B.6 montre ainsi la moyenne du cosinus carré de l’angle entre les
axes mineurs du tenseur d’inertie en fonction de la séparation et pour différentes classes de
masse. Un alignement est clairement détecté pour toutes les masses et pour des distances allant
jusqu’à ≈ 10 h−1 Mpc. Ce signal est bien entendu similaire aux résultats obtenus avec les spins
puisque spin et axe mineur du tenseur d’inertie sont des quantités fortement corrélées.
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Figure B.5: A gauche: Cosinus moyen de l’angle entre le spin des galaxies et l’axe mineur (cyan),
intermédiaire (violet) et majeur (magenta) du tenseur de marée en fonction de la séparation. A
droite: Idem pour un champ Gaussien aléatoire de spectre de puissance en loi de puissance à un
facteur ad hoc près.
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Figure B.6: Moyenne du cosinus carré de l’angle entre les axes mineurs du tenseur d’inertie
en fonction de la séparation et pour différentes classes de masse. Cette mesure est faite à
redshift z = 0.5. La différence principale se situe au niveau des objets les plus massifs qui sont
principalement des elliptiques et pour lesquels le spin – qui est plutôt mal défini – et l’axe mineur
sont moins bien alignés.
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 0  2  4  6  8  10

0.330

0.335

0.340

0.345

0.350

r (Mpc/h)

<c
os

2  θ
>

9.5<log M<10.6

z=2

 0  2  4  6  8  10

0.330

0.335

0.340

0.345

0.350

r (Mpc/h)

<c
os

2 α
>

9.5<log M<10.6

z=1.2

 0  2  4  6  8  10

0.330

0.335

0.340

0.345

0.350

r (Mpc/h)

<c
os

2  θ
>

9.5<log M<10.6

z=0.5

Figure B.7: Corrélation spin-spin en fonction de la séparation pour des masses stellaires: 3 ×
109 < Ms < 4× 1010 M� à redshift z = 2 (à gauche), z = 1.2 (en haut au centre), et z = 0.5 (à
droite). En cas de répartition uniforme, l’espérance est de 1/3 (représentée avec des tirets ici).

L’évolution en redshift est montrée sur la figure B.7 pour trois redshifts: z = 2, 1.2 and 0.5.
Les corrélations tendent à crôıtre avec le temps. Des résultats similaires sont obtenus quand le
tenseur d’inertie est utilisé.

L’inquiétude principale dans ce type d’étude reste les effets d’alignement avec la grille qui sont
propres aux simulations AMR. En effet, comme les forces sont calculées sur une grille, les spins
et les tenseurs d’inertie ont tendance à s’aligner avec les directions de la grille. Cet effet génère
donc des corrélations additionnelles qui sont difficiles à séparer du signal physique que l’on
cherche à mesurer. Différentes stratégies peuvent être proposées pour tenter d’évaluer ou de
minimiser cet effet. Une simple redistribution aléatoire des galaxies ne peut pas suffire car l’effet
d’alignement avec la grille est probablement corrélé à petite échelle: deux galaxies proches
ressentent un champ de marée similaire et ont donc tendance à s’aligner similairement avec
la grille. Une approche alternative pourrait être de sélectionner un échantillon (en terme de
masse, couleur, âge stellaire, etc) de galaxies parmi les moins contaminées mais cette procédure
réduit considérablement le nombre de galaxies et donc la statistique. De surcrôıt, il est difficile
de voir comment ces sélections affectent la mesure d’alignement intrinsèque et sa comparaison
aux données observationnelles. Cependant, il est possible d’étudier une autre observable –
que l’on utilise beaucoup quand il s’agit d’alignements intrinsèques – la fonction de corrélation
orientation-séparation

ηr(r) = 〈|r̂ · ê(x + r)|2〉 − 1/3 , (B.6)

où ê est le vecteur unité le long de l’axe mineur du tenseur d’inertie et r̂ le vecteur séparation.
Une corrélation positive indique une tendance pour la séparation et l’axe mineur à être parallèle
ce qui signifie que la galaxie est étirée tangentiellement par rapport à la seconde. Une corrélation
négative indique que la galaxie est orientée radialement par rapport à la seconde. L’avantage
de cette observable est qu’elle est moins sensible aux effets d’alignement avec la grille car la
distribution spatiale des galaxies – et donc l’ensemble des vecteurs séparation – n’a pas de
raison d’y être sujette (comme nous le montrons dans [Chisari et al., 2015]). Dans cet article,
nous avons utilisé la simulation Horizon-AGN et montré que les elliptiques ont tendance à
s’aligner radialement par rapport aux sur-densités de la matière noire et par rapport aux autres
elliptiques. Cette tendance est en accord avec les observations mais l’amplitude dépend fortement
de la façon de mesurer les formes et de l’échantillon de galaxies utilisé dans la simulation. Les
galaxies spirales ont, elles, tendance à être orientées tangentiellement autour des elliptiques.
Si ce signal est supprimé en projection, nous ne pouvons pas garantir que les alignements de
disques peuvent être ignorés pour les futures expériences utilisant l’astigmatisme cosmique.
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Ce travail autour de la mesure des alignements intrinsèques à l’aide de simulations hydrody-
namiques est un premier pas vers une modélisation fine de cet effet et ouvre la voie à des études
plus réalistes. Une amélioration importante serait par exemple de mesurer les ellipticités à l’aide
de la luminosité et non de la répartition de masse, de faire des mesures sur le cône de lumière
et de tenir compte de différentes systématiques observationnelles.

B.2.5 Conclusion

Nous avons présenté ici différentes investigations qui ont conduit notamment à la publication
de quatre articles ([Codis et al., 2012, Codis et al., 2015b, Codis et al., 2015a, Chisari et al.,
2015]). En résumé, nous avons montré que les halos et les galaxies sont fortement corrélés avec
la toile cosmique en mettant une emphase particulière sur les spins et les ellipticités car ce sont
des quantités importantes en ce qui concerne notre compréhension de la formation des galaxies
et la prise en compte des effets d’alignements intrinsèques. Ces corrélations – qui dépendent
notamment du temps et de la masse – peuvent être comprises analytiquement par le biais d’une
théorie anisotrope des effets de marée (ATTT). C’est évidemment un grand succés de notre
paradigme de formation des galaxies mais il faut aussi garder en tête que ces corrélations sont
générées par la dynamique (linéaire!) à grande échelle. Les non-linéarités à petite échelle diluent
cette cohérence, de sorte que l’on ne peut pas croire que la théorie linéaire des champs de marée
puisse prédire un à un le spin des galaxies à bas redshift et cela a en effet déjà été souligné dans
différentes études numériques. L’histoire individuelle de chaque galaxie comprenant fusions et
accrétion de matière contribue de façon largement non-linéaire à l’évolution récente des spins
qui vont donc naturellement dévier de la prédiction de la théorie linéaire.

Les alignements intrinsèques sont donc élégamment compris comme le résultat des flots de
matière à grande échelle. Cependant, si l’on souhaite les prédire précisément, il faut clairement
aller au-delà de la théorie linéaire ou des modèles semi-analytiques qui peuvent simplement
donner une image globale des processus en jeu. Les simulations hydrodynamiques sont le seul
moyen d’évaluer la contamination par les alignements intrinsèques que l’on peut attendre pour
les missions futures basées sur l’utilisation de l’astigmatisme cosmique. En effet, celle-ci semble
dépendre fortement de la dynamique non-linéaire du gaz, de la physique baryonique et donc
des effets de sélection sur la base par exemple de la couleur, la masse ou la morphologie des
galaxies mais aussi des systématiques observationnelles. Seules les simulations numériques hy-
drodynamiques peuvent tenir compte efficacement de l’ensemble de ces effets. La contrepartie
est que ces simulations ont beaucoup de paramètres à ajuster qui encodent notre ignorance sur
une partie de la physique sous-grille, ce qui pose diverses questions: à quel point nos prédictions
dépendent-elles du code et des détails de la physique sous-grille utilisée? Quels sont les effets de
l’utilisation d’une méthode AMR par rapport à du SPH? A quel point est-ce que la rétroaction
des noyaux actifs de galaxies jouent un rôle en alignant ou désalignant les galaxies? Toutes
ces questions pour le moment sans réponse représentent un formidable terrain d’investigation et
devraient être cruciales dans les années à venir.

B.3 Les grandes structures comme sonde cosmologique

La cosmologie d’aujourd’hui fait la part belle aux champs aléatoires qui sont des ingrédients
fondamentaux de notre description du champ de matière à grande échelle et du fond diffus
cosmologique. La structuration à grande échelle de la distribution de matière dans l’Univers
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semble être le résultat de la croissance de petites fluctuations primordiales quasi-Gaussiennes
sous les effets de la Gravitation. L’apparition de non-linéarités de plus en plus fortes est due à la
dynamique non-linéaire des structures en formation mais une faible non-Gaussianité peut aussi
être présente initialement dans les inhomogénéités de l’Univers primordial. C’est pour cette
raison que l’étude de signatures non-Gaussiennes dans les données observationnelles permet
d’étudier les détails de la physique à l’oeuvre dans l’Univers primordial et le mécanisme de
croissance des structures avec ainsi la possibilité de lever le voile sur différentes inconnues telles
que le contenu de l’Univers, le rôle du biais entre galaxies et matière noire et les raisons de
l’accélération de l’expansion de l’Univers (énergie noire? modifications de la gravité d’Einstein?).

Avec l’arrivée de grands relevés de galaxies, les astronomes entrent dans l’ère de la cosmologie
statistique et voient arriver une quantité impressionnante de données. La question se pose donc
de construire des outils qui permettront d’extraire le plus d’information possible de ces données,
ce qui signifie en particulier de sonder le régime non-linéaire de formation des structures. La façon
la plus commune de procéder se base sur l’utilisation des fonctions de corrélations à N points qui
caractérisent la distribution observée de galaxies. Dans l’Univers primordial Gaussien, le champ
de densité de matière est complètement décrit par la fonction de corrélation à deux points. Des
départs à la Gaussianité apparaissent ensuite dès que la dynamique devient non-linéaire soit à
petites échelles ou temps longs et ajoutent de l’information qui n’est plus uniquement contenue
dans la fonction à deux points. Cependant, les fonctions de corrélations à N points sont de plus
en plus difficiles à mesurer. Elles sont bruitées, sujettes à la variance cosmique et sensibles aux
systématiques telles que la géométrie complexe du relevé. D’un point de vue théorique, elles sont
également de plus en plus difficiles à prédire dans le contexte de la théorie des perturbations
cosmologiques. Typiquement, le spectre de puissance à l’ordre 2, le bispectre à l’ordre 1 et
le trispectre à l’ordre 0 sont accessibles avec les méthodes standard mais il est bien difficile
d’aller plus loin à la fois dans le régime non-linéaire (et donc dans les ordres du développement
perturbatif) et dans le nombre de champs (N) même si des schémas de resommations ont été
mis en place et permettent d’atteindre des précisions de l’ordre du pourcent dans le régime
faiblement non-linéaire (voir par exemple [Taruya et al., 2012] pour le spectre de puissance à
l’ordre 2 de la théorie des perturbations régularisée RegPT).

Il est donc essentiel de trouver des estimateurs alternatifs pour extraire de l’information du
régime non-linéaire de formation des structures afin de compléter les outils traditionnels. C’est
en particulier critique si l’on souhaite en apprendre davantage sur l’origine de l’énergie noire qui
représente près de 70 % du budget énergetique de notre Univers! Nous présentons ici deux
types d’observables cosmologiques qui semblent prometteuses: des estimateurs topologiques
et géométriques (comme les fonctionnelles de Minkowski ou les comptages d’extrema) et la
statistique de comptage dans des cellules concentriques.

B.3.1 Caractérisation topologique et géométrique des grandes structures

La première des deux observables que nous présentons ici utilisent les caractéristiques topologiques
et géométriques du champ de densité. La topologie d’un champ de dimension 3 peut être
entièrement décrite par seulement 4 fonctionnelles qui portent le nom de Minkowski et qui peu-
vent être calculées analytiquement quand les non-Gaussianités sont suffisamment faibles. En
plus de ces 4 fonctionnelles de Minkowski, on peut aussi s’intéresser à des observables similaires
qui, elles, décrivent la géométrie de la toile cosmique: comptage de pics, de vides, propriétés
du squelette telles que sa longueur, etc. L’avantage de tous ces estimateurs par rapport aux
fonctions à N points est double. D’une part, ils dépendent faiblement de tout biais monotone.
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Par exemple, le nombre de maxima d’un champ et de toute transformée monotone de ce champ
est le même. D’autre part, la topologie du champ est, par essence, une caractéristique robuste
et donc typiquement plus propre à mesurer car moins sensible aux masques et bruits divers.

Dans [Codis et al., 2013], nous avons fait la théorie de ces estimateurs pour des champs faiblement
non-Gaussiens en espace des redshifts. Le résultat dépend des moments du champ et de ses
dérivées qui sont eux-mêmes prédits par la théorie perturbative en fonction de la variance σ2 et
du paramètre de distorsion en redshift β. Avec les prochains relevés spectroscopiques 3D comme
Euclid, l’analyse statistique de la topologie de l’Univers décalé vers le rouge va permettre de
mesurer de façon robuste certaines combinaisons de moments en fonction du redshift et donc de
quantifier l’évolution de l’équation d’état de l’énergie noire au cours du temps et de possibles
modifications de la gravité d’Einstein. Dans [Codis et al., 2013], nous avons spécifiquement
étudié comment les fonctionnelles de Minkowski en espace des redshifts pourraient permettre
d’estimer l’évolution cosmique de la croissance des structures par le biais du paramètre β.

Des ensembles critiques non-Gaussiens aux cumulants Considérons les propriétés statistiques
des ensembles critiques d’un champ aléatoire (la densité par exemple) telles que la caractéristique
d’Euler des contours de densité au dessus d’un seuil, le nombre de maxima de contraste donné
ou encore la longueur de squelette au dessus d’un seuil en densité. Le calcul de leur espérance
statistique requiert la donnée de la densité de probabilité jointe du champ et de ses dérivées
premières et secondes. Celle-ci peut être calculée facilement en fonction du spectre de puissance
si la statistique est Gaussienne. Si le champ est non-Gaussien, elle peut être développée autour
d’une Gaussienne sous la forme d’une série dite de Gram-Charlier.

Une fois cette PDF connue, tous les estimateurs mentionnés dans cette section peuvent être
calculés en la marginalisant sous certaines conditions. Par exemple, pour calculer la densité
de points critiques, il faudra imposer une condition de gradient nul. Après quelques pages
d’algèbre, les prédictions sont obtenues à tous les ordres du développement en non-Gaussianité
et en fonction du contraste (par le biais typiquement de polynômes de Hermite) et des cumulants
du champ sous-jacent (qui apparaissent dans les coefficients de Gram-Charlier).

Par exemple, N3(ν), l’aire (par unité de volume) des isosurfaces de densité x = ν en espace des
redshifts s’écrit

N3 =
2e−ν2/2σ1√

3πσ

[
1+

〈
x3
〉

3!
H3(ν)+

(
1
3
〈
xq2
⊥
〉 [

1− 4
15
βσ

]
+

1
6
〈
xx2

3

〉 [
1 +

8
15
βσ

])
H1(ν)

]
+O(β2

σ) ,

où βσ est un paramètre d’anisotropie qui est uniquement fonction de β et (q⊥, x3) est le gradient
du champ x.

Comparaison avec des simulations numériques A suffisamment grand lissage, les prédictions
sont en accord avec les mesures faites dans des simulations numériques à N corps. Quand
le lissage diminue, la prédiction au premier ordre du développement commence à devier de la
mesure dans les ailes de la distribution. L’effet de la distorsion en redshift sur les estimateurs 3D
comme la caractéristique d’Euler semble faible dans la simulation Horizon 4π (voir figure B.8).
Cela signifie que la théorie isotrope est en fait suffisante et peut donc permettre de mesurer la
variance des fluctuations de densité en utilisant la première correction non-Gaussienne comme
montré par [Gay et al., 2012]. Cela signifie aussi qu’il y a peu d’espoir d’extraire une informa-
tion cosmologique à partir des distorsions de l’espace des redshifts en utilisant cette méthode.
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Figure B.8: A gauche: première correction non-Gaussienne de la caractéristique d’Euler à 3D
en fonction du lissage telle que mesurée (en pointillés) et prédite (trait plein) dans la simulation
Horizon 4π (espace réel). Chaque courbe est normalisée par le maximum de la composante
Gaussienne et est décalée par lissage à des fins de clarté. A droite: Même résultat mais cette
fois en espace des redshifts. Pour les lissages utilisés ici, la théorie au premier ordre est en
bonne accord avec la simulation, en particulier pour des contrastes faibles et intermédiaires. La
différence produite par l’effet de distorsion redshift est faible.

Cependant, il apparâıt que les caractéristiques topologiques 1 et 2D (sur des lignes et des plans)
sont elles affectées par les distorsions en redshift (voir figure B.9 ) et cet effet prédit par la
théorie est en accord avec les simulations. Ceci devrait donc permettre de mesurer β et donc
potentiellement d’obtenir plus d’information sur notre Univers.

Des cumulants à la cosmologie Dans le régime où la théorie des perturbations est valide
en espace des redshifts, tous les cumulants qui entrent dans l’expression des fonctionnelles de
Minkowski peuvent être prédits en fonction du modèle cosmologique adopté. Ainsi, la mesure
dans les données de ces fonctionnelles permet en principe de mettre des contraintes sur la
cosmologie en utilisant certaines combinaisons de cumulants. Une analyse en redshift permet
a priori d’obtenir plus d’information qu’une analyse en espace réel. En effet, les cumulants qui
impliquent la ligne de visée et ceux qui impliquent les directions transverses (le plan du ciel)
sont qualitativement différents. Cette différence encode une information dynamique (sur les
vitesses). En principe, la partie anisotrope de ces cumulants peut donc être utilisée pour tester
notre théorie de la gravité dans le contexte de la théorie perturbative de croissance des grandes
structures. Les statistiques topologiques et géométriques 3D ne permettent pas en elles-mêmes
de déterminer séparément les cumulants impliquant la ligne de visée de ceux impliquant les
directions du ciel. Pour mesurer la contribution anisotrope, il est préférable de s’attacher à
l’étude de tranches du volume 3D orientées différemment par rapport à la ligne de visée (avec
un angle θS). Par exemple, en mesurant le longueur des isocontours dans ces tranches, N2, on
obtient une mesure séparée de

〈
xq2
⊥
〉

et
〈
xx2

3

〉
.

Une expérience de pensée cosmologique Comme on vient de le mentionner, la dépendance
angulaire des fonctionnelles de Minkowski 2D permet en principe de mesurer β. Au-delà d’un
simple effet sur l’amplitude globale (qui est suffisant pour mesurer β seul), cette dépendence
apparâıt également dans la première correction non-Gaussienne. Si la valeur de β est importante
en elle-même (pour exemple pour étudier le biais et tester de possibles modifications de la gravité
d’Einstein), il est aussi important pour mesurer D(z) le taux de croissance des structures car il
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Figure B.9: Prédiction de la caractéristique d’Euler 2D dans l’espace des redshifts le long (tirets)
et perpendiculaire (trait plein) à la ligne de visée avec les cumulants mesurés dans la simulation
Horizon 4π . La dépendance avec l’angle entre la tranche et la ligne de visée est claire, en
particulier pour les faibles lissages.
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Figure B.10: Reconstruction de β à partir de la partie Gaussienne de N2 (à gauche) et σ à
partir de la première correction non-Gaussienne (à droite).

permet de relier la dispersion en espace des redshifts, σ2, à sa valeur en espace réel, σ2
0 qui est elle-

même proportionnelle à D(z). Une façon de procéder est donc d’utiliser le terme Gaussien pour
poser des contraintes sur β puis le premier terme non-Gaussien pour σ (dont l’amplitude n’est
pas contrainte par la partie Gaussienne seule). Nous avons appliqué ce schéma pour mesurer
β et σ0 dans une simulation. Les fonctionnelles de Minkowski sont mesurées dans un ensemble
de 19 simulations invariantes d’échelle (n=-1) de matière noire (2563 lissées sur 15 pixels ce qui
correspond à σ0 = 0.18). En mesurant la partie paire (dominée par la composante Gaussienne)
de N2, on obtient les contraintes suivantes sur β: β̂ = 1.04 ± 0.05 , illustrées sur la figure B.10
(à gauche). En utilisant la première correction non-Gaussienne qui domine la partie impaire du
signal et en utilisant les prédictions de la théorie perturbative, nous obtenons des contraintes sur
σ qui sont montrées sur la droite de la figure B.10 et s’écrivent σ̂ = 0.22± 0.08 en accord avec
la vraie dispersion. La précision sur la mesure de β et D(z) par le biais de σ0 peut näıvement
être extrapolée pour un relevé de type Euclid qui serait autour de 0.3% sur β et 1.5% sur D(z)
à redshift zéro.
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Limitations et perspectives Dans l’expérience proposée précédemment, il faut noter qu’aucune
prise en compte des effets de masque, évolution du rapport signal sur bruit avec le redshift ou
volume fini n’a été étudiée ni aucune comparaison avec les sondes déjà existantes. Une des
principales limitations de ce travail a été de supposer exacte la théorie perturbative standard
alors que l’on sait qu’elle est peu performante en espace des redshifts. Des améliorations sur ce
point sont donc cruciales pour le futur. Une liste non-exhaustive des développements à étudier
pourrait être

• améliorer la théorie perturbative en espace des redshifts à l’aide par exemple d’un modèle
de type “streaming model” (see for instance [Scoccimarro, 2004, Taruya et al., 2010]) et
tester le domaine de validité du modèle récent proposé par [Gil-Maŕın et al., 2014] dans
les études basées sur la topologie;

• améliorer la prescription des plans parallèles et développer une théorie plein ciel;

• étendre la théorie à la statistique du squelette comprenant filaments et murs;

• propager les contraintes obtenues sur une estimation des paramètres cosmologiques comme
l’équation d’état de l’énergie noire;

• explorer des alternatives à l’utilisation d’une série de Gram-Charlier;

• faire la statistique des erreurs;

• mettre en oeuvre la théorie sur de fausses observations réalistes et démontrer les avantages
d’une sonde topologique par rapport aux autres sondes existantes (cisaillement gravita-
tionnel, supernovae, etc);

• appliquer la théorie au cas 2D du champ de cisaillement gravitationnel.

B.3.2 Comptages de galaxies dans des cellules concentriques

Si les estimateurs topologiques mentionnés dans la section précédente présentent une robustesse
intéressante, ils n’en restent pas moins difficiles à prédire au-delà du regime faiblement non-
linéaire (que nous appellerons ici régime quasi-linéaire). Il n’existe qu’une observable connue
qui permette de faire des prédictions analytiques dans ce régime à partir des premiers principes:
les comptages de galaxies dans des cellules concentriques qui mettent en oeuvre la théorie pertur-
bative dans une configuration hautement symétrique. En effet, cette observable, qui consiste à
compter des galaxies dans des sphères concentriques et à étudier leur statistique jointe, respecte
la symétrie sphérique, seule configuration dans laquelle une solution complètement non-linéaire
des équations de la gravitation existe (dite solution de l’effondrement sphérique). Cette symétrie
permet donc, par le biais de l’effondrement sphérique, de prédire avec une précision inattendue
la statistique de comptage dans des cellules concentriques dans le régime quasi-linéaire, bien
au-delà de ce qui est atteignable traditionnellement avec la théorie perturbative! Nous nous
proposons de montrer ici le formalisme permettant d’obtenir les prédictions analytiques de ces
observables de comptage.

Définitions Soient n sphères concentriques de rayon Ri contenant une densité de galaxies ρ̂i.
Nous cherchons ici à étudier la statistique jointe de ces densités concentriques P(ρ̂1, . . . , ρ̂n). La
clé pour prédire P(ρ̂1, . . . , ρ̂n) à partir des premiers principes est d’utiliser la fonction génératrice
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des moments

MR1...Rn(λ1, . . . , λn) =
∞∑

p1,...,pn=0

〈ρ̂p11 . . . ρ̂p22 〉
λp11 . . . λpnn
p1! . . . pn!

, (B.7)

=

〈
exp

(∑
i

λiρ̂i

)〉
, (B.8)

qui est trivialement reliée à la fonction génératrice des cumulants, ϕR1...Rn(λ1, . . . , λn), par

MR1...Rn(λ1, . . . , λn) = exp [ϕR1...Rn(λ1, . . . , λn)] , (B.9)

de telle façon que

exp [ϕR1...Rn(λ1, . . . , λn)] =
∫

dρ̂1 . . . dρ̂n P(ρ̂1, . . . , ρ̂n) exp

(∑
i

λiρ̂i

)
. (B.10)

La PDF jointe des densités concentriques peut aisément être retrouvée par le biais de l’équation B.10
en faisant une transformée de Laplace inverse de la fonction génératrice des cumulants

P(ρ̂1, . . . , ρ̂n) =
∫ i∞

−i∞
dλ1

2πi
. . .

∫ i∞

−i∞
dλn
2πi

exp

(
−
∑
i

ρ̂iλi + ϕR1...Rn(λ1, . . . , λn)

)
. (B.11)

La fonction génératrice des cumulants Afin de prédire la fonction génératrice des cumulants,
on est amené à considérer sa transformée de Legendre dans le régime quasi-linéaire

ΨR1...Rn(ρ1, . . . , ρn) =
∑
i

λiρi − ϕR1...Rn(λ1, . . . , λn), (B.12)

où les densités ρi sont déterminées implicitement par la condition de stationnarité

λi =
∂

∂ρi
ΨR1...Rn(ρ1, . . . , ρn) , i = 1, . . . , n . (B.13)

Dans la limite de variance nulle, cette transformée de Legendre prise à deux temps différents,
Ψ(ρ1, . . . , ρn; η) et Ψ′(ρ1, . . . , ρn; η′), prend la même valeur

ΨR1...Rn(ρ1, . . . , ρn; η) = ΨR′1...R′n(ρ′1, . . . , ρ
′
n; η′) , (B.14)

si la masse est préservée ρiR3
i = ρ′iR

′
i
3, et si ρ′i et ρi sont reliés par la dynamique de l’effondrement

sphérique. En effet, on peut toujours exprimer une moyenne d’ensemble en terme des propriétés
statistiques du champ de densité initial de telle sorte que

exp [ϕ]=
∫
Dτ1 . . .Dτn P(τ1, . . . , τn) exp

(∑
i

λiρi(τi)

)
. (B.15)

Comme les densités courantes ρi peuvent provenir de contrastes initiaux différents (voir la fig-
ure 5.18), l’intégration B.15 est donc une intégrale de chemin (sur tous les chemins possibles
allant des configurations initiales aux densités finales considérées) de mesure Dτ1 . . .Dτn et de
statistique initiale connue P(τ1, . . . , τn). Si les conditions initiales sont Gaussiennes, on obtient

P(τ1, . . . , τn)dτ1 . . . dτn =

√
det Ξ exp [−Ψ(τ1, . . . , τn)]

2π
dτ1 . . . dτn , (B.16)
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Figure B.11: Une même densité à redshift zéro (à droite) peut provenir de différentes configu-
rations initiales (à gauche).

avec Ψ qui est donc une forme quadratique.

Dans la limite de variance nulle, l’équation B.15 est dominée par le chemin le plus probable.
Comme l’observable est à symétrie sphérique, on peut s’attendre à ce que ce chemin de plus
haute probabilité respecte également la symétrie sphérique et soit donc l’effondrement sphérique.
Dans ce régime, l’équation B.15 devient

exp [ϕ]'
∫

dτ1 . . . dτn P(τ1, . . . , τn) exp

(∑
i

λiζSC(τi)

)
, (B.17)

où le chemin le plus probable, ρi = ζSC(η, τi) est l’effondrement sphérique qui attribue à
chaque densité finale une et une seule densité initiale. L’intégration du membre de droite de
l’équation B.17 peut maintenant être mise en oeuvre par une méthode du col en approchant
l’intégrale par sa valeur la plus probable où

∑
i λiρi(τi) − Ψ(τ1, . . . , τn) est stationnaire. Ceci

nous amène à la relation fondamentale B.14 qui une fois évaluée à un temps initial arbitraire, η′,
donne une relation entre Ψ(ρ1, . . . , ρn; η) et les propriétés statistiques des fluctuations initiales.
Lorsque celles-ci sont Gaussiennes, Ψ(ρ1, . . . , ρn; ηi) peut facilement être calculée et exprimée en
terme d’éléments des matrices de variances-covariances

ΨR1...Rn(ρ1, . . . , ρn; ηi) =
1
2

∑
i,j≤2

Ξij(ρi − 1)(ρj − 1) , (B.18)

où Ξij est l’inverse de la matrice de variances-covariances, Σij = 〈τiτj〉, entre les contrastes
initiaux τi = ρi − 1 des n sphères concentriques de rayon Ri. On peut ensuite écrire la fonction
génératrice des cumulants à temps quelconque en utilisant l’effondrement sphérique entre une
densité finale à temps η dans une sphère de rayon Ri et un contraste initial dans une sphère
centrée sur le même point et de rayon R′i = Riρ

1/3
i (par conservation de masse); formellement

on peut l’écrire

ρi = ζSC(η, τi) ≈ 1
(1−D+(η)τ/ν)ν

, (B.19)

où on utilise ici une prescription simple avec D+(η) le facteur de croissance linéaire et ν = 21/13
pour reproduire le coefficient de dissymétrie (skewness) à haut redshift.

La PDF jointe En principe, le formalisme que nous venons de décrire permet de prédire la PDF
des densités concentriques dans le régime quasi-linéaire. En réalité, seul ΨR1,...,Rn(ρ1, . . . , ρn) est
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Figure B.12: Vraisemblance logarithmique d’une expérience comprenant 5000 (à gauche) ou 10
000 (à droite) sphères concentriques de rayon 10 et 11 Mpc/h mesurées dans notre simulation.
Le modèle dépend ici seulement de la variance σ2 (ν – qui paramétrise l’effondrement sphérique
– et n – l’indice spectral – sont fixés). Les contours à 1,3 et 5 sigmas centrés sur la vraie valeur
0.23 sont représentés avec des tirets bleu foncé. Une expérience analogue mais en variant les
trois paramètres pourrait être similairement envisagée.

facilement calculable. La fonction génératrice des cumulants, ϕR1...Rn(λ1, . . . , λn), est ensuite
accessible via l’équation B.12 par une transformée de Legendre qui amène ses propres compli-
cations. En particulier, toutes les valeurs de λi ne sont pas accessibles car la relation ρi – λi ne
peut pas toujours être inversée. La PDF est ensuite accessible par une transformée inverse de
Laplace qui peut être calculée analytiquement dans certains régimes ou évaluée numériquement.
Notons notamment qu’elle repose sur une continuation analytique dans le plan complexe de la
fonction génératrice des cumulants prédite et requiert donc une connaissance fine des propriétés
analytiques de ϕ(λ). Son évaluation numérique apparâıt ainsi difficile, et ce d’autant plus que
le nombre de cellules considérées augmente. Ce n’est que récemment que nous avons pu évaluer
avec succés la PDF à deux cellules ([Bernardeau et al., 2015]). Ceci nous a permis en partic-
ulier de prédire avec une précision surprenante les profils de densité des régions sous-denses ou
sur-denses.

En fin de compte, il apparâıt que la PDF des densités concentriques est sensible à la cosmologie
à travers deux ingrédients: l’effondrement sphérique et le spectre de puissance linéaire, P lin

k , (via
la matrice des variances-covariances, Σij =

∫
P lin
k (k)W (Rik)W (Rjk)d3k/(2π)3). Elle peut donc

être utilisée pour tester la gravité et les modèles d’énergie noire et/ou mettre des contraintes
sur les paramètres cosmologiques. Pour illustrer cette remarque, nous avons mis en oeuvre une
expérience pour contraindre l’énergie noire basée sur des comptages réalisés sur des simulations
ΛCDM (voir figure B.12). Avec 10 000 comptages dans deux sphères concentriques de rayon 10
et 11 Mpc/h, l’expérience imite la précision que l’on pourrait espérer dans un relevé de volume
≈ (350h−1Mpc)3 qui est ainsi estimée autour du pourcent.

Perspectives En résumé, la statistique de comptages dans des cellules concentriques est une
sonde cosmologique prometteuse pour les prochains grands relevés de galaxies comme Euclid.
L’accord entre prédictions analytiques et simulations est excellent même dans le régime quasi-
linéaire où la théorie perturbative n’est traditionnellement plus valide. Une question ouverte
à ce stade serait d’estimer le nombre de sphères optimal pour contraindre un ensemble donné
de paramètres mais la réponse dépend probablement des caractéristiques du relevé considéré.
Il faut aussi noter qu’une mise en oeuvre effective à 3D semble difficile dans la mesure où les
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catalogues de galaxies en espace des redshifts brisent la symétrie sphérique locale de manière
complexe. Une façon d’éviter le problème serait d’utiliser les comptages sur des observables telles
que les densités projetées le long de la ligne de visée par le biais des observations de cisaillement
gravitationnel ou les relevés de galaxies de type photométrique qui ne reconstruisent pas toute
la statistique 3D mais uniquement la statistique circulaire 2D pour laquelle la théorie pourrait
être appliquée. La précision de la méthode dans ce contexte reste à évaluer. Une autre piste à
explorer pourrait être les corrélations à grande distance entre densités concentriques (et profils)
qui sont accessibles par ce formalisme ([Bernardeau, 1995]) et permettraient d’avoir une théorie
complète (avec en particulier une théorie des erreurs) qui pourrait être ensuite exploitée sur de
vraies données.

B.3.3 Conclusion

Dans le contexte d’une cosmologie de précision, il est important de développer de nouvelles
observables qui i) peuvent être prédites à partir des premiers principes; ii) sont robustes (bruit,
biais,...); iii) peuvent sonder le régime quasi-linéaire de formation des structures. Nous avons
mis en avant deux telles observables: d’une part les estimateurs topologiques et géométriques
tels que fonctionnelles de Minkowski ou statistique des pics et d’autre part la statistique de
comptage de galaxies dans des cellules concentriques qui permet d’avoir accès par exemple à la
PDF de la densité cosmique ou encore aux profils de vide. Ces idées sont issues de trois articles
publiés ([Codis et al., 2013, Bernardeau et al., 2014, Bernardeau et al., 2015]).

B.4 Conclusion

Dans cette thèse, nous nous sommes intéressés à l’étude théorique des grandes structures d’un
point de vue à la fois analytique et numérique, la clé de voûte de ces travaux résidant dans
la recherche d’une réponse aux défis posés par les futurs grands relevés de galaxies tels que
la dynamique non-linéaire de formation des structures, la distorsion en espace des redshifts ou
encore les alignements intrinsèques. L’ensemble de ces travaux a fait l’objet de 10 publications
[Taruya et al., 2012, Codis et al., 2012, Codis et al., 2013, Laigle et al., 2015, Dubois et al.,
2014, Bernardeau et al., 2014, Bernardeau et al., 2015, Codis et al., 2015a, Codis et al., 2015b,
Chisari et al., 2015], d’un article qui sera soumis prochainement (Baldauf, Codis, Desjacques,
Pichon, to be submitted) et de plusieurs articles en préparation.
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