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ÉCOLE DOCTORALE No 564
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Composition du Jury :

M. Chris Westbrook, Directrice de Recherche, Université Paris-Sud, Président du jury
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Titre: Dynamique hors d’équilibre de gaz de Bose unidimensionnel piégé

Mots clés: mode de respiration, atomes froids, Condensat de Bose-Einstein;

Résumé:

Une étude des modes d’oscillations d’une gaz de Bose unidimensionnel dans la piège est

présentée. Les oscillations sont initiées par une changement instantanée de la fréquence

de piégeage. Dans la thèse il est considéré d’un gaz de Bose quantique 1D dans un piège

parabolique à la température nulle, et il est expliqué, analytiquement et numériquement,

comment la fréquence d’oscillation dépend du nombre de particules, leur interaction répulsive,

et les paramètres de piège. Nous sommes concentres sur la description spectrale, en utilisant

les règles de somme. La fréquence d’oscillation est identifiée comme la différence d’énergie

entre l’état fondamental et un état excité donne. L’existence de trois régimes est démontrée,

à savoir le régime de Tonks, le régime de Thomas-Fermi et le régime de Gauss. La tran-

sition entre les régime de Tonks et de Thomas-Fermi est décrite dans l’approximation de

la densité locale (LDA). Pour la transition entre le régime de Thomas-Fermi et le régime

de Gauss l’approximation de Hartree est utilisée. Dans les deux cas, nous avons calculé

les paramР“РЃtres pour quelles les transitions se produisent. Les simulations extensif de

Monte Carlo de diffusion pour un gaz contenant jusqu’à N = 25 particules ont été effectuées.

Lorsque le nombre de particules augmente, les prédictions des simulations convergent vers

celles d’Hartree et LDA dans ces régimes. Cela rend les résultats des modes d’oscillation

applicables pour des valeurs arbitraires du nombre de particule et de l’interaction. L’analyse

est complétée par les résultats perturbatifs dans les cas limites avec N finis. La théorie prédit

le comportement réentrant de la fréquence de mode d’oscillation lors de la transition du

régime de Tonks au régime de Gauss et explique bien les données de l’expérience récente du

groupe d’Innsbruck.
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Title: Non-equilibrium dynamics of a trapped one-dimensional Bose gas

Keywords: breathing mode, cold atoms, Bose-Einstein Condensate

Abstract:

A study of breathing oscillations of a one-dimensional trapped interacting Bose gas is

presented. Oscillations are initiated by an instantaneous change of the trapping frequency.

In the thesis a 1D quantum Bose gas in a parabolic trap at zero temperature is considered,

and it is explained, analytically and numerically, how the oscillation frequency depends

on the number of particles, their repulsive interaction, and the trap parameters. We have

focused on the many-body spectral description, using the sum rules approximation. The

oscillation frequency is identified as the energy difference between the ground state and a

particular excited state. The existence of three regimes is demonstrated, namely the Tonks

regime, the Thomas-Fermi regime and the Gaussian regime. The transition from the Tonks

to the Thomas-Fermi regime is described in the terms of the local density approximation

(LDA). For the description of the transition from the Thomas-Fermi to the Gaussian regime

the Hartree approximation is used. In both cases the parameters where the transitions

happen are found. The extensive diffusion Monte Carlo simulations for a gas containing up

to N = 25 particles is performed. As the number of particles increases, predictions from the

simulations converge to the ones from the Hartree and LDA in the corresponding regimes.

This makes the results for the breathing mode frequency applicable for arbitrary values of

the particle number and interaction. The analysis is completed with the finite N perturbative

results in the limiting cases. The theory predicts the reentrant behavior of the breathing

mode frequency when moving from the Tonks to the Gaussian regime and fully explains the

recent experiment of the Innsbruck group.

4



5



Contents

Contents 6

Acknowledgements 9

Introduction 10

1. Trapped quantum gases 12

1.1. Interaction potential 13

1.2. Experimental realizations of quasi-one-dimensional quantum gas 14

1.2.1. Quasi-onedimensional potential 15

1.2.2. CIR and Olshanii formula 15

1.3. Trapped Lieb-Liniger gas 16

1.4. Breathing oscillations 17

1.4.1. Connection with the spectrum 18

1.5. Quasi-classical equation of motion and virial theorem 19

1.6. Hierarchy of sum rules 21

1.6.1. Sum rule m3/m1 22

1.6.2. Sum rule m1/m−1 23

2. Two interacting particles in a parabolic trap 24

2.1. Perturbative analysis for two particles in the trap 27

2.2. Exact breathing mode for two particles 30

2.3. Breathing mode frequency calculated using sum rules 31

2.4. Variational Ansatz for two particles 34

3. Crossover from the Tonks-Girargeau to Thomas-Fermi regime 39

3.1. 1D Hydrodynamics 39

3.2. Lieb-Liniger model 41

3.3. Bethe equations 41

3.4. Lieb-Liniger equations 43

3.5. Solution of Lieb-Liniger equations for repulsive interaction 44

6



3.5.1. Weak coupling regime 45

3.5.2. Strong coupling regime (Tonks-Girardeau gas) 47

3.6. Speed of sound 48

3.6.1. Speed of sound in the Tonks-Girardeau limit 49

3.6.2. Speed of sound in the weak coupling limit 49

3.7. Solution to the Lieb-Liniger equations for attractive interaction 50

3.7.1. Strong attractive regime (super-Tonks-Girardeau gas) 51

3.7.2. Weak attractive regime 52

3.8. Breathing mode frequency in the repulsive regime 52

3.8.1. Breathing mode in the Tonks-Girardeau limit 53

3.8.2. Breathing mode frequency in the weak coupling limit 59

3.9. Breathing mode frequency for attractive interactions 61

3.9.1. Breathing mode frequency at the strongly attractive regime 61

3.9.2. Breathing mode frequency in the weakly attractive regime 63

3.10. Perturbation theory for a gas close to the Tonks-Girargeau regime 64

3.10.1. Comparison of the perturbation result with the two-particle exact

expansion 66

3.10.2. Finite N Tonks-Girardeau expansions 67

3.11. Temporal behavior of the momentum distribution of the Tonks-Girardeau gas 69

3.11.1. One-particle correlation functions 70

4. Thomas-Fermi to Gaussian regime crossover 75

4.1. Hartree approximation 75

4.2. Perturbative analysis for the Gaussian regime 77

4.2.1. Secular equation and exact diagonalization 81

4.3. Comparison of two sum rules 82

4.4. Regimes of a trapped one-dimensional gas 85

5. Comparison of theory with experiments 87

5.1. Comparison with 133Cs experiment 87

5.2. Excitation probabilities in the Tonks-Girargeau regime 90

5.3. Comparison with 87Rb experiment 94

5.4. Thermodynamics of the Lieb-Liniger model. Yang-Yang solution 96

7



5.5. Classical gas. Large negative chemical potentials 99

5.6. Tonks-Girargeau gas at a finite temperature 101

6. Conclusions 104

References 105

8



Acknowledgements

The work presented in this Thesis was carried out from November 2012 to October 2015

at the Laboratory of Theoretical Physics and Statistical Models (LPTMS). Herein I would

like to give thanks to several people who have made it a pleasure to work here as well as to

those people who have supported me in my studies.

I would like to thank my scientific advisor Gora Shlyapnikov for his patience and for his

kind and unwavering support over the last three years, guiding me to the end point while

allowing me to explore interesting topics along the way. His broad view on science and his

advises made my work much easier. I would like to express my special appreciation and

thanks to my co-advisor Mikhail Zvonarev, who has been a tremendous mentor for me. I

would like to thank him for encouraging my research and for allowing me to grow as a

research scientist. His advices on my research and career have been priceless. In addition I

am very grateful to Vadim Cheianov, Jean-Sébastien Caux, Anna Minguzzi and Christoph
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Introduction

“Good tests kill flawed theories; we remain alive to guess again.”

Karl Popper

All existing ultracold-gas experiments are carried out with systems which are spatially

inhomogeneous due to the presence of an external confining potential [1, 2]. Exciting tem-

poral oscillations of the gas density distribution in such a confined geometry is a basic tool

for investigating the spectrum of collective excitations and phase diagrams [3–9].

One-dimensional (1D) gases have unique properties: enhanced quantum correlations af-

fect their collective excitation spectrum drastically, masking out signatures of the Bose/Fermi

statistics of the constituent particles [10, 11]. Increasing the interaction strength suppresses

spatial overlap between any two bosons. In the limiting case of an infinite repulsion, known

as the Tonks-Girardeau (TG) gas, this leads to the many-body excitation spectrum identical

to that of a free Fermi gas [12]. The presence of an external parabolic potential causes the

low-lying part of excitation spectrum to be discrete. The first excited state of the gas, the

dipole mode, is interaction-independent. It is associated with the center-of-mass oscillations

at the trap frequency ωz. The second excited state of center-of-mass oscillations has the

frequency 2ωz. Another mode (with frequency 2ωz in the non-interacting case) is called

the breathing (or the lowest compressional) mode. Being excited by a small instantaneous

change of the trapping frequency ωz, this mode has the frequency ω which depends on the

interaction strength, the number of particles N in the trap, and the gas temperature T .

Experimental investigations of the breathing mode oscillations in 1D ultracold-gas ex-

periments have been reported by several groups [13–15]. It was found that the frequency

ratio ω/ωz goes through two crossovers with increasing the interaction strength. First, it

decreases from the value 2 down to
√

3, which corresponds to the crossover from the from

non- to weakly interacting regime. Further increase of the interaction transforms the weakly

interacting to strongly interacting regime (see Ref. [14]) and the ratio ω/ωz returns to 2

(see, e.g., Fig. 29). The latter crossover has been described theoretically for N going to

infinity by using the local density approximation (LDA) [16]. A description of the former

crossover has been done only numerically for a few particles: N ≤ 5 by using the multilayer

multiconfiguration time-dependent Hartree method [17] and N ≤ 7 by using numerical di-
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agonalization [18]. Experiments [13, 15] were performed in the regime of weak coupling, for

which ω/ωz =
√

3 is expected as N goes to infinity at zero temperature. It is presently an

open question to which extent the observed deviations from the value
√

3 are related to finite

values of N and T . Resolving this question paves a way towards understanding interaction

effects in the dynamics and thermalisation of 1D quantum gases.

In this Thesis we present analytical and numerical results for the breathing mode fre-

quency ω in the repulsive Lieb-Liniger gas in a parabolic trap of frequency ωz. Using the

Hartree approximation we explain how the decrease of ω/ωz from the 2 to
√

3 with increasing

the repulsion is linked to a crossover from the Gaussian Bose–Einstein condensate (BEC) to

the Thomas–Fermi (TF) BEC regime. A parameter which controls this crossover is intro-

duced. For any number of particles, the perturbation expansion of the breathing frequency

in the interaction parameter is demonstrated.

With further increasing the repulsion strength, the ratio ω/ωz increases from
√

3 to 2.

This is associated with a crossover from the TF BEC to the Tonks-Girardeau regime, which is

described within the local density approximation (LDA). A single dimensionless interaction

parameter of the LDA is introduced and an analytical perturbative analysis for finite N is

made. We then perform extensive diffusion Monte Carlo simulations for a gas containing up

to N = 25 particles. As the number of particles increases, predictions from the simulations

converge to the values obtained from the Hartree and LDA in their respective regimes. This

makes our results for ω applicable for an arbitrary number of particles and for any value of

the repulsion strength. We find an excellent quantitative agreement with the data from the

Innsbruck experiment [14]. We also estimate relevant temperature scales for the Palaiseau

experiment [15].
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1. Trapped quantum gases

“If I have seen further, it is by standing on the shoulders of giants.”

Sir Isaac Newton

Chapter I reviews the history of cold atom research, recent achievements and progress.

Experimental techniques which give a possibility to create one-dimensional systems and to

control parameters are described. The model Hamiltonian is introduced and the definition

of the breathing mode is given. Remarks on the measurement procedure are also given,

and the connection with the spectrum is established. A significant part of the chapter is

dedicated to the discussion of theoretical tools for the breathing mode calculation. Several

different methods resulting in the same formula for the lowest compressional mode frequency

are described.

Only about two decades ago experimental techniques for cold-atom physics became ac-

cessible. A wide spectrum of different experiments was made. For example, particles in a

perfect lattice potential perform Bloch oscillations (BO) when subject to a constant force

leading to localization and preventing conductivity [19].

The earlier discussion of low-dimensional Bose gases was mostly academic as there was

no realization of such a system. Fast progress in evaporative and optical cooling of trapped

atoms and the observation of Bose-Einstein condensation (BEC) in trapped clouds of alkali

atoms stimulated a search for non-trivial trapping geometries. Present facilities allow one

to tightly confine the motion of trapped particles in two directions to zero point oscillations.

Then, statical and kinematic properties of the gas are one-dimensional. The difference from

purely 1D gases is only related to the value of the effective interparticle interaction which

now depends on the tight confinement.

One of the questions under discussion in the cold-atom community is the question of

the dependence of the lowest compressional mode in 1D on such parameters of the system

as interparticle interaction, trapping potential, number of particles and temperature of the

system. This problem has a history starting from first attempts to deal with it using one-

dimensional hydrodynamical approach [16, 20, 21]. After that there was a break until the

first measurement [13] of the lowest compressional mode in 2003 performed for 87Rb atoms.

These experiments confirmed the existence of different regimes in which the ratio of the
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lowest compressional mode to the trapping potential frequency takes values
√

3 or 2. One of

the most significant experimental results on this problem was obtained in 2005 in Innsbruck

[14, 22], where the frequency of the breathing mode was measured for both repulsive and at-

tractive regimes. The Innsbruck group used 133Cs atoms in a two-dimensional optical lattice.

These atoms have a fairly wide Feshbach resonance and the interaction can be tuned easily.

The data show a good agreement with the existing theory for the Tonks-Girardeau regime,

and for the weak coupling they demonstrated a mismatch with calculations. Moreover, in

the attractive regime experimental data show a mismatch with the theory in all regimes.

There was an attempt to explain this mismatch by using mixed (anionic) statistics [23].

1.1. Interaction potential

Ultracold gases are dilute at low temperatures and thus certain details of two-body in-

teractions are not important. Atom-atom interaction U can be described with only the

scattering amplitude, which for cold atoms in three dimensions is given by the combination

(see Ref. [24]):

F (k) =
1

a−1
3D − 1

2
R∗k2 + ik

. (1.1)

Here a3D is the scattering length, R∗ is the effective radius of interactions, and k is the

relative momentum. Typically for cold atoms kR∗ � 1 and

F (k) =
1

a−1
3D + ik

, (1.2)

which corresponds to a 3-dimensional pseudo-potential

U(r) = g3Dδ(r)
∂

∂r
r, (1.3)

where g3D is the interaction strength related to the scattering length as

g3D =
4π~2a3D

m
. (1.4)

This potential is often called “the contact potential” or “contact interaction”. The operator
∂
∂r
r in Eq. (1.3) eliminates the singular 1/r short-range behavior in the wave-function. The

use of the potential (1.3) is equivalent to imposing the boundary condition on the wave-

function [25]
1

rψ

δ(rψ)

δr

∣∣∣∣
r=0

= − 1

a3D

. (1.5)
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Under the conditions of diluteness and low temperature the potential (1.3) is equivalent to

using the potential

U(r) = g3Dδ(r) (1.6)

in the many body interaction Hamiltonian [24]. The scattering length a3D can be both

positive an negative.

1.2. Experimental realizations of quasi-one-dimensional

quantum gas

“Orbis non sufficit”

Latin phrase

There are several different techniques to realize a quantum gas in reduced dimensionality.

The most popular ones are the optical lattice [14, 22] and atom chip [15] techniques.

The optical lattice technique uses a few lasers shining from opposite directions in the

x–y plane. The interference of the sinusoidal waves forms a two-dimensional optical lattice.

The axis perpendicular to the plane of laser beams we will call the z-axis. The frequency

and intensity of the trapping potential are usually chosen such that the distance between

two neighbouring minima is much larger then the characteristic radius of interaction. Thus,

we have a system of tubes (weakly interacting in the z-direction) and each tube can be

considered independently. In the vicinity of a minimum an intensity can be approximated

by the harmonic potential of frequency ωx = ωy = ω⊥. This approximation is valid only for

low-energy states. Along the z-axis a harmonic trapping with frequency ωz is modulated by

the intensity gradient of the laser beams.

Thus, the trapping potential has the form:

V (x, y, z) =
m

2

(
ω2
⊥x

2 + ω2
⊥y

2 + ω2
zz

2
)
. (1.7)

Such a system can be used for realization of different geometries such as 3D condensate,

cigar-shaped, and quasi-1D systems.

In experiments atoms are loaded into the optical trap. After evaporative cooling a typical

temperature of the system is from dozens to hundreds of nano-Kelvins (nK). Using the
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Feshbach (FR) and confinement induced resonances (CIR) one can change the strength of

the inter-particle interaction g.

1.2.1. Quasi-onedimensional potential

Figure 1: Optical trap geometry

The quasi-1D geometry can be reached

if the confinement in the x–y plane is so

strong that no excitations along this direc-

tion are present. For this the condition

~ω⊥ � ~ωz, µ, kBT should hold. This al-

lows one to take a Gaussian shape of the

particle wave-function:

ψ(x, y, z) = ψHO0 (x)ψHO0 (y)ψ(z), (1.8)

where ψHO0 is the ground-state wave-function of a harmonic oscillator. It is then possible to

integrate out the system over x and y coordinates. After the integration we have an effective

one-dimensional interaction potential

U(z) = gδ(z), (1.9)

with a rescaled interaction strength

g =
g3D

2πa2
⊥
. (1.10)

1.2.2. CIR and Olshanii formula

The confinement induced resonance is a phenomenon which makes it possible to tune

the quasi-1D interparticle interaction strength by changing the parameters of the tight

confinement. The so-called one-dimensional scattering length is connected with the strength

of the interaction as [26]

a1D = −2~2

mg
, (1.11)

and is related to the 3D-scattering length by the Olshanii formula [26, 27]

1

a1D

= −a3D

a2
⊥

1

1− Aa3D
a⊥

, (1.12)
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where A = ζ(1
2
)
√

2 ≈ 1.0326 is a constant, and ζ(x) is the Riemann’s zeta-function.

The scattering length a1D can be positive as will as negative or infinite. When a1D is

negative atoms experience repulsive interaction. When a1D is positive atoms experience

attractive interaction. When a1D goes to infinity the interaction strength g goes to 0.

This corresponds to the non-interacting limit. Finally, small negative and positive values

of the scattering length a1D correspond to the so-called Tonks and super-Tonks regimes,

respectively.

1.3. Trapped Lieb-Liniger gas

A quantum one-dimensional system of N particles is described by an N -body wave func-

tion Ψ. Its time evolution is governed by the time-dependent Schrödinger equation (TDSE)

i~
∂

∂t
Ψ = ĤΨ. (1.13)

In the terms of quantum fields the corresponding Hamiltonian has the general form:

Ĥ =

∫ (
~2

2m
∂zΨ̂

†(z)∂zΨ̂(z) + Ψ̂†(z)Vext(z)Ψ̂(z)

)
dz

+

∫∫
Ψ̂†(z)Ψ̂†(z′)U(z − z′)Ψ̂(z′)Ψ̂(z)dzdz′, (1.14)

where m is the mass of a particle, and

Vext(z) =
mω2

zz
2

2
, (1.15)

is the external harmonic potential.

The bosonic field operators Ψ̂ and Ψ̂† satisfy canonical equal-time commutation relations

[
Ψ̂(z), Ψ̂(z′)

]
= Ψ̂(z)Ψ̂(z′)− Ψ̂(z′)Ψ̂(z) = 0, (1.16a)[

Ψ̂†(z), Ψ̂†(z′)
]

= 0, (1.16b)[
Ψ̂(z), Ψ̂†(z′)

]
= δ(z − z′). (1.16c)

In the first quantization the Hamiltonian reads

Ĥ = − ~2

2m

N∑
n=1

∂2

∂z2
n

+ g

N∑
n>k=1

δ(zn − zk) +
mω2

z

2

N∑
n=1

z2
n. (1.17)
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We will call the system described by the Hamiltonian (1.17) the Lieb-Liniger gas in analogy

with the uniform system [28, 29] described by the first two terms in the right hand side of

(1.17).

The external potential introduces a characteristic length az = (mωz/~)
1
2 . Now we in-

troduce dimensionless variables x = z/az, and the dimensionless coupling constant α =

−2az/a1D. In the dimensionless variables we have the following Hamiltonian:

Ĥ = −1

2

N∑
n=1

∂2

∂x2
n

+
1

2

N∑
n=1

x2
n + α

N∑
n>k=1

δ(xn − xk), (1.18)

where the energy is measured in units of ~ωz. We can see that α is the only parameter which

tunes our system if the number of particles N is fixed. As particles are identical bosons, for

any interaction strength the wave-function of the system has the symmetry:

ψ(x1, x2, . . . , xi, . . . , xj, . . . , xN) = ψ(x1, x2, . . . , xj, . . . , xi, . . . , xN), (1.19)

for any 1 ≤ i, j ≤ N .

1.4. Breathing oscillations

The procedure of exciting breathing oscillations is the following. At first, the system

is brought to the ground state. Then, one instantaneously changes the frequency of the

confining potential by a small amount. This procedure implies that the amount of energy

transferred to the system is small and only low-energy modes are excited. After such a

quench the system undergoes the time-evolution in which oscillations of the center-of-mass

are not excited.

Formally speaking, in the beginning we consider the system in the ground state with

the trapping frequency ωz. Then the trapping frequency instantaneously changes to the

frequency to ωz + δωz. Due to a small time of quench, after the quench the system will still

be in the same state as before. We need to consider a time evolution of the system with the

Hamiltonian

Ĥ(t) = Ĥ + δV (t), (1.20)

where

δV̂ (t) =

0 if t < 0,

mωzδωzQ̂0 if t > 0,
(1.21)
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The small parameter δωz/ωz guarantees a weak perturbation.

So the breathing mode is defined as a collective oscillation which is induced by the

perturbation operator

Q0 ≡
N∑
i=1

z2
i , (1.22)

or more precisely, by the operator

Q = Qc ≡
N∑
i=1

(zi − Zcm)2, (1.23)

where Zcm = 1
N

∑N
i=1 zi is center-of-mass coordinate. These two operators coincide in the

thermodynamic limit, but for finite systems the choice between them can be important. The

difference comes from the fact that the operator Q0 excites the center-of-mass motion while

the operator Qc does not. Later we will discuss the difference between these two operators

for few-particle systems.

1.4.1. Connection with the spectrum

For sufficiently small δωz one can use perturbation theory to establish connection with

the spectrum of the Hamiltonian (1.17). Let us consider the system at ground state at the

time t = 0. After the quench (1.20) will lo longer be in the ground state. We can think in

terms of the first-order perturbation theory for connecting the ground state wave-function

before the quench and many-body wave-functions after the quench (see Ref. [30]):

ψold0 (t = 0) = ψnew0 + 2
δω

ω

∞∑
l 6=0

Vpot 0,l

E0 − El
ψnewl , (1.24)

where ψold0 is the ground state wave-function before the quench, ψnewl are eigenfunctions of

the Hamiltonian after the quench, and Vpot l,k =
∫∞
−∞ ψl(x)mω

2x2

2
ψk(x)dx. Analytically Vpot l,k

can be calculated in a few limiting cases. For two particles exact functions are known for

any interaction. Also occupation numbers can be calculated for a free boson gas and Tonks

gas following the procedure described in Sec. 5.2. The time evolution of the state after the

quench is described by the equation [30]:

ψ = ψnew0 exp

(
i
E0

~
t

)
+ 2

δω

ω

∞∑
l 6=0

Vpot 0,l

E0 − El
ψnewl exp

(
i
El
~
t

)
. (1.25)
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In experiments the breathing mode frequency is obtained by measuring the average radius

of the cloud. We write〈
z2
〉

(t) =
〈
z2
〉

(0) + 2
δω

ω

∞∑
l 6=0

Vpot 0,l

E0 − El
z2
l,0 cos

(
El − E0

~
t

)
. (1.26)

In Eq. (1.26) we ignore phases as they are not important for the physics and it is clear that

they always come with Ej − Ek as φj − φk in the argument of cosine and can be restored

at any moment. The amplitude of oscillations is proportional to the quench strength δω/ω.

In the limiting cases g → ∞ and g → 0 we have Vpot 0,l 6= 0 only for l = 2. However, for

a finite interaction one has Vpot 0,l 6= 0 for any l. One can expect that Vpot 0,l would decay

with increasing l. Moreover, El−E0 ≈ l~ωz, so that the first term in the sum (1.26) will be

the dominant one. Thus, measuring the frequency of the oscillations by the method used in

most experiments [14, 15] we measure the frequency of the second excited state

ω2,0 =

∣∣∣∣E2 − E0

~

∣∣∣∣ . (1.27)

It is clear that in the case of zero-interactions (free bosons) the breathing mode frequency

is equal to 2ωz as the spectrum is equidistant. For the case of infinite repulsion, g → ∞,

the spectrum of the system is the same as in the case of free fermions. Thus, the breathing

mode frequency will be also equal to 2ωz.

1.5. Quasi-classical equation of motion and virial

theorem

In this section we write a virial theorem and a formula for the calculation of the breathing

mode frequency, which wee will use extensively. Our presentation follows Ref. [2]. Let us

assume that during the motion of the cloud the density profile maintains its shape, but its

spatial size depends on time.

ψ(r) = AN
1
2R−

1
2f(z/R)eiφ(z), (1.28)

where f is an arbitrary real function, and A is a normalization constant. The total energy

of the cloud may be written as

E = Eflow + U(R). (1.29)
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Here the first term is the kinetic energy associated with particle currents, and is given by

Eflow =
~2

2m

∫ ∞
−∞
|ψ(z)|2(∇φ)2dz. (1.30)

The second term is an effective potential energy, and it is equal to the energy of the cloud

when the phase does not vary in space. It is made up of the kinetic energy, energy of

interaction with the trapping potential, and the energy of interparticle interaction:

U(R) = Ekin + Epot + Eint, (1.31)

where

Epot = N
mω2

z

2

∫ ∞
−∞

z2ψ(z)2dz, (1.32a)

Ekin = N
~2

2m

∫ ∞
−∞

(
∂ψ(z)

∂z

)2

dz, (1.32b)

Eint =
N(N − 1)

2
g

∫ ∞
−∞

ψ(z)4dz. (1.32c)

The equilibrium radius of the cloud R0 is determined by minimizing the total energy:

∂U

∂R

∣∣∣∣
R=R0

= 0, (1.33)

or, since the contributions to the energy behave as powers of R:

R
∂U

∂R

∣∣∣∣
R=R0

= −2Ekin + 2Epot − Eint = 0. (1.34)

When R differs from its equilibrium value there is a force tending to change R. To derive an

equation describing the dynamics of the cloud, we need to find the kinetic energy associated

with a time dependence of R(t). Changing R from its initial value to a new value R̃ amounts

to a uniform dilation of the cloud, since the new density distribution may be obtained from

the old one by changing the radial coordinate of each atom by a factor of R̃/R. The velocity

of a particle is therefore equal to

v(r) = r
Ṙ

R
, (1.35)

where Ṙ is the time derivative of R. The energy of the flow of the gas is given by

Eflow =
mṘ2

2R2

∫ ∞
−∞

z2n(z)dz =
Ṙ2

ω2
zR

2
Epot. (1.36)
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The total energy of the cloud may thus be written as a sum of the energy of the static cloud

and the flow energy term:

E =
1

2
meff Ṙ

2 + U(R), (1.37)

where meff = 2
ω2
zR

2Epot. From the condition of energy conservation dE/dt = 0, it follows

that the equation of motion is

meff R̈ = −∂U
∂R

. (1.38)

We investigate the frequency of small oscillations about the equilibrium state. Expanding

the effective potential to second order in R−R0, one finds

U(R) = U(R0) +
∂2U

∂R2
(R−R0)2, (1.39)

From Eq. (1.32) one sees that

R2∂
2U

∂R2
= 6Ekin + 2Epot + 2Eint. (1.40)

Thus the frequency is given by [2]

ω2 = ω2
z

(
4− Eint

2Epot

)
= ω2

z

(
3 +

Ekin
Epot

)
. (1.41)

When interactions may be neglected one finds ω = 2ωz, in agreement with the exact re-

sult, corresponding quantum-mechanically to two oscillator quanta. In the limit of strong

interactions, the term Ekin can be neglected to first approximation, and therefore ω2 = 3ω2
z .

This agrees with the exact result in this limit (see Sec. 3.8.2). Equation (1.41) is very useful

as it connects the frequency of the oscillations with kinetic, potential and exchange energies

averaged over the steady state. This is the link between dynamical and static properties. In

the next sections we will obtain the same result in other approximations.

1.6. Hierarchy of sum rules

“Numquam ponenda est pluralitas sine necessitate.”

William of Ockham

Sum rule approximation connects the frequency of collective oscillations with statical

properties of the system in the steady state. For any excitation operator Q̂ and integer n
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the moment mn is introduced as follows [20, 31, 32]:

mn =
∞∑
i=1

(Ei − E0)n
∣∣∣〈i ∣∣∣Q̂∣∣∣ 0〉∣∣∣2 . (1.42)

Sum rule approximation can be treated by taking ratios of different moments mn and mn−2

[20, 32]

ω2 =
mn

mn−2

. (1.43)

If the operator Q̂ excites the mode with energy Ek and does not excite any modes with

lower energy then in the limit n → −∞ frequency ω converges to the Ek−E0

~ . Hence, the

best choice of operator is the following. If we want to find the frequency of a certain state

we should take the projector of the ground state on this state. However, in the general case

there is no method of constructing such an operator. Thus, for any finite n the frequency ω

is only an approximation. In this section we make the analysis of two moment ratios with

close indices.

1.6.1. Sum rule m3/m1

Taking the operator Q̂ = x2 we have

Q̂1 = i
[
Ĥ, Q̂

]
=

2~
m

(
x̂p̂− i~

2

)
, (1.44)

Q̂2 = i
[
Ĥ, Q̂1

]
=

2h2

m

(
2Ĥkin − 2Ĥpot + Ĥint

)
, (1.45)

where p̂ is the momentum operator, Ĥkin, Ĥpot and Ĥint are operators of the kinetic en-

ergy, energy of the interaction with the trapping potential and energy of the interparticle

interaction.

The first and third moments are:

m1 =
i

2

[
Q̂1, Q̂

]
=

2~2

m
〈0
∣∣x2
∣∣ 0〉. (1.46)

m3 =
i

2

[
Q̂2, Q̂1

]
=

2~4

m2
(4Ekin + 4Epot + Eint) . (1.47)

Thus we have

~2ω2 =
m3

m1

= ~2ω2
z

4Ekin + 4Epot + Eint
2Epot

. (1.48)

22



Equation (1.48) together with the virial theorem (1.34) gives the following formula for the

frequency of breathing oscillations

ω2 = ω2
z

(
4− Eint

2Epot

)
= ω2

z

(
3 +

Ekin
Epot

)
. (1.49)

We focus attention on the fact that Eqs. (1.49) and (1.41) are identical.

1.6.2. Sum rule m1/m−1

As we saw in section 1.6.1, the moment m1 is proportional to the potential energy:

m1 = 4Epot/a
2
z. (1.50)

The moment with index −1 is related to the static polarizability α:

m−1 =
1

2
α. (1.51)

This is equivalent to adding an infinitesimal perturbation εQ to the Hamiltonian and calcu-

lating the corresponding change of the cloud size:

α =
δ 〈z2〉
ε

. (1.52)

Up to second order, adding the perturbation εQ is equivalent to changing the frequency

by δωz = ε/m. Thus, we arrive at the compact formula for the frequency of breathing

oscillations:

ω2 = −2
〈Q〉
∂〈Q〉
∂ω2

z

. (1.53)
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2. Two interacting particles in a parabolic trap

A system of two particles is interesting for us as it is always integrable and keeps main

characteristics of collective phenomena. The study of this system is important because it

gives us an intuitive understanding of many-body phenomena. Later we will use the results

obtained for two-particle systems as a test for other theories in some particular regimes.

The case of two ultracold atoms interacting via a contact potential in a 3D parabolic

trap is analysed, for example, in Ref. [33]. Let us consider a 1D system with two particles

described by the first-quantized Hamiltonian

Ĥ = − ~2

2m

∂2

∂z2
1

− ~2

2m

∂2

∂z2
2

+
mω2

zz
2
1

2
+
mω2

zz
2
2

2
+ gδ(z1 − z2). (2.1)

The case g > 0 corresponds to the repulsive interaction and g < 0 to the attractive interac-

tion. Making a substitution η = z1 − z2, ξ = (z1 + z2) /2, and introducing effective masses

m(η) = m/2, m(ξ) = 2m we obtain the Hamiltonian with separable variables:

Ĥ = Ĥ(1)(ξ) + Ĥ(2)(η) = − ~2

2m(ξ)

∂2

∂ξ2
+
m(ξ)ω2

zξ
2

2
− ~2

2m(η)

∂2

∂η2
+
m(η)ω2

zη
2

2
+ gδ(η). (2.2)

This means that

ψn1,n2(ξ, η) = ψξ,n1(ξ)ψη,n2(η), (2.3a)

En1,n2 = Eξ,n1 + Eη,n2 . (2.3b)

We see that the Hamiltonian Ĥ(1)(ξ) has the form of a one-dimensional harmonic oscillator

and it has the same spectrum.

Considering two bosons implies restrictions on the symmetry of the wave-function. More

precisely, we are looking only for solutions which do not change after the transformation

z1 ↔ z2. This means that only even wave-functions ψη(η) should be considered. We can

find an analytical solution for the spectrum of Ĥ2(η) from the corresponding Schrödinger

equation:

− ~2

2m(η)

∂2

∂η2
ψη(η) +

m(η)ω2
zη

2

2
ψη(η) + gδ(η)ψη(η) = Eψη(η). (2.4)

Introducing the one-dimensional scattering length a1D = −2~2/ (mg), harmonic length az =

(~/mωz)
1
2 , dimensionless interaction α = −2az/a1D, and the dimensionless variable x =

η/
(√

2az
)
we obtain the following equation

− 1

2

∂2

∂x2
ψη(x) +

x2

2
ψη(x) +

α√
2
δ(x)ψη(x) = Eψη(x). (2.5)
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In this equation and further in this chapter the energy E is measured in units of ~ωz.

The solution of Eq. (2.5) has a jump in the first derivative at x = 0. This can be seen by

the integration of equation (2.5) in the vicinity of x = 0:

∂ψη(x)

∂x

∣∣∣∣
+0

− ∂ψη(x)

∂x

∣∣∣∣
−0

=
α√
2
ψη(0). (2.6)

Eq. (2.5) under the condition (2.6) has the solution

ψη(x) = A

(
F

(
1

4
− E

2
,
1

2
, x2

)
+B|x|F

(
3

4
− E

2
,
3

2
, x2

))
exp

(
−1

2
x2

)
, (2.7)

where the constants A, B and energy E should be determined from the asymptotic behavior

at η → ∞, the normalization condition, and equation (2.6). The confluent hypergeometric

function F (a, b, u) has the asymptotic behaviour:

F (a, b, u) =
Γ(b)

Γ(a)
ua−b exp(u), u→∞, (2.8)

and hence

ψη(x)→ A

(
Γ(1

2
)

Γ
(

1
4
− E

2

) −B Γ
(

3
2

)
Γ
(

3
4
− E

2

))x− 1
2
−E exp

(
1

2
x2

)
, x→∞. (2.9)

The wave-function has to be normalized, which means that it has to vanish as x→∞. This

leads to an expression for the coefficient B:

B = −Γ
(

1
2

)
Γ
(

3
4
− E

2

)
Γ
(

3
2

)
Γ
(

1
4
− E

2

) = −2Γ
(

3
4
− E

2

)
Γ
(

1
4
− E

2

) . (2.10)

Thus, we can rewrite equation (2.6) as

2
√

2Γ
(

3
4
− E

2

)
Γ
(

1
4
− E

2

) = −α, (2.11)

which gives the energy for E/~ωz < 1/2. For the states with higher energy we can use the

following equation:
2
√

2Γ
(

3
4

+ E
2

)
Γ
(

1
4

+ E
2

) tan

(
π

(
1

4
− E

2

))
= −α. (2.12)

Solutions of this equation give us the spectrum of the Hamiltonian Ĥ(2)(η). The depen-

dence of the spectrum (lowest states) on the interaction parameter α =
√

m
~3ωz g is in full

agreement with the results of Ref. [34] (see Fig. 2).
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Figure 2: The dependence of the spectrum of two particles in a parabolic trap on the

interaction parameter α. The red dashed curves represent the energies of the modes

related to the center-of-mass motion. The black solid curves represent the energies of the

compressional modes.

One can see that when α is large and negative (the strong attraction regime) the energy

of the ground state is also large and negative. Using Stirling’s formula we find that

E = −1

2
α2, (2.13)

when α → −∞. One sees from Eq. (2.13) that the energy gap between the ground state

and the gas state becomes infinitely large for α→ −∞.

Combining Eqs. (2.7) and (2.10) we obtain

ψη(x) = A

(
F

(
1

4
− E

2
,
1

2
, x2

)
− 2Γ

(
3
4
− E

2

)
Γ
(

1
4
− E

2

) |x|F (3

4
− E

2
,
3

2
, x2

))
exp

(
−1

2
x2

)
, (2.14)

where A is the normalization constant, and the energy E is given by Eq. (2.12). The energies

are analytic functions of the interaction at the point g = 0.

The ground-state density profiles for different values of the parameter α are shown in

Fig. 3.
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Figure 3: The density profiles for the relative motion (|ψ|2 integrated over the center of

mass motion) for the interaction parameter α = 0, 0.5, 1.0, and 5.0.

2.1. Perturbative analysis for two particles in the trap

Now we find the ground state and the first exited state of the Hamiltonian Ĥ(2)(η) using

perturbation theory. We can use the Hamiltonian of the harmonic oscillator (HO) as an

unperturbed Hamiltonian, and consider the interparticle interaction as perturbation. Thus

we have:

ψn,η(x) = ψHOn (x) +
α√
2

∞∑
k 6=n

Vn,k
EHO
n − EHO

k

ψHOk (x)

+
α2

2

∞,∞∑
k 6=n,l 6=n

Vk,lVl,n
(EHO

n − EHO
k ) (EHO

n − EHO
l )

ψHOk (x)

− α2

2

∞∑
k 6=n

Vn,nVk,n

(EHO
n − EHO

k )
2ψ

HO
k (x)− α2

4

∞∑
k 6=n

V 2
n,k

(EHO
n − EHO

k )
2ψ

HO
n (x),

(2.15a)

En = EHO
n +

α√
2
Vn,n +

α2

2

∞∑
k 6=n

|Vk,n|2
EHO
n − EHO

k

, (2.15b)

where ψHOn (x) = 1√
π2nn!

exp(−x2/2)Hn(x) are the eigenfunctions of the harmonic oscillator,

the matrix elements V2n,2k =
(−1)n+k

√
(2n)!(2k)!

√
π2n+kn!k!

, and the energies EHO
n = n+ 1

2
. The functions
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Hn are Hermite polynomials. The ground state wave-function of Ĥ(2)(η) reads:

ψ0(x) = ψHO0 (x) +
α√
2

∞∑
k 6=0

(−1)k+1
√

(2k)!√
π2k+1k!k

ψHO2k (x)

+
α2

2

∞∑
k 6=0

(−1)k
√

(2k)!

π2k+2kk!

(
ln 4− 1

k

)
ψHO2k (x)− α2

2

π2 − 3 (ln 4)2

48π
ψHO0 (x),

(2.16a)

E0[η] =
1

2
+

α√
2

1√
π
− α2 ln 4

4π
. (2.16b)

Thus the wave-function of the ground state of the system is ψgs(ξ, η) = ψHO0 (ξ)ψ0,η(η), and

the ground-state energy is

Egs[ξ, η] =
1

2
+

1

2
+ α

1√
2π
− α2 ln 4

4π
+ . . . . (2.17)

The first exited state has the form

ψ1,0(ξ, η) = ψξ,1(ξ)ψHOη,0 (η), (2.18a)

E1,0[ξ, η] = EHO
1 [ξ] + E0[η] =

3

2
+

1

2
+ α

1√
2π
− α2 ln 4

4π
, (2.18b)

and the difference in the energies of this excitation and the ground state is ~ω. This excita-

tion is related to the center-of-mass motion.

Let us calculate the first excited one-particle state of the Hamiltonian Ĥ(2)(η). Since we

have bosonic particles, the wave-function has to satisfy the condition ψ(x1, x2) = ψ(x2, x1),

which means that the wave-function has to be an even function of η. The first symmetric

excited state has a non-perturbed wave-function ψHO2 (η). The perturbed wave-function of

this state is:

ψ2(x) = ψHO2 (x) +
α√
2

∞∑
k 6=1

(−1)k
√

(2k)!2√
π 2k+2 k! (k − 1)

ψHO2k (x)

+
α2

2

∞∑
k 6=1

(−1)k
√

(2k)!2

π(k − 1) k! 2k+4

(
(ln 4− 1)− 1

k − 1

)
ψHO2k (x)

− α2

4

(
34F3

(
1, 1, 1, 5

2
; 2, 3, 3; 1

)
64 π

+
1

8π

)
ψHO2 (x),

(2.19a)

E2[η] =
5

2
+ α

1

2
√

2π
+ α2 1− ln 4

16π
, (2.19b)

E4[η] =
9

2
+ α

3

8
√

2π
+ α2 21− 3 ln 4096

512π
. (2.20)
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Figure 4: Comparison of the energies of the lowest states of the relative motion of the

two-particle system in a parabolic trap (black) and their perturbative approximations (red

dashed). The data are presented as functions of the interaction parameter α.

Let us notice that the sum in (2.19a) includes only even functions. The total wave-function

of the excited system is

ψ2,0(ξ, η) = ψ2(ξ)ψHO0 (η). (2.21)

So, the difference in the energies of the first excited state of the Hamiltonian Ĥ(2)(η) (second

excited state in the full Hamiltonian (2.2)) and the ground state is

E2 − E0 = ~ω
(

2− α 1

2
√

2π
+ α2 1 + 3 ln 4

16π

)
+ . . . . (2.22)

The energies of the first five levels and their perturbation approximation are shown in Fig. 4.

The perturbation theory gives correct values for the expansion of the energy Eη,n(α) in

powers of α near α = 0 at least up to the third order.

The expressions for the energies (2.16b, 2.19b, 2.20) are in full correspondence with the

expansions for the same energy levels from (2.12). This shows that the perturbation theory

can be applied in this case.
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2.2. Exact breathing mode for two particles

Now we calculate the exact breathing mode frequency based on the solution of Eq. (2.12).

In the repulsive regime the breathing mode can be defined as the difference in the energies

of the first exited state (yellow curve in Fig. 2) and the ground state (blue curve in Fig. 2).

In this regime the breathing mode frequency is less then 2ωz. In the attractive regime the

ÈΑÈ=È2az �a1DÈ

Ω
2

�Ω
z
2

0 2 4 6 8 10

3.5

4.0

4.5

Repulsive interactions
Attractive interactions

Figure 5: The dependence of the breathing mode frequency for two particles in a parabolic

trap versus the interaction parameter |α| = |2az/a1D|. For attractive interactions ω/ωz ≥ 2

and for repulsive interactions ω/ωz ≤ 2. In both cases we have ω/ωz = 2 for α→ 0.

breathing mode frequency is defined in another way. The definition comes from the method of

how the breathing mode was measured in the experiment [14]. In this experiment the system

was in the strong repulsive regime using the confinement induced resonance (the repulsive

Tonks-Girargeau regime corresponding to the right part of the blue curve in Fig. 2), and

then the interaction adiabatically was switched to attractive. After this switch the system

gets to the super-Tonks-Girargeau regime. In Fig. 2 this corresponds to the transition from

the right part of the ground state curve to the left part of the gas state curve. The excitation

above this state is called the breathing mode. In this regime (super-Tonks-Girargeau regime,

as it was mentioned in Ref. [16]), we can see that the breathing mode frequency is higher
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than 2~ωz. The dependence of the breathing mode frequency on the interaction parameter

α is shown in Fig. 5. The breathing mode frequency and its perturbation approximation in

the region of small interactions, α < 1, are plotted in Fig. 6.
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Figure 6: Comparison of the breathing mode frequency of the two-particle system in a

parabolic trap (black) and perturbative approximation (red, dashed). The data are

presented as functions of the interaction parameter |α|.

2.3. Breathing mode frequency calculated using sum

rules

Considering the operator Q̂ = z2 = x2
1+x2

2 as perturbation one can calculate the breathing

mode frequency (1.53) using the relation [20, 32]:

ω2 = −2
〈z2〉
∂〈z2〉
∂ω2

z

, (2.23)

where the average of the operator Q̂ is taken over the ground state

〈Q̂〉 =

∫∫ ∞,∞
−∞,−∞

ψgs(x1, x2)Q̂(x1, x2)ψ∗gs(x1, x2)dx1dx2. (2.24)
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We use the exact ground state wave-function (2.14) for the calculation of the breathing

mode. Thus we use the property (2.3a):

ψgs(x1, x2) = ψHOgs

(
x1 + x2

2

)
ψηgs (x1 − x2) . (2.25)

This allows us to calculate the average value of the perturbation operator:

〈
x2

1 + x2
2

〉
=

∫∫ ∞,∞
0,0

∣∣ψHOgs (R12)ψηgs(r12)
∣∣2(2R2

12 +
1

2
r2

12

)
dR12dr12

= a2
z

(
1

2
+

∫ ∞
0

r2
12

∣∣ψηgs(r12)
∣∣2 dr12

)
, (2.26)

where R12 = (x1 + x2) /2 and r12 = x1 − x2 are center of mass and relative coordinates,

respectively.
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Figure 7: The dependence of the breathing mode frequency of two particles in a parabolic

trap (solid black) versus the interaction parameter Λ = 2
(
a1D
az

)2

and its approximation by

the sum rule (1.53) (red dashed). The significance of the parameter Λ will be clarified

when considering the solution for N-particle systems.

The dependence of the exact breathing mode frequency and the breathing mode frequency

calculated using the sum rules are shown in Fig. 7. The sum rule formula gives the result

which is bigger than the exact one.
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It is interesting to compare the first order correction to the breathing mode frequency

calculated using the sum rules with the perturbative result (2.22). Thus, we use the wave-

function expansion (2.16a). This leads to the following result:〈
x2

1 + x2
2

〉
= a2

z + a2
z

α

2
√

2π
, (2.27a)

ω2
z

∂

∂ω2
z

〈
x2

1 + x2
2

〉
= −1

2
a2
z −

3

4
a2
z

α

2
√

2π
. (2.27b)

Finally, the breathing mode frequency expansion is(
ω

ωz

)2

= 4

(
1− α

4
√

2π

)
. (2.28)

We now compare the asymptotic formula (2.22) obtained from the exact solution for two

particles with the asymptotic formula (2.28) obtained from the sum rule approximation

(1.53). We see that the first coefficient in the breathing mode frequency expansion is different

from the result of the sum rule approximation. The ratio of the first coefficient in the exact

breathing mode frequency to the one in the sum rule expansion is 2. The reason for this

discrepancy is that the operator x2
1 + x2

2 excites not only the breathing mode but also the

mode related to the center of mass motion. To avoid this we propose to analyse another

operator. For instance, the operator (x1 − x2)2 is more appropriate for sum rules, because

it does not excite the center of mass oscillations.

The breathing mode frequency calculated using the sum rules and the exact wave-function

(2.14) with the operator (x1 − x2)2 is in excellent agreement with the exact breathing mode

frequency (see Fig. 8). Now let us compare the first order correction to the breathing mode

frequency calculated using the sum rules with the perturbative result (2.22). We write〈
(x1 − x2)2〉 =

1

2
a2
z + a2

z

α

2
√

2π
, (2.29a)

ω2
z

∂

∂ω2
z

〈
(x1 − x2)2〉 = −1

4
a2
z −

3

4
a2
z

α

2
√

2π
. (2.29b)

The perturbative expansion for the breathing mode frequency is(
ω

ωz

)2

= 4

(
1− α

2
√

2π

)
. (2.30)

Comparing formula (2.30) with equation (2.22) we see that the first coefficient in the breath-

ing mode frequency expansion is the same for the exact result and for the modified sum rule

approximation.
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Figure 8: Comparison of the breathing mode frequency of the two particles in a parabolic

trap (black) and its approximation by the sum rule (1.53) with the operator

Qc = (x1 − x2)2 (red, dashed). The operator Qc does not excite states related to the

center-of-mass motion. Thus it gives a better approximation than Q (Fig. 7).

Concluding, we have to say that the sum rules give the upper bound for the breathing

mode frequency in the repulsive regime, as they take into account all modes excited with the

operator Q. So, a choice of the operator plays a dramatic role in this approach. The easiest

way to improve the sum rules is to use the operator
∑N

n=1 x
2
n − 1

N

(∑N
n=1 xn

)2

instead of∑N
n=1 x

2
n. This choice plays a dramatic role for finite-N many-body systems.

2.4. Variational Ansatz for two particles

In this section we discuss the Ansatz proposed in Ref. [35]. The ground state wave-

function is constructed as follows:

ψ(x1, x2) = A(σ)ψHO0

(
x1 + x2

2

)
(H1 (|x1 − x2|) + a1DH0 (|x1 − x2|)) exp

(
− 1

2σ2
(x1 − x2)2

)
,

(2.31)
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where σ is the variational parameter, A(σ) is the normalization constant, and Hn are the

Hermite polynomials. This Ansatz automatically satisfies the boundary conditions, namely

1

ψ

∂ψ

∂x12

∣∣∣∣
x12=0−

− 1

ψ

∂ψ

∂x12

∣∣∣∣
x12=0+

=
1

a1D

. (2.32)

The other feature of this Ansatz is that in the limits of both strong and weak coupling it

recovers the exact wave-functions (as we will see later in these limits σ → 1). The parameter

σ has to be found from the minimisation of the energy functional:

∂E[σ]

∂σ
= 0. (2.33)

This Ansatz leads to the following expressions for the normalization constant and the

energy

A−2 =
1

2
σ
(
2a2

1D

√
π + 4a1Dσ +

√
πσ2
)
, (2.34a)

Egs =
1 + σ4

4σ2

8a1Dσ + 2a2
1D

√
π + 3

√
πσ2

2a2
1D

√
π + 4a1Dσ +

√
πσ2

. (2.34b)
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Figure 9: Comparison of the ground state energy of two particles in a parabolic trap

(black) and its variational approximation (2.34b) (red, dashed). The agreement is good at

any value of the interaction parameter α = −2az/a1D.
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Figure 10: Comparison of the ground state densities for the two-particle system in a

parabolic trap and their variational approximations for various values of the scattering

length. The largest mismatch is at az/a1D ≈ 1.

It is clearly seen that the use of the variational wave-function reproduces well the exact

spectrum for two particles in a parabolic trap (see Fig. 9) and gives a good approximation

of the exact density for all values of the scattering length a1D (see Fig. 10).

Now we construct the variational wave-function for the second excited state in the form

ψ(x1, x2) = A(σ)ψHO0

(
x1 + x2

2

)
(H3 (|x1 − x2|) + 3a1DH2 (|x1 − x2|)) exp

(
− 1

2σ2
(x1 − x2)2

)
,

(2.35)

where σ, A(σ) and Hn have the same meaning as in Eq.(2.31). Thus we have

A−2 = 4σ(a2
1D

√
π(1− 2σ2 + 3σ4) + 6

√
πσ2(3− 6σ2 + 5σ4) + 4a1Dσ(3− 8σ2 + 8σ4)), (2.36a)

E2 = A−2
(
a2

1D

√
π(1 + 2σ2 + 8σ4 − 6σ6 + 15σ8) + 8a1Dσ(3− 4σ2 + 11σ4 − 16σ6 + 24σ8)

+6
√
πσ2(9− 6σ2 + 20σ4 − 30σ6 + 35σ8)

)
(2.36b)

The parameter σ is determined from the minimization condition irrespectively of the ground

state.

We conclude that the variational function catches main physical features of the system

because both the exact second exited state energy and the exact breathing mode frequency
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Figure 11: Comparison of the second excited state energy of the two-particle system in a

parabolic trap (black) and its variational approximation (2.36b) (red, dashed). The data

are presented as functions of the interaction parameter α = −2az/a1D.
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Figure 12: The dependence of the breathing mode frequency of two particles in a parabolic

trap (black) on the interaction parameter Λ = N
(
a1D
az

)2

and its variational approximation

(red, dashed).
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are in a good agreement with the results obtained using the variational function (see Fig. 11

and Fig. 12).
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3. Crossover from the Tonks-Girargeau to

Thomas-Fermi regime

In this Chapter we describe a crossover from the Thomas-Fermi to the Tonks-Girargeau

regime. We use the hydrodynamic approach and imply the Local Density Approximation

(LDA). We demonstrate that in the LDA all quantities depend only on a single dimensionless

parameter which we call the LDA parameter. We calculate the breathing mode frequency

using the sum rule approximation and make assymptotic expansions for both repulsive and

attractive regimes. We complete our analysis with the exact perturbative calculations of

the spectrum based on the Bose-Fermi mapping in the Tonks-Girargeau regime. It is shown

that calculations at finite N converge to the LDA result in the thermodynamic limit.

3.1. 1D Hydrodynamics

We start with a (3D) system described by the Hamiltonian (1.14). For such a system Gross

and Pitaevskii independently derived an equation for the wave-function of the condensate

[36, 37]. It was derived from the equation of motion for the field operator:

i~
∂

∂t
Ψ̂(~r, t) =

[
Ψ̂(~r, t) , Ĥ − µN̂

]
, (3.1)

where µ is the Lagrange multiplier which corresponds to the chemical potential. Substituting

the Hamiltonian (1.14) into Eq. (3.1) we get:

i~
∂

∂t
Ψ̂(~r, t) =

[
− ~2

2m
∇2 + Vext(~r)− µ+

∫
U(~r − ~r′)Ψ̂†(~r′, t)Ψ̂(~r, t)d~r′

]
Ψ̂(~r, t). (3.2)

Representing the field operator Ψ̂(~r, t) in (3.2) as a sum of the condensate wave-function

Ψ(~r, t) and the non-condensed part Ψ̂′(~r, t) we then omit Ψ̂′(~r, t) and obtain the Gross-

Pitaevskii equation for Ψ(~r, t) [1]:

i~
∂

∂t
Ψ(~r, t) =

[
− ~2

2m
∇2 + Vext(~r)− µ+

∫
U(~r − ~r′)Ψ(~r′, t)Ψ(~r, t)d~r′

]
Ψ(~r, t). (3.3)

Another derivation of this equation will be introduced in Section 4.1. In the Gross-Pitaevskii

(GPE) equation an assumption of a small BEC depletion is made. The GPE gives a good
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description of the condensate when the temperature is low. Turning to the picture of the

density n(~r, t) and phase θ(~r, t) and substituting Ψ(~r, t) =
√
n(~r, t) exp(iθ(~r, t)) into (3.3)

we obtain
∂

∂t
n+

~
m
∇ (n∇θ) = 0, (3.4a)

∂

∂t
θ +

[
~ (∇θ)2

2m
+

1

~
[Vext(~r) + µ+ gn]− ~

2m

∇2
√
n√
n

]
= 0. (3.4b)

The first equation is nothing else than the continuity equation, where ~
m
n∇θ = n~v = ~j is the

current. The second equation is the Euler equation and it describes the energy transport.

The last term in this equation is called the quantum pressure. It scales as ~2/2ml2, where

l is a typical distance characterizing density variations and it is negligible comparing to the

classical pressure when l� ξ = ~/√mng.
Up to now the written equations do not contain dimensionality explicitly. However, we

are interested in one-dimensional systems and we denote the one-dimensional density n1

to underline the reduction of dimensionality. In the limit of slowly varying functions, the

quantum pressure term can be neglected and equations (3.4) take the form:

∂

∂t
n1 +

∂

∂z
(n1v) = 0, (3.5a)

∂

∂t
n1v +

∂

∂z

[
1

2
mv2 + Vext(z) + µ (n1(z))

]
= 0, (3.5b)

where n1(z, t) and v(z, t) are the 1D density and velocity, respectively. Eqs. (3.5) are more

general than the derivation presented above. They hold even when the Gross-Pitaevskii

approach could not be applied. In equations (3.5) Vext is the external potential defined

in (1.15), and µ(n1) is the equation of state of the system. The condition of smooth functions

is used in these equations, and the last term in the left-hand side of Eq. (3.4b) is neglected.

Hydrodynamics describes well collective oscillations if local equilibrium exists. This requires

the applicability of the Local Density Approximation (LDA) along the z-axis

µLDA (n1 (z)) + Vext(z) = µ. (3.6)

where µ is the global chemical potential. The LDA assumes that the condensate is almost

uniform and the local chemical potential µLDA at the point z is equal to the chemical

potential in a homogeneous system that has the same density n1(z). Thus, we have to

calculate the chemical potential µ(n1) of a homogeneous system.
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3.2. Lieb-Liniger model

L

Particles on a ring of circumfer-

ence L with periodic boundary

conditions

A system of N identical bosons with contact interac-

tion is described by the Hamiltonian of the Lieb-Liniger

model [28, 29]

Ĥ = − ~2

2m

N∑
j=1

∂2

∂x2
j

+ g
N∑

j>k=1

δ(xj − xk). (3.7)

The bosons are put on a ring of circumference L, and

periodic boundary conditions are imposed:

ψ(x1, x2, . . . , xi, . . . , xN) = ψ(x1, x2, . . . , xi + L, . . . , xN). (3.8)

The eigenfunctions of the Hamiltonian (3.7) obey the bosonic symmetry, Eq. (1.19).

3.3. Bethe equations

First let us consider the Tonks-Girardeau case, where g →∞. In this section we set that

n1 stays constant, whereas L → ∞. For the Tonks-Girardeau limit of the model (3.7) we

can write down exact wave-functions [28]:

ψ(x1, x2, . . . , xN) =
1√
N !

det[exp(ikjxi)]Πi>j sign(xi − xj), (3.9)

where all rapidities kj are different. The energy and momentum of the system can be

calculated as follows:

EN =
~2

2m

N∑
j=1

k2
j , (3.10a)

P = ~
N∑
j=1

kj. (3.10b)

From the condition (3.8) we get N equations, called the Bethe equations:

exp(ikjL) = (−1)N−1, j = 1, . . . , N. (3.11)

This system of equations can be easily solved:

kj =
2πnj
L

, (3.12)
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where

nj = j − N + 1

2
. (3.13)

Thus, we have for the ground state energy

EN =
~2

2m

π2

3

N (N2 − 1)

L2
, (3.14a)

the momentum

PN = 0, (3.14b)

and the chemical potential

µ = EN+1 − EN =
~2

2m

π2(N2 +N)

L2
≈ ~2

2m
π2n2

1. (3.14c)

Now we write the Bethe equations for an arbitrary coupling [28]:

Lki =
N∑
j=1

θ(ki − kj) + 2π

(
j − N + 1

2

)
, (3.15)

where

θ(k) = i ln

(
i2mg

~2 + k

i2mg
~2 − k

)
. (3.16)

This is the set of N non-linear algebraic equations.

Let us calculate the correction to the Tonks-Girardeau limit in 1/g, where g → ∞. To

first order in 1/g, we get an expression for quasi-momenta

k
(1)
j = k

(0)
j

(
1− 2γ−1

)
(3.17)

and expressions for thermodynamical quantities

EN =
~2

2m

π2

3

N(N2 − 1)

L2

(
1− 4γ−1

)
, (3.18a)

PN = 0, (3.18b)

µ = EN+1 − EN =
~2

2m

π2

3

(
3N2 + 3N

L2
− 4(4N3 + 6N2 + 2N)

gL3

)
≈ ~2

2m
π2n2

1

(
1− 16

3γ

)
.

(3.18c)
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3.4. Lieb-Liniger equations

Let us consider the system in the ground state. Subtracting from the i-th equation (3.15)

the i+ 1-st we obtain the following equation:

L(ki+1 − ki) =
N∑
j=1

(θ(ki − kj)− θ(ki+1 − kj)) + 2π. (3.19)

Let us introduce the density function

ρ(kj) =
1

L(kj+1 − kj)
. (3.20)

In Ref. [28] the authors prove several important statements: positivity of ρ, existence of

a unique solution bounded from above and from below for any γ > 0. Also note that the

quantity

θ(ki+1 − kj) = θ((ki+1 − ki) + ki − kj) = θ

(
1

Lρ(ki)
+ ki+1 − kj

)
, (3.21)

in the L→∞ limit can be written as

θ(ki+1 − kj) = θ(ki − kj) + θ′(ki − kj)
1

Lρ(ki)
+ o

(
1

L2

)
, (3.22)

where θ′(k) = 4mg/~2((2mg/~2)2 + k2). The sums in Eq. (3.19) can be transformed as

1

L

N∑
i=1

f(ki)→
∫ Λ

−Λ

f(k)ρ(k)dk, L→∞. (3.23)

Here, Λ = −k1 = kN is the maximum value of rapidities. It depends on the interaction

parameter γ and will be determined later. Thus, the set of equations (3.19) takes the form

of the Fredholm integral equation of second kind in the continuous limit:

ρ(k)− 1

2π

∫ Λ

−Λ

K(κ, k)ρ(κ)dκ =
1

2π
, (3.24)

where K(κ, k) = 4mg/~2((2mg/~2)2 + (κ− k)2) is the Fredholm kernel. The parameter Λ

can be determined from the normalization condition∫ Λ

−Λ

ρ(k)dk =
N

L
= n1. (3.25)

In the canonical ensemble the energy can be calculated as

E0 =
~2

2m

N∑
i=1

k2
i → L

∫ Λ

−Λ

ρ(k)k2dk L→∞. (3.26)

43



Following Ref. [28] we rescale variables:

k = Λz, g = Λλ, ρ(Λz) = g(z). (3.27)

In these variables equations (3.24), (3.25), (3.26) take the form of Lieb-Liniger equations [28,

29]:

g(z)− 1

2π

∫ 1

−1

2λ

λ2 + (z − y)2
g(y)dy =

1

2π
, (3.28a)

γ

∫ 1

−1

g(x)dx = λ, (3.28b)

e(γ) ≡ E0

~2
2m
Ln3

1

=
γ3

λ3

∫ 1

−1

g(x)x2dx. (3.28c)

In these equations the dimensionless parameter

γ =
mg

~2n1

(3.29)

is introduced. We denote the energy density E0/N as ε. This system of equations should be

solved in the following way. First one has to find the function g(z) from equation (3.28a) for

a given parameter λ. Using equation (3.28b) we find γ as a function of λ. And then, finally,

we calculate the energy per particle from equation (3.28c) for a given interaction parameter

γ. From equations (3.28a, 3.28b) one easily recovers equations (3.24), (3.25) taking into

account Eq. (3.27) and using the relation

Λ = n1
γ

λ
= n1

(∫ 1

−1

g(z)dz

)−1

. (3.30)

3.5. Solution of Lieb-Liniger equations for repulsive

interaction

We now start with the Lieb-Liniger equations (3.28). The solution to these equations

can be represented by power series. Since g(z) is an even function, only even terms will be

present in the expansion:

g(z) =
∞∑
n=0

g2nz
2n. (3.31)
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Following [38], let us present the kernel of equation (3.28a) in the form:

1

λ2 + (z − y)2
=

1

λ2 + y2

(
1− 2zy

λ2 + y2
+

z2

λ2 + y2

)−1

=
∞∑
n=0

n∑
m=0

(−1)n−mCm
n

2mz2n−mym

(λ2 + y2)n+1
,

(3.32)

where Cm
n = n!/m!(n−m!). Thus, we have

∫ 1

−1

g(y)
1

λ2 + (y − z)2
dy =

∞∑
k=0

∞∑
n=0

n∑
m=0

g2k
22m+1

(2m)!(k −m)!

× ∂m+k

∂sm+k

[
k+m∑
l

(−1)l+1λ2(l−1)

2(m+ k − l) + 1
+ (−1)m+kλ2(m+k)−1 arctan

1

λ

]
y2n. (3.33)

After transformation we obtain equations

1− (2π − 4 arctan
1

λ
)g0 + 4λ

∞∑
n=0

gn

(
n∑
m

(−1)m+1λ2m−2

2n− 2m+ 1
+ (−1)nλ2n−1 arctan

1

λ

)
= 0,

(3.34a)

2πgk = 4λ
∞∑

n=k+1

k∑
m=0

gn
22m

(2m)!(k −m)!

∂s+k

∂sm+k

m+n∑
l=0

(−1)l+1sl+1

2(m+ n− l) + 1

+ 4λ
∞∑
n=0

k∑
m=0

gk
22m

(2m)!(k −m)!

∂m+k

∂sm+k
(−1)m+nλ2(m+n)−1 arctan

1

λ
. (3.34b)

The solution was exact so far. The dependence of the energy per particle on the inter-

action parameter γ, calculated numerically from the Lieb-Liniger equations (red curve) and

finite-N results calculated directly from the Bethe equations, are shown in Fig. 13. It is

clearly seen that the curves for finite N are below the Lieb-Liniger result and approach it in

the limit N →∞. Finite N curves approach the Lieb-Liniger result rather fast. For N = 31

there is practically no difference between the former and the latter.

3.5.1. Weak coupling regime

In the weak coupling limit (γ → 0) the kernel of equation (3.28a) become singular. One

can recognize a representation of the Dirac δ-function in this kernel. Still, if the parameter λ

is small (but nonzero) we can find a solution. This solution g(z) is unbounded and behaves

as λ−1. So, the studies of this limit become hard as we do not have a regular solution at
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Figure 13: Energy per particle (3.28) calculated numerically for the different N , as a

function of γ. The energy per particle is normalized on the e(∞) = π2/3. For N = 31

result is indistinguishable from the one in the thermodynamic limit.

γ = 0, which we can perturb. The coefficients gk have the form gk =
∑∞

l=−1 λ
lg

(l)
k , where

the upper index l determines the order of approximation.

To the first order in powers of λ, we have g(−1)
k = −(2k − 3)!!/2πλ(2k)!!, where (−3)!! =

−1, and (−1)!! = 1. Therefore, we have

g(z) ≈ − 1

2πλ

∞∑
k=0

(2k − 3)!!

(2k)!!
z2k. (3.35)

Equation (3.35) represents the Taylor expansion of the function

g(z) ≈ −
√

1− z2

2πλ
. (3.36)

Substituting this expression into the normalization condition (3.28b) we obtain the param-

eter λ =
√
γ

2
. Hence, we have

ε(γ) = γ. (3.37)

Equation (3.37) is the first order of the series in the parameter γ. Taking into account the

next term in ε(γ) we get

ε(γ) = γ

(
1− 4

3π

√
γ

)
. (3.38)
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3.5.2. Strong coupling regime (Tonks-Girardeau gas)

The Tonks-Girardeau gas is the Lieb-Liniger gas in the limit γ → ∞. This limit can be

studied relatively easily compared to the weak coupling regime. The kernel of Eq. (3.28a)

goes to zero, and to the leading order we have:

gλ=∞(z) =
1

2π
. (3.39)

Due to this, we can look for the solution of equation (3.28a) in the form:

gλ(z) = gλ=∞(z) +
∞∑
n=1

λ−ng(n)(z), (3.40)

which leads to the relation:

∞∑
n=0

λ−ng(n)(z)− 1

π

∞,∞∑
k=0,n=0

∫ 1

−1

dy(y − z)2kg(n)(y)λ−n−2k−1 =
1

2π
. (3.41)

Equating expressions that have the same power of λ we obtain a recurrent formula for g(n)(z)

g(n)(z) =
1

π

[n
2

]∑
k=0

∫ 1

−1

dy(y − z)2kg(n−2k−1)(y), (3.42)

where n ≥ 1, and [x] denotes the floor function, i.e. the largest integer smaller than x. This

gives us the energy density per particle

e(γ) =
π2

3

(
1− 4

γ

)
+O(γ2). (3.43)

This formula can be calculated more precisely [39]:

e(γ) =
π2

3

(
1− 4

γ
+

12

γ2
+ (π2 − 15)

32

15γ3

)
+O(γ−4). (3.44)

The Tonks-Girargeau regime is interesting because the exact wave-function can be con-

structed as

ψ(x1, x2, . . . , xN) =
1√
N !

det
[
ψHOjP (xi)

] N∏
i>k=1

sign(xi − xk). (3.45)

In the determinant all indexes jP should be different. They do not necessarily belong to the

set 1, . . . , N , but in the ground state jP = j.

47



3.6. Speed of sound

In the grand canonical ensemble the energy is calculated from the formula

EN =
~2

2m

N∑
i=1

k2
i − µ, (3.46)

where µ is the chemical potential.

The pressure of a 1D gas can be calculated using the expression

P = −
(
∂E0

∂L

)
S,N

= −
(
∂F

∂L

)
T,N

, (3.47)

where E0 is the energy given by expression (3.10a), S is the entropy of the system, F =

E0 − TS is the Helmholtz free energy, T is the absolute temperature. The pressure is

P =
~2

2m
n3

1 (2e(γ)− γe′(γ)) . (3.48)

The thermodynamic definition of the sound velocity is the following

vs =

√
− L

mn1

(
∂P

∂L

)
N,S

. (3.49)

Now we can rewrite this definition in terms of the dimensionless parameter γ = 2
a1Dn1

= 2L
a1DN

and E0 = ~2
2ma21D

4Nγ−2e(γ). The derivative can be rewritten as ∂
∂L

= 2
a1DN

∂
∂γ
. Hence,

equation (3.49) takes the following form at T = 0:

vs =

√
− 2

mn2
1a1D

(
∂P

∂γ

)
N

. (3.50)

Finally, we obtain the following formula:

vs =
~

ma1D

[
2e′′(γ)− 8γ−1e′(γ) + 12γ−2e(γ)

] 1
2 , (3.51)

where the derivative “ ′” means the derivative with respect to γ. In Eq. (3.51) the chemical

potential is given as µ(γ) =
(
∂E0

∂N

)
L
. Together with equation (3.28c) this leads to the formula

µ(γ) =
~2

2m

4

a2
1D

γ−2 (3e(γ)− γe′(γ)) . (3.52)

The dependence of the speed of sound on the interaction parameter γ is shown in Fig. 14.

In this figure the speed of sound vs is given in units of the Fermi velocity vF = ~
m
πn1.

The upper curve corresponds to the the speed of sound for the attractive interactions and

the lower one to the repulsive interactions. In the Tonks-Girardeau limit and in the super-

Tonks-Girardeau limit the speed of sound goes to vF .
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Figure 14: Speed of sound as a function of γ. Black solid curve: repulsive interactions, red

dashed: attractive interactions.

3.6.1. Speed of sound in the Tonks-Girardeau limit

Let us calculate the speed of sound in this limit. We can calculate the speed of sound

directly using expression (3.51), but it is more interesting to see all steps and expressions

for pressure. We are going to use equations (3.18a) and (3.49). Thus we have

P =
~2

m

π2

3
n3

1

(
1− 6γ−1

)
. (3.53)

The next step is to calculate the sound velocity using (3.50):

v2
s =

~2

m2
π2n2

1

(
1− 8γ−1

)
. (3.54)

3.6.2. Speed of sound in the weak coupling limit

Using equation (3.47) with the ground state energy E0 following from Eq. (3.28c) and

e(γ) from Eq. (3.38) one calculates the pressure in the weak coupling limit:

P =
~2

2m
γn3

1

(
1− 2

3π

√
γ

)
. (3.55)
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The speed of sound is then given by:

v2
s =

~2

m2
n2

1γ

(
1− 1

2π

√
γ

)
. (3.56)

We remark that in this limit the speed of sound has a non-analytic expansion.

3.7. Solution to the Lieb-Liniger equations for

attractive interaction

We now start with equations similar to the Lieb-Liniger equations [23, 28, 29]:

g(z) +
1

2π

∫ 1

−1

2λ

λ2 + (z − y)2
g(y)dy =

1

2π
, (3.57a)

γ

∫ 1

−1

g(x)dx = λ, (3.57b)

e(γ) =
γ3

λ3

∫ 1

−1

g(x)x2dx. (3.57c)

These equations are similar to equations (3.28a), (3.28b), (3.28c). However, the sign in front

of the integral in Eq. (3.28a) is different. The solution to these equations shows us that in

the attractive case the parameters λ and γ are negative. These equations are written not for

the bound state, in which all rapidities ki are complex, and even not for the cluster state,

where only some of the rapidities are complex and some are real. Equations (3.57a, 3.57b,

3.57c) describe the so-called gas state, which is characterized by only real rapidities, and

is adiabatic continuation of the repulsive bound state through g = ∞. The dependence of

the energy per particle on the interaction parameter, calculated numerically, is represented

by the black curve in Fig. 15. In the super-Tonks-Girargeau limit, γ → −∞, the energy

density goes to π2/3, merging with the repulsive branch shown in Fig. 13. As it will be

shown later (in Eq. (3.63)) in the opposite limit, γ → −0, the energy density per particle

e(γ) goes to 4π2/3. Fig. 15 also shows the dependence of the energy per particle on γ for

finite N systems. Like in the repulsive case, the energy density is smaller then the Lieb-

Liniger energy density. However, one can see that already for N = 31 the energy density is

non-distinguishable from the energy density from the Lieb-Liniger equations (3.57).
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Figure 15: Energy per particle (3.57) calculated numerically for the different N , as a

function of γ. The energy per particle is normalized on the e(∞) = π2/3. For N = 31

result is indistinguishable from the one in the thermodynamic limit.

3.7.1. Strong attractive regime (super-Tonks-Girardeau gas)

The super-Tonks-Girardeau gas is the gas state, which is a highly excited meta-stable

state of attractive Lieb-Liniger gas in the limit γ → −∞. The kernel of Eq. (3.57a) goes to

zero, so that to zero order gλ=∞(z) = 1
2π
. This result shows that the distribution function is

a continuous function at γ = ±∞. Due to this, we can search for the solution of Eq. (3.57a)

in the form:

gλ(z) = gλ=∞(z) +
∞∑
n=1

λ−ng(n)(z), (3.58)

which leads to an expression

∞∑
n=0

λ−ng(n)(z) +
1

π

∞,∞∑
k=0,n=0

∫ 1

−1

dy(y − z)2kg(n)(y)λ−n−2k−1 =
1

2π
. (3.59)

Equating terms with the same powers of λ we obtain a recurrent formula for g(n)(z)

g(n)(z) = − 1

π

[n2 ]∑
k=0

∫ 1

−1

dy(y − z)2kg(n−2k−1)(y), (3.60)
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where n ≥ 1, and [x] denotes the floor function, i.e. the largest integer smaller than x. Using

Eq.(3.57c) we can calculate the energy per particle

e(γ) =
π2

3

(
1 +

4

γ

)
+O(γ2). (3.61)

Comparing (3.61) with Eq. (3.43) we conclude that the energy per particle is also a contin-

uous function of γ at γ = ±∞. This fact can be used as the argument that equations (3.57)

indeed describes the gas state, rather than some other state. This for sure cannot be a

description of the bound state because in the g → ∞ limit the energy of this bound state

E0(γ) goes to −∞ as γ2.

3.7.2. Weak attractive regime

In the |γ| → 0 limit (and γ < 0) the kernel of equation (3.57a) becomes singular. One

can recognize a representation of the δ-function in this kernel. Thus, equation (3.57a) in

this limit goes to g(z) = −g(z) + 1/2π. This leads to

g(z) =
1

4π
. (3.62)

Hence, the energy per particle to the leading order in γ is

e(γ) =
4π2

3
. (3.63)

It is important to emphasise that this is not the ground state energy, but the energy of

the so-called gas state characterised by the presence of real rapidities. This state thus does

not contain bound states. The densities of energy in the weak attractive regime and in the

weak repulsive regime are not adiabatically connected with each other (see expressions (3.63)

and (3.38)).

3.8. Breathing mode frequency in the repulsive regime

It is possible to calculate the breathing mode frequency using the Local Density Ap-

proximation. Since Vext(z) = mω2
zz

2/2, one has µLDA = mω2
z (Z2 − z2) /2, where Z is the

Thomas-Fermi radius [40]. From Eqs. (3.28a) – (3.28c) we obtain the energy density per par-

ticle e and the chemical potential µ as functions of the parameter γ = mg/~2n1 = 2/ |a1D|n1.
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Inverting the dependence of the chemical potential on the parameter γ, one can consider

the normalization condition ∫ Z

−Z
n1 (µ(z)) dz = N, (3.64)

as the equation which determines the Thomas-Fermi radius. Expressing the chemical po-

tential in units of ~2/2ma2
1D, we get the dimensionless chemical potential

µ̃LDA(z) =
2µma2

1D

~2
=
mω2

za
2
1D (Z2 − z2)

~2
=
a2

1D (Z2 − z2)

a4
z

. (3.65)

This leads to the equation ∫ Z

−Z
n1

(
a2

1D (Z2 − z2)

a4
z

)
dz = N. (3.66)

Changing the variables to t = z/Z, and Z̃ = Za1D/a
2
z we get the following equation:

2Z̃

∫ 1

0

n1

(
Z̃2
(
1− t2

))
dt = N

|a1D|
a2
z

. (3.67)

Multiplying the left and right parts of this equation by a1D we obtain:

2Z̃

∫ 1

0

|a1D|n1

(
Z̃2
(
1− t2

))
dt = N

(
a1D

az

)2

. (3.68)

In terms of the interaction parameter γ equation (3.68) has the form:

4Z̃

∫ 1

0

γ−1
(
Z̃2
(
1− t2

))
dt = N

(
a1D

az

)2

. (3.69)

The breathing mode frequency can be calculated from equation (2.23) [20, 32]. It is more

convenient to rewrite Eq. (2.23) following from (1.53) in the form:

ω2

ω2
z

= −4
〈z2〉

Λ∂〈z2〉
∂Λ

, (3.70)

Using the results obtained in sections 3.5.1 and 3.5.2 we present analytics in the limits γ → 0

and γ →∞ in the next sections.

3.8.1. Breathing mode in the Tonks-Girardeau limit

First we make the analysis of the Tonks-Girardeau gas based on formula (3.43). We

investigate the leading order in 1/γ, and then go to subleading orders. The chemical potential

is related to the particle density as

µ =
∂E0

∂N
=
∂ (n1ε(n1))

∂n1

, (3.71)
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Figure 16: The quantity |a1D|n1 as a a function of the dimensionless chemical potential µ̃

(calculated using Eq. (3.71)) in the Lieb-Liniger theory: (a) Tonks-Girardeau regime (b)

weak coupling regime

where ε = ~2
2m
n2

1e(γ). This implies that the local chemical potential (3.65) is µ̃ = π2(a1Dn1)2.
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Inverting this relation one gets the dependence of the local particle density on the local

chemical potential

|a1D|n1 =

√
µ̃

π
=
|a1D|

√
Z2 − z2

πa2
z

. (3.72)

The dependence of the density |a1D|n1 on the chemical potential µ̃ is shown in the right

panel in Fig. 16. The blue curve shows analytical approximation of equation (3.72), the red

curve is the numerical result obtained from the solution to the Lieb-Liniger equations.

Let us introduce the dimensionless Thomas-Fermi radius

Z̃ =
Z |a1D|
a2
z

. (3.73)

We can determine the Thomas-Fermi radius from the normalization condition (3.68)

2Z̃

∫ 1

0

1

π

√
Z̃2 (1− t2)dt = N

(
a1D

az

)2

. (3.74)

Thus we get

Z̃ =

√
2N

(
a1D

az

)2

. (3.75)

The dependence of the Thomas-Fermi radius on the interaction parameter N
(
a1D
az

)2

is

shown in the left panel of Fig. 17. Now one has to calculate the mean square radius and its

derivative with respect to ω2
z . 〈

z2
〉

=
Z4

a2
zπ

π

8
=
N2a2

z

2
, (3.76)

ω2
z

∂ 〈z2〉
∂ω2

z

= −1

2

N2a2
z

2
. (3.77)

This leads to the result

ω2 = 4ω2
z for γ →∞. (3.78)

Before going to subleading orders, we have to make an analysis of the present result. We

get Eq. (3.78) in the limit γ → ∞, which was realized by setting g → ∞. We used the

local density and the Thomas-Fermi approximations for the calculation of the breathing

mode frequency. In this approximations we get the Thomas-Fermi radius Z =
√

2Naz

and the density profile is n1(z) =
√

2N
√

1− (z/Z)2/azπ. The limit γ → ∞ should be

interpreted as mg/~2n1 = mgazπ/~2
√

2N → ∞. In this sense, in order to investigate the

thermodynamic limit for a non-homogeneous system one should take into account that the

ratio ~2
√

2N/azπmg =
√

2N |a1D|/2πaz has to be small.
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Figure 17: The dependence of the dimentionless Thomas-Fermi radius Z̃ (Eq. (3.73)) on

N
(
a1D
az

)2

for repulsive interactions: (a) Tonks-Girardeau regime (Λ� 1) (b)

Thomas-Fermi regime (Λ� 1)

Now we analyse how good is the LDA approximation. We can do this because it is
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possible to construct the exact wave-function of the system in the Tonks-Giradeau limit.

In this limit there exists the so-called boson-fermion mapping [41], and the ground state

wave-function is given by the expression

ψ(x1, . . . , xN) =
1√
N !

det
[
ψHOi (xj)

] N∏
i>j=1

sign(xi − xj). (3.79)

From this ground state wave-function we can determine the density distribution using the

formula

n1(x)exact =

∫∫∫
ψ(x, x2, . . . , xN)2

N∏
k=2

dxk. (3.80)

The ground state density in the Tonks-Girardeau limit reads as follows:

n1(x)exact =
1

N

N∑
i=1

∣∣ψHOi (xj)
∣∣2 . (3.81)

The exact density distribution and the one calculated in the LDA approximation for N = 5,

10, 20 and 50 particles are plotted in Fig. 18. We can see that the more particles are in the

trap, the better is the LDA (see also Ref. [30]).
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Figure 18: Densities distribution in the Tonks-Girardeau regime for N = 5, 10, 20 and 50

particles (bottom to top). Black curves: exact result, red dashed curves - LDA

approximation.
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Now we can calculate the first-order correction in 1
g
. Taking into account first subleading

term in Eq. (3.43) we get

µ̃ = π2 (n1a1D)2 − 8π2

3
(|a1D|n1)3 . (3.82)

Inverting this relation we obtain a dependence of the particle density on the local chemical

potential

|a1D|n1 =

√
µ̃

π
+

4µ̃

3π2
. (3.83)

The next step is to calculate the Thomas-Fermi radius using Eq. (3.65) from the normaliza-

tion condition ∫ Z

−Z

(√
Z2 − z2

a2
zπ

+
4a1D

3

(Z2 − z2)

π2a4
z

)
dz = N. (3.84)

Hence, the Thomas-Fermi radius is

Z =
√

2Naz −
32N

9π2
|a1D| , (3.85)

and the density profile is

n1 =
Z

a2
zπ

√
1−

( z
Z

)2

+
4 |a1D|Z2

3π2a4
z

(
1−

( z
Z

)2
)
. (3.86)

Let us now calculate the first subleading term in 1/g for the breathing mode using (2.23).

Now we have to calculate the mean square radius and it’s derivative with respect to ω2
z .

〈
z2
〉

=
N2~
2mωz

+
16~2(N)

5
2

√
2~

15mgπ2
√
mωz

, (3.87)

and
∂ 〈z2〉
∂ω2

z

= −1

2

N2~
2mω3

z

+
1

4

16~2(N)
5
2

√
2~

15mgπ2ω2
z

√
mωz

. (3.88)

This leads to (see also Ref. [35]):

ω2 = 4

(
1− 32

√
2N |a1D|

15π2az

)
ω2
z , γ →∞ (3.89)

The dependence of
(
ω
ωz

)2

on N
(
a1D
az

)2

was calculated numerically in Ref. [16]. We

reproduce this dependence and display it in Fig. 19. One can see that the asymptotic

expansions are rather good approximations for small and large values of Λ.
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2
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from Eqs. (3.70) and (3.64). Colored dashed curves are the weak and strong coupling

asymptotes ((3.96) and (3.89), respectively).

3.8.2. Breathing mode frequency in the weak coupling limit

We now investigate the γ → 0 limit. This limit we realize through g → 0, with the

number of particles N and trap frequency ωz remaining constant. In this limit the energy

per particle could be calculated using (3.38):

ε =
~2

2m
n2

1γ

(
1− 4

3π

√
γ

)
, (3.90)

and the chemical potential calculated from Eq. (3.71) is

µ̃ = 8γ−1 − 8

π
γ−

1
2 . (3.91)

We then find the local density

n1 =
µ

2a2
1D

mg
~2

+
1

π

√
µ

2a2
1D

=
Z2 − z2

2a4
z
mg
~2

+
1

π

√
Z2 − z2

2a4
z

. (3.92)

From normalization condition we determine the Thomas-Fermi radius:

Z =

(
3a4

z

|a1D|
N

) 1
3

− a2
z

2
√

2|a1D|
. (3.93)
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The dependence of the Thomas-Fermi radius on the parameter N
(
a1D
az

)2

is shown in the

right panel of Fig. 17.

The density profiles for twenty five particles and different values of the interaction pa-

rameter Λ are shown in Fig. 20.
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Figure 20: Profiles of density calculated in the hydrodynamic approach (dashed) for

various values of the interaction parameter Λ = N
(
a1D
az

)2

. In the Tonks-Girardeau regime,

Λ� 1, the density profile is a semi-circle. In the Thomas-Fermi regime, Λ� 1, the

density profile is an inverted parabola.

Now, when all parameters of the system are determined, we can calculate the breathing

mode frequency from Eq. (2.23)

〈z2〉 = 2Z5

15a4z
mg

~2
− Z4

8
√

2a2z
= 1

5
3

2
3a

8
3
z |a1D|−

2
3N

5
3 − 1

8
√

2
3

1
3a

10
3
z |a1D|−

4
3N

4
3 , (3.94)

ω2
z

∂〈z2〉
∂ω2

z
= −1

5
3−

1
3a

8
3
z |a1D|−

2
3N

5
3 − 5

32
√

2
3−

2
3a

10
3
z |a1D|−

4
3N

4
3 , (3.95)

ω2 = ω2
z

(
3 + 5

32
√

2
3

2
3

(
az
a1D

) 2
3
N−

1
3

)
; for γ → 0 (3.96)

Let us discuss the applicability of this result. In the weak-coupling limit (Λ� 1) the appli-

cability of the Thomas-Fermi approximation is limited. The Laplacian of the density profile

in the central part of the cloud is omitted in this approach in Eq. (3.6), and the applicability
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of the LDA coincides with the applicability of the Thomas-Fermi approximation. The bound

of applicability of the approach is given by the condition

ξ ∼ az, (3.97)

where ξ is a the healing length

ξ =
~√
mn1g

. (3.98)

This leads to the condition N az
a1D
∼ 1. Thus, the limit of applicability of the LDA is

N
(
a1D
az

)2

∼ N3. Comparing this bound with Figures 7 and 19 one can conclude that the

coefficient of proportionality is approximately 1
81
, and finally the approach is applicable for

Λ ≤ 1

81
N3. (3.99)

3.9. Breathing mode frequency for attractive

interactions

In Section 3.7 calculations were made for a homogeneous system. For a trapped system

the coordinate dependence of the particle density plays a crucial role. In this case the

interaction parameter introduced in section 3.4 depends on the coordinate. Near the edge

of the cloud (close to the Thomas-Fermi radius) the particle density is small, which implies

that γ is very large. In other words γ(z)→∞, z → Z. In the trap center the particle density

reaches its maximum and γ is the smallest. The dependence of γ0 = γ(0) = 2/ (a1Dn1(0)) on

the LDA parameter Λ for the repulsive (blue) and the attractive (red) interaction is shown

in Fig. 21.

Now we can calculate the frequency of the breathing mode oscillations in the same way

as in Section 3.8. In the LDA we calculate the Thomas-Fermi radius using equation (3.68)

and then use expression (2.23) to calculate the breathing mode frequency.

3.9.1. Breathing mode frequency at the strongly attractive regime

First we make an analysis of the super-Tonks-Girardeau gas based on equation (3.61).

We investigate the leading order in 1/γ, and then find the first subleading correction. The
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chemical potential is connected with the particle density by the relation (3.71). This leads to

the local chemical potential µ̃ = π2(a1Dn1)2. Inverting this relation we get the dependence

of the local particle density on the local chemical potential:

a1Dn1 =

√
µ̃

π
=
a1D

√
(Z2 − z2)

πa2
z

. (3.100)

Now we can determine the Thomas-Fermi radius from the normalization condition (3.68):

2Z̃

∫ 1

0

1

π

√
Z̃2 (1− t2)dt = N

(
a1D

az

)2

. (3.101)

Thus we get Z̃ = Za1D
a2z

=

√
2N
(
a1D
az

)2

. Now one has to calculate the mean square radius

and its derivative with respect to ω2
z :〈

z2
〉

=

∫ Z

−Z
z2n1(z)dz =

N2~
2mωz

, (3.102a)

and
∂ 〈z2〉
∂ω2

z

= −1

2

N2~
2mω3

z

. (3.102b)

This leads to the result

ω2 = 4ω2
z for the γ →∞ (3.103)
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One can conclude that at γ = ±∞ the breathing mode frequency is an analytic function

of the parameter N
(
a1D
az

)2

.

3.9.2. Breathing mode frequency in the weakly attractive regime

We now investigate the γ → 0 limit, (γ < 0). In this limit the energy per particle can be

calculated using (3.63). Using Eq. (3.71) we get

a1Dn1 =

√
µ̃

2π
=
a1D

√
Z2 − z2

2πa2
z

. (3.104)

This density profile is written for the gas state defined in sections 3.7.1 and 3.7.2. We can

see that both in the Tonks-Girardeau and the weak attractive regimes, the cloud density

profile is a semi-circle because the chemical potential is quadratic in density. However the

coefficients for these cases are different from each other (compare Eqs. (3.104) and (3.72)).

Thus, the Thomas-Fermi radius in the weak attractive regime is different from the one

in the Tonks-Girardeau regime. Now we determine the Thomas-Fermi radius from the

normalization condition (3.68):

2Z̃

∫ 1

0

1

2π

√
Z̃2 (1− t2)dt = N

(
a1D

az

)2

. (3.105)

Hence we get Z̃ = Za1D/a
2
z =

√
4N
(
a1D
az

)2

. One then calculates the mean square radius

and its derivative with respect to ω2
z :

〈
z2
〉

=

∫ Z

−Z
z2n1(z)dz =

Z4

a2
z2π

π

8
=
N2~
mωz

, (3.106a)

and
∂ 〈z2〉
∂ω2

z

= − N2~
2mω3

z

. (3.106b)

This leads to the result:

ω2 = 4ω2
z for γ → 0 (3.107)

Contrary to the case of weak repulsive interactions, (section 3.8.2), where
(
ω
ωz

)2

→ 3, in the

case of weak attractive interaction we have
(
ω
ωz

)2

→ 4.
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3.10. Perturbation theory for a gas close to the

Tonks-Girargeau regime

The perturbation theory also gives a possibility to calculate the leading order correction to

the ground state energy and the chemical potential close to the Tonks-Girardeau limit [42].

This can be done by mapping the strongly interacting bosons with pairwise interaction

strength α onto weakly-interacting fermions with 1/α interaction strength [41]. The fermion

system obeys the Schrödinger equation[
N∑
i=1

(
− ~2

2m

∂2

∂x2
i

+
mω2

z

2
x2
i

)
+ V̂

]
Ψf = EΨf , (3.108)

where the operator V̂ has the matrix elements

〈Ψf
∣∣∣V̂ ∣∣∣Φf〉 = − 4

α

∑
i<j

∫ ∞
−∞

lim
rij→0

∂Ψf

∂rij

∂Φf

∂rij
dRijdx1 . . . dxN , (3.109)

with rij = xi − xj, and Rij =
xi+xj

2
being the relative and center-of-mass coordinates. In

Eq. (3.109) the integration goes over the Rij and we take the rij → 0 limit. This gives the

ground state energy:

Egs =
1

2
N2~ωz +

〈
Ψf
∣∣∣V̂ ∣∣∣Ψf

〉
+O(

1

α2
). (3.110)

Thus, 〈Ψf
∣∣∣V̂ ∣∣∣Ψf〉 =

∑
k<l (vklkl − vkllk), where

vklmn = − 1

α

∫
lim
r12→0

∂ψ∗k(x1)ψ∗l (x2)

∂r12

∂ψm(x1)ψn(x2)

∂r12

dR12. (3.111)

This leads to the final result (see also Ref. [42]):

Egs
~ωz

=
1

2
N2 +

1

α

√
2

π3

N−1∑
l=1

Γ
(
l − 1

2

)
Γ(l + 1)

l−1∑
k=0

(l − k)2Γ
(
k − 1

2

)
Γ(k + 1)

3F2

(
3

2
,−k,−l; 3

2
− k, 3

2
− l; 1

)
.

(3.112)

The second excited level is doubly degenerated. The first state is related to the center of

mass motion (second exited center of mass state) and its energy is

ECM = Egs + 2ωz. (3.113)

Let us take the energy of the second state. We have to use the degenerate perturbation theory

to do so. Let us take two states as a basis for the perturbation theory and then diagonalise
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the secular matrix. We choose the states with the quantum numbers 0, 1, 2, . . . , N−2, N+1

and 0, 1, 2, . . . , N − 3, N − 1, N . Let us denote the first set of the quantum numbers as 2α

and the second set as 2β. Energies of the 2α and 2β states are

E2α

~ωz
=

1

2
N2+2+

1

α

√
2

π3

N−2∑
l=1

Γ
(
l − 1

2

)
Γ(l + 1)

l−1∑
k=0

(l − k)2Γ
(
k − 1

2

)
Γ(k + 1)

3F2

(
3

2
,−k,−l; 3

2
− k, 3

2
− l; 1

)

+
1

α

√
2

π3

Γ
(
N + 1

2

)
Γ(N + 2)

N−2∑
k=0

(N + 1− k)2Γ
(
k − 1

2

)
Γ(k + 1)

3F2

(
3

2
,−k,−N − 1;

3

2
− k, 3

2
−N − 1; 1

)
,

(3.114)

E2β

~ωz
=

1

2
N2+2+

1

α

√
2

π3

N−3∑
l=1

Γ
(
l − 1

2

)
Γ(l + 1)

l−1∑
k=0

(l − k)2Γ
(
k − 1

2

)
Γ(k + 1)

3F2

(
3

2
,−k,−l; 3

2
− k, 3

2
− l; 1

)

+
1

α

√
2

π3

Γ
(
N − 3

2

)
Γ(N)

N−3∑
k=0

(N − 1− k)2Γ
(
k − 1

2

)
Γ(k + 1)

3F2

(
3

2
,−k,−N + 1;

3

2
− k, 3

2
−N + 1; 1

)

+
1

α

√
2

π3

Γ
(
N − 1

2

)
Γ(N + 1)

N−3∑
k=0

(N − k)2Γ
(
k − 1

2

)
Γ(k + 1)

3F2

(
3

2
,−k,−N ;

3

2
− k, 3

2
−N ; 1

)

+
1

α

√
2

π3

Γ
(
N − 1

2

)
Γ(N + 1)

Γ
(
N − 3

2

)
Γ(N)

3F2

(
3

2
,−N − 1,−N ;

5

2
−N, 3

2
−N ; 1

)
. (3.115)

The difference of the energy of the 2α (2β) state from the ground state energy is:

E2α − Egs
~ωz

−2 =
1

α

√
2

π3

Γ
(
N + 1

2

)
Γ(N + 2)

N−2∑
k=0

(N + 1− k)2Γ
(
k − 1

2

)
Γ(k + 1)

3F2

(
3

2
,−k,−N − 1;

3

2
− k, 3

2
−N − 1; 1

)

− 1

α

√
2

π3

Γ
(
N − 3

2

)
Γ(N)

N−2∑
k=0

(N − 1− k)2Γ
(
k − 1

2

)
Γ(k + 1)

3F2

(
3

2
,−k,−N + 1;

3

2
− k, 5

2
−N ; 1

)
,

(3.116)

E2β − Egs
~ωz

−2 =
1

α

√
2

π3

Γ
(
N − 1

2

)
Γ(N + 1)

N−3∑
k=0

(N − k)2Γ
(
k − 1

2

)
Γ(k + 1)

3F2

(
3

2
,−k,−N ;

3

2
− k, 3

2
−N ; 1

)

− 1

α

√
2

π3

Γ
(
N − 5

2

)
Γ(N − 1)

N−3∑
k=0

(N − 2− k)2Γ
(
k − 1

2

)
Γ(k + 1)

3F2

(
3

2
,−k,−N + 2;

3

2
− k, 7

2
−N ; 1

)

+
1

α

√
2

π3

Γ
(
N − 1

2

)
Γ(N + 1)

Γ
(
N − 3

2

)
Γ(N)

3F2

(
3

2
,−N + 1,−N ;

5

2
−N, 3

2
−N ; 1

)
− 1

α

√
2

π3

Γ
(
N − 3

2

)
Γ(N)

Γ
(
N − 5

2

)
Γ(N − 1)

3F2

(
3

2
,−N + 2,−N + 1;

7

2
−N, 5

2
−N ; 1

)
. (3.117)
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The 2α and 2β–states are orthogonal to each other. From these states one can construct

two physical states: the first state describes the center of mass oscillations and the second

state is the breathing mode. These states are connected with the 2α and 2β–states by an

orthogonal transformation. The main property of the center of mass oscillation state is that

the energy difference of this state from the ground state energy is equal to 2~ωz, and does

not depend on the interaction strength:

ψCM = c1ψ2α + c2ψ2β, (3.118a)

ψBM = c2ψ2α − c1ψ2β, (3.118b)

where c1 =
√

2~ωz+Egs−E2α

E2β−E2α
, and c2 = −

√
E2β−2~ωz−Egs

E2β−E2α
. Using ψBM one can calculate the

energy of the breathing mode

EBM = E2α + E2β − Egs − 2~ωz. (3.119)

3.10.1. Comparison of the perturbation result with the

two-particle exact expansion

Using equation (2.12) one can find the expansion of the breathing mode frequency in 1
α

in the Tonks-Girargeau limit. The energy of the ground state and the state corresponding

to the the breathing mode oscillations are

Egs
~ωz

=
1

2
N2 −

√
2

α

2√
π
, (3.120a)

EBM
~ωz

=
1

2
N2 + 2−

√
2

α

3√
π
, (3.120b)

The breathing mode frequency is

ω

~ωz
= 2−

√
2

α

1√
π
. (3.120c)

Expressions (3.120) can be compared with (3.119). Since due to equations (3.116) and

(3.117) we have
Egs
~ωz

=
1

2
N2 −

√
2

α

2√
π
, (3.121)

E2α

~ωz
=

1

2
N2 + 2− 1

α

9

2
√

2π
, (3.122)
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E2β

~ωz
=

1

2
N2 + 2− 1

α

11

2
√

2π
, (3.123)

we get the following result:
ω

~ωz
= 2− 1

α

√
2

π
. (3.124)

This result coincides with expression (3.120c).
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Figure 22: Breathing mode frequency and its perturbation approximations of different

orders.

The two particle breathing mode frequency for the repulsive regime and its perturbation

expansion are shown in Fig. 22. In the Tonks-Girargeau regime the first order perturbation

approximation gives a good result when N
(
a1D
az

)2

< 0.1, and for the weak-coupling regime

the perturbation result works when N
(
a1D
az

)2

> 5.

3.10.2. Finite N Tonks-Girardeau expansions

Using equation (3.119) it is possible to calculate the leading order term of the expansion

in 1/α for the breathing mode frequency ω. It can be done for any finite value of N . The

summation of the terms in equations (3.112, 3.116, 3.117) and the use of equation (3.119)
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give the following result [43]:

(
ω

ωz

)2

= 4

1− 3
√

2N

π
√
π

Γ(N − 5
2
)Γ(N + 1

2
)

Γ(N)Γ(N + 2)
3F2

 3
2
, 1−N,−N

7
2
−N, 1

2
−N

; 1

√N

(
a1D

az

)2
 .

(3.125)
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Figure 23: First coefficient of the breathing mode expansion. With larger N it goes to the

asymptotic value 32
√

2/15π2.

Now we can compare the asymptotic expansion (3.89) based on the LDA with the ex-

pansion based on perturbative calculations and the boson-fermion mapping (3.125). The

dependence of the first coefficient of this expansion on the number of particles is shown

in Fig. 23. We can clearly see the difference in the first coefficient of the expansion. The

LDA expansion gives the coefficient 32
√

2/15π2 while the perturbative result depends on N .

The coefficient for N = 2 is 1/2
√
π. The difference between these LDA and perturbative

coefficients is small and does not exceed 8%.

68



3.11. Temporal behavior of the momentum distribution

of the Tonks-Girardeau gas

Let us now consider the Tonks-Girardeau gas in a parabolic trap, with the time-dependent

trap frequency:

ωz(t) =

ωz,− if t < 0,

ωz,+ if t > 0,
(3.126)

The exact wave-functions are known:

ψ(x1, . . . , xN ; t) =
1√
N !

det [φi(xj; t)]
N∏

1≤j<k

sign(xj − xk), (3.127)

where the single-particle wave-functions φi(xj, t) satisfy the Schrödinger equation with the

potential Vext(x, t) = mω2
z(t)x

2/2. It has the scaling symmetry [44]:

φi(x; t) =
1√
b(t)

φi

(
x

b(t)
; 0

)
exp

(
i
mx2ḃ(t)

2~b(t)
− Ejτ(t)

)
, (3.128)

where τ(t) =
∫ t

0
1

b2(t′)
dt′, and Ej are eigenvalues of harmonic oscillator with frequency ωz,−.

Hence, Ej = ω2
z,−
(
j + 1

2

)
. The scaling function b(t) has to satisfy the equation [44]:

b̈+ ω2(t)b =
ω2
z,−

b3
(3.129)

with initial conditions b(0) = 1 and ḃ(0) = 0. Thus, we get scaling properties for the

wave-function

ψ(x1, . . . , xN ; t) = b−
N
2 ψ
(x1

b
, . . . ,

xN
b

; 0
)

exp

(
imḃ

~b

N∑
j=1

x2
j − i

N∑
j=1

Ejτ

)
. (3.130)

Now we can investigate the time evolution of the density and momentum distributions. The

density profile is connected with the one-body density matrix by the relation n1(x; t) =

g1(x, x; t), where

g1(x, y; t) = N

∫∫∫ ∞
−∞

ψ∗(x, x2, . . . , xN ; t)ψ(y, x2, . . . , xN ; t)dx2 · · · dxN . (3.131)

Using equation (3.130) we get

g1(x, y; t) =
1

b
g1

(x
b
,
y

b
; 0
)

exp

(
−mḃ

~b
(x2 − y2)

)
. (3.132)
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Equation (3.132) follows from the Bose-Fermi mapping and does not depend on temperature.

This formula yields the exact evolution of the Tonks-Girardeau density profile:

n1(x; t) =
1

b(t)
g1

(x
b
,
x

b
; 0
)

=
1

b(t)
n1

(x
b

; 0
)
. (3.133)

It is also interesting to investigate the time evolution of the momentum distribution

n1(p; t) =

∫∫ ∞,∞
−∞,−∞

exp

(
i
p(x− y)

~

)
g1(x, y; t)dxdy, (3.134)

or after changing the variables, x/b→ x and y/b→ y, we have:

n1(p; t) = b

∫∫ ∞,∞
−∞,−∞

exp

(
ib

[
mḃ

~
(x2 − y2)− p(x− y)

~

])
g1(x, y; 0)dxdy. (3.135)

3.11.1. One-particle correlation functions

Now let us calculate the exact expression for the one-particle correlation function

g1 defined by equation (3.131). The wave-function of the system is ψ(x1, . . . , xN ; t) =

1√
N !

det [φi(xj; t)], so that one can write the expression for g1:

g1(x, y; t) =
1

N

N∑
i=1

φ∗i (x; t)φi(y; t). (3.136)

For the Tonks-Girargeau gas the wave-function is given by equation (3.45), and g1 can be

written as [45]

g1(x, y; t) =
1

N

N,N∑
i,j=1

φ∗i (x; t)Ai,j(x, y; t)φj(y; t), (3.137)

where the matrix

A(x, y; t) =
(
P (x, y)−1)T det [Pi,j(x, y; t)] , (3.138)

and

Pi,j(x, y; t) = δi,j − 2

∫ y

x

φ∗j(z; t)φi(z; t)dz. (3.139)

In the y → x limit expressions (3.136) and (3.137) tend to the same function n1(x) (3.81).

Using expression (3.137) is not the most productive way to calculate the one-body density

matrix. Interestingly, it was noticed in Ref. [12, 46] that the wave-function can be rewritten

in the form

ψ(x1, . . . , xN) =
1

CN

N∏
k=1

exp(−x2
k)

∏
1≤j<k≤N

|xj − xk| , (3.140)
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Figure 24: One-particle correlation functions for trapped free fermions and

Tonks-Girargeau bosons for N = 11.

where C2
N = N !

∏N−1
k=1 2−k

√
πk!. This makes it possible to write the one-body density matrix

as [46]

g1(x, y) =
2N−1

√
NΓ(N)

exp

(
−x

2 + y2

2

)
× det

[
2
j+k
2

2
√
πΓ(j)Γ(k)

βj,k(x, y)

]
j,k=1,...,N−1

, (3.141)

where βj,k(x, y) =
∫ +∞
−∞ dt exp(−t2)|x − t||t − y|tj+k−2. The integrals can be calculated

explicitly:

βj,k(x, y) = β̃j,k(x, y)− 2 sign(y − x) [xyµj+k−2(x, y)− (x+ y)µj+k−1(x, y) + µj+k(x, y)] ,

(3.142)

where

β̃j,k(x, y) =

Γ
(
j+k−1

2

)
xy + Γ

(
j+k+1

2

)
, if j + k is even;

−Γ
(
j+k

2

)
(x+ y), if i+ k is odd,

(3.143)

and

µj+k−2(x, y) =
ym+1 exp(−y2)

m+ 1
1F1

(
1;
m+ 3

2
; y2

)
− xm+1 exp(−x2)

m+ 1
1F1

(
1;
m+ 3

2
;x2

)
.

(3.144)

The one-body correlation functions for free fermions (left) and the Tonks-Girerdeau

bosons (right) are shown in Fig. 24. For free fermions the main contribution to the one-body
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Figure 25: The time-evolution of the half-width for free fermions. Black curve: momentum

space, red dashed curve: coordinate space. The strength of quench is

ωz,+/ωz,− = 115.4/15.6.

correlation function comes from the near-diagonal region x = y with maximum at the point

x = y = 0. For the Tonks-Girardeau bosons the one-body correlation function looks similar.

The main contribution comes from the nearly diagonal region, x = y, with maximum at the

point x = y = 0, but in general g1(x, y) is a positive function at any x and y.

The time evolution of the half-width of the free fermion system in the coordinate and

momentum spaces after the excitation are shown in Fig. 25. The number of particles N =

11. The excitation frequency is ωz,+ = 115.4/15.6ωz,−. The periods of oscillation in the

coordinate space and in the momentum space are equal. In the coordinate space the time

evolution of the average cloud size 〈z2〉 is proportional to the scaling function b(t).

The time evolution of the half-width of the Tonks-Girardeau gas in the coordinate and

momentum space after the excitation is shown in Fig. 26. The number of particles is N = 11.

The excitation frequency is ωz,+ = 7/9ωz,−. The periods of oscillation in coordinate space

and in the momentum space are equal. The half-width of oscillation in the coordinate space

is nothing else than the scaling function b(t), as in the case of free fermions. The expansion

starts at the moment of time τωz,− = 2π× 1.541. After the expansion starts, the half-width
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Figure 26: The time-evolution of the half-width for the Tonks-Girargeau gas. Black curve:

momentum space, red dashed curve: coordinate space. The strength of quench is

ωz,+/ωz,− = 7/9.
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Figure 27: The time-evolution of the half-width of the Tonks-Girargeau gas. Black curve:

momentum space, red dashed curve: coordinate space. The strength of quench is

ωz,+/ωz,− = 115.4/15.6
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in the coordinate space grows linearly. The half-width in the momentum space goes to a

constant.

The time evolution of the half-width of the Tonks-Girardeau gas in the coordinate and

momentum space after the excitation is also shown in Fig. 27. The number of particles is

N = 11. The excitation frequency is ωz,+ = 115.4/15.6ωz,−. The periods of oscillation in

the coordinate space and in the momentum spaces are equal to each other.
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4. Thomas-Fermi to Gaussian regime crossover

In a trapped non-interacting gas the energies of all states are proportional to the trapping

frequency ωz. The second energy level is twice degenerate and has the energy 2~ωz. One of

these states is connected with the center of mass motion. The second one determines the

frequency of breathing oscillations. It is clear that the breathing oscillation frequency for

the non-interacting gas is 2ωz. In the Thomas-Fermi regime the breathing mode frequency

is
√

3ωz. This means that there should be a crossover in the breathing mode frequency from

the value
√

3ωz to 2ωz in the region of weak interaction. Such a crossover appears also for

the Coulomb interactions in one-dimensional systems [31]. We describe this crossover within

the Hartree approximation which reduces the many-body problem to an effective one-body

problem, where interactions are taken into account by the effective mean-field potential. We

use the Hartree approximation for the ground state wave-function in the calculation of the

breathing mode frequency. In the regime of very weak coupling the ground state density

profile is gaussian-like. Thus, we call this regime Gaussian. We compare the results obtained

from equation (1.48) with those from Eq. (3.70).

4.1. Hartree approximation

The Hartree approximation is one of the most powerful and, at the same time, simple

methods. It was applied before for the calculation of the expansion dynamics [47], breathing

mode of the fermion Colagero model [48], for the Coulomb gas [31], and it is shown to be in

good agreement with the exact solution. Let us find the ground state wave-function in the

Hartree approximation:

ψgs(x1, x2, . . . , xN) = ψ0(x1)ψ0(x2) · · ·ψ0(xN), (4.1)

where ψ0 is the one-particle wave function normalized to unity. The ground state wave-

function can be obtained from the Ritz variational method. It consists of minimisation of

the energy functional with respect to the one-particle wave-function

F [ψ0] = 〈ψgs|Ĥ|ψgs〉 − ν〈ψgs|ψgs〉, (4.2)
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where ν is a Lagrange multiplier.
δF

δψ∗0(xk)
= 0 (4.3)

Thus we obtain the following equation for the ground state wave-function[
−1

2

∂2

∂x2
+
x2

2
+ α(N − 1) |ψ0(x)|2

]
ψ0(x) = εψ0(x). (4.4)

It is important to mention that the solution to Eq. (4.4) depends on a single parameter

α(N − 1).

We introduce the potential, kinetic and interaction energies as follows:

Epot = N
mω2

z

2

∫ ∞
−∞

z2ψ0(z)2dz (4.5a)

Ekin = N
~2

2m

∫ ∞
−∞

(
∂ψ0(z)

∂z

)2

dz (4.5b)

Eint =
N(N − 1)

2
g

∫ ∞
−∞

ψ0(z)4dz (4.5c)

Equation (4.4) does not have analytical solutions and it is possible to find the ground

state numerically. We thus solve the Gross-Pitaevskii equation numerically, starting from

a trial wave-function. The algorithm simulates the relaxation of the system to the ground

state in the imaginary time. The ground-state density profiles for 25 particles with various

values of the interaction parameter λ are shown in Fig. 28. In the Thomas-Fermi regime we

see a good agreement between the results given by different approaches. However, in the

Gaussian regime the LDA approximation does not give correct results.

It is possible to calculate the breathing oscillation frequency in the Hartree approximation

using the wave-function from the numerical solution of equation (4.4) and the sum rules.

The frequency of the breathing mode for two particles and the one calculated in the Hartree

approximation are shown in Fig. 29. The former curve is universal: it depends on the param-

eter λ only and does not depend on the number of particles. With larger N the applicability

range of the Hartree approximation grows. The more particles the larger is the interaction

strength at which the breathing mode follows the Hartree solution. This was confirmed by

the Diffusion Monte Carlo (DMC) simulations for the finite N (shown as coloured points).

The DMC simulations were performed in collaboration with Gregory Astrakharchik [49]. We

can see that in the weak coupling limit the parameter λ = −a1D/Naz is a unique parameter
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Figure 28: Ground state densities for various values of the parameter λ = −a1D/Naz in

the Hartree approximation with sum rules, compared with the results of the LDA.

which determines the system properties. Diffusive Monte Carlo simulations represent an

appropriate tool for problems like this. Typically, calculation time grows as a third power of

the discretization step. The derivatives can be calculated with the quadratic accuracy using

symmetric schemes, whereas the accuracy over the discretization parameter is linear.

4.2. Perturbative analysis for the Gaussian regime

We can consider a set of N uncoupled harmonic oscillators as the unperturbed prob-

lem and treat the weak interparticle interaction as perturbation. Thus the unperturbed

eigenstates are

ψi1,i2,...,iN (x1, x2, . . . , xN) =
1√
N !

∑
{P}

φi1(x1)φi2(x2) · · ·φiN (xN), (4.6)

with the corresponding energies

Ei1,i2,...,iN = ~ωz
N∑
k=1

(
1

2
+ ik

)
. (4.7)
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Figure 29: The dependence of the breathing mode frequency versus interaction parameter

λ = −a1D/Naz and the Hartree approximation with the sum rule (1.53) (black, dashed).

Colored points are results of DMC. Connecting lines are Pade approximations.

.

So, one can use the perturbation theory for calculating the ground state energy

Egs
~ωz

=
1

2
N + 〈ψ0,0,...,0 |V |ψ0,0,...,0〉 . (4.8)

We notice that all coordinates enter expression (4.8) in the same way, so that the first order

perturbation correction to the energy is

〈ψ0,0,...,0 |V |ψ0,0,...,0〉 =
N(N − 1)

2
α 〈ψ0,0,...,0 |δ(x1 − x2)|ψ0,0,...,0〉

=
N(N − 1)

2
α

∫ ∞
−∞

ψ4
0(x)dx =

N(N − 1)

2
√

2π
α. (4.9)

The first order correction to the ground state wave-function is

ψgs = ψ0,0,...,0 + α

∞,∞∑
n1,n2,n1+n2=odd

(−1)
n1+n2

2 2
n1+n2−1

2 Γ
(
n1+n2+1

2

)
√

2n1+n2n1!n2!π(n1 + n2)
ψn1,n2,0,..,0. (4.10)
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The second order perturbation correction to the ground state energy is

∑
n1,n2,...,nN

∣∣∣〈ψ0,0,...,0

∣∣∣V̂ ∣∣∣ψn1,n2,...,nN

〉∣∣∣2
E0 − En1+n2+...+nN

=
N(N − 1)

2
α2

∑
n1,n2,...,nN

|〈ψ0,0,...,0 |δ(x1 − x2)|ψn1,n2,...,nN 〉|2
E0 − En1+n2+...+nN

=
N(N − 1)

2
α2

∑
n1,n2,...,nN

∣∣∫∫ ψ0(x1)ψ0(x2)δ(x1 − x2)ψn1(x1)ψn2(x2)dx1dx2

∣∣2
E0 − En1+n2+...+nN

δn3,0 · · · δnN ,0

= 2α2
∑
n1,n2

∣∣∫ ψ0(x)2ψn1(x)ψn2(x)dx
∣∣2

E0 − En1+n2

= −2α2

∞,∞∑
n1,n2,n1+n2=odd

∣∣∣∣∣Γ
(
n1+n2+1

2

)
√

2n1!n2!π

∣∣∣∣∣
2

1

n1 + n2

= −α2 ln(4)

2π
. (4.11)

Let us calculate the energy of the breathing mode. The non-perturbed system has two

states with energy 2ωz. Their quantum numbers are 2, 0, 0, 0, . . . , 0 and 1, 1, 0, 0, . . . , 0. Let

us denote these states 2α and 2β. In principle, in order to find the energy of the breathing

mode one has to solve a secular equation, but now it is possible to avoid this procedure.

The states 2α and 2β are connected to the breathing state and center-of-mass oscillation

with an orthogonal transformation which does not change the trace of the secular matrix.

Since the center-of-mass oscillation has frequency 2ωz, the breathing mode has frequency

2ωz + V2α,2α + V2β,2β − 2Vgs,gs, in analogy to the result of Eq. (3.119):

V2α,2α =
(N − 1)(2N − 1)

4
√

2π
α, (4.12a)

V2β,2β =
2N2 − 2N − 1

4
√

2π
α. (4.12b)

This leads to

EBM
ωz

=
1

2
N + 2 +

4N2 − 5N

4
√

2π
α. (4.13)

Finally, we get the breathing mode frequency:

ω

ωz
= 2− N

4
√

2π
α. (4.14)

This result coincides with (2.22) when N = 2.
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Now we calculate the first order correction to the breathing mode using sum rules [20, 32].

〈
N∑
n=1

x2
n

〉
= N

〈
x2

1

〉
= N

∫∫∫ ∞
−∞

x2
1ψ

2
gsdx1dx2 · · · dxN

= N

∫∫∫ ∞
−∞

x2
1

(
ψ2

0,0,...,0 + 2αψ0,0,...,0

n1+n2=odd∑
n1,n2

V{0},{n1,n2}

E0 − En1,n2

ψn1,n2,0,..,0

)
dx1dx2 · · · dxN

= N
a2
z

2
+ 2Na2

zα

n1+n2=odd∑
n1,n2

V{0},{n1,n2}

E0 − En1,n2

δn2,0
1√
N

∫
ψ0(x1)x2

1ψn1(x1)dx1

= N
a2
z

2
+ 2Na2

zα
odd∑
n1=2

V{0},{n1}

E0 − En1

1√
N

1√
2
δn1,2 = N

a2
z

2
+Na2

zα
N − 1

4
√

2π
, (4.15)

ω2
z

∂

∂ω2
z

〈
N∑
n=1

x2
n

〉
= −1

2
N
a2
z

2
+

(
−3

4

)
Na2

zα
N − 1

4
√

2π
. (4.16)

Thus, we arrive at the result

(
ω

ωz

)2

= 4

(
1− αN − 1

4
√

2π

)
. (4.17)

When N = 2 this result coincides with the two-particle result given by (2.28).

It is also important to analyze what we get if instead of the operator
∑N

n=1 x
2
i take the

operator
∑N

n=1 x
2
i −Nx2

CM . This will improve our result as this operator does not excite the

center-of-mass motion. It is always possible to separate the center-of-mass motion from the

collective modes [50, 51].

〈
N∑
n=1

x2
n −Nx2

CM

〉
= (N − 1)

a2
z

2
+Na2

zα
N − 1

4
√

2π
, (4.18)

ω2
z

∂

∂ω2
z

〈
N∑
n=1

x2
n −Nx2

CM

〉
= −1

2
(N − 1)

a2
z

2
+

(
−3

4

)
Na2

zα
N − 1

4
√

2π
. (4.19)

Thus, we obtain

(
ω

ωz

)2

= 4

(
1− N

N − 1
α
N − 1

4
√

2π

)
= 4

(
1− α N

4
√

2π

)
. (4.20)

When N = 2 this result coincides with the two-particle result given by (2.30).
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4.2.1. Secular equation and exact diagonalization

It is always possible to expand the wave-function over a complete basis. Let us choose

the free boson wave-functions as a basis

ψ(x1, x2, . . . , xN) =
∑

n1≤n2≤...≤nN

cn1,n2,...,nN

∑
{P}

ψn1(xP1)ψn2(xP2) · · ·ψnN (xPN ), (4.21)

where cn1,n2,...,nN are coefficients of the expansion. The normalization condition is∑
n1≤n2≤...≤nN

c2
n1,n2,...,nN

= 1. (4.22)

Thus, the Schrödinger equation takes the form:[
ĤHO + αV̂

]
ψ(x1, x2, . . . , xN) = Eψ(x1, x2, . . . , xN). (4.23)

Multiplying this equation by
∑
{P} ψm1(xP1)ψm2(xP2) · · ·ψmN (xPN ) we get the following for-

mula:

(En1,n2,...,nN − E) cn1,n2,...,nN δn1,m1δn2,m2 · · · δnN ,mN + αVn1,n2,...,nN ;m1,m2,...,mN cn1,n2,...,nN = 0.

(4.24)

This is a problem of finding eigenfunctions and eigenvalues in the l2 space. Eigenvalues

of the secular matrix are the energies of the states, and the eigenfunctions are the wave-

functions. This problem has no analytical solution and the only thing which can be done

is to truncate the state space. After truncating we get a finite-dimension problem which is

easily solvable.

Two and three–particle results for the solution of the secular equation are shown in

Fig. 30. The states with energies less than 20~ωz were chosen as a basis for the expansion.

For two particles the basis contains 441 functions and for three particles there are 1831

functions in the basis. The purple and red dashed curves show the first-order expansion

(4.20) for two and three particles and the orange dashed curve is the 8-th order expansion of

the breathing mode frequency for two particles. It is clear that this approach works better

than the perturbation theory, but still it has the convergence radius which is smaller than

the position of the breathing mode frequency minimum. This means that there is a region

of the parameters where the wave-function cannot be properly expanded over the truncated

space and an infinite number of functions is needed for the correct expansion.
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z. The solid

black curve is the exact solution. The brown and green dashed curves are secular results.

The purple and red dashed curves are the first-order perturbation expansions. The orange

dashed curve is eights-order perturbation expansions.

4.3. Comparison of two sum rules

The dependence of the breathing mode frequency calculated with Eq. (1.41) on the inter-

action strength of two particles is shown in Fig. 31. The exact solution for the two particle

system (see Sec. 2) is shown with violet dashed curve. The breathing mode frequency cal-

culated in the scaling approximation (1.41) is plotted with green dashed curve. The same

results obtained with exclusion of the center-of-mass motion terms are shown in orange

dashed curves. The scaling approach with the exclusion of the center-of-mass motion gives

a correct asymptotic behaviour in the weak coupling regime. The black and dashed red

curves represent the sum rules and the scaling formula used within the Hartree approxima-

tion (see Sec. 4.1). These two results are indistinguishable under the small computation

accuracy in the thermodynamic limit, and as it is shown in Fig. 32 have big deviations for

the finite-size systems. In the Gaussian both sum rules lead us to the same result, while in

the Tonks-Girargeau regime Eq. (1.41) describes the crossover incorrectly.
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Figure 31: Comparison of the ratio ω2/ω2
z calculated from Eq. (1.41) with the one from

Eq. (1.53) for two particles and for the Hartree solution. The exact ω2/ω2
z value for the

two-particle system is plotted with the black solid curve.

Let us prove that the breathing mode frequency calculated in the Hartree approximation

with expressions (1.48) and (3.70) are not equal to each other. First we rewrite Eq. (3.70)

in terms of the potential energy:

ω2

ω2
z

= 4

(
1− λE ′pot

λE ′pot − 2Epot

)
(4.25)

Now let us consider the difference of expression (1.48) from (3.70):

ω2
(1,−1) − ω2

(3,1)

ω2
z

= −2EpotEint + 2λEpotE
′
int + λEintE

′
pot

2Epot(λE ′pot − 2Epot)
(4.26)

If both sum rules give the same result, then equation (4.26) gives 0. If it is so, then

(λEint)
′

λEint
= −1

2

E ′pot
Epot

(4.27)

This equation has to be correct for any λ. So, one can consider Eq. (4.27) as a differential

equation. The solution to this equation is

(λEint)
−2 = CEpot, (4.28)

where C is a constant which should not depend on λ.
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Figure 32: The ratio ω2/ω2
z as a function of the LDA parameter Λ = Na2

1D/a
2
z. Colored

symbols are data points obtained with Eq. (1.41) and diffusion Monte Carlo (DMC)

simulations for N = 2, 3, 4, 10, 25 (top to bottom). The dashed violet curve is the

breathing mode for two particles calculated with the operator Qc (1.23). Dashed colored

curves: Hartree approximation for a given particle number. The exact solution for two

particles (see Sec. 2) is shown with the violet dashed curve.

Let us calculate this constant in two asymptotic regimes where analytical solutions exists.

Namely, in the Gaussian and Thomas-Fermi regimes. In the Gaussian regime we have

Epot =
1

4
, (4.29)

and

(λEint)
2 = 2π. (4.30)

Thus, in the Gaussian regime C = 8π ≈ 25.13. In the Thomas-Fermi regime

Epot =
3

2
3

10
λ−

2
3 , (4.31)

and

(λEint)
2 =

3
2
3

5
λ−

2
3 . (4.32)

Therefore C = 250
9
≈ 27.78. We therefore see that C depends on the interaction strength λ,

which contradicts Eq. (4.28), and therefore the assumption that the difference of expression
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(1.48) from (3.70) is equal to zero is incorrect. Thus, we prove that expressions (1.48) and

(3.70) are not equal to each other. The difference between the breathing mode frequency

calculated using expressions (1.48) and (3.70) with high precision is plotted in Fig. 33.
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Figure 33: The difference between the breathing mode frequencies calculated with the

(1,−1) and (3, 1) sum rules for arbitrary values of the parameter λ = −a1D/(Naz) in the

Hartree approximation.

4.4. Regimes of a trapped one-dimensional gas

Summarising sections 3 and 4 we build a schematic plot which explains regimes of a

one-dimensional gas and crossovers between them.

The TF BEC to TG crossover is associated to an interplay of the parameters λ and

N−3/2, (see Fig. 34). It may not be captured within the Hartree approximation, which does

not contain N−3/2 as a parameter independent of λ. Instead, we may use the LDA [16]. It

is only valid in the large N limit and is based on the assumption that the local chemical

potential at the point z is equal to the chemical potential of a homogeneous system that

has the same density n(z). Therefore µloc(n(z)) = V (Z)− V (z) for |z| ≤ Z and it vanishes

for |z| > Z in the model (1.17). Here Z is the Thomas-Fermi radius of the gas cloud, whose
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Figure 34: The Tonks-Girardeau (TG), the Thomas-Fermi Bose-Einstein condensate (TF

BEC), and the Gaussian BEC regimes of the repulsive Lieb-Liniger gas in a parabolic trap,

Eq. (1.17), are shown as a function of the Hartree parameter λ = −a1D/(Naz) for a given

N. Density profiles are semicircle, inverted parabola, and the Gaussian deep in these

regimes, respectively. The local density approximation (LDA) parameter Λ is related to λ

as Λ = N3λ2. The TG and the TF BEC regimes are separated with Λ = 1.

value is set by the normalization condition
∫ Z
−Z dz n(µloc(z)) = N. The dependence of µloc

on n in the homogeneous Lieb-Liniger model (Eq. (1.17) with V = 0) was found in Ref. [28].

Using Eq. (1.53) with 〈Qc〉 = 〈Q0〉 =
∫
dz z2n(z) we get ω/ωz readily. The result depends

on a1D, az, and N through a single parameter Λ = Na2
1D/a

2
z = N3λ2 within LDA [16, 52, 53].

The Thomas-Fermi BEC to the Gaussian regime crossover is associated only with the

interaction parameter λ. It is described in the Hartree approximation by the Gross-Pitaevskii

equation. Deeply in the TF BEC regime, where the chemical potential µ is large compared

to the energy spacing ~ωz, the kinetic energy term can be omitted and we have a parabolic

density distribution

nH(z) = N
(9λ)

1
3

4az

(
1− z2

Z2

)
θ

(
1− z2

Z2

)
, λ→ 0. (4.33)

Here θ is the Heaviside step function, and the Thomas-Fermi radius is Z/az = (3/λ)1/3.

Thus, the Hartree approximation and the LDA are compatible with each other in the

Thomas-Fermi region, where the breathing mode frequency is
√

3ωz.
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5. Comparison of theory with experiments

“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are.

If it doesn’t agree with experiment, it’s wrong.”

Richard P. Feynman

The first experiment on measuring the breathing mode was reported in Ref. [13]. In this

experiment the breathing mode frequency was measured in two regimes and it was clearly

shown that it is different in these regimes. In this chapter we compare our theoretical results

with more recent experimental data from Refs. [14, 15]. We find an excellent quantitative

agreement with the data from the experiment [14]. However, there exists a mismatch between

the zero-temperature theory and the experimental data of Ref. [15]. Therefore, we provide

a finite temperature analysis and estimate the relevant temperature scales.

5.1. Comparison with 133Cs experiment

This section is dedicated to the analysis of the data from the experiment described in

Refs. [14, 22]. It is extremely hard to make measurements in highly-exited many-body states

because of their short lifetime. Therefore, for such measurements one can use cold atoms

in the 1D geomtry for getting a metastable state called the super-Tonks-Girardeau state

(sTG) decoupled the from thermal bath. This state is obtained by using Feshbach and

confinement-induced resonances to tune the interparticle interaction to infinitely attractive

[14]. It is long-lived [54] because in order to form a bound state the atoms have to approach

each other at an atomic distance. However, the probability of this is extremely small because

of an effective fermionisation [55, 56].

In the experiment [14, 22] bosonic 133Cs atoms were placed in an optical lattice with

retro-reflected laser beams confining the atoms to an array of 1D-tubes (see Fig. 35) and

creating a one-dimensional gas in each tube by using the condition ω⊥ � ωz. The tubes

contained 104 atoms [14]. In the central tube the number of atoms reached 8 − 25. In

this experiment typical scattering lengths for the Tonks-Girardeau and the super-Tonks-

Girardeau regime are a3D ∼ 875a0 (TG) and a3D ∼ 2300a0 (sTG), where a0 ≈ 0.529 Å is
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the Bohr radius. The trap frequencies are ω⊥ ≈ 2π × 13.1 kHz, ωz ≈ 2π × 15.4 Hz in the

repulsive regime and ωz ≈ 2π × (22.4÷ 52.3÷ 115.6) Hz in the attractive regime.

Figure 35: Laser beams holding 133Cs in a

trap. Red curves are equipotential surfaces.

First, we calculate values of physical

quantities using data for cesium taken from

Ref. [57]. Using the atomic mass of ce-

sium mCs = 2.20 × 10−25 kg we calculate

the perpendicular oscillatory length a⊥ =

1440.33a0 = 7.61 × 10−8 m and the oscil-

latory length along the z-axis az = 2.24 ×
10−6m in the repulsive regime and az =

(18.42 ÷ 12.05 ÷ 8.11) × 10−7m in the at-

tractive regime.

If we assume that in the experiment the

number of 133Cs atoms in the central tube is

fixed, then we can reproduce the values of all

physical quantities such as the scattering length, the correlation length ξ = (~2/2mgn)
1
2 =

γ
1
2a1D/2

√
2 and the Thomas-Fermi radius ZTF . These data for the repulsive interaction and

the fixed number of particles N = 25 are presented in Tables I and II. The particles are

distributed over the tubes according to the Thomas-Fermi law. The average over the whole

system is 〈N〉 = 17, but due to the measurement scheme the main signal comes from the

central tubes, where N = 25.

We can reproduce the values of all the physical quantities such as the scattering length,

the correlation length ξ and the Thomas-Fermi radius ZTF for the attractive regime as well.

We assume that in the central tube the number of 133Cs atoms is fixed and is equal to

N = 11. This set of data is presented in Table III. The numeration of points is similar to

the one in the original paper [14] (see Fig. 3(A)). The point 1a was measured at the trap

frequency ωz ∼ 2π × 22.4 Hz, 1b at ωz ∼ 2π × 52.3 Hz and points 1c− 6 were measured at

ωz ∼ 2π × 115.6 Hz.

The results for the attractive regime are presented in Fig. 36. The breathing mode

calculated in the hydrodynamic approach is shown by the solid curve, the exact two particle

solution is shown by the dashed curve, and the red squares are the experimental data. If we

assume that the interaction parameter has a different effective value, we can then explain a
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Table I: Table of data for the repulsive regime from experiment [14].

Data for the repulsive interaction first 7 points

# 1 2 3 4 5 6 7

N
(
a1D
az

)2
1.15× 10−4 1.49× 10−3 4.92× 10−3 9.22× 10−3 2.22× 10−2 1.12× 10−1 2.53× 10−1(

ω
ωz

)2
3.998 3.992 3.968 4.021 3.781 3.536 3.389

a1D, µm 5.79× 10−3 2.08× 10−2 3.78× 10−2 5.18× 10−2 8.04× 10−2 0.18 0.27

γ(0) 456. 129. 71.1 52.0 33.3 14.7 9.80

n(0),µm−1 0.757 .741 .744 .743 .746 .754 .752

n(0)−1, µm 1.32 1.35 1.34 1.34 1.34 1.33 1.33

Td
√
γ, nK 44.7 22.8 17.0 14.6 11.7 7.97 6.47

t 7.35× 10−4 9.49× 10−3 3.13× 10−2 5.87× 10−2 1.42× 10−1 7.12× 10−1 1.61

ξ, µm 0.0437 0.0838 0.113 0.132 0.164 0.244 0.300254

ZTF , µm 12.9 12.8 12.7 12.6 12.5 11.9 11.4

Table II: Table of data for the repulsive regime from experiment [14].

Data for the repulsive interaction second 7 points

# 8 9 10 11 12 13 14

N
(
a1D
az

)2
3.01 3.99 13.8 70.7 554. 8937 11310(

ω
ωz

)2
3.246 3.192 3.060 3.265 3.429 3.669 3.732

a1D, µm 0.94 1.08 2.00 4.53 12.7 51.0 57.3

γ(0) 2.116 1.800 0.796 0.129 3.30× 10−2 5.17× 10−3 4.42× 10−3

n(0),µm−1 1.01 1.03 1.26 3.41 4.81 7.59 7.89

n(0)−1, µm 0.990 0.968 0.796 0.293 0.208 0.132 0.127

Td
√
γ, nK 5.41 5.22 5.14 15.28 15.28 15.13 15.12

t 19 25 87 449 3529 56906 72018

Nco 29 32 48 69 95 130 133

ξ, µm 0.481 0.510 0.631 0.576 0.812 1.30 1.35

ZTF , µm 9.27 8.99 7.70 6.12 4.47 2.87 2.76

mismatch between theory and experiment by introducing a constant shift. Thus, we present
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Table III: Table of data for the attractive regime from experiment [14].

РIвЂћвЂ“ N
(
a1D
az

)2
a1D [µm] ξ [µm] ZTF [µm] γ(0) n1(0)

[
µm−1

]
1 a 8.0× 10−4 1.57× 10−2 1.39× 10−1 8.70 158 0.80

1 b 2.0× 10−3 1.02× 10−2 1.15× 10−1 5.72 100 1.21

1 c 3.4× 10−3 1.42× 10−2 8.88× 10−2 3.86 77.7 1.80

2 8.9× 10−3 2.30× 10−2 1.13× 10−1 3.89 48.6 1.78

3 2.1× 10−2 3.54× 10−2 1.42× 10−1 3.94 32.1 1.75

4 6.0× 10−2 5.99× 10−2 1.87× 10−1 4.04 19.6 1.69

5 2.4× 10−1 1.19× 10−1 2.74× 10−1 4.25 10.4 1.59

6 6.5× 10−1 1.97× 10−1 3.62× 10−1 4.48 6.74 1.50

the experimental data shifted by a constant. This constant is taken from the best fit and is

equal to 11.1.

Compiled data for the repulsive regime are presented in Fig. 37. Two universal scaling

curves are plotted. The one obtained in the hydrodynamic approximation is shown by the

black solid curve, and one for the weak coupling regime in the Hartree approximation is

shown by the black dashed curve. This curve depends on λ, and for plotting it as a function

of the parameter Λ we used N = 25. The colored circles are the results of the Diffusive

Monte Carlo simulations for N = 2, 3, 4, 10 and 25. Experimental points form Refs. [14]

are reproduced, and we see a good agreement between theory the experiment.

5.2. Excitation probabilities in the Tonks-Girargeau

regime

In the experiment [14] the super-Tonks-Girardeau regime was realized in the following

way. The system was placed in the laser trap with the trapping frequency ωz,− = 15.4

Hz. Then the magnetic field was changed during 100 ms in such a way that the effective

interaction became attractive. At the same time, the frequency of the laser trap was changed

to ωz,+ = 115 Hz. Thus, one can ask a question whether during this ramp higher levels were

excited. We analyse this using the results from Ref. [58]. Before the ramp the system was in
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Figure 36: The breathing mode frequency in the attractive regime. The solid curve

corresponds to the breathing mode from the hydrodynamic analytical solution, and the

dashed one to the exact solution for two particles. The red points are experimental data

and the blue points are rescaled data.

the ground state in a trap with frequency ωz,−. This means that ψ(x)→ φ0(x) for t→ −∞.

At t→ ±∞ the stationary states are:

φn(x; t→ ±∞) = exp

(
−i
(
n+

1

2

)
ωz,±t

)
φn(x;ωz,±), (5.1)

where φn(x;ωz,±) is the n-th eigenfunction of the harmonic oscillator with frequency ωz,±:

φn(x;ω) =
1√
2nn!

(ω
π

) 1
4

exp

(
−ωx

2

2

)
Hn

(√
ωx
)
. (5.2)

It is possible to calculate the excitation probabilities Wn,m = |Cn,m|2, where Cn,m are coef-

ficients in the expansion of the wave-function φn(x; t→ +∞) in the basis φm(x; t→ −∞):

φn(x; t→ +∞) =
∞∑
m=0

Cn,mφm(x; t→ −∞). (5.3)

This leads to the excitation probabilities

Wn,m =
min(n,m)!

max(n,m)!

∣∣∣∣P |n−m|2
m+n

2

(√
1− ρ

)∣∣∣∣√1− ρ, (5.4)
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Figure 37: The ratio ω2/ω2
z , as a function of the LDA parameter Λ = Na2

1D/a
2
z. The dashed

(black) curve: the Hartree approximation for N = 25 in the equation Λ = N3λ2. The solid

(black) curve: LDA. The TG regime corresponds to the Λ < 1, as defined in Fig. 34.

where the parameter ρ is defined by the auxiliary scattering problem [58]

ξ̈ + ω(t)2ξ = 0, (5.5a)

ξ(t) ∼ exp(iωz,−t) t→ −∞. (5.5b)

The trapping frequency ω(t)→ ωz,+ when t→ +∞. Therefore,

ξ(t)→ A1 exp(iωz,+t)− A2 exp(−iωz,+t) t→ +∞, (5.6)

where A1 and A2 are constants, which satisfy the condition |A1|2 − |A2|2 = ωz,−/ωz,+. The

parameter ρ is

ρ =

∣∣∣∣A2

A1

∣∣∣∣2 . (5.7)

We are interested only in the excitation probabilityWn,0. Expression (5.4) is significantly

simplified for the case of m = 0:

W2n,0 =
2n!

2n(n!)2

√
1− ρ ρn. (5.8)

The excitation probabilities for an infinitely fast ramp and smooth ramp during the time

100 ms are shown in Fig. 39 in the left and right panels, respectively. If the ramp is made
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Figure 38: The ratio ω2/ω2
z as a function of the Hartree parameter λ = −a1D/(Naz).

Dashed (black) curve: the Hartree approximation. Solid (black) curves: LDA for N = 25,

800, 8000. Dashed colored curves: interpolations for the data points obtained with

diffusion Monte Carlo (DMC) simulations for N = 2, 3, 4, 10, 17, 25 (top to bottom). Large

(black) circles: Innsbruck experiment [14], for which N = 25. Large (blue) boxes:

Palaiseau experiment [15], for which N is given in Table IV. The Gaussian BEC regime

corresponds to λ > 1 as defined in Fig. 34. DMC and experimental data points are the

same as in Fig. 37.
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Figure 39: First 20 excitation probabilities W2n,0 for smooth (right) and strong (left)

ramps.
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slowly the probability to excite high-energy levels is negligible, but if the ramp is strong,

the probability to excite high-energy levels is large.

5.3. Comparison with 87Rb experiment

The ETH (Zurich) experiment examined what happens with the breathing oscillations

if the temperature of the 3D BEC prepared to be loaded into an array of 1D tubes gets

higher [13]. The parameters a1D, az, and N correspond to the TF BEC regime of the 1D

gas. It was found that the breathing mode persists and the ratio ω2/ω2
z grows from the value

3 to 4 (with the uncertainty about 0.1). These findings could be interpreted as an increase

of ω due to the temperature increase, assuming that the 1D gas is in thermal equilibrium.

In this section we discuss the recently reported results of the Palaiseau group [15]. For
87Rb atoms there is no accessible Feshbach resonance and the 3D scattering length is fixed,

a3D = 103± 5a0 = 5.45± 0.26 nm. The perpendicular trapping frequency is ω⊥ = 2π × 2.0

kH, and a1D = −10.42 µm. The frequency ωz = 2π × 9.0 Hz and az = 3.59 µm. The

data points from the Palaiseau group shown in Figs. 37 and 38 are taken from Fig. 3(a) of

Ref. [15]. The parameters a1D, az, and N correspond to the Thomas-Fermi BEC regime for

all data points. We see that the frequencies for the first five of them match our theoretical

predictions within the error bars. The frequencies for the last two are higher than the theory

predicts.

In both experiments [14, 15] the temperature was claimed to be in the range of dozens

of nK during the measurements. In the Cs experiment [14] the temperature was close to

10 nK. In the Palaiseau experiment the in situ density profile [15] indicates a temperature

around 100 nK. The analysis of the raw data gives temperatures presented in Table IV.

For the Rb experiments [15], a change of the 1D scattering length a1D = −a2
⊥/a3D ≈

10.42µm in wide range is hard, and the only parameter which can be easily tuned is the

number of particles in the tube N . This gives a constant dimensionless temperature t =

2~2kBT
mg2

=
ma21DkBT

2~2 ≈ 972. The classification of the regimes contains also the temperature of

quantum degeneracy TQ = N~ωz (see Ref. [55]). When the number of the particles is fixed

the reduced temperature t is proportional to the interaction parameter Λ:

t =
Λ

2N

kBT

~ωz
. (5.9)
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For the 133Cs experiment one has t = 6.37Λ and TQ ≈ 20 nK. We can see that for all points

T and TQ are of the same order, and for the last two T < TQ.

Another classification [59] suggests to compare temperature with the temperature of

quantum degeneracy Td = ~2n2/2m = 2~2/ma2
1Dγ

2 and with Td
√
γ.

Table IV: Table of the data from the experiment [15].

# 1 2 3 4 5 6 7

N 7817 6846 5826 3281 2328 1904 783 (1385)(
ω
ωz

)2
2.944 2.990 2.990 3.06 3.08 3.38 3.77

TQ, nK 3376 2957 2516 1417 1005 822 338 (598)

N
(
a1D
az

)2
65687 57531 48959 27576 19564 16003 6580

Td, nK 12125 9904 7864 3248 1495 958 181 (507)

Td
√
γ, nK 654 562 473 244 136 98 28 (59)

Tco, nK 1078 954 824 502 383 327 144 (225)

γ(0) 0.0027 0.0030 0.0034 0.0054 0.0079 0.0098 0.0238

n(0)exp, µm−1 65.5 58.1 51.8 33.3 22.6 18.1 7.87 (13.4)

n(0)LDA, µm−1 81.2 74.4 66.8 45.6 36.2 31.7 17.5

n(0)−1, µm 0.0153 0.0172 0.0193 0.030 0.0442 0.0552 0.127
n(0)LDA
n(0)exp

1.24 1.28 1.29 1.37 1.60 1.75 2.23

ξ, µm 0.199 0.212 0.224 0.280 0.339 0.379 0.575

ZTF , µm 64.6 62.4 59.6 47.2 38.7 34.5 29.1

Tbf , nK 400 396 340 235 210 210 350 (190)

The number of the particles and densities in Table IV were taken from the raw data [15].

The phase diagram of a 1D quantum gas [55, 59] is shown in Fig. 40. The black lines

show edges of the Tonks-Girargeau regime. The dashed lines show the transition asymptotes

t = γ−2 and t = γ−
3
2 .

The following analysis was implemented. For the parameters of the experiment [15] the

density profiles were calculated in the LDA for a finite temperature. The local chemical

potential was taken from the Yang-Yang solution [60] (see Sec. 5.4). The density in the

center of the cloud was calculated for a broad range of temperatures. The dependence of the
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Figure 40: The phase diagram of a 1D quantum gas and the experimental data. The black

circles and blue squares are experimental data from Refs. [14] and [15], respectively.

central density on temperature and interaction parameter is plotted in Fig. 41. We extract

the best fitting temperature Tbf from the comparison of this dependence with the densities

measured in the experiment [15]. Our analysis indicates much higher temperatures than the

one from the in situ density.

According to Ref. [59], the finite-temperature effects are relevant above Tco = 3N~ωz/[kB ln(Λ/4)]

for the range of parameters which was chosen in the experiment. We see from Table IV that

T/Tco increases monotonically from the value ≈ 0.4 for the first data point to ≈ 0.9 for the

last one. Note that TQ larger than Tco by nearly a factor of 3 (and, therefore, than T ) for

all data points. Thus, TQ may not define a crossover temperature in the experiment [15].

5.4. Thermodynamics of the Lieb-Liniger model.

Yang-Yang solution

Thermodynamics of the system described by the Hamiltonian (3.7) is known [60]. For

finite temperatures the Bethe hypothesis (3.15) holds. Let us introduce functions Lρ(k) and
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Figure 41: The dependence of the density in the center of the cloud on temperature and

dimensionless interaction parameter Λ in the region relevant for the experiment [15]. Blue

spheres are experimental densities for a given interaction.

Lρh(k) which show the number of the filled rapidities k‘s and holes in the interval k; k+ dk,

correspondingly. Introducing the function ε(k) as exp(ε(k)/T ) = ρh
ρ

we have

2π(ρ(k) + ρh(k)) = 2πρ(k)(1 + exp(ε(k)/T )) = 1 + 2g

∫ ∞
−∞

ρ(k′)

g2 + (k − k′)2
dk′ (5.10)

The entropy S and energy E are defined as follows:

S/N = n−1
1

∫ ∞
−∞

((ρ(k) + ρh(k)) ln(ρ(k) + ρh(k))− ρ(k) ln(ρ(k))− ρh(k) ln(ρh(k))) dk

(5.11a)

E/N = n−1
1

∫ ∞
−∞

ρ(k)k2dk (5.11b)

n1 =

∫ ∞
−∞

ρ(k)dk (5.11c)

From the condition of thermal equilibrium we get the following equation by minimizing the

functional exp(S − E/T ):

ε(k) = −µ+
~2

2m
k2 − kBT

∫ ∞
∞

1

π

g

g2 + (k − q)2
ln(1 + exp(−ε(q)/T ))dq (5.12)
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The solution of equations (5.10) and (5.12) gives the dependence of the interaction pa-

rameter γ on the chemical potential µ and temperature T . In our future calculations we

will be interested in the dependence of µ on γ at a fixed T . The dependence of density on

the chemical potential for the dimensionless temperature t = 1000 is presented in Fig. 42.

This picture is typical for the phase diagram at a finite temperature. Contrary to the case

of t = 0 (see Sec. 3.4 and Fig. 16), the zero chemical potential does not imply zero density.

For a given negative chemical potential the system has a finite density (see Fig. 42). The

density far from the center of the trap is small, and thus the chemical potential is negative

near the edges of the cloud. It can be described classically (see Sec. 5.5).

Μ�kBT

Λ
d

B
n

-2 -1 0 1

101

103

Figure 42: The dependence of the density on the chemical potential at a constant

dimensionless temperature t = 1000.

Thus, the implementation of the LDA (3.6) for the case of a finite temperature has to be

modified. The finite temperature LDA approximation should read:

µLDA (n1 (z) , T ) + Vext(z) = µ0, (5.13)

where µ0 is a chemical potential in the trap center and it should be found from the normal-

ization condition ∫ ∞
−∞

n(µLDA(z), T )dz = N. (5.14)
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Figure 43: The dependence of the breathing mode frequency on temperature T for a fixed

interaction parameter Λ = 65000. The noise in the data is due to the noise in the

numerical calculations.

This approach is at least applicable for the quasi-BEC and Tonks-Girardeau regimes.

The dependence of the breathing mode frequency on temperature T for the interaction

strength Λ = 65000 is presented in Fig. 43. In the zero-temperature limit it recovers the

zero-temperature prediction (3.96). In the high-temperature regime the breathing oscillation

frequency goes to the classical gas result (5.20).

5.5. Classical gas. Large negative chemical potentials

For finite temperatures Eqs. (5.10, 5.12) have solutions where the chemical potential is

negative and the density is finite. In the regime with µ < 0 and |µ| � T , the gas should be

quantum decoherent and can be approximated with the ideal Bose gas equation of state:

n(µ, T ) =
1

2π

∫ ∞
−∞

dk

exp

(
~2k2
2m
−µ

kBT

)
± 1

=

√
mkBT

2π~2

∞∑
j=1

(∓1)j+1
exp

(
jµ
kBT

)
j

1
2

. (5.15)

In Eq. (5.15) upper signs have to be used for fermions and lower for bosons correspondingly.

The Yang-Yang solution reproduces this asymptotic behavior.
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In very hot trapped systems for such parameters the chemical potential in the center

is large and negative, so that we can neglect all terms except the first one. Thus for the

classical gas in the LDA we obtain

n(z) =

√
mkBT

2π~2
exp

(
µ0 − Vext(z)

kBT

)
, (5.16)

where kBTQ = N~ωz and µ0 = kBT ln
(
TQ
T

)
is fixed by the normalization condition. For the

trapped system whose local equation of state is fully described by Eq.(5.15), the chemical

potential µ0 < −kBT is needed. This condition is equivalent to ln(1 − e−1)T > TQ. The

average radius of the system is

〈z2〉 =
NkBT

mω2
z

. (5.17)

The potential and interaction energies are:

Epot =
mω2

z

2

∫ ∞
−∞

z2n(z)dz =
NkBT

2
, (5.18a)

Eint = g

∫ ∞
−∞

n(z)2dz =

√
π

4
Λ−

1
2kBTQ

√
TQ
T
. (5.18b)

The potential and kinetic energies in Eqs. (5.18) can be considered as a consequence of the

equipartition theorem. The scaling formula (1.41) gives the breathing mode frequency:

ω2 = ω2
z

(
4− 1

2

√
πΛ−

1
2

N

(
TQ
T

) 3
2

)
. (5.19)

This formula can be applied only in the region of high temperatures. Thus, one can conclude

that the breathing mode frequency for the classical gas is 2ωz.

The sum rules for this regime give the following result:

ω2

ω2
z

= 2. (5.20)

The first order correction can be calculated taking into account the next term in equation

(5.15). For free fermions the first order correction to the breathing mode frequency is

ω2

ω2
z

' 2 +
3

4

N~ωz
kBT

, (5.21)

and for free bosons:
ω2

ω2
z

' 2− 1

4

N~ωz
kBT

. (5.22)
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In general, if we take into account all the terms in Eq.(5.15), from the normalization

condition we will obtain the following equation for the chemical potential:

∞∑
j=1

exp
(
jµ0
kBT

)
j

= ln

 1

1− exp
(

µ0
kBT

)
 =

TQ
T
. (5.23)

Thus, we have
∂µ0

∂kBTQ

∣∣∣∣
T

=
1

exp
(
TQ
T

)
− 1

. (5.24)

The average radius of the cloud is

〈z2〉 =
NkBT

mω2
z

∑∞
j=1 exp

(
jµ0
T

)
/j2∑∞

j=1 exp
(
jµ0
T

)
/j

=
(kBT )2

~mω3
z

∞∑
j=1

exp

(
jµ0

T

)
j−2. (5.25)

The response of the system to a change in the trap frequency can be calculated as

∂〈z2〉
∂ωz

= N~
∂〈z2〉
∂kBTQ

. (5.26)

We then obtain:
∂〈z2〉
∂kBTQ

= −3〈z2〉 (kBTQ)−1 +
kBTQ
~mω3

z

∂µ0

∂kBTQ
. (5.27)

Eq. (5.27) can be considered as a partial differential equation for the function 〈z2〉(T, TQ).

It has to be complemented with the condition 〈z2〉(T, TQ = 0) = 0. This condition says

that if there are no particles, then the size of the system is zero. Thus, Eq. (5.27) has the

following solution

〈z2〉 =
1

mω2
z

k2
BT

2

~ωz

∫ TQ
T

0

q

exp (q)− 1
dq =

N3~2T 2

mkBT 3
Q

∫ TQ
T

0

q

exp (q)− 1
dq. (5.28)

5.6. Tonks-Girargeau gas at a finite temperature

In the Tonks-Girargeau regime the Lieb-Liniger gas has a spectrum analogous to the free

fermions spectrum. In this section we use the equation of state for free fermions with the

local density approximation and the sum rule to calculate the breathing mode frequency.

At finite temperatures the Tonks-Girargeau gas is described by the Fermi-Dirac distribu-

tion function

ρn =
1

1 + exp
(
En−µ
kBT

) (5.29)
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From the normalization condition
∑

n ρn = N in the thermodynamic limit N →∞,L→∞
and N/L→ n we obtain the equation of state:∫ ∞

−∞
ρ(k)dk = 2πn, (5.30)

where

ρ(k) =
1

1 + exp

(
~2k2
2m
−µ

kBT

) , (5.31)

is the continuous Fermi distribution function. The only characteristic scale in such a system

is the de Broglie wavelength

λdB =

√
2mkBT

~2
. (5.32)

After the integration we have

2πnλdB =

∫ ∞
−∞

1

1 + exp
(
q2 − µ

kBT

)dq. (5.33)

The implementation of the LDA needs the calculation of the chemical potential in the center

of the cloud. The related equation has the following form:∫ ∞
−∞

λdBn

(
µ0

kBT
− x2

)
dx = N

(
λdB
az

)2

. (5.34)

Equation (5.34) has the same form as Eq. (3.65), but with a1D changed to λdB, and it can

be solved in the same way.

The breathing mode frequency for free fermions at a finite temperature is shown in Fig. 44.

For such a system the breathing mode frequency depends on the parameter

ΛQ =
TQ
T
. (5.35)

In the zero-temperature limit it recovers the result for the Tonks-Girargeau gas (3.78). In

the limit of high temperatures the system enters the ideal Bose gas regime and its breathing

mode frequency is given by Eq. (5.20).
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Figure 44: The dependence of the breathing mode frequency on the interaction parameter

ΛQ = N~ωz/kBT .
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6. Conclusions

We have presented the study of breathing oscillations for a one-dimensional trapped

interacting Bose gas. Oscillations are induced by the instantaneous change of the trapping

frequency ωz.

We consider a 1D quantum Bose gas in a parabolic trap at zero temperature and explain,

analytically and numerically, how the oscillation frequency depends on the number of parti-

cles, the interparticle interaction, and the trap strength. We have focused on the many-body

spectral description, using the sum rule approximation. We identify the frequency as the

energy difference between the ground state and a particular excited state for the repulsive

interaction, and as the energy difference between the gas state and a particular excited state

for the attractive interaction. We demonstrate the existence of three regimes, namely the

Tonks-Girargeau regime, the Thomas-Fermi regime, and the Gaussian regime.

We describe a crossover from the Tonks-Girargeau to the Thomas-Fermi regime in terms of

the local density approximation. For the description of the crossover from the Thomas-Fermi

to the Gaussian regime we use the Hartree approximation. In both cases we demonstrate

the regions of the parameters where the crossover happens. We perform extensive diffusion

Monte Carlo simulations for a gas containing up to N = 25 particles. As the number of

particles increases, predictions from the simulations converge to the ones from the Hartree

and LDA in the corresponding regimes. This makes our results for the breathing mode

frequency applicable for an arbitrary number of particles and for any value of the interaction

strength. We complete our analysis with finite-N perturbative results in the asymptotic

regions. Our theory predicts the reentrant behavior of ω with increasing of the interaction

strength and explains the recent experiment [14]. A detailed extension of the present theory

to finite temperatures is still in progress.
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