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Abstract

The IEEE 802.11 protocol, based on the CMSA/CA principles, is widely deployed in

current communications, mostly due to its simplicity and low cost implementation. One

common usage can be found in multi-hop wireless networks, where communications

between nodes may involve relay nodes. A simple topology of these networks including

one source and one destination is commonly known as a chain.

In this thesis, a hierarchical modeling framework, composed of two levels, is presented

in order to analyze the associated performance of such chains. The upper level models the

chain topology and the lower level models each of its nodes. It estimates the performance

of the chain in terms of the attained throughput and datagram losses, according to

different patterns of channel degradation. In terms of precision, the model delivers, in

general, accurate results. Furthermore, the time needed for solving it remains very small.

The proposed model is then applied to chains with 2, 3 and 4 nodes, in the presence of

occasional hidden nodes, finite buffers and non-perfect physical layer.

Moreover, the use of the proposed model allows us to highlight some inherent prop-

erties to such networks. For instance, it is shown that a chain presents a performance

maximum (with regards to the attained throughput) according to the system workload

level, and this performance collapses with the increase of the workload. This represents

a non-trivial behavior of wireless networks and cannot be easily identified. However, the

model captures this non-trivial effect.

Finally, some of the impacts in chains performance due to the IEEE 802.11 mech-
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anisms are analyzed and detailed. The strong synchronization among nodes of a chain

is depicted and how it represents a challenge for the modeling of such networks. The

proposed model overcomes this obstacle and allows an easy evaluation of the chain per-

formance.

Keywords: Markov Chains, IEEE 802.11 DCF, Multi-hop Wireless Networks, Hier-

achical Modelling.



Résumé

Le protocole IEEE 802.11, basé sur les principes CMSA/CA, est largement déployé dans

les communications sans fil actuelles, principalement en raison de sa simplicité et sa mise

en œuvre à faible coût. Une utilisation intéressante de ce protocole peut être trouvée

dans les réseaux sans fil multi-sauts, où les communications entre les nœuds peuvent

impliquer l’emploi de nœuds relais. Une toplogie simple de ces réseaux impliquant une

source et une destination est communément connue en tant que châıne.

Dans cette thèse, un modèle hiérarchique, composé de deux niveaux, est présenté dans

le but d’analyser la performance associée à ces châınes. Le niveau supérieur modélise la

topologie de la châıne et le niveau inférieur modélise chacun de ses nœuds. On estime

les performances de la châıne, en termes de débit obtenu et de pertes de datagrammes,

en fonction de différents modes de qualité du canal. En termes de précision, le modèle

offre, en général, des résultats justes. Par ailleurs, le temps nécessaire à sa résolution

reste très faible. Le modèle proposé est ensuite appliqué aux châınes avec deux, trois

et quatre nœuds, en présence de stations cachées potentielles, de tampons finis et d’une

couche physique non idéale.

Par ailleurs, l’utilisation du modèle proposé permet de mettre en évidence certaines

propriétés inhérentes à ces réseaux. Par exemple, on peut montrer que la châıne présente

un maximum de performance (en ce qui concerne le débit atteint) en fonction du niveau

de charge de du système, et que cette performance s’effondre par l’augmentation de cette

charge. Cela représente un comportement non trivial des réseaux sans fil et il ne peut
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pas être facilement identifié. Cependant, le modèle capture cet effet non évident.

Finalement, certains impacts sur les performances des châınes occasionnés par les

mécanismes IEEE 802.11 sont analysés et détaillés. La forte synchronisation entre

les nœuds d’une châıne et comment cette synchronisation représente un défi pour la

modélisation de ces réseaux sont décrites. Le modèle proposé permet de surmonter cet

obstacle et d’assurer une évaluation facile des performances de la châıne.

Mots-clés: Châınes de Markov, IEEE 802.11 DCF, Réseaux Sans fil Multi-sauts,

Modèle Hiérarchique.
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List of Principal Notations

λi Datagram arrival rate at the queue i

Λ Workload of the system

μi Service rate of the queue i

Si Service time of the queue i

π(n) Probability of having n customers in the queue

Ki Capacity of the queue i (in datagrams)

Xi Throughput of the queue i (in datagrams per second)

Fi Throughput of the queue i (in frames per second)

pri Datagram rejection probability of the queue i

Ri Sojourn time in the queue i

Qi Number of datagrams to be transmitted and waiting in the queue i

Ui Utilization of the associated node

N Number of nodes transmitting datagrams

Xout Throughput of the chain (in datagrams per second)

prout Datagram rejection probability of the chain

Rout End-to-end delay of a datagram

Table 1: List of notations associated to the global model.

-
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pf Frame error probability

pBER Frame error probability due to BER of a link

pcoll Frame collision probability

phid Frame collision probability due to a hidden node

pst Frame collision probability due simultaneous transmissions

tb(k) Proportion of time during which a hidden node remains in backoff stage k

β−1 Mean time separating two backoff freezing (provided the node in in backoff)

γ−1 Mean duration of the backoff freezing plus a DIFS (DCF Interframe Space) time

B Backoff duration of a frame

np Number of pauses (freezing) in the backoff per frame

fk Probability of transmitting a datagram in exactly k frames

T Duration of a frame plus acknowledgment transmissions and a SIFS
(Short Interframe Space)

Wk Contention window size at the k-th backoff stage

α−1 Duration of a backoff slot

tdifs Duration of a DIFS time

tsifs Duration of a SIFS time

Table 2: List of notations associated to the local model and the IEEE 802.11 specifica-
tions.



Chapter 1

Introduction

1.1 Multi-hop wireless chains and Substitution Networks

The use of wireless networks is, undoubtedly, widespread in communications nowadays.

Several reasons can explain this large usage. For instance, we can mention the mobility

feature, in opposition to fixed stations using wired communications, the simplicity to

increase the number of users or the possibility of reaching isolated areas, which are not

easily connected to traditional wired links.

As a natural consequence, many standards were established in order to organize the

way communications are performed. In this context, we mention the IEEE 802.11 pro-

tocol, based on the CSMA/CA (carrier sense multiple access with collision avoidance)

principles, which stands among the leading communication standards for local wireless

networks. Its success can be explained by its simplicity and relatively low cost imple-

mentation. One of the most known types of local wireless networks implementing such

a protocol is infrastructure-based networks. In this type of organization, communica-

tion are performed directly between nodes and access points. Figure 1.1 shows a simple

example where some wireless devices perform communication through an access point.

Another well known architecture of wireless local networks is multi-hop networks. In

21
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Figure 1.1: A simple example of infrastructure-based wireless network.

this kind of networks, communications between two stations are performed with the use

of intermediary nodes (relay nodes), which are responsible for conveying the information

up to the destination.

One application of multi-hop wireless networks can be found in Vehicular Ad hoc

Networks (VANET). In such environments, the communications are often performed on

an infrastructure-based network basis, where access points directly communicate with

vehicles to provide/gather information. However, it is quite common to have vehicles

that are unable to directly communicate with the access points. In those cases, the

vehicles themselves may become relay nodes to establish communication between them,

by using the 802.11 protocol [LW07], [MFL06]. Figure 1.2 shows an example where

vehicle 3 can not communicate with the access points and, therefore, must use either

vehicles 2 or 4 as relay nodes.

Communication ranges of the access points 

1 2 3 4 5 

A 
B 

Figure 1.2: A simple example of multi-hop wireless networks in VANET’s.

One recent use of multi-hop wireless networks is Substitution Networks. This type

of network stands for a wireless solution whose purpose is to bring back connectivity or
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to provide additional bandwidth capacity to a network that just suffered a failure or a

dramatic surge in its workload (e.g., flash crowd effect). This latter network is called the

base network, and it can be based on wired or wireless technologies. It is worth pointing

out that a substitution network does not seek to provide new services to customers.

Its goal is rather to restore and/or maintain at least some services that were available

prior to the base network troubles. As a matter of fact, a substitution network is not a

stand-alone network.

Two types of nodes are involved in a substitution network: (i) Bridge routers, which

are basically gateways interconnecting the base network and the substitution network;

(ii) Mobile routers, which are the core piece of the substitution network. Their position-

ing should be done so as to give rise to path(s) that will route the traffic delivered by

the base network through the substitution network. Obviously, bridge routers require

a wireless interface to connect to the substitution network, and mobile routers require

motion capabilities to move towards their expected position. Wifibots1 or micro-drones,

like for instance AR.Drone 2.02, can be used as mobile routers. Last but not the least,

an algorithm should decide where mobile routers should move to [MNR12], [RMZR13].

Figure 1.3 presents an example of a substitution network operating to restore the

service when a link fails. In a) we have the original network and in b) the failure occurs

when the link goes down. The idea in c) is to provide temporarily communication

through the deployment of mobile routers, while maintenance is performed.

The concept of a substitution network is initially proposed in [RBDDA+11] and it

is also the core focus of the ANR VERSO RESCUE project (ANR-10-VERS-003)3, to

which this work is related. In this context, the base network is assumed to operate

through wired technologies or through a wireless technology requiring large and fixed

facilities. So it is very likely that the attained capacity of the substitution network, whose

1http://www.wifibot.com
2http://ardrone2.parrot.com/
3http://rescue.lille.inria.fr/
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Figure 1.3: Deployement of a substitution network.

technology should be embedded in mobile routers, is far much smaller. Such a drop in the

capacity has clear implications with regard to the control policy to be implemented on the

traffic at bridge routers. However, prior to these operations, it is crucial to position the

mobile routers in the best possible way and so to investigate the performance behavior

of a substitution network. For instance, investigated factors may include its capacity

with regard to the deployed topology, transmission power assigned to router antennas,

and buffer size on the wireless interfaces. In this direction, as an example, [ANB+12]

makes an analysis on the capacity of simple multi-hop wireless networks and how this

capacity is impacted according to the amount of conveyed information and the number

of relay nodes.

Even more recently, the application of multi-hop wireless networks was extended.

The company Google has developed a new implementation of multi-hop wireless net-
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works, referred as the Loon Project4. The goal is to connect isolated areas, where

network connections are poor or inexistent, by using balloons equipped with wireless

interfaces. Such balloons are capable of communicating between them and, therefore,

they are capable of creating a network to connect users to the Internet Service Providers

around the world. Figure 1.4 depicts the concept implemented by the company, with

the connections among balloons (on top) and between balloons and householders (from

top to bottom).

Figure 1.4: The Google Loon multi-hop wireless network (Image obtained from
http://www.google.com/loon).

In the context of multi-hop wireless networks, the most basic topology is a chain.

Figure 1.5 shows an example, where direct communication between stations A and B

is not possible (stations may be too far away from each other and can not be directly

connected). Therefore, it is necessary to use some relay wireless nodes to establish a

“path” that ensures the communication between the stations. In our example, the four

relay nodes are used to convey the information concerning the communicating pair. Un-

4http://www.google.com/loon
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derstanding the chains performance is a first step towards to the performance evaluation

of more general multi-hop wireless networks.

A 

B 

1 

2 

3 

4 

Figure 1.5: A wireless chain network connecting two stations A and B.

1.2 Wireless chains models

Throughout this work, the wireless technology considered for communications is IEEE

802.11, implementing the DCF (distributed coordination function) mechanism. Its fea-

tures and behaviors are described in the next chapter.

Although chains seem simple to understand, their performance can not be, in general,

easily derived. It is known that several factors impact the behavior of such topologies,

like for instance, the number of relay nodes, the distance between them, the amount of

information conveyed, to mention but a few. Moreover, some issues, like for instance,

the hidden node problem or the long-term unfairness may take place and they strongly

impact the chain performance.

Therefore, several studies are proposed in literature to estimate their performance

and to better understand those networks. They can be used to predict the chain be-

havior and analyze its performance. For example, several works show that the chain

performance may collapse whenever the amount of information to convey exceeds a
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limit [NL07a], [ANB+12]. Although network simulators (or even real testbed experi-

ments) present such behavior, it is not trivial to derive an explanation for this perfor-

mance collapse without a deeper insight into the network variables. In this direction,

analytical models represent interesting tools, since any information of the network can

be easily retrieved (on the condition it is incorporated on the model).

Additionally, analytical models are usually quickly solved once they are parameter-

ized, when compared to traditional networks simulators or real testbeds. Besides, some

models can predict the behavior of a wide range of topologies with small modifications.

Simulators and real testbeds, however, demand to re-run experiments for each analyzed

topology, with is often a strong time-consuming task. Moreover, such simulators and real

testbeds usually demand third-party softwares to collect data (like, for instance, Wire-

shark5) or to handle the gathered information (like MATLAB6). The implementation of

such analytical models is also far less expensive, since no special hardware nor special

software is demanded. These advantages make analytical models serious candidates for

evaluating chains performance.

Unfortunately, a significant amount of works make strong simplifying assumptions

when modeling a chain, in order of to keep the corresponding models tractable. We can

cite, for instance, the use of infinite buffers, which avoids dealing with information losses,

the implementation of a perfect physical layer or the assumption that nodes have always

information to send. As a consequence, the results obtained may considerably deviate

from the actual behavior of the studied network. Furthermore, several works restrict

their analysis for the cases of one-way traffic. If we take the example of Figure 1.5, it

means a traffic generated at station A towards station B, but no traffic in the opposite

direction. The substitution networks, however, intend to replace links that are usually

bidirectionals. Thus, such networks may convey traffic in both directions. We discuss

further about those models in the following chapters.

5http://www.wireshark.org/
6http://www.mathworks.com/
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In this work we overcome some of the limitations of the previously proposed models.

We present a hierarchical based modeling framework, composed of two levels, to evalu-

ate the performance of a IEEE 802.11-based chain. The upper level models the chain

topology, while the lower level models each node of the chain. Moreover, the modeling

framework also includes a solution for the hidden node problem for the case analyzed

in this work. Our model computes the performance of the chain in terms of attained

throughput and datagram losses, according to different channel degradations patterns

due to Bit Error Rate. In order to validate our model, we compare the performance

obtained with the proposed model and those delivered by a discrete-event simulator. Fi-

nally, we use our model to investigate some behaviors associated to such a chain, in order

to get a better understanding of multi-hop wireless networks and to highlight properties

inherent to those networks.

1.3 Organization of this work

This work is divided as follows. In Chapter 2, we describe the mechanisms associated

to the IEEE 802.11 technology we consider in our model and the tool we use to validate

it. We make an extensive use of a network simulator to validate our model, and thus

we adapt it to represent multi-hop wireless chain scenarios more realistically. We also

describe all the changes we have performed in this simulator in Chapter 2.

A discussion about the state-of-the-art concerning chain models and performance

evaluation is presented in Chapter 3. We are interested in the benefits presented by our

model and we compare it with other works.

Chapter 4 presents our modeling framework. We discuss all the assumptions that

we make. We apply it to two simple scenarios, composed of two and three nodes, with

one single station generating traffic, in order to give the most important insights with

regards to our model. We show that, despite the apparently simplicity of such scenarios,
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they present complex behaviors, which are worth of investigation.

In Chapter 5, we extend our scenarios to the case where the two extremity stations

generate traffic and the relay node has to deal with different channel conditions at the

same time. We show that, with regard to our model, there is no need of many adaptions

to handle such scenarios.

Chapter 6 extends the modeling to a scenario where we deal with the problem of

hidden nodes. This type of issue is complex and hard to overcome, but we show how

our model can be adapted to satisfactorily evaluate chains with such characteristics.

The conclusion of our work and the future researches that shall be performed con-

cerning this work are finally presented in Chapter 7.



Chapter 2

IEEE 802.11 DCF and Simulator

2.1 DCF mechanisms

The CSMA/CA (Carrier sense multiple access with collision avoidance) is an access

method developed for wireless networks that aims to avoid collisions on channel during

transmissions of different stations. In this direction, the IEEE 802.11 standard [IEE12]

implementing the DCF (Distributed Coordination Function) is among the most impor-

tant techniques for local wireless networks.

In this work, we use the IEEE 802.11 DCF mechanism and, therefore, we describe

its main characteristics in this section. It is important to describe and discuss them,

since our model, which will be presented in the next sections, lies intrinsically on the

behavior of the DCF mode.

When a node has a datagram to transmit, it is enqueued in a buffer. When the node

is ready to send the datagram, it passes a copy of this datagram to the MAC (Medium

Access Control) layer, who will implement all the IEEE 802.11 DCF mechanisms that

we describe in this section. This datagram copy is referred as a frame.

In order to avoid collisions, before transmitting a frame, a node must sense the

channel until the latter is found to be idle for a protocol time DIFS (DCF Interframe

30
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Space). It is important to clarify when the channel is considered to be idle or busy,

according to a node. Consider the topology presented in Figure 2.1.

Figure 2.1: Communication and carrier sensing ranges of a node.

In this topology, node 1 transmits a signal that arrives at some nodes. The nodes

that are capable of sensing such signal and decode it are considered as the neighbor nodes

of node 1. We refer as the communication range the distance up to which neighbor nodes

can receive the signal with a power higher than a given threshold, which triggers the

decoding of the packet (nodes 2 and 3 in the figure). For these nodes the channel is

considered to be busy. However, if the signal can be sensed by nodes but not with a

sufficient power to be decoded by the wireless interface, we consider that these later

nodes are in the carrier sensing range (nodes 4 and 5). Note that no communications

succeed under these conditions, but the channel is still considered busy by nodes within

this range. Finally, if the signal is so weak that it can not be sensed by the physical

layer, the channel is considered idle by the nodes (nodes 6 and 7 in the example).

Figure 2.2 summarizes the different behaviors. Note that the received signal power

thresholds, which allow to change from one range to another, depend on the wireless

card characteristics.

If the channel is sensed idle during a time DIFS, the node must, then, defer a certain
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Figure 2.2: Communication and carrier sensing ranges according to the received signal
power.

amount of time, whose value is randomly chosen within an interval determined by the

contention window (also denoted W hereafter). This latter delay is expressed as a

number of slot times and is referred to as the backoff. The backoff value is decremented

by one whenever the channel is sensed idle during an entire slot time. If the channel is

sensed as busy, the backoff value remains constant and is not decremented. Whenever

“paused”, the backoff is said to be in freezing state. The duration of the backoff freezing

corresponds to the time the channel is sensed busy. During this period, the “frozen”

node shall not transmit its frame. This mechanism aims to prevent two neighbor nodes

from transmitting at the same time.

The backoff quits freezing state, and hence resumes its decrement, if the channel is

sensed idle during a DIFS period. As the backoff value reaches zero, the node can start

its transmission. Note that a backoff period can be interrupted several times due to

multiple transmissions in its neighborhood.

A node considers that its frame has been successfully transmitted to its neighbor

node when it receives an acknowledgment frame (ACK). If the node does not receive an

acknowledgment before a timeout, whose value includes also a protocol defer time SIFS
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(Short Interframe Space), it assumes the corresponding frame has been lost, and thus it

attempts to retransmit it up to a given limit defined in the standard. Note that at each

retransmission of a frame, the contention window size is doubled up to at limit. If the

first transmission of a frame as well as all its subsequent retransmissions fail, the node

simply discards the corresponding datagram. Finally, each successful transmission of a

frame (as well as a complete datagram discard) resets the contention window to its initial

value. Figure 2.3 shows a simple example of the IEEE 802.11 DCF mechanisms for a

given node that transmits a frame, with one freezing period, i.e., 1 interruption caused

by a neighbor transmission. We can see all the steps before transmission represented in

the colored boxes of the figure, where we have a backoff composed by 10 time slots.

DIFS

TRANSMISSION
OF A NEIGHBOR

FREEZING DIFS TRANSMISSION

SIFS ACK
time

TIMEOUTnode 1

BACKOFF
REMAINING

BACKOFF

time slot

Figure 2.3: An example of the IEEE 802.11 DCF mechanisms.

According to the standard, a node must replace DIFS by a EIFS (Extended Inter-

frame Space) whenever the medium becomes idle after a frame reception that does not

result in a correct reception at the MAC layer. In our study, we disable EIFS by only

using DIFS. This choice is motivated by some works, like in [CDL05], suggesting that the

EIFS is not triggered in some IEEE 802.11 cards. Some chipsets (e.g. Atheros AR9331)

have also the possibility to ignore EIFS.

IEEE 802.11 includes an optional mechanism to avoid collisions, known as RTS/CTS.

When activated, prior to each frame transmission, a node sends a RTS (Request-to-Send)

frame and should receive a CTS (Clear-to-Send) frame in the aim of getting exclusive

use of the channel. Note that since RTS/CTS has been shown to be inefficient in the

case of a chain [XGB03], we did not consider it in our study.

Finally, we can summarize the IEEE 802.11 DCF mechanism as used in this work,
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according to the flowchart depicted in Figure 2.4. We can see all the steps a node

needs to follow, in order to transmit a frame, and what actions to take in the case of

transmission success or failure.

Choose new
backoff

Check channel

Defer DIFS
while channel is idle

Wait until
channel is idle

Decrement lasting 
backoff slot by slot 

while channel is idle

Transmit frame
and wait timeout

Double CW

Busy
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ACK
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No ACK
received

Backoff finished

Reset
CW

Retransmission
limit?

NoYes

Wait new frame 
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Start

Busy channel

Discard associated 
datagram

Busy channel

Idle channel

Figure 2.4: Flowchart of the IEEE 802.11 DCF mechanisms.

2.2 Network Simulator 2

In order to simulate multi-hop wireless chains and to validate our model, we use the

Network Simulator ns-2.35 [NS2]. We choose this tool, since it is already used in several

works and it is quite adapted to wireless scenarios and to the IEEE 802.11 DCF protocol.

We make, however, some improvements in the tool, by incorporating functionalities that

are not natively integrated.
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One modification we perform is to add a non-perfect physical layer model to wireless

transmissions. We incorporate the patch developed in [Fio] for this task. Then, bits

may be corrupted during frame transmissions due to channel conditions, according to

a certain probability. This probability is referred as Bit-error rate (BER). Whenever

incorrect bits are received, we consider that the MAC layer is unable of correctly decoding

the associated frame and discards it, forcing a retransmission (or a ultimately discard)

at the sending node. The reasons for these errors are various, including noise, signal

attenuation distortion, interference, among others.

The actual value of BER depends on the received signal power, Prx, which is a

function of the transmission power Ptx of the sender and the distance d between the

sender and the destination nodes. In our simulations, the value of Prx is calculated

according to the 2-ray ground propagation model, as defined in Relation (2.1).

Prx =
Ptx . Gt . Gr . ht

2 . hr
2

d4
(2.1)

Both signal powers are expressed in watts. Gt and Gr correspond to the gains of

the transmitter and receiver node antennas, respectively, as defined in the wireless card

specifications. ht and hr are the height of such antennas (in meters). This propagation

model, implemented by default over ns-2.35, is well suited for outdoor environments,

which can be considered in the RESCUE project described in the previous chapter.

Finally, we can relate the value of Prx to the corresponding BER, by using tables provided

by wireless card manufacturers [Int02]. Note that want other relations could be used

instead.

Furthermore, we incorporate to the simulator a datagram generator, according to a

Poisson process. This type of datagram generation is not natively developed for ns-2.35,

but, as described in the following chapters, it is needed for our modeling approach.
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2.3 Graphical Interface for ns-2.35 results

In order to get a better understanding of the IEEE 802.11 DCF interactions between

neighbor nodes of a chain, we have developed a graphical interface to easily interpretate

the ns-2.35 results1. This tool translates datafile traces into readable pictures, which

allows us to see at a glance when the states of nodes are in backoff, DIFS, transmissions,

etc.

Consider the scenario depicted in Figure 2.5, composed of a chain with three nodes

and datagrams traveling from node 0, using the relay node 1 up to the destination node

2. All nodes can sense each other and the links are not subjected to large values of

0 1 2

Good link Good link

Light Workload

Carrier sensing range of node 0

Figure 2.5: Scenario with three nodes and one light.

BER. The datagrams are generated at node 0 according to a Poisson process with a

light generation rate (referred as workload). A screen capture of the graphical interface

associated to this scenario is shown in Figure 2.6. Each line of bars correspond to the

events at each node.

Before any transmission, the node defers DIFS time, represented by the yellow bar.

Following, a random backoff is decremented (blue bar marked with “B”) until transmis-

sion starts, as described in the green bars with a “T”. The event T y
x (id) corresponds

to the x-th attempt of sending the frame identified by id at node y. For example, the

first transmission of the image corresponds to the first attempt of sending frame 176

at node 0. In the same way, the event Bx indicates that this backoff precedes the x-th

transmission of the frame. After a transmission, node 0 remains paused in timeout (“P”)

1This tool was developed with the collaboration of Mr. Huu-Nghi Nguyen.
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Figure 2.6: Graphical interface implemented for ns-2.35 results.

waiting for the acknowledgment from node 1 (event “A” in the second line). We can

see that this is a successful transmission and therefore, node 1 starts the procedure to

forward frame 176 to the destination. When the last node of the chain acknowledges

the frame, we consider that the associated datagram was correctly conveyed along the

chain.

We can clearly see that, in this scenario with a light workload, there are empty spaces

between two successive transmissions, which correspond to periods where the nodes are

in starvation (no datagrams to send). Nevertheless, we can see that node 0 goes shortly

into freezing state (red bar marked with “G1”), since the datagram associated with frame

178 was generated during the acknowledgment transmission at node 2. After the freezing
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period, as expected, node 0 defers for DIFS time (yellow bar) and then decrements its

backoff.

Figure 2.6 also shows the quasi-periodicity between the events at neighbor nodes

(backoff, DIFS, transmission, ...). For instance, a transmission from node 0 always

precede a transmission from node 1. Furthermore in the case of light workloads, it is

very likely that the nodes buffers are empty. Therefore, the backoff at the relay node

is only triggered after the immediate arrival of a datagram from node 0. Moreover, we

can see that even for a small duration, a node goes into the freezing state if and only if,

during its backoff countdown, a neighbor transmits a frame.

We show a second example of the graphical interface, for the same topology with

three nodes and good links, but with a single heavy workload, as depicted in Figure 2.7.

The associated events can be found in Figure 2.8.

0 1 2

Good link Good link

Heavy Workload

Carrier sensing range of node 0

Datagram losses at node 0

Figure 2.7: Scenario with three nodes and one heavy workload.

We point out that, unlike to the previous example, datagrams may be lost due to

buffer overflow. This happens since the datagram arrival rate at node 0 is greater than

the output rate towards the relay node. For example, after the transmission of datagram

261 at node 0, the following one corresponds to 263. That means one datagram (a.k.a

263) was lost before entering the source node buffer, due to buffer overflow. We can also

see that datagram 261 is only conveyed by the relay node after several other transmissions

are finished (since the buffer is not empty when it arrives).

Another important behavior we can identify in chains, by using our graphical inter-

face, is starvation under saturated scenarios. For example, consider the scenario depicted
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node 1
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DIFS
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Frame transmission

ACK transmission

Waiting ACK

Figure 2.8: Graphical interface for a saturated scenario.

in Figure 2.9. There are three nodes conveying one flow. The datagrams generation rate

0 1 2

Bad link Good link

Heavy Workload

Carrier sensing range of node 0

Datagram losses at node 0

Figure 2.9: Scenario with three nodes, one heavy workload and one link subject to high
BER.

is high at node 0 (heavy workload), which implies datagram losses. Unlike the scenario

of Figure 2.7, we consider that the link between nodes 0 and 1 is subjected to high values

of BER, since the distance between the two nodes is large.
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The graphical interface for such a scenario is shown in Figure 2.10. We see that, at

node 0, after datagram 306, the next datagram in buffer is datagram 314 (all others in

between are lost due to buffer overflow). It means that node 0 has always a datagram to

send (it is never in starvation). Nevertheless, the relay node remains idle during some

periods, due to an empty buffer.

node 1

node 2

node 0

DIFS

Backoff

Freezing

Frame transmission

ACK transmission

Waiting ACK

Figure 2.10: Graphical interface for a scenario with saturation and starvation.

This behavior can be explained by the use of a non-perfect physical layer, which may

lead to high values of BER in the links between nodes. With the poor quality of the first

link, frames are likely to be lost and retransmitted by node 0. For instance, let us analyze

the frame associated with datagram 314. It first attempt to be transmitted fails, since

node 0 tries to transmit it for the second time (T 0
2 ). After a second attempt, transmission
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fails again and, at this time, the buffer of the relay node is already empty. Finally, after a

bigger backoff (remind that the contention window doubles after each frame transmission

failure), the datagram arrives at the relay node. Such retransmissions, preceded by all

the IEEE 802.11 DCF mechanisms, increase the necessary time to correctly send each

datagram to the relay node. Meanwhile, the link between nodes 1 and 2 remains good

and frames are not lost. Thus, datagrams are quickly forwarded towards the destination

node, leaving often an empty queue.

As a last example, consider the scenario depicted in Figure 2.11. The chain is com-

posed of four nodes, conveying one flow generated at node 0 towards node 3, using nodes

1 and 2 as relay nodes. In this scenario, nodes 0 and 3 are outside each other’s carrier

0 1 2

Good link Good link

Light Workload

Carrier sensing range of node 0

3

Good link

Figure 2.11: Scenario with four nodes, one flow and with hidden nodes.

sensing range. We observe, with the graphical interface, one last behavior associated to

chains: the collisions due to hidden nodes. In this scenario, such collisions occur between

the frames of node 0 and acknowledgements of node 3, as shown in Figure 2.12, since

they can transmit at the same time.

The collisions due to hidden nodes are not negligible and they may greatly impact the

system performance. In this example, we can see that a collision occurs at both nodes

1 and 2, since the frame labeled 1596 from node 0 collides with the acknowledgement

from node 3. The relay nodes, thus, are not capable of decoding the mixed signal that

they capture.

The behaviors described in this section (synchronization, buffer overflow, starvation

and collisions) are not easily captured by analytical models. Therefore, estimating the

performance of a chain is not a trivial task and several models simply neglect them.
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node 1

node 2

node 0

DIFS

Backoff

Freezing

Frame transmission

ACK transmission

Waiting ACK

node 3

Figure 2.12: Graphical interface for a scenario with collisions between frames and ac-
knowledgments.

In our work, we incorporate those intrinsic characteristics at our modeling framework,

since we believe they are important to deliver more accurate results.

2.4 Used Parameters for the Numerical Results

Throughout this work, we present several numerical results corresponding to different

scenarios simulated with ns-2.35. The model, which will be proposed in the following

chapters, is implemented by using the MATLAB tool, and its performance are compared



43

with the one delivered by the simulator.

For any analyzed scenario, several characteristics of the network to study remains

constant. First of all, we always consider that nodes are placed in a chain network.

Under this topology, a node can only communicate with its 1-hop neighbors, and the

carrier sense range affects all its 2-hop neighbors. All nodes in the chain are identical in

terms of computation and communication power.

In all the scenarios studied in this work, we have 1 or 2 fixed source nodes, at the

borders of the chain, that generate the system workload. The workload is conveyed up to

the opposite border node of the chain through relay nodes. Those relay nodes are placed

at different positions to evaluate the network performance under different conditions.

Figure 2.13 shows an example of our topology, for a case where a single workload is

injected in one side of a chain composed of 6 nodes.

Workload 3 4

2

1

5

6

Transmission range of node 3
Carrier sense range of node 3

Figure 2.13: Chain topology with communication range to 1-hop neighbors and carrier
sense range to 2-hop neighbors.

Second, the links between the nodes are not ideal and are subject to BER. The BER

associated to the link is deduced from the signal power at the destination node and a

table provided by wireless card manufacturers [Int02]. We assume that the links have

a constant physical transmission rate, which means there is no auto-rate adaptation
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according to its quality. All the numerical results are obtained with a link physical

transmission rate of 11 Mb/s.

Third, we use the 2-ray ground propagation model, whose parameters values (iden-

tical for all nodes) are described in Table 2.1.

Antennas height 1.5m

Antennas gain 1

Nodes transmitting power 0.031622777w

Carrier sense power threshold 6.309573445× 10−13w

Communication power threshold 6.309573445× 10−12w

Communication range 399m

Carrier sense range 700m

Table 2.1: 2-ray ground propagation model parameters.

Fourth, we use the IEEE 802.11b protocol throughout this work, whose parameters

values are provided in Table 2.2.

DIFS 50μs

SIFS 10μs

Time slot 20μs

Contention window size (min,max) 31, 1023

Frame transmission limit 7

Table 2.2: IEEE 802.11b parameters.

Finally, the workloads are always generated according to a Poisson process (although

they vary in intensity). The datagrams have a constant size of 1500 bytes.



Chapter 3

State-of-the-art

In this chapter, we present a detailed state-of-the-art concerning the subject of this thesis:

the modeling and the performance analysis of IEEE 802.11-based multihop networks

using the DCF mechanism.

3.1 Insights on multi-hop chains

Some works have described the usage of mobile ad hoc networks for providing connec-

tivity to isolated areas, with regard to commercial and military applications [CMC99],

[Gio02]. However, the notion of “Substitution Networks”, to which this work is related

to, is initially provided in [RBDDA+11]. The authors describe the basic concept of such

networks, which is to temporarily restore communication to a link that suffers a failure,

while maintenance is deployed and performed over the broken link. They also describe

the mechanisms required to make substitution networks operational and efficient. For

example, the authors in [MNR12], [RMZR13] propose an algorithm that evaluates the

current throughput of a substitution network and decides if the routers must be differ-

ently positioned in order to increase the overall throughput. Moreover, in [MNR11] the

impact of mobility in substitution networks is discussed.

45
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In that direction, it is important to evaluate the performance of a chain, which is the

simplest topology of a multi-hop wireless network. The authors in [XS01a] and [XS02]

study, by simulation, the performance of IEEE 802.11 DCF in multi-hop chains when

the injected traffic consists of TCP flows. They point out the TCP instability and

the unfairness issues that may arise with this topology. For example, the problem

of hidden nodes engenders collisions that force the discard of datagrams, which the

TCP mechanism considers as a broken link. As a consequence, it keeps often trying to

reestablish the route, which severely penalizes the actual throughput of the network.

The authors of [LBDC+01] study the capacity of multi-hop wireless networks based

on IEEE 802.11 DCF and, specifically, the capacity of multi-hop chains. The perfor-

mance are studied using the simulator ns-2. The authors turn on the RTS/CTS mech-

anism, set the physical rate of wireless links to 2 Mb/s, and assume that a single flow

is sent through this topology (in fact the flow profile is not specified in the article).

The simulation results show that, when the flow rate becomes too large, the throughput

achieved along a multi-hop chain tends to decrease with the number of hops of the chain

and seems to converge towards a bound. They also show that the capacity of the chain

can be attained for a specific flow sending rate and that the throughput obtained on the

chain slightly decreases and becomes smaller than the capacity when the flow sending

rate is increased. On the same topic, the authors in [ANB+12] confirm, through simula-

tions, for different chain topologies, that the throughput delivered by a chain increases

with the workload up to a limit. After that limit, any increase in the system workload

actually decreases its performance. Their work performs simulations for scenarios with

4, 5 and 6 nodes in a chain where 2 flows are conveyed in opposite directions.

In [NL07b], the authors provide a throughput analysis of multi-hop chains with

one transmitted flow. The analysis is carried out both by simulation and analytically

and shows that the load injected into the chain must be controlled in order to reach



47

the optimal overall throughput. This analysis focuses on interactions between hidden

nodes. A similar study is provided in [YK07]. In [LHH+07], the authors study the

performance of a multi-hop chain under different physical rates, with and without the

use of RTS/CTS, and with one-way flow. The results show that using high physical

rates do not necessarily lead to the best performance in terms of end-to-end throughput

and end-to-end delay, specifically when RTS/CTS is used.

The previous works, described in this section, are mainly based on simulation results.

When exploiting the real testbeds, the work developed in [CCG00b] estimates the average

throughput that a IEEE 802.11-based network can achieve. The authors provide insights

on how the exponential backoff mechanism impacts the overall performance of a network,

since its conservative approach tends to enlarge the amount of time a node prevents from

transmitting, in the presence of several frame losses. This study is deeper analyzed by

the same authors in [CCG00a]. In [DGL04], the authors carry out real experiments on a

multi-hop chain and comment the obtained performance. The chain consists of at most 4

hops and one CBR (Constant Bit Rate) over UDP flow is transmitted from one endpoint

of the chain to the other endpoint at a saturated rate (i.e., there is always a datagram to

send at the source and not all of them are correctly conveyed), with a physical layer of 2

Mb/s and without the use of RTS/CTS. The results show that the obtained throughput

on the chain is very low (and smaller than the one obtained by simulation) and very

unstable. They also show that the third and fourth links have lower performance than

the first and second links.

In the same way, the authors in [RKAGH09] study potential interactions that can

arise between the links of a chain. They evaluate, by simulation and with real experi-

ments, the impact of the different possible interactions on the overall chain throughput.

The results show that, beyond a given sending rate of the injected flow, the overall

throughput in the chain slightly decreases. This work had been started in [RAG08]

with a less realistic model for the packet reception. In these works, CBR/UDP flows
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are transmitted. These studies are applied to TCP flows in [MAGRH12], although they

are not applied for chain networks. This study therefore does not consider the targeted

scenario of this article.

3.2 Models and applications

In the first part of this chapter, we have focused on the works that provide insights

of the IEEE 802.11-based networks, by analyzing their behavior through simulations

or real experiments. Now, our goal is to focus on the current development of models

that are capable of representing such behaviors and, therefore, allow to easily derive the

performance associated to a wireless multihop network.

Several models have been developed to evaluate the performance of 802.11 networks.

In the case of a cell (i.e. a single-hop network in which each node senses the transmission

of each other), one of the most important works is proposed by Bianchi [Bia00]. The

author designs a model based on a Discrete-Time Markov Chain (DTMC) to evaluate the

attainable throughput of single-hop transmissions, where nodes are always in saturation.

Several extensions of this work have been proposed to closer match to DCF mech-

anisms. For instance, in [TBX10], the authors propose a new backoff decrement model

that preserves the simplicity of the model proposed in [Bia00].

In other scenarios, where nodes may be outside the carrier sense range of some other

nodes (i.e., there may be the hidden node problem), authors have often considered the

case of single-hop flows, where the source and destination of flows are only one hop

away. Such scenarios are obviously more complex than a cell since nodes are exposed

to the hidden node problem. Initial studies are developed in [BKMS87], [CG97], which

consider the hidden node problem in simple scenarios. Wang and Kar [WK05] develop

an analytical markovian model to evaluate the average throughput of flows in such a

network. For sake of simplicity, they assume no binary exponential backoff and a perfect
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physical layer (no BER). This first assumption is not in accordance to the IEEE 802.11

DCF mechanism and therefore, may lead to results that deviate significantly from the

real ones. Some interesting studies about the impact of the exponential backoff over

the system performance, and why it should not be neglected, can be found in [RV06a],

[RV06b], [HG00], [NP00], [DVH04], [BDSG+07] and [NMK12].

Still on the field of single-hop transmissions, the authors of [GSK05,GSK06,NK12]

proposed models to derive the throughput of the wireless networks. In [GSK05], authors

evaluate the impact of the hidden nodes on overall performance and how to include

them in modeling. Moreover, they also analyze the behavior of the network, in the

presence of flows-in-the-middle, which correspond to flows that are in severe competition

for channel access, resulting in poor performance. The works in [GSK06] and [NK12]

extend this analysis for different nodes positioning and node starvation, but keeping the

same characteristics (basically, single-hop flows). Despite their accuracy, these works

may not be applied to our case since we focus on multi-hop flows (i.e., flows that use

relay nodes to be conveyed up to the destination).

Other works are also proposed to deal with the hidden node problem, but they also

restrict their analysis to single-hop flows. For instance, the authors in [ZYY+14] in-

vestigate the maximum throughput of a IEEE 802.11-based wireless network and the

performance issues arising in such networks. Authors in [MT06], [GmC06], [QZW+07]

and [JP09] provide frameworks based on iterative models, which is similar to the pro-

posed approach presented in this thesis. However, such models can not be easily derived

to multi-hop flows topologies and do not cope with the behaviors we intend to evaluate.

In [MT06] and [QZW+07] and [JP09], authors consider that buffers have infinite capaci-

ties and, therefore, no datagrams are lost due to buffer overflows, which is a simplification

that also deviates from the actual network performance.

All these works consider a perfect physical layer, where no bits are lost during

the radio transmission. To make more realistic scenarios, several studies incorporate
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a realistic channel propagation model. The works developed in [HT04], [KKRL03],

[HHSW10], [CBV04], [CBV03] and [YV05] provide insights, mainly via simulations on

the performance of a network using the IEEE 802.11 standard, in the presence of re-

alistic channels. In [CGLA04], the authors develop a model that takes into account

the frame losses due to transmission errors, although their model is restricted to single-

hop flows networks. Other works provide insights on how to recover from such errors

or to reduce their impacts, in order to preserve the network throughput performance

(e.g., [JB07], [CK08], [JWS08] or [VBJ09]). Note that our goal in this thesis is to pro-

vide an accurate estimation of the actual behavior of the multi-hop wireless networks

and not to reduce the impact of the channel errors.

Few works have been devoted to the case of multi-hop flows, i.e., flows where source

and destination can not directly communicate, and may suffer from the hidden node

problem. The works presented in [ADDT11], [HTM07] and [ABBGL13] consider the per-

formance of a flow conveyed through a chain. To help their analysis, authors in [ADDT11]

assume that all nodes in the chain are in saturation (i.e., they always have a datagram

to transmit). However, it is very unlikely that all nodes in a chain are in saturation,

since, due to datagram losses that mainly occurs on the first nodes of the chain, nodes

nearby the end of the chain can starve (see, for instance, [LBC+01]). In [HTM07], in

order to evaluate the maximum attainable throughput of the chain, authors assume that

it approximately corresponds to the actual capacity of the bottleneck link (i.e., the link

with the longest time to transmit a datagram). This assumption neglects the fact that

backoff periods of neighbor nodes may overlap, which affects the estimated throughput

of the flow. In [ABBGL13], we proposed a model that takes into account the actual

buffer limit of each node. Moreover, the model is capable of coping with the impact

of starvation in relay nodes. However, it was limited to a 3-nodes scenario, where the

hidden node problem was not present.
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The works described so far show the complexity of the IEEE 802.11 DCF mecha-

nisms in term of modeling and the associated difficulties. Therefore, several works pro-

pose modifications in the original IEEE 802.11 methods to make the modeling process

easier ( [HS02a], [Cho05], [AMB02], [RKKW04], [YCZ+06], [YBS+03] and [PYG+13]).

These policies are also adopted, because some works claim that the MAC layer imple-

mentation is not suitable for multi-hop wireless networks ( [XS01b], [SK99], [GTB99]

and [BWK00]). We can point out one major problem, which is the performance collapse

on multi-hop chains [HS02b]. For instance, the solution proposed in [YW13] reduces the

performance collapse inherent to multi-hop flows by removing the backoff mechanism

and protocol overheads. In [DSJ10] and [Du08], the authors change the MAC protocol

to incorporate control frames, in order to increase network performance. In the same

way, authors in [XTJ07] investigate how the competition for channel access between

neighbor nodes impact the network overall performance. Thus the same authors pro-

pose in [XJP10] a methodology that defines a controller node that synchronizes all of its

neighbors, in order to reduce the competition for the channel access (which doe not cope

with the original IEEE 802.11 DCF mechanism). In [JW10], authors modify the CSMA

algorithm to overcome such issues. Moreover, in [TVGS00] the fundamental behavior

of the RTS/CTS mechanism is modified, in order to be used under certain conditions

(after a collision, for example). The proposed solutions, in these mentioned works, how-

ever, do not cope with the original behavior of the IEEE 802.11 DCF mechanisms, and,

therefore, we can not apply them to our scenarios.

To summarize, most of the analytical studies on IEEE 802.11 are devoted to either

cell networks, or multi-hop networks with single-hop flows. Considering the few works

dealing with multi-hop flows, they tend to make assumptions that significantly deviate

from some of the fundamental properties arising in 802.11 chains, and thus they may

not be accurate when applied to realistic scenarios. In the next section, we present our
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proposed model to evaluate the performance of such chains.



Chapter 4

Modeling Framework and its

applications

4.1 Introduction: general framework

In this chapter, we present our hierarchical modeling framework which is used to estimate

the performance of multi-hop wireless chain scenarios. In the following sub-sections, we

apply the general modeling to chains, with two or three nodes. Then we discuss all the

particularities inherent to each of the presented chains. The idea is to provide the basis

under which we expect to develop our model to general cases of multi-hop chains. We

describe the general lines of our model, without providing equations nor values. These

equations will be presented in the following sub-sections of the chapter, when we deeply

analyze the chains with two and three nodes.

Note that a list with all variables used along this thesis is placed in the List of

Notations section at page 19 in order to ease the readiness of such work.

Our model consists of a two-level approach split in:

• a global high-level queueing network model;

53
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• several local low-level Markov chain models.

The high-level models the chain topology while the low-level models each node of a

chain. Our model computes the performance of the chain in terms of attained throughput

and datagram losses, among other parameters.

In order to explain our proposed model, let us first consider the chain, depicted

in Figure 4.1, composed of N + 1 nodes (labeled from 1 to N + 1). In this example,

datagrams are generated and injected at border node 1 and are conveyed up to the

opposite border node N + 1 through all the relay nodes between them. The datagrams

generation rate Λ defines the current level of workload of the chain. From now on, a flow

is referred to the traffic generated at one border node and conveyed within the nodes of

the chain towards to the opposite border node of the chain. In this chapter, we consider

only 1 flow traveling within the chain. In the next chapter, 2 flows are considered.

Workload (Λ) 3 4

2

1

5

6

. . . N

N+1

Figure 4.1: A chain with N + 1 nodes and with 1 flow of workload Λ.

In this type of chains, where only one flow exists, the last node (the destination

N + 1) does not transmit datagrams (but only frame acknowledgments). Therefore, we

have a chain of only N nodes transmitting datagrams, to which we naturally associate

a network model with N queues (each representing one transmitting node), as shown in

Figure 4.2.

Each queue represents exactly one of the nodes transmitting datagrams (nodes 1 to

N in this scenario). The customers of the queueing model are the datagrams transmitted

on the chain and all queues have a single server modeling the transmission of a datagram.

The queueing network matches exactly the topology of our chain, since node 1 transmits
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Figure 4.2: Global model for a chain with N + 1 nodes (but N nodes transmitting
datagrams).

datagrams to node 2, which conveys those correctly received up to node 3. Node 3, then,

forwards datagrams to node 4 and so on, until the datagrams reach node N + 1. The

datagram arrival rate at each queue i is λi (with i = 1, 2, ..., N), and, by construction,

Λ = λ1. The capacity (queueing room) of each queue i is denoted Ki and corresponds to

the number of datagrams that can be stored in the queue. A datagram is immediately

discarded whenever it arrives at a queue, whose buffer is already full. Moreover, we

remind that for each datagram, the system will attempt to transmit the corresponding

frames up to 7 times, as described in Section 2.4. If none of these frames is correctly

transmitted, the datagram is then discarded. From Figure 4.2 we can see that our model

captures the two types of losses associated to such networks.

To each queue i of our network, we associate a service rate μi. This rate is, by

definition, the inverse of the mean service time Si of the same queue, which corresponds

to the mean time node i needs to transmit a datagram that is ready to be sent over

the radio channel. Si includes all the IEEE 802.11 DCF transmission mechanisms de-

scribed in Section 2.1, starting with a defer time DIFS and followed by backoff, eventual

freezing periods, possible frame (re)transmissions and timeouts (SIFS and the duration

of an acknowledgement) until an ACK is received or the datagram is discarded. The

computation of the service rate μi for queue i is explained later in this section. Figure 4.3

shows an example of the service time for a given datagram at node 1 (S1), with 1 frame

transmission that fails.

One of the major difficulties when modeling chain networks relies on the presence of
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FRAME DIFS Backoff FREEZE DIFS Backoff TimeoutFRAME

S1

Figure 4.3: An example of the service time of a datagram at node 1.

the freezing periods. Note that when a node transmits i) it prevents any neighbor (within

its carrier sense range) from transmitting and ii) causes any ongoing backoff within

carrier sense range to freeze. These periods are directly dependent on the transmissions of

neighbor nodes, and thus the time required for a node to transmit may vary significantly

according to the workload level of its neighbors. This dependence among nodes makes

very hard to evaluate the performance of the system. The originality of our model lies in

including the freezing periods in the service time of a datagram. By doing so, the model

bypasses the complexity of representing the strong synchronization between different

nodes of the system.

It becomes much more simple to evaluate the system performance by incorporating

the freezing time of a node on the service time definition. The reason is that we can

decouple the queues of the global model, which is crucial to scale up our model to large

scenarios.

In order to solve our queueing system, we first decompose it into isolated queues as

illustrated in Figure 4.4. Although the open queueing network depicted in Figure 4.2

could be easily solved without the decomposition step for small chains (with 2 or 3

nodes), we remind that the goal is to extend our approach to complex and realistic

scenarios, with larger chains and more than one flow. Therefore, by decomposing it

into single queues, the methodology should make the extension easier for these future

scenarios.

The datagram generation at the source node (node 1) is a Poisson process, which

is a classical behavior in several papers [Bia00,GSK06]. The first assumption that we
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Figure 4.4: Decomposed global model for a chain with N nodes transmitting datagrams
and 1 flow.

make for this decomposition consists in assuming that the arrival process at each of

the subsequent queues of the network is also a Poisson process. This results in several

isolated M/G/1/K queues. We know that the output X1 of queue 1 (which corresponds

to the input λ2 of queue 2) in our original system is not Poisson (with the same reasoning

for all other queues). However, our results show that this assumption does not greatly

impact the overall performance of our model while it simplifies its solution (refer to

Section 5.3.4).

The second assumption that we make is to consider that the service time of each queue

is exponentially distributed. This assumption is intended to make our model simpler and

extendable. The resulting queues are M/M/1/K and are easily solved, provided that

we know the service rate μi (yet to be defined). Finally all the required performance

parameters of the network can be derived from the well known closed-form formulas of

the M/M/1/K queue (for a more detailed analysis in performance evaluation, refer to

Chapter 6 in [Bay00]).

The global model presented so far and the associated performance parameters (like
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for instance, the throughput) derived from it still depend on the value of the service rate

μi for each queue i, which remains to be determined. This parameter is estimated by the

local low-level models. We associate a Continuous-Time Markov Chain (CTMC) to each

queue i of the network, to estimate its service time Si. This CTMC precisely describes

the succession of the different states a node has to go through in order to transmit a

datagram over the wireless channel. For instance, we know that it starts with a DIFS

time and follows with the decrementation of the backoff, with occasional freezing periods

due to a sensed busy medium, until the frame is corrected transmitted or discarded (refer

to Chapter 2 for a more detailed discussion over the IEEE 802.11 DCF mechanisms).

We know that the time spent on the backoff freezing depends on the transmissions of

neighbor nodes. The throughput of such neighbors is a performance parameter provided

by the global model.

Considering the intrinsic dependence between the global and local models, whose

output parameters are the inputs of each other, we naturally use a fixed-point iteration

to obtain all the desired parameters. Figure 4.5 represents this dependence between

both high and low-level models.

GLOBAL 

LOCAL 

Computation
of the

performance
parameters

Computation
of the service

time (    )Si

Figure 4.5: Iteration between global and local models.

In the following sections, we describe in more details this process for two scenarios.

In Section 4.2 we apply our model framework for a toy example of a chain composed

by 2 nodes. Chapter 4.3 describes the modeling approach for a scenario with a chain

composed by 3 nodes.
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4.2 Scenario with 2 nodes and 1 flow

In order to help in understanding the proposed model, we first apply it to the most

simple chain example, composed of only two nodes. Figure 5.1 depicts the proposed

scenario.

Workload generated
at node 1

1 2

Transmission range of node 1

Figure 4.6: A chain with 2 nodes and 1 flow.

We are aware that this is a toy example and such a simple scenario can be easily

solved by numerical calculations using the IEEE 802.11 DCF mechanisms detailed in

Section 2.1. Our goal is, however, to provide an insight into the modeling framework

possibilities. In Section 4.3, we discuss a more complex scenario, but we show that the

modeling process does not vary much.

The link between the two nodes is not ideal (the physical layer is non-perfect). We

remind that, throughout this work, we refer to the BER (Bit-error rate) as the rate at

which bits are incorrectly received at a node due to failures in propagation. Note that we

can apply any BER model to our framework, in order to represent a particular scenario

we may be interested in.

4.2.1 Global model

In this simple case, we have N = 1, where N is the number of nodes transmitting

datagrams. Since only node 1 transmits datagrams (node 2 sends only frame acknowl-
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edgements), we associate our scenario with a simple queue as depicted in Figure 4.7.

K1

Xi

μ1

λ1 = Λ

pf 1
7

1− pf 1
7

Figure 4.7: Global model for a chain with 2 nodes.

We remind that, according to our assumptions given in the previous section, we can

solve this queue as a classical M/M/1/K. We associate to this queue a service rate μ1,

which corresponds to the inverse of the service time S1, as mentioned in the previous

section. S1 exactly corresponds to the time separating the instant when a datagram

is ready to be sent over the radio channel from the moment when it is acknowledged

or discarded. The obtention of S1 and μ1 is performed with the local model, which is

solved subsequently. We also associate a finite capacity K1 to the queue, that matches

the buffer size of the wireless card. It means that any datagram arriving whenever

the buffer is full with K1 datagrams is discarded. Note that we consider, in all the

studied scenarios, that there is no datagram discarded on the destination node (node 2

in this first scenario) as, usually, the time required to process an arriving datagram is

smaller than the time required to receive it on the wireless interface card. Therefore, on

the destination node, an arriving and correctly decoded datagram is transferred to the

application layer before the arrival of another following datagram.

Therefore, the output throughput of the queue is simply:

X1 = μ1(1− π1(0)) = λ1(1− π1(K1)) (4.1)

where π1(n) is the probability of having n customers in the M/M/1/K queue of node 1.

The chain throughput is simply the number of datagrams correctly transmitted:

Xout = X1(1− pf 1
7) (4.2)
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where pf1 is the frame error probability on the frames sent by node 1 to node 2 (which

is described more precisely in next section).

Equation (4.2) defines the output of the system (in number of datagrams correctly

sent per units of time) that exactly corresponds to the output of the queue 1 decreased

by the proportions of datagrams rejected due to excessive frame retransmissions.

We do not extend our analysis for all the performance parameters of a M/M/1/K

queue, since the objective is only to give an insight in the modeling development. Sec-

tion 4.3 deals with a more complex chain and makes a more extensive analysis on such

performance parameters.

4.2.2 Local model

We now focus on the missing parameter μ1 for the global model. We propose a Continuous-

Time Markov Chain (CTMC) that estimates mean the service time S1 of the node 1,

whose inverse is exactly μ1, as depicted in Figure 4.8. For the sake of simplicity and

considering that, for this toy example, we have only one queue, we have removed the

indexes of the variables used in the CTMC in this subsection (for instance, μ1 becomes

μ).

This CTMC precisely describes the succession of the different states a node has to go

through in order to transmit a datagram over the wireless channel using the IEEE 802.11

DCF mechanisms. It is composed of seven “lines”, each one corresponding to a given

stage k of the backoff and modeling the backoff time preceding the k-th transmission of

a given datagram (provided the k − 1 preceding transmissions of the datagram were in

error). Recall that a maximum of 7 unsuccessful transmissions is considered for a same

frame associated to a datagram, after which the datagram is discarded.

After starting a transmission with a DIFS, the system goes to the backoff mechanism,

until it reaches the transmission state “T”. Following, it goes either to the “end of

service” state after a successful transmission with a rate
1−pf
T . Otherwise, in case of a
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Figure 4.8: Local CTMC representing the service time of node 1, with a chain of 2 nodes
and 1 flow.

transmission failure, it goes first to a DIFS state, and then to any of the {k, j} states

(corresponding of the k-th backoff stage and a backoff of value j, j ∈ [0,Wk−1]), with a

rate
pf
T . Remind that pf is the frame error probability and T is the time corresponding to

the transmission of a frame plus the defer time SIFS plus a timeout value corresponding

to the duration of an acknowledgment.

Whenever leaving “DIFS” state at any k-th backoff stage, the process randomly

chooses any state {k, j} or the transmission state with a uniform probability equal to

1
Wk

. From any state {k, j}, we reach state {k, j − 1} (or transmission state if j = 0)

with a rate α, whose inverse is a slot time duration and is fixed by IEEE 802.11 DCF



63

specifications. Note that there is no freezing period in this chain, since only node 1

transmits datagrams, so there is no possibility that the system remains in a certain state

{k, j} for more than one slot time (due to transmissions in neighbor nodes)

As a result, almost all of the parameters of this CTMC come directly from IEEE

802.11 specifications, except the frame error probability pf . This probability is the

result of frame losses due to collisions and to incorrect decoding at the destination node.

The frame collision probability is denoted as pcoll and the probability of an unsuccessful

decoding due exclusively to BER is denoted as pBER. In this scenario, we neglect any

collision that might occur (pcoll = 0). In order to a collision take place, at least 2 nodes

must finish their backoff at the same time, which is a rare event in our scenario. We

consider, however, that frames can be lost due to BER, given that the links are not

perfect. The probability pBER is obtained according to wireless card specifications as

described in Section 2.4. Therefore, we just consider that, whenever frames collisions

are neglected, we have:

pf = pBER (4.3)

Finally, from the CTMC, the service time S corresponds to the mean time that is

necessary to reach the state “end of service”, starting from the first “DIFS” state of the

Markov chain, and is given by:

S =
1

μ
= t1 + pf × (t2 + pf × (t3 + ...+ pf × t7)) (4.4)

where tk corresponds to the mean time spent by the process in “line” k of the CTMC:

tk = DIFS +
Wk

2
× tslot + T (4.5)

where tslot is simply the duration of a slot time according to the IEEE 802.11 DCF
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specifications.

4.2.3 Numerical Results

We have simulated the scenario described in this section, according to the definitions in

Section 2.4. Node 1 is fixed and node 2 is positioned at several spots within the interval

[110m,390m] away from node 1. The queue capacity K1 is 50 (datagrams).

We compare the results provided by our model with those of simulations, with regard

to the performance parameter analyzed for this scenario: the chain throughput Xout.

We evaluate our model under different workload levels, ranging from 0.2Mb/s to

5Mb/s, in order to validate its results in the presence or absence of saturation. In

our scenario, we have saturation whenever the BER is large (typically with distances

greater than 300m). In the following figure, each simulation point is obtained with an

mean over at least 80,000 datagrams received at the destination. Figure 4.9 shows the

relative error (in %) of the chain throughput between our model and ns-2.35 in function

of the workload and the distance between the two nodes. We define the percentage

relative error of our model versus the actual values (delivered by ns-2.35) as the ratio

100× (approximate - actual) / actual. This surface is obtained by using interpolation

between the simulation points. We note that the mean relative error remains around

3-5% regardless the workload level. However, there is a slight increase in this error

when the system has to cope with large values of BER. This is clearly seen for the

cases when the distance between nodes is around 390m. Nevertheless, the relative error

remains smaller than 10% in the worst cases. Those errors can be explained given the

inaccuracies of our modeling framework. For instance, we consider that the service time

is exponentially distributed (M/M/1/K model), instead of constant.
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Figure 4.9: Relative errors for throughput of the chain with 2 nodes and 1 flow.

4.3 Scenario with 3 nodes and 1 flow

From this section until the end of the chapter, we consider the case of a wireless multi-hop

chain with three nodes (labeled from 1 to 3). With respect to the system characteristics

in Section 2.4, all nodes are in carrier sense range of each other, which means the absence

of any hidden station.

The generated traffic (according to a Poisson process), with rate Λ, is conveyed from

node 1 towards node 3, by using node 2 as a relay node. The scenario is depicted in

Figure 4.10.

At a first glance, this simple scenario could cause the reader to misinterpret its

complexity and the difficulties to derive its performance. However, several issues need

to be taken into account when dealing with this type of networks. First of all, the BER

varies according to the nodes positions, which impacts the link quality and therefore

the number of frame retransmissions. Second, there is a strong dependence between

the nodes of the chain. The backoff freezing of one node depends on the transmissions

of its neighbors. Those transmissions are related to the level of workload in the chain

and, for the relay node, transmissions are dependent on the number of correctly received
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Figure 4.10: A multi-hop chain with 3 nodes and 1 flow.

datagrams from node 1. Therefore, at certain cases, relay node may go into starvation,

even if the first node of the chain is in saturation, which greatly impacts the chain

performance.

In the following subsections we describe how the global and local models are suited for

this scenario. Moreover, we detail the solution obtained through a fixed-point iterative

algorithm and show the obtained results.

4.3.1 Global model

Our 3-nodes scenario is associated with the queueing network depicted in Figure 4.11.

In this present case, we have N=2 queues, since we have only two nodes transmitting

datagrams (node 3 only sends acknowledgement frames).

7 unsuccessful frame transmissions

buffer full

K1 K2

⎫
⎬
⎭

datagram
losses

⎫
⎬
⎭

successful
transmissions

μ2

Λ

μ1

Figure 4.11: Global queueing model for a chain with 3 nodes and 1 flow.

The queueing network exactly matches the topology of our chain, since node 1 trans-



67

mits datagrams to node 2, which conveys those correctly received up to node 3. The

capacity of each queue i is denoted Ki (with i = 1, 2) and the service rate is μi. Data-

grams are rejected when they arrive at full queue (“buffer full” in Figure 4.11) or due to

excessive retransmissions of the associated frames (“7 unsuccessful frame transmissions”)

We remind that μi corresponds, by definition, to the inverse of the mean service time

Si of the same queue (time separating the moment when a datagram is ready to be sent

over the channel radio and the instant when it is finally acknowledged or discarded).

The main difference between this scenario and the previous one with only two nodes

(Section 4.2) is the presence of freezing periods in the service time due to transmissions

of the neighbor node.

As explained before, the freezing time is included in the definition of the service of

a datagram. This definition makes the solution of such network much more simple, by

decoupling the queues of the global model.

Before solving our queueing system, we first decompose it into two isolatedM/M/1/K

queues as illustrated in Figure 4.12. Those isolated queues represent the same behav-

ior as the non-decomposed queueing model, with the first leaving arrows of each queue

indicating clients (datagrams) rejected due to a full buffer.

μ1

μ2

pf 1
7

pf 2
7

1− pf 1
7

1− pf 2
7

X1

X2

λ2 = X1(1− pf 1
7)

Λ = λ1

K1

K2

Figure 4.12: Decomposed global model for a chain with 3 nodes and 1 flow.

The performance of the queues can be expressed according to the following relations.
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The output throughput at each node i (i = 1, 2) is:

Xi = μi(1− πi(0)) = λi(1− πi(Ki)) (4.6)

where πi(n) is the probability of having n customers in the i-th M/M/1/K isolated

queue. From relation (4.6) we can then easily derive the number of datagrams that are

correctly transmitted to node 2 from node 1:

λ2 = X1(1− pf 1
7) (4.7)

We remind that the arrivals at node 1 are the arrivals at the chain itself λ1 = Λ.

The mean number of customers in queue i (i = 1, 2), which corresponds to the mean

number of datagrams waiting to be transmitted (or in transmission) at node i is:

Qi =

Ki∑
n=1

nπi(n) (4.8)

From Little’s Law [Lit61], the mean sojourn time Ri of an admitted customer in queue

i (i = 1, 2) can be easily derived. This duration corresponds to the mean time that a

datagram, which is not lost due to buffer overflow, stays in node i before transmission

to node i+ 1 or discard due to excessive frame transmission.

Ri =
Qi

Xi

(4.9)

Furthermore, the utilization of a node i, corresponding to the proportion of time in

which queue i (i = 1, 2) has at least one datagram to send, is simply:

U i = 1− πi(0) (4.10)

And from PASTA theorem [Wol82], we can obtain the probability that a datagram is
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rejected because the buffer of the destination node is full at its arrival instant:

pri = πi(Ki) (4.11)

From all the previous relations, we can express the overall chain performance, which

will be used to validate our model in Subsection 5.3.4. The chain output throughput,

Xout, corresponding to the mean number of datagrams correctly received at the desti-

nation node per unit of time, is a function of the output throughput at node 2 as:

Xout = X2(1− pf
7
2) (4.12)

The chain rejection probability, prout, defined as the probability that a datagram is

rejected due to a full buffer at its arrival instant at any node of the chain or due to

excessive frame retransmissions, is given by:

prout =
Λ−Xout

Λ
(4.13)

And finally, the end-to-end delay of a datagram is simply approximated as the sum

of the sojourn times at each node i of the chain.

Rout
∼= R1 +R2 (4.14)

This latter approximation is possible since we only consider the end-to-end delay of

the datagrams that are successfully conveyed through the chain. We can, therefore, use

the sum of the times spent in each of the nodes by such datagrams.
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4.3.2 Local model

We associate to each queue of our network the Continuous-Time Markov Chain (CTMC)

depicted in Figure 4.13, in order to estimate the service rate μi (i = 1, 2).

freeze
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T

1−pf i
T

1
T

Figure 4.13: Local CTMC representing the service time of each node transmitting data-
grams.

Let us remind that there is a CTMC (with different parameters) associated with

each transmitting node i. Note that the main difference between this CTMC and the

previous one described for the 2-nodes scenario is the presence of the freezing periods.

As defined for the global model, pf i is the frame error probability, which depends
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on the frame collision probability (pcolli) and the frame error probability due to BER

(pBERi), for any node i (i = 1, 2). Since we neglect any collisions that might occur

(pcolli = 0), from relation (4.3) we obtains its value as:

pf i = pBERi (4.15)

Remind that pBERi is defined according to the wireless card manufacturers specifications,

as described in Section 2.4.

State T of the CTMC is the time corresponding to the transmission of a frame

plus the defer time SIFS plus a timeout value corresponding to the duration of an

acknowledgment. A state {k, j} corresponds to the k-th stage of the backoff (i.e., the

k-th transmission attempt of the datagram) with a backoff equal to j (j ∈ [0,Wk − 1]).

Exiting the k-th “DIFS” state, the process randomly chooses any state {k, j} or the

transmission state with a uniform probability (equal to 1
Wk

). From any state {k, j}, we
can either reach state {k, j−1} (or transmission state if j = 0) if the canal has remained

idle during the current slot time, or reach a “freeze” state if the canal has been sensed

busy. The corresponding rates are denoted αi and βi. αi is simply the inverse of a slot

time duration and is fixed by IEEE 802.11 specifications. The inverse of βi corresponds to

the time separating two backoff freezing, provided that the node is in backoff. The value

of βi, for any node i, depends on the transmission rates (throughput) of the neighbor

nodes, since their transmissions cause the backoff countdown to freeze. In our model,

the throughput is a performance parameter provided by the upper level. The rate out of

any “freeze” state is γi, whose inverse corresponds to the freezing duration of the node

plus a DIFS time. The duration of the freezing value will be deeper explained in the

following sections.

As a result, most of the parameters of this CTMC come directly from IEEE 802.11

specifications, except the frame error probability pf i and the rate βi. The frame error
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probability can be easily estimated from the BER (we remind that no collisions are

considered in this scenario). Estimating the last remaining parameter βi is much more

difficult and we now turn our attention to it.

As explained before, it is easier to consider the inverse of parameter βi which corre-

sponds to the mean time between two successive backoff freezing (provided the node is

in backoff). This quantity is related to the mean number of freezing of the backoff of the

considered node i, denoted as npi and the mean backoff duration Bi for a given frame.

This is illustrated in Figure 4.14, where the hashed areas correspond to freezing periods

of the backoff. From Figure 4.14 we can see that:

T T T

time

1

βi
1

2

1

2

1

2

1

2

T T

time

1

βi

2

β i

= Bi

T

1

βi

1

βi
= Bi

T T

time

T

1

3

1

3

1

3

1

3

1

3

1

3

1

βi

1

βi

1

βi

1

4

1

4

1

4

1

4

1

4

1

4

1

4

1

4

3

βi
= Bi

1 pause

frame

2 pauses

frame

3 pauses

frame

BB B

BB

B

B BB B

B B B B B BBB

Figure 4.14: Illustration of the relation between βi, npi and Bi.

I. If each backoff is paused, in average, exactly one time (first example of Figure 4.14),

the backoff is split in two parts: one part before the freezing period and one part

after the freezing period and before transmission. In average, we approximate each

part as 1
2Bi. With this information, we can count the number of parts that separate

two successive backoff freezing (provided the node is in backoff) and determine the

value of 1/βi. In this first case, it is simply: 1
βi

= 1
2Bi +

1
2Bi ⇒ 1

βi
= Bi.

II. If we have exactly two pauses per backoff (second example of the figure), then we

have the backoff divided in three parts (one before the first freezing, one between

the two freezings and one after the second freezing and before transmission). Each
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of them lasts, in average, 1
3Bi. Therefore, with two pauses, there will be a first

time 1/βi equal to 1 part (13Bi, the first occurrence in the example) and a second

time 1/βi equal to 2 parts (23Bi, the second occurrence). Therefore, we can simply

express that 1
βi

+ 1
βi

= 1
3Bi +

2
3Bi ⇒ 2

βi
= Bi.

III. If each backoff is paused exactly three times (third example in the figure), then the

backoff is divided in 4 parts of mean duration 1
4Bi each. Repeatdly, we have three

occurrences of 1/βi, whose durations are:
1
βi
+ 1

βi
+ 1

βi
= 1

4Bi+
1
4Bi+

2
4Bi ⇒ 3

βi
= Bi

We can easily extend these results to an mean number of pauses in the backoff, npi,

and obtain the intuitive following relation:

1

βi
=

Bi

npi
(4.16)

It turns out that parameter βi can be directly obtained from the estimation of the

mean number of backoff freezing and the mean backoff duration. This last parameter

can be easily estimated from the following mean:

Bi =
W1
2 f1,i +

(W1+W2)
2 f2,i + · · ·+ (W1+W2+···+W7)

2 f7,i

f i
(4.17)

where Wk is the size of the contention window at the k-th frame transmission attempt

by assuming an initial W1 of 31 and a maximal W7 of 1023 (see Section 2.4):

Wk = min(24+k − 1, 1023) (4.18)

and fk,i is the probability that the transmission of a datagram at node i requires exactly

k frames. This probability can be derived from the frame error probability as:

fk,i = pf i
k−1(1− pf i) for k ≤ 6 and f7,i = pf i

6 (4.19)
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Finally, f i is the mean number of frame (re)transmissions per datagram at node i:

f i =

7∑
k=1

k fk,i (4.20)

Now it remains to estimate the mean number of pauses in the backoff of a node.

Let us remind that the backoff of a given node i is paused whenever any node j in the

carrier sense range of node i transmits. Now going back to our scenario (with 3 nodes,

but where only nodes 1 and 2 transmit datagrams), let us consider the backoff of node 1.

Figure 6.5 illustrates the successive transmissions of node 1 in a saturated case, i.e., when

node 1 has always datagrams to transmit. In this case, between two frame transmissions

there is always a backoff that is paused by transmissions of node 2. The mean number

of pauses of each backoff is thus equal to the mean number of frame transmissions of

node 2 in between two conscutive frame transmissions of node 1. If we denote by F i the

mean number of frames transmitted by node i by unit of time (i = 1, 2), we thus have:

np1 =
F 2

F 1

, np2 =
F 1

F 2

(4.21)

B1 B1 B1T1

T2T2

B1 B1 B1T1

T2 T2 T2

B1 T1

time

Figure 4.15: Relation between transmissions of node 2 and backoff freezing of node 1 in
a saturated case.

Note that the frame throughput Fi of node i is a representation of the performance

at the link layer, while the corresponding datagram throughput Xi of the global model

is associated with the network layer.

The frame throughputs that appear in this last relation can easily be derived from

the datagram throughputs calculated from the global queueing model (relation (4.6))
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and the mean number of frame transmissions per datagram as:

F i = Xi f i (4.22)

We now consider the general case where nodes are not saturated, as illustrated in

Figure 6.6, with the transmissions of node 1.

B1 B1T1

T2T2

B1 B1T1

T2 T2 T2

B1 T1

time

x1 y1

S1

T

Figure 4.16: Relation between transmissions of node 2 and backoff freezing of node 1 in
a non-saturated case.

We describe the events for node 1 in the previous Figure, although the reasoning can

be also applied to node 2. Between two transmissions, there may occur an idle time (of

mean duration x1 on the figure) before the beginning of the backoff. Some transmissions

of node 2 (resp. node 1) freeze the backoff of node 1 (resp. 2), whereas others do not,

because they happen during idle periods of node 1 (resp. 2). We define as the corrective

factor δi the proportion of time any node i remains idle between two successive frame

transmissions. Its value is simply:

δi =
yi

xi + yi
(4.23)

Then, the mean number of pauses in the backoff of node i has thus to be adjusted

with the corrective factor δi as:

np1 =
F 2

F 1

× δ1 , np2 =
F 1

F 2

× δ2 (4.24)

The final question relies on estimating the corrective factors δi. Let us first express
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the utilization U i of queue i with notations of Figure 6.6:

U i =
Si

Si + xi
(4.25)

and use it in the expression of the corrective factor:

δi =
yi

xi + yi
=

Si − T

Si
1−U i

U i
+ Si − T

(4.26)

Finally, by using together previous equations, we get the following expression for the

missing parameters βi:

βi =
Xjfj

Xifi

δi

Bi

(4.27)

with the convention that j = 2 if i = 1, and j = 1 if i = 2.

Now that all the parameters of the CTMC have been estimated, we can use it to

get a fair estimation of the service rate μi of the associated M/M/1/K for any queue i.

The inverse of this rate corresponds to the mean time required to reach the state “end

of service”, starting from the first “DIFS” state of the Markov chain, and is given by:

Si =
1

μi
= t1,i + pf i × (t2,i + pf i × (t3,i + ...+ pf i × t7,i)) (4.28)

where tk,i corresponds to the mean time spent by the process in “line” k of the CTMC:

tk,i = DIFS +
CWk

2
× ri + T (4.29)

and ri is the mean time spent in any pair of loop states ({k, j}, {freeze}) at node i:

ri =
1

αi
×

(
1 +

βi
γi

)
(4.30)
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4.3.3 Fixed-point solution of the model

From the previous subsections, we see, in one hand, how the global model provides the

performance parameters for a 3-nodes chain, once the service rate μi is well furnished.

Those performance parameters defined in Section 4.3.1 are, among others, the datagram

throughput Xi for queue i (relation (4.6)), the datagram rejection probability due to a

full buffer pri (relation (4.11)) and node utilization U i (relation (4.10)).

On the other hand, the value of the service rate μi for each queue i is obtained by

solving a Continuous-Time Markov Chain, with the condition that the values of Xi and

U i are provided.

It is then natural to use a fixed-point iteration to obtain the values of the desired

parameters, as described in Algorithm 1. We perform each step of the algorithm for both

queues before moving up to the following step. Whenever the relative error (represented

by errori) between the current value of μi, compared to its value at the previous iteration,

is greater than a convergence criteria ε, the algorithm continues to perform.

Algorithm 1 Fixed-point solution.

1: initialize service rate μi with non-absurd value
2: repeat
3: get performance parameters Xi , Qi , Ri , U i , pri (relations (4.6)-(4.11))
4: get backoff value Bi (relation (4.17))
5: obtain the frame throughput F i (relation (4.22))
6: compute the correcting factor δi (relation (4.23))
7: calculate the number of backoff freezing npi (relation (4.21))
8: calculate the rate βi (rel. (4.27))
9: update service rate μi (relation (4.28))

10: update errori (relative error between the old and new values of μi)
11: until max1≤i≤N (errori) < ε
12: return

The algorithm starts with the initialization of the service rate μi of queue i (i = 1, 2)

by setting a non-absurd value to it. Then it performs the different steps (lines 2-12) until

the convergence criteria is reached. Note that the maximum value of the vector errori
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is used to check if the algorithm has converged. It is natural to check it for every queue,

since both queues do not reach to their convergence necessarily at the same iteration.

Once the model has converged, we can obtain the chain performance in terms of

the chain throughput Xout (relation (4.12)), the datagram rejection probability prout

(relation (4.13)) and the end-to-end delay Rout (relation (4.14)).

4.3.4 Numerical Results

According to the parameters defined in Section 2.4, we simulate the scenario of the chain

with 3 nodes and 1 flow. Nodes 1 and 3 are fixed, 500m away from each other. The

relay node can be positioned in several spots within the interval [110m,390m] away from

node 1.

We compare the results of our model with those delivered by simulation, for different

levels of workload. Each result of the simulation is an mean on at least 80,000 datagrams

correctly received at the destination. In our simulations, datagrams are generated by

the source (node 1) according to a Poisson process. For both queues we set the buffer

size to 50 datagrams. We remind that no RTC/CTS handshake mechanism is used.

Figure 4.17 compares the mean values of the service time of a datagram (as described

in Section 4.3.1) obtained with our model and those collected from simulation, with a

workload of 6Mb/s and for different relay positions (node 2). As seen in this figure, the

service time, which is a key parameter for our model, closely matches the values of the

simulation, with a difference between both results smaller than 10%.

Overall, the model presents good performance for most of the positions of the relay

node. The existence of a high BER affects the results of our model for the extreme

positions. As expected, when node 1 is distant of the relay node, we see the service

time in the first queue being multiplied by a factor of 10. Nevertheless, our model

satisfactorily represents this behavior.

Figure 4.18 shows the mean time spent in backoff freezing before transmitting a
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Figure 4.17: Mean service times of datagrams for a workload of 6Mb/s.

frame, another key parameter of our model. Its value can be directly delivered by the

CTMC and it is useful whenever we want to evaluate the time a node remains frozen

before transmitting a frame.
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Figure 4.18: Mean backoff freezing duration for a workload of 6Mb/s.

For a workload of 6Mb/s, the relative error between the results is less than 10%

for the worst cases and typically less than 5%. For the relay node, the mean values

of backoff freezing substantially increase when this node is distant from the destination

(node 3). This is due to losses arising with non-perfect channel conditions, which increase

with the distance. The necessary retransmissions yield greater contention windows,

which increase the probability that a neighbor node transmits and freezes the backoff

decrement. For the source node, this behavior is not observed, despite the elongation
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of the mean backoff duration due to losses. If few datagrams are correctly transmitted

from the source, clearly the relay node will very likely go to starvation. Therefore, it will

not be able to freeze the backoff decrement at the source node. This behavior shows that

there is no symmetry between the source and relay nodes, which may not be obvious at

a first glance.

In the following figures, we show the performance of our model, regarding the mean

throughput of a node, datagram rejection probability by buffer overflows and mean end-

to-end delay, for each node.

Figures 4.19(a) and 4.19(b) show the throughputs of both nodes obtained from our

model and from simulation, for workloads of 3Mb/s and 6Mb/s.
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Figure 4.19: Mean throughput.

For the workload of 3Mb/s (Figure 4.19(a)), depending on the actual distance be-
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tween nodes 1 and 2, node 1 can be in saturation. We clearly see that the relative

error between the results of our model and those from simulation is very low (around

5%). In a wide range of relay positions (between 150m and 350m), we see that the

system is capable of conveying the entire workload. On the other hand, when source

and relay nodes are close, the throughput of node 2 decreases due to a high BER on the

transmissions between nodes 2 and 3 and the network can not cope with the workload.

In the other extreme position (source and relay nodes are distant), due to a high BER

on the transmissions between nodes 1 and 2, there are more retransmissions for node 1

implying a service time elongation and buffer overflows in node 1. Figure 4.19(b) shows

that, when the system workload is set to 6Mb/s, the best performance of the system

are obtained in several points around the middle position for node 2, where the effect of

BER is less significant. With this workload, the system is not capable of conveying all

datagrams and is in saturation (buffer overflows).

Figure 4.20(a) and 4.20(b) compare the datagram rejection probabilities of our model

with the ones obtained by simulation, for the same levels of workload. The accuracy

of our model is clearly seen, since the relative error, when comparing to the simulation

results, remains mainly low for both cases (less than 5%). The rejection probability for

the relay node is significantly more important when it is close to source node. This is due

to the high rate of arriving datagrams from node 1 and to the frame error probability

between nodes 2 and 3 due to a high BER. These losses increase the frame retransmissions

and the mean service time of a datagram for node 2, which leads to a higher buffer

occupation. Regarding the source node, it also loses several datagrams by buffer overflow

whenever the BER is important. Moreover, for the workload of 6Mb/s, the chain is not

capable of conveying the entire workload, and datagrams are rejected by the source node.

Finally, Figure 4.21(a) and 4.21(b) show the mean end-to-end delay of a datagram.

The relative errors between our model results and those from simulation are low, ranging

from 3% (best cases) up to 13% (worst cases).
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(a) workload: 3Mb/s
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Figure 4.20: Rejection probability by buffer overflow.

As expected, these values increase significantly when the BER is more important

(long distances between nodes), leading to values up to 12 times larger when compared

to the best cases around the middle position.

We now show the relative errors of the chain throughput for several workloads, rang-

ing from 0.2Mb/s to 5Mb/s and with different positions for the relay node, in the range

of [110m,390m] away from the source node. Figure 4.22 depicts the results. Our model

provides an accurate estimation for the throughput of the chain for most of the positions

of the relay node. We see that a degradation occurs when the workload increases and the

associated BER is large (bottom right of the figure). At these positions, the throughput

is very low and therefore, any slight change in the obtained values significantly alters

the results. We can see in Table 4.1 the overall distribution of the relative throughput
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Figure 4.21: End-to-end delay.
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Figure 4.22: Relative errors for throughput of the chain with 3 nodes and 1 flow.



84

errors. For more than 96% of the points, the relative errors are smaller than 10%, which

implies a good accuracy of our model.

mean <5% 5-10% 10-15% >15%

4.54% 60.03% 36.51% 3.32% 0.14%

Table 4.1: Overall accuracy of the model for the throughput of the chain with 3 nodes
and 1 flow.
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Figure 4.23: Throughput estimated by the model for a chain with 3 nodes and 1 flow.

Given the accuracy of our model, we believe it can be used as a prediction tool to

forecast the flow performance for different positions of the relay node. Figure 4.23 shows

the actual values of the chain throughput delivered by our model, for different values

of the system workload (varying from 0.2Mb/s to 5Mb/s) and for different positions of

the relay node. We see that, as the workload increases, the output of the chain copes

with it until a limit is reached. However, from this limit on, even for greater workloads,

the throughput delivered by the chain will not increase. It is also important to note the

saturation in the overall throughput, when the relay node is 130m-150m away from the

source. These scenarios present a performance degradation when the workload exceeds

a certain limit (around 3.2Mb/s) and the throughput of the chain decreases with an
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increase of the workload. This behavior can be aggravated in other scenarios, and a

prediction tool is thus of high importance, in order to prevent the system from such a

performance degradation. This performance collapse due to an increase in the system

workload is discussed in details in [ANB+12].

4.4 Conclusion

In this chapter, we presented the basics of our modeling framework for 2 simple scenarios,

composed of 2 or 3 nodes and 1 flow, where all nodes are within each other carrier sense

range. The adopted methodology, corresponding to a high and a low level models,

allows us to easily derive the performance of the chain and the behavior of the nodes,

respectively.

The results presented for both scenarios provided fairly accurate results for the rela-

tive error between the throughput delivered by our model and that delivered by simula-

tion. Similar results were also obtained in relation with the datagram rejection probabil-

ity and the end-to-end delay. Moreover, we have shown how our model can be exploited

in order to estimate the optimal node positioning, as to obtain the best throughput rate

for a scenario with 3 nodes and 1 flow.

In the following chapter, we extend our model, as to include scenarios with 2 flows

traveling in opposite directions. We show that our model does not increase much on its

complexity to incorporate such new feature.



Chapter 5

Extension to two flows

5.1 Introduction

In the previous chapter, we describe our modeling framework and we apply it for scenar-

ios composed of 2 or 3 nodes, but limited to a single flow in the network. In this chapter,

we extend our model to deal with 2 flows. The existence of competing flows, which share

the chain resources, presents interesting behaviors, e.g., the losses of datagrams even for

very light workloads.

Let us recall that our model is composed of 2 levels: i) a global high-level queueing

network model, representing the chain topology and ii) several local low-level Markov

chains model, describing the behavior of each node in the chain. The queueing network

model provides the chain performance for each flow in terms of attained throughput,

datagram losses, etc., while the Markovian models provide the capacity of each node.

In the following section, we describe how our model can be implemented for a simple

scenario composed of only 2 nodes and 2 opposite flows. With this example, we have a

better understanding on the modeling of scenarios with more than one flow. Following,

we extend our model for a larger chain, composed of 3 nodes and 2 opposite flows, in

order to evaluate the performance of the network in the presence of a relay node.

86
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5.2 Scenario with two nodes and two flows

Figure 5.1 depicts the proposed scenario, corresponding of a chain with 2 nodes and 2

opposite flows. As for the previous scenarios presented in previous chapter, the traffic

is generated according to a Poisson process at both nodes. Moreover, the link between

nodes is not perfect (bits can be altered) and is associated to a Bit-Error Rate (BER).

Workload generated
at node 1

1 2 Workload generated
at node 2

Transmission range of node 1

Figure 5.1: A chain with 2 nodes and 2 flows.

5.2.1 Global model

As described before, we have a global queueing network model that matches the chain

topology. In this case, we have 2 flows that are generated independently from each other.

We associate with our scenario the 2 separated queues as depicted in Figure 5.2.

K1

K2

λ1 X1

X2

μ1

μ2

pf
7
1

1− pf
7
1

pf
7
2

1− pf
7
2

λ2

Figure 5.2: Global model for a chain with 2 nodes and 2 flows.

We associate to each queue i an exponential service rate μi, which corresponds to

the inverse of the mean service time Si (time separating the instant when a node is
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ready to send a datagram over the radio channel from the moment when this datagram

is acknowledged by the other node or discarded due to excessive frame retransmissions).

By assuming that the service rate is exponential, we keep the model consistent with the

same modeling assumption given previously in Chapter 4. Moreover, we assume that

the buffers of the nodes (which are represented as the queue capacity) are not infinite

and datagrams are discarded whenever they arrive and the buffer is full. Therefore, we

can solve those queues as classical M/M/1/K.

The chain workload is simply defined as Λ = λ1 + λ2.

The output throughput of each queue i is simply the service rate of the queue,

whenever it is not idle:

Xi = μi(1− πi(0)) , i = 1, 2 (5.1)

where πi(n) is the probability of having n customers in the M/M/1/K queue.

The chain throughput is, regardless of the specific flow under consideration:

Xout =
2∑

i=1

Xi(1− pf i
7) (5.2)

Note that for this simple scenario, we do not have a relay node, so the throughput

of the chain is just the sum of the throughputs of each node. We restrict our analysis to

this parameter, since the goal of this section is only to give the insights of the scenario

with 2 flows modeling. In the following sections, we analyze the results of our model for

other performance parameters (e.g., datagrams rejection probability).

5.2.2 Local model

To each queue i of our global model, we associate a Continuous-Time Markov Chain

(CTMC) depicted in Figure 5.3, whose objective is to provide an estimation of the mean

service time Si.

We can clearly see that this CTMC is exactly identical to the one presented in
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Figure 5.3: Local CTMC representing the service time of each node transmitting data-
grams.

Section 4.3 (scenario with 3 nodes and 1 flow). This is due to the fact that, in this

scenario, as in the one studied in Section 4.3, there are 2 transmitting nodes at each

others carrier sense range. Whenever a transmission takes place, the neighbor node goes

into freezing (provided it is in backoff). Furthermore, the frame loss probability remains

the same. Therefore, we can associate 1 CTMC to each queue just as before.

The CTMC describes all the necessary states a node must go through, in order to

transmit a datagram. It starts with a “DIFS” until the process arrives at the state “End

of Service”. In this path, the process may pass through each of the 7 backoff stages, the
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freezing periods and the frame transmissions. We remind that for each backoff stage,

there is a frame transmission associated to the current datagram.

The frame error probability pf i is defined according to the the frame error probability

due to BER, pBERi (see Section 2.4 for this later values). Collisions are neglected for

this scenario, then pcolli = 0. Thus pf i can be expressed just as defined in relation (4.15),

which we rewrite here:

pf i = pBERi (5.3)

Since almost all parameters are obtained from the IEEE 802.11 DCF specifications,

we can easily obtain the mean service of a datagram from the following relation:

Si =
1

μi
= t1,i + pf i × (t2,i + pf i × (t3,i + ...+ pf i × t7,i)) (5.4)

where the mean time spent by the process in “line” k (kth backoff stage) of the CTMC

is represented by tk,i (see relation 4.27 in previous chapter for more details).

The value of rate βi, as for all the other parameters of the local model, can be obtained

with exactly the same relations defined in Section 4.3. Again, we highlight that the only

difference between this scenario with 2 nodes and 2 flows from the previous one with 3

nodes and 1 flow remains in the representation of the global model.

5.2.3 Fixed-point solution

The solution for this scenario is also based on the use of a fixed-point iteration, between

the global and local models. The algorithm describing the steps of this solution can be

found in Section 4.3 in the previous chapter.

5.2.4 Numerical Results

In this section, we compare the throughput results delivered by our model with those

obtained through simulation, as described in Section 2.4. The distances between both
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nodes vary from 110m to 390m. We limit the buffer size to 50 datagrams.

We inject two flows with same levels of loads at nodes 1 and 2, and vary each of them

in the range of 0.2Mb/s to 5Mb/s. That results in an aggregate workload for the entire

system in the range of 0.4Mb/s to 10Mb/s. Figure 5.4 shows the relative deviation on

the chain throughput, between simulation and our model.
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Figure 5.4: Relative errors for throughput of the chain with 2 nodes and 2 flows.

Once again, the results show that our modeling provides good approximations, for

saturated and non-saturated scenarios. For small values of workload (from 0.2Mb/s to

2.5Mb/s at each node), the throughput relative errors are not greater than 6% and in

saturated cases (workload close to 4Mb/s) the error remains low, around 5%. The mean

value is just 4.43%. The overall distribution of the relative errors are shown in Table 5.1.

mean <5% 5-10% 10-15% >15%

4.43% 73.93% 26.07% 0.0% 0.0%

Table 5.1: Overall accuracy of the model for the throughput of the chain with 2 nodes
and 2 flows.

As our model is rather accurate, we can use it to estimate the maximum throughput
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the chain can achieve according to the system workload and the nodes positions, as

depicted in Figure 5.5. For instance, let us consider the cases where nodes are close to

each other, and, therefore, the BER does not have a great impact on the performance

of the system (positions typically smaller than 300m). As expected, for such a simple

example, as the system workload increases, also does the output of the chain. When

the output limit is achieved, the chain throughput remains insensible to any greater

workload at the input. It implies that datagrams are discarded at the sources.

We note, however, that when the BER becomes important (for the greatest distances

between nodes in the figure), the maximum attainable throughput of the chain is low.

We see that, when the workload is high (6.5Mb/s), the maximum throughput of the

chain decreases when the distance between the 2 nodes increases and reaches a value of

2Mb/s for high values of BER.
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Figure 5.5: Chain throughput delivered by the model for 2 nodes and 2 flows.
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5.3 Chain with three nodes and two flows

Consider now the example of the chain with 3 nodes and 2 injected flows depicted in

Figure 5.6.

Workload 1 1 2 3

Transmission range of node 1

Detection range of node 1

Workload 2

Figure 5.6: A multi-hop chain with 3 nodes and 2 flows.

The chain conveys 2 independent flows, each starting at any border node and trav-

eling up to the opposite border node. This scenario is harder to model than the one

described in the previous section (2 nodes and 1 flow) since the freezing periods of

the backoff may result from the activity of 2 nodes (and not only 1) and relay node 2

processes 2 different flows in opposite ways.

5.3.1 Global model

The high-level queueing network model is made of as many queues as the number of nodes

transmitting datagrams, as illustrated in Figure 5.7. The rate of datagrams injected on

node 1 (resp. 3) is λ1 (resp. λ3). The resulting workload is simply Λ = λ1+λ3. According

to the position of node 2 and its distance to both border nodes (which impacts the BER

value), the system may present different performance for the 2 directions.

As previously, we denote by μi the inverse of the mean service time of node i (in-

cluding all necessary frame transmission times, backoff times and protocols delays), and

by Ki the buffer size of node i. In order to solve this queueing network, we decompose
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Figure 5.7: Global model for a chain with 3 nodes and 2 flows.

it into 3 isolated M/M/1/K queues, as depicted in Figure 5.8.
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pf 1
7
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Figure 5.8: Decomposed model for a chain with 3 nodes and 2 flows.

As nodes 1 and 3 are only crossed by a single flow, their parameterization is similar

to the one described for node 1 in Section 4.3 (scenario with 3 nodes and 1 flow). The

main difference relies on estimating the parameters of node 2, since it must deal with

2 incoming flows. Therefore, we mainly highlight the differences between this scenario

and the one with 3 nodes and 1 flow. We show that our model does not require too

many changes to be adapted to this new topology.



95

The mean output throughput at each node i is:

Xi = μi(1− πi(0)) (5.5)

where πi(n) is the probability of having n customers in the i-th M/M/1/K isolated

queue.

The difference remains in the number of correctly received datagrams at node 2:

λ2 = X1(1− pf 1
7) +X3(1− pf 3

7) (5.6)

where pf i is the frame error probability on frames transmitted by node i.

The mean number of customers in queue i, which corresponds to the mean number

of datagrams waiting to be transmitted at node i is:

Qi =

Ki∑
n=1

nπi(n) (5.7)

As in previous chapter, from Little’s Law [Lit61], we derive the mean sojourn time

Ri of an admitted customer in queue i.

Ri =
Qi

Xi

(5.8)

The utilization of each node is:

U i = 1− πi(0) (5.9)

And from PASTA theorem [Wol82], the probability of rejecting a datagram due to a

full buffer node i at its arrival instant is:

pri = πi(Ki) (5.10)
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The overall mean chain throughput is simply the mean number of datagrams correctly

sent by node 2 per unit of time, with no regard to their destination (node 1 or 3).

Xout = X2(1− pf 2
7) (5.11)

The chain rejection probability, prout, can be represented just as the proportion of

datagrams that were rejected due to full buffer or to excessive frame retransmissions:

prout =
Λ−Xout

Λ
(5.12)

5.3.2 Local model

With the use of the CTMC proposed in the previous chapter (see Figure 4.13), we can

estimate the values of the rate μi, in order to parameterize the global model. In order to

solve the CTMC, we calculate the mean backoff time duration per datagram, as follows:

Bi =
W1
2 f1,i +

(W1+W2)
2 f2,i + · · ·+ (W1+W2+···+W7)

2 f7,i

f i
(5.13)

where Wk, varying from 31 to 1023, is the size of the contention window at the k-th

frame transmission attempt (see Section 2.4) and fk,i is the probability that a datagram

at node i takes exactly k frames to be transmitted:

fk,i = pf i
k−1(1− pf i) for k ≤ 6 and f7,i = pf i

6 (5.14)

Its value depends on the frame error probability due to BER, pBERi (no collisions con-

sidered at this point, which means pcolli = 0). We have then:

pf i = pBERi (5.15)
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The mean number of frame (re)transmissions per datagram at node i:

f i =

7∑
k=1

kfk,i (5.16)

The first difference between this scenario and the one with 3 nodes and 1 flow concerns

the fact that node 2 (relay node) has to transmit datagrams in both directions. This

results in different frame error probabilities (referred to as pf 21 and pf 23) depending on

whether the transmission is towards node 1 or node 3. In the Markov chain associated

to node 2, we derive the frame error probability as follows:

pf 2 = q21 pf 21 + q23 pf 23 (5.17)

where q21 (resp. q23) is the probability that a frame transmission is destined to node

1 (resp. node 3). q21 and q23 can be estimated as the following ratio:

q21 =
X1(1− pf 1

7)

X1(1− pf 1
7) +X3(1− pf 3

7)
(5.18)

q23 =
X3(1− pf 3

7)

X1(1− pf 1
7) +X3(1− pf 3

7)
(5.19)

Since no collisions are considered, the probabilities pf 21 and pf 23 are, respectively,

the frame error probability due to BER associated to each link, pBER21 and pBER23.

Now, in order to estimate μ2, we first need to parameterize the Markov chain asso-

ciated with node 2. The missing parameter is the mean backoff duration B2. Its value

can be estimated in the same way as pf 2:

B2 = q21 B21 + q23 B23 (5.20)
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where B21 (corr. B23) corresponds to the mean backoff of the datagrams to be sent from

node 2 to node 1 (corr. node 3), obtained from relation (5.13)).

The second difference with the scenario with 3 nodes and 1 flow concerns the fact

that, now, each node can be interrupted, during its backoff decrement, by 2 possible

nodes (and not just one as with 1 flow), i.e. the 2 other nodes in the chain. Therefore,

the estimation of the mean number of backoff freezing, i.e., npi, must be modified. For

any node i, the value of npi corresponds to the mean number of frame transmissions of

any neighbor j between 2 successive transmissions of i:

npi =

∑
j �=i Fj

Fi

δi , i = 1, 2, 3 et j = 1, 2, 3 (5.21)

where F i is the mean frame throughput, given by:

F i = Xi f i (5.22)

and δi is the corrective factor given in relation (4.26).

At last, we update the value of parameter βi as previously:

βi =
Xjfj

Xifi

δi

Bi

(5.23)

And we derive the service of queue i:

Si =
1

μi
= t1,i + pf i × (t2,i + pf i × (t3,i + ...+ pf i × t7,i)) (5.24)

with tk,i as the mean time spent by the process at each k-th stage of the backoff:

tk,i = DIFS +
Wk

2
× ri + T (5.25)

where ri corresponds to the mean time spent in any pair of loop states ({k, j}, {freeze})
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at node i:

ri =
1

αi
×

(
1 +

βi
γi

)
(5.26)

5.3.3 Fixed-point solution

The solution of our model is given by a fixed-point solution as depicted in Algorithm 2.

This algorithm shows the interactions between the global model, which provides the

performance parameters of the chain, and the local models, which parameterize the

high-level model.

Algorithm 2 Fixed-point solution.

1: initialize service rate μi with non-absurd value
2: repeat
3: get performance parameters Xi , Qi , Ri , U i , pri (relations (5.5)-(5.10))
4: get backoff value Bi (relations (5.13) and 5.20)
5: obtain the frame throughput F i (relation (5.22))
6: compute the correcting factor δi (relation (4.26))
7: calculate the number of backoff freezing npi (relation (5.21))
8: calculate the rate βi (rel. (5.23))
9: update service rate μi (relation (5.24))

10: update errori (relative error between the old and new values of μi)
11: until max1≤i≤N (errori) < ε
12: return

5.3.4 Numerical results

The simulations are performed for fixed positions of node 1 and 3 at 500m from each

other. The position of the relay node varies according to several spots within the interval

[110m,390m] away from node 1. We calculate the simulation points, by using a set of

around 100,000 datagrams sent from the sources, and, from these points, we interpolate

to obtain the surfaces we present as results.

In a first example, 2 flows of identical loads are injected at nodes 1 and 2. The

workload of each flow varies from 0.2Mb/s to 5Mb/s (providing a maximum overall
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workload of 10Mb/s), which allows us to analyze our model when submitted to low and

high workloads.

Figure 5.9 shows the relative error for the chain throughput between the simulation

and our model. For very light aggregated workloads (under 2Mb/s), our model clearly

presents excellent results. The relative errors are low, typically around ±3%, but they

increase a little in the presence of high BER (the top and bottom points of the sur-

face). When the workload is around 4Mb/s, we have the largest values for the relative

error (approximately 15%), but for all other nodes positions and workloads, the models

remains satisfactorily accurate. Table 5.2 shows the overall distribution of the through-

put relative errors. We can see that for approximately 90% of points, the relative error

remains under 10%.

Workload of the entire system (Mb/s)
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Figure 5.9: Relative errors for throughput of the chain with 3 nodes and 2 flow.

mean <5% 5-10% 10-15% >15%

4.22% 68.83% 21.52% 8.82% 0.83%

Table 5.2: Overall accuracy of the model for the throughput of the chain with 3 nodes
and 2 flows.
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Figure 5.10 shows the relative errors for the datagram rejection probability due to

buffer overflow or excessive frame retransmissions. As for the case of relative error for the

throughput seen in Figure 5.9, the values depicted for the datagram rejection probability

figure are quite accurate, with values typically under 10% for most of the cases. However,

we can point out the existence of an area (labeled as “No losses”), where virtually no

datagrams are lost (or the are below a threshold we set at 3% , under which they are

neglected). Table 5.3 presents the distribution of the relative errors for the datagram

rejection probability, with an mean value of 5.53% and 88% of the values have a relative

error smaller than 10%.
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Figure 5.10: Relative errors for datagram rejection probability of the chain with 3 nodes
and 2 flows.

mean <5% 5-10% 10-15% >15%

5.53% 57.36% 29.43% 10.08% 1.13%

Table 5.3: Overall accuracy of the model for the datagram rejection probability of the
chain with 3 nodes and 2 flows.

Figure 5.11 shows the chain throughput delivered by our model, when the overall
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workload corresponds to 2 flows with identical workload as previously. Naturally, we

can see that for any workload, the throughput delivered by the chain is greater when the

relay node is around middle positions. At these points, the influence of the BER is less

important than for spots where the relay node must deal with several frame losses, which

triggers successive retransmissions and longer service times. We can see that, for small

values of BER (the relay node is almost equidistant from the border nodes), the chain

throughput increases with the workload until the aggregated workload reaches 3.4Mb/s.

At this point, the chain throughput reaches 3.1Mb/s approximately. After this point,

the chain throughput decreases with the wokload, to reach a throughput of 2.2 Mb/s,

which represents a performance loss of around 30% . For more extreme positions of node

2 (close to node 1 or close to node 3), we see the same evolution for the chain throughput

but with much smaller values. It is important to note that our model can capture such

performance collapse of the system. These results show that, for real networks, control

admission policy may be needed, in order to maximize the attainable throughput that

such a topology can provide.
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Figure 5.11: Chain throughput delivered by the model for 3 nodes and 1 flow.
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In a second example, we explore the ability of our model to cope with the chain in

the presence of flows with asymmetric workload. One flow, ranging from 0.2Mb/s to

5Mb/s is injected in node 1 while a constant flow of 1Mb/s is injected at node 3. The

relative throughput errors are shown in Figure 5.13. Apart from some few points, the

overall error is quite good, typically around 5%. Table 5.4 gives the distribution for

the throughput errors. For more than 90% of the evaluated points, the model deliver

results with less than 10% of relative errors. This shows the accuracy of our modeling

framework.

Workload at one border node (Mb/s)
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Figure 5.12: Relative errors for throughput of the chain with 3 nodes and 2 flows with
asymmetric workload.

mean <5% 5-10% 10-15% >15%

4.26% 67.03% 24.28% 7.58% 1.1%

Table 5.4: Overall accuracy of the model for the throughput of the chain with 3 nodes
and 2 flows with asymmetric workloads.

Moreover, with very similar results, the relative errors for the datagram rejection

probability is presented in Figure 5.13 and the error distribution in Table 5.5.
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Workload at node 1(Mb/s)
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Figure 5.13: Relative errors for datagram rejection probability of the chain with 3 nodes
and 2 flows with asymmetric workload.

mean <5% 5-10% 10-15% >15%

4.28% 67.05% 24.32% 7.54% 1.16%

Table 5.5: Overall accuracy of the model for the datagram rejection probability of the
chain with 3 nodes and 2 flows with asymmetric workloads.

5.4 Conclusion

In this chapter, we have presented an extension for our modeling framework, where we

deal with 2 flows in opposite directions. As shown in the results section, the perfor-

mance delivered by our model, compared to those from simulation are quite accurate.

Furthermore, we have shown that the addition of another flow to the chain does not

impact greatly the modeling complexity.

In the following chapter, we present a second extension for our model. In this case,

the system must deal with the hidden node problem in a chain with 4 nodes. We show,

however, that our model is still capable of coping with the chain behavior.



Chapter 6

Extension to four nodes and one

flow

6.1 Introduction

In Chapter 4, we presented our modeling framework applied to a simple multi-hop net-

work composed of 3 nodes and a single traveling flow. We extended its features in

Chapter 5 to include scenarios where 2 flows in opposite directions are conveyed by the

nodes. We now study a chain with 4 nodes and 1 flow. This scenario gives rise to the

hidden node problem. In this chapter, we show how this issue is incorporated in the

model. It is important to highlight that the addition of this feature does not greatly

impact the model complexity, as we will show it throughout this chapter.

The modeling framework remains divided in 2. First, we have a global high-level

queueing network model delivering the performance of the network, including the neg-

ative impacts caused by a hidden node. Second, one local low-level model is associated

to each node transmitting datagrams. In the next sections, we discuss this extension

to provide the initial modeling framework. Then, we present the performance results

associated to this extension. Furthermore, we show how this model can be exploited in

105
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order to illustrate the importance of such tools for a better understanding of the real

system.

6.2 Scenario with four nodes and one flow

Our current scenario is depicted in Figure 6.1. There are 4 nodes in the network, labeled

from 1 to 4. We remind that the communication range is limited to the 1-hop neighbors

for any node. The carrier sense range affects all 2-hop neighbors, which means that

nodes 1 and 4 do not sense each other (they are hidden stations).

Workload generated
at node 1

1 2 3

4

Transmission range of node 1

Detection range of node 1

Figure 6.1: Multi-hop chain with 4 nodes and 1 flow.

We consider a non-perfect physical layer, subjected to a certain amount of Bit-Error

Rate (BER), implying possible frame losses. Unlike the previous scenarios studied so

far, frames can also be lost due to collisions between data frames from node 1 and

acknowledgments from node 4 (up to 30% of frames in our scenario are lost due to such

collisions). We remind that such collisions take place, since we have deactivated the EIFS

mechanism, as described in Chapter 2. Otherwise, for this network topology, collisions

due to hidden node were unlikely to happen. This triggers several frame retransmissions

from nodes 1 and 3, which greatly impacts the overall system performance, especially

the attained throughput of the chain.

The traffic is generated according to a Poisson process with rate Λ, from node 1 up

to node 4, using both nodes 2 and 3 as relay.
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6.2.1 Global model

We now detail how our model can be applied for a such scenario and the simple mod-

ifications that we must include in the model, in order to take into account the hidden

node problem.

As in this 4-node scenario there are 3 transmitting nodes (node 4 only sends ac-

knowledgments), the global queueing model associated with the chain is now made of

3 queues with limited size as illustrated in Figure 6.2. We remind that the customers

of this queueing model are the datagrams of the chain and the buffer size of queue i is

denoted Ki. A service rate μi is associated to each queue i, whose inverse corresponds,

by definition, to the mean service time Si of the same queue. This latter time is the

average time node i needs to transmit a datagram that is ready to be sent over the radio

channel.

7 unsuccessful frame transmissions

buffer full

Λ

⎫
⎬
⎭

datagram
losses

⎫
⎬
⎭

successful
transmissions

K1 K2 K3

μ2μ1 μ3

Figure 6.2: Global queueing model for a chain with 4 and 1 flow.

Like in the previous approaches developed in earlier chapters, a datagram can be lost

either because of a buffer overflow or because of excessive retransmissions of the asso-

ciated frames. However, we highlight a fundamental difference in the model presented

here: a frame loss can either be due to the low quality of the channel (it is the only case

considered in the previous scenarios, since we neglected collisions in those scenarios) or

due to collision over the shared medium. Such losses are deeper analyzed in the following

sections.

Provided that all the parameters of the global model are estimated (i.e., the services

rates μi and the frame error probability pf i), and assuming poissonian arrivals at each

node and exponential service rates, we can solve this queueing model as described in
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previous chapters. Note that the results obtained on the previous scenarios show that

these assumptions are acceptable. We decompose the network into independent single

M/M/1/K queues, as illustrated in Figure 6.3.

λ3 = X2(1− pf
7
2)

K3

1− pf 1
7

1− pf 2
7

pf 2
7

pf 1
7

μ1

μ2

λ1 = Λ

K1

K2

λ2 = X1(1− pf 1
7)

X1

X2

μ3
pf3

7

1− pf3
7X3

Figure 6.3: Decomposed global model for a chain with 4 nodes and 1 flow.

All the required performance parameters can thus be derived from the well known

results of the M/M/1/K queue. The output throughput of node i is:

Xi = μi(1− πi(0)) (6.1)

where πi(n) is the probability of having n customers in the i-th M/M/1/K isolated

queue. The average number of datagrams that are correctly transmitted by unit of time

from node i to node i+ 1 can be derived from relation (6.1) :

λi+1 = Xi(1− pf i
7) (6.2)

Note that for the first node, the arrival rate correspond to the system workload, λ1 = Λ.

The utilization of node i is:

U i = 1− πi(0) (6.3)
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The probability that a datagram is rejected because the buffer of node i is full at its

arrival instant is obtained from PASTA theorem, which results into:

pri = πi(Ki) (6.4)

We can finally express the overall chain performance, which will be used to validate

our model in Section 6.3. The mean chain output throughput, Xout, i.e., the average

number of datagrams by units of time that reach the destination, can simply be obtained

from the throughput of node 3 as:

Xout = X3(1− pf
7
3) (6.5)

And the chain rejection probability, prout, defined as the probability that a datagram is

rejected due to a full buffer at its arrival instant at any node of the chain or to excessive

frame retransmissions, is given by:

prout =
Λ−Xout

Λ
(6.6)

The end-to-end delay of a datagram is approximated as the sum of the sojourn times

at each node i of the chain.

Rout
∼= R1 +R2 +R3 (6.7)

6.2.2 Local models

The missing parameters of the global queueing model presented in the previous section

are the frame error probability pf i and the service rate μi.

We denote by pBERi the probability that a given frame sent by node i is in error

exclusively because of the BER (Bit Error Rate), and by pcolli the probability that the

frame sent by node i is lost because of a collision with another frame. We assume that
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these 2 events are independent but not disjoint (as defined in Section 4.2.2). Thus the

frame error probability pf i of node i is obtained as:

pf i = pcolli ∪ pBERi = pcolli + pBERi − pcolli pBERi (6.8)

The BER estimation is identical to the previous chapters, so we just need to derive

an estimation of the collision probability. This will be detailed in Section 6.2.3.

For the remaining of this section, we focus on the derivation of the service rate

μi. Following the methodology presented for the scenario with 3 nodes and 1 flow

(see Section 4.3.2), we associate, to each queue i of the global model, a Continuous-

Time Markov Chain (CTMC) that precisely describes the transmission process of node

i according to the IEEE 802.11 DCF protocol. This CTMC is depicted in Figure 6.4

and its structure is identical to the one described in Chapters 4 and 5. However, some

of its parameters are adjusted for this scenario, in order to account for frame collisions.

Therefore, we focus only on these parameters, while all the others are estimated in the

same way as previously (see Section 4.3.2 for more details).

The parameters of this CTMC that have to be adjusted (with respect to Section 4.3.2)

are the frame error probability pf i (to be derived in next section) and the transition rate

βi. We now turn our attention to the derivation of the latter parameter.

We remind that the inverse of βi corresponds to the mean time between 2 successive

backoff freezing (provided the node is in backoff). This quantity is directly related to

the mean backoff duration of node i, denoted as Bi, and the average number of freezing

of the backoff of node i, denoted as npi, as given in the following relation (see Section

4.3.2 for more details):

1

βi
=

Bi

npi
(6.9)

In order to estimate βi, we can directly use relation (4.15) to obtain the average

backoff per frame of a node. Moreover, we can apply here all the relations from (4.16)
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Figure 6.4: Local Markov chain model.

up to (4.18), as to calculate the contention window size Wk at row k in the CTMC and

the number of frame (re)transmissions per datagram f i.

Bi =
W1
2 f1,i +

(W1+W2)
2 f2,i + · · ·+ (W1+W2+···+W7)

2 f7,i

f i
(6.10)

fi =

7∑
k=1

k fk,i (6.11)

where fk,i is the probability that the transmission of a datagram at node i requires

exactly k frames (see relation (4.17)).

Let us now turn our attention to the estimation of the average number of freezing
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of the backoff of node i, npi, also referred to as the average number of pauses of the

backoff. Whenever any node j in the carrier sense range of node i makes a transmission,

the backoff is paused. As an example, let us take node 1 in our scenario. In the case

where it has always a datagram to transmit, as illustrated in Figure 6.5, there is always

a backoff that is paused by transmissions of nodes 2 or 3 between 2 frame transmissions

of node 1. The average number of frame transmissions of node 2, denoted as F2, plus

the average number of frame transmissions of node 3, denoted as F3, occurring between

2 consecutive frame transmissions of node 1, is referred as the average number of pauses

of the backoff in node 1. As a generalization for any node i of the chain, the average

number of pauses of its backoff is given by the following relation:

npi =

∑
j �=i Fj

Fi

(6.12)

B1 B1 B1T1

T2

T3

B1 B1 B1T1

T2 T2

T3

B1 T1

time

Figure 6.5: Relation between transmissions in neighbor nodes and backoff freezing in a
saturated case.

The frame throughputs are given by relation (4.20), which we rewrite it for the sake

of readiness:

F i = Xi f i (6.13)

B1 B1T1

T2

T3

B1 B1T1

T2 T2

T3

B1 T1

time

x1 y1

S1

T

Figure 6.6: Relation between transmissions in neighbor nodes and backoff freezing in a
non-saturated case.
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In the more general case where node i is not saturated, the expression of npi must be

adjusted with a corrective factor δi as expressed in relation (6.14). This case is illustrated

in Figure 6.6 for node 1.

npi =

∑
j �=i Fj

Fi

δi (6.14)

Indeed, when node i is not saturated, there may be an idle time (xi in the figure) before

the beginning of its backoff between 2 of its consecutive transmissions. During this idle

time, transmissions of any other node will not cause a freezing of its backoff, whereas

during the rest of the time up to the transmission (yi in the figure), transmissions of

other nodes (in the sensing range of node i) will freeze its backoff. The corrective factor

can be directly obtained from relation (4.21), which we rewrite here for the sake of

readiness:

δi =
yi

xi + yi
(6.15)

In order to estimate the corrective factor, it is worthwhile reminding that the average

service time of queue i, Si, is equal to the time yi plus a time T that corresponds to

the frame transmission time plus the transmission time of the corresponding ACK. Now,

the missing value xi is clearly related to node i utilization U i, which is obtained with

relation (4.23), that we rewrite here for the sake of readiness:

U i =
Si

Si + xi
(6.16)

This implies in:

δi =
yi

xi + yi
=

Si − T

Si
1−U i

U i
+ Si − T

(6.17)

Finally, the missing parameters βi, defined in relation (6.9), can be estimated as:

βi =

∑
j �=iXj f j

Xi f i

δi

Bi

(6.18)
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With all parameters of the CTMC already described, we may estimate the service

rate μi of the associated M/M/1/K for any queue i, whose inverse corresponds to the

average time to “walk” through the CTMC. This value is represented in relation (4.26):

Si =
1

μi
= t1i + pf i × (t2,i + pf i × (t3 + ...+ pf i × t7,i)) (6.19)

where the average time spent by the process in “line” k (kth backoff stage) of the CTMC,

tk,i, and the average time spent in any pair of loop states ({k, j}, {freeze}) at node i,

ri, are directly obtained with relations (4.27) and (4.28).

6.2.3 Frame collision probability

This section presents the estimation of the frame collision probability, which is a very

important and sensitive parameter for our model. It represents a component of the frame

error probability (relation (6.8)) that is both needed in the global queueing model and

in local Markov chain models. A frame collision may be the result of 2 different factors.

First, a collision can result from the well known hidden problem of 2 nodes that are not

in the carrier sensing range of each other. Second, because of the sensing mechanism

of the IEEE 802.11 DCF, a collision can also occur when 2 neighboring nodes finish

their backoff countdown simultaneously. Surely in the previous scenarios (described in

previous chapters) such collisions could take place. But their impact were negligible,

which is not the case in this section, due to the fact of having 3 nodes transmitting

in one direction. By assuming that these 2 possibilities result in disjoint events (which

turns out to be exact in our scenario), we can decompose the frame collision probability

of node i as the sum of the probability of both events:

pcolli = phidi ∪ psti = phidi + psti (6.20)



115

Hidden nodes case

Let us first consider the hidden problem case and see how we can estimate the collision

probability for node i due to frame collision with nodes that are hidden from node i,

denoted as phidi. In our scenario, since we assume a 2-hop carrier sensing range, the

hidden problem can only take place between node 1 and node 4, and more precisely,

between a data frame sent by node 1 to node 2 and an acknowledgement (“ACK”) sent

back by node 4 to node 3.

As an illustration, in Figure 6.7, node 3 senses the medium idle for the duration of

its backoff and then starts the transmission of a frame, freezing the backoff countdowns

of nodes 1 and 2. The associated acknowledgement (“ACK”) sent by node 4 does not

DIFS B1 DIFS FRAME

DIFS B2

FRAME

B'1

time

time

time
SIFS+ACK

time

node 1

node 2

node 3
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DIFS B3
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FREEZE
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Figure 6.7: Collision between ACK from node 4 and frame from node 1.

prevent node 1 from resuming its backoff countdown (event “B′
1”), since nodes 1 and 4 are

hidden from each other. If the remaining backoff of node 1 is short enough (it corresponds

to 1 slot time in the example), node 1 will transmit its frame and a collision will occur

on both frame and ACK. Although the ACK from node 4 collides, we consider that the

collision happens at node 3, since the retransmission mechanism will be performed by

this node.

As can be seen on the figure, the duration of the collision is bounded by the maximum

overlap h between the frame transmission of node 1 and the ACK transmission of node 4:

h = SIFS + ACK−DIFS− 1 slot time (6.21)
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We subtract 1 slot time to it, since after a backoff freezing period, the remaining backoff

has at least 1 slot time to decrement.

By considering that the nodes have always a frame to transmit, the collision proba-

bility phidi of node i due to a hidden node j can be estimated in a first approximation

as the ratio between the duration of a possible collision (h) and the time during which

a collision may take place (h+Bj) in between 2 transmissions of node i:

phidi =
h

h+Bj

(6.22)

Relation (6.22) has however 2 limitations. First, by only considering the average duration

of the backoff (Bj), we do not take into account the variability induced by the binary

exponential backoff used in IEEE 802.11 on the contention window size. For instance,

if node 1 is in the first stage of its backoff, an ACK from node 4 will very likely collide

with a frame of node 1. Contrarily, when node 1 is at the last stages of its backoff,

an ACK from node 4 will have a high chance to be transmitted successfully. But to

take this difference into account, we need to first evaluate tbj(k), the proportion of time

during which hidden node j remains in backoff stage k. tbj(k) is the ratio between the

average time effectively spent in the k-th backoff stage of node j (i.e., pf
k−1
j × tk,j) and

the average service time of node j (i.e., Sj):

tbj(k) =
pf

k−1
j tk,j

Sj
(6.23)

The collision probability phidi can thus be rewritten as:

phidi =

7∑
k=1

tbj(k)
h

h+B(k)
(6.24)

where B(k) = Wk
2 TS is the average backoff duration in slots at stage k (TS being the

duration of a slot time).
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Second, relation (6.22) (or equivalent relation (6.24)) implicitly assumes that node j

has a datagram to transmit (otherwise no collision can occur with node i) and should

actually be denoted as the conditional probability phidi|node j is not idle. From the law of

Total Probabilities, we can obtain the unconditioned collision probability, by noting that

the probability phidi|node j is idle is null and by reminding that the probability that node

j is not idle is nothing but node j utilization:

phidi = phidi|node j is not idle U j (6.25)

By combining the previous relations, the collision probability due to hidden nodes can

finally be expressed as:

phidi =
7∑

k=1

tbj(k)
h

h+B(k)
U j (6.26)

Simultaneous transmissions case

Let us now consider the possible simultaneous transmissions of 2 neighboring nodes. As

explained above, 2 nodes in the carrier sensing range of each other are very likely to

synchronize themselves (mainly when the load is high). And there is a non negligible

probability that the backoff countdowns of these 2 nodes expire simultaneously and

that the 2 nodes start their transmission exactly at the same time, resulting in frame

collisions. Let psti denote the probability that a frame of node i collides with a frame of

any node that is in its carrier sensing range and that starts a transmission at the same

time as node i. This probability can be estimated as follows:

psti = 1−
∏
j �=i

(1− τjU j) (6.27)

where τj is the probability that a given node j in the carrier sensing range of node i starts

its transmission at the same time as node i, provided node j has something to transmit,
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and U j is the utilization of node j. In this approximation, we take collisions only in pairs

of nodes, by assuming that 3 (or more) nodes have a very small chance to start their

transmission all together. Now we simply estimate the missing conditional probability

τj as the inverse of the average backoff duration of node j expressed in number of slot

times:

τj =
1

Bj

(6.28)

Now that we have estimated all the parameters of our model, we can proceed to the

numerical calculations and the results that our model can deliver.

6.2.4 Fixed-point solution

The global queueing model, that takes as input the service rates μi of all queues, provides

the performance parameters of the chain, like for instance, the datagram throughput Xi

(relation (6.1)) and the node utilization U i (relation (6.3)). The local CTMC’s provide

the service rate μi if their input values Xi and U i are known. We use then a fixed-point

iteration to obtain the values of the desired parameters, as described in Algorithm 3.

Each step of this algorithm is executed for all the queues, before executing the next step.

Algorithm 3 Fixed-point solution.

1: initialize service rate μi with non-absurd value
2: repeat
3: get performance parameters Xi , pri , U i (rel. (6.1)-(6.3))
4: compute frame error probabilities pf i (rel. (6.8))
5: update backoffs Bi (rel. (6.10))
6: obtain the frame throughput Fi (rel. (6.13))
7: compute the correcting factors δi (rel. (6.17))
8: update the number of backoff freezing npi (rel. (6.12))
9: calculate the rate βi (rel. (6.18))

10: update service rate μi (rel. (6.19)
11: update errori (relative error between the old and new values of μi)
12: until max1≤i≤N (errori) < ε
13: return

After the initialization of the service rate μi with non-absurd values (e.g., we may
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set it to 1), the algorithm will iterate until a convergence criteria is reached. In our case,

we calculate, on each queue, the relative deviation between the value of the service rate

at the current iteration with the one from the previous iteration (referred as to errori).

If this value is lower than a criteria ε for all queues, the iteration is no longer performed.

Once the model has converged, we obtain the chain performance in terms of the chain

throughput Xout and the chain datagram rejection probability prout.

6.3 Numerical Results

In this section we study the accuracy of our proposed model and we show how its

exploitation can bring new insights in the behavior of wireless multi-hop chains at a

very low cost of computation. We consider the parameters defined in Section 2.4 for the

simulations.

6.3.1 Model accuracy

To evaluate the accuracy of our model, we compare its results with those delivered by

simulation. In the following figures (from 6.9 to 6.12), each simulation point has been

obtained with 100,000 packets generations at the source node. Note also that each figure

(from 6.9 to 6.12) corresponds to hundreds of data points explored (both by the simulator

and by the model), and the surfaces shown are obtained using an interpolation from sets

of scattered data points.

We consider the following example. The four nodes of the chain are scattered in a

straight line as represented by Figure 6.8. Nodes 1 and 4 are fixed while the positions

of nodes 2 and 3 vary. We denote by x2 (resp. x3) the distance between node 2 (resp.

3) and node 1. Note that the positions of nodes 2 and 3 must obey certain rules so

that 1-hop neighbors can communicate. This is the reason behind the white “impossible

area” band in Figures 6.9 and 6.10. The buffer at each node is set to 20 datagrams. We
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first set the datagrams arrivals rate at the source node (node 1) to Λ = 2.0 Mb/s, such

that the chain is experiencing a high level of workload.

x2 x3

1 2 3 4
x

y

Figure 6.8: Topology used for the numerical results.

Figure 6.9 represents the percentage relative error value on the chain throughput for

our proposed model as a function of the distance of the relay nodes 2 and 3 to node 1.

We define the percentage relative error of our model versus the actual values (delivered

by ns-2.35) as the ratio 100× (approximate - actual) / actual. The relative error tends

to be very low as it stands below ±6% for each of the nearly 550 configurations we have

performed to generate this figure. In fact, the error seems to be almost equally spread

over negative and positive values. This could support the idea that our model commits

an even smaller relative error for the attained throughput (the observed deviation being

mostly due to the intrinsic inaccuracies of our model).

Table 6.1 shows the overall distribution of relative errors in the throughput. We

observe that the mean error is around 4% and in almost to 100% of cases the error

remains below 10% and it never exceeds 15% in all considered cases.

Average < ±5% ±5-10% ±10-15% > ±15%
3.87% 66.78% 32.50% 0.71% 0.0%

Table 6.1: Overall accuracy of the model for the throughput of the chain with 4 nodes,
1 flow, Ki=20 and Λ=2Mb/s.

We now turn to the chain datagram rejection probability for the chain with 4 nodes

and a single flow. Let us remind that the rejection probability denotes the percentage of

datagrams being lost while attempting to travel through the 4-nodes chain. Similarly,

we consider the accuracy of our model for hundreds of relay nodes positions. Figure 6.10

shows the corresponding percentage relative error.
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Figure 6.9: Relative errors (in percentage) for throughput for various positions of relay
nodes (x2 and x3) with Ki=20 and Λ=2Mb/s.
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Figure 6.10: Relative errors (in percentage) for datagram rejection probability of the
chain with 4 nodes and 1 flow, for various positions of relay nodes (x2 and x3) with
Ki=20 and Λ=2Mb/s.
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The overall distribution of the relative error for the datagram rejection probability

errors can be found in Table 6.2. In this case, the mean error is 4.4% and, as before,

a high proportion of the cases remains below 10%, with few samples exceeding 15% of

relative error.

Average < ±5% ±5-10% ±10-15% > ±15%
4.4% 63.93% 28.57% 6.43% 1.07%

Table 6.2: Overall accuracy of the model for the datagram rejection probability of the
chain with 4 nodes, 1 flow, Ki=20 and Λ=2Mb/s.

We have performed the same experiment for a different level of workload, with Λ =

1.6Mb/s (this value implies empty buffers sometimes in the chain). The associated

results are generally as good as those for 2Mb/s, as we can see in Figures 6.11 and 6.12.

As a matter of fact, for both the throughput and datagram rejection probability relative

errors, the values obtained rarely exceed 10%.
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Figure 6.11: Relative errors (in percentage) for throughput for various positions of relay
nodes with Ki=20 and Λ=1.6Mb/s.

Tables 6.3 and 6.4 show the relative error distribution for the chain throughput and
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Figure 6.12: Relative errors (in percentage) for datagram rejection probability of the
chain with 4 nodes and 1 flow, for various positions of relay nodes (x2 and x3), with
Ki=20 and Λ=1.6Mb/s.

the datagram rejection probability, respectively. In both cases, more than 90% of the

values are under 10% error, with none greater than 15%. Given the intrinsic inaccuracies

of our model and the difficulties associated to the modeling of such scenarios, such results

can be considered quite good in terms of accuracy.

Average < ±5% ±5-10% ±10-15% > ±15%
5.77% 31.43% 66.79% 1.78% 0.0%

Table 6.3: Overall accuracy of the model for the throughput of the chain with 4 nodes,
1 flow, Ki=20 and Λ=1.6Mb/s.

Average < ±5% ±5-10% ±10-15% > ±15%
6.27% 30.0% 64.11% 5.89% 0.0%

Table 6.4: Overall accuracy of the model for the datagram rejection probability of the
chain with 4 nodes, 1 flow, Ki=20 and Λ=1.6Mb/s.

In addition to accuracy, we investigate the convergence behavior of our solutions. In
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the thousands of examples, we have evaluated the number of iterations required by our

model to converge. This number is small, typically less than several tens. To illustrate

this behavior, Figure 6.13 shows the convergence of the service time Si for the 3 queues,

when the distances of relay nodes are x2 = 350m , x3 = 600m. We see that after an

initial light oscillation, the curves quickly tend to their convergence values.
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Figure 6.13: Convergence of the service times of each node, with Ki=20, Λ=2Mb/s,
x2 = 350m and x3 = 600m.

We can also note that the results obtained by our model with Matlab for all the

distance pairs (x2, x3) tested in Figures 6.9 and 6.10 are computed in less than one

minute while, with the same computational resource, it takes around 12 hours to ns-

2.35 to deliver its results.

6.3.2 Model exploitation

Now, we resort to our model to investigate the behavior of a wireless chain with 4 nodes

with the goal of pointing out properties that may be used to get a better understanding

and usage of multi-hop networks. Of course, we cross-validate the correctness of the

following results using our simulator NS2.



125

First we rely on our model to study the influence of the buffers length K on the

rejection probability. Losses may occur at the buffer input of each node, or less frequently

result from the failure of 7 consecutive frame transmissions. We represent, in Figure 6.14,

the evolution of this latter probability against the workload level Λ. The relay nodes

are respectively set to x2 = 350 and x3 = 500 meters. Each curve corresponds to a

different buffer length K. The figure shows that losses tend to occur significantly earlier

when K equals to 5 datagrams. On the other hand, the actual value of the rejection

probability is not much sensitive to K when the latter exceeds 10. Said differently,

having a buffer length of 10 or 50 does not postpone much the emergence of datagram

losses. Although the actual values of the rejection probability will differ when the spots

of relay nodes are moved, we observe through the many other examples we carried out a

relative insensibility (often much more marked) to the buffer length as long as K exceeds

10. These experiments support the idea that, at least in the case of 4-nodes chain, there

is not much gain for equipping nodes with large buffers.
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Figure 6.14: Absolute rejection probability of a chain with 4 nodes as a function of the
workload level.

In our second example, we focus on the presence of a throughput optimum (for a given

level of workload Λ) and on the associated performance collapse which occurs when the

workload is set to excessive values. Multi-hop wireless chains are known to reach their



126

best throughput level when the workload is capped under a certain threshold [LBC+01,

ANB+12]. In Figure 6.15 we represent the attained throughput of several 4-nodes chains

for values of Λ spanning from low levels to high levels of workload with a buffer length K

of 20. Each curve corresponds to the expected throughput for a specific spot of node 2

(expressed in terms of its distance to node 1, i.e., x2) while the other relay node (i.e.,

node 3) is consistently set to 400 meters away from node 1 (x3 = 400). As shown by this

figure, our model captures the existence of this performance optima. We observe that

the magnitude of the associated collapse widely varies depending on the precise spot of

node 2. For instance the gap between the maximal value and the value asymptotically

attained when the system is totally saturated goes up to 45% for x2 = 10 meters while

it decreases to only 14% in the case of x2 = 350 meters. On the other hand, Figure 6.15

clearly pinpoints that the maximal value of the chain throughput is reached for different

values of Λ depending on the position of the relay nodes. Our proposed model provides a

simple and fast means (unlike virtually endless simulations) to locate this optimal value

of Λ. Thus, for any position of the relay nodes, our model can very quickly deliver an

accurate approximation of what should be the maximum authorized level of workload.

This behavior clearly argues in favor of the implementation of controlling mechanisms at

the border of the chain (such as admission control and traffic shaping policies) to keep

the network away from those “counter-productive” running points.

6.4 Conclusion

In this chapter, we present a model that fairly represents a chain composed of 4 nodes

and a single flow traveling through it. Such chain presents several difficulties in terms of

modeling, like for instance, the presence of hidden stations and starvation in relay nodes.

Our model is, however, capable of bypassing these difficulties and delivering accurate

results.
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Figure 6.15: Expected throughput of 4 different chains with 4 nodes as a function of the
workload level.

We se that, in terms of attained throughput obtained by the chain, the relative

error between the results obtained with our model and those with simulator ns-2.35

is typically under 5%. Similar results are obtained when we compare the datagram

rejection probability for the chain.

Moreover, we show that our model can quickly converge to the solution. This be-

havior is interesting, since obtaining results from a fast algorithm is a major advantage

when compared to long simulations.

Finally, we show how the use of a model allows us to better understand the real

system. The estimation of the optimal operating point (in terms of throughput, for

instance) or the impacts of the buffer size in the chain performance can be evaluated

with an accurate model.



Conclusion

In this thesis, we study single-hop and multi-hop flows based on IEEE 802.11 wireless

networks, and more specifically the chain topology. As a consequence, we identify many

intrinsic issues to these structures, that naturally increases the complexity of any ana-

lytical model designed to study them. For instance, we can mention starvation in nodes

or the datagram losses due to buffer overflow. Moreover, we can mention the recurrent

hidden node problem, which greatly impacts the system overall performance and that is

not easily captured by a model. Because of their complexity, these problems are often

ignored in many works. Our goal in this thesis was to take into account these issues and

provides accurate results with our proposed model. We provide an hierarchical model,

composed of two level: a high-level global queueing network model that matches the

chain topology and a low-level local model, that reproduces the necessary IEEE 802.11

DCF specifications associated to each node of the network. This model is to capture

interesting behaviors of chains, like, for instance, the performance collapse that happens

after a certain level of workload is injected in the chain.

Contributions

In the first chapter of this thesis, we explain the importance of multi-hop wireless net-

works, based on the IEEE 802.11 DCF principles, and discuss the potential applications,

like, for instance, substitution networks. In such networks, several wireless stations can

128
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be used as relay stations to forward packets, and a chain network is the simplest config-

uration that can be naturally employed for this task. Therefore, there is a clear need to

better understand the behavior of chains and to estimate their performance.

In Chapter 2, we describe the IEEE 802.11 DCF mechanisms, since this technology is

assumed to be used in the chain scenarios we study. Besides, we introduce the tool that

we have used to perform simulations (Network Simulator - ns-2.35). Finally, we have

also developed a graphical interface for the IEEE 802.11 DCF mechanisms implemented

in the simulator (like, for instance, backoff, freezing, DIFS,...), in order to ease the

understanding of the system.

The state-of-the-art concerning the subject of this thesis is presented in Chapter

3. Several studies have analyzed the behavior of multi-hop wireless networks, with the

design of many models, but most of them are restricted to single hop flows. In this

direction, it is common to evaluate the performance of cell networks, specially due to

the absence of hidden stations. In another direction, only a few works have proposed

models to study multi-hop flows, and most of them only consider single-hop flows to

transmit in the network. Very few works are focused on the modeling of multi-hop

networks with multi-hop flows and most of their works rely on restrictive assumptions

like, for instance, a perfect physical layer or an infinite buffer on each station.

Chapter 4 contains the description of our proposed modeling framework. At a first

time, we focus on chains with up to 3 nodes, where all nodes are in each other’s carrier

sense range. In such scenarios, only one flow is traveling through the network. With

these scenarios, we give the basis of our modeling approach that will be used in the

following extensions presented in the subsequent chapters. We show that even in the

scenarios presented in this chapter, the derivation of the system performance is not so

simple, specially due to the strong dependence between nodes in a chain. Our model,

however, successfully delivers the performance of the analyzed networks, with small

relative errors, when compared to the results of simulation.
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We extend our modeling framework, in Chapter 5, for the cases when two flows, in

opposite directions, are conveyed through chains with up to 3 nodes. In these scenarios,

the nodes remain in each other’s carrier sense range. We show that it is simple to adapt

the base model proposed in the previous chapter, in order to incorporate 2 flows. Once

again, the results delivered by our model are quite accurate.

Finally, in Chapter 6, once more, we extend the base model to chain with 4 nodes.

In this case, we adapt it to deal with the hidden node problem in a 4-nodes chain.

This new feature is fundamental for future extensions to model any N-nodes chain.

By incorporating the probability of frame collisions on the radio channel, and without

exhaustive modifications in the base model, the results delivered by our model are found

to be accurate, compared to simulations performed with ns-2.35.

Future Work

With this thesis coming to an end after a bit more than three years of studies, naturally

some interesting points remain to be further analyzed concerning our model for multi-

hop wireless networks. We can mention the extension of the model for larger chains.

One immediate problem for these scenarios remains the estimation of the mean backoff

freezing duration. In these cases, the backoff of a node may be frozen due to the trans-

missions of frames and acknowledgements from many different neighbors. We also point

out that, with larger scenarios, the hidden node problem will have a higher probability

to appear.

Developing a model for larger networks, dealing with several flows, remains also an

interesting topic for future researches. It would also be important to evaluate the accu-

racy of the model for more recent versions of the IEEE 802.11 protocol. Another point

that remains to be studied is the use of adaptive physical transmission rates between

nodes. In that case, the number of frame losses have an effect on the rate at which the
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link will operate, impacting the whole system performance.

Moreover, the use of variable datagram sizes may represent some challenges in the

modeling approach. Finally, in order to evaluate the real accuracy of our framework, a

comparison between our model performance and those delivered by real experimentations

would be of great value.
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