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Abstract

Motivated by some questions raised by F. Santambrogio (see [San12b]), this
thesis is devoted to the study of Mean Field Games and models involving optimal
transport with density constraints.

To study second order MFG models in the spirit of [San12b], as a possible
first step we introduce and show the well-posedness of a diffusive crowd mo-
tion model with density constraints (generalizing in some sense the works by
B. Maury et al., see [MRCS10, RC11]). The model is described by the evolution
of the people’s density, that can be seen as a curve in the Wasserstein space.
From the PDE point of view, this corresponds to a modified Fokker-Planck
equation, with an additional gradient of a pressure (only living in the satu-
rated zone {ρ = 1}) in the drift. We provide a uniqueness result for the pair
density and pressure (ρ, p) by passing through the dual equation and using
some well-known parabolic estimates.

Initially motivated by the splitting algorithm (used for the above existence re-
sult), we study some fine properties of the Wasserstein projection below a given
threshold. Embedding this question into a larger class of variational problems
involving optimal transport, we show BV estimates for the optimizers. Other
possible applications (for partial optimal transport, shape optimization and
degenerate parabolic problems) of these BV estimates are also discussed.

Changing the point of view, we also study variational Mean Field Game mod-
els with density constraints. In this sense, the MFG systems are obtained as
first order optimality conditions of two convex problems in duality. In these
systems an additional term appears, interpreted as a price to be paid when
agents pass through saturated zones. Firstly, profiting from the regularity re-
sults of elliptic PDEs, we give the existence and characterization of the solu-
tions of stationary second order MFGs with density constraints. As a byprod-
uct we characterize the subdifferential of a convex functional introduced ini-
tially by Benamou-Brenier (see [BB00]) to give a dynamic formulation of the
optimal transport problem. Secondly, (based on a penalization technique) we
prove the well-posedness of a class of first order evolutive MFG systems with
density constraints. An unexpected connection with the incompressible Euler’s
equations à la Brenier is also given.
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Résumé

Movité par des questions posées par F. Santambrogio (voir [San12b]), cette
thèse est dédiée à l’étude de jeux à champ moyen et des modèles impliquant le
transport optimal avec contraintes de densité.

A fin d’étudier des modèles de MFG d’ordre deux dans l’esprit de [San12b],
on introduit en tant que brique élementaire un modèle diffusif de mouve-
ment de foule avec contraintes de densité (en généralisant dans une sense
les travaux de Maury et al., voir [MRCS10, RC11]). Le modèle est décrit par
l’évolutions de la densité de la foule, qui peut être vu comme une courbe dans
l’espace de Wasserstein. Du point de vu EDP, ça correspond à une équation
de Fokker-Planck modifiée, avec un terme supplémentaire, le gradient d’une
pression (seulement dans la zone saturée {ρ = 1}) dans le drift. En passant
par l’équation duale et en utilisant des estimations paraboliques bien connues,
on démontre l’unicité du pair densité et pression (ρ, p).

Motivé initialement par l’algorithm de splitting (utilisé dans le résultat d’exis-
tence ci-dessus), on étudie des propriétés fines de la projection de Wasserstein
en dessous d’un seuil donné. Intégrant cette question dans une classe plus
grande de problèmes impliquant le transport optimal, on démontre des esti-
mations BV pour les optimiseurs. D’autres applications possibles (en trans-
port partiel, optimisation de forme et problèmes paraboliques dégénérés) de
ces estimations BV sont également discutées.

En changeant de point de vu, on étudie également des modèles de MFG
variationnels avec contraintes de densité. Dans ce sens, les systèmes de MFG
sont obtenus comme conditions d’optimalité de premier ordre pour deux prob-
lèmes convexes en dualité. Dans ces systèmes un terme additionnel apparaît,
interpreté comme un prix à payer quand les agents passent dans des zones
saturées. Premièrement, en profitant des résultats de régularité elliptique, on
montre l’existence et la caractérisation de solutions des MFG de deuxième
ordre stationnaires avec contraintes de densité. Comme résultat additionnel,
on caractérise le sous-différentiel d’une fonctionnelle introduite par Benamou-
Brenier (voir [BB00]) pour donner une formulation dynamique du problème de
transport optimal. Deuxièmement, (basé sur une technique de pénalisation) on
montre qu’une classe de systèmes de MFG de premier ordre avec contraintes
de densité est bien posée. Une connexion inattendu avec les équations d’Euler
incompressible à la Brenier est égalment donnée.
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Introduction Générale

D
ans cette thèse on étudie des modèles différens venant du transport
optimal, des équations aux dérivées partielles décrivant le mouve-
ment des foules et des jeux à champ moyen. Dans tous ces mod-

èles — comme le titre le souligne — le dénominateur commun est la notion
de contrainte de densité. Les contraintes de densité apparaissent naturellement
lorsqu’on veut modéliser les effets de congestion. On peut imaginer la situation
suivante : nous venons de construire un nouveau département de mathéma-
tiques (comme il sera le cas à Orsay). Pour des raisons de sécurité on veut
concevoir un dispositif qui dit aux gens comment évacuer le bâtiment de façon
‘optimale’ en cas d’une urgence. Dans ce contexte ‘optimale’ veut dire pas
seulement de la manière la plus rapide/plus courte possible, mais on prend
en considération les effets possibles de congestion aussi. Ceci est tout à fait une
question importante, parce que dans des endroits étroits (par exemple à côté
des portes) nous pouvons habituellement s’attendre à avoir une concentration
plus élevée de personnes. Par conséquent, si notre dispositif pouvait prendre
aussi en cosidération la contrainte que à chaque instant et chaque endroit du
bâtiment la densité de la population reste en dessous d’un seuil donné (par ex-
emple 5,4 personnes sur chaque mètre carré, une valeur qui est généralement
utilisée dans les applications), la procédure d’évacuation serait parfaite.

La réalisation possible d’un dispositif comme ça serait sûrement une tâche
difficile. L’une des principales raisons est que dans un cas d’une situation
d’urgence, les gens ont la tendance à oublier de réfléchir rationnellement.
Néanmoins, du point de vue mathématique cela crée des questions très in-
téressantes et non triviales. Décrit mathématiquement, le dispositif ci-dessus
pourrait fonctionner de la façon suivante : comme entrée il reçoit à chaque
instant la densité et le champ de vitesse souhaité de la population, et retourne
un nouveau champ de vitesse (donc il dit aux gens à quelle vitesse et dans
quelle direction aller). Ce nouveau champ de vitesse est construit de façon à
ce que personne ne soit autorisé à se déplacer de manière telle que la densité
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2 introduction générale

dépasse le seuil de saturation. La vitesse souhaitée est supposée connue (elle
peut dépendre de la distance de la porte la plus proche, etc.) et elle est la
même pour tous.

À ce point là, on remarque que dans tous nos modèles à venir, nous allons
décrire le mouvement d’une foule/population d’agents par l’évolution de leur
densité. Donc, on considère des modèles macroscopiques.

Au cours des dernières années, de nombreux modèles différents ont été pro-
posés pour étudier les mouvements de foule avec effets de congestion. En
plus, ces modèles peuvent parfois servir de base pour comprendre certains
phénomènes venant de la biologie (tels que la migration cellulaire, la crois-
sance tumorale, la formation de structures et textures), la physique des par-
ticules ou de l’économie. Pour une liste non exhaustive de bibliographie dans
ce cadre nous nous référons à [Cha07, CR05, CPT14b, Dog08, Hel92, HM95,
Hug02, Hug03, MV07, MRCS10, MRCSV11, MRCS14, RC11, PQV14, AKY14].

Dans ce contexte, la situation décrite précédemment modélise un soi-disant
effet de congestion forte (nous nous référons par exemple à [MRCS10, MRCSV11,
MV07, RC11]). Dans ce sens, le champ de vitesse souhaité doit être modifié
pour éviter les zones très concentrées. Des modèles similaires, avec des effets
de congestion douce existent également. Dans ceux-ci, les gens ralentissent dès
que la densité de la zone se rapproche du seuil (au lieu d’être affectés seule-
ment quand ils sont dans une zone totalement saturée).

Les modèles étudiés dans cette thèse sont motivés par le premier type de
considération, par les modèles macroscopiques de mouvement de foule avec
des effets de congestion forte. Le pilier central de notre analyse est la théorie du
transport optimal. Cette théorie est très puissante et elle nous permet d’étudier
et de comprendre plusieurs phénomènes liés à des contraintes de densité dans
différents modèles de manière unifiée.

La genèse de cette thèse a commencé avec le modest proposal de F. Santam-
brogio (voir [San12b]). Il a proposé un modèle de jeux à champ moyen (voir
[LL06a, LL06b, LL07, Lio08]), où on impose une contrainte de densité. Nous
allons présenter la théorie de MFG plus en détail en début de la Partie ii.
Néanmoins, nous soulignons que dans les modèles de MFG les agents jouent
un jeu différentiel non coopératif, où chacun doit choisir une stratégie. Par con-
séquent, dans ces modèles on veut pas seulement comprendre l’évolution de la
densité de la population, mais on veut décrire la fonction valeur et la stratégie
optimale de chaque agent aussi. Les modèles de [San12b] visent à généraliser
ceux du mouvement de foule (discutés auparavant) dans le cas où les gens sont
stratégiques. Dans [San12b], le modèle a seulement été construit, et aucun ré-
sultat rigoureux n’a pas été fourni. Étant également le sujet du mémoire de M2

(voir [Més12]), il s’est avéré que les questions soulevées dans [San12b] sont loin
d’être triviales. Une des raisons est la faible régularité que l’on pouvait espérer
pour la fonction valeur qui résout une équation de Hamilton-Jacobi-Bellman
de premier ordre. Cela nous a empêché de construire un schéma de point fixe
raisonnable (une technique utilisée avec succès dans de nombreux autres mod-



introduction générale 3

èles de MFG), en tenant compte également de la pression, la nouvelle variable
venant en dualité avec la contrainte de densité.

Une première tentative pour résoudre ce problème, était l’étude d’un mod-
èle diffusif, où une diffusion non dégénérée est incluse dans l’équation de HJB
et dans l’équations de continuité (transformant ce dernier en une équation de
Fokker-Planck). Comme première étape, cela nécessitait l’étude de l’existence
et de l’unicité d’une solution de l’équation de Fokker-Planck avec contrainte de
densité. Cet objectif a été atteint avec succès et il a conduit à un nouveau mod-
èle diffusif macroscopique de mouvement de foule avec contrainte de densité
(ce sera l’objet du Chapitre 2 et le Chapitre 3 ; il a également fait l’objet de
deux papiers, voir [MS15a, DMM15]). À un certain point dans l’analyse effec-
tuée dans [MS15a], nous avions besoin de certaines estimations plus fines sur
les mesures projetées en dessous d’un certain seuil dans le sens Wasserstein.
Plus précisément, une estimation BV sur les mesures projetées nous permet-
trait d’obtenir des résultats de compacité pour certaines courbes dans l’espace
Wasserstein, construits par un schéma de type splitting. Par ceci, on pouvait dé-
montrer la convergence de l’algorithme et donc le résultat d’existence. Les es-
timations BV ont été réalisées non seulement pour les mesures projetées, mais
pour les optimiseurs d’une grande classe de problèmes variationnels impli-
quant le transport optimal (ce qui est le sujet du Chapitre 1 et de [DPMSV15]).

En parallèle de la direction présentée ci-dessus, nous avons étudié les ques-
tions soulevées dans [San12b] aussi d’un point de vue différent. Nous avons
étudié deux types de modèles de MFG possédant une structure variationnelle.
Dans ces deux modèles, les approches utilisées sont liés par leur formulation
variationnelle. Les approches utilisées dans les deux modèles rappellent celle
étudiée par J.-D. Benamou et Y. Brenier (voir [BB00]) pour donner une formu-
lation dynamique du problème de transport optimal de Monge-Kantorovich.

Premièrement, nous avons montré le caractère bien-posé et on a caractérisé
les solutions de certains systèmes de MFG diffusifs stationnaires sous con-
traintes de densité. L’effet régularisant de l’équation de Fokker-Planck sta-
tionnaire et la structure elliptique nous ont permis d’imposer la contrainte de
densité (que nous avons montré être qualifiée) directement au niveau du prob-
lème d’optimisation. Cela fait l’objet du Chapitre 4 (voir aussi [MS15b]).

Deuxièmement, nous avons montré le caractère bien-posé des systèmes de
MFG évolutifs de premier ordre avec contraintes de densité. Ici, nous avons
obtenu la contrainte de densité par la limite de certaines pénalisations (une
procédure initialement proposée également dans [San12b]). De plus, nous
avons obtenu un lien surprenant entre notre modèle de MFG avec des con-
traintes de densité et les équations d’Euler décrivant le mouvement des flu-
ides parfaits incompressibles (voir [Bre99, AF09]). Ces modèles font l’objet du
Chapitre 5 (voir aussi [CMS15]). Notons que les systèmes de MFG (obtenus
comme conditions d’optimalité des problèmes variationnels correspondants)
présentés dans la Partie ii montrent quelques différences par rapport aux orig-
inaux dérivés formellement dans [San12b]. Cela est dû à la différence de
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l’interprétation du champ de pression, considéré comme multiplicateur de La-
grange pour la contrainte de densité.

Maintenant, nous allons décrire en détail les principaux résultats mathéma-
tiques inclus dans cette thèse. Nous allons voir comment ils sont présentés
par rapport aux chapitres aussi. Chaque chapitre se concentre essentiellement
sur un papier. Ceux-ci sont soit acceptés pour publication, soit soumis ou en
préparation.

description mathématique des résultats

Chapitres 1, 2 et 3 construisent la Partie i de la thèse et ils contiennent les
résultats sur les modèles venant purement de transport optimal et les mouve-
ments de foule macroscopiques avec des contraintes de densité.

Le Chapitre 1 est basé sur un travail commun avec G. De Philippis, F. San-
tambrogio et B. Velichkov (voir [DPMSV15]). Ici, notre objectif principal était
d’étudier certaines propriétés fines de l’opérateur de projection dans l’espace
Wasserstein W2(Ω), (Ω ⊆ Rd). En fait, nous incorporons cette question dans
un ensemble plus large de problèmes. Notamment, nous étudions certaines
propriétés quantitatives et la régularité des minimiseurs du problème d’opti-
misation

min
$∈P2(Ω)

1
2

W2
2 ($, g) + τF($),

où W2 indique la distance 2-Wasserstein sur P2(Ω), F : P2(Ω) → R est une
fonctionnelle donnée, τ > 0 est un paramètre qui peut éventuellement être
petit, et g est une probabilité donnée dans P2(Ω) (l’espace de mesures de

probabilité sur Ω ⊆ Rd avec deuxième moment fini
∫

Ω
|x|2 d$(x) < +∞). Le

problème ci-dessus peut être reconnu comme une étape dans la discrétisation
en temps (τ étant le paramètre de discrétisation, dans ce cas) du flot-gradient
de la fonctionnelle F, où g = $τ

k est une mesure précédemment construite et
le $ optimal est en effet la suivante. Les algorithmes, où chaque pas de temps
a la forme du problème d’optimisation ci-dessus, sont généralement appelés
des schémas de JKO dans la communauté du transport optimal (voir [JKO98]).
Sous des hypothèses appropriées, à la limite lorsque τ → 0, la suite de mesures
optimales converge vers une courbe de mesures qui est le flot-gradient de F.
Notons ici que pour les flots-gradient, le paramètre de discrétisation τ tend
vers zéro, donc, en ce qui concerne les estimations sur les optimiseurs, on
peut vouloir les obtenir de manière indépendante de τ. Nous pouvons imag-
iner d’autres modèles qui rentrent dans le cadre du problème d’optimisation
ci-dessus: g pourrait représenter certaines ressources, et $ la répartition des
usines autour d’eux; g la distribution de certains magasins/banques/écoles,
etc., et $ la répartition des personnes. D’autres modèles sophistiqués sur la
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planification urbaine, le traitement d’images, etc. existent aussi. Ici en général
τ > 0 est fixé.

Notre premier objectif était d’étudier le comportement de l’opérateur de pro-
jection, plus précisément les mesures projetées en-dessous d’un certain seuil.
C’est bien le cas du problème ci-dessus, si on prend formellement F la fonc-
tion d’indicatrice de l’ensemble K f := {ρ ∈ P2(Ω) : ρ ≤ f dx}, où f est une

fonction positive avec
∫

Ω
f (x)dx ≥ 1. Dans les applications, en général, il est

raisonnable de choisir f constant. Puisque ce type de problème ne nécessite
pas une dépendance en τ > 0, nous choisisons simplement τ = 1.

Nos principaux résultats dans ce chapitre sont :

Théorème 0.0.1. Soit Ω ⊂ Rd un ensemble convexe (éventuellement non-borné), soit
h : R+ → R ∪ {+∞} une fonction convexe et s.c.i. et g ∈ P2(Ω) ∩ BV(Ω). Si $̄

est l’optimiseur du problème variationnel suivant

min
$∈P2(Ω)

1
2

W2
2 ($, g) +

∫
Ω

h($(x))dx ,

alors ∫
Ω
|∇$̄|dx ≤

∫
Ω
|∇g|dx . (0.0.1)

Par un argument d’approximation (approximation de la fonction d’indicatrice
de l’ensemble K f par des fonctionnelles convexes s.c.i.), le résultat ci-dessus
vaut en particulier pour le problème de projection sous la forme suivante:

Théorème 0.0.2. Soit Ω ⊂ Rd un ensemble convexe (possiblement non-borné), g ∈
P2(Ω) ∩ BV(Ω) et soit f ∈ BVloc(Ω) une fonction avec

∫
Ω

f dx ≥ 1. Si

$̄ = argmin
{

W2
2 ($, g) : $ ∈P2(Ω), $ ∈ K f

}
, (0.0.2)

alors ∫
Ω
|∇$̄|dx ≤

∫
Ω
|∇g|dx + 2

∫
Ω
|∇ f |dx. (0.0.3)

Dans le cas où f ≡ 1, on obtient un résultat sur la décroissance de la varia-
tion totale par l’opérateur de projection. Nous remarquons que la constante 2
dans l’inégalité (0.0.3) est sharp. Les estimations BV sont utiles lorsque la pro-
jection est traitée comme une étape d’une procedure d’évolution discrétisée.
Par exemple, une borne BV permet de transformer la convergence faible en
convergence forte dans L1. Aussi, si nous considérons une EDP mélangeant
une évolution lisse, comme l’évolution de Fokker-Planck, et certaines étapes
de projection (pour imposer une contrainte de densité, comme dans les prob-
lèmes de mouvement de foule : nous allons décrire cela plus tard, et ce sera
traité en détail dans le Chapitre 2), on pourrait se demander quelles bornes
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sur la régularité de la solution sont conservées en temps. Du fait que les dis-
continuités dans la mesure projetée détruisent tout type de norme W1,p, c’est
naturel de chercher des bornes BV.

Le cœur de la preuve des estimations BV précédentes est l’inégalité suivante.
Prenons $, g ∈ P2(Ω) et (ϕ, ψ) un couple de potentiels de Kantorovich dans
le transport optimal de $ à g et H : Rd → R une fonction paire et convexe
(nous ne nous soucions pas des hypothèses de régularité dans cette description
heuristique). Alors, on a∫

Ω
∇H(∇ϕ) · ∇$ +∇H(∇ψ) · ∇g dx ≥ 0.

Il semble que cette inégalité décrit certaines caractéristiques géométriques non
triviales du problème de transport optimal entre $ et g, qui ne sont pas com-
plètement comprises, sauf dans certains cas particuliers. Le cas H(z) = |z|2/2,
par exemple, est une conséquence de la convexité géodésique de la fonction-
nelle entropie. Pour démontrer les estimations BV décrites ci-dessus, on utilise
l’inégalité pour H(z) = |z|. Dans le même contexte, nous avons également
donné une nouvelle preuve rigoureuse du fait que la mesure projetée sature
la contrainte (ce qui est également connu dans le cadre du transport partiel).
Plus précisément, il existe un optimiseur unique $̄ dans (0.0.2) et il existe un
ensemble mesurable B ⊆ Ω tel que

$̄ = gac
1B + f1Bc .

Notons que pour cette propriété, il n’y a pas besoin d’imposer la régularité BV
sur g et f , qui est juste nécessaire pour l’estimation (0.0.3).

À la fin du chapitre, nous discutons des applications possibles (également
sous forme de questions ouvertes) des estimations BV établies antérieurement.
Premièrement, nous observons que certaines question de la théorie de transport
optimal partiel, étudiée récemment par L.A. Caffarelli-R. McCann et A. Figalli
(voir [CM10, Fig10], où l’objectif est de transporter de manière optimale seule-
ment une partie donnée d’une mesure à l’autre) peuvent être formulées dans
notre cadre (tels que la régularité de la frontière libre résultant quand on pro-
jette une mesure). Nos estimations BV peuvent être utiles dans l’étude du
problème de transport partiel lui-même, qui peut être considéré en fait comme
un problème de double projection. Nous discutons également d’autres ap-
plications possibles pour l’optimisation de forme et des problèmes d’évolution
d’ensembles. Nous fournissons une nouvelle preuve, basée sur le transport op-
timal, de la décroissance de la variation totale pour les équations de diffusion
dégénérés (comme l’équation des milieux poreux).

Dans le Chapitre 2 — basé sur un travail commun avec F. Santambrogio (voir
[MS15a]) — nous proposons un nouveau modèle macroscopique de mouve-
ment de foule avec contraintes de densité, soit avec congestion forte. Motivé
par les modèles de premier ordre étudiés récemment, due à Maury et al. (voir
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[MRCS10, MRCS14, MRCSV11]), on analyse un modèle de deuxième ordre.
Du point de vue de la modélisation nous imposons un caractère aléatoire dans
le mouvement des individus. Mathématiquement, cela peut être vu au niveau
macroscopique comme une diffusion non dégénérée engendrée par un mouve-
ment brownien et le modèle tout entier peut être décrit à l’aide d’une équation
de Fokker-Planck ‘modifiée’. Ici, le mot ‘modifiée’ fait référence au fait que
l’on doit modifier le champ de vitesse des gens sur les zones saturées.

Nous décrivons notre modèle par l’évolution de la densité de la foule [0, T] 3
t 7→ ρt, qui est une famille de mesures de probabilité dépendant du temps sur
Ω ⊂ Rd (un domaine borné et convexe avec bord lipschitzien). Il est donné
un champ de vitesse spontané u : [0, T]×Ω → Rd, qui représente la vitesse
souhaitée que chaque personne suivrait en l’absence des autres. On impose
seulement une regularité L∞ sur ce champ. Pour équiper le modèle avec des
contraintes de densité — ρ ≤ 1 p.p. dans [0, T]×Ω, ce qui implique que nous
devons imposer L d(Ω) > 1 —, nous introduisons l’ensemble des vitesses
admissibles. Ce sont les champs qui n’augmentent pas la densité sur les zones
déjà saturées, donc formellement nous posons

adm(ρ) :=
{

v : Ω→ Rd : ∇ · v ≥ 0 sur {ρ = 1} et v · n ≤ 0 sur ∂Ω
}

.

Maintenant, nous nous intéressons à la résolution de l’équation de Fokker-
Planck modifiée ∂tρt − ∆ρt +∇ ·

(
ρtPadm(ρt)[ut]

)
= 0,

ρ(0, x) = ρ0(x), in Ω,
(0.0.4)

où Padm(ρ) : L2(Ω; Rd) → L2(Ω; Rd) représente la projection L2 sur l’ensemble
convexe fermé adm(ρ) et ρ0 est la densité initiale donnée de la foule. Obser-
vons que l’on pourrait se demander si nous devrions projeter le ‘champ de
vitesse tout entier’ −∇ρt/ρt + ut. En fait, cela est la même que projeter seule-
ment ut, parce que dans la région {ρt = 1} on a −∇ρt/ρt = 0. Ainsi, le point
principal est que ρ est advecté par un champ de vecteur, compatible avec les
contraintes, le plus proche possible de celui spontané.

Malgré le fait que nous avons ajouté une diffusion non dégénérée au mod-
èle, ce qui a un effet de régularisation, en raison de l’opérateur de projection,
le nouveau champ de vitesses est très irrégulier (seulement L2) et il dépend
de manière non-locale de la densité elle-même. Ainsi, la théorie classique
échouera dans l’analyse du problème (0.0.4). Pour traiter cette question, nous
devons redéfinir l’ensemble des vitesses admissibles par dualité (comme cela
a été fait pour les modèles du premier ordre, voir [MRCS10, RC11]):

adm(ρ) =

{
v ∈ L2(ρ) :

∫
Ω

v · ∇p ≤ 0, ∀p ∈ H1(Ω), p ≥ 0, p(1− ρ) = 0 p.p.
}

.

À l’aide de cette formulation, nous avons toujours la décomposition orthogo-
nale

u = Padm(ρ)[u] +∇p,
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où
p ∈ press(ρ) :=

{
p ∈ H1(Ω) : p ≥ 0, p(1− ρ) = 0 p.p.

}
.

En effet, les cônes adm(ρ) et ∇press(ρ) sont en dualité. Via cette approche le
système (0.0.4) peut être réécrit comme un système pour (ρ, p) :{

∂tρt − ∆ρt +∇ · (ρt(ut −∇pt)) = 0

p ≥ 0, ρ ≤ 1, p(1− ρ) = 0, ρ(0, x) = ρ0(x), in Ω.
(0.0.5)

Nous pouvons naturellement équiper ce système de ses conditions de Neu-
mann naturelles sur le bord.

L’une des principales contributions du Chapitre 2 est le résultat d’existence
pour le système (0.0.5). Ceci est réalisé par un algorithm bien choisi, discret
en temps, de type splitting. Il procède comme suit : pour un pas de temps
τ > 0 nous construisons de manière récursive les mesures ρτ

k (k ∈ {0, . . . , N},
où N := [T/τ]) par notre schéma principal. Ce schéma est le suivant : on suit
l’équation de Fokker-Planck sans contrainte pendant un temps τ avec donné
initiale ρτ

k ; notons cette solution au temps τ par ρτ ; la nouvelle densité est en-
suite construite comme ρτ

k+1 := PK1 [ρτ], où PK1 désigne maintenant l’opérateur
de projection 2-Wasserstein sur l’ensemble K1 := {ρ ∈ P(Ω) : ρ ≤ 1 p.p.}.
Ensuite, il faut itérer ces deux étapes.

Nous continuons notre analyse en construisant des interpolations appro-
priées ρτ

t , t ∈ [0, T] entre les ρτ
k . Ces interpolations peuvent être considérées

comme des courbes dans W2(Ω). Nous devons construire des vitesses vτ
k et

des moments Eτ
k discrets aussi. Pour démontrer la convergence quand τ ↓ 0, il

faut des résultats de compacité pour les courbes ρτ. Ceux-ci reposent sur une
comparaison standard entre le dérivé métrique en W2(Ω) et la dissipation de
l’entropie le long des courbes ρτ. Par cela, on obtient la compacité dans l’espace
H1([0, T]; W2(Ω)). Pour identifier l’équation limite quand τ ↓ 0, en fait, nous
utilisons plusieurs interpolations entre les ρτ

k , vτ
k et Eτ

k . Enfin, par cette procé-
dure, on obtient l’existence d’un couple (ρ, p) qui satisfait le système (0.0.5)
dans le sens des distributions.

Comme manière alternative d’obtenir la compacité pour les courbes ρτ, nous
montrons des bornes uniformes en τ > 0 dans l’espace Lip([0, T]; W1(Ω)). Ce
résultat est obtenu en combinant certaines estimations “sharp” BV pour l’é-
quation de Fokker-Planck sans la contrainte de densité d’une part avec des
estimations BV pour les mesures projetées (fournies au Chapitre 1) d’autre
part. Puisque notre schéma principal consiste à suivre l’équation de Fokker-
Planck sans contrainte, puis projeter sur l’ensemble K1, et comme la dérivé
métrique en W1(Ω) le long de la solution de l’équation de Fokker-Planck sans
contrainte est de l’ordre de ∫

Ω
|∇ρt|+ |ut|ρt dx,

c’est facile de deviner pourquoi nous recherchons des estimations BV à la fois
pour l’équation de Fokker-Planck et pour les mesures projetées. Ceci donne
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une motivation supplémentaire aux résultats établis dans le Chapitre 1. Notons
que nous fournissons une courte section sur les variantes possibles de notre
schéma principal. Ici, nous discutons les similitudes et les difficultés possibles
sur les autres schémas, qui contiennent quelques étapes de flot-gradient aussi.
Pour les champs de vecteurs purement gradient une approche de flot-gradient
peut également être utilisé, de la même manière que dans [MRCS10].

Enfin, nous remarquons que l’estimation BV pour l’équation de Fokker-
Planck (sans contrainte de densité) semble une question délicate et elle a son
propre intérêt. Comme une sorte d’annexe dans la dernière section de ce
chapitre, nous fournissons les estimations que nous avons pu trouver. Cer-
tains d’entre elles sont valables pour les champs de vecteur lipschitziens, cer-
tains ont seulement été prouvé pour des champs C1,1 et leur validité pour les
champs de vecteur lipschitziens en général est ouverte.

Le but du Chapitre 3 est de compléter le Chapitre 2 avec des résultats
d’unicité. L’unicité des solutions est essentielle si l’on veut inclure un système
comme (0.0.5) décrivant le mouvement de foules sous contraintes de densité
dans un modèle plus grand, comme les jeux à champ moyen, et l’on vise à étudier
la question de l’existence pour le système MFG avec un schéma de point fixe.
Par ailleurs, la question de l’unicité pour les modèles diffusifs de mouvement
de foule avec des contraintes de densité était une pièce manquante dans toute
sa généralité. Pour les systèmes de premier ordre (voir [MRCS10, MRCSV11]),
l’unicitié était bien connue (au moins parmi les spécialistes) dans certains cas
(comme pour les champs de vecteurs monotones) et elle a été écrit d’abord
dans [Més12]. Néanmoins, par souci de complétude, nous fournissons une
preuve rigoureuse (et simplifiée) pour les modèles de premier ordre aussi.

Les deux stratégies utilisées dans les deux types de modèles sont cependant
très différentes. Pour les systèmes du premier ordre, nous supposerons que le
champ de vitesse souhaité, u : [0, T]×Ω → Rd (Ω ⊂ Rd est borné, convexe et
avec bord lipschitzien) satisfait une propriété de monotonie : il existe λ ∈ R

tel que

[ut(x)− ut(y)] · (x− y) ≤ λ|x− y|2, p.p. x, y ∈ Ω, ∀t ∈ [0, T].

Puis l’idée est de prouver une propriété de contraction de la distance de Wasser-
stein W2 le long de solutions. En utilisant la propriété de monotonie pour le
champ de vecteur u, avec la formule du dérivé en temps de W2

2 (ρ
1
t , ρ2

t )/2 (voir
[AGS08]) le long deux solutions (ρ1, p1) et (ρ2, p2) on obtient

W2
2 (ρ

1
t , ρ2

t ) ≤ e2λtW2
2 (ρ

1
0, ρ2

0), pour L 1 − p.p. t ∈ [0, T],

ce qui implique l’unicité pour ρ. Ici nous avons également utilisé la propriété
qui dit que si ϕt est un potentiel de Kantorovich dans le transport optimal de
ρ1

t à ρ2
t , alors ∫

Ω
∇ϕt · ∇pt dx ≥ 0, pour L 1 − p.p. t ∈ [0, T].
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L’unicité pour p résulte de l’observation que p1
t − p2

t est harmonique et p1
t et

p2
t (pour L 1 − p.p. t ∈ [0, T]) s’annulent sur le même ensemble de mesure

de Lebesgue positive. Notons que pour obtenir une propriété de contraction
pour W2

2 le long de deux solutions, l’hypothèse de monotonie sur le champ
de vitesse est naturelle. La même hypothèse a été imposée dans [NPS11] pour
étudier la propriété de contraction le long les solutions de l’équation de Fokker-
Planck pour une classe générale des distances de transport.

La stratégie pour le cas de deuxième ordre (0.0.5) repose fortement sur la
propriété régularisante du laplacien. Cela nous permet de ne pas imposer
de régularité supplémentaire sur le champ u, et nous demandons seulement
(comme pour l’existence) u ∈ L∞. En utilisant la formulation faible de (0.0.5)
pour deux solutions (ρ1, p1) et (ρ2, p2), on introduit le problème adjoint

A∂tφ + (A + B)∆φ + Au · ∇φ = AG, dans [0, T[×Ω,

∇φ · n = 0 sur [0, T]× ∂Ω, φ(T, ·) = 0 p.p dans Ω,
(0.0.6)

où

A :=
ρ1 − ρ2

(ρ1 − ρ2) + (p1 − p2)
, B :=

p1 − p2

(ρ1 − ρ2) + (p1 − p2)

et G est une function lisse arbitraire. Après la régularisation de A et B, nous
obtenons une famille d’équations uniformément paraboliques. En utilisant
certaines estimations paraboliques de base pour ces problèmes et la formula-
tion faible pour la différence des deux solutions d’une manière appropriée, on
obtient ∫ T

0

∫
Ω
(ρ1 − ρ2)G dx dt = 0,

ce qui, par le caractère arbitraire de G, donne l’unicité de ρ. L’unicité de p suit
par le même argument que dans le cas de premier ordre.

Ce chapitre est basé sur un travail commun avec S. Di Marino (voir [DMM15]).

Composé du Chapitre 4 et du Chapitre 5, la Partie ii est dédiée à l’étude de
certains systèmes de jeux à champ moyen sous contraintes de densité. Motivé
par les questions soulevées par F. Santambrogio dans [San12b], en fait cette
partie est considérée comme le cœur de la thèse.

Introduits il y a une dizaine d’années par J.-M. Lasry et P.-L. Lions (voir
[LL06a, LL06b, LL07] et aussi [HMC06]), les jeux à champ moyen visent à mod-
éliser des limites d’équilibres de Nash des jeux différentiels (stochastiques),
lorsque le nombre de joueurs tend vers l’infini. Ainsi, les systèmes MFG sont
liés au problème de commande optimale d’un agent typique, où la densité de
la population intervient comme paramètre, plus précisément

u(t, x) := inf
γ

{∫ T

t
L(γ(s), γ̇(s)) + f (γ(s), m(s, γ(s)))ds + g(γ(T))

}
, (0.0.7)
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où la minimisation est prise parmi les courbes (suffisamment régulières) γ :
[0, T] → Rd avec γ(t) = x; L : Rd ×Rd → R est une fonction lagrangienne
donnée, f : Rd ×P1(R

d) → R et g : Rd → R represent le coût courant et
le coût final du système, respectivement. Par des méthodes classiques de la
théorie de la commande optimale, la fonction valeur résout formellement une
équation de Hamilton-Jacobi-Bellman. La densité de population est transporté
par le champ de vitesse donné par la commande optimale α∗ := −DpH(·, Du)
dans le problème ci-dessus, donc formellement on obtient un système d’EDP
couplé, que nous allons appeler d’après Lasry et Lions un système de MFG:

(i) −∂tu + H(x, Du) = f (x, m) in (0, T)×Rd

(ii) ∂tm−∇ ·
(
mDpH(x, Du)

)
= 0 in (0, T)×Rd

(iii) u(T, x) = g(x), m(0, x) = m0(x) in Rd.
(0.0.8)

Ici H : Rd ×Rd → R est la transformée de Legendre-Fenchel p.r. à la deux-
ième variable du lagrangien L et m0 ∈ P1(R

d) est la densité initiale de la
population. Une solution (u, m) du système ci-dessus représente une configu-
ration d’équilibre aussi. Notons que l’agent typique doit “prédire” en quelque
sorte l’évolution de l’ensemble de la population des autres agents afin d’être en
mesure de résoudre son problème de commande optimal. Après l’obtention de
la commande optimale et le calcul de l’évolution de la “vraie” densité, si cela
correspond à la prédiction on dit que m est une équilibre de Nash. En d’autres
termes (u, m) est une solution du système de MFG (0.0.8).

F. Santambrogio dans [San12b] se demandait si un système de MFG du type
(0.0.8) peut être obtenu de façon rigoureuse avec la contrainte supplémentaire
que m(t, x) ≤ 1 pour p.p. (t, x) ∈ (0, T)×Rd. L’auteur a discuté deux façons
possibles pour attaquer cette question. La première est au niveau du problème
de contrôle optimal (0.0.7), où les vitesses des courbes γ devraient être affectées
par le gradient du champ de pression introduit (de même que dans les modèles
de mouvement de foule ), plus précisément les compétiteurs γ et α satisfont
γ(t) = x et γ̇(s) = α(s)−∇ps(γ(s)), s > t. Cela conduit formellement à un
système comme (0.0.8), où la pression p : [0, T]×Rd → R intervient comme
nouvelle variable. D’après nos connaissances, l’analyse rigoureuse de cette
approche est encore ouverte.

La deuxième alternative proposée par F. Santambrogio était d’essayer d’ob-
tenir un système comme (0.0.8) avec la contrainte de densité comme limites
des conditions d’optimalité de certains problèmes variationnels pénalisés.

Il est bien connu déjà depuis les travaux de J.-M. Lasry et P.-L Lions, que
le système de MFG correspond formellement aux conditions d’optimalité de
certains problèmes de contrôle optimal d’EDP. Plus précisément, la fonction
valeur u est (formellement) donnée comme un minimiseur de la fonctionnelle

A(u) :=
∫ T

0

∫
Rd

F∗(x,−∂tu + H(x, Du))dx dt−
∫

Rd
u(0, x)dm0(x), (0.0.9)
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sous la contrainte u(T, x) = g(x), où F = F(x, m) est une primitive de f =

f (x, m) p.r. à m et F∗ est la transformée de Legendre-Fenchel p.r. à la deux-
ième variable. De la même manière, m est (formellement) donné comme le
minimum du problème

B(m, w) :=
∫

Rd
g(x)m(T, x)dx+

∫ T

0

∫
Rd

m(t, x)L
(

x,−w
m

)
+ F(x, m(t, x)) dx dt

(0.0.10)

sous la contrainte

∂tm +∇ ·w = 0 in (0, T)×Td, m(0) = m0.

La proposition de F. Santambrogio dans [San12b] était d’utiliser F(x, m) :=
mn/n et de prendre la limite lorsque n→ ∞. Par cette méthode, formellement,
à la limite, la fonction F disparaît et la contrainte supplémentaire m ≤ 1 p.p.
apparaît. En fait, ceci est l’un des résultats que nous allons prouver rigoureuse-
ment au Chapitre 5. Une autre idée, similaire, est utilisée dans le Chapitre 4

pour montrer le caractère bien-posé des modèles de MFG stationnaires du
second ordre avec des contraintes de densité. On va décrire ces résultats main-
tenant en détails.

Basé sur un travail commun avec F.J. Silva (voir [MS15b]), dans le Chapitre 4

nous étudions une classe de modèles de MFG stationnaires de deuxième ordre
avec contraintes de densité. Les systèmes stationnaires ont déjà été introduits
dans les travaux originaux de J.-M Lasry et P.-L. Lions (et plus tard étudiés
dans [CLLP13, CLLP12]). Ils peuvent être considérés comme la limite moyenne
en temps long/limite ergodique des systèmes dépendant du temps.

Dans ce chapitre, nous utilisons une technique variationnelle (similaire à
celle présentée avant) et nous obtenons le système de MFG avec des contraintes
de densité comme conditions d’optimalité pour ce problème. Pour décrire
cela, soit Ω ⊂ Rd (d ≥ 2) un ouvert borné non vide avec une frontère lisse,
tel que L d(Ω) > 1. De plus, soit f : Ω × R → R une fonction continue,
croissante dans la deuxème variable, et on définie `q : R×Rd → R et Bq :
W1,q(Ω)× Lq(Ω)d → R comme

`q(a, b) :=


1
q
|b|q
aq−1 , si a > 0,

0, si (a, b) = (0, 0),

+∞, sinon.

Bq(m, w) :=
∫

Ω
`q(m(x), w(x))dx.

(0.0.11)

La fonctionnelle convexe, s.c.i. Bq est précisément celle introduite par J.-D. Ben-
amou et Y. Brenier pour etudier une reformulation dynamique du problème de
transport optimal de Monge-Kantorovich. Dans notre contexte, nous travail-
lons en effet avec une restriction de cette dernière à l’espace W1,q(Ω)× Lq(Ω)d.
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On considère le probeème

min Bq(m, w) +
∫

Ω
F(x, m(x))dx,

s.c. − ∆m +∇ ·w = 0 in Ω, (∇m−w) · n = 0 sur ∂Ω,∫
Ω

m(x)dx = 1, m ≤ 1,

(Pq)

où, comme avant, F(x, m) est une primitive de f (x, m) p.r. à la seconde vari-
able. Remarquons que, au lieu d’utiliser une pénalisation de la contrainte de
densité, nous l’incluons directement dans le problème. Pour travailler de cette
façon, il faut assurer une condition de qualification/condition de point intérieur
pour la contrainte. Comme pour un w donné l’équation de Fokker-Planck sta-
tionnaire fournit la régularité pour m, nous avons besoin de bien choisir nos
espaces fonctionnels.

Notre premier résultat préparatoire (avant d’écrire les conditions d’optimalité
pour le problème ci-dessus) est une description précise du sous-différentiel de
la fonctionnelle Bq. Il semble que ce type de résultat est nouveau dans la littéra-
ture. Nous divisons maintenant nos principaux résultats en deux catégories,
en fonction de la valeur de q.

Premier cas : q > d. Dans ce cas, en utilisant la méthode directe classique
du calcul des variations, nous démontrons l’existence d’une solution (m, w) de
(Pq). En utilisant que m ∈W1,q ↪→ C(Ω), nous sommes en mesure de calculer le
sous-différentiel de Br(m, w) pour tout 1 < r ≤ q. En plus, l’injection dans L∞

de m nous permet de démontrer que les contraintes dans (Pq) sont qualifiées.
En utilisant la formule pour le sous-différentiel avec r = q et des arguments
classiques en analyse convexe, nous dérivons l’existence de u ∈ W1,s(Ω) (s ∈
[1, d/(d− 1)[), λ ∈ R et de deux mesures µ et p positives régulières telles que

−∆u + 1
q′ |∇u|q′ + µ− p− λ = f (x, m), dans Ω,

−∆m−∇ ·
(

m|∇u|
2−q
q−1∇u

)
= 0, dans Ω,

∇m · n = ∇u · n = 0, sur ∂Ω,∫
Ω

m dx = 1, 0 ≤ m ≤ 1, dans Ω,

spt(µ) ⊆ {m = 0}, spt(p) ⊆ {m = 1},

(MFGq)

où le système d’EDP est satisfait au sens faible et q′ := q/(q − 1). Dans le
système ci-dessus, p apparaît comme un multiplicateur de Lagrange associé à
la contrainte m ≤ 1 et peut être interprété comme une sorte de “pression”. No-
tons que cette pression diffère de celle présentée dans les modèles précédents
de mouvements de foule congestionnés. En effet, dans ces EPD la pression est
apparue à travers son gradient (parce qu’elle était une variable duale pour une
contrainte de divergence), ici, elle apparaît comme une variable duale pour la
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contrainte m ≤ 1, donc il est naturel de l’avoir dans cette forme dans l’équation
duale. Notons aussi le fait que la contrainte de densité implique m ∈ L∞ de
façon naturelle et, dans cet espace, la condition de qualification de contrainte
tient automatiquement. On peut se demander pourquoi nous avons besoin de
passer à travers les espaces de Sobolev et de la théorie de la régularité ellip-
tique. La raison en est très simple: si l’on a choisi la topologie L∞ pour m, la
pression p comme variable duale vivrait a priori dans (L∞)∗, un espace qui
est difficile à manier. Contrairement, si q > d on a W1,q(Ω) ↪→ C(Ω), l’espace
dual de ce dernier étant l’espace des mesures de Radon signées.

Nous calculons aussi le problème dual associé à (Pq) en récupérant (MFGq)
par dualité. Enfin, dans l’ensemble ouvert {0 < m < 1} nous prouvons certains
résultats de régularité locaux pour le couple (m, u) en utilisant un argument
de bootstrap.

Deuxième cas : 1 < q ≤ d. Dans ce cas, même si l’existence d’une solution est
toujours vraie, m est en général discontinu, ce qui implique que les arguments
utilisés dans le calcul du sous-différentiel de Bq(m, w) ne sont plus valables.
En plus, dans la topologie W1,q pour m la contrainte 0 ≤ m ≤ 1 n’est pas en
général qualifiée. Pour surmonter ces problèmes techniques, nous utilisons un
argument d’approximation. En ajoutant le terme εBr(m, w) avec r > d à la
fonction de coût et en utilisant les arguments du Premier cas, on obtient un sys-
tème similaire à (MFGq) en fonction de ε > 0. Ensuite, par le biais de quelques
limites uniformes par rapport à ε et de résultats connus sur les estimations du
gradient pour les solutions d’équations elliptiques avec des données mesures
(voir par exemple [Min07] pour des résultats récents de régularité qui traitent
également des problèmes non linéaires), lorsque ε ↓ 0, nous pouvons prouver
l’existence de points limites satisfaisant (MFGq), où les propriétés de concen-
tration pour p et µ doivent être interprétées au sens faible.

Puisque nous avons obtenu les systèmes de MFG dans ce chapitre par une
manière directe, à l’aide de la caractérisation du sous-différentiel de la fonc-
tionnelle Bq, nous avons observé que l’on peut retirer l’hypothèse de convexité
sur la fonction F. Par conséquent, il est possible de considerer une plus grande
classe de problèmes non-convexes et l’analyse effectuée avant s’applique tou-
jours. De plus, certains problèmes sans contraintes de densité peuvent être
traités de cette façon. Nous avons également inclus ces remarques dans ce
chapitre. Ces extensions possibles sont l’objet d’une collaboration en cours
avec F.J. Silva (voir [MS]).

Le Chapitre 5 est le denier chapitre de cette thèse. Il est basé sur un travail
commun avec P. Cardaliaguet et F. Santambrogio (voir [CMS15]). Comme nous
l’avons souligné quelques pages avant, ici, nous étudions le caractère bien-
posé des systèmes de MFG évolutifs de premier ordre sous des contraintes
de densité. Notre stratégie est variationnelle, et repose sur une technique de
pénalisation, mentionnée aussi dans [San12b]. Ainsi nous obtenons un sys-
tème de MFG avec la contrainte supplémentaire sur la densité comme con-
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ditions d’optimalité de deux problèmes de contrôle optimal en dualité. Ces
deux problèmes sont ceux pour les fonctionnelles A et B décrites dans (0.0.9)
et (0.0.10). Pour éviter des technicités sur la frontière, dans l’ensemble de ce
chapitre nous travaillons avec des conditions périodiques au bord, donc nous
avons mis Ω := Td, le tôre plat Rd/Zd. La contrainte de densité est donnée
par une constante positive m > 1 = 1/L d(Td) et elle peut être modélisée au
moyen d’un prix infini à payer si un agent passe par une zone où m > m.

Néanmoins, il y a plusieurs problèmes avec l’interprétation d’un système
MFG quand on a affaire à une contrainte de densité. En effet, le problème de
contrôle optimal pour les agents dans l’interprétation ci-dessus n’a pas plus de
sens pour la raison suivante : si, d’une part, la contrainte m ≤ m est satisfaite,
alors le problème de minimisation pour les agents (en raison du fait qu’ils sont
considérés négligeables par rapport aux autres) ne voit pas cette contrainte
et le couple (u, m) est la solution d’un système de MFG standard ; mais cette
solution n’a aucune raison de satisfaire la contrainte, et il y a une contradiction.
D’autre part, s’il y a des endroits où m(t, x) > m, alors les joueurs ne passent
pas par ces endroits parce que leur coût est infini : mais alors la densité aux
ces endroits est zéro, et il y a à nouveau une contradiction. Ainsi, afin de
comprendre le système de MFG avec une contrainte de densité, il faut changer
notre point de vue. Nous verrons qu’il existe plusieurs façons de comprendre
plus profondément les phénomènes derrière cette question.

Une manière de résoudre la question ci-dessus est de travailler au niveau
des deux problèmes d’optimisation. La contrainte de densité est incluse dans
la fonction F, plus précisément nous posons F = +∞ sur l’ensemble où la
deuxième variable est dans (−∞, 0) ∪ (m,+∞). En utilisent une relaxation
similaire à celle du problème pour A, comme dans [Car13b], nous montrons
l’existence d’une solution. L’existence pour le problème dual, qui porte sur B,
est une simple conséquence du théorème de dualité de Fenchel-Rockafellar. Le
système de conditions d’optimalité pour ces deux problèmes est le système de
MFG suivant :

(i) −∂tu + H(x, Du) = f (x, m) + β dans (0, T)×Td

(ii) ∂tm−∇ ·
(
mDpH(x, Du)

)
= 0 dans (0, T)×Td

(iii) u(T, x) = g(x) + βT , m(0, x) = m0(x) dans Td

(iv) 0 ≤ m ≤ m dans [0, T]×Td

(0.0.12)

À côté de la contrainte de densité attendue (iv), deux termes supplémen-
taires apparaissent : β en (i) et βT end (iii). On peut voir que ces deux quantités
sont non négatives et se concentrent sur l’ensemble {m = m}. Elles correspon-
dent formellement à un prix supplémentaire payé par les joueurs s’ils passent
par des zones où la concentration est saturée, plus précisément où m = m. En
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d’autres termes, le nouveau problème de contrôle optimal pour les joueurs est
maintenant (formellement)

u(t, x) = inf
γ

γ(t)=x

∫ T

t
L(γ(s), γ̇(s)) + f (γ(s), m(s, γ(s)) + β(s, γ(s))ds

+ g(γ(T)) + βT(γ(T)), (0.0.13)

et donc (encore formellement) u satisfait le principe de programmation dy-
namique : pour tout 0 ≤ t1 ≤ t2 < T,

u(t1, x) = inf
γ

γ(t1)=x

∫ t2

t1

L(γ(s), γ̇(s)) + f (γ(s), m(s, γ(s)) + β(s, γ(s))ds

+ u(t2, γ(t2)). (0.0.14)

Les “prix supplémentaires” β et βT découragent un nombre trop élevé de
joueurs à être attirés par la région où la contrainte est saturée, assurant ainsi
que la contrainte de densité (iv) soit satisfaite.

Une autre façon d’interpréter la contrainte de densité, est par un argument
d’approximation. On peut utiliser une approximation f ε(x, m) qui tend vers
f (x, m) uniformément si m ∈ [0, m] et +∞ si m ∈ (m,+∞). Pour ces cou-
plages la théorie classique s’applique, et nous montrons que (u, m) correspond
à la configuration limite (à des sous-suites près) des (uε, mε) correspondants,
lorsque ε ↓ 0.

L’une des principales contributions de ce chapitre est la détermination de
certains liens forts entre notre modèle de MFG avec contrainte de densité et
les équations d’Euler incompressibles étudiés par Y. Brenier (voir [Bre99]) et
aussi par L. Ambrosio et A. Figalli (voir [AF09]). En fait, cette connexion
n’est pas surprenante. Tout d’abord, la contrainte d’incompressibilité dans le
modèle de Brenier pour étudier des fluides parfaits introduit bien un champ
de pression. Moralement le même effet se produit si on impose la contrainte de
densité pour des MFG (avec la seule différence qu’on impose une contrainte
de densité unilatérale, et donc la pression a un signe). Deuxièmement, à la
fois le modèle de Brenier et le nôtre ont une structure variationnelle, similaire
aussi à celle introduite par Benamou et Brenier dans [BB00]. Par conséquent,
les termes β et βT, que nous appelons “prix supplémentaires” pour les agents
(qui apparaissent uniquement lorsqu’ils traversent des zones saturées) dans
(0.0.12) correspondent à une sorte de pression de la mécanique des fluides.
Cette observation motive le titre de ce chapitre aussi.

En utilisant des techniques similaires à celles de [Bre99] et [AF09, AF08],
nous montrons que β est une fonction L2

loc((0, T); BV(Td)) ↪→ Ld/(d−1)
loc ((0, T)×

Td) (a priori, on ne pouvait que supposer qu’il s’agisse seulement d’une me-
sure) et βT est L1(Td). À l’aide d’un exemple, nous montrons que cette inté-
grabilité peut échouer au voisinage du temps final t = T , montrant également
une sorte d’optimalité du résultat. Cette propriété de régularité nous permettra
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de donner une meilleure (bien que faible) signification au problème du con-
trôle (0.0.13) et d’obtenir des conditions d’optimalité le long de trajectoires
individuelles de chauque agent. Nos techniques pour procéder avec l’analyse
reposent sur les propriétés des mesures définies sur des chemins, que nous
appellerons des flot sous contrainte de densité dans notre contexte, et on exploite
certaines propriétés d’une fonctionnelle maximale de type Hardy-Littlewood.
Nous décrivons ces résultats plus en détail. Les preuves sont fortement in-
spirées de [AF09].

Soit Γ l’ensemble des courbes γ : [0, T]→ Td absolument continues et P2(Γ)
l’ensemble des mesures de probabilité Borelliennes η̃ définies sur Γ telles que∫

Γ

∫ T

0
|γ̇(s)|2 ds dη̃(γ) < +∞.

On appelle η̃ un flot sous contrainte de densité si 0 ≤ m̃t ≤ m p.p. dans Td

pour tout t ∈ [0, T], où m̃t := (et)#η̃. Ici et : Γ → Td désigne l’application
d’évaluation au temps t ∈ [0, T], et(γ) := γ(t). Soit (u, m, β, βT) une solution
du système de MFG (0.0.12).

On dit que η ∈ P2(Γ) est un flot sous contrainte de densité optimal associé
à la solution (u, m, β, βT) si m(t, ·) = (et)#η, pour tout t ∈ [0, T] et l’égalité
d’énergie suivante est satisfaite∫

Td
u(0+, x)m0(x)dx =

∫
Td

g(x)m(T, x)dx + m
∫

Td
βT dx

+
∫

Γ

∫ T

0
L(γ(t), γ̇(t))dt dη(γ)

+
∫ T

0

∫
Td

( f (x, m(t, x)) + β(t, x))m(t, x)dx dt.

Soit α := f (·, m) + β. Pour décrire notre résultat final, nous allons définir
la notion suivante. Pour 0 < t1 < t2 < T, nous disons qu’un chemin γ ∈
H1([0, T]; Td) avec Mα̂(·, γ) ∈ L1

loc((0, T)) est minimisant sur l’interval de temps
[t1, t2] pour le problème (0.0.14) si on a

û(t+2 , γ(t2)) +
∫ t2

t1

L(γ(t), γ̇(t)) + α̂(t, γ(t))dt ≤ û(t−2 , γ(t2) + ω(t2))+

+
∫ t2

t1

L(γ(t) + ω(t), γ̇(t) + ω̇(t)) + α̂(t, γ(t) + ω(t))dt,

pour tout ω ∈ H1([t1, t2]; Td) tel que ω(t1) = 0 et Mα̂(·, γ + ω) ∈ L1([t1, t2]).
Ici α̂ désigne un représentant spécial de α ∈ Ld/(d−1)

loc ((0, T)×Td) défini comme
étant

α̂(t, x) := lim sup
ε↓0

(α(t, ·) ? ρε)(x),

pour p.t. t ∈ (0, T), où la mollification est réalisée avec le noyau de la chaleur
ρε. Cette hypothèse pour la classe des compétiteurs, plus précisément Mα̂(·, γ) ∈
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L1
loc((0, T)), est imposée pour être capable de gérer les passages à la limite

(dans la régularisation, lorsque ε ↓ 0). Nous aurons besoin de certaines bornes
uniformes ponctuelles sur α ? ρε, donc nous allons utiliser les propriétés de la
fonctionnelle maximale de type Hardy-Littlewood définie à l’aide du noyau de
la chaleur. Ainsi, pour tout h ∈ L1(Td) nous posons

(Mh)(x) := sup
ε>0

∫
Rd
|h(x + εy)|ρ(y)dy.

Notons que, en particulier, il existe une constante C > 0 telle que ‖Mh‖Lr(Td) ≤
C‖h‖Lr pour tout h ∈ Lr(Td) et r > 1. En plus M(h ? ρε) ≤ Mh. Notre résultat
principal dans ce contexte est le suivant.

Théorème 0.0.3. Il existe au moins un flot sous contrainte de densité optimal η. De
plus, pour tout 0 < t1 < t2 < T, η se concentre sur des chemins minimisants sur
l’intervalle de temps [t1, t2] pour le problème (0.0.14) au sens décrit auparavant.

Enfin, ce théorème fournit l’existence d’une faible équilibre de Nash locale dans
notre modèle.

Soit (u, m, β, βT) une solutions du système de MFG avec des contraintes de
densité sur [0, T]×Td. On dit que (m, β, βT) est un équilibre de Nash local faible
s’il existe un flot sous contrainte de densité optimal η ∈ P2(Γ) (construit à
l’aide de (m, β, βT)) qui est concentré sur les chemins localement minimisants
du problème (0.0.14). En particulier, on a que mt = (et)#η et 0 ≤ mt ≤ m p.p.
dans Td pour tout t ∈ [0, T].

Structurellement, à côté des cinq chapitres détaillés précédemment, la thèse
contient deux petits chapitres non numérotés supplémentaires. Dans la Partie
i nous avons inclus une “Boîte à outils de transport optimal” (Optimal Transport
toolbox), où nous avons recueilli tous les résultats et les références classiques
sur la théorie du transport optimal qui sont nécessaires par la suite. Comme la
Partie ii est entièrement dédiée aux systèmes de MFG avec des contraintes de
densité, nous avons inclus un court chapitre sur l’histoire de MFG, juste avant
les deux principaux chapitres de cette partie. Enfin, nous terminons la thèse
avec un appendice, où nous avons recueilli quelques résultats bien connus
d’analyse convexe, de théorie de Γ−convergence et des résultats bien connus
sur l’existence et la régularité des solutions des équations elliptiques avec des
données mesures.



General Introduction

I
n this thesis we study different models coming from optimal trans-
port, partial differential equations describing crowd motion and Mean
Field Games. In all these models – as the title already highlights – the

common denominator is the notion of density constraint. Density constraints
arise naturally when one wants to model congestion effects. Imagine the fol-
lowing situation: we have just built a new mathematics department (as it shall
be the case in Orsay). For security reasons, we want to design a device that tells
the people how to evacuate ‘optimally’ the building in case of an emergency.
In this context ‘optimally’ means not only a fastest/shortest possible way, but
which takes in consideration the possible congestion effects as well. This is
quite an important issue, because at narrower places (for instance next to the
doors) we can usually expect to have higher concentration of people. Hence,
if our device could take in consideration also the constraint that at each mo-
ment and each place of the building the density of the people remains below
a given threshold (for instance 5.4 people on each square meter, a value which
is usually used in applications), the evacuation procedure would be perfect.

The possible realization of such a device would be for sure a hard task. One
of the main reasons is that in the case of an emergency, people tend to forget to
think rationally. Nevertheless, from the mathematical point of view this creates
some very interesting and non-trivial questions. Mathematically described, the
above device could work in the following way: as input it receives at each time
the density and the desired velocity field of the people, and returns a new velocity
(hence it tells to the people at which speed and in which direction to go). This
new velocity is constructed in a manner that no people are allowed to move in
such a way that the density goes beyond the saturation threshold. The desired
velocity is supposed to be known (it can depend on the distance to the nearest
door, etc.) and it is the same for everybody.

19
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At this point we remark that in all of our forthcoming models we shall de-
scribe the motion of a crowd/population of agents through the evolution of
their density. Hence we consider macroscopic models.

In the past few years many different models have been proposed to study
crowd motions with congestions effects. Actually these models sometimes
can serve as basis to understand some phenomena coming from biology (such
as cell migration, tumor growth, pattern formation), particle physics or eco-
nomics. For a non-exhaustive list of bibliography in this setting we refer to
[Cha07, CR05, CPT14b, Dog08, Hel92, HM95, Hug02, Hug03, MV07, MRCS10,
MRCSV11, MRCS14, RC11, PQV14, AKY14].

In this context, the previously described situation is modeling a so-called
hard congestion effect (we refer for example to [MRCS10, MRCSV11, MV07,
RC11]). In this sense, the desired velocity field of the people has to be modified
in order to avoid highly concentrated zones. Similar models, with so-called soft
congestion effects also exist. In these ones people will slow down as soon as the
density of the zone they are in approaches the limit threshold (instead of being
unaffected except when they are in a fully saturated zone).

The models studied in this thesis are motivated by the first type of consider-
ation, i.e. by macroscopic crowd motion models with hard congestion effects.
The central pillar of our analysis is the theory of optimal transport. This theory
is very powerful and it allows us to study and understand several phenomena
related to density constraints in different models by a unified manner.

The genesis of this thesis started with the modest proposal of F. Santambrogio
(see [San12b]). He proposed a model of Mean Field Games (see [LL06a, LL06b,
LL07, Lio08]), where one imposes a density constraint. We shall present the
theory of MFG more in details at the beginning of Part ii. Nevertheless, let us
point out that in MFG models agents are playing a non-cooperative differential
game, where everyone has to choose a strategy. Hence, in these models one
wants not only to understand the evolution of the density of the population,
but to describe the value function and the optimal strategy of each agent. The
models in [San12b] aim to generalize the ones on crowd motion (discussed
before), in the sense that people are strategic. In [San12b] only the model has
been built, but no rigorous well-posedness results were provided. Being also
the subject of the MSc mémoire (see [Més12]), it turned out that the questions
raised in [San12b] are far from being trivial. One of the reasons is the low
regularity that one could expect for the value function solving a first order
Hamilton-Jacobi-Bellman equation. This prevented us to build a reasonable
fixed point scheme (a technique successfully used in many other MFG models),
taking into account also the pressure field, the new variable arising in duality
with the density constraint.

A first attempt to solve this issue, was the study a diffusive model, where a
non-degenerate diffusion is included both in HJB and the continuity equations
(transforming the latter one into a Fokker-Planck equation). As a first step,
this required the study of the well-posedness of the Fokker-Planck equation
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with density constraint. This objective has been successfully achieved and it
resulted in a new diffusive model of macroscopic crowd motion with density
constraint (this shall be the subject of Chapter 2 and Chapter 3 and it has also
been the subject of two papers, see [MS15a, DMM15]). At some point in the
analysis performed in [MS15a], we needed some finer estimates on projected
measures below a certain threshold in the Wasserstein sense. More precisely,
a BV estimate on the projected measures would allow us to obtain some com-
pactness results for some curves in the Wasserstein space, constructed by a
splitting-type procedure. By this, one could prove the convergence of the al-
gorithm and thus the existence result. The required BV estimates have been
achieved not only for projected measures, but for the optimizers of a larger
class of variational problems involving optimal transport (this is the subject of
Chapter 1 and [DPMSV15]).

In parallel to the above presented direction, we investigated the questions
raised in [San12b] also from a different point of view. We studied two type
of MFG models possessing a variational structure. In the two different models
the used approaches are related through their variational formulation. The
approaches used in both models recall the one studied by J.-D. Benamou and Y.
Brenier (see [BB00]) to give a dynamical formulation of the Monge-Kantorovich
optimal transport problem.

Firstly, we showed the well-posedness and characterized the solutions of
some diffusive stationary MFG systems under density constraints. The regular-
izing effect of the stationary Fokker-Planck equation and the elliptic structure
allowed us to impose the density constraint (which we showed to be qualified)
directly on the level of the optimization problem. This is the subject of Chapter
4 (see also [MS15b]).

Secondly, we showed the well-posedness of first order evolutive MFG sys-
tems with density constraints. Here we obtained the density constraint by the
limit of some penalizations (a method suggested initially also in [San12b]).
Moreover, we obtained a surprising link between our model of MFG with den-
sity constraints and the Euler’s equations describing the movement of perfect
incompressible fluids (see [Bre99, AF09]). These models are the subject of
Chapter 5 (see also [CMS15]). Let us notice that the MFG systems (obtained
as optimality conditions of the corresponding variational problems) presented
in Part ii show some differences from the original ones derived formally in
[San12b]. This is due to the different interpretation of the pressure field, seen
as Lagrange multiplier for the density constraint.

Now we shall describe in details the main mathematical results included in
the present thesis. We shall see how they are presented with respect to the
chapters as well. Each chapter is based roughly on a paper. These are either
accepted for publication, submitted or in preparation.
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mathematical description of the results

Chapters 1, 2 and 3 build Part i of the thesis and they contain the results
on the models arising purely from optimal transport and macroscopic crowd
movements with density constraints.

Chapter 1 is based on a joint work with G. De Philippis, F. Santambrogio and
B. Velichkov (see [DPMSV15]). Here our main objective was to study some fine
properties of the projection operator in the Wasserstein space W2(Ω), (Ω ⊆
Rd). In fact we embed this question into a larger set of problems. Namely,
we study some quantitative properties and regularity of the minimizers of the
optimization problem

min
$∈P2(Ω)

1
2

W2
2 ($, g) + τF($),

where W2 stands for the 2-Wasserstein distance on P2(Ω), F : P2(Ω) → R is
a given functional, τ > 0 is a parameter which can possibly be small, and g
is a given probability in P2(Ω) (the space of probability measures on Ω ⊆ Rd

with finite second moment
∫

Ω
|x|2 d$(x) < +∞). The above problem can be

recognized as one step in the time-discretization (τ being the discretization pa-
rameter in this case) of the gradient flow of the functional F, where g = $τ

k is a
previously constructed measure and the optimal $ is in fact the next one. The
algorithms, where each time step has the form of the above optimization prob-
lem, are usually called JKO schemes in the optimal transport community (see
[JKO98]). Under suitable assumptions, at the limit when τ → 0, the sequence
of the optimal measures converges to a curve of measures which is the gra-
dient flow of F. Let us remark here that for gradient flows, the discretization
parameter τ is sent to zero, hence regarding estimates on the optimizers, one
may want to obtain some which are independent of τ. We can imagine other
models entering in the above optimization problem: g could represent some
resources, and $ the distribution of factories around them; g the distribution
of some stores/banks/schools, etc. and $ the distribution of people. Other
sophisticated models in urban planning, image processing, etc. exist as well.
Here in general τ > 0 is fixed.

Our very first objective was to study the behavior of the projection operator,
i.e. projected measures below a certain threshold. In the above problem this
is the case if we formally set F to be the indicator function of the set K f :=

{ρ ∈P2(Ω) : ρ ≤ f dx}, where f is a positive function with
∫

Ω
f (x)dx ≥ 1. In

applications, in general it is reasonable to choose f to be constant. Since this
type of problem does not require a dependence on τ > 0, we simply set it to
be τ = 1.

Our main results in this chapter read as follows:
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Theorem 0.0.1. Let Ω ⊂ Rd be a (possibly unbounded) convex set, h : R+ →
R ∪ {+∞} be a convex and l.s.c. function and g ∈ P2(Ω) ∩ BV(Ω). If $̄ is a
minimizer of the following variational problem

min
$∈P2(Ω)

1
2

W2
2 ($, g) +

∫
Ω

h($(x))dx ,

then ∫
Ω
|∇$̄|dx ≤

∫
Ω
|∇g|dx . (0.0.15)

By an approximation argument (approximating the indicator function of the
set K f by convex l.s.c. functionals), the above result applies in particular for
the projection problem in the following form:

Theorem 0.0.2. Let Ω ⊂ Rd be a (possibly unbounded) convex set, g ∈ P2(Ω) ∩
BV(Ω) and let f ∈ BVloc(Ω) be a function with

∫
Ω

f dx ≥ 1. If

$̄ = argmin
{

W2
2 ($, g) : $ ∈P2(Ω), $ ∈ K f

}
, (0.0.16)

then ∫
Ω
|∇$̄|dx ≤

∫
Ω
|∇g|dx + 2

∫
Ω
|∇ f |dx. (0.0.17)

In the case when f ≡ 1, one obtains a total variation decay result for the
projection operator. We remark that the constant 2 in the inequality (0.0.17) is
sharp. The BV estimates are useful when the projection is treated as one time-
step of a discretized evolution process. For instance, a BV bound allows to
transform weak convergence into strong L1 convergence. Also, if we consider
a PDE mixing a smooth evolution, such as the Fokker-Planck evolution, and
some projection steps (in order to impose a density constraint, as in crowd
motion issues: we describe this later, and it is treated in details in Chapter 2),
one could wonder which bounds on the regularity of the solution are preserved
in time. From the fact that the discontinuities in the projected measure destroy
any kind of W1,p norm, it is natural to look for BV bounds.

The heart of the proof of the above BV estimates is the following inequality.
Let us consider $, g ∈ P2(Ω), (ϕ, ψ) a pair of Kantorovich potentials in the
optimal transport of $ onto g and H : Rd → R an even, convex function (we
skip the regularity assumptions in this heuristic description). Then one has∫

Ω
∇H(∇ϕ) · ∇$ +∇H(∇ψ) · ∇g dx ≥ 0.

It seems that this inequality encodes some non-trivial geometric features of
the optimal transport problem between $ and g, which are not completely
understood, except for some particular cases. The case of H(z) = |z|2/2 for
instance is a consequence of the geodesic convexity of the entropy functional.



24 general introduction

To prove the above described BV estimates, we use the inequality for H(z) =
|z|. In the same context, we also gave a new rigorous proof of the fact that
the projected measure saturates the constraint (which is also known in the
framework of partial transport). More precisely, there exists a unique optimizer
$̄ in (0.0.16) and there exists a measurable set B ⊆ Ω such that

$̄ = gac
1B + f1Bc .

Let us remark that for this property we do not have to impose the BV regularity
on g and f . These ones are only needed for the estimate (0.0.17).

At the end of the chapter we discuss possible applications (also in the form of
open questions) of the previously established BV estimates. First, we observe
that some question from the so-called optimal partial transport theory, investi-
gated recently by L.A. Caffarelli-R. McCann and A. Figalli (see [CM10, Fig10],
where the objective is to transport optimally only a given portion of a measure
onto another one) can be formulated in our framework (such as the regularity
of the free boundary arising when one projects a measure). Our BV estimates
could be useful in the study of the partial transport problem itself, which can
be seen actually as a double projection problem. We also discuss some other
possible applications for shape optimization and set evolution problems and
we provide a new, transport-based, proof for the total variation estimates for
degenerate diffusion equations (such as the porous media equation).

In Chapter 2 — based on a joint work with F. Santambrogio (see [MS15a])
— we propose a new model on macroscopic crowd motion with density con-
straints, i.e. with hard congestion. Motivated by the recently studied first order
models, due to Maury et al. (see [MRCS10, MRCS14, MRCSV11]), we analyze
a second order system. From the modeling point of view we impose a ran-
domness in the movement of the individuals. Mathematically, this can be seen
at the macroscopic level as a non-degenerate diffusion driven by a Brownian
motion and the whole model can be described with the help of a ‘modified’
Fokker-Planck equation. Here the word ‘modified’ refers to the fact that one
has to modify the velocity field of the people on the saturated zones.

We describe our model through the evolution of the density of the crowd
[0, T] 3 t 7→ ρt, which is a time-dependent family of probability measures on
Ω ⊂ Rd (a bounded and convex domain with Lipschitz boundary). There is
given a spontaneous velocity field u : [0, T]×Ω → Rd, which represents the
desired velocity that each individual would follow in the absence of the others.
We impose only L∞ regularity on this field. To equip the model with density
constraints — ρ ≤ 1 a.e. in [0, T]×Ω, which implies that we have to impose
L d(Ω) > 1 —, we introduce the set of admissible velocities. These are the
fields which do not increase the density on the already saturated zones, i.e.
formally we set

adm(ρ) :=
{

v : Ω→ Rd : ∇ · v ≥ 0 on {ρ = 1} and v · n ≤ 0 on ∂Ω
}

.
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Now we are interested in solving the modified Fokker-Planck equation ∂tρt − ∆ρt +∇ ·
(

ρtPadm(ρt)[ut]
)
= 0,

ρ(0, x) = ρ0(x), in Ω,
(0.0.18)

where Padm(ρ) : L2(Ω; Rd) → L2(Ω; Rd) represent the L2 projection onto the
convex closed set adm(ρ) and ρ0 is the given initial density of the crowd.
Observe that one could wonder if we should project instead the ‘full velocity
field’ −∇ρt/ρt + ut. Actually this is the same as projecting only ut, because in
the region {ρt = 1} one has −∇ρt/ρt = 0. Thus the main point is that ρ is
advected by a vector field, compatible with the constraints, which is the closest
to the spontaneous one.

Despite the fact that we added a non-degenerate diffusion to the model,
which has a regularization effect, because of the projection operator, the new
velocity field is highly irregular (only L2) and it depends on a nonlocal way on
the density itself. Hence any classical theory will fail in the analysis of Problem
(0.0.18). To handle this issue we need to redefine the set of admissible velocities
by duality (as it has been done for first order models, see [MRCS10, RC11]):

adm(ρ) =

{
v ∈ L2(ρ) :

∫
Ω

v · ∇p ≤ 0, ∀p ∈ H1(Ω), p ≥ 0, p(1− ρ) = 0 a.e
}

.

With the help of this formulation we always have the orthogonal decomposi-
tion

u = Padm(ρ)[u] +∇p,

where
p ∈ press(ρ) :=

{
p ∈ H1(Ω) : p ≥ 0, p(1− ρ) = 0 a.e.

}
.

Indeed, the cones adm(ρ) and ∇press(ρ) are dual to each other. Via this ap-
proach the system (0.0.18) can be rewritten as a system for (ρ, p) which is{

∂tρt − ∆ρt +∇ · (ρt(ut −∇pt)) = 0

p ≥ 0, ρ ≤ 1, p(1− ρ) = 0, ρ(0, x) = ρ0(x), in Ω.
(0.0.19)

We can naturally endow this system with natural Neumann boundary condi-
tions.

One of the main contributions of Chapter 2 is the existence result for system
(0.0.19). This is achieved by a well-chosen discrete in time splitting algorithm.
It goes as follows: for a time step τ > 0 we build recursively the measures
ρτ

k (k ∈ {0, . . . , N}, where N := [T/τ]) via our main scheme. This scheme is
the following: follow the unconstrained Fokker-Planck equation during a time
τ with initial data ρτ

k . Let us denote this solution at time τ by ρτ. The new
density is then constructed as ρτ

k+1 := PK1 [ρτ], where PK1 denotes now the 2-
Wasserstein projection operator onto the set K1 := {ρ ∈ P(Ω) : ρ ≤ 1 a.e}.
Now one has to iterate these two steps.
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We continue our analysis by constructing suitable interpolations ρτ
t , t ∈ [0, T]

between the ρτ
k ’s. These interpolations can be seen as curves in W2(Ω). We

have to build discrete velocities vτ
k and momentums Eτ

k as well. To prove
the convergence as τ ↓ 0, one needs some compactness results for the curves
ρτ. These rely on some standard comparison between the metric derivative in
W2(Ω) and the dissipation of the entropy along the curves ρτ. By this, one
obtains compactness in the space H1([0, T]; W2(Ω)). In order to identify the
limit equation as τ ↓ 0, in fact we use several interpolations between ρτ

k , vτ
k and

Eτ
k . Finally, by this procedure one obtains the existence of a pair (ρ, p) which

satisfies the system (0.0.19) in the sense of distribution.
As an alternative way to get compactness for the curves ρτ, we show uniform

bounds in τ > 0 in the space Lip([0, T]; W1(Ω)). This is achieved by combining
some sharp BV estimates for the unconstrained Fokker-Planck equation on
the one hand and by the use of the BV estimates for the projected measures
(provided in Chapter 1) on the other hand. Since our main scheme consists in
following the unconstrained Fokker-Planck equation and then projecting onto
the set K1, and since the metric derivative in W1(Ω) along the solution of the
unconstrained Fokker-Planck equation is of the order of∫

Ω
|∇ρt|+ |ut|ρt dx,

it is easy to guess why we look for BV estimates both for the Fokker-Planck
equation and the projected measures. By this, the results established in Chap-
ter 1 gain another motivation. Notice that we provide a short section on pos-
sible variants of our main scheme. Here we discuss the similarities and the
difficulties on possible other schemes where we include some gradient flow
steps as well. For gradient vector fields a pure gradient flow approach can be
also used, similarly as in [MRCS10].

Finally let us remark that the BV estimates for the (unconstrained) Fokker-
Planck equation seem to be a delicate matter and they have their own interest.
As sort of an appendix, we provide the estimates that we were able to find,
in the last section of this chapter. Some of them are valid for Lipschitz vector
field, some have only been proven for C1,1 and their validity for Lipschitz
vector fields in general is open.

The purpose of Chapter 3 is to complete Chapter 2 with uniqueness re-
sults. Uniqueness of solutions is essential if one wants to include a system like
(0.0.19) describing crowd motion with density constraints into a larger model,
as Mean Field Games and one aims to study the existence question for the larger
system via a fixed point scheme. This is the case for some models of MFG.
Moreover, the question of uniqueness for diffusive crowd motion models with
density constraints was a missing puzzle in its full generality. For first or-
der systems (see [MRCS10, MRCSV11]) it was well known (among specialists)
in some cases (such as for monotone vector fields) and it was first written in
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[Més12]. Nevertheless for the sake of completeness, we provide a rigorous
(and simplified) proof for the first order models as well.

The two strategies used in the two type of models however are very different.
For first order systems, we shall assume that the desired velocity field u :
[0, T]×Ω → Rd (Ω ⊂ Rd is bounded, convex and with Lipschitz boundary)
satisfies a monotonicity property, i.e. there exists λ ∈ R such that

[ut(x)− ut(y)] · (x− y) ≤ λ|x− y|2, a.e. x, y ∈ Ω, ∀t ∈ [0, T].

Then the idea is to prove a contraction property of the Wasserstein distance W2

along two solutions. Using the monotonicity property for the vector field u,
together with the formula for the time derivative of W2

2 (ρ
1
t , ρ2

t )/2 (see [AGS08])
along two solutions (ρ1, p1) and (ρ2, p2) one obtains

W2
2 (ρ

1
t , ρ2

t ) ≤ e2λtW2
2 (ρ

1
0, ρ2

0), for L 1 − a.e. t ∈ [0, T],

which implies the uniqueness for ρ. Here we also used a fine property saying
that if ϕt is a Kantorovich potential in the optimal transport of ρ1

t onto ρ2
t , then∫

Ω
∇ϕt · ∇pt dx ≥ 0, for L 1 − a.e. t ∈ [0, T].

The uniqueness for p follows from the observation that p1
t − p2

t is harmonic and
p1

t and p2
t (for L 1 − a.e. t ∈ [0, T]) vanish on the same set of positive Lebesgue

measure. Let us mention that to obtain a contraction property for W2
2 along

two solutions, the monotonicity assumption on the velocity field is natural.
The same assumption has been imposed in [NPS11] to study the contraction
property along the solutions of the Fokker-Planck equation for a general class
of transport distances.

The strategy for the second order case (0.0.19) highly relies on the regulariz-
ing property of the Laplacian. Because of this, we do not need extra regularity
on the velocity u and we only require (as for existence) u ∈ L∞. Using the weak
formulation of (0.0.19) for two solutions (ρ1, p1) and (ρ2, p2), we introduce the
dual problem

A∂tφ + (A + B)∆φ + Au · ∇φ = AG, in [0, T[×Ω,

∇φ · n = 0 on [0, T]× ∂Ω, φ(T, ·) = 0 a.e. in Ω,
(0.0.20)

where

A :=
ρ1 − ρ2

(ρ1 − ρ2) + (p1 − p2)
, B :=

p1 − p2

(ρ1 − ρ2) + (p1 − p2)

and G is an arbitrary smooth function. After regularizing A and B we obtain a
family of uniformly parabolic equations. Using some basic parabolic estimates
for these problems and writing the weak formulation for the difference of the
two solutions in a proper way, one obtains that∫ T

0

∫
Ω
(ρ1 − ρ2)G dx dt = 0,
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which by the arbitrariness of G gives the uniqueness of ρ. The uniqueness of p
follows by the same argument as in the first order case.

This chapter is based on a joint work with S. Di Marino (see [DMM15]).

Composed by Chapter 4 and Chapter 5, Part ii is dedicated to the study of
some Mean Field Game systems under density constraints. Motivated by the
questions raised by F. Santambrogio in [San12b], actually this part is consid-
ered as the core of the thesis.

Introduced roughly ten years ago by J.-M. Lasry and P.-L. Lions (see [LL06a,
LL06b, LL07] and also [HMC06]), Mean Field Games aim to model limits of
Nash equilibria of (stochastic) differential games, when the number of players
tends to infinity. Thus MFG systems are linked to the optimal control prob-
lem of a typical agent, where the density of the whole population enters as a
parameter, i.e.

u(t, x) := inf
γ

{∫ T

t
L(γ(s), γ̇(s)) + f (γ(s), m(s, γ(s)))ds + g(γ(T))

}
, (0.0.21)

where the minimization is taken among (sufficiently regular) curves γ : [0, T]→
Rd with γ(t) = x; L : Rd × Rd → R is a given Lagrangian function, f :
Rd×P1(R

d)→ R and g : Rd → R represent the running- and the final cost of
the system, respectively. By standard methods from optimal control theory, the
value function formally solves a Hamilton-Jacobi-Bellman equation. The den-
sity of the population is transported by the velocity field given by the optimal
control α∗ := −DpH(·, Du) in the above problem, hence formally one obtains a
coupled PDE system, that we shall call after Lasry and Lions an MFG system:

(i) −∂tu + H(x, Du) = f (x, m) in (0, T)×Rd

(ii) ∂tm−∇ ·
(
mDpH(x, Du)

)
= 0 in (0, T)×Rd

(iii) u(T, x) = g(x), m(0, x) = m0(x) in Rd.
(0.0.22)

Here H : Rd ×Rd → R is the Legendre-Fenchel transform w.r.t. the second
variable of the Lagrangian L and m0 ∈ P1(R

d) is the initial density of the
population. A solution (u, m) of the above system encodes an equilibrium
configuration as well. Note that the typical agent has to “predict” somehow
the evolution of the whole agent population in order to be able to solve his/her
optimal control problem. After obtaining the optimal control and computing
the evolution of the “true” density, if this corresponds to the prediction one
says that m is a Nash equilibrium. In other words (u, m) is a solution of the
MFG system (0.0.22).

F. Santambrogio in [San12b] asked whether an MFG system, similar to (0.0.22)
can be rigorously obtained together with the additional constraint that m(t, x) ≤
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1 for a.e. (t, x) ∈ (0, T) ×Rd. The author discussed two possible ways to at-
tack this question. The first one is at the level of the optimal control problem
(0.0.21), where the velocities of the curves γ should be affected by the gra-
dient of the introduced pressure field (similarly as in the models for crowd
motion), i.e. the competitors γ and α satisfy γ(t) = x and γ̇(s) = α(s) −
∇ps(γ(s)), s > t. This leads formally to a system like (0.0.22), where the pres-
sure p : [0, T]×Rd → R enters as a new variable. To the best of our knowledge,
the rigorous analysis in this approach is still open.

The second alternative suggested by F. Santambrogio was to try to obtain a
system like (0.0.22) together with the density constraint as limits of optimality
conditions of some penalized variational problems.

It is well known already from the works of J.-M. Lasry and P.-L Lions that the
MFG system formally corresponds to the optimality conditions of some opti-
mal control problems with PDE constraints. More precisely, the value function
u is (formally) given as a minimizer of the functional

A(u) :=
∫ T

0

∫
Rd

F∗(x,−∂tu + H(x, Du))dx dt−
∫

Rd
u(0, x)dm0(x), (0.0.23)

subject to the constraint that u(T, x) = g(x), where F = F(x, m) is an an-
tiderivative of f = f (x, m) with respect to m and F∗ is its Legendre-Fenchel
conjugate w.r.t. the second variable. In the same way m is (formally) given as
a minimum of the problem

B(m, w) :=
∫

Rd
g(x)m(T, x)dx+

∫ T

0

∫
Rd

m(t, x)L
(

x,−w
m

)
+ F(x, m(t, x)) dx dt

(0.0.24)

subject to the constraint

∂tm +∇ ·w = 0 in (0, T)×Td, m(0) = m0.

The proposition of F. Santambrogio in [San12b] was to use F(x, m) := mn/n
and take the limit as n → ∞. By this, formally at the limit the function F
disappears and the additional constraint m ≤ 1 a.e. appears. Actually this is
one of the results that we shall prove rigorously in Chapter 5. A different, but
similar idea is used in Chapter 4 to show the well-posedness of second order
stationary MFG models with density constraints. Let us describe these results
now in details.

Based on a joint work with F.J. Silva (see [MS15b]), in Chapter 4 we study a
class of stationary second order MFG models with density constraints. Station-
ary systems have been introduced already in the original works of J.-M. Lasry
and P.-L. Lions (and later studied in [CLLP13, CLLP12]). They can be seen as
long time average/ergodic limit of time dependent systems.
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In this chapter we use a variational technique (similar to the one presented
before) and obtain the MFG system with density constraints as optimality con-
ditions for this problem. To describe this, let Ω ⊂ Rd (d ≥ 2) be a non-empty
bounded open set with smooth boundary, such that L d(Ω) > 1. Moreover,
let f : Ω ×R → R be a continuous function which is non-decreasing in the
second variable and define `q : R×Rd → R and Bq : W1,q(Ω)× Lq(Ω)d → R

as

`q(a, b) :=


1
q
|b|q
aq−1 , if a > 0,

0, if (a, b) = (0, 0),

+∞, otherwise.

Bq(m, w) :=
∫

Ω
`q(m(x), w(x))dx.

(0.0.25)

The convex, l.s.c. functional Bq is precisely the one introduced by J.-D. Be-
namou and Y. Brenier to study a dynamical reformulation of the Monge-
Kantorovich optimal transport problem. In our setting we work actually with
a restriction of it to the space W1,q(Ω)× Lq(Ω)d.

We consider the problem

min Bq(m, w) +
∫

Ω
F(x, m(x))dx,

s.t. − ∆m +∇ ·w = 0 in Ω, (∇m−w) · n = 0 on ∂Ω,∫
Ω

m(x)dx = 1, m ≤ 1,

(Pq)

where, as before, F(x, m) is an antiderivative of f (x, m) with respect to the sec-
ond variable. Let us remark that instead of using a penalization for the density
constraint, we include it directly into the problem. Working this way, one has
to ensure an interior point/constraint qualification condition for the constraint.
Since for a given w the stationary Fokker-Planck equation provides regularity
for m, we need to chose wisely the functional spaces.

Our first preparatory result (before writing down the optimality conditions
for the above problem) is a precise description of the subdifferential of the
functional Bq. It seems that this type of result is new in the literature. We
divide now our main results in two classes, depending on the value of q.

Case 1: q > d. In this case, using the classical direct method of the calculus
of variations, we prove the existence of a solution (m, w) of (Pq). Using that
m ∈ W1,q ↪→ C(Ω), we are able to compute the subdifferential of Br(m, w) for
any 1 < r ≤ q. Moreover, the injection in L∞ of m allows us to prove that the
constraints in (Pq) are qualified. Using the computation of the subdifferential
with r = q and classical arguments in convex analysis, we derive the exis-
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tence of u ∈ W1,s(Ω) (s ∈ [1, d/(d− 1)[), λ ∈ R and two nonnegative regular
measures µ and p such that

−∆u + 1
q′ |∇u|q′ + µ− p− λ = f (x, m), in Ω,

−∆m−∇ ·
(

m|∇u|
2−q
q−1∇u

)
= 0, in Ω,

∇m · n = ∇u · n = 0, on ∂Ω,∫
Ω

m dx = 1, 0 ≤ m ≤ 1, in Ω,

spt(µ) ⊆ {m = 0}, spt(p) ⊆ {m = 1},

(MFGq)

where the system of PDEs is satisfied in the weak sense and q′ := q/(q− 1).
In the above system, p appears as a Lagrange multiplier associated to the con-
straint m ≤ 1 and can be interpreted as a sort of a “pressure” term. Let
us remark that this pressure differs from the one introduced in the previous
congested crowd movement models. Indeed, in those PDEs the pressure ap-
peared through its gradient (because it was a dual variable for a divergence
constraint), here it appears as a dual variable for the constraint m ≤ 1, hence
it is natural to have it in this form in the dual equation. Let us remark the fact
that the density constraint implies m ∈ L∞ in a natural way and, in this space
the constraint qualification condition automatically holds. One could wonder
why do we need to pass through Sobolev spaces and elliptic regularity theory.
The reason is very straightforward: if one would chose the L∞ topology for
m, the pressure p as dual variable would live a priori in (L∞)∗, a space that
is hard to work with. Contrary, if q > d one has W1,q(Ω) ↪→ C(Ω), the dual
space of which being the space of signed Radon measures.

We also compute the dual problem associated to (Pq) recovering (MFGq) by
duality. Finally, in the open set {0 < m < 1} we prove some local regularity
results for the pair (m, u) using a bootstrap argument.

Case 2: 1 < q ≤ d. In this case, even if the existence of a solution still
holds true, m is in general discontinuous, which implies that the arguments
employed in the computation of the subdifferential of Bq(m, w) are no longer
valid. Moreover, in the topology W1,q for m the constraint 0 ≤ m ≤ 1 is in gen-
eral not qualified. In order to overcome these issues, we use an approximation
argument. By adding the term εBr(m, w) with r > d to the cost function and
using the arguments in Case 1 we obtain a system similar to (MFGq) depend-
ing on ε > 0. Then, by means of some uniform bounds with respect to ε and
well-known results on estimates on the gradients for solutions of elliptic equa-
tions with measure data (see for instance [Min07] for recent regularity results
treating also nonlinear problems), as ε ↓ 0 we can prove the existence of limit
points satisfying (MFGq) where the concentration properties for p and µ have
to be understood in a weak sense.

Since we obtained the MFG systems in this chapter by a direct way, with
the help of the characterization of the subdifferential of the functional Bq, we
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observed that one can remove the convexity assumption on the function F.
Hence it is possible to consider a larger class of non-convex problems and
the analysis performed before still applies. Moreover, some problems without
density constraints can interestingly be treated in this way. We also included
these remarks into this chapter. These possible extensions are the subject of an
ongoing collaboration with F.J. Silva (see [MS]).

Chapter 5 is the last chapter of this thesis. It is based on a joint work with P.
Cardaliaguet and F. Santambrogio (see [CMS15]). As it was highlighted couple
of pages before, here we study the well-posedness of first order evolutive MFG
systems under density constraints. Our strategy is variational, which relies
on a penalization technique, mentioned also in [San12b]. Thus we obtain an
MFG system with the additional constraint on the density as optimality condi-
tions of two optimal control problems in duality. These two problems are the
ones for the functionals A and B described in (0.0.23) and (0.0.24). To avoid
boundary issues, in the whole of this chapter we work with periodic boundary
conditions, hence we set Ω := Td, the d−dimensional flat torus Rd/Zd. The
density constraint is given by a positive constant m > 1 = 1/L d(Td) and it
can be modeled by means of an infinite price to pay if an agent goes through
a saturated zone.

Nevertheless, there are several issues in the interpretation of an MFG system
when there is a density constraint. Indeed, the optimal control problem for the
typical agents in the above interpretation does not make sense anymore for the
following reason: if, on the one hand, the constraint m ≤ m is fulfilled, then the
minimization problem of the agents (due to the fact that they are considered
negligible against the others) does not see this constraint and the pair (u, m)

is the solution of a standard MFG system; but this solution has no reason to
satisfy the constraint, and there is a contradiction. On the other hand, if there
are places where m(t, x) > m, then the players do not go through these places
because their cost is infinite there: but then the density at such places is zero,
and there is again a contradiction. So, in order to understand the MFG system
with a density constraint, one has to change our point of view. We shall see
that there are several ways to understand more deeply the phenomena behind
this question.

One way to solve the above issue is to work at the level of the two optimiza-
tion problems. The density constraint is included into the function F, i.e. we
set it to be +∞ on the set (−∞, 0) ∪ (m,+∞) for its second variable. Using
a similar relaxation for the problem for A as in [Car13b], we show the exis-
tence of a solution. The existence for the dual problem, the one for B, is a
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simple consequence of the Fenchel-Rockafellar duality theorem. The system of
optimality conditions for these two problems is the following system of MFG:

(i) −∂tu + H(x, Du) = f (x, m) + β in (0, T)×Td

(ii) ∂tm−∇ ·
(
mDpH(x, Du)

)
= 0 in (0, T)×Td

(iii) u(T, x) = g(x) + βT , m(0, x) = m0(x) in Td

(iv) 0 ≤ m ≤ m in [0, T]×Td

(0.0.26)

Beside the expected density constraint (iv), two extra terms appear: β in (i) and
βT in (iii). These two quantities turn out to be nonnegative and concentrated
on the set {m = m}. They formally correspond to an extra price payed by the
players to go through zones where the concentration is saturated, i.e., where
m = m. In other words, the new optimal control problem for the players is
now (formally)

u(t, x) = inf
γ

γ(t)=x

∫ T

t
L(γ(s), γ̇(s)) + f (γ(s), m(s, γ(s)) + β(s, γ(s))ds

+ g(γ(T)) + βT(γ(T)), (0.0.27)

and thus (still formally) u satisfies the dynamic programming principle: for
any 0 ≤ t1 ≤ t2 < T,

u(t1, x) = inf
γ

γ(t1)=x

∫ t2

t1

L(γ(s), γ̇(s)) + f (γ(s), m(s, γ(s)) + β(s, γ(s))ds

+ u(t2, γ(t2)). (0.0.28)

The “extra prices” β and βT discourage too many players to be attracted by the
area where the constraint is saturated, thus ensuring the density constraints
(iv) to be fulfilled.

Another way to interpret the density constraint, is by an approximation ar-
gument. One can use an approximation f ε(x, m) which tends to f (x, m) uni-
formly if m ∈ [0, m] and to +∞ if m ∈ (m,+∞). For these couplings the
classical theory applies, and we show that (u, m) corresponds to the limit con-
figuration (up to subsequences) as ε ↓ 0 of the corresponding (uε, mε).

One of the main contributions of this chapter is the determination of some
strong connections between our model of MFG with density constraint and the
incompressible Euler’s equations studied by Y. Brenier (see [Bre99]) and also
by L. Ambrosio and A. Figalli (see [AF09]). Actually this connection is not that
surprising. Firstly, the incompressibility constraint in the model of Brenier to
study perfect fluids will introduce the pressure field. Morally the same effect
happens imposing density constraint for MFG (with the only difference that
we impose a one-sided density constraint, and hence the pressure has a sign).
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Secondly, both the model by Brenier and ours have a variational structure, sim-
ilar also to the one introduced by Benamou and Brenier in [BB00]. Therefore,
the terms β and βT, that we call “additional prices/costs” for the agents (ap-
pearing only if they pass through saturated zones) in (0.0.26) correspond to a
sort of pressure field from fluid mechanics. This observation motivates the title
of this chapter as well.

Using similar techniques as in [Bre99] and [AF09, AF08] we show that β

is an L2
loc((0, T); BV(Td)) ↪→ Ld/(d−1)

loc ((0, T) × Td) function (while a priori it
was only supposed to be a measure) and βT is L1(Td). With the help of an
example we show that this local integrability up to the final time t = T may
fail, showing also some sort of sharpness of the result. This regularity property
will allow us to give a clearer (weak) meaning to the control problem (0.0.27),
obtaining optimality conditions along single agent trajectories. Our techniques
to proceed with the analysis rely on the properties of measures defined on
paths, that we shall call density-constrained flows in our context, and we are
exploiting some properties of a Hardy-Littlewood type maximal functional as
well. Let us describe these results more in details. The proofs are highly
inspired from [AF09].

Let Γ denote the set of absolutely continuous curves γ : [0, T] → Td and
P2(Γ) the set of Borel probability measures η̃ defined on Γ such that∫

Γ

∫ T

0
|γ̇(s)|2 ds dη̃(γ) < +∞.

We call η̃ a density-constrained flow if 0 ≤ m̃t ≤ m a.e. in Td for all t ∈ [0, T],
where m̃t := (et)#η̃. Here et : Γ → Td denotes the evaluation map at time
t ∈ [0, T], i.e. et(γ) := γ(t). Let us consider a solution (u, m, β, βT) of the MFG
system (0.0.26).

We say that an η ∈ P2(Γ) is an optimal density-constrained flow associated to
the solution (u, m, β, βT) if m(t, ·) = (et)#η, for all t ∈ [0, T] and the following
energy equality holds∫

Td
u(0+, x)m0(x)dx =

∫
Td

g(x)m(T, x)dx + m
∫

Td
βT dx

+
∫

Γ

∫ T

0
L(γ(t), γ̇(t))dt dη(γ)

+
∫ T

0

∫
Td

( f (x, m(t, x)) + β(t, x))m(t, x)dx dt.

Let us set α := f (·, m) + β. To describe our final result, we shall define the
following notion. Given 0 < t1 < t2 < T, we say that a path γ ∈ H1([0, T]; Td)
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with Mα̂(·, γ) ∈ L1
loc((0, T)) is minimizing on the time interval [t1, t2] in the

problem (0.0.28) if one has

û(t+2 , γ(t2)) +
∫ t2

t1

L(γ(t), γ̇(t)) + α̂(t, γ(t))dt ≤ û(t−2 , γ(t2) + ω(t2))+

+
∫ t2

t1

L(γ(t) + ω(t), γ̇(t) + ω̇(t)) + α̂(t, γ(t) + ω(t))dt,

for all ω ∈ H1([t1, t2]; Td) such that ω(t1) = 0 and Mα̂(·, γ + ω) ∈ L1([t1, t2]).
Here α̂ denotes a special representative of α ∈ Ld/(d−1)

loc ((0, T)×Td) defined as

α̂(t, x) := lim sup
ε↓0

(α(t, ·) ? ρε)(x),

for a.e. t ∈ (0, T), where the mollification is performed with the heat kernel
ρε. The hypothesis for the class of competitors, i.e. Mα̂(·, γ) ∈ L1

loc((0, T))
is imposed to be able to handle the passages to limit (in the regularization,
as ε ↓ 0). We will need some uniform point-wise bounds on α ? ρε, hence
we shall use the properties of the Hardy-Littlewood-type maximal function
defined with the help of the heat kernel. Thus for any h ∈ L1(Td) we set

(Mh)(x) := sup
ε>0

∫
Rd
|h(x + εy)|ρ(y)dy.

Note that in particular there exists a constant C > 0 such that ‖Mh‖Lr(Td) ≤
C‖h‖Lr for all h ∈ Lr(Td) and r > 1. Moreover M(h ? ρε) ≤ Mh. Our main
result in this setting is the following.

Theorem 0.0.3. There exists at least one optimal density-constrained flow η. More-
over, for any 0 < t1 < t2 < T, η is concentrated on minimizing paths on the time
interval [t1, t2] for the problem (0.0.28) in the sense described before.

Finally, this theorem provides the existence of local weak Nash equilibria in our
model.

Let (u, m, β, βT) be a solution of the MFG system with density constraints on
[0, T]×Td. We say that (m, β, βT) is a local weak Nash equilibrium, if there ex-
ists an optimal density-constrained flow η ∈P2(Γ) (constructed with the help
of (m, β, βT)) which is concentrated on locally minimizing paths for Problem
(0.0.28). In particular one has that mt = (et)#η and 0 ≤ mt ≤ m a.e. in Td for
all t ∈ [0, T].

Structurally, besides the five chapters detailed previously, the thesis con-
tains two extra small unnumbered chapters. In Part i we included an Optimal
Transport toolbox, where we collected all the classical results and references on
the theory of optimal transport, that are needed afterwards. Since Part ii is
fully dedicated to MFG systems with density constraints, we included a short
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chapter on the history of MFG, just before the two main chapters in this part.
Finally, we end the thesis with an Appendix, where we collected some well-
known results from convex analysis, the theory of Γ−convergence and some
well-known results on the existence and regularity of solutions of elliptic equa-
tions with measure data.



Notations

Let us set the basic notions which shall be used on the forthcoming pages.
Our analysis is performed in the d−dimensional euclidean space Rd where
always d ≥ 2. Ω ⊆ Rd denotes a non-empty, bounded or unbounded open (or
sometimes compact, which will be specified in the context) set with a smooth
boundary and we denote by n the outward normal to ∂Ω. Let us set | · | for the
usual euclidean norm on Rd and, given a Lebesgue measurable set A ⊆ Rd, if
it is not ambiguous, we also use |A| for its d-dimensional Lebesgue measure.

We denote by M (Ω) the space of (signed) Radon measures defined on Ω.
We set M+(Ω) (respectively M−(Ω)) for the subset of M (Ω) of non-negative
(respectively non-positive) Radon measures. Given the Hahn-Jordan decom-
position µ = µ+ − µ−, with µ+, µ− ∈ M+(Ω), we set |µ| := µ+(Ω) + µ−(Ω)

for the total variation of µ. We also denote by M ac(Ω) and M s(Ω) the spaces
of absolutely continuous and singular measures w.r.t. the Lebesgue measure,
respectively. For µ ∈ M (Ω) one uses the decomposition µ = µac + µs, where
µac ∈M ac(Ω) and µs ∈M s(Ω). For notational convenience, if µ ∈M ac(Ω) we
will also denote by µ its density w.r.t. the Lebesgue measure. Given µ ∈M (Ω)

we set µ A for its restriction to A ∈ B(Ω), defined as µ A(B) := µ(A ∩ B)
for all B ∈ B(Ω) (where B(Ω) denotes the Borel σ-algebra on Ω).

P(Ω) denotes the space of Borel probability measures on Ω and Pp(Ω) ⊆
P(Ω) (for p ≥ 1) the space of probability measures with finite pth order

moment, i.e. µ ∈ Pp(Ω) iff
∫

Ω
|x|p dµ < +∞. If Ω is compact, the two spaces

actually coincide and we do not make any difference between them.
We say that a family of probability measures (µn)n≥0 narrowly converges to

µ ∈ P(Ω) if
∫

Ω
φ dµn →

∫
Ω

φ dµ for all φ ∈ C0
b(Ω), where C0

b(Ω) is the

space of continuous and bounded functions on Ω. We call this convergence
for simplicity by weak convergence of probability measures and denote by µn ⇀ µ.
If Ω is compact, actually this notion is the same as the weak-? convergence in
M (Ω).

37
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We say that µ ∈P(Ω) is tight if for all ε > 0 there exists a compact set Kε ⊂
Ω such that µ(Ω \Kε) < ε. Prokhorov’s theorem is a classical result which gives a
necessary and sufficient characterization of the sequential weak compactness of
families of probability measures: if a sequence (µn)n≥0 ⊂ P(Ω) is uniformly
tight, then there exists µ ∈P(Ω) and a subsequence (µnk)nk≥0 ⊂ (µn)n≥0 such
that µnk ⇀ µ as k → ∞. Conversely, if µn ⇀ µ, then the sequence is uniformly
tight. This theorem can be stated for any complete separable metric (Polish)
space as ambient space. An equivalent characterization of the tightness of a
probability measure µ ∈ P(Ω) is the following: there exists Ψ : Ω → [0,+∞]

a coercive function with compact sub-level sets {x ∈ Ω : Ψ(x) ≤ c} such that∫
Ω

Ψ(x)dµ(x) < +∞.

Finally, let us collect below the basic notations used in this thesis:

R R∪ {+∞};
1A characteristic function of the set A, i.e. 1A(x) = 1

if x ∈ A and 1A(x) = 0 if x /∈ A;

χA indicator function of the set A, i.e. χA(x) = 0 if
x ∈ A and χA(x) = +∞ if x /∈ A;

Id identity matrix in Rd×d;

x · y scalar product of x, y ∈ Rd;

u, v, w, . . . vector fields, i.e. functions on X with values in Rd;

n outer normal to a set with Lipschitz boundary;

| · | euclidean norm on Rd;

L d d−dimensional Lebesgue measure (if it is not am-
biguous, we also use the notation | · |);

dx integration w.r.t. L d, i.e. dL d;

H d d−dimensional Hausdorff measure;

B(X) Borel σ−algebra on X;

P(X) Borel probability measures on X;

Pp(X) subspace of P(X) with finite pth order moment
(p ≥ 1);

M (X) finite signed Radon measures on X;

M+(X); M−(X) non-negative and non-positive elements from
M (X);

M ac(X); M s(X) absolutely continuous and singular measures w.r.t.
L d on X;

M (X)d vector valued finite Radon measures on X;

µ� ν the measure µ is absolutely continuous w.r.t. the
measure ν;



notations 39

dµ

dν
= f ; dµ = f · dν Radon-Nikodým derivative of µ w.r.t. ν or f is the

density of µ w.r.t. ν;

spt(µ) support of the measure µ, i.e. the set {x ∈ X :
µ(B(x, r)) > 0 ∀r > 0};

C0(X); C(X) continuous functions on X;

C0
b(X) bounded and continuous functions on X;

Ck,α(Rd) Hölder continuous functions with k Hölder contin-
uous derivatives;

C∞
c (Rd) smooth functions with compact support in Rd;

Lip(X) the space of Lipschitz continuous functions on X
with values in R;

Lip( f ) Lipschitz constant of a function f ∈ Lip(X);

Lp(X) standard Lebesgue space of order p ∈ [1,+∞] on
X w.r.t. L d;

Lp
µ(X) Lebesgue space on X w.r.t. the measure µ;

Wk,p(X) standard Sobolev space on X;

Ws,p(X) fractional Sobolev space if s /∈ Z;

Wk,p
� (X) Sobolev functions with zero mean;

Wk,p(X)d; Wk,p(X; Rd) vector valued Sobolev functions;

Hk(X) the space Wk,2(X);

X∗ topological dual of the (Banach) space X;

〈·, ·〉X∗ ,X; 〈〈·, ·〉〉 duality brackets between X∗ and X;





Part I

D E N S I T Y C O N S T R A I N T S I N O P T I M A L T R A N S P O RT
A N D C R O W D M O T I O N





Optimal Transport toolbox

T
he theory of Optimal Transport plays a central role throughout the
present thesis. Thus we devote this short chapter to collect all the
necessary tools and results which are used on the forthcoming pages.

For more details on this topic we refer to the by now standard references, to the
two monographs of C. Villani (see [Vil09, Vil03]). We use also the forthcoming
book of F. Santambrogio (see [San15]) and the monograph of L. Ambrosio, N.
Gigli and G. Savaré ([AGS08]) as basic bibliography in the sequel.

The history of OT goes back to 1781, when the French mathematician G.
Monge asked the following question (see [Mon81]): “which is the best way to
transport a sand pile into a hole with the same volume?”

This question can be formulated mathematically as follows: given two pos-
itive Borel measures µ and ν defined on two (compact) subsets X ⊆ Rd and
Y ⊆ Rd respectively, with the same mass (without loss of generality we set
the mass equals to 1, hence µ and ν are probability measures), find the map
T : X → Y that transports (pushes forward) µ onto ν, i.e. T#µ = ν (meaning
ν(A) = µ(T−1(A)) for all A ⊂ Rd Borel set) and minimizes the transport cost∫

X
|x− T(x)|dµ(x).

In this setting Monge’s problem reads as follows:

inf
T#µ=ν

∫
X
|x− T(x)|dµ(x) (MP)

A competitor T for (MP) is called a transport map, while to an optimizer we
refer as optimal transport map.

from monge to brenier via kantorovich

One of the difficulties in solving the above problem is coming from the high
nonlinearity of the constraint T#µ = ν. To see this, let us assume that both
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measures are absolutely continuous w.r.t. the Lebesque measure with densities
f and g respectively. Then the constraint can be written in the following way:
for all φ ∈ C0

b(Y)∫
X

φ(T(x)) f (x)dx =
∫

Y
φ(y)g(y)dy =

∫
X

φ(T(x))|det DT(x)|g(T(x))dx,

and by density arguments the constraint can be transformed formally into the
Jacobian (Monge-Ampère type) equation

|det DT| = f
g ◦ T

,

which is a fully nonlinear PDE. Note that the meaning of the above equation
should be clarified, but let us skip the rigorous interpretation in this heuristic
presentation.

Solving Problem (MP) some other obstructions may arise: the set of maps
with the constraint T#µ = ν can be empty. Indeed, for example if µ = δx and
ν = 1

4 δy1 +
3
4 δy2 , with x ∈ X and y1, y2 ∈ Y, y1 6= y2, any transport map should

split the mass concentrated in the point x, which is impossible. Moreover,
it also could happen that no map realizes the minimum even if the set of
competitors is not empty.

Because of these issues Monge’s problem in its full generality remained un-
solved over more than one and a half century. In 1942 the Soviet Nobel Memo-
rial prize laureate in Economics, L. Kantorovich came up with the solution (see
[Kan42]). He relaxed Monge’s problem in the following way: instead of look-
ing for optimal transport maps, he redefined the problem over a larger class
of competitors, which we call transport plans. Kantorovich’s problem reads as
follows

inf
γ∈Π(µ,ν)

∫
X×Y
|x− y|dγ(x, y) (KP)

where we denote the set of plans by

Π(µ, ν) := {γ ∈P(X×Y) : (πx)#γ = µ and (πy)#γ = ν} ,

and πx and πy stand for the two canonical projections from X×Y onto X and
Y respectively. The set Πo(µ, ν) ⊆ Π(µ, ν) stands for the optimal plans in (KP).

We observe that (KP) became a linear problem with linear constraints (and
Π(µ, ν) 6= ∅, since µ⊗ ν is always an element of it), thus by the direct method
of calculus of variations one can easily show the existence of an optimal trans-
port plan γ.

In Problem (KP) one can exchange the cost function |x − y| to any c : X ×
Y → [0,+∞] proper l.s.c. function and the existence result still holds.

Another feature that Problem (KP) has is, that it admits a dual problem. For
a general cost function, this can be written as

sup
{∫

X
ϕ(x)dµ(x) +

∫
Y

ψ(y)dν(y) : ϕ(x) + ψ(y) ≤ c(x, y)
}

(DP)
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where the supremum is taken over functions ϕ ∈ Cb(X), ψ ∈ Cb(Y). The com-
petitors in Problem (DP) are called Kantorovich potentials in the transport of µ

onto ν. By the means of a Rockafellar type theorem and standard techniques
from convex analysis one can show that Problem (KP) and Problem (DP) are
in duality, moreover the dual problem also has a solution.

For a function u : X → R one can introduce its c-transform uc : Y → R (anal-
ogously to the well-known Legendre-Fenchel transform from convex analysis)
by

uc(y) := inf
x∈X
{c(x, y)− u(x)} .

This notion turned to be very useful in the study of Problem (DP). Indeed, one
can show that the optimal potentials always have the form (ϕ, ϕc).

After the solution provided by L. Kantorovich, OT fell again into oblivion for
almost five decades. Its true renaissance started in the late 1980’s with a sem-
inal work of Y. Brenier (see [Bre87] and also [Bre91]). During the same period
M. Cullen had the observation that some techniques from OT can be used in
the study of the so-called semi-geostrophic equation, which has applications
in meteorology. J. Mather also realized that there are fundamental connec-
tions between OT and Lagrangian dynamics. All these works were crucial in
the understanding that OT actually connects PDEs, geometry, economics and
physics.

By the work of Y. Brenier we can relate also the optimizers in Problem (MP)
and Problem (KP) with the help of the optimal Kantorovich potential ϕ from
Problem (DP). Under the additional assumption that µ � L d, Y. Brenier
showed for the quadratic cost c(x, y) := 1

2 |x− y|2 that there exists a unique op-
timal transport map in Problem (MP) which is a gradient of a convex function,
in addition the relation

T(x) = ∇
(

1
2
|x|2 − ϕ(x)

)
= x−∇ϕ(x)

holds, for any ϕ optimal Kantorovich potential from the transport of µ onto ν

in Problem (DP). Moreover γ := (id, T)#µ is the optimal plan in Problem (KP).
Nowadays we usually refer to this result as Brenier’s Theorem.

Brenier’s Theorem had been generalized in the following years in several
directions. First, the condition µ � L d can be replaced with “µ(A) = 0 for
every A ⊂ Rd such that H d−1(A) < +∞”, which implies the existence of an
optimal transport map as well. Moreover, a Brenier-type theorem still holds if
one replaces the quadratic cost by h(x− y), where h is strictly convex. To these,
and to some other fine geometrical results we refer to the work of W. Gangbo
and R.J. McCann (see [GM96]). Secondly, R.J. McCann obtained similar results
on Riemannian manifolds (see [McC01]). In [Gig11], N. Gigli characterized the
class of ‘good’ measures, for which an optimal transport map exists.
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wasserstein spaces and some preparatory results

The costs of the form c(x, y) = |x− y|p for 1 ≤ p ≤ +∞ play a special role
in this setting. With the help of them one can introduce the quantity

Wp(µ, ν) :=
{

min
γ∈Π(µ,ν)

∫
X×X
|x− y|p dγ(x, y)

} 1
p

,

which turned out to be a metric on Pp(X) and it metrizes the weak-? topology
on Pp(X). We call Wp(µ, ν) the Wasserstein distance between µ and ν. The space
Wp(X) := (Pp(X), Wp) is called Wasserstein space on X. Note that if X is not
compact, one has to work with Pp(X) (the space of probability measures with
finite pth order moments) instead of P(X) to have existence of an optimal
plan between µ and ν and to avoid that Wp(µ, ν) = +∞.

Let us summarize some results (adapting the setting for later use) in the
following theorem.

Theorem 0.0.4. Let Ω ⊂ Rd be a given convex set and let $, g ∈ L1(Ω) be two
non-negative probability densities on Ω. Then the following hold:

(i) The problem

1
2

W2
2 ($, g) := min

{∫
Ω×Ω

1
2
|x− y|2 dγ : γ ∈ Π($, g)

}
, (0.0.29)

has a unique solution, which is of the form γT̂ := (id, T̂)#$, and T̂ : Ω → Ω is
a solution of the problem

min
T#$=g

∫
Ω

1
2
|x− T(x)|2 $(x)dx . (0.0.30)

(ii) The map T̂ : {$ > 0} → {g > 0} is a.e. invertible and its inverse Ŝ := T̂−1 is
a solution of the problem

min
S#g=$

∫
Ω

1
2
|x− S(x)|2 g(x)dx. (0.0.31)

(iii) Wp(·, ·) is a distance on the space Pp(Ω) of probabilities over Ω with finite pth
order moment. In addition the followings are equivalent:

a) µn → µ w.r.t. Wp;

b) µn ⇀ µ and
∫

Ω
|x|p dµn(x)→

∫
Ω
|x|p dµ(x);

c)
∫

Ω
φ dµn(x) →

∫
Ω

φ dµ(x) for all φ ∈ C0(Ω) with a growth at most of

order p.
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(iv) We have

1
2

W2
2 ($, g) =

max
{∫

Ω
ϕ(x)$(x)dx +

∫
Ω

ψ(y)g(y)dy : ϕ(x) + ψ(y) ≤ 1
2
|x− y|2, ∀x, y ∈ Ω

}
.

(0.0.32)

(v) The optimal functions ϕ̂, ψ̂ in (0.0.32) are continuous, differentiable almost ev-
erywhere, Lipschitz if Ω is bounded, and such that:
– T̂(x) = x−∇ϕ̂(x) and Ŝ(x) = x−∇ψ̂(x) for a.e. x ∈ Ω; in particular, the

gradients of the optimal functions are uniquely determined (even in the case
of non-uniqueness of ϕ̂ and ψ̂) a.e. on {$ > 0} and {g > 0}, respectively;

– the functions

x 7→ |x|
2

2
− ϕ̂(x) and x 7→ |x|

2

2
− ψ̂(x),

are convex in Ω and hence ϕ̂ and ψ̂ are semi-concave;

– ϕ̂(x) = min
y∈Ω

{
1
2
|x− y|2 − ψ̂(y)

}
and ψ̂(y) = min

x∈Ω

{
1
2
|x− y|2 − ϕ̂(x)

}
;

– if we denote by χc the c−transform of a function χ : Ω→ R defined through
χc(y) = infx∈Ω

1
2 |x− y|2 − χ(x), then the maximal value in (0.0.32) is also

equal to

max
{∫

Ω
ϕ(x)$(x)dx +

∫
Ω

ϕc(y)g(y)dy, ϕ ∈ C0(Ω)

}
(0.0.33)

and the optimal ϕ is the same ϕ̂ as above, and is such that ϕ̂ = (ϕ̂c)c a.e. on
{$ > 0}.

(vi) If g ∈P2(Ω) is given, the functional W : P2(Ω)→ R defined through

W($) =
1
2

W2
2 ($, g) = max

{∫
Ω

ϕ(x)$(x)dx +
∫

Ω
ϕc(y)g(y)dy, ϕ ∈ C0(Ω)

}
is convex. Moreover, if {g > 0} is a connected open set and χ = $̃− $ is the
difference between two probability measures, then we have

lim
ε→0

W($ + εχ)−W($)

ε
=
∫

Ω
ϕ̂ dχ

where ϕ̂ is the c−transform of the unique (up to additive constants) optimal
function ψ̂ in (0.0.32). As a consequence, ϕ̂ is the first variation of W.

The only non-standard point is the last one (the computation of the first
variation of W): it is sketched in [BS05], and a more detailed presentation
will be part of [San15] (Section 7.2). Uniqueness of ψ̂ is obtained from the
uniqueness of its gradient and the connectedness of {g > 0}.

We will need some regularity results on optimal transport maps. The fol-
lowing results are due to L.A. Caffarelli, see [Caf92b, Caf92a].
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Theorem 0.0.5. Let Ω ⊂ Rd be a bounded uniformly convex set with smooth bound-
ary and let $, g ∈ L1

+(Ω) be two probability densities on Ω away from zero and
infinity 1. Then, using the notations from Theorem 0.0.4, we have:

(i) T̂ ∈ C0,α(Ω) and Ŝ ∈ C0,α(Ω).

(ii) If $ ∈ Ck,β(Ω) and g ∈ Ck,β(Ω), then T̂ ∈ Ck+1,β(Ω) and Ŝ ∈ Ck+1,β(Ω).

Let us mention that recently the Sobolev regularity of the transport maps
(and more generally of solutions of Monge-Ampère equations) has also been
studied extensively by G. De Philippis, A. Figalli (see [DPF13, DPF13]) and
independently by T. Schmidt ([Sch13]).

In many of our proofs we shall use some approximation techniques. To do
this, we need a stability result

Theorem 0.0.6. Let Ω ⊂ Rd be a bounded convex set and let $n ∈ L1
+(Ω) and

gn ∈ L1
+(Ω) be two sequences of probability densities in Ω. Then, using the notations

from Theorem 0.0.4, if $n ⇀ $ and gn ⇀ g weakly as measures, then we have:

(i) W2($, g) = lim
n→∞

W2($n, gn).

(ii) there exist two semi-concave functions ϕ, ψ such that ∇ϕ̂n → ∇ϕ and ∇ψ̂n →
∇ψ a.e. and ∇ϕ = ∇ϕ̂ a.e. on {$ > 0} and ∇ψ = ∇ψ̂ a.e. on {g > 0}.

If Ω is unbounded (for instance Ω = Rd), then the convergences $n ⇀ $ and gn ⇀ g
(weakly as measures) are not enough to guarantee (i) but only imply W2($, g) ≤
lim inf

n→∞
W2($n, gn). Yet, (i) is satisfied if W2($n, $), W2(gn, g)→ 0, which is a stronger

condition.

Proof. The proof of (i) can be found in [Vil09]. We prove (ii). (Actually this is a
consequence of the Theorem 3.3.3. from [CS04], but for the sake of complete-
ness we sketch its simple proof).

We first note that due to Theorem 0.0.4 (v) the sequences ϕ̂n and ψ̂n are
equi-continuous. Moreover, since the Kantorovich potentials are uniquely de-
termined up to a constant we may suppose that there is x0 ∈ Ω such that
ϕ̂n(x0) = ψ̂n(x0) = 0 for every n ∈ N. Thus, ϕ̂n and ψ̂n are locally uniformly
bounded in Ω and, by the Ascoli-Arzelà Theorem, they converge uniformly up
to a subsequence

ϕ̂n −−−→n→∞
ϕ∞ and ψ̂n −−−→n→∞

ψ∞,

to some continuous functions ϕ∞, ψ∞ ∈ C(Ω), satisfying

ϕ∞(x) + ψ∞(y) ≤
1
2
|x− y|2, for every x, y ∈ Ω.

In order to show that ϕ∞ and ψ∞ are precisely Kantorovich potentials, we
use the characterization of the potentials as solutions to the problem (0.0.32).

1. We say that $ and g are away from zero and infinity if there is some ε > 0 such that
ε ≤ $ ≤ 1/ε and ε ≤ g ≤ 1/ε a.e. in Ω.
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Indeed, let ϕ and ψ be such that ϕ(x) + ψ(y) ≤ 1
2 |x − y|2 for every x, y ∈ Ω.

Then, for every n ∈N we have∫
Ω

ϕ̂n(x)$n(x)dx +
∫

Ω
ψ̂n(y)gn(y)dy ≥

∫
Ω

ϕ(x)$n(x)dx +
∫

Ω
ψ(y)gn(y)dy,

and passing to the limit we obtain∫
Ω

ϕ∞(x)$(x)dx +
∫

Ω
ψ∞(y)g(y)dy ≥

∫
Ω

ϕ(x)$(x)dx +
∫

Ω
ψ(y)g(y)dy,

which proves that ϕ∞ and ψ∞ are optimal. In particular, the gradient of these
functions coincide with those of ϕ̂ and ψ̂ on the sets where the densities are
strictly positive.

We now prove that ∇ϕ̂n → ∇ϕ∞ a.e. in Ω. We denote with N ⊂ Ω the
set of points x ∈ Ω, such that there is a function among ϕ̂ and ϕ̂n, for n ∈ N,
which is not differentiable at x. We note that by Theorem 0.0.4 (v) the set N
has Lebesgue measure zero. Let now x0 ∈ Ω \ N and suppose, without loss of
generality, x0 = 0. Setting

αn(x) :=
|x|2

2
− ϕ̂n(x) + ϕ̂n(0) + x · ∇ϕ∞(0)

and

α(x) :=
|x|2

2
− ϕ∞(x) + ϕ∞(0) + x · ∇ϕ∞(0),

we have that αn are all convex and such that αn(0) = 0, and hence αn(x) ≥
∇αn(0) · x. Moreover, αn → α locally uniformly and ∇α(0) = 0. Suppose by
contradiction that limn→∞∇αn(0) 6= 0. Then, there is a unit vector p ∈ Rd and
a constant δ > 0 such that, up to a subsequence, p · ∇αn ≥ δ for every n > 0.
Then, for every t > 0 we have

α(pt)
t

= lim
n→∞

αn(pt)
t
≥ lim inf

n→∞

{
p · ∇αn(0)

}
≥ δ,

which is a contradiction with the fact that ∇α(0) = 0.

Let us state a simple lemma concerning properties of the functional

M (Ω) 3 $ 7→ H($) =


∫

Ω
h($(x)) dx, if $� L d,

+∞, otherwise.

Lemma 0.0.7. Let Ω be an open set and h : R → R ∪ {+∞} be convex, l.s.c. and
superlinear at +∞. Then the functional H : M (Ω) → R ∪ {+∞} is convex and
lower semicontinuous with respect to the weak convergence of measures. Moreover if
h ∈ C1 then we have

lim
ε→0

H($ + εχ)− H($)

ε
=
∫

Ω
h′($) dχ

whenever ρ, χ � L d, H($) < +∞ and H($ + εχ) < +∞ at least for small ε. As a
consequence, h′($) is the first variation of H.
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For this classical fact, and in particular for the semicontinuity, we refer to
[But89] and [BB90].

We also use this lemma, together with point (vi) in Theorem 0.0.4 to deduce
the following optimality conditions.

Corollary 0.0.8. Let Ω be a bounded open set, g ∈ L1
+(Ω) an absolutely continuous

and strictly positive probability density on Ω, the potential ϕ̂ and the functional W
defined as in point (vi) in Theorem 0.0.4. Let h : R → R be a C1 convex and
superlinear function, and let H : M (Ω) → R ∪ {+∞} be defined as above. Suppose
that $̄ solves the minimization problem

min{W($) + H($) : $ ∈P(Ω)}.

Then there exists a constant C such that

h′($̄) = max{(C− ϕ̂), h′(0)}.

The proof of this fact is contained in [BS05] and in Section 7.2.3 of [San15].
We give a sketch here.

Proof. Take an arbitrary competitor $̃, define $ε := (1− ε)$̄ + ε$̃ and χ = $̃− $̄

and write the optimality condition

0 ≤ lim
ε→0

(H + W)($̄ + εχ)− (H + W)($̄)

ε
.

This implies ∫
Ω
(ϕ̂ + h′($̄)) d$̃ ≥

∫
Ω
(ϕ̂ + h′($̄)) d$̄

for any arbitrary competitor $̃. This means that there is a constant C such that
ϕ̂ + h′($̄) ≥ C with ϕ̂ + h′($̄) = C on {$̄ > 0}. The claim is just a re-writing of
this fact, distinguishing the set where $̄ > 0 (and hence h′($̄) ≥ h′(0)) and the
set where $̄ = 0.

Following [AGS08], one can introduce the tangent space TanµP2(Rd) to a
measure µ ∈ P2(Rd) as the closure in L2

µ(R
d; Rd) of the set gradients of

smooth, compactly supported functions, i.e.

TanµP2(R
d) := {∇φ : φ ∈ C∞

c (Rd)}
L2

µ .

The subdifferential of a functional U : P2(Rd) → R at µ ∈ P2(Rd) can be
defined as the set D−U(µ) of elements ξ ∈ TanµP2(Rd) such that

U(ν)−U(µ) ≥ inf
γ∈Πo(µ,ν)

∫
Rd×Rd

ξ(x) · (y− x)dγ(x, y) + o(W2(µ, ν)),
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∀ν ∈ P2(Rd). The superdifferential of U at µ ∈ P2(Rd) is defined as the set
D+U(µ) := −D−(−U)(µ). It can be shown that if both D−U(µ) and D+U(µ)

are non-empty sets, then they coincide and are reduced to a singleton {ξ}.
In this case we say that U is differentiable at µ and DµU(µ) := ξ is called the
Wasserstein gradient of U at µ. In general, this is equal to the gradient of the
first variation of U.

curves , geodesics in W p and the benamou-brenier formula

Another central pillar in the modern theory of OT is the work of F. Otto (see
[Ott01]), studying the differential geometric features of the space W p (Ω) in
the context of the porous medium equation. This is closely related to the work
of J.-D. Benamou and Y. Brenier ([BB00]) which we detail in a moment.

From geometrical point of view, firstly it is important to understand the
curves and geodesics in W p (Ω) . A very good reference for this subject is
the monograph of L. Ambrosio, N. Gigli and G. Savaré (see [AGS08]). In
this context it is possible to make a strong link between absolutely continuous
curves in W p and solutions of the continuity equation

∂ t µ t + ∇ · (u t µ t ) = 0.

Let us recall that a curve (µ t ) t∈ [0,1 ] in W p (Ω) is absolutely continuous if there
exists g ∈ L1 ([0, 1 ]) such that

Wp (µ t1 , µ t2 ) ≤
∫ t2

t1

g(s) ds , for all 0 ≤ t1 < t2 ≤ 1.

If (µ t ) t∈ [0,1 ] is a Lipschitz continuous curve then its metric derivative | µ̇ |Wp ( t)
exists for almost every time t ∈ [0, 1 ] (as a consequence of Rademacher’s the-
orem), and the above inequality remains true if one replaces g by | µ̇ |Wp ( t) .
Notice that any absolutely continuous curve can be reparametrized in time and
becomes Lipschitz continuous. Thus the above reasoning holds for absolutely
continuous curves as well. Let us recall that the metric derivative is defined (as
is any metric space) by

| µ̇ |Wp ( t) = lim
h→0

Wp (µ t+h , µ t )

|h | ,

provided the limit exists. Let us state the following very important characteri-
zation theorem (see for example [AGS08] or [San15], Theorem 5.14.)

Theorem 0.0.9. Let (µ t ) t∈ [0,1 ] be an absolutely continuous curve in W p (Ω) (for
p > 1 and Ω ⊂ Rd compact). Then for a.e. t ∈ [0, 1 ] there exists a vector field
u t ∈ L p

µ t (Ω ; Rd ) such that

1. the continuity equation ∂ t µ t + ∇ · (u t µ t ) = 0 is satisfied in the sense of
distributions;
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2. for a.e. t ∈ [0, 1 ] we have ‖u t‖L p
µ t
≤ | µ̇ |Wp ( t) .

Conversely, if (µ t ) t∈ [0,1 ] is a family of measures in W p (Ω) and for each t ∈

[0, 1 ] we have a vector field u t ∈ L p
µ t (Ω ; Rd ) with

∫ 1

0
‖u t‖L p

µ t
dt < +∞ solving

∂ t µ t + ∇ · (u t µ t ) = 0 in the sense of distributions, then (µ t ) t∈ [0,1 ] is absolutely
continuous in W p (Ω) and for a.e. t ∈ [0, 1 ] we have | µ̇ |Wp ( t) ≤ ‖u t‖L p

µ t
.

It is well known (see [AGS08]) that Wp(Ω) is a geodesic space, i.e. for all
µ, ν ∈ Pp(Ω) there exists a constant speed geodesic (µt)t∈[0,1] in Wp(Ω) for
which µ0 = µ and µ1 = ν. The notion that (µt)t∈[0,1] is a constant speed geodesic
in Wp(Ω) (as in any geodesic space) means that

Wp(µt1 , µt2) = (t2 − t1)Wp(µ0, µ1), for all 0 ≤ t1 ≤ t2 ≤ 1.

By the interpolation introduced by R.J. McCann (see [McC97]) one can char-
acterize the constant speed geodesics in Wp(Ω). Let us suppose that Ω ⊂ Rd is
convex and for p ≥ 1 let µ, ν ∈Pp(Ω). Let moreover γopt ∈ Πo(µ, ν) be an op-
timal transport plan in Problem (KP) for the cost c(x, y) = |x− y|p transporting
µ onto ν. Then

µt := ((1− t)x + ty)# γopt, ∀ t ∈ [0, 1] (0.0.34)

gives a constant speed geodesic connecting µ to ν. In particular, if µ is a ‘good’
measure (meaning that it does not give mass to Borel sets with Hausdorff
dimension less than or equal to d− 1) γopt is induced by a map T, the solution
of Problem (MP) with cost c(x, y) = |x− y|p, and in this case the geodesic µt

has the form of

µt := ((1− t)id + tT)# µ, ∀ t ∈ [0, 1]. (0.0.35)

Inspired by problems from fluid mechanics and by the interpolations (0.0.34)-
(0.0.35), in the seminal paper [BB00] J.-D. Benamou and Y. Brenier introduced
a dynamic characterization of the distance Wp. This provided a dynamical for-
mulation of the Monge-Kantorovich optimal transport problems (MP)-(KP). We
refer to this formulation nowadays as the Benamou-Brenier formula. The basic
idea behind this formula is that looking for an optimal transport map or plan
from µ ∈ Pp(Ω) onto ν ∈ Pp(Ω) for the cost c(x, y) = |x− y|p is equivalent
to looking for constant speed geodesics in Wp(Ω) connecting µ to ν. Indeed,
from optimal plans one can construct geodesics, and vice-versa from constant
speed geodesics via their velocity fields one can reconstruct optimal transports.

One can find constant speed geodesics by minimizing the quantity∫ 1

0
|µ̇|Wp(t)

p dt
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among all Lipschitz curves (µt)t∈[0,1]. On the other hand |µ̇|Wp(t) = ‖ut‖Lp
µt

,

where ut is the optimal velocity field (with minimal Lp
µt norm) in the continuity

equation ∂tµt +∇ · (utµt) = 0 with µ0 = µ and µ1 = ν.
Thus the Benamou-Brenier formula reads as

Wp(µ, ν)p = min
{∫ 1

0

∫
Ω
|ut|p dµt(x)dt : ∂tµt +∇ · (utµt) = 0, µ0 = µ, µ1 = ν

}
.

(BB)

To gain convexity in Problem (BB) one has to redefine the objective functional.
For later uses, we call it Benamou-Brenier functional Bp : Pp(Ω)×M (Ω; Rd)→
[0,+∞] the quantity defined as

Bp(µ, E) :=


∫

Ω

1
p

∣∣∣∣ dE
dµ

∣∣∣∣p dµ(x), if E� µ,

+∞, otherwise,

where, recalling the notation,
dE
dµ

denotes the Radon-Nikodým derivative of

the measure E w.r.t. µ and |ν| denotes the total variation of the vector valued
measure ν. We extend Bp to time dependent families of measures (using the
same notation, which will be clear from the context) as Bp : L∞([0, 1]; Wp(Ω))×
M ([0, 1]×Ω; Rd)→ [0,+∞] 2 is given by

Bp(µ, E) :=


∫ 1

0

∫
Ω

1
p

∣∣∣∣ dEt

dµt

∣∣∣∣p dµt(x)dt, if Et � µt, a.e. t ∈ [0, 1],

+∞, otherwise.

It is well known that Bp is jointly convex and l.s.c. w.r.t. the weak-? conver-
gence of measures (see Section 5.3.1 in [San15]) and that, if ∂tµt +∇ · Et = 0,
then Bp(µ, E) < +∞ implies that t 7→ µt is a curve in W1,p([0, 1]; Wp(Ω)).
Coming back to curves in Wasserstein spaces, we have seen that for any dis-
tributional solution µt (being a narrowly continuous curve in Wp(Ω)) of the
continuity equation ∂tµt +∇ · (utµt) = 0 we have the relations

|µ̇|Wp(t) ≤ ‖ut‖Lp
µt

and Wp(µt1 , µt2) ≤
∫ t2

t1

|µ̇|Wp(s)ds.

For curves (µt)t∈[0,1] which are also geodesics in Wp(Ω) we have the equality

Wp(µ, ν) =
∫ 1

0
|µ̇|Wp(t)dt =

∫ 1

0
‖ut‖Lp

µt
dt.

The last equality is in fact exactly the Benamou-Brenier formula (BB) with the
optimal velocity field ut being the density of the optimal Et w.r.t. the optimal

2. Observe that when Ω is compact, µ ∈ L∞([0, 1]; Wp(Ω)) only means that µ = (µt)t is a
time-dependent family of probability measures.
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µt. This optimal velocity field ut can be computed as ut := (T − id) ◦ (Tt)−1,
where Tt := (1− t)id + tT is the transport in McCann’s interpolation (0.0.35)
(we assumed here that the initial measure µ0 = µ is a ‘good’ measure, so
that we can use transport maps instead of plans). This vector field is easily
obtained if we consider that in this interpolation particles move with constant
speed T(x) − x, but x represents here a Lagrangian coordinate, and not an
Eulerian one: if we want to know the velocity at time t at a given point, we
have to find out first the original position of the particle passing through that
point at that time.

Since its first appearance, the Formula (BB) has been largely used in many
applications and numerical methods related to optimal transport problems.
Essentially this was the same idea which led F. Otto to settle down the first
building blocks on the differential geometric features of the Wasserstein spaces
Wp. This direction has been built further by L. Ambrosio, N. Gigli and G.
Savaré (see [AGS08]) and by other authors.

Recently the Formula (BB) has been successfully applied in the study of
weak solutions of some Mean Field Game problems as well. We return to this
question in Part ii.

displacement convexity and gradient flows in Wp

Dealing with variational problems involving functionals defined on Wasser-
stein spaces − mainly for uniqueness reasons, but not only − it is very im-
portant to own a good notion of convexity. One can easily realize that the
usual notion of convexity sometimes has to be replaced to be able to deal with
a larger class of functionals. Wp(Ω) being a geodesic space, it is natural to
define a notion of convexity along geodesics. That is exactly what R.J. Mc-
Cann used first in the study of variational problems for interacting gases (see
[McC97]).

Let F : Wp(Ω) → R be a functional. After McCann, we say that F is
displacement convex if [0, 1] 3 t 7→ F (µt) is convex, where (µt)t∈[0,1] is any
geodesic (connecting µ0 to µ1) given by the interpolation (0.0.34) or (0.0.35). In
this setting – similarly as in convex analysis – one can introduce the notion of
λ−displacement convexity of F for λ ∈ R, if the inequality

F (µt) ≤ (1− t)F (µ0) + tF (µ1)−
λ

2
t(1− t)W2

p(µ0, µ1), ∀ t ∈ [0, 1]

holds for any geodesic (µt)t∈[0,1].
One can easily check that for instance the interaction energy

ρ 7→
∫

Ω×Ω
|x− y|2 dρ(x)dρ(y) = 2

∫
Ω
|x|2 dρ(x)− 2

(∫
Ω

x dρ(x)
)2

in P(Ω) is not convex in the usual sense (it is more likely concave), but it is
displacement convex (see Section 7.3.1. from [San15]).
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In the forthcoming chapters we shall consider some local functionals of the
type

F (ρ) :=


∫

Ω
f (ρ(x))dx, if ρ� L d,

+∞, otherwise.

R.J. McCann gave a sufficient condition for the displacement convexity of F .
This reads as follows: suppose that f is superlinear, convex and f (0) = 0,
moreover ]0,+∞[3 s 7→ s−d f (sd) is convex and non-increasing. Then F is
displacement convex.

With this characterization one can check that for example the relative entropy
functional, defined for any probability measure ρ ∈P2(Ω) as

E(ρ) :=


∫

Ω
ρ(x) log ρ(x)dx, if ρ� L d,

+∞, otherwise.
(Ent)

is l.s.c. and displacement convex in the W2(Ω) topology. Let us remark that
this functional plays a crucial role also in the study of curvature notions in
metric measure spaces. Indeed, roughly speaking, the displacement convexity
(more precisely the λ−displacement convexity) of the relative entropy func-
tional characterizes the Ricci curvature of a metric measure space.

Nevertheless, there is an unfortunate observation on the notion of displace-
ment convexity: for a given probability measure ν ∈ P2(Ω) the functional
P2(Ω) 3 µ 7→ W2

2 (µ, ν) is not λ−displacement convex for any λ ∈ R! How-
ever, in several variational problems involving W2

2 (·, ν) (like in gradient flows,
projection problems as in Chapter 1, etc.) this is a crucial issue. That is why
one needed to push a bit further the notion of displacement convexity and
introduce a more general notion: convexity along generalized geodesics. This is
defined as follows: let ν ∈ P2(Ω) be a ‘good’ measure (for which an opti-
mal transport map onto any other probability measure always exists), which
is called the base measure. Now for any µ0, µ1 ∈ P2(Ω) let us consider the
optimal transport maps T0 and T1 in the transport of ν onto µ0 and µ1 respec-
tively. We call a generalized geodesic of base ν the curve (µt)t∈[0,1] defined as
µt := ((1− t)T0 + tT1)#ν. We say that the functional F is convex along gener-
alized geodesics if

F (µt) ≤ (1− t)F (µ0) + tF (µ1), ∀ t ∈ [0, 1].

One checks immediately that the functional W2
2 (·, ν) satisfies this condition

with base measure ν.
Notice that we discussed here only the case when ν is a ‘good’ measure.

For more general cases and for the notion of λ−convexity along generalized
geodesics, one has to work with so-called 3-plan interpolations of optimal
plans from Π(ν, µ0) and Π(ν, µ1). We refer to [AGS08] for this construc-
tion. Moreover, let us remark that this notion is consistent in the following



56 optimal transport toolbox

sense: if a functional is displacement convex, it is also convex along general-
ized geodesics.

The notion of gradient flows in the Wasserstein space Wp(Ω) has an impor-
tant role in the analysis of evolutive PDEs. This notion in metric spaces has
been initiated by E. De Giorgi and later by L. Ambrosio (see [Amb95]). Nev-
ertheless, it gained a lot of attention after the seminal paper or R. Jordan, D.
Kinderlehrer and F. Otto ([JKO98]) and the paper of F. Otto on the porous
medium equation (see [Ott01]). A nowadays classical reference for gradient
flows in metric- and Wasserstein spaces is the monograph of L. Ambrosio, N.
Gigli and G. Savaré (see [AGS08]).

Let us make an analogy with the euclidean case. Let F : Rd → R be a
function and let us consider the following ODE{

ẋ(t) = −∇F(x(t)), t > 0

x(0) = x0.

By the Cauchy-Lipschitz theory, if F ∈ C1,1 there exists a unique global solu-
tion x : [0,+∞[→ Rd of the above problem (actually uniqueness holds with
a weaker condition, namely if F is λ−convex). Geometrically this curve fol-
lows the steepest descent of the function F. This geometric feature is a special
property. To see why, let us consider an implicit Euler discretization of the
above problem: let τ > 0 be a time step and for N > 0 (on the time interval
[0, T], where T = Nτ) let us construct the points xτ

0 , . . . , xτ
N by xτ

0 := x0 and for
k ∈ {0, . . . , N − 1}

xτ
k+1 := argminy∈Rd

{
F(y) +

1
2τ
|xτ

k − y|2
}

.

Now if we construct any reasonable interpolation between the points xτ
0 , . . . , xτ

N
(piecewise constant, piecewise linear, etc.) this will converge to the solution of
the ODE as the τ ↓ 0.

The special feature of this problem consists in the fact that this scheme can
be written in any (reasonable) metric space, replacing the euclidean distance
square by the square of the metric. In particular, if we consider the Wasser-
stein space W2(Ω), many well-known evolutive PDEs can be recovered as the
gradient flows of well-chosen functionals. As an example, the heat equation
corresponds to the gradient flow of the relative entropy functional. Let us see
heuristically why is this true. For this let us consider an initial heat distribution
ρ0 ∈P2(Rd) and for τ > 0 the scheme ρτ

0 := ρ0,

ρτ
k+1 := argminρ∈P2(Rd)

{
E(ρ) + 1

2τ
W2

2 (ρ
τ
k , ρ)

}
for k > 0. Now ρτ

k+1 being the optimizer (by convexity arguments it is unique),
it satisfies the first order optimality condition (given by Corollary 0.0.8): there
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exists a constant C ∈ R and a Kantorovich potential ϕ in the transport of ρτ
k+1

onto ρτ
k such that

log(ρτ
k+1) +

ϕ

τ
= C.

Taking the gradient of both sides and using Brenier’s theorem, one obtains

vτ
k+1 :=

T − id
τ

= −
∇ρτ

k+1

ρτ
k+1

,

where T = id−∇ϕ is the optimal transport map in the transport of ρτ
k+1 onto

ρτ
k . Note that the above quantity can be seen as a discrete velocity (being the

ratio between displacement and time). Now if we construct (suitable) interpo-
lations between the ρτ

k ’s and between the vτ
k ’s, these will converge as τ ↓ 0 to

the solution of the continuity equation ∂tρt +∇ · (vtρt) = 0, where vt can be
identified with −∇ρt/ρt. Thus ρ : [0,+∞[×Rd → R heuristically solves the
heat equation {

∂tρ− ∆ρ = 0, in ]0,+∞[×Rd,

ρ(0, ·) = ρ0.

For more details we refer to [San15, Chapter 8] or to [AGS08].





1
BV estimates in Optimal Transport with applications

I
n this chapter we study the BV regularity for solutions of certain
variational problems in Optimal Transportation. We prove that the
Wasserstein projection of a measure with BV density on the set of mea-

sures with density bounded by a given BV function f is of bounded variation
as well and we also provide a precise estimate of its BV norm. Of particular
interest is the case f = 1, corresponding to a projection onto a set of densities
with an L∞ bound, where we prove that the total variation decreases by projec-
tion. This estimate and, in particular, its iterations have a natural application to
some evolutionary PDEs as, for example, the ones describing a crowd motion.
In fact, as an application of our results, we obtain BV estimates for solutions of
some non-linear parabolic PDE by means of optimal transportation techniques.
We also establish some properties of the Wasserstein projection which are in-
teresting in their own, and allow for instance to prove uniqueness of such a
projection in a very general framework.

This chapter is based on a joint work with G. De Philippis, F. Santambrogio
and B. Velichkov (see [DPMSV15]).

1.1 introduction

Among variational problems involving optimal transportation and Wasser-
stein distances, a very recurrent one is the following

min
$∈P2(Ω)

1
2

W2
2 ($, g) + τF($) , (1.1.1)

59
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where F is a given functional on probability measures, τ > 0 a parameter
which can possibly be small, and g is a given probability in P2(Ω) (the space

of probability measures on Ω ⊆ Rd with finite second moment
∫

Ω
|x|2 d$(x) <

+∞). This very instance of the problem is exactly the one we face in the time-
discretization of the gradient flow of F in P2(Ω), where g = $τ

k is the measure
at step k, and the optimal $ will be the next measure $τ

k+1. Under suitable
assumptions, at the limit when τ → 0, this sequence converges to a curve of
measures which is the gradient flow of F (see [AGS08, Amb95] for a general
description of this theory).

The same problem also appears in other frameworks as well, for fixed τ. For
instance in image processing, if F is a smoothing functional, this is a model to
find a better (smoother) image $ which is not so far from the original g (the
choice of the distance W2 in this case can be justified by robustness arguments),
see [LLSV15]. In some urban planning models (see [BS05, San07]) g represents
the distribution of some resources and $ that of population, which from one
side is attracted by the resources g and on the other avoids creating zones of
high density thus guaranteeing enough space for each individual. In this case
the functional F favors diffused measures, for instance F($) =

∫
h($(x))dx,

where h is a convex and superlinear function, which gives a higher cost to
high densities of $. Alternatively, g could represent the distribution of popu-
lation, and $ that of services, to be chosen so that they are close enough to g
but more concentrated. This effect can be obtained by choosing F that favors
concentrated measures.

When F takes only the values 0 and +∞, (1.1.1) becomes a projection prob-
lem. Recently, the projection onto the set 1 K1 of densities bounded above by
the constant 1 has received lot of attention. This is mainly due to its applica-
tions in the time-discretization of evolution problems with density constraints
typically associated to crowd motion. For a precise description of the associ-
ated model we refer to [RC11, MRCS10] and to Chapter 2, where a crowd is
described as a population of particles which cannot overlap, and cannot go
beyond a certain threshold density.

In this paper we concentrate on the case where F($) =
∫

h($) for a convex
integrand h : R+ → R ∪ {+∞}. The case of the projection on K1 is obtained
by taking the following function:

h($) =

0, if 0 ≤ $ ≤ 1

+∞, if $ > 1 ,

1. Here and in the sequel we denote by K f the set of absolutely continuous measure with
density bounded by f :

K f := {$ ∈P(Ω) : $ ≤ f dx}
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We are interested in the estimates on the minimizer $̄ of (1.1.1). In general
then can be divided into two categories: the ones which are independent of
g (but depend on τ) and the ones uniform in τ (dependent on g). A typical
example of the first type of estimate can be obtained by writing down the
optimality conditions for (1.1.1). In the case F($) =

∫
h($), we get ϕ+ τh′($̄) =

const, where ϕ is the Kantorovich potential in the transport from $̄ to g (in fact
this equality holds only $̄−a.e., but we skip the details and just recall the
heuristic argument). On a bounded domain, ϕ is Lipschitz continuous with a
universal Lipschitz constant depending only on the domain, and so is τh′($̄).
If h is strictly convex and C1, then we can deduce the Lipschitz continuity for
$̄. The bounds on the Lipschitz constant of $̄ do not really depend on g, but
on the other hand they clearly degenerate as τ → 0. Another bound that one
can prove is ‖$̄‖L∞ ≤ ‖g‖L∞ (see [CS05, San07]), which, on the contrary, is
independent of τ.

In this Chapter we are mainly concerned with BV estimates. As we expect
uniform bounds, in what follows we get rid of the parameter τ.

We recall that for every function $ ∈ L1 and every open set A the total
variation of $ in A is defined as

TV($, A) =
∫

A
|∇$|dx = sup

{∫
A

$ divξ dx : ξ ∈ C1
c (A), |ξ| ≤ 1

}
.

Our main theorem reads as follows:

Theorem 1.1.1. Let Ω ⊂ Rd be a (possibly unbounded) convex set, h : R+ →
R ∪ {+∞} be a convex and l.s.c. function and g ∈ P2(Ω) ∩ BV(Ω). If $̄ is a
minimizer of the following variational problem

min
$∈P2(Ω)

1
2

W2
2 ($, g) +

∫
Ω

h($(x))dx ,

then ∫
Ω
|∇$̄|dx ≤

∫
Ω
|∇g|dx . (1.1.2)

As we said, this covers the case of the Wasserstein projection of g on the
subset K1 of P2(Ω) given by the measures with density less than or equal to
1. Starting from Theorem 1.1.1 and constructing an appropriate approximating
sequence of functionals we are actually able to establish BV bounds for more
general Wasserstein projections related to a prescribed BV function f . More
precisely we have the following result.

Theorem 1.1.2. Let Ω ⊂ Rd be a (possibly unbounded) convex set, g ∈ P2(Ω) ∩
BV(Ω) and let f ∈ BVloc(Ω) be a function with∫

Ω
f dx ≥ 1.
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If

$̄ = argmin
{

W2
2 ($, g) : $ ∈P2(Ω), $ ∈ K f

}
, (1.1.3)

then ∫
Ω
|∇$̄|dx ≤

∫
Ω
|∇g|dx + 2

∫
Ω
|∇ f |dx. (1.1.4)

We would like to spend some words on the BV estimate for the projection
on the set K1, which is the original motivation for this paper. We note that this
corresponds to the case

h($) =

0, if $ ∈ [0, 1],

+∞, if $ > 1,

in Theorem 1.1.1 and to the case f = 1 in Theorem 1.1.2. In both cases we
obtain that (1.1.2) holds.

1

g

$̄ = 1

$̄ = g

Figure 1: Projection in 1D

In dimension one the es-
timate (1.1.2) can be ob-
tained by some direct con-
siderations. In fact, by
[Fig10] we have that the
constraint $̄ ≤ 1 is satu-
rated, i.e. the projection is
of the form

$̄(x) =

1, if x ∈ A,

g(x), if x /∈ A,

for an open set A ⊂ R.
Since we are in dimension
one, A is a union of in-
tervals and so it is suffi-
cient to show that (1.1.2)
holds in the case that A
is just one interval, as in
the picture on the left. In
this case it is immediate to
check that the total varia-
tion of g has not increased
after the projection since
$̄ = 1 on A, while there is
necessarily a point x0 ∈ A
such that g(x0) ≥ 1.
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In dimension d ≥ 2 the estimate (1.1.2) is more involved essentially due
to the fact that the projection tends to spread in all directions. This geomet-
ric phenomenon can be illustrated with the following simple example. Con-
sider the function g = (1 + ε)1B(0,R), where ε > 0 and R > 0 are such that
(1 + ε)|B(0, R)| = 1. By the saturation of the constraint and symmetry consid-
erations the projection $̄ of g is the characteristic function $̄ = 1B(0,R), where
R = (1 + ε)1/dR. The total variation involves two opposite effects: the perime-
ter of the ball increases, but the height of the jump passes from 1 + ε to 1. In
fact we have∫

Rd
|∇$̄|dx = dωdRd−1

= dωdRd−1(1 + ε)(d−1)/d ≤ dωdRd−1(1 + ε)

=
∫

Rd
|∇g|dx.

Further explicit examples are difficult to construct. Even in the case g = (1 +

ε)1Ω, where Ω is a union of balls, it is not trivial to compute the BV norm of
the projection, which is the characteristic function of a union of (overlapping)
balls.

The BV estimates are useful when the projection is treated as one time-
step of a discretized evolution process. For instance, a BV bound allows to
transform weak convergence in the sense of measures into strong L1 conver-
gence. Also, if we consider a PDE mixing a smooth evolution, such as the
Fokker-Planck evolution, and some projection steps (in order to impose a den-
sity constraint, as in crowd motion issues, treated in details in Chapter 2), one
could wonder which bounds on the regularity of the solution are preserved in
time. From the fact that the discontinuities in the projected measure destroy
any kind of W1,p norm, it is natural to look for BV bounds. Notice by the
way that, for these kind of applications, proving

∫
Ω |∇$̄| ≤

∫
Ω |∇g| (with no

multiplicative coefficient nor additional term) is crucial in order to iterate this
estimate at every step.

The structure of this chapter is as follows: in Section 1.2 we establish our
main inequality, in Section 1.3 we prove Theorem 1.1.1 while in Section 1.4 we
collect some properties of solution of (1.1.3) which can be interesting in their
own and we we prove Theorem 1.1.2. Eventually, in Section 1.5 we present
some applications of the above results, connections with other variational and
evolution problems and some open questions.

1.2 the main inequality

In this section we establish the key inequality needed in the proof of Theo-
rems 1.1.1 and 1.1.2.
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Lemma 1.2.1. Suppose that $, g ∈ L1
+(Ω) are smooth probability densities, which are

bounded away from 0 and infinity, Ω ⊂ Rd a bounded and uniformly convex domain
and let H ∈ C2(Rd) be a convex function. Then we have the following inequality∫

Ω

(
$∇ ·

[
∇H(∇ϕ)

]
− g∇ ·

[
∇H(−∇ψ)

])
dx ≤ 0, (1.2.1)

where (ϕ, ψ) is a choice of Kantorovich potentials.

Proof. We first note that since $ and g are smooth and away from zero and
infinity in Ω, Theorem 0.0.5 implies that ϕ, ψ are smooth as well.

Now using the identity S(T(x)) ≡ x and that S#g = $ we get∫
Ω

$(x)∇ ·
[
∇H(∇ϕ(x))

]
dx =

∫
Ω

g(x)
[
∇ ·

[
∇H(∇ϕ)

]]
(S(x))dx

=
∫

Ω
g(x)∇ ·

[
∇H

(
∇ϕ ◦ S

)]
(x)dx

+
∫

Ω
g(x)

([
∇ ·

[
∇H(∇ϕ)

]]
(S(x))−∇ ·

[
∇H

(
∇ϕ ◦ S

)]
(x)
)

dx,

and, by the equality

−∇ψ(x) = S(x)− x = S(x)− T(S(x)) = ∇ϕ(S(x)),

we obtain∫
Ω

(
$∇ ·

[
∇H(∇ϕ)

]
− g∇ ·

[
∇H(−∇ψ)

])
dx =

=
∫

Ω
g(x)

([
∇ ·

[
∇H(∇ϕ)

]]
(S(x))−∇ ·

[
∇H

(
∇ϕ ◦ S

)]
(x)
)

dx

=
∫

Ω
$(x)

(
∇ ·

[
∇H(∇ϕ)

]
−
[
∇ ·

[
∇H

(
∇ϕ
)
◦ S
]]
◦ T
)

dx.

(1.2.2)

For simplicity we set

E = ∇ · (∇H(∇ϕ))−
[
∇ · (∇H(∇ϕ) ◦ S)

]
◦ T

= ∇ · ξ −
[
∇ · (ξ ◦ S)

]
◦ T,

(1.2.3)

where by ξ we denote the continuously differentiable function

ξ(x) = (ξ1, . . . , ξd) := ∇H(∇ϕ(x)),

whose derivative is given by

Dξ = D
(
∇H(∇ϕ)

)
= D2H(∇ϕ) · D2ϕ.
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We now calculate

[
∇ · (ξ ◦ S)

]
◦ T =

d

∑
i=1

∂(ξ i ◦ S)
∂xi ◦ T =

d

∑
i=1

d

∑
j=1

∂ξ i

∂xj (S(T))
∂Sj

∂xi ◦ T

= tr
(

Dξ · (DT)−1
)
= tr

(
D2H(∇ϕ) · D2ϕ · (Id − D2ϕ)−1

)
,

(1.2.4)

where the last two equality follow by DS ◦ T = (DT)−1 and we also used that
(DT)−1 = (Id − D2ϕ)−1, where Id is the d-dimensional identity matrix.

By (1.2.3) and (1.2.4) we have that

E = tr
[
D2H(∇ϕ) · D2ϕ ·

(
Id − (Id − D2ϕ)−1

) ]
= −tr

[
D2H(∇ϕ) ·

[
D2ϕ

]2 · (Id − D2ϕ)−1].
Since we have that

Id − D2ϕ ≥ 0,

and that the trace of the product of two positive matrices is positive, we obtain
E ≤ 0, which together with (1.2.2) concludes the proof.

Lemma 1.2.2. Let Ω ⊂ Rd be bounded and convex, $, g ∈ W1,1(Ω) be two proba-
bility densities and H ∈ C2(Rd) be a radially symmetric convex function. Then the
following inequality holds∫

Ω

(
∇$ · ∇H(∇ϕ) +∇g · ∇H(∇ψ)

)
dx ≥ 0, (1.2.5)

where (ϕ, ψ) is a choice of Kantorovich potentials.

Proof. Let us start observing that, due to the radial symmetry of H,

∇H(∇ψ) = −∇H(−∇ψ). (1.2.6)

Step 1. Proof in the smooth case. Suppose that the probability densities $ and g
are smooth and bounded away from zero and infinity and that Ω is uniformly
convex. As in Lemma 1.2.1, we note that under these assumption on $ and g
the Kantorovich potentials are smooth, hence after integration by part the left
hand side of (1.2.5) becomes∫
Ω

(
∇$ · ∇H(∇ϕ) +∇g · ∇H(∇ψ)

)
dx =

∫
∂Ω

(
$∇H(∇ϕ) · n + g∇H(∇ψ) · n

)
dH d−1

−
∫

Ω

(
$∇ ·

[
∇H(∇ϕ)

]
+ g∇ ·

[
∇H(∇ψ)

])
dx

≥
∫

∂Ω

(
$∇H(∇ϕ) + g∇H(∇ψ)

)
· n dH d−1,
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where we used Lemma 1.2.1 and (1.2.6). Moreover, by the radial symmetry of
H one has that ∇H(z) = c(z)z, for some c(z) > 0. Since the gradients of the
Kantorovich potentials ∇ϕ and ∇ψ calculated in boundary points are pointing
outward Ω (since T(x) = x−∇ϕ(x) ∈ Ω, and S(x) = x−∇ψ(x) ∈ Ω) and Ω
is convex, we have that

∇H(∇ϕ(x)) · n(x) ≥ 0 and ∇H(∇ψ(x)) · n(x) ≥ 0, ∀x ∈ ∂Ω,

which concludes the proof of (1.2.5) if $ and g are smooth.

Step 2. Withdrawing smoothness and uniform convexity assumptions. We first
note that for every ε > 0 there exist a uniformly convex domain Ωε such that
Ω ⊂ Ωε ⊂ Ω′ (where Ω′ is a larger fixed convex domain) and |Ωε \Ω| → 0,
and smooth nonnegative functions $ε ∈ C1(Ω

′
) and gε ∈ C1(Ω

′
) such that

$ε
W1,1(Ω′)−−−−→

ε→0
$ and gε

W1,1(Ω′)−−−−→
ε→0

g.

We will suppose that both $ε and gε are probability densities on Ωε. Moreover,
by adding a positive constant and then multiplying by another one, we may
assume that $ε and gε are probability densities away from zero:

$ε ≥ ε, gε ≥ ε and
∫

Ωε

$ε dx =
∫

Ωε

gε dx = 1.

Let ϕε ∈ C2,β(Ωε) and ψε ∈ C2,β(Ωε) be the Kantorovich potentials correspond-
ing to the optimal transport maps between $ε and gε. By Step 1 we have∫

Ωε

(
∇$ε · ∇H(∇ϕε) +∇gε · ∇H(∇ψε)

)
dx ≥ 0. (1.2.7)

Note that from the boundedness of Ω′ we infer |∇ϕε|, |∇ψε| ≤ C. Moreover,
∇H is locally bounded, which also implies |∇H(∇ϕε)|, |∇H(∇ψε)| ≤ C. On
the other hand, from |Ωε \Ω| → 0, supposing that the convergence ∇$ε → ∇$

and ∇gε → ∇g holds a.e. and is dominated, when we pass to the limit as
ε → 0 the integral restricted to Ωε \Ω is negligible. On Ω we use Theorem
0.0.6, the bounds on |∇H(∇ϕε)|, |∇H(∇ψε)| and

∇ϕε
a.e.−−→

ε→0
∇ϕ and ∇ψε

a.e.−−→
ε→0
∇ψ.

Passing to the limit as ε → 0 in (1.2.7) we obtain (1.2.5), which concludes the
proof.

Remark 1.2.1. In Lemma 1.2.2 we can drop the convexity assumption on Ω
if $, g have compact support: indeed, it is enough to choose a ball Ω′ ⊃ Ω
containing the supports of $ and g.
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Remark 1.2.2. Lemma 1.2.2 also remains true in the case of compactly sup-
ported densities g and $, even if we drop the assumption on H, that H(z) =

H(|z|). In this case the inequality becomes∫
Rd

(
∇$ · ∇H(∇ϕ)−∇g · ∇H(−∇ψ)

)
dx ≥ 0.

Proof. The proof follows the same scheme of that of Lemma 1.2.2, first in the
smooth case and then for approximation. We select a convex domain Ω large
enough to contain the supports of $ and g in its interior: all the integrations
and integration by parts are performed on Ω. The only difficulty is that we
cannot guarantee the boundary term to be positive. Yet, we first take $, g
to be smooth and we approximate them by taking $ε := ε 1

|Ω| + (1− ε)$ and

gε := ε 1
|Ω| + (1− ε)g. For these densities and their corresponding potentials

ϕε, ψε, we obtain the inequality∫
Ω

(
∇$ε ·∇H(∇ϕε)−∇gε ·∇H(−∇ψε)

)
dx ≥

∫
∂Ω

(
$ε∇H(∇ϕε)− gε∇H(−∇ψε)

)
·n dH d−1.

We can pass to the limit (by dominated convergence as before) in this inequal-
ity, and notice that the r.h.s. tends to 0, since |∇H(∇ϕε)|, |∇H(∇ψε)| ≤ C and
$ε = gε = ε/|Ω| on ∂Ω. Once the inequality is proven for smooth $, g, a new
approximation gives the desired result.

We observe that a particular case of Theorem 1.2.2, which we present here
as a corollary, could have been obtained in a very different way.

Corollary 1.2.3. Let Ω ⊂ Rd be a given bounded convex set and $, g ∈ W1,1(Ω) be
two probability densities. Then the following inequality holds∫

Ω

(
∇$ · ∇ϕ +∇g · ∇ψ

)
dx ≥ 0, (1.2.8)

where ϕ and ψ are the corresponding Kantorovich potentials.

Proof. The inequality (1.2.8) follows by setting H(z) :=
1
2
|z|2 in Lemman 1.2.2.

Nevertheless, in this particular case, there is an alternate proof, using the
geodesic convexity of the entropy functional, which we sketch below for Ω =

Rd.
Let us recall the definition of the entropy functional E : P2(Rd)→ R defined

by

E($) =


∫

Rd
$ log $ dx, if $� L d,

+∞, otherwise,

and let us consider the geodesic

[0, 1] 3 t 7→ $t ∈P2(R
d), $0 = $, $1 = g,
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in the Wasserstein space W2(Rd). It is well known (see, for example, [AGS08])
that the map t 7→ E($t) is convex and that $t solves the continuity equation

∂t$t +∇ · ($tvt) = 0, $0 = $, $1 = g,

associated to the vector field vt = (T − id) ◦ ((1− t)id + tT)−1 induced by the
optimal transport map T = id− ∇ϕ between $ and g. Now since the time
derivative of E($t) is increasing, we get

−
∫

Rd
∇$ · ∇ϕ dx =

∫
Rd

$v0 ·
∇$

$
dx =

d
dt

∣∣∣
{t=0}
E($t)

≤ d
dt

∣∣∣
{t=1}
E($t) =

∫
Rd

gv1 ·
∇g
g

dx =
∫

Rd
∇g · ∇ψ dx,

which proves the claim.

By approximating H(z) = |z| with H(z) =
√

ε2 + |z|2, Lemma 1.2.2 has the

following useful corollary, where we use the convention
z
|z| = 0 for z = 0.

Corollary 1.2.4. Let Ω ⊂ Rd be a given bounded convex set and $, g ∈ W1,1(Ω) be
two probability densities. Then the following inequality holds∫

Ω

(
∇$ · ∇ϕ

|∇ϕ| +∇g · ∇ψ

|∇ψ|

)
dx ≥ 0, (1.2.9)

where ϕ and ψ are the corresponding Kantorovich potentials.

1.3 bv estimates for minimizers

In this section we prove Theorem 1.1.1. Since we will need to perform several
approximation arguments, and we want to use Γ−convergence, we need to
provide uniqueness of the minimizers. The following easy lemma is well-
known among specialists.

Lemma 1.3.1. Let g ∈P(Ω)∩ L1
+(Ω), then the functional µ 7→W2

2 (µ, g) is strictly
convex on P2(Ω).

Proof. Suppose by contradiction that there exist µ0 6= µ1 and t ∈]0, 1[ are such
that

W2
2 (µt, g) = (1− t)W2

2 (µ0, g) + tW2
2 (µ1, g),

where µt = (1− t)µ0 + tµ1. Let γ0 be the optimal transport plan in the trans-
port from µ0 to g (pay attention to the direction: it is a transport map if we
see it backward: from g to µ0). As the starting measure is absolutely contin-
uous, by Brenier’s Theorem, γ0 is of the form (T0, id)#g. Analogously, take



1.3 bv estimates for minimizers 69

γ1 = (T1, id)#g optimal from µ1 to g. Set γt := (1− t)γ0 + tγ1 ∈ Π(µt, g). We
have

(1− t)W2
2 (µ0, g) + tW2

2 (µ1, g) = W2
2 (µt, g) ≤

∫
|x− y|2 dγt

= (1− t)
∫
|x− y|2 dγ0 + t

∫
|x− y|2 dγ1

= (1− t)W2
2 (µ0, g) + tW2

2 (µ1, g),

which implies that γt is actually optimal in the transport from g to µt. Yet γt

is not induced from a transport map, unless T0 = T1 a.e. on {g > 0}. This is a
contradiction with µ0 6= µ1 and proves strict convexity.

Let us denote by C the class of convex l.s.c. function h : R+ → R ∪ {+∞},
finite in a neighborhood of 0 and with finite right derivative h′(0) at 0, and
superlinear at +∞.

Lemma 1.3.2. If h ∈ C there exists a sequence of C2 convex functions hn, superlinear
at ∞, with h′′n > 0, hn ≤ hn+1 and h(x) = limn hn(x) for every x ∈ R+.

Moreover, if h : R+ → R ∪ {+∞} is a convex l.s.c. superlinear function, there
exists a sequence of functions hn ∈ C with hn ≤ hn+1 and h(x) = limn hn(x) for
every x ∈ R+.

Proof. Let us start from the case h ∈ C. Set `+ := sup{x : h(x) < +∞} ∈
R+ ∪ {+∞}. Let us define an increasing function ξn : R→ R in the following
way:

ξn(x) :=



h′(0) for x ∈]−∞, 0]

h′(x) for x ∈ [0, `+ − 1
n ]

h′(`+ − 1
n ) for `+ − 1

n ≤ x < `+,

h′(`+ − 1
n ) + n(x− `+) for x ≥ `+,

where, if the derivative of h does not exist somewhere, we just replace it with
the right derivative. (Notice that when `+ = +∞, the last two cases do not
apply).

Let q ≥ 0 be a C1 function with spt(q) ⊂ [−1, 0],
∫

q(t)dt = 1 and let us set
qn(t) = nq(nt). We define hn as the primitive of the C1 function

h′n(x) :=
∫

R

(
ξn(t)−

1
n

e−t
)

qn(t− x)dt,

with hn(0) = h(0). It is easy to check that all the required properties are
satisfied: we have h′′n(x) ≥ 1

n e−x, hn is superlinear because limx→∞ ξn(x) = +∞,
and we have increasing convergence hn → h.
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For the case of a generic function h, it is possible to approximate it with
functions in C if we define `− := inf{x : h(x) < +∞} ∈ R+ and take

hn(x) =


h(`− + 1

n ) + h′(`− + 1
n )(x− `− − 1

n ) + n|x− `−| for x ≤ `−

h(`− + 1
n ) + h′(`− + 1

n )(x− `− − 1
n ) for x ∈]`−, `− + 1

n ]

h(x) for x ≥ `− + 1
n .

In this case as well, it is easy to check that all the required properties are
satisfied.

Proof of Theorem 1.1.1.

Proof. Let us start from the case where g is W1,1 and bounded from below, and
h is C2, superlinear, with h′′ > 0, and Ω is a bounded convex set. A minimizer
$̄ exists (by the compactness of P2(Ω) and by the lower semicontinuity of
the functional with respect to the weak convergence of measures). Thanks to
Corollary 0.0.8, there exists a Kantorovich potential ϕ for the transport from $̄

to g such that h′($̄) = max{C − ϕ, h′(0)}. This shows that h′($̄) is Lipschitz
continuous. Hence, $̄ is bounded. On bounded sets h′ is a diffeomorphism
with Lipschitz inverse, thanks to h′′ > 0, which proves that $̄ itself is Lipschitz.
Then we can apply Corollary 1.2.4 and get∫

Ω

(
∇$̄ · ∇ϕ

|∇ϕ| +∇g · ∇ψ

|∇ψ|

)
dx ≥ 0.

Yet, a.e. on {∇$̄ 6= 0} we have h′($̄) = C− ϕ. Using also h′′ > 0, we get that
∇ϕ and ∇$̄ are vectors with opposite directions. Hence we have∫

Ω
|∇$̄|dx ≤

∫
Ω
∇g · ∇ψ

|∇ψ| dx ≤
∫

Ω
|∇g|dx,

which is the desired estimate.
We can generalize to h ∈ C by using the previous lemma and approx-

imating it with a sequence hn. Thanks to monotone convergence we have
Γ−convergence for the minimization problem that we consider. We also have
compactness since P2(Ω) is compact, and uniqueness of the minimizer. Hence,

the minimizers $̄n corresponding to hn satisfy
∫

Ω
|∇$̄n|dx ≤

∫
Ω
|∇g|dx and

converge to the minimizer $̄ corresponding to h. By the semicontinuity of the
total variation we conclude the proof in this case.

Similarly, we can generalize to other convex functions h, approximating
them with functions in C (notice that this is only interesting if the function
h allows the existence of at least a probability density with finite cost, i.e. if
h(1/|Ω|) < +∞). Also, we can take g ∈ BV and approximate it with W1,1

functions bounded from below. If the approximation is done for instance by
convolution, then we have a sequence with W2(gn, g) → 0, which guarantees
uniform convergence of the functionals, and hence Γ−convergence.
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We can also handle the case of Ω unbounded and convex, by first taking g
to be such that its support is a convex bounded set, and h ∈ C. In this case the
optimal $̄ must be compactly supported as well. Indeed, the optimality condi-
tion h′($̄) = max{C− ϕ, h′(0)} imposes $̄ = 0 on the set where ϕ > C− h′(0).
But on {$̄ > 0} we have ϕ = ψc, where ψ is the Kantorovich potential defined
on spt(g), which is bounded. Hence ϕ grows at infinity quadratically, from
ϕ(x) = infy∈spt(g)

1
2 |x− y|2 − ψ(y), which implies that there is no point x with

$̄(x) > 0 too far from spt(g). Once we know that the densities are compactly
supported, the same arguments as above apply (note that being Ω convex we
ca assume that the densities are supported on a bounded convex set). Then
one passes to the limit obtaining the result for any generic convex function
h, and then we can also approximate g (as above, we select a sequence gn of
compactly supported densities converging to g in W2). Notice that in this case
the convergence is no more uniform on P2(Ω), but it is uniform on a bounded
set W2($, g) ≤ C which is the only one interesting in the minimization.

1.4 projected measures under density constraints

1.4.1 Existence, uniqueness, characterization, stability of the projected measure

In this section we will take Ω ⊂ Rd be a given closed set with negligible
boundary, f : Ω → [0,+∞[ a measurable function in L1

loc(Ω) with
∫

Ω f dx >

1 and µ ∈ P2(Ω) a given probability measure on Ω. We will consider the
following projection problem

min
$∈K f

W2
2 ($, µ), (1.4.1)

where we set K f =

{
$ ∈ L1

+(Ω) :
∫

Ω
$ dx = 1, $ ≤ f a.e.

}
.

This section is devoted to the study of the above projection problem. We
first want to summarize the main known results. Most of these results are only
available in the case f = 1.

Existence. The existence of a solution to Problem (1.4.1) is a consequence
of the direct method of calculus of variations. Indeed, take a minimizing se-
quence $n; it is tight thanks to the bound W2($n, µ) ≤ C; it admits a weakly
converging subsequence and the limit minimizes the functional W2(·, µ) be-
cause of its semicontinuity and of the fact that the inequality $ ≤ f is pre-
served. We note that from the existence point of view, the case f ≡ 1 and the
general case do not show any significant difference.

Characterization. The optimality conditions, derived in [RC11] exploiting
the strategy developed in [MRCS10] (in the case f = 1, but they are easy to
adapt to the general case) state the following: if $ is a solution to the above



72 bv estimates in optimal transport with applications

problem and ϕ is a Kantorovich potential in the transport from $ to µ, then
there exists a threshold ` ∈ R such that

$(x) =


f (x), if ϕ(x) < `,

0, if ϕ(x) > `,

∈ [0, f (x)], if ϕ(x) = `.

In particular, this shows that ∇ϕ = 0 $−a.e. on {$ < f } and, since T(x) =

x−∇ϕ(x), that the optimal transport T from $ to µ is the identity on such set.
If µ = g dx is absolutely continuous, then one can write the Monge-Ampère
equation

det(DT(x)) = $(x)/g(T(x))

and deduce $(x) = g(T(x)) = g(x) a.e. on {$ < f }. This suggests a sort of
saturation result for the optimal $, i.e. $(x) is either equal to g(x) or to f (x)
(but one has to pay attention to the case $ = 0 and also to assume that g is
absolutely continuous).

Uniqueness. For absolutely continuous measures µ = g dx and generic
f the uniqueness of the projection follows by Lemma 1.3.1. In the specific
case f = 1 and Ω convex the uniqueness was proved in [MRCS10, RC11] by a
completely different method. In this case, as observed by A. Figalli, one can use
displacement convexity along generalized geodesics. This means that if $0 and
$1 are two solutions, one can take for every t ∈ [0, 1] the convex combination
Tt = (1− t)T0 + tT1 of the optimal transport maps Ti from g to $i and the curve
t 7→ $t := ((1− t)T0 + tT1)#µ in P2(Ω), interpolating from $0 to $1. It can be
proven that $t still satisfies $t ≤ 1 (but this cannot be adapted to f , unless f
is concave) and that t 7→ W2

2 ($t, g) < (1− t)W2
2 ($

0, g) + tW2
2 ($

1, g), which is
a contradiction to the minimality. The assumption on µ can be relaxed but
we need to ensure the existence of optimal transport maps: what we need to
assume, is that µ gives no mass to “small” sets (i.e. (d− 1)−dimensional); see
[Gig11] for the sharp assumptions and notions about this issue. Thanks to this
uniqueness result, we can define a projection operator PK1 : P2(Ω)∩ L1(Ω)→
P2(Ω) ∩ L1(Ω) through

PK1 [g] := argmin{W2
2 ($, g) : $ ∈ K1}.

Stability. From the same displacement interpolation idea, A. Roudneff-Chu-
pin also proved ([RC11]) that the projection is Hölder continuous with expo-
nent 1/2 for the W2 distance whenever Ω is a compact convex set. We do not
develop the proof here, we just refer to Proposition 2.3.4 of [RC11]. Notice that
the constant in the Hölder continuity depends a priori on the diameter of Ω.
However, to be more precise, the following estimate is obtained (for g0 and g1

absolutely continuous)

W2
2 (PK1 [g

0], PK1 [g
1]) ≤W2

2 (g0, g1) +W2(g0, g1)(dist(g0,K1) + dist(g1,K1)),
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(1.4.2)

which shows that, even on unbounded domains, we have a local Hölder be-
havior.

In the rest of the section, we want to recover similar results in the largest
possible generality, i.e. for general f , and without the assumptions on µ and
Ω.

We will first get a saturation characterization for the projections, which will
allow for a general uniqueness result. Continuity will be an easy corollary.

In order to proceed, we first need the following lemma.

Lemma 1.4.1. Let $ be a solution of the Problem 1.4.1. Let moreover γ ∈ Π($, µ) be
the optimal plan from $ to µ. If (x0, y0) ∈ spt(γ) then $ = f a.e. in B(y0, R), where
R = |y0 − x0|.

Proof. Let us suppose that this is not true and there exists a compact set K ⊂
B(y0, R) with positive Lebesgue measure such that $ < f a.e. in K. Let ε :=
dist(∂B(y0, R), K) > 0.

By the definition of the support, for all r > 0 we have that

0 < γ(B(x0, r)× B(y0, r)) ≤
∫

B(x0,r)
$ dx ≤

∫
B(x0,r)

f dx.

By the absolute continuity of the integral, for r > 0 small enough there exists
0 < α ≤ 1 such that

γ(B(x0, r)× B(y0, r)) = α
∫

K
( f − $)dx =: αm.

Now we construct the following measures γ̃, η ∈P(Ω×Ω) as

γ̃ := γ− γ (B(x0, r)× B(y0, r)) + η

and
η := α( f − $)dx K⊗ (πy)#γ (B(x0, r)× B(y0, r)).

It is immediate to check that (πy)#γ̃ = µ. On the other hand

$̃ := (πx)#γ̃ = $− $ B(x0, r) + α( f − $) K ≤ f

is an admissible competitor in Problem (1.4.1) and we have the following

W2
2 ($̃, µ) ≤

∫
Ω×Ω
|x− y|2 dγ̃(x, y)

≤W2
2 ($, g)−

∫
B(x0 ,r)×B(y0 ,r)

|x− y|2 dγ(x, y) +
∫

K×B(y0 ,r)
|x− y|2 dη(x, y)

≤W2
2 ($, g)− (R− 2r)2αm + (R− ε + r)2αm.

Now if we chose r > 0 small enough to have R− 2r > R− ε + r, i.e. r < ε/3
we get that

W2
2 ($̃, g) < W2

2 ($, g),

which is clearly a contradiction, hence the result follows.
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The following proposition establishes uniqueness of the projection on K f as
well as a very precise description of it. For a given measure µ we are going to
denote by µac the density of its absolutely continuous part with respect to the
Lebesgue measure, i.e.

µ = µac dx + µs,

with µs ⊥ dx. The following result recalls corresponding results in the partial
transport problem ([Fig10]).

Proposition 1.4.2. Let Ω ⊂ Rd be a convex set and let f ∈ L1
loc(Ω), f ≥ 0 be such

that
∫

Ω
f ≥ 1. Then, for every probability measure µ ∈ P(Ω), there is a unique

solution $ of the problem (1.4.1). Moreover, $ is of the form

$ = µac
1B + f1Bc , (1.4.3)

for a measurable set B ⊂ Ω.

Proof. We first note that by setting f = 0 on Ωc we can assume that Ω = Rd.
Existence of a solution in Problem 1.4.1 follows by the direct methods in the
calculus of variations by noticing that the set K f is closed with respect to the
weak convergence of measures.

Let us prove now the saturation result (1.4.3). Let us first premise the fol-
lowing fact: if µ, ν ∈P(Ω), γ ∈ Π(µ, ν) and we define the set

A(γ) := {x ∈ Ω : the only point (x, y) ∈ spt(γ) is (x, x)},

then

µ A(γ) ≤ ν A(γ). (1.4.4)

In particular µac ≤ νac for a.e. x ∈ A(γ). To prove (1.4.4), let φ ≥ 0 continuous
and write∫

A(γ)
φ dµ =

∫
Ω

φ(x)1A(γ)(x)dγ(x, y) =
∫

Ω
φ(x)12

A(γ)(x)dγ(x, y)

=
∫

Ω
φ(y)1A(γ)(y)1A(γ)(x)dγ(x, y)

≤
∫

Ω
φ(y)1A(γ)(y)dγ(x, y) =

∫
A(γ)

φ dν,

where we used the fact that γ−a.e. 1A(γ)(x) > 0 implies x = y.
Now, for an optimal transport plan γ ∈ Π($, µ), let us define

B := Leb( f ) ∩ Leb(µac) ∩ Leb($) ∩ {$ < f }(1) ∩ A(γ)(1) ∩ A(γ̃)(1).

Here γ̃ ∈ Π(g, $) is the transport plan obtained by seeing γ “the other way
around”, i.e. γ̃ is the image of γ through the map (x, y) 7→ (y, x) while Leb(h)
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is the set of Lebesgue points of h and for a set A we denote by A(1) := Leb(1A)

the set of its density one points.

Let now x0 ∈ B and let us consider the following two cases:

Case 1. $(x0) < µac(x0). Since, in particular, µac(x0) > 0 and x0 ∈ Leb(µac) we
have that x0 ∈ spt(µ). From Lemma 1.4.1 wee see that (y0, x0) ∈ spt(γ) implies
y0 = x0. Indeed, if this were not the case there would exist a ball where $ = f
a.e. and x0 would be in the middle of this ball; from x0 ∈ Leb( f ) ∩ Leb($)
we would get $(x0) = f (x0) a contradiction with x0 ∈ B. Hence, if we use
the set A(γ̃) defined above with ν = $, we have x0 ∈ A(γ̃). From x0 ∈
Leb(µac) ∩ Leb($) we get µac(x0) ≤ $(x0), which is a contradiction.

Case 2. µac(x0) < $(x0). Exactly as in the previous case we have that x0 ∈
spt($) and, by the Lemma 1.4.1, we have again that (x0, y0) ∈ spt(γ) implies
y0 = x0. Indeed, otherwise x0 would be on the boundary of a ball where
$ = f a contradiction with x0 ∈ {$ < f }(1). Hence, we get x0 ∈ A(γ) and
$(x0) ≤ µac(x0), again a contradiction.

Hence we get that µac = $ for x ∈ B. By the definition of B,

Bc ⊂a.e. {$ = f } ∪ A(γ)c ∪ A(γ̃)c ,

where a.e. refers to the Lebesgue measure. By applying Lemma 1.4.1, this
implies that $ = f a.e. on Bc, and concludes the proof of (1.4.3).

Uniqueness of the projection it is now an immediate consequence of the
saturation property (1.4.3). Indeed, suppose that $0 and $1 were two different
projections of a same measure g. Define $1/2 = 1

2 $0 +
1
2 $1. Then, by convexity

of W2
2 (·, µ), we get that $1/2 is also optimal. But its density is not saturated on

the set where the densities of $0 and $1 differ, in contradiction with (1.4.3).

Corollary 1.4.3. For fixed f , the map PK f : P2(Ω)→P2(Ω) defined through

PK f [µ] := argmin{W2
2 ($, µ) : $ ∈ K f }

is continuous in the following sense: if µn → µ for the W2 distance, then PK f [µn] ⇀

PK f [µ] in the weak convergence.
Moreover, in the case where f = 1 and Ω is a convex set, the projection is also

locally 1
2−Hölder continuous for W2 on the whole P2(Ω) and satisfies (1.4.2).

Proof. This is just a matter of compactness and uniqueness. Indeed, take a
sequence µn → µ w.r.t. W2 and look at PK f [µn]. It is a tight sequence of
measures since

W2(PK f [µn], µ) ≤W2(PK f [µn], µn) + W2(µn, µ) ≤W2($, µ) + 2W2(µn, µ) ,

(1.4.5)

where $ ∈ K f is any admissible measure. Hence we can extract a weakly
converging subsequence to some measure $̃ ∈ K f (recall that K f is weakly
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closed). Moreover, by the lower semicontinuity of W2 with respect to the weak
convergence and since W2(µn, µ)→ 0, passing to the limit in (1.4.5) we get

W2($̃, µ) ≤W2($, µ) ∀ $ ∈ K f .

Uniqueness of the projection implies $̃ = PK f (µ) and thus that the limit is
independent on the extracted subsequence, this proves the desired continuity.

Concerning the second part of the statement, we take arbitrary µ1 and µ2

(not necessarily absolutely continuous) and we approximate them in the W2

distance with absolutely continuous measures gi
n (i = 1, 2; for instance by

convolution), then we have, from (1.4.2)

W2
2 (PK1 [g

0
n], PK1 [g

1
n]) ≤W2

2 (g0
n, g1

n) + W2(g0
n, g1

n)(dist(g0
n,K1) + dist(g1

n,K1)),

and we can pass to the limit as n→ ∞.

The following technical lemma will be used in the next section and estab-
lishes the continuity of the projection with respect to f . To state it, for given
f ∈ L1

loc and µ ∈ P2(Ω) let us consider following functional

F f ($) :=

 1
2W2

2 (µ, $), if $ ∈ K f

+∞, otherwise.

Proposition 1.4.2 can be restated by saying that the functional F f has a unique
minimizer in P2(Ω).

Lemma 1.4.4. Let fn , f ∈ L1
loc(Ω) with

∫
Ω

fn dx ≥ 1,
∫

Ω
f dx ≥ 1 and let us

assume that fn → f in L1
loc(Ω) and almost everywhere. Also assume fn ∈ P2(Ω) if∫

Ω
fn dx = 1 and f ∈ P2(Ω) if

∫
Ω

f dx = 1. Then, for every µ ∈ P2(Ω),

(i) The sequence (PK fn
(µ))n is tight.

(ii) We have PK fn
(µ) ⇀ PK f (µ).

(iii) If
∫

Ω
f dx > 1, then F fn Γ−converges to F f with respect to the weak conver-

gence of measures.

Proof. Let us denote by $̄n the projection PK fn
(µ) and let us start from prov-

ing its tightness, i.e. (i). We fix ε > 0: there exists a radius R0 such that

µ(B(0, R0)) > 1− ε

2
and

∫
B(0,R0)

f dx > 1− ε

2
. By L1

loc convergence, there exists

n0 such that
∫

B(0,R0)
fn > 1− ε pour n > n0. Now, take R > 3R0 and suppose

$̄n(B(0, R)c) > ε for n ≥ n0. Then, the optimal transport T from $̄n to µ should
move some mass from B(0, R)c to B(0, R0). Let us take a point x0 ∈ B(0, R)c

such that T(x0) ∈ B(0, R0). From Lemma 1.4.1, this means that $̄n = fn on
the ball B(T(x0), |x0 − T(x0)|) ⊃ B(T(x0), 2R0) ⊃ B(0, R0). But this means
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∫
B(0,R0)

$̄n dx =
∫

B(0,R0)
fn dx > 1− ε, and hence $̄n(B(0, R)c) ≤ ε, which is a

contradiction. This shows that $̄n is tight.

Now, if
∫

Ω
f dx = 1, then the weak limit of $̄n (up to subsequences) can only

be f itself, since it must be a probability density bounded from above by f

and hence f = PK f (µ). This proves (ii) in the case
∫

Ω
f dx = 1. In the case∫

Ω
f dx > 1, this will be a consequence of (iii). Notice that in this case we

necessarily have
∫

Ω
fn dx > 1 for n large enough.

Let us prove (iii). Since $̄n ≤ fn a.e., $̄n ⇀ $̄ and fn → f in L1
loc immediately

implies that $̄ ≤ f a.e., the Γ−liminf inequality simply follows by the lower
semicontinuity of W2.

Concerning the Γ−limsup, we need to prove that every density $ ∈ P2(Ω)

with $ ≤ f a.e. can be approximated by a sequence $n ≤ fn a.e. with
W2($n, µ) → W2($, µ). In order to do this let us define $̃n := min{$, fn}.
Note that $̃n is not admissible since it is not a probability, because in general∫

Ω
$̃n dx < 1. Yet, we have

∫
Ω

$̃n dx → 1 since $̃n → min{$, f } = $ and

this convergence is dominated by $. We want to “complete” $̃n so as to get a
probability, stay admissible, and converge to $ in W2, since this will imply that
W2($n, µ)→W2($, µ).

Let us select a ball B such that
∫

B∩Ω
f dx > 1 and note that we can find ε > 0

such that the set { f > $+ ε}∩ B is of positive measure, i.e. m := |{ f > $+ ε}∩
B| > 0. Since fn → f a.e., the set Bn := { fn > $ + ε

2} ∩ B has measure larger

than m/2 for large n. Now take B′n ⊂ Bn with |B′n| =
2
ε

(
1−

∫
Ω

$̃n dx
)
→ 0,

and define
$n := $̃n +

ε

2
1B′n .

By construction,
∫

Ω
$n dx = 1 and $n ≤ fn a.e. since on B′n we have $̃n = $

and $ + ε
2 < fn while on the complement of B′n, $̃n ≤ fn a.e. by definition. To

conclude the proof we only need to check W2($n, $) → 0. This is equivalent
(see, for instance, [AGS08] or [Vil09]) to∫

Ω
φ$n dx →

∫
Ω

φ$ dx

for all continuous functions φ with such that φ ≤ C(1 + |x|2). Since $ ∈ P2(Ω)

and $̃n ≤ $, thank to the dominated convergence theorem it is enough to show

that
∫

Ω
φ($n − $̃n)dx → 0. But $n − $̃n converges to 0 in L1 and it is supported

in B′n ⊂ B. Since φ is bounded on B we obtain the desired conclusion.

Remark 1.4.1. Let us conclude this section with the following open question: for
f = 1 the projection is continuous and we can even provide Hölder bounds on
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PK1 . The question whether PK1 is 1-Lipschitz, as far as we know, is open. Let
us underline that some sort of 1-Lipschitz results have been proven in [CC13]
for solutions of similar variational problems, but seem impossible to adapt in
this framework.

For the case f 6= 1 even the continuity of the projection with respect to the
Wasserstein distance seems delicate.

1.4.2 BV estimates for PK f

In this section, we prove Theorem 1.1.2. Notice that the case f = 1 has al-
ready been proven as a particular case of Theorem 1.1.1. To handle the general
case, we develop a slightly different strategy, based on the standard idea to
approximate L∞ bounds with Lp penalizations.

Let m ∈ N and let us assume that inf f > 0, for µ ∈ P2(Ω), we define the
approximating functionals Fm : L1

+(Ω)→ R∪ {+∞} by

Fm($) :=
1
2

W2
2 (µ, $) +

1
m + 1

∫
Ω

(
$

f

)m+1

dx +
εm

2

∫
Ω

(
$

f

)2

dx

and the limit functional F as

F ($) :=

 1
2W2

2 (µ, $), if $ ∈ K f

+∞, otherwise

Here εm ↓ 0 is a small parameter to be chosen later.

Lemma 1.4.5. Let Ω ⊂ Rd and f : Ω→ (0,+∞) be a measurable function, bounded
from below and from above by positive constants and let µ ∈ P2(Ω). Then:

(i) There are unique minimizers $, $m in L1(Ω) for each of the functionals F and
Fm, respectively.

(ii) The family of functionals Fm Γ-converges for the weak convergence of probability
measures to F , and the minimizers $m weakly converge to $, as m→ ∞.

(iii) The minimizers $m of Fm satisfy

ϕm +

(
$m

f

)m 1
f
+ εm

(
$m

f

)
1
f
= 0, (1.4.6)

for a suitable Kantorovich potential ϕm in the transport from $m to µ.

Proof. Existence and uniqueness of minimizers of F has been established in
Proposition 1.4.2. Existence of minimizers of Fm is again a simple application
of the direct methods in the calculus of variations and uniqueness follows from
strict convexity.
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Let us prove the Γ−convergence in (ii). In order to prove the Γ−liminf in-
equality, let $m ⇀ $. If Fm($m) ≤ C, then for every m0 ≤ m and every finite
measure set A ⊂ Ω, we have

‖$m/ f ‖Lm0 (A) ≤ |A|
1

m0
− 1

m+1 (C(m + 1))
1

m+1 .

If we pass to the limit m → ∞, from $m
f ⇀ $

f , we get ‖$/ f ‖Lm0 (A) ≤ |A|
1

m0 .
Letting m0 go to infinity we obtain ‖$/ f ‖L∞ ≤ 1, i.e. $ ∈ K f . Since

Fm($m) ≥
1
2

W2
2 (µ, $m),

the lower semicontinuity of W2
2 with respect to weak converges proves the

Γ−liminf inequality.
In order to prove Γ−limsup, we use the constant sequence $m = $ as a

recovery sequence. Since we can assume $ ≤ f (otherwise there is nothing
to prove, since F ($) = +∞), it is clear that the second and third parts of the
functional tend to 0, thus proving the desired inequality.

The last part of the statement finally follows from Theorem 0.0.4 (vi) and
Lemma 0.0.7, exactly as in Corollary 0.0.8.

Proof of Theorem 1.1.2

Proof. Clearly we can assume that TV(g, Ω) and TV( f , Ω) are finite and that∫
Ω

f dx > 1 since otherwise the conclusion is trivial.

Step 1. Assume that the support of g is compact, that f ∈ C∞(Ω) is bounded
from above and below by positive constants, and let $m be the minimizer of
Fm. As in the proof of Theorem 1.1.1, we can use the optimality condition
(1.4.6) to prove that $ is compactly supported. Also, the same condition imply
that $ is Lipschitz continuous. Indeed, we can write (1.4.6) as

ϕ f + H′m

(
$

f

)
= 0,

where Hm(t) = 1
m+1 tm+1 + εm

2 t2. Since Hm is smooth and convex and H′′m is
bounded from below by a positive constant H′m is invertible and

$ = f · (H′m)
−1(−ϕ f ),

where (H′m)−1 is Lipschitz continuous. Since ϕ and f are locally Lipschitz, this
gives Lipschitz continuity for $ on a neighborhood of its support.

Taking the derivative of the optimality condition (1.4.6) we obtain

∇ϕm +

(
m
(

$m

f

)m−1

+ εm

)
f∇$m − $m∇ f

f 3 −
((

$m

f

)m

+ εm
$m

f

)
∇ f
f 2 = 0.
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Rearranging the terms we have

∇ϕm + A∇$m − B∇ f = 0,

where by A and B we denote the (positive!) functions

A :=

(
m
(

$m

f

)m−1

+εm

)
1
f 2

and

B :=

(
m
(

$m

f

)m−1

+εm

)
$m

f 3 +

((
$m

f

)m

+ εm
$m

f

)
1
f 2 .

Now we will use the inequality from Corollary 1.2.4 for $m and g in the form∫
Ω
|∇$m|dx ≤

∫
Ω
|∇g|dx +

∫
Ω
∇$m ·

(
∇$m

|∇$m|
+
∇ϕm

|∇ϕm|

)
dx.

In order to estimate the second integral on the right-hand side we use the
inequality∣∣∣∣ a
|a| −

b
|b|

∣∣∣∣ ≤ ∣∣∣∣ a
|a| −

b
|a|

∣∣∣∣+ ∣∣∣∣ b
|a| −

b
|b|

∣∣∣∣ = |a− b|
|a| +

|b| − |a|
|a| ≤ 2

|a| |a− b|, (1.4.7)

for all non-zero a, b ∈ Rd (that we apply to a = A∇$m and b = −∇ϕm), and
we obtain∫

Ω
|∇$m|dx ≤

∫
Ω
|∇g|dx +

∫
Ω
|∇$m| ·

∣∣∣∣ A∇$m

A|∇$m|
+
∇ϕm

|∇ϕm|

∣∣∣∣ dx

≤
∫

Ω
|∇g|dx + 2

∫
Ω

1
A
∣∣A∇$m +∇ϕm

∣∣dx

≤
∫

Ω
|∇g|dx + 2

∫
Ω

B
A
|∇ f |dx.

We must now estimate the ratio B/A. If we denote by λ the ratio $m/ f we
may write

B
A

= λ + λ
εm + λm−1

εm + mλm−1 ≤ λ

(
1 +

1
m

)
+

εmλ

εm + mλm−1 .

Now, consider that

max
λ∈R+

εmλ

εm + mλm−1 =
m− 2
m− 1

(
εm

m(m− 2)

)1/(m−1)

=: δm

is a quantity depending on m and tending to 0 if εm is chosen small enough
(for instance εm = 2−m2

). This allows to write∫
Ω
|∇$m|dx ≤

∫
Ω
|∇g|dx + 2

(
1 +

1
m

) ∫
Ω

$m

f
|∇ f |dx + 2δm

∫
Ω
|∇ f |dx.
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In the limit, as m→ +∞, we obtain∫
Ω
|∇$|dx ≤

∫
Ω
|∇g|dx + 2

∫
Ω

$

f
|∇ f |dx.

Using the fact that $ ≤ f , we get∫
Ω
|∇$|dx ≤

∫
Ω
|∇g|dx + 2

∫
Ω
|∇ f |dx.

Step 2. To treat the case g, f ∈ BVloc(Ω) we proceed by approximation as in the
proof of Theorem 1.1.1. To do this we just note that Corollary 1.4.3 and Lemma
1.4.4 give the desired continuity property of the projection with respect both
to g and f , lower semicontinuity of the total variation with respect to the weak
convergence then implies the conclusion.

Remark 1.4.2. We conclude this section by underlining that the constant 2 in
the inequality (1.1.4) cannot be replaced by any smaller constant. Indeed if

Ω = R, f = 1R+ , g =
1
n
1[−n,0] then $ = PK f (g) = 1[0,1] and

∫
|∇$|dx = 2,∫

|∇ f |dx = 1,
∫
|∇g|dx =

2
n

.

1.5 applications

In this section we discuss some applications of Theorems 1.1.1 and 1.1.2 and
we present some open problems.

1.5.1 Partial transport

The projection problem on K f is a particular case of the so called partial
transport problem, see [CM10, Fig09, Fig10, Ind13]. Indeed, the problem is to
transport µ to a part of the measure f , which is a measure with mass larger
than 1. As typical in the partial transport problem, the solution has an active
region, which is given by f restricted to a certain set. This set satisfies a sort
of interior ball condition, with a radius depending on the distance between
each point and its image. In the partial transport case some regularity (C1,α) is
known for the optimal map away from the intersection of the supports of the
two measures.

A natural question is how to apply the technique that we developed here
in the framework of more general partial transport problems (in general, both
measures could have mass larger than 1 and could be transported only par-
tially), and/or whether results or ideas from partial transport could be trans-
lated into the regularity of the free boundary in the projection.
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1.5.2 Shape optimization

If we take a set A ⊂ Rd with |A| < 1 and finite second moment
∫

A |x|
2 dx <

+∞, a natural question is which is the set B with volume 1 such that the
uniform probability density on B is closest to that on A. This means solving a
shape optimization problem of the form

min{W2
2 (1B,

1
|A|1A) : |B| = 1}.

The considerations in Section 1.4 show that solving such a problem is equiv-
alent to solving

min{W2
2 ($,

1
|A|1A) : $ ∈P2(R

d)}

and that the optimal $ is of the form $ = 1B, B ⊃ A. Also, from our Theorem
1.1.2 (with f = 1), we deduce that if A is of finite perimeter, then the same
is true for B, and Per(B) ≤ 1

|A|Per(A) (i.e. the perimeter is bounded by the
Cheeger ratio of A).

It is interesting to compare this problem with this perimeter bound with the
problem studied in [Mil06], which has the same words but in different order:
more precisely: here we minimize the Wasserstein distance and we try to get
an information on the perimeter, in [Mil06] the functional to be minimized is a
combination of W2 and the perimeter. Hence, the techniques to prove any kind
of results are different, because here W2 cannot be considered as a lower order
perturbation of the perimeter.

As a consequence, many natural questions arise: if A is a nice closed set, can
we say that B contains A in its interior? if A is convex is B convex? what about
the regularity of ∂B?

1.5.3 Set evolution problems

Consider the following problem. For a given set A ⊂ Rd we define $0 = 1A.
For a time interval [0, T] and a time step τ > 0 (and N + 1 :=

[ T
τ

]
) we consider

the following scheme $τ
0 := $0 and

$τ
k+1 := PK1 [(1 + τ)$τ

k ] , k ∈ {0, . . . , N − 1}, (1.5.1)

(here we extend the notion of Wasserstein distance and projection to measures
with the same mass, even if different from 1: in particular, the mass of $τ

k
will be |A|(1 + τ)k and at every step we project $τ

k on the set of finite positive
measure, with the same mass of $τ

k , and with density bounded by 1, and we still
denote this set by K1 and the projection operator in the sense of the quadratic
Wasserstein distance onto this set by PK1). We want to study the convergence
of this algorithm as τ → 0. This is a very simplified model for the growth of
a biological population, which increases exponentially in size (supposing that
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there is enough food: see [MRCS10, MRCS14] for a more sophisticated model)
but is subject to a density constraint because each individual needs a certain
amount of space. Notice that this scheme formally follows the same evolution
as in the Hele-Shaw flow (this can be justified by the fact that, close to uniform
density the W2 distance and the H−1 distance are asymptotically the same).

Independently of the compactness arguments that we need to prove the con-
vergence of the scheme, we notice that, for fixed τ > 0, all the densities $τ

k are
indeed indicator functions (this comes from the consideration in Section 1.4).
Thus we have an evolution of sets. A natural question is whether this stays
true when we pass to the limit as τ → 0. Indeed, we generally prove conver-
gence of the scheme in the weak sense of measures, and it is well-known that,
in general, a weak limit of indicator functions is not necessarily an indicator
itself. However Theorem 1.1.2 provides an a priori bound the perimeter of
these sets. This BV bound allows to transform weak convergence as measures
into strong L1 convergence, and to preserve the fact that these densities are
indicator functions.

Notice on the other hand that the same result could not be applied in the case
where the projection was performed onto K f , for a non-constant f . The reason
lies in the term 2

∫
|∇ f | in the estimate we provided. This means that, a priori,

instead of being decreasing, the total variation could increase at each step of
a fixed amount 2

∫
|∇ f |. When τ → 0, the number of iterations diverges and

this does not allow to prove any BV estimate on the solution. Yet, a natural
question would be to prove that the set evolution is well-defined as well, using
maybe the fact that these sets are increasing in time.

1.5.4 Crowd movement with diffusion

In [MRCS10, RC11] crowd movement models where a density $ evolves ac-
cording to a given vector field v, but subject to a density constraint $ ≤ 1 are
studied. This means that, without the density constraint, the equation would
be ∂t$ +∇ · ($v) = 0, and a natural way to discretize the constrained equation
would be to set $̃τ

k+1 = (id + τv)#$τ
k and then $τ

k+1 = PK1 [$̃
τ
k+1].

What happens if we want to add some diffusion, i.e. if the continuity equa-
tion is replaced by a Fokker-Planck equation ∂t$− ∆$ +∇ · ($v) = 0? among
other possible methods, one discretization idea is the following: define $̃τ

k+1 by
following the unconstrained Fokker-Planck equation for time τ starting from
$τ

k , and then project.
In order to get some compactness of the discrete curves we need to estimate

the distance between $τ
k and $̃τ

k+1. It is not difficult to see that the speed of
the solution of the Heat Equation (and also of the Fokker-Planck equation) for
the distance Wp is related to ‖∇$‖Lp . It is well known that these parabolic
equations regularize and so the Lp norm of the gradient will not blow up in
time, but we have to keep into account the projections that we perform every
time step τ. From the discontinuities that appear in the projected measures,
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one cannot expected that W1,p bounds on $ are preserved. The only reasonable
bound is for p = 1, i.e. a BV bound, which is exactly what is provided in this
paper.

The application to crowd motion with diffusion has been studied recently in
[MS15a] and this is the subject of Chapter 2 of the present thesis.

1.5.5 BV estimates for some degenerate diffusion equation

In this subsection we apply our main Theorem 1.1.1 to establish BV estimates
for for some degenerate diffusion equation. BV estimates for these equations
are usually known and they can be derived by looking at the evolution in
time of the BV norm of the solution. Theorem 1.1.1 allows to give an optimal
transport proof of these estimates. Let h : R+ → R be a given super-linear
convex function and let us consider the problem∂t$t = ∇ · (h′′($t)ρt∇ρt) , in (0, T]×Rd,

$(0, ·) = $0, in Rd,
(1.5.2)

where $0 is a non-negative BV probability density. We remark that by the
evolution for any t ∈ (0, T] $t will remain a non-negative probability density.
In the case h(ρ) = ρm/(m− 1) in equation (1.5.2) we get precisely the porous
medium equation ∂tρ = ∆(ρm) (see [Váz07]).

Since the seminal work of F. Otto ([Ott01]) we know that the problem (1.5.2)
can be seen as a gradient flow of the functional

F ($) :=
∫

Rd
h($)dx

in the space (P2(Rd), W2). As a gradient flow, this equation can be discretized
in time through an implicit Euler scheme. More precisely let us take a time
step τ > 0 and let us consider the following scheme: $τ

0 := $0 and

$τ
k+1 := argmin$

{
1

2τ
W2

2 ($, $τ
k ) +F ($)

}
, k ∈ {0, . . . , N − 1}. (1.5.3)

where N :=
[ T

τ

]
. Constructing piecewise constant and geodesic interpolations

between the $τ
k ’s with the corresponding velocities and momentums, it is pos-

sible to show that as τ → 0 we will get a curve $t, t ∈ [0, T] in (P2(Rd), W2)

which solves ∂tρt +∇ · ($tvt) = 0

vt = −h′′($t)∇$t,

hence
∂t$t −∇ · (h′′($t)$t∇$t) = 0,
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that is $t is a solution to (1.5.2), see [AGS08] for a rigorous presentation of
these facts.

We now note that Theorem 1.1.1 implies that∫
Rd
|∇$τ

k+1|dx ≤
∫

Rd
|∇$τ

k |dx,

hence the total variation decreases for the sequence $τ
0 , . . . , $τ

N . As the estima-
tions do not depend on τ > 0 this will remain true also in the limit τ → 0.
Hence (assuming uniqueness for the limiting equation) we get that for any
t, s ∈ [0, T], t > s

TV($t, Rd) ≤ TV($s, Rd),

and in particular for any t ∈ [0, T]

TV($t, Rd) ≤ TV($0, Rd).





2
A diffusive model for macroscopic crowd motion

with density constraints

I
n the spirit of the macroscopic crowd motion models with hard con-
gestion (i.e. a strong density constraint ρ ≤ 1) introduced by Maury
et al. some years ago, we analyze a variant of the same models where

diffusion of the agents is also taken into account. From the modeling point
of view, this means that individuals try to follow a given spontaneous veloc-
ity, but are subject to a Brownian diffusion, and have to adapt to a density
constraint which introduces a pressure term affecting the movement. From
the PDE point of view, this corresponds to a modified Fokker-Planck equa-
tion, with an additional gradient of a pressure (only living in the saturated
zone {ρ = 1}) in the drift. We prove existence and some estimates, based on
optimal transport techniques.

This chapter is based on a joint work with F. Santambrogio (see [MS15a]).

2.1 introduction

In the past few years modeling crowd behavior has become a very active
field of applied mathematics. Beyond their importance in real life applications,
these modeling problems serve as basic ideas to understand many other phe-
nomena coming for example from biology (cell migration, tumor growth, pat-
tern formations in animal populations, etc.), particle physics and economics.
A first non-exhaustive list of references for these problems is [Cha07, CR05,
CPT14b, Dog08, Hel92, HM95, Hug02, Hug03, MV07]. A very natural ques-
tion in all these models is the problem of congestion phenomena: in many

87
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practical situations, very high quantities of individuals could try to occupy the
same spot, which could be impossible, or lead to strong negative effects on the
motion, because of natural limitations on the crowd density.

These phenomena have been studied by using different models, which could
be either “microscopic” (based on ODEs on the motion of a high number of
agents) or “macroscopic” (describing the agents via their density and veloc-
ity, typically with Eulerian formalism). Let us concentrate on the macroscopic
models, where the density ρ plays a crucial role. These very same models can
be characterized either by “soft congestion” effects (i.e. the higher the density
the slower the motion), or by “hard congestion” (i.e. an abrupt threshold effect:
if the density touches a certain maximal value, the motion is strongly affected,
while nothing happens for smaller values of the density). See [MRCSV11] for
comparison between the different classes of models. This last class of models,
due to the discontinuity in the congestion effects, presents new mathematical
difficulties, which cannot be analyzed with the usual techniques from conser-
vation laws (or, more generally, evolution PDEs) used for soft congestion.

A very powerful tool to attack macroscopic hard-congestion problems is the
theory of optimal transportation (see [Vil09, San15]), as we can see in [MRCS10,
MRCSV11, RC11, San12a]. In this framework, the density of the agents solves
a continuity equation (with velocity field taking into account the congestion
effects), and can be seen as a curve in the Wasserstein space.

Our aim in this paper is to endow the macroscopic hard congestion models
of [MRCS10, MRCSV11, RC11, San12a] with diffusion effects. In other words,
we want to model a crowd, where every agent has a spontaneous velocity, a
non-degenerate diffusion (i.e. a stochastic component in its motion) driven by
a Brownian motion, and is subject to a density constraint. Implementing this
new element into these models could give a better approximation of reality,
when dealing with large populations. We also underline that one of the goals
of this analysis 1 is to better “prepare” these hard congestion crowd motion
models for a possible analysis in the framework of Mean Field Games (see
[LL06a, LL06b, LL07], and also [San12b]). These MFG models usually involve
a stochastic term, also implying regularizing effects, which are useful in the
mathematical analysis of the corresponding PDEs.

2.1.1 The existing first order models in the light of Maury et al.

Some macroscopic models for crowd motion with density constraints and
“hard congestion” effects were studied in [MRCSV11] and [MRCS10]. We
briefly present them as follows:

1. The insertion of a diffusive behavoir in the model also leads to easier and more general
uniqueness results. This is the subject of Chapter 3 of the present thesis.
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• The density of the population in a bounded (convex) domain Ω ⊂ Rd is
described by a probability measure ρ ∈ P(Ω). The initial density ρ0 ∈
P(Ω) evolves in time, and ρt denotes its value at each time t ∈ [0, T].

• The spontaneous velocity field of the population is a given time dependent
field, denoted by ut. It represents the velocity that each individual would
like to follow in the absence of the others. Ignoring the density constraint,
this would give rise to the continuity equation ∂tρt +∇ · (ρtut) = 0. We
observe that in the original work [MRCS10] the vector field ut(x) was
taken of the form −∇D(x) (independent of time and of gradient form)
but we try here to be more general (see [RC11] for the general case, which
requires some extra regularity assumption).

• The set of admissible densities will be denoted by K := {ρ ∈ P(Ω) : ρ ≤
1}. In order to guarantee that K is neither empty nor trivial, we suppose
|Ω| > 1. (In comparison with the models in Chapter 1, we drop the
subscript 1 in the definition of K, because in this setting we use only the
constant density constraint 1).

• The set of admissible velocity fields with respect to the density ρ is charac-
terized by the sign of the divergence of the velocity field on the saturated
zone; formally we set

adm(ρ) :=
{

v : Ω→ Rd : ∇ · v ≥ 0 on {ρ = 1} and v · n ≤ 0 on ∂Ω
}

.

• We consider the projection operator P in the L2(L d) or in the L2(ρ) sense
(which will be the same, because the only relevant zone is {ρ = 1}).

• Finally we solve the following modified continuity equation for ρ

∂tρt +∇ ·
(

ρtPadm(ρt)[ut]
)
= 0, (2.1.1)

where the main point is that ρ is advected by a vector field, compatible
with the constraints, which is the closest to the spontaneous one.

The problem in solving Equation (2.1.1) is that the projected field has very
low regularity: it is a priori only L2 in x, and it does not depend smoothly on
ρ neither (since a density 1 and a density 1− ε give very different projection
operators). By the way, its divergence is not well-defined neither. To handle
this issue we need to redefine the set of admissible velocities by duality:

adm(ρ) =

{
v ∈ L2(ρ) :

∫
Ω

v · ∇p ≤ 0, ∀p ∈ H1(Ω), p ≥ 0, p(1− ρ) = 0
}

.

With the help of this formulation we always have the orthogonal decomposi-
tion

u = Padm(ρ)[u] +∇p,
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where
p ∈ press(ρ) :=

{
p ∈ H1(Ω) : p ≥ 0, p(1− ρ) = 0 a.e.

}
.

Indeed, the cones adm(ρ) and ∇press(ρ) are dual to each other. Via this ap-
proach the continuity equation (2.1.1) can be rewritten as a system for (ρ, p)
which is{

∂tρt +∇ · (ρt(ut −∇pt)) = 0

p ≥ 0, ρ ≤ 1, p(1− ρ) = 0.
(2.1.2)

We can naturally endow this equation/system with initial condition ρ(0, x) =
ρ0(x) (ρ0 ∈ K) and with Neumann boundary conditions.

2.1.2 A diffusive counterpart

The goal of our work is to study a second order model of crowd movements
with hard congestion effect where beside the transport factor a non-degenerate
diffusion is present as well. The diffusion is the consequence of a randomness
(a Brownian motion) in the movement of the crowd.

With the ingredients that we introduced so far, we would like to modify the
Fokker-Planck equation ∂tρt − ∆ρt +∇ · (ρtut) = 0 (always equipped with the
natural Neumann boundary conditions on ∂Ω) in order to take into account
the density constraint ρt ≤ 1. We observe that the Fokker Planck equation
is derived from a motion dXt = ut(Xt)dt +

√
2 dBt, but is macroscopically

represented by the advection of the density ρt by the vector field −∇ρt

ρt
+ ut.

Projecting onto the set of admissible velocities raises a natural question: should
we project only ut, and then apply the diffusion, or project the whole vector

field, including −∇ρt

ρt
? Indeed, this is not a real issue, as

∇ρt

ρt
= 0 on the

saturated set {ρt = 1}. This corresponds to the fact that the Heat Kernel
preserves the constraint ρ ≤ 1. As a consequence, we consider the modified
Fokker-Planck type equation ∂tρt − ∆ρt +∇ ·

(
ρtPadm(ρt)[ut]

)
= 0,

ρ(0, x) = ρ0(x), in Ω,
(2.1.3)

which can also be written equivalently as{
∂tρt − ∆ρt +∇ · (ρt(ut −∇pt)) = 0

p ≥ 0, ρ ≤ 1, p(1− ρ) = 0, ρ(0, x) = ρ0(x), in Ω.
(2.1.4)

This equation describes the law of a motion where each particle solves the
stochastic differential equation

dXt = (ut(Xt)−∇pt(Xt))dt +
√

2 dBt,
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where Bt is the standard d-dimensional Brownian motion. More precisely, if we
know the solution Xt of the SODE above, and we define ρt := L(Xt), the law
of the random variable Xt, this will solve the Fokker-Planck equation (2.1.4).

2.1.3 Structure of the chapter and main results

The main goal of this chapter is to provide an existence result, with some
extra estimates, for the Fokker-Planck equation (3.1.3) via time discretization,
using the so-called splitting method (the two main ingredients of the equation,
i.e. the advection with diffusion on one hand, and the density constraint on
the other hand, are treated one after the other). In Section 2.2 we recall some
results on density-constrained crowd motion, in particular on the projection
operator onto the set K. In Section 2.3 we will provide the existence result we
aim at, by a splitting scheme and some entropy bounds; the solution will be
a curve of measures in H1([0, T]; W2(Ω)). In Section 2.4 we will make use of
BV estimates to justify that the solution we just built is also Lip([0, T]; W1(Ω))

and satisfies a global BV bound ‖ρt‖BV ≤ C: this requires to combine BV
estimates on the Fokker-Planck equation (which are available depending on the
regularity of the vector field u) with BV estimates on the projection operator
on K (which have been recently proven in [DPMSV15] and have been provided
in Chapter 1). Section 2.5 presents a short review of alternative approaches,
all discretized in time, but based either on gradient-flow techniques (the JKO
scheme, see [JKO98]) or on different splitting methods. Finally, in Section 2.6,
as a sort of an appendix, we detail the BV estimates on the Fokker-Planck
equation (without any density constraint) that we could find; this seems to
be a delicate matter, interesting in itself, and we are not aware of the sharp
assumptions on the vector field u to guarantee the BV estimate that we need.

2.2 projection problems in wasserstein spaces

Our analysis relies a lot on the projection operator PK in the sense of W2.
Here K := {ρ ∈ P(Ω) : ρ ≤ 1} and

PK[µ] := argminρ∈K
1
2

W2
2 (µ, ρ).

We recall and summarize below (see [MRCS10, San12a, DPMSV15] and Chap-
ter 1) the main properties of the projection PK operator.
• As far as Ω is compact, for any probability measure µ, the minimizer in

min
ρ∈K

1
2

W2
2 (µ, ρ) exists and is unique, and the operator PK is continuous (it

is even C0,1/2 for the W2 distance).

• The projection PK[µ] saturates the constraint ρ ≤ 1 in the sense that for
any µ ∈ P(Ω) there exists a measurable set B ⊆ Ω such that PK[µ] =
1B + µac

1Bc , where µac is the absolutely continuous part of µ.
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• The projection is characterized in terms of a pressure field, in the sense
that ρ = PK[µ] if and only if there exists a Lipschitz function p ≥ 0, with
p(1− ρ) = 0, and such that the optimal transport map T from ρ to µ is
given by T := id−∇ϕ = id +∇p.

• There is (as proven in [DPMSV15], see also Chapter 1) a quantified BV
estimate: if µ ∈ BV (in the sense that it is absolutely continuous and that
its density belongs to BV(Ω)), then PK[µ] is also BV and

TV(PK[µ], Ω) ≤ TV(µ, Ω).

This last BV estimate will be crucial in Section 2.4, and it is important to have
it in this very form (other estimates of the form TV(PK[µ], Ω) ≤ aTV(µ, Ω) + b
would not be as useful as this one, as they cannot be easily iterated).

2.3 existence via a splitting-up type algorithm (main scheme)

Similarly to the approach in [MRCSV11] (see the algorithm (13) and Theorem
3.5, but we drop the regularity assumption on the vector field, namely C1 and
we assume that it is merely L∞) for a general, non-gradient vector field, we will
build a theoretical algorithm, after time-discretization, to produce a solution
of (3.1.3). In this section the spontaneous velocity field is a general vector field
ut : Ω→ Rd (not necessarily a gradient), which depends also on time. We will
work on a time interval [0, T] and in a bounded convex domain Ω ⊂ Rd (the
case of the flat torus is even simpler and we will not discuss it in details). We
consider ρ0 ∈ Pac(Ω) to be given, which represents the initial density of the
population, and we suppose ρ0 ∈ K.

2.3.1 Splitting using the Fokker-Planck equation

We assume here that u ∈ L∞([0, T] × Ω)d. Let us consider the following
scheme.
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Main scheme: Let τ > 0 be a
small time step with N := [T/τ].
Let us set ρτ

0 := ρ0 and for every
k ∈ {1, . . . , N} we define ρτ

k+1
from ρτ

k in the following way.
First we solve

∂t$t − ∆$t +∇ · ($tut+kτ) = 0,

t ∈]0, τ],

$0 = ρτ
k ,

(2.3.1)

equipped with the natural
Neumann boundary condition
((∇(ln $t) − ut) · n = 0 a.e. on
∂Ω) and set ρτ

k+1 = PK[ρ̃τ
k+1],

where ρ̃τ
k+1 = $τ. See Figure 2

on the right.

•ρτ
k

∂ t$ t−
∆$ t+

∇ ·
($ tu t+

kτ
) =

0 •
ρ̃τ

k+1 = $τ
id

+
τ∇

p
τk+

1

•ρτ
k+1

Figure 2: One time step in Main scheme:
Fokker-Planck, then projection

This means: first follow the Fokker-Planck equation, ignoring the density
constraint, for a time τ, then project. In order to state and prove the conver-
gence of the scheme, we need to define some suitable interpolations of the
discrete sequence of densities that we have just introduced.

First interpolation. We define the following curves of densities, velocities and
momentums constructed with the help of the ρτ

k ’s. First set

ρτ
t :=

{
$2(t−kτ), if t ∈ [kτ, (k + 1/2)τ[ ,(
id + 2((k + 1)τ − t)∇pτ

k+1

)
# ρτ

k+1, if t ∈ [(k + 1/2)τ, (k + 1)τ[ ,

where $t is the solution of the Fokker-Planck equation (2.3.1) with initial datum
ρτ

k and ∇pτ
k+1 arises from the projection of ρ̃τ

k+1, more precisely (id + τ∇pτ
k+1)

is the optimal transport from ρτ
k+1 to ρ̃τ

k+1. What are we doing? We are fitting
into a time interval of length τ the two steps of our algorithm. First we follow
the FP equation (2.3.1) at double speed, then we interpolate between the mea-
sure we reached and its projection following the geodesic between them. This
geodesic is easily described as an image measure of ρτ

k+1 through McCann’s
interpolation. By the construction it is clear that ρτ

t is a continuous curve in
P(Ω) for t ∈ [0, T]. We now define a family of time-dependent vector fields
though

vτ
t :=

 −2
∇$2(t−kτ)

$2(t−kτ)
+ 2ut, if t ∈ [kτ, (k + 1/2)τ[ ,

−2∇pτ
k+1 ◦ (id + 2((k + 1)τ − t)∇pτ

k+1)
−1, if t ∈ [(k + 1/2)τ, (k + 1)τ[ ,

and finally let use define the curve of momentums simply as Eτ
t := ρτ

t vτ
t .
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Second interpolation. We define another interpolation as follows. Set

ρ̃τ
t := $t−kτ , if t ∈ [kτ, (k + 1)τ[,

where $t is (again) the solution of the Fokker-Planck equation (2.3.1) on the
time interval [0, τ] with initial datum ρτ

k . Here we do not double its speed. We
define the curve of velocities

ṽτ
t := −∇$t−kτ

$t−kτ
+ ut, if t ∈ [kτ, (k + 1)τ[ ,

and we build the curve of momentums by Ẽτ
t := ρ̃τ

t ṽτ
t .

Mind the two differences in the construction of ρτ
t and ρ̃τ

t (hence in the
construction of vτ

t and ṽτ
t and Eτ

t and Ẽτ
t ): 1) the first one is continuous in time,

while the second one is not; 2) in the first construction we have taken into
account the projection operator explicitly, while in the second one we see it
just in an indirect manner (via the ‘jumps’ occurring at every time of the form
t = kτ).

Third interpolation. For each τ, we also define piecewise constant curves,

ρ̂τ
t := ρτ

k+1, if t ∈ [kτ, (k + 1)τ[,

v̂τ
t := ∇pτ

k+1, if t ∈ [kτ, (k + 1)τ[,

and Êτ
t := ρ̂τ

t v̂τ
t . We remark that pτ

k+1(1− ρτ
k+1) = 0, hence the curve of mo-

mentums is just
Êτ

t := ∇pτ
k+1, if t ∈ [kτ, (k + 1)τ[.

In order to prove the convergence of the scheme above, we will obtain uni-
form H1([0, T]; W2(Ω)) bounds for the curves ρτ. A key observation here is
that the metric derivative (w.r.t. W2) of the solution of the Fokker-Planck equa-
tion is comparable with the time differential of the entropy functional along
the same solution (see Lemma 2.3.2). Now we state the main theorem of this
section.

Theorem 2.3.1. There exists a continuous curve [0, T] 3 t 7→ ρt ∈W2(Ω) and some
measures E, Ẽ, Ê ∈M ([0, T]×Ω) such that the curves ρτ , ρ̃τ , ρ̂τ converge uniformly
in W2(Ω) to ρ and

Eτ ∗
⇀ E, Ẽτ ∗

⇀ Ẽ, Êτ ∗
⇀ Ê, in M ([0, T]×Ω)d, as τ → 0.

Moreover E = Ẽ− Ê and for a.e. t there exist vt, ṽt, v̂t ∈ L2
ρt
(Ω)d such that E =

ρv, Ẽ = ρṽ, Ê = ρv̂,
∫ T

0

(
‖vt‖2

L2
ρt
+ ‖ṽt‖2

L2
ρt
+ ‖v̂t‖2

L2
ρt

)
dt < +∞, v = ṽ− v̂, Ẽt =
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ρtut −∇ρt and v̂t = ∇pt with pt ≥ 0 and pt(1− ρt) = 0 a.e. As a consequence, ρt

is a weak solution of the “modified” Fokker-Planck equation

∂tρt − ∆ρt +∇ · (ρt(ut −∇pt)) = 0, in ]0, T]×Ω,

pt ≥ 0, ρt ≤ 1, pt(1− ρt) = 0, in [0, T]×Ω,

(∇(ln ρt)− ut +∇pt) · n = 0, on [0, T]× ∂Ω,

ρ(t = 0, ·) = ρ0,

(2.3.2)

with the natural Neumann boundary conditions on ∂Ω.

To prove this theorem we will use the following tools.

Lemma 2.3.2. Let us consider a solution $t of the Fokker-Planck equation with the
velocity field ut. Then for any time interval ]a, b[ we have the following estimate

1
2

∫ b

a

∫
Ω

∣∣∣∣−∇$t

$t
+ ut

∣∣∣∣2 $t dx dt ≤ E($a)−E($b)+
1
2

∫ b

a

∫
Ω
|ut|2$t dx dt (2.3.3)

In particular this implies

1
2

∫ b

a
|$′t|2W2

dt ≤ E($a)− E($b) +
1
2

∫ b

a

∫
Ω
|ut|2$t dx dt, (2.3.4)

where |$′t|W2 denotes the metric derivative of the curve t 7→ $t ∈W2(Ω).

Proof. To prove this inequality, let us compute first

d
dt
E($t) =

∫
Ω
(log $t + 1)∂t$t dx =

∫
Ω

log $t(∆$t −∇ · ($tut))dx

=
∫

Ω

(
−|∇$t|2

$t
+ ut · ∇$t

)
dx,

where we used the conservation of mass (hence
∫

Ω
∂t$t dx = 0) and the Neu-

mann boundary conditions in the integration by parts. We now compare this
with

1
2

∫
Ω

∣∣∣∣−∇$t

$t
+ ut

∣∣∣∣2 $t dx− 1
2

∫
Ω
|ut|2$t dx =

∫
Ω

(
1
2
|∇$t|2

$t
−∇$t · ut

)
dx

≤
∫

Ω

(
|∇$t|2

$t
−∇$t · ut

)
dx

= − d
dt
E($t).

This provides the first part of the statement, i.e. (2.3.3). If we combine this with
the fact that the metric derivative of the curve t 7→ $t is always less or equal
than the L2

$t
norm of the velocity field in the continuity equation, we also get

1
2
|$′t|2W2

− 1
2

∫
Ω
|ut|2$t ≤ −

d
dt
E($t),

and hence (2.3.4).
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Corollary 2.3.3. From the inequality (2.3.4) we deduce that

E($b)− E($a) ≤
1
2

∫ b

a

∫
Ω
|ut|2$t dx dt,

hence in particular for u ∈ L∞([0, T]×Ω)d we have that

E($b)− E($a) ≤
1
2
‖u‖2

L∞(b− a).

In particular, if $a ≤ 1, then we have that

E($b) ≤
1
2
‖u‖2

L∞(b− a).

The same estimate can be applied to the curve ρ̃τ, with a = kτ and b ∈]kτ, (k + 1)τ[,
thus obtaining E(ρ̃τ

t ) ≤ Cτ for every t.

Lemma 2.3.4. For any ρ ∈P(Ω) we have E (PK[ρ]) ≤ E(ρ).

Proof. We can assume ρ � L d otherwise the claim is straightforward. As we
pointed out in Section 2.2, we know that there exists a measurable set B ⊆ Ω
such that

PK[ρ] = 1B + ρ1Bc .

Hence it is enough to prove that∫
B

ρ log ρ dx ≥ 0 =
∫

B
PK[ρ] log PK[ρ]dx,

as the entropies on Bc coincide. As the mass of ρ and PK[ρ] is the same on the

whole Ω, and they coincide on Bc, we have
∫

B
ρ(x)dx =

∫
B

PK[ρ]dx = |B|.
Then, by Jensen’s inequality we have

1
|B|

∫
B

ρ log ρ dx ≥
(

1
|B|

∫
B

ρ dx
)

log
(

1
|B|

∫
B

ρ dx
)
= 0.

The entropy decay follows.

To analyse the pressure field we will need the following result.

Lemma 2.3.5. Let {pτ}τ>0 be a bounded sequence in L2([0, T]; H1(Ω)) and {ρτ}τ>0

a sequence of piecewise constant curves valued in W2(Ω), which satisfy

W2(ρ
τ(a), ρτ(b)) ≤ C

√
b− a + τ

for all a < b ∈ [0, T] and ρτ ≤ C for a fixed constant C. Suppose that

pτ ≥ 0, pτ(1− ρτ) = 0, ρτ ≤ 1,

and that

pτ ⇀ p weakly in L2([0, T]; H1(Ω)) and ρτ → ρ uniformly in W2(Ω).

Then p(1− ρ) = 0 a.e.
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Proof. The proof of this result is the same as in Step 3 of Section 3.2 of [MRCS10]
(see also [RC11]), hence we omit it.

Lemma 2.3.6. (i) For every τ > 0 and k we have

W2
2 (ρ

τ
k , ρ̃τ

k+1), W2
2 (ρ

τ
k , ρτ

k+1) ≤ τC
(
E(ρτ

k )− E(ρτ
k+1)

)
+ Cτ2,

where C > 0 only depends on ‖u‖L∞ .
(ii) There exists a constant C, only depending on ρ0 and ‖u‖L∞ , such that B2(ρτ , Eτ)

≤ C, B2(ρ̃τ , Ẽτ) ≤ C and B2(ρ̂τ , Êτ) ≤ C, where B2 stands for the Benamou-
Brenier functional, see (BB).

(iii) For the curve [0, T] 3 t 7→ ρτ
t we have that∫ T

0
|(ρτ)′|2W2

(t)dt ≤ C,

for a C > 0 independent of τ. In particular, we have a uniform Hölder bound on
ρt:

W2(ρ
τ(a), ρτ(b)) ≤ C

√
b− a (2.3.5)

for every b > a.
(iv) Eτ , Ẽτ , Êτ are uniformly bounded sequences in M ([0, T]×Ω)d.

Proof. (i) First by the triangle inequality and by the fact that ρτ
k+1 = PK[ρ̃τ

k+1]

we have that

W2(ρ
τ
k , ρτ

k+1) ≤W2(ρ
τ
k , ρ̃τ

k+1) + W2(ρ̃
τ
k+1, ρτ

k+1) ≤ 2W2(ρ
τ
k , ρ̃τ

k+1). (2.3.6)

We use (as before) the notation $t, t ∈ [0, τ] for the solution of the Fokker-
Planck equation (2.3.1) with initial datum ρτ

k , in particular we have $τ = ρ̃τ
k+1.

Using Lemma 2.3.2 and since $0 = ρτ
k and $τ = ρ̃τ

k+1, by (2.3.4) and using

W2(ρ
τ
k , ρ̃τ

k+1) ≤
∫ τ

0
|$′t|W2 dt

we obtain

W2
2 (ρ

τ
k , ρ̃τ

k+1) ≤
(

τ
1
2

(∫ τ

0
|$′t|2W2

dt
) 1

2
)2

≤ 2τ (E($0)− E($τ)) + τ
∫ τ

0

∫
Ω
|ukτ+t|2$t dx dt

≤ 2τ
(
E(ρτ

k )− E(ρ̃τ
k+1)

)
+ Cτ2

≤ 2τ
(
E(ρτ

k )− E(ρτ
k+1)

)
+ Cτ2,

where C > 0 is a constant depending just on ‖u‖L∞ . We also used the fact that
E(ρτ

k+1) ≤ E(ρ̃τ
k+1), a consequence of Lemma 2.3.4.
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Now by the means of (2.3.6) we obtain

W2
2 (ρ

τ
k , ρτ

k+1) ≤ τC
(
E(ρτ

k )− E(ρτ
k+1)

)
+ Cτ2. (2.3.7)

(ii) We use Lemma 2.3.2 on the intervals of type [kτ, (k + 1/2)τ[ and the fact
that on each interval of type [(k + 1/2)τ, (k + 1)τ[ the curve ρτ

t is a constant
speed geodesic. In particular, on these intervals we have

|(ρτ
t )
′|W2 = ‖vτ

t ‖L2
ρτ

t

= 2τ‖∇pτ
k+1‖L2

ρτ
k+1

= 2W2(ρ
τ
k+1, ρ̃τ

k+1).

On the other hand we also have

τ2‖∇pτ
k+1‖2

L2
ρτ

k+1

= W2
2 (ρ

τ
k+1, ρ̃τ

k+1) ≤W2
2 (ρ

τ
k , ρ̃τ

k+1) ≤ τC
(
E(ρτ

k )− E(ρτ
k+1)

)
+Cτ2.

Hence we obtain∫ (k+1)τ

kτ
‖vτ

t ‖2
L2

ρτ
t

dt

=
∫ (k+1/2)τ

kτ

∫
Ω

4

∣∣∣∣∣−∇$2(t−kτ)

$2(t−kτ)
+ u2t−kτ

∣∣∣∣∣
2

$2(t−kτ)(x)dx dt

+ 4
∫ (k+1)τ

(k+1/2)τ

∫
Ω
|∇pτ

k+1|2ρτ
k+1 dx dt

≤ C
(
E(ρτ

k )− E(ρτ
k+1)

)
+ Cτ + 2τ‖∇pτ

k+1‖2
L2

ρτ
k+1

≤ C
(
E(ρτ

k )− E(ρτ
k+1)

)
+ Cτ.

Hence by adding up we obtain

B2(ρ
τ , Eτ) ≤∑

k

{
C
(
E(ρτ

k )− E(ρτ
k+1)

)
+ Cτ

}
= C (E(ρτ

0)− E(ρτ
N+1))+CT ≤ C.

The estimate on B2(ρ̃
τ , Ẽτ) and B2(ρ̂

τ , Êτ) are completely analogous and
descend from the previous computations.

(iii) The estimate on B2(ρτ , Eτ) implies a bound on
∫ T

0
|(ρτ

t )
′|2W2

dt because

vτ is a velocity field for ρτ (i.e., the pair (ρτ , Eτ) solves the continuity equation).
In addition estimate (2.3.5) follows from estimate (2.3.7).
(iv) In order to estimate the total mass of Eτ we write

|Eτ|([0, T]×Ω) =
∫ T

0

∫
Ω
|vτ

t |ρτ
t dx dt ≤

∫ T

0

(∫
Ω
|vτ

t |2ρτ
t dx

) 1
2
(∫

Ω
ρτ

t dx
) 1

2

dt

≤
√

T
(∫ T

0

∫
Ω
|vτ

t |2ρτ
t dx dt

) 1
2

≤ C.

The bounds on Ẽτ and Êτ rely on the same argument.



2.3 existence via a splitting-up type algorithm (main scheme) 99

Proof of Theorem 2.3.1. We use the tools from Lemma 2.3.6.
Step 1. By the bounds on the metric derivative of the curves ρτ

t we get
compactness, i.e. there exists a curve [0, T] 3 t 7→ ρt ∈ P(Ω) such that ρτ

t
converges uniformly in [0, T] w.r.t. W2, in particular weakly-? in P(Ω) for all
t ∈ [0, T]. It is easy to see that ρ̃τ and ρ̂τ are converging to the same curve.
Indeed we have ρ̃τ

t = ρτ
s̃(t) and ρ̂τ

t = ρτ
ŝ(t) for |s̃(t)− t| ≤ τ and |ŝ(t)− t| ≤ τ,

which implies W2(ρτ
t , ρ̃τ

t ), W2(ρτ
t , ρ̂τ

t ) ≤ Cτ
1
2 . This provides the convergence to

the same limit.
Step 2. By the boundedness of Eτ , Ẽτ and Êτ in M ([0, T] × Ω)d we have

the existence of E, Ẽ, Ê ∈ M ([0, T]×Ω)d such that Eτ ∗
⇀ E, Ẽτ ∗

⇀ Ẽ, Êτ ∗
⇀ Ê

as τ → 0. Now we show that E = Ẽ − Ê. Indeed, let us show that for any
f ∈ Lip([0, T]×Ω)d test function we have that∣∣∣∣∫ T

0

∫
Ω

ft ·
(
Eτ

t − (Ẽτ
t + Êτ

t )
)
(dx, dt)

∣∣∣∣→ 0,

as τ → 0. First for each k ∈ {0, . . . , N} we have that∫ (k+1/2)τ

kτ

∫
Ω

ft · Eτ
t (dx, dt) =

∫ (k+1)τ

kτ

∫
Ω

f(t+kτ)/2 · (−∇$t−kτ + ut$t−kτ)(dx, dt)

=
∫ (k+1)τ

kτ

∫
Ω

ft · Ẽτ
t (dx, dt)

+
∫ (k+1)τ

kτ

∫
Ω

(
f(t+kτ)/2 − ft

)
· Ẽτ

t (dx, dt)

and∫ (k+1)τ

(k+1/2)τ

∫
Ω

ft · Eτ
t (dx, dt) =

=
∫ (k+1)τ

kτ

∫
Ω
− f(t+(k+1)τ)/2 ◦ (id + ((k + 1)τ − t)∇pτ

k+1) · ∇pτ
k+1ρτ

k+1(dx, dt)

= −
∫ (k+1)τ

kτ

∫
Ω

ft · Êτ
t (dx, dt)

+
∫ (k+1)τ

kτ

∫
Ω

(
ft − f(t+(k+1)τ)/2 ◦ (id + ((k + 1)τ − t)∇pτ

k+1)
)
· v̂τ

t ρ̂τ
t (dx, dt)

This implies that∣∣∣∣∣
∫ T

0

∫
Ω

ft · (Eτ
t − Ẽτ

t + Êτ
t )(dx, dt)

∣∣∣∣∣ ≤∑
k

∫ (k+1)τ

kτ
Lip( f )τ

∫
Ω
|Ẽτ

t |(dx, dt)

+ ∑
k

∫ (k+1)τ

kτ
Lip( f )τ

∫
Ω
(1 + |v̂τ

t |)|Êτ
t |(dx, dt)

≤ τC Lip( f )
(
|Ẽτ|([0, T]×Ω) + |Êτ|([0, T]×Ω) + B2(ρ̂

τ , Êτ)
)

≤ τC Lip( f ),
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for a uniform constant C > 0. By an approximation argument we get similar
estimate for all f continuous, not necessarily Lipschitz. Letting τ → 0 we prove
the claim.

Step 3. The bounds on B2(ρτ , Eτ),B2(ρ̃τ , Ẽτ) and B2(ρ̂τ , Êτ) pass to the limit
by semicontinuity and allow to conclude that E, Ẽ and Ê are vector valued
Radon measures absolutely continuous w.r.t. ρ. Hence there exist vt, ṽt, v̂t ∈
L2

ρt
(Ω) such that E = ρv, Ẽ = ρṽ and Ê = ρv̂.

Step 4. We now look at the equations satisfied by E, Ẽ and Ê. First we use
∂tρ

τ +∇ · Eτ = 0, we pass to the limit as τ → 0, and we get

∂tρ +∇ · E = 0

satisfied in the sense of distributions.
Then, we use Ẽτ = −∇ρ̃τ + utρ̃

τ, we pass to the limit again as τ → 0, and
we get

Ẽ = −∇ρ + utρ.

To justify the above limit, the only delicate point is passing to the limit the
term utρ̃

τ, since u is only L∞, and ρ̃τ converges weakly as measures, and
we are a priori only allowed to multiply it by continuous functions. Yet, we
remark that by Corollary 2.3.3 we have that E(ρ̃τ

t ) ≤ Cτ for all t ∈ [0, T]. In
particular, this provides, for each t, uniform integrability for ρ̃τ

t and turns the
weak convergence as measures into weak convergence in L1. This allows to
multiply by ut in the weak limit.

Finally, we look at Êτ. There exists a piecewise constant (in time) function pτ

(defined as pτ
k+1 on every interval ]kτ, (k + 1)τ]) such that pτ ≥ 0, pτ(1− ρ̂τ) =

0,∫ T

0

∫
Ω
|∇pτ|2(dx, dt) =

∫ T

0

∫
Ω
|∇pτ|2ρ̂τ(dx, dt) =

∫ T

0

∫
Ω
|v̂τ|2ρ̂τ(dx, dt) ≤ C

(2.3.8)

and Êτ = ∇pτ ρ̂τ = ∇pτ. The bound (2.3.8) implies that ∇pτ is uniformly
bounded in L2([0, T]; L2(Ω)). Since for every t we have |{pτ

t = 0}| ≥ |{ρ̂τ
t <

1}| ≥ |Ω| − 1, we can use a version of Poincaré’s inequality, and get a uniform
bound for pτ in L2([0, T]; L2(Ω)) = L2([0, T] × Ω). Hence there exists p ∈
L2([0, T] × Ω) such that pτ ⇀ p weakly in L2 as τ → 0. In particular we
have Ê = ∇p. Moreover it is clear that p ≥ 0 and by Lemma 2.3.5 we obtain
p(1− ρ) = 0 a.e. as well. Indeed, the assumptions of the Lemma are easily
checked: we only need to estimate W2(ρ̂τ(a), ρ̂τ(b)) for b > a, but we have

W2(ρ̂
τ(a), ρ̂τ(b)) = W2(ρ

τ(kaτ), ρτ(kbτ)) ≤ C
√

kb − ka

for kbτ ≤ b + τ and ka ≥ a. Once we have Ê = ∇p with p(1− ρ) = 0 a.e.,
p ∈ L2([0, T]; H1(Ω)) and ρ ∈ L∞, we can also write

Ê = ∇p = ρ∇p.
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If we sum up our results, using E = Ẽ− Ê, we have

∂tρ− ∆ρ +∇ · (ρ(u−∇p)) = 0

together with
p ≥ 0, ρ ≤ 1, p(1− ρ) = 0

a.e. in [0, T] × Ω. As usual, this equation is satisfied in a weak sense, with
Neumann boundary conditions and with the initial condition ρ(t = 0, ·) =

ρ0.

2.4 uniform Lip([0, T]; W1)) and BV estimates

In this section we provide uniform estimates for the curves ρτ , ρ̃τ and ρ̂τ

of the following form: we prove uniform BV (in space) bounds on ρ̃τ (which
implies the same bound for ρ̂τ) and uniform Lipschitz bounds in time for the
W1 distance for ρτ. This is a small improvement compared to the previous
section, both in time regularity (Lipschitz instead of H1, but for W1 instead
of W2) and in space (any higher order regularity of ρ was absent from the
previous results). Nevertheless there is a price to pay for this improvement:
we have to assume higher regularity for the velocity field. These uniform
Lipschitz in time bounds are based both on BV estimates for the Fokker-Planck
equation (see Lemma 2.6.1 from Section 2.6) and for the projection operator
PK (see [DPMSV15] and the previous Chapter 1). The assumption on u is
essentially the following: we need to control the growth of the total variation
of the solutions of the Fokker-Planck equation (2.3.1), and we need to iterate
this bound along time steps.

We will discuss in Section 2.6 the different BV estimates on the Fokker-
Planck equation that we were able to find. The desired estimate is true for
ut ∈ C1,1(Ω) and ut(x) ·n(x) = 0 for x ∈ ∂Ω, and seems to be an open problem
if u is only Lipschitz continuous. We will also assume ρ0 ∈ BV(Ω). Despite
these extra regularity assumptions, we think these estimates have their own
interest, exploiting some finer properties of the solutions of the Fokker-Planck
equation and of the Wasserstein projection operator.

Before entering into the details of the estimates, we want to discuss why we
concentrate on BV estimates (instead of Sobolev ones) and on W1 (instead of
Wp, p > 1). The main reason is the role of the projection operator: indeed,
even if ρ ∈ W1,p(Ω), we do not have in general PK[ρ] ∈ W1,p because the
projection creates some jumps at the boundary of {PK[ρ] = 1}. This prevents
from obtaining any W1,p estimate for p > 1. On the other hand, [DPMSV15]
exactly proves a BV estimate on PK[ρ] and paves the way to BV bounds for
our equation. Concerning the regularity in time, we observe that the velocity
field in the Fokker-Planck equation contains a term in ∇ρ/ρ. Since the metric
derivative in Wp is given by the Lp norm (w.r.t. ρt) of the velocity field, it is
clear that estimates in Wp for p > 1 would require spatial W1,p estimates on
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the solution itself, which are impossible for p > 1. The precise result that we
prove is

Theorem 2.4.1. Supposing ‖ut‖C1,1 ≤ C and ρ0 ∈ BV(Ω), we have ‖ρ̃τ
t ‖BV ≤ C

and W1(ρ
τ
k , ρτ

k+1) ≤ Cτ. As a consequence we also have

ρ ∈ Lip([0, T]; W1)) ∩ L∞([0, T]; BV(Ω)).

To prove this theorem we need the following lemmas.

Lemma 2.4.2. Suppose ‖ut‖Lip ≤ C and ut · n = 0 on ∂Ω. Then for the solution $t

of (2.6.1) with the vector field u we have the estimate

‖$t‖L∞ ≤ ‖$0‖L∞ eCt,

where C = ‖∇ · ut‖L∞ .

Proof. Let us set f : [0,+∞[×Ω → R, ft := $te−Ct ≥ 0 with a fixed constant
C > 0. We have

∂t ft = ∂t$te−Ct − C ft = e−Ct(∆$t −∇ · ($tut))− C ft,

which means that ft is a solution of

∂t ft = ∆ ft −∇ · ( ftut)− C ft.

Now for a p > 1 let us denote Ip(t) := ‖ ft‖p
Lp and compute

d
dt
Ip(t) = p

∫
Ω
| ft|p−1∂t ft dx = p

∫
Ω
| ft|p−1(∆ ft −∇ · ( ftut)− C ft)dx

= −pCIp(t)− p(p− 1)
∫

Ω
| ft|p−2|∇ ft|2 dx

+ p(p− 1)
∫

Ω
| ft|p−1∇ ft · ut dx

≤ −pCIp(t)− (p− 1)
∫

Ω
| ft|p∇ · ut dx

≤ ((p− 1)‖∇ · ut‖L∞ − pC)Ip(t)

By Grönwall’s lemma we obtain that

Ip(t) ≤ et((p−1)‖∇·u‖L∞−pC)Ip(0),

hence
I1/p

p (t) ≤ et((p−1)/p‖∇·u‖L∞−C)I1/p
p (0),

and sending p→ +∞ we get that

‖ ft‖L∞ ≤ et(‖∇·u‖L∞−C)‖ f0‖L∞ .

Using the definition of ft we get the estimation

‖$t‖L∞ ≤ et‖∇·u‖L∞‖$0‖L∞ ,

which proves the claim.
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We remark that the above lemma implies in particular that after every step
in the Main scheme we have ρ̃τ

k+1 ≤ eτc ≤ 1 + Cτ, where c := ‖∇ · u‖L∞ and
C := c + o(τ). Let us now present the following lemma as well.

Corollary 2.4.3. Along the iterations of our Main scheme, for every k we have

W1(ρ̃
τ
k+1, ρτ

k+1) ≤ τC

for a constant C > 0 independent of τ.

Proof. With the saturation property of the projection (see Section 2.2, Chapter
1 or [DPMSV15]), we know that there exists a measurable set B ⊆ Ω such that
ρτ

k+1 = ρ̃τ
k+11B + 1Ω\B. On the other hand we know that

W1(ρ̃
τ
k+1, ρτ

k+1) = sup
f∈Lip1(Ω), 0≤ f≤diam(Ω)

∫
Ω

f (ρ̃τ
k+1 − ρτ

k+1)dx

= sup
f∈Lip1(Ω), 0≤ f≤diam(Ω)

∫
Ω\B

f (ρ̃τ
k+1 − 1)dx ≤ τC |Ω|diam(Ω).

We used the fact that the competitors f in the dual formula can be taken pos-
itive and bounded by the diameter of Ω, just by adding a suitable constant.
This implies as well that C is depending on c, |Ω| and diam(Ω).

Proof of Theorem 2.4.1. First we take care of the BV estimate. Lemma 2.6.1 in
Section 2.6 guarantees, for t ∈]kτ, (k + 1)τ[, that we have TV(ρ̃τ

t ) ≤ Cτ +

eCτTV(ρτ
k ). Together with the BV bound on the projection that we presented in

Section 2.2 (taken from [DPMSV15]), this can be iterated, providing a uniform
bound (depending on TV(ρ0), T and supt ‖ut‖C1,1) on ‖ρ̃τ

t ‖BV . Passing this
estimate to the limit as τ → 0 we get ρ ∈ L∞([0, T]; BV(Ω)).

Then we estimate the behavior in terms of W1. We estimate

W1(ρ
τ
k , ρ̃τ

k+1) ≤
∫ (k+1)τ

kτ
|(ρ̃τ

t )
′|W1 dt ≤

∫ (k+1)τ

kτ

∫
Ω

(
|∇ρ̃τ

t |
ρ̃τ

t
+ |ut|

)
ρ̃τ

t dx dt

≤
∫ (k+1)τ

kτ
‖ρ̃τ

t ‖BV dt + Cτ ≤ Cτ.

Hence, we obtain

W1(ρ
τ
k , ρτ

k+1) ≤W1(ρ
τ
k , ρ̃τ

k+1) + W1(ρ̃
τ
k+1, ρτ

k+1) ≤ τC.

This in particular means, for b > a,

W1(ρ̂
τ(a), ρ̂τ(b)) ≤ C(b− a + τ).

We can pass this relation to the limit, using that, for every t, we have ρ̂τ
t → ρt

in W2(Ω) (and hence also in W1(Ω), since W1 ≤W2), we get

W1(ρ(a), ρ(b)) ≤ C(b− a),

which means that ρ is Lipschitz continuous in W1(Ω).
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2.5 variations on a theme : some reformulations of the main
scheme

In this section we propose some alternative approaches to study the problem
(3.1.3). The general idea is to discretize in time, and give a way to produce a
measure ρτ

k+1 starting from ρτ
k . Observe that the interpolations that we pro-

posed in the previous sections ρτ , ρ̃τ and ρ̂τ are only technical tools to state
and prove a convergence result, and the most important point is exactly the
definition of ρτ

k+1.
The alternative approaches proposed here explore different ideas, more dif-

ficult to implement than one that we presented in Section 2.3, and/or restricted
to some particular cases (for instance when u is a gradient). They have their
own modeling interest and this is the main reason justifying their sketchy pre-
sentation.

2.5.1 Variant 1: transport, diffusion then projection.

We recall that the original splitting approach for the equation without diffu-
sion ([MRCSV11, RC11]) exhibited an important difference compared to what
we did in Section 2.3. Indeed, in the first phase of each time step (i.e. before
the projection) the particles follow the vector field u and ρ̃τ

k+1 was not defined
as the solution of a continuity equation with advection velocity given by ut,
but as the image of ρτ

k via a straight-line transport: ρ̃τ
k+1 := (id + τukτ)#ρτ

k .
One can wonder whether it is possible to follow a similar approach here.

A possible way to proceed is the following: take a random variable X dis-
tributed according to ρτ

k , and define ρ̃τ
k+1 as the law of X + τukτ(X)+ Bτ, where

B is a Brownian motion, independent of X. This exactly means that every par-
ticle moves starting from its initial position X, following a displacement ruled
by u, but adding a stochastic effect in the form of the value at time τ of a
Brownian motion. We can check that this means

ρ̃τ
k+1 := ητ ? ((id + τukτ)#ρτ

k ) ,

where ητ is a Gaussian kernel with zero-mean and variance τ, i.e. ητ(x) :=
1√
4τπ

e−
|x|2
4τ .

Then we define
ρτ

k+1 := PK [ρ̃k+1] .

Despite the fact that this scheme is very natural and essentially not that dif-
ferent from the Main scheme, we have to be careful with the analysis. First
we have to quantify somehow the distance Wp(ρτ

k , ρ̃τ
k+1) for some p ≥ 1 and

show that this is of order τ in some sense. Second, we need to be careful
when performing the convolution with the heat kernel (or adding the Brown-
ian motion, which is the same): this requires either to work in the whole space
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(which was not our framework) or in a periodic setting (Ω = Td, the flat torus,
which is qutie restrictive). Otherwise, the “explicit” convolution step should
be replaced with some other construction, such as following the Heat equation
(with Neumann boundary conditions) for a time τ. But this brings back to a
situation very similar to the Main scheme, with the additional difficulty that we
do not really have estimates on (id + τukτ)#ρτ

k .

2.5.2 Variant 2: gradient flow techniques for gradient velocity fields

In this section we assume that the velocity field of the population is given
by the opposite of the gradient of a function, ut = −∇Vt a typical example is
given when we take for V the distance function to the exit (see the discussions
in [MRCS10] about this type of question). We start from the case where V does
not depend on time, and we suppose V ∈ W1,1(Ω). In this particular case –
beside the splitting approach – the problem has a variational structure, hence it
is possible to show the existence by the means of gradient flows in Wasserstein
spaces.

Since the celebrated paper of Jordan, Kinderlehrer and Otto ([JKO98]) we
know that the solutions of the Fokker-Planck equation (with a gradient vector
field) can be obtained with the help of the gradient flow of a perturbed entropy
functional with respect to the Wasserstein distance W2. This formulation of
JKO scheme was also used in [MRCS10] for the first order model with density
constraints. It is easy to combine the JKO scheme with density constraints
to study the second order/diffusive model. As a slight modification of the
model from [MRCS10], we can consider the following discrete implicite Euler
(or JKO) scheme. As usual, we fix a time step τ > 0, ρτ

0 = ρ0 and for all k ∈N

we just need to define ρτ
k+1. We take

ρτ
k+1 = argminρ∈P(Ω)

{∫
Ω

V(x)ρ(x)dx + E(ρ) + IK(ρ) +
1

2τ
W2

2 (ρ, ρτ
k )

}
,

(2.5.1)

where IK is the indicator function of K, which is

IK(x) :=

{
0, if x ∈ K,

+∞, otherwise.

The usual techniques from [JKO98, MRCS10] can be used to identify that the
problem (3.1.3) is the gradient flow of the functional

ρ 7→ J(ρ) :=
∫

Ω
V(x)ρ(x)dx + E(ρ) + IK(ρ)

and that the above discrete scheme converges (up to a subsequence) to a solu-
tion of (3.1.3), thus proving existence. The key estimate for compactness is

1
2τ

W2
2 (ρ

τ
k+1, ρτ

k ) ≤ J(ρτ
k )− J(ρτ

k+1),



106 diffusive crowd motion with density constraints

which can be summed up (as on the r.h.s. we have a telescopic series), thus
obtaining the same bounds on B2 that we used in Section 2.3.

It is also possible to study a variant where V depends on time. We assume
for simplicity that V ∈ Lip([0, T]×Ω) (this is a simplification, less regularity
in space, such as W1,1, could be sufficient). In this case we define

Jt(ρ) :=
∫

Ω
Vt(x)ρ(x)dx + E(ρ) + IK(ρ)

and

ρτ
k+1 = argminρ∈P(Ω)

{
Jkτ(ρ) +

1
2τ

W2
2 (ρ, ρτ

k )

}
, (2.5.2)

The analysis proceeds similarly, with the only exception that the we get

1
2τ

W2
2 (ρ

τ
k+1, ρτ

k ) ≤ Jkτ(ρ
τ
k )− Jkτ(ρ

τ
k+1),

which is no more a a telescopic series. Yet, we have Jkτ(ρ
τ
k+1) ≥ J(k+1)τ(ρ

τ
k+1) +

Lip(V)τ, and we can go on with a telescopic sum plus a remainder of the order
of τ.

2.5.3 Variant 3: transport then gradient flow-like step with the penalized entropy
functional.

We present now a different scheme, which combines some of the previous
approaches. It could formally provide a solution of the same equation, but
presents some extra difficulties.

We define now ρ̃τ
k+1 := (id + τukτ)#ρτ

k and with the help of this we define

ρτ
k+1 := argminρ∈K E(ρ) +

1
2τ

W2
2 (ρ, ρ̃τ

k+1).

In the last optimization problem we minimize a strictly convex and l.s.c. func-
tionals, and hence we have existence and uniqueness of the solution. The
formal reason for this scheme being adapted to the equation is that we per-
form a step of a JKO scheme in the spirit of [JKO98] (without the density
constraint) or of [MRCS10] (without the entropy term). This should let a term
−∆ρ−∇ · (ρ∇p) appear in the evolution equation. The term ∇ · (ρu) is due
to the first step (the definition of ρ̃τ

k+1). To explain a little bit more for the un-
experienced reader, we consider the optimality conditions for the above min-
imization problem. Following [MRCS10], we can say that ρ ∈ K is optimal if
and only if there exists a constant ` ∈ R and a Kantorovich potential ϕ for the
transport from ρ to ρτ

k such that
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ρ =


1 on

(
ln ρ + ϕ

τ

)
< `,

0 on
(
ln ρ + ϕ

τ

)
> `,

∈ [0, 1] on
(
ln ρ + ϕ

τ

)
= `.

We then define p = (`− ln ρ− ϕ
τ )+

and we get p ∈ press(ρ). More-
over, ρ− a.e.∇p = −∇ρ

ρ −
∇ϕ
τ . We

then use the fact that the optimal
transport is of the form T = id−
∇ϕ and obtain a situation as is
sketched in Figure 3.

•ρτ
k

id+
τu kτ

•
ρ̃τ

k+1 id+
τ(∇p+ ∇ρ

ρ )

•ρτ
k+1

id−τ(u(k+1)τ−∇p−∇ρ
ρ )+o(τ)

Figure 3: One time step in a hybrid scheme

Notice that (id + τukτ)
−1(id + τp) = id− τ(u(k+1)τ −∇p) + o(τ) provided

u is regular enough. Formally we can pass to the limit τ → 0 and have

∂tρ− ∆ρ +∇ · (ρ(u−∇p)) = 0.

Yet, this turns out to be quite naïve, because we cannot get proper estimates
on W2(ρτ

k , ρτ
k+1). Indeed, this is mainly due to the hybrid nature of the scheme,

i.e. a gradient flow for the diffusion and the projection part on one hand and
a free transport on the other hand. The typical estimate in the JKO scheme
comes from the fact that one can bound W2(ρτ

k , ρτ
k+1)

2/τ with the opposite of
the increment of the energy, and that this gives rise to a telescopic sum. Yet,
this is not the case whenever the base point for a new time step is not equal to
the previous minimizer. These kinds of difficulties are matter of current study,
in particular for mixed systems and/or multiple populations.

2.6 BV-type estimates for the fokker-planck equation

Here we present some Total Variation (TV) decay results (in time) for the
solutions of the Fokker-Planck equation. Some are very easy, some trickier.
The goal is to look at those estimates which can be easily iterated in time and
combined with the decay of the TV via the projection operator, as we did in
Section 2.4.

Let us take a vector field v : [0,+∞[×Ω → Rd (we will choose later which
regularity we need) and consider in Ω the problem

∂tρt − ∆ρt +∇ · (ρtvt) = 0, in ]0,+∞[×Ω,

(∇(ln ρt)− vt) · n = 0, on ]0,+∞[×∂Ω,

ρ(0, ·) = ρ0, in Ω,

(2.6.1)

for ρ0 ∈ BV(Ω) ∩P(Ω).
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Lemma 2.6.1. Suppose ‖vt‖C1,1 ≤ C for a.e. t ∈ [0,+∞[. Suppose that either Ω =

Td, or that Ω is convex and v · n = 0 on ∂Ω. Then, we have the following total
variation decay estimate∫

Ω
|∇ρt|dx ≤ C(t− s) + eC(t−s)

∫
Ω
|∇ρs|dx, ∀ 0 ≤ s ≤ t, (2.6.2)

where C > 0 is a constant depending just on the C1,1 norm of v.

Proof. First we remark that by the regularity of v the quantity ‖v‖L∞ + ‖Dv‖L∞ +
‖∇(∇ · v)‖L∞ is uniformly bounded. Let us drop now the dependence on t in
our notation and calculate in coordinates

d
dt

∫
Ω
|∇ρ|dx =

∫
Ω

∇ρ

|∇ρ| · ∇(∂tρ)dx =
∫

Ω

∇ρ

|∇ρ| · ∇(∆ρ−∇ · (vρ))dx

=
∫

Ω
∑

j

ρj

|∇ρ|

(
∑

i
ρiij − (∇ · (vρ))j

)
dx

= −
∫

Ω
∑
i,j,k

(
ρ2

ij

|∇ρ| −
ρjρkρkiρij

|∇ρ|3

)
dx + B1

−
∫

Ω
∑
j,i

ρj

|∇ρ|

(
vi

ijρ + vi
iρj + vi

jρi + viρij

)
dx

≤ B1 + C + C
∫

Ω
|∇ρ|dx +

∫
Ω
|∇ρ||∇ · v|dx + B2

≤ B1 + B2 + C + C
∫

Ω
|∇ρ|dx.

Here the Bi are the boundary terms, i.e.

B1 :=
∫

∂Ω
∑
i,j

ρjniρij

|∇ρ| dH d−1 and B2 := −
∫

∂Ω
v · n|∇ρ|dH d−1.

The constant C > 0 only depends on ‖v‖L∞ + ‖∇ · v‖L∞ + ‖∇(∇ · v)‖L∞ . We

used as well the fact that −
∫

Ω
∑
i,j,k

(
ρ2

ij

|∇ρ| −
ρjρkρkiρij

|∇ρ|3

)
dx ≤ 0.

Now, it is clear that in the case of the torus the boundary terms B1 and B2 do
not exist, hence we conclude by Grönwall’s lemma. In the case of the convex
domain we have B2 = 0 (because of the assumption v · n = 0) and B1 ≤ 0
because of the next Lemma 2.6.2.

Lemma 2.6.2. Suppose that u : Ω → Rd is a smooth vector field with u · n = 0
on ∂Ω, ρ is a smooth function with ∇ρ · n = 0 on ∂Ω, and that Ω ⊂ Rd is a
smooth convex set parametrized as Ω = {h < 0} for a smooth convex function h with
|∇h| = 1 on ∂Ω (so that n = ∇h on ∂Ω). Then we have, on the whole boundary ∂Ω,

∑
i,j

ui
jρjni = −∑

i,j
uihijρj.
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In particular, we have ∑
i,j

ρijρjni ≤ 0.

Proof. The Neumann boundary assumption on u means u(γ(t)) · ∇h(γ(t)) = 0
for every curve γ valued in ∂Ω and for all t. Differentiating in t, we get

∑
i,j

ui
j(γ(t))(γ

′(t))jhi(γ(t)) + ∑
i,j

ui(γ(t))hij(γ(t))(γ′(t))j = 0.

Take a point x0 ∈ ∂Ω and choose a curve γ with γ(t0) = x0 and γ′(t0) =

∇ρ(x0) (which is possible, since this vector is tangent to ∂Ω by assumption).
This gives the first part of the statement. The second part, i.e. ∑

i,j
ρijρjni ≤ 0,

is obtained by taking u = ∇ρ and using that D2h(x0) is a positive definite
matrix.

Remark 2.6.1. If we look attentively at the proof of Lemma 2.6.1, we can see that we
did not really exploit the regularizing effects of the diffusion term in the equation. This
means that the regularity estimate that we provide are the same that we would have
without diffusion: in this case, the density ρt is obtained from the initial density as
the image through the flow of v. Thus, the density depends on the determinant of the
Jacobian of the flow, hence on the derivatives of v. It is normal that, if we want BV
bounds on ρt, we need assumptions on two derivatives of v.

We would like to prove some form of BV estimates under weaker regularity
assumptions on v, trying to exploit the diffusion effects. In particular, we
would like to treat the case where v is only C0,1. As we will see in the following
lemma, this degenerates in some sense.

Lemma 2.6.3. Suppose that Ω is either the torus or a smooth convex set Ω = {h < 0}
parameterized as a level set of a smooth convex function h. Let vt : Ω → Rd be a
vector field for t ∈ [0, T], Lipschitz and bounded in space, uniformly in time. In the
case of a convex domain, suppose v · n = 0 on ∂Ω. Let H : Rd → R be given by
H(z) :=

√
ε2 + |z|2. Now let ρt (sufficiently smooth) be the solution of the Fokker-

Planck equation with homogeneous Neumann boundary condition.
Then there exists a constant C > 0 (depending on v and Ω) such that∫

Ω
H(∇ρt)dx ≤

∫
Ω

H(∇ρ0)dx + Cεt +
C
ε

∫ t

0
‖ρs‖2

L∞ ds. (2.6.3)

Proof. First let us discuss about some properties of H. It is smooth, its gradient

is ∇H(z) =
z

H(z)
and it satisfies ∇H(z) · z ≤ H(z), ∀z ∈ Rd. Moreover its

Hessian matrix is given by

[Hij(z)]i,j∈{1,...,d} =

[
δijH2(z)− zizj

H3(z)

]
i,j∈{1,...,d}

=
1

H(z)
Id−

1
H3(z)

z⊗ z, ∀ z ∈ Rd,
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where δij =

{
1, if i = j,

0, if j 6= j,
is the Kronecker symbol. Note that, from this

computation, the matrix D2H ≥ 0 is bounded from above by
1
H

, and hence by

ε−1. Moreover we introduce a uniform constant C > 0 such that ‖v‖2
L∞ |Ω|+

‖∇ · v‖L∞ + ‖Dv‖L∞ ≤ C.
Now to show the estimate of this lemma we calculate the quantity

d
dt

∫
Ω

H(∇ρt)dx =
∫

Ω
∇H(∇ρt) · ∂t∇ρt dx

=
∫

Ω
∇H(∇ρt) · ∇(∆ρt −∇ · (vtρt))dx

=
∫

Ω
∇H(∇ρt) · ∇∆ρt dx−

∫
Ω
∇H(∇ρt) · ∇(∇ · (vtρt))dx

=: (I) + (I I)

Now we study each term separately and for the simplicity we drop the t sub-
scripts in the followings. We start from the case of the torus, where there is no
boundary term in the integration by parts.

(I) =
∫

Ω
∇H(∇ρ) · ∇∆ρ dx =

∫
Ω

∑
j,i

Hj(∇ρ)ρjii dx

= −
∫

Ω
∑
j,i,k

Hkj(∇ρ)ρikρji dx

(I I) = −
∫

Ω
∇H(∇ρ) · ∇(∇ · (vρ))dx = −

∫
Ω

∑
i,j

Hj(∇ρ)(viρ)ij dx

=
∫

Ω
∑
i,j,k

Hjk(∇ρ)ρkivi
jρ dx +

∫
Ω

∑
i,j,k

Hjk(∇ρ)ρkiviρj dx

=: (I Ia) + (I Ib).

First look at the term (I Ia). Since the matrix Hjk is positive definite, we can
apply a Young inequality for each index i and obtain

(I Ia) =
∫

Ω
∑
i,j,k

Hjk(∇ρ)ρkivi
jρ dx ≤ 1

2

∫
Ω

∑
i,j,k

Hjk(∇ρ)ρkiρij dx

+
1
2

∫
Ω

∑
i,j,k

Hjk(∇ρ)vi
jv

i
kρ2 dx

≤ 1
2
|(I)|+ C‖ρ‖2

L2‖D2H‖L∞ .

The L2 norm in the second term will be estimated by the L∞ norm for the sake
of simplicity (see Remark 2.6.2 below).
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For the term (I Ib) we first make a point-wise computation

∑
i,j,k

Hjk(∇ρ)ρkiviρj =
1

H3(∇ρ) ∑
i
[D2

i ρ ·
(
ε2 Id + |∇ρ|2 Id −∇ρ⊗∇ρ

)
· ∇ρ]vi

=
ε2

H3(∇ρ) ∑
i

viD2
i ρ · ∇ρ = −ε2 ∑

i
vi∂i

(
1

H(∇ρ)

)
.

where D2
i ρ denotes the ith row in the Hessian matrix of ρ and we used(

|∇ρ|2 Id −∇ρ⊗∇ρ
)
· ∇ρ = 0.

Integrating by parts we obtain

(I Ib) = ε2
∫

Ω
(∇ · v) 1

H(∇ρ)
dx ≤ Cε2‖1/H‖L∞ ≤ Cε,

where we used H(z) ≥ ε.
Summing up all the terms we get and using ‖D2H‖L∞ ≤ ε−1 we get

d
dt

∫
Ω

H(∇ρt)dx ≤ −1
2
|(I)|+ C‖ρt‖2

L∞‖D2H‖L∞ + Cε ≤ Cε + C‖ρt‖2
L∞ ε−1,

which proves the claim.
If we switch to the case of a smooth bounded convex domain Ω, we have to

handle boundary terms. These terms are∫
∂Ω

∑
i,j

Hj(∇ρ)ρijni −
∫

∂Ω
∑
i,j

Hj(∇ρ)ρvi
jn

i,

where we ignored those terms involving nivi (i.e., the integration by parts in
(I Ib), and the term Hj(∇ρ)ρjnivi in the integration by parts of (I Ia)), since we
already supposed v · n = 0. We use here Lemma 2.6.2, which provides

∑
i,j

Hj(∇ρ)ρijni − ρHj(∇ρ)vi
jn

i =
1

H(∇ρ) ∑
i,j

(
ρjρijni − ρρjvi

jn
i
)

= − 1
H(∇ρ) ∑

i,j

(
ρjhijρi − ρρjhijvi

)
.

If we use the fact that the matrix D2h is positive definite and a Young inequality,
we get ∑i,j ρjhijρi ≥ 0 and

ρ ∑
i,j
|ρjhijvi| ≤ 1

2 ∑
i,j

ρjhijρi +
1
2 ∑

i,j
ρ2vjhijvi,

which implies

1
H(∇ρ) ∑

i,j

(
ρjρijni − ρρjvi

jn
i
)
≤ ρ2

H(∇ρ)
‖D2h‖L∞ |v|2 ≤ C‖ρ‖2

L∞

ε
.

This provides the desired estimate on the boundary term.
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Remark 2.6.2. In the above proof, we needed to use the L∞ norm of ρ only in the
boundary term. When there is no boundary term, the L2 norm is enough, in order
to handle the term (I Ia). In both cases, the norm of ρ can be bounded in terms of
the initial norm multiplied by eCt, where C bounds the divergence of v. On the other
hand, in the torus case, one only needs to suppose ρ0 ∈ L2 and in the convex case
ρ0 ∈ L∞. Both assumptions are satisfied in the applications to crowd motion with
density constraints.

We have seen that the constants in the above inequality depend on ε and
explode as ε → 0. This prevents us to obtain a clean estimate on the BV
norm in this context, but at least proves that ρ0 ∈ BV ⇒ ρt ∈ BV for all
t > 0 (to achieve this result, we just need to take ε = 1). Unfortunately, the

quantity which is estimated is not the BV norm, but the integral
∫

H(∇ρ)dx.

This is not enough for the purpose of the applications to Section 2.4, as it is
unfortunately not true that the projection operator decreases the value of this
other functional 2.

L
1 µ

L
1 PK[µ]

Figure 4: The counter-example to the decay of
∫

H(∇ρ)dx, which corresponds to the
total legth of the graph

If we stay interested to the value of the BV norm, we can provide the follow-
ing estimate.

Lemma 2.6.4. Under the assumptions of Lemma 2.6.3, if we suppose ρ0 ∈ BV(Ω) ∩
L∞(Ω), then, for t ≤ T, we have∫

Ω
|∇ρt|dx ≤

∫
Ω
|∇ρ0|dx + C

√
t, (2.6.4)

where the constant C depends on v, on T and on ‖ρ0‖L∞ .

2. Here is a simple counter-example: consider µ = g(x)dx a BV density on [0, 2] ⊂ R,
with g defined as follows. Divide the interval [0, 2] into 2K intervals Ji of length 2r (with
2rK = 1); call ti the center of each interval Ji (i.e. ti = i2r + r, for i = 0, . . . , 2K − 1) and
set g(x) = L +

√
r2 − (x− ti)2 on each Ji with i odd, and g(x) = 0 on Ji for i even, taking

L = 1 − πr/4. It is not difficult to check that the projection of µ is equal to the indicator
function of the union of all the intervals Ji with i odd, and that the value of

∫
H(∇ρ) has

increased by K(2− π/2)r = 1− π/4, i.e. by a positive constant (see Figure 4).
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Proof. Using the L∞ estimate of Lemma 2.4.2, we will assume that ‖ρt‖L∞ is
bounded by a constant (which depends on v, on T and on ‖ρ0‖L∞ ). Then, we
can write∫

Ω
|∇ρt|dx ≤

∫
Ω

H(∇ρt)dx ≤
∫

Ω
H(∇ρ0)dx + Cεt +

Ct
ε

≤
∫

Ω
(|∇ρ0|+ ε)dx + Cεt +

Ct
ε

.

It is sufficient to choose, for fixed t, ε =
√

t, in order to prove the claim.

Unfortunately, this
√

t behavior is not suitable to be iterated, and the above
estimate is useless for the sake of Section 2.4. The existence of an estimate (for
v Lipschitz) of the form TV(ρt) ≤ TV(ρ0) + Ct, or TV(ρt) ≤ TV(ρ0)eCt, or
even f (TV(ρt)) ≤ f (TV(ρ0))eCt, for any increasing function f : R+ → R+,
seems to be an open question.





3
Uniqueness issues for evolutive equations with

density constraints

T
his chapter contains some basic uniqueness results for evolutive equa-
tions under density constraints. First, we develop a rigorous proof of a
well-known result in the case where the desired velocity field satisfies

a monotonicity assumption. We prove the uniqueness of a solution for first or-
der systems modeling crowd motion with hard congestion effects, introduced
recently by Maury et al. The monotonicity of the velocity field implies that the
2−Wasserstein distance along two solutions is contractive, which in particular
implies the uniqueness. In the case of diffusive models – proposed in Chapter
2 – we prove the uniqueness of a solution passing trough the dual equation,
where we use some well-known parabolic estimates. In this case, by the regu-
larization effect of the non-degenerate diffusion, the uniqueness follows even
if the given velocity field is only L∞ (as imposed in Chapter 2 for the existence
result).

This chapter is based on a joint work with S. Di Marino (see [DMM15]).

3.1 introduction

As we have seen in Chapter 2 (and can be observed also in the recent works
[MRCS10, MRCS14, MRCSV11, MS15a, AKY14]), a very powerful tool to attack
macroscopic hard-congestion problems – where we impose a density constraint
on the density of the population – is the theory of optimal transport. In this
framework, the density of the agents satisfies a modified continuity- or Fokker-

115
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Planck equation (with a given velocity field taking into account the congestion
effects) and can be seen as a curve in the Wasserstein space.

Our aim in this chapter is to prove some basic results for uniqueness in this
setting. As far as we are aware of, this question is a missing puzzle in its full
generality in the models studied in [MRCS10, MRCS14, MRCSV11, MS15a].
Let us remark that the uniqueness question is indispensable if one wants to
include this type of models into a larger system and one aims to show existence
results by fixed point methods, as it is done for instance for Mean Field Games
in general (for example as in [Por15]).

We will treat two different cases, in which the approaches will be very dif-
ferent: in the first one we consider simply a crowd driven by a velocity field
and with the density constraint. In this case it will be crucial the assumption
that the velocity field is monotone in order to prove a contraction result along
the solutions, that will imply uniqueness. In the second case we add a diffu-
sive term, which is modeling some randomness in the crowd movement (see
[MS15a] and Chapter 2 for recent developments and existence results in this
setting); in this case we prove uniqueness passing to the dual problem and
proving there existence for sufficiently generic data. In this case a major role
is played by the regularizing effect of the Laplacian, that allows us to prove
uniqueness even if the velocity is merely bounded.

3.1.1 Admissible velocities and pressures

In order to model crowd movement in the macroscopic setting with hard
congestion, we work in a convex bounded domain Ω ⊂ Rd with Lipschitz
boundary such that |Ω| > 1. The evolution of the crowd will be analyzed by
the evolution of its density, which is assumed to be a probability measure on
Ω. The condition we impose is simply a bound on the density of the crowd
to be always less than 1. In particular the set of admissible measures will be
denoted by K1 := {ρ ∈ P(Ω) : ρ ≤ 1 a.e.}.

As for the velocities we should have that the density is not increasing when
it is saturated: informally we would say that v is an admissible velocity for the
measure ρ ∈ K1 if ∇ · v ≥ 0 in the set {ρ = 1} and v · n ≤ 0 on ∂Ω where
n is the outward normal. In order to make a rigorous definition we have to
introduce the set of pressures:

press(ρ) := {p ∈ H1(Ω) : p ≥ 0, p(1− ρ) = 0 a.e.}.

Then, using the integration by parts formula, informally we should have that

0 ≤
∫

Ω
p∇ · v dx−

∫
∂Ω

pv · n dH d−1 = −
∫

Ω
v · ∇p dx

and so we can define

adm(ρ) :=
{

v ∈ L2(Ω; Rd) :
∫

Ω
v · ∇p dx ≤ 0 for every p ∈ press(ρ)

}
.
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Now, in order to preserve the constraint ρ ≤ 1, we impose that the velocity is
always belonging to adm(ρ) and so a generic evolution equation with density
constraint will be ∂tρt +∇ · (ρtvt) = 0

ρt ≤ 1, vt ∈ adm(ρt).

One of the simplest such model is when we have a prescribed velocity field
ut and we want to impose in our model that the velocity is the nearest to vt,
time by time. This describes a situation in which the crowd wants to have the
velocity ut but it cannot because of the density constraint and so it adapts its
velocity in such a way to minimize some kind of global difference between vt

(the real velocity) and ut (the desired velocity): this will result in an highly
nonlocal and discontinuous effect. So the first order problem reads as

∂tρt +∇ · (ρtvt) = 0

ρt ≤ 1, ρt=0 = ρ0

vt = Padm(ρt)[ut],

(3.1.1)

where the first equation is meant in the weak sense and the minimal hypothe-
sis in order to have a well defined projection is u ∈ L2([0, T]×Rd). Neverthe-
less in [MRCSV11, MRCS10] and [RC11] the following regularity hypotheses
have been assumed to show the existence result: u ∈ C1 or u = −∇D for
a λ−convex potential D and in both cases no dependence on time. In the
following lemma we characterize the projection:

Lemma 3.1.1. Let ρ ∈ P(Ω) such that ρ ≤ 1 a.e. and let u ∈ L2(Ω; Rd). Then there
exists p ∈ press(ρ) such that Padm(ρ)[u] = u−∇p. Furthermore p is characterized
by

(i)
∫

Ω
∇p · (u−∇p)dx = 0;

(ii)
∫

Ω
∇q · (u−∇p)dx ≤ 0, for all q ∈ press(ρ);

Proof. Let us set K = {∇p : p ∈ press(ρ)}. It is easy to see that K is a closed
cone in L2(Ω; Rd). Let us recall that the polar cone to K is defined as

Ko :=
{

v ∈ L2(Ω; Rd) :
∫

Ω
v · ∇q dx ≤ 0, ∀ ∇q ∈ K

}
.

By the definition of the admissible velocities we have adm(ρ) = Ko. Moreau
decomposition applied to K and Ko says that

u = PK[u] + PKo [u] ∀u ∈ L2(Ω; Rd).

This proves the thesis of (i) and (ii), since these are precisely the conditions of
being the projection on a cone.

Corollary 3.1.2. Lemma 3.1.1 (i) implies in particular that∫
Ω
|∇p|2 dx ≤

∫
Ω
|u|2 dx.
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3.1.2 The diffusive case

In Chapter 2 (see also [MS15a]) we proposed a second order model for crowd
motion. It consists of adding a non-degenerate diffusion to the movement
and imposing the density constraint. This leads to a modified Fokker-Planck
equation and with the notations introduced previously it reads as


∂tρt − ∆ρt +∇ · (ρtvt) = 0

ρt ≤ 1, ρt=0 = ρ0

vt = Padm(ρt)[ut],

(3.1.2)

where ut is – as before – the desired given velocity field of the crowd. Intro-
ducing the pressure gradient in the characterization of the projection, one can
write system (3.1.2) as

∂tρt − ∆ρt +∇ · (ρt(ut −∇pt)) = 0

ρt ≤ 1, ρt=0 = ρ0

pt ≥ 0, pt(1− ρt) = 0 a.e.,

(3.1.3)

and in both cases the systems are equipped with natural Neumann boundary
conditions on ∂Ω.

Under the assumption that u ∈ L∞([0, T]×Ω) is has been shown (see The-
orem 2.3.1) that the system (3.1.3) admits a solution (ρ, p) ∈ L∞([0, T]×Ω)×
L2([0, T]; H1(Ω)). In addition [0, T] 3 t 7→ ρt is a continuous curve in the
Wasserstein space W2(Ω).

3.2 monotone vector fields and the first order case

Let Ω ⊂ Rd be a bounded convex domain with Lipschitz boundary. In
this section we suppose that the desired velocity field u : [0, T]×Ω → Rd of
the crowd is a Borel monotone vector field, i.e. the following assumption is
fulfilled:

There exists λ ∈ R such that for a.e. x, y ∈ Ω

(ut(x)− ut(y)) · (x− y) ≤ λ|x− y|2, ∀ t ∈ [0, T]. (H1)

The following results are well-known in community of researchers working
with the above mentioned models. A first written version is essentially con-
tained in [Més12] (Section 4.3.1.), nevertheless we simplified and clarified some
of the proofs, hence we present them here. A key observation is the following
lemma (see also Lemma 4.3.13. in [Més12]):
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Lemma 3.2.1. Let Ω be a convex bounded domain of Rd and let ρ1, ρ2 ∈ P(Ω) two
absolutely continuous measures such that ρ1 ≤ 1 and ρ2 ≤ 1 a.e. Take a Kantorovich
potential ϕ from ρ1 to ρ2 and p ∈ H1(Ω) such that p ≥ 0 and p(1− ρ1) = 0 a.e.

Then ∫
Ω
∇ϕ · ∇p dx =

∫
Ω
∇ϕ · ∇p dρ1 ≥ 0.

To prove this result we consider the following lemma:

Lemma 3.2.2. Let Ω be a convex bounded domain of Rd and let ρ1, ρ2 ∈ P(Ω) two
absolutely continuous measures such that ρ1 ≤ 1 and ρ2 ≤ 1 a.e. Take a Kantorovich
potential ϕ from ρ1 to ρ2 and p ∈ H1(Ω). Let [0, 1] 3 t 7→ ρt be the geodesic
connecting ρ1 to ρ2, with respect to the 2-Wasserstein distance W2. Then we have that

d
dt

∣∣∣∣∣
{t=0}

∫
Ω

p dρt = −
∫

Ω
∇ϕ · ∇p dρ1.

Proof. We know (using the interpolation introduced by R. McCann, see [McC97])
that ρt = (x− t∇ϕ(x))#ρ1 for all t ∈ [0, 1] and so we have

d
dt

∣∣∣∣∣
{t=0}

∫
Ω

p dρt = lim
t→0

∫
Ω

p(x− t∇ϕ(x))− p(x)
t

dρ1(x)

= − lim
t→0

∫
Ω

1
t

∫ t

0
∇p(x− s∇ϕ(x)) · ∇ϕ(x)ds dρ1(x)

= − lim
t→0

∫
Ω

At(∇p) · ∇ϕ dρ1(x),

where the second equality is easy to prove, for fixed t, by approximation via
smooth functions and for t ∈ [0, 1] we denoted by At : L2(Ω; Rd)→ L2

ρ1(Ω; Rd)

the linear operator

At(h)(x) =
1
t

∫ t

0
h(x− s∇ϕ(x))ds.

Now as a general fact we will prove that At(h) → h strongly in L2
ρ1(Ω; Rd) as

t → 0, for every h ∈ L2(Ω; Rd). First of all it is easy to see that ‖At‖ ≤ 1, in
fact

∫
Ω
|At(h)|2 dρ1 ≤

1
t

∫
Ω

∫ t

0
|h(x− s∇ϕ(x))|2 ds dρ1(x)

=
1
t

∫ t

0

∫
Ω
|h|2 dρs(x)ds ≤

∫
Ω
|h|2 dx.

Here we used the fact that since ρ1, ρ2 ≤ 1 a.e we have also ρt ≤ 1 a.e. for
all t ∈ [0, 1]. Now it is sufficient to note that for every ε > 0 there exists a
Lipschitz function hε such that ‖hε − h‖L2 ≤ ε, and so we have

‖At(h)− h‖L2
ρ1
≤ ‖At(h− hε)‖L2

ρ1
+ ‖h− hε‖L2

ρ1
+ ‖At(hε)− hε‖L2

ρ1

≤ 2ε + tL‖∇ϕ‖L2
ρ1

,
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where L is the Lipschitz constant of hε. Taking now the limit as t goes to 0
we obtain that lim supt→0 ‖At(h)− h‖L2

ρ1
≤ 2ε; by the arbitrariness of ε > 0 we

conclude.
Now it is easy to finish the proof, in fact ∇p ∈ L2(Ω) and so

d
dt

∣∣∣∣∣
{t=0}

∫
Ω

p dρt = − lim
t→0

∫
Ω

At(∇p) · ∇ϕ dρ1 = −
∫

Ω
∇p · ∇ϕ dρ1.

Proof of Lemma 3.2.1. Let [0, 1] 3 t 7→ ρt be the Wasserstein geodesic between
ρ1 and ρ2. We know that ρt ≤ 1 a.e. for all t ∈ [0, 1] and in particular it is true
that ∫

Ω
p dρt ≤

∫
Ω

p dx =
∫

Ω
p dρ1,

which means that the function [0, 1] 3 t 7→
∫

Ω
p dρt has a local maximum in

t = 0, hence its derivative in 0 is non-positive.
Given this, the claim follows using Lemma 3.2.2.

Now we are in position to prove the main theorem of this section, namely:

Theorem 3.2.3. Suppose Ω ⊂ Rd is a bounded convex domain, u is a vector field
satisfying Assumption (H1) and let ρ0 ≤ 1 a.e. be an admissible initial density. Let
us suppose that there exist (ρ1, p1), (ρ2, p2) two solutions to the system

∂tρt +∇ · (ρt(ut −∇pt)) = 0 in ]0, T]×Ω

ρt ≤ 1, pt ≥ 0, (1− ρt)pt = 0 a.e. in Ω, ∀t ∈ [0, T]

ρt=0 = ρ0,

(3.2.1)

pi ∈ L2([0, T]; H1(Ω)) for i ∈ {1, 2}. Then, ρ1 = ρ2 and p1 = p2 a.e. In particular,
under the same assumption, we can say that there exists a unique couple (ρ, v) that
solves (3.1.1).

Proof. We identify the two curves ρ1
t and ρ2

t as solutions of the continuity equa-
tion in (3.1.1) with the corresponding vector fields v1

t and v2
t (in particular

vi
t ∈ Tanρi

t
P(Ω) for all t ∈ [0, T] and vi

t := ut −∇pi
t). Let us compute and

estimate
d
dt

1
2

W2
2 (ρ

1
t , ρ2

t ).
We recall (see [AGS08, Theorem 8.4.7.]) that for an absolutely continuous

curve µt in P2(Ω) with its tangent vector field wt and for ν ∈ P2(Ω) a fixed
measure we have the formula

d
dt

1
2

W2
2 (µt, ν) =

∫
Ω×Ω

(x− y) ·wt(x)dγ, ∀γ ∈ Πo(µt, ν),

for L 1−a.e. t ∈ [0, T].
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Using this formula in our case for µt = ρ1
t and ν = ρ2

s , for a fixed s, then
changing the roles of the two measures, we obtain (using also the Lemma 4.3.4
from [AGS08]) the following inequality

d
dt

1
2

W2
2 (ρ

1
t , ρ2

t ) ≤
∫

Ω×Ω
(x− y) · [v1

t (x)− v2
t (y)]dγ, ∀γ ∈ Πo(ρ

1
t , ρ2

t ),

for L 1−a.e. t ∈ [0, T].
We also know that for absolutely continuous measures (assuming also that

the boundary of Ω is negligible) there is an optimal transport map Tt such that
Tt

#ρ1
t = ρ2

t for all t ∈ [0, T], thus Πo(ρ1
t , ρ2

t ) consists of only the optimal plan
associated to Tt, that is, Πo(ρ1

t , ρ2
t ) = {(id, Tt)#ρ1

t }. Using this, we can write
the above formula in terms of transport maps, instead of plans, so we have

d
dt

1
2

W2
2 (ρ

1
t , ρ2

t ) ≤
∫

Ω
(x− Tt(x)) ·

[
v1

t (x)− v2
t (T

t(x))
]

dρ1
t (x).

Let us use now the decomposition of the vector fields v1
t and v2

t with the
introduced pressures, i.e. vt = ut −∇p1

t and v2
t = ut −∇p2

t . Having in mind
the monotonicity of ut, we have∫

Ω
(x− Tt(x)) ·

[
v1

t (x)− v2
t (T

t(x))
]

dρ1
t (x) =

=
∫

Ω
(x− Tt(x)) ·

[
ut(x)− ut(Tt(x))

]
dρ1

t (x)

−
∫

Ω
(x− Tt(x)) ·

[
∇p1

t (x)−∇p2
t (T

t(x))
]

dρ1
t (x)

≤ λ
∫

Ω
|x− Tt(x)|2 dρ1

t (x)

−
∫

Ω
(x− Tt(x)) ·

[
∇p1

t (x)−∇p2
t (T

t(x))
]

dρ1
t (x)

= λW2
2 (ρ

1
t , ρ2

t )−
∫

Ω
(x− Tt(x)) ·

[
∇p1

t (x)−∇p2
t (T

t(x))
]

dρ1
t (x)

Let us show that
∫

Ω
(x − Tt(x)) ·

[
∇p1

t (x)−∇p2
t (T

t(x))
]

dρ1
t (x) ≥ 0. We

know that x− Tt(x) = ∇ϕ(x), for any Kantorovich potential ϕ in the transport

of ρ1
t onto ρ2

t . Thus, using Lemma 3.2.1 we obtain
∫

Ω
∇ϕ(x) · ∇p1

t (x)dρ1
t (x) ≥

0. Similarly −
∫

Ω
∇ϕ(x) · ∇p2

t (T
t(x))dρ1

t (x) ≥ 0. Indeed, St := (Tt)−1 is be

the optimal transport map between ρ2
t and ρ1

t . Then we have S(y) = y−∇ψ(y)
for any Kantorovich potential ψ in the transport from ρ2

t onto ρ1
t . This readily

implies that ∇ϕ(S(y)) = −∇ψ(y) and so using the definition of St
#ρ2

t = ρ1
t we

obtain

−
∫

Ω
∇ϕ(x) · ∇p2

t (T
t(x))dρ1

t (x) = −
∫

Ω
∇ϕ(St(y)) · ∇p2

t (y)dρ2
t (y)

=
∫

Ω
∇ψ(y) · ∇p2

t (y)dρ2
t (y).
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We use again Lemma 3.2.1 to show the non-negativity of this term as well.
Thus, one obtains

1
2

d
dt

W2
2 (ρ

1
t , ρ2

t ) ≤ λW2
2 (ρ

1
t , ρ2

t ).

Grönwall’s lemma implies that

W2
2 (ρ

1
t , ρ2

t ) ≤ e2λtW2
2 (ρ

1
0, ρ2

0).

Since ρ1
0 = ρ2

0 = ρ0 a.e., the above property implies that ρ1 = ρ2 a.e. in
[0, T]×Ω. From this fact we can easily deduce that ∆(p1

t − p2
t ) = 0, for a.e. t ∈

[0, T] in the sense of distributions. Moreover, both p1
t and p2

t vanish a.e. in the
set {ρ1

t = 1} which has a positive Lebesgue measure greater than |Ω| − 1 > 0.
Thus, p1 = p2 a.e. in [0, T]×Ω. The thesis of the theorem follows.

Remark 3.2.1. The existence result for system (3.2.1) was obtained in different set-
tings in the literature. On the one hand, if u = −∇D (for a reasonably regular
potential D), the existence of a pair (ρ, p) can be obtained by gradient flow techniques
in W2(Ω) (see [MRCS10, RC11]). On the other hand, if u is a general field with
C1 regularity, the existence result is proven with the help of a well-chosen splitting
algorithm (see [MRCSV11, RC11]).

Nevertheless, combining the techniques developed in Chapter 2 and [MS15a] on the
one hand, and the well-known DiPerna-Lions-Ambrosio theory on the other hand, we
expect to obtain existence result for (3.2.1) for more general vector fields with merely
Sobolev regularity with one sided bounded divergence. This will be the subject of future
research.

Remark 3.2.2. The monotonicity assumption (H1) it is not surprising in this setting.
We remark that the same assumption was required in [NPS11] to prove the contraction
properties for a general class of transport costs along the solution of the Fokker-Planck
equation in Rd

∂tρ− ∆ρ +∇ · (Bρ) = 0, ρ(t = 0, ·) = ρ0,

where the velocity field B : Rd → Rd was supposed to satisfy the monotonicity prop-
erty (H1).

3.3 the general diffusive case

We use Hilbert space techniques (similarly to the one developed in [Cro79,
PQV14]; see also Section 3.1. from [Por15]) to study the uniqueness of a so-
lution of the diffusive crowd motion model with density constraints described
in Subsection 3.1.2 (for the details see Chapter 2). Since our objective is only
to obtain uniqueness results (not necessarily via a contraction property), we
can expect that this holds under more general assumptions in the presence of
a non-degenerate diffusion in the model.
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Let u : [0, T]×Ω → Rd be a given vector field, which represents again the
desired velocity field of the crowd, Ω ⊂ Rd a convex, bounded open set with
Lipschitz boundary, ρ0 ∈ P(Ω) the initial density of the population such that
0 ≤ ρ0 ≤ 1 a.e. in Ω and let us consider the following problem

∂tρt − ∆ρt +∇ · (Padm(ρt)[ut]ρt) = 0, in ]0, T]×Ω,

ρt=0 = ρ0, 0 ≤ ρt ≤ 1, a.e. in Ω,
(3.3.1)

equipped with the natural homogeneous Neumann boundary condition. Equiv-
alently the above system can be written as

∂tρt − ∆ρt − ∆pt +∇ · (utρt) = 0, in ]0, T]×Ω,

ρt=0 = ρ0, in Ω

(∇ρt +∇pt − utρt) · n = 0, on ∂Ω, for a.e. t ∈ [0, T],

(3.3.2)

for an introduced pressure field pt ∈ press(ρt). It has been shown in [MS15a]
that under the assumption that u ∈ L∞([0, T]×Ω; Rd) the systems (3.3.1) and
(3.3.2) have a solution. More precisely there exist a continuous curve [0, T] 3
t 7→ ρt ∈W2 and pt ∈ press(ρt) for all t ∈ [0, T] (in particular ρ ∈ L∞([0, T]×
Ω) and p ∈ L2([0, T]; H1(Ω))) such that (p, ρ) solves (3.3.2) in weak sense (see
(3.3.3)).

Our aim in this section is to show that the solution (ρ, p) of (3.3.2) is unique.
For a suitable test function φ : [0, T]×Ω → R with ∇φ · n = 0 a.e. on [0, T]×
∂Ω and φ(T, ·) = 0 a.e. in Ω, let us write the weak formulation of (3.3.2):∫ T

0

∫
Ω
[ρ∂tφ + (ρ + p)∆φ + ρu · ∇φ] dx dt +

∫
Ω

ρ0(x)φ(0, x)dx = 0. (3.3.3)

Taking φ ∈ C∞
c ([0, T[×Ω), by density arguments the above formulation is

meaningful for φ ∈W1,1([0, T]; L1(Ω)) ∩ L2([0, T]; H2(Ω)).
Now let us suppose that Problem 3.3.2 has two solutions (ρ1, p1) and (ρ2, p2)

with ρ1
0 = ρ2

0 = ρ0. Writing the weak formulation (3.3.3) for the two pairs of
solutions and taking the difference we obtain

∫ T

0

∫
Ω

[
(ρ1 − ρ2)∂tφ + (ρ1 − ρ2 + p1 − p2)∆φ + (ρ1 − ρ2)u · ∇φ

]
dx dt = 0.

(3.3.4)

We introduce the following notations

A :=
ρ1 − ρ2

(ρ1 − ρ2) + (p1 − p2)
and B :=

p1 − p2

(ρ1 − ρ2) + (p1 − p2)
.

Note that 0 ≤ A ≤ 1 and 0 ≤ B ≤ 1 a.e. in [0, T]×Ω and A + B = 1. To be
consistent with these bounds, we set A = 0 when ρ1 = ρ2, even if p1 = p2
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and B = 0 when p1 = p2, even if ρ1 = ρ2. With these notations the weak
formulation for the difference gives us∫ T

0

∫
Ω
((ρ1− ρ2)+ (p1− p2)) [A∂tφ + (A + B)∆φ + Au · ∇φ] dx dt = 0. (3.3.5)

For a smooth function G : [0, T]×Ω→ R let us consider the dual problem
A∂tφ + (A + B)∆φ + Au · ∇φ = AG, in [0, T[×Ω,

∇φ · n = 0 on [0, T]× ∂Ω, φ(T, ·) = 0 a.e. in Ω.
(3.3.6)

Let us remark that if we are able to find a (reasonably regular) solution φ

for this problem for any G smooth, we would get uniqueness of ρ + p, hence
of ρ and p separately. Since the coefficients in (3.3.6) are not regular, we study
a regularized problem. For ε > 0 let us consider Aε and Bε to be continuous
approximations of A and B such that

‖A− Aε‖Lr([0,T]×Ω) < C(Ω, r)ε, ε < Aε ≤ 1

and
‖B− Bε‖Lr([0,T]×Ω) < C(Ω, r)ε, ε < Bε ≤ 1,

for 1 ≤ r < +∞, the value of which to be chosen later. Here C(Ω, r) > 0 is a
constant depending only on Ω and r. The regularized problem reads as follows


∂tφε + (1 + Bε/Aε)∆φε + u · ∇φε = G, in [0, T[×Ω,

∇φε · n = 0 a.e. on [0, T]× ∂Ω, φε(T, ·) = 0 a.e. in Ω.
(3.3.7)

For all ε > 0 the above problem is uniformly parabolic and Bε/Aε is con-
tinuous. Moreover G is smooth and u ∈ L∞([0, T] × Ω), thus by classical
results (see for instance [LSU68, Kry08]) the problem has a (unique) solution
φε ∈ H1([0, T]; L2(Ω)) ∩ L2([0, T]; H2(Ω)). In particular φε can be used as test
function in (3.3.3). Now let us establish some standard uniform (in ε) estimates
on φε.

Lemma 3.3.1. Let φε be a solution of (3.3.7). Then there exists a constant

C = C(T, ‖u‖L∞ , ‖∇G‖L2([0,T]×Ω)) > 0

such that we have the following estimates, uniformly in ε > 0:
(i) sup

t∈[0,T]
‖∇φε(t)‖L2(Ω) ≤ C;

(ii) ‖(Bε/Aε)
1
2 ∆φε‖L2([0,T]×Ω) ≤ C;

(iii) ‖∆φε‖L2([0,T]×Ω) ≤ C.
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Proof. Let us multiply the first equation from (3.3.7) by ∆φε and integrate over
[t, T]×Ω for 0 ≤ t < T. We obtain

1
2
‖∇φε(t)‖2

L2(Ω) +
∫ T

t

∫
Ω
(1 + Bε/Aε)|∆φε|2 dx dt

= −
∫ T

t

∫
Ω
∇φε · ∇G dx dt−

∫ T

t

∫
Ω

u · ∇φε∆φε dx dt

(3.3.8)

Hence by Young’s inequality we have

1
2
‖∇φε(t)‖2

L2(Ω) ≤
(
‖u‖L∞

2δ
+

1
2

) ∫ T

t
‖∇φε(s)‖2

L2(Ω) ds +
1
2
‖∇G‖2

L2([0,T]×Ω)

≤ C +
C
2

∫ T

t
‖∇φε(s)‖2

L2(Ω) ds

where 0 < δ ≤ 2/‖u‖L∞ is a fixed constant and the constant C > 0 is de-
pending just on ‖∇G‖L2([0,T]×Ω) and ‖u‖L∞ . Hence by Grönwall’s inequality
we obtain

1
2
‖∇φε(t)‖2

L2(Ω) ≤ CeC(T−t),

which implies in particular that sup
t∈[0,T]

‖∇φε(t)‖L2(Ω) ≤ C. Thus (i) follows.

On the other hand choosing δ := 2/‖u‖L∞ in Young’s inequality used in
(3.3.8) and using (i), we obtain∫ T

t

∫
Ω
(Bε/Aε)|∆φε|2 dx dt ≤ C

hence ‖(Bε/Aε)
1
2 ∆φε‖L2([0,T]×Ω) ≤ C, and thus (ii) follows.

By (3.3.8), (i) and (ii) easily imply (iii).

In particular, using φε as test function in (3.3.5) one has∫ T

0

∫
Ω
(ρ1 − ρ2)G dx dt =

∫ T

0

∫
Ω
(ρ1 − ρ2 + p1 − p2)AG dx dt

=
∫ T

0

∫
Ω
(ρ1 − ρ2 + p1 − p2)A [∂tφε + (1 + Bε/Aε)∆φε + u · ∇φε] dx dt

=
∫ T

0

∫
Ω
(ρ1 − ρ2 + p1 − p2)A [∂tφε + (1 + Bε/Aε)∆φε + u · ∇φε] dx dt

−
∫ T

0

∫
Ω
(ρ1 − ρ2 + p1 − p2) [A∂tφε + (A + B)∆φε + Au · ∇φε] dx dt

=
∫ T

0

∫
Ω
(ρ1 − ρ2 + p1 − p2)(Bε/Aε)(A− Aε)∆φε dx dt

+
∫ T

0

∫
Ω
(ρ1 − ρ2 + p1 − p2)(Bε − B)∆φε dx dt

:= I1
ε + I2

ε
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Now we shall prove that |I1
ε | → 0 and |I1

ε | → 0 as ε→ 0, which will lead to the
uniqueness of ρ. First, let us recall that 0 ≤ ρ1, ρ2 ≤ 1 a.e. in [0, T]×Ω, hence
ρ1, ρ2 ∈ L∞([0, T]×Ω). On the other hand p1, p2 ∈ L2([0, T]; H1(Ω)) and by
Corollary 3.1.2 we have that∫

Ω
|∇pi

t|2 dx ≤
∫

Ω
|ut|2 dt,

for almost every t ∈ [0, T]. This implies that (since u is bounded)

ess− supt∈[0,T]‖∇pi
t‖L2(Ω) ≤ C.

In addition, pi’s being pressures one has |{pi
t = 0}| ≥ |{ρi

t < 1}| ≥ |Ω| − 1 > 0
for a.e. t ∈ [0, T], and so by a version of Poincaré’s inequality one obtains that
pi ∈ L∞([0, T]; H1(Ω)). By the Sobolev embedding theorem this means that
pi ∈ L∞([0, T]; L2∗(Ω)), i ∈ {1, 2}, where 2∗ = 2d/(d − 2). This reasoning
implies the following estimates

|I1
ε | ≤ ‖ρ1 − ρ2‖L∞([0,T]×Ω) · ‖(Bε/Aε)

1/2(A− Aε)‖L2([0,T]×Ω)

× ‖(Bε/Aε)
1/2∆φε‖L2([0,T]×Ω)

+
∫ T

0

{
‖p1

t − p2
t ‖L2∗ (Ω) · ‖(Bε/Aε)

1/2(A− Aε)‖Lr(Ω)

× ‖(Bε/Aε)
1/2∆φε‖L2(Ω)

}
dt

≤ C(1/ε)1/2ε

+ ‖p1 − p2‖L∞(L2∗ ) · ‖(Bε/Aε)
1/2(A− Aε)‖L2(Lr) · ‖(Bε/Aε)

1/2∆φε‖L2(L2)

≤ Cε1/2 → 0, as ε→ 0

and similarly

|I2
ε | ≤ ‖ρ1 − ρ2‖L∞([0,T]×Ω) · ‖(Aε/Bε)

1/2(B− Bε)‖L2([0,T]×Ω)

× ‖(Bε/Aε)
1/2∆φε‖L2([0,T]×Ω)

+ ‖p1 − p2‖L∞(L2∗ ) · ‖(Aε/Bε)
1/2(B− Bε)‖L2(Lr) · ‖(Bε/Aε)

1/2∆φε‖L2(L2)

≤ C(1/ε)1/2ε = Cε1/2 → 0, as ε→ 0,

where r > 1 is an exponent such that
1
2
+

1
r
+

1
2∗

= 1, i.e. r = d. Hence we
obtained that ∫ T

0

∫
Ω
(ρ1 − ρ2)G dx dt = 0, ∀ G smooth,

which in particular implies that ρ1 = ρ2 a.e. in [0, T]×Ω. This implies more-
over by (3.3.4) that∫ T

0

∫
Ω
(p1 − p2)∆φ dx dt = 0, ∀ φ test function,
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thus ∆(p1
t − p2

t ) = 0 in the sense of distributions, for a.e. t ∈ [0, T]. We conclude
similarly as in the end of the proof of Theorem 3.2.3, hence one obtains that
p1 = p2 a.e. in [0, T]×Ω. The result follows.





Part II

M E A N F I E L D G A M E S W I T H D E N S I T Y C O N S T R A I N T S





On the history of Mean Field Games

M
ean Field Games (shortly MFG in the sequel) have been introduced in
the mid 2000’s and have their roots in the seminal work of J.-M. Lasry
and P.-L. Lions (see [LL06a, LL06b, LL07]) and in the lectures delivered

by P.-L. Lions at Collège de France the years after (see [Lio08]). In the same
period M. Huang, R. P. Malhamé and P. E. Caines introduced similar models
(see [HMC06]).

The main motivation of J.-M. Lasry and P.-L. Lions was to study the limit
behavior of Nash equilibria for symmetric differential games with a very large
number of identical “small” players (or agents). They managed this task in a
very powerful and elegant way. Borrowing some tools from statistical physics,
the main idea behind this theory is to see these models as continuum limit
when the number of the agents tends to infinity. This is exactly what is hap-
pening in the derivation of Vlasov or Boltzmann equations for instance, when
one wants to obtain unified models for large systems of interacting particles.
This procedure is called mean field limit and here is where the name of Mean
Field Games is coming from. The notion of “small” player refers to the fact
that the contribution of a single individual to the entire model is negligible.

From the mathematical point of view, the MFG models are described with
the help of some optimization problems, where the density of the agents enters
as a parameter. More precisely, a typical agent is considering the following
optimization problem:

u(t, x0) = inf
α

E

{∫ T

t
L(γ(s), α(s)) + f (γ(s), m(s, γ(s)))ds + Φ(γ(T), m(T, ·))

}
,

(3.3.9)

subject to{
dγ(s) = α(s)dt +

√
2ν dBs, s ∈]t, T],

γ(t) = x0
(3.3.10)

131
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where L : Rd ×Rd → R, f : Rd ×P(Rd) → R and Φ : Rd ×P(Rd) → R

are the datas of the problem representing the Lagrangian, the running cost
and the final cost respectively. We emphasize the fact that the above optimal
control problem is depending on the density m ∈ P(Rd) of the agents. Bs
denotes the d−dimensional Brownian motion. We call u the value function of
the typical agent. Classical results from stochastic control theory imply that
(at least heuristically) u solves a Hamilton-Jacobi-Bellman equation. Moreover,
the optimal control α∗ := −∇pH(·,∇u) is given in feedback form, where H is
the Legendre-Fenchel transform of the Lagrangian L w.r.t. the second variable.
Finally, Itō’s lemma (and the Feynman-Kac formula) implies that the evolution
of the density of the agents, m(t, ·) := Law(γ(t)), is given by a Fokker-Plack
(or Kolgomorov) equation with the optimal control α∗ as velocity field. Thus,
knowing the initial density m0 ∈ P(Rd) of the agents, the MFG system corre-
sponding to the above model formally is given by the following coupled PDE
system

−∂tu(t, x)− ν∆u(t, x) + H(x,∇u(t, x)) = f (x, m(t, ·)) in (0, T]×Rd

∂tm(t, x)− ν∆m(t, x)−∇ ·
(
∇pH(x,∇u(t, x))m(t, x)

)
= 0 in (0, T]×Rd,

m(0, x) = m0, u(T, x) = Φ(x, m(T, ·)) in Rd.
(MFG)

If one chooses ν = 0, the SODE in (3.3.10) becomes a simple ODE, while (MFG)
turns into a first order system, where the Fokker-Planck equation is replaced
by a continuity equation.

Let us remark that the solution of (MFG) produces a Nash equilibrium, in
the sense that no agent will change his/her mind. Indeed, solving the control
problem (3.3.10), the typical player “predicts” the evolution of the whole den-
sity m, and he/she uses this to solve his/her control problem (3.3.9)-(3.3.10).
Using the optimal control α∗ := −∇pH(·,∇u) one can obtain the “true” evolu-
tion of the density m. If the prediction was correct, it should correspond to the
“true” density and in this case m is a Nash equilibrium. As good introductory
bibliography to the subject we refer to [Car13a, GS14b].

possible approaches to study the system (MFG)

The well-posedness of the system (MFG) is not trivial. First, it is not clear in
which sense the control problem (3.3.9)-(3.3.10) has to be considered: a priori
m is a probability measure, hence integrating it along trajectories does not have
any sense. Secondly, one could also attack directly the system (MFG) and show
the well-posedness by PDE techniques. It this case one has to define a good
notion of (weak) solutions, because we cannot expect always to have classical
ones. Let us discuss now some possibilities to handle the question of existence
and uniqueness.

Case 1 - Regularizing operators. Already in the seminal works of J.-M. Lasry
and P.-L. Lions ([LL06a, LL06b, LL07]) it has been considered the case when
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f and Φ are some regularizing operators in the m variable (for instance con-
volutions with smooth kernels). In this case the optimization problem (3.3.9)-
(3.3.10) perfectly makes sense and it is possible to show the existence of a clas-
sical solution by a standard Schauder-type fixed point scheme. This method is
well-suited for both first and second order systems.

Case 2 - Further classical solutions by PDE techniques. For local couplings
(typically f (x, m) = ma) D. Gomes and his teams studied the existence of
classical solutions in various settings in a series of papers (see for instance
[GPSM15, GPSM12, GM14, GPV14] and the references therein). The used
techniques combine variational arguments and sharp PDE estimates. In these
methods there is always an interplay (which has to be well-chosen) between
the growth a > 0 of the coupling f and the growth of the Hamiltonian H in the
gradient variable. We remark that these methods are relying on the parabolic
structure of the PDE system (MFG), hence they can be used only in the sec-
ond order case. Some connections between stationary MFG systems and the
co-called Evans-Aronsson problem have been also recently studied in [GSM14].

Case 3 - Week solutions. In a recent paper (see [Por15]) A. Porretta showed
the existence of weak solutions of second order systems like (MFG), with lo-
cal couplings f and Φ having general order of growth in the m variable and
for Hamiltonians with order of growth 1 < q ≤ 2 in the gradient variable.
A key tool in his approach is the (new) characterization of the Fokker-Planck
equation through weak renormalized solutions. Recently P.J. Graber used sim-
ilar techniques to study (MFG)-type systems with soft congestion effects (see
[Gra15]).

Case 4 - Further weak solutions through variational techniques. In the introduc-
tory papers [LL06a, LL06b, LL07] J.-M. Lasry and P.-L. Lions mentioned the
fact that certain systems like (MFG) can be seen as optimality conditions for
some optimal control problems with PDE constraints. This fact recalls also
the dynamical formulation of the Monge-Kantorovich optimal transport prob-
lems introduced by J.-D. Benamou and Y. Brenier (see [BB00] and the (BB)
formula discussed previously). This method is quite robust in the sense that
it can be applied both for first and second order systems with local couplings
f and Φ and Hamiltonians having a general class of order of growth. The
rigorous analysis of different systems in this setting has been carried out re-
cently mainly by P. Cardaliaguet and his collaborators in a series of papers (see
[Car13b, CG15, Gra14, CGPT14]). The convex duality used as a main tool in
this approach permits to understand the deeper phenomena behind the struc-
ture of system (MFG). In this sense we can see that the two equations in (MFG)
are structurally well connected as well, since one is the dual of the other.

Our analysis in Chapter 4 and Chapter 5 will also rely on this approach,
where we shall give more details on the formulation of the optimization prob-
lems à la Benamou-Brenier in our framework.

Monotonicity implies uniqueness. Assuming that the couplings f and Φ are
monotone in the m variable (and the Hamiltonian is strictly convex in the
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gradient variable), J.-M. Lasry and P.-L. Lions showed the uniqueness of the
solutions of the system (MFG). These monotonicity assumptions are∫

Rd
[ f (x, m1(x))− f (x, m2(x))] d(m1(x)−m2(x)) > 0 ∀ m1, m2 ∈P1(R

d)

and∫
Rd

[Φ(x, m1(x))−Φ(x, m2(x))] d(m1(x)−m2(x)) ≥ 0 ∀ m1, m2 ∈P1(R
d).

This technique can be used for first order models as well. Essentially this type
of monotonicity property implies uniqueness in most of the previous cases.

the master equation

Later in his course at Collège de France (see [Lio08]), P.-L. Lions noticed
that the flow of measures solving the Fokker-Planck equation (from the sys-
tem (MFG)) could be seen as a characteristic trajectory of a Hamilton-Jacobi
equation lifted up to a state space that contains both the position of a typical
agent and the distribution of the population, i.e. the space of probability mea-
sures. The solution of this non-linear PDE defined on an infinite dimensional
space contains all the necessary information to describe entirely the Nash equi-
libria in the game, hence he called it the master equation. In a simple form this
problem formally reads as −∂tU(t, x, µ) + 1

2 |DxU(t, x, µ)|2 + 〈DµU, DxU〉L2
µ
= f , in [0, T[×Rd ×P2(R

d),

U(T, x, µ) = Φ(x, µ),

where DµU stands for the Wasserstein gradient of U. Defining a characteristic
trajectory [0, T] 3 t 7→ mt ∈ P2(Rd) (in a suitable way), the pair (u(t, x) :=
U(t, x, mt), mt) solves a classical first order quadratic system, similar to (MFG):
the HJ equation in is satisfied in viscosity sense and the FP equation holds in
the sense of distributions.

After the formal description of the above problem (see also the lecture notes
of P. Cardaliaguet, [Car13a]), recently there have been carried out some deep
works on its rigorous analysis (see for example the work of W. Gangbo and A.
Świȩch [GŚ14a] on short time existence for first order models and the work of
J.-F. Chassagneux, D. Crisan, F. Delarue, [CCD14] on the analysis second order
models). For further reading on the master equation and connections with
mean field type control problems we refer to the recent works of A. Bensoussan,
J. Frehse and Ph. Yam (see [BFY15b, BFY15a, BFY13]).

long time average of mfgs

The so-called stationary or ergodic MFG models play an important role in the
analysis developed in Chapter 4. These models were the first ones introduced
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by J.-M. Lasry and P.-L. Lions in [LL06a], where it has been also shown the
convergence (as N tends to infinity) of Nash equilibria for N player stochastic
ergodic differential games. A typical stationary MFG system can be written in
the following form:

−ν∆u(x) + H(x,∇u(x))− λ = f (x, m(x)) in Rd

−ν∆m(x)−∇ ·
(
∇pH(x,∇u(x))m(x)

)
= 0 in Rd,∫

Rd
m(x)dx = 1,

∫
Rd

u(x)dx = 0, m ≥ 0.

(MFGstat)

Later it has been understood (see [CLLP13, CLLP13]) that system (MFGstat)
corresponds to the “ergodic limit” of system (MFG). Indeed, with a well-
chosen averaging procedure, one can show that the solutions of (MFG) con-
verge (in a suitable sense as T → ∞) to some solutions of (MFGstat).

We remark also the fact that system (MFGstat) (as its time-dependent ver-
sion) possesses a variational formulation à la Benamou-Brenier which will be
detailed in the next chapter.





4
Second order MFG with density constraints: the

stationary case

I
n this chapter we study second order stationary Mean Field Game
systems under density constraints on a bounded domain Ω ⊂ Rd.
We show the existence of weak solutions for power-like Hamiltonians

with arbitrary order of growth. Our strategy is a variational one, i.e. we
obtain the Mean Field Game system as the optimality condition of a convex
optimization problem, which has a solution. When the Hamiltonian has a
growth of order q′ ∈]1, d/(d − 1)[, the solution of the optimization problem
is continuous which implies that the problem constraints are qualified. Using
this fact and the computation of the subdifferential of the convex functional
(BB) introduced by Benamou-Brenier (see [BB00]), we prove the existence of a
solution of the MFG system. In the case where the Hamiltonian has a growth
of order q′ ≥ d/(d− 1), the previous arguments do not apply and we prove
the existence by means of an approximation argument.

This chapter is based on a joint work with F. Silva which has recently been
accepted for publication to J. Math. Pures Appl. (see [MS15b]).

4.1 introduction

Let us recall the (variational) formulation of some basic MFG models after
which we shall motivate our results. As we discussed previously – in its sim-
plest form – for symmetric differential games as the number of players tends to

137



138 second order mfg with density constraints : the stationary case

infinity, limits of Nash equilibria can be characterized in terms of the solution
of the following coupled PDE system:

−∂tu(t, x)− ν∆u(t, x) + H(x,∇u(t, x)) = f [m(t)](x) in [0, T[×Rd

∂tm(t, x)− ν∆m(t, x)−∇ ·
(
∇pH(x,∇u(t, x))m(t, x)

)
= 0 in ]0, T]×Rd,

m(0, x) = m0, u(T, x) = g(x) in Rd.
(MFG)

where H(x, ·) is convex. The Hamilton-Jacobi-Bellman (HJB) equation in (MFG)
characterizes the value function u[m] associated to a stochastic optimal control
problem solved by a typical player whose cost function depends at each time t
on the distribution m(t, ·) of the other agents. We remark that this interaction
can be global, e.g. if f [m(t, ·)](x) is a convolution of m(t, ·) with another func-
tion, or local, i.e. when f [m(t)](x) can be identified to a function f (x, m(t, x)).
The Fokker-Planck equation (FP) in (MFG) describes the evolution m[u] of the
initial distribution m0 when all the agents follow the optimal feedback strategy
computed by the typical agent.

For local couplings f (·, m), system (MFG) can be obtained (at least formally)
as the optimality condition of problem

min
∫ T

0

∫
Rd

{
m(t, x)L

(
x,

w(t, x)
m(t, x)

)
+ F(x, m(t, x))

}
dx dt +

∫
Rd

g(x)m(T, x)dx,

s.t. ∂tm− ν∆m +∇ · (w) = 0, m(0, x) = m0,
(4.1.1)

with F(x, m) :=
∫ m

0
f (x, m′)dm′, L(x, v) := H∗(x,−v) (where the Fenchel con-

jugate H∗(x, v) is calculated on the second variable of H) and m0 ∈ L∞(Rd)

satisfying that m0 ≥ 0 and
∫

Rd
m0 dx = 1. This type of approach, including

also the degenerate first order case (ν = 0), has been studied extensively in
the last years in a series of papers [Car13b, Gra14, CG15, CGPT14]. The op-
timization problem above recalls the so-called Benamou-Brenier formulation
of the 2-Wasserstein distance between two probability measures, which gives
a fluid mechanical or dynamical interpretation of the Monge-Kantorovich op-
timal transportation problem (see [BB00, CCN13] and also the formula (BB)
presented before). We refer the reader to [ACCD12], [LST10] and the recent
work [BC15] for some optimization methods to solve numerically (MFG) based
on the formulation (4.1.1).
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With a well-chosen time-averaging procedure, one can introduce station-
ary MFG systems as an ergodic limit of time dependent ones (see [CLLP13,
CLLP12]),

−ν∆u(x) + H(x,∇u(x))− λ = f (x, m(x)) in Rd

−ν∆m(x)−∇ ·
(
∇pH(x,∇u(x))m(x)

)
= 0 in Rd,∫

Rd
m(x)dx = 1,

∫
Rd

u(x)dx = 0, m ≥ 0.

(MFG∞)

At least formally (MFG∞) can be obtained as the first order optimality condi-
tion of the problem

min
∫

Rd

{
m(x)L

(
x,−w(x)

m(x)

)
+ F(x, m(x))

}
dx,

s.t. − ∆m +∇ ·w = 0,
∫

Rd
m(x)dx = 1, m ≥ 0.

(4.1.2)

The objective of this chapter is to rigorously study the optimization problem
(4.1.2) with the additional constraint m ≤ 1 a.e. Formally this should be linked
to a system like (MFG∞) with m ≤ 1 a.e. and an additional Lagrange multiplier
corresponding to the new constraint. Moreover, in view of the interpretation
of (MFG) as a continuous Nash equilibria, we expect that our derivation of an
MFG system with a density constraint is linked to symmetric games with a
large number of players on which “hard congestion” constraints are imposed.
Similar models in the framework of crowd motion, tumor growth, etc. have
been already studied in the literature (see for instance [MRCS10, MRCS14]
and Chapter 2). In the case of MFG systems, we refer the reader to the papers
[BDFMW14] (for evolutive systems) and [GM14] (for stationary systems), in
which “soft-congestion” effects, meaning that people slow down when they
arrive to congested zones, are studied. Let us remark that in [Lio08] it is also
explained how to study systems like (MFG) by means of a (degenerate) elliptic
equation in space-time. However, this approach with the additional constraint
m ≤ 1 a.e. seems to be ineffective.

The question of hard congestion effects/density constraints for MFG systems
was first raised in [San12b]. More precisely, in the cited reference the author
asks if a MFG system can be obtained with the additional constraint that the
density of the population does not exceed a given threshold, for instance 1. To
the best of our knowledge, the analysis from this chapter is the first attempt to
investigate this question. The stationary setting plays an important role in our
study and we expect to extend our results to the dynamic case in some future
research.

Let Ω ⊂ Rd (d ≥ 2) be a non-empty bounded open set with smooth boun-
dary, satisfying a uniform interior ball condition, and such that the Lebesgue
measure of Ω is strictly greater than 1. Moreover, let f : Ω ×R → R be a
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continuous function which is non-decreasing in the second variable and define
`q : R×Rd → R (with R := R∪ {+∞}) and Bq : W1,q(Ω)× Lq(Ω)d → R as

`q(a, b) :=


1
q
|b|q
aq−1 , if a > 0,

0, if (a, b) = (0, 0),

+∞, otherwise.

Bq(m, w) :=
∫

Ω
`q(m(x), w(x))dx.

(4.1.3)

Let us remark that the choice of the notation Bq for the above functional is
not random, since this is precisely the Benamou-Brenier functional – as in (BB) –
restricted to the space W1,q(Ω)× Lq(Ω)d.

We consider the problem

min Bq(m, w) +
∫

Ω
F(x, m(x))dx,

s.t. − ∆m +∇ · (w) = 0 in Ω, (∇m−w) · n = 0 on ∂Ω,∫
Ω

m(x)dx = 1, 0 ≤ m ≤ 1,

(Pq)

where, as before, F(x, m) is an antiderivative of f (x, m) with respect to the
second variable. We divide our main results in two classes, depending on the
value of q.

Case 1: q > d. In this case, using the classical direct method of the calculus of
variations, we prove the existence of a solution (m, w) of (Pq). Using that m ∈
W1,q ↪→ C(Ω), we are able to compute the subdifferential of Br(m, w) for any
1 < r ≤ q. It seems that this type of result is new in the literature. Moreover,
the continuity of m allows us to prove that the constraints in (Pq) are qualified
(see e.g. [BS00, Chapter 2]). Using the computation of the subdifferential with
r = q and classical arguments in convex analysis, we derive the existence of
u ∈W1,s(Ω) (s ∈ [1, d/(d− 1)[), λ ∈ R and two nonnegative regular measures
µ and p such that

−∆u + 1
q′ |∇u|q′ + µ− p− λ = f (x, m), in Ω,

−∆m−∇ ·
(

m|∇u|
2−q
q−1∇u

)
= 0, in Ω,

∇m · n = ∇u · n = 0, on ∂Ω,∫
Ω

m dx = 1, 0 ≤ m ≤ 1, in Ω,

spt(µ) ⊆ {m = 0}, spt(p) ⊆ {m = 1},

(MFGq)

where the system of PDEs is satisfied in the weak sense, ‘spt’ denotes the
support of a measure and q′ := q/(q− 1). In the above system, p appears as a
Lagrange multiplier associated to the constraint m ≤ 1 and can be interpreted
as a sort of a “pressure” term. We also compute the dual problem associated
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to (Pq) recovering (MFGq) by duality. Finally, in the open set {0 < m < 1} we
prove some local regularity results for the pair (m, u).

Case 2: 1 < q ≤ d. In this case, even if the existence of a solution still
holds true, m is in general discontinuous, which implies that the arguments
employed in the computation of the subdifferential of Bq(m, w) are no longer
valid. Moreover, the discontinuity of m implies that the constraint 0 ≤ m ≤
1 is in general not qualified. In order to overcome these issues, we use an
approximation argument. By adding the term εBr(m, w) with r > d to the
cost function and using the arguments in Case 1 we obtain a system similar to
(MFGq) depending on ε > 0. Then, by means of some uniform bounds with
respect to ε and recent results on estimates on the gradients for solutions of
elliptic equations with measure data (see [Min07]), as ε ↓ 0 we can prove the
existence of limit points satisfying (MFGq) where the concentration properties
for p and µ have to be understood in a weak sense.

The structure of the chapter is as follows: in Section 4.2 we prove some pre-
liminary results including the computation of the subdifferential of Bq(m, w).
In Section 4.3 we define rigorously problem (Pq) for the case q > d and we
prove the existence of a solution as well as the qualification property of the
constraints. In Section 4.4 we characterize the solutions of (Pq) in terms of
(MFGq) still in the case q > d. Moreover, we prove some local regularity re-
sults and we derive the dual problem. The uniqueness of the solutions is also
discussed. In Section 4.5 we complete the proof of the previous statements for
any 1 < q ≤ d by means of an approximation argument. Finally, in Section
A.3 – as a sort of an appendix – we recall some important results about elliptic
equations with irregular right hand sides, used in the previous sections.

4.2 preliminary results

Let q > 1 be given and set q′ := q/(q− 1). Consider the sets

Aq′ := {(a, b) ∈ R×Rd : a + 1
q′ |b|q

′ ≤ 0},

Aq′ :=
{
(a, b) ∈ L∞(Ω)× L∞(Ω)d, (a(x), b(x)) ∈ Aq′ , for a.e. x ∈ Ω

}
,

and recall the functions `q and Bq defined in (4.1.3). We have the following
result.

Lemma 4.2.1. Suppose that q > d and let 1 < r ≤ q. Then, the following assertions
hold true:

(i) The closure of Ar′ in
(
W1,q(Ω)

)∗ × Lq′(Ω)d is given by

Ar′ =

{
(α, β) ∈M (Ω)× Lr′(Ω)d : α +

1
r′
|β|r′ ≤ 0

}
, (4.2.1)
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where the inequality in (4.2.1) means that for every non-negative φ ∈ C(Ω) we have
that ∫

Ω
φ(x)dα(x) +

1
r′

∫
Ω

φ(x)|β(x)|r′ dx ≤ 0. (4.2.2)

(ii) Restricted to W1,q(Ω)× Lq(Ω)d, the functional Br is convex and l.s.c. Moreover,
for every (m, w) ∈W1,q(Ω)× Lq(Ω)d, it holds that

Br(m, w) = sup
(α,β)∈Ar′

∫
Ω
[α(x)m(x) + β(x) ·w(x)] dx

= sup
(α,β)∈Ar′

[∫
Ω

m(x)dα(x) +
∫

Ω
β(x) ·w(x)dx

]
,

(4.2.3)

and B∗r (α, β) = χAr′
(α, β) for all (α, β) ∈

(
W1,q(Ω)

)∗ × Lq′(Ω)d.

Proof. (i) Let (αn, βn) ∈ Ar′ converging to some (α, β) in
(
W1,q(Ω)

)∗× Lq′(Ω)d.
Then, for any non-negative φ ∈W1,q(Ω) we have that∫

Ω
φ(x)αn(x)dx ≤ − 1

r′

∫
Ω

φ(x)|βn(x)|r′ dx.

Since βn → β in Lq′(Ω)d, except for some subsequence, |βn(x)|r′ → |β(x)|r′

for a.e. x ∈ Ω. Having positive integrands in the second integral, by Fatou’s
lemma we obtain

〈α, φ〉(W1,q)
∗
,W1,q ≤ −

1
r′

∫
Ω

φ(x)|β(x)|r′ dx for all φ ∈W1,q(Ω), φ ≥ 0.

In particular, letting φ ≡ 1, we have that β ∈ Lr′(Ω)d and by [Sch66, Chapitre
I, Théorème V] we can extend α to a linear functional over C(Ω), i.e. to an
element in M (Ω), satisfying (4.2.2). This proves one inclusion in (4.2.1).

In order to prove the converse inclusion, let (α, β) be an element of the r.h.s.
of (4.2.1). Equivalently,

αac +
1
r′
|β|r′ ≤ 0 a.e. in Ω and αs ≤ 0,

where αac and αs denote the absolutely continuous and singular parts of α with
respect to the Lebesgue measure, respectively. We shall construct different
approximations for αac and β on the one hand and for αs on the other hand.
For γ > 0 and x ∈ Rd we set Bγ(x) = {y ∈ Rd : |y − x| < γ}. Consider

a mollifier η : Rd → R satisfying that η ∈ C∞
c (Rd), η ≥ 0,

∫
Rd

η(x) dx = 1,

spt(η) ⊆ B1(0) and η(x) = η(−x) for all x ∈ Rd. Now, for ε > 0 set

Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε}, ηε(x) :=
1
εd η(x/ε),

and for all x ∈ Ω and i = 1, ..., d, let us define

α̃ε(x) :=
∫

Ω
ηε(x− y)αac(y)dy1Ωε

(x), β̃i
ε(x) :=

∫
Ω

ηε(x− y)βi(y)dy1Ωε
(x).
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By convexity and Jensen’s inequality, for all x ∈ Ωε we have that

α̃ε(x) +
1
r′
|β̃ε(x)|r′ ≤

(
α +

1
r′
|β|r′

)
∗ ηε(x) ≤ 0, (4.2.4)

and so (α̃ε, β̃ε) ∈ Ar′ and one easily checks that α̃ε → αac in M (Ω) and β̃ε → β

in Lq′(Ω)d.
In order to approximate αs let us define the following kernel: for x ∈ Ω and

ε > 0 let us set ρx
ε :=

(
1Bε(x)∩Ω

)
/|Bε(x) ∩Ω|. Note that for all x ∈ Ω we have

that ρx
ε → δx in M (Ω) as ε ↓ 0. Given y ∈ Ω and ε > 0 let us define

α̂ε(y) :=
∫

Ω
ρx

ε (y) dαs(x).

Observe that for all ε > 0 the function α̂ε is non-positive and, due to our
regularity assumption on ∂Ω, we have that α̂ε ∈ L∞(Ω). Let us show that
α̂ε → αs in M (Ω). For any φ ∈ C(Ω), Fubini’s theorem yields∫

Ω
φ(y)α̂ε(y) dy =

∫
Ω

φ(y)
∫

Ω
ρx

ε (y) dαs(x) dy =
∫

Ω

∫
Ω

φ(y)ρx
ε (y) dy dαs(x)

→
∫

Ω
φ(x) dαs(x) as ε ↓ 0,

where we have used that φ is uniformly continuous in Ω (since this set is
compact) and so∫

Ω
φ(y)ρx

ε (y) dy→ φ(x) uniformly in Ω as ε ↓ 0.

This proves the convergence of α̂ε. Defining, αε := α̂ε + α̃ε we have that
(αε, β̃ε) ∈ Ar′ and (αε, β̃ε) → (α, β) in M (Ω) × Lq′(Ω)d. The embedding
M (Ω) ↪→

(
W1,q(Ω)

)∗ implies that the convergence also holds in (W1,q(Ω))∗×
Lq′(Ω)d, from which assertion (i) follows.

In order to prove (ii), it suffices to show (4.2.3) (here we remark that by the
Sobolev embedding we identify m with an element in C(Ω), hence the second
integral is meaningful). Indeed, (4.2.3) shows that Br is the supremum of linear
and continuous functionals, hence it is convex and l.s.c. For k ∈N set

Ar′ ,k :=
{
(a, b) ∈ Ar′ ; a ≥ −k, max

i=1,...,d
|bi| ≤ k

}
.

Since a.e. in Ω we have that

lim
k→∞

sup
(a,b)∈Ar′ ,k

{am(x) + b ·w(x)} = sup
(a,b)∈Ar′

{am(x) + b ·w(x)} ,

and (a, b) = (0, 0) ∈ Ar′ ,k, by monotone convergence we have that

Br(m, w) = lim
k→∞

∫
Ω

sup
(a,b)∈Ar′ ,k

[am(x) + b ·w(x)]dx. (4.2.5)
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Note that if |{m < 0}| > 0, then by (4.2.1), we readily check that both sides in
(4.2.3) are equal to +∞. On the other hand, note that for every (m, w) ∈ R×Rd

with m ≥ 0 there exists a unique pair (a(m, w), b(m, w)) ∈ R×Rd such that

sup
(a,b)∈Ar′ ,k

{am + b · w} = a(m, w)m + b(m, w) ·w.

Indeed,

b(m, w) = argmax|b|∞≤k

{
−|b|

r′

r′
m + b · w

}
and a(m, w) = −|b(m, w)|r′

r′
,

(4.2.6)

which are well-defined by the strict concavity of the objective function. More-
over this implies that R+ × Rd 3 (m, w) 7→ (a(m, w), b(m, w)) ∈ R × Rd is
continuous and measurable and thus

W1,q(Ω)× (Lq(Ω))d 3 (m, w) 7→ (a(m, w), b(m, w)) ∈ L∞(Ω)× L∞(Ω)d

is well defined. Therefore, defining

Ar′ ,k :=
{
(a, b) ∈ L∞(Ω)× L∞(Ω)d, (a(x), b(x)) ∈ Ar′ ,k for a.e. x ∈ Ω

}
we get that∫

Ω
sup

(a,b)∈Ar′ ,k

[am(x) + b ·w(x)]dx = sup
(a,b)∈Ar′ ,k

∫
Ω
[a(x)m(x) + b(x) ·w(x)]dx,

which, together with (4.2.5), implies that

Br(m, w) = lim
k→∞

sup
(a,b)∈Ar′ ,k

∫
Ω
[a(x)m(x) + b(x) ·w(x)]dx

= sup
(a,b)∈Ar′

∫
Ω
[a(x)m(x) + b(x) ·w(x)]dx,

proving the first equality in (4.2.3). The second equality follows from (i) and the
continuity of the considered linear application. Finally, the identity B∗r = χAr′

is a consequence of (i) and (4.2.3).

Remark 4.2.1. We refer the reader to [San15, Chapter 5] for the proof of the semicon-
tinuity of Br in a more general setting.

For m ∈W1,q(Ω) denote

Em
0 :=

{
x ∈ Ω : m(x) = 0

}
and Em

1 =
{

x ∈ Ω : m(x) > 0
}

.

Note that if q > d, then Em
0 is closed and Em

1 is open.
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Theorem 4.2.2. Let (m, w) ∈ W1,q(Ω)× Lq(Ω)d (q > d) and 1 < r ≤ q. Suppose
that Br(m, w) < ∞. Then, if v := (w/m)1Em

1
/∈ Lr(Ω)d we have that ∂Br(m, w) =

∅. Otherwise, Br is subdifferentiable at (m, w) and

∂Br(m, w) =

{
(α, β) ∈ Ar′ : α Em

1 = − 1
r′
|v|r and β Em

1 = |v|r−2v
}

.

(4.2.7)

In particular, the singular part of α is concentrated in Em
0 .

Proof. First note that since Br(m, w) < ∞, we have that |{m < 0}| = 0 and
w = 0 a.e. in Em

0 . By Lemma 4.2.1 for all (m, w) ∈ W1,q(Ω)× Lq(Ω)d, m ≥ 0
we have that

∂Br(m, w) = argmax(α,β)∈Ar′

{∫
Ω

m dα +
∫

Ω
β ·w dx

}
.

We claim that

sup
(α,β)∈Ar′

{∫
Ω

m dα +
∫

Ω
β ·w dx

}
= sup

β∈Lr′ (Ω)d

− 1
r′

∫
Ω

m|β|r′ dx +
∫

Ω
β ·w dx.

(4.2.8)

Indeed, the inequality “≥” is immediate. To show the converse inequality for
every ε > 0 let (αε, βε) ∈ Ar′ such that∫

Ω
m(x)dαε(x) +

∫
Ω

βε(x) ·w(x)dx

≥ sup
(α,β)∈Ar′

{∫
Ω

m(x)dα(x) +
∫

Ω
β(x) ·w(x)dx

}
− ε.

Then, denoting by ŝ the r.h.s. of (4.2.8), by (4.2.1) and the previous inequality
we have that

ŝ ≥ − 1
r′

∫
Ω

m|βε|r
′
dx +

∫
Ω

βε ·w dx

≥ sup
(α,β)∈Ar′

{∫
Ω

m(x)dα(x) +
∫

Ω
β(x) ·w(x)dx

}
− ε

and so (4.2.8) follows by letting ε → 0. Let us prove now that if v /∈ Lr(Em
1 )

d,
then ∂Br(m, w) = ∅. We argue by contradiction supposing that there exists
(α̂, β̂) ∈ ∂Br(m, w). By (4.2.8) and the assumption w = 0 a.e. in Em

0 , β̂ must be
a solution of the problem

inf
β∈Lr′ (Ω)d

J(β), where J(β) :=
∫

Ω

[
1
r′
|β|r′ − v · β

]
m dx. (4.2.9)
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Since mv = w ∈ Lq(Ω)d and q ≥ r, we have that J is Fréchet differentiable and

0 = DJ(β̂)β =
∫

Em
1

[
|β̂|r′−2 β̂− v

]
· βm dx for all β ∈ Lr′(Ω)d, (4.2.10)

which implies that, since β is arbitrary and m > 0 on Em
1 ,

v(x) = |β̂(x)|r′−2 β̂(x) for a.e. x ∈ Em
1 , (4.2.11)

which is a contradiction because |β̂|r′−2 β̂ ∈ Lr(Em
1 )

d. Now, assume that v ∈
Lr(Em

1 )
d and let us prove that ∂Br(m, w) 6= ∅. Define the functional

Ĵ : Lr′
m(E1)

d → R

(where Lr′
m(Em

1 ) denotes the space of measurable functions defined in Em
1 which

are integrable on the power r′ w.r.t. the measure m) as

Ĵ(β) =
1
r′

∫
Em

1

|β|r′m dx−
∫

Em
1

v · βm dx.

Since r′ > 1, we have that Ĵ is coercive, continuous and strictly convex. Since
Lr′

m(Em
1 )

d is a reflexive Banach space, classical results in convex analysis imply
the existence of a unique β̄ ∈ Lr′

m(Em
1 )

d such that Ĵ(β̄) = inf{ Ĵ(β) : β ∈
Lr′

m(Em
1 )

d}. The first order optimality condition implies that β̄ satisfies (4.2.10)-
(4.2.11) and so

β̄(x) = |v(x)|r−2v(x) for a.e. x ∈ Em
1 . (4.2.12)

Since v ∈ Lr(Em
1 )

d we have that β̄ ∈ Lr′(Em
1 )

d. Moreover, using that Lr′(Em
1 )

d ⊆
Lr′

m(Em
1 )

d, relation (4.2.8) implies that (−|β̄|r′/r′, β̄) ∈ ∂Br(m, w) and so

∂Br(m, w) 6= ∅.

Now, let (α, β) ∈ ∂Br(m, w). The expression for Ar′ in (4.2.1) implies that
(−(1/r′)|β|r′ , β) attains the supremum on the r.h.s. of (4.2.8). Therefore, we
must have∫

Ω
m dα +

1
r′

∫
Ω
|β|r′m dx =

∫
Em

1

m dα +
1
r′

∫
Em

1

|β|r′m dx = 0. (4.2.13)

Let us prove that α Em
1 is absolutely continuous w.r.t. the Lebesgue measure

restricted to Em
1 . Let B ∈ B(Em

1 ) a Borel set such that |B| = 0. Then, (4.2.13)
implies that ∫

Em
1 \B

m dα +
1
r′

∫
Em

1 \B
|β|r′m dx +

∫
B

m dα = 0.

By a standard argument using Lusin’s theorem (to approximate the 1Em
1 \B by

continuous functions) and (4.2.1) we must have that
∫

B
m dα = 0 and since
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m > 0 on Em
1 we conclude that α(B) = 0. Thus α Em

1 � L d Em
1 . In

particular, spt(αs) ⊆ Em
0 and, denoting still by α the density of α restricted to

Em
1 , α(x) + (1/r′)|β(x)|r′ ≤ 0 for a.e. x ∈ Em

1 . Therefore, by (4.2.13) we have
that ∫

Em
1

m
[

α +
1
r′
|β|r′

]
dx = 0,

and since m > 0 on Em
1 , we conclude that α = − 1

r′ |β|r
′

a.e. in Em
1 . Using (4.2.8)

we get that β solves problem (4.2.9) and so β = |v|r−2v a.e. in Em
1 from which

the result follows.

Remark 4.2.2. Note that redefining the domain of Br as C(Ω)× Lq(Ω)d, the above
proof shows that the conclusions of the Theorem 4.2.2 are still valid in this setting.

4.3 the optimization problem

In this entire section we suppose that q > d. Let f : Ω × R → R be a
continuous function in both variables and increasing in the second variable.
Let us define the function

Ω×R 3 (x, m) 7→ F(x, m) :=
∫ m

0
f (x, s)ds ∈ R.

Note that for every fixed x ∈ Ω the function m 7→ F(x, m) is convex. Let us
define

F : W1,q(Ω)→ R as F (m) :=
∫

Ω
F(x, m(x))dx. (4.3.1)

Given w ∈ Lq(Ω)d we consider the following elliptic PDE −∆m +∇ ·w = 0 in Ω,

(∇m−w) · n = 0 on ∂Ω.
(4.3.2)

We say that m ∈W1,q(Ω) is a weak solution of (4.3.2) if∫
Ω
∇m(x) · ∇ϕ(x)dx =

∫
Ω

w(x) · ∇ϕ(x)dx ∀ φ ∈ C1(Ω) (4.3.3)

By Lemma A.3.1 and Lemma A.3.2 in Section A.3 for a given w ∈ Lq(Ω)d equa-

tion (4.3.2) has a unique solution m ∈ W1,q(Ω) satisfying that
∫

Ω
m(x)dx = 1.

We consider the following optimization problem:

inf
(m,w)∈KP

Jq(m, w) := Bq(m, w) +F (m), (Pq)

where the set of constraints KP is defined as

KP :=

{
(m, w) ∈W1,q(Ω)× Lq(Ω)d ; such that (m, w) satisfies (4.3.2),

∫
Ω

m(x)dx = 1, m ≤ 1

}
.
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Remark 4.3.1. Since Bq = Bq + χ{m≥0}, the constraint m ≥ 0 is implicitly imposed
in (Pq).

Given s ∈ [1, ∞[ recall the notation Wk,s
� (Ω) :=

{
u ∈Wk,s(Ω) :

∫
Ω

u = 0
}

.

Now, let us define A : W1,q(Ω)→
(

W1,q′
� (Ω)

)∗
and B : Lq(Ω)d →

(
W1,q′
� (Ω)

)∗
as

〈〈Am, φ〉〉 :=
∫

Ω
∇m(x) · ∇φ(x)dx, 〈〈Bw, φ〉〉 := −

∫
Ω

w(x) · ∇φ(x)dx,

for all m ∈ W1,q(Ω), w ∈ Lq(Ω)d and φ ∈ W1,q′
� (Ω), where we used 〈〈·, ·〉〉

to denote the duality product between
(

W1,q′
� (Ω)

)∗
and W1,q′

� (Ω). Since A

and B are linear bounded operators, the adjoint operators A∗ : W1,q′
� (Ω) →(

W1,q(Ω)
)∗ and B∗ : W1,q′

� (Ω)→ Lq′(Ω)d are well-defined and given by

〈A∗φ, m〉 =
∫

Ω
∇φ(x) · ∇m(x)dx, 〈B∗φ, w〉q′ ,q = −

∫
Ω
∇φ(x) ·w(x)dx,

where we have used 〈·, ·〉 to denote the duality product between (W1,q(Ω))∗

and W1,q(Ω) and 〈·, ·〉q′ ,q to denote the duality product between Lq′(Ω)d and
Lq(Ω)d. Now, let I : W1,q(Ω) → C(Ω) be the Sobolev injection, which is well-
defined since q > d (see [Ada75]), and let C := {z ∈ C(Ω) ; z ≤ 1}. Let

us set X := W1,q(Ω)× Lq(Ω)d, Y :=
(

W1,q′
� (Ω)

)∗
×R× C(Ω) and define the

application G : X → Y as

G(m, w) :=
(

Am + Bw,
∫

Ω
m(x)dx− 1, Im

)
.

By setting K := {0} × {0} × C ⊆ Y we have that KP can be rewritten as

KP = {(m, w) ∈ X : G(m, w) ∈ K}.

Since A, B and I are linear bounded operators, we have that KP is a closed and
convex subset of W1,q(Ω)× Lq(Ω)d.

Theorem 4.3.1. Problem (Pq) has (at least) one solution (m, w).

Proof. Since |Ω| > 1 we have that (m, w) := (1/|Ω|, 0) belongs to KP and the
cost function is finite. Now, let (mk, wk) ∈ KP be a minimizing sequence. Since
m ≤ 1 a.e. in Ω and Bq(mk, wk) is bounded uniformly in k, we get that ‖wk‖Lq

is bounded. Therefore, there exists w ∈ Lq(Ω)d such that, except for some
subsequence, wk ⇀ w weakly in Lq(Ω)d. In addition, by Lemma A.3.2 and
the boundedness of wk in Lq(Ω)d we have that ∇mk is uniformly bounded in

Lq(Ω)d. Since
∫

Ω
mk(x)dx = 1, Poincaré’s inequality,∥∥∥∥mk −

1
|Ω|

∥∥∥∥
Lq
≤ C‖∇mk‖Lq
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implies that mk is bounded in W1,q(Ω). Thus, there exists m ∈ W1,q(Ω) such
that, except for some subsequence, mk ⇀ m weakly in W1,q(Ω). Using these

convergences, we get that Am + Bw = 0 and
∫

Ω
m(x)dx = 1. The continuous

embedding I preserves the weak convergence and C is weakly closed in C(Ω).
Thus, Im ∈ C, which implies that (m, w) ∈ KP.

Since Jq is convex and l.s.c. w.r.t the weak topology in W1,q(Ω)× Lq(Ω)d (by
Lemma 4.2.1) we get that Jq(m, w) = inf{Jq(m1, w1) : (m1, w1) ∈ KP}.

Now, we prove a constraint qualification result for problem (Pq) (see e.g. [BS00,
Chapter 2]), which is crucial for deriving optimality conditions. We set

dom(Jq) := {(m, w) ∈W1,q(Ω)× Lq(Ω)d : Jq(m, w) < ∞}.

Lemma 4.3.2. We have that

0 ∈ int
{

G(dom(Jq))−K
}

. (4.3.4)

Proof. We need to prove that for any given (δ1, δ2, δ3) ∈ Y small enough there
exists (m, w, c) ∈ dom(Jq)× C such that

Am + Bw = δ1,
∫

Ω
m(x)dx = 1 + δ2, I(m)− c = δ3. (S)

We observe that (m, 0) ∈ dom(Jq), for all m ∈ W1,q(Ω) ∩ dom(F ) non-
negative, which implies that we can search the solution of (S) in the form
(m, 0, c) ∈ dom(Jq)× C. First of all, note that for m0 := 1/|Ω| we have that

Am0 = 0,
∫

Ω
m0(x)dx = 1, Im0 = m0 ∈ int(C).

By Lemma A.3.2 (see Section A.3), there exists m1 ∈W1,q(Ω) such that

Am1 = δ1 and
∫

Ω
m1(x)dx = 1 + δ2. (4.3.5)

Setting δm := m0 −m1, we obtain that Aδm = −δ1 and
∫

Ω
δm(x)dx = −δ2. By

Lemma A.3.2 the linear bounded operator W1,q(Ω) 3 m 7→
(

Am,
∫

Ω
m(x)dx

)
∈(

W1,q′
� (Ω)

)∗
×R is surjective and so, by the Open Mapping Theorem, there

exists h ∈W1,q(Ω) such that

Ah = 0,
∫

Ω
h(x)dx = 0 and ‖h− δm‖W1,q = O

(
‖(δ1, δ2)‖(W1,q′

� (Ω)
)∗
×R

)
.

In particular, as q > d the Sobolev inequality implies that

‖I(h)− I(δm)‖L∞ = O
(
‖(δ1, δ2)‖(W1,q′

� (Ω)
)∗
×R

)
. (4.3.6)



150 second order mfg with density constraints : the stationary case

Now, let r := h − δm and for γ > 0 let us define mγ := m1 + γh, which by
construction solves (4.3.5). Since m0 ∈ int(C), if γ is near to one (and δ1, δ2

are small enough) then, by (4.3.6), I(mγ) = I(m1) + γI(δm) + γI(r) ∈ int(C).
Thus, if ‖δ3‖L∞ is small enough we have that c := I(mγ)− δ3 ∈ int(C). Thus,
(mγ, 0, c) solves (S) and (mγ, 0) ∈ dom(Jq). The result follows.

4.4 optimality conditions and characterization of the solu-
tions

The purpose of this section is to derive optimality conditions for problem
(Pq) and, as a consequence, to obtain the existence of solutions of (MFGq). As
in the previous section we will assume in all the statements that q > d. Our
strategy relies on a “direct method”, which uses the constraint qualification
condition established in Lemma 4.3.2 and the characterization of the subdif-
ferential of Bq (see Theorem 4.2.2). The uniqueness and local regularity of the
solutions are also discussed. Moreover, in Subsection 4.4.1 we formulate the
associated dual problem, and we provide an alternative (but related) argument
to derive optimality conditions.

Let us define the Lagrangian L : W1,q(Ω) × Lq(Ω)d ×W1,q′
� (Ω) ×M (Ω) ×

R→ R as

L(m, w, u, p, λ) := Jq(m, w)− 〈〈Am + Bw, u〉〉+
∫

Ω
Im dp + λ

(∫
Ω

m dx− 1
)

= Jq(m, w)− 〈A∗u− I∗p− λ, m〉 −
∫

Ω
B∗u ·w dx− λ.

(4.4.1)

Remark 4.4.1. Since the inclusion W1,q(Ω) ↪→ C(Ω) is dense, for every measure
p ∈ M (Ω) the adjoint of the injection operator I∗p at p can be identified uniquely
with the restriction of p to W1,q(Ω). Thus, for notational convenience we will still
write p for I∗p.

Recall that for a Banach space X and a convex closed subset K ⊆ X, the
normal cone to K at x ∈ K is defined as

NK(x) := {x∗ ∈ X∗ : 〈x∗, z− x〉X∗ ,X ≤ 0, ∀z ∈ K}, (4.4.2)

where 〈·, ·〉X∗ ,X denotes the duality pairing of X∗ and X. Using [BS00, Example
2.63] we have

NK(G(m, w)) =
{
(u, λ, p) ∈W1,q′

� (Ω)×R×M+(Ω) ; spt(p) ⊆ {m = 1}
}

.

(4.4.3)

Now, we provide the first order optimality conditions associated to a solution
(m, w) of (Pq).
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Theorem 4.4.1. Let (m, w) ∈ KP be a solution of problem (Pq). Then,

v := (w/m)1{m>0} ∈ Lq(Ω)d

and there exists (u, p, λ) ∈ W1,s(Ω) ×M+(Ω) ×R for all s ∈]1, d/(d − 1)[ and
(α, β) ∈ ∂Bq(m, w) such that A∗u ∈M (Ω) and the following optimality conditions
hold true

α + f (·, m)− A∗u + p + λ = 0,

β = B∗u,

Am + Bw = 0,

spt(p) ⊆ {m = 1}, 0 ≤ m ≤ 1,
∫

Ω
m dx = 1,

∫
Ω

u dx = 0,

(4.4.4)

where the first equality holds in M (Ω). Conversely, if there exists (α, β, u, p, λ) ∈
∂Bq(m, w) ×W1,q′(Ω) ×M+(Ω) × R such that (4.4.4) holds true, then (m, w)

solves (Pq).

Proof. By Lemma 4.3.2 the problem is qualified (see e.g. [BS00, Chapter 2]).
Thus, by classical results in convex analysis (see e.g. [BS00, Theorem 2.158 and
Theorem 2.165]; see also in Appendix A), we have the existence of (u, p, λ) ∈
NK(G(m, w)) such that

(0, 0) ∈ ∂(m,w)L(m, w, u, p, λ). (4.4.5)

Since Bq is finite at (1/|Ω|, 0) and the other terms appearing in L are differen-
tiable, by [ET76, Chapter 1, Proposition 5.6] and (4.4.5), we must have that Bq

is subdifferentiable at (m, w). Thus, by Theorem 4.2.2 and (4.4.2) we get that
v ∈ Lq(Ω)d and there exists (α, β) ∈ Aq′ such that (4.4.4) holds true, with the
first equation being an equality in

(
W1,q(Ω)

)∗. Since, except by A∗u, all the
other terms can be identified with elements in M (Ω), we have that A∗u can
be identified to an element of M (Ω). Using classical elliptic regularity theory
(see [Sta65a, Théorème 9.1]) we get that u ∈ W1,s

� (Ω) for any s ∈]1, d/(d− 1)[.
The fact that (4.4.4) is a sufficient condition follows also by the convexity of the
problem (see [BS00, Theorem 2.158]).

As a corollary we immediately obtain the following existence result for a
MFG type system with density constraints
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Corollary 4.4.2. There exists (m, u, µ, p, λ) ∈ W1,q(Ω) ×W1,s
� (Ω) ×M+(Ω) ×

M+(Ω)×R (s ∈]1, d/(d− 1)[) such that

−∆u + 1
q′ |∇u|q′ + µ− p− λ = f (x, m) in Ω,

∇u · n = 0 on ∂Ω,

−∆m−∇ ·
(

m|∇u|
2−q
q−1∇u

)
= 0 in Ω,

∇m · n = 0 on ∂Ω,∫
Ω

m dx = 1, 0 ≤ m ≤ 1, in Ω,

spt(µ) ⊆ {m = 0}, spt(p) ⊆ {m = 1},

(MFGq)

where the coupled system for (u, m) is satisfied in the following weak sense: for all
ϕ ∈ C1(Ω)∫

Ω
∇u · ∇ϕ dx +

∫
Ω

1
q′
|∇u|q′ϕ dx− λ

∫
Ω

ϕ dx +
∫

Ω
ϕ d(µ− p)=

∫
Ω

f (x, m(x))ϕ(x)dx,∫
Ω

(
∇m + m|∇u|

2−q
q−1∇u

)
· ∇ϕ dx= 0.

(4.4.6)

Let us define Em
2 := {x ∈ Ω : 0 < m(x) < 1}. Note that by the continuity of

m, Em
2 is an open set.

Remark 4.4.2 (The uniqueness of the solutions). Assuming that the coupling f
is strictly increasing in its second variable, the objective functional in (Pq) becomes
strictly convex in the m variable (and the set KP is convex). Thus, the function m ∈
W1,q(Ω) in (MFGq) is unique, which implies also the uniqueness of w ∈ Lq(Ω)d.
In particular, ∇u ∈ Lq′(Ω)d is also unique on Em

1 . The first identity in (4.4.6) with
ϕ ∈ C1

c (Em
2 ) implies the uniqueness of λ ∈ R. If ϕ ∈ C1

c (Em
1 ) we obtain∫

Ω
∇u ·∇ϕ dx+

∫
Ω

1
q′
|∇u|q′ϕ dx−λ

∫
Ω

ϕ dx−
∫

Ω
ϕ dp =

∫
Ω

f (x, m(x))ϕ(x)dx,

which together with the condition spt(p) ⊆ {m = 1} yields the uniqueness of p.
Using [BP06, Theorem 3.4] we obtain that on Em

1 u ∈ W1,q′(Ω) is unique on up to
additive constants which may differ on each connected component of the set Em

1 . In
general, we cannot expect uniqueness for µ.

Now, let us discuss some interior regularity properties for the solutions on
the open set Em

2 . Our approach is based on a bootstrapping argument.

Proposition 4.4.3. There exists γ0 ∈]0, 1[ such that

u ∈ C1,γ0
loc (Em

2 ) and m ∈ C1,γ0
loc (Em

2 ). (4.4.7)

If in addition, f ∈ Cj,γ1
loc (Ω×R) for j ∈ {0, 1} and some γ1 ∈]0, 1[, we have that for

some γ2 ∈]0, 1[

u ∈ C2+j,γ2
loc (Em

2 ). (4.4.8)
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Proof. Step 1. We show that there exists k > d such that u ∈ W2,k
loc (Em

2 ). By
the classical Sobolev embeddings, this implies that u ∈ C1,γ

loc (Em
2 ) (for some

γ ∈]0, 1[). Let r1 ∈]q′, d/(d − 1)[. Since u ∈ W1,r1� (Ω) we have that |∇u|q′ ∈
Lr1/q′(Ω). The continuity of f and the density constraint on m imply that
f (·, m(·)) ∈ L∞(Ω). Thus, denoting by δ1 := r1/q′, classical regularity theory
(see [GT83]) yields u ∈ W2,δ1

loc (Em
2 ). In particular, the Sobolev inequality (see

e.g. [Ada75]) yields u ∈ W
1, dδ1

d−δ1
loc (Em

2 ) and so |∇u|q′ ∈ L
dδ1

q′(d−δ1)

loc (Em
2 ). We easily

check that δ2 := dδ1/q′(d − δ1) > δ1 and so u ∈ W2,δ2
loc (Em

2 ). Let us define
the sequence δi+1 := dδi

(d−δi)q′
. Since δi+1 − δi ≥ (q′ + d − dq′)/(d − δi)q′ and

q′ + d− dq′ > 0 , after a finite number of steps we get the existence of i∗ ≥ 2
such that k := δi∗ > d and u ∈W2,k

loc (Em
2 ).

Step 2. Let us prove that m ∈ C1,γ0
loc (Em

2 ) for some γ0 ∈]0, 1[. Since m ∈ W1,q(Ω)

and q > d, we already have that m is Hölder continuous. Having u ∈ C1,γ
loc (Em

2 ),

this implies that ∇u ∈ C0,γ
loc (Em

2 )
d, hence m|∇u|

2−q
q−1∇u ∈ C0,γ̂

loc (Em
2 )

d, for some
γ̂ ∈]0, 1[. Using a Schauder-type estimate (see [GM12, Theorem 5.19]) we get
that m ∈ C1,γ′

loc (Em
2 ) for some γ′ ∈]0, 1[.

Step 3. Using the above regularity for m, if f ∈ C0,γ1
loc (Ω×R), the local Hölder

regularity for 1
q′ |∇u|q′ and [GT83, Corollary 6.9] imply that u ∈ C2,γ′′

loc (Em
2 ) for

some γ′′ ∈]0, 1[. Finally, if f ∈ C1,γ1
loc (Ω×R), the local Hölder regularity of ∇m

and of D2u imply that u ∈ C3,γ′′′

loc (Em
2 ) for some γ′′′ ∈]0, 1[.

Remark 4.4.3. Let us discuss on the ‘sharpness’ of this regularity. Since the Hamilto-
nian is sub-quadratic, its Hessian has a singularity in 0. In general ∇u could vanish,
which means that D2H(∇u) · D2u in general is not in C0,γ even if u ∈ C2,γ. This
regularity is crucial to go one step further in the regularity of m. By the coupling
f (·, m) (and the singularity of D2H) this prevents us to expect more regularity for u
as well.

4.4.1 The dual problem

In order to write explicitly the dual problem we will need the following
Lemma concerning the Legendre-Fenchel transform of F .

Lemma 4.4.4. Let F be defined by (4.3.1). Then its Legendre-Fenchel transform
F ∗ :

(
W1,q(Ω)

)∗ → R is given by

F ∗(m∗) =


∫

Ω
F∗(x, m∗(x))dx, if m∗ ∈M ac(Ω),

+∞, otherwise,
(4.4.9)

where F∗ denotes the Legendre-Fenchel transform of F w.r.t. the second variable.

Proof. The result is a consequence of [Bré72, Section 2].
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We recall that given a Banach space X and a convex closed set K ⊆ X, the
support function σK : X∗ → R is defined as

σK(x∗) := sup
x∈K
〈x∗, x〉X∗ ,X ∀x∗ ∈ X∗.

Proposition 4.4.5. The dual problem of (Pq) (in the sense of convex analysis) has at
least one solution and can be written as

− min
(u,p,λ,a)∈KD

{∫
Ω

F∗(x, a)dx + λ + p(Ω)

}
(PDq)

where

KD :=

{
(u, p, λ, a) ∈W1,q′

� (Ω)×M+(Ω)×R×M ac(Ω) :

A∗u +
1
q′
|B∗u|q′ − p− λ ≤ a

}

where the inequality has to be understood in the sense of measures.

Proof. The dual problem of (Pq) can be written as

max
(u,p,λ)∈

W1,q′
� (Ω)×M (Ω)×R

 inf
(m,w)∈

W1,q(Ω)×Lq(Ω)d

L(m, w, u, p, λ)− σK(u, λ, p)

 , (4.4.10)

where L is defined in (4.4.1) and we recall that K := {0} × {0} × C. The fact
that we have a max instead of a sup in (4.4.10) is justified by Lemma 4.3.2 and
[BS00, Theorem 2.165]. Now, note that

σK(u, λ, p) = σC(p) =

 p(Ω) if p ∈M+(Ω),

+∞ otherwise.
(4.4.11)

On the other hand, we have that

inf
(m,w)

L(m, w, u, p, λ) = − sup
(m,w)

−L(m, w, u, p, λ)

= − sup
(m,w)

{
〈A∗u− p− λ, m〉+

∫
Ω

B∗u ·w dx−Jq(m, w)

}
− λ

= −J ∗q (A∗u− p− λ, B∗u)− λ.
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Since there exists (m, w) ∈ dom(Bq) at which F is continuous (take for exam-
ple (m, w) = (1/|Ω|, 0)), for any (α, β) ∈

(
W1,q(Ω)

)∗ × Lq′(Ω)d we have that
(see e.g. [ABM06, Theorem 9.4.1])

J ∗q (α, β) =
(
Bq +F

)∗
(α, β),

= infa∈(W1,q(Ω))
∗

{
B∗q (α− a, β) +F ∗(a)

}
,

= infa∈(W1,q(Ω))
∗

{
χAq′

(α− a, β) +F ∗(a)
}

,

= infa∈M ac(Ω)

{∫
Ω

F∗(x, a(x))dx : α +
1
q′
|β|q′ ≤ a

}
,

(4.4.12)

where we have used Lemma 4.2.1 and Lemma 4.4.4. Let us prove that the
above minimization problem has a solution. First, by (4.4.9) the integral func-
tional is l.s.c. with respect to the weak−? topology of measures. Let us take a
minimizing sequence an ∈ L1(Ω). There exists a constant C > 0 such that

C ≥
∫

Ω
F∗(x, an(x))dx ≥

∫
Ω
[an(x)y(x)− F(x, y(x))] dx, ∀y ∈ L∞(Ω).

By choosing y(x) = sgn(an(x)) (which is equal to 1 if an(x) ≥ 0 and −1 if
not), we obtain that an is bounded in L1(Ω). Therefore, when the sequence
an is identified to a sequence of measures, we get a weakly−? convergent
subsequence to some a ∈ M (Ω). The constraint is convex and closed with
respect to this convergence, so by the lower semicontinuity of the objective
functional we have that a is a solution and, by Lemma 4.4.4, a ∈ M ac(Ω)

as well. Using this result and (4.4.10), (4.4.11) and (4.4.12), the conclusion
follows.

Using the dual problem, let us provide an alternative, but related way, to
obtain first order necessary and sufficient optimality conditions. By Theorem
4.3.1 and Proposition 4.4.5 we know that that there exist (m, w) ∈ KP and
(u, p, λ, a) ∈ KD optimizers for (Pq) and (PDq) respectively. Moreover, since
Lemma 4.3.2 implies that Problem (Pq) is qualified, by [BS00, Theorem 2.165]
Problem (PDq) has the same value as Problem (Pq). Therefore,

Bq(m, w) +F (m) = −
∫

Ω
F∗(·, a)dx− λ− σC(p),

Am + Bw = 0, m ≤ 1,
∫

Ω
m dx = 1, A∗u− p− λ− a +

1
q′
|B∗u|q′ ≤ 0.

(4.4.13)
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Using the above relations, we obtain

0 = F (m) +
∫

Ω
F∗(·, a)dx + Bq(m, w) + χAq′

(A∗u− p− λ− a, B∗u)

+ λ + σC(p),

= F (m) +
∫

Ω
F∗(·, a)dx + Bq(m, w) + B∗q (A∗u− p− λ− a, B∗u)

+ λ + σC(p),

≥ 〈a, m〉M (Ω),C(Ω) + Bq(m, w) + B∗q (A∗u− p− λ− a, B∗u)

+ λ
∫

Ω
m dx + σC(p),

≥ 〈a, m〉M (Ω),C(Ω) + 〈A
∗u− p− λ− a, m〉M (Ω),C(Ω) +

∫
Ω

B∗u ·w dx

+ λ
∫

Ω
m dx + σC(p),

≥ 〈A∗u− p, m〉M (Ω),C(Ω) +
∫

Ω
B∗u ·w dx + 〈p, m〉M (Ω),C(Ω),

= 〈A∗u, m〉+ 〈B∗u, w〉q′ ,q,

= 〈〈Am, u〉〉+ 〈〈Bw, u〉〉 = 0.

This means that all the inequalities in the previous list are actually equalities.
Thus,

(i) F (m) + F ∗(a) = 〈a, m〉 and so, using the fact that F is differentiable on
W1,q(Ω), we have a = f (·, m).

(ii) Bq(m, w)+B∗q (A∗u− p−λ− a, B∗u) = 〈A∗u− p−λ− a, m〉+ 〈B∗u, w〉q′ ,q,
namely

(A∗u− p− λ− a, B∗u) ∈ ∂Bq(m, w)

(iii) σC(p) = 〈p, m〉M (Ω),C(Ω), which implies that p ∈ NC(m).

Using (4.4.3), (4.4.13) and (i)-(iii) we recover system (4.4.4).

4.5 treating less regular cases via an approximation argument

In this section we provide the proof of the existence of a solution of a suitable
form of (MFGq) when 1 < q ≤ d. Note that given w ∈ Lq(Ω)d the solution m
of (4.3.2) is in general discontinuous. Because of the constraint 0 ≤ m ≤ 1, this
implies that problem (Pq) is in general not qualified (see [BS00, Chapter 2]) and
thus the arguments in the previous section are no longer valid. To handle this
issue, we propose an approach which is based on a regularization argument.

Let us fix 1 < q ≤ d and r > d. For ε > 0 define Jq,ε : W1,r(Ω)× Lr(Ω)d → R

as
Jq,ε(m, w) := Jq(m, w) + εBr(m, w).
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Following the arguments in the proof of Theorem 4.3.1, problem

inf
(m,w)∈KP

Jq,ε(m, w) (Pq,ε)

admits at least one solution (mε, wε). Since mε ∈ C(Ω), Problem (Pq,ε) is qual-
ified. Moreover, since both Bq and Br are continuous at (m̂, ŵ) := (1/|Ω|, 0),
by [ET76, Chapter 1, Proposition 5.6] we have that

∂(Bq(m, w) + εBr(m, w)) = ∂Bq(m, w) + ε∂Br(m, w)

for all (m, w) ∈ W1,r(Ω) × Lr(Ω)d. Therefore, exactly as in the proof of The-
orem 4.4.1, if we define vε := (wε/mε)1Emε

1
we have that vε ∈ Lr(Ω)d and

there exist (uε, pε, λε) ∈W1,s
� (Ω)×M+(Ω)×R (s ∈]1, d/(d− 1)[), (αε,q, βε,q) ∈

∂Bq(mε, wε) and (αε,r, βε,r) ∈ ∂Br(mε, wε) such that

αε,q + εαε,r − A∗uε + f (x, mε) + pε + λε = 0,

βε,q + εβε,r = B∗uε,

Amε + Bwε = 0,∫
Ω

mε dx = 1, 0 ≤ mε ≤ 1, spt(pε) ⊆ {mε = 1}.

(4.5.1)

Now, for ε ≥ 0, let us define Fq,ε, Gq,ε, Hq,ε : Rd → R as

Fq,ε(z) :=
1
q
|z|q + ε

r
|z|r, Gq,ε(z) :=

1
q′
|z|q + ε

r′
|z|r, and Hq,ε(z) := Gq,ε(∇F∗q,ε(z)).

For notational convenience, we set and Hq := Hq,0. Elementary arguments in
convex analysis show that Hq,ε → Hq uniformly over compact sets. System
(4.5.1) can be written in the following alternative form:

Proposition 4.5.1. There exists α̃ε ∈M−(Ω) such that

−∆uε + Hq,ε(−∇uε)− pε − α̃ε − λε = f (x, mε), in Ω,

−∆mε +∇ ·
(

mε∇F∗q,ε(−∇uε)
)

= 0, in Ω,

∇mε · n = 0 ∇uε · n = 0, on ∂Ω.

0 ≤ mε ≤ 1,
∫

Ω
mε dx = 1,

spt(pε) ⊆ {mε = 1}, spt(α̃ε) ⊆ {mε = 0}.

(MFGq,ε)

Proof. By Theorem 4.2.2 we have that

αε,q Emε
1 = − 1

q′
|vε|q, αε,r Emε

1 = − 1
r′
|vε|r,
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βε,q Emε
1 = |vε|q−2vε, βε,r Emε

1 = |vε|r−2vε.

On the other hand, since ∇uε ∈ Lr′(Ω)d we have that vε := ∇F∗q,ε(−∇uε) ∈
Lr(Ω)d. Using that ∇Fq,ε(vε) = βε,q + εβε,r = −∇uε in Emε

1 and that ∇F−1
q,ε =

∇F∗q,ε, we get that vε = vε in Emε
1 . Therefore, there exists ξε ∈ Lq′(Ω)d such that

spt(ξε) ⊆ Emε
0 and a.e. in Ω

βε,q = |vε|q−2vε + ξε and βε,r =
1
ε
(∇Fq,ε(vε)− βε,q) = |vε|r−2vε − (1/ε)ξε.

Using the convexity of 1
q′ | · |q

′
and 1

r′ | · |r
′
, we easily check that

1
q′
|βε,q|q

′ ≥ 1
q′
|vε|q + vε · ξε and

ε

r′
|βε,r|r

′ ≥ ε

r′
|vε|r − vε · ξε.

Hence

− 1
q′
|βε,q|q

′ − ε

r′
|βε,r|r

′ ≤ − 1
q′
|vε|q −

ε

r′
|vε|r = −Hq,ε(−∇uε),

with an equality a.e. in Emε
1 . In particular, we have the existence of a positive

measure γε such that spt(γε) ⊆ spt(ξε) ⊆ Emε
0 and

− 1
q′
|βε,q|q

′ − ε

r′
|βε,r|r

′
= −Hq,ε(−∇uε)− γε.

Since the definition of (αε,q, βε,q) and (αε,r, βε,r) implies the existence of two
positive measures α̃ε,q and α̃ε,r such that spt(α̃ε,q) ⊆ Emε

0 , spt(α̃ε,r) ⊆ Emε
0 and

αε,q = −
1
q′
|βε,q|q

′ − α̃ε,q and αε,r = −
1
r′
|βε,r|r

′ − α̃ε,r,

the result follows by setting α̃ε := −α̃ε,q − εα̃ε,r − γε.

Now we present the main theorem of this section.

Theorem 4.5.2. There exists (m, u, p, µ, λ) ∈ W1,q(Ω) ×W1,q′
� (Ω) ×M+(Ω) ×

M+(Ω)×R such that

−∆u + 1
q′ |∇u|q′ + µ− p− λ = f (x, m) in Ω,

∇u · n = 0 on ∂Ω,

−∆m−∇ ·
(

m|∇u|
2−q
q−1∇u

)
= 0 in Ω,

∇m · n = 0 on ∂Ω,∫
Ω

m dx = 1, 0 ≤ m ≤ 1, in Ω,

(MFGq)

where the coupled system for (u, m) is satisfied in the weak sense (see (4.4.6)). More-
over, defining

〈µ− p, m〉 := λ +
∫

Ω

[
f (x, m)− 1

q′
|∇u|q′

]
m dx−

∫
Ω
∇m · ∇u dx (4.5.2)
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we have the inequality∫
Ω

dp + 〈µ− p, m〉 ≤ 0. (4.5.3)

Proof. Step 1: Bounds for λε, pε and α̃ε. Note first that the second equation in
(4.5.1) and Theorem 4.2.2 imply that wε = mεvε a.e. in Ω. Also, in the set Emε

1
we have that ∇Fq,ε(vε) = −∇uε and so in Emε

1 the identities vε = ∇F∗q,ε(−∇uε)

and Hq,ε(−∇uε) = Gq,ε(vε) hold true. Now, by the second and third equations
in (4.5.1) we get that∫

Ω
∇uε · ∇mε dx =

∫
Ω
∇uε ·wε dx

= −
∫

Ω
mε∇Fq,ε(vε) · vε dx = −

∫
Ω

mε(|vε|q + ε|vε|r)dx.

(4.5.4)

and so taking mε as test function in the first equation of (4.5.1), we obtain

λε +
∫

Ω
mε dpε =

∫
Ω

(
Gq,ε(vε)mε +∇uε · ∇mε − f (x, mε)mε

)
dx

=
∫

Ω

(
−1

q
|vε|qmε − ε

1
r
|vε|rmε − f (x, mε)mε

)
dx,

which implies that

λε +
∫

Ω
mε dpε = −Bq(mε, wε)− εBr(mε, wε)−

∫
Ω

f (x, mε)mε dx. (4.5.5)

The optimality of (mε, wε) yields

0 ≤ Bq(mε, wε) + εBr(mε, wε) ≤ Jq,ε(1/|Ω|, 0)−F (mε). (4.5.6)

Thus, since f is continuous, 0 ≤ mε ≤ 1, (4.5.5) and the fact that spt(pε) ⊆
{mε = 1} yield the existence of a constant c1 > 0 (independent of ε) such that

−c1 ≤ λε +
∫

Ω
mε dpε = λε + |pε| ≤ c1. (4.5.7)

On the other hand, by taking 1− mε as test function in the first equation of
(4.5.1), a similar computation using (4.5.4) yields

(|Ω| − 1)λε − |α̃ε| =
∫

Ω
Hq,ε(−∇uε)dx + Bq(mε, wε) + εBr(mε, wε)

−
∫

Ω
f (x, mε)(1−mε)dx,

(4.5.8)

from which

(|Ω| − 1)λε − |α̃ε| ≥ −
∫

Ω
f (x, mε)(1−mε)dx ≥ c2, (4.5.9)
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where c2 > 0 is independent of ε. Since |Ω| > 1, inequalities (4.5.7)-(4.5.9)
imply that λε is uniformly bounded w.r.t. ε and so pε and α̃ε are uniformly
bounded w.r.t. ε in M (Ω).

Step 2: Convergence of ∇uε and mε. By (4.5.8), as a function of ε we have that
Hq,ε(−∇uε) is uniformly bounded in L1(Ω) which implies that uε is bounded
in W1,q′(Ω) and that −∆uε is bounded in M (Ω). On the one hand, the bound-
edness of uε in W1,q′(Ω) implies the existence of u ∈ W1,q′(Ω) such that up
to some subsequence uε converges weakly to u in W1,q′(Ω). In particular,∫

Ω
u dx = 0. On the other hand, the boundedness of −∆uε in M (Ω) and

[Min07, Theorem 1.3 with p = 2] (for the precise result see Appendix A) imply
the existence of s ∈]0, 1[ and δ0 > 0 such that ∇uε is uniformly bounded in
Ws,1+δ0

loc (Ω)d. By [DNPV12, Corollary 7.2] we can extract a subsequence such
that ∇uε → ∇u a.e. in Ω and so Hq,ε(−∇uε)→ 1

q′ |∇u|q′ a.e. in Ω.
Now, in order to establish the convergence for mε, note that inequality (4.5.6)

and the fact that 0 ≤ mε ≤ 1 imply that wε is uniformly bounded in Lq(Ω)d for
all ε > 0. This means that, up to some subsequence, wε is converging weakly
in Lq(Ω)d. Since Lemma A.3.2 implies that ‖∇mε‖Lq ≤ c‖wε‖Lq (for a constant
c > 0 independent of ε), by Poincaré’s inequality we get that mε is uniformly
bounded in W1,q(Ω). Extracting a subsequence again, there exists m such that
mε converges weakly to m in W1,q(Ω). By the compact Sobolev embedding, we
get strong convergence in Lq(Ω), which implies that 0 ≤ m ≤ 1 a.e. in Ω and∫

Ω
m dx = 1.

Step 3: The limit equations. The weak formulation of the second equation in
(MFGq,ε) yields∫

Ω
∇mε · ∇ϕ dx = −

∫
Ω

mε∇F∗q,ε(−∇uε) · ∇ϕ dx, for all ϕ ∈ C∞(Ω).

Since, extracting a subsequence, wε = mε∇F∗ε (−∇uε) converges weakly in
Lq(Ω)d to some w, the weak convergence of mε in W1,q(Ω) implies that∫

Ω
∇m · ∇ϕ dx =

∫
Ω

w · ∇ϕ dx, for all ϕ ∈ C∞(Ω).

Moreover, extracting a subsequence again, we get that

mε(x)∇F∗q,ε(−∇uε(x))→ −m(x)|∇u(x)|
2−q
q−1∇u(x) for almost every x ∈ Ω.

The latter equality and Egorov’s theorem imply that w = −m|∇u|
2−q
q−1∇u from

which the second equation in (MFGq) follows.
On the other hand, the weak formulation of the first equation in (MFGq,ε)

reads ∫
Ω
∇uε · ∇ϕ dx +

∫
Ω

Hq,ε(−∇uε)ϕ dx− λε

∫
Ω

ϕ dx

−
∫

Ω
ϕ d(pε + α̃ε) =

∫
Ω

f (x, mε(x))ϕ(x)dx,
(4.5.10)
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for any test function ϕ ∈ C1(Ω). The continuity of f and the dominated
convergence theorem imply that

lim
ε→0

∫
Ω

f (x, mε(x))ϕ(x)dx =
∫

Ω
f (x, m(x))ϕ(x)dx for all ϕ ∈ C(Ω).

The previous steps imply that we only need to study the limit behavior of
the second term in (4.5.10). Since Hq,ε(−∇uε) is bounded in L1(Ω), there
exists γ ∈ M (Ω) such that, extracting a subsequence, for all ϕ ∈ C(Ω),∫

Ω
Hq,ε(−∇uε)ϕ dx →

∫
Ω

ϕ dγ. Fatou’s lemma implies that∫
Ω

1
q′
|∇u|q′ϕ dx ≤ lim inf

ε→0

∫
Ω

Hq,ε(−∇uε)ϕ dx =
∫

Ω
ϕ dγ ∀ ϕ ∈ C(Ω), ϕ ≥ 0.

Defining, ρ ∈M+(Ω) as dρ := dγ− 1
q′ |∇u|q′ dx, we obtain that∫

Ω
ϕ dρ +

∫
Ω

1
q′
|∇u|q′ϕ dx = lim

ε→0

∫
Ω

Hq,ε(−∇uε)ϕ dx for all ϕ ∈ C(Ω).

(4.5.11)

Thus passing to the limit in (4.5.10) as ε→ 0 we get∫
Ω
∇u · ∇ϕ dx +

∫
Ω

1
q′
|∇u|q′ϕ dx− λ

∫
Ω

ϕ dx

−
∫

Ω
ϕ d(p + α̃− ρ) =

∫
Ω

f (x, m(x))ϕ(x)dx.

Setting, µ := ρ− α̃ ∈M+(Ω) we obtain the weak form of the first equation in
(MFGq).
Step 4: Proof of (4.5.3). By (MFGq,ε) and (4.5.4) we have

0 =
∫

Ω
(1−mε)dpε −

∫
Ω

mε dα̃ε =
∫

Ω
dpε +

∫
Ω

mε d(−α̃ε − pε),

=
∫

Ω
dpε +

∫
Ω

[
λε + f (x, mε)− Hq,ε(−∇uε)

]
mε dx−

∫
Ω
∇uε · ∇mε dx,

=
∫

Ω
dpε +

∫
Ω

[
1
q
|vε|q +

ε

r
|vε|r + λε + f (x, mε)

]
mε dx,

≥
∫

Ω
dpε +

∫
Ω

[
1
q
|vε|q + λε + f (x, mε)

]
mε dx.

By Fatou’s lemma we have∫
Ω

1
q
|∇u|q′m dx =

∫
Ω

1
q
|∇u|q

(
2−q
q−1+1

)
m dx ≤ lim inf

ε→0

∫
Ω

1
q
|vε|qmε dx.

Thus, letting ε→ 0 and using (4.5.2), we get

0 ≥
∫

Ω
dp +

∫
Ω

[
1
q
|∇u|q′ + λ + f (x, m)

]
m dx

=
∫

Ω
dp +

∫
Ω
∇u · ∇m dx +

∫
Ω
|∇u|q′m dx + 〈µ− p, m〉.
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By taking u ∈ W1,q′
� (Ω) as test function in the second equation of (MFGq) we

obtain that∫
Ω

[
∇m · ∇u + m|∇u|

2−q
q−1 |∇u|2

]
dx =

∫
Ω

[
∇m · ∇u + m|∇u|q′

]
dx = 0,

from which (4.5.3) follows.

Remark 4.5.1. Inequality (4.5.3) is a sort of “weak concentration property”. In fact,
by an approximation argument it is easy to see that we can take C(Ω) ∩W1,q(Ω) for
the space of test functions in the first equation of (MFGq). Thus, if m is continuous,

we would have that 〈µ− p, m〉 =
∫

Ω
m d(µ− p) and so (4.5.3) would imply that

∫
Ω

m dµ = 0 and
∫

Ω
(1−m)dp = 0,

i.e
spt(µ) ⊆ {m = 0} and spt(p) ⊆ {m = 1},

as in Corollary 4.4.2.

4.6 some possible extension

Let us notice that in Section 4.4 we derived optimality conditions for Problem
(Pq) in a direct way, using the characterization of the subdifferential of the
functional Bq. This means that one can easily remove the convexity assumption
on the function F in the second variable, thus also on the functional F (see
(4.3.1)). In this section we analyze some generalizations in this direction. This
is also the subject of an ongoing collaboration with F.J. Silva. Let us define the
problem setting (which is unchanged, except for F ) for this section. Similarly
as before, we consider the optimal control problem

inf Bq(m, w) +F (m), (Pq)

subject to the constraints −∆m +∇ ·w = 0 in Ω,

(∇m−w) · n = 0 on ∂Ω,

∫
Ω

m(x)dx = 1, 0 ≤ m ≤ 1.

where F : W1,q(Ω) → R and Bq : W1,q(Ω) × Lq(Ω)d → R is defined as be-
fore. Under rather general assumptions on F , if q > d we can prove the
existence of a solution (m, w) of (Pq). Using the expression of the subdifferen-
tial of Bq, provided in Theorem 4.2.2, and supposing that F is differentiable
at m with functional derivative denoted as DF (m) we obtain the existence
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of (u, λ, µ, p) ∈ W1,q′
� (Ω) ×R×M+(Ω) ×M+(Ω) such that they satisfy the

following MFG system in a weak sense

−∆u + 1
q′ |∇u|q′ + µ− p− λ = DF (m), in Ω,

−∆m−∇ ·
(

m|∇u|
2−q
q−1∇u

)
= 0, in Ω,

∇m · n = ∇u · n = 0, on ∂Ω,∫
Ω

m dx = 1, 0 ≤ m ≤ 1, in Ω,

spt(µ) ⊆ {m = 0}, spt(p) ⊆ {m = 1}.

(MFGq)

In contrast to the analysis performed in the previous sections, we are able to
provide the existence of a solution of (MFGq) without the assumption that F
is convex and a local function of m. The result can be extended to the case
1 < q ≤ d with the approximation argument in Section 4.5.

The second extension is that – using the ideas developed in the previous
sections – we can prove the existence of a solution of (Pq) when no upper
bound for the density are imposed. The main argument is that if q > d if we
replace the constraint m ≤ 1 by m ≤ γ, with γ large enough, then the solution
of the corresponding problem is bounded by a constant independent of γ. Thus,
if q > d then the following system (similarly as in Section 4.4) admits at least
one solution

−∆u + 1
q′ |∇u|q′ + µ− λ = DF (m), in Ω,

−∆m−∇ ·
(

m|∇u|
2−q
q−1∇u

)
= 0, in Ω,

∇m · n = ∇u · n = 0, on ∂Ω,∫
Ω

m dx = 1, m ≥ 0, in Ω,

spt(µ) ⊆ {m = 0}.

(MFG∞,q)

Note that this system is a ‘classical’ one (as the ones introduced initially in
[LL06a]), in the sense that there is no density constraint m ≤ 1 imposed. Thus
we give a new proof of existence of weak solutions for stationary second order
MFG systems.

4.6.1 The case with density constraint but without convexity

We will assume the following hypotheses for F : W1,q(Ω)→ R:
(F1) F is Gâteaux-differentiable.

(F2) F is weakly lower semicontinuous.

(F3) there exists CF > 0 such that −CF ≤ F (m) for all m ∈ W1,q(Ω) and
F (1/|Ω|) ≤ CF .
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Let us underline that no convexity assumptions are imposed on F .

Remark 4.6.1 (Examples of coupling functions F ). Typical examples of functions
F satisfying the previous assumptions are:

F (m) =
∫

Ω
F1(x, m(x),∇m(x))dx +

∫
Ω

F2(x, (K0 ? m)(x), (K1 ?∇m)(x))dx,

where K0 : Rd → R and K1 : Rd → Rd are Lipschitz convolution kernels. F1 and
F2 : Ω×R×Rd → R are measurable in the first variable, differentiable in the second
variable and bounded from below. Moreover they are differentiable and weakly l.s.c.
w.r.t. the third variable.

The above general assumptions on F are sufficient to show the existence of
a solution (by the direct method of calculus of variations) of the new Problem
(Pq). Moreover, using the differentiability assumption on F together with the
characterization of the subdifferential of Bq (see Theorem 4.2.2) we can derive
system (MFGq) as necessary optimality conditions for the solutions of problem
(Pq). The analysis relies on the one in Section 4.4, however a clever reformula-
tion is needed because F is not convex anymore.

If the exponent in the cost Bq is small, i.e. 1 < q ≤ d the constraint for the
density in the problem (Pq) is not qualified, hence a priori we are not able to
derive first order optimality conditions. To overcome these issues, we propose
the same approximation procedure as the one in Section 4.5. To be able to pass
to the limit after the regularization process, we need more assumptions on F .
Namely let us assume

(F4) DF is a bounded operator from W1,q(Ω) → M (Ω) in the sense that
for any ‖m‖W1,q ≤ C, there exists C > 0 depending only on C such that
‖DF (m)‖M ≤ C. Note that we assume that the range of DF to be M (Ω)

instead of
(
W1,q(Ω)

)∗ .

(F5) DF is a continuous linear operator in a weaker sense, meaning

〈DF (mε), φ〉 → 〈DF (m), φ〉,

as ε→ 0 and mε → m strongly in Lq∗ and for all φ ∈ C0(Ω) test function.

Under these additional assumptions, the approximation procedure goes along
the same lines as in Section 4.5. The main difference is that we work with
general class of interactions F .

4.6.2 The case without the density constraint

Now, we consider the case where the upper bound constraint m ≤ 1 is no
longer considered, i.e. we consider the problem

min Jq(m, w), (P̂q)
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subject to the constraints −∆m +∇ ·w = 0 in Ω,

(∇m−w) · n = 0 on ∂Ω,

∫
Ω

m(x)dx = 1.

The crucial point is the existence result when q > d.

Theorem 4.6.1. If q > d then problem (P̂q) has at least one solution.

Proof. Given γ > 1/|Ω| let us consider the auxiliary problem

min Jq(m, w) (P̂q,γ)

subject to the constraints −∆m +∇ ·w = 0 in Ω,

(∇m−w) · n = 0 on ∂Ω,

∫
Ω

m(x)dx = 1, m ≤ γ

By Proposition 4.3.1 we now that (P̂q,γ) has at least one solution. We will show
that any such solution (mγ, wγ) satisfies that ‖mγ‖∞ ≤ ` for some constant
` > 0 which is independent of γ. This will prove the result since any solution
(m`, w`) of (P̂q,`) solves (P̂q). Indeed, if there is a feasible (m, w) for problem
(P̂q) such that Jq(m, w) < Jq(m`, w`) then since there exists `′ > 0 such that
‖m‖L∞ ≤ `′ (because m ∈ W1,q(Ω)) we have that Jq(m`′ , w`′) ≤ Jq(m, w),
where (m`′ , w`′) is a solution of (P̂q,`′), and m`′ ≤ ` which contradicts the
optimality of (m`, w`).

Let us denote by c0 > 0 a constant such that ‖m‖L∞ ≤ c0‖m‖W1,q for all m ∈
W1,q(Ω) (we know that it exists by the classical Sobolev embeddings results)
and by c1 > 0 the constant in Lemma A.3.2. Thus, any solution of (m, w) of
the PDE the constraint satisfies that ‖m‖L∞ ≤ c0c1‖w‖Lq . Let (mγ, wγ) be a
solution of (P̂q,γ). Then, wγ vanishes a.e. in {mγ = 0}. The density constraint
implies that 1/(qγq−1) ≤ 1/(qm(x)q−1)1{m>0} and so

‖wγ‖q
Lq =

∫
{m>0}

|wγ|q dx ≤ qγq−1Bq(mγ, wγ) = qγq−1 [Jq(mγ, wγ)−F (mγ)
]

.

By the optimality of (mγ, wγ) and (F3) we deduce, setting (m̂, ŵ) := (1/|Ω|, 0),

‖wγ‖q
Lq ≤ qγq−1 [Jq(m̂, ŵ)−F (mγ)

]
≤ qCFγq−1 and so ‖wγ‖Lq ≤ q

1
q C

1
q
Fγ

1
q′ .

Thus, ‖mγ‖L∞ ≤ ĉγ
1
q′ , where ĉ := c0c1q

1
q C

1
q
F . Iterating the previous argument

yields

‖mγ‖L∞ ≤ ĉ∑k
i=0(

1
q′ )

i

γ
( 1

q′ )
k+1

∀ k ∈N,

and so, letting k ↑ ∞ and using that q′ > 1, we get ‖mγ‖L∞ ≤ ĉq. The result
follows.

Finally, the derivation of the first order necessary optimality conditions, i.e.
system (MFG∞,q) can be performed in the same way as in the case of (MFGq).





5
First order MFG with density constraints: Pressure

equals Price

I
n this chapter we study first order Mean Field Game systems under
density constraints as optimality conditions of two optimization prob-
lems in duality. A weak solution of the system contains an extra term,

an additional price imposed on the saturated zones. We show that this price
corresponds to the pressure field from the models of incompressible Euler’s
equations à la Brenier. By this observation we could obtain a minimal regu-
larity, which allows to write optimality conditions at the level of single agent
trajectories and to define a weak notion of Nash equilibrium for our model.

This chapter is based on a joint work with P. Cardaliaguet and F. Santambro-
gio (see [CMS15]).

5.1 introduction

5.1.1 The MFG system

Introduced by Lasry-Lions [LL06a, LL06b, LL07] (see also Huang-Malhamé-
Caines [HMC06]) the mean field game system (in short, MFG system) describes
a differential game with infinitely many identical players who interact through
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their repartition density. We write here the system of MFG in the specific case
where there is no diffusion, i.e. in the first-order case

(i) −∂tu + H(x, Du) = f (x, m) in (0, T)×Td

(ii) ∂tm−∇ ·
(
mDpH(x, Du)

)
= 0 in (0, T)×Td

(iii) u(T, x) = g(x), m(0, x) = m0(x) in Td.
(5.1.1)

Here, to avoid the discussion of the boundary data, we work for simplicity with
periodic boundary conditions, i.e., in the torus Td := Rd/Zd. The Hamiltonian
H : Td × Rd → R is typically convex with respect to the last variable and
the coupling map f : Td × [0,+∞[ is nondecreasing with respect to the last
variable.

Let us briefly describe the interpretation of (5.1.1). In the above backward-
forward system, u = u(t, x) is the value function associated to any tiny player
while m = m(t, x) is the density of players at time t and at position x. The
value function u(t, x) is formally given by

u(t, x) = inf
γ

∫ T

t
L(γ(s), γ̇(s)) + f (γ(s), m(s, γ(s))ds + g(γ(T))

where the player minimizes over the paths γ : [t, T] → Td with γ(t) = x, L is
the Fenchel conjugate of H with respect to the last variable, f = f (x, m(t, x))
is the running cost and g : Td → R is the terminal cost at the terminal time
t = T. The running cost f couples the two equations.

At the initial time t = 0, the initial distribution is m0 (a probability measure
on Td). Then the density evolvs according to the motion of the players. Since –
by standard argument in optimal control – it is optimal for the players to play
γ̇(s) = −DpH(γ(s), Du(s, γ(s)), the evolution of the density is given by the
continuity equation (5.1.1)-(ii).

Note that each tiny players acts as if he knew the evolution of the players’
density m = m(t, x) (he somehow “forecasts" it, this is what is usually called
“rational expectations”). The mean field game system corresponds to an equi-
librium situation in where the “forecast" of the players is correct: the solution
of the continuity equation is indeed m = m(t, x). In terms of game theory, this
corresponds to a Nash equilibrium.

Existence and uniqueness of solutions for the above problem are discussed
by P.-L. Lions in [Lio08] (through a reduction to an elliptic equation in time-
space when the coefficients are smooth and the coupling blows down at 0)
and in Cardaliaguet [Car13b], Graber [Gra14], Cardaliaguet-Graber [CG15],
Cardaliaguet–Graber-Porretta-Tonon [CGPT14] (following an approach by vari-
ational methods suggested in [LL07] and also inspired by Benamou-Brenier
[BB00]). Recently, in [BC15] Benamou and Carlier used similar variational
techniques to study an augmented Lagrangian scheme for MFG problems.
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5.1.2 The problem with a density constraint

Our objective in this chapter is to study the behavior of the MFG system
when there is a density constraint, i.e., when the density m cannot exceed some
given value m > 1/|Td| = 1. Namely: 0 ≤ m(t, x) ≤ m at any point (t, x).
In other words, the players pay an infinite price when the density goes above
m: f (x, m) = +∞ if m > m. The question of how to model this situation was
first introduced by Santambrogio [San12b] and then investigated Mészáros and
Silva in [MS15b] (see also Chapter 4) in the framework of stationary second
order models. We emphasize the fact that imposing a density constraint will
result a so-called “hard congestion” effect in the model. Models of MFGs
where so-called “soft congestion” (meaning that agents slow down when they
reach zones with high density) effects have been studied recently by Gomes
and Mitake in [GM14], by Gomes and Voskanyan in [GV15] and by Burger, Di
Francesco, Markowich and Wolfram in [BDFMW14].

Coming back to our model, there are several issues in the interpretation of
system (5.1.1) when there is a density constraint. Indeed, the above interpre-
tation does not make sense anymore for the following reason: if, on the one
hand, the constraint m ≤ m is fulfilled, then the minimization problem of the
agents (due to the fact that they are considered negligible against the others)
does not see this constraint and the pair (u, m) is the solution of a standard
MFG system; but this solution has no reason to satisfy the constraint, and there
is a contradiction. On the other hand, if there are places where m(t, x) > m,
then the players do not go through these places because their cost is infinite
there: but then the density at such places is zero, and there is again a contra-
diction. So, in order to understand the MFG system with a density constraint,
one has to change our point of view. We shall see that there are several ways
to understand more deeply the phenomena behind this question.

Perhaps the simplest approach is to go through an approximation argument:
let us consider the solution (uε, mε) corresponding to a running cost f ε which
is finite everywhere, but tends to infinity as ε tends to 0 when m > m. In other
words, f ε(x, m)→ f (x, m) if m ≤ m and f ε(x, m)→ +∞ if m > m, as ε→ 0. In
this case the MFG system with a density constraint should simply be the limit
configuration (a limit which should be proven to be well-defined).

We indeed show that the pair (uε, mε) has (up to subsequences) a limit (u, m)

which satisfies (in a weak sense) the following system:
(i) −∂tu + H(x, Du) = f (x, m) + β in (0, T)×Td

(ii) ∂tm−∇ ·
(
mDpH(x, Du)

)
= 0 in (0, T)×Td

(iii) u(T, x) = g(x) + βT , m(0, x) = m0(x) in Td

(iv) 0 ≤ m ≤ m in [0, T]×Td

(5.1.2)



170 first order mfg with density constraints : pressure equals price

Beside the expected density constraint (iv), two extra terms appear: β in (i) and
βT in (iii). These two quantities turn out to be nonnegative and concentrated
on the set {m = m}. They formally correspond to an extra price payed by the
players to go through zones where the concentration is saturated, i.e., where
m = m. In other words, the new optimal control problem for the players is
now (formally)

u(t, x) = inf
γ

γ(t)=x

∫ T

t
L(γ(s), γ̇(s)) + f (γ(s), m(s, γ(s)) + β(s, γ(s))ds

+ g(γ(T)) + βT(γ(T)), (5.1.3)

and thus (still formally) satisfies the dynamic programming principle: for any
0 ≤ t1 ≤ t2 < T,

u(t1, x) = inf
γ

γ(t1)=x

∫ t2

t1

L(γ(s), γ̇(s)) + f (γ(s), m(s, γ(s)) + β(s, γ(s))ds

+ u(t2, γ(t2)). (5.1.4)

The “extra prices” β and βT discourage too many players to be attracted by the
area where the constraint is saturated, thus ensuring the density constraints
(iv) to be fulfilled.

5.1.3 The variational method

Another way to see the problem is the following: it is known (see [LL07])
that the solution (u, m) to (5.1.1) can be obtained by variational methods at least
when f is finite everywhere. More precisely, the value function u is (formally)
given as a minimizer of the functional

A(u) :=
∫ T

0

∫
Td

F∗(x,−∂tu + H(x, Du))dx dt−
∫

Td
u(0, x)dm0(x),

subject to the constraint that u(T, x) = g(x), where F = F(x, m) is an an-
tiderivative of f = f (x, m) with respect to m and F∗ is its Legendre-Fenchel
conjugate w.r.t. the second variable. In the same way m is (formally) given as
a minimizer of the problem

B(m, w) :=
∫

Td
g(x)m(T, x)dx+

∫ T

0

∫
Td

m(t, x)H∗
(

x,−w
m

)
+ F(x, m(t, x)) dx dt

subject to the constraint

∂tm +∇ · (w) = 0 in (0, T)×Td, m(0) = m0,

where H∗ is the convex conjugate of H with respect to the last variable. It
turns out that both problems make perfectly sense, even when f (x, m) = +∞ if
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m > m. In fact, if f ε is a finite approximation of f as before, one can expect the
minimizers of Aε and Bε (corresponding to f ε) to converge to the minimizers
of A and B as ε → 0 (as a simple consequence of Γ−convergence). This is
precisely what happens. Note that, as f (x, m) = +∞ for m > m, F(x, m) has
the same property, so that F∗(x, m) is linear on [m,+∞). This linear behavior
explains the appearance of the terms β and βT described above.

5.1.4 Connections between MFGs with density constraints and the incompressible
Euler’s equations à la Brenier

One of the main contributions of this chapter is the determination of some
strong connections between our model of MFG with density constraint and the
incompressible Euler’s equations studied by Brenier (see [Bre99]) and later by
Ambrosio and Figalli (see [AF09]). This fact helps to understand the deeper
phenomena hiding in our models. Actually this connection is not that surpris-
ing. Firstly, the incompressibility constraint in the model of Brenier to study
perfect fluids will introduce the pressure field. Morally the same effect hap-
pens imposing density constraint for MFG. Secondly, both Brenier’s model
and ours have a variational structure, similar also to the one introduced by
Benamou and Brenier in [BB00]. Therefore, the terms β and βT, that we call
“additional prices/costs” for the agents (appearing only if they pass through
saturated zones) in (5.1.2) correspond to a sort of pressure field from fluid
mechanics. This observation motivates the title of this chapter as well.

5.1.5 Variational models for the incompressible Euler’s equations

To better see the connections with our models of MFG with density con-
straints, let us describe in a nutshell some variational models which describe
the evolution of the velocity field of perfect incompressible fluids driven by the
Euler’s equation. The first description goes back to the mid 18th century, when
Euler wrote down the equations linking the evolution of the velocity fields of
a perfect fluid and its pressure gradient. Modeling a moving fluid in a smooth
domain Ω ⊂ Rd is given by

∂tu + (u · ∇)u = −∇p, in [0, T]×Ω,

∇ · u = 0, in [0, T]×Ω,

u · n = 0, on [0, T]× ∂Ω.

(5.1.5)

The incompressibility condition for the fluid is actually encoded in the equa-
tion ∇ · u = 0, i.e. the velocity field is divergence-free.
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Assuming that the velocity field u is smooth, we can associate a flow g to it,
given by the characteristic equation{

ġ(t, x) = u(t, g(t, x)),

g(0, x) = x.

The incompressibility constraint translated to this level says that at each time
t ∈ [0, T], g(t, ·) : Ω → Ω is a measure-preserving diffeomorphism, which is
g(t, ·)#µΩ = µΩ, where µΩ := L d Ω/L d(Ω). Writing system (5.1.5) in terms
of g, one obtains

g̈(t, x) = −∇p(t, g(t, x)),

g(0, x) = x,

g(t, ·) ∈ SDiff(Ω),

(5.1.6)

where SDiff(Ω) denotes the space of measure-preserving diffeomorphisms of
Ω. The groundbreaking idea of V. Arnold ([Arn66]) was to see SDiff(Ω) as an
infinite dimensional manifold with the metric inherited from its embedding
into L2(Ω; Ω) and to look for solutions to (5.1.6) by solving a geodesic problem
on SDiff(Ω), i.e.

inf T
∫ T

0

∫
Ω

1
2
|ġ(t, x)|2 dµΩ(x)dt

among all path [0, T] 3 t 7→ g(t, ·) ∈ SDiff(Ω) connecting two diffeomor-
phisms, g(0, ·) = f to g(T, ·) = h (typically f is taken as id). In this mini-
mization problem, the pressure gradient in (5.1.6) actually arises as a Lagrange
multiplier for the incompressibility constraint.

Without entering too much into the details, one can remark that after the in-
troduction of this idea by V. Arnold, many deep mathematical phenomena
have been investigated in this direction. Some “negative” result found by
Shnirelman (the infimum in the above problem is not always attained; there
are h ∈ SDiff(Ω) which cannot be connected to id with a finite energy) lead
Y. Brenier (see [Bre89]) to relax Arnold’s minimization problem (morally as it
happened for Kantorovich while relaxing Monge’s problem). He was looking
for optimal generalized incompressible flows η ∈ P2(Γ) (Borel probability mea-
sures on the set Γ of continuous paths in Ω) solutions to

inf T
∫ T

0

∫
Γ

1
2
|γ̇(t)|2 dη(γ)dt

under the constraints (e0, eT)#η = (id, h)#µΩ and (et)#η = µΩ for all t ∈ [0, T]
(here et : Γ → Ω denotes the evaluation map et(γ) = γ(t)). In this context one
can relax the regularity of h as well, taking it to be just a measure-preserving
map instead of a diffeomorphism. Along the existence theory provided in
[Bre89], Y. Brenier showed also a consistency of his model: smooth solutions to
(5.1.5) are optimal even in his larger class of generalized incompressible flows,
provided the pressure gradient satisfies some well-chosen bounds.
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The model of Y. Brenier has been further generalized in different directions.
Noticing that (e0, et)#η is a measure-preserving plan, i.e. a probability measure
on Ω×Ω, L. Ambrosio and A. Figalli developed similar models (see [AF09]),
where, between others, they were considering a minimizing geodesic problem
connecting measure-preserving plans ν1, ν2. Later a similar model of both Eu-
lerian and Lagrangian nature has been studied by Y. Brenier ([Bre99]), which
allowed him in particular to show that the pressure gradient ∇p is a locally
finite (vector valued) measure on (0, T) ×Ω. Improving the techniques used
by him, L. Ambrosio and A. Figalli showed (see [AF08]) that p belongs ac-
tually to the more regular space L2

loc((0, T); BVloc(Ω)). This result lead them
to define some finer (but weaker) optimality conditions for the minimizing
geodesic problem along single particle trajectories.

Using similar techniques as in [Bre99] and [AF09, AF08] we show that β is
an L2

loc((0, T); BV(Td)) ↪→ Ld/(d−1)
loc ((0, T)×Td) function (while a priori it was

only supposed to be a measure) and βT is L1(Td). With the help of an example
we show that this local integrability cannot be extended up to the final time
t = T, showing also some sort of sharpness of the result. This regularity
property will allow us to give a clearer (weak) meaning to the control problem
(5.1.4), obtaining optimality conditions along single agent trajectories. Our
techniques to proceed with the analysis rely on the properties of measures
defined on paths, that we shall call density-constrained flows in our context,
and we are exploiting some properties of a Hardy-Littlewood type maximal
functional as well.

After this analysis we deduce the existence of a local weak Nash equilibrium
for our model.

The chapter is organized in the following way. We first introduce our main
notation and assumptions (Section 5.2). Then we discuss the two optimization
problems for the functionals A and B described above (Section 5.3). We intro-
duce the definition of the MFG system with a density constraint, present our
main existence result as well as the approximation by standard MFG systems in
Section 5.4. In Section 5.5, by means of an example, we study some finer prop-
erties of a solution (m, u, β, βT) of the MFG system with density constraints.
Section 5.6 is devoted to the proof of the Ld/(d−1)

loc integrability of the addi-
tional price β under some additional assumptions on the Hamiltonian and the
coupling. Finally, having in hand this integrability property, we introduce in
Section 5.7 the optimal density-constrained flows and derive optimality condi-
tions along single agent paths, which allow in particular to study the existence
of the local weak Nash equilibrium.
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5.2 notations , assumptions and preliminaries

We consider the MFG system with a density constraint (5.1.2) under the
assumption that all the maps are periodic in space. Typical conditions are

– (Condition on the density constraint)

The density constraint m is larger than 1 = 1/L d(Td). (H1)

– (Conditions on the initial and final conditions)
m0 is a probability measure on Td which is absolutely continuous with
respect to Lebesgue measure and there exists c > 0 such that

0 ≤ m0 < m− c, a.e. on Td.

Moreover g : Td → R is a C1 function on Td. (H2)

– (Conditions on the Hamiltonian)
H : Td × Rd → R is continuous in both variables, convex and differ-
entiable in the second variable, with DpH continuous in both variables.
Moreover, H has superlinear growth in the gradient variable: there exist
r > 1 and C > 0 such that

1
rC
|p|r − C ≤ H(x, p) ≤ C

r
|p|r + C. (H3-1)

We denote by H∗(x, ·) the Fenchel conjugate of H(x, ·), which, due to the
above assumptions, satisfies

1
r′C
|q|r′ − C ≤ H∗(x, q) ≤ C

r′
|q|r′ + C, (H3-2)

where r′ is the conjugate of r. We will also denote by L the Lagrangian
given by L(x, q) = H∗(x,−q), which thus satisfies the same bounds as H∗.

– (Conditions on the coupling)
Let f be continuous on Td × [0, m], non-decreasing in the second variable
with

f (x, 0) = 0. (H4)

We define F so that F(x, ·) is an antiderivative of f (x, ·) on [0, m], that is,

F(x, m) =
∫ m

0
f (x, s)ds, ∀ m ∈ [0, m], (5.2.1)

and extend F to +∞ on (−∞, 0) ∪ (m,+∞). It follows that F is continuous on
Td × (0, m), is convex and differentiable in the second variable. We also define
F∗(x, ·) to be the Fenchel conjugate of F(x, ·) for each x. Note that

F∗(x, α) ≥ αm− F(x, m) (5.2.2)

and in particular F∗(·, α) = 0 for all α ≤ 0. Following the approach of Cardalia-
guet-Carlier-Nazaret [CCN13] (see also Cardaliaguet [Car13b], Graber [Gra14]
or Cardaliaguet-Graber [CG15]) it seems that the solution to (5.1.2) can be
obtained as the system of optimality conditions for optimal control problems.
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5.2.1 Measures on curves and a superposition principle

Let us denote by Γ the set of absolutely continuous curves γ : [0, T] → Td.
We denote by P(Γ) the set of Borel probability measures defined on Γ. Let us
set Pr(Γ) (r ≥ 1) to be the subset of P(Γ) such that∫

Γ

∫ T

0
|γ̇(s)|r ds dη(γ) < +∞

and mt := (et)#η is L∞(Td) for all η ∈ Pr(Γ), where et : Γ → Td denotes the
evaluation map et(γ) := γ(t) for all t ∈ [0, T].

Now we state a well-known result, a connection between the solutions of the
continuity equation and the measures on paths, called superposition principle,
which can be considered as a weaker version of the DiPerna-Lions-Ambrosio
theory (see for instance Theorem 8.2.1. from [AGS08]).

Theorem 5.2.1. Let µ : [0, T] → P(Td) be a narrowly continuous solution of the
continuity equation ∂tµ +∇ · (vµ) = 0, µ0 ∈P(Td) for a velocity field v : [0, T]×

Td → Rd satisfying
∫ T

0

∫
Td
|vt|2 dµt dt < +∞. Then there exists η ∈ P2(Γ) such

that
(i) µt = (et)#η for all t ∈ [0, T];
(ii) we have the energy inequality∫

Γ

∫ T

0
|γ̇(t)|2 dt dη(γ) ≤

∫ T

0

∫
Td
|v|2 dµt dt;

(iii) γ̇(t) = v(t, γ(t)), for η−a.e. γ and a.e. t ∈ [0, T].

5.3 optimal control problems

The first problem is an optimal control of Hamilton-Jacobi equations: denote
by KP the set of functions u ∈ C1([0, T]×Td) such that u(T, x) = g(x). Let us
define on KP the functional

A(u) =
∫ T

0

∫
Td

F∗(x,−∂tu + H(x, Du))dx dt−
∫

Td
u(0, x)dm0(x). (5.3.1)

Then we have our first optimal control problem.

Problem 5.3.1 (Optimal control of HJ). Find inf
u∈KP

A(u).

It is easy to check that one can restrict the optimization to the class of min-
imizers such that −∂tu + H(x, Du) ≥ 0, because F∗(x, α) = 0 for α ≤ 0 (see
Lemma 3.2 in [Car13b]).

The second problem is an optimal control problem for the continuity equa-
tion: define KD to be the set of all pairs (m, w) ∈ L1([0, T]×Td)× L1([0, T]×
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Td; Rd) such that m ≥ 0 almost everywhere,
∫

Td
m(t, x)dx = 1 for a.e. t ∈

[0, T], and {
∂tm +∇ · (w) = 0 in (0, T)×Td

m(0, ·) = m0 in Td.

in the sense of distributions. Because of the integrability assumption on w, it

follows that t 7→ m(t) has a unique representative such that
∫

Td
m(t, x)u(x)dx

is continuous on [0, T] for all u ∈ C0(Td) (cf. [AGS08]). It is to this represen-
tative that we refer when we write m(t), and thus m(t) is well-defined as a
probability density for all t ∈ [0, T].

Define the functional

B(m, w) =
∫

Td
g(x)m(T, x)dx +

∫ T

0

∫
Td

m(t, x)L
(

x,
w(t, x)
m(t, x)

)
+ F(x, m(t, x)) dx dt

(5.3.2)

on KD. Recall that L is defined just after (H3-2). We follow the convention that

mL
(

x,
w
m

)
=

{
+∞, if m = 0 and w 6= 0,

0, if m = 0 and w = 0.
(5.3.3)

Since m ≥ 0, the second integral in (5.3.2) is well-defined in (−∞, ∞] by the
assumptions on F and L. The first integral is well-defined and necessarily finite
by the continuity of g and the fact that m(T, x)dx is a probability measure.

We next state the “dual problem" as

Problem 5.3.2 (Dual Problem). Find inf
(m,w)∈KD

B(m, w).

Proposition 5.3.1. Problems 5.3.1 and 5.3.2 are in duality, i.e.

inf
u∈KP

A(u) = − min
(m,w)∈KD

B(m, w) (5.3.4)

Moreover, the minimum on the right-hand side is achieved by a pair (m, w) ∈ KD

having m ∈ L∞([0, T]×Td) and w ∈ Lr′([0, T]×Td; Rd).

Proof. The proof relies on the Fenchel-Rockafellar duality theorem (see for ex-
ample [ET76]) and basically follows the lines of the proof of Lemma 2.1 from
[Car13b], hence we omit it. The integrability of (m, w) is just coming from the
density constraint and from the growth condition of H∗.

Remark 5.3.1. If f is strictly increasing with respect to the second variable in Td ×
(0, m), then the minimizer (m, w) is unique.
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In general one cannot expect Problem 5.3.1 to have a solution. This motivates
us to relax it and search for solutions in a larger class. For this let us first state
the following observation.

Lemma 5.3.2. Let (un) be a minimizing sequence for Problem 5.3.1 and set αn =

−∂tun + H(x, Dun). Then (un) is bounded in BV([0, T]× Td) ∩ Lr([0, T]× Td),
the sequence (αn) is bounded in L1([0, T] × Td), with αn ≥ 0 a.e., while (Dun)

is bounded in Lr([0, T]× Td). Finally, there exists a Lipschitz continuous function
ψ : [0, T]×Td → R such that ψ(T, ·) = g and un ≥ ψ for any n.

Proof. As F∗(·, α) = 0 for α ≤ 0, we can assume without loss of the gene-
rality that αn ≥ 0. By comparison, un ≥ ψ where ψ is the unique Lipschitz
continuous viscosity solution to{

−∂tψ + H(x, Dψ) = 0 in (0, T)×Td

ψ(T, x) = g(x) in Td.

So (un) is uniformly bounded from below. Integrating the equation for (un)

on [0, T]×Td and using the fact that H ≥ −C and the fact that g is bounded,
we get (up to redefining the constant C > 0)∫

Td
un(0, x)dx ≤

∫ T

0

∫
Td

αn dx dt + C.

So, by (5.2.2) and for n large enough,

infu∈KP A(u) + 1 ≥
∫ T

0

∫
Td

F∗(x, αn)dx dt−
∫

Td
un(0, x)m0 dx

≥
∫ T

0

∫
Td

mαn dx dt−
∫

Td
un(0, x)m0 dx− C

≥
∫

Td
un(0, x)(m−m0)dx− C.

By (H2) m − m0 > c and un(0, ·) is bounded from below: this shows that
(un(0, ·)) is bounded in L1(Td). Thus, as αn ≥ 0, we also have that (αn)

is bounded in L1([0, T] × Td). Then integrating the equation αn = −∂tun +

H(x, Dun) over [t, T]×Td and using the lower bound on H, we get on the one
hand ∫

Td
un(t, x)dx ≤

∫ T

t

∫
Td

αn dx dt + C,
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which, in view of the lower bound on un, gives an L∞([0, T]) bound on 〈un(t, ·)〉 =∫
Td

un(t, x)dx. We integrate again the equation αn = −∂tun + H(x, Dun) over

[0, T]×Td and use the coercivity of H and Poincaré’s inequality to get

C ≥
∫ T

0

∫
Td

αn dx dt + C ≥
∫ T

0

∫
Td

H(x, Dun)dx dt

≥(1/C)
∫ T

0

∫
Td
|Dun|r dx dt− C

≥(1/C)
∫ T

0

∫
Td
|un − 〈un(t, ·)〉|r dx dt− C

≥(1/C)
∫ T

0

∫
Td
|un|r dx dt− C.

In particular (Dun) and (un) are bounded in Lr([0, T] × Td). Thus ∂tun =

−αn + H(x, Dun) is bounded in L1([0, T]×Td). The result follows.

By the results of Lemma 5.3.2 we introduce a relaxation of the Problem 5.3.1.
Let us denote by KR the set of pairs (u, α) such that u ∈ BV([0, T]×Td) with
Du ∈ Lr([0, T]×Td; Rd) and u(T−, ·) ≥ g a.e., α is a nonnegative measure on
[0, T]×Td, and, if we extend (u, α) by setting u = g and α := H(·, Dg)dx dt
on ]T, T + 1[×Td, then the pair (u, α) satisfies

−∂tu + H(x, Du) ≤ α

in the sense of distribution in (0, T + 1)×Td. Note that the extension of (u, α)

to [0, T + 1]×Td just expresses the fact that u(T+) = g and that α compensates
the possible jump from u(T−) to g. We set

A(u, α) =
∫ T

0

∫
Td

F∗(x, αac(t, x))dx dt+mαs([0, T]×Td)−
∫

Td
u(0+, x) dm0(x).

where αac and αs are respectively the absolutely continuous part and the sin-
gular part of the measure α.

Problem 5.3.3 (Relaxed Problem). Find inf
(u,α)∈KR

A(u, α).

Let us consider the following result as a counterpart of Lemma 2.7 from
[CG15] in our case.

Lemma 5.3.3. Let (m, w) ∈ KD such that m ∈ L∞([0, T]×Td) and (u, α) ∈ KR

an arbitrary competitor for Problem 5.3.3. Then, for all t ∈ [0, T], we have∫ t

0

∫
Td
−mH∗

(
x,−w

m

)
dx dt ≤

∫
Td

m(t, x)u(t−, x)dx−
∫

Td
m0(x)u(0+, x)dx

+
∫ t

0

∫
Td

αacm dx dt + mαs([0, t]×Td)
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and∫ T

t

∫
Td
−mH∗

(
x,−w

m

)
dx dt ≤

∫
Td

m(T, x)g(x)dx−
∫

Td
m(t, x)u(t+, x)dx

+
∫ T

t

∫
Td

αacm dx dt + mαs([t, T]×Td).

Moreover we can take t = 0 in the above inequalities. If, finally, equality holds in the
second inequality when t = 0, then w = −mDpH(·, Du) a.e. and

lim sup
ε→0

mε(t, x) = m f or αs − a.e. (t, x) ∈ [0, T]×Td,

where mε is any standard mollification of m.

Proof. We prove the result only for t = 0, the general case follows from a
similar (and simpler) argument. We first extend the pairs (u, α) and (m, w) to
(0, T + 1) × Td by setting u = g and α := H(·, Dg)dx dt, m(s, x) = m(T, x),
w(s, x) = 0 on (T, T + 1)×Td. Note that

∂tm +∇ ·w = 0 and − ∂tu + H(x, Du) ≤ α on (0, T + 1)×Td.

We smoothen the pair (m, w) in a standard way into (mε, wε): mε := m ? ρε and
wε := w ? ρε, where the mollifier ρ has a support in the unit ball of Rd+1 and
ρε := ε−d−1ρ(·/ε). Then, for any η > ε, we have, since mε ≤ m,

∫ T+η

η

∫
Td

u∂tmε + mεH(x, Du)dx dt−
[∫

Td
mεu dx

]T+η

η+

≤
∫ T+η

η

∫
Td

mε dα ≤
∫ T+η

η

∫
Td

αacmε dx dt + mαs([η, T + η]×Td)

(5.3.5)

where, as ∂tmε +∇ ·wε = 0,∫ T+η

η

∫
Td

u∂tmε dx dt =
∫ T+η

η

∫
Td

Du ·wε dx dt.

In the followings, we shall consider only such η’s for which no jump of u

occurs, in particular
∫

Td
u(η−, x)dx =

∫
Td

u(η+, x)dx =
∫

Td
u(η, x)dx. So, by

convexity of H, (5.3.5) and the above equality,∫ T+η

η

∫
Td
−mεH∗

(
x,−wε

mε

)
dx dt ≤

∫ T+η

η

∫
Td

wε · Du + mεH(x, Du)dx dt

≤
[∫

Td
mεu dx

]T+η

η

+
∫ T+η

η

∫
Td

αacmε dx dt + mαs([η, T + η]×Td).

We multiply the inequality −∂tu + H(x, Du) ≤ α by mε(η, ·) and integrate on
(0, η)×Td to get, as mε is bounded by m and H is bounded from below,∫

Td
u(0+, x)mε(η, x)dx ≤

∫
Td

u(η, x)mε(η, x)dx + Cη + mα((0, η)×Td).
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Note that mα([0, η)×Td) = mαs([0, η)×Td) + o(1), where o(1)→ 0 as η → 0.
So ∫ T+η

η

∫
Td
−mεH∗

(
x,−wε

mε

)
dx dt ≤

≤
∫

Td
[mε(T + η, x)u(T + η, x)− u(0+, x)mε(η, x)]dx

+
∫ T+η

η

∫
Td

αacmε dx dt + mαs([0, T + η]×Td) + o(1).

We now let ε → 0. By convergence of (mε, wε) to (m, w) in Lq × Lr′ , ∀q ≥ 1,
and by the fact that

lim
ε→0

∫ T+η

η

∫
Td

mεH∗(x,−wε/mε)dx dt =
∫ T+η

η

∫
Td

mH∗(x,−w/m)dx dt,

(see the proof of Lemma 2.7. from [CG15]) we obtain for all η > 0, chosen
above,∫ T+η

η

∫
Td
−mH∗

(
x,−w

m

)
dx dt ≤

≤
∫

Td
[m(T + η, x)u(T + η, x)− u(0+, x)m(η, x)]dx

+
∫ T+η

η

∫
Td

αacm dx dt + mαs([0, T + η]×Td) + o(1).

By definition of the extension of the maps u and m,∫
Td
[m(T + η)u(T + η)− u(0+, x)m(η, x)]dx

+
∫ T+η

η

∫
Td

αacm dx dt + mαs([0, T + η]×Td)

=
∫

Td
[m(T, x)g(x)− u(0+, x)m(η, x)]dx

+
∫ T+η

η

∫
Td

αacm dx dt + mαs([0, T]×Td).

We finally let η → 0 and get∫ T

0

∫
Td
−mH∗

(
x,−w

m

)
dx dt

≤
∫

Td
[m(T, x)g(x)− u(0+, x)m0(x)]dx +

∫ T

0

∫
Td

αacm dx dt

+ mαs([0, T]×Td)

thanks to the L∞−weak-? continuity of t 7→ m(t) and the L1 integrability of
u(0+, ·).

The proof of the equality w = −mDpH(·, Du) when equality holds in the
above inequality follows exactly the proof of the corresponding statement in
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[CG15], so we omit it. Note that, if equality holds, then all the above inequal-
ities must become equalities as ε and then η tend to 0. In particular, from
inequality (5.3.5), we must have

lim
η→0

lim sup
ε→0

∫ T+η

η

∫
Td

mε(t, x)dαs(t, x) = mαs([0, T]×Td).

By Fatou’s lemma, this implies that

mαs([0, T]×Td) ≤
∫ T

0

∫
Td

lim sup
ε→0

mε(t, x)dαs(t, x),

where the right-hand side is also bounded above by the left-hand side since
mε ≤ m. So lim sup

ε→0
mε = m αs−a.e.

Proposition 5.3.4. We have

inf
u∈KP

A(u) = min
(u,α)∈KR

A(u, α). (5.3.6)

Moreover, if (u, α) is a minimum of A, then α = α (0, T) × Td + (u(T−, ·) −
g)d

(
δT ⊗H d Td).

Proof. We follow here [Gra14]. Inequality ≥ is obvious and we now prove the
reverse one. Let us fix (u, α) ∈ KR and let (m, w) be an optimal solution for
the dual problem. Then

A(u, α) =
∫ T

0

∫
Td

F∗(x, αac)dx dt + mαs([0, T]×Td)−
∫

Td
m0(x)u(0+, x)dx

≥
∫ T

0

∫
Td
(mαac − F(x, m))dx dt + mαs([0, T]×Td)−

∫
Td

m0(x)u(0+, x)dx

≥
∫ T

0

∫
Td
(−mH∗(x,−w/m)− F(x, m))dx dt−

∫
Td

m(T, x)g(x)dx

= −B(m, w)

where the last inequality comes from Lemma 5.3.3. By optimality of (m, w)

and (5.3.4) we obtain therefore

A(u, α) ≥ inf
u∈KP

A(u),

which shows equality (5.3.6).
To prove that the problem in the right-hand side of (5.3.6) has a minimum

we consider a minimizing sequence (un) for Problem 5.3.1. We extend un = g
on (T, T + 1]×Td and set αn := −∂tun + H(x, Dun) on [0, T + 1]×Td and note
that, in view of Lemma 5.3.2, there is a subsequence, again denoted by (un, αn),
such that (un) converges in L1 to a BV map u, (Dun) converges weakly in Lr,
and (αn) converges in sense of measures to α on (0, T + 1)×Td. As un ≥ ψ

on [0, T]×Td, we also have u ≥ ψ (0, T)×Td, so that u(T−, ·) ≥ ψ(T, ·) = g.
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By convexity of H with respect to p, the pair (u, α) belongs to KR. One easily
shows by standard relaxation that

A(u, α) ≤ lim inf
n→∞

A(un).

Hence (u, α) is a minimum.
Let us finally check that α = α (0, T)×Td +(u(T−, ·)− g)d

(
δT ⊗H d Td).

Indeed, by definition of KR, we can extend (u, α) by setting

(u, α) := (g, H(·, Dg)) on (T, T + 1)×Td

and the following inequality holds in the sense of measure in (0, T + 1)×Td:

−∂tu + H(x, Du) ≤ α.

Let φ ∈ C∞(Td), with φ ≥ 0, be a test function. We multiply the above inequal-
ity by φ and integrate on (T − η, T + η)×Td to get∫

Td
φ(x)u((T − η)+, x)dx +

∫ T

T−η

∫
Td

φH(x, Du)dx dt

≤
∫

Td
gφ dx +

∫ T

T−η

∫
Td

φ dα.

Letting η → 0 along a suitable sequence such that u((T− η)+, ·)→ u(T−, ·) in
L1, we obtain:∫

Td
φu(T−, x)dx ≤

∫
Td

gφ dx +
∫

Td
φ d(α {T} ×Td).

This means that u(T−, ·) ≤ g + α {T} ×Td. Let us now replace α by

α̃ := α (0, T)×Td + (u(T−, ·)− g)d
(

δT ⊗H d Td
)

.

We claim that the pair (u, α̃) still belongs to KR. For this we just have to check
that, if we extend (u, α̃) to (0, T + 1)×Td as before, then

−∂tu + H(x, Du) ≤ α̃ on (0, T + 1)×Td

holds in the sense of distributions. Let φ ∈ C∞
c ((0, T + 1) × Td) with φ ≥ 0.

Then ∫ T+1

0

∫
Td

u∂tφ + φH(x, Du)dx dt =
∫ T

0

∫
Td

u∂tφ + φH(x, Du)dx dt

+
∫ T+1

T

∫
Td

g∂tφ + φH(x, Dg)dx dt

≤
∫ T

0

∫
Td

φ d(α (0, T)×Td)

+
∫

Td
(u(T−, x)− g)φ(T, x)dx

+
∫ T+1

T

∫
Td

φH(x, Dg)dx dt

≤
∫ T+1

0

∫
Td

φ dα̃.
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This proves that the pair (u, α̃) belongs to KR. In particular, A(u, α) ≤ A(u, α̃),
so that

mαs({T} ×Td) ≤ m
∫

Td
u(T−, x)− g(x)dx.

Since we have proved that u(T−, ·) ≤ g + α {T} ×Td, we have therefore an
equality in the above inequality, which means that α {T} ×Td = (u(T−, ·)−
g)dx.

5.4 the mfg system with density constraints

In this section, we study the existence of solutions for the MFG system with
density constraints:

(i) −∂tu + H(x, Du) = f (x, m) + β in (0, T)×Td

(ii) ∂tm−∇ ·
(
mDpH(x, Du)

)
= 0 in (0, T)×Td

(iii) u(T, x) = g(x) + βT , m(0, x) = m0(x) in Td

(iv) 0 ≤ m ≤ m in (0, T)×Td

(5.4.1)

under the assumptions on H, f , g and m0 stated in Section 5.2. We also study
the approximation of the solution of this system by the solution of the classical
MFG system.

5.4.1 Solutions of the MFG system with density constraints

Definition 5.4.1. We say that (u, m, β, βT) is a solution to the MFG system (5.4.1)
if

1. Integrability conditions: β is a nonnegative Radon measure on (0, T) × Td,
βT ∈ L1(Td) is nonnegative, u ∈ BV([0, T]×Td) ∩ Lr([0, T]×Td), Du ∈
Lr([0, T]×Td; Rd), m ∈ L1([0, T]×Td) and 0 ≤ m ≤ m a.e.,

2. The following inequality

−∂tu + H(x, Du(t, x)) ≤ f (x, m) + β (5.4.2)

holds in (0, T)×Td in the sense of measures, with the boundary condition on
Td

g ≤ u(T−, ·) = g + βT a.e.

Moreover, βac = 0 a.e. in {m < m} and

lim sup
ε→0

mε(t, x) = m βs − a.e. if t < T and a.e. in {βT > 0} if t = T,

(5.4.3)

where mε is any standard mollification of m.
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3. Equality

∂tm−∇ · (mDpH(x, Du(t, x)) = 0, m(0) = m0

holds in the sense of distribution,

4. Equality∫ T

0

∫
Td

m(−H(x, Du) + Du · DpH(x, Du) + f (x, m) + βac)dx dt

+mβs((0, T)×Td) + m
∫

Td
βT dx =

∫
Td

m0(x)u(0+, x)−m(T, x)g(x)dx

holds.

Let us recall that, in the above definition, βac and βs denote the absolutely
continuous part and the singular part of the measure β.

Some comments on the definition are now in order. Equality (5.4.3) is a weak
way of stating that m = m in the support of β and βT respectively, while the last
requirement formally says that equality −∂tu + H(x, Du(t, x)) = f (x, m) + β

holds.
We can state the main result of this section.

Theorem 5.4.1. Let (u, α) ∈ KR be a solution of the relaxed Problem 5.3.3 and
(m, w) ∈ KD be a solution of the dual Problem 5.3.2. Then α ≥ f (·, m) as measures,
and, if we set

β := α (0, T)×Td − f (·, m)dx dt

and βT := α {T} × Td, the quadruplet (u, m, β, βT) is a solution of the MFG
system (5.4.1).

Conversely, let (u, m, β, βT) be a solution of the MFG system (5.4.1). Let us set

α := f (·, m)dx dt + β + βT d(δT ⊗H d Td) (5.4.4)

and w = −mDpH(x, Du). Then the pair (u, α) is a solution of the relaxed problem
while the pair (m, w) is a solution of the dual problem.

The proof of this results goes along the same lines as in [CG15] (Theo-
rem 3.5). However for the completeness (and because of some differences)
we sketch it here.

Proof. Let (u, α) ∈ KR be a solution of the Problem 5.3.3 and (m, w) ∈ KD

be the solution of Problem 5.3.2. First, by the definition of Legendre-Fenchel
transform we have for a.e. (t, x) ∈ [0, T]×Td

F∗(x, αac(t, x)) + F(x, m(t, x))− αac(t, x)m(t, x) ≥ 0. (5.4.5)

On the other hand by optimality we have that
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0 = A(u, α) + B(m, w)

=
∫ T

0

∫
Td

F∗(x, αac(t, x))dx dt + mαs([0, T]×Td)

−
∫

Td
u(0+, x)m0(x)dx +

∫
Td

g(x)m(T, x)dx

+
∫ T

0

∫
Td

m(t, x)H∗
(

x,−w(t, x)
m(t, x)

)
+ F(x, m(t, x)) dx dt

≥
∫ T

0

∫
Td

αacm dx dt + mαs([0, T]×Td)

+
∫

Td
g(x)m(T, x)− u(0+, x)m0(x)dx

+
∫ T

0

∫
Td

m(t, x)H∗
(

x,−w(t, x)
m(t, x)

)
dx dt ≥ 0,

where we used the Lemma 5.3.3 for the last inequality. This means that all
the inequalities in the previous lines are equalities. In particular we have an
equality in (5.4.5), which implies

αac(t, x) ∈ ∂mF(x, m(t, x)) a.e.

As ∂mF(x, m(t, x)) = { f (x, m(t, x))} for 0 < m(t, x) < m a.e., we have αac(t, x) =
f (x, m(t, x)) a.e. in {0 < m < m}. Moreover, as ∂mF(x, 0) = (−∞, 0] and
αac ≥ 0, we also have αac = 0 = f (·, 0) a.e. in {m = 0}. Finally, since
∂mF(x, m) = [ f (x, m),+∞), αac ≥ f (x, m(t, x)) a.e. on {m = m}. There-
fore αac ≥ f (·, m) a.e. Let us set β := α (0, T) × Td − f (·, m)dx dt and
βT := α {T} ×Td. From Proposition 5.3.4 we know that βT = u(T−, ·)− g.

Since equality holds in the above inequalities, there is an equality in the
inequality of Lemma 5.3.3: thus point 4 holds in Definition 5.4.1. Moreover,
by Lemma 5.3.3, we have that w = −mDpH(·, Du) a.e. and (5.4.3) holds. In
conclusion, since (u, α) ∈ KR and (m, w) ∈ KD, the quadruplet (u, m, β, βT) is
a solution to the MFG system (5.4.1).

Now let us prove the converse statement. For this let us take a solution
(m, u, β, βT) of the MFG system (5.4.1) in the sense of the Definition 5.4.1. Let
us define α as in (5.4.4) and w := −mDpH(·, Du). We shall prove that (u, α) is
a solution for the Problem 5.3.3 and (m, w) is a solution of Problem 5.3.2. For
the first one, one easily checks, following the argument of Proposition 5.3.4,
that (u, α) ∈ KR. Let us now consider a competitor (ũ, α̃) ∈ KR. Using the
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equality in Lemma 5.3.3 for (u, α, m,−mDpH(·, Du)) and the inequality for
(ũ, α̃, m,−mDpH(·, Du)) we have

A(ũ, α̃) =
∫ T

0

∫
Td

F∗(x, α̃ac(x))dx dt + mα̃s([0, T]×Td)

−
∫

Td
ũ(0+, x)m0(x)dx

≥
∫ T

0

∫
Td

F∗(x, αac(x)) + m(α̃ac − αac)dx dt + mα̃s([0, T]×Td)

−
∫

Td
ũ(0+, x)m0(x)dx

≥
∫ T

0

∫
Td

F∗(x, αac(x))dx dt + mαs([0, T]×Td)

−
∫

Td
u(0+, x)m0(x)dx,

thus (u, α) is a minimizer for the Problem 5.3.3.
In a similar manner we can show that (m, w) is a solution for Problem 5.3.2.

Hence the statement of the theorem follows.

We now briefly discuss the uniqueness of the approximation of solutions to
the MFG system with density constraints. If F = F(x, m) is strictly convex on
[0, m] with respect to the m variable, then, as H∗ = H∗(x, q) is strictly convex
with respect to q (because H = H(x, p) is C1 in p), we can conclude that the
dual Problem 5.3.2 has a unique minimizer. In particular, in this case, the m
component of the MFG system (5.4.1) is unique. We do not expect uniqueness
of the u component: this is not the case in the “classical setting", i.e., without
density constraint (see, however, the discussion in [Car13b]). For this reason,
the fact that one can approximate any solution of the MFG system (5.4.1) by
regular maps with suitable property is not straightforward. This is the aim of
the next Lemma, needed in the sequel, where we explain that the β component
of any solution can be approached by a minimizing sequence of Lipschitz maps
with some optimality property.

Lemma 5.4.2. Let (u, m, β, βT) be a solution to the MFG system (5.4.1). Then there
exists Lipschitz continuous maps (un, αn) such that

(i) un satisfies a.e. and in the viscosity sense,

−∂tun + H(x, Dun) = αn in (0, T)×Td,

(ii) the pair (un, αn) is a minimizing sequence for Problem 5.3.1 and Problem 5.3.3,
(iii) (un) is bounded from below, is bounded in BV([0, T]×Td) ∩ Lr([0, T]×Td)

and (Dun) is bounded in Lr([0, T]×Td),
(iv) (un) converges to some ũ ≥ u in L1((0, T)×Td) with ũ = u m−a.e.,
(v) (αn) is bounded in L1((0, T)×Td) and converges in measure on [0, T]×Td

to α defined from (β, βT) by (5.4.4),
(vi) (ũ, m, β, βT) is a solution to the MFG system (5.4.1),
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Proof. Let us define α as in (5.4.4) and recall that, by Theorem 5.4.1, (u, α) is
a minimum in the relaxed Problem 5.3.3. In particular, (u, α) belongs to KR ,
which means that, if we extend (u, α) by (g, H(·, Dg)) in [T, T + 1]×Td, then

−∂tu + H(x, Du) ≤ α in (0, T + 1)×Td.

For η ∈ (0, 1) we set uη(t, x) := u(t + η, x) and αη := (τη)#α, where τη :
(0, T + 1) × Td → (−η, T + 1− η) × Td is the time shift τη(t, x) = (t − η, x).
We then smoothen uη into uη ? ρε where ε ∈ (0, η/2), ρ is a standard even
mollifier with compact support in Rd+1 and ρε(·) := ε−d−1ρ(·/ε). We note that
uη ? ρε(t, x) for t ∈ [T − ε, T] is a mollified version of g. We finally slightly
modify uη ? ρε so that it satisfied the boundary condition: let ζ : R → [0, 1]
be smooth, increasing, with ζ(s) = 0 for s ≤ −1 and ζ(s) = 1 for s ≥ 0. Set
ζε(s) = ζ(ε−1s), uη,ε(t, x) = (1− ζε(t− T))uη ? ρε(t, x) + ζε(t− T)g(x). Then
uη,ε(T, x) = g(x) and

−∂tuη,ε + H(x, Duη,ε) ≤ αη,ε in (0, T + 1)×Td,

where

αη,ε :=
[
(αη − H(·, Duη)) ? ρε + H(x, Duη,ε)− ε−1ζ ′ε(t− T)(g(x)− g ? ρε(t, x))

]
+

.

As ε → 0, uη,ε is bounded in BV and converges to uη in L1 while αη,ε is non-
negative, bounded in L1 and converges to αη as a measure. We have

A(uη,ε, αη,ε) =
∫ T

0

∫
Td

F∗ (x, αη,ε(t, x))) dx dt−
∫

Td
u ? ρε(η, x)m0(x)dx.

As ε→ 0, the first integral in the right-hand side converges to

∫ T

0

∫
Td

F∗(x, (αη)ac(t, x))dx dt + m(αη)s((0, T]×Td)

=
∫ T

0

∫
Td

F∗(x, αac(t + η, x))dx dt + mαs([η, T + η]×Td).

Pick now a sequence (ηn) tending to 0, such that u ? ρε(ηn, ·) converges in L1 to
u(ηn, ·) as ε→ 0 (this is the case for a.e. η) and (u(ηn, ·)) tends in L1 to u(0+, ·)
as n→ +∞: then

lim sup
n

lim sup
ε→0

A(uηn ,ε) ≤ lim sup
n
A(uηn , αηn) = A(u, α).

As (u, α) is a minimum in the relaxed Problem 5.3.3, we can find εn → 0
such that (uηn ,εn , αηn ,εn) is a minimizing sequence for Problem 5.3.3 thanks to
Proposition 5.3.4.

Let now ũn be the viscosity solution to{
−∂tu + H(x, Du) = αεn ,ηn in (0, T)×Td

u(T, x) = g(x) in Td.
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Standard results on viscosity solutions imply that ũn is Lipschitz continuous
(because so are αεn ,ηn and g), satisfies the equation a.e. and, by comparison, is
such that ũn ≥ uηn ,εn . Therefore

A(ũn, αεn ,ηn) ≤ A(uηn ,εn , αηn ,εn),

so that (ũn, αεn ,ηn) is also a minimizing sequence for Problem 5.3.3. By Lemma
5.3.2, (ũn) is bounded from below, is bounded in BV([0, T]×Td) ∩ Lr([0, T]×
Td) and (Dun) is bounded in Lr([0, T]×Td). Up to a subsequence, (ũn) con-
verges to a BV map ũ in L1 such that ũ ≥ u. Note that, as in the proof
of Proposition 5.3.4, (ũ, α) is also a minimizer of Problem 5.3.3, so that, by
Theorem 5.4.1 , (ũ, m, β, βT) is also a solution to the MFG system (5.4.1). In
particular, by (4) in the definition of solution, the inequalities of Lemma 5.3.3
must be equalities for (ũ, α) and (u, α) so that,∫

Td
m(t, x)u(t, x)dx =

∫
Td

m(t, x)ũ(t, x)dx for a.e. t ∈ [0, T].

As ũ ≥ u, this implies that ũ = u m−a.e. In conclusion the pair (ũn, αηn ,εn)

satisfies our requirements.

5.4.2 Approximation by classical MFG systems

We now study to what extent the solution of the MFG system with density
constraint introduced above can be obtained as the limit of the solutions of
classical MFG systems. For this, we assume that f ε : Td × [0,+∞) → R is a
continuous function for each ε > 0, increasing with respect to m, with f ε(·, 0) =
0, and which fulfills the growth condition: there exists θ > 1+ d/r and C, Cε >

0 such that
C−1mθ−1 − C ≤ f ε(x, m) ≤ Cεmθ−1 + Cε.

We consider (uε, mε) the solution to the classical MFG system
(i) −∂tuε + H(x, Duε) = f ε(x, mε) in (0, T)×Td

(ii) ∂tmε −∇ ·
(
mεDpH(x, Duε)

)
= 0 in (0, T)×Td

(iii) uε(T, x) = g(x), mε(0, x) = m0(x) in Td

(5.4.6)

Following Cardaliaguet [Car13b], Cardaliaguet-Graber [CG15], we know that
the MFG system (5.4.6) has a unique (weak) solution (uε, mε): namely, (uε, mε) ∈
C0([0, T]×Td)× Lθ([0, T]×Td) and the following hold:

(i) the following integrability conditions hold:

Duε ∈ Lr, mεH∗(·, DpH(·, Duε)) ∈ L1 and mεDpH(·, Duε)) ∈ L1.
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(ii) Equation (5.4.6)-(i) holds in the following sense: the inequality

−∂tuε + H(x, Duε) ≤ f (x, mε) in (0, T)×Td, (5.4.7)

holds in the sense of distributions, with uε(T, ·) = g,
(iii) Equation (5.4.6)-(ii) holds:

∂tmε− div(mεDpH(x, Duε)) = 0 in (0, T)×Td, mε(0) = m0 (5.4.8)

in the sense of distributions,
(iv) The following equality holds:

∫ T

0

∫
Td

mε(t, x)
(

f (x, mε(t, x)) + H∗(x, DpH(x, Duε)(t, x))
)

dx dt

+
∫

Td
mε(T, x)g(x)−m0(x)uε(0, x)dx = 0.

(5.4.9)

In addition, uε is Hölder continuous and in W1,1, and equality

−∂tuε + H(x, Duε) = f (x, mε) holds a.e. in (0, T)×Td

(see Cardaliaguet-Porretta-Tonon [CPT14a]).
Let us now suppose that f ε(x, m)→ f (x, m) uniformly with respect to x for

any m ≤ m and f ε(x, m) → +∞ uniformly with respect to x for any m > m as
ε→ 0+.

Proposition 5.4.3. Under the above assumptions,

1. the family (uε) is bounded in BV([0, T]×Td)∩ Lr([0, T]×Td) while (Duε) is
bounded in Lr([0, T]×Td), the family (αε := −∂tuε + H(·, Duε)) is bounded
in L1([0, T]×Td), with αε ≥ 0 a.e., (mε) is bounded in Lθ([0, T]×Td) while
(wε) is bounded in Lr′([0, T]×Td).

2. If (u, m, α) is any cluster point for the weak convergence of (uε, mε, αε), then
α ≥ f (·, m) and, if we set β := α (0, T) × Td and βT := u(T−, ·) − g,
then the quadruplet (u, m, β, βT) is a solution of the MFG system with density
constraint (5.4.1).

Proof. The proof is a straightforward adaptation of our previous constructions.
According to [CGPT14], we know that (uε, αε) is minimizer over KR of the
functional

Aε(u, α) =
∫ T

0

∫
Td
(Fε)∗(x, α)dx dt−

∫
Td

u(0+, x)dm0(x),

where Fε(x, m) :=
∫ m

0
f ε(x, s)ds and (Fε)∗ is the Fenchel conjugate of Fε with

respect to the last variable. Then, by convexity,

(Fε)∗(x, α) ≥ αm− Fε(x, m),
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where, by our assumptions, Fε(x, m) converges uniformly with respect to x to
F(x, m). Let ψ be the Lipschitz continuous viscosity solution to{

−∂tψ + H(x, Dψ) = 0

ψ(T, x) = g(x).

It is also an a.e. solution, so that (ψ, 0) belongs to KR. Then

Aε(uε, αε) ≤ Aε(ψ, 0) ≤ −
∫

Td
ψ(0, x)dm0(x) ≤ C.

So (Aε(uε, αε)) is bounded from above and one can then argue exactly as in
the proof of Lemma 5.3.2 to obtain the bounds on (uε) and (αε) as well as a
bound for (Aε(uε, αε)).

Following [CGPT14], we also know that the pair

(mε, wε) := (mε,−mεDpH(·, Duε))

is a minimizer over KD of

Bε(m, w) =
∫

Td
g(x)m(T, x)dx +

∫ T

0

∫
Td

m(t, x)L
(

x,
w(t, x)
m(t, x)

)
+ Fε(x, m(t, x)) dx dt

Since, by [CGPT14], Aε(uε, αε) = −Bε(mε, wε), (Bε(mε, wε)) is bounded. From
our assumption on f ε we have therefore that (mε) is bounded in Lθ([0, T]×Td)

while (wε) is bounded in Lr′([0, T]×Td).
Let finally (u, α) be a cluster point of (uε, αε) and (m, w) be a cluster point of

(mε, wε) for the weak convergence. Then standard arguments from the theory
of Γ−convergence show that (u, α) minimizes A while (m, w) minimizes B,
so that, if we set β := α (0, T)×Td and βT := u(T−, ·)− g, the quadruplet
(u, m, β, βT) is a solution of the MFG system (5.4.1) according to Theorem 5.4.1.

5.5 no coupling , power-like hamiltonians and m0 < m

In this section, we study through an example some finer properties of the

solutions of (5.4.1). Let us consider f (x, m) ≡ 0, H(x, p) =
1
s
|p|s (s > 1) and

T = 1. The terminal cost g is a given smooth function. We assume that the
initial density of the population satisfies m0 < m − c a.e. in Td for a given
constant 0 < c < m. For simplicity, let us set s = 2. In this case the functional
B for the Problem 5.3.2 has the form

B(m, w) =
∫ 1

0

∫
Td

1
2
|w|2

m
+ F(x, m)dx dt +

∫
Td

g(x)m(1, x)dx,

where we use the convention (5.3.3). Let us also chose F(x, m) ≡ 0 for m ∈
[0, m] and F ≡ +∞ otherwise. This functional recalls the one introduced
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by Bemamou and Brenier to give a dynamical formulation for the Monge-
Kantorovich optimal transportation problem (see [BB00]). Only a constraint
on the density m and a penalization on the final value have been added.

Indeed, forgetting for a while the density constraint, Problem 5.3.2 can be
reformulated as

min
{

1
2

W2
2 (m0, m1) +

∫
Td

gm1 dx : m1 ∈P(Td), m1 ≤ m
}

. (5.5.1)

We remark that the above formulation gives always a geodesic curve connect-
ing m0 and m1 (thus mt is defined for all t ∈ [0, 1]). Since the admissible set
in the above problem is geodesically convex (and Td is a convex set), the den-
sity constraint is satisfied as soon as it is satisfied at the terminal time. Hence
the problem in (5.5.1) is completely equivalent to Problem 5.3.2. Actually we
can prove something more: if the initial density satisfies strictly the constraint,
then saturation may happen only in the final time. This is a straightforward
result, nevertheless for the completeness we prove it here.

Lemma 5.5.1. Let m0 < m − c (for a given constant 0 < c < m) a.e. in Td and
m1 be the solution of the Problem 5.5.1. Let (mt) be the geodesic connecting m0 to
m1. For any τ ∈ (0, 1) there exists θ > 0 such that mt < m− θ a.e. in Td for all
t ∈ [0, 1− τ].

Proof. As we mentioned before, since the admissible set in Problem 5.5.1 is
geodesically convex, we have that mt ≤ m a.e. in Td for all t ∈ [0, 1]. On
the other hand, since mt � H d Td for all t ∈ [0, 1] we know that there exist
optimal transport maps Tt, St : Td → Td such that (Tt)#m0 = mt and (St)#mt =

m0 with Tt ◦ St = id for all t ∈ [0, 1]. The maps (St) and (Tt) are given in terms
of S1 and T1 by McCann’s interpolation, which is Tt := (1− t)id + tT1, and
St = tid + (1− t)S1. Moreover Tt and St are countably Lipschitz, hence we can
write down the Jacobian equation

det(DTt) =
m0

mt ◦ Tt
,

from where the density mt is given by

mt =
m0

det(DTt)
◦ St. (5.5.2)

Using the concavity of det1/d (for positive definite matrices) we obtain that

det(DTt) = det
(
(1− t)Id + tDT1

)
≥
(
(1− t) + t det(DT1)1/d

)d

=

(
(1− t) + t

(
m0

m1 ◦ T1

)1/d
)d

≥
(
(1− t) + t

(m0

m

)1/d
)d

.
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Hence by (5.5.2) we have that

mt ≤
m0 ◦ St(

(1− t) + t
(

m0◦St
m

)1/d
)d .

Let us set λ := (m0 ◦ St)/m < 1. Then, for any τ ∈ (0, 1) there exists θ > 0
such that

(1 + θ)λ1/d < (1− t) + tλ1/d, ∀t ∈ [0, 1− τ]

provided λ ≤ (m− c)/m (in other words m0 < m− c). Thus this implies that
(1 + θ)mt < m a.e. in Td for all t ∈ [0, 1− τ]. Notice that this property may fail
for t = 1.

5.5.1 Some properties of β, β1 and u

Let us discuss now some further properties of β, β1 and u.

Proposition 5.5.2. Let (u, m, β, β1) be a solution of the MFG system with density
constraints and let us assume that we are in the setting of this section. Then β ≡ 0
and u and β1 are bounded.

Proof. From Theorem 5.4.1, we know that the pair (m,−mDpH(·, Du)) is a
minimizer of B. In view of Lemma 5.5.1, we have therefore m(t, x) < m for a.e.
(t, x) ∈ (0, T)×Td. By Definition 5.4.1, this implies that βac = 0. Recall on the
other hand that

lim sup
ε→0

mε(t, x) = m βs − a.e. if t < 1,

where mε is any standard mollification of m. But, still by Lemma 5.5.1, for
any τ ∈ (0, 1), there exists θ > 0 such that m ≤ m − θ on (0, 1− τ). Thus
mε(t, x) ≤ m− θ, so that the restriction of βs to (0, 1− τ)×Td is zero, hence
βs = 0 on (0, 1)×Td.

Let us now check that u is bounded. We note that, as β = 0 and H satisfies
the growth condition (H3-1), u satisfies a.e. the inequality −∂tu + |Du|2/2 ≤ 0
in (0, 1) × Td. Thus, if we mollify u in the usual way, uε is a classical sub
solution to −∂tuε + |Duε|2/2 ≤ 0 on (ε, 1− ε)×Td. By Hopf’s formula we get
therefore

uε(t, x) ≤ inf
y∈Td

{
uε(1− ε, y) + C

|x− y|2
(1− ε− t)

+ C(1− t)
}
∀(t, x) ∈ (ε, 1− ε)×Td.

Hence

uε(t, x) ≤ inf
y∈Td
{uε(1− ε, y) + C} ∀(t, x) ∈ (ε, 1/2)×Td.
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Recalling that
∫

Td
u(t, x)dx is bounded for a.e. t (see the proof of Lemma

5.3.2), we also have that
∫

Td
uε(t, x)dx is bounded as well for all t and therefore

inf
y∈Td

uε(1, y) is bounded from above. So we have proved that uε is bounded

from above by a constant C0 on (ε, 1/2) × Td, where C0 is independent of ε.
This shows that u is bounded from above by C0 on (0, 1/2)×Td.

Let us set z(t, x) := (C0 + ‖H(·, 0)‖L∞) ∨ ‖g‖L∞ − ‖H(·, 0)‖L∞(1− t). Then
z is a subsolution to −∂tz + H(x, Dz) ≤ 0 which satisfies z(1, ·) ≥ g and
z(0, ·) ≥ C0 ≥ u(0, ·). Therefore the map ũ(t, x) := u(t, x) ∧ z(t, x) is still a
subsolution (because H = H(x, p) is convex with respect to p), which satisfies
ũ(0, ·) = u(0, ·) a.e. and g(x) ≤ ũ(1−, x) ≤ u(1−, x). Let us set α̃ := (ũ(1−, ·)−
g)d(δ1 ⊗H d Td). Then the pair (ũ, α̃) belongs to KR and by optimality of
(u, α) we have

A(u, α) =
∫

Td

(
u(1−, x)− g(x)

)
dx−

∫
Td

m0(x)u(0, x)dx

≤ A(ũ, α̃) =
∫

Td

(
ũ(1−, x)− g(x)

)
dx−

∫
Td

m0(x)ũ(0, x)dx.

As ũ(0, ·) = u(0, ·) and ũ(1−, x) ≤ u(1−, x), this proves that ũ(1−, x) =

u(1−, x) a.e., which means that u(1−, ·) is bounded from above. Since we al-
ready know that u is bounded from below (see the proof of Lemma 5.3.2), we
have established that u(1−, ·) is bounded. By Hopf’s formula, this entails the
boundedness of u on (0, 1)×Td, from where the boundedness of β1 follows as
well.

Remark 5.5.1 (Nash-type equilibrium). For this example a notion of Nash equilib-
rium can be formulated by the means of (m, β1), i.e. by the means of the “additional
price” β1 to be payed by the agents at the final time, and the value of which is precisely
β1 = (u(1−, ·)− g). This price clearly has to be payed only if they arrive to the sat-
urated zone at the final time. Let us postpone the precise definition and the details on
the question of the Nash equilibrium, which will be established for more general cases
in Section 5.7 (see Definition 5.7.3).

5.6 regularity of the “additional price” β

In this section we show that the measure β is absolutely continuous and
belongs to Ld/(d−1)

loc ((0, T)×Td). In this respect, our model recalls those stud-
ied by Brenier (see [Bre99]) and later by Ambrosio-Figalli (see [AF09, AF08]),
where they analyzed the motion of incompressible perfect fluids driven by the
Euler’s equations.

We will see in the next section that this regularity is essential in order to
define Nash equilibria in our context. For this, we assume in addition to the
previous hypotheses the following conditions: there exists λ > 0 such that
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– (Assumption for H): H and H∗ are of class C2 with

λId ≤ D2
ppH ≤ λ−1 Id and λId ≤ D2

qqH∗ ≤ λ−1 Id, (HP1-1)

|D2
xx H∗(x, p)| ≤ C(1 + |p|2), |D2

xpH∗(x, p)| ≤ C(1 + |p|). (HP1-2)

– (Assumption on F): f is of class C2 on Td × [0, m] and, for any m ∈ [0, m]

and α ≥ 0,

F(x, m) + F∗(x, α)− αm ≥ λ

2
|α1 − f (x, m)|2 + p(m−m), (HP2)

where p = (α− f (x, m))+ and α1 = α− p.
– (Assumption on g):

g is of class C2. (HP3)

A canonical example that we can have in mind is the case when F(x, m) =

f (x)m if m ∈ [0, m] and +∞ otherwise and H(x, p) = |p|2/2.

Theorem 5.6.1. Let (u, m, β, βT) be a solution of the MFG system (5.4.1). Under the
above assumptions, f (·, m(·, ·)) ∈ H1

loc((0, T)×Td) and β is absolutely continuous
in (0, T)×Td with β ∈ L2

loc((0, T); BV(Td)) ↪→ Ld/(d−1)
loc ((0, T)×Td).

The proof is largely inspired by the works of Brenier (see [Bre99]) and
Ambrosio-Figalli (see [AF08]) on the incompressible Euler’s equations.

Proof of the Theorem 5.6.1. By abuse of notion, we use B(m′, v′) meaning pre-
cisely B(m′, m′v′) for any admissible pair (m′, m′v′) in the dual problem (v′

denoting the velocity field).
Throughout the proof, (u, m, β, βT) is a fixed solution of the MFG system

(5.4.1) and we define α by (5.4.4) and set w = −mDpH(x, Du). Recall that
(m, w) is a minimizer for B. We also set v := w/m and construct competitors
(mδ,η , mδ,ηvδ,η) in the following way: let us fix 0 < t1 < t2 < T and let ζ ∈
C∞

c ((0, T); [0, 1]) be a smooth cut-off such that ζ ≡ 1 on [t1, t2]; for η > 0 small
and δ ∈ Rd small (such that t + ζ(t)η ∈ (0, T) for all t ∈ [0, T]), we denote

mδ,η(t, x) := m(t + ζ(t)η, x + ζ(t)δ)

the time-space translation of the density and let

vδ,η(t, x) := v(t + ζ(t)η, x + ζ(t)δ)(1 + ηζ ′(t))− ζ ′(t)δ

the velocity field associated to mδ,η . Indeed, by construction (mδ,η , mδ,ηvδ,η)

solves the continuity equation, and satisfies the other constraints.
Step 0. Let us collect some tools now.
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First, we have

B(mδ,η , vδ,η) ≤ B(m, v) + C(η2 + |δ|2). (5.6.1)

Indeed, let us denote by ξη the inverse map of t 7→ t + ζ(t)η. Then, after
changing variables,

B(mδ,η , vδ,η)

=
∫ T

0

∫
Td

[
m(s, y)H∗

(
y− ζ(ξη(s))δ,−v(s, y)(1 + ηζ ′(ξη(s))) + ζ ′(ξη(s))δ)

)
+ F(y− ζ(ξη(s))δ, m(s, y))

]
ξ ′η(s)dy ds +

∫
Td

g(y)m(T, y)dy.

In view of our C2 regularity assumptions on H∗, F and g, the map (η, δ) 7→
B(mδ,η , vδ,η) is C2. We obtain (5.6.1) by optimality of (m, v).

Second, by stationarity of the problem for B (it is enough to consider pertur-
bations of form (m0,η , v0,η) for ζ with compact support, not necessarily 1 on
[t1, t2]), we have∫

Td

{
m(H∗(x,−v(t, x)) + DqH∗(x,−v(t, x)) · v(t, x)) + F(x, m(t, x))

}
dx = const.

From our assumption on H∗, we have

H∗(x,−v) + DqH∗(x,−v) · v ≤ H∗(x, 0)− λ

2
|v|2.

Thus

ess− supt∈[0,T]

∫
Td

m(t, x)|v(t, x)|2 dx ≤ C. (5.6.2)

By (HP1-1), we have D2
qqH∗ ≤ (1/λ)Id and therefore (5.6.2) implies

ess− supt∈[0,T]

∫
Td

m(t, x)|DqH∗(x,−v(t, x))|2 dx ≤ C. (5.6.3)

Third, for any smooth map (u′, α′), with α′ ≥ 0, and (m′, w′) ∈ KD (where
v′ = w′/m′) competitor for the primal and the dual problems respectively, we
have

A(u′, α′) + B(m′, v′) ≥
∫ T

0

∫
Td

{
m′(H(x, Du′) + H∗(x,−v′) + v′ · Du′)

}
dx dt

+
∫ T

0

∫
Td

{
F(x, m′) + F∗(x, α′)− α′m′

}
dx dt.

In view of our assumptions on (HP1-1)-(HP1-2) and (HP2), we have the key
inequality

A(u′, α′) + B(m′, v′) ≥ λ

4

∫ T

0

∫
Td

m′(t, x)|Du′ − DqH∗(x,−v′)|2 dx dt

+
λ

4

∫ T

0

∫
Td

m′(t, x)|v′ + DpH(x, Du′)|2 dx dt

+
∫ T

0

∫
Td

{
λ

2
|α′1 − f (x, m′)|2 + p′(m−m′)

}
dx dt
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(5.6.4)

where p′ = (α′ − f (x, m))+ and α′1 = α′ − p′.
With the help of these tools let us show now the statements of the theorem.

Step 1. We first check that f (·, m) ∈ H1
loc((0, T)×Td). Let us fix (m′, v′) to

be a smooth competitor for B and let (un, αn) be the minimizing sequence for
Problem 5.3.3 defined in Lemma 5.4.2: we know that (αn) is bounded in L1

and converges to the (nonnegative) measure α defined from (β, βT) by (5.4.4).
Then, passing to the limit in the inequality

A(un, αn) + B(m′, v′) ≥
∫ T

0

∫
Td

{
F(x, m′) + F∗(x, αn)− αnm′

}
dx dt,

we get

inf
KR
A+ B(m′, v′) ≥

∫ T

0

∫
Td

{
F(x, m′) + F∗(x, αac)− αacm′

}
dx dt

+
∫ T

0

∫
Td
(m−m′)dαs.

In view of the proof of Theorem 5.4.1, we have αac ≥ f (·, m), with an equality
in {m < m}. So, if we set as above p = (αac − f (x, m))+ and αac

1 = αac − p,
then αac

1 = f (·, m). By (HP2), this implies that

inf
KR
A+ B(m′, v′) ≥

∫ T

0

∫
Td

λ

2
| f (x, m)− f (x, m′)|2 dx dt,

an inequality which remains true for any (m′, v′) ∈ KD (not necessarily smooth
ones). Adding inf

KR
A to inequality (5.6.1) and using the duality inf

KR
A+min

KD
B =

0 we have

inf
KR
A+ B(mδ,η , vδ,η) ≤ C(η2 + |δ|2), (5.6.5)

which implies∫ t2

t1

∫
Td
| f (x, m)− f (x, mδ,η)|2 dx dt ≤ C(η2 + |δ|2)

and the regularity of f in x allows to conclude f (·, m) ∈ H1
loc((0, T)×Td).

Step 2. Let (un, αn) be the minimizing sequence defined by Lemma 5.4.2.
Without loss of generality, we can assume that

A(un, αn)− inf
KR
A ≤ 1/n. (5.6.6)

We set pn := (αn − f (·, m))+ and α1,n := αn − pn. For ϕ : [0, T]×Td → R and
for η > 0 small, let us define the average of ϕ on the [t, t + η] by

ϕη(t, x) :=
∫ 1

0
ϕ(t + θη, x)dθ,
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which is well-defined on [t1, t2]×Td. With this procedure, we similarly define
the functions pη

n, α
η
n, etc. Let us take moreover σ ∈ C∞([t1, t2]; [0,+∞)).

The aim of this step consists in estimating the quantity

I :=
∫ t2

t1

∫
Td

σ(t)m|pη
n(t, x + δ)− pη

n(t, x)|dx dt.

Namely we prove that

I ≤ C‖σ‖L2

(
|δ|+

(
1 +
|δ|
η

)
(1/n + |δ|2 + η2)1/2

)
+C‖σ‖L∞(1/n + η2 + |δ|2)1/2

×
[
(1/n + η2 + |δ|2)1/2 + |δ|

(
1 + (1/n + η2 + |δ|2)1/2

)]
+C

{
‖σ‖2

L2 + ‖σ‖L∞

[
(1/n + |δ|2 + η2) + (1/n + |δ|2 + η2)1/2

]}1/2

×(1/n + |δ|2 + η2)1/2

=: X(σ, 1/n, δ, η).
(5.6.7)

We will show in the last two steps that this inequality easily entails the desired
estimates on p and β.

The proof of (5.6.7) is quite long and relies on the combination of (5.6.4),
(5.6.5) and (5.6.6) which imply that

1/n + C(η2 + |δ|2) ≥ λ

4

∫ t2

t1

∫
Td

mδ,η(t, x)|Dun − DqH∗(x,−vδ,η)|2 dx dt

+
λ

4

∫ t2

t1

∫
Td

mδ,η(t, x)|vδ,η + DpH(x, Dun)|2 dx dt

+
∫ t2

t1

∫
Td

{
λ

2
|α1,n − f (x, mδ,η)|2 + pn(m−mδ,η)

}
dx dt

(5.6.8)

We have

I ≤
∫ t2

t1

∫
Td

σ(t)(m−m(t, x))|pη
n(t, x + δ)− pη

n(t, x)|dx dt

+
∫ t2

t1

∫
Td

σ(t)m(t, x)|pη
n(t, x + δ)− pη

n(t, x)|dx dt

=: I01 + I02
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where the the first term can be estimated as follows:

I01 ≤ ‖σ‖L∞

∫ t2

t1

∫
Td
(m−m(t, x))

{
|pη

n(t, x + δ)|+ |pη
n(t, x)|

}
dx dt

= ‖σ‖L∞

∫ 1

0
dθ
∫ t2

t1

∫
Td
(m−m(t, x))

× {pn(t + θη, x + δ) + pn(t + θη, x)} dx dt

≤ ‖σ‖L∞

∫ 1

0
dθ
∫ T

0

∫
Td
(m−m−δ,−θη)pn dx dt

+ ‖σ‖L∞

∫ 1

0
dθ
∫ T

0

∫
Td
(m−m0,−θη)pn dx dt.

Now by (5.6.8) we obtain that

I01 ≤ C‖σ‖L∞(1/n + |δ|2 + η2).

For the second term we have

I02 ≤
∫ t2

t1

∫
Td

σ(t)m(t, x)|αη
n(t, x + δ)− α

η
n(t, x)|dx dt

+
∫ t2

t1

∫
Td

σ(t)m|αη
1,n(t, x + δ)− α

η
1,n(t, x)|dx dt

:= I1 + I2.

To estimate the term I1, let us compute

α
η
n(t, x + δ)− α

η
n(t, x) =

=
∫ 1

0
−∂tun(t + θη, x + δ) + H(x + δ, Dun(t + θη, x + δ))dθ

−
∫ 1

0
−∂tun(t + θη, x) + H(x, Dun(t + θη, x))dθ

= −η−1
∫ 1

0
[Dun(t + η, x + sδ)− Dun(t, x + sδ)] · δ ds

+
∫ 1

0

∫ 1

0
Dx H(x + sδ, Dun(t + θη, x + sδ)) · δ ds dθ

+
∫ 1

0
dθ
∫ 1

0
DpH(x + sδ, ξs) · [Dun(t + θη, x + δ)− Dun(t + θη, x)]ds dθ

where ξs := (1− s)Dun(t + θη, x) + sDun(t + θη, x + δ). Thus,

|αη
n(t, x + δ)− α

η
n(t, x)| ≤

≤ |δ|η−1
∫ 1

0
|Dun(t + η, x + sδ)− Dun(t, x + sδ)|ds

+ |δ|
∫ 1

0

∫ 1

0
|Dx H(x + sδ, Dun(t + θη, x + sδ))|ds dθ

+
∫ 1

0

∫ 1

0
|DpH(x + sδ, ξs)| |Dun(t + θη, x + δ)− Dun(t + θη, x)|ds dθ.
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In view of our assumption (HP1-2) on Dx H and DpH:

I1 =
∫ t2

t1

∫
Td

σ(t)m(t, x)|αη
n(t, x + δ)− α

η
n(t, x)|dx dt

≤ |δ|η−1
∫ t2

t1

∫
Td

∫ 1

0
σ(t)m(t, x)

× |Dun(t + η, x + sδ)− Dun(t, x + sδ)|ds dx dt

+ C|δ|
∫ t2

t1

∫
Td

∫ 1

0

∫ 1

0
σ(t)m(t, x)

{
1 + |Dun(t + θη, x + sδ)|2

}
ds dθ dx dt

+ C
∫ t2

t1

∫
Td

∫ 1

0
σ(t)m(t, x) {1 + |Dun(t + θη, x)|+ |Dun(t + θη, x + δ)|}

× |Dun(t + θη, x + δ)− Dun(t + θη, x)|dθ dx dt

:= I11 + I12 + I13.

For I11, we have

I11 ≤ |δ|η−1
∫ t2

t1

∫
Td

∫ 1

0

{
σ(t)m(t, x)

(
|Dun(t + η, x + sδ)− DqH∗(x,−v(t, x))|

+ |DqH∗(x,−v(t, x))− Dun(t, x + sδ)|
)}

ds dx dt

≤ |δ|η−1
∫ t2+η

t1+η

∫
Td

∫ 1

0
σ0,−η(t)m−sδ,−η(t, x)

× |Dun(t, x)− DqH∗(x− sδ,−v−sδ,−η(t, x))|ds dx dt

+ |δ|η−1
∫ t2

t1

∫
Td

∫ 1

0
σ(t)m−sδ,0(t, x)

× |Dun(t, x)− DqH∗(x− sδ,−v−sδ,0(t, x))|ds dx dt

By Cauchy-Schwarz and (5.6.8) we obtain:

I11 ≤ C|δ|η−1‖σ‖L2(1/n + η2 + |δ|2)1/2.

We now estimate I12, that we bound from above as follows:

I12 ≤ C‖σ‖L2 |δ|

+ C|δ|
∫ t2

t1

∫
Td

∫ 1

0

∫ 1

0
σ(t)m(t, x)|DqH∗(x,−v(t, x))|2 ds dθ dx dt

+ C|δ|
∫ t2

t1

∫
Td

∫ 1

0

∫ 1

0
σ(t)m(t, x)

×
{
|Dun(t + θη, x + sδ)|2 − |DqH∗(x,−v(t, x))|2

}
ds dθ dx dt
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The second term can be estimated by (5.6.3), while, for the third one, we use
the inequality |a|2 − |b|2 ≤ |a− b|2 + |a− b||b| to get:

I12 ≤ C‖σ‖L2 |δ|

+ C‖σ‖L∞ |δ|
∫ t2

t1

∫
Td

∫ 1

0

∫ 1

0
m(t, x)

× |Dun(t + θη, x + sδ)− DqH∗(x,−v(t, x))|2 ds dθ dx dt

+ 2C‖σ‖L∞ |δ|
∫ t2

t1

∫
Td

∫ 1

0

∫ 1

0

{
m(t, x)

× |Dun(t + θη, x + sδ)− DqH∗(x,−v(t, x))|

× |DqH∗(x,−v(t, x))|
}

ds dθ dx dt

≤ C‖σ‖L2 |δ|

+ C‖σ‖L∞ |δ|
∫ t2+θη

t1+θη

∫
Td

∫ 1

0

∫ 1

0
m−sδ,−θη(t, x)

× |Dun(t, x)− DqH∗(x− sδ,−v−sδ,−θη(t, x))|2 ds dθ dx dt

+ 2C‖σ‖L∞ |δ|
∫ t2+θη

t1+θη

∫
Td

∫ 1

0

∫ 1

0

{
m−sδ,−θη(t, x)

× |Dun(t, x)− DqH∗(x− sδ,−v−sδ,−θη(t, x))|

× |DqH∗(x− sδ,−v−sδ,−θη(t, x))|
}

ds dθ dx dt.

As before, using the energy estimates (5.6.3) and (5.6.8) together with a Cauchy-
Schwarz inequality in the last integral, we obtain

I12 ≤ C‖σ‖L2 |δ|+ C‖σ‖L∞ |δ|
{
(1/n + η2 + |δ|2) + C(1/n + η2 + |δ|2)1/2

}
.

It is easy to see that with the help of the estimations for I11 and I12 we can
estimate I13 as well. Hence we obtain

I13 ≤ C‖σ‖L2(1/n + |δ|2 + η2)1/2

+ C
{

C‖σ‖2
L2 + C‖σ‖L∞

[
(1/n + |δ|2 + η2) + (1/n + |δ|2 + η2)1/2

]}1/2

× (1/n + |δ|2 + η2)1/2.

Let us now take care of I2. Setting f η(t, x) :=
∫ 1

0
f (x, m(t + θη, x))dθ, we have
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I2 =
∫ t2

t1

∫
Td

σ(t)m|αη
1,n(t, x + δ)− α

η
1,n(t, x)|dx dt

≤
∫ t2

t1

∫
Td

σ(t)m|αη
1,n(t, x + δ)− f η(t, x + δ)|dx dt

+
∫ t2

t1

∫
Td

σ(t)m| f η(t, x + δ)− f η(t, x)|dx dt

+
∫ t2

t1

∫
Td

σ(t)m| f η(t, x)− α
η
1,n(t, x)|dx dt

:= I21 + I22 + I23.

Since

I21 ≤ C
∫ t2

t1

∫
Td

∫ 1

0
σ(t)

× |α1,n(t + θη, x + δ)− f (x + δ, m(t + θη, x + δ))|dθ dx dt

≤ C
∫ 1

0

∫ t2−θη

t1−θη

∫
Td

σ−θη(t)|α1,n(t, x)− f (x, m(t, x))|dx dt dθ

we obtain by Cauchy-Schwarz and (5.6.8):

I21 ≤ C‖σ‖L2(1/n + |δ|2 + η2)1/2.

The term I23 can be treated in the same way. For I22, we have

I22 ≤ C‖σ‖L2

∫ 1

0
dθ

×
(∫ t2

t1

∫
Td
| f (x + δ, m(t + θη, x + δ))− f (x, m(t + θη, x))|2 dx dt

)1/2

≤ C‖σ‖L2 |δ|

because f (·, m(·, ·)) is in H1
loc((0, T)×Td).

Putting the above inequalities together gives (5.6.7).

Step 3. We now show that the sequence pn := (αn − f (·, m))+ belongs to
the space L2([t1, t2]; BV(Td)). Let us take a test function ψ ∈ C∞

c ((0, T)×Td),
e ∈ Rn with |e| = 1, η > 0 small and let us set δ := ηe. We estimate∫ t2

t1

∫
Td

σ−η(t)
ψ−η(t, x)− ψ−η(t, x− δ)

η
pn(t, x)dx dt

=
∫ t2−η

t1−η

∫
Td

σ(t)
ψ(t, x)− ψ(t, x− δ)

η
pη

n(t, x)dx dt

=
∫ t2−η

t1−η

∫
Td

σ(t)ψ(x)
pη

n(t, x)− pη
n(t, x + δ)

η
dx dt

≤ ‖ψ‖L∞
1
η

∫ t2−η

t1−η

∫
Td

σ(t)|pη
n(t, x)− pη

n(t, x + δ)|dx dt

≤ ‖ψ‖L∞
1
η

X(σ, 1/n, ηe, η).
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First let us recall that pn
∗
⇀ p as n → +∞ in M ([0, T]×Td), which allows us

to pass to the limit in the above inequality as n→ +∞ and obtain∫ t2

t1

∫
Td

σ−η(t)
ψ−η(t, x)− ψ−η(t, x− δ)

η
dp(t, x) ≤ ‖ψ‖L∞

1
η

X(σ, 0, ηe, η).

Now sending η → 0 and recalling (5.6.7) we have∫ t2

t1

∫
Td

σ(t)∇ψ(t, x) · e dp(t, x) ≤ C‖ψ‖L∞‖σ‖L2 .

Therefore we obtain that p ∈ L2([t1, t2]; BV(Td)) ↪→ L2([t1, t2]; Ld/(d−1)(Td))

and in particular, by the arbitrariness of t1 and t2 and by an injection we have
p ∈ Ld/(d−1)

loc ((0, T)×Td).

Step 4. Conclusion: as 0 ≤ αn ≤ pn + f (·, m) and (αn) converges to α defined
by (5.4.4), we have 0 ≤ β ≤ p + f (·, m) in (0, T) × Td. This proves that β is
absolutely continuous and belongs to Ld/(d−1)

loc ((0, T)×Td).

Remark 5.6.1. Note that by the example provided in the Section 5.5 we have the
sharpness of the above integrability result in the following sense: we cannot expect
a bound for pn in Ld/(d−1)

loc ((0, T] × Td), i.e., up to the final time, because of the
occurrence of a possible jump at t = T. Assumption (H2), m0 < m, prohibits this
local integrability up to t = 0 as well.

5.7 nash equilibria for mfg with density constraints

Let us suppose in this section the additional assumptions (HP1-1)-(HP1-2),
(HP2) and (HP3) as in Section 5.6. To define a proper notion of Nash equilib-
rium, we use the techniques for measures on paths, corresponding the trajec-
tories of single agents. This will also allow us to clarify the meaning of the
control problem (5.1.4). The used machinery is inspired by [AF09] (Section 6)
and also by [Car13b] (Section 4.3) and [CCN13] (Section 4). We remark also
some similarities of this approach with the works modeling traffic congestion
and Wardrop equilibria (see [BCS10, CJS08]).

5.7.1 Density-constrained flows and a first optimality condition

Let us recall that Γ denotes the set of absolutely continuous curves γ :
[0, T] → Td and P2(Γ) the set of Borel probability measures η̃ defined on
Γ such that ∫

Γ

∫ T

0
|γ̇(s)|2 ds dη̃(γ) < +∞.

We call η̃ an almost density-constrained flow if there exists C = C(η̃) > 0 such
that 0 ≤ m̃t ≤ C(η̃) a.e. in Td for all t ∈ [0, T], where m̃t := (et)#η̃. If C(η̃) ≤ m
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(the density constraint, given by our model) then we call η̃ a density-constrained
flow. Let us recall moreover that we use the definition of the Lagrangian as
L(x, v) = H∗(x,−v).

In the whole section we consider a solution (u, m, β, βT) of the MFG system
(5.4.1). By Theorem 5.4.1 and Theorem 5.6.1 this corresponds to (u, α) and
(m, w) solutions of Problem 5.3.3 and Problem 5.3.2 respectively, where

α = f (·, m)dx dt + β dx dt + βT d(δT ⊗H d Td) and w = −mDpH(x, Du).

Let us state the following results (in the spirit of Lemma 4.6.-4.8. from
[Car13b]) which characterize the density-constrained flows.

Lemma 5.7.1. Let η̃ ∈ P2(Γ) be an almost density-constrained flow and set m̃t :=
(et)#η̃. Then

(i) for all 0 ≤ t1 < t2 ≤ T we have∫
Td

u(t+1 , x)m̃(t1, x)dx ≤
∫

Td
u(t−2 , x)m̃(t2, x)dx +

∫
Γ

∫ t2

t1

L(γ(t), γ̇(t))dt dη̃(γ)

+
∫ t2

t1

∫
Td

( f (x, m(t, x)) + β(t, x)) m̃(t, x)dx dt.

(ii) In particular, for all 0 ≤ t1 < T∫
Td

u(t+1 , x)m̃(0, x)dx ≤
∫

Td
(g(x) + βT(x))m̃(T, x)dx

+
∫

Γ

∫ T

0
L(γ(t), γ̇(t))dt dη̃(γ)

+
∫ T

0

∫
Td

( f (x, m(t, x)) + β(t, x)) m̃(t, x)dx dt.

Proof. Let us recall that u satisfies, in the sense of measures,

−∂tu + H(x, Du) ≤ α in (0, T)×Td,

where α belongs to Ld/(d−1)
loc ((0, T) × Td) thanks to Theorem 5.6.1. If we reg-

ularize u into un and α into αn by convolution (with a compact support in
B1/n(0)), we obtain

−∂tun + H(x, Dun) ≤ αn + rn in (1/n, T − 1/n)×Td,

where
rn(t, x) = H(x, Dun(t, x))− H(·, Du) ? ρn(t, x).

Note that (rn) tends to 0 in L1((0, T)×Td) and when H does not depend on
the x variable one also has rn ≤ 0. Let us fix 0 < t1 < t2 < T and n large. Now
for any γ ∈ H1([0, T]) we have

d
dt

(
un(t, γ(t))−

∫ T

t
L(γ(s), γ̇(s))ds

)
≥ ∂tun(t, γ(t))− H(γ(t), Dun(t, γ(t)))

≥ −αn(t, γ(t))− rn(t, γ(t)). (5.7.1)
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Integrating this inequality on [t1, t2], then over Γ w.r.t. η̃, we obtain∫
Td

un(t1, x)m̃(t1, x)dx ≤
∫

Td
un(t2, x)m̃(t2, x)dx +

∫
Γ

∫ t2

t1

L(γ(t), γ̇(t))dt dη̃(γ)

+
∫

Td

∫ t2

t1

[αn(t, x) + rn(t, x)]m̃(t, x)dt dx.

We recall the fact that m̃ ∈ L∞([0, T] × Td). Since (un) strongly converges in
L1 to u ∈ BV([0, T]×Td), we have the existence of J ⊂ (0, T) of full measure
such that for every t1, t2 ∈ J, t1 < t2, the first two integrals pass to the limit as
n → +∞. By the strong convergence in Ld/(d−1)([t1, t2]×Td) of (αn) to α and
in L1([t1, t2]×Td) of (rn) to zero, we can pass to the limit as n → +∞ is the
last integral as well. So, for a.e. 0 < t1 < t2 < T, we have∫

Td
u(t1, x)m̃(t1, x)dx ≤

∫
Td

u(t2, x)m̃(t2, x)dx +
∫

Γ

∫ t2

t1

L(γ(t), γ̇(t))dt dη̃(γ)

+
∫

Td

∫ t2

t1

α(t, x)m̃(t, x)dt dx.

In order to show that the inequality holds for any t1 < t2, let us now check
that

ess− limt′→t±

∫
Td

u(t′, x)m̃(t′, x)dx =
∫

Td
u(t±, x)m̃(t, x)dx,

where u(t±, ·) is understood in the sense of trace and m̃(t, ·) is the (bounded)
density of the continuous representative of the map t 7→ m̃(t, ·)dx (for the L∞

weak−? convergence).The above limit basically follows from the trace proper-
ties of BV functions, but for the sake of completeness let us sketch it below. Let
un be a standard mollification in space of u. As u is in BV, u(t′, ·) converges in
L1 to u(t±, ·) as t′ → t±, so that un(t′, ·) uniformly converges to un(t±, ·). Let

us write
∫

Td
u(t′, x)m̃(t′, x)dx as

∫
Td

un(t′, x)m̃(t′, x)dx +
∫

Td
(u(t′, x)− un(t′, x))m̃(t′, x))dx. (5.7.2)

By uniform convergence of un(t′, ·), the first term in (5.7.2) converges to∫
Td

un(t±, x)m̃(t, x)dx,

which is arbitrary close to
∫

Td
u(t±, x)m̃(t, x)dx for n large. As for the sec-

ond term in (5.7.2), it is bounded by ‖u(t′, ·)− un(t′, ·)‖L1‖m‖L∞ , which, by L1

convergence of u(t′, ·) to u(t±, ·), tends to 0 uniformly in t′. This proves (i).
For (ii), we just apply (i) for t2 = T, since u(T−, ·) = g + βT.

Definition 5.7.1. We say that an η ∈ P2(Γ) is an optimal density-constrained
flow associated to the solution (u, m, β, βT) if m(t, ·) = (et)#η, for all t ∈ [0, T] and
the following energy equality holds
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∫
Td

u(0+, x)m0(x)dx =
∫

Td
g(x)m(T, x)dx + m

∫
Td

βT dx

+
∫

Γ

∫ T

0
L(γ(t), γ̇(t))dt dη(γ)

+
∫ T

0

∫
Td

( f (x, m(t, x)) + β(t, x))m(t, x)dx dt.

Note that the above definition is the reformulation in terms of density-
constrained flows of the energy equality from Definition 5.4.1 point (4).

Remark 5.7.1. Let us observe that for an optimal density-constrained flow η, the
energy equality in Definition 5.7.1 holds for any 0 ≤ t1 < t2 ≤ T as well, i.e.∫

Td
u(t+1 , x)m(t1, x)dx =

∫
Td

u(t−2 , x)m(t2, x)dx +
∫

Γ

∫ t2

t1

L(γ(t), γ̇(t))dt dη(γ)

+
∫ t2

t1

∫
Td

( f (x, m(t, x)) + β(t, x))m(t, x)dx dt. (5.7.3)

This can be easily deduced using the inequalities from Lemma 5.7.1 three times on the
intervals [0, t1], [t1, t2] and [t2, T] together with the global equality from Definition
5.7.1 and the fact that (∂tu)s is a non-negative measure (by the fact that α does not
have a singular part in (0, T) × Td and one has in the sense of measures −∂tu +

H(·, Du) ≤ α), i.e. one has always u(t−, ·) ≤ u(t+, ·) a.e. for all t ∈ (0, T).
Identity (5.7.3) implies also that (∂tu)s = 0 on the support of m, more precisely∫

Td
u(t+, x)m(t, x)dx =

∫
Td

u(t−, x)m(t, x)dx,

for all t ∈ (0, T).

The following proposition gives the existence result for an optimal density-
constrained flow η.

Proposition 5.7.2. There exists at least one optimal density-constrained flow η ∈
P2(Γ) in the sense of the Definition 5.7.1.

Proof. The proof uses the same construction and goes along the same lines as
in [Car13b]. Nevertheless, we discuss the main steps here.

We construct a family (ηε)ε>0 of density-constrained flows by∫
Γ

Ψ(γ)dηε(γ) :=
∫

Td
Ψ(Xx

ε )m0(x)dx,

for any bounded and continuous map Ψ : Γ → R, where Xx
ε is the solution of

the Cauchy problem
ẋ(t) =

wε(t, x(t))
mε(t, x(t))

, a.e in [0, T],

x(0) = x,
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(mε, wε) being a standard mollification of (m, w) such that 0 < mε ≤ m. One
easily checks that mε(t, ·) = (et)#ηε.

Using Lemma 4.7. from [Car13b] we obtain that the family (ηε)ε>0 is tight.
Denoting by η the limit of a suitable subsequence of it, this is an optimal
density-constrained flow in the sense of Definition 5.7.1. The proof of this
statement goes exactly as for Lemma 4.8. in [Car13b], using the equality (4)
from Definition 5.4.1 and the inequality (ii) from Lemma 5.7.1.

5.7.2 Optimality conditions on the level of single agent trajectories

In this subsection our aim is to show that the optimal density-constrained
flows are actually concentrated on paths which are optimal (in some weak
sense) for the control problem (5.1.4) (see Definition 5.7.2). We will show that
they satisfy a weak dynamic programming principle.

Let us recall that β ∈ L2
loc((0, T); BV(Td)) and βT ∈ L1(Td). In order to

handle the evaluation of β along single agent paths we shall work with specific
representative of it (which is defined everywhere in Td).

For an L1
loc function h : Td → R we define the specific representative of h by

ĥ(x) := lim sup
ε↓0

hε(x), (5.7.4)

where
hε(x) :=

∫
Rd

h(x + εy)ρ(y)dy

and ρ being the heat kernel

ρ(y) := (2π)−d/2e−|y|
2/2. (5.7.5)

We use this specific regularization via the heat kernel because of the semigroup
property (hε)ε′ = hε+ε′ we shall profit on later.

To treat passages to limit (in the regularization, as ε ↓ 0, similarly as in
Section 6 from [AF09]) we will need some uniform point-wise bounds on βε,
hence we shall use the properties of the Hardy-Littlewood-type maximal func-
tion defined with the help of the heat kernel (5.7.5). Thus for any h ∈ L1(Td)

we set
(Mh)(x) := sup

ε>0

∫
Rd
|h(x + εy)|ρ(y)dy.

Let us state some basic properties of the maximal functional M that we will
use in our setting. First because of the semigroup property we have

Mhε = sup
ε′>0
|hε|ε′ ≤ sup

ε̃>0
|h|ε̃ = Mh.

Secondly it is well-known that M leaves invariant any Lp space with 1 < p ≤
+∞ and there exists Cp > 0 such that

‖Mh‖Lp(Td) ≤ Cp‖h‖Lp(Td).
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Let us recall that by Theorem 5.6.1 we have that Mβ ∈ Ld/(d−1)
loc ((0, T)×Td) ↪→

L1
loc((0, T)×Td). The integrability property we need is only Mβ ∈ L1

loc((0, T)×
Td), but to guarantee this, β ∈ L1

loc((0, T)×Td) is not enough.
Let us set moreover α(t, x) := f (x, m(t, x)) + β(t, x) for a.e. (t, x) ∈ [0, T]×

Td and let us use its representative α̂ (obtained as in (5.7.4)) in the sequel.

Definition 5.7.2. Given 0 < t1 < t2 < T, we say that a path γ ∈ H1([0, T]; Td)

with Mα̂(·, γ) ∈ L1
loc((0, T)) is minimizing on the time interval [t1, t2] in the prob-

lem (5.1.4) if we have

û(t+2 , γ(t2)) +
∫ t2

t1

L(γ(t), γ̇(t)) + α̂(t, γ(t))dt ≤ û(t−2 , γ(t2) + ω(t2))+

+
∫ t2

t1

L(γ(t) + ω(t), γ̇(t) + ω̇(t)) + α̂(t, γ(t) + ω(t))dt,

for all ω ∈ H1([t1, t2]; Td) such that ω(t1) = 0 and Mα̂(·, γ + ω) ∈ L1([t1, t2]).

Remark 5.7.2. Let us notice that for any density-constrained flow η̃ the integrability
property Mα̂(·, γ) ∈ L1

loc((0, T)) is natural, since it is satisfied η̃-a.e., if Mα̂ ∈
L1

loc((0, T)×Td). Indeed, by this we have∫
Γ

∫ t2

t1

Mα̂(t, γ(t))dt dη̃(γ) =
∫ t2

t1

∫
Td

Mα̂(t, x)m̃(t, x)dx dt < +∞,

for all 0 < t1 < t2 < T, where m̃(t, ·)dx = (et)#η̃.

Theorem 5.7.3. For any 0 < t1 < t2 < T, any optimal density-constrained flow η is
concentrated on minimizing paths on the time interval [t1, t2] for the problem (5.1.4)
in the sense of the Definition 5.7.2.

Proof. We follow here Ambrosio-Figalli [AF09]. Let us take an optimal density-
constrained flow η given by Proposition 5.7.2, fix 0 < t1 < t2 < T and y ∈ Td,
take ω ∈ H1([t1, t2]; Td) with ω(t1) = 0 and χ ∈ C1

c ((0, T); [0, 1]) with χ > 0
on (t1, t2] and χ(t1) = 0 a smooth cut-off function. Let us take a Borel subset
E ⊂ Γ such that η(E) is positive. For ε > 0 and y ∈ Td we introduce the map
Tε,y : Γ→ Γ by

Tε,y(γ) :=

{
γ, if γ /∈ E,

γ + ω + εχy, if γ ∈ E.

Now let us define ηε,y := (Tε,y)#η, which in particular is an admissible density-
constrained flow satisfying the inequalities from Lemma 5.7.1. In addition let
us remark that, (et1)#ηε,y = (et1)#η = m(t1, ·)dx.
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Using the inequality (i) from Lemma 5.7.1 for ηε,y (on the time interval
[t1, t2]) and the equality (5.7.3) for η (on the same interval [t1, t2]) we obtain∫

E

[
û(t+2 , γ(t2)) +

∫ t2

t1

L(γ(t), γ̇(t)) + α̂(t, γ(t))dt
]

dη(γ) ≤

≤
∫

E

[
û(t−2 , γ(t2) + ω(t2) + εχ(t2)y)

+
∫ t2

t1

L(γ(t) + ω(t) + εχ(t)y, γ̇(t) + ω̇(t) + εχ̇(t)y)dt
]

dη(γ)

+
∫

E

∫ t2

t1

α̂(t, γ(t) + ω(t) + εχ(t)y)dt dη(γ).

where we are allowed to use any representative of u and α, thus we use the
specially constructed ones û and α̂. Let us average this last inequality w.r.t. the
variable y using the kernel ρ introduced in (5.7.5). We obtain

∫
E

[
û(t+2 , γ(t2)) +

∫ t2

t1

L(γ(t), γ̇(t)) + α̂(t, γ(t))dt
]

dη(γ) ≤∫
E

∫
Rd

[
û(t−2 , γ(t2) + ω(t2) + εχ(t2)y)

+
∫ t2

t1

L(γ(t) + ω(t) + εχ(t)y, γ̇(t) + ω̇(t) + εχ̇(t)y)dt
]
ρ(y)dy dη(γ)

+
∫

E

∫ t2

t1

α̂εχ(t)(t, γ(t) + ω(t))dt dη(γ).

Now choosing D ⊂ H1([t1, t2]; Td) a dense subset with ω(t1) = 0 for all ω ∈ D,
by the arbitrariness of E for η-almost every curve γ ∈ Γ we deduce that

û(t+2 , γ(t2)) +
∫ t2

t1

L(γ(t), γ̇(t)) + α̂(t, γ(t))dt

≤
∫

Rd

∫ t2

t1

L(γ(t) + ω(t) + εχ(t)y, γ̇(t) + ω̇(t) + εχ̇(t)y)ρ(y)dt dy

+ ûεχ(t2)(t
−
2 , γ(t2) + ω(t2)) +

∫ t2

t1

α̂εχ(t)(t, γ(t) + ω(t))dt,

for all ω ∈ D and ε = 1/n. By a density argument the above inequality holds
for any ω ∈ H1([t1, t2]; Td) with ω(t1) = 0. We finally let ε ↓ 0. As Mα̂(t, γ +

ω) ∈ L1([t1, t2]) and using the domination |αε| ≤ Mα̂, we can pass to the limit
in the last term of the above inequality. By the dominate convergence theorem
we can also pass to the limit in the first term thanks to the growth property
and the continuity of L. Thus the result follows.

Remark 5.7.3. The global version of Theorem 5.7.3 (to arrive up to the initial time
0 and the final time T) remains an open question. This is mainly due to the local
integrability property for the additional price β ∈ L2

loc((0, T); BV(Td)) we are aware
of for the moment. Let us remark that an integrability property β ∈ L1+ε([0, T]×Td)

for some ε > 0 would be enough to conclude in the global version.
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The notion of Nash equilibria has now a clearer formulation. Since we are
able to give a weak meaning for the optimization problem along single agent
trajectories, a solution (u, m, β, βT) of the MFG system with density constraints
gives the following notion of equilibrium.

Definition 5.7.3 (Local weak Nash equilibria). Let (u, m, β, βT) be a solution of the
MFG system with density constraints in the sense of Definition 5.4.1 on [0, T]×Td.
We say that (m, β, βT) is a local weak Nash equilibrium, if there exists an optimal
density-constrained flow η ∈P2(Γ) in the sense of Definition 5.7.1 (constructed with
the help of (m, β, βT)) which is concentrated on locally minimizing paths for Problem
(5.1.4) in the sense of Definition 5.7.2. In particular one has that mt = (et)#η and
0 ≤ mt ≤ m a.e. in Td for all t ∈ [0, T].

Remark 5.7.4. Let us remark that by Proposition 5.7.2 and Theorem 5.7.3 for any
solution (u, m, β, βT) for the MFG system with density constraints obtained with the
additional assumptions (HP1-1)-(HP1-2), (HP2) and (HP3) the triple (m, β, βT) is
always a local weak Nash equilibrium in the sense of the above definition.

5.7.3 The case without density constraint

Let us have a few words on the Nash equilibrium and on the optimality
condition on the level of single agent trajectories in the case when we do not
impose density constraints. More precisely, our aim is to clarify Remark 4.9.
from [Car13b].

Let us recall that in Section 4.3. from [Car13b] it was considered a class of
flows η̃ ∈ Pr′(T

d) such that m̃ ∈ Lq([0, T] × Td) where m̃t := (et)#η̃, where
r′ > 1 is the growth of the Lagrangian L in the velocity variable, while q −
1 (where q > 1) is the growth of the continuous coupling f in the second
variable. Because of this growth condition and since m ∈ Lq([0, T]× Td) we
have first that α(t, x) := f (x, m(t, x)) ∈ Lq′([0, T]×Td). Moreover Lemma 5.7.1
and Proposition 5.7.2 hold with β ≡ 0 and βT ≡ 0, since we did not impose
any density constraint (see the corresponding Lemma 4.6-4.8 from [Car13b]).

The difference, compared to our analysis in the previous section, is that we
can consider globally minimizing paths in Definition 5.7.2. More precisely, by
the global integrability property of α̂, and hence Mα̂ ∈ Lq′([0, T]×Td) we allow
curves γ ∈ W1,r′([0, T]) (and their variations) such that Mα̂(·, γ) ∈ Lq′([0, T]).
This is once again a natural class, since for any flow η̃, with the above described
properties, satisfies that∫

Γ

∫ t2

t1

Mα̂(t, γ(t))dt dη̃(γ) =
∫ t2

t1

∫
Td

Mα̂(t, x)m̃(t, x)dx dt < +∞,

for all 0 ≤ t1 < t2 ≤ T, since Mα̂ ∈ Lq′([0, T]× Td) and m̃ ∈ Lq([0, T]× Td)

where m̃t = (et)#η̃.
By these observations in the statement of Theorem 5.7.3 one can change now

the word “locally” to “globally” and the proof goes along the same lines.
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A
Convex analysis, Γ−convergence and basic

Calderón-Zygmund theory

a.1 classical results from convex analysis

We collect here some well-known results from convex analysis. In what
follows, let X and Y be normed Banach spaces, f : X → R is a convex, l.s.c.
and proper function. We denote dom( f ) := {x ∈ X : f (x) < +∞}. We define
its Legendre-Fenchel transformation as f ∗ : X∗ → R,

f ∗(x∗) := sup
x∈X
{〈x∗, x〉X∗ ,X − f (x)} , ∀x∗ ∈ X∗.

The subdifferential of f in a point x ∈ X is defined as

∂ f (x) := {x∗ ∈ X∗ : f (y) ≥ f (x) + 〈x∗, y− x〉X∗ ,X ∀y ∈ X}.

We have the following identity

f (x) + f ∗(x∗) ≥ 〈x∗, x〉X∗ ,X , ∀x ∈ X, x∗ ∈ X∗

with equality if and only if x∗ ∈ ∂ f (x) or equivalently x ∈ ∂ f ∗(x∗).
Let us characterize the Legendre-Fenchel transformation of a sum through

the inf-convolution, provided a qualification condition holds.

Lemma A.1.1. Let f , g : X → R be two convex and l.s.c. functions. If the following
qualification condition

∃x0 ∈ dom(g) such that f is continuous and finite in x0 (Q1)

213
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holds, then
( f + g)∗(x∗) = inf

z∗∈X∗
{ f ∗(x∗ − z∗) + g∗(z∗)} ,

for all x∗ ∈ X∗.

Another useful result is concerning the subdifferential of the sum of two
convex functions is the following (see for instance [ABM06, Theorem 9.5.4.]).

Theorem A.1.2. Let f , g : X → R be two closed convex proper functions. Then
a) the following inclusion is always true:

∂ f + ∂g ⊂ ∂( f + g).

b) Moreover, if the qualification assumption (Q1) holds, then we have

∂ f (x) + ∂g(x) = ∂( f + g)(x),

for all x ∈ X.

Let us introduce two more notions. Let K ⊆ X be a non-empty closed convex
set. The support function of the set K is σK : X∗ → R and defined as

σK(x∗) := sup
x∈K
〈x∗, x〉X∗ ,X , ∀x∗ ∈ X∗.

The normal cone to the set K in x ∈ K is defined as

NK(x) := {x∗ ∈ X∗ : 〈x∗, z− x〉X∗ ,X ≤ 0, ∀z ∈ K}.

These last to notions are linked to χK as χ∗K(x∗) = σK(x∗) and ∂χK(x) = NK(x).
Now let us consider the following optimization problem:

min
x∈X

f (x), (CP)

subject to G(x) ∈ K, where f : X → R is a convex, l.s.c. and proper function,
G : X → Y is a linear operator and K ⊆ Y is a closed convex set.

We define the Lagrangian as L : X×Y∗ → R,

L(x, λ) := f (x) + 〈λ, G(x)〉Y∗ ,Y

and dual problem as

sup
λ∈Y∗

inf
x∈X

L(x, λ)− σK(λ), (CPD)

One has the following general result:

Theorem A.1.3 ([BS00]). If the qualification condition

0 ∈ int (G(dom( f ))− K)) (Q2)
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holds, then the dual problem (CPD) has at least one solution λ, moreover the values of
the primal (CP) and the dual (CPD) are equal and the following optimality conditions
hold for any solution x of (CP):

L(x, λ) = inf
x∈X

L(x, λ)

and
λ ∈ NK(G(x)),

where NK(y) denotes the normal cone to the set K in the point y.

Let us state another characterization theorem (see for instance [ABM06, The-
orem 9.5.5]).

Theorem A.1.4. Let X be a normed space, let f : X → R be a convex, closed and
proper function, and let C ⊂ X be a closed convex non-empty subset. We assume that
one of the following qualification condition holds:

(i) f is continuous at some point of C;
(ii) dom( f ) ∩ int C 6= ∅.

Then the following statements are equivalent:
(1) u is an optimal solution of the minimization problem min{ f (v) : v ∈ C};
(2) u is a solution of the equation 0 ∈ ∂ f (u) + NC(u);
(3) there exists u∗ ∈ X∗ such that u ∈ C; u∗ ∈ ∂ f (u); 〈u∗, v− u〉 ≥ 0, ∀v ∈ C.

a.2 some words on Γ−convergence

In order to handle our approximation procedures (in Chapter 1), we need to
spend some words on the notion of Γ− convergence (see [DM93]).

Definition A.2.1. On a metric space X let Fn : X → R ∪ {+∞} be a sequence
of functions. We define the two lower-semicontinuous functions F− and F+ (called
Γ− lim inf and Γ− lim sup of this sequence, respectively) by

F−(x) := inf{lim inf
n→∞

Fn(xn) : xn → x},

F+(x) := inf{lim sup
n→∞

Fn(xn) : xn → x}.

Should F− and F+ coincide, then we say that Fn actually Γ−converges to the common
value F = F− = F+.

This means that, when one wants to prove Γ−convergence of Fn towards a
given functional F, one has actually to prove two distinct facts: first we need
F− ≥ F (this is called Γ−liminf inequality, i.e. we need to prove F(x) ≤
lim infn Fn(xn) for any approximating sequence xn → x) and then F+ ≤ F (this
is called Γ−limsup inequality, i.e. we need to find a recovery sequence xn → x
such that lim supn Fn(xn) ≤ F(x)).
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The definition of Γ−convergence for a continuous parameter ε → 0 obvi-
ously passes through the convergence to the same limit for any subsequence
εn → 0.

Among the properties of Γ−convergence we have the following ones:
– if there exists a compact set K ⊂ X such that infX Fn = infK Fn for any n,

then F attains its infimum and inf Fn → min F,
– if (xn)n is a sequence of minimizers for Fn admitting a subsequence con-

verging to x, then x minimizes F (in particular, if F has a unique minimizer
x and the sequence of minimizers xn is compact, then xn → x),

– if Fn is a sequence Γ−converging to F, then Fn + G will Γ−converge to
F + G for any continuous function G : X → R∪ {+∞}.

In the sequel we will need the following two easy criteria to guarantee
Γ−convergence.

Proposition A.2.1. If each Fn is l.s.c. and Fn → F uniformly, then Fn Γ−converges
to F.

If each Fn is l.s.c., Fn ≤ Fn+1 and F(x) = limn Fn(x) for all x, then Fn Γ−converges
to F.

We will essentially apply the notion of Γ−convergence in the space X =

P(Ω) endowed with the weak convergence 1 (which is indeed metrizable on
this bounded subset of the Banach space of measures), instead in the space
P2(Ω) endowed with the W2 convergence, which lacks compactness whenever
Ω is not compact.

a.3 calderón-zygmund type theory

In this section we recall some classical results about the regularity of so-
lutions of elliptic equations with irregular r.h.s. Recall that we set 〈〈·, ·〉〉 for
the duality product between (W1,q′

� (Ω))∗ (q > 1) and W1,q′
� (Ω). The following

surjectivity result holds true.

Lemma A.3.1. For any f ∈ (W1,q′
� (Ω))∗ the weak formulation of

div(F) = f in Ω, F · n = 0 in ∂Ω, i.e. −
∫

Ω
F(x) · ∇ϕ(x)dx = 〈〈 f , ϕ〉〉

(A.3.1)

for all ϕ ∈W1,q′
� (Ω), has at least one solution F ∈ Lq(Ω)d.

Proof. Let us consider the problem

min
u∈W1,q′

�

1
q′

∫
Ω
|∇u|q′ dx− 〈〈 f , u〉〉.

1. We recall that a family of probability measure µn weakly converges to a probability mea-
sure µ in Ω if

∫
φ dµn →

∫
φ dµ for all φ ∈ Cb(Ω), where Cb(Ω) is the space of continuous and

bounded functions on Ω.
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Since the cost function is strictly convex, coercive and weakly lower semicon-
tinuous, we have the existence of a unique u ∈W1,q′

� (Ω) such that∫
Ω
|∇u(x)|q′−2∇u(x) · ∇φ(x)dx = 〈〈 f , ϕ〉〉 ∀ ϕ ∈W1,q′

� (Ω).

The result follows by defining F = −|∇u|q′−2∇u ∈ Lq(Ω)d.

Now, given f ∈ (W1,q′
� (Ω))∗, let us consider the equation

−∆m = f in Ω, ∇m · n = 0 in ∂Ω. (A.3.2)

We say that m ∈W1,q(Ω) is a weak solution of (A.3.2) if∫
Ω
∇m(x)∇ϕ(x)dx = 〈〈 f , ϕ〉〉 ∀ ϕ ∈W1,q′

� (Ω). (A.3.3)

Lemma A.3.2. Assume that q > d and let a ∈ R. Then, there exists a unique weak

solution (A.3.2) satisfying that
∫

Ω
m dx = a. Moreover, there exists a constant c > 0,

independent of (a, f ), such that for any F solving (A.3.1) we have that

‖∇m‖Lq ≤ c‖F‖Lq . (A.3.4)

Sketch of the proof: Noticing that (A.3.3) is invariant if a constant is added to m,
it suffices to prove the result for a = 0. Since q > d we have that q′ < 2 and
so, by the Lax-Milgram theorem, existence and uniqueness for (A.3.3) holds
in W1,2

� (Ω). Using interpolation results due to Stampacchia (see [Sta64] and
[Sta65b]), estimate (A.3.4) holds if Dirichlet-boundary conditions were consid-
ered (see e.g. [GM12, Theorem 7.1]). This argument yields the desired local
regularity for m, which can be extended up to the boundary (which we recall
that it is assumed to be regular) using classical reflexion arguments.

Finally let us recall the following result about elliptic equations with measure
data. This is a well-known result, we refer to [Min07] which contains the
following statement for nonlinear problems as well.

Theorem A.3.3 ([Min07], Theorem 1.2). Let f ∈M (Ω). Then the unique solution
u ∈W1,1

0 (Ω) of the problem

−∆u = f in Ω, u = 0 on ∂Ω (A.3.5)

has the following regularity properties:

(i) ∇u ∈W1−ε,1
loc (Ω)d, for all ε ∈ (0, 1).

(ii) More generally, ∇u ∈W
σ(r)−ε

r ,r
loc (Ω)d, for all ε ∈ (0, σ(r)) where 1 ≤ r < d

d−1 and
σ(r) := d− r(d− 1).
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Remark A.3.1. We remark that the result about the uniqueness of the (renormalized)
solution of the problem (A.3.5) can be found in [DMMOP99]. Moreover since the
regularity results in Theorem A.3.3 are local, these remain true if we use homogeneous
Neumann boundary conditions instead of Dirichlet ones. In this context the solution
is unique up to an additive constant.
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